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Preface

Here we provide the proceedings of the 15th International Conference on In-
formation Processing and Management of Uncertainty in Knowledge-based Sys-
tems, IPMU 2014, held in Montpellier, France, during July 15–19, 2014. The
IPMU conference is organized every two years with the focus of bringing to-
gether scientists working on methods for the management of uncertainty and
aggregation of information in intelligent systems.

This conference provides a medium for the exchange of ideas between theo-
reticians and practitioners working on the latest developments in these and other
related areas. This was the 15th edition of the IPMU conference, which started
in 1986 and has been held every two years in the following locations in Eu-
rope: Paris (1986), Urbino (1988), Paris (1990), Palma de Mallorca (1992), Paris
(1994), Granada (1996), Paris (1998), Madrid (2000), Annecy (2002), Perugia
(2004), Malaga (2008), Dortmund (2010) and Catania (2012).

Among the plenary speakers at past IPMU conferences, there have been three
Nobel Prize winners: Kenneth Arrow, Daniel Kahneman, and Ilya Prigogine. An
important feature of the IPMU Conference is the presentation of the Kampé de
Fériet Award for outstanding contributions to the field of uncertainty. This year,
the recipient was Vladimir N. Vapnik. Past winners of this prestigious award were
Lotfi A. Zadeh (1992), Ilya Prigogine (1994), Toshiro Terano (1996), Kenneth
Arrow (1998), Richard Jeffrey (2000), Arthur Dempster (2002), Janos Aczel
(2004), Daniel Kahneman (2006), Enric Trillas (2008), James Bezdek (2010),
Michio Sugeno (2012).

The program of the IPMU 2014 conference consisted of 5 invited academic
talks together with 180 contributed papers, authored by researchers from 46
countries, including the regular track and 19 special sessions. The invited aca-
demic talks were given by the following distinguished researchers: Vladimir
N. Vapnik (NEC Laboratories, USA), Stuart Russell (University of California,
Berkeley, USA and University Pierre et Marie Curie, Paris, France), Inés Couso
(University of Oviedo, Spain), Nadia Berthouze (University College London,
United Kingdom) and Marcin Detyniecki (University Pierre and Marie Curie,
Paris, France).

Industrial talks were given in complement of academic talks and highlighted
the necessary collaboration we all have to foster in order to deal with current
challenges from the real world such as Big Data for dealing with massive and
complex data.

The success of IPMU 2014 was due to the hard work and dedication of a
large number of people, and the collaboration of several institutions. We want to
acknowledge the industrial sponsors, the help of the members of the International
Program Committee, the reviewers of papers, the organizers of special sessions,
the Local Organizing Committee, and the volunteer students. Most of all, we
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appreciate the work and effort of those who contributed papers to the conference.
All of them deserve many thanks for having helped to attain the goal of providing
a high quality conference in a pleasant environment.

May 2014 Bernadette Bouchon-Meunier
Anne Laurent
Olivier Strauss

Ronald R. Yager
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Abstract. Knowledge-based semantic measures are cornerstone to exploit on-
tologies not only for exact inferences or retrieval processes, but also for data 
analyses and inexact searches. Abstract theoretical frameworks have recently 
been proposed in order to study the large diversity of measures available; they 
demonstrate that groups of measures are particular instantiations of general pa-
rameterized functions. In this paper, we study how such frameworks can be 
used to support the selection/design of measures. Based on (i) a theoretical 
framework unifying the measures, (ii) a software solution implementing this 
framework and (iii) a domain-specific benchmark, we define a semi-supervised 
learning technique to distinguish best measures for a concrete application. Next, 
considering uncertainty in both experts’ judgments and measures’ selection 
process, we extend this proposal for robust selection of semantic measures that 
best resists to these uncertainties. We illustrate our approach through a real use 
case in the biomedical domain. 

Keywords: semantic similarity measures, ontologies, unifying semantic simi-
larity measures framework, measure robustness, uncertain expertise. 

1 Introduction  

Formal knowledge representations (KRs) can be used to express domain-specific 
knowledge in a computer-readable and understandable form. These KRs, generally 
called ontologies, are commonly defined as formal, explicit and shared conceptualiza-
tions [3]. They bridge the gap between domain-specific expertise and computer re-
sources by enabling a partial transfer of expertise to computer systems. Intelligence 
can further be simulated by developing reasoners which will process KRs w.r.t. the 
semantics of the KR language used for their definition (e.g., OWL, RDFS).  

From gene analysis to recommendation systems, knowledge-based systems are to-
day the backbones of numerous business and research projects. They are extensively 
used for the task of classification or more generally to answer exact queries w.r.t. 
domain-specific knowledge. They also play an important role for knowledge discov-
ery, which, contrary to knowledge inferences, relies on inexact search techniques. 
Cornerstones of such algorithms are semantic measures, functions used to estimate 
the degree of likeness of concepts defined in a KR [12, 15]. They are for instance 
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used to estimate the semantic proximity of resources (e.g., diseases) indexed by con-
cepts (e.g., syndromes) [9]. Among the large diversity of semantic measures (refer to 
[5] for a survey), knowledge-based semantic similarity measures (SSM) can be used 
to compare how similar the meanings of concepts are according to taxonomical evi-
dences formalized in a KR. Among their broad range of practical applications, SSMs 
are used to disambiguate texts, to design information retrieval algorithms, to suggest 
drug repositioning, or to analyse genes products [5]. Nevertheless, most SSMs were 
designed in an ad hoc manner and only few domain-specific comparisons involving 
restricted subsets of measures have been made. It is therefore difficult to select a SSM 
for a specific usage. Moreover, in a larger extent, it is the study of SSM and all know-
ledge-based systems relying on SSMs which are hampered by this diversity of  
proposals since it is difficult today to distinguish the benefits of using a particular 
measure.  

In continuation of several contributions which studied similitudes between meas-
ures [2, 13, 15], a theoretical unifying framework of SSMs has recently been pro-
posed [4]. It enables the decomposition of SSMs through a small set of intuitive core 
elements and parameters. This highlights the fact that most SSMs can be instantiated 
from general similarity formula. This result is not only relevant for theoretical studies; 
it opens interesting perspectives for practical applications of measures, such as the 
definition of new measures or the characterization of measures best performing in 
specific application contexts. To this end, the proposal of the theoretical framework 
has been completed by the development of the Semantic Measures Library (SML) 
[6]1, an open source generic software solution dedicated to semantic measures.  

Both the theoretical framework of SSMs and the SML can be used to tackle  
fundamental questions regarding SSMs: which measure should be considered for a 
concrete application? Are there strong implications associated to the selection of a 
specific SSM (e.g., in term of accuracy)? Do some of the measures have similar be-
haviours? Is the accuracy of a measure one of its intrinsic properties, i.e., are there 
measures which always better perform? Is a given measure sensitive w.r.t. uncertainty 
in data or selection process? Can the impact of these uncertainties be estimated? 

In this paper, we focus on the uncertainty relative to the selection of a SSM in a 
particular context of use. Considering that a representative set of pairs of concepts ,  and expected similarities ,  have been furnished by domain experts, 
we propose to use the aforementioned framework and its implementation, to study 
SSMs and to support context-specific selection of measures. Applying semi-
supervised learning techniques, we propose to ‘learn’ the core elements and the pa-
rameters of general measures in order to fit domain-expert’s knowledge. Moreover, 
we focus on the impact of experts’ uncertainty on the selection of measures that is: to 
which extent can a given SSM be reliably used knowing that similarities provided by 
experts are inherently approximate assessments? We define the robustness of a SSM 
as its ability to remain a reliable model in presence of uncertainties in the learning 
dataset.  

                                                           
1 http://www.semantic-measures-library.org  
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The rest of the paper is organized as follows. Section 2 presents the unifying 
framework of SSMs. Section 3 describes a learning procedure for choosing the core 
elements and parameters on the basis of expert’s knowledge. A simple, yet realistic, 
model of uncertainty for experts’ assessments and indicators of robustness are intro-
duced. Section 4 illustrates the practical application of our proposal in the biomedical 
domain. Finally, section 5 provides conclusions as well as some lines of future work. 

2 Semantic Similarity Measures and Their Unification 

This section briefly introduces SSMs for the comparison of two concepts defined in a 
KR, more details are provided in [5]. We present how the unifying framework  
recently introduced in [4] can be used to define parametric measures from which ex-
isting and new SSMs can be expressed. We focus on semantic similarity which is 
estimated based on the taxonomical relationships between concepts; we therefore 
focus on the taxonomy of concepts of a KR. This taxonomy is a rooted direct acyclic 
graph denoted ; it defines a partial order  among the set of concepts . We use 
these notations: 

• : the ancestors of the concept , i.e.,  |   . 
• : the length of the shortest-path linking  to the root of the taxonomy.  
• , : the Least Common Ancestor of concepts  and , i.e. their deeper 

common ancestor. 
• : the information content of , e.g., originally defined as log , with 

 the probability of usage of concept , e.g., in a text corpus. Topological al-
ternatives have also been proposed (see [5, 15]).  

•  ,  the Most Informative Common Ancestor of concepts  and . 

In [4], it is shown that a large diversity of SSMs can easily be expressed from a 
small set of primitive components. The framework is composed of two main ele-
ments: a set of primitive elements used to compose measures, and general measure 
expressions which define how these primitives can be associated to build a concrete 
measure. With  a domain containing any subset of the taxonomy (e.g., ,  the 
subgraph of  induced by ), the primitives used by the framework are: 

• Semantic representation ( ): Canonical form adopted to represent a concept and 
derive evidences of semantic similarity, with ρ: . We note ρ  or , the 
semantic representation of the concept . As an example, a concept can be seen as 
the set of senses it encompasses, i.e.,  its subsumers in . 

• Specificity of a concept ( ): The specificity of a concept  is estimated by a func-
tion θ: , with   θ θ , e.g., IC, depth of a concept. 

• Specificity of a concept representation ( ): The specificity of a concept repre-
sentation , Θ , is estimated by a function: Θ: . Θ decreases from the 
leaves to the root of , i.e.,   Θ Θ . 
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• Commonality ( ): The commonality of two concepts ,  according to their 
semantic representations ,  is given by a function Ψ , , Ψ: .  

• Difference ( ): The amount of knowledge represented in  not found in  is es-
timated using a function Φ , : Φ: . 

The abstract functions ρ, Ψ, Φ are the core elements of most SSMs, numerous 
general measures can be expressed from them; we here present , an abstract 
formulation of the ratio model introduced by Tversky [16]: , Ψ , Φ ,  Φ , Ψ ,  

Note that ,  are positive, bounded, and that important ,  values have no appeal in 
our case.  can be used to express numerous SSMs [4]; using the core elements 
of Table 1, some well known SSMs instantiations of  are provided in Table 2 
(in all cases, Φ , Θ Ψ , ). Please refer to [4, 5] for citations and for a 
more extensive list of both abstract measures and instantiations.  

Table 1. Examples of instantiations of the primitive components defined by the framework 

Case 1 2 3 4 ρ      Θ     | | 
Ψ ,  , ,  | | 
Table 2. Instantiations of SSMs which can be used to assess the similarity of concepts 

Measures Case Parameters 

 & ,   ,
 1  α 0.5, 0.5 

 ,  ,
 2  α 0.5, 0.5 

 , , ,  2 α 1, 1 

 ,  ∑∑ ∑  3 α 0.5, 0.5 

 ,  | || | 4 α 1, 1 
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3 Learning Measures Tuning from Expert Knowledge 

Considering a particular abstract expression of a measure, here , the objective 
is to define the “right” combination of parameters ρ, Θ, Ψ, Φ, α, β . Following the 
framework presented in section 2, this choice proceeds through two steps: 

- Step 1: Define a finite list Π  | ρ , Θ , Ψ , Φ , 1, … ,  of possible 
instantiations of the core elements ρ, Θ, Ψ, Φ , see Table 1. This choice can be guided 
by semantic concerns and application constraints, e.g., based on: (i) the analysis of the 
assumptions on which rely specific instantiations of measures [5], (ii) on the will to 
respect particular mathematical properties such as the identity of the indiscernibles or 
(iii) the computational complexity of measures.  

- Step 2: Choose the couples of parameters α , β , 1, … ,  to be associated to 
 in . A couple α , β  may be selected in an ad hoc manner from a finite list 

of well known instantiations (see Table 2), e.g., based on the heavy assumption that 
measures performing correctly in other benchmarks are suited for our specific use 
case. Alternatively, knowing the expected similarities ,  furnished by domain 
experts on a learning dataset, α , β  can also be obtained from a continuous optimi-
zation process over this dataset. This latter issue is developed hereafter. 

For any instantiation , α , β  of the abstract measure  , let us denote, , , , ,  for any couple of concepts , . Suppose now that 

experts have given the expected similarities s s , , 1, … ,  for a subset 
of  couples of concepts , . Let s , … , s  T be the vector of these ex-
pected similarity values. It is then possible to estimate the quality of a particular SSM 
tuning  through the value of a fitting function. We denote  the vector which con-
tains the similarities obtained by  for each pair of concepts evaluated to build , 
with: , ,…, . Given , the similarities ,  only depend on α , β ; it is thus possible to find the optimal α , β  values that optimize a fitting 
function, e.g. the correlation between  and : max ,  ,0 α, β                                (1) 

The bound constraint of this optimization problem (1) is reasonable since the 
case  ∞ or ∞ should imply , 0 which have no appeal for us. 
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Fig. 1. The fitting function , α, β  and its level lines for choice 4 (see Table 1)  

Fig. 1 presents an experiment which has been made to distinguish the optimal α , β  parameters for instantiation of   using case 4, and considering a bio-
medical benchmark (discussed in section 4). The maximal correlation value is 0.759, 
for α 6.17 and β 0.77 (the dot in the right image). The strong asymmetry in 
the contour lines is a consequence of Φ , Φ , . This approach is efficient to 
derive the optimal configuration considering a given vector of similarities ( ). Never-
theless it does not take into account the fact that expert assessments of similarity are 
inherently marred by uncertainty.  

In our application domain, expected similarities are often provided in a finite ordi-
nal linear scale of type  ∆, 1. . .  (e.g., 1, 2, 3, 4  in the next 
section). If ∆ denotes the difference between two contiguous levels of the scale, then 
we assume in this case that ∆, 0, ∆  with probability  0, ∆ ∆  . This model of uncertainty merely means that 
expert assessment errors cannot exceed ∆. In addition, it allows computing the prob-
ability distributions of the optimal couples α , β ~ ,  with α , β  
being the solution of problem (1) with  instead of  as inputs, and  the 
uncertainty parameter (  ) (note that α , β α 0 , β 0 ).  

The aim is to quantify the impact of uncertainty in expert assessments on the selec-
tion of a measure instantiation, i.e. selection of , α , β . We are interested in the 
evaluation of SSM robustness w.r.t. expert uncertainty, and we more particularly fo-
cus on the relevance to consider α , β  in case of uncertain expert assessments. 
Finding a robust solution to an optimization problem without knowing the probability 
density of data is well known [1, 7]. In our case, we do not use any hypothesis on the 
distribution of . We define a set of near optimal (α , β ) using a threshold value 

 (domain-specific). The near optimal solutions are those in the level set: 
 α , β  | , , i.e. the set of pairs of parameters α, β giving good 
correlation values w.r.t the threshold . The robustness is therefore given by: 

, α β  ; the bigger , the more robust the model α , β  is. Nev-

ertheless, given that analytical form for the distribution ,  cannot be established, 
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even in the normal case ~ 0, Σ , estimation techniques are used, e.g., Monte Carlo 
method. 

The computation of ,  allows identifying a robust couple α  , β  for a given 

uncertainty level . An approximation of this point, named α , β , is given by the 
median of points α , β  generated by Monte Carlo method. Note that α , β  

coincides with α , β  for 0 or little values of . Therefore α , β  remains 
inside  for most  and is significantly different from α , β  when  increases.  

4 Practical Choice of a Robust Semantic Similarity Measure 

Most algorithms and treatments based on SSMs require measures to be highly corre-
lated with human judgement of similarity [10–12]. SSMs are thus commonly evalu-
ated regarding their ability to mimic human appreciation of similarity between  
domain-specific concepts. In our experiment, we considered a benchmark commonly 
used in biomedicine to evaluate SSMs according to similarities provided by medical 
experts [12]. The benchmark contains 29 pairs of medical terms which have been 
associated to pairs of concepts defined in the Medical Subject Headings (MeSH) the-
saurus [14]. Despite its reduced size – due to the fact that benchmarks are hard to 
produce – we used this benchmark since it is commonly used in the biomedical do-
main to evaluate SSM accuracy. The average of expert similarities is given for each 
pair of concepts; initial ratings are of the form 1, 2, 3, 4 . As a consequence, the 
uncertainty is best modelled defining 1, 0, 1  with probability distribution: 0 , 1 1  . 

The approach described in Section 3 is applied with instantiations  presented in 
Table 2. Optimal (α, β  were found by resolving Problem (1); SSMs computations 
were performed by the Semantic Measures Library [6]. Table 3 shows that one of the 
optimal configuration is obtained using Case 2 expressions (with , ): , 18.62 4.23  

Table 3. Best correlations of parametric SSMs, refer to Table 2 for case details 

 Case 1 (C1) Case 2 (C2) Case 3 (C3) Case 4 (C4) 
Max. Correlation 
Optimal α , β  

0.719 
(9.89,1.36) 

0.768 
(18.62,4.23) 

0.736 
(7.26,0.40) 

0.759 
 (6.17,0.77) 

 
It can be observed from the analysis of the results that, naturally, the choice of core 

elements affects the maximal correlation; instantiations C2 and C4 always resulted in 
the highest correlations (results are considered to be significant since the accuracies of 
C2 and C4 are around 5% better than C1 and C3). Another interesting aspect of the 
results is that asymmetrical measures provide best results: all experiments provided 
the best correlations by tuning the measures with asymmetric contributions of  and 
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 parameters – which can be linked to the results obtained in [4, 8]. Note that best 
tunings and ,  ratio vary depending on the core elements considered.  

Setting a threshold of correlation at 0.75, we now focus on the instantiations C2 
and C4; they have comparable results (respectively 0.768/0.759, Δ 0.009). The aim 
is to evaluate their robustness according to the framework introduced in section 3. 
Considering inter-agreements between pools of experts reported in [12] (0.68/0.78), 
the level of near optimality  is fixed to 0.73. We also choose uncertainty 
values 0.9, 0.8, 0.7, 0.6, 0.5 . The probability for the expert(s) to give erroneous 
values, i.e. their uncertainty, is 1 0.1, 0.2, 0.3, 0.4, 0.5 . For each -value, a 
large number of -vectors are generated to derive α , β . Estimated values of the 
robustness  and α , β  for measures C2 and C4 are given in Table 4 and are 
illustrated in Fig. 2. 

Table 4. Robustness of parametric SSMs for case 2 (C2) and case 4 (C4) measures 

 1 0.1 1 0.2 1 0.3 1 0.4 1 0.5 

  α , β  
0.83  

(18.62, 4.23) 

0.70  
(18.62, 4.23) 

0.56  
(15.31, 4.23) 

0.49 
(16.70, 4.07) 

0.39 
(13.71, 4.02) 

 0.76 0.54 0.46 0.39 0.35 α , β  (6.17,0.77) (6.17,0.76) (5.52,0.71) (5.12,0.64) (4.06,0.70) 

 

 

Fig. 2. Robustness of case 2 (C2) and case 4 (C4) measures for 10% and 40% of uncertainty. In 
each figure the solutions α , β , α , β  and  are plotted.  
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Fig. 2 shows the spread of the couples α , β  for measures C2 and C4 consid-
ering the levels of uncertainty set to 10% and 40%. An interesting aspect of the results 
is that robustness is significantly different depending on the case considered, 83% for 
C2 and 76% for C4. Therefore, despite their correlations were comparable (Δ0.009), C2 is less sensible to uncertainty w.r.t. to the learning dataset used to distin-
guish best-suited parameters Indeed, only based on correlation analysis, SSM users 
will most of the time prefer measures which have been derived from C2 since their 
computational complexity is lower than those derived from C4 (computations of the 
IC and the MICA are more complex). Nevertheless, C4 appears to be a more risky 
choice considering the robustness of the measures and the uncertainty inherently as-
sociated to expert evaluations. In this case, one can reasonably conclude that α , β  
of C2 is robust for uncertainty lower than 10% ( 1 0.1;  0.83). The size of 
the level set  is also a relevant feature for the selection of SSMs; it indicates the 
size of the set of parameters α , β  that give high correlations considering imprecise 
human expectations. Therefore, an analytical (and its graphical counterpart) estimator 
of robustness is introduced. Another interesting finding of this study is that, even if 
human observations are marred by uncertainty and the semantic choice of measures 
parameters, ρ , Θ , Ψ , Φ , is not a precise process, the resulting SSM is not so 
sensitive to all these uncertainty factors. 

5 Conclusions and Future Work 

Considering the large diversity of measures available, an important contribution for 
end-users of SSMs would be to provide tools to select best-suited measures for do-
main-specific usages. Our approach paves the way to the development of such tool 
and can more generally be used to perform detailed evaluations of SSMs in other 
contexts and applications (i.e., other knowledge domains, ontologies and training 
data). In this paper, we used the SSM unifying framework established in [4] and a 
well-established benchmark in order to design a SSM that fits the objectives of a prac-
titioner/designer in a given application context.  

We particularly focused on the fact that the selection of the best-suited SSM is af-
fected by uncertainties, in particular due to the uncertainty associated to the ratings of 
human experts used to evaluate the measures, etc. To our knowledge, we are the first to 
propose an approach that finds/creates a best-suited SM which is robust to these uncer-
tainties. Indeed, contrary to most of existing studies which only compare measures 
based on their correlation with expected scores of similarity (e.g., human appreciation of 
similarity), our study highlights the fact that robustness of measures is an essential crite-
ria to better understand measures’ behaviour and therefore drive their comparison and 
selection. We therefore propose an analytical estimator of robustness, and its graphical 
counterpart, which can be used to characterize this important property of SSM. There-
fore, by putting into light the limit of existing estimator of measures’ accuracy, espe-
cially when uncertainty is regularly impacting measures (evaluation and definition), we 
are convinced that our proposals open interesting perspectives for measure characteriza-
tion and will therefore ease their accurate selection for domain specific studies.  

In addition, results of the real-world example used to illustrate our approach  
give us the opportunity to capture new insights about specific types of measures  
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(i.e. particular instantiation of an abstract measure, ). Nevertheless, the obser-
vations made in this experiment have been made based on the analysis of specific 
configurations of measures, using a single ontology and a unique (unfortunately re-
duced) benchmark. More benchmarks have thus to be studied to derive more general 
conclusions and the sensitivity of our approach w.r.t the benchmark properties (e.g. 
size) have to be discussed. This will help to better understanding SSMs and more 
particularly to better analyse the role and connexions between abstract measures ex-
pressions, core elements instantiations and extra parameters (e.g. α, β) regarding the 
precision and the robustness of SSMs. Finally, note that a similar approach can be 
used to study SSMs expressed from abstract formulae other than , and therefore 
study the robustness of a large diversity of measures not presented in this study.  
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Abstract. Concept-based information retrieval is known to be a pow-
erful and reliable process. It relies on a semantically annotated corpus,
i.e. resources indexed by concepts organized within a domain ontology.
The conception and enlargement of such index is a tedious task, which
is often a bottleneck due to the lack of (semi-)automated solutions. In
this paper, we first introduce a solution to assist experts during the in-
dexing process thanks to semantic annotation propagation. The idea is
to let them position the new resource on a semantic map, containing
already indexed resources and to propose an indexation of this new re-
source based on those of its neighbors. To further help users, we then
introduce indicators to estimate the robustness of the indexation with
respect to the indicated position and to the annotation homogeneity of
nearby resources. By computing these values before any interaction, it
is possible to visually inform users on their margins of error, therefore
reducing the risk of having a non-optimal, thus unsatisfying, annotation.

Keywords: conceptual indexing, semantic annotation propagation, im-
precision management, semantic similarity, man-machine interaction.

1 Introduction

Nowadays, information technologies allow to handle huge quantity of resources
of various types (images, videos, text documents, etc.). While they provide tech-
nical solutions to store and transfer almost infinite quantity of data, they also
induce new challenges related to collecting, organizing, curating or analyzing
information. Information retrieval (IR) is one of them and is a key process for
scientific research or technology watch. Most information retrieval systems (IRS)
rely on NLP (natural language processing) algorithms and on indexes — of both
resources and queries to catch them — based on potentially weighted keywords.
Nevertheless, those approaches are hampered by ambiguity of keywords in the
indexes. There is also no structure acknowledged among the terms, e.g., “car” is
not considered to have anything in common with “vehicle”. Concept-based infor-
mation retrieval overcomes these issues when a semantically annotated corpus is

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 11–20, 2014.
c© Springer International Publishing Switzerland 2014
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available [1]. The vocabulary used to describe the resources is therefore controlled
and structured as it is limited to the concepts available in the retained domain
ontology. The latter also provides a framework to calculate semantic similarities
to assess the relatedness between two concepts or between two groups of con-
cepts. For instance, the relevance score between a query and a document can be
computed using such measures, thus taking into account specialization and gen-
eralization relationships defined in the ontology. However, the requirement of an
annotated corpus is a limit of such semantic based approach because augmenting
a concept-based index is a tedious and time-consuming task which needs a high
level of expertise. Here we propose an assisted semantic indexing process build
upon a solution that we initially developed for resources indexed by a series of
numerical values. Indeed, few years ago we proposed a semi-automatic indexing
method to ease and support the indexing process of music pieces [2]. The goal
of this approach was to infer a new annotation thanks to existing ones: what we
called annotation propagation. A representative sample of the corpus is displayed
on a map to let the expert point out (e.g. by clicking) the expected location of a
new item in a neighborhood of similar resources. An indexation is then proposed
to characterize the new item by summarizing those of nearby resources. In prac-
tice, this is done by taking the mean of the annotations of the closest neighbors,
weighted by their distances to the click location. According to experts (DJs),
the generated annotations were satisfying and our method greatly sped up their
annotation process (the vector contained 23 independent dimensions and more
than 20 songs were indexed in less than five minutes by an expert). We also
successfully applied it in another context, to annotate photographs [3].

Here we propose a solution to extend this approach to a concept-based in-
dexing process. Indeed, using indexation propagation is not straightforward in
the semantic framework since concepts indexing a resource are not necessarily
independent and the average of a set of concepts is not as obvious as the average
of a set of numerical values. Summarizing the annotations of the closest neigh-
bors cannot be done using a mere barycenter anymore. In our approach, we rely
on semantic similarity measures in order to define the new item’s annotation,
thanks to its neighbors’ ones. The exact location of the user click may have more
or less impact on the proposed indexation depending on the resources’ index-
ation and density in the selected area. To further support the user during the
indexation process, we thus propose to analyze the semantic map to give him
a visual indication of this impact. The user can then pay more attention to his
selection when needed and go faster when possible.

After having described the annotation propagation related works in section 2,
section 3 introduces our framework. We explain the objective function leading
to the annotation and the impact of expert’s imprecision withing the annotation
propagation process. Section 4 focuses on the management of this imprecision
and more specifically on solutions to help the user to take it into account within
the indexing process. Results are discussed in section 5 with a special care of
visual rendering proposed to assist the end-user.
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2 Related Work

The need of associating metadata to increasingly numerous documents led the
community to conceive approaches easing and supporting this task. Some of them
infer new annotations thanks to existing ones [4]. The propagation of annotations
then relies on existing links among entities to determine the propagation rules.
For instance, [5] proposes to propagate metadata on the Internet by using the
webpages hyperlinks, while [6] uses document citations. However, such propaga-
tion strategies only rely on application specific links and not on the underlying
semantics of entities. A document cited as a counter example will thus inherit
from metadata which are possibly irrelevant.

Some propagation methods have been specifically designed to handle media-
specific resources not easily applicable in our context, e.g. picture annotation.
They generally rely on image analysis of other pictures to define, thanks to
probabilistic approaches, which terms to pick in order to annotate the new one.
Some of them are based on maximal entropy [7], n-grams, bayesian inference
[8] or SVM — Support Vector Machine. [9] proposed to propagate WordNet1

based indexations rather than mere terms. [4] proposed a different approach in
which resources are not necessarily pictures and their associated annotations
are based on concepts. During the manual indexing process, they propose to
assist the end user by propagating annotation from a newly annotated entity
to the rest of the corpus. This led to a very fast solution, able to deal with
millions of images, that assign the exact same annotation to several resources
without any expert validation of the propagated information. We propose to use
the opposite strategy and to assist the user by providing him with an initial
annotation of the new resource based on existing ones. Indeed we believe this
strategy is better adapted for the numerous contexts in which a smaller corpus
is used but a high quality annotation is crucial. Each annotation should thus
be specific and validated by a human expert. Maintaining and augmenting an
index is always mentioned as a tedious task for the experts in the literature [9].
This issue is yet more problematic when the annotation is made of concepts
because it requires an expertise of the whole knowledge model (e.g. a domain
ontology). This means that, besides high-level knowledge of a specific domain,
the user is also supposed to perfectly control the concepts and their structure,
i.e. the model that analysts impose on him. While it is difficult to imagine a
fully automatic annotation process (probably including NLP, clustering, etc.),
we propose a semi-automatic approach supporting the expert’s task.

3 A New Semantic Annotation Propagation Framework

Since it is difficult to visualize, analyze and understand the whole corpus at
once (even with zoom and pan tools), we suggest presenting a semantic map
displaying an excerpt of entities from the indexed corpus to the user (see Fig. 1).
When having a new item to index, the expert is asked to identify, by clicking

1 http://wordnet.princeton.edu
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Fig. 1. The interactive map presented to the user

on this map, the location where this item should be placed. This clicked place
is inherently a source of information: when the expert indicates a location on
the map, he tries to assess which entities are related to the new one and which
ones differ from it. By knowing the description of the closest items, the system
may infer a new annotation and make use of the data structure they rely on
to refine the proposal. The construction of the semantic map presented to the
user requires i) to identify a subset of relevant resources and ii) to organize them
in a visual and meaningful way. The first step is obviously crucial and can be
tackled using NLP preprocessing, cross-citations or co-authorship. As this is an
open question in itself and not the core of this contribution, we do not consider
this point hereafter and assume that the excerpt is an input. Given an input set
of relevant resources, we chose to use the MDS (Multi Dimensional Scaling) to
display them on a semantic map so that resource closeness on the map reflects
as much as possible their semantic relatedness.

3.1 Propagation of Semantic Annotations

The annotation propagation starts with the selection of the set N of the k closest
neighbors of the click. We make a first raw annotation A0, which is the union
of all annotations of N , so A0 =

⋃
ni∈N Annotation(ni). A0 may be a specific

and extensive annotation for the new entity, however, it is rarely a concise one.
Indeed, during our tests (where k = 10) it leads to an annotation of 70 concepts
on average. As we want to propose this to the user, the suggestion must contain
fewer concepts that properly summarize the information in the neighborhood.
To do so, we defined an objective function which, when maximized, gives an
annotation A∗ ⊂ A0 that is the median of those of the elements of N , i.e.:

A∗ = argmax
A⊆A0

{score(A)}, score(A) =
∑
ni∈N

sim(A,Annotation(ni)) (1)

Where sim(A,Annotation(ni)) denotes the similarity between two groups of
concepts, respectively A and Annotation(ni). To assess it, we used the Lin pair-
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wise semantic similarity measure [10] agregated by BMA [11]. This subset can
not be found using a brute force approach as there are 2|A0| solutions. There-
fore, the computation relies on a greedy heuristic starting from A0 and deleting
concepts one by one. The concept to be deleted at each step is the one leading
to the greatest improvement of the objective function. When there is no pos-
sible improvement, the algorithm stops and returns a locally optimal A∗ (see
Algorithm 1).

Algorithm 1. Annotate(M, (x, y))

Input: M (an excerpt of) a semantic map; (x, y) a localization on M
Output: a semantic annotation for position (x, y) of M

N ← the 10 nearest neighbors of (x, y) on M
A∗ ←

⋃
ni∈N Annotation(ni)

repeat

best A ← A∗

local optimum ← true

for all c ∈ A∗ do

A ← A∗ \ c
if score(A) > score(best A) then

best A ← A
local optimum ← false

end if

end for

A∗ ← best A
until local optimum is true

return A∗

3.2 Towards Assessment of Imprecision Impact

A misplacement of a new item on a map may have more or less impact on
its proposed annotation depending on the local map content. To illustrate and
better understand this point we studied the impact of misplacing a scientific
article on a map containing papers annotated by MeSH terms. The PubMed
annotation of those articles is considered to be the true one, and we examined
two extreme cases. In the first one we focused on a central item on a homogeneous
map (i.e. containing papers with highly similar annotations). Whereas in the
second case we focused on an item surrounded by numerous resources displayed
on a heterogeneous map (i.e. where entity annotations vary much more). We re-
annotated the selected paper and computed the annotation score, which is the
similarity between the computed annotation and the one proposed by PubMed.
We did this for the correct location (i.e. the one corresponding to the projection
of the PubMed annotation) and for 400 random locations.

We plot for each map the variation of the score with respect to the distance
between the random location and the correct place (Fig. 2). As expected in
both cases the annotation accuracy tends to decrease when the distance to the
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(b) Scores on a heterogeneous map

Fig. 2. Impact of a misplacement on the annotation of a resource embedded in a map
containing rather homogeneous (a) or rather heterogeneous (b) resources. The x-axis
represents the distance from the correct location and the y-axis shows the similarity
score between the correct annotation (from PubMed) and the propagated one.

correct position increases, and this decrease is much faster in the heterogeneous
map than in the homogeneous one. Note also that in both cases a plateau is
reached, which reflects the fact that both maps are meaningful excerpt that
contain documents related to the one that is re-annotated.

4 Coping with Imprecision During Semantic Annotation
Propagation

The definition of the neighborhood is a key step of the annotation propaga-
tion. Indeed, including too few neighbors will lead to an incomplete annotation
whereas including too many or too semantically distant neighbors will lead to
a less accurate annotation. Two main causes may affect the neighborhood defi-
nition. The first one is related to the creation of the map, where only relevant
items should be displayed to the user. As this relevance problem is very context-
specific, we do not tackle this potential source of error and we consider that the
map is correct. The second one is directly related to one of the advantages of
the method: the user interaction. While it is crucial to rely on the human exper-
tise in such a cognitive process, imprecision inherent to any expert assessment
cannot be neglected in the control of the annotation’s accuracy. As illustrated in
the previous section, the impact of such imprecision depends on the local map
content. We hence propose to estimate the robustness of the proposed annota-
tion with respect to the click position to help the user focusing on difficult cases
while going faster on easier ones. Therefore, the user needs to approximately
know the impact of a misplacement of an item on its suggested annotation. We
compute an annotation stability indicator prior to display the map and visually
help users by letting them know their margin of error when clicking. On a zone
where this indicator is high the annotation is robust to a misplacement of a
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new resource because all elements’ annotations are rather similar. Whereas if
this indicator is low, the annotation variability associated to a misplaced click is
high. Computing a single indicator for the whole map would not be very handy
because the annotation variability may vary depending on the position on the
map.

To efficiently compute those annotation stability indicators, we first split the
map in n2 smaller elementary pieces and generate the annotation of their center
thanks to Algorithm 1. Using those pre-computed indexations we then assess
the robustness of each submaps of M by identifying the number of connected
elementary submaps sharing a similar annotation. By default, we split the map in
400 pieces (n = 20) and consider the set of elementary submaps with annotation
having at least 95% of similarity with the considered one (e.g., a divergence
threshold of 5%).

5 Results, Tests and Discussions

5.1 Application Protocol

Our application protocol is based on scientific paper annotation. The corpus
essentially deals with tumor-related papers and has been conceived by ITMO2

Cancer to gather people working on tumors in France. As the documents are
annotated via the MeSH ontology, we rely on this structure in our application.
We need to set a groupwise semantic similarity measure to assess the similarity
between pairs of documents (represented as groups of concepts). As explained
in [12], there are plenty of measures available but many are context-specific.
[13] propose a framework generalizing all these measures and implement most of
them in a Java library, SML3. We decide to use the generic measure introduced
by Lin [10], which is available in this library. It relies on an information content
(IC) measure we want generic too so we pick the IC function using the ontology
structure proposed in [14]. Finally, Lin is a pairwise semantic measure and we
need to compare groups of concepts. Therefore, we use the Best Match Average
(BMA) to aggregate such pairwise measures into a groupwise measure [11].

5.2 Objective Function and Its Heuristic Optimization

We rely on the protocol described hereafter to evaluate the heuristic and ob-
jective function we introduced in this paper to propagate semantic annotations.
Since we have a benchmark corpus with 38,000 manually indexed documents —
from PubMed —, we re-annotate some of these documents using the Algorithm
1 and estimate the quality of the resulting annotations with respect to several
criteria. Firstly, its accuracy, that can be easily assessed by comparing it to the
original PubMed annotation. Secondly, its concision, which is crucial to favor
the expert validation of this suggested annotation and can be easily measured

2 French multi-organism thematic institute initiated by the AvieSan program.
3 Semantic Measures Library, http://www.semantic-measures-library.org/

http://www.semantic-measures-library.org/
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as its number of concepts. Finally, the execution time which is crucial to have a
reactive system favoring human-machine interaction. We compare our proposed
solution with two simpler ones which are (i) the union of annotations of the
10 closest neighbors — denoted by A0 — and (ii) the annotation of the closest
neighbor.

Table 1. Comparison of 3 strategies to propagate semantic annotations. The first one
relies on Algorithm 1, the second one considers the union of closest neighbors’ annota-
tion and the third one simply replicates the closest neighbor’s annotation. Comparison
is made through 3 criteria: the similarity with the reference annotation of PubMed,
the annotation size and the execution time.

Average similarity
with PubMed

Average
annotation size

Average execution
time (ms)

A∗ (Algorithm 1) 0.843 6.71 791
A0 (union) 0.787 61.72 10
Closest neighbor 0.792 17.90 4

The performances of the 3 strategies are compared on the re-annotation of the
same excerpt of 1,500 scientific papers randomly chosen from our above described
corpus. Therefore, strategy performances were compared using a paired Student’s
test. Detailed results are provided in Table 1. The average similarity with PubMed
is significantly better when the annotation is computed thanks to our Algorithm
1 than when computed with either the union of neighbors’ annotations (p-value
= 8.93 ∗ 10−8) or the annotation of the closest neighbor (p-value = 8.443 ∗ 10−6).
The size of annotations is concise enoughwhen usingAlgorithm1or the annotation
obtained by duplicating that of the closest point; whereas it contains far too much
concepts when considering the union of neighbors’ annotation (A0). Finally, even
though the execution time of our algorithm is significantly higher than with other
protocols, the average duration remains below 1 second ensuring a good system
responsiveness. We observed the same trends for different k values (k being the
number of considered neighbors) and except for very small values of k (< 4), there
is no major variation in the method performances.

Note that the map construction time, which requires around 10 seconds is
not included in computing times provided in Table 1. We excluded them since
they are not impacted by the chosen annotation method and are done only once
for several annotation. Indeed, we do not recompute the map each time users
annotate a new resource, otherwise the map would constantly change impeding
the construction of a mental representation of the data.

5.3 Visually Assist the User

In order to enhance the human-machine interaction and to improve the efficiency
of the indexation process, we propose to give visual hints to the end-user about
the impact of a misplacement. To that aim we color the area of the map sur-
rounding the current mouse position that will led to similar annotations. More
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precisely, the colored area is such that positioning the item anywhere in this
area will lead to an indexation similar to the one obtained by positioning the
item at the current mouse position. This approach we think meaningful reminds
the brush selection in graphics editing program: with an oversized brush, it is
difficult to precisely color an area even if the graphic artist is very talented. Here,
a big grey zone shows that the click position does not really matter on the final
annotation, whereas a small grey area means that precision is expected. Figure
3 shows a representation of such zones on different parts of the same map.

By default, the accepted imprecision is 5% so that clicking in the colored area
or at the current position will provide annotation with at least 95% of similarity.
This default threshold can easily be changed through the graphic user interface.
The definition of the zone to color for a pointed location can be done in real-time
thanks to the pre-process (see Section 4).

(a) Cursor on a homogeneous zone (b) Cursor on a heterogeneous zone

Fig. 3. Visual hints of position deviation impact. The cursor is surrounded by a grey
area indicating positions that would lead to similar annotation. A large area means
that the user can be confident when clicking whereas a small one means that precision
is important.

6 Conclusion

In this paper, we present a way to propagate semantic annotation by positioning
new resources on a semantic map and to provide visual hints of the impact of
a misplacement of the resource on this map. Our method i) greatly simplifies
the otherwise tedious annotation process, ii) is significantly more accurate than
2 naive propagation strategies and iii) conserves fast running time below the
second. We considered the identification of relevant documents to be displayed
on the map as an independent task out of the scope of this paper. This is
nonetheless a key step when the corpus is too big to be fully displayed. In
the case of scientific papers, several strategies can be adopted to identify those
relevant documents based on NLP techniques, cross-citations or co-authoring.
In order to compare our method with more classic classifiers, we are planning to
evaluate this approach with precision/recall, even though those values are not
fully satisfactory in a semantic context.
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An advantage of having a semi-automatic annotation process is that the un-
derlying system handle the ontology-based knowledge representation and its
impact on semantic similarities. Experts doing the annotation can thus focus
on resources similarities without the need of having an extra knowledge of the
ontology structure. This does not only simplify their task but also limit the
subjectivity of their annotations. This method paves the way for deeply needed
assisted semantic annotation tools.
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Abstract. R is a programming language and software environment for
performing statistical computations and applying data analysis that in-
creasingly gains popularity among practitioners and scientists. In this
paper we present a preliminary version of a system to detect pairs of
similar R code blocks among a given set of routines, which bases on a
proper aggregation of the output of three different [0, 1]-valued (fuzzy)
proximity degree estimation algorithms. Its analysis on empirical data in-
dicates that the system may in future be successfully applied in practice
in order e.g. to detect plagiarism among students’ homework submissions
or to perform an analysis of code recycling or code cloning in R’s open
source packages repositories.

Keywords: R, antiplagiarism detection, code cloning, fuzzy proximity
relations, aggregation.

1 Introduction

The R [16] programming language and environment is used by many practi-
tioners and scientists in the fields of statistical computing, data analysis, data
mining, machine learning and bioinformatics. One of the notable features of R is
the availability of a centralized archive of software packages called CRAN – the
Comprehensive R Archive Network. Although it is not the only source of exten-
sions, it is currently the largest one, featuring 5505 packages as of May 3, 2014.
This repository is a stock of very interesting data, which may provide a good
test bed for modern soft computing, data mining, and aggregation methods. For
example, some of its aspects can be examined by using the impact functions aim-
ing to measure the performance of packages’ authors, see [6], not only by means
of the software quality (indicated e.g. by the number of dependencies between
packages or their downloads) but also their creators’ productivity.

To perform sensible analyses, we need to cleanse the data set. For example,
some experts hypothesize that a considerable number of contributors treat open

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 21–30, 2014.
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source-ness too liberally and do not “cite” the packages providing required facil-
ities, i.e. while developing a package, they sometimes do not state that its code
formally depends on some facilities provided by a third-party library. Instead,
they just copy-paste the code needed, especially when its size is small. In order to
detect such situations, reliable code similarity detection algorithms are needed.

Moreover, it may be observed that R is being more and more eagerly taught
at universities. In order to guarantee the high quality of the education pro-
cesses, automated methods for plagiarism detection, e.g. in students’ homework
submissions, are of high importance.

The very nature of the R language is quite different from the other ones.
Although R’s syntax resembles that of C/C++ to some degree, it is a functional
language with its own unique features. It may be observed (see Sec. 4) that
existing plagiarism detection software, like MOSS [1] or JPlag [13], fails to identify
similarities between R functions’ source codes correctly. Thus, the aim of this
paper is to present a preliminary version of a tool of interest. It is widely known
from machine learning that no single method has perfect performance in every
possible case: when dealing with individual heuristic methods one investigates
only selected aspects of what he/she thinks plagiarism is in its nature, and does
not obtain a “global view” on the subject. Thus, the proposed algorithm bases
on a proper aggregation of (currently) three different fuzzy proximity degree
estimation procedures (two based on the literature and one is our own proposal)
in order to obtain a wider perspective of the data set. Such a synthesis is quite
challenging, as different methods may give incomparable estimates that should
be calibrated prior to their aggregation. An empirical analysis performed on an
exemplary benchmark set indicates that our approach is highly promising and
definitely worth further research.

The paper is structured as follows. Sec. 2 describes 3 fuzzy proximity measures
which may be used to compare two functions’ source codes. Sec. 3 discusses the
choice of an aggregation method that shall be used to combine the output of
the aforementioned measures. In Sec. 4 we present an empirical study of the
algorithm’s discrimination performance. Finally, Sec. 5 concludes the paper.

2 Three Code Similarity Measures

Assume we are given a set of n functions’ source codes F = {f1, . . . , fn}, where
fi is a character string, i.e. fi ∈

⋃∞
k=1 Σ

k, where Σ is a set of e.g. ASCII-
encoded characters. Each fi should be properly normalized by i.a. removing
unnecessary comments and redundant white spaces, as well as by applying the
same indentation style. In R, if f represents source code (character vector), this
may be easily done by calling f <- deparse(parse(text=f)).

We are interested in creating a [0, 1]-valued (fuzzy) proximity relation, cf. e.g.
[5], defined by a membership function μ : F2 → [0, 1] such that it is at least:

– reflexive (μ(fi, fi) = 1),

– symmetric (μ(fi, fj) = μ(fj , fi)).
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Intuitively, we have μ(fi, fj) = 0 iff fi, fj are entirely distinct (according to some
criterion), μ(fi, fj) = 1 iff they are identical, and immediate values of μ(fi, fj)
describe the degree of their “partial proximity”. As this is a preliminary study,
we omit the discussion on the transitivity (formally, T -transitivity for some t-
norm T ) of μ and leave it for further research.

Measuring code similarity is always a task that bases on some heuristics.
Below we present three different methods μ1, μ2, μ3 to compare two R functions.
μ1 computes the Levenshtein distance [10] between source codes. This is a perfect
method to detect verbatim copies, but small modifications (like changing names
of variables) should also be easily revealed. Further on, μ2 bases on our own
proposal that takes into account the counts of the number of calls to other
functions as well as the names of these functions. This approach is potentially
fruitful, as each R statement corresponds to a call to some function. For example:

x <− y ∗ z is equivalent to
’<− ’(x ,

’∗ ’ ( y , z )
)

and

f o r ( i in 1 : 10 )
{ x <− x+i } is in fact

’ for ’ ( i ,
’ : ’ ( 1 , 10) ,
’{ ’ (

’<− ’(x ,
’+ ’(x , i )

) ) )

For instance, a function which calls sqrt() twice and pnorm() five times is
certainly different from the one that calls readLines() three times. Last method,
μ3, is based on tokens’ analysis, i.e. utilizes the code syntax tree. Here two token
sequences are compared by the well-known “greedy string tiling” algorithm,
cf. [18].

2.1 Levenshtein Distance

The first proximity relation is based on the Levenshtein distance [10] between two
character strings. Intuitively, the Levenshtein distance between two sequences is
the minimum number of single-character edits (insertions, deletions, substitu-
tions) required to obtain one string from the other. More formally, the Leven-
shtein distance between two strings a, b is given by leva,b(|a|, |b|) where:

leva,b(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(i, j) ifmin(i, j) = 0,

min

⎧⎪⎨⎪⎩
leva,b(i − 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i − 1, j − 1) + I(ai �=bj)

otherwise,

where I(ai �=bj) = 1 iff ai �= bj and 0 otherwise, and |a| is the length of a.
A fast implementation of the Levenshtein distance uses a dynamic program-

ming technique. Here we rely on the adist() function in the utils package for R.
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Of course, we get leva,b(i, j) = 0 if the strings are equal. As we require the
proximity degree to be in the interval [0, 1], we ought to normalize the result
somehow. In our case, we assume:

μ1(fi, fj) = 1−
levfi,fj (|fi|, |fj|)
max(|fi|, |fj|)

.

It is easily seen that for a pair of identical strings we obtain value of 1. On the
other hand, for “abc” and “defghi” we get 0, as lev“abc”,“defghi”(3, 6) = 6.

2.2 Function Calls Counts

If a function calls some mathematical routines many times and another one
rather more often utilizes some data processing methods, we may presume that
these two functions are rather not similar. On the other hand, if two functions
call sort() twice each, then we cannot be certain that there are the same. We
see that this heuristic may provide us with a “necessary”, but not a “sufficient”
proximity estimate. Note that – as it has been stated earlier on – R is a pro-
gramming language in which function calls play a central role.

Let R denote the set of names of all possible R functions and ci(g) be equal to
the number of calls of g ∈ R within fi. Our second proximity estimation method
is defined by:

μ2(fi, fj) =

∑
g∈R 2 (ci(g) ∧ cj(g))∑
g∈R (ci(g) + cj(g))

.

2.3 Longest Common Token Substrings

The idea of the third algorithm has been inspired by the method presented
in [14], cf. also [2]. It is quite invulnerable – at least in theory – to such methods
used by plagiarists as changing the variable names, swapping two large fragments
of code or modifications of numeric constants. It operates in two phases. First,
we parse all the functions that are to be compared and convert them into token
strings. Transformation T : F → F ′ gives a token string f ′

i calculated from fi.
Then we compare the token strings in pairs to estimate the similarity of each
pair. This task is based on finding the longest common token substrings.

Conversion of Functions’ Source Codes to Token Strings. As a rule,
a tokenization should be performed in such a way that it depicts the highly
abstract “essence” of a function (which is not easy to alter by a plagiarist). In the
R language, creation of token strings is very easy: the getParseData() function
from the utils package takes some parsed code as an argument and returns i.a. the
information we are looking for. Interestingly, each token is represented internally
by an integer number, and a token string is in fact an integer vector.
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Example 1. Consider the following source code.

1 f <− function ( x )
2 {
3 s t o p i f n o t ( i s .numeric ( x ) )
4 y <− sum( x )
5 y
6 }

The tokenization procedure results in:

1 expr , SYMBOL, expr , LEFT ASSIGN , expr , FUNCTION, ’ ( ’ ,
SYMBOL FORMALS, ’ ) ’ , expr ,

2 ’ { ’ ,
3 expr , SYMBOL FUNCTION CALL, expr , ’ ( ’ , expr ,

SYMBOL FUNCTION CALL, expr , ’ ( ’ , SYMBOL, expr , ’ ) ’ , ’ ) ’
4 expr , SYMBOL, expr , LEFT ASSIGN , expr , SYMBOL FUNCTION CALL

expr , ’ ( ’ , SYMBOL, expr , ’ ) ’ ,
5 SYMBOL, expr ,
6 ’ } ’

Comparison of Two Token Strings. The “greedy string tiling” algorithm,
as described in [18], is a method used to compare the similarity of two token
strings. Interestingly, such a method is also used in JPlag [13].

The pseudo-code of the algorithm is presented below. The ⊕ operator in line
14 means that we add a match to a matches set if and only if it does not overlap
with one of the matches already in this set. The triple match(a, b, l) denotes an
association between corresponding substrings of A and B, starting at positions
Aa and Bb respectively, of length l.

1 Greedy St r ing T i l i ng ( St r ing A, St r ing B) {
2 t i l e s = {} ;
3 do {
4 maxmatch = MinimumMatchLength ;
5 matches = {} ;
6 Forall unmarked tokens Aa in A {
7 Forall unmarked tokens Bb in B {
8 j =0;
9 while (Aa+j==Bb+j &&
10 unmarked (Aa+j ) &&
11 unmarked (Bb+j ) )
12 j++;
13 i f ( j==maxmatch)
14 matches = matches ⊕ match (a , b , j ) ;
15 else i f ( j > maxmatch){
16 matches = {match (a , b , j ) } ;
17 maxmatch = j ;
18 }
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19 }
20 }
21 Forall match (a , b , maxmatch) ∈ matches {
22 for j = 0 . . . (maxmatch−1){
23 mark (Aa+j ) ;
24 mark (Bb+j ) ;
25 }
26 t i l e s = t i l e s ∪ match (a , b , maxmatch ) ;
27 }
28 } while (maxmatch > MinimumMatchLength ) ;
29 return t i l e s ;
30 }

The last task consists of computing a proximity degree of two token strings
f ′
i and f ′

j. In [14], the following formula was proposed:

μ3(f
′
i , f

′
j) =

2coverage(tiles)

|f ′
i |+ |f ′

j|
,

where
coverage(tiles) =

∑
match(a,b,length)∈tiles

length,

and tiles = Greedy String Tiling(f ′
i , f

′
j).

3 Aggregation and Defuzzification of Proximity Measures

Of course, each of the three proximity relations described above may be rep-

resented as a square matrix M (k), where m
(k)
ij equals to μk(fi, fj), k = 1, 2, 3.

When they are obtained, special attention should be paid to their proper aggre-
gation, and then defuzzification, i.e. projection to {0, 1}.

The most straightforward approach could consist of determining

μ(fi, fj) = A
(
μ1(fi, fj), μ2(fi, fj), μ3(fi, fj)

)
using an aggregation function A : [0, 1]3 → [0, 1], i.e. a function at least fulfilling
the following conditions: (a) A(0, 0, 0) = 0, (b) A(1, 1, 1) = 1, (c) A is a non-
decreasing in each variable, cf. [7]. For example, one could study the family of
weighted arithmetic means, given by 3 free parameters a1, a2, a3:

μ(fi, fj) = a1μ1(fi, fj) + a2μ2(fi, fj) + a3μ3(fi, fj),

where a1 + a2 + a3 = 1 and a1, a2, a3 ≥ 0. After computing μ, it should be
defuzzified in order to obtain a crisp proximity relation P . This may be done by
setting P (fi, fj) = Iμ(fi,fj)≥α for some α ∈ [0, 1].

However, we may note that the values of μ1, μ2, and μ3 are not necessarily
comparable – they are not of the same order of magnitude. In other words,
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μ1(fi, fj) = 0.6 may not describe the same “objective” proximity degree as
μ2(fi, fj) = 0.6. This is illustrated in Fig. 1a: in our exemplary empirical analysis
μ2 seems to give much larger values than the other relations. Thus, their values
should be normalized somehow before aggregation. Nevertheless, in our case we
will apply a different approach based on logistic regression, which is described
in the next section.

4 Experimental Results

In order to verify the proposed method, we have created a benchmark set of R
functions. The data set consists of students’ homework submissions (8 different
tasks). A few of them were evidently classified by the tutors as cases of plagia-
risms (which was then confirmed by the very students). Moreover, we have added
some straightforward modifications of the analyzed routines, e.g. ones with just
the variable names changed or those with a more “expanded” forms, like:

1 sort l i s t <− function (x , f ) {
2 o <− order ( unlist ( lapply (x , f ) ) )
3 x [ o ]
4 }

being decomposed to:

1 sort l i s t <− function (x , f ) {
2 v1 <− lapply (x , f )
3 v2 <− unlist ( v1 )
4 o <− order ( v2 )
5 x [ o ]
6 }

Table 1. Performance of the systems considered

F
P

F
N

t
[s
]

Proposed approach 3 7 3

JPlag - > 0.1 - plain text - original code 39 55 ≈ 10
JPlag - > 0.1 - plain text - normalized code 63 57 ≈ 10
JPlag - > 0.4 - plain text - original code 0 107 ≈ 10
JPlag - > 0.4 - plain text - normalized code 0 110 ≈ 10

MOSS - plain text - normalized code 31 89 ≈ 3
MOSS - plain text - original code 29 84 ≈ 3
MOSS - C - original code 1 94 ≈ 3
MOSS - C - normalized code 1 94 ≈ 3
MOSS - Haskell - normalized code 22 66 ≈ 3
MOSS - Haskell - original code 14 72 ≈ 3
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Fig. 1. Values of proximity measures μ1, μ2, μ3 for non-similar pairs (circles) and pla-
giarisms (triangles)

In result, we obtained a set of 58 functions. 138 pairs, i.e. ca. 4%, are classified
a priori as cases of plagiarisms. The whole procedure was computed within just a
few seconds on a PC with Intel Core i5-2500K CPU 3.30GHz and 8 GB of RAM
(the greedy string tiling was implemented in C++). Notably, similar timings have
been obtained by analyzing the same data set with MOSS [1] and JPlag [13].

Figure 1bcd depicts the relationships between the three proximity measures.
The measures are strongly positively correlated. The Spearman ρ is equal to
about 0.8 for (μ1, μ2) and (μ1, μ3) and 0.75 for (μ2, μ3). Moreover from Fig. 1a
we see that the plagiarism and non-plagiarism case cannot be discriminated so
easily with just one measure. The best solution was obtained for α-cut of the
form Iμ1(fi,fj)≥0.38 (5 false positives (FP), i.e. cases in which we classify as
plagiarisms non-similar pairs of functions, and 16 false negatives (FN), i.e. cases
in which we fail to detect plagiarisms), Iμ2(fi,fj)≥0.65 (6 and 8, respectively), and
Iμ3(fi,fj)≥0.41 (15 and 33, respectively). Thus, the intuition behind combining
multiple proximity relations seems to be valid.

In order to discriminate between the observations from two classes we may
e.g. apply discrimination analysis. A fitted logistic regression model which gives
3 false positives and 7 false negatives is of the form:
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P (fi, fj) = I

(
exp

(
− 46.9 + 26μ1(fi, fj) + 59.1μ2(fi, fj)− 5.5μ3(fi, fj)

)
1 + exp

(
− 46.9 + 26μ1(fi, fj) + 59.1μ2(fi, fj)− 5.5μ3(fi, fj)

) ≥ 0.5

)
.

The performance of our method was compared with JPlag and MOSS, see Table
1 for a summary. As none of them has built-in support for R syntax, we analyzed
two versions of our benchmark set: one “as is” and the other one normalized
with deparse() and parse(). Moreover, we tried to determine which language
(-l) flag leads to best result in case of MOSS. Quite interestingly, the functional
language Haskell gave the smallest number of incorrect hits. On the other hand,
even though JPlag supports Java, C/C++, Scheme, and C#, it treated R sources
as plain text (note that μ3, however, uses a JPlag-like approach). In this case,
the user may decide which similarity level pair of function should be displayed.
Here we have chosen a very liberal 10% level and a more conservative 40% level.

5 Conclusions

The preliminary version of our plagiarism detection system seems to be quite fast
and accurate. As far as the analyzed data set is concerned, it correctly classified
most of the suspicious similarities. Moreover, the system is – at least theoretically
– not vulnerable to typical attacks, like changing names of variables, swapping
code places and function composition/decomposition.

Of course, there is still much to be done to make our algorithm more reli-
able. First of all, we should investigate some kind of transitivity notion in our
proximity relation. This is needed to detect fuzzy cliques of functions (e.g. in
order to detect groups of plagiarists). Moreover, we could think of a more valid
normalization of the relations’ values or applying different modern data mining
techniques for data classification.

Even more, there are still many other well-known groups of methods which
can be aggregated. For example, a plagiarism-detection method based on the
Program Dependency Graph (PDG) [4,11,15] represents the so-called control
and data dependencies between the statements in a program. This approach
aims to be immune to changing variables’ names, swapping small fragments of
code, inserting or deleting single lines of code and substituting while loops for
their equivalents.

There is still an open question if the Levenshtein distance is the most proper
plain text metric. There are many other measures, such as the Damerau-Levensh-
tein distance [3], Hamming distance [8], Jaro-Winkler distance [17], Lee distance
[9] which should be examined, see also [12] for a survey on the topic.

Lastly, we should collect and analyze a more extensive data set of R functions,
so that our method could be calibrated more properly, perhaps even with a form
of human feedback.
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Abstract. This work studies the L-fuzzy context sequences when L is
a complete lattice extending the results obtained in previous works with
L = [0, 1]. To do this, we will use n-ary OWA operators on complete
lattices. With the aid of these operators, we will study the different
contexts values of the sequence using some new relations. As a particular
case, we have the study when L = J ([0, 1]). Finally, we illustrate all the
results by means of an example.

Keywords: L-fuzzy context, L-fuzzy concept, L-fuzzy context
sequences, n-ary OWA operators.

1 Introduction

The L-Fuzzy Concept Analysis studies the information from an L-fuzzy context
by means of the L-fuzzy concepts. These L-fuzzy contexts are tuples (L,X, Y,R),
with L a complete lattice,X and Y sets of objects and attributes, and R ∈ LX×Y

an L-fuzzy relation between the objects and the attributes.
In some situations, we have a sequence formed by the L-fuzzy contexts

(L,X, Y,Ri), i = {1, . . . , n}, n ∈ N, where Ri is the ith relation between the ob-
jects of X and the attributes of Y . The study of these L-fuzzy context sequences
will be the main target of this work.

A particular case of this sequence is when it represents an evolution in time
of an L-fuzzy context.

To start, we will see some important results about the L-Fuzzy Concept
Analysis.

2 L-Fuzzy Contexts

The Formal Concept Analysis of R. Wille [23] extracts information from a binary
table that represents a Formal context (X,Y,R) with X and Y finite sets of
objects and attributes respectively and R ⊆ X × Y . The hidden information
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consists of pairs (A,B) with A ⊆ X and B ⊆ Y , called Formal concepts, verifying
A∗ = B and B∗ = A, where (·)∗ is a derivation operator that associates the
attributes related to the elements of A with every object set A, and the objects
related to the attributes of B with every attribute set B. These Formal Concepts
can be interpreted as a group of objects A that shares the attributes of B.

In previous works [8,9] we have defined the L-fuzzy contexts (L,X, Y,R), with
L a complete lattice, X and Y sets of objects and attributes respectively and
R ∈ LX×Y a fuzzy relation between the objects and the attributes.

In our case, to work with these L-fuzzy contexts, we have defined the deriva-
tion operators (·)1 and (·)2 given by means of these expressions:

∀A ∈ LX , ∀B ∈ LY , A1(y) = inf
x∈X

{I(A(x), R(x, y))}

B2(x) = inf
y∈Y

{I(B(y), R(x, y))}

with I a fuzzy implication operator defined in the lattice (L,≤).
Some authors use a residuated implication operator in their definitions of

derivation operators [7,19,20].
The information stored in the context is visualized by means of the L-fuzzy

concepts that are pairs (A,B) ∈ (LX×LY ) fulfilling A1 = B and B2 = A. These
pairs, whose first and second components are said to be the fuzzy extension
and intension respectively, represent a group of objects that share a group of
attributes in a fuzzy way.

On the other hand, given A ∈ LX , (or B ∈ LY ) we can obtain the associated
L-fuzzy concept applying twice the derivation operators. In the case of using a
residuated implication, as we do in this work, the associated L-fuzzy concept is
(A12, A1) (or (B2, B21)).

Other important results about this theory are in [6,10,7,2,19,15,16,20].

3 L-Fuzzy Context Sequences

In this section, we are interested in the study of the L-fuzzy context sequences
where L is a complete lattice. We have analyzed these sequences when L = [0, 1]
in [4,5]. To do this, we have given the formal definition:

Definition 1. An L-fuzzy context sequence is a tuple (L,X, Y,Ri), i = {1, . . . ,
n}, n ∈ N, with L a complete lattice, X and Y sets of objects and attributes re-
spectively and Ri ∈ LX×Y , ∀i = {1, . . . , n}, a family of L-fuzzy relations between
X and Y.

In previous works [12,11], we have done some studies in order to aggregate the
information of different contexts with the same set of objects and attributes. The
use of weighted averages [13,14] (with L=[0,1]) in order to summarize the infor-
mation stored in the different relations allows us to associate different weights
to the L-fuzzy contexts highlighting some of them. However, it is possible that
some observations of an L-fuzzy context of the sequence are interesting whereas
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others not so much. For instance, in [3] we study that the used methods to obtain
the L-fuzzy concepts do not give good results when we have very low values in
some relations. Moreover, we want now to do different studies based on different
exigency levels. This is one of the new contributions of this work.

In order to introduce this subject, let us see the following example.

Example 1. Let (L,X, Y,Ri), i = {1, . . . , n}, be an L-fuzzy context sequence
that represents the sales of sports articles (X) in some establishments (Y )
throughout a period of time (I), and we want to study the places where the
main sales hold taking into account that there are seasonal sporting goods (for
instance skies, bathing suits) and of a certain zone (it is more possible to sale
skies in Colorado than in Florida).

In this case, the weighted average model is not valid since it is very difficult to
associate a weight to an L-fuzzy context (in some months more bath suits are sold
whereas, in others, skies are). To analyze this situation, it could be interesting
the use of the OWA operators [21,17] with the most of the weights near the
largest values. In this way, we give more relevance to the largest observations,
independently of the moment when they have taken place and, on the other
hand, we would avoid some small values in the resulting relations (that can give
problems in the calculation of the L-fuzzy concepts as was studied in [3]).

The next section summarizes the main results about these operators.

4 n−ary OWA Operators

This is the definition of these operators given by Yager [21]:

Definition 2. A mapping F from Ln −→ L, where L = [0, 1] is called an
OWA operator of dimension n if associated with F is a weighting n−tuple W =
(w1, w2, . . . , wn) such that wi ∈[0,1] and

∑
1≤i≤n

wi = 1, where F (a1, a2, . . . , an) =

w1.b1 + w2.b2 + · · · + wn.bn, with bi the ith largest element in the collection
a1, a2, . . . , an.

To study the fuzzy context sequence, we are interested in the use of operators
close to or. To measure this proximity we can use the orness degree [21].

However, Yager’s OWA operators are not easy to be extended to any complete
lattice L. The main difficult is that Yager’s construction is based on a previous
arrangement of the real values which have to be aggregated, which is not always
possible in a partially ordered set. In order to overcome this problem Lizasoain
and Moreno [18] have built an ordered vector for each given vector in the lattice.
This construction allows to define the n-ary OWA operator on any complete
lattice which has Yager’s OWA operator as a particular case.
Their contribution involves the construction, for each vector (a1, . . . , an) ∈ Ln

of a totally ordered vector (b1, . . . , bn) as shown in the following proposition:

Proposition 1. Let (L,≤L) be a complete lattice. For any (a1, a2, . . . , an) ∈ Ln,
consider the values
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• b1 = a1 ∨ · · · ∨ an ∈ L
• b2 = [(a1∧a2)∨· · ·∨(a1∧an)]∨[(a2∧a3)∨· · ·∨(a2∧an)]∨· · ·∨[an−1∧an] ∈ L

...
• bk =

∨
{aj1 ∧ · · · ∧ ajk |{j1, . . . , jk} ⊆ {1, . . . , n}} ∈ L

...
• bn = a1 ∧ · · · ∧ an ∈ L

Then a1 ∧ · · · ∧ an = bn ≤L bn−1 ≤ · · · ≤L b1 = a1 ∨ · · · ∨ an.
Moreover, if the set {a1, . . . , an} is totally ordered, then the vector (b1, . . . , bn)

agrees with (aσ(1), . . . , aσ(n)) for some permutation σ of {1, . . . , n}.
On the other hand, it is very easy to see that if {a1, . . . , an} is a chain, bk is

the k−th order statistic.
This proposition allows us to generalize Yager’s n−ary OWA operators from

[0, 1] to any complete lattice. To do this, Lizasoain and Moreno give the following:

Definition 3. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm T
and a t-conorm S. We will say that (α1, α2, . . . , αn) ∈ Ln is a

(i) weighting vector in (L,≤L, T, S) if S(α1, . . . , αn) = 1L and
(ii) distributive weighting vector in (L,≤L, T, S) if it also satisfies that a =
T (a, S(α1, . . . , αn)) = S(T (a, α1), . . . T (a, αn)) for any a ∈ L.

Definition 4. Let (α1, . . . , αn) ∈ Ln be a distributive weighting vector in
(L,≤L, T, S). For each (a1, . . . , an) ∈ Ln, call (b1, . . . , bn) the totally ordered
vector constructed in Proposition 1. The function Fα : Ln −→ L given by

Fα(a1, . . . , an) = S(T (α1, b1), . . . , T (αn, bn)),

(a1, . . . , an) ∈ Ln, is called n−ary OWA operator.

We will use these n−ary OWA operators in the following sections.

5 L-Fuzzy Context Sequences General Study

Returning to the initial situation, we can give a definition that summarizes the
information stored in the L-fuzzy context sequence:

Definition 5. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm
T and a t-conorm S. Let (L,X, Y,Ri), i = {1, . . . , n}, be the L-fuzzy context
sequence, α = (α1, α2, . . . , αn) a distributive weighting vector and Fα the n−ary
OWA operator associated with α. We can define an L-fuzzy relation RFα that
aggregates the information of the different L-fuzzy contexts by means of this
expression:

RFα(x, y) =Fα(R1(x, y), R2(x, y), . . . , Rn(x, y)) =

=S(T (α1, b1(x, y)), T (α2, b2(x, y)), . . . , T (αn, bn(x, y)),

∀x ∈ X, y ∈ Y

with (b1(x, y), b2(x, y), . . . , bn(x, y)) the totally ordered vector constructed in
Proposition 1 for (R1(x, y), R2(x, y), . . . , Rn(x, y)).
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In general, the election of the distributive weighting vector will be very im-
portant in order to obtain different results.

On the other hand, we want also to establish different demand levels for a more
exhaustive study of the L-fuzzy context sequence. To do this, we are going to
define n relations using n−ary OWA operators where the distributive weighting
vector α has just one non-null value αk = 1, for a certain k ≤ n.

Relevant Case 1. Let (L,X, Y,Ri), i = {1, . . . , n}, be an L-fuzzy context se-
quence with (L,≤L, T, S) a complete lattice, X and Y sets of objects and at-
tributes respectively and Ri ∈ LX×Y , ∀i = {1, . . . , n}, and consider k ∈ N, k ≤ n.
We define the relation RF

αk
using the n−ary OWA operator Fαk with the dis-

tributive weighting vector αk = (α1, α2, . . . , αn) such that αk
k = 1L and αk

i =
0L, ∀i �= k :

∀x ∈ X, y ∈ Y, RF
αk
(x, y) = Fαk(R1(x, y), R2(x, y), . . . , Rn(x, y)) =

= S(T (0L, b1(x, y)), T (0L, b2(x, y)), . . . , T (1L, bk(x, y)), . . . , T (0L, bn(x, y))

The value RF
αk
(x, y) is the minimum of the k largest values associated with

the pair (x, y) in the relations Ri. So, this new relation measures the degree in
which the object x is at least k times related with the attribute y.

Observe that the defined αk is a distributive weighting vector. Moreover,
notice that if L = [0, 1], then we are using step-OWA operators [22].

Proposition 2. For any t-norm T and a t-conorm S, it is verified that

RF
αk
(x, y) = bk(x, y), ∀(x, y) ∈ X × Y.

Proof. Taking into account the basic properties of a t-norm T and a t-conorm
S, and the definition of the distributive weighting vector.

Another interesting case is obtained when we want to analyze the average of
the k largest values associated with the pair (x, y) in the relations Ri. In order
to do it, we can consider the following relation:

Relevant Case 2. If L = [0, 1], T (a, b) = ab and S(a, b) = min{a+b, 1}, ∀a, b ∈
[0, 1], using a distributive weighting vector α̂k such that α̂k

i = 1/k, i ≤ k and
α̂k
i = 0, i > k, the obtained relation RF

α̂k
is given by:

RF
α̂k
(x, y) =

k∑
i=1

bi(x, y)

k
, ∀(x, y) ∈ X × Y (1)

Remark 1. It is immediate to prove that if h ≤ k, then RF
αh
≥ RF

αk
and

RF
α̂h
≥ RF

α̂k
.

The observation of the L-fuzzy contexts defined from these new relations gives
the idea for the following propositions:
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Proposition 3. Consider k ∈ N, such that k ≤ n. If (A,B) is an L-fuzzy
concept of the L-fuzzy context (L,X, Y,RF

αk
), then ∀h ∈ N, h ≤ k, there exists

an L-fuzzy concept (C,D) of the L-fuzzy context (L,X, Y,RF
αh
) such that A ≤ C

and B ≤ D.

Proof. If h ≤ k, then RF
αk
(x, y) ≤ RF

αh
(x, y) ∀(x, y) ∈ X × Y.

Let (A,B) be an L-fuzzy concept of the L-fuzzy context (L,X, Y,RF
αk
). Then,

as any implication operator is increasing on its second argument,

∀y ∈ Y, B(y) = inf
x∈X

{I(A(x), RF
αk

(x, y))} ≤ inf
x∈X

{I(A(x), RF
αh

(x, y))} = D(y)

Thus, the L-fuzzy set B derived from A in (L,X, Y,RF
αk
) is a subset of the

L-fuzzy set D derived from A in (L,X, Y,RF
αh

). Therefore, B ≤ D.
As the used implication operator I is residuated, if we derive the set D in

(L,X, Y,RF
αh

), we obtain the set C=D2 and the pair (C,D) is an L-fuzzy
concept of the L-fuzzy context (L,X, Y,RF

αh
). Now, applying the properties of

this closure operator formed by the composition of the derivation operators in
(L,X, Y,RF

αh
) [6]: A ≤ A12 = D2 = C. Therefore, the other inequality also

holds.
The proposition is analogously proved using the relations RF

α̂k
and RF

α̂h
.

The following result sets up relations between the L-fuzzy concepts associated
with the same starting set (see section 2) in the different L-fuzzy contexts.

Proposition 4. Consider h, k ∈ N, such that h ≤ k ≤ n, and A ∈ LX. If the
L-fuzzy concepts associated with the set A in the contexts (L,X, Y,RF

αk
) and

(L,X, Y,RF
αh

) are denoted by (Ak, Bk) and (Ah, Bh), then Bk ≤ Bh.
The same result is obtained if we consider the L-fuzzy contexts associated with

the relations RF
α̂k

and RF
α̂h

.

Proof. Consider A ∈ LX and the L-fuzzy contexts associated with the relations
RF

αk
and RF

αh
. Unfolding the fuzzy extensions of both L-fuzzy concepts, and

taking into account that a fuzzy implication operator is increasing on its second
argument, ∀y ∈ Y :

Bk(y) = inf
x∈X

{I(A(x), RF
αk

(x, y))} ≤ inf
x∈X

{I(A(x), RF
αh

(x, y))} = Bh(y)

This inequality holds for every A ∈ LX and for every implication I.
The result can be similarly proved considering the L-fuzzy contexts associated

with the relations RF
α̂k

and RF
α̂h

.

6 L-Fuzzy Context Sequences on J ([0, 1])

One of the most interesting situations is when we use interval-valued L-Fuzzy
contexts. We have previously published some works [11,2] in which the chosen
lattice is L = J ([0, 1]).

In this case, notice that (J ([0, 1]),≤) with the usual order ([a1, c1] ≤ [a2, c2]
⇐⇒ a1 ≤ a2 and c1 ≤ c2) is a complete but not totally ordered lattice.

Then, we can give the following definition:
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Definition 6. Let (J ([0, 1]),≤,T,S) be the complete lattice of the closed inter-
vals in [0, 1] endowed with the t-norm T and the t-conorm S and consider the
sequence of interval-valued L-fuzzy contexts (J ([0, 1]), X, Y,Ri), i = {1, . . . , n}.
If [α, β] = ([α1, β1], [α2, β2], . . . , [αn, βn]) is a distributive weighting vector of
intervals and F[α,β] the n-ary OWA operator associated with [α, β], then the
interval-valued L-fuzzy relation RF[α,β]

that aggregates the information of the
different L-fuzzy contexts can be defined ∀(x, y) ∈ X × Y as:

RF[α,β]
(x, y) =F[α,β](R1(x, y), R2(x, y), . . . , Rn(x, y)) =

=S(T([α1, β1], [b1(x, y), d1(x, y)]), . . . ,T([αn, βn], [bn(x, y), dn(x, y)])

where ([b1(x, y), d1(x, y)], [b2(x, y), d2(x, y)], . . . , [bn(x, y), dn(x, y)]) is the totally
ordered vector constructed from (R1(x, y), R2(x, y), . . . , Rn(x, y)).

Also in this case two relevant situations can be highlighted. In the first one
we will establish an exigence level k and in order to measure the degree in which
an object is at least k times related to an attribute we will use the following
relation:

Relevant Case 3. Consider k ∈ N such that k ≤ n. If we represent by �α�k

the distributive weighting vector �α�k = ([α1, β1], [α2, β2], . . . , [αn, βn]) such that
[αk, βk] = [1, 1], and [αi, βi] = [0, 0], ∀i �= k, we can define the relation RF

[α]k
as:

∀(x, y) ∈ X × Y,

RF
�α�k

(x, y) =S(T([0, 0], [b1(x, y), d1(x, y)]), . . . ,

T([1, 1], [bk(x, y), dk(x, y)]), . . . ,T([0, 0], [bn(x, y), dn(x, y)])

It is immediate to prove that, also in this case, for any t-norm T and t-conorm
S , the following proposition holds:

Proposition 5. RF
�α�k

(x, y) = [bk(x, y), dk(x, y)], ∀(x, y) ∈ X × Y .

The second interesting family of relations is associated with the average of
the observations:

Relevant Case 4. In the complete lattice (J ([0, 1]),≤), consider the t-norm T
and the t-conorm S given for any [a1, c1], [a2, c2] ∈ J ([0, 1]) by

T([a1, c1], [a2, c2]) = [a1a2, c1c2]
S([a1, c1], [a2, c2]) = [min{a1 + a2, 1},min{c1 + c2, 1}]

If k ≤ n and we use the weighting vector �α̂�k = ([α1, β1], . . . , [αn, βn]) ∈
J ([0, 1])n verifying [αi, βi] = [ 1k ,

1
k ] for every i ≤ k, and [αi, βi] = [0, 0] for

every i > k, we can define the relation RF
[α̂]k

as follows:

RF
�α̂�k

(x, y) =

[
k∑

i=1

bi(x, y)

k
,

k∑
i=1

di(x, y)

k

]
, ∀(x, y) ∈ X × Y
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Let see an example to better understand the difference of using both ways of
aggregated information in L = J ([0, 1]):

Example 2. We come back to the L-fuzzy context sequence (L,X, Y,Ri), i =
{1, . . . , 5}, of Example 1 that represents the sports articles X = {x1, x2, x3}
sales in some establishments Y = {y1, y2, y3} during 5 months. Every interval-
valued observation of the relations Ri ∈ J ([0, 1])X×Y , represents the variation
of the percentage of the daily product sales in each establishment along a month.

R1 =

⎛
⎝ [0. 7, 0. 8] [1, 1] [0. 8, 1]

[0, 0] [0. 1, 0. 4] [0. 1, 0. 3]
[0, 0. 2] [0. 1, 0. 3] [0, 0. 6]

⎞
⎠R2 =

⎛
⎝ [1, 1] [0. 8, 1] [1, 1]

[0. 8, 0. 9] [0. 4, 0. 5] [0. 1, 0. 3]
[0, 0] [0, 0. 2] [0. 2, 0. 4]

⎞
⎠

R3 =

⎛
⎝ [1, 1] [1, 1] [1, 1]

[0. 6, 0. 8] [0. 5, 0. 5] [0. 7, 0. 8]
[0, 0] [0. 1, 0. 2] [0. 2, 0. 4]

⎞
⎠R4 =

⎛
⎝ [0. 5, 0. 5] [0. 4, 0. 6] [0. 6, 0. 8]

[0. 1, 0. 3] [0. 5, 0. 6] [0. 3, 0. 5]
[0. 6, 0. 6] [0. 8, 0. 9] [0. 8, 1]

⎞
⎠

R5 =

⎛
⎝ [0. 1, 0. 4] [0, 0. 2] [0, 0. 2]

[0, 0] [0. 1, 0. 3] [0, 0. 2]
[0. 8, 1] [1, 1] [0. 9, 0. 9]

⎞
⎠

We want to study in what establishments are the highest sales for each prod-
uct, no matter when the sale has been carried out, taking into account that there
are seasonal sporting goods that are sold in certain periods of time and not in
others (skies, bathing suits . . . ).

If we fix the demand level, for instance to k = 3, and we want to analyze if
the products have been sold at least during three months, then associated with
the distributive weighting vector �α�3, we have the relation:

RF�α�3
=

⎛⎝ [0. 7, 0. 8] [0. 8, 1] [0. 8, 1]
[0. 1, 0. 3] [0. 4, 0. 5] [0. 1, 0. 3]
[0, 0. 2] [0. 1, 0. 3] [0. 2, 0. 6]

⎞⎠
Now, we take the L-fuzzy context (L,X, Y,RF�α�3

) and obtain the interval-valued

L-fuzzy concept derived from the crisp singleton {x2} using the interval-valued
implication operator defined from the Brouwer-Gödel implication (I(a, b) =
1, a ≤ b and I(a, b) = b in other case) [1]:

({x1/[1, 1], x2/[1, 1], x3/[0, 0. 2]}, {y1/[0. 1, 0. 3], y2/[0. 4, 0. 5], y3/[0. 1, 0. 3]})

In this case, we can say that x1 and x2 have been important sales mainly in
establishment y2 at least during three months.

On the other hand, we can analyze the average sale of each article in the three
months with highest sales. To do this, we will use the weighting vector �α̂�3 and
the obtained relation is:

RF�α̂�3
=

⎛⎝ [0. 9, 0. 93] [0. 93, 1] [0. 93, 1]
[0. 5, 0. 67] [0. 46, 0. 53] [0. 36, 0. 53]
[0. 46, 0. 6] [0. 63, 0. 73] [0. 63, 0. 83]

⎞⎠
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In this case, we will take the interval-valued implication operator obtained
from the fuzzy implication I(a, b) = min{1, b/a} associated with the t-norm
T (a, b) = ab [1]. Then, taking as a starting point x2, we obtain the interval-
valued L-fuzzy concept:

({x1/[1, 1], x2/[1, 1], x3/[0. 89, 0. 89]}, {y1/[0. 5, 0. 67], y2/[0. 46, 0. 53], y3/[0. 36, 0. 53]})

We can say that, taking the average of the sales in the three months with highest
sales, all the articles have been acceptable sales in all the establishments (the
sales in y1 and y3 that were not important with the previous definition, now are
because they are compensated using the values of the three months).

The use of the n−ary OWA operators allow us to ignore the small values of
the relations (the sales of a non-seasonal sporting goods are close to 0) since, in
this case, if we take the average of all the relations, the results will be biased.

7 Conclusions and Future Work

In this work, we have used OWA operators to study the L-fuzzy context sequence
and the derived information by means of the L-fuzzy contexts.

A more complete study can be done when we work with L-fuzzy context
sequences that represent the evolution in time of an L-fuzzy context.

On the other hand, these L-fuzzy contexts that evolve in time can be generalize
if we study L-fuzzy contexts where the observations are other L-fuzzy contexts.
This is the task that we will study in the future.

Acknowledgments. This paper is supported by the Research Group “Intel-
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IT677-13, and by the Research Group “Artificial Intelligence and Approximate
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Abstract. The concept of a many-valued L-relation is introduced and
studied. Many-valued L-relations are used to induce variable-range quasi-
approximate systems defined on the lines of the paper (A. Šostak, Towards
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1 Introduction

The concept of an approximate system was first introduced in [19] and further
thoroughly studied in [20]. Among the most important examples of approximate
systems of essentially different nature are approximate systems generated by L-
(fuzzy) topologies [6], [9], or, more generally, by L-(fuzzy) ditopologies [4], [5]
and approximate systems induced by reflexive symmetric transitive L-(fuzzy)
relations. The last ones are approximate systems which are closely related to L-
fuzzy rough sets, see e.g. [7], [23], [24], see also [10] concerning relations between
approximate systems and L-fuzzy rough sets. Since the properties of reflexivity,
symmetry and transitivity in many considerations are too restrictive, and on the
other hand, in some cases they are not very crucial, in our paper [11] we intro-
duced concepts more general, than the one of an approximate system - namely
quasi-approximate and pseudo-approximate systems. Among other advantages
of such systems is that they suit also for operating with L-relations missing one
or several of the properties of reflexivity, transitivity and symmetry.

Aiming to develop an approach which would allow us to consider approximate
systems with different ranges at the same time, we introduced the category of
variable-range approximate systems in [21]. Basic properties of this category and
some of its subcategories were studied there, too.

� The support of the ESF project 2013/0024/1DP/1.1.1.2.0/13/APIA/VIAA/045 is
kindly announced.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 41–50, 2014.
c© Springer International Publishing Switzerland 2014
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It was the primary aim of this work to study variable-range approximate sys-
tems induced by many-valued L-relations and to apply them for the study of
what could be called variable-range L-fuzzy rough sets interpreted as special
approximate systems. However, how it was mentioned above, if an L-relation is
missing one of the properties of reflexivity, symmetry or transitivity, then the
resulting structure fails to be an approximate system as it is defined in [20]
but is only a quasi-approximate system. Therefore, in order to present our re-
search in a sufficiently broad context, first we introduce the concepts related
to quasi-approximate systems (Section 2), and in the next, Section 3, develop
the basics of the theory of variable-range quasi-approximate systems. Here to a
certain extent we follow [21]. Further, we proceed with considering the category
of many-valued L-relations (Section 4) and then study variable-range approxi-
mate systems induced by many-valued L-relations (Section 5). In Section 6 we
construct a functor embedding the category of many-valued L-relations into the
category of variable-range quasi-approximate systems and study some properties
of this embedding. Finally, in the last Section 7, Conclusions, we briefly review
the results of this work, in particular, interpreting them from the viewpoint of
L-fuzzy rough set theory, and indicate some directions for future work.

2 Quasi-Approximate, Pseudo-Approximate and
Approximate Systems

Let L be a complete infinitely distributive lattice whose bottom and top elements
are 0L and 1L respectively where 0L �= 1L, and let M be any complete lattice.

Definition 1. [11] An upper quasi M-approximation operator on a lattice L is
a mapping u : L×M→ L such that

(1u) u(0L, α) = 0L ∀α ∈ M,
(2u) u(a ∨ b, α) = u(a, α) ∨ u(b, α) ∀a, b ∈ L, ∀α ∈M, and
(mu) α ≤ β =⇒ u(a, α) ≤ u(a, β) ∀a ∈ L and ∀α, β ∈M.

An upper quasi approximation operator u : L×M→ L is called an upper pseudo
M-approximation operator if

(3′u) u(u(a, α), α) ≤ u(a, α) ∀a ∈ L, ∀α ∈M.

An upper pseudo M-approximation operator u : L ×M → L is called an upper
M-approximation operator (cf. [20, Definition 3.1]) if

(4u) a ≤ u(a, α) ∀a ∈ L, ∀α ∈M

Definition 2. [11] A lower quasi M-approximation operator on L is a mapping
l : L×M→ L such that

(1l) l(1L, α) = 1L ∀α ∈ M,
(2l) l(a ∧ b, α) = l(a, α) ∧ l(b, α) ∀a, b ∈ L, ∀α ∈M, and
(ml) α ≤ β =⇒ l(a, α) ≥ l(a, β) ∀a ∈ L, ∀α, β ∈M.
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A lower quasi M-approximation operator l : L×M→ L is called a lower pseudo
M-approximation operator if

(3′l) l(l(a, α), α) ≥ l(a, α) ∀a ∈ L, ∀α ∈ M.

A lower pseudo M-approximation operator l : L × M → L is called a lower
M-approximation operator (cf. [20, Definition 3.1]) if

(4l) a ≥ l(a, α) ∀a ∈ L, ∀α ∈M.

Definition 3. [11] A quadruple (L,M, u, l) is called:

– a quasi M-approximate system on L if u and l are quasi M-approximation
operators on L;

– strongly quasi M-approximate if it is a quasi M-approximate and l ≤ u;
– pseudo M-approximate if u and l are pseudo M-approximation operators;
– an M-approximate system if u and l are M-approximation operators.

3 Category QAS of Variable-Range Quasi-Approximate
Systems and Its Subcategories

Let QAS ( PAS, AS respectively) be the family of quasi-approximate (pseudo-
approximate, approximate, resp.) systems (L,M, u, l). To consider QAS as a
category whose class of objects are quasi-approximate systems (L,M, u, l) (and
respectivelyPAS,AS as its full subcategories) we have to specify its morphisms.
Given two quasi-approximate systems (L1,M1, u1, l1), (L2,M2, u2, l2) by a mor-
phism F : (L1,M1, u1, l1)→ (L2,M2, u2, l2) we call a pair (f, ϕ) = F such that

(1mor) f : L2 → L1 is a morphism in the category IDCLAT of infinitely
distributive complete lattices;

(2mor) ϕ : M2 →M1 is a morphism in the categoryCLAT of complete lattices;
(3mor) u1(f(b), ϕ(β)) ≤ f(u2(b, β)) ∀b ∈ L2, ∀β ∈M2;
(4mor) f(l2(b, β)) ≤ l1(f(b), ϕ(β)) ∀b ∈ L2, ∀β ∈M2

Theorem 1. QAS thus obtained is indeed a category.

Proof Let F = (f, ϕ) : (M1,L1, u1, l1) → (M2,L2, u2, l2) and G = (g, ψ) :
(M2,L2, u2, l2) → (M3,L3, u3, l3) be defined as above and let G ◦ F = (f ◦
g, ϕ ◦ ψ) : (M1,L1, u1, l‘) → (M3,L3, u3, l3). We have to verify that f ◦ g and
ψ ◦ ϕ satisfy conditions (3mor) and (4mor) above. Let c ∈ L3 and γ ∈ M3.
Then (u1(g ◦ f)(c), (ψ ◦ ϕ)(γ)) = u1(f(g(c)), ϕ(ψ(γ))) ≤ f(u2(g(c), ψ(γ))) ≤
f(g(u3(c), γ)) = (g ◦ f)(u3(c, γ)) and hence condition (3mor) holds. In a similar
way we verify condition (4mor). We conclude the proof by noticing that the pair
F = (idL, idM) : (L,M, u, l)→ (L,M, u, l) is obviously a morphism.

Remark 1. Let M be fixed. Then the subcategory QASM of the category QAS,
whose morphisms are of the form F = (f, idM) and its full subcategories PASM

and ASM can be identified with categories considered in [11], the last one was
thoroughly studied also in [20].
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Theorem 2. Every source F : (L1,M1) → (L2,M2, u2, l2) has a unique initial
lift F : (L1,M1, u1, l1) → (L2,M2, u2, l2) in category QAS and in its subcate-
gories PAS and AS.

Proof Let F = (f, ϕ) : (L1,M1) → (L2,M2, u2, l2). We define an upper
approximation operator u1 : L1 ×M1 → L1 by

u1(a, α) =
∧
{f(u2(b, β)) | f(b) ≥ a, ϕ(β) ≥ α, b ∈ L2, β ∈M2} .

We verify that u1 : L1×M1 → L1 is indeed an upper M1-approximate operator.
The first property is obvious from the definition of u1. To verify property (2u)
let a1, a2 ∈ L1, α ∈ M1, then
u1(a1 ∨ a2, α) =

∧
{f(u2(b, β)) | f(b) ≥ a1 ∨ a2, ϕ(β) ≥ α, b ∈ L2, β ∈M2}

≤
∧
{f(u2(b1 ∨ b2), β) | f(b1) ≥ a1, f(b2) ≥ a2, ϕ(β) ≥ α, b1, b2 ∈ L2, β ∈M2}

=
∧
{f(u2(b1, β)) ∨ f(u2(b2, β)) | f(b1) ≥ a1, f(b2) ≥ a2, ϕ(β) ≥ α, b1, b2 ∈

L2, β ∈M2} = (
∧
{f(u2(b1, β)) | f(b1) ≥ a1, ϕ(β) ≥ α, b1 ∈ L2, β ∈M2}) ∨

(
∧
{f(u2(b2, β)) | f(b2) ≥ a2, ϕ(β) ≥ α, b2 ∈ L2, β ∈M2}) = u1(a1, α)∨u1(a2, α).

The converse inequality is obvious.
To verify property (mu) let α1 ≤ α2 ∈M1 Then
u1(a, α1) =

∧
{f(u2(b, β) | f(b) ≥ a, ϕ(β) ≥ α1, b ∈ L2, β ∈ M2} ≤∧

{f(u2(b, β) | f(b) ≥ a, ϕ(β) ≥ α2, b ∈ L2, β ∈ M2} = u2(a, α2).
To verify condition (3′u) in case u2 satisfies it, notice that u1(u1(a)), α) ≤∧

f(b)≥a,ϕ(β)≥α u1 (f (u2(b, β)) , α) ≤
∧

f(b)≥a,ϕ(β)≥α u1 (f (u2(b, β)) , ϕ(β))

≤
∧

f(b)≥a,ϕ(β≥α f(u2(u2(b, β), β))) =
∧

f(b)≥a,ϕ(β)≥α f(u2(b, β)) = u1(a, α).

The validity of property (4u) for u2 is obvious from its definition whenever u1

satisfies this condition.
We define the lower quasi M-approximation operator l1 : L1 ×M1 → L1 by

l1(a, α) =
∨
{f(l2(b, β)) | f(b) ≤ a, ϕ(β) ≥ α, b ∈ L2, β ∈M2}.

The validity of the first condition for l1 follows from the corresponding property
of l2. To verify the second condition let a1, a2 ∈ L1, and α ∈ M1. Then
l1(a1, α) ∧ l1(a2, α) = (

∨
{f(l2(b1, β))) | f(b1)) ≤ a1, ϕ(β) ≥ α, b1 ∈ L2, β ∈

M2}) ∧ (
∨
{f(l2(b2, β)) | f((b2)) ≤ a2, ϕ(β) ≥ α, b2 ∈ L2, β ∈M2})

=
∨
{f(l2(b1, β))∧f(l2(b2, β)) | f(b1) ≤ a1, f(b2) ≤ a2, ϕ(β) ≥ α, b1, b2 ∈ L2, } ≤∨

{f(l2(b1 ∧ b2, β) | f(b1) ∧ f(b2) ≤ a1 ∧ a2, ϕ(β) ≥ α, b1, b2 ∈ L2, β ∈ M2}
=
∨
{f(l2(b, β)) | f(b) ≤ a1 ∧ a2, ϕ(β) ≥ α, b1, b2 ∈ L2, β ∈M2} = l1(a1 ∧ a2, α).

The converse inequality is obvious.
To verify property (ml) for l1 let α1 ≤ α2,∈ M1. Then

l1(a, α1) =
∨
{f(l2(b, β) | f(b) ≥ a, ϕ(β) ≥ α1, b ∈ L2, β ∈ M2} ≥

∨
{f(l2(b, β) |

f(b) ≤ a, ϕ(β) ≥ α2, b ∈ L2, β ∈M2} = l2(a, α2).
Property (3′u) of the operator l1 : L1×M1 → L1 (in case l2 has this property)

is established as follows. Given a ∈ L1 we have

l1(l1(a, α), α) = l1

(∨
f(b)≤a,ϕ(β)≥α f(l2(b, β), α)

)
≥
∨

f(b)≤a,ϕ(β)≥α l1(f(l2, β), α)

≥
∨

f(b)≤a,ϕ(β)≥α l1(f(l2, β), ϕ(β)) =
∨

f(b)≤a,ϕ(β)≥α f(l2(b, β)) = l1(a, α).

The validity of property (4l) for l2 is obvious from its definition whenever l1
satisfies this condition.
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To complete the proof, let G = (g, ψ) : (L3,M3, u3, l3) → (L2,M2, u2, l2) be
a morphism in QAS and let H = (h, χ) where h : L1 → L3, χ : M1 → M3 are
morphisms in categories IDCLAT and CLAT respectively, such that f ◦ h = g
and ϕ ◦ χ = ψ, see the diagram below:

(L3,M3, u3, l3)
G ��

H ����
���

���
���

(L2,M2, u2, l2)

(L1,M1)

F

�������������

Then from the construction it is clear that u3(h(a), χ(α)) ≤ h(u1(a, α)) and
h(l1(a, α)) ≤ l3(h(a), χ(α)) for every a ∈ L1 and every α ∈ M. Hence
H : (L3,M3, u3, l3)→ (L1,M1, u1, l1) is a morphism in QAS. Thus
F : (L1,M1, u1, l1)→ (L2,M2, u2, l2) is indeed the initial lift of the source
F : (L1,M1)→ (L2,M2, u2, l2). The uniqueness of the lift is obvious.

Remark 2. As shown in [21] in case of the category AS of approximate systems
the statement of the previous theorem holds also for a source consisting of arbi-
trary many morphisms. Unfortunately, we do not know whether such statement
is valid also for quasi-approximate, or, at least for pseudo-approximate systems.

From Theorem 2 by duality principle we have

Theorem 3. Every sink containing a single morphism F : (L1,M1, u1, l1) →
(L2,M2) has a unique final lift F : (L1,M1, u1, l1)→ (L2,M2, u2, l2) in category
QAS and in its subcategories PAS and AS.

The upper and lower quasi-approximate operators on (L2,M2) efficiently can be
defined as follows:

u2(b, β) =
∧
{c ∈ L2 | c ≥ b, f(c) ≥ u1(f(b), ϕ(β))}.

l2(b, β) =
∨
{c ∈ L2 | c ≤ b, f(c) ≤ l1(f(b), ϕ(β))}.

4 Many-Valued L-Relations

The concept of an L-relation was first introduced in Zadeh’s paper [25] and
then redefined, under various assumptions on the range lattice L, by different
authors, see, e.g. [22] [2], [3], [7], et al. In this section we extend the concept
of an L-relation, in order to get a concept well coordinated with variable range
quasi-approximate systems considered above. In the result we come to what we
call a many-valued L-relation. In order to define it we have to enrich lattice L
with a further binary operation ∗ : L×L→ L. Namely, in the sequel we assume
that (L,≤,∧,∨, ∗) is a cl-monoid.

Definition 4. [1] A cl-monoid is a complete lattice (L,≤,∧,∨) enriched with
a binary commutative associative monotone operation ∗ : L × L → L such that
a ∗ 1L = a, a ∗ 0L = 0L for each a ∈ L and ∗ distributes over arbitrary joins,
that is a ∗ (

∨
i bi) =

∨
i (a ∗ bi) ∀ a ∈ L, ∀{bi | i ∈ I} ⊆ L.
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Note that a cl-monoid can be defined also as an integral commutative quantale
in the sense of K.I. Rosenthal [15].

Extending known properties of L-relations (see e.g.[23], [24], [14]) to the case
of many-valued L-relations we come to the following

Definition 5. A many-valued L-relation on a set X, or an M-valued L-relation
for short, is a non-decreasing on the last coordinate mapping R : X×X×M→ L.

(c) R is right-connected, (resp. left-connected) if for each x ∈ X there exists
x′ ∈ X (resp. x′′ ∈ X) such that R(x, x′, α) = 1L (resp. R(x′′, x, α) = 1L)
∀α ∈M; an L-relation is connected if it is both left- and right-connected;

(r) R is reflexive, if R(x, x, α) = 1L for each x ∈ X and each α ∈ M.

(s) R is symmetric, if R(x, y, α) = R(y, x, α) for all x, y ∈ X and each α ∈M;

(t) R is transitive, if R(x, y, α) ∗ R(y, z, β) ≤ R(x, z, α ∧ β) for all x, y, z ∈ X
and all α, β ∈M.

Let a cl-monoid L be fixed and let REL(L) denote the set of all triples (X,M, R)
whereR : X×X×M→ L is anM-valued L-relation on it. To realizeREL(L) as a
category we specify its morphisms as pairs (f, ϕ) : (X1,M1, R1)→ (X2,M2, R2)
such that R1(x, y, ϕ(β)) ≤ R2(f(x), f(y), β) for all x, y ∈ X and all β ∈M2.

LetRELc(L),RELr(L),RELs(L),RELt(L) denote the full subcategories of
REL(L), the L-relations in which are right-connected, reflexive, symmetric and
transitive respectively. The notations like RELst(L), RELrt(L), etc., should be
clear. In the next section we shall discuss connections between these categories
and the corresponding categories of variable-range approximate-type systems.

5 Quasi-Approximate, Pseudo-Approximative, and
Approximate Systems Generated by Many-Valued
L-Relations

Let a set X and a cl-monoid L = (L,≤,∧,∨, ∗) be fixed. Given an M-valued
L-relation R : X × X × M → L, we define an upper and a lower M-quasi-
approximation operators uR : LX ×M→ LX and lR : LX ×M→ LX by

uR(A)(x, α) = sup
x′

(R(x, x′, α) ∗A(x′)) ∀A ∈ LX , ∀x ∈ X, ∀α ∈M;

lR(A)(x, α) = inf
x′ (R(x, x′, α) �→ A(x′)) ∀A ∈ LX ∀x ∈ X, ∀α ∈M

where �→: L×L→ L is the residuation induced by operation ∗ : L×L→ L, see
e.g. [18], [12].

Let S(L) = {(LX , uR, lR,M) | X ∈ SET,M ∈ CLAT} that is S(L) is the
family of all quasi-approximate systems induced by many-valued L-relations.
(Note that cl-monoid L in these considerations is fixed and the L-power-set
lattice LX corresponds to the lattice L in sections 2 and 3!)
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Theorem 4. Every Σ(X,M,R) = (LX ,M, uR, lR) ∈ S(X,L) is an M-quasi-
approximate system. If R is right-connected, then uR ≥ lR, and hence Σ(X,M,R) =
(LX ,M, uR, lR) is strongly quasi-approximate. If R is transitive, then Σ(X,M,R) =
(LX ,M, uR, lR) is pseudo-approximate. Finally, if R is transitive and reflexive,
then Σ(X,M,R) = (LX ,M, uR, lR) is an M-approximate system.

Proof The validity of conditions (1u) and (1l) from definitions 1 and 2 for
uR and lR follows from the properties of the lattices LX and M. What concerns
properties (2u) and (2l), we shall prove stronger, namely infinite versions of these
conditions:

(2∗u) uR((
∨

i Ai), α) =
∨

i uR(Ai, α) ∀{Ai | i ∈ I} ⊆ LX , ∀α ∈M;
(2∗l) lR((

∧
i Ai), α) =

∧
i lR(Ai, α) ∀{Ai | i ∈ I} ⊆ LX , ∀α ∈ M.

We get these properties as follows:
uR(
∨

i Ai, α)(x) = supx′(R(x, x′, α)(
∨

iAi(x
′), α)) = supx′(

∨
iR(x, x′, α)∗Ai(x

′))
=
∨

i(supx′(R(x, x′, α) ∗Ai(x
′))) =

∨
i(uR(Ai)(x), α) = (

∨
i(uR(Ai, α)) (x);

lR (
∧

i Ai, α) (x) = infx′ (R(x, x′, α) �→ (
∧

iAi, α) (x
′))

= infx′ (
∧

i (R(x, x′, α) �→ Ai(x
′))) =

∧
i (infx′(R(x, x′, α) �→ Ai(x

′))
= (
∧

i lR(Ai, α)) (x).
Assume now that the L-relation R is right-connected and for a given x ∈ X
choose y ∈ X such that R(x, y, α) = 1 for all α ∈M. Then
uR(A,α)(x) = supx′(R(x, x′, α) ∗A(x′)) ≥ R(x, y, α) ∗A(y) = A(y);
lR(A,α)(x) = infx′(R(x, x′, α) �→ A(x′)) ≤ R(x, y, α) �→ A(y) = A(y),
that is lR(A,α) ≤ uR(A,α) and hence the system Σ(X,M,R) is strongly quasi-
approximate. In case R is reflexive, in the above inequalities we may take y = x
and obtain lR(A,α)(x) ≤ A(x) ≤ uR(A,α)(x) ∀A ∈ LX , ∀x ∈ X, that is
lR(A) ≤ A ≤ uR(A).

To prove that Σ(X,M,R) is a pseudo-approximate system in case when R is a
transitive L-relation, we show that uR(uR(A)) ≤ uR(A) and lR(lR(A)) ≥ lR(A)
for each A ∈ LX . We get the first one of these inequalities referring to the
transitivity of the relation R, as follows: u(u(A,α), α)(x) = supy

(
supz
(
A(z) ∗

R(x, z, α)
)
∗R(y, z, α))

)
= supz

(
supy
(
A(z) ∗ (R(x, z, α) ∗R(y, z, α)

))
≤ supz

(
A(z) ∗R(x, z, α)

)
= u(A,α)(x).

The next series of inequalities, which is also justified by the transitivity of the
relation R, establishes the second inequality:
lR(lR(A,α))(x) = infy(R(x, y, α) �→ (infz(R(y, z, α) �→ A(z))))
= infy infz ((R(x, y, α) ∗R(y, z, α)) �→ A(z))
= infz infy ((R(x, y, α) ∗R(y, z, α)) �→ A(z))
≥ infz (R(x, z, α) �→ A(z)) = lR(A,α)(x).
To complete the proof, it is sufficient to notice that in case when R is both
transitive and reflexive, all conditions (1u) - (4u) and (1l) - (4l) are satisfied and
hence Σ(X,M,R) is an approximate system.

Remark 3. By the definition of the quasi approximation operators uR and lR, it
is clear that R ≤ R′ implies that uR ≤ uR′ and lR ≥ lR′ . Moreover, note that if
R1, R2 : X ×X → L are M-valued L-relations on the same set X and R1 �= R2,
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then uR1 �= uR2 and hence ΣR1 �= ΣR2 . Indeed, let x1, x2 ∈ X and α ∈ M be
such that R1(x1, x2, α) �= R2(x1, x2, α) and let A = {x2} (as usual we identify a
crisp set with its characteristic function). Then
uR1(A)(x1, α) = supx′∈X

(
R1(x, x

′, α) ∗ A(x′)
)
= R1(x1, x2, α); uR2(A)(x1, α) =

supx′∈X

(
R2(x, x

′, α) ∗A(x′)
)
= R2(x1, x2, α),

and hence uR1 �= uR2 and Σ(X,M,R1) �= Σ(X,M,R2). Note that in this case also
lR1(A)(x1, α) = R1(x1, x2, α) �= R2(x1, x2, α) = lR2(A)(x1, α).

6 Category of Quasi-Approximate Systems Induced by
Many-Valued L-Relations and Its Subcategories

Let a cl-monoid L be fixed and letQASMR(L) be the category of variable-range
quasi approximate systems induced by many-valued L-relations on non-empty
sets. Further, let QASMRt(L),QASMRc(L),QASMRtr(L) be its subcate-
gories induced respectively by transitive, right-connected and transitive reflexive
many-valued L-relations.

To construct a functor Φ from the category REL(L) where L is fixed into
the category QAS we first define this functor on objects. Let (X,M, R) ∈
Ob(REL(L)), then we set

Φ(X,M, R) = Σ(X,M,R)(= (LX ,M, uR, lR))

where uR and lR are respectively the upper and lower approximation operators
induced by the many-valued relation R : X × X ×M → L. Further, given a
morphism (f, ϕ) : (X1,M1, R1)→ (X2,M2, R2) in REL(L) let

Φ(f, ϕ) = (f←
L , ϕ) : Σ(X1,M1,R1) → Σ(X2,M2,R2)

where f←
L : LX2 → LX1 is the backward operator induced by f , see [17], that

is f←(B) = B ◦ f ∈ LX1 for each B ∈ LX2 . Let F = Φ(f, ϕ). We show that
F : Σ(X1,R1,M1) → Σ(X2,R2,M2) thus defined is a morphism in the categoryQAS.

Let L1 = LX1 , L2 = LX2 . Then it is well-known (and can be easily seen) that
f←
L : L2 → L1 is a morphism in the category of IDCLAT of infinitely distribu-
tive complete lattices, and hence condition (1mor) for F holds. The validity of
condition (2mor) is obvious. To verify condition (3mor) for F let B ∈ L2 and
x ∈ X1. Then
u1(f

←
L (B), ϕ(β))(x) = supx′

(
R1(x, x

′, β) ∗ f←
L (B)(x)

)
≤ supx′

(
R2(f(x), f(x

′), β) ∗B(f(x′))
)
≤ supy′

(
R2(f(x), y

′, β) ∗B(f(x))
)
.

On the other hand,
f←
L (u2(B), β)(x) = u2(B, β)(f(x)) =

(
R2(f(x), y

′, β) ∗B(f(x))
)
,

and hence u1(f
←
L (B), ϕ(β)) ≤ f←

L (u2(B, β)), so that the condition (3mor) holds.
To verify condition (4mor), let again B ∈ L2 and x ∈ X1. Then

f←
L

(
l2(B, β)

)
(x) = l2(B, β)(f(x)) = infy′

(
R2(f(x), y

′, β) �→ B(f(x)
)
.

On the other hand, l1
(
f←
L (B), ϕ(β)

)
(x) = infx′ (R1(x, x

′), ϕ(β) �→ f←
L (B)(x))

≥ infx′
(
R2

(
f(x), f(x′), β

)
�→ B(f(x))

)
≥ infy′

(
R2

(
y′, f(x), β

)
�→ B(f(x)

)
.

Hence f←
L (l2(B, β)) ≤ l1(f

←
L (B), β) and so the condition (4mor) holds.
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Combining the obtained information and taking into account Theorem 4 and
Remark 3 we come to the following

Theorem 5. By assigning to (X,R,M) ∈ Ob(REL(L)) a quasi-approximate
system ΣR = (LX ,M, uR, lR) and assigning to a morphism f : (X1, R1,M1) →
(X2, R2,M2) of REL(L) the morphism F = (f←

L , ϕ) : ΣR1 → ΣR2 of QAS we
obtain an isomorphism Φ : REL(L)→ QASMR(L) from REL(L) onto the sub-
category QASMR(L) of QAS. The restrictions of this functor to RELt(L) and
RELtr(L) are isomorphisms of these categories and the categories QASMRt(L)
and QASMRrt(L) respectively.

7 Conclusion

We introduced the concept of a many-valued L-relation which in essence is a
well-coordinated family of L-relations indexed by elements of a complete lattice.
To develop the theory of many-valued L-relations we extended the category
of variable-range approximate systems and defined less restricted categories of
variable-range quasi-approximate and pseudo-approximate systems These cate-
gories include also systems induced by L-relations which either miss properties of
reflexivity, symmetry and transitivity or satisfy weaken versions of these axioms.

As a by-product of the theory worked out here we obtain a many-valued
viewpoint on the subject of the theory of L-fuzzy rough sets. Specifically, in
the framework of the approach developed in this work, one can study lattices
of well-coordinated families of rough approximations of an L-fuzzy set A ∈ LX ,
with the triple (A, 1LX , 0LX ) as (possibly) the coarsest L-rough approximation
and the triple (A,A,A) as (possibly) the finest L-rough approximation.

Turning to the prospectives of the theory initiated here, we see both purely
theoretical issues as well as its possible applications. Concerning theoretical
prospectives as the first challenge we see a further study of the lattice char-
acteristics and the categorical properties of variable-range (quasi-)approximate
systems generated by many-valued L-relations (see e.g. the unsolved problem in
Remark 2; its clarification is essential, in particular, for the operation of prod-
uct for variable-range quasi-approximate systems). Considering possible appli-
cations, we expect that the concepts introduced here and the obtained results,
in particular, realized in the context of many-valued L-fuzzy rough sets can be
helpful, specifically, in the study of classification and clusterization problems in
case when different unrelated sets of parameters should be taken into account.

Acknowledgment. The authors are grateful to the anonymous referees for
reading the paper carefully and making comments which allowed to improve the
exposition.
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The Babel Research Group
Facultad de Informática
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Abstract. There is no need for justifying the use of fuzzy logic (FL) to model the
real-world knowledge. Bi-valued logic cannot conclude if a real-world sentence
like “the restaurant is close to the city center” is true or false because it is neither
true nor false. Letting apart paradoxes’ sentences1, there are sentences (as the
previous one) that are not true nor false but true up to some degree of truth or true
at least to some degree of truth. In order to represent the truth or falsity of such
sentences we need FL.

Similarity is a relation between real-world concepts. As in the representation
of the truth of the first sentence, the representation of the similarity between two
(fuzzy or not) concepts can be true, false or true up to (or at least to) some degree.
We present syntactic constructions (and their semantics) for modelling such re-
lation between concepts. The interest is in, for example, obtaining “spanish food
restaurants” when asking for “mediterranean food restaurants” (only if the simi-
larity between spanish and mediterranean food is explicitly stated in the program
file). We hope this allows to represent in a better way the real-world knowledge,
specially the concepts that are defined just by their similarity relations to some
other concepts.

Keywords: fuzzy logic, framework, similarity relations.

1 Introduction

From the beginning the human being has tried to create machines with the capability to
understand the real world as he does and help him to carry out tasks that he does not
like to do.
� This work is partially supported by research projects DESAFIOS10 (TIN2009-14599-C03-

00) funded by Ministerio Ciencia e Innovación of Spain, PROMETIDOS (P2009/TIC-1465)
funded by Comunidad Autónoma de Madrid and Research Staff Training Program (BES-2008-
008320) funded by the Spanish Ministry of Science and Innovation. It is partially supported
too by the Universidad Politécnica de Madrid entities Departamento de Lenguajes, Sistemas
Informáticos e Ingenierı́a de Software and Facultad de Informática.

1 Paradoxes’ sentences are sentences like “the only barber in the town shaves anyone that does
not shave himself” (attributed to Bertrand Russell), which have self-references that do not
let us to assign them any truth value because using logic inference we always conclude the
opposite truth value.
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When representing the world as the human being understands it and how he takes
decisions and interacts with the first one we encounter the problem of representing
fuzzy characteristics (it is hot), fuzzy rules (if it is hot, turn on the fan) and fuzzy actions
(since it is not too hot, turn on the fan at medium speed). So, a machine needs all this
information (or knowledge) if we want it to understand the world as the human being
does and take decisions as the human being does.

One of the most successful programming languages for representing knowledge in
computer science is Prolog, whose main advantage with respect to the other ones is
being a more declarative programming language2. Prolog is based on logic. It is usual
to identify logic with bi-valued logic and assume that the only available values are “yes”
and “no” (or “true” and “false”), but logic is much more than bi-valued logic. In fact we
use fuzzy logic (FL), a subset of logic that allow us to represent not only if an individual
belongs or not to a set, but the grade in which it belongs. Supposing a database with
the contents shown in Fig. 1, the definition for the function “close” in Fig. 1 and the
question “Is restaurant X close to the center?” with FL we can deduce that Il tempietto
is “definitely” close to the center, Tapasbar is “almost” close, Ni Hao is “hardly” close
and Kenzo is “not” close to the center. We highlight the words “definitely”, “almost”,
“hardly” and “not” because the usual answers for the query are “1”, “0.9”, “0.1” and
“0” for the individuals Il tempietto, Tapasbar, Ni Hao and Kenzo and the humanization
of the crisp values is done in a subsequent step by defuzzification.

name distance price avg. food type
Il tempietto 100 30 italian

Tapasbar 300 20 spanish
Ni Hao 900 10 chinese
Kenzo 1200 40 japanese 0

1

close

100 1000 distance

Fig. 1. Restaurants database and close fuzzification function

Modelling the real-world knowledge as the human being does is not an easy task.
The human mind tends to determine if two concepts have something in common. If
they have it he usually memorizes the most general one or a new one that comprises the
common parts and the differences between this one and the other one(s). By learning
by heart only this the human mind can store many concepts with a very low storage
cost and have a very fast process time (the less concepts we have the faster we retrieve
them). Besides, it works in the same way for rules that explain the world behaviour
or how to act in each situation: he learns the general rule and/or the exceptions to the
general rule and what they depend on.

This way of storing information (or knowledge) and reasoning with it is what we try
to allow the programmer to represent in programs. Due to its complexity we are here

2 We say that it is a more declarative programming language because it removes the necessity to
specify the flow control in most cases, but the programmer still needs to know if the interpreter
or compiler implements depth or breadth-first search strategy and left-to-right or any other
literal selection rule.
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concerned only with allowing him/her to represent similarity between concepts. This
allows to save space and time when modelling the real-world knowledge, at the same
time that we get a little bit closer to the human being way of understanding the world.

To introduce similarity in fuzzy logic we could use any of the existing frameworks
for representing fuzzy knowledge. Leaving apart the theoretical frameworks, as [20],
we know about the Prolog-Elf system [7], the FRIL Prolog system [1], the F-Prolog
language [8], the FuzzyDL reasoner [2], the Fuzzy Logic Programming Environment
for Research (FLOPER) [15], the Fuzzy Prolog system [19,6], or Rfuzzy [16]. All of
them implement in some way the fuzzy set theory introduced by Lotfi Zadeh in 1965
([22]), and all of them allow you to extend the base language with your own modifi-
cations. We choose Rfuzzy with priorities [17,18] because we need the capability to
define that the results provided by some rule are preferred to the ones provided by some
other rule, no matter if the last one provides a higher truth value.

To our knowledge, the works similar to ours are [21,5,3,4]. The main differences
between our work and this ones are (1) that we do not force the similarity relation to
be reflexive, symmetric and transitive, i.e., an equivalence relation. As some of they
mention, this is too restrictive for real-world applications. And (2) that we do not try to
measure the closeness (or similarity) between two fuzzy propositions. Our work goes
in the other direction: we take the similarity value computed and return the elements
considered to be similar to the one we are looking for.

The paper is structured as follows: an introduction to the syntax we use goes first
(sec. 2). A little bit of background on FL with priorities goes after (sec. 3) and the syntax
and semantics we propose for representing similarity just after it (sec. 4). Conclusions
and current work go in last place (sec. 5), as usual.

2 Syntax

We will use a signature Σ of function symbols and a set of variables V to “build” the
term universe TUΣ,V (whose elements are the terms). It is the minimal set such that
each variable is a term and terms are closed under Σ-operations. In particular, constant
symbols are terms. Similarly, we use a signature Π of predicate symbols to define the
term base TBΠ,Σ,V (whose elements are called atoms). Atoms are predicates whose
arguments are elements of TUΣ,V . Atoms and terms are called ground if they do not
contain variables. As usual, the Herbrand universe HU is the set of all ground terms,
and the Herbrand base HB is the set of all atoms with arguments from the Herbrand
universe. A substitution σ or ξ is (as usual) a mapping from variables from V to
terms from TUΣ,V and can be represented in suffix ( (Term)σ ) or in prefix notation
( σ(Term) ).

To capture different interdependencies between predicates, we will make use of a
signature Ω of many-valued connectives formed by conjunctions &1,&2, ...,&k, dis-
junctions ∨1,∨2, ...,∨l , implications←1,←2, ...,←m, aggregations @1,@2, ...,@n and
tuples of real numbers in the interval [0, 1] represented by (p, v).

While Ω denotes the set of connective symbols, Ω̂ denotes the set of their respec-
tive associated truth functions. Instances of connective symbols and truth functions are
denoted by &i and &̂i for conjunctors, ∨i and ∨̂i for disjunctors,←i and ←̂i for impli-
cators, @i and @̂i for aggregators and (p, v) and ˆ(p, v) for the tuples.
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Truth functions for the connectives are then defined as &̂ : [0,1]2 → [0,1] mono-
tone3 and non-decreasing in both coordinates, ∨̂ : [0,1]2 → [0,1] monotone in both
coordinates, ←̂ : [0,1]2 → [0,1] non-increasing in the first and non-decreasing in the
second coordinate, @̂ : [0,1]n → [0,1] as a function that verifies @̂(0, . . . , 0) = 0 and
@̂(1, . . . , 1) = 1 and (p, v) ∈ Ω(0) are functions of arity 0 (constants) that coincide
with the connectives.

Immediate examples for connectives that come to mind for conjunctors are: in
Łukasiewicz logic (F̂(x,y) = max(0,x+y−1)), in Gödel logic (F̂(x,y) = min(x,y)), in
product logic (F̂(x,y) = x · y), for disjunctors: in Łukasiewicz logic
(F̂(x,y) = min(1,x + y)), in Gödel logic (F̂(x,y) = max(x,y)), in product logic
(F̂(x,y) = x · y), for implicators: in Łukasiewicz logic (F̂(x,y) = min(1,1− x+ y)), in
Gödel logic (F̂(x,y) = y if x > y else 1), in product logic (F̂(x,y) = x · y) and for
aggregation operators4: arithmetic mean, weighted sum or a monotone function learned
from data.

3 A Small Revision on FL with Priorities

FL with priorities has basically the same properties that FL, but instead of having a
truth value v ∈ [0,1] has a tuple of real numbers between 0 and 1, (p, v) ∈ Ω(0),
where p ∈ [0,1] denotes the (accumulated) priority. This simple change implies two
more changes, one in the classical ordering definition of the truth values and the other
one in the connectives meaning. We include first a brief introduction to the structure that
gives meaning to our FL programs, a particular case of the multi-adjoint algebra (more
info can be found in [12,9,10,11,13,14]), and to the modifications needed to manage
priorities (more info can be found in [17,18]). The strong point of using this structure
is that we can obtain the credibility for the rules that we write from real-world data (in
an automatic way), although this time we do not focus in that advantage.

The multi-adjoint semantics of fuzzy logic programs is based on a maximum oper-
ator. Since we have now a tuple (p, v) ∈ Ω(0) instead of the truth value v ∈ [0,1], we
need to define the ordering between two or more tuples. The usual representation (p,v)
is sometimes changed into (pv) to highlight that the variable is only one and it can take
the value ⊥ (no answer), and the set of all possible values is symbolized by KT.

Definition 1 (� KT).

⊥� KT ⊥� KT (p, v)

(p1, v1)� KT (p2, v2) ↔ ( p1 < p2 ) or ( p1 = p2 and v1 ≤ v2 ) (1)

where < is defined as usually ( vi and p j are just real numbers between 0 and 1).

3 As usually, a n-ary function F̂ is called monotonic in the i-th argument ( i ≤ n ), if x ≤ x′

implies F̂(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ F̂(x1, . . . , xi−1, x′, xi+1, . . . , xn) and a function
is called monotonic if it is monotonic in all arguments.

4 Note that the above definition of aggregation operators subsumes all kinds of minimum, max-
imum or mean operators.
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We define now the syntax of the multi-adjoint logic programs, their valuations and
interpretations, the operator needed by the connectives to manage the value of p j in the
tuples and the satisfaction and model. All this conforms the syntax and semantics of our
programs.

Definition 2 (Multi-Adjoint Logic Program). A multi-adjoint logic program is a set
of clauses of the form

A
(p, v), &i←−−−−−@ j (B1, . . . ,Bk, . . . ,Bn) if COND (2)

where (p, v) ∈ KT, &i is a conjunctor, @ j an aggregator5, A and Bk, k ∈ [1..n], are
atoms and COND is a first-order formula (basically a bi-valued condition) formed by
the predicates in TBΠ,Σ,V , the predicates =, �=,≥, ≤, > and < restricted to terms from
TUΣ,V , the symbol true and the conjunction∧ and disjunction∨ in their usual meaning.

Definition 3 (Valuation, Interpretation). A valuation or instantiation σ : V → HU
is an assignment of ground terms to variables and uniquely constitutes a mapping
σ̂ : TBΠ,Σ,V → HB that is defined in the obvious way.

A fuzzy Herbrand interpretation (or short, interpretation) of a fuzzy logic program is
a mapping I : HB→KT that assigns an element in our lattice to ground atoms6.

It is possible to extend uniquely the mapping I defined on HB to the set of all ground
formulas of the language by using the unique homomorphic extension. This extension
is denoted Î and the set of all interpretations of the formulas in a program P is denoted
IP.

Definition 4 (The operator ◦ ). The application of some conjunctor &̄ (resp. impli-
cator ←̄ , aggregator @̄ ) to elements (p, v) ∈ KT\ {⊥} refers to the application of
the truth function &̂ (resp. ←̂ , @̂ ) to the second elements of the tuples while ◦&

(resp. ◦← , ◦& ) is the one applied to the first ones. The operator ◦ is defined by

x ◦& y =
x + y

2
and z ◦← y = 2 ∗ z − y .

Definition 5 (Satisfaction, Model). Let P be a multi-adjoint logic program, I ∈ IP an
interpretation and A ∈ HB a ground atom. We say that a clause Cli ∈ P of the form
shown in eq. 2 is satisfied by I or I is a model of the clause Cli ( I � Cli ) if and only
if ( iff ) for all ground atoms A ∈HB and for all instantiations σ for which Bσ ∈HB
(note that σ can be the empty substitution) it is true that

Î(A) � KT (p, v) &̄i @̄i( Î(B1σ), . . . , Î(Bnσ) ) (3)

whenever COND is satisfied (true). Finally, we say that I is a model of the program P
and write I � P iff I � Cli for all clauses in our multi-adjoint logic program P.

5 Unnecessary if k ∈ [1..1] or n = 1
6 The domain of an interpretation is the set of all atoms in the Herbrand Base (interpretations

are total functions), although for readability reasons we present interpretations as sets of pairs
(A,(p, v)) where A ∈ HB and (p, v) ∈ KT \ {⊥} (we omit those atoms whose
interpretation is the truth value ⊥).
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4 Syntax and Semantics for the New Similarity Constructions

Now that we have introduced the basics of our formal semantics we introduce the syntax
and semantics of the similarity constructions that we propose. Since this constructions
must live with some others that were previously defined in the framework, we first
include a brief revision of them and refer to the contributions [17,18] for more details.

The syntactical constructions defined in [18] are basically eight. One of them serves
to map the contents of a database into concepts that we can use in our programs, three
of them act as tail of the remaining four (and modify slightly the meaning of these four
when they are used) and the last four are for defining fuzzy characteristics from the
non-fuzzy data stored in the database. Due to lack of space we only include the syntax
and semantics of the first one, the common part of the semantics of the last four and
how the three tails affect the meaning (or semantics) of those four.

The construction used to map the contents of a database into concepts that we can
use in our programs is shown in eq. 4. We provide an example in eq. 5 to clarify, in
which the restaurant vdbt has four columns: the first for the unique identifier given
to each restaurant (its name), the second for the distance to the city center from that
restaurant, the third for the restaurant’s price average and the last one for the food type
served there.

de f ine database(pT/pA, [(pN, pT ′)]) (4)

de f ine database( restaurant/5, (id, string type),

(distance to the city center, integer type),

(price average, integer type), ( f ood type, enum type)]). (5)

The three tails’ constructions that serve to slightly modify the meaning of the remain-
ing four are shown in eqs. 6, 7, 8. If they appear the programmer wants, respectively,
(eq. 6) to limit the set of elements in our database for which he wants to use the fuzzy
clause or rule or (eq. 7) to define a personalized rule, one that only applies when the
name of the user logged in and the user name in the rule are the same one or (eq. 8) to
(re)define the credibility of the construction in which it appears as tail, and the operator
used to compute the resultant truth value. The changes produced in the semantics of any
clause with the form of one of the four constructions when any of this three construc-
tions (or a combination of them) appears as tail of the first ones is summarized in the
table in Fig. 3.

The four remaining constructions are used to define fuzzy characteristics of the el-
ements in our database from the data stored in the database. All of them get their se-
mantics by translating the syntax proposed into the syntax of eq. 2. The only difference
between them is the values given to the variables appearing in that construction, which
are f PredName(Individual)7 for A and the values shown in the table in Fig. 2 for the
variables p, v, &i, @ j (B1, . . . ,Bn) and COND.

7 f PredName is the name of the fuzzy predicate we are defining and individual is a variable
for introducing the element of the database to which we want to obtain the fuzzy value or a
variable in case we want to obtain the results for all the individuals in our database (by using
Prolog’s backtracking).
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i f ( pN(pT ) comp value). (6)

only f or user ′UserName′ (7)

with credibility(credOp, credVal) (8)

construction p v &i @ j (B1, . . . ,Bn) COND
fuzzy value 0.8 1 product TV true
fuzzification 0.6 1 product pN(Individual) ∗ (valIn 1 < pN(Individual)

function (valOut 2−valOut 1)
(valIn 2−valIn 1) ≤ valIn 2)

fuzzy rule 0.4 1 product @ j (B1, . . . ,Bn) true
default 0 1 product TV true
fuzzy value

Fig. 2. Summary of the values given to the variables p, v, &i, @ j (B1, . . . ,Bn) and COND

tail p v &i COND
construction
eq. 6 p+0.05 v &i COND ∧ ( pN(Individual) comp value )

eq. 7 p+0.1 v &i COND ∧
currentUser(Me) ∧ Me = ′UserName′

eq. 8 p credVal credOp COND

Fig. 3. Changes in the values given to the variables p, v, &i and COND when the tails’ con-
structions in eqs. 6, 7, 8 are used

The syntactical constructions we propose for modelling similarity are shown in
eqs. 9 and 13. The necessity for two constructions is justified by the existence of two
kinds of similarity: between attributes (eq. 9) and between fuzzy predicates (eq. 13). Il-
lustrative examples are “the food type mediterranean is 0.7 similar to the spanish food”8

(eq. 10) or “unexpensive is similar to (or a synonym of) cheap” (eq. 14). In the syntax
shown pT is the name of the virtual database table9 (vdbt), pN is the name assigned to
a column of the vdbt named pT , V1 and V2 are possible values for the column pN of
the vdbt named pT (column that must be of type enum type) and TV is a truth value (a
float number between 0 and 1).

The semantics of the constructions are presented in eqs. 11 and 15 and the ones for
the examples in eqs. 12 and 16. In eqs. 11 and 15 the values for the variables p, v, &i,
@ j (B1, . . . ,Bn) and COND are the ones in the table in Fig. 4. The syntactical structures
for similarity can be followed by the tails’ constructions in eqs. 6, 7, 8 and, when this
occurs, their semantics change as the semantics of the other syntactical constructions
(see the table in Fig. 3).

8 Be careful, we are not saying that the spanish food is 0.7 similar to the mediterranean one. You
need to add another clause with that information if you wanna say that too.

9 In [18] the authors use the “virtual database table” concept to highlight that the structure of the
database used in programs can be different to the real structure of the database.
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construction p v &i @ j (B1, . . . ,Bn) COND
similarity between 0.8 1 product TV true
attributes
similarity between 0 1 product f PredName2(Individual) true
fuzzy predicates

Fig. 4. Summary of the values given to the variables p, v, &i and COND for similarity

similarity between(pT, pN(V1), pN(V2), TV ) (9)

similarity between(restaurant,

f ood type(mediterranean), f ood type(spanish), 0.7) (10)

similarity(pT (pN(V 1,V2)))
(p, v), &i←−−−−− TV if COND (11)

similarity(restaurant( f ood type(mediterranean,spanish)))
(0.8, 1), prod←−−−−−−−− 0.7 if true

(12)

f PredName(pT ) :∼ synonym o f ( f PredName2(pT ), credOp, credVal) (13)

unexpensive(restaurant) : synonym o f (cheap(restaurant), prod, 1). (14)

f PredName(Individual)
(p, v), &i←−−−−− f PredName2(Individual) if COND (15)

unexpensive(Individual)
(0, 1), prod←−−−−−−− cheap(Individual) if true (16)

The introduction of this new syntactical constructions needs a little bit of explana-
tion. The first construction, the one in eq. 11, serves to define the similarity between two
attributes. Allowing to define this similarity is not the goal, but only the means to get
in our framework the information needed for answering questions of the form “give me
all the elements in the database whose attribute X is similar to Y”. This allows us, for
example, to define the pink color similar to the red one and get all the pink cars when
asking for cars with a color similar to red. The second construction, the one in eq. 15,
serves to define fuzzy predicates from other fuzzy predicates, when the programmer
considers that the first one is a synonym of the last one. The interest in allowing to do
this is, for example, in having a richer vocabulary without the cost of defining and stor-
ing the definitions of all of the new words. We can, for example, define “unexpensive”
from “cheap”, “wet” from “damp” or “gorgeous” and “handsome” from “beautiful”.
In this way we can answer the query “unexpensive cars” from the definition of “cheap
cars” and the similarity link between “unexpensive” and “cheap” cars.

The inclusion of the last construction forced us to slightly modify the semantics of
the “default fuzzy values” construction. The reason for this is that we want the predi-
cate defined as similar to other one to be modifiable in case of necessity. So, we could
for example define “gorgeous” person and “handsome” person from “beautiful” per-
son, but redefine “gorgeous” to have a value 0 when the person is a man. It is, since
some men (male humans) feel uncomfortable if we say that they are “gorgeous” we
avoid using this qualification for them, but for women it keeps the original meaning
given by “beautiful”. To get this behaviour, we needed the results provided by the sim-
ilarity rule to have the smallest priority value. Due to the fact that the “default fuzzy
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values” construction had the lowest priority value (0), we have modified it to 0.2, so the
construction with the lowest priority is now the similarity construction.

5 Conclusions

We have presented the syntax and semantics of two constructions for representing
similarity relations. Our goal with this constructions is allowing the representation of
real-world similarity relations while modelling the real world using fuzzy logic. The
advantages of doing it are mainly two: (1) reuse the definitions of concepts that are sim-
ilar to the ones we are defining and (2) get the programming language we use a little bit
more close to the human way of thinking. When we say that we get it a little bit closer
to the human way of thinking we mean that the human being tends to group the con-
cepts by using similarity relations, saving just the differences between concepts, and the
similarity constructions allows him/her to code just as his/her mind is “programmed”.
By copying this behaviour we facilitate him/her the process of representing what he
has in his/her mind. It is obvious that we still have a lot of work to do in this line, but
this is one step more for achieving the final goal of transferring the human knowledge
to a machine. Links to a beta version of our implementation and to a web application
that we have developed for testing existing example programs (with the possibility to
upload new ones) is available at our web page.

Our current research focus on deriving similarity relations from the modelization of
a problem in the framework’s language. In this way we could, for example, derive from
the RGB composition of two colors their similarity relation.
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17. Pablos-Ceruelo, V., Muñoz-Hernández, S.: Introducing priorities in rfuzzy: Syntax and se-
mantics. In: CMMSE 2011: Proceedings of the 11th International Conference on Mathemat-
ical Methods in Science and Engineering, Benidorm, Alicante, Spain, vol. 3, pp. 918–929
(June 2011)
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Abstract. Rough approximations, which consist of lower and upper ap-
proximations, are described under objects characterized by possibilistic
information that is expressed by a normal possibility distribution. Con-
cepts of not only possibility but also certainty are used to construct
an indiscernibility relation. First, rough approximations are shown for a
set of discernible objects by using the indiscernibility relation. Next, a
set of objects characterized by possibilistic information is approximated.
Consequently, rough approximations consist of objects with a degree ex-
pressed by an interval value where lower and upper degrees mean the
lower and the upper bounds of the actual degree. This leads to the com-
plementarity property linked with lower and upper approximations in
the case of a set of discernible objects, as is valid under complete infor-
mation. Furthermore, a criterion is introduced to judge whether or not
an object is regarded as supporting rules. By using the criterion, we can
select only objects that are regarded as inducing rules.

Keywords: Rough sets, Incomplete Information, Possibilistic informa-
tion, Indiscernibility relation, Lower and upper approximations.

1 Introduction

Possibilistic information systems consist of objects whose attribute values are de-
scribed by normal possibility distributions. Possibility distributions can be used
to express fuzzy terms [12]. For example, ”about 50” is expressed by the possi-
bility distribution {(47, 0.3), (48, 0.7), (49, 1), (50, 1), (51, 1), (52, 0.7), (53, 0.3)}p
in the sentence ”his age is about 50.” Such a fuzzy term is ubiquitous in natural
languages that we use in daily life. We live in a flood of fuzzy terms. There-
fore, possibilistic information systems are suitable for dealing with information
obtained from our daily life.

The framework of rough sets, proposed by Pawlak [9], is used as an effec-
tive tool for data analysis in various fields such as pattern recognition, machine

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 61–70, 2014.
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learning, data mining, and so on. The rough sets are based on indiscernibility
of objects whose characteristic values are indistinguishable. The fundamental
framework is specified by rough approximations, which consist of lower and up-
per approximations, under indiscernibility relations obtained from information
tables containing only complete information.

The framework requires some extensions to deal with possibilistic information.
S�lowiński and Stefanowski introduce the concept of possible indiscernibility be-
tween objects [11]. Nakata and Sakai express rough approximations by using
possible equivalence classes [6]. The rough approximations coincide with those
obtained from the approach based on possible worlds. Couso and Dubois express
rough approximations by using the degree of possibility that objects belong to
the same equivalence class under indiscernibility relations [1]. These approaches
consider only the possibility that objects are indistinguishable. Therefore, the
rough approximations obtained from the approaches are possible ones. As a re-
sult, the complementarity property linked with lower and upper approximations
does not hold, although it is valid under complete information.

In the field of databases dealing with information that is not complete, it
is well-known that the actual answer to a query cannot be obtained in query
processing. Two types of sets, which mean certain and possible answers, are
obtained [3,4]. The certain answer is included in the actual answer while the
possible answer contains the actual answer. Similarly, results of query process-
ing in possibilistic databases show that an object has two degrees to which it
certainly and possibly satisfies given conditions [10]. Recently Nakata and Sakai
have examined rough approximations by using possible equivalence classes in the
case of information tables containing missing values [8]. Their work shows that
rough approximations are not unique, but consist of lower and upper bounds,
called certain and possible rough approximations. Therefore, from the viewpoint
of not only possibility but also certainty rough sets should be examined for
information tables containing possibilistic information.

In this paper, we formulate rough approximations from the viewpoint of
certainty and possibility to deal with possibilistic information that includes
partly-known values and missing values as special cases. We extend rough ap-
proximations by directly using an indiscernibility relation, as is shown in fuzzy
rough sets [2], although our previous work is based on possible equivalence classes
obtained from the indiscernibility relation [6,7]. This is because the number of
possible equivalence classes exponentially increases as the number of values that
are not complete increases.

The paper is organized as follows. In section 2, an approach based on rough
sets is briefly addressed under complete information. In section 3, we develop an
approach based on indiscernibility relations under possibilistic information from
the viewpoint of certainty and possibility. In section 4, conclusions are addressed.

2 Rough Sets in Complete Information Systems

A data set is represented as a table, called an information table, where each
row and each column represent an object and an attribute, respectively. A
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mathematical model of an information table with complete information is called
a complete information system. The complete information system is a triplet
expressed by (U,AT, {D(ai) | ai ∈ AT }). U is a non-empty finite set of ob-
jects called the universe, AT is a non-empty finite set of attributes such that
ai : U → D(ai) for every ai ∈ AT where D(ai) is the domain of attribute ai.
Binary relation Rai for indiscernibility of objects on attribute ai ∈ AT , which
called the indiscernibility relation for ai, is:

Rai = {(o, o′) ∈ U × U | ai(o) = ai(o
′)}, (1)

where ai(o) is the value for attribute ai of object o. From the indiscernibility
relation, equivalence class [o]ai for object o is obtained:

[o]ai = {o′ | (o, o′) ∈ Rai}. (2)

Finally, family Eai
1 of equivalence classes on ai is:

Eai = {[o]ai | o ∈ U}. (3)

Using the family of equivalence classes on ai, lower approximation apr
ai
(O)

and upper approximation aprai
(O) of set O of indiscernible objects are:

apr
ai
(O) = {o | [o]ai ∈ Eai ∧ ∀o′∈[o]ai

o′ ∈ O}, (4)

aprai
(O) = {o | [o]ai ∈ Eai ∧ ∃o′∈[o]ai

o′ ∈ O}. (5)

Lower and upper approximations are not independent, but are linked with each
other. The relationship between lower and upper approximations, called com-
plementarity property, is:

apr
ai
(O) = U − aprai

(U −O). (6)

When objects are characterized by values for a set of attributes, a set of
objects being approximated is partitioned by equivalence classes on the set of
attributes. Thus, to approximate a set of objects is to approximate the family
of equivalence classes that is derived from the set. Let Eaj (O) be the family
of equivalence classes derived from O on attribute aj . Lower approximation
apr

ai
(O/aj) and upper approximation aprai

(O/aj) of set O of objects that are

characterized by values for aj are obtained on ai:

apr
ai
(O/aj) = {o | o ∈ apr

ai
(O′) ∧ O′ ∈ Eaj (O)}, (7)

aprai
(O/aj) = {o | o ∈ aprai

(O′) ∧ O′ ∈ Eaj (O)}. (8)

For formulae on sets A and B of attributes whose individual attributes are
denoted by ai and aj ,

RA = ∩ai∈ARai , (9)

1 Eai is formally Eai(U). (U) is usually omitted.
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[o]A = {o′ | (o, o′) ∈ RA} = ∩ai∈A[o]ai , (10)

EA = {[o]A | o ∈ U} = {E | o ∈ U ∧ E = ∩ai∈A[o]ai}, (11)

apr
A
(O) = {o | [o]A ∈ EA ∧ ∀o′∈[o]Ao

′ ∈ O}, (12)

aprA(O) = {o | [o]A ∈ EA ∧ ∃o′∈[o]Ao
′ ∈ O}, (13)

apr
A
(O/aj) = {o | o ∈ apr

A
(O′) ∧ O′ ∈ Eaj (O)}, (14)

aprA(O/aj) = {o | o ∈ aprA(O′) ∧ O′ ∈ Eaj (O)}, (15)

apr
A
(O/B) = ∩aj∈B{o | o ∈ apr

A
(O/aj)}, (16)

aprA(O/B) = ∩aj∈B{o | o ∈ AprA(O/aj)}. (17)

3 Rough Sets in Possibilistic Information Systems

In possibilistic information systems, ai : U → πai for every ai ∈ AT where πai is
the set of all normal possibility distributions over domain D(ai) of attribute ai.
When value ai(o) for attribute ai of object o is expressed by a normal possibility
distribution {(v, πai(o)(v)) | v ∈ D(ai) ∧ πai(o)(v) > 0}p, πai(o)(v) denotes the
possibilistic degree that ai(o) has value v ∈ D(ai) for attribute ai.

Indiscernibility relations in a possibilistic information system are expressed
by using indiscernibility degrees. An indiscernibility degree of two objects is
expressed by not a single value, but two values that means degrees for certainty
and possibility. This point is different from fuzzy rough sets [2]. Indiscernibility
degree μRai

(ok, ol) of two objects ok and ol for attribute ai is expressed by a
pair of degrees CμRai

(ok, ol) and PμRai
(ok, ol) that mean degrees for certainty

and for possibility. They are calculated by:

PμRai
(ok, ol) =

{
1 if k = l,
maxu min(πai(ok)(u), πai(ol)(u)) otherwise,

(18)

CμRai
(ok, ol) =

{
1 if k = l,
1−maxu�=v min(πai(ok)(u), πai(ol)(v)) otherwise.

(19)

The two degrees are reflexive and symmetric, but not max-min transitive.

Example 3.1
Let information table T be obtained as follows:

T
U a1 a2
1 {(x, 1)}p {(c, 1), (d, 0.2)}p
2 {(x, 1), (y, 0.2)}p {(a, 0.9), (b, 1)}p
3 {(y, 1)}p {(b, 1)}p
4 {(y, 1), (z, 1)}p {(b, 1)}p
5 {(x, 0.4), (w, 1)}p {(c, 1), (d, 0.7)}p

In information table T , U = {o1, o2, o3, o4, o5}, where domains D(a1) and D(a2)
of attributes a1 and a2 are {w, x, y, z} and {a, b, c, d}, respectively. Using formula
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(18) and (19), indiscernibility degrees in the indiscernibility relation for a1 in T
are:

μRa1
(ok, ol) = [CμRa1

(ok, ol), PμRa1
(ok, ol)] =⎛⎜⎜⎜⎜⎝

[1, 1] [0.8, 1] [0, 0] [0, 0] [0, 0.4]
[0.8, 1] [1, 1] [0, 0.2] [0, 0.2] [0, 0.4]
[0, 0] [0, 0.2] [1, 1] [0, 1] [0, 0]
[0, 0] [0, 0.2] [0, 1] [1, 1] [0, 0]
[0, 0.4] [0, 0.4] [0, 0] [0, 0] [1, 1]

⎞⎟⎟⎟⎟⎠
We cannot obtain the actual membership degree to which an object belongs

to rough approximations, because the information that characterizes objects is
not complete and is expressed by possibility distributions. This is different from
fuzzy rough sets [2]. We obtain lower and upper bounds of the actual membership
degree, called certain and possible membership degrees.

LetO be a set of discernible objects. Possible membership degree Pμapr
ai

(O)(o)

to which object o possibly belongs to lower approximation apr
ai
(O) is:

Pμapr
ai

(O)(o) = min
o′∈U

max(1 − CμRai
(o, o′), μO(o

′)), (20)

where μO(o
′) = 1 if o′ ∈ O, 0 otherwise.

Certain membership degree Cμapr
ai

(O)(o) to which object o certainly belongs

to lower approximation apr
ai
(O) is:

Cμapr
ai

(O)(o) = min
o′∈U

max(1− PμRai
(o, o′), μO(o

′)). (21)

Proposition 3.1
∀o ∈ U Cμapr

ai
(O)(o) ≤ Pμapr

ai
(O)(o).

Similarly, possible membership degree Pμaprai
(O)(o) to which object o possi-

bly belongs to upper approximation aprai
(O) is:

Pμaprai
(O)(o) = max

o′∈U
min(PμRai

(o, o′), μO(o
′)). (22)

Certain membership degree Cμaprai
(O)(o) to which object o certainly belongs

to upper approximation aprai
(O) is:

Cμaprai
(O)(o) = max

o′∈U
min(CμRai

(o, o′), μO(o
′)). (23)

Proposition 3.2
∀o ∈ U Cμaprai

(O)(o) ≤ Pμaprai
(O)(o).
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Proposition 3.3
∀o ∈ U Cμapr

ai
(O)(o) ≤ Cμaprai

(O)(o) and ∀o ∈ U Pμapr
ai

(O)(o) ≤ Pμaprai
(O)(o).

Proposition 3.4
∀o ∈ U Cμapr

ai
(O)(o) ≤ Pμapr

ai
(O)(o) ≤ Cμaprai

(O)(o) ≤ Pμaprai
(O)(o).

Four membership degrees are linked with each other.

Proposition 3.5
Pμapr

ai
(O)(o) = 1−Cμaprai

(U−O)(o) and Cμapr
ai

(O)(o) = 1−Pμaprai
(U−O)(o).

Each object has degrees of membership for these four approximations denoted
by formulae (20) - (23). Using these degrees, rough approximations are expressed
as follows:

apr
ai
(O) = {(o, [Cμapr

ai
(O)(o), Pμapr

ai
(O)(o)]) | Pμapr

ai
(O)(o) > 0}, (24)

aprai
(O) = {(o, [Cμaprai

(O)(o), Pμaprai
(O)(o)]) | Pμaprai

(O)(o) > 0}. (25)

These formulae show that each object has membership degrees expressed by
not a single, but an interval value for lower and upper approximations, which
is essential in possibilistic information systems. Degrees of imprecision for the
membership degrees of o are evaluated by Pμapr

ai
(O)(o) − Cμapr

ai
(O)(o) and

Pμaprai
(O)(o) − Cμapra(O)(o) in apr

ai
(O) and aprai

(O), respectively. The two

approximations depend on each other; namely, the comprementarity property
linked with lower and upper approximations holds, as is so in complete informa-
tion systems.

Proposition 3.6

apr
ai
(O) = U − aprai

(U −O),

where
1− [Cμaprai

(U−O)(o), Pμaprai
(U−O)(o)] = [1−Pμaprai

(U−O)(o), 1−Cμaprai
(U−O)(o)].

Example 3.2
Let us go back to Example 3.1. Let a set O of discernible objects be {o2, o3, o4}.
Using formulae (20)-(23), for object o1,

Cμapr
a1

(O)(o1) = 0, Pμapr
a1

(O)(o1) = 0,Cμapra1
(O)(o1) = 0.8, Pμapra1

(O)(o1) = 1.

Similarly, calculating membership degrees for the other objects,

apr
a1
(O) = {(o2, [0, 0.2]), (o3, [1, 1]), (o4, [1, 1])},

apra1
(O) = {(o1, [0.8, 1]), (o2, [1, 1]), (o3, [1, 1]), (o4, [1, 1]), (o5, [0, 0.4])}.

Subsequently, we describe the case where a set of objects characterized by
possibilistic information is approximated by objects with complete information.
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Let objects in U have complete information for ai and O be characterized by aj
with possibilistic information. Membership degrees for four approximations are:

Pμapr
ai

(O/aj)(o) = max
o′′∈O

min
o′∈[o]ai

min(PμRaj
(o′, o′′), μO(o

′)), (26)

Cμapr
ai

(O/aj)(o) = max
o′′∈O

min
o′∈[o]ai

min(CμRaj
(o′, o′′), μO(o

′)), (27)

Pμaprai
(O/aj)(o) = max

o′′∈O
max

o′∈[o]ai

min(PμRaj
(o′, o′′), μO(o

′)), (28)

Cμaprai
(O/aj)(o) = max

o′′∈O
max

o′∈[o]ai

min(CμRaj
(o′, o′′), μO(o

′)). (29)

Combining the above two cases, we can obtain membership degrees in the
case where both objects used to approximate and objects approximated are
characterized by attributes with possibilistic information. Possible membership
degree Pμapr

ai
(O/aj)(o) to which object o possibly belongs to lower approxima-

tion apr
ai
(O/aj) is:

Pμapr
ai

(O/aj)(o) = max
o′′∈O

min
o′∈U

max(1 − CμRai
(o, o′),

min(PμRaj
(o′, o′′), μO(o

′))). (30)

Certain membership degree Cμapr
ai

(O/aj)(o) to which object o certainly belongs

to lower approximation apr
ai
(O/aj) is:

Cμapr
ai

(O/aj)(o) = max
o′′∈O

min
o′∈U

max(1− PμRai
(o, o′)

min(CμRaj
(o′, o′′), μO(o

′))). (31)

Proposition 3.7
∀o ∈ U Cμapr

ai
(O/aj)(o) ≤ Pμapr

ai
(O/aj)(o).

Similarly, possible membership degree Pμaprai
(O/aj)(o) to which object o pos-

sibly belongs to upper approximation aprai
(O/aj) is:

Pμaprai
(O/aj)(o) = max

o′′∈O
max
o′∈U

min(PμRai
(o, o′), Pμaj (o

′, o′′), μO(o
′)). (32)

Certain membership degree Cμaprai
(O/aj)(o) to which object o certainly be-

longs to upper approximation aprai
(O/aj) is:

Cμaprai
(O/aj)(o) = max

o′′∈O
max
o′∈U

min(CμRai
(o, o′), Cμaj (o

′, o′′), μO(o
′)). (33)

Proposition 3.8
∀o ∈ U Cμaprai

(O/aj)(o) ≤ Pμaprai
(O/aj)(o).
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Proposition 3.9
∀o ∈ U Cμapr

ai
(O/aj)(o) ≤ Cμaprai

(O/aj)(o) and ∀o ∈ U Pμapr
ai

(O/aj)(o) ≤
Pμaprai

(O/aj)(o).

Proposition 3.10
∀o ∈ U Cμapr

ai
(O/aj)(o) ≤ Pμapr

ai
(O/aj)(o) ≤ Cμaprai

(O/aj)(o) ≤ Pμaprai
(O/aj)(o).

Example 3.3
Let us go back to information table T in Example 3.1. Let O be {o2, o3, o4} that
is characterized by values of attribute a2. Using formulae (30)-(33),

apr
a1
(O/a2) = {(o2, [0, 0.2]), (o3, [0.8, 1]), (o4, [0.8, 1])},

apra1
(O/a2) = {(o1, [0.8, 1]), (o2, [1, 1]), (o3, [1, 1]), (o4, [1, 1]), (o5, [0, 0.4])}.

It is significant to focus on the membership degree that an object has in
lower and upper approximations. From the viewpoint of rule induction, objects
in lower and upper approximations consistently and inconsistently support rules
with degrees, respectively. The degrees are closely related with the membership
degrees that the objects have in the lower and upper approximations.

Object o2 has a low degree denoted by [0, 0.2] for apr
a1
(O/a2) in Example 3.3.

Can an object with such a low degree be regarded as actually supporting rules?
To solve this problem, we introduce a criterion for an object regarded as sup-
porting rules, as is used in possibilistic databases [5]. Now, we obtain certain and
possible membership degrees of an object belonging to lower and upper approxi-
mations. By using them, we can derive membership degrees [¬Cμapr

ai
(O/aj)(o),

¬Pμapr
ai

(O/aj)(o)] and [¬Cμaprai
(O/aj)(o), ¬Pμaprai

(O/aj)(o)] with which the

object does not belong to the lower and upper approximations, where

¬Cμapr
ai

(O/aj)(o) = 1− Pμapr
ai

(O/aj)(o),

¬Pμapr
ai

(O/aj)(o) = 1− Cμapr
ai

(O/aj)(o),

¬Cμaprai
(O/aj)(o) = 1− Pμaprai

(O/aj)(o),

¬Pμaprai
(O/aj)(o) = 1− Cμaprai

(O/aj)(o).

We introduce the following criterion for an object regarded as supporting rules:

The membership degree with which an object belongs to rough approximations
is larger than or equal to that with which the object does not so.

This is expressed for lower and upper approximations as follows:

[Cμapr
ai

(O/aj)(o), Pμapr
ai

(O/aj)(o)] ≥ [¬Cμapr
ai

(O/aj)(o),¬Pμapr
ai

(O/aj)(o)],

[Cμaprai
(O/aj)(o), Pμaprai

(O/aj)(o)] ≥ [¬Cμaprai
(O/aj)(o),¬Pμaprai

(O/aj)(o)].
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From these formulae,

Cμapr
ai

(O/aj)(o) ≥ ¬Cμapr
ai

(O/aj)(o),

Pμapr
ai

(O/aj)(o) ≥ ¬Pμapr
ai

(O/aj)(o),

Cμaprai
(O/aj)(o) ≥ ¬Cμaprai

(O/aj)(o),

Pμaprai
(O/aj)(o) ≥ ¬Pμaprai

(O/aj)(o).

Therefore, the criterions for lower and upper approximations are equivalent to:

Cμapr
ai

(O/aj)(o) + Pμapr
ai

(O/aj)(o) ≥ 1, (34)

Cμaprai
(O/aj)(o) + Pμaprai

(O/aj)(o) ≥ 1. (35)

By using these criterions, we can select only objects that is regarded as support-
ing rules.

Example 3.4
Let us go back to lower and upper approximations in Example 3.3. By using
the criterion (34), objects that are regarded as supporting rules consistently are
o3 with the degree [0.8, 1] and o4 with the degree [0.8, 1]. By using the criterion
(35), objects that are regarded as supproting rules inconsistently are o1 with
[0.8, 1], o2 with [1, 1], o3 with [1, 1], and o4 with [1, 1].

4 Conclusions

We have examined rough approximations in a possibilistic information system.
An attribute value is expressed by a normal possibility distribution in the pos-
sibilistic information system. We deal with possibilistic information under in-
discernibility relations from the viewpoint of certainty and possibility. First,
We have shown rough approximations for the case where only objects used to
approximate are characterized by attributes with possibilistic information. Sec-
ond, we have shown rough approximations in the case where only objects in a
set approximated have possibilistic information. Finally, rough approximations
have been shown the case where both objects used to approximate and objects
approximated are characterized by attributes with possibilistic information.

An object has certain and possible membership degrees to which the object
certainly and possibly belongs to rough approximations. The certain and possi-
ble membership degrees are lower and upper bounds of the actual membership
degrees of the object for rough approximations, respectively. Therefore, with
what degree an object belongs to rough approximations is expressed by not a
single, but an interval value. This is essential in possibilistic information sys-
tems. As a result, the complementarity property linked with lower and upper
approximations holds for a set of discernible objects, as is valid under complete
information.
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Objects whose membership degrees are low for rough approximations appear
in possibilistic information systems. It does not seem that the objects support
rules. We can naturally introduce a criterion for an object regarded as supporting
rules, because we use certain and possible membership degrees of the object for
the rough approximations. By using the criterion, we can select only objects that
are regarded as supporting rules.
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Abstract. L-bonds represent relationships between fuzzy formal con-
texts. We study these intercontextual structures w.r.t. antitone Galois
connections in fuzzy setting. Furthermore, we define direct �-product and
�-product of two formal fuzzy contexts and show conditions under which
a fuzzy bond can be obtained as an intent of the product. This extents
our previous work on isotone fuzzy bonds.

1 Introduction

Formal Concept Analysis (FCA) [10] is an exploratory method of analysis of
relational data. The method identifies some interesting clusters (formal concepts)
in a collection of objects and their attributes (formal context) and organizes them
into a structure called concept lattice. Formal Concept Analysis in fuzzy setting
[3] allows us to work with graded data.

In the present paper, we deal with intercontextual relationships in FCA in
fuzzy setting. Particularly, our approach originated in relation to [16] on the
notion of Chu correspondences between formal contexts, which led to obtaining
information about the structure of L-bonds. In [15] we studied properties of
L-bonds w.r.t. isotone concept-forming operators.

The present paper concerns with L-bonds with antitone character; We de-
scribe their properties and explain how these L-bonds relate to the structures
studied in [16]. In addition, we also focus on the direct products of two formal
fuzzy contexts and show conditions under which a bond can be obtained as an
intent of the product.

The paper is structured as follows: in Section 2 we recollect some notions
used in this paper; in Section 3 we define the L-bonds and direct products,
and describe their properties. Our conclusions and related further research are
summarized in Section 4.

2 Preliminaries

In this section, we recall some basic notions used in the paper.
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by the European Social Fund and the state budget of the Czech Republic.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 71–80, 2014.
c© Springer International Publishing Switzerland 2014
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2.1 Residuated Lattices and Fuzzy Sets

We use complete residuated lattices as basic structures of truth-degrees. A com-
plete residuated lattice [3,12,21] is a structure L � �L,�,�,�,�, 0, 1� such
that

(i) �L,�,�, 0, 1� is a complete lattice, i.e. a partially ordered set in which arbi-
trary infima and suprema exist;

(ii) �L,�, 1� is a commutative monoid, i.e. � is a binary operation which is
commutative, associative, and a� 1 � a for each a 	 L;

(iii) � and � satisfy adjointness, i.e. a� b 
 c iff a 
 b� c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted
by 
. Throughout this paper, L denotes an arbitrary complete residuated lattice.

Elements a of L are called truth degrees. Operations � (multiplication) and
� (residuum) play the role of a (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a 	 L as

�a � a� 0. (1)

L-sets and L-relations An L-set (or fuzzy set) A in a universe setX is a mapping
assigning to each x 	 X some truth degree A�x 	 L. The set of all L-sets in a
universe X is denoted LX , or LX if the structure of L is to be emphasized.

The operations with L-sets are defined componentwise. For instance, the in-
tersection of L-sets A,B 	 LX is an L-set A �B in X such that �A � B�x �
A�x�B�x for each x 	 X , etc. An L-set A 	 LX is also denoted �A�x��x � x 	 X�.
If for all y 	 X distinct from x1, x2, . . . , xn we have A�y � 0, we also write

�A�x1��x1,
A�x2��x1, . . . ,

A�xn��xn�.

An L-set A 	 LX is called crisp ifA�x 	 �0, 1� for each x 	 X . Crisp L-sets can
be identified with ordinary sets. For a crisp A, we also write x 	 A for A�x � 1
and x � A for A�x � 0. An L-set A 	 LX is called empty (denoted by �) if
A�x � 0 for each x 	 X . For a 	 L and A 	 LX , the L-sets a�A, a� A,A � a,
and �A in X are defined by

�a�A�x � a�A�x, (2)

�a � A�x � a� A�x, (3)

�A � a�x � A�x � a, (4)

�A�x � A�x � 0. (5)

An a-complement is an L-set A which satisfies �A� a � a � A.
Binary L-relations (binary fuzzy relations) between X and Y can be thought

of as L-sets in the universe X � Y . That is, a binary L-relation I 	 LX�Y

between a set X and a set Y is a mapping assigning to each x 	 X and each
y 	 Y a truth degree I�x, y 	 L (a degree to which x and y are related by I).

V � LX is called an L-closure system if
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– V is closed under left �-multiplication (or �-shift), i.e. for every a 	 L and
C 	 V we have a� C 	 V ,

– V is closed under intersection, i.e. for Cj 	 V (j 	 J) we have
�

j�J Cj 	 V .

V � LX is called an L-interior system if

– V is closed under left �-multiplication, i.e. for every a 	 L and C 	 V we
have a� C 	 V ,

– V is closed under union, i.e. for Cj 	 V (j 	 J) we have
�

j�J Cj 	 V .

Relational products We use three relational product operators, �, �, and �, and
consider the corresponding products R � S � T , R � S � T , and R � S � T (for
R 	 LX�Z , S 	 LX�Y , T 	 LY�Z). In the compositions, R�x, z is interpreted
as the degree to which the object x has the attribute z; S�x, y as the degree
to which the factor y applies to the object x; T �y, z as the degree to which
the attribute z is a manifestation (one of possibly several manifestations) of the
factor y. The composition operators are defined by

�S � T �x, z �
�

y�Y

S�x, y � T �y, z, (6)

�S � T �x, z �
�

y�Y

S�x, y � T �y, z, (7)

�S � T �x, z �
�

y�Y

T �y, z � S�x, y. (8)

Note that these operators were extensively studied by Bandler and Kohout,
see e.g. [13]. They have natural verbal descriptions. For instance, �S �T �x, z is
the truth degree of the proposition “there is factor y such that y applies to object
x and attribute z is a manifestation of y”; �S �T �x, z is the truth degree of “for
every factor y, if y applies to object x then attribute z is a manifestation of y”.
Note also that for L � �0, 1�, S � T coincides with the well-known composition
of binary relations.

We will need following lemma.

Lemma 1 ([3]). For R 	 LW�X , S 	 LX�Y , T 	 LY�Z we have

R � �S � T  � �R � S � T and R � �S � T  � �R � S � T.

2.2 Formal Concept Analysis in the Fuzzy Setting

An L-context is a triplet �X,Y, I� where X and Y are (ordinary) sets and I 	
LX�Y is an L-relation between X and Y . Elements of X are called objects,
elements of Y are called attributes, I is called an incidence relation. I�x, y �
a is read: “The object x has the attribute y to degree a.” An L-context is
usually depicted as a table whose rows correspond to objects and whose columns
correspond to attributes; entries of the table contain the degrees I�x, y.



74 J. Konecny

Concept-forming operators induced by an L-context �X,Y, I� are the following
operators: First, the pair ��, �� of operators � : LX � LY and � : LY � LX is
defined by

A��y �
�

x�X

A�x � I�x, y, B��x �
�

y�Y

B�y � I�x, y. (9)

Second, the pair ��, �� of operators � : LX � LY and � : LY � LX is defined by

A��y �
�

x�X

A�x � I�x, y, B��x �
�

y�Y

I�x, y � B�y, (10)

Third, the pair ��, �� of operators � : LX � LY and � : LY � LX is defined by

A��y �
�

x�X

I�x, y � A�x, B��x �
�

y�Y

B�y � I�x, y, (11)

for A 	 LX , B 	 LY . When we need to emphasize that a pair of concept-forming
operators is induced by a particular L-relation we write it as a subscript, for
instance we write �I instead of just �.

Furthermore, denote the corresponding sets of fixed points by B���X,Y, I,
B���X,Y, I, and B���X,Y, I, i.e.

B���X,Y, I � ��A,B� 	 LX � LY � A� � B, B� � A�,

B���X,Y, I � ��A,B� 	 LX � LY � A� � B, B� � A�,

B���X,Y, I � ��A,B� 	 LX � LY � A� � B, B� � A�.

The sets of fixpoints are complete lattices [1,11,20], called L-concept lattices
associated to I, and their elements are called formal concepts.

For a concept lattice B���X,Y, I, where B�� is either of B��, B��, or B��,
denote the corresponding sets of extents and intents by Ext���X,Y, I and
Int���X,Y, I. That is,

Ext���X,Y, I � �A 	 LX � �A,B� 	 B���X,Y, I for some B�,

Int���X,Y, I � �B 	 LY � �A,B� 	 B���X,Y, I for some A�.

The operators induced by an L-context and their sets of fixpoints have been
extensively studied, see e.g. [1,2,4,11,20].

3 L-bonds

This section introduces antitone L-bonds, namely a-bonds and c-bonds, and
describes their properties.

Definition 1. (a) An a-bond from L-context K1 � �X1, Y1, I1� to L-context
K2 � �X2, Y2, I2� is an L-relation β 	 LX1�Y2 s.t.

Ext���X1, Y2, β � Ext���X1, Y1, I1 and Int���X1, Y2, β � Int���X2, Y2, I2.
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(b) A c-bond from L-context K1 � �X1, Y1, I1� to L-context K2 � �X2, Y2, I2�
is an L-relation β 	 LX1�Y2 s.t.

Ext���X1, Y2, β � Ext���X1, Y1, I1 and Int���X1, Y2, β � Int���X2, Y2, I2.

Remark 1. 1) The terms—a-bond and c-bond—were chosen to match with no-
tions of a-morphism and c-morphism [7,14,9]. We show in Theorem 2 that the
a-bonds and c-bonds are in one-to-one correspondence of a-morphisms and c-
morphisms, respectively, on sets of intents of associated concept lattices.

2) Note that all considered sets of extents and intents in Definition 1 are
L-closure systems. From this point of view, the condition of subsethood is nat-
ural.

Theorem 1. (a) β 	 LX1�Y2 is an a-bond between K1 � �X1, Y1, I1� and K2 �
�X2, Y2, I2� iff there exist L-relations Si 	 LY1�Y2 and Se 	 LX1�X2 , such
that

β � I1 � Si � Se � I2. (12)

(b) β 	 LX1�Y2 is a c-bond between K1 � �X1, Y1, I1� and K2 � �X2, Y2, I2� iff
there exist L-relations Si 	 LY1�Y2 and Se 	 LX1�X2 , such that

β � I1 � Si � Se � I2. (13)

Proof. Follows from results in [9]. ��

3.1 Morphisms

This section explains correspondence of L-bonds with morphisms of L-interior/L-
closure spaces. First, we recall notions of c-morphisms and a-morphisms. These
morphisms were previously studied in [7,9,14].

Definition 2. (a) A mapping h : V � W from an L-interior system V � LX

into an L-closure system W � LY is called an a-morphism if

– h�a� C � a� h�C for each a 	 L and C 	 V ;
– h�
�

k�K Ck �
�

k�K h�Ck for every collection of Ck 	 V .

An a-morphism h : V � W is called an extendable a-morphism if h can be
extended to an a-morphism of LX to LY , i.e. if there exists an a-morphism
h� : LX � LY such that for every C 	 V we have h��C � h�C.

(b) A mapping h : V � W from an L-closure system V � LX into an L-
closure system W � LY is called a c-morphism if it is a �- and

�
-morphism

and it preserves a-complements, i.e. if

– h�a� C � a� h�C for each a 	 L and C 	 V ;
– h�
�

k�K Ck �
�

k�K h�Ck for every collection of Ck 	 V (k 	 K);
– if C is an a-complement then h�C is an a-complement.
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A c-morphism h : V � W is called an extendable c-morphism if h can be
extended to a c-morphism of LX to LY , i.e. if there exists a c-morphism h� :
LX � LY such that for every C 	 V we have h��C � h�C.

In this paper we consider only extendable {a,c}-morphims.

Theorem 2. (a) The a-bonds between K1 � �X1, Y1, I1� and K2 � �X2, Y2, I2�
are in one-to-one correspondence with

– a-morphisms from Int���X1, Y1, I1 to Int���X2, Y2, I2;
– c-morphisms from Ext���X2, Y2, I2 to Ext���X1, Y1, I1.

(b) The c-bonds between K1 � �X1, Y1, I1� and K2 � �X2, Y2, I2� are in one-
to-one correspondence with

– c-morphisms from Int���X1, Y1, I1 to Int���X2, Y2, I2;
– a-morphisms from Ext���X2, Y2, I2 to Ext���X1, Y1, I1.

Proof. Follows from Theorem 1 and results in [9,14].

Theorem 3. (a) The system of all a-bonds is an L-closure system.
(b) The system of all c-bonds is an L-closure system.

Proof. (a) Consider a collection of a-bonds βi. By Theorem 1 the βis are in the
form βi � I1 � Si � Se � I2. We have

�

j�J

βj �
�

j�J

�I1 � Sij � I1 � �
�

j�J

Sij

�
�

j�J

�Sej � I2 � �
�

j�J

Sej � I2;

a� β � a� �I1 � Si � I1 � �a � Si

� a� �Se � I2 � �a� Se � I2.

Thus,
�

j�J βj and a� β are a-bonds. Proof of (b) is similar. ��

3.2 Direct Products

In this part, we focus on direct products of L-contexts related to a-bonds and
c-bonds.

Definition 3. Let K1 � �X1, Y1, I1�,K2 � �X2, Y2, I2� be L-contexts.

(a) A direct �-product of K1 and K2 is defined as the L-context K1�K2 �
�X2 � Y1, X1 � Y2, Δ� with Δ��x2, y1�, �x1, y2� � I1�x1, y1 � I2�x2, y2
for all x1 	 X1, x2 	 X2, y1 	 Y1, y2 	 Y2.

(b) A direct �-product of K1 and K2 is defined as the L-context K1�K2 �
�X2 � Y1, X1 � Y2, Δ� with Δ��x2, y1�, �x1, y2� � I2�x2, y2 � I1�x1, y1
for all x1 	 X1, x2 	 X2, y1 	 Y1, y2 	 Y2.
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The following theorem shows that K1�K2 (resp. K1�K2) induces a-bonds
(resp. c-bonds) as its intents.

Theorem 4. (a) The intents of K1�K2 w.r.t ��, �� are a-bonds from K1 to K2,
i.e for each φ 	 LX2�Y1 , φ� is an a-bond from K1 to K2.

(b) The intents of K1�K2 w.r.t ��, �� are c-bonds from K1 to K2, i.e for each
φ 	 LX2�Y1 , φ� is a c-bond from K1 to K2.

Proof. (a) For φ 	 LX2�Y1 we have

φ��x1, y2 �
�

�x2,y1	�X2�Y1

φ�x2, y1 � Δ��x2, y1�, �x1, y2�

�
�

x2�X2

�

y1�Y1

φ�x2, y1 � �I1�x1, y1 � I2�x2, y2

�
�

x2�X2

�

y1�Y1

�I1�x1, y1 � �φ�x2, y1 � I2�x2, y2

�
�

y1�Y1

�I1�x1, y1 �
�

x2�X2

�φ�x2, y1 � I2�x2, y2

�
�

y1�Y1

�I1�x1, y1 �
�

x2�X2

�φT�y1, x2 � I2�x2, y2

�
�

y1�Y1

I1�x1, y1 � �φT
� I2�y1, y2

� �I1 � �φ
T
� I2�x1, y2

� ��I1 � φ
T � I2�x1, y2.

Thus φ� is an a-bond by Theorem 1. Proof of (b) is similar. ��

Not all a-bonds are intents of the direct product as the following examples
shows.

Example 1. Consider L-context K � ��x�, �y�, �0.5��x, y��� with L being the
three-element �Lukasiewicz chain. Obviously, �0.5��x, y�� is an a-bond from K to
K. We have K�K � ���x, y��, ��x, y��, ��x, y�, �x, y���. The only intent of K�K
is ��x, y��; thus the a-bond �0.5��x, y�� is not among its intents.

Example 2. Consider following L-context with L being three-element �Lukasiewicz
chain.

K1 �
0 0 0 1

2
1 0 1

2
1
2

K2 �
0 1 1
1 1 1
1
2

1
2 1

.

There are 11 a-bonds from K1 to K2, but K1�K2 has only 9 concepts; see
Figure 1.

Since the definition of direct �-product and direct �-product differ only in the
direction of residuum, we can make the following corollary.
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1 1 1
1 1 1

1 1 1
1
2
1 1

1 1 1
0 1 1

1
2
1 1

1
2
1 1

1 1 1
1
2

1
2
1

1
2
1 1

0 1 1
1 1 1
0 1

2
1

1
2
1 1

1
2

1
2
1

1
2
1 1

0 1
2
1

1
2

1
2
1

1
2

1
2
1

1
2

1
2
1

0 1
2
1

Fig. 1. System of a-bonds between K1 and K2 from Example 2. Boxed a-bonds are
those which are not intents of K1�K2.

Corollary 1. (a) The extents of the direct �-product of �X1, Y1, I1� and
�X2, Y2, I2� are a-bonds from �X2, Y2, I2� to �X1, Y1, I1�.

(b) The extents of the direct �-product of �X1, Y1, I1� and �X2, Y2, I2� are c-bonds
from �X2, Y2, I2� to �X1, Y1, I1�.

3.3 Strong Antitone L-bonds

As classical bonds connect contexts with antitone Galois connections, we also
consider L-bonds from �X1, Y1, I1� to �X2, Y2, I2� defined as L-relations J 	
LX1�Y2 such that

Ext���X1, Y2, J � Ext���X1, Y1, I1 and Int���X1, Y2, J � Int���X2, Y2, I2.
(14)

In what follows, we call the L-relations defined by (14) strong antitone L-bonds.

Using the double negation law. If the double negation law holds true in L, each
pair of concept-forming operators (9)–(11) is definable by any of other two. As
a consequence, we have

B���X,Y, I and B���X,Y,�I are isomorphic as lattices (15)

with �A,B� �� �A,�B� being an isomorphism. In addition, we have

Ext���X,Y,�I � Ext���X,Y, I and, dually, Int���X,Y,�I � Int���X,Y, I.
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Theorem 5. Let the double negation law hold true in L. the strong antitone
L-bonds from �X1, Y1, I1� to �X2, Y2, I2� are exactly a-bonds from �X1, Y1,�I1�
to �X2, Y2, I2�; and c-bonds from �X1, Y1, I1� to �X2, Y2,�I2�.

Note that the incidence relation Δ in direct product K1�K2 then becomes

Δ��x2, y1�, �x1, y2� � �I1�x1, y1 � I2�x2, y2;

that is in agreement with results in [16]. Similarly, the incidence relation Δ in
direct product K1�K2 becomes

Δ��x2, y1�, �x1, y2� � I1�x1, y1 � �I2�x2, y2.

Using an alternative notion of complement. The mutual reducibility of concept-
forming operators (9)–(11) does not hold generally. In [8], we proposed a new no-
tion of complement of L-relation to overcome that. Using this notion we showed
that each for each I 	 LX�Y , one can define �I 	 LX��Y�L� as

�I�x, �y, a� � I�x, y � a,

and obtain
Ext���X,Y � L,�I � Ext���X,Y, I

and, similarly,

Int���X,Y � L,�I � Int���X � L, Y, ��ITT
Unfortunately, the opposite direction holds true only for those L-contexts

�X,Y, I� whose set Ext���X,Y, I (resp. Int���X,Y, I) is a c-closure system [7];
i.e. an L-closure system generated by a system of all a-complements of some
T � LX .

Theorem 6. If Ext���X1, Y1, I1 is a c-closure system, the strong antitone L-
bonds from �X1, Y1, I1� to �X2, Y2, I2� are exactly a-bonds from �X1, Y1 � L,�I1�
to �X2, Y2, I2�. If Int

���X2, Y2, I2 is a c-closure system, the antitone L-bonds
from �X1, Y1, I1� to �X2, Y2, I2� are exactly c-bonds from �X1, Y1, I1� to
�X2 � L, Y2, ��IT2 T�.

We omit further details due to the lack of space.

4 Conclusions and Further Research

We studied bonds between fuzzy contexts related to mutually different types of
concept-forming operators and their relationship to antitone fuzzy bonds.

Our future research includes:

– Covering the L-bonds described above and isotone L-bonds in [15] by a
general framework. The isotone and antitone concept-forming operators are
one type of operators in [6,5]; also in [18].

– Generalizing the described theory to bond L-contexts which each use differ-
ent residuated lattice as the structure of truth-degrees. Results described in
[17] seem to be promising for this goal.
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Abstract. Fuzzy relation equations arise as a mechanism to solve prob-
lems in several frameworks, such as in fuzzy logic. Moreover, the solv-
ability of these equations has been related to fuzzy property-oriented
concept lattices.

This paper studies a procedure to obtain the minimal solutions of
fuzzy relation equations R ◦ X = T , with an isotone binary operation
associated with a (left or right) residuated implication on the unit inter-
val. From this study several results, based on the covering problem, are
introduced generalizing other ones given in the literature.

Keywords: Fuzzy relation equations, minimal solutions, residual struc-
tures.

1 Introduction

E. Sanchez [18] introduced fuzzy relation equations in the seventies, in order to
investigate theoretical and applicational aspects of fuzzy set theory [7]. Several
generalizations of the original equations have been introduced, such as [2,4,10].
These and other many papers study the existence of solutions of these equa-
tions [1,3,6,17,20], and, in the affirmative case, they prove that the greatest
solution is R⇒ T , where ⇒ is the residuated implication of ◦.

The solvability of these equations has recently been related to a particular
fuzzy property-oriented concept lattice [10,11] and they have been used in [8,9]
to solve several problems arisen in fuzzy logic programming [15].

Find out minimal solutions is the next step, since the existence of these solu-
tions offer important properties of the considered fuzzy relation equation, such
as, the complete set of solutions of the fuzzy relation equation can be built. Dif-
ferent papers study how these solutions can be obtained, such as in [5,13,19,21],
but the considered frameworks are very restrictive. This paper is a further study
of the previous ones which consider a more general setting, in which neither
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commutative nor associative operators can be considered, satisfying that they
are inf-preserving mappings on the right argument. This assumption is not very
restrictive as we will explain later. The only restriction needed is the linearity
of the carrier in which the values are considered.

The plan of this paper is the following: a preliminary notions are introduced
in Section 2. Section 3 introduces a mechanism to obtain the minimal solutions
of the general fuzzy relation equations introduced. A detailed example is given
in Section 4 and the paper ends with several conclusions and prospects for future
work.

2 Preliminaries

The operator used to define the fuzzy relation equation is � : [0, 1] × [0, 1] →
[0, 1], such that it is order preserving and there exists → : [0, 1]× [0, 1]→ [0, 1],
satisfying one of the following two adjoint properties with �:

1. x� y ≤ z if and only if y ≤ x→ z
2. x� y ≤ z if and only if x ≤ y → z

for each x, y, z ∈ [0, 1]. From now on, we will assume a pair (�,→) satisfying
Condition 1. A similar theory can be developed with Condition 2.

One important notion, also needed along this paper, is the definition of cov-
ering.

Definition 1. Given an ordered set (A,≤) and subsets S1, . . . , Sn ∈ P(A),
where P(A) is the powerset of A, the element a ∈ A covers {S1, . . . , Sn}, if
for each i ∈ {1, . . . , n}, then there exists si ∈ Si such that si ≤ a.

A cover b ∈ A is called minimal if for any d ∈ A satisfying d < b, then d is
not a cover of {S1, . . . , Sn}.

Note that when (A,≤) is a complete lattice, minimal covers always exist in A.
Given the pair (�,→), a fuzzy relation equation in the environment of this

paper is the equation

R ◦X = T (1)

in which R,X, T are finite fuzzy relations, i.e. the [0, 1]-valued relations R : U ×
V → [0, 1], X : V ×W → [0, 1], T : U ×W → [0, 1] can be expressed by n × k,
k×m and n×m matrices, respectively, with n,m, k ∈ N; and R ◦X is defined,
for each u ∈ U , w ∈W , as

(R ◦X)〈u,w〉 =
∨
{R〈u, v〉 �X〈v, w〉 | v ∈ U} (2)

Therefore, this is a [0, 1]-fuzzy relation which can also be written as a matrix.
As in the usual case, this equation may not have a solution. The following

theorem shows a result similar to the one given to the max-min relation equa-
tion [20].
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Theorem 1. Given the pair (�,→), a fuzzy relation equation defined as in Ex-
presion 1 has a solution if and only if

(R⇒ T )〈v, w〉 =
∧
{R〈u, v〉 → T 〈u,w〉 | u ∈ U}

is a solution and, in that case, it is the greatest solution.

The following section presents a mechanism to obtain the minimal solutions
of the introduced fuzzy relation equations.

3 Minimal Solutions Generated by a Given Solution

The algebraic procedure to obtain minimal solutions of a fuzzy relation equation
will be based on the following observations.

In order to verify the equality∨
{R〈ui, v〉 � (R⇒ T )〈v, wj〉 | v ∈ V } = T 〈ui, wj〉, (3)

we have that several elements in V are redundant and so, they are not needed
to obtain the value T 〈ui, wj〉 and, therefore, they can be omitted. Hence the
guiding principle to find out minimal solutions is to replace all the unnecessary
values in the matrix representation of R ⇒ T by 0 and possibly reduce some
other values (R ⇒ T )〈v, wj〉; this is done column by column. Specifically, by
the finiteness and linearity assumptions, for each fixed i, j there is at least one
v0 ∈ V such that

R〈ui, v0〉 � (R⇒ T )〈v0, wj〉 = T 〈ui, wj〉 (4)

and the other v ∈ V \ {v0} are irrelevant and so, (R ⇒ T )〈v, wj〉 can be sub-
stituted by 0. Moreover, in some cases the value (R ⇒ T )〈v0, wj〉 can even be
reduced to a smaller value. Therefore, for any v0 satisfying Equation (4), we can
consider the set V ′ = {v0}, which defines a k × 1 column that can be used in
the matrix representation of minimal solutions.

There exist a variety of composition operators of fuzzy relations [12,14,16,21],
several of them are very restrictive since, for example, the commutativity and
associativity properties of the considered conjunctors is needed. Moreover, in
order to obtain the minimal solutions extra properties, as the zero-or-greatest
property [13,19], are assumed. However, based on the above examples, we will
show that the composition ‘◦’ does not need to satisfy strong properties.

This section is focused on finding out the minimal solutions of a general fuzzy
relation equation, in which we only need to assume a linear complete lattice [0, 1]
endowed with an increasing operation � that has a residuum → and satisfies
the following equality:

a�
∧
{bi | i ∈ Γ} =

∧
{a� bi | i ∈ Γ} (5)

for all elements a ∈ [0, 1] and all non-empty subsets {bi | i ∈ Γ} ⊆ [0, 1]. This last
condition will be called IPNE-Condition, making reference to that � is Infimum
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Preserving of arbitrary Non-Empty sets. Several properties and observations of
this condition will be given in the next section. Note that this property give us
the possibility of consider infinite lattices.

Therefore, let us consider a general solvable fuzzy relation equation (1), where
R,X, T are finite, U = {u1, . . . , un}, W = {w1, . . . , wm}, and � satisfies the
IPNE-Condition.

The first result characterizes the solutions of a solvable fuzzy relation equation
R ◦X = T by the covering elements of a family of subsets Sij . Next, these sets
are defined. First of all, the auxiliary sets Vij need to be introduced, which are
associated with the elements ui, wj and the greatest solution R ⇒ T . Since for
each j = 1, . . . ,m, i = 1, . . . , n∨

{R〈ui, v〉 � (R⇒ T )〈v, wj〉 | v ∈ V } = T 〈ui, wj〉, (6)

[0, 1] is linear and V is finite, then there exists, at least one, vs validating the
equation

R〈ui, vs〉 � (R⇒ T )〈vs, wj〉 = T 〈ui, wj〉. (7)

Therefore, the set Vij = {vs ∈ V | R〈ui, vs〉 � (R ⇒ T )〈vs, wj〉 = T 〈ui, wj〉} is
not empty and, for all v /∈ Vij , the strict inequality R〈ui, v〉� (R⇒ T )〈vs, wj〉 <
T 〈ui, wj〉 holds.

Each vs in Vij will provide a fuzzy subset Sijs as follows: Given vs ∈ Vij , we
have that

{d ∈ [0, 1] | R〈ui, vs〉 � d = T 〈ui, wj〉} �= ∅

and the infimum
∧
{d ∈ [0, 1] | R〈ui, vs〉 � d = T 〈ui, wj〉} = es also satisfies the

equality
R〈ui, vs〉 � es = T 〈ui, wj〉

by the IPNE-Condition. These elements are used to define the characteristic
fuzzy subsets Sijs : V → [0, 1] of V , defined by

Sijs(v) =

{
es if v = vs
0 otherwise

which form the set Sij , that is Sij = {Sijs | vs ∈ Vij}, for each i = 1, . . . , n,
j = 1, . . . ,m. These sets will be used to characterize the set of solutions of
Equation (1) by the notion of covering1. The proof of this result is not include
here due to the lack of space and, mainly, it follows the idea behind the procedure
considered in the example detailed in Section 4.

Theorem 2. The [0, 1]-fuzzy relation X : V × W → [0, 1] is a solution of a
solvable Equation (1) if and only if X ≤ (R ⇒ T ) and, for each j = 1, . . . ,m,
the fuzzy subset Cj : V → [0, 1], defined by Cj(v) = X〈v, wj〉, is a cover of
{S1j, . . . , Snj}.
1 The definition of cover (Definition 1) is inspired by [14], see also [12] and [13],
however our approach is more general and it does not depend on the special type of
the composition ‘◦’ of fuzzy relations.



Minimal Solutions of Fuzzy Relation Equations 85

As a consequence, the minimal solutions are characterized by the minimal covers.

Corollary 1. A fuzzy binary relation X : V ×W → [0, 1] is a minimal solution
of Equation (1) if and only if, for each j = 1, . . . ,m, Cj : V → [0, 1], defined by
Cj(v) = X〈v, wj〉, is a minimal cover of {S1j , . . . , Snj}.

Hence, from the corollary above, minimal solutions of the fuzzy relation equa-
tion (1) are obtained from R⇒ T as follows:

Procedure to Obtain Minimal Solutions of Equation (1)

For each j ∈ {1, . . . ,m} (jth element wj ∈ W ) the following steps are applied:

1. For each i ∈ {1, . . . , n} (ith element ui ∈ U) compute the set Vij ⊆ V .
2. Construct the set Sij of corresponding characteristic mappings Sijs.
3. Compute the minimal cover(s) Cj of the set {S1j, . . . , Snj}.
4. Define the [0, 1]-fuzzy matrix X : V ×W → [0, 1] as X〈v, wj〉 = Cj(v).

4 Worked Out Example

Let us assume the standard MV–algebra, that is, the unit interval, the
�Lukasiewicz operator and its residuated implication.

Given U = {u1, u2, u3}, V = {v1, v2, v3} W = {w1, w2, w3} and the fuzzy
binary relation, defined from the following tables

R v1 v2 v3
u1 0.9 0.5 0.9
u2 0.2 0.9 0.7
u3 0.8 0.6 0.9

and

T w1 w2 w3

u1 0.8 0.4 0.7
u2 0.6 0.7 0.3
u3 0.8 0.4 0.6

direct computation shows that the relation R⇒ T , defined from the table

R⇒ T w1 w2 w3

v1 0.9 0.5 0.8
v2 0.7 0.8 0.4
v3 0.9 0.5 0.6

is the greatest solution of Equation (1). During the verification we go through
the following calculations:
When computing R ◦ (R⇒ T )〈u1, w1〉 = 0.8, we consider the maximum of

R〈u1, v1〉 � (R⇒ T )〈v1, w1〉 = 0.9 + 0.9− 1 = 0.8
R〈u1, v2〉 � (R⇒ T )〈v2, w1〉 = 0.5 + 0.7− 1 = 0.2
R〈u1, v3〉 � (R⇒ T )〈v3, w1〉 = 0.9 + 0.9− 1 = 0.8

Notice that from v1 and v3 we get the maximum. Hence, in order to obtain
this maximum, we only need to consider {v1} or {v3}, hence V11 = {v1, v3}.
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Moreover, the values 0.9 associated with v1 and 0.9 associated with v3 cannot
be decreased since, with this assumption, a value less than 0.8 will be obtained
in the computation and we do not get a solution. Therefore, the characteristic
fuzzy subsets considered are:

S111(v) =

{
0.9 if v = v1
0 otherwise

S113(v) =

{
0.9 if v = v3
0 otherwise

and so, S11 = {S111, S113}. Now, we need to compute S21 and S31 associated
with the first column of T .

The equality R ◦ (R ⇒ T )〈u2, w1〉 = 0.6 is similarly studied. The value R ◦
(R⇒ T )〈u2, w1〉 is the maximum of the values

R〈u2, v1〉 � (R⇒ T )〈v1, w1〉 = 0.2 + 0.9− 1 = 0.1
R〈u2, v2〉 � (R⇒ T )〈v2, w1〉 = 0.9 + 0.7− 1 = 0.6
R〈u2, v3〉 � (R⇒ T )〈v3, w1〉 = 0.7 + 0.9− 1 = 0.6

for which {v2} or {v3} is only necessary and so, V21 = {v2, v3} and the fuzzy
subsets are:

S212(v) =

{
0.7 if v = v2
0 otherwise

S213(v) =

{
0.9 if v = v3
0 otherwise

Therefore, S21 = {S212, S213}. Finally, when computing R ◦ (R ⇒ T )〈u3, w1〉 =
0.8 we pass by

R〈u3, v1〉 � (R⇒ T )〈v1, w1〉 = 0.8 + 0.9− 1 = 0.7
R〈u3, v2〉 � (R⇒ T )〈v2, w1〉 = 0.6 + 0.7− 1 = 0.3
R〈u3, v3〉 � (R⇒ T )〈v3, w1〉 = 0.9 + 0.9− 1 = 0.8

In this case, only v3 is necessary and one fuzzy subset is only considered S31 =
{S313}, where

S313(v) =

{
0.9 if v = v3
0 otherwise

We observe that

C1(v) =

{
0.9 if v = v3
0 otherwise

is in S11 ∩ S21 ∩ S31 and, therefore, X1 is (the only) minimal fuzzy subset that
covers the set {S11, S21, S31}. Moreover, we conclude that a fuzzy relation X1,
defined as

X1 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0.4
v3 0.9 0.5 0.6

solves the fuzzy relation equation (1). This is a first approximation in order
to obtain the minimal solutions, for this goal, the rest of columns need to be
considered.



Minimal Solutions of Fuzzy Relation Equations 87

Next we consider the second column of R ⇒ T , which provides a different
case. For R ◦ (R⇒ T )〈u1, w2〉 = 0.4 we have

R〈u1, v1〉 � (R⇒ T )〈v1, w2〉 = 0.9 + 0.5− 1 = 0.4
R〈u1, v2〉 � (R⇒ T )〈v2, w2〉 = 0.5 + 0.8− 1 = 0.3
R〈u1, v3〉 � (R⇒ T )〈v3, w2〉 = 0.9 + 0.5− 1 = 0.4

Hence, the maximum is obtained from v1 or v3 and, therefore, V12 = {v1, v3}
and S12 = {S121, S123}, where

S121(v) =

{
0.5 if v = v1
0 otherwise

S123(v) =

{
0.5 if v = v3
0 otherwise

For R ◦ (R⇒ T )〈u2, w2〉 = 0.7 we have

R〈u2, v1〉 � (R⇒ T )〈v1, w2〉 = 0
R〈u2, v2〉 � (R⇒ T )〈v2, w2〉 = 0.9 + 0.8− 1 = 0.7
R〈u2, v3〉 � (R⇒ T )〈v3, w2〉 = 0.7 + 0.5− 1 = 0.2

Consequently, the set obtained are V22 = {v2} and S22 = {S222}, where

S222(v) =

{
0.8 if v = v2
0 otherwise

For R ◦ (R⇒ T )〈u3, w2〉 = 0.4 we have

R〈u3, v1〉 � (R⇒ T )〈v1, w2〉 = 0.8 + 0.5− 1 = 0.3
R〈u3, v2〉 � (R⇒ T )〈v2, w2〉 = 0.6 + 0.8− 1 = 0.4
R〈u3, v3〉 � (R⇒ T )〈v3, w2〉 = 0.9 + 0.5− 1 = 0.4

Hence, in v2 and v3 the maximum is obtained and so, V32 = {v2, v3} and the
fuzzy subsets

S322(v) =

{
0.8 if v = v2
0 otherwise

S323(v) =

{
0.5 if v = v3
0 otherwise

form S32 = {S322, S323}. In this case, since S12 ∩S22 ∩S32 = ∅, a minimal cover
of {S12, S22, S32} cannot be obtained from the intersection. As S22 = {S222} and
S222 = S322 ∈ S32, then a minimal cover only need to be greater than S222 and
S121, or S222 and S123. Therefore,

C2(v) =

⎧⎨⎩0.8 if v = v2
0.5 if v = v3
0 otherwise

C′
2(v) =

⎧⎨⎩0.5 if v = v1
0.8 if v = v2
0 otherwise

are (the only) minimal fuzzy subsets that cover the set {S12, S22, S32}. Finally,
the values in the third column of R⇒ T are reduced.

For R ◦ (R⇒ T )〈u1, w3〉 = 0.7, we compute

R〈u1, v1〉 � (R⇒ T )〈v1, w3〉 = 0.9 + 0.8− 1 = 0.7
R〈u1, v2〉 � (R⇒ T )〈v2, w3〉 = 0
R〈u1, v3〉 � (R⇒ T )〈v3, w3〉 = 0.9 + 0.6− 1 = 0.5
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Hence, V13 = {v1} and S13 = {S131}, where

S131(v) =

{
0.8 if v = v1
0 otherwise

For R ◦ (R⇒ T )〈u2, w3〉 = 0.3, we have

R〈u2, v1〉 � (R⇒ T )〈v1, w3〉 = 0.2 + 0.8− 1 = 0
R〈u2, v2〉 � (R⇒ T )〈v2, w3〉 = 0.9 + 0.4− 1 = 0.3
R〈u2, v3〉 � (R⇒ T )〈v3, w3〉 = 0.7 + 0.6− 1 = 0.3

two possibilities providing two fuzzy subsets: S23 = {S232, S233},

S231(v) =

{
0.4 if v = v2
0 otherwise

S233(v) =

{
0.6 if v = v3
0 otherwise

For R ◦ (R⇒ T )〈u3, w3〉 = 0.6 we have

R〈u3, v1〉 � (R⇒ T )〈v1, w3〉 = 0.8 + 0.8− 1 = 0.6
R〈u3, v2〉 � (R⇒ T )〈v2, w3〉 = 0.6 + 0.4− 1 = 0
R〈u3, v3〉 � (R⇒ T )〈v3, w3〉 = 0.9 + 0.6− 1 = 0.5

Therefore, only v1 is needed to obtain the maximum and so, S33 = {S231}, with

S231(v) =

{
0.8 if v = v1
0 otherwise

In this case, S13 = {S131} = S33 and, therefore, the minimal covers must be
greater than S131 and S231, or S131 and S233. Therefore, there also are two
minimal fuzzy subsets that cover the set {S13, S23, S33}:

C3(v) =

⎧⎨⎩0.8 if v = v1
0.4 if v = v2
0 otherwise

C′
3(v) =

⎧⎨⎩0.8 if v = v1
0.6 if v = v3
0 otherwise

Thus, by Theorem 2, the minimal solutions are given by the [0, 1]-fuzzy rela-
tions X : V ×W → [0, 1], defined by X〈v, wj〉 = Cj(v), where Cj are the previous
covers, with j ∈ {1, 2, 3}. This yields to four fuzzy relations, defined as following:

X1 w1 w2 w3

v1 0 0 0.8
v2 0 0.8 0.4
v3 0.9 0.5 0

X2 w1 w2 w3

v1 0 0 0.8
v2 0 0.8 0
v3 0.9 0.5 0.6

X3 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0.4
v3 0.9 0 0

X4 w1 w2 w3

v1 0 0.5 0.8
v2 0 0.8 0
v3 0.9 0 0.6

that solve the fuzzy relation equation R ◦X = T .
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5 Conclusions and Future Work

A deterministic procedure has been introduced to obtain the minimal solutions
of a solvable general fuzzy relation equation. This procedure has been based on
a relation between the solutions of the equation and the covering elements of
a set of characteristic fuzzy subsets, which generalizes other ones given in the
literature.

In the future, an extension of the results with conjunctors in a general carrier
set will be studied. The main goal will be to consider a general lattice as values
set.
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Abstract. Given a mapping f : A → B from a partially ordered set A

into an unstructured set B, we study the problem of defining a suitable

partial ordering relation on B such that there exists a mapping g : B → A

such that the pair of mappings (f, g) forms an isotone Galois connection

between partially ordered sets.

1 Introduction

Galois connections were introduced by Ore [25] as a pair of antitone mappings

satisfying certain conditions which generalize Birkhoff’s theory of polarities to

apply to complete lattices. Later, Kan [19] introduced the notion of adjunction

in a categorical context which, after instantiating to partially ordered sets turned

out to be the isotone version of the notion of Galois connection.

In the recent years there has been a notable increase in the number of pub-

lications concerning Galois connections, both isotone and antitone. On the one

hand, one can find lots of papers on theoretical developments or theoretical ap-

plications [7, 9, 20]; on the other hand, of course, there exist as well a lot of

applications to computer science, see [23] for a first survey on applications, al-

though more specific references on certain topics can be found, for instance, to

programming [24], data analysis [23], logic [12, 18], etc.

Two research topics that have benefitted recently from the use of the theory

of Galois connections is that of approximate reasoning using rough sets [13,

17, 26], and Formal Concept Analysis (FCA), either theoretically [1, 3, 6, 22] or

applicatively [10,11]. It is not surprising to see so many works dealing with both

Galois connections and FCA, since the derivation operators used to define the

concepts form a (antitone) Galois connection.

A number of results can be found in the literature concerning sufficient or

necessary conditions for a Galois connection between ordered structures to exist.
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The main result of this paper is related to the existence and construction of the

adjoint pair to a given mapping f , but in a more general framework.

Our initial setting is to consider a mapping f : A→ B from a partially ordered

set A into an unstructured set B, and then characterize those situations in which

the set B can be partially ordered and an isotone mapping g : B → A can be

built such that the pair (f, g) is an isotone Galois connection.

The structure of the paper is as follows: in Section 2 we introduce the pre-

liminary definitions and results; then, in Section 3, given f : A → B we focus

on the case in which the domain A has a poset structure, the necessary and

sufficient conditions for the existence of a unique ordering on B and a mapping

g such that (f, g) is an adjunction are given; Finally, in Section 4, we draw some

conclusions and discuss future work.

2 Preliminaries

We assume basic knowledge of the properties and constructions related to a

partially ordered set. For the sake of self-completion, we include below the formal

definitions of the main concepts to be used in this section.

Definition 1. Given a partially ordered set A = (A,≤A), X ⊆ A, and a ∈ A.

– Element a is said to be the maximum of X, denoted maxX, if a ∈ X and

x ≤ a for all x ∈ X.

– The downset a↓ of a is defined as a↓ = {x ∈ A | x ≤A a}.
– The upset a↑ of a is defined as a↑ = {x ∈ A | x ≥A a}.

A mapping f : (A,≤A)→ (B,≤B) between partially ordered sets is said to be

– isotone if a1 ≤A a2 implies f(a1) ≤B f(a2), for all a1, a2 ∈ A.

– antitone if a1 ≤A a2 implies f(a2) ≤B f(a1), for all a1, a2 ∈ A.

As usual, f−1 is the inverse image of f , that is, f−1(b) = {a ∈ A | f(a) = b}.
In the particular case in which A = B,

– f is inflationary (also called extensive) if a ≤A f(a) for all a ∈ A.

– f is deflationary if f(a) ≤A a for all a ∈ A.

As we are including the necessary definitions for the development of the con-

struction of isotone Galois connections (hereafter, for brevity, termed adjunc-

tions) between posets, we state below the definition of adjunction we will be

working with.

Definition 2. Let A = (A,≤A) and B = (B,≤B) be posets, f : A → B and

g : B → A be two mappings. The pair (f, g) is said to be an adjunction be-

tween A and B, denoted by (f, g) : A � B, whenever for all a ∈ A and b ∈ B

we have that

f(a) ≤B b if and only if a ≤A g(b)
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The mapping f is called left adjoint and g is called right adjoint.

The following theorem states equivalent definitions of adjunction between

posets that can be found in the literature, see for instance [5, 16].

Theorem 1. Let A = (A,≤A),B = (B,≤B) be two posets, f : A → B and

g : B→ A be two mappings. The following statements are equivalent:

1. (f, g) : A � B.
2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
4. g(b)↓ = f−1(b↓) for all b ∈ B.
5. f is isotone and g(b) = max f−1(b↓) for all b ∈ B.
6. g is isotone and f(a) = min g−1(a↑) for each a ∈ A.

We introduce the technical lemma below which shows that, in some case, it is

possible to get rid of the downsets (as used in item 5 of the previous theorem).

Lemma 1. Let (A,≤A) and (B,≤B) be posets and f : A→ B an isotone map-

ping. If max f−1(b↓) exists for some b ∈ f(A), then max f−1(b) exists and

max f−1(b↓) = max f−1(b).

Proof. Let us denote m = max f−1(b↓) and we will prove that a ≤A m, for all

a ∈ f−1(b), and m ∈ f−1(b), in order to have m = max f−1(b).

Consider a ∈ f−1(b), then f(a) = b ∈ b↓ and a ∈ f−1(b↓), hence a ≤A m.

Now, isotonicity of f shows that f(a) = b ≤B f(m). For the other inequal-

ity, simply consider that m = max f−1(b↓) implies m ∈ f−1(b↓), which means

f(m) ≤B b. Therefore, f(m) = b because of antisymmetry of ≤B. �

3 Building Adjunctions between Partially Ordered Sets

With the general aim of finding conditions for a mapping from a poset (A,≤A)

to an unstructured set B, in order to construct an adjunction we will naturally

consider the canonical decomposition of f : A→ B through Af , the quotient set

of A wrt the kernel relation ≡f , defined as a ≡f b if and only if f(a) = f(b):

A B

Af f(A)

f

π

ϕ

i

In general, given a poset (A ≤A) together with an equivalence relation ∼
on A, it is customary to consider the set A∼ = A/∼, the quotient set of A wrt

∼, and the natural projection π : A→ A∼. As usual, the equivalence class of an

element a ∈ A is denoted [a] and, then, π(a) = [a].

The following lemma provides sufficient conditions for π being the left com-

ponent of an adjunction.
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Lemma 2. Let (A,≤A) be a poset and ∼ an equivalence relation on A. Suppose

that the following conditions hold

1. There exists max([a]), for all a ∈ A.

2. If a1 ≤A a2 then max([a1]) ≤A max([a2]), for all a1, a2 ∈ A.

Then, the relation ≤A∼ defined by [a1] ≤A∼ [a2] if only if a1 ≤A max([a2]) is an

ordering in A∼ and, moreover, the pair (π,max) is an adjunction.

Proof. To begin with, the relation ≤A∼ is well defined since, by the first hypoth-

esis, max([a]) exists for all a ∈ A.

Reflexivity. Obvious, since [a] ≤A∼ [a] if and only if a ≤A max([a]), and the

latter holds for all a ∈ A.

Transitivity. Assume [a1] ≤A∼ [a2] and [a2] ≤A∼ [a3].

From [a1] ≤A∼ [a2], by definition, we have a1 ≤A max([a2]). Now, from

[a2] ≤A∼ [a3] we obtain, by definition of the ordering and the second hypoth-

esis that max([a2]) ≤A max([a3]). As a result, we obtain [a1] ≤A∼ max([a3]),

that is, [a1] ≤A∼ [a3].

Antisymmetry. Assume a1, a2 ∈ A such that [a1] ≤A∼ [a2] and [a2] ≤A∼ [a1].

By hypothesis, we have that a1 ≤A max([a2]) then max([a1]) ≤A max([a2]),

and a2 ≤A max([a1]) then max([a2]) ≤A max([a1]). Since ≤A is antisym-

metric, then max([a1]) = max([a2]); now, we have that the intersection of

the two classes [a1] and [a2] is non-empty, therefore [a1] = [a2].

Once again by the first hypothesis, max can be seen as a mapping A∼ → A.

Now, the adjunction follows by the definition of π and the ordering:

π(a1) ≤A∼ [a2] if and only if [a1] ≤A∼ [a2]

if and only if a1 ≤A max([a2])

�

The previous lemma gave sufficient conditions for π being a left adjoint; the

following result states that the conditions are also necessary, and that the order-

ing relation and the right adjoint are uniquely defined.

Lemma 3. Let (A ≤A) be a poset and ∼ an equivalence relation on A. Let

A∼ = A/∼ be the quotient set of A wrt ∼, and π : A → A∼ the natural projec-

tion. If there exists an ordering relation ≤A∼ in A∼ and g : A∼ → A such that

(π, g) : A � A∼ then,

1. g([a]) = max ([a]) for all a ∈ A.

2. [a1] ≤A∼ [a2] if and only if a1 ≤A max ([a2]) for all a1, a2 ∈ A.

3. If a1 ≤A a2 then max ([a1]) ≤A max ([a2]) for all a1, a2 ∈ A.
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Proof.

1. By Theorem 1, we have g([a]) = max π−1([a]↓). Now, Lemma 1 leads to

maxπ−1([a]↓) = max π−1([a]) = max([a]).

There is a slight abuse of notation in that [a] is sometimes considered as a

single element, i.e. one equivalence class of the quotient set, and sometimes

as the set of elements of the equivalence class. The context helps to clarify

which meaning is intended in each case.

2. By the adjointness of (π, g), definition of π, and the previous item we have

the following chain of equivalences

[a1] ≤A∼ [a2] if and only if π(a1) ≤Af
[a2]

if and only if a1 ≤A g([a2])

if and only if a1 ≤A max([a2])

3. Finally, since π and g are isotone maps, a1 ≤A a2 implies [a1] ≤Af
[a2], and

g([a1]) ≤A g([a2]), therefore max ([a1]) ≤A max ([a2]) by item 1 above. �

Continuing with the analysis of the decomposition, we naturally arrive to the

following result.

Lemma 4. Consider a poset (A,≤A) and a bijective mapping ϕ : A→ B, then

there exists a unique ordering relation in B, which is defined as b ≤B b′ if and

only if ϕ−1(b) ≤A ϕ−1(b′), such that (ϕ, ϕ−1) : A � B.

Proof. Straightforward. �

As a consequence of the previous results, we have established necessary and

sufficient conditions ensuring the existence and uniqueness of right adjoint for

any surjective mapping f from a poset A to an unstructured set B.

The third part of this section is devoted to considering the case in which f is

not surjective. In this case, in general, there are several possible orderings on B

which allow to define the right adjoint. The crux of the construction is related

to the definition of an order-embedding of the image into the codomain set.

More generally, the idea is to extend an ordering defined just on a subset of

a set to the whole set.

Definition 3. Given a subset X ⊆ B, and a fixed element m ∈ X, any pre-

ordering ≤X in X can be extended to a preordering ≤m on B, defined as the

reflexive and transitive closure of the relation ≤X ∪{(m, y) | y /∈ X}.

Note that the relation above can be described as, for all x, y ∈ B, x ≤m y if and

only if some of the following holds:

(a) x, y ∈ X and x ≤X y
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(b) x ∈ X, y /∈ X and x ≤X m

(c) x, y /∈ X and x = y

It is not difficult to check that if the initial relation ≤X is an ordering relation,

then ≤m is an ordering as well. Formally, we have

Lemma 5. Given a subset X ⊆ B, and a fixed element m ∈ X, then ≤X is an

ordering in X if and only if ≤m is an ordering on B.

Proof. Just some routine computations are needed to check that ≤m is antisym-

metric using the properties of ≤X .

Conversely, if ≤m is an ordering, then ≤X is an ordering as well, since it is a

restriction of ≤m. �

Lemma 6. Let X be a subset of B, consider a fixed element m ∈ X, and an

ordering ≤X in X. Define the mapping jm : (B,≤m)→ (X,≤X) as

jm(x) =

{
x if x ∈ X

m if x /∈ X

Then, (i, jm) : (X,≤X) � (B,≤m) where i denotes the inclusion X ↪→ B.

Proof. It follows easily by routine computation. �

Theorem 2. Given a poset (A,≤A) and a map f : A→ B, let ≡f be the kernel

relation. Then, there exists an ordering ≤B in B and a map g : B → A such that

(f, g) : A � B if and only if

1. There exists max([a]) for all a ∈ A.

2. For all a1, a2 ∈ A, a1 ≤A a2 implies max([a1]) ≤A max([a2]).

Proof. Assume that there exists an adjunction (f, g) : A � B and let us prove

items 1 and 2.

Given a ∈ A, item 1 holds because of the following chain of equalities, where

the first equality follows from Theorem 1, the second one follows from Lemma 1,

and the third because of the definition of [a]:

g(f(a)) = max f−1(f(a)↓) = max f−1(f(a)) = max([a]) (1)

Now, item 2 is straightforward, because if a1 ≤A a2 then, by isotonicity,

f(a1) ≤B f(a2) and g(f(a1)) ≤A g(f(a2)). Therefore, by Equation (1) above,

max([a1]) ≤A max([a2]).

Conversely, given (A,≤A) and f : A → B and items 1 and 2, let us prove

that f is the left adjoint of a mapping g : B → A. To begin with, consider the

canonical decomposition of f through the quotient set Af of A wrt ≡f , see
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below, where π : A → Af is the natural projection, π(a) = [a], ϕ([a]) = f(a),

and i(b) = b is the inclusion mapping.

A B

Af f(A)

f

π

g=max◦ϕ−1◦jm

jmmax

ϕ

ϕ−1

i

Firstly, by Lemma 2, using conditions 1 and 2, and the fact that [a] = π(a), we

obtain that (π,max): A � Af .

Moreover, since the mapping ϕ : Af → f(A) is bijective, we can apply Lemma 4

in order to induce an ordering ≤f(A) on f(A) such that we have another adjunc-

tion, the pair (ϕ, ϕ−1) : Af � f(A).

Then, considering an arbitrary element m ∈ f(A), the ordering ≤f(A) also

induces an ordering ≤m on B, as stated in Lemma 5, and a map jm : B → f(A)

such that (i, jm) : f(A) � B.

Finally, the composition g = max ◦ϕ−1 ◦ jm : B → A is such that (f, g) is an

adjunction. �

We end this section with two counterexamples showing that the conditions in

the theorem cannot be removed.

Let A = {a, b, c} and B = {d, e} be two sets and f : A → B defined as

f(a) = d and f(b) = f(c) = e.

Condition 1 cannot be removed: Consider (A,≤) where a ≤ b, a ≤ c and

b, c not related. Then [b] = {b, c} and there does not exist max([b]).

a

b

c

d e

(A,≤)

B

The right adjoint does not exist because max f−1(e↓) would not be defined

for any ordering in B.

Condition 2 cannot be removed: Consider (A,≤), where b ≤ a ≤ c.

b

a

c

d e(A,≤) B
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In this case, Condition 1 holds, since there exist both max[a] = a and

max[b] = c, but Condition 2 clearly does not. Again, the right adjoint does

not exist because f will never be isotone in any possible ordering defined

in B.

4 Conclusions

Given a mapping f : A→ B from a partially ordered set A into an unstructured

set B, we have obtained necessary and sufficient conditions which allow us for

defining a suitable partial ordering relation onB such that there exists a mapping

g : B → A such that the pair of mappings (f, g) forms an adjunction between

partially ordered sets. The results obtained in Theorem 2, regardless of the fact

that the proof is not exactly straightforward, are in consonance with the intuition

and the well-known facts about Galois connections.

A first source of future work is to consider A to be a preordered set, and try

to find an isotone Galois connection between preorders. In this context, there

are no clear candidate conditions for the existence of the preorder relation in B,

since the notion of maximum is not unique in a preordered setting due to the

absence of antisymmetry.

Another topic for future work is related to obtaining a fuzzy version of the

obtained result, in the sense of considering either fuzzy Galois connections [2,4,

15, 21] or considering the framework of fuzzy posets and fuzzy preorders.
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Abstract. In this work we propose an extension of the DBSCAN algo-
rithm to generate clusters with fuzzy density characteristics. The original
version of DBSCAN requires two parameters (minPts and ε) to deter-
mine if a point lies in a dense area or not. Merging different dense ar-
eas results into clusters that fit the underlined dataset densities. In this
approach, a single density threshold is employed for all the datasets of
points while the distinct or the same set of points can exhibit
different densities. In order to deal with this issue, we propose
Approx Fuzzy Core DBSCAN that applies a soft constraint to model dif-
ferent densities, thus relaxing the rigid assumption used in the original
algorithm. The proposal is compared with the classic DBSCAN. Some
results are discussed on synthetic data.

1 Introduction

Density based clustering algorithms have a wide applicability in data mining.
They apply a local criterion to group objects: clusters are regarded as regions in
the data space where the objects are dense, and which are separated by regions
of low object density (noise). Among the density based clustering algorithms
DBSCAN is very popular due both to its low complexity and its ability to de-
tect clusters of any shape, which is a desired characteristics when one does not
have any knowledge of the possible clusters’ shapes, or when the objects are
distributed heterogenously such as along paths of a graph or a road network.
Nevertheless, to drive the process, this algorithm needs two numeric input pa-
rameters, minPts and ε which together define the desired density characteristics
of the generated clusters. Specifically, minPts is a positive integer specifying the
minimum number of objects that must exist within a maximum distance ε of
the data space in order for an object to belong to a cluster.

Since DBSCAN is very sensible to the setting of these input parameters they
must be chosen with great accuracy [2] by considering both the scale of the
dataset and the closeness of the objects in order not to affect too much both
the speed of the algorithm and the effectiveness of the results. To fix the right
values of these parameters one generally engages an exploration phase of trials
and errors in which the clustering is run several times with distinct values of the
parameters.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 100–109, 2014.
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In fact, a common drawback of all crisp flat clustering algorithms used to
group objects whose distribution has a faint and smooth density profile is that
they draw crisp boundaries to separate clusters, which are often somewhat
arbitrary.

There are applications in which the positions of the objects is ill-known, such
as in the case of databases of moving objects, whose locations are recorded at
fixed timestamps with uncertainty on their intermediate positions, or in the case
of objects appearing in remote sensing images having a coarse spatial resolution
so that a pixel is much greater than the object dimension, and thus uncertainty
is implied when one has to detect the exact position of the object within an
area. Last but not least, when one has to detect communities of users in a social
network, while one can specify easily that the users must have at most a given
number of degrees of separation on the network, it my be questionable to define
the precise minimum number of elements defining a social community.

In this contribution we investigate an extension of the DBSCAN algorithm
defined within the framework of fuzzy set theory whose aim is to detect fuzzy
clusters with approximate density characteristics. In the literature a fuzzy ex-
tension of DBSCAN has been proposed, named FN-SBSCAN, with the objective
of allowing the specification of an approximate distance between objects instead
of a precise ε value [6]. Our proposal is dual since we want to leverage the set-
ting of the precise value minPts by allowing the specification of an approximate
minimum number of objects for defining a cluster. In our proposal a user drives
the clustering algorithm by specifying a soft condition that can be expressed as
follow: group at least approximately minPtsmin −minPtsmax objects which are
within a maximum distance ε ”.

The two values minPtsmin,minPtsmax indicate the approximate number of
objects defining the density of the clusters and define a soft constraint with a not
decreasing membership function on the basic domain of positive integers. The
algorithm uses this approximate input to generate clusters with a fuzzy core,
i.e., clusters whose elements are associated with a numeric membership degree
in [0,1]. Having fuzzy clusters allows several advantages: with a single run of the
clustering it is possible to perform a sensitivity analysis by generating several
distinct crisp partions obtained by specifying distinct thresholds on the member-
ship degrees of the objects to the clusters. This allows an easy exploration of the
spatial distribution of the objects without the need of several runs of the clus-
tering as it occurres when one uses the classic DBSCAN. The contribution first
recalls the classic DBSCAN algorithm; then, the Approx Fuzzy Core DBSCAN
is defined. Section 4. discusses the results obtained by the extended algorithm;
section 5 compared the proposal with related literature, and the conclusions
summarize the main achievements.

2 Classic DBScan Algorithm

For sake of clarity in the following we will consider a set of objects represented
by distinct points defined in a multidimensional domain. These objects can be
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either actual entities located on the bidimensional spatial domain such as cars,
taxi cabs, airplanes, or virtual entities, such as web pages and tweets represented
in the virtual n-dimensional space of the terms they contain. DBSCAN can be
applied to group these objects based on their local densities in the space. This
makes it possible to identify traffic jams of cars on the roads, or to identify
groups of web pages and tweets that deal with same topics.

DBSCAN assigns points of a spatial domain defined on RxR to particular
clusters or designates them as statistical noise if they are not sufficiently close
to other points. DBSCAN determines cluster assignments by assessing the local
density at each point using two parameters: distance (ε) and minimum number
of points (minPts). A single point which meets the minimum density criterion,
namely that there are minPts located within distance ε, is designated a core
point. Formally, Given a set P of N points pi = (xi1 , xi2 , ..., xin) with xij defined
on the n-dimensional domain Rn. p ∈ P is a core point if at least a minimum
number minPts of points p1, , pminPts ∈ P∃s.t||pj − p|| < ε, Two core points pi
and pj with i, js.t||pi−pj || < ε define a cluster c, pi, pj ∈ c and are core points of
c, i.e., pj , pj ∈ core(c) All not core points within the maximum distance ε from
a core point are considered non-core members of a cluster, and are boundary
or border points: p /∈ core(c) is a boundary point of c if ∃pi ∈ core(c) with
||p− pi|| < ε. Finally, points that are not part of a cluster are considered noise:
p /∈ core(c) are noise if ∀c, �pi ∈ core(c) with ||p− pi|| < ε. In the following the
classic DBSCAN algorithm is described:

Algorithm 1. DBSCAN(D,ε,MinPts)
Require: P : dataset of points
Require: ε: the maximum distance around a point defining the point neighbourhood
Require: MinPts: density, in points, around a point to be considered a core point
1. C = 0
2. Clusters = ∅
3. for all p ∈ P s.t. p is unvisited do
4. mark p as visited
5. neighborsPts = regionQuery(p,ε)
6. if (sizeof(neighborsPts) <= MinPts) then
7. mark p as NOISE
8. else
9. C = next cluster
10. Clusters = Clusters ∪ expandCluster(p, neighborsPts, C, ε, MinPts)
11. end if
12. end for
13. return Clusters

3 Generating Clusters with Fuzzy Cores

The extension of the classic DBSCAN algorithm we propose, named fuzzy core
DBSCAN, is obtained by considering crisp the distance, as in the classic ap-
proach, and by introducing an approximate value of the desired cardinality of the
neighborhood of a point minPts. This can be done by substituting the numeric
value minPts with a soft constraint defined by a non decreasing membership
function on the domain of the positive integers. This soft constraint specifies
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Algorithm 2. expandCluster(p, neighborsP ts, C, ε, MinPts)
Require: p: the point just marked as visited
Require: neighborsPts: the neighborhood of p
Require: C: the actual cluster
Require: ε the distance around a point to compute its density
Require: MinPts: density, in points, defining the minimum cardinality of the neighborhood of a

point to be considered a core point
1. add p to cluster C

2. for all p
′
∈ neighborsPts do

3. if p
′
is not visited then

4. mark p
′
as visited

5. neighborsPts
′
= regionQuery(p

′
,ε)

6. if sizeof(neighborsPts
′
) > MinPts then

7. neighborsPts = neighborsPts ∪ neighborsPts
′

8. end if
9. end if
10. if p

′
is not yet member of any cluster then

11. add p
′
to cluster C

12. end if
13. end for
14. return C

the approximate number of points that are required in the neighborhood of a
point for generating a fuzzy core of a cluster. Let us define the piecewise linear
membership function as follows:

μminP (x)

⎧⎪⎨⎪⎩
1, if x ≥MptsMax

x−MptsMin

MptsMax−MptsMin
, if MptsMin < x < MptsMax

0, if x ≤MptsMin

(1)

This membership function gives the value 1 when the number x of elements
in the neighbourhood of a point is greater than MptsMax, a value 0 when x
is below MptsMin and intermediate values when x is in between MptsMin and
ptsMax.

Since users may find it difficult to specify the two values MptsMin and
MptsMax when they are not aware of the total number of objects involved in
the process, they can specify two percentage values, %MptsMin and %MptsMax

which are then converted into MptsMin and MptsMax as follows:
MptsMin=round(%MptsMin*N and ptsMax=round(%MptsMin*N , in which

N is the total number of objects and round(m) returns the closest integer to m.
Let us redefine the fuzzy core . Given a set P of N objects represented by N

points in the n-dimensional domain Rn p1, p2, ...pN , where pi has the coordinates
xi1 , xi2 , ..., xin .

Given a point p ∈ P , if x points pi ∃ in the neighbourhood of point p , i.e.,
with ‖pi − p‖ < ε, s.t. μminP (x) > 0 the p is a fuzzy core point with membership
degree to the fuzzy core given by Fuzzycore(p) = μMinP (x) If two fuzzy core
points pi, pj ( Fuzzycore(pi) > 0 and Fuzzycore(pj) > 0) ∃ with i �= j s.t.
‖pi − p‖ < ε then they define a cluster c, pi, pj ∈ c , and are fuzzy core points
of c, i.e., pi, pj ∈ fuzzycore(c) with membership degrees Fuzzycorec(pi) and
Fuzzycorec(pj).
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A point p of a cluster that is not a fuzzy core point is a boundary or border
point if it satifies the following: Given p /∈ fuzzycore(c) if ∃pi ∈ fuzzycore(c),
i.e., with membership degree fuzzycorec(pi) > 0 , s.t. ‖pi − p‖ < ε then p gets
a membership degree to c defined as: μc(p) = maxpi∈fuzzycore(c)fuzzycorec(pi)

Finally, points p that are not part of a cluster are considered noise: ∀c if
�pi ∈ fuzzycore(c) s.t. ‖pi − p‖ < ε , then p is noise.

Notice that the points belonging to a cluster c gets distinct membership val-
ues to the cluster reflecting the number of their neighbours within a maximum
distance ε. This definition allows generating fuzzy clusters with a fuzzy core,
where the membership degrees represent the variable cluster density.

Moreover, a boundary point p can partially belong to a single cluster c since
its membership degree is upperbounded by the maximum membership degree of
its neighbouring fuzzy core points. Notice, that this algorithm does not generate
overlapping fuzzy clusters, but the support of the fuzzy clusters is still a crisp
partition as in the classic DBSCAN:

ci ∩ cj =  
Further property, the fuzzy core DBSCAN reduces to the classic DBSCAN

when the input values MinPtsMin = MinPtsMax: in this case the fuzzy core
DBSCAN produces the same results of the classic DBSCAN with minPts =
MinPtsMin = MinPtsMax and same distance ε. In fact, the level based soft
condition imposed by μminP is indeed a crisp condition μMinP (x) ∈ 0, 1 on
the minimum number of points defining the local density of the neighbourhood:
μminP = 0 when the number of points within a maximum distance ε of any point
p is less thanminPts = MinPtsMin = MinPtsMax, on the contrary μminP = 1.
In this case, the membership degrees of all fuzzy core points is 1, and thus the
fuzzy core reduces to a crisp core as in the classic DBSCAN.

The border points are thus defined as in the classic approach too, since their
membership degree is the maximum of their closest core points, i.e., it is always 1.

The Fuzzy procedure is sketched in Algorithms 3 and 4. Considering the
outer loop of the process (Algorithm 3), the difference with the original version
(Algorithm 1) lies at line 6.

In the fuzzy version, a point is marked as NOISE if its neighborhood size is
less than or equal to MinPtsMin otherwise it will be a fuzzy core point with a
given membership value. Once the point is recognized as fuzzy core point the
procedure expandClusterFuzzyCore is called (Algorithm 4).

As in the classicalDBSCAN, this procedure is devoted to find all the reachable
points from p and to mark them as core or border points. In the original version
the assignment of the point p is crisp while we introduce a fuzzy assignment
(line 1) modelled by the fuzzy function μMinP (). The same function is employed
when a new fuzzy core point is detected (line 8). Also in this case, firstly we
verify the density around a given point p

′
w.r.t. MinPtsMin and then, if the

point verifies the soft constraint, we add the point to the fuzzy core of cluster C
with its associated membership value. Differently from the original version, line
10 is only devoted to detect border points not yet assigned to any cluster.
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Algorithm 3. Approx Fuzzy Core DBSCAN(D,ε,MinPtsM in,MinPtsMax)

Require: P : dataset of points
Require: ε: the maximum distance around a point defining the point neighbourhood
Require: MinPtsMin,MinPtsMax: soft constraint interval for the density around a point to be con-

sidered a core point to a degree
1. C = 0
2. Clusters = ∅
3. for all p ∈ P s.t. p is unvisited do

4. mark p as visited
5. neighborsPts = regionQuery(p,ε)
6. if (sizeof(neighborsP ts) ≤ MinPtsMin) then

7. mark p as NOISE
8. else

9. C = next cluster
10. Clusters = Clusters ∪ expandClusterFuzzyCore(p, neighborsP ts, C, ε, MinPtsMin, MinPtsMax)

11. end if

12. end for

13. return Clusters

Algorithm 4. expandClusterFuzzyCore(p, neighborsP ts, C, ε, MinPtsMin,
MinPtsMax)
Require: p: the point just marked as visited
Require: neighborsPts: the points in the neighbourhood of p
Require: C: the actual cluster
Require: ε the distance around a point to compute its density
Require: MinPtsMin ,MinPtsMax: soft constraint interval for the density around a point to be

considered a core point
1. add p to C with membership Fuzzycore(p) = μMinP (|neighborsPts|)
2. for all p

′
∈ neighborsPts do

3. if p
′
is not visited then

4. mark p
′
as visited

5. neighborsPts
′
= regionQuery(p

′
,ε)

6. if sizeof(neighborsPts
′
) > MinPtsMin then

7. neighborsPts = neighborsPts ∪ neighborsPts
′

8. add p
′
to C with membership Fuzzycore(p

′
) = μMinP (|neighborsPts

′
|)

9. end if
10. if p

′
is not yet member of any cluster then

11. add p
′
to C (as border point)

12. end if
13. end if
14. end for
15. return C

4 Experiments

In this section we discuss the properties of our proposed algorithm by showing
the results we can obtain when applying the fuzzy core DBSCAN to a synthetic
data set in a bidimensional domain. Figure 1 (a) and 1(b) depict with distinct
colors the clusters identified by the classic DBSCAN and the fuzzy core DBSCAN
algorithms respectively. It can be noticed that the classic approach provided in
input with the parameters minPts = 9 and ε = 12 divides into two distinct
clusters, cluster 1 and cluster 6, and also cluster 5 and cluster 3, while the fuzzy
core clustering identifies as two clusters, cluster 2 and cluster 3 respectively. It
can also be noticed that with the fuzzy DBSCAN the obtained conflated clusters
have a variable density profile.
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Fig. 1. Results of a) DBSCAN b) Approx Fuzzy Core DBSCAN. We set Mpts = 9 and
ε = 12 while for Approx Fuzzy Core DBSCAN the soft constraint over the minimum
number of points ranges from 7 to 12 and ε is always equal to 12.

 510

 520

 530

 540

 550

 560

 570

 580

 120  140  160  180  200  220  240  260  280  300

Y

X

fuzzycore(c) = 1.0
 1.0 > fuzzycore(c) >= 0.5

 0.5 > fuzzycore(c) > 0

Fig. 2. Inspection of a cluster generated with the Approx Fuzzy Core DBSCAN ap-
proach (Mpts=(9,12), ε=12]). For the light blue cluster (Cluster2) shown in Figure 1b
we visualize the fuzzy core points grouped in three category: fuzzy cores with mem-
bership equal to 1 (red cross), fuzzy cores with membership lesser than 1 and greater
or equal to 0.5 (blue X) and fuzzy cores with membership lesser than 0.5 and bigger
than 0 (green star).

This happens in the classic approach since the input parameters were not
chosen accurately. To obtain a correct partition we would have to choose a
smaller value minPts < 9. Nevertheless, to find the correct parameters we might
have to re-run the classic DBSCAN several times before obtaining a satisfactory
solution. Conversely, just with a single run of Approx Fuzzy Core DBSCAN we
can identify the appropriate clusters, also the ones, cluster 2 and cluster 3, that
are characterised by a variable density of their core.

Moreover, having the membership degrees associated with each pair object−
cluster we can inspect the partitions that we can obtain by associating with
each range of membership degrees a distinct color. An example of this analysis
is depicted in Figure 2. We plot the fuzzy core points of cluster 2 of Figure 1(b).
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We avoid to plot border point as they are not influenced by the fuzzification
process. Cluster 2 has the profile of a comet with a dense nucleous on the upper
left side and a faint tail on the lower right side. The membership degrees to the
fuzzy core are discretised into three bins: fuzzy core points with a membership
value equals to 1.0, fuzzy core points with a membership in the range (1.0,0.5]
and fuzzy core points with a membership in the interval (0.5,0). This way we
quantify how the density distribution varies, having all full core points in the
nucleus, and partial fuzzy core points on the tail.

If we apply a threshold so as to detect only the points with full membership 1
to the fuzzy core, we can observe that the tail of the comet splits into two parts
as with the classic DBSCAN result in Figure 1(a).

5 Related Work

Clustering algorithms can be grouped into five main categories such as hierarchi-
cal, partition-based, grid-based, density based , and model-based and, further-
more, one can distinguish among crisp and soft (fuzzy or probabilistic) clustering
according to the fact that elements belong to clusters with a full or a partial
membership degree, in this latter case with the possibility for and element to
simultaneously belong to several clusters. Among the partitional density based
clustering algorithms, DBSCAN is the most popular one due to its ability to
detect irregularly shaped clusters by copying with noise data sets. Nevertheless
it performances are strongly dependent of the parameters setting and this is the
main reason that lead to its soft extensions. In the literature there have been a
few extensions of the DBSCAN algorithm in order to detect fuzzy clusters, as
also discussed in the recent paper [3] in which the authors report a survey of the
main density based clustering algorithms. The most cited paper [6] proposes a
fuzzy extension of the DBSCAN, named FN −DBSCAN (fuzzy neighborhood
DBSCAN), whose main characteristic is to use a fuzzy neighborhood relation.
In this approach the authors address the difficulty of the user in setting the
values of the input parameters when the distances of the points are in distinct
scales. Thus, they first normalize the distances between all points in [0,1], and
then they allow specifying distinct membership functions on the distance to de-
limit the neighborhood of points, i.e., the decaying of the membership degree
as a function of the distance. Then, they select as belonging to the fuzzy neigh-
bourhood of a point only those points having a minimum membership degree
greater than zero. This extension of DBSCAN uses a level-based neighborhood
set instead of a distance-based neighborhood set, and it uses the concept of fuzzy
cardinality instead of classical cardinality for identifying core points. This last
choice causes the creation (with the same run of the algorithm) of both fuzzy
clusters with cores having many sparse points and fuzzy clusters with cores hav-
ing only a few close points. Thus the density characteristic of the generated
clusters is very heterogeneous. Furthermore in this extensions points can be-
long to several clusters with distinct membership degree. This extension of the
DBSCAN can be considered dual to our proposal since we fuzzify the minimum
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number of points in the neighbourhood of a point to be considered as part of
the fuzzy core, while the maximum distance ε is still crisp, thus generating fuzzy
non overlapping clusters. This kind of fuzziness of clusters reflects the variable
densities of the clusters’ cores: as a consequence the membership degree of a
point to the fuzzy core depends on the number of points in its crisp neighbor-
hood, and thus a point is assigned to only one cluster, the one with the greatest
number of core points in its neighbourhood. With this semantics of fuzziness we
want to favor the growing of denser clusters with respect to fainter ones. The
utility of the fuzzy DBSCAN is pointed out in the paper [4] where the authors
use FN-DBSCAN in conjunction with the computation of the convex hull of the
generated fuzzy clusters to derive connected footprints of entities with arbitrary
shape. Having fuzzy clusters allows generating isolines footprints. An efficient
implementation is proposed in [2]. It tackles the problem of clustering a huge
number of objects strongly affected by noise when the scale distributions of ob-
jects are heterogeneous. To remove noise they first map the distance of any point
from its k-neighbours and rank the distance values in decreasing order; then they
determine the threshold θ on the distance which corresponds to the first min-
imum on the ordered values. All points in the first ranked positions having a
distance above the thresholds θ are noise points and are removed, while the re-
maining will belong to a cluster. These latter points are clustered with the classic
DBSCAN by providing as input parameters minPts = K and ε = θ. Another
motivation of defining fuzzy DBSCAN is to cluster objects whose position is ill-
known, as in the paper [5] where the authors propose the FDBSCAN algorithm
in which a fuzzy distance measure is defined as the probability that an object
is directly density-reachable from another objects. This problem could be mod-
eled in our approach by allowing the neighbouhood of any object as consisting
of an approximate number of other objects, thus capturing the uncertainty on
the positions of the moving objects, which could be inside or outside the radius
ε. This way, the grouping of moving objects could be modeled with a simpler
approach with respect to the proposal [5] that use fuzzy distance and probabil-
ity distributions. Finally, the most recent soft extension of DBSCAN has been
proposed in [1] where the authors combine the classic DBSCAN with the fuzzy
C-means algorithm. They detect seeds points by the classic DBSCAN and in a
second phase they compute the degrees of membership to the clusters around the
seeds by relying on the fuzzy C-means clustering algorithm. Nevertheless, this
extension has the objective of determining seeds to feed the Fuzzy C-Means, like
the approximate clustering algorithm based on the mountain method [7], which
is different from our proposal since we do not grow the boundary by applying
the fuzzy C-means, but rely on the DBSCAN. The result is not a fuzzy partition
but is still a crip partition of the elements into distinct clusters, even if each
element can belong to a single cluster with a distinct degree. In fact our aim is
tofold: firstly of all we want to subsume several runs of the classic DBSCAN with
different paramanater settings with a single run of our algorithm, and secondly
we want to give a preference to the grouth of clusters with denser core with
respect to clusters with fainter core.



Fuzzy Core DBScan Clustering Algorithm 109

6 Conclusion

In this work we present a new fuzzy clustering algorithm Approx Fuzzy Core
DBSCAN that extends the original DBSCAN method. The main characteristics
of this algorithm is to introduce a soft constraint to specify the approximate
number of points that must exists in the neighbourhood of a point for gen-
erating a cluster. Specifically, Approx Fuzzy Core DBSCAN allows assigning a
core point to a cluster with a membership value so clusters can contain core
points with different membership values representing this way the distinct local
densities. Beside leveraging the specification of the precise input, the proposal
supplies with a single run of the clustering algorithm a solution that summarises
multiple runs of the original classic DBSCAN algorithm: specifically, all the runs
with a value of MinPoints belonging to the support of the soft constraint. The
visual quality of the results yielded by Approx Fuzzy Core DBSCAN is tested
in the experimental section. A synthetic dataset is employed to highlight the
benefit of representing the fuzziness of the local density around points in or-
der to obtain meaningful results. As a future direction we would employ soft
constraints also over the maximum distance ε and, then, over both parameters
of the DBSCAN simultaneously in order to be more flexible over data exhibit
heterogenous densities.
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Abstract. This paper presents a novel approach to the prediction of
null values in relational databases, based on the notion of analogical
proportion. We show in particular how an algorithm initially proposed in
a classification context can be adapted to this purpose. This work focuses
on the case of a transactional database, where attributes are Boolean.
The experimental results reported here, even though preliminary, are
encouraging since the approach yields a better precision, on average,
than the classical nearest neighbors technique.

1 Introduction

In this paper, we propose a novel solution to a classical database problem
that consists in estimating null (i.e., unknown) values in incomplete relational
databases. Many approaches have been proposed to tackle this issue, both in the
database community and in the machine learning community (based on func-
tional dependencies [2], association rules [13,14], classification rules [5], clustering
techniques [4], etc). See also [8,9].

Here, we investigate a new idea, that comes from artificial intelligence and
consists in exploiting analogical proportions [11]. An analogical proportion is a
statement of the form “A is to B as C is to D”. As emphasized in [12], analogy is
not a mere question of similarity between two objects (or situations) but rather
a matter of proportion or relation between objects. An analogical proportion
equates a relation between two objects with the relation between two other
objects. These relations can be considered as a symbolic counterpart to the case
where the ratio or the difference between two similar things is a matter of degree
or number. As such, an analogical proportion of the form “A is to B as C is to
D” poses an analogy of proportionality by (implicitly) stating that the way two
objects A and B, otherwise similar, differ is the same way as the two objects C
andD, which are similar in some respects, differ. In other words, transformations
applied to A (resp. B) in order to obtain B (resp. A) are the same as that applied
to C (resp. D) in order to obtain D (resp. C).

Up to now, the notion of analogical proportion has been studied mainly in
artificial intelligence, notably for classification purposes (see, e.g., [1]). Our ob-
jective is to exploit it in a database context in order to predict the null values
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in a tuple t by finding quadruples of items (including t) that are linked by an
analogical proportion.

The remainder of the paper is organized as follows. In Section 2, we provide a
refresher on the notion of analogical proportion. Section 3 presents the general
principle of the approach we propose for estimating null values, inspired by the
classification method proposed in [1,6]. Section 4 reports on an experimentation
aimed at assessing the performances of the approach and at comparing its results
with those obtained using the classical k nearest neighbors technique. Finally,
Section 5 recalls the main contributions and outlines perspectives for future
work.

2 Refresher on Analogical Proportions

The following presentation is mainly drawn from [7]. An analogical proportion
is a statement of the form “A is to B as C is to D”. This will be denoted by
(A : B :: C : D). In this particular form of analogy, the objects A, B, C, and D
usually correspond to descriptions of items under the form of objects such as sets,
multisets, vectors, strings or trees. In the following, if the objects A, B, C, and
D are tuples having n attributes, i.e., A = 〈a1, . . . , an〉, . . . , D = 〈d1, . . . , dn〉,
we shall say that A, B, C, and D are in analogical proportion if and only if for
each component i an analogical proportion “ai is to bi as ci is to di” holds.

We now have to specify what kind of relation an analogical proportion may
mean. Intuitively speaking, we have to understand how to interpret “is to” and
“as” in “A is to B as C is to D”. A may be similar (or identical) to B in some
respects, and differ in other respects. The way C differs from D should be the
same as A differs from B, while C and D may be similar in some other respects,
if we want the analogical proportion to hold. This view is enough for justifying
three postulates that date back to Aristotle’s time:

– (ID) (A : B :: A : B)
– (S) (A : B :: C : D)⇔ (C : D :: A : B)
– (CP) (A : B :: C : D)⇔ (A : C :: B : D).

(ID) and (S) express reflexivity and symmetry for the comparison “as”, while
(CP ) allows for a central permutation.

A logical proportion [10] is a particular type of Boolean expression T (a, b, c, d)
involving four variables a, b, c, d, whose truth values belong to B = {0, 1}. It is
made of the conjunction of two distinct equivalences, involving a conjunction of
variables a, b on one side, and a conjunction of variables c, d on the other side of
≡, where each variable may be negated. Analogical proportion is a special case
of a logical proportion, and it expression is [7]: (ab ≡ cd) ∧ (ab ≡ cd). The six
valuations leading to truth value 1 are thus (0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1),
(1, 1, 0, 0), (0, 1, 0, 1) and (1, 0, 1, 0).

As noted in [12], the idea of proportion is closely related to the idea of ex-
trapolation, i.e., to guess/compute a new value on the ground of existing values,
which is precisely what we intend to do. In other words, if for whatever reason,
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it is assumed or known that a logical proportion holds between four binary el-
ements, three being known, then one may try to infer the value of the fourth
one.

3 Principle of the Approach

3.1 General Idea

The approach we propose is inspired by a method of “classification by anal-
ogy” introduced in [1] where the authors describe an algorithm named Fadana
(fast search of the least dissimilar analogy). This algorithm uses a measure of
analogical dissimilarity between four objects, which estimates how far these ob-
jects are from being in analogical proportion. Roughly speaking, the analogical
dissimilarity ad between four Boolean values is the minimum number of bits
that have to be switched to get a proper analogy. For instance ad(1, 0, 1, 0) =
0, ad(1, 0, 1, 1) = 1 and ad(1, 0, 0, 1) = 2. Thus, denoting by A the relation of
analogical proportion, we have A(a, b, c, d) ⇔ ad(a, b, c, d) = 0. One has for
instance ad(0, 0, 0, 1) = 1 and ad(0, 1, 1, 0) = 2.

When, instead of having four Boolean values, we deal with four Boolean vec-
tors in Bn, we add the ad evaluations componentwise to get the analogical dis-
similarity, which leads to an integer in the interval [0, 2n]. This principle has
been used in [1] to implement a classification algorithm that takes as an input
a training set S of classified items, a new item d to be classified, and an integer
k. The algorithm proceeds as follows:

1. For every triple (a, b, c) of S3, compute ad(a, b, c, d).

2. Sort these n triples by increasing value of their ad when associated with d.

3. If the k-th triple has the integer value p for ad, then let k′ be the greatest
integer such that the k′-th triple has the value p.

4. Solve the k′ analogical equations on the label of the class. take the winner
of the k′ votes and allocate this winner as the class of d.

Example 1. Let S be a training set composed of four labelled objects. The set of
objects in S are showed in Table 1, where the first column indicates their number
or id, the columns A1, A2, and A3 their attribute values, and the column cl gives
the class they belong to.

Table 1. Training set

id A1 A2 A3 cl

1 0 0 0 0
2 0 1 0 1
3 0 1 1 1
4 1 1 1 1
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Table 2. Computation of ad

id A1 A2 A3

1 0 0 0
2 0 1 0
3 0 1 1
x 1 0 0

ad 1 2 1 = 4

Now, let x /∈ S be an object to be classified, defined as A1 = 1, A2 = 0, A3 = 0.
One first has to compute the ad value between x and every possible triple of
objects from S. Table 2 shows the ad value obtained with the triple (1, 2, 3).

Table 3 shows the list of the first 10 triples (ranked according to ad).

Table 3. Triples ranked according to ad

Combination a b c d ad

1) 3 1 4 x 0
2) 3 4 1 x 0
3) 2 3 4 x 1
4) 3 4 2 x 1
5) 2 4 1 x 1
6) 2 1 4 x 1
7) 3 1 2 x 2
8) 3 2 1 x 2
9) 2 1 3 x 2
10) 4 1 3 x 2

Let k = 5; all the triples such that their associated ad value equals at most
that of the 5th tuple (here, 1), are chosen. The triples 1 to 6 are then used to
find the class of x. The six corresponding analogical equations are then solved.
For instance, combination 2) yields the equation 1 : 1 :: 0 : cl, leading to cl=0.
Finally, the class that gets the most votes is retained for d. "

3.2 Application to the Prediction of Missing Values

This method may be adapted to the case of null value prediction in a transac-
tional database as follows. Let r be a relation of schema (A1, . . . , Am) and t
a tuple of r involving a missing value for attribute Ai: t[Ai] = NULL. In order
to estimate the value of t[Ai] — that is 0 or 1 in the case of a transactional
database —, one applies the previous algorithm considering that Ai corresponds
to the class cl to be determined. The training set S corresponds to a sample (of
a predefined size) of tuples from r (minus attribute Ai that does not intervene
in the calculus of ad but represents the “class”) involving no missing values.
Besides, the attributes Ah, h �= i such that t[Ah] = NULL are ignored during
the computation aimed at predicting t[Ai].
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4 Preliminary Experimentation

The main objective of the experimentation was to compare the results obtained
using this technique with those produced by other approaches (in particular
the “nearest neighbors” technique), thus to extimate its relative effectiveness in
terms of precision (i.e., of percentage of values correctly predicted).

Let us first emphasize that the performance aspect (in terms of execution
time) is not so crucial here, provided of course that the class of complexity
remains reasonable. Indeed, the prediction of missing values is to be performed
offline. However, this aspect will be tackled in the conclusion of this section, and
we will see that different optimization techniques make it possible to significantly
improve the efficiency of the algorithm.

4.1 Experimental Results

In order to test the approach, six datasets from the Frequent Itemset Mining
Implementations Repository1, namely accidents (30 attributes), chess (20 at-
tributes), mushroom (32 attributes), pumsb (268 attributes), and connect (26
attributes)) and one from the UCI machine learning repository2, solarFlare (16
attributes) have been used. These datasets contain categorical attributes that
have been binarized. For each dataset, a sample E has been extracted by ran-
domly choosing 1000 tuples (300 in the case of solarFlare) from the relation. A
subset M of E has been modified, i.e., a certain percentage of values of each of
its tuples has been replaced by NULL. Then, the Fadana algorithm has been
run so as to predict the missing values: for each tuple d involving at least a miss-
ing value, a random sample D of E\M (thus made of complete tuples) has been
chosen. This sample D is used for running the algorithm inspired from Fadana,
detailed in Section 3. Each time, the k nearest neighbors (kNN) technique has
also been taken as a reference, and has been run with the same number of tuples
and the same value of k. Let us recall that the kNN approach is based on a dis-
tance computation between the tuple to be completed and the tuples from the
training set (one keeps only the k closest tuples, and a voting procedure similar
to that involved in Fadana, is used to predict the missing values).

In a first step, we also tested a simple probabilistic approach that consists,
for a given attribute, in computing the proportion of missing values equal to 1
(resp., to 0), and to use it as a probability when predicting a missing value. For
instance, if there exist, in the dataset, 60% of values equal to 1 (hence 40% of
values equal to 0) for attribute Ai, then the probability that the missing value
be 1 equals 0.6, and 0.4 for 0. As the performances of this method appeared to
be rather poor, it has not been retained further as a reference.

We also evaluated the proportion of values correctly predicted by Fadana
and not by kNN, and reciprocally. In the following tables, No-Fadana (resp.
No-kNN) means “incorrectly predicted by Fadana (resp. by kNN)”, whereas

1 http://fimi.ua.ac.be/data/
2 http://http://archive.ics.uci.edu/ml/datasets.html

http://fimi.ua.ac.be/data/
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“Fadana & kNN” means “correctly predicted both by Fadana and by kNN”. The
results corresponding to the dataset connect and the average values computed
over the six datasets are both presented.

Table 4. Precision wrt the number of modified values (set to null) per tuple (propor-
tion of modified tuples: 70%, k = 40, size of the training set: 40)

% 5 10 20 40 60 80

Fadana 93.38 93.84 93.56 91.95 90.18 86.68
kNN 83.12 83.78 83.49 84.94 83.9 82.36

Fadana & kNN 77.83 77.35 77.54 78.45 75.45 74.70
Fadana & No-kNN 14.91 15.22 14.41 11.41 12.00 9.30
No-Fadana & kNN 2.33 2.03 2.04 2,95 4,01 4,14
No-Fadana & No-kNN 3.39 3.67 4.27 5.12 6.53 9.86

Table 5. Precision wrt the number of modified values (set to null) per tuple (pro-
portion of modified tuples: 70%, k = 40, size of the training set: 40) for the dataset
connect

% 5 10 20 40 60 80

Fadana 94.83 94.5 94.33 92.5 90.5 89.17
kNN 86.83 86.5 86.83 86.33 86.6 86.5

Fadana & kNN 83.66 83.66 83.66 82.83 82.5 83
Fadana & No-kNN 10 9.5 9.33 8.33 6.33 4.33
No-Fadana & kNN 1.83 1.5 1.66 1.83 2.66 1.83
No-Fadana & No-kNN 3.16 3.5 3.66 5 6.5 8.5

Tables 4 and 5 show how precision evolves with the number of modified values
per tuple. One can see that both Fadana and kNN are rather robust in this
respect, since even with 80% of values modified, precision remains over 80% (and
even close to 90% most of the time for Fadana).

Tables 6 and 7 show how precision evolves with the value of k used in the
algorithm. Again, one notices a remarkable stability, both for Fadana and for
kNN, and one can see that even with a relatively small value of k, the vote leads
to correct results in most of the cases.

Tables 8 and 9 describe the impact of the size of the training set on the preci-
sion of the algorithm. Unsurprisingly, one can see that a too small set negatively
affects the effectiveness of the approach, but as soon as the set is large enough (30
or 40 tuples), Fadana reaches a precision level that is almost optimal (around
92%). Let us emphasize that it would be illusory to expect a 100% precision
since there exist, in general, tuples that do not participate in any (sufficiently
valid) analogical relation.
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Table 6. Precision wrt the value of k (proportion of modified tuples: 70%, proportion
of modified values per tuple: 40%, size of the training set: 40)

k 1 5 10 15 30 50 100

Fadana 92.54 92.35 92.61 92.61 92.31 91.88 92.32
kNN 88.73 87.98 86.72 85.53 84.23 84.14 83.85

Fadana & kNN 82.91 80.33 79.08 77.37 75.72 75.97 75.91
Fadana & No-kNN 7.42 9.40 11.19 12.59 13.25 13.01 13.62
No-Fadana & kNN 3.58 3.36 3.30 3.05 3.36 3.30 3.04
No-Fadana & No-kNN 4.04 4.87 4.37 4.74 4.50 5.92 5.50

Table 7. Precision wrt the value of k (proportion of modified tuples: 70%, proportion
of modified values per tuple: 40%, size of the training set: 40) for the dataset connect

k 1 5 10 15 30 50 100

Fadana 93.83 93 92.83 93 92.5 92.66 93.33
kNN 91.33 88.83 88 87.5 86.5 86.5 86.5

Fadana & kNN 87.33 84.66 83.83 84 82.5 83 83.33
Fadana & No-kNN 4.833 6.66 7.66 7.66 8.66 8.166 8.33
No-Fadana & kNN 2.5 2.5 2.5 2.16 2.33 2.16 1.66
No-Fadana & No-kNN 2.833 4 3.83 4 4.66 5 4.83

Globally, a remarkable result is that the precision of Fadana is better than
that of kNN, on average. In order to prove that the differences observed are
statistically significant, we followed the recommendations of [3], which suggests
a set of non-parametric tests for statistical comparisons of classifiers. When
comparing only two classifiers, the use of the Wilcoxon signed ranks test is
proposed. This method works as follows: assuming that two classifiers c1 and c2
are being compared, it starts by computing their difference in precision for each
data set, then ranking these differences in increasing order. Then, let R+ be the
sum of ranks associated with the cases where c1 outperformed c2, and R− the
sum of ranks for the opposite situation, the minimum of those two values i.e.,
min(R+, R−) is used to determine if the difference of performance of the two
classifiers is statistically significant (along with the number of datasets evaluated
and some confidence level p, the most frequently used being 0.05).

We only used this method when evaluating the precision with respect to the
value of k, specifically when k ∈ (1, 5, 10, 15), since these are the only cases for
which there is no unanimity with respect to the winner over the six datasets. For
the other evaluations, Fadana always outperform kNN, except when the size of
the training set is equal to 5, case in which it is kNN that outperforms Fadana.
In all of the cases that we evaluated, i.e, k ∈ (1, 5, 10, 15), according to the
Wilcoxon signed-rank test, the results appear significant with a confidence value
p ≤ 0.05.
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Table 8. Precision wrt the size of the training set (proportion of modified tuples: 70%,
k = 40, proportion of modified values per tuple: 40%)

|TS| 5 10 20 30 40

Fadana 72.58 86.5 90.35 92.12 92.19
kNN 81.77 82.96 83.47 84.22 84.09

Fadana & kNN 56.89 72.33 74.82 76.48 76.20
Fadana & No-kNN 10.09 10.85 12.77 13.16 13.75
No-Fadana & kNN 19.35 5.83 4.00 3.19 3.41
No-Fadana & No-kNN 11.61 8.91 6.49 4.91 4.79

Table 9. Precision wrt the size of the training set (proportion of modified tuples: 70%,
k = 40, proportion of maodified values per tuple: 40%) for the dataset connect

|TS| 5 10 20 30 40

Fadana 78.33 87.5 90.66 92.66 92.5
kNN 86.66 86.33 86.66 86.66 86.16

Fadana & kNN 72.16 80 82.33 83.16 82.33
Fadana & No-kNN 4.83 5.83 7 8.16 8.33
No-Fadana & kNN 13 4.66 2.66 2 2.66
No-Fadana & No-kNN 8 7.37 5.83 4.83 4.66

4.2 Optimization Aspects

As mentioned in the preamble, temporal performances of the approach are not
so crucial since the prediction process is to be executed offline. However, it
is interesting to study the extent to which the calculus could be optimized.
With the base algorithm presented in Section 3, complexity is in θ(N3) for the
prediction of a missing value, where N denotes the size of the training set TS
(indeed, an incomplete tuple has to be associated with every triple that can be
built from this set, the analogical relation being quaternary). An interesting idea
consists in detecting a priori the triples from TS that are the most “useful” for
the considered task, i.e., those the most likely to take part in a sufficiently valid
analogical relation. For doing so, one just has to run the algorithm on a small
subset of the database containing artificially introduced missing values, and to
count, for each triple of the training set, the number of k-lists in which it appears
as well as the average number of cases in which the prediction is correct. One can
then keep the sole N ′ triples that appear the most frequently with a good rate
of success, and use them to predict the missing values in the entire database.
Complexity is then in θ(N ′) for estimating a given missing value.

We ran this optimized algorithm several times, with k varying between 20
and 40, the size of the training set between 20 and 40, and N ′ between 100 and
1000. For a total of 3000 incomplete tuples, the basic algorithm was run over
the first 500, treating the others with the optimized method.
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While the precision of the regular Fadana algorithm is 91% on average, that
of the optimized method is about 84%, i.e., there is a difference of about 7
percents (whereas the precision of the kNN method over the same dataset is
about 85%). On the other hand, the optimized method is much more efficient:
it is 1300 times faster than the regular Fadana algorithm when the size of the
training set equals 40, and 25 times faster when it equals 20.

These results show that this method does not imply a huge loss of precision,
but leads to a very significant reduction of the overall processing time. Fur-
ther experiments and analyses are needed, though, in order to determine which
properties make a triple more “effective” than others.

Let us mention that another optimization axis would consist in parallelizing
the calculus on the basis of a vertical partitioning of the relation involved, which
would make it possible to assign a subset of attributes to each processor, the
intermediate results being summed in order to obtain the final value of the
analogical dissimilarity ad.

5 Conclusion

In this paper, we have presented a novel approach to the estimation of missing
values in relational databases, that exploits the notion of analogical proportion.
We have shown how an algorithm proposed in the context of classification could
be adapted to this end. The results obtained, even though preliminary, appear
very encouraging since the approach yields a significantly better precision than
the classical nearest neighbors technique.

Among the many perspectives opened by this work, let us mention the follow-
ing four ones. Future work should i) compare the analogy-based prediction ap-
proach with a larger sample of approaches — beyond kNN — but one can be rea-
sonably optimistic since, on the one hand, many approaches from the literature
are, as kNN, based on the notion of distance and, on the other hand, since no other
approach exploits the type of “regularity” that we do, namely analogical propor-
tion, one may reasonably hope that a combination of our algorithm with another
approach would improve the effectiveness of both; ii) deal in a more sophisticated
way with categorical attributes by taking into account notions such as synonymy,
hyponymy/hypernymy, etc. iii) study the possibility of building an optimal train-
ing set, on the basis of the remark made in Subsection 4.2; iv) study the way pre-
dicted values must be handled, in particular during the database querying process.
This will imply using an uncertain database model (for instance of a probabilistic
nature) inasmuch as an estimated value remains tainted with uncertainty, even if
the prediction process has a good level of reliability.

References

1. Bayoudh, S., Miclet, L., Delhay, A.: Learning by analogy: A classification rule for
binary and nominal data. In: Veloso, M.M. (ed.) IJCAI, pp. 678–683 (2007)



Estimating Null Values in Relational Databases 119

2. Chen, S.M., Chang, S.T.: Estimating null values in relational database systems
having negative dependency relationships between attributes. Cybernetics and Sys-
tems 40(2), 146–159 (2009)
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Abstract. This paper presents an approach aimed at reducing the im-
pact of exceptional points/outliers when computing skyline queries. The
phenomenon that one wants to avoid is that noisy or suspect elements
“hide” some more interesting answers just because they dominate them
in the sense of Pareto. The approach we propose is based on the fuzzy no-
tion of typicality and makes it possible to distinguish between genuinely
interesting points and potential anomalies in the skyline obtained.

Keywords: skyline query, exception, gradual approach.

1 Introduction

In this paper, a qualitative view of preference queries is chosen, namely the Sky-
line approach introduced by Börzsönyi et al. [2]. Given a set of points in a space,
a skyline query retrieves those points that are not dominated by any other in the
sense of Pareto order. When the number of dimensions on which preferences are
expressed gets high, many tuples may become incomparable. Several approaches
have been proposed to define an order for two incomparable tuples, based on
the number of other tuples that each of the two tuples dominates (notion of
k-representative dominance proposed by Lin et al. [12]), on a preference order
of the attributes (see for instance the notions of k-dominance and k-frequency
introduced by Chan et al. [3,4]), or on a notion of representativity ([14] redefines
the approach proposed by [12] and proposes to return only the more represen-
tative points of the skyline, i.e., a point among those present in each cluster of
the skyline points). Other approaches fuzzify the concept of skyline in different
ways, see e.g. [9]. Here, we are concerned with a different problem, namely that
of the possible presence of exceptional points, aka outliers, in the dataset over
which the skyline is computed. Such exceptions may correspond to noise or to
the presence of nontypical points in the collection considered. The impact of
such points on the skyline may obviously be important if they dominate some
other, more representative ones.

Two strategies can be considered to handle exceptions. The former consists in
removing anomalies by adopting cleaning procedures or defining data entry con-
straints. However, the task of automatically distinguishing between odd points
and simply exceptional points is not always easy. Another solution is to define an
approach that is tolerant to exceptions, that highlights representative points of
the database and that points out the possible outliers. In this paper, we present

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 120–129, 2014.
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such an approach based on the fuzzy notion of typicality [15]. We revisit the def-
inition of a skyline and show that it i) makes it possible to retrieve the dominant
points without discarding other potentially interesting ones, and ii) constitutes
a flexible tool for visualizing the answers.

The remainder of the paper is structured as follows. Section 2 provides a
refresher about skyline queries and motivates the approach. Section 3 presents
the principle of exception-tolerant skyline queries, based on the fuzzy concept
of typicality. Section 4 gives the main implementation elements of the approach
whereas Section 5 presents preliminary experimental results obtained on a real-
world dataset. Finally, Section 6 recalls the main contributions and outlines
perspectives for future work.

2 Refresher about Skyline Queries and Motivations

Let D = {D1, . . . , Dd} be a set of d dimensions. Let us denote by dom(Di) the
domain associated with dimension Di. Let S ⊆ dom(D1)× . . .×dom(Dd), p and
q two points of S, and #i an order on Di. One says that p dominates q on D (p
is better than q according to Pareto order), denoted by p #D q, iff

∀i ∈ [1, d] : pi $i qi and ∃j ∈ [1, d] : pi #i qi.

A skyline query on D applied to a set of points S, whose result is denoted by
SkyD(S), according to order relations #i, produces the set of points that are
not dominated by any other point of S:

SkyD(S) = {p ∈ S | � ∃q ∈ S : q #D p}

Depending on the context, one may try, for instance, to maximize or minimize
the values of dom(Di), assuming that dom(Di) is a numerical domain.

In order to illustrate the principle of the approach we propose, let us consider
the dataset Iris [8], graphically represented in Figure 1.

Fig. 1. The dataset Iris

The vertical axis corresponds to the attribute sepal width whereas the hori-
zontal axis is associated with sepal length. The skyline query:



122 H. Jaudoin, O. Pivert, and D. Rocacher

select * from iris
skyline of sepallength max, sepalwidth max

looks for those points that maximize the dimensions length and width of the
sepals (the circled points in Figure 1).

In this dataset, the points form two groups that respectively correspond to the
intervals [4, 5.5] and [5.5, 7] on attribute length. By definition, the skyline points
are on the border of the region that includes the points of the dataset. However,
these points are very distant from the areas corresponding to the two groups
and are thus not very representative of the dataset. It could then be interesting
for a user to be able to visualize the points that are “almost dominant”, closer
to the clusters, then more representative of the dataset. The notion of typicality
discussed in the next section makes it possible to reach that goal.

2.1 Computing a Fuzzy Set of Typical Values

The typicality of an element in a set indicates the extent to which this element
is similar to many other points from the set. The notion of fuzzy typicality has
been much studied in the contexts of data summaries and approximate reasoning.
Zadeh [15] states that x is a typical element of a fuzzy set A iff i) x has a high
membership degree to A and ii) most of the elements of A are similar to x. In
the case where A is a crisp set — as it will be the case in the following —, the
definition becomes: x is in A and most of the elements of A are similar to x.

In [7], the authors define a typicality index based on frequency and similarity.
We adapt their definition as follows. Let us consider a set E of points. We say
that a point is all the more typical as it is close to many other points. The
proximity relation considered is based on Euclidean distance. We consider that
two points p1 and p2 are close to each other if d(p1, p2) ≤ τ where τ is a
predefined threshold. In the experiment performed on the dataset Iris, we used
τ = 0.5. The frequency of a point is defined as:

F (p) =
|{pi ∈ E , d(p, pi) ≤ τ}| − 1

|E| . (1)

This degree is then normalized into a typicality degree in [0, 1]:

typ(p) =
F (p)

maxpi∈E{F (pi)}
.

We will also use the following notations:

Typ(E) = {typ(p)/p | p ∈ E}

Typγ(E) = {p | p ∈ E and typ(p) ≥ γ}.
Typ(E) represents the fuzzy set of points that are somewhat typical of the set E
while Typγ(E) gathers the points of E whose typicality is over the threshold γ.
An excerpt of the typicality degrees computed over the Iris dataset is presented
in Table 1.
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Table 1. Excerpt of the Iris dataset with associated typicality degrees

length width frequency typicality
7.4 2.8 0.0600 0.187
7.9 3.8 0.0133 0.0417
6.4 2.8 0.253 0.792
6.3 2.8 0.287 0.896
6.1 2.6 0.253 0.792
7.7 3.0 0.0467 0.146
6.3 3.4 0.153 0.479
6.4 3.1 0.293 0.917
6.0 3.0 0.320 1.000

3 Principle of the Exception-Tolerant Skyline

As explained in the introduction, our goal is to revisit the definition of the skyline
so as to take into account the typicality of the points in the database, in order
to control the impact of exceptions or anomalies.

3.1 Boolean View

A first idea is to restrict the computation of the skyline to a subset of E that
corresponds to sufficiently typical points. The corresponding definition is:

SkyD(Typγ(S)) = {p ∈ Typγ(S) | � ∃q ∈ Typγ(S) such that q #D p} (2)

Such an approach obviously reduces the cost of the processing since only the
points that are typical at least to the degree γ are considered in the calculus.
However, this definition does not make it possible to discriminate the points
of the result according to their degree of typicality since the skyline obtained
is a crisp set. Figure 2 illustrates this behavior and shows the maxima (circled
points) obtained when considering the points that are typical to a degree ≥ 0.7
(represented by crosses).

Another drawback of this definition is to exclude the nontypical points alto-
gether, even though some of them could be interesting answers. A more cautious
definition consists in keeping the nontypical points while computing the skyline
and transform Equation (2) into:

SkyD(Typγ(S)) = {p ∈ S | � ∃q ∈ Typγ(S) such that q #D p} (3)

Figure 3 illustrates this alternative solution. It represents (circled points) the
objets from the Iris dataset that are not dominated by any item typical to the
degree γ = 0.7 at least (represented by crosses).

With Equation (2), the nontypical points are discarded, whereas with Equa-
tion (3), the skyline is larger and includes nontypical extrema. This approaches
relaxes skyline queries in such a way that the result obtained is not a line any-
more but a stripe composed of the regular skyline elements completed with
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Fig. 2. Skyline of the Iris points whose typicality degree is ≥ 0.7

possible “substitutes”. However, the main drawbacks of this definition are: i) the
potentially large number of points returned, ii) the impossibility to distinguish,
among the skyline points, those that are not at all dominated from those that
are dominated (by weakly typical points).

3.2 Gradual View

A third version makes it possible to compute a graded skyline, seen as a fuzzy
set, that preserves the gradual nature of the concept of typicality. By doing so,
no threshold (γ) is applied to typicality degrees. The definition is as follows:

SkyD(Typ(S)) =
= {μ/p | p ∈ S ∧ μ = min

q∈S
(max(1 − μTyp(q), deg(¬(q #D p) ))} (4)

where deg(¬(q #D p)) = 1 if q does not dominate p (i.e., (q #D p) is false), 0
otherwise. A point totally belongs to the skyline (membership degree equal to
1) if it is dominated by no other point. A point does not belong at all to the
skyline (membership degree equal to 0) if it is dominated by at least one totally
typical point. In the case where p is dominated by somewhat (but not totally)
typical points, its degree of membership to the skyline depends on the typicality
of these points. Equation (4) may be rewritten as follows:

SkyD(Typ(S)) = {μ/p | p ∈ S ∧ μ = 1− max
q∈S | q�Dp

(μTyp(q))}. (5)

With the Iris dataset, one gets the result presented in Figure 4, where the
degree of membership to the skyline corresponds to the z axis. As expected, the
points of the classical skyline totally belong to the graded skyline, along with
some additional answers that more or less belong to it. This approach appears
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4 5 6 7 8
2

3

4

Fig. 3. Points that are not dominated by any other whose typicality degree is ≥ 0.7
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Fig. 4. Graded skyline obtained with the Iris dataset

interesting in terms of visualization. Indeed, the score associated with each point
makes it possible to focus on different α-cuts of the skyline. In Figure 4, one may
notice a slope from the optimal points towards the less typical or completely
dominated ones. The user may select points that are not necessarily optimal
but that represent good alternatives to the regular skyline answers (in the case,
for instance, where the latter look “too good to be true”). Finally, an element
of the graded skyline is associated with two scores: a degree of membership to
the skyline, and a typicality degree (that expresses the extent to which it is not
exceptional). One may imagine different ways of navigating inside areas in order
to explore the set of answers: a simple scan for displaying the characteristics of
the points, the use of different filters aimed, for instance, at optimizing diversity
on certain attributes, etc.
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4 Implementation Aspects

Two steps are necessary for obtaining the graded result: i) computation of the
typicality degrees, and ii) computation of the skyline. Many algorithms have been
proposed for processing skyline queries: Block-Nested-Loops(BNL) [2]; Divide
and Conquer [2]; a technique exploiting a B-tree or an R-tree [2]; an algorithm
based on bitmap indices [13]; an improvement of the BNL method, named Sort-
Filter-Skyline [5,6], and a strategy proposed in [1] that relies on a preordering of
the tuples aimed to limit the number of elements to be accessed and compared.
We have based our implementation on the approach proposed in [13] with which
Formula (5) appears the easiest to evaluate.

The data structure underlying the algorithm described in [13] is an array
of Boolean values or bitmap. A bitmap index is defined for each dimension of
the skyline: every column corresponds to a possible value in the dimension con-
sidered, and every row references a tuple from the database. Value 1 at the
intersection of row l and column c means that the tuple referenced in row l has
the value corresponding to column c. Then, every point p of the database S is
tested in order to determine if it belongs to the skyline or not. For doing so,
two other data structures are created. The first one, denoted by A, gathers the
tuples that are as good as p on every dimension, the second one, denoted by B,
contains the tuples that are better than p on at least one dimension. A and B
are defined as two-dimensional tables of Booleans whose columns are associated
with the tuples of S. They are initialized using the bitmap indices.

Algorithm 1 constitutes the heart of our prototype and follows the principle
described above. We have also used three tables (T , Skygrad, A′) where each
column corresponds to a tuple of S, that contain real numbers in [0, 1]. In T ,
these numbers correspond to typicality degrees whereas in Skygrad they represent
degrees of membership to the graded skyline. AND corresponds to the logical
conjunction between the pairs of values (A[i], B[i]) so as to check whether the
point i is both as good as p on all dimensions and better than p on one dimension.
If it is the case, then this point dominates p. MULT is used to compute the
product of the values A[i] and T [i], which makes it possible to associate a point
i with its typicality degree if it dominates the point p considered. Finally, MAX
returns the maximal value of the array A. The membership degree of p to the
graded skyline is then obtained by means of Formula (5).

The computation of the typicality degrees uses a threshold on the distance
that depends on the attributes involved in the skyline query. The complexity of
the computation is obviously in θ(n2) since one has to compute the Euclidean
distance between each pair of points of the dataset.

One may think of two ways for computing typicality: either on demand, on
the attributes specified in the skyline clause of the query, or beforehand, on dif-
ferent relevant sets of attributes. The first method implies an additional cost
to the evaluation of skyline queries, whereas the second one makes it neces-
sary to update the typicality degrees when the dataset evolves. In any case, in-
dices such as those used for retrieving k nearest neighbors (for instance kdtrees)
may be exploited. Furthermore, since in general the computation of the graded
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Algorithm 1. Main algorithm for computing the graded skyline
Require: d distance, n cardinality of the dataset S , the points of the dataset p ∈ S ,

the set of dimensions {di}
Ensure: graded skyline: ∀p ∈ S , Skygrad(p)

Preprocessing: creation of the bitmap indices on the di’s
Preprocessing: computation of the typicality of the points T : ∀p ∈ S , Typ(p)
for all p ∈ S do

// Search for those points that dominate p
Creation of A
Creation of B
A := A AND B
A′ := A MULT T
Skygrad(p) := 1−Max(A′)

end for

skyline concerns only a small fragment of the database, the extra cost related to
typicality should not be too high.

It is worth emphasizing that the algorithm could be parallelized by partition-
ing the arrays A, B, A′ and T . Similarly, the creation of the structures A and B
may be parallelized, provided that the bitmap indices and the typicality degrees
are distributed or shared.

Table 2. Excerpt of the database and associated degrees (skyline and typicality)

id price km skyline typicality
1156771 6000 700 1 0.247
1596085 5800 162643 1 0.005
1211574 7000 500 1 0.352
1054357 1800 118000 1 0
1333992 500 220000 1 0
1380340 800 190000 1 0
891125 1000 170000 1 0
1229833 5990 10000 1 0.126
1276388 1300 135000 1 0
916264 5990 2514000 0.874 0
1674045 6000 3500 0.753 0.315

5 Experimental Results

The approach has been tested using a subset of the database of 845810 ads about
second hand cars from the website Le bon coin 1 from 2012. The skyline query
used hereafter as an example aims at minimizing both the price and the mileage.
In the query considered, we focus on small urban cars with a regular (non-diesel)
engine, which corresponds to 441 ads. Figure 5 shows the result obtained. In dark
1 www.leboncoin.fr
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Fig. 5. 3D representation of the graded skyline

Table 3. Excerpt of the area [0.6, 0.8]

id price km skyline typicality
870279 6900 1000 0.716 0.358
981939 6500 4000 0.637 0.363
1022586 6500 7200 0.637 0.258
1166077 7750 2214 0.642 0.532
1208620 6500 3300 0.716 0.363
1267726 6500 100000 0.637 0
1334605 10500 500 0.647 0.642
1366336 7490 4250 0.637 0.516
1529678 7980 650 0.647 0.458
1635437 9900 590 0.647 0.621
1685854 7890 1000 0.642 0.458

grey are the points that belong the most to the skyline (membership degree
between 0.8 and 1). These points are detailed in Table 2. According to the
definition used, points dominated by others that are not totally typical belong
to the result. It is the case for instance of ad number 916264 that is dominated
by ads numbered 1054357 and 1229833. The identifiers in bold correspond to
the points that belong to the regular skyline. One may observe that the points
from Table 2 (area [0.8, 1]) are not very (or even not at all) typical. Moreover,
certain features may not satisfy the user (the mileage can be very high, the price
can be very low) and may look suspicious. On the other hand, Table 3, which
shows an excerpt of the 0.6-cut of the graded skyline, contains more typical –
thus more credible – points whose overall satisfaction remains high. Let us also
mention that the time taken by the precomputation of the typicality degrees
associated with the selected elements is twice as large (around 0.54 second) as
the time devoted to the computation of the graded skyline (about 0.22 second).
However, this result must taken carefully as the computation of typicality has
not been optimized in the prototype yet.
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6 Conclusion

In this paper, we have proposed a graded version of skyline queries aimed at
controlling the impact of exceptions on the result (so as to prevent interesting
points to be hidden because they are dominated by an exceptional one). An
improvement could consist in using more sophisticated techniques for character-
izing the points according to their level of representativity as a typicality-based
clustering approach [11] or statistical methods for detecting outliers [10]. As a
short-term perspective, we intend to carry out a parallel implementation of the
algorithm and to use indexes for reducing the processing time devoted to the
computation of typicality degrees.
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Abstract. The Qualitative Choice Logic (QCL) is devoted to a logic
expressing preferences for Boolean alternatives. This paper puts the first
foundations to extend QCL to fuzzy alternatives. In particular, some
relationships between QCL and the bipolar expression of preferences
queries are emphazised. A new type of bipolar conditions is defined in the
Boolean context to express QCL statements. This new type of bipolar
conditions is extended to graduality and it is shown that this extension
can be the basis to define a gradual QCL model.

Keywords: database, preference query, qualitative choice logic, bipo-
larity.

1 Introduction

This paper is devoted to the integration of user’s preferences inside queries ad-
dressed to relational databases (see as examples, [1,2,3]). More precisely, we con-
sider fuzzy bipolar conditions to model sophisticated user preferences [4,5,6,7,8,9].
In this context, a fuzzy bipolar condition is made of two fuzzy predicates (two
poles), the first one expresses a constraint to define the elements to be retrieved
(its negation is the set of values to be rejected), the other one expresses a more
restrictive attitude to define the best elements (among the ones satisfying the
constraint). The advantage of this type of condition can be illustrated by the
querying of a database of a travel agency. A fuzzy bipolar condition can be useful
to take into consideration two aspects: the mandatory requirement of the client
(a trip in Italy with a cheap price) and the less important requirements (a trip
in august including Roma and Pisa). Here, it is not only a matter of importance
but also a matter of obligation. A trip which does not satisfy the mandatory
requirements (not in Italy or without a cheap price) is rejected.

Independently, a Qualitative Choice Logic (QCL) has been proposed where a
new connective in propositional logic has been defined (A−→×B) to express ordered
disjunctions (if A, but if A is impossible then at least B). This new connective
is closely related to the "or else" type of fuzzy bipolar conditions.
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This paper shows some relationships between fuzzy bipolar conditions and
QCL statements. We define the first basis of a gradual QCL and the ultimate
aim is to enrich bipolar queries by the use of this logic.

Section 2 provides a very brief summary of the relational algebra defined in
[6] for fuzzy bipolar conditions. A presentation of QCL is introduced in Section
3. Section 4 discusses a comparison of both theories. Finally, Section 5 shows
the basis for the definition of a gradual QCL.

2 A Relational Algebra for Fuzzy Bipolar Condition

A bipolar condition is an association of a negative condition (negative pole) and
positive condition (positive pole). In this paper, a bipolar condition is made of
two conditions defined on the same universe: i) a constraint c, which describes
the set of acceptable elements, ii) a wish w which defines the set of desired
or wished elements. The negation of c is the set of rejected elements since it
describes non-acceptable elements. Since it is not coherent to wish a rejected
element, the following property of coherence holds: w ⊆ c.

In addition, condition c is mandatory because an element which does not
satisfy c is rejected; ¬c is then considered as the negative pole of the bipolar
condition. Condition w is optional because its non-satisfaction does not auto-
matically mean the rejection. But condition w describes the best elements and
w is then considered as the positive pole of the bipolar condition.

If c and w are boolean conditions, the satisfaction with respect to (c, w) is
an ordered pair from {0, 1}2. When querying a database with such a condition,
tuples satisfying the constraint and the wish are returned in priority to the user.
They are the top answers. Tuples satisfying only the constraint are delivered but
are ranked after the top answers. If there is no top answers, they are considered
as the best answers it is possible to provide to the user.

If c and w are fuzzy conditions (defined on the universe U), the property of
coherence becomes: ∀u ∈ U, μw(u) ≤ μc(u). The satisfaction is a pair of degrees
where μw(u) expresses the optimality while μc(u) expresses the non rejection.
When dealing with such conditions, two different attitudes can be considered.
The first one is to assess that the non rejection is the most important pole and
the fuzzy bipolar condition is an and-if-possible condition (to satisfy c and if
possible to satisfy w). The idea is then "to be not rejected and if possible to
be optimal". The satisfaction with respect to such a fuzzy bipolar condition is
denoted (μc(u), μw(u)). The second attitude is the opposite one, it considers
that the optimality is the most important pole and the fuzzy bipolar condition
is an or-else condition (to satisfy w or else to satisfy c). The idea is then "to be
optimal or else to be non rejected". The satisfaction with respect to such a fuzzy
bipolar condition is denoted [μw(u), μc(u)]. Both types of conditions are different
because it is possible to show [6] that the same values of satisfaction for w and c
does not lead to a same ordering whether it is an and-if-possible condition or an
or-else condition. The satisfactions with respect of both types of conditions can
be sorted using the lexicographical order and the minimum and the maximum on
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the lexicographical order can respectively be used to define the conjunction and
disjunction of fuzzy bipolar conditions [6]. The negation of an and-if-possible
condition is an or-else condition (and vice-versa) and an algebraic framework
can be defined [6] to handle fuzzy bipolar conditions. Another definition for the
negation can be found in [10] but this negation cannot be interpreted as a fuzzy
bipolar condition.

3 A Qualitative Choice Logic

The Qualitative Choice Logic [11] (QCL) defines a new connective in proposi-
tional logic (A−→×B) to express ordered disjunctions (if A, but if A is impossible
then at least B).

In QCL each logical expression is associated to an integer stating its level of
satisfaction (it is called degree by the authors). The level 1 is the full satisfaction
and the higher this level, the less satisfied the expression. The rules defining the
Qualitative Choice Logic are the following ones (where I is an interpretation, A,
Ai are propositional rules and P and Q ordered disjunctions):

(1) I |=k (A1
−→× . . .−→×An) iff I |= (A1 ∨ . . . ∨ An) and k = min{j | I |= Aj};

(2) I |=k A iff k = 1 and A ∈ I (for propositional atom A);
(3) I |=k (P ∧Q) iff I |=m P and I |=n Q k = max(m,n);
(4) I |=k (P ∨Q) iff I |=m P or I |=n Q and k = min{r | I |=r P or I |=r Q};
(5) I |=k ¬A iff k = 1 and A /∈ I (for propositional atom A);
(6) I |=k ¬(A1

−→× . . .−→×An) iff I |=k (¬A1
−→× . . .−→×¬An).

Rules (1)-(4) are obvious and comes from the definition of QCL [11]. Rule (5)
is nothing but the negation used for propositional atoms. Rule (6) is a little bit
more complex since it defines the negation of an ordered disjunction. It is not the
original definition proposed in [11] but a more recent one introduced in [12] in
the context of Prioritized Qualitative Choice Logic (PQCL). The idea of PQCL
is to overcome the drawbacks of the original proposition for the negation and to
introduce a prioritized disjunction and conjunction (which are not commutative,
see [12] for more details).

Finally, a last rule (from the original QCL [11]) allows a construct of ordered
disjunctions from ordered disjunctions:

(7) I |=k (P−→×Q) iff I |=k P or (I |=1 ¬P and I |=m Q and k = m+ opt(P ))

where opt(P ) is the number of satisfaction levels for P.

This rule (7) states that if I satisfies P , at a certain level, then it satisfies P−→×Q
at the same level. When it does not satisfy P , its satisfaction for P−→×Q is given
by the one from Q but with a penalization (of opt(P )) due to its non satisfaction
to P .

However, it is possible to show that the rule (6) defining the negation does not
fully satisfy the requirement for a negation (see Example 1). As a consequence,
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we ignore this rule in this paper and we suggest in section 4 (definition (6’)) an
alternative definition for the negation of QCL statements.

Example 1. A user is looking for a trip and his preference is "if possible Air
France (AF) and if Air France is impossible then KLM and if KLM is impos-
sible then British Airways (BA)". This preference is expressed by the ordered
disjunction:

AF −→× KLM −→× BA.

An interpretation I1 = {AF} receives the level 1 of satisfaction, an interpre-
tation I2 = {KLM} receives the level 2 of satisfaction, and an interpretation
I3 = {BA} receives the level 3 of satisfaction. As a consequence, I1 is preferred
to I2 which is preferred to I3. According to (6), the negation is:

¬ AF −→× ¬ KLM −→× ¬ BA,

and then both interpretations I2 and I3 receive level 1 while interpretation I1 re-
ceives level 2. This behaviour looks difficult to be justified for database querying
because we expect I3 to be preferred to I2 to be preferred to I1 for the negation
(we expect a negation to reverse the order).

4 Fuzzy Bipolar Conditions and QCL

This section compares fuzzy bipolar conditions and QCL. Since QCL is defined in
a Boolean context, we should consider the restriction of fuzzy bipolar conditions
to Boolean predicates (bipolar conditions). Furthermore, such (boolean) bipolar
conditions should be extended to several components.

The first subsection (4.1) introduces this new type of bipolar conditions
(Boolean multipolar conditions or BMC for short). The next section (4.2) shows
that QCL is in adequation with the semantics conveyed by this new type of
bipolar conditions.

4.1 Boolean Multipolar Conditions

We consider the extension of the fuzzy bipolar condition to several arguments
to define BMC’s made of n arguments (an example of a multipolar or-else con-
dition is "C1 or else C2 or else . . . or else Cn"). We consider the case of Boolean
arguments and we propose an interpretation for these conditions, a disjunction,
a conjunction and a negation. The original bipolar conditions [6] restricted to
boolean conditions is a particular case of the results introduced here (it is the
case where n=2).

In the following C1, C2, . . ., Cn are n boolean conditions such that ∀i, Ci ⇒
Ci+1. It means that condition Ci+1 is a relaxation of condition Ci (Ci is included
in Ci+1). This property is called normalization.



134 L. Liétard, A. Hadjali, and D. Rocacher

Definition. A (multipolar) "or else" condition is noted [C1, C2, . . . , Cn] and
expresses "to satisfy C1 or else to satisfy C2 or else . . . or else to satisfy Cn",
while a (multipolar) "and if possible" condition is noted (Cn, C(n−1), . . . , C1)
and expresses "to satisfy Cn and if possible to satisfy C(n−1) and if possible
. . . and if possible to satisfy C1".

It is very important to keep the property : ∀i, Ci ⇒ Ci+1. Condition Ci+1 is
a relaxation of condition Ci and the "or else" has a precise meaning: to satisfy
a condition or else a relaxation of this condition. Similarly, the "and if possible"
condition has a precise meaning: to satisfy a condition and if possible a more
restrictive variante of this condition.

The satisfaction of different elements with respect of both types of conditions
can be represented by a vector of n values from {0, 1}. The different vectors can
be ranked using the lexicographical order. The highest the ranking, the more
preferred the element. In case of an "or else" condition, the first positions of this
vector are the 0 values while the last values are 1 values (if such values exists).
One can observe that the vector is sorted in increasing order. In case of an "and
if possible" condition, the first positions of this vector are the 1 values (if such
values exists) while the last values are 0 values. One can observe that the vector
is sorted in decreasing order. We can now define the following properties (the
proof is obvious).

Property 1. An "or else" condition is entirely false when the associated vector
is made of 0 (it has no rank). Otherwise, the ranking is the position of the first
value 1 in the vector. In other words, the ranking is (k’+1) where k’ is the num-
ber of 0 values in the vector (due to the normalization).

Property 2. An "and if possible" condition is entirely false when the associated
vector is made of 0 (it has no rank). Otherwise, the ranking is (k’+1) where k’
is the number of 0 values in the vector.

It means that, since we deal with Boolean arguments, the ranking is the same
whether we deal with "C1 or else C2 or else . . . or else Cn" or "Cn and if possible
C(n−1) and if possible . . . and if possible C1" conditions. As a consequence, when
dealing with Boolean predicates, multipolar "or else" conditions and multipolar
"and if possible" conditions lead to same results (a similar conclusion is made [6]
when dealing with only two conditions). Mutipolar Boolean conditions of type
"or else" and "if possible" are then equivalent (due to the Boolean context).

As a consequence, in the following we only deal with multipolar "or else"
conditions but the obtained results are also valid for multipolar "and if possible"
conditions. Furthermore, we consider the level of ranking in the lexicographical
order as the level of satisfaction of a bipolar condition (the smaller the level, the
more preferred it is).

We now define the negation, the conjunction and the disjunction of bipolar
conditions.
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Negation. The negation of [C1, C2, . . . , Cn] is [¬Cn, ¬C(n−1), . . . , ¬C1].

Proof. It is obvioulsy idempotent, and it reverses the order (since the ranking
of a condition is the number of 0). The vector made of 0’s is turned into the one
made of 1’s and vice-versa.

One may remark that the normalization is kept by the negation. Let A and B
be two "or else" conditions:

Conjunction. A ∧B has no level of satisfaction when A or B is entirely false.
Otherwise, the level of satisfaction for A ∧ B is max(k, k′) where k is the level
of satisfaction of A and k′ the one for B.

Disjunction. A∨B has no level of satisfaction when A and B are entirely false.
When only A (resp. B) is entirely false, the level of satisfaction for A∨B is that
of B (resp. A). Otherwise, the level of satisfaction for A∨B is min(k, k′) where
k is the level of satisfaction for A and k′ the one for B.

It is obvious to show that these two definitions satisfy the properties of a con-
junction (extended t-norm) and disjunction (extended t-conorm).

MBC’s can then be handled using extended algebraic operators (conjunction,
disjunction and negation). On may remark that a Boolean condition C is rewrit-
ten [C,C, . . . , C] or equivalently (C,C, . . . , C) and its vector representing its
satisfaction is either the vector made only with values 1 or only with values 0.

4.2 QCL and Boolean Multipolar Conditions

First of all, in order to compare QCL and BMC’s it is necessary to limit the
application of QCL to a particular form of formulas. This form is that of nor-
malized formulas defined by:

A1
−→× . . .−→×An with ∀i, Ai ⇒ Ai+1.

This is not a real limitation of QCL because any QCL expression can be nor-
malized1 and it does not affect the meaning of QCL and its rules.

Result. The negation excepted, QCL statements and rules can be expressed
by MBC’s.

Proof. The obtained ranking for (A1
−→× . . .−→×An) in QCL and [A1, . . . , An] (even

if it is not normalized) are the same (it is the position of the first value 1). The
disjunction and the conjunction are similar for QCL and MBC’s. Rules (1),(3)

1 Each QCL expression C1
−→× . . .−→×Cn is turned into A1

−→× . . .−→×An with Ai = C1 ∨
C2 ∨ . . . Ci.
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and (4) can then be defined by MBC’s. Rules (2) and (5) (dealing with propo-
sitional atoms) can also be expressed by MBC’s because a Boolean condition C
is defined as "C or else C or else C . . ." and its level is 1 when it is satisfied.
However, it can be observed that the negation (6) is not the one proposed for
MBC’s. EndProof.

In order to have a complete matching between QCL and MBC’s, it is necessary
to replace negation (6) of QCL by a new definition of the negation. This new
definition is given by (6’):

(6’) I |=k ¬(A1
−→× . . .−→×An) iff I |=k (¬An

−→× . . .−→×¬A1).

It is possible to show that the negation defined by (6’) satisfies the order-reversing
property:

Properties

– I |=k (A1
−→× . . .−→×An) (with k �= 1) ⇔ I |=k′ ¬(A1

−→× . . .−→×An) with k′ =
n+ 2− k;

– I |=1 (A1
−→× . . .−→×An) ⇔ I is not considered for ¬(A1

−→× . . .−→×An) (i.e. ¬∃k
such that I |=k ¬(A1

−→× . . .−→×An));
– I |=1 ¬(A1

−→× . . .−→×An) ⇔ I is not considered for (A1
−→× . . .−→×An) (i.e. ¬∃k

such that I |=k (A1
−→× . . .−→×An)).

Proof

– We consider I |=k A1
−→× . . .−→×An (with k �= 1). We get I |= (A1 ∨ . . . ∨ An)

and k = min{j | I |= Aj}. Since k is a minimum, then:
• ∀1 ≤ j ≤ (k − 1), I |= ¬Aj (if it not holds, as example for k = 5 and

for j=2, we have I |= A2 and then the minimum is smaller or equal to 2
and it cannot be k),

• I |= Ak and, due to the normalization, ∀j, k ≤ j ≤ n, I |= Aj .
As a consequence we obtain I |=k′ (¬An

−→× . . .−→×¬A1) with k′ = n + 2 − k.
From (6’) we get I |=k′ ¬(A1

−→× . . .−→×An) with k′ = n+ 2− k.
– When I |=1 A1

−→× . . .−→×An ⇔ I |= A1 ⇔ due to the normalization, ∀j, 1 ≤
j ≤ n, I |= Aj ⇔ ¬∃k such that I |=k ¬(A1

−→× . . .−→×An).
– When I |=1 ¬(A1

−→× . . .−→×An) ⇔ I |=1 (¬An
−→× . . .−→×¬A1) ⇔ I |= ¬An

⇔ due to the normalization, ∀j, 1 ≤ j ≤ n, I |= ¬Aj ⇔ ¬∃k such that
I |=k (A1

−→× . . .−→×An).

Example 2. We reconsider Example 1 already given for the negation. A user is
looking for a trip and his preference is "if possible Air France and if Air France
is impossible then KLM and if KLM is impossible then British Airways". This
preference is expressed by the (normalized) ordered disjunction:

AF−→×(AF ∨KLM)−→×(AF ∨KLM ∨BA).
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An interpretation I1 = {AF} receives the level 1 of satisfaction, an interpre-
tation I2 = {KLM} receives the level 2 of satisfaction, and an interpretation
I3 = {BA} receives the level 3 of satisfaction. As a consequence, I1 is preferred
to I2 which is preferred to I3. The negation is:

¬(AF ∨KLM ∨BA)−→×¬(AF ∨KLM)−→×¬AF .

Then, interpretation I1 is not considered (¬∃k such that I1 |=k ¬(AF ∨KLM ∨
BA)−→×¬(AF ∨KLM)−→×¬AF ), interpretation I2 receives level 3 while interpre-
tation I3 receives level 2. The order is reversed and interpretation I1 is not
considered by the negation since it is the best one for the (not negated) ordered
disjunction. Furthermore, if we consider interpretation I4 = {AL} which sells
tickets only with Alitalia, this interpretation is not considered by AF−→×(AF ∨
KLM)−→×(AF ∨KLM ∨BA) (¬∃k such that I1 |=k AF−→×(AF ∨KLM)−→×(AF ∨
KLM ∨BA)) but it has level 1 for its negation.

5 Towards a Gradual Qualitative Choice Logic

In this section, we consider fuzzy conditions defined on a symbolic scale of m
values {w1 = best, w2 = very-good, w3 = good, . . . , wm = rejected} instead of
the unit interval [0, 1]. This symbolic scale is such that (wi > wi+1) and (∀i, w̄i

= 1−wi = wm−i+1). When comparing with the unit interval [0, 1], such a scale
is easier to be understood by an and user and it does not change the obtained
results. Furthermore, in the following C1, C2, . . ., Cn are n fuzzy conditions such
that ∀i, ∀u, μCi(u) ≤ μCi+1(u). Condition Ci+1 is a relaxation of condition Ci.

Definitions. A fuzzy (multipolar) "or else" condition is noted [C1, C2, . . . , Cn]
and expresses "to satisfy C1 or else to satisfy C2 or else . . . or else to satisfy Cn"
while a fuzzy (multipolar) "and if possible" condition is noted (Cn, C(n−1), . . . ,
C1) and expresses "to satisfy Cn and if possible to satisfy C(n−1) and if possible
. . . and if possible to satisfy C1".

Here again, it is very important to keep the property such that condition Ci+1

is a relaxation of condition Ci and an "or else" condition has a precise meaning:
to satisfy a condition or else a relaxation of this condition. A fuzzy multipolar
"or else" condition can be illustrated by the following example: "find the trips
having a cheap price and a short flight time or else a cheap price". Similarly, an
"and if possible" condition has a precise meaning: to satisfy a condition and if
possible a more restrictive version of this condition.

The satisfaction of different elements with respect of both types of condi-
tions can be represented by a vector of n values from {w1, w2, w3, . . . , wm}. The
different vectors can be ranked using the lexicographical order. The higher the
ranking, the more preferred the element. We observe that, in case of an "or else"
condition, the vector is sorted in increasing order. We observe that, in case of
an "and if possible" condition, the vector is sorted in decreasing order. Further-
more, we consider the level of ranking in the lexicographical order as the level
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of satisfaction of a bipolar condition (the smaller the level, the more preferred it
is). The rank of one vector can be computed using the indexes of its components
(the proof of the following property is omitted due to a lack of space). We recall
that a vector made of 0 values has no rank because it corresponds to an entirely
false bipolar condition.

Property 3. We consider a fuzzy multipolar condition of type [C1, C2, . . . , Cn]
or (Cn, C(n−1), . . . , C1). The ranking position k in the lexicographical order is:

k =
∑(n−1)

j=1 mn−j(λj − 1) + λn,

where m is the number of symbols in the symbolic scale, and the vector express-
ing the satisfaction of the bipolar condition is noted (ωλ1 , ωλ2 , . . . , ωλn).

The conjunction and the disjunction of bipolar conditions are the same as
the ones shown in 4.1. It is obvious to show that these two definitions satisfy
the properties of a conjunction (extended t-norm) and disjunction (extended t-
conorm). We now define the negation:

Negation. The negation of [C1, C2, . . . , Cn] is (¬C1, ¬C2, . . . , ¬Cn) and the
negation of (Cn, C(n−1), . . . , C1) is [¬Cn, ¬C(n−1), . . . , ¬C1].

Proof. The proof is similar to the one introduced in [6] where bipolar conditions
made of two components are considered.

One may remark that the normalization is kept by the negation. In addition,
this definition is in accordance with the one introduced in section 4.1 in the case
of Boolean condition Ci’s. The negation of [C1, C2, . . . , Cn] is (¬C1, ¬C2, . . . ,
¬Cn) which is equivalent to [¬Cn, ¬C(n−1), . . . , ¬C1] in the Boolean case.

Fuzzy multipolar conditions can then be handled using extended algebraic
operators (conjunction, disjunction and negation). One may remark that a fuzzy
condition C is rewritten [C,C, . . . , C] or equivalently (C,C, . . . , C) and the vector
representing its satisfaction is the vector made only with its satisfaction value.

The extension of QCL rules to fuzzy alternatives can be based on these defini-
tions. For this purpose, it becomes necessary to consider the ordered conjunction
in addition to the ordered disjunction. More precisely, fuzzy multipolar condi-
tions of type "and if possible" are defining ordered conjunctions while fuzzy
multipolar conditions of type "or else" are defining ordered disjunctions.

6 Conclusion

This paper has considered the Qualitative Choice Logic (QCL) and a new type
of bipolar expression for preference queries: Boolean multipolar conditions to ex-
press conditions like "C1 or else . . . or else Cn" or like "Cn and if possible . . . and
if possible C1" where each Boolean condition Ci+1 is a relaxation of the Boolean
condition Ci. The conjunction, disjunction and negation have been defined for
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such conditions and it has been shown how QCL can be expressed using these
new types of bipolar conditions. The Boolean multipolar conditions have been
extended to fuzzy predicates (each Ci is then a fuzzy predicate) and definitions
for the conjunction, the disjunction and the negation of such conditions have
been proposed. This extension provides the basis for a gradual QCL model in
order to consider fuzzy alternatives in QCL. Future works would aim at defin-
ing the complete specification of a gradual QCL and its application to database
querying.
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Abstract. Using linguistic fuzzy variables to describe data improves the
interpretability of data querying systems and thus their quality, under
the condition that the considered modalities induce an indistinguishabil-
ity relation in adequacy with the underlying data structure. This paper
proposes a method to identify and split too general modalities so as to
finally obtain a more appropriate vocabulary wrt. the data structure.

Keywords: interpretability, indistinguishability, linguistic variables,
adequacy.

1 Introduction

The use of linguistic variables leads to interpretable descriptions of data that can
be easily understood by human beings, making it possible to improve the quality
of data querying processes. Furthermore, the choice of the considered linguistic
terms can be left to the user, e.g. an applicative context expert, offering the
possibility for personalization, improving further the system quality.

Formally, fuzzy linguistic variables can be used to faithfully model the impre-
cise and gradual nature of the terms. They induce indistinguishability relations
insofar as objects with different numerical values cannot be distinguished if they
are described with the same linguistic labels. This indistinguishability is legiti-
mate as it corresponds to objects that are equally preferred by the expert.

However, the vocabulary is defined by an expert for a given applicative con-
text but not a particular data set, and it is necessary to check whether the in-
distinguishability relation does not hide the data specificity and the existence of
subgroups that should be differentiated. This issue can be illustrated by the fic-
titious example of a tourism office expert who possesses a vocabulary to describe
and query hotels in Paris, France. If he is asked to deal with hotels in Sophia, Bul-
garia, where the accommodation market is globally cheaper, the modality used
to characterize cheap hotels may not be appropriate anymore, as illustrated in
Fig. 1: most of the different groups of Bulgarian hotels, {C1, C2, C3, C4}, fully
satisfy the modality cheap and are thus indistinguishable on their price.
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Fig. 1. Inappropriate vocabulary to describe Bulgarian hotels (fictitious values)

This paper proposes to address this issue through the detection of inadequate
modalities and the suggestion of local modifications through modality splitting,
leading to a specific case of vocabulary revision to better adapt to a given data
set. For the illustrative example, the proposed methodology for instance decom-
poses the modality cheap to finally have a more refined linguistic description of
the hotels in the Bulgarian data set.

It must be underlined that inappropriate modalities are interpreted here as
too general terms that inadequately cover several data subgroups. Too detailed
terms that may introduce distinctions within natural data subgroups, are not
considered as problematic: they can be exploited using term disjunctions and do
not lead to misleading data interpretations as too general terms do.

The paper is organized as follows: Section 2 describes the considered task
more formally and discusses related works. Sections 3 and 4 present the two
main steps of the proposed method, namely the identification of problematic
modalities and the revision process based on splitting operations. Section 5 de-
scribes experimental results obtained on artificial data and Section 6 concludes
and draws perspectives for future works.

2 Formalization

This section presents the two spaces that can be used to describe the data,
respectively based on numerical attributes and on linguistic variables. It then
describes the proposed interpretation of adequacy in terms of indistinguishability
matching and discusses some related works.

2.1 Numerical Description

The considered data set, denoted by D = {x1, x2, ..., xn}, is described by m
numerical attributes A1, A2, ..., Am, respectively defined on domainDj , j = 1..m.

The data underlying structure, defined by the subgroups of similar data, can
be extracted automatically, applying a clustering algorithm [1]. In the consid-
ered task, three requirements must be taken into account when selecting an
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appropriate algorithm: it must be scalable to process large data sets, as may
arise in the data base querying context. It must also be able to automatically
determine the appropriate number of clusters: the aim is to identify the under-
lying data structure, it is not justified to assume that the data expert knows
how many clusters should be identified. Third, each cluster must be associated
to a representative, called its center: the proposed methodology relies on the
distinguishability of these cluster summaries when they are described using the
considered vocabulary.

It must be underlined that the proposed methodology aims at adjusting the
vocabulary with respect to the structure identified through the clustering step,
trusting the clustering algorithm and not questioning the results it yields.

2.2 Linguistic Description

The vocabulary whose appropriateness must be measured is defined by linguistic
variables, associating each attribute with a set of linguistic labels and a fuzzy
Ruspini partition [2]: formally, for attribute Aj , j = 1..m, aj denotes the number
of associated modalities and Vj = {vj1, . . . vjaj} their associated fuzzy sets. The
Ruspini property imposes that ∀j = 1..m, ∀x ∈ Dj ,

∑aj

k=1 μvjk(x) = 1.
This paper considers the case of trapezoidal modalities, represented by quadru-

plets (a, b, c, d) where ]a, d[ denotes the fuzzy set support and ]b, c[ its core.
An object x ∈ D can then be rewritten as a vector of

∑m
k=1 ak membership

degrees 〈μv11(x.A1), . . . , μv1a1
(x.A1), . . . , μvm1(x.Am), . . . , μvmam

(x.Am)〉 where
x.A denotes the value taken by attribute A for data point x. Due to the Ruspini
partition property, each object can partially satisfy up to two modalities for a
given attribute: the above vector has at most 2m non zero components.

As discussed in the introduction, a data representation based on fuzzy lin-
guistic variables induces an indistinguishability relation insofar as it does not
allow to differentiate between objects having the same membership degrees, in
particular the objects within the core of each modality.

2.3 Confronting Separability and Indistinguishability

The adequacy of the two description spaces can be measured by confronting
the separability of the clusters and the indistinguishability of the linguistic de-
scriptions. It thus corresponds to the accuracy issue of a fuzzy partition system,
related to its capability of faithfully and precisely describing the clusters using
the words defined in the expert vocabulary: clusters, corresponding to separated
groups of similar objects, must be linguistically described differently. It has been
shown in various applicative contexts, from fuzzy rule-based systems inference [3]
or fuzzy partitions generation [4,5] to fuzzy decision tree revision [6], that these
two notions of accuracy and interpretability are generally contradictory proper-
ties: a trade-off has to be found so as to avoid accurate but useless systems or
symmetrically interpretable systems returning irrelevant results.
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2.4 Related Works and Characteristics of the Proposed Method

There exist many criteria to measure the quality of a cluster decomposition [7,8]
or the global adequacy between two partitions [9,10]. However, these methods
usually compare only numerical descriptions of the data and do not aim at
matching different types of data representations.

In [11], the adequacy between a numerical and a linguistic representation is
quantified, in a global approach that evaluates the whole set of linguistic variables
altogether. In this paper, we propose a local approach, considering each modality
in turn: it makes it possible to identify inappropriate modalities and to suggest
modifications for the latter.

There exist methods to elicit fuzzy sets from numerical data descriptions [5,3],
e.g. for inducing fuzzy decision trees [4,6]. In this paper we propose to start from
the user defined vocabulary and to perform local revision, so as to increase
interpretability and to preserve the personalization capability of the system.

In these approaches that automatically generate fuzzy partitions or fuzzy
rules, the interpretability of the system is e.g. quantified by the standard devia-
tion of the number of partition elements [3] or of their density [5]. In [3], it is also
pointed out that the use of normalized partitions that cover the whole domain of
each attribute without huge overlapping and with distinguishable prototype ele-
ments for each partition element improves the overall interpretability: the latter
mainly depends on the distinguishability of the most representative elements [3],
when using the vocabulary terms.

This justifies the use of Ruspini partitions to represent the expert vocabulary
and the focus on cluster centers distinguishability during the vocabulary revision
process. Moreover, considering centers only, as a summary of the cluster instead
of all its members, offers a scalability property. Finally, as a subjective notion,
interpretability is also related to the fact that the proposed method performs
local revision and reduces the modifications of the expert vocabulary.

3 Identification of Problematic Modalities

3.1 Principle

As described and justified in Section 2.1, given a data set and an expert vocab-
ulary, the preliminary step of the proposed methodology consists in identifying
the cluster decomposition of the data.

The first step then consists in identifying inappropriate fuzzy modalities, that
induce an indistinguishability relation that does not match structural distin-
guishability: the adequacy of a given modality is derived from its ability to
distinguish between well separated cluster centers.

Indeed, its adequacy cannot be defined solely from its ability to distinguish all
cluster centers, as illustrated on Figure 2: both in the left and right cases, Ci and
Cj are described with the modality v and thus indistinguishable. However, in the
right case, they are not distinguished in the numerical description space either:
the considered attribute is not relevant to characterize these clusters. Thus they
should not imply that v is problematic, contrary to the left case.
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Fig. 2. (Left) Problematic indistinguishability, (right) justified indistinguishability

3.2 Proposed Method

The adequacy of a modality v = (a, b, c, d) associated to an attribute A is assessed
using the following 4-step procedure:

1. Identify the relevant clusters C, defined as clusters mainly represented by v
on attribute A, i.e. such that μv(c.A) ≥ 0.5 where c is C center.
Indeed it can be considered that clusters mainly represented by other modal-
ities are not significant to assess v adequacy.

2. Sort the relevant clusters according to the value of their center on A.
3. Measure the relative numerical distance for all pairs of adjacent relevant

centers (ci, cj), as their distance according to attribute A compared to v
support: disv(ci, cj) = (cj .A − ci.A)/(d − a). The support of v thus defines
a distance scale, making the definition of adequacy given below relative to
each modality. The lower disv, the more indistinguishable the two adjacent
centers.

4. Measure the linguistic indistinguishability for all pairs of successive relevant
centers indv(ci, cj) = 1 − 2 × |μv(ci.A) − μv(cj .A)|. The factor 2 is used to
obtain a value in [0, 1] as μv(ci.A) ≥ 0.5 and μv(cj .A) ≥ 0.5.

The adequacy issue can then be visualized in the two-dimensional space illus-
trated by Fig 3. A point in this space represents a triplet composed of a modality
and two adjacent centers that are mainly rewritten by the considered modality.
Four regions can be considered: the upper left part corresponds to centers that
are relatively far apart and have a low linguistic indistinguishability, i.e. that have
satisfyingly distinct rewritten forms. They thus indicate an adequate modality.
Symmetrically, the lower right part corresponds to numerically close centers with
high linguistic indistinguishability. On the contrary, the upper right part corre-
sponds to centers that are relatively far apart but have the same rewritten form
for the considered modality. It thus indicates too large modalities that are in-
adequate and may be solved by a splitting operation, as presented in the next
section. The lower left region corresponds to centers that are close in the numer-
ical space, mainly rewritten by the same modality but with different degrees.
They may be made more indistinguishable by adjusting the slopes of the fuzzy
modalities. However this less problematic kind of local revision of the vocabulary
is left for future work.
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Fig. 3. Confronting numerical center distance and linguistic indistinguishability

4 Suggestion of Local Revisions

4.1 Priority Order for Revision

In order to process first the most serious cases of indistinguishability, i.e. the ones
from the upper right part of Fig. 3, the two previous criteria are aggregated into
a degree of seriousness defined as

ds(v, ci, cj) = min(disv(ci, cj), indv(ci, cj)).

where ci and cj are two relevant adjacent centers, i.e. adjacent centers mainly
rewritten by v. These values are then aggregated at the modality level as

DS(v) =
1

M

∑
ds(v, ci, cj),

where the sum applies to all pairs of relevant adjacent centers and M is the
number of such pairs.

The modalities can then be processed in decreasing order of DS and for
a given modality, the problematic pairs of centers in decreasing order of ds.
Revisions may be suggested only for the modalities whose degree is higher than
a predefined threshold, or iteratively for all problematic modalities as long as
the expert validates them.

4.2 Modality Split

The revision of a modality defined on attribute A and represented by v =
(a, b, c, d) due to the insufficient indistinguishability of two relevant adjacent
centers c1 and c2 is performed through a splitting operation that leads to 2
new trapezoidal modalities, respectively defined as v′ = (a, b′, γ, δ) and v′′ =
(γ, δ, c′, d). Thus the modality support outer bounds a and d are kept unchanged.

The core outer bounds of the 2 new modalities v′ and v′′ are possibly expanded
into b′ = min(b, c1.A) and c′ = max(c, c2.A): these definitions guarantee that
each cluster center totally belongs to one modality. This may lead to modifying
the modalities adjacent to v so as to preserve the Ruspini partition property.
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Fig. 4. Modality splitting to improve the cluster interpretability

The inner bounds γ and δ then determine the indistinguishability regions in-
duced by v′and v′′. It is not justified to define them so as to try to optimize
the separation between the cluster members as the latter can be justified by di-
mensions others than A. This is illustrated in Fig. 4: when restricted to the sole
attribute A, the two clusters overlap, making it impossible to justify a splitting
position. Therefore we propose to define γ and δ in adequacy with the distribu-
tion of the whole data set in the interval [b, c], so that their difference corresponds
to the maximal gap between successive values observed on A: indexing the data
x ∈ D so that they are sorted according to their A values, we set

l∗ = argmax
l

(xl+1.A− xl.A) γ = xl∗ δ = xl∗+1

This favours splitting in low density regions, which leads to the desired matching
between the revised partition and the data distribution. It can be observed that,
on the other hand, it may lead to modalities with low degree of fuzziness if the
local data density is high. Finally, the system asks the expert to linguistically
qualify the two modalities resulting from the split operation.

5 Experimental Results

5.1 Considered Data Set

Experiments to assess the relevance of the proposed methodology are carried out
on a small representative 2D artificial data set, generated as a mixture of 3 well-
separated Gaussian distributions. It is illustrated on the left part of Fig. 5 that
also shows the considered initial vocabularies. For the x attribute, 6 partitions
are considered, ordered by increasing number of modalities. P1 contains a single,
too generic, modality that makes all data indistinguishable. P2 is a correct par-
tition with the two expected modalities. It must be underlined that it actually
leads to the same rewriting form for the centers of the two left subgroups. P2a
also contains 2 modalities, but the position of the transition between them is
inappropriate wrt. the data distribution. P3 and P3l contain 3 modalities mak-
ing the central part of the space indistinguishable and bridging the gap between
the two lower subgroups. They differ by the size of the overlapping region. Par-
tition P4 represents a too detailed partition with too many modalities. For the
y-attribute, a single linguistic variable is considered, defined by a partition that
matches the data distribution.
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Fig. 5. (Left) Considered data and vocabularies, (right) clustering results (* denotes
the identified cluster centers) and revised vocabularies

The underlying structure of the data set is automatically extracted applying
the l-fcmed-select algorithm [12], that satisfies the requirements described in
Section 2.1. As can be seen on the upper right part of Fig. 5, it succeeds in
identifying 3 clusters, only a few incorrect assignments occur.

5.2 Obtained Results

Revised Modalities. The proposed methodology is applied on this data set
with the threshold for the degree of seriousnessDS being set to 0.2. The obtained
revised modalities are shown on the right part of Fig. 5: the partitions P2, P3
and P4 are left unchanged, as well as the partition defined on the y-attribute,
whereas P1, P2a and P3l are modified.

Indeed, for the partition defined on the y-attribute, the first modality, denoted
by vy1 leads to the same rewritten form of the lower cluster centers denoted by c2
and c3: indvy1(c2, c3) = 1. Yet these centers are very close in the numerical space
and disvy1 (c2, c3) = 0.07. Thus ds(vy1, c2, c3) < 0.2. For the second modality,
there is no pair of centers mainly represented by vy2, thus it does not need
rewriting either. The same principle applies to partition P2 on the x-attribute:
for the first modality vx1, indvx1(c1, c2) = 1 but disvx1(c1, c2) = 0.006, thus its
degree of seriousness is below the revision threshold: the identical rewriting form
for the cluster centers is justified by their low difference in the numerical domain,
not needing revision.

For partition P4, all centers have distinct rewriting forms, so no pair of cen-
ters is mainly represented by a common modality. This is compatible with the
principle stated in the introduction: P4 e.g. allows to describe the rightmost
cluster as the disjunction “vx3 or vx4”. Therefore the too detailed partition does
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Table 1. Average and standard deviation of the vocabulary quality measured by the
qXB criterion [11] over 1000 initializations of the clustering algorithm

Partition Before revision After revision
P1 Inf 0.04 ± 0.04
P2 0.04 ± 0.03 0.04 ± 0.04
P2a Inf 0.24 ± 0.03
P3 0.20 ± 0.03 0.21 ± 0.05
P3l Inf 0.36 ± 0.07
P4 0.33 ± 0.05 0.34 ± 0.06

not misleadingly ignore the underlying data distribution and does not need re-
vision. Similarly for partition P3, all centers have distinct rewriting forms and
no revision is necessary: although the central modality bridges the gap between
the two lower clusters, it is not considered as too general with respect to their
centers. This result is compatible with the aim of minimizing the amount of
modification to the expert vocabulary, the scale for determining whether a split
is necessary depending on the data summary through the cluster centers.

On the other hand, for partition P3l, the central modality is so large that
it reaches the cluster centers, making them indistinguishable and leading to
revision. Indeed, disvx2(c2, c3) = 0.64 and indvx2(c2, c3) = 0.63, leading to
DS(vx2) = 0.63. Splitting this modality leads to a partition similar to P4.

Partition P1 which is indeed much too general is split as expected. The max-
imal gap between successive data on the x-attribute corresponds to the low
density region that defines the limit between the two clusters; as a result, the
obtained revised P1 is very similar to the correct partition P2. Likewise, the
revision of P2a leads to split the too large modality, leading to a right modality
that indeed characterizes the rightmost cluster and a global result similar to P3.

Numerical Evaluation. In order to numerically assess the quality of the re-
vised modalities, we apply the Xie-Beni vocabulary adequacy criterion qXB [11]
that must be minimized: it is defined as the quotient between cluster compact-
ness and separability, where clusters are identified from the numerical data rep-
resentation and compactness and separability are measured from the rewritten
representation, based on a distance between vectors of membership degrees.

Table 1 shows the values obtained for each vocabulary before and after re-
vision. The low standard deviations over 1000 initializations of the clustering
algorithm show that on this data set, the l-fcmed-select algorithm is stable.

The revised partitions initially have infinite qXB: when cluster centers are in-
distinguishable, their separability is zero. It can be noted that it may be the case
that partitions with initial finite qXB undergo revision: qXB is infinite only if two
centers exactly have the same rewritten form, for all attributes and modalities,
whereas revision takes place independently for each modality. As discussed when
looking at the obtained revised partitions, qXB value for the the revised P1 is
comparable that of P2, P2a becomes comparable to P3 and P3l to P4.
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6 Conclusion and Perspectives

In the perspective of developing natural and possibly personalized data process-
ing and querying systems, this paper addressed the crucial issue of adapting a
user-defined vocabulary to the specificity of the data set it must describe. It pro-
poses a method to balance two contradictory aims: on one hand the preservation
of the user subjectivity, expressed by the linguistic terms he defines and, on the
other hand, its adequacy to the underlying data distribution. It focused on the
revision of too general terms that do not allow to make the difference between
distinct subgroups of the data and lead to misleading representation of the data
content, hiding the data specificity. The proposed method first identifies prob-
lematic modalities and then splits them in adequacy to the data distribution.

Ongoing works aim at performing a more thorough analysis of the proposed
method behaviour, in particular to study its scalability property and to process
more complex data, real data offering the possibility of a user-based subjective
evaluation. Other perspectives include the study of other vocabulary revision
principles, in particular to locally adjust the slope of the modalities.

References

1. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Computing Sur-
vey 31(3), 264–323 (1999)

2. Ruspini, E.H.: A new approach to clustering. Information and Control 15(1), 22–32
(1969)
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Abstract. This paper deals with the evaluation of aggregate queries
in the framework of an uncertain database model where the notion of
necessity is used to qualify the certainty that an ill-known piece of data
takes a given value or belongs to a given subset. Two facets of the problem
are considered, that correspond to: i) the nature of the data (certain or
uncertain), and ii) the nature of the query (crisp or fuzzy) that specifies
the relation over which the aggregate has to be computed.

1 Introduction

Uncertain information may appear in various contexts, such as data warehouses
that collect information coming from different sources, automated recognition of
objects, sensor networks, forecasts or archives where only partial information is
known for sure. In the database community, the last ten years have witnessed
a growing interest in uncertain databases, see e.g. [2, 15, 1, 5]. Let us note,
however, that the early works on the topic are much older and date back to
the late 70s and early 80s [17, 21, 16]). Most authors promote a probabilistic
modeling of uncertainty (see [20] for a detailed overview), but a few alternative
works [4] rather favor a qualitative modeling of uncertainty through possibility
theory, which is our case here. In contrast with probability theory, one expects
the following advantages when using possibility theory:

– the qualitative nature of the model simplifies the elicitation of the degrees
attached to candidate values (a symbolic scale may be used, in particular);

– in probability theory, the fact that the sum of the degrees from a distribution
must equal 1 makes it difficult to deal with incompletely known distributions.

In this latter category of approaches, a pioneering work is that by Prade and
Testemale [19] who introduced in the early 80s what may be called a “full-
possibilistic” database model (an ill-known attribute value is represented by
a possibility distribution of candidate values, and the result of a query is a
relation where each tuple is associated with a possibility and a necessity degree).
More recently, Bosc and Pivert [3] refined this model so as to make it a strong
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representation system [16] for a significant subset of relational algebra, i.e., a
model such that the uncertain relation obtained by a direct evaluation of a
query (involving authorized operators only) is equivalent to the set of classical
relations obtained when evaluating the query on each possible instance of the
uncertain database.

More recently, Bosc et al. [6, 7] introduced a new model based on possibilistic
certainty. The idea is to use the notion of necessity from possibility theory to
qualify the certainty that an ill-known piece of data takes a given value (or
belongs to a given subset). In contrast with both probabilistic databases and
possibilistic ones in the sense of [19, 3], the main advantage of the certainty-based
model lies in the fact that operations from relational algebra can be extended
in a simple way and with a data complexity that is the same as in a classical
database context (i.e., where all data are certain).

Here, our objective is to enrich the query language by introducing aggregation
operators (avg, sum, min, and max — the case of count, which is more complex,
will be only briefly discussed here). Let us recall that in SQL, aggregation op-
erators can be used either in the select clause (for instance to express a query
such as “find the average salary of the employees for each department”: select
avg(salary) from Emp group by #dep) or in a having clause (for instance in a
query as “find the departments where the average salary is higher than $3000”:
select #dep from Emp group by #dep having avg(salary) > 3000). Two
facets of the problem will be considered, that correspond to: i) the nature of the
data (certain or uncertain), and ii) the nature of the query (crisp or fuzzy) that
produces the relation over which the aggregate has to be computed.

The remainder of the paper is structured as follows. Section 2 presents the
main features of the certainty-based model. Section 3 investigates the simple case
where the aggregate is precise but the data are uncertain. Section 4 deals with
the situation where the aggregate is imprecise (because a fuzzy condition has first
been applied) and the data are certain. Section 5 deals with the most general
case, i.e., that where the aggregate is imprecise and the data are uncertain. Some
difficulties raised by the computation of the aggregation operator count in this
framework are briefly discussed in Section 6. Finally, Section 7 recalls the main
contributions and outlines perspectives for future work.

2 A Short Overview of the Certainty-Based Model

As that described in [3], the model introduced in [6] is based on possibility
theory [22, 8], but it represents the values that are more or less certain instead
of those which are more or less possible. This corresponds to the most important
part of information (in this approach, a possibility distribution is approximated
by keeping its most plausible elements, associated with a certainty level). The
idea is to attach a certainty level to each piece of data (by default, a piece
of data has certainty 1). Certainty is modeled as a lower bound of a necessity
measure. For instance, 〈037, John, (40, α)〉 denotes the existence of a person
named John, whose age is 40 with certainty α. Then the possibility that his
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age differs from 40 is upper bounded by 1 − α without further information on
the respective possibility degrees of other possible values. More generally, the
underlying possibility distribution associated with an uncertain attribute value
(a, α) is {1/a, (1 − α)/ω} where 1/a means that a is a completely possible
(π = 1) candidate value and ω denotes domain(A)− {a}, A being the attribute
considered. This is due to the duality necessity (certainty) / possibility: N(a) ≥
α⇔ Π(a) ≤ 1−α [11]. For instance, let us assume that the domain of attribute
City is {Boston, Newton, Quincy}. The uncertain attribute value (Boston, α) is
assumed to correspond to the possibility distribution {1/Boston, (1−α)/Newton,
(1−α)/Quincy}. The model can also deal with disjunctive uncertain values, and
the underlying possibility distributions π are of the form π(u) = max(S(u), 1−α)
where S is an α-certain subset of the attribute domain and S(u) equals 1 if u ∈ S,
0 otherwise.

Moreover, since some operations (e.g., the selection) may create “maybe tu-
ples”, each tuple t from an uncertain relation r has to be associated with a degree
N expressing the certainty that t exists in r. It will be denoted by N/t.

Example 1. Let us consider the relation r of schema (#id, Name, City) contain-
ing tuple t1 = 〈1, John, (Quincy, 0.8)〉, and the query “find the persons who live
in Quincy”. Let the domain of attribute City be {Boston, Newton, Quincy}. The
answer contains 0.8/t1 since it is 0.8 certain that t1 satisfies the requirement,
while the result of the query “find the persons who live in Boston, Newton or
Quincy” contains 1/t1 since it is totally certain that t1 satisfies the condition
(only cities in the attribute domain are somewhat possible)."

To sum up, a tuple β/〈037, John, (Quincy, α)〉 from relation r means that it
is β certain that person 037 exists in the relation, and that it is α certain that
037 lives in Quincy (independently from the fact that it is or not in relation
r). In the following, for the sake of readability of the formulas, we will assume
that N equals 1 for every tuple of the relation concerned. However, the case
where the computation of the aggregate involves maybe tuples (i.e., tuples such
that N < 1) does not raise any particular difficulty: one just has to replace
an uncertain value (a, α) coming from a tuple whose degree N equals β by
(a, min(α, β)) when computing the aggregate. Moreover, beyond its value, the
existence of the computed aggregate may be uncertain. As soon as at least one of
the aggregated values has certainty 1, then the computed aggregate exists with
certainty 1. If there is no fully certain tuple to be aggregated, then the certainty
of the existence of the result should be taken as equal to the maximum of the
certainty degrees of the involved tuples. However, in the case of the aggregation
function count, this latter situation cannot take place since the cardinality always
exists for sure (being possibly equal to 0).

Given a query, we only look for answers that are somewhat certain. Consider
the relations r and s given in Table 1 and a query asking for the persons who
live in a city where there is a flea market), then John will be retrieved with a
certainty level equal to min(α, β) (in agreement with the calculus of necessity
measures [11]).
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Table 1. Relations r (left) and s (right)

#id Name City N

1 John (Boston, α) 1
2 Mary (Newton, δ) 1

City Flea Market N

Boston (yes, β) 1
Newton (no, γ) 1

As mentioned above, it is also possible to accommodate cases of disjunctive
information in this setting. For instance, the tuple 〈3, Peter, (Newton ∨ Quincy,
0.8)〉 represents the fact that it is 0.8-certain that the person number 3 named
Peter lives in Newton or in Quincy.

3 Precise Aggregates of Uncertain Data

The most simple case is when each uncertain value that has to be aggregated is
represented by a singleton associated with a certainty degree, i.e., is of the form
(ai, αi). This means that it is αi-certain that the value is ai, i.e., N(ai) ≥ αi,
where N is a necessity measure, as in possibilistic logic [11–13].

Then, the formula for computing the aggregation function f (where the ai’s
are numerical attribute values, and f stands for avg, sum, min, or max ) is:

f((a1, α1), . . . , (an, αn)) = (f(a1, . . . , an), min
i

αi). (1)

This expression is a particular case of the extension principle applied for com-
puting f(A1 . . . , An) where Ai is a fuzzy quantity (here Ai(ui) = max(μai(u),
1−αi) where μai(u) = 1 if u = ai and μai(u) = 0 otherwise), in agreement with
possibility theory [8]:

f(A1 . . . , An)(v) = sup
u1, ..., un:f(u1, ..., un)=v

min(A1(u1), . . . , An(un)).

Indeed, it is clear that f(A1 . . . , An)(v) = 1 only if v = f(a1, . . . , an), and that
for any other value of v, f(A1 . . . , An)(v) is upper bounded by maxi 1 − αi =
1 − mini αi. Hence, N(f(a1, . . . , an)) ≥ mini αi. Note that when the domain
of the considered attribute is the whole real line, f(A1 . . . , An)(v) reaches the
upper bound [8], but this is not always the case when we deal with strict subparts
of the real line.

In the case where uncertain values are a disjunction of possible values (let
us denote by ci the disjunctive subset representing the set of possible values for
the considered attribute in the considered tuple ti), the formula is (in agreement
with the extension principle, and the lower bound interpretation of the certainty
pairs):

f((c1, α1), . . . , (cn, αn)) = (
∨

ai1∈c1, ..., ain∈cn

f(ai1 , . . . , ain), min
i

αi). (2)

This case is illustrated in Example 2 below. Obviously, when the relation con-
tains many different disjunctions for the attribute considered, the aggregate ob-
tained can be a quite large disjunction. Assume now that an ill-known value is
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represented by an interval Ii with certainty αi. The formula is:

f((I1, α1), . . . , (Ii, αi), . . . , (In, αn)) = (f(I1, . . . , Ii, . . . , In), min
i

αi). (3)

An interesting point is that since f is a monotonic function in the computation of
aggregates, only the bounds of the intervals have to be considered in the calculus
[8].

Example 2. Let us consider the data from Table 2 and the query searching for
the average age of the employees. The result is:

Table 2. Relation Employee

#id Name Age N

1 John (35, 0.8) 1
2 Mary (22 ∨ 32, 0.7) 1
3 Paul (45 ∨ 54, 0.4) 1

(35+22+45
3 ∨ 35+32+45

3 ∨ 35+22+54
3 ∨ 35+32+54

3 , min(0.8, 0.7, 0.4))
= (34 ∨ 37.3 ∨ 37 ∨ 40.3, 0.4).

Now if we had ([22, 32], 0.7) for Mary’s age and ([45, 54], 0.4) for Paul’s, the
result would simply be ([34, 40.3], 0.4)."

Remark 1. When some ill-known values are represented by disjunctions of inter-
vals, the formula to be used is a straightforward mix of (2) and (3) — we do not
give it here as it is rather cumbersome — and one gets a disjunction of intervals
as a result.

Example 3. Let us now assume that the aggregation operation is the minimum.
Let us consider two values v1 = (12 ∨ 14, 1) and v2 = (8 ∨ 13, 0.8). Then,

min(v1, v2) = (8 ∨ 12 ∨ 13, min(1, 0.8))

as a result of the application of Equation 2:

min(v1, v2) = min(12, 8) ∨min(12, 13) ∨min(14, 8) ∨min(14, 13)

which corresponds to the union of the partial results considering each possible
value in the disjunction separately.

Now, assuming v1 = ([12, 14], 1) and v2 = ([8, 13], 0.8), one gets by applying
Equation 3:

min(v1, v2) = ([min(12, 8), min(14, 13)], min(1, 0.8)) = ([8, 13], 0.8).

Similarly, with v′2 = ([8, 15], 0.8), one would get min(v1, v
′
2) = ([8, 14], 0.8).

Note that the minimum of two interval values is not always one of the two
interval values, as shown in this example. "
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Remark 2. It should be noticed that the kind of aggregates described above
remains cautious, and in some sense incomplete as illustrated by the following
example. Let us suppose that we are asking about the minimum salary among
employees in some department, and that we have several agents with salary
1500 at certainty 1, and one agent with salary 1300 at certainty α < 1, all other
agents having a salary larger than 1500 for sure. Then the result of the minimum
is (1300, α). This result may be considered as providing an incomplete view of the
situation since it comes from the only uncertain piece of data, while all the other
pieces of data (thus forgetting the piece of data responsible for the result) would
yield together (1500, 1). In such a case, the imprecise aggregate ([1300, 1500], 1)
may be seen as a useful complement, or as a valuable substitute, which may be
even completed by the fact that there is a possibility 1 − α that the result is
1500 (instead of 1300). More generally, there is an issue here of balancing an
imprecise but certain aggregate result against a precise but uncertain aggregate
result: think of computing the average salary in a 1000 employees department
where for 999 ones we have (1500, 1), and for one the information is (1300, α)
(with α small), against making the average of 999 times 1500 and one time the
whole interval of the salary domain (which is a fully certain piece of information
for the last employee). In the former case, we get a precise result with low
certainty, while in the latter the result is fully certain but still rather precise
(i.e., it is a narrow interval). However, we leave such potential refinements aside
in the rest of the paper.

4 Imprecise Aggregates of Certain Data

When we ask “what is the average age of well-paid people” (in face of a database
with fully certain values), the implicit question is to know to what extent the
answer varies with our understanding of well-paid ; see [14] for a similar view in
the case of fuzzy association rules for which the confidence in the rule should not
vary too much when the understanding of the fuzzy sets appearing in the rule
varies. An alternative view leading to a scalar evaluation would be to compute
some expected value as in [9]. In the following, we give preference to an evaluation
mode keeping track of the variations if any. The following formula gives the basis
of the proposed evaluation as a fuzzy set of values (where the membership degree
is before the /):

(
⋃
β

β/f([a1, . . . , ai, . . . , an]β), 1) (4)

where [a1, . . . , ai, . . . , an]β denotes the β-cut of the fuzzy constraint (well-paid
in the example), i.e., the set of (uncertain) age values ai attached to the tuples
whose satisfaction degree with respect to well-paid is ≥ β. The computation
of f([a1, . . . , ai, . . . , an]β) follows the same principle as in Section 3. Here, the
aggregate value obtained is a (completely certain) fuzzy set.

Example 4. Let us consider Table 3 and assume that the satisfaction degrees
related to the fuzzy predicate well-paid are 0.8 for John, 0.3 for Mary and 1 for
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Table 3. Relation Employee

#id Name Age Salary

1 John 35 3000
2 Mary 22 2000
3 Paul 45 4000

Paul. The result of the query “what is the average age of well-paid people” is:
({1/45, 0.8/(45+35

2 ), 0.3/(45+35+22
3 )}, 1) = ({1/45, 0.8/40, 0.3/34}, 1)."

5 General Case

When the data are uncertain and the aggregation operator applies to a fuzzy set
of objects, the formula that serves as a basis for the evaluation, and combines
the ideas presented in the two previous sections, is as follows:

({(f(I1, . . . , Ii, ..., In)β ,min
i

αi)}β∈[0,1], 1). (5)

In other words, the result is a (completely certain) fuzzy set (where the degrees
correspond to the level cuts of the fuzzy constraint) of more or less certain evalu-
ations. Each more or less certain evaluation (f(I1, . . . , Ii, ..., In)βj ,mini αi) may
be viewed itself as a fuzzy set Fj . One can then apply the canonic reduction of a
fuzzy set of fuzzy sets to a fuzzy set, according to the following transformation:

{βj/Fj | βj ∈ [0, 1]} → max
j

min(βj , Fj). (6)

Note that the fuzziness of the result is due to the following facts:

– the data are imprecise and / or uncertain as reflected in the Fj ’s (this cor-
responds to the necessity-based modeling of the uncertainty);

– the constraint is fuzzy, which leads to consider that different answers may be
more or less guaranteed as being possible (according to the βj ’s; this would
correspond to a guaranteed possibility in possibility theory terms [10]).

Table 4. Relation Employee

#id Name Age Salary N

1 John (35, 0.4) 3000 1
2 Mary (22, 0.6) 2000 1
3 Paul (45, 0.7) 4000 1
4 James (58, 1) 1500 1
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Example 5. Let us consider Table 4 and assume that the satisfaction degrees
related to the fuzzy predicate well-paid are 0.8 for John, 0.3 for Mary, 1 for
Paul, and 0.2 for James. The result of the query “what is the average age of
well-paid people” is:

({1/(45, 0.7), 0.8/(40, min(0.7, 0.4)),

0.3/(34, min(0.7, 0.4, 0.6)), 0.2/(40, min(0.7, 0.4, 0.6, 1))}, 1)
= ({1/(45, 0.7), 0.8/(40, 0.4), 0.3/(34, 0.4), 0.2/(40, 0.4)}, 1)

which can be transformed into:

({0.7/45, 0.4/40, 0.3/34}, 1).

Notice that the degree 0.4 associated with value 40 is the result of

max(min(0, 8, 0.4), min(0.2, 0.4))

according to Formula (6)."

Remark 3. Extending the model to accommodate such entities does not seem
to raise any difficulty since the only difference between such a fuzzy set and a
regular disjunction stands in the degrees associated with the candidate values.
The good properties of the model (in particular the fact that we do not need any
lineage mechanism as in, e.g., [2]) resides in the fact that one is only interested
in those answers that are somewhat certain (and not only possible), and nothing
changes in this respect here.

6 Difficulties Raised by the Aggregate Count

Let us now make some brief comments concerning the aggregate function count,
whose purpose is to compute the cardinality of a relation. Let us first consider, as
a simple example, the query “how many employees have a salary at least equal to
$2000” addressed to a database where salary values are precise (i.e., represented
by a singleton) but not necessarily certain. One may get results such as: “(at
least 5, certainty = 1), (at least 7, certainty ≥ 0.8), . . . , (at least 12, certainty
≥ 0.2)”. Note that such a result has a format that is more complex than those of
the aggregation operators considered previously since it involves different more
or less certain values (whereas in Example 2, for instance, one only had to handle
a more or less certain disjunction of values). Using the data from Table 4, the
result of the previous query would be:

〈(at least 1, 0.7), (at least 2, 0.6), (at least 3, 0.4)〉.

The format of such a result appears too complex to be easily usable. Again as
in Remark 2, this may be a matter of choosing to deliver a count that is not too
imprecise, but still sufficiently certain.
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The situation gets even worse for a query such as “how many employees at
most have a salary at least equal to $2000” when the database includes imprecise
values (i.e. values represented by a disjunction or an interval). Then, some values
(for instance [1800, 2100]) may overlap with the condition salary ≥ 2000, which
means that some possible values may not be certain. And of course, it does not
get any simpler when the aggregate function applies to a referential of fuzzy
objects, as in “how many young employees have a salary over $2000”...

7 Conclusion

In this paper, we have shown how classical aggregation operators (min, max,
avg, sum) could be interpreted in the framework of an uncertain database model
based on the concept of possibilistic certainty. Three cases have been considered:
i) precise aggregate over uncertain data, ii) imprecise aggregate over data that
are certain (which corresponds to the case where a fuzzy condition has been
applied first), iii) imprecise aggregate over uncertain data. Depending on the
situation, the aggregate may take two forms: either an uncertain value (or an
uncertain disjunction of values or intervals) or a fuzzy set. It has been pointed
out that the aggregation operator count raises specific issues, and its thorough
study is left for future work.

It is worth emphasizing that the data complexity (in the database sense) of
aggregate query processing is as in the classical database case, i.e., linear. The
only extra cost is related to the possible presence of disjunctions or intervals but
this does not impact the number of accesses to the database (which is the crucial
factor in terms of performances). On the other hand, the problem of evaluating
aggregate queries is much more complex in a probabilistic database context, see
e.g. [18], where approximations are necessary if one wants to avoid exponentially
sized results.

Among perspectives for future work, let us mention i) an in-depth study of
the aggregation operator count, ii) the computation of proper summaries with
balanced imprecision and uncertainty in a meaningful way as discussed in Re-
mark 2, iii) an extension of the model so as to deal with uncertain fuzzy values,
in order to have a fully compositional framework (but, as explained in Remark
3, this should not be too problematic), iv) the implementation of a DBMS pro-
totype based on the model and query language described in [7] augmented with
the aggregate queries investigated here.
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Abstract. Comparing ear photographs is considered to be an important
aspect of victim identification. In this paper we study how automated
ear comparison can be improved with soft computing techniques. More
specifically we describe and illustrate how bipolar data modelling tech-
niques can be used for handling data imperfections more adequately. In
order to minimise rescaling and reorientation problems, we start with
3D ear models that are obtained from 2D ear photographs. To com-
pare two 3D models, we compute and aggregate the similarities between
corresponding points. Hereby, a novel bipolar similarity measure is pro-
posed. This measure is based on Euclidian distance, but explicitly deals
with hesitation caused by bad data quality. Comparison results are ex-
pressed using bipolar satisfaction degrees which, compared to traditional
approaches, provide a semantically richer description of the extent to
which two ear photographs match.

Keywords: Ear comparison, data quality, bipolarity, similarity.

1 Introduction

Ear biometrics are considered to be a reliable source for disaster victim identifi-
cation. Indeed, ears are relatively immune to variation due to ageing [9] and the
external ear anatomy constitutes unique characteristic features [13]. Moreover,
ears are often among the intact parts of found bodies, automated comparison of
photographs is in general faster and cheaper than DNA analysis and collecting
ante mortem photographs is considered to be a humane process for relatives.

Although there is currently no hard evidence that ears are unique, there is
neither evidence that they are not. Experiments comparing over ten thousand
ears revealed that no two ears were indistinguishable [13,5] and another study
revealed that fraternal and identical twins have a similar but still clearly dis-
tinguishable ear structure. More research is needed to examine the validity of
uniqueness but, despite of that a match or mismatch of ear biometrics can pro-
vide forensic experts with useful information in identification tasks. This makes
research on the comparison of ear photographs relevant and interesting.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 160–169, 2014.
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When considering a missing person and the found body of a victim, ear iden-
tification practically boils down to a comparison of a set of ear photographs of
the missing person with a set of ear photographs of the victim. Ear pictures of a
victim are taken in post mortem conditions and hence referred to as post mortem
(PM) pictures. Pictures of a missing person are always taken ante mortem and
therefore called ante mortem (AM) pictures. PM pictures are assumed to be of
good quality because they are usually taken by forensic experts under controlled
conditions: high resolution, correct angle, uniform lighting, with the ear com-
pletely exposed. AM photos are often of lower, unprofessional quality. They are
not taken with the purpose of ear identification and in most cases are provided
by relatives or social media. Because we have no control over the conditions in
which these pictures were taken, we can only hope to retrieve the best we can.
Moreover, parts of the ear might be obscured by hair, headgear or other objects.
The ear can also be deformed by glasses, earrings or piercings. Efficiently coping
with all these aspects that have a negative impact on the data quality and hence
also on the comparison is a research challenge and the subject of this work.

A considerable part of related work focusses on comparisons where an ear
photo from a given set of photos is compared to all photos in this set (e.g,
[25,12,21]). This is a simplified case because matches between identical photos
are searched for. The work in this paper is more general because it involves
the matching of identical ears on different photos. An important step of each
automated ear comparison process is the ear recognition step during which cor-
responding extracted features from two ears are compared in order to decide
whether the ears match or not. Related work on ear recognition can be cate-
gorised based on the feature extraction scheme used. Intensity based methods
use techniques like principal component analysis, independent component anal-
ysis and linear discriminant analysis for the comparison (e.g., [26,22]). Other
categories of methods are based on force field transformations (e.g., [3]), 2D ear
curves geometry (e.g., [8]), Fourier descriptors [1], wavelet transformation (e.g.,
[11]), Gabor filters (e.g., [18]) or scale-invariant feature transformation (e.g.,
[15]). A last category of comparison techniques are based on 3D shape features.
Most approaches use an iterative closest point algorithm for ear recognition (e.g.,
[7,23,14,6]). In [24] both point-to-point and point-to-surface matching schemes
are used, whereas the method in [20] is based on the extraction and comparison
of a compact biometric signature. An elaborate survey on ear recognition is [2].

Current approaches for ear recognition cannot adequately handle, measure
and reflect data quality issues. Nevertheless, efficiently coping with aspects that
have a negative impact on correct ear detection and ear recognition is recognised
to be an important research challenge. Ear identification methods should not only
support the annotation of areas of bad data quality in an ear photo, but also be
able to quantify these and reflect their impact on the results of ear comparisons.
Indeed, forensic experts would benefit from extra information expressing the
quality of data on which comparisons are based. For example, the case where
AM photo A and PM photo P only partially match, but both having sufficient
quality, clearly differs from the case where A and P partially match but A is of
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low quality. In this work we investigate if and how soft computing techniques
can be used to explicitly cope with AM data of bad quality in ear recognition.
We use a 3D ear model on which we apply a point-to-point comparison method.
Bipolar data modelling techniques are applied to denote and quantify areas of
bad data quality. A novel bipolar similarity measure is proposed and used for
the comparison. Ear comparison results are expressed using bipolar satisfaction
degrees [16] which quantify hesitation about each result caused by bad data
quality of the AM photos.

The remainder of the paper is structured as follows. In Section 2 some pre-
liminaries are given. Some general issues on bipolarity in ear comparison are
explained. Next, some basic concepts and definitions of bipolar satisfaction de-
grees are described. In Section 3, the 3D ear model is described. Section 4 deals
with ear recognition and comprises the main contribution of the paper. It consec-
utively describes how corresponding points in two ear models can be compared,
proposes a novel bipolar similarity measure, describes how this bipolar similarity
measure can be used for the comparison of two 3D ear models and discusses the
interpretation of comparison results in a bipolar setting. Some conclusions and
plans for related research are reported in Section 5.

2 Preliminaries

2.1 Bipolarity Issues in Ear Comparison

In the context of information handling the term bipolarity is, among others, used
to denote that information can be of a positive or negative nature [16]. Positive
information describes what is true, correct, preferred. Oppositely, negative in-
formation describes what is false, incorrect, not preferred. In most situations,
especially in a scientific context, positive and negative information complement
each other. This is called symmetric bipolarity [10]. Boolean logic and probability
theory are examples of mathematical frameworks where symmetric bipolarity is
assumed. So-called dual bipolarity is assumed in possibility theory where posi-
tive and negative information are dually related to each other and measured on
different scales based on the same source of knowledge. The most general form
of bipolarity is heterogeneous bipolarity. Two separate knowledge sources pro-
vide positive and negative information which are independent and hence do not
have to complement each other. In the remainder of the paper, heterogeneous
bipolarity is assumed.

Victim identification by ear biometrics can be seen as a pattern recognition
process where PM ear photos of a victim are reduced to a set of features that
is subsequently compared with the feature sets that are obtained from the AM
photos of missing persons in order to help determine the identity of the victim
on the basis of the best match. The following steps are hereby distinguished:

1. Ear detection. Hereby, ears are positioned and extracted from the photos.
2. Ear normalisation and enhancement. Detected ears are transformed to a

consistent ear model using, e.g., geometrical and photometric corrections.
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3. Feature extraction. Representative features are extracted from the ear model.

4. Ear recognition. Feature sets of AM and PM ears are compared. A matching
score indicating the similarity between the ears is computed.

5. Decision. The matching scores are ranked and used to render an answer that
supports forensic experts in their decision making.

Errors in the first three steps can undermine the utility of the process. So,
features that are obtained from bad quality data should be handled with care.
For that reason, we consider that a feature set provides us with heterogeneous
bipolar information: some features are obtained from reliable data and positively
contribute in the identification process, other features might turn out to be
unreliable and might have a negative impact which should be avoided, while for
still other features there can be hesitation about whether they are useful or not.

2.2 Bipolar Satisfaction Degrees

To efficiently handle heterogeneous bipolarity in the comparison process, bipolar
satisfaction degrees are used [16]. A bipolar satisfaction degree (BSD) is a couple

(s, d) ∈ [0, 1]2 (1)

where s is the satisfaction degree and d is the dissatisfaction degree. Both s and
d take their values in the unit interval [0, 1] reflecting to what extent the BSD
represents satisfied, resp. dissatisfied. The extreme values are 0 (‘not at all’), and
1 (‘fully’). The values s and d are independent of each other. A BSD can be used
to express the result of a comparison in which case s (resp. d) denotes to which
extent the comparison condition is accomplished (resp. not accomplished).

Three cases are distinguished:

1. If s + d = 1, then the BSD is fully specified. This situation corresponds to
traditional involutive reasoning.

2. If s+ d < 1, then the BSD is underspecified. In this case, the difference h =
1−s−d reflects the hesitation about the accomplishment of the comparison.
This situation corresponds to membership and non-membership degrees in
intuitionistic fuzzy sets [4].

3. If s + d > 1, then the BSD is overspecified. In this case, the difference
c = s+ d− 1 reflects the conflict in the comparison results.

With the understanding that i denotes a t-norm (e.g., min) and u denotes
its associated t-conorm (e.g., max), the basic operations for BSDs (s1, d1) and
(s2, d2) are [16]:

– Conjunction. (s1, d1) ∧ (s2, d2) = (i(s1, s2), u(d1, d2))

– Disjunction. (s1, d1) ∨ (s2, d2) = (u(s1, s2), i(d1, d2))

– Negation. ¬(s1, d1) = (d1, s1).
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3 3D Ear Model

In our previous work, we used 2D ear images for accomplishing ear recognition
[19]. Imperfect geometrical and photometric transformations of 2D AM photos
put a limit on the quality of the results. To improve this approach we now use
a 3D ear model. This 3D ear model is obtained by estimating the parameters
of a mathematical shape function such that the resulting shape optimally fits
the images of the ear. For a PM ear, a 3D camera image can be used, whereas
for an AM ear usually a set of 2D photos is used. The description of this fitting
process is outside the scope of this paper. At this point it is sufficient to assume
that for each ear we obtained a 3D model that captures the three dimensional
details of the ear surface as shown in Fig. 1 (left and middle).

Fig. 1. 3D ear model (with hesitation spheres)

The 3D ear model is normalised for all ears, so all ear models have the same
resolution and scale. However, unclear parts of 2D AM ear photos might decrease
the quality of (parts of) a 3D AM ear model. Indeed, if parts of the 2D ears are
inadequately visible or unreliable then their corresponding parts in the 3D model
will as well be unreliable. To cope with this, unreliable parts of 3D ear models
are indicated by so-called hesitation spheres. As illustrated in Fig. 1 (right),
a hesitation sphere H is defined by two concentric spheres H+ and H−. All
points p inside or on the surface of the inner sphere H+ have a fixed associated
hesitation value hH(p) = vH ∈]0, 1]. For points on the surface or outside the
outer sphere H− the hesitation is 0, whereas for points between both spheres
the hesitation is gradually decreasing from vH to 0, depending on their distance
from H+, i.e.,

hH(p) = vH ·
(
1− d(H+, p)

d(H+, H−)

)
(2)

where d denotes the Euclidean distance. In general, forensic experts can manually
assign as many hesitation spheres as required to indicate unreliable parts in the
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3D model. This assignment process is subject for (semi-)automation in future
work. In the presence of k > 1 hesitation spheresHk, the overall hesitation about
the quality of a point p is computed by

h(p) = max
k

hHk
(p). (3)

Thus, the maximal hesitation assigned to the point is taken.
Feature extraction boils down to selecting n representative points of the 3D

ear model. The more points that are considered, the better the matching results,
but also the longer the computation time. For normalisation purposes, a fixed
list LS = [pS1 , . . . , p

S
n] of n points is selected on a standard, reference ear model

S. Ear fitting, i.e., determining the optimal parameters for the shape function,
will transform LS into a list LE = [pE1 , . . . , p

E
n ] of n points of the best fitting 3D

ear model E. Hereby, each point pSi corresponds to the point pEi (i = 1, . . . , n).
Moreover, using the same ear model S and the same list LS for fitting two
different ear models A and P guarantees that each point pAi of LA corresponds
to the point pPi of LP (i = 1, . . . , n).

4 Ear Recognition

A basic step in ear recognition is the comparison of two left (or two right) ears. As
such, in victim identification a set of AM photos of one ear have to be compared
with a set of PM photos of the other ear. Using the 3D ear modelling technique
explained in the previous section, the feature list LA of the ear model A of the
AM photos has to be compared with the feature list LP of the ear model P of
the PM photos. To reflect data quality issues, the hesitation h(p) of each point
in the lists LA and LP has to be taken into account.

4.1 Similarity of Corresponding Features

A commonly used comparison technique for corresponding points of two feature
lists is to use the Euclidean distance. In the 3D space defined by the three
orthogonal X , Y and Z-axes, the Euclidean distance between a point pA of LA

and its corresponding point pP in LP is given by:

d(pA, pP ) =
√
((pA)x − (pP )x)2 + ((pA)y − (pP )y)2 + ((pA)z − (pP )z)2 (4)

where (.)x, (.)y and (.)z denote the x, y and z coordinates of the point.
The similarity between the points is then obtained by applying a similarity

function to their distance. This similarity function μSim can generally be defined
by a fuzzy set Sim over the domain of distances, e.g.,

μSim : [0,+∞[→ [0, 1] (5)

d �→ 1, iff d ≤ ε1

d �→ 0, iff d ≥ ε0

d �→ 1− d− ε1
ε0 − ε1

, iff ε1 < d < ε0
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where 0 ≤ ε1 ≤ ε0. Hence, if the distance d < ε1 then the similarity between the
points is considered to be 1, if d > ε0, the similarity is 0, and for distances d
between ε1 and ε0 the similarity is gradually decreasing from 1 to 0.

Hence the similarity between two points pA and pP yields

μSim(d(pA, pP )) ∈ [0, 1]. (6)

4.2 Bipolar Similarity

The similarity function μSim is not taking into account any hesitation that might
exist about the points pA and pP . For that reason, the following novel similar-
ity measure, based on both μSim and the overall hesitation h (cf. Eq. (3)), is
proposed.

fBsim : P× P→ [0, 1]2 (7)

(pA, pP ) �→ (s, d)

where P ⊆ R3 denotes the 3D space in which the ear model is defined and (s, d)
is the BSD expressing the result of comparing pA and pP as described in the
preliminaries. The BSD (s, d) is defined by

s = (1−max(h(pA), h(pP ))) · μSim(d(pA, pP )) (8)

and
d = (1 −max(h(pA), h(pP ))) · (1− μSim(d(pA, pP ))). (9)

Herewith it is reflected that we consider a consistent situation where h = 1−s−d
and we consider s (resp. d) to be the proportion of 1− h that corresponds with
the similarity (resp. dissimilarity) between pA and pB.

Remark that, with the former equations, the hesitation h represented by the
BSD (s, d) becomes h = 1 − s − d = max(h(pA), h(pP )) ∈ [0, 1]. Also s + d =
1 − h ≤ 1, such that the resulting BSD can either be fully specified, or be
underspecified. So, Eq. 7 is consistent with the semantics of BSDs.

4.3 Comparing 3D Ear Models

The comparison of an AM ear model A and a PM ear model P is based on the
comparison of all features pAi and pPi in their respective feature lists LA and LP

(i = 1, . . . , n). More specifically, the comparison results of all n corresponding
AM and PM points should be aggregated to an overall similarity and hesitation
indication. Because these overall similarity and hesitation have to reflect the
global similarity and hesitation of all points under consideration, the arithmetic
mean can be used as an aggregator for the n similarities of the corresponding
points in the feature lists. Therefore we propose the following similarity measure
for feature lists of 3D ear models.

f∗
bsim : Pn × Pn → [0, 1]2 (10)

([pA1 , . . . , p
A
n ], [p

P
1 , . . . , p

P
n ]) �→ (s, d)
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where Pn denotes the set of all feature lists consisting of n points of P and
(s, d) expresses the result of comparing the feature lists LA = [pA1 , . . . , p

A
n ] and

LP = [pP1 , . . . , p
P
n ]. The BSD (s, d) is defined by

s =

(
1−
∑n

i=1 max(h(pAi ), h(p
P
i ))

n

)
·
∑n

i=1 μSim(d(pAi , p
P
i ))

n
(11)

and

d =

(
1−
∑n

i=1 max(h(pAi ), h(p
P
i ))

n

)
·
(
1−
∑n

i=1 μSim(d(pAi , p
P
i ))

n

)
. (12)

The hesitation h in the BSD (s, d) is h = 1−s−d =
∑n

i=1 max(h(pA
i ),h(pP

i ))

n ∈ [0, 1]
and again s+ d = 1− h ≤ 1.

4.4 Interpreting the Results

In a typical victim identification search, a PM 3D ear model is compared with
a set of m AM 3D ear models taken from a database with missing persons.
Each of these comparisons results in a BSD (si, di), i = 1, . . . ,m, from which
the hesitation hi = 1 − si − di about the result can be derived. Hence, the
information provided from the comparison is the following:

1. si (∈ [0, 1]): denotes how satisfied/convinced the method is about the match-
ing of both ear models.

2. di (∈ [0, 1]): denotes how dissatisfied/unconvinced the method is.

3. hi (∈ [0, 1]): expresses the overall hesitation about the comparison results
(due to inadequate data quality).

In practice, forensic experts will be interested in the top-k matches for a given
PM 3D ear model. For that purpose, the resulting BSDs (si, di), i = 1, . . . ,m,
have to be ranked. In the given context, the best ear matches are those where
si is as high as possible and hi is as low as possible. Therefore, considering that
hi = 1− si − di, the ranking function

r : [0, 1]2 → [0, 1] (13)

(s, d) �→ s+ (1 − d)

2

can be used. This function computes a single ranking value r((si, di)) for each
BSD (si, di), which can then be used to rank order the comparison results and
select the top-k among them. Other ranking functions are possible and discussed
in [17].

Another option is to work with two threshold values δs, δh ∈ [0, 1]. In such
a case, only ear models for which the resulting BSD (s, d) satisfies s ≥ δs and
h ≤ δh (or 1− s− d ≤ δh) are kept in the comparison result.



168 G. De Tré et al.

5 Conclusions and Future Work

In this paper, we described some theoretical aspects of a novel, bipolar approach
for comparing 3D ear models. Soft computing techniques based on heterogeneous
bipolar satisfaction degrees (BSDs) support explicitly coping with the hesitation
that occurs when low(er) quality ear photos have to be compared with other ear
photos (taken in different position, on a different time, . . . ). The use of BSDs
allows to provide user with extra quantitative information about the overall
hesitation on the comparison results (due to inadequate data quality).

The focus in the paper is on the ear recognition and decision processes of
an ear identification approach. The presented technique departs from a 3D ear
model that is obtained from ear detection, normalisation and enhancement pro-
cesses. On this model, parts of low quality are annotated using a set of so-called
hesitation spheres. From each 3D ear model a feature list is extracted. Feature
lists are compared with each other by using a novel bipolar similarity measure,
which provides quantitative information on the similarity of two ears and on the
overall hesitation about (the quality of) the data involved in the comparison.

Up to now the method has only been tested on synthetically modified ear
models. Experiments with models of real ears are necessary for parameter fine-
tuning and validation purposes and are planned in the near future.

Acknowledgements. This work is supported by the Flemish Fund for Scientific
Research.
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Abstract. This paper presents a version of the belief function theory
in which masses are assigned to propositional formulas. It also provides
two combination rules which apply within this framework. Finally, it
proves that the belief function theory and its extension to non-exclusive
hypotheses are two particular cases of this logical framework.
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1 Introduction

This paper focuses on a particular framework used to model uncertainty, the
belief function theory.

This theory, as initially defined in [2] and [9], starts from a frame of discern-
ment which is a finite set of elements called hypotheses. That comes to consider
alternatives (hypotheses) which are exhaustive and exclusive. In this setting,
generally called Dempster-Shafer’s theory, masses i.e., real numbers belonging
to [0, 1] are assigned to sets of hypotheses so that 0 is assigned to ∅ and the sum
of these masses is equal to 1. More recently, [3] extends this theory by relaxing
the assumption of hypotheses exclusivity. There, a frame of discernment is a
finite set of hypotheses which may intersect. Masses are assigned to sets of hy-
potheses or to intersections of sets of hypotheses (notice that here, intersections
of sets are not sets).

[1] showed that (i) in both previous cases, the frame of discernment can be
seen as a propositional language; (ii) under the assumption of hypotheses exclu-
sivity, expressions on which masses are assigned are equivalent to propositional
positive clauses; (iii) when relaxing this assumption, expressions on which masses
are assigned are equivalent to some particular kind of conjunctions of positive
clauses.

The question we ask in this present paper is the following: is it possible to
be more general and assign masses to any kind of propositional formulas ? This
question is motivated by the following example.

Example 1. We consider the example given by Shafer in [10]: my friend Betty
reports her observation about something which fell on my car.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 170–179, 2014.
c© Springer International Publishing Switzerland 2014
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– (a) Betty tells me that a limb fell on my car. Suppose that from this testi-
mony alone, I can justify a 0.9 degree of belief that a limb fell on my car1.
Modelling this leads to consider a frame of discernment with two exclusive
hypotheses {limb, nolimb} and to consider the mass function: m({limb}) =
0.9, m({limb, nolimb}) = 0.1.

– (b) Assume now that Betty can distinguish between oaks, ashes and birches
and that she tells me that an oak limb fell on my car. Modelling this within
Dempster-Shafer theory can be done by considering 4 exclusive hypotheses:
H1 which represents the fact that an oak limb fell, H2 which represents the
fact that a ash limb fell, H3 which represents the fact that a birch limb
fell, H4 which represents the fact that no limb fell. Then, my beliefs are
modelled by the mass function:m({H1}) = 0.9, m({H1, H2, H4, H4}) = 0.1.
But we can also use the model of [3] and consider the frame of discernment
{limb, nolimb, oak, ash, birch} in which the pairs of exclusive hypotheses are:
(limb, nolimb), (oak, ash), (oak, birch), (ash, birch). Then, my beliefs are
modelled by:m({limb}∩{oak}) = 0.9, m({limb, nolimb, oak, ash, birch}) =
0.1.

– (c) Consider finally that Betty tells me that a limb fell on my car and it was
not an oak limb. Modelling this within Dempster-Shafer theory leads to the
following mass function: m({H2, H3}) = 0.9, m({H1, H2, H3, H4}) = 0.1.
Modelling this within the model of [3] leads to consider the mass function:
m({limb} ∩ {ash, birch}) = 0.9, m({limb, nolimb, oak, ash, birch}) = 0.1.

Let us come back to case (c). We can notice that in both models, the modeler
has to reformulate the information to be modelled. Indeed, the information Betty
tells me is that a non-oak limb fell. Within the first model, this information is
reformulated as: an ash limb fell or a birch limb fell (i.e., {H2, H3}). Within the
second model, this information is reformulated as: a limb of a tree, which is an
ash or a birch, fell (i.e., {limb} ∩ {ash, birch}).

Our suggestion is to offer the modeller a language which allows it to express
this information without any reformulation. For doing so, we will abandon the
set theory for expressing information and offer propositional logic instead. More
precisely, in this paper we will allow the modeler to express information by means
of a propositional language. This will lead him/her to express his/her beliefs by
any kind of propositional formulas. In the previous example, this will lead to con-
sider the propositional language whose letters are limb, oak, ash, birch. The first
focal element will then be modelled by limb∧¬oak which is the very information
reported by Betty. Notice that this propositional formula is a conjunction of two
atomic clauses, the second one being negative.

This paper is organized as follows. Section 2 quickly presents the propositional
logic, the belief functions theory and its extension to non-exclusive hypotheses.
Section 3 describes our proposal, i.e., a version of the belief functions theory in

1 Let us mention that, according to Shafer [10], this degree is a consequence of the fact
that my subjective probability that Betty is reliable is 0.9. However, in this paper,
we do not discuss the meaning of such values nor do we discuss the intuition behind
the combination rules.
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which masses are assigned to propositional formulas. It also presents two combi-
nation rules. Section 4 shows that the belief function theory and its extension to
non-exhaustive hypotheses are two particular cases of this framework. Finally,
section 5 concludes the paper.

2 Propositional Logic and Belief Function Theory

2.1 Propositional Logic

Let us first recall some definitions and results that will be useful in the rest of
the paper.

A propositional language Θ is defined by a set of propositional letters, connec-
tives ¬,∧,∨,→,↔ and parentheses. In what follows, it is sufficient to consider
a finite language i.e a language composed of a finite set of letters.

The set of formulas, denoted FORM , is the smallest set of words built on
this alphabet such that: if a is a letter, then a is a formula; ¬A is a formula if
A is a formula; A ∧B is a formula if A and B are formulas. Other formulas are
defined by abbreviation. More precisely, A ∨ B denotes ¬(¬A ∧ ¬B); A → B
denotes ¬A ∨B; A↔ B denotes (A→ B) ∧ (B → A).

A literal is a letter or the negation of a letter. In the first case it is called a
positive litteral, in the second it is called a negative litteral.

A clause is a disjunction of literals.
A positive clause is a clause whose literals are positive.
A clause C1 subsumes a clause C2 iff the literals of C1 are literals of C2.
A formula is +mcnf if it is a conjunction of positive clauses such that no clause

subsumes another one.
An interpretation i is a mapping from the set of letters to the set of truth

values {0, 1}. An interpretation i can be extended to the set of formulas by:
i(¬A) = 1 iff i(A) = 0; i(A ∧ B) = 1 iff i(A) = 1 and i(B) = 1. Consequently,
i(A∨B) = 1 iff i(A) = 1 or i(B) = 1, and i(A→ B) = 1 iff i(A) = 0 or i(B) = 1;
i(A↔ B) = 1 iff i(A) = i(B).

The set of interpretations of the language Θ will be denoted IΘ.
The interpretation i is a model of formula A iff i(A) = 1. We say that i satisfies

A.
The set of models of formula A is denoted Mod(A).
A is satisfiable iff Mod(A) �= ∅.
A is a tautology iff Mod(A) = IΘ. Tautologies are denoted by true.
A is a contradiction iff Mod(A) = ∅. Contradictions are denoted by false.
Formula B is a logical consequence of formula A iff Mod(A) ⊆ Mod(B). It

is denoted A |= B.
Formula A and formula B are logically equivalent (or equivalent) iff Mod(A) =

Mod(B). It is denoted |= A↔ B.
Any propositional formula is equivalent to a conjunction of clauses in which

no clause is subsumed.
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Let σ be a satisfiable formula. An equivalence relation denoted
σ↔ is defined

on FORM by: A
σ↔ B iff σ |= A↔ B. Thus, two formulas are related by

relation
σ↔ iff they are equivalent when σ is true.

The following convention is made from now: We will consider that all
the formulas of a given equivalence class of

σ↔ are identical. For instance, if
σ = ¬(a ∧ b) then c ∨ (a ∧ b) and c are identical; a ∧ b and b ∧ a are identical to
false.

With the previous convention, if Θ is finite and if σ is a satisfiable formula,
then we can consider that the set of formulas is finite. It is denoted FORMσ.

CLσ is the finite set of clauses that can be built if one considers σ. I.e.,
CLσ = {A : A is a clause and there is a formula φ in FORMσ such that A is
identical to φ}.

+MCNF σ is the finite set of formulas which are +mcnf. I.e., +MCNF σ =
{A : A ∈ FORMσ and A is +mcnf}.

2.2 Belief Function Theory

Belief function theory considers a finite frame of discernment Θ = {θ1, ...θn}
whose elements, called hypotheses, are exhaustive and exclusive. A basic belief
assignment (or mass function) is a function m : 2Θ → [0, 1] such that: m(∅) = 0
and
∑

A⊆Θ m(A) = 1. Given a mass function m, one can define a belief function

Bel : 2Θ → [0, 1] by: Bel(A) =
∑

B⊆Am(B). One can also define a plausibility

function Pl : 2Θ → [0, 1] such that Pl(A) = 1−Bel(A).
Letm1 andm2 be two mass functions on the frame Θ. Dempster’s combination

rule defines a mass function denoted m1 ⊕ m2, by: m1 ⊕ m2(∅) = 0 and
for any C �= ∅

m1 ⊕m2(C) =

∑
A∩B=C m1(A).m2(B)∑
A∩B �=∅ m1(A).m2(B)

for any C �= ∅

if
∑

A∩B �=∅ m1(A).m2(B) �= 0

2.3 Extension of Belief Function Theory to Non-exclusive
Hypotheses

The formalism described by [3] assumes that frames of discernment are finite sets
of hypotheses which are exhaustive but not necessarily exclusive. It has then been
extended in [11] by considering integrity constraints. Here, we summarize this
extended version.

Let Θ = {θ1, ...θn} be a frame of discernment. We say that an expression
is under reduced conjunctive normal form, iff it is an intersection of unions of
hypotheses of Θ such that no union contains another one. The hyper-power-set,
DΘ, is the set of all the expressions under reduced conjunctive normal form.

Integrity constraints are represented by IC, an expression of the form E = ∅,
where E ∈ DΘ.
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Taking integrity constraints into account comes down to considering a restric-
tion of the hyper power set DΘ. This restricted set contains fewer elements than
in the general case and we will denote itDΘ

IC to indicate the fact that this new set
depends on IC. For instance, if Θ = {θ1, θ2} thenDΘ = {∅, θ1, θ2, θ1∩θ2, θ1∪θ2}.
Consider now the constraint IC = (θ1 ∩ θ2 = ∅). Then we get DΘ

IC = 2Θ =
{∅, θ1, θ2, θ1 ∪ θ2}.

The mass functions are then defined on elements of the hyper-power-set DΘ
IC .

Definitions of belief functions and plausibility functions are unchanged.
Finally, several combination rules have been defined in this theory in par-

ticular, the so called Proportional Conflict redistribution Rules (PCR) which
redistribute the mass related to conflicting beliefs proportionally to expressions
responsible of this conflict. They are several ways for redistributing. In this pa-
per, we do not discuss the intuition behind the combination rules and we focus
on the fifth rule called PCR5. This rule takes two mass functions m1 and m2,
and builds a third mass function: m1 ⊕5 m2 : DΘ

IC → [0, 1] defined by:

m1 ⊕5 m2(∅) = 0

And for any X �= ∅, m1 ⊕5 m2(X) = m12(X) +m′
12(X)

with

m12(X) =
∑

X1,X2∈DΘ
IC

X1∩X2=X

m1(X1).m2(X2)

and

m′
12(X) =

∑
Y ∈DΘ

IC
X∩Y=∅

(
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
)

(where any fraction whose denominator is 0 is discarded)

3 A Logical Version of Belief Function Theory

In this section, we present a formalism that allows a modeler to represent beliefs
by assigning masses to propositional formulas.

3.1 Logical Mass Functions, Logical Belief Functions, Logical
Plausibility Functions

We introduce new definitions for mass functions, belief functions and plausibility
functions in order to apply them to propositional formulas.

Let Θ be a finite propositional language, σ be a satisfiable formula.
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Definition 1. A logical mass function is a function m : FORMσ → [0, 1] such
that: m(false) = 0 and

∑
A∈FORMσ m(A) = 1.

Definition 2. Given a logical mass function, the logical belief function Bel is
defined by: Bel : FORMσ → [0, 1] by:

Bel(A) =
∑

B∈FORMσ

σ|=B→A

m(B)

Definition 3. Given a logical mass function, the logical plausibility function Pl
is defined by: Pl : FORMσ → [0, 1] such that Pl(A) = 1−Bel(¬A).

Theorem 1.

Pl(A) =
∑

B∈FORMσ

(σ∧B∧A) is satisfiable

m(B)

Example 2. LetΘ be the propositional language whose letters are: limb, oak, ash,
birch respectively meaning “what fell is a limb”, “what fell comes from an
oak”, “what fell comes from an ash”, “what fell comes from a birch”. Consider
σ = limb→ (oak∨ash∨ birch)∧¬(oak ∧ash)∧¬(oak ∧ birch)∧¬(ash∧ birch)
expressing that if a limb fell then it is comes from an oak, an ash or a birch, and
these three types of trees are different.

Consider the following logical mass function: m(limb∧¬oak) = 0.8, m(ash) =
0.2. This expresses that my degree of belief in the piece of information “ a non-
oak limb fell” is 0.8 and my degree of belief in the piece of information “what
fell comes from an ash” is 0.2.

The logical belief function is then defined by: Bel(limb ∧ ¬oak) = 0.8,
Bel(ash) = 0.2, Bel(ash ∨ birch) = 1, Bel(¬oak) = 1, Bel(¬birch) = 0.2,
Bel(birch) = 0, Bel(limb) = 0.8, Bel(¬limb) = 0, etc....

The logical plausibility function is then defined by: Pl(limb ∧ ¬oak) = 1,
Pl(ash) = 1, Pl(ash ∨ birch) = 1, Pl(¬oak) = 1, Pl(¬birch) = 1, Pl(birch) =
0.8, Pl(limb) = 1, Pl(¬limb) = 0.2, etc....

3.2 Combination Rules

Let us now address the question of combining two logical mass functions. As
it is done the belief function theory community, we could define plenty of rules
according to the meanings of the masses or according to the properties that the
combination rule must fulfill. But the purpose of this paper is not to define a
new combination rule nor to comment the drawbacks or advantages of such or
such existing rule. This is why we arbitrarily propose two rules for combining
two logical mass functions. The first one is called “logical DS rule”, denoted ⊕L;
the second one is called “logical PCR5 rule” or “logical Proportional Conflict
Redistribution Rule 5” and denoted ⊕5L. They are defined by the two following
definitions and illustrated on example 3.
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Definition 4. Let m1 and m2 be two logical mass functions. The logical DS
rule, denoted ⊕L, defines the logical mass function m1⊕Lm2 : FORMσ → [0, 1]

by: m1 ⊕L m2(false) = 0 and for any C � σ↔ false

m1 ⊕L m2(C) =

∑
C

σ↔(A∧B)
m1(A).m2(B)∑

σ∧(A∧B) satisfiable m1(A).m2(B)

if
∑

σ∧(A∧B) satisfiable

m1(A).m2(B) �= 0

Thus, according to this definition, the logical DS rule defines a logical mass
function m1⊕Lm2 such that the mass assigned to any formula C which is not a
contradiction, is the normalized sum of the product m1(A).m2(B) where A ∧B
and C are identical (i.e., equivalent when σ is true).

Definition 5. Let m1 and m2 be two logical mass functions. The logical PCR5
rule defines the logical mass function m1 ⊕5L m2 : FORMσ → [0, 1] by:

m5L(false) = 0

m5L(X) = m12(X) +m′
12(X) if X � σ↔ false

with

m12(X) =
∑

X1,X2∈FORMσ

X1∧X2
σ↔X

m1(X1).m2(X2)

and

m
′
12(X) =

∑
Y ∈FORMσ

(σ∧X∧Y ) unsatisfiable

(
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
)

(where any fraction whose denominator is 0 is discarded)

Thus, according to this definition, the logical PCR5 rule defines a logical mass
function m1⊕5L m2 such that the mass assigned to any formula X which is not
a contradiction, is the sum of two numbers: the first number is the sum of the
products m1(X1).m2(X2) where X1 ∧ X2 and X are identical (i.e., equivalent
when σ is true); the second number depends on the masses of the propositions
which (under σ) contradict X .

Example 3. Let us consider Θ and σ as in example 2. We consider here two
witnesses: Betty and Sally. Suppose that Betty tells that a limb fell on my car
but it was not an oak limb and that this testimony alone implies that I have the
following degrees of belief: m1(limb ∧ ¬oak) = 2/3, m1(true) = 1/3. Suppose
that Sally tells that what fell on my car was not a limb but it comes down from
an ash and that this testimony alone implies that I have the following degrees
of belief: m2(¬limb ∧ ash) = 2/3, m2(true) = 1/3
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1. Let us see what the logical DS rule provides. First, notice that σ ∧ (limb ∧
¬oak) ∧ (¬limb ∧ ash) is not satisfiable. Thus N = 5/9. Consequently, the
logical DS rule provides the following logical mass function: m1⊕Lm2(limb∧
¬oak) = 2/5, m1 ⊕L m2(¬limb ∧ ash) = 2/5, m1 ⊕L m2(true) = 1/5.
Thus, the logical belief function Bel, associated with m1 ⊕L m2 is so that:
Bel(limb) = 2/5, Bel(¬limb) = 2/5, Bel(oak) = 0, Bel(¬oak) = 4/5,
Bel(ash) = 2/5, Bel(¬ash) = 0 Bel(birch) = 0, Bel(¬birch) = 2/5 etc.
And the logical plausibility function Pl associated with m1 ⊕L m2 is so
that: Pl(limb) = 3/5, Pl(¬limb) = 3/5, Pl(oak) = 1/5, Pl(¬oak) = 1,
Pl(ash) = 1, Pl(¬ash) = 3/5 Pl(birch) = 3/5, Pl(¬birch) = 1 etc.

2. Let us consider now the logical PCR5 rule. This rule provides the following
logical mass function: m1 ⊕5L m2(limb ∧ ¬oak) = 4/9, m1 ⊕5L m2(¬limb ∧
ash) = 4/9, m1 ⊕5L m2(true) = 1/9.
Thus the logical belief function which is associated with m1 ⊕5L m2 is so
that: Bel(limb) = 4/9, Bel(¬limb) = 4/9, Bel(ash) = 4/9, Bel(¬ash) =
0, Bel(oak) = 0, Bel(¬oak) = 8/9, Bel(birch) = 0, Bel(¬birch) = 4/9,
Bel(limb∧ ¬oak) = 4/9, Bel(ash ∨ birch) = 8/9, etc....
And the logical plausibility function which is associated with m1 ⊕5L m2 is
so that: Pl(limb) = 5/9, Pl(¬limb) = 5/9, Pl(oak) = 5/9, Pl(¬oak) = 1,
Pl(ash) = 1, Pl(¬ash) = 5/9 Pl(birch) = 5/9, Pl(¬birch) = 1 etc.

4 Particular Cases

In this section, we consider two particular cases of the logical framework pre-
viously introduced. We first show that if we consider a particular σ which ex-
presses that hypotheses are exclusive and exhaustive and restrict formulas to
clauses, then the logical framework reduces to the belief function theory. Then
we show that if we consider another particular σ and restrict formulas to those
of +MCNF σ, then the logical framework reduces to the extension of the belief
function theory to non-exclusive hypotheses. In both cases, we consider a frame
of discernment which is isomorphic to the propositional language.

4.1 First Particular Case

We consider a first particular case of our logical proposal in which σ = (H1 ∨
... ∨Hn) ∧

∧
i�=j ¬(Hi ∧Hj), where H1, ...Hn are the letters of the propositional

language Θ. Thus, considering σ as true leads to consider that one and only one
Hi is true. Furthermore, in this section, logical mass functions are restricted to
those whose focal elements are clauses only. I.e., here, a logical mass function is
a function m : CLσ → [0, 1] such that: m(false) = 0 and

∑
A∈CLσ m(A) = 1.

Definition 6. With Θ, we can associate a frame of discernment with n exhaus-
tive and exclusive hypotheses. These hypotheses are denoted f(H1), ...f(Hn) and
the frame is denoted f(Θ).
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Theorem 2. Under the previous assumptions:

1. Any clause C of CLσ can be associated with an unique expression of 2f(Θ).
2. Any logical mass function m whose focal elements are C1, ...Ck can be asso-

ciated with an unique mass function denoted f(m) whose focal elements are
f(C1), ...f(Ck) and so that each f(Ci) is given the mass m(Ci).

3. Given two logical mass functions m1 and m2, then for any clause C in CLσ,
we have m1 ⊕L m2(C) = f(m1)⊕ f(m2)(f(C))

4.2 Second Particular Case

We consider a second particular case of our logical proposal in which σ = (H1 ∨
... ∨Hn) ∧ IC where H1, ...Hn are the letters of the propositional language Θ
and IC a propositional formula different from ¬(H1∨ ...∨Hn). Moreover, logical
mass functions are restricted to those whose focal elements are +mcnf formulas
only. I.e., here, a logical mass function is a function m : +MCNF σ → [0, 1] so
that: m(false) = 0 and

∑
A∈+MCNFσ m(A) = 1.

Definition 7. With Θ, we can associate a frame of discernment with n exhaus-
tive hypotheses. These hypotheses are denoted g(H1), ..., g(Hn) and the frame is
denoted g(Θ).

Theorem 3. Under the previous assumptions:

1. Any formula F of +MCNF σ can be associated with an unique expression
of Dg(Σ)g(Θ).

2. Any logical mass function m whose focal elements are F1, ...Fk can be asso-
ciated with an unique mass function denoted g(m) whose focal elements are
g(F1), ...g(Fk) and so that each g(Fi) is given the mass m(Fi).

3. Given two logical mass functions m1 and m2, then for any +mcnf formula
F in +MCNF σ, we have m1 ⊕5L m2(F ) = g(m1)⊕5 g(m2)(g(F ))

5 Conclusion

This paper presented a version of the belief function theory in which masses
are assigned to propositional formulas. In this logical framework, we can assume
that some formula (denoted σ before) is true and two combination rules have
been defined. Finally, its has been shown that the belief function theory and its
extension to non-exclusive hypotheses are two particular cases of this framework.

We think that this work is original and we have not found in the literature
any work proposing this logical extension or something equivalent. However, the
relation between focal elements of the belief function theory and propositional
clauses is known for a long time. This link was early mentioned in Shafer’s
book (p. 37) but this remark did not lead to any improvement. In [7], Provan
proposed a logical view of Demspter-Shafer theory in which focal elements are
modeled by propositional clauses. This corresponds to the result given in section
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4.1. In [5], Kwisthout and Dastani wondered if the belief function theory can be
applied to the beliefs of an agent when they are represented by logical formulas
of an agent programming language. So their motivation was very close to ours.
However, instead of defining a logical version of belief function theory as we do
here, they translated the problem in the “classical” belief function theory. In
[6], Lehmann was interested in reducing the cost of computations in the belief
function theory. He proposed a compact representation of focal elements based
on bitstrings. For doing so, he considers hypotheses which are interpretations of
propositional formulas. And he obviously shows that, instead of assigning masses
to unions of interpretations one can assign masses to formulas. However, even
if Lehmann’s motivation for finding a more compact representation meets ours
(see example in 1), he did not address the question of combination rules in this
compact representation. Finally, notice that the logical framework we introduced
is not a logic and cannot be compared with the belief-function logic introduced
in [8] nor with the fuzzy modal logic for belief functions defined by [4].

As a future work, we aim to extend this logical framework to first order logic
beliefs. This would allowone to assignmasses to first order formulas.We could then
have logicalmass functions like:m(∀x bird(x)→ fly(x)) = 0.1 andm(true) = 0.9
which would express my high uncertainty about the fact that all birds fly.

Acknowledgments. I thank the anonymous reviewers whose questions and
comments helped me to improve this paper.
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4. Godo, L., Hájek, P., Esteva, F.: A fuzzy modal logic for belief-functions. Funda-
menta Informaticae XXI, 1001–1020 (2001)

5. Kwisthout, J., Dastani, M.: Modelling uncertainty in agent programming. In: Bal-
doni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI),
vol. 3904, pp. 17–32. Springer, Heidelberg (2006)

6. Lehmann, N.: Shared ordered binary decision diagrams for Dempster-Shafer The-
ory. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 320–331.
Springer, Heidelberg (2007)

7. Provan, G.: A logic-based analysis of Demspter-Shafer Theory. International Jour-
nal of Approximate Reasoning 4, 451–495 (1990)

8. Saffiotti, A.: A belief-function logic. In: Proceedings of the 10th AAAI Conference,
San Jose, CA, pp. 642–647 (1992)

9. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)
10. Shafer, G.: Perspectives on the theory and practice of belief functions. Int. Journal

of Approximate Reasoning 4, 323–362 (1990)
11. Smarandache, F., Dezert, J.: An introduction to the DSm Theory for the com-

bination of paradoxical, uncertain and imprecise sources of information (2006),
http://www.gallup.unm.edu/~smarandache/DSmT-basic-short.pdf

http://www.gallup.unm.edu/~smarandache/DSmT-basic-short.pdf


Evidential-EM Algorithm Applied

to Progressively Censored Observations

Kuang Zhou1,2, Arnaud Martin2, and Quan Pan1

1 School of Automation, Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, P.R. China

2 IRISA, University of Rennes 1, Rue E. Branly, 22300 Lannion, France
kzhoumath@163.com, Arnaud.Martin@univ-rennes1.fr, quanpan@nwpu.edu.cn

Abstract. Evidential-EM (E2M) algorithm is an effective approach for
computing maximum likelihood estimations under finite mixture models,
especially when there is uncertain information about data. In this paperwe
present an extension of the E2Mmethod in a particular case of incomplete
data, where the loss of information is due to both mixture models and cen-
sored observations. The prior uncertain information is expressed by belief
functions, while the pseudo-likelihood function is derived based on impre-
cise observationsandprior knowledge.ThenE2Mmethod is evoked tomax-
imize the generalized likelihood function to obtain the optimal estimation
of parameters. Numerical examples show that the proposed method could
effectively integrate the uncertain prior information with the current im-
precise knowledge conveyed by the observed data.

Keywords: Belief function theory, Evidential-EM, Mixed-distribution,
Uncertainty, Reliability analysis.

1 Introduction

In life-testing experiments, the data are often censored. A datum Ti is said to
be right-censored if the event occurs at a time after a right bound, but we
do not exactly know when. The only information we have is this right bound.
Two most common right censoring schemes are termed as Type-I and Type-II
censoring. The experiments using these test schemes have the drawback that they
do not allow removal of samples at time points other than the terminal of the
experiment. The progressively censoring scheme, which possesses this advantage,
has become very popular in the life tests in the last few years [1]. The censored
data provide some kind of imprecise information for reliability analysis.

It is interesting to evaluate the reliability performance for items with mixture
distributions. When the population is composed of several subpopulations, an
instance in the data set is expected to have a label which represents the origin,
that is, the subpopulation from which the data is observed. In real-world data,
observed labels may carry only partial information about the origins of sam-
ples. Thus there are concurrent imprecision and uncertainty for the censored
data from mixture distributions. The Evidential-EM (E2M) method, proposed

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 180–189, 2014.
c© Springer International Publishing Switzerland 2014
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by Denœux [4,3], is an effective approach for computing maximum likelihood
estimates for the mixture problem, especially when there is both imprecise and
uncertain knowledge about the data. However, it has not been used for reliability
analysis and the censored life tests.

This paper considers a special kind of incomplete data in life tests, where the loss
of information is due simultaneously to the mixture problem and to censored ob-
servations. The data set analysed in this paper is merged by samples from different
classes. Some uncertain information about class values of these unlabeled data is
expressed by belief functions. The pseudo-likelihood function is obtained based on
the imprecise observations and uncertain prior information, and then E2Mmethod
is invoked to maximize the generalized likelihood function. The simulation studies
show that the proposed method could take advantages of using the partial labels,
and thus incorporates more information than traditional EM algorithms.

2 Theoretical Analysis

Progressively censoring schemehasattracted considerable attention in recentyears,
since it has the flexibility of allowing removal of units at points other than the ter-
minal point of the experiment [1]. The theory of belief functions is first described
by Dempster [2] with the study of upper and lower probabilities and extended by
Shafer later [6]. This section will give a brief description of these two concepts.

2.1 The Type-II Progressively Censoring Scheme

The model of Type-II progressively censoring scheme (PCS) is described as fol-
lows [1]. Suppose n independent identical items are placed on a life-test with
the corresponding lifetimes X1, X2, · · · , Xn being identically distributed. We as-
sume that Xi (i = 1, 2, · · · , n) are i.i.d. with probability density function (pdf)
f(x; θ) and cumulative distribution function (cdf) F (x; θ). The integer J < n
is fixed at the beginning of the experiment. The values R1, R2, · · · , RJ are J
pre-fixed satisfying R1 + R2 + · · · + RJ + J = n. During the experiment, the
jth failure is observed and immediately after the failure, Rj functioning items
are randomly removed from the test. We denote the time of the jth failure by
Xj:J:n, where J and n describe the censored scheme used in the experiment, that
is, there are n test units and the experiment stops after J failures are observed.
Therefore, in the presence of Type-II progressively censoring schemes, we have
the observations {X1:J:n, · · · , XJ:J:n}. The likelihood function can be given by

L(θ;x1:J:n, · · · , xJ:J:n) = C

J∏
i=1

f(xi:J:n; θ)[1− F (xi:J:n; θ)]
Ri , (1)

where C = n(n−1−R1)(n−2−R1−R2) · · · (n−J+1−R1−R2−· · ·−RJ−1).

2.2 Theory of Belief Functions

Let Θ = {θ1, θ2, . . . , θN} be the finite domain ofX , called the discernment frame.
The mass function is defined on the power set 2Θ = {A : A ⊆ Θ}. The function
m : 2Θ → [0, 1] is said to be the basic belief assignment (bba) on 2Θ, if it satisfies:
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∑
A⊆Θ

m(A) = 1. (2)

Every A ∈ 2Θ such that m(A) > 0 is called a focal element. The credibility and
plausibility functions are defined in Eq. (3) and Eq. (4).

Bel(A) =
∑

∅�=B⊆A

m(B), ∀A ⊆ Θ, (3)

Pl(A) =
∑

B∩A �=∅
m(B), ∀A ⊆ Θ. (4)

Each quantity Bel(A) denotes the degree to which the evidence supports A,
while Pl(A) can be interpreted as an upper bound on the degree of support that
could be assigned to A if more specific information became available [7]. The
function pl : Θ → [0, 1] such that pl(θ) = Pl({θ}) is called the contour function
associated to m.

If m has a single focal element A, it is said to be categorical and denoted
as mA. If all focal elements of m are singletons, then m is said to be Bayesian.
Bayesian mass functions are equivalent to probability distributions.

If there are two distinct pieces of evidences (bba) on the same frame, they
can be combined using Dempster’s rule [6] to form a new bba:

m1⊕2(C) =

∑
Ai∩Bj=C m1(Ai)m2(Bj)

1− k
∀C ⊆ Θ,C �= ∅ (5)

If m1 is Bayesian mass function,and its corresponding contour function is p1.
Letm2 be an arbitrary mass function with contour function pl2. The combination
of m1 and m2 yields a Bayesian mass function m1 ⊕m2 with contour function
p1 ⊕ pl2 defined by

p1 ⊕ pl2 =
p1(ω)pl2(ω)∑

ω′∈Ω p1(ω
′)pl2(ω

′)
. (6)

The conflict between p1 and pl2 is k = 1 −
∑

ω′∈Ω p1(ω
′
)pl2(ω

′
). It equals one

minus the expectation of pl2 with respect to p1.

3 The E2M Algorithm for Type-II PCS

3.1 The Generalized Likelihood Function and E2M Algorithm

E2M algorithm, similar to the EM method, is an iterative optimization tactics
to obtain the maximum of the observed likelihood function [4,3]. However, the
data applied to E2M model can be imprecise and uncertain. The imprecision
may be brought by missing information or hidden variables, and this problem
can be solved by the EM approach. The uncertainty may be due to the unreliable
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sensors, the errors caused by the measuring or estimation methods and so on.
In the E2M model, the uncertainty is represented by belief functions.

Let X be a discrete variable defined on ΩX and the probability density func-
tion is pX(·; θ). If x is an observation sample of X , the likelihood function can
be expressed as:

L(θ;x) = pX(x; θ). (7)

If x is not completely observed, and what we only know is that x ∈ A,A ⊆ ΩX ,
then the likelihood function becomes:

L(θ;A) =
∑
x∈A

pX(x; θ). (8)

If there is some uncertain information about x, for example, the experts may
give their belief about x in the form of mass functions: m(Ai), i = 1, 2, · · · , r,
Ai ⊆ ΩX , then the likelihood becomes:

L(θ;m) =

r∑
i=1

m(Ai)L(θ;Ai) =
∑
x∈Ωx

pX(x; θ)pl(x). (9)

It can be seen from Eq. (9) that the likelihood L(θ;m) only depends on m
through its associated contour function pl. Thus we could write indifferently
L(θ;m) or L(θ; pl).

Let W = (X,Z) be the complete variable set. Set X is the observable data
while Z is unobservable but with some uncertain knowledge in the form of plZ .
The log-likelihood based on the complete sample is logL(θ;W ). In E2M, the
observe-data log likelihood is logL(θ;X, plZ).

In the E-step of the E2M algorithm, the pseudo-likelihood function should be
calculated as:

Q(θ, θk) = Eθk [logL(θ;W )|X, plZ ; θ
k], (10)

where plZ is the contour function describing our uncertainty on Z, and θk is the
parameter vector obtained at the kth step. Eθk represents the expectation with
respect to the following density:

γ
′
(Z = j|X, plZ; θ

k) � γ(Z = j|X ; θk)⊕ plZ . (11)

Function γ
′
could be regarded as a combination of conditional probability density

γ(Z = j|X ; θk) = pZ(Z = j|X ; θk) and the contour function plZ . It depicts
the current information based on the observation X and the prior uncertain
information on Z, thus this combination is similar to the Bayes rule.

According to the Dempster combination rule and Eq. (9), we can get:

γ
′
(Z = j|X, plZ; θ

k) =
r(Z = j|X ; θk)plZ(Z = j)∑
j r(Z = j|X ; θk)plZ(Z = j)

. (12)

Therefore, the pseudo-likelihood is:

Q(θ, θk) =

∑
j r(Z = j|X ; θk)pl(Z = j) logL(θ;W )

L(θk;X, plZ)
. (13)
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The M-step is the same as EM and requires the maximization of Q(θ, θk) with
respect to θ. The E2M algorithm alternately repeats the E- and M-steps above
until the increase of general observed-data likelihood becomes smaller than a
given threshold.

3.2 Mixed-Distributed Progressively Censored Data

Here, we present a special type of incomplete data, where the imperfection of
information is due both to the mixed-distribution and to some censored obser-
vations. Let Y denote the lifetime of test samples. The n test samples can de
divided into two parts, i.e. Y1, Y2, where Y1 is the set of observed data, while Y2

is the censored data set. Let Z be the class labels and W = (Y, Z) represent the
complete data.

Assume that Y is from mixed-distribution with p.d.f.

fY (y; θ) =

p∑
z=1

λzf(y; ξz), (14)

where θ = (λ1, · · · , λp, ξ1, · · · , ξp). The complete data distribution of W is given
by P (Z = z) = λz and P (Y |Z = z) = f(y; ξz). Variable Z is hidden but we can
have a prior knowledge about it. This kind of prior uncertain information of Z
can be described in the form of belief functions:

plZ(Z = j) = plj , j = 1, 2, · · · , p. (15)

The likelihood of the complete data is:

Lc(θ;Y, Z) =
n∏

j=1

f(yj , zj; θ), (16)

and the pseudo-likelihood function is:

Q(θ, θk) = Eθk [logLc(θ;Y, Z)|Y ∗, plZ ; θ
k], (17)

where Eθk [·|Y ∗, plZ ; θ
k] denotes expectation with respect to the conditional dis-

tribution of W given the observation Y ∗ and the uncertain information plZ .

Theorem 1. For (yj,zj) are complete and censored, fY Z(yj , zj|y∗j ; θk) can be

calculated according to Eq. (18) and Eq. (19) respectively. Let y∗j be the jth

observation. If the jth sample is completely observed, yj = y∗j ; Otherwise yj ≥ y∗j .

f1
Y Z(yj , zj |y∗j ; θk) = I{yj=y∗

j }P
k
1jz, (18)

f2
Y Z(yj , zj |y∗j ; θk) = I{yj>y∗

j }P
k
2jz

f(yj ; ξ
k
z )

F (y∗j ; ξ
k
z )

. (19)
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where P k
1jz and P k

2jz are shown in Eq. (20).

P k
jz(zj = z|Y ∗; θ) =

{
P k
1jz(zj = z|y∗j ; θk) for the completely observed data

P k
2jz(zj = z|y∗j ; θk) for the censored data

(20)
where

P k
1jz(zj = z|y∗j ; θk) =

f(y∗j ; ξ
k
z )λ

k
z∑

z f(y
∗
j ; ξ

k
z )λ

k
z

, (21)

P k
2jz(zj = z|y∗j ; θk) =

F (y∗j ; ξ
k
z )λ

k
z∑

z F (y∗j ; ξ
k
z )λ

k
z

. (22)

Proof. If (yj,zj) are completely observed,

f1
yz(yj , zj |y∗j ; θk) = P k

1jzf(yj |y∗j = yj , Zj = z; θk),

we obtain Eq. (18).
If (yj,zj) are censored,

f2
yz(yj , zj |y∗j ; θk) = P k

2jzf(yj |y∗j < yj , Zj = z; θk),

From the theorem in [5],

f(yj|y∗j < yj , Zj = z; θk) =
f(yj ; ξ

k
z )

F (y∗j ; ξ
k
z )

I{yj>y∗
j },

we can get Eq. (19).
This completes this proof.

From the above theorem, the pseudo-likelihood function can be written as:

Q(θ, θk) = Eθk [log f c(Y, Z)|Y ∗, plZ; θ
k]

=

n∑
j=1

Eθk [logλz + log f(yj |ξz)|Y ∗, plZ ; θ
k]

=
∑

yj∈Y1

∑
z

P
′k
1jz logλz +

∑
yj∈Y2

∑
z

P
′k
2jz logλz

+
∑

yj∈Y1

∑
z

P
′k
1jz log f(y

∗
j |ξz)

+
∑

yj∈Y2

∑
z

P
′k
2jz

∫ +∞

y∗
j

log f(x|ξz)
f(x|ξkz )
F (y∗j ; ξ

k
z )

dx,

(23)

where

P
′k
ijz(zj = z|y∗j , plZj ; θ

k) = P k
ijz(zj = z|y∗j ; θk)⊕ plZj , i = 1, 2.

It can be seen that P
′k
ijz(zj = z|y∗j , plZj ; θ

k) is a Dempster combination of the
prior and the observed information.
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Assume that the data is from the mixed-Rayleigh distribution without loss of
generality, the p.d.f. is shown in Eq. (24):

fX(x;λ, ξ) =

p∑
j=1

λjgX(x; ξj) =

p∑
j=1

λjξ
2
j exp{−

1

2
ξ2jx

2}, (24)

After the kth iteration and θk = λk is got, the (k+1)th step of E2M algorithm
is shown as follows:

1. E-step: For j = 1, 2, · · · , n, z = 1, 2 · · · , p, use Eq. (23) to obtain the condi-
tional p.d.f. of logLc(θ;W ) based on the observed data, the prior uncertain
information and the current parameters.

2. M-step: Maximize Q(θ|θk) and update the parameters:

λk+1
z =

1

n

⎛⎝ ∑
yj∈Y1

P
′k
1jz +

∑
yj∈Y2

P
′k
2jz

⎞⎠ , (25)

(ξk+1
z )2 =

2
(∑

yj∈Y1
P

′k
1jz +
∑

yj∈Y2
P

′k
2jz

)
∑

yj∈Y1
P

′k
1jzy

∗2

j +
∑

yj∈Y2
P

′k
2jz(y

∗2

j + 2/(ξkz )
2)
. (26)

It should be pointed out that the maximize of Q(θ, θk) is conditioned on∑p
i=1 λi = 1. By Lagrange multipliers method we have the new objective func-

tion:

Q(θ, θk)− α(

p∑
i=1

λi − 1).

4 Numerical Results

In this section, we will use Monte-Carlo method to test the proposed method.
The simulated data set in this section is drawn from mixed Rayleigh distribution
as shown in Eq. (24) with p = 3, λ = (1/3, 1/3, 1/3) and ξ = (4, 0.5, 0.8). The
test scheme is n = 500, m = n ∗ 0.6, R = (0, 0, · · · , n −m)1×m. Let the initial
values be λ0 = (1/3, 1/3, 1/3) and ξ0 = (4, 0.5, 0.8)− 0.01. As mentioned before,
usually there is no information about the subclass labels of the data, which is the
case of unsupervised learning. But in real life, we may get some prior uncertain
knowledge from the experts or experience. These partial information is assumed
to be in the form of belief functions here.

To simulate the uncertainty on the labels of the data, the original generated
datasets are corrupted as follows. For each data j, an error probability qj is
drawn randomly from a beta distribution with mean ρ and standard deviation
0.2. The value qj expresses the doubt by experts on the class of sample j. With
probability qj , the label of sample j is changed to any (three) class (denoted by
z∗j ) with equal probabilities. The plausibilities are then determined as

plZj (zj) =

{
qj
3 if zj �= z∗j ,
qj
3 + 1− qj if zj = z∗j

. (27)
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Fig. 1. Average RABias values (plus and minus one standard deviation) for 20 repeated
experiments, as a function of the error probability ρ for the simulated labels

The results of our approach with uncertain labels are compared with the cases
of noisy labels and no information on labels. The former case with noisy labels is
like supervised learning, while the latter is the traditional EM algorithm applied
to progressively censored data. In each case, the E2M (or EM) algorithm is run
20 times. The estimations of parameters are compared to their real value using
absolute relative bias (RABias). We recall that this commonly used measure

equals 0 for the absolutely exact estimation θ̂ = θ.
The results are shown graphically in Figure 1. As expected, a degradation of

the estimation performance is observed when the error probability ρ increases
using noisy and uncertain labels. But our solution based on soft labels does not
suffer as much that using noisy labels, and it clearly outperforms the supervised
learning with noisy labels. The estimations for ξ1 and ξ3 by our approach (un-
certain labels) are better than the unsupervised learning with unknown labels.
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Fig. 2. Average RABias values (plus and minus one standard deviation) for 20 repeated
experiments, as a function of the sample numbers n

Although the estimation result for ξ2 using uncertain labels seems not better
than that by traditional EM algorithm when ρ is large, it still indicates that
our approach is able to exploit additional information on data uncertainty when
such information is available as the case when ρ is small.

In the following experiment, we will test the algorithm with different sample
numbers n. In order to illustrate the different behavior of the approach with
respect to n, we consider a fixed censored scheme with (m =) 60% of sam-
ples are censored. With a given n, the test scheme is as follows: m = n ∗ 0.6,
R = (0, 0, · · · , n − m)1×m. Let the error probability be ρ = 0.1. Also we will
compare our method using uncertain labels with those by noisy labels and with-
out using any information of labels. The RABias for the results with different
methods is shown in Figure 2. We can get similar conclusions as before that
uncertainty on class labels appears to be successfully exploited by the proposed
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approach. Moreover, as n increases, the RABias decreases, which indicates the
large sample properties of the maximum-likelihood estimation.

5 Conclusion

In this paper, we investigate how to apply E2M algorithm to progressively cen-
sored data analysis. From the numerical results we can see that the proposed
method based on E2M algorithm has a better behavior in terms of the RABias
of the parameter estimations as it could take advantage of the available data
uncertainty. Thus the belief function theory is an effective tool to represent and
deal with the uncertain information in reliability evaluation. The Monte-Carlo
simulations show that the RABiases decreases with the increase of n for all cases.
The method does improve for large sample size.

The mixture distribution is widely used in reliability project. Engineers find
that there are often failures of tubes or other devices at the early stage, but
the failure rate will remain stable or continue to raise with the increase of time.
From the view of statistics, these products should be regarded to come from
mixed distributions. Besides, when the reliability evaluation of these complex
products is performed, there is often not enough priori information. Therefore,
the application of the proposed method is of practical meaning in this case.
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Abstract. Simpson’s paradox, also known as the Yule-Simpson effect,
is a statistical paradox which plays a major role in causality modelling
and decision making. It may appear when marginalizing data: an effect
can be positive for all subgroups of a population, but it can be negative
when aggregating all the subgroups. This paper explores what happens
if data are considered in the framework of belief functions instead of clas-
sical probability theory. In particular, the co-occurrence of the paradox
with both the probabilistic approach and our belief function approach is
studied.

Keywords: Simpson’s paradox, Belief functions, Marginalization, De-
cision Making.

1 Introduction

First relations about Simpson’s paradox, also known as the Yule-Simpson effect
or the reversal paradox, were discovered one century ago [12], and more studies
were published from the fifties [11]. It concerns statistical results that are very
strange to the common sense: the influence of one variable can be positive for
every subgroups of a population, but it may be negative for the whole population.
For instance a medical treatment can be effective when considering the gender
of patients, being effective for both males and females separately. But when
studying the population as a whole, when the gender is ignored by marginalizing
this variable, the treatment becomes inefficient. Real life examples are numerous.
In [12] several examples are given concerning batting averages in baseball, kidney
stone treatment, or the Berkeley sex bias case when studying the admittance at
this university depending on the gender of the applicants.

Simpson’s paradox plays a major role in causality modelling, when it is ignored
if a variable has an influence on the others, or not. Since it has been shown that
given a set of data involving several variables, any relation may be reversed when
marginalizing (see [7] for a graphical proof), Simpson’s paradox has a direct role
in the adjustment problem, when somebody tries to know what variables have
to be taken into account in order to obtain a model of the process. A proposed
solution to this paradox does not lie in the original data, but involves extraneous
information, provided by experts [9], called causal relations.
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So far Simpson’s paradox phenomenon has been described with probability
measures. However, in the last 40 years, other models of uncertainty have been
defined, and in particular belief functions. Introduced by Shafer [13], they have
wider and wider domains of application (see in particular [10, Appendix A]).

It would be interesting to know if such reversal of the decisions also occurs
with belief functions when marginalizations are involved. Through simulations,
a first inquiry into that question is presented in this paper.

This paper is organized as follows. A few details about the paradox are given in
Section 2 and basic concepts on belief functions are exposed in Section 3. Then,
in Section 4 is presented a belief function approach to handle data at the origin
of the paradox with an academic example. Then a Monte Carlo experiment is
provided in Section 5 to provide the (co) occurences of the paradox. Section 6
concludes this paper.

2 Simpson’s Paradox

Introducing Simpson’s paradox may be done purely arithmetically with 8 num-
bers such that:

a/b < A/B (1)

c/d < C/D (2)

(a+ c)/(b+ d) <> (A+ C)/(B +D) (3)

In the last equation (Eq. 3), it is not known what terms is the biggest. In
other words, (Eq. 1) and (Eq. 2) are insufficient to deduce any order in (Eq. 3).

For example, the next relations [12] hold:

1

5
<

2

8
(Eq. 1),

6

8
<

4

5
(Eq. 2), and

7

13
>

6

13
(Eq. 3). (4)

When considering probabilities, these sets of inequalities can be seen as:

P (A | B,C) < P (A | B,C) (5)

P (A | B,C) < P (A | B,C) (6)

P (A | B) <> P (A | B) (7)

This is where Simpson’s paradox appears [9]: a property may be true in every
subgroups of a population while being false for the whole population (In the
previous example two subgroups corresponding to C and C are considered).

Real life examples of such discrepancies are numerous. They are even encoun-
tered in evolutionary games involving populations of rats and lemmings [2,7].



192 F. Delmotte, D. Mercier, and F. Pichon

Such an example [9,12] about a medical treatment is presented in Table 1. It can
be observed that the treatment is effective when the variable Gender is taken
into account. Indeed:

P (S | A,m) ' .93 > P (S | B,m) ' .87 , (8)

P (S | A, f) ' .73 > P (S | B, f) ' .69 . (9)

Table 1. Probabilities of success (S) and failure (F ) of a treatment knowing it has
been given (A) or not (B) when a male m is encountered versus a female f , a number
of 700 cases being considered

m f
A B A B

S 81/87 � 0.93 234/270 � 0.87 192/263 � 0.73 55/80 � 0.69

F 6/87 � 0.07 36/270 � 0.13 71/263 � 0.27 25/80 � 0.31

However, when the gender is marginalized, for the whole population, no treat-
ment becomes a better option. Indeed, as it can be seen in Table 2, inequalities
are reversed:

P (S | A) ' .78 < P (S | B) ' .83 . (10)

Table 2. Probability of success and failure obtained from Table 2 when the gender is
marginalized

A (with treatment) B (no treatment)

S P11 = 273/350 � 0.78 P12 = 289/350 � 0.83

F P21 = 77/350 � 0.22 P22 = 61/350 � 0.17

Let us also note that changing numbers while keeping ratios constant, with
a/b = (αa)/(αb) and α free, may alter the paradox. Indeed ratios in (Eq. 1)
and (Eq. 2) are constant, as is the right term of (Eq. 3), but the left term of
the latter now depends on α. For example consider α = 10, then equation 4
becomes 10/50 < 2/8, 6/8 < 4/5 and 16/58 < 6/13, i.e, the opposite conclusion
is reached.

A solution proposed by Pearl [9] consists in using extraneous data, called
causal information, that are different from the raw data. Causal information
is the knowledge of the influences of some variables on some other ones. They
enable one to know if one must reason with the full contingency table, or the
reduced one. So the conclusions drawn from each table cannot be compared,
and so the paradox becomes impossible. However, causal information must be
provided by experts and therefore may be unavailable or difficult to obtain.
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3 Belief Functions

This section recalls some basic concepts on belief functions which are used in
this paper.

3.1 Main Functions

Let Ω = {ω1, . . . , ωn} be a finite set called the frame of discernment. The quan-
tity m(A) ∈ [0, 1] with A ⊆ Ω is the part of belief supporting A that, due to a
lack of information, cannot be given to any strict subset of A [14]. Mass function
m (or basic belief assignment) has to satisfy:∑

A⊆Ω

mΩ(A) = 1 . (11)

Throughout this article, 2Ω represents all the subsets ofΩ. Plausibility PlΩ(A)
represents the total amount of belief that may be given to A with further pieces
of evidence:

PlΩ(A) =
∑

A∩B �=∅
mΩ(B) . (12)

These functions are in one-to-one correspondence [13], so they are used indif-
ferently with the same term belief function. A set A such that m(A) > 0 is
called a focal element of m. The vacuous belief function is defined by m(Ω) = 1.
It represents the total lack of information.

3.2 Refinement, Vacuous Extension and Marginalization

Let R be a mapping from 2Θ to 2Ω such that every singleton {θ}, with θ ∈ Θ is
mapped into one or several elements of Ω, and such that all images R({θ}) ⊆ Ω
form a partition of Ω. Such a mapping R is called a refining, Ω is called a
refinement of Θ and Θ is called a coarsening of Ω [13].

Any belief function mΘ defined on Θ can be extended to Ω. This operation is
called the vacuous extension of mΘ on Ω, it is denoted by mΘ↑Ω and is defined
by:

mΘ↑Ω(A) =

{
mΘ(B) if A = R(B)

0 otherwise
(13)

The coarsening operation is the opposite step. Starting from a belief function
defined on Ω, a belief function on Θ is defined trough a mapping R defined as
previously. The problem is that R is generally not an onto mapping: usually
there will be some focal elements of mΩ that are not the images of sets of Θ by
R. In this case Shafer [13, chapter 6, page 117] has introduced two envelopes,
called inner and outer reductions.
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The inner reduction (or lower envelop) Θ and the outer reduction (or upper
envelop) Θ are mappings respectively defined, from 2Ω to 2Θ, for all A ⊆ Ω by:

Θ(A) = {θ ∈ Θ, R({θ}) ⊆ A} , (14)

and
Θ(A) = {θ ∈ Θ, R({θ}) ∩A �= ∅} . (15)

The inner reduction and outer reduction on Θ of a belief function mΩ defined
on Ω are then respectively given for all B ⊆ Θ by:

mΘ(B) =
∑

A⊆Ω, Θ(A)=B

mΩ(A) , (16)

and
mΘ(B) =

∑
A⊆Ω, Θ(A)=B

mΩ(A) . (17)

Conceptually, marginalization is a special case of coarsening where Ω = X×Y
and either Θ = X or Θ = Y [13].

3.3 Pignistic Transformation

Decisions from belief functions can be made using the pignistic transformation
BetP justified in [14,15] based on rationality requirements and axioms. It is
defined, for all ω of Ω, by:

BetPΩ({ω}) =
∑
ω∈A

mΩ(A)

| A | (1−m(∅)) . (18)

The converse operation of the pignistic rule has also been defined. It actu-
ally yields the least specific mass function whose pignistic transformation is the
probability measure PΩ [6]. Let mΩ

LSP (PΩ) denote this mass function. It has n

nested focal elements :

mΩ
LSP (PΩ)({ωi, . . . , ωn}) = (n− i+ 1)(pi − pi−1), ∀i ∈ {1, . . . , n}, (19)

with 0 < PΩ({ω1}) = p1 < . . . < pn and p0 = 0. If some pi are equal, the result
is the same whatever the order.

4 Inferring Decisions from Contingency Tables with
Belief Functions

4.1 Proposed Approach Outline

The whole approach used in this article is summarized in Figure 1.
From initial data on a 3 binary variables contingency table Ω = X × Y × Z,

a probability measure P̂Ω is estimated. From the same data a belief function
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Data on Ω =
X × Y × Z

P̂Ω P̂Θ

m̂Ω = mΩ
LSP (P̂Ω)

mΘ

mΘ

betPΘ

betP
Θ

Simpson’s paradox?

[P̂Ω with P̂Θ?, P̂Ω with betPΘ?, P̂Ω with betP
Θ
?]

Fig. 1. Comparison of the Simpson’s paradox when using probabilities and the pro-
posed approach based on belief functions

m̂Ω = mΩ
LSP (P̂Ω)

is estimated as the least specific belief function whose pignistic

transformation gives P̂Ω. It is obtained using Equation 19.
Then the probability measure P̂Ω and the belief function m̂Ω are marginalized

on Θ = X × Y .
With belief functions, two reductions for this marginalization are considered:

the inner reduction mΘ of m̂Ω (Eq. 16) and the outer reduction mΘ of m̂Ω

(Eq. 17).
Finally, decisions based on the full contingency table are compared to decisions

taken on the reduced space Θ to detect Simpson’s paradoxes.

4.2 An Academic Example

In this section, an example is given to illustrate the approach with the inner
reduction. Values in Tables 1 and 2 are used again.

Let us consider the spaces Ω = {S, F} × {A,B} × {m, f} and Θ = {S, F} ×
{A,B} when the variable gender is marginalized.

In Table 3 are sorted out the numbers of cases of Table 1 to compute the least
specific belief isopignistic to P̂Ω.
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Table 3. Computing P̂Ω from Table 1

Singleton P̂Ω

FAm = (F,A,m) 6
700

� .01 = p1

FBf 25
700

� .04 = p2

FBm 36
700

� .05 = p3

SBf 55
700

� .08 = p4

FAf 71
700

� .10 = p5

SAm 81
700

� .12 = p6

SAf 192
700

� .27 = p7

SBm 234
700

� .33 = p8

Using Equation 19, the least specific belief m̂Ω obtained from Table 3 can be
computed:

mΩ
LSP (P̂ )

(Ω) = 8p1 = x1

mΩ
LSP (P̂ )

(Ω \ {FAm}) = 7(p2 − p1) = x2

mΩ
LSP (P̂ )

(Ω \ {FBf, FAm}) = 6(p3 − p2) = x3

mΩ
LSP (P̂ )

(Ω \ {FBm,FBf, FAm}) = 5(p4 − p3) = x4

mΩ
LSP (P̂ )

({SBm,SAf, SAm,FAf}) = 4(p5 − p4) = x5

mΩ
LSP (P̂ )

({SBm,SAf, SAm}) = 3(p6 − p5) = x6

mΩ
LSP (P̂ )

({SBm,SAf}) = 2(p7 − p6) = x7

mΩ
LSP (P̂ )

({SBm}) = p8 − p7 = x8

(20)

Mapping Θ (Eq. 14) of Θ = {S, F} × {A,B} is defined by:

Θ(Ω) = {SA, SB, FA, FB}
Θ(Ω \ FAm) = {SA, SB, FB}
Θ(Ω \ {FBf, FAm}) = {SA, SB}
Θ(Ω \ {FBm,FBf, FAm}) = {SA, SB}
Θ({SBm,SAf, SAm,FAf}) = {SA}
Θ({SBm,SAf, SAm}) = {SA}
Θ({SBm,SAf}) = ∅
Θ({SBm}) = ∅

(21)
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So the inner reduction mΘ of m̂Ω on the space Θ is given by (Eq. 16):

mΘ :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{SA, SB, FA, FB} �→ x1

{SA, SB, FB} �→ x2

{SA, SB} �→ x3 + x4

{SA} �→ x5 + x6

∅ �→ x7 + x8

(22)

and pignistic values are the followings (Eq. 18):

BetPΘ({SA}) = k(x1

4 + x2

3 + x3+x4

2 + x5 + x6) ' 0.51

BetPΘ({SB}) = k(x1

4 + x2

3 + x3+x4

2 ) ' 0.31

BetPΘ({FA}) = k(x1

4 ) ' 0.03

BetPΘ({FB}) = k(x1

4 + x2

3 ) ' 0.15 ,

(23)

with k = 1
1−x7−x8

.

So BetP (S | A) ' .51
.51+.03 ' 0.95 and BetP (S | B) ' 0.68, and unlike the

probability case (Eq. 10) BetP (S | A) > BetP (S | B), which leads to the same
decision as the one obtained on the whole space {S, F}×{A,B}×{m, f} (Eq. 8
and 9).

In this example, there is no longer a Simpson’s paradox when considering
belief functions and the inner reduction. However, as shown in next section,
the paradox may also occur with belief functions, depending on the reduction,
and without being triggered necessarily in the same time as with a Bayesian
approach.

5 Numerical Simulations

In this section, the results of the following experiment are given:

– 108 contingency tables of 3 binary variables composed of numbers defined
randomly in the interval [1, 103] are built. Frequencies about the paradox
are then observed for the three approaches: probability case, belief functions
with inner and outer reduction cases.

– the preceding point is repeated 10 times in order to obtain mean values and
variances of the obtained frequencies.

Table 4 provides the mean and standard deviation values obtained for the eight
frequencies of the paradox triggering in the experiment. Each frequency corre-
sponds to a case of appearance considering the probability approach (Proba)
and the approaches with belief functions marginalized with the inner and outer
reductions (Inner, Outer). A “1” means a paradox.

A first remark when looking at these results is that Simpson’s paradox can
be triggered for the three approaches, and all combinations of occurrences are
possible.
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Table 4. Appearance frequencies of Simpson’s paradox over 108 contingency tables
composed of numbers randomly chosen between 1 and 1000. “1” means a paradox. The
first number is the mean value, the second one the standard deviation.

Proba = 0 Proba = 1
Outer = 0 Outer = 1 Outer = 0 Outer = 1

Inner = 0 94% 3.77% 0.04% 0.9%
0.003% 0.0012% 1.5.10−4% 7.10−4%

Inner = 1 1.2% 0.004% 0.013% 0.0046%
0.0014% 9.10−5% 1.4.10−4% 9.10−5%

In most cases (94%), the paradox is absent for all the approaches.
Simpson’s paradox occurs in this experiment for the probability approach with

a 0.9576% frequency1 (0.04 + 0.9 + 0.013 + 0.0046) which is lower than for the
other cases (inner and outer reductions).

At last it can be observed that the chance (0.9%) of observing a paradox for
both the probabilistic and outer reduction approaches, is much more important
than that of observing a paradox for the inner reduction approach with any
or both of the other approaches. Taking into account the marginal chances of
observing a paradox for each approach, we may further remark that the proba-
bilistic approach is actually somewhat included in the outer reduction approach
(when a paradox is observed for the probabilistic approach, a paradox will in gen-
eral be observed for the outer reduction), whereas the inner reduction approach
is almost disjoint from the other ones.

6 Conclusion and Discussion

In this article, similarly to the probability case, frequencies of appearance of
Simpson’s paradox have been studied with belief functions. The marginalization
step is shown to impact it, since the inner and outer reductions have different
behaviours. It has been shown than a paradox can occur in each approach and
each combination of approaches.

To complete this study, instead of the least specific isopignistic belief func-
tion, it might be interesting to investigate on other estimators since they may
yield different results than those obtained with consonant beliefs. Indeed, for in-
stance, the Bayesian belief function identified to the probability measure, leads
to different conclusions than those based on consonant beliefs.

Another parameter that influences the paradox is the decision rule. In this
paper the pignistic rule is used. But other decision rules exist, and among them

1 The same frequency was valued at 1.67% in another experiment [8]. In this article, the
experiment is based on 7 independent proportions, the eight one summing up to one.
This discrepancy between the two results may be due to the fact that proportions
may shift the triggering of the paradox, as recalled in the penultimate paragraph of
Section 2.
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the maximum of plausibility emerges. However, the analysis of the full decision
chain based on this rule is more complex (for instance, differences between de-
cisions obtained under this rule and under the pignistic rule already appear on
the set Ω) and is left for further work.

Lastly, it would be interesting to investigate whether causality as addressed
in belief function theory [1], could bring a solution to the paradox, as is in the
probabilistic case.
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Abstract. This paper compares several assignment algorithms in a
multi-target tracking context, namely: the optimal Global Nearest Neigh-
bor algorithm (GNN) and a few based on belief functions. The robust-
ness of the algorithms are tested in different situations, such as: nearby
targets tracking, targets appearances management. It is shown that the
algorithms performances are sensitive to some design parameters. It is
shown that, for kinematic data based assignment problem, the credal
assignment algorithms do not outperform the standard GNN algorithm.

Keywords: multi-target tracking, optimal assignment, credal assign-
ment, appearance management.

1 Introduction

Multiple target tracking task consists of the estimation of some random targets
state vectors, which are generally composed of kinematic data (e.g. position,
velocity). Based on some measured data (e.g. position in x and y directions), the
state estimation can be ensured by: Kalman filters, particles filters, Interacting
Multiple Model algorithm which are used in this article and so on. Targets state
estimation quality depends on how accurately the measured data are assigned
to the tracked targets. In fact the assignment task is quite hard as far as the
measured data are imperfect.

This paper focuses on distance optimization based assignment, where, the
well known optimal Global Nearest Neighbor algorithm (GNN) [1] is compared
with some, recently developed, equivalent credal solutions, namely: the works of
Denoeux et al. [2], Mercier et al. [3], Fayad and Hamadeh [4] and Lauffenberger
et al. [5]. Discussions with some other approaches are included [6].

This paper highlights drawbacks of turning distances into mass functions,
in the credal algorithms. Simulation examples show the difficulties to correctly
define the parameters of all the methods, including the appearances and disap-
pearances management. In particular, it is shown that the performance criteria
is linked to two distinct errors, namely: miss-assignment of two nearby targets
and false decision about new targets. A method to define the most accurate
mass function, allowing the credal algorithms to get the same performance as
the GNN, is presented. It appears that in the described mono-sensor experiments

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 200–211, 2014.
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based on kinematic data, credal assignment algorithms do not outperform the
standard GNN algorithm.

In this paper, the problem of conflicting assignment situation and the pro-
posed solutions are described in Section 2. A relation between the algorithms
parameters is presented in Section 3. Some tests and results in tracking assign-
ment context are depicted in Section 4. Section 5 concludes the paper.

2 Assignment Problem and Related Solutions

In multi target tracking contexts, updating the state estimations is much more
complex than in a mono target framework. Indeed the first task is to assign the
observations to the known objets.

Let us illustrate the problem in Fig. 1, where at a given time k, three targets
T = {T1, T2, T3} are known and four observations O = {O1, O2, O3, O4} are
received. The question is: how to assign the observations to the known targets
and taking into account the appearances and disappearances?

Fig. 1. Distance based assignment

Global Nearest Neighbor (GNN) solution: GNN algorithm is one of the firstly
proposed solutions to the assignment problem in multi-target tracking context. It
provides an optimal solution, in the sense where global distance between known
targets and observations is minimized. Let ri,j ∈ {0, 1} be the relation that
object Ti is associated or not associated with observation Oj (ri,j = 1 means
that observation Oj is assigned to object Ti, ri,j = 0 otherwise). The objective
function of such problem is formalized as follows:

min

n∑
i=1

m∑
j=1

di,jri,j , (1)

where,
n∑

i=1

ri,j = 1 , (2)

m∑
j=1

ri,j ≤ 1 , (3)
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where di,j represents the Mahalanobis distance between the known target Ti and
the observation Oj .

The generalized distances matrix [di,j ] for the example given in Fig. 1, can
have the following form:

O1 O2 O3 O4

T1 d1,1 d1,2 d1,3 d1,4
T2 d2,1 d2,2 d2,3 d2,4
T3 d3,1 d3,2 d3,3 d3,4
NT1 λ ∞ ∞ ∞
NT2 ∞ λ ∞ ∞
NT3 ∞ ∞ λ ∞
NT4 ∞ ∞ ∞ λ

When they are not assigned to existing targets, observations initiate new targets
noted NT . If the probability p that an observation is generated by an existing
target is known, the threshold λ can be derived from the χ2 table as far as the
Mahalanobis1 distance follows a χ2 distribution [7]:

P (di,j < λ) = p, (4)

otherwise, it must be trained to lower the false decisions rate.

2.1 Denoeux et al.’s Solution [8]

In Denœux et al.’s approach as in most credal approaches, available evidence on
the relation between objects Ti and Oj is assumed to be given for each couple
(Ti, Oj) by a mass function mi,j expressed on the frame {0, 1} and calculated in
the following manner:⎧⎨⎩ mi,j({1}) = αi,j , supporting ri,j = 1.

mi,j({0}) = βi,j , supporting ri,j = 0.
mi,j({0, 1}) = 1− αi,j − βi,j , ignorance on the assignment of Oj to Ti.

(5)
With R the set of all possible relations between objects Ti and Oj , Ri,j denotes
the set of relations matching object Ti with observation Oj :

Ri,j = {r ∈ R|ri,j = 1}. (6)

Each mass function mi,j is then extended to R by transferring masses mi,j({1})
to Ri,j , mi,j({0}) to Ri,j and mi,j({0, 1}) to R. For all r ∈ R, associated plau-
sibility function Pli,j verifies:

Pli,j({r}) = (1− βi,j)
ri,j (1− αi,j)

1−ri,j . (7)

1 For fair tests, all the algorithms are based on Mahalanobis distances.
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After combining all the mi,j by Dempster’s rule, the obtained global plausibility
function Pl is shown to be proportional to the Pli,j and given for all r ∈ R by:

Pl({r}) ∝
∏
i,j

(1− βi,j)
ri,j (1 − αi,j)

1−ri,j . (8)

Finally, the calculation of the logarithm function of (8), βi,j and αi,j being all
considered strictly lower than 1, allows the authors to express the search of the
most plausible relation as a linear programming problem defined as follows with
n objects Ti, m observations Oj and wi,j = ln(1− βi,j)− ln(1− αi,j):

max
∑
i,j

wi,jri,j , i = {1, ..., n}, j = {1, ...,m}, (9)

with
n∑
i

ri,j ≤ 1 , (10)

m∑
j

ri,j ≤ 1 , (11)

ri,j ∈ {0, 1}, ∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m} . (12)

This problem can be solved using Hungarian or Munkres algorithms [9]. More
specifically, the authors also propose to solve an equivalent algorithm by consid-
ering, instead of (9), the following objective function:

max
∑
i,j

w′
i,jr

′
i,j , i = {1, ..., n}, j = {1, ...,m}, (13)

with w′
i,j = max(0, w′

i,j).
To experiment this algorithm with kinematic data based assignments, weights

αi,j and βi,j are computed in [8] as follows:⎧⎨⎩ mi,j({1}) = αi,j = σ exp (−γdi,j)
mi,j({0}) = βi,j = σ(1 − exp (−γdi,j))
mi,j({0, 1}) = 1− αi,j − βi,j = 1− σ

(14)

where di,j is the distance between object Ti and observation Oj and γ is a
weighting parameter. Parameter σ is used to discount the information according
to the sensor reliability [10].

In this article, all sensors have an equal perfect reliability, and so σ = 0.9.
Moreover this parameter could be used in the same manner for all credal algo-
rithms. On the contrary, parameter γ will be optimized. Although appealing, set
of equations 14 remains empirical.
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Mercier et al.’s solution [3]: mass functions in the works of Mercier et al. are
calculated as in Equation (14), they are extended (vacuous extension [10]) to the
frame of discernment T ∗ = {T1, T2, T3, ∗} or O∗ = {O1, O2, O3, ∗} depending on
if we want to associate the observations to the targets or the targets to the obser-
vations. Element (∗) models the non-detection or new target appearance. Once
the mass functions are all expressed on a common frame of discernment, they
are conjunctively combined [10] and then a mass function is obtained for each
element Oj or Ti, according to the assignment point of view. Finally, The mass
functions are transformed to pignistic probabilities [10]. The assignment deci-
sion is made by taking the maximum pignistic probabilities among the possible
relations.

It is shown that this method is asymmetric when it comes to manage targets
appearances and disappearances: assigning observations to targets is different
than targets to observations. In this paper, only observations points of view are
considered.

Lauffenberger et al.’s solution [5]: at the credal level, this method is almost
similar to Mercier et al’s method. To avoid the asymmetry problem, the au-
thors, propose a different decision making strategy. For a given realization of
distances, they perform the previous algorithm in both sides and obtain two
pignistic probability matrices, which are not normalized since the weight on the
empty set resulting from the conjunctive combination is isolated and used for
a decision making purpose. A dual pignistic matrix is calculated by performing
an element-wise product of calculated two pignistic probabilities matrices. The
maximum pignistic probability is retained for each target (each row of the dual
matrix), if this pignistic probability is greater than a given threshold, the tar-
get is associated with the column corresponding element, else it is considered
as non-detected. The same procedure is performed for the observations (column
elements of the dual matrix). The probabilities are also compared to the con-
flict weight generated by the conjunctive combination. If the conflict weight is
greater that the dual matrix (rows/columns) probabilities, no assignment deci-
sion is made.

Fayad and Hamadeh’s solution [4]: mass functions calculations in this method
are different of the one adopted by the previous methods. For each observation
Oj , in Fig. 1, for example, a mass function over the set of known targets T ∗ =
{T1, T2, T3, ∗} is calculated. The element (∗) is a virtual target for which assigned
observations are considered as new targets. Distances between known targets and
each observation are sorted (minimum distance to maximum distance) and the
mass function weights are calculated by inverting the distances and then normaliz-
ing the weighs in order to get a representativemass functions. Oncemass functions
of all observations are calculated, they are combined and expressed on the set of all
possible hypotheses: [{(O1, ∗), (O2, ∗), (O3, ∗), (O4, ∗)}, {(O1, T1), (O2, ∗), (O3, ∗),
(O4, ∗)}, ...]. The combination is done by means of a cautious rule based on the
”min” operator. This method becomes quickly intractable when the number of
observations and/or targets gets over 3.
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3 Relation between Parameters γ and λ

These two parameters can be optimized through a training. Moreover, if one is
known the other can be deduced from it. To illustrate the necessity of choosing
adequate parameters, let us consider that d3,3, in Fig. 1, is equal to 1. The weights
concerning the assignment of O3 to T3 for two different values of γ = {0.6, 0.8}
are: αi,j = exp (−0.6) = 0.55 and βi,j = 1 − exp (−0.6) = 0.45. The parameter
αi,j , in this case, is greater that βi,j so O3 is associated to T3. In another hand,
if γ = 0.8, αi,j = exp (−0.8) = 0.45 and βi,j = 1− exp (−0.8) = 0.55, this means
that T3 is non-detected and O3 is considered as a new target.

Fig. 2 represents the evolution of functions αi,j and βi,j .
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i,j

 "

 

 

exp(−γ d
i,j

)

1−exp(−γ d
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)γ=−log(0.5)/λ

λ=15

Fig. 2. Parameter ”γ” determination

The fail-over distance (confirming/refuting the assignment) depends on the
value given to γ. It can be chosen in such a way to get exactly the same fail-over
distance as for the algorithm GNN, namely the parameter λ in Equation (4): it
can be seen in Fig. 2 that the fail-over weight is given by the junction of the
two curves (αi,j = βi,j), if we want to impose λ as a fail-over distance, we just
have to put exp (−γλ) = 1 − exp (−γλ) and then deduce the value of γ using
the following relation:

γ =
− log (0.5)

λ
. (15)

4 Assignment Tests in Tracking Context

Targets are evolving according to linear constant velocity models originally de-
fined for aircrafts [1]:

xi(k) = Axi(k) +Bu(k) + w(k) , (16)
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where:

A =

⎡⎢⎢⎣
1 ΔT 0 0
0 1 0 0
0 0 1 ΔT
0 0 0 1

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
(ΔT )2/2 0

ΔT 0
0 (ΔT )2/2
0 ΔT

⎤⎥⎥⎦ , (17)

where ΔT represents the sampling time and w represents a Gaussian state noise.
Input matrix is represented by B, where B′ is matrix B transpose. Vector u =
[ax ay]

T
in Equation (16) represents a given acceleration mode in x, y or both

x and y directions.
Sensor measurements are modeled by:

Oi(k) = Hxi(k) + v(k), (18)

where,

H =

[
1 0 0 0
0 0 1 0

]
, (19)

and v a Gaussian measurement noise.
Let us start by giving a numerical example showing the effect of an arbitrary

choice of the parameter γ, for example, in the concerned credal assignment meth-
ods.

Two time steps illustrating example: let D(k) = [di,j ] be a distances matrix at
time step k, it is calculated based on 3 known targets T1(k), T2(k), T3(k) and 3
observations O1(k), O2(k), O3(k):

D(k) =

⎡⎣ 6.9 8.1 7.1
9.9 6.9 9.1
10.3 11.2 6.4

⎤⎦ . (20)

The resolution of this matrix using GNN and Fayad’s algorithms gives the fol-
lowing solution:

SG,F (k) =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ . (21)

The matrices α = [αi,j ] and β = [βi,j ], corresponding to the transformation of
the distances into mass functions are given by:

α(k) =

⎡⎣0.4514 0.4004 0.4425
0.3344 0.4514 0.3623
0.3213 0.2937 0.4746

⎤⎦ , β(k) =
⎡⎣0.4486 0.4996 0.4575
0.5656 0.4486 0.5377
0.5787 0.6063 0.4254

⎤⎦ , (22)

For these matrices, the credal algorithms (except Lauffenberger et al.’s algo-
rithm) gives the same solution as the GNN (see Equation (21)). Lauffenberger
et al.’s algorithm gives the following solution:

SL(k) =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ . (23)
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This means that all the know targets are disappeared and all the observations
are considered as new targets. This illustrates the limits of the algorithm in
conflicting situation (nearby targets, given that the cross-distances are almost
equal). This is due to the fact that the assignment decision is made based on the
conflict generated by the mass functions combination, and when targets are close
to each other, the conflict is high and then considerably influence the assignment
decision.

At time step k + 1, the measurements O1(k + 1), O2(k + 1), O3(k + 1) of the
same known targets are affected by the sensor noise, which leads to a different
distance matrix D(k + 1):

D(k + 1) = D(k) + noise =

⎡⎣ 7.8 9.4 8.5
10 7.8 11
10.2 12 7.9

⎤⎦ , (24)

The obtained solution in the GNN and Fayad’s algorithms is the same as in
Equation (21). In order to get the other credal algorithms solutions, these dis-
tances are transformed into mass functions in the following matrices:

α(k+1) =

⎡⎣0.4126 0.3516 0.3847
0.3311 0.4126 0.2996
0.3245 0.2711 0.4085

⎤⎦ , β(k+1) =

⎡⎣0.4874 0.5484 0.5153
0.5689 0.4874 0.6004
0.5755 0.6289 0.4915

⎤⎦ , (25)

The algorithms depending on γ give the following solution:

SD,M,L(k + 1) =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ . (26)

This solution means that all the known targets are not detected and all the
acquired measurements are considered as new targets which is a false decision.

Let us now, consider the conflicting scenario of two nearby target, in (a) of
Fig. 3 and compare the performances of the assignment algorithms which are
given in (b) of the same figure.

The results in (b) Fig. 3 confirms the dependency of the algorithms on their
respective parameters. In this simulation the parameters λ and γ are linked
by the relation in Equation (15), therefore, λ depending algorithms and γ de-
pending ones have almost the same performances. For a given value of their
parameters, they supply the same performances, with the minimum error rate
(10%) depending only on the scenario (noises and so on).

The results in Fig. 4 represent a robustness test of a λ depending algorithm,
namely, GNN algorithm and a γ depending algorithm, namely, Denoeux’s algo-
rithm. The results shows that the algorithms are almost equivalent and similarly
dependent on their respective parameters and sensor noise. Another robustness
test is added in Fig. 5.

It can be seen in Fig. 5 that algorithms performances are sensitive and pro-
portional to the modeling error which is simulated by state noise variation. In
this simulation algorithms use the optimal values of their respective parameters.
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Fig. 3. (a): Conflicting scenario, (b): False assignments rates with the variation of the
algorithms parameters
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Fig. 4. (a): GNN algorithm robustness test, (b): Denoeux’s algorithm robustness test
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Fig. 6. (a): Target appearance scenario, (b): False decisions rate depending on the
parameter λ for GNN and Fayad’s algorithms and γ for Denoeux, Mercier and Lauf-
fenberger’s algorithms.

The following simulation (Fig. 6) confirms the almost equal performances on
the second kind of errors about new targets appearances. This second simulation
aims to calculate the false decisions rates, which means how often the newly
detected target ”Target 3”, in (a) Fig. 6, is erroneously assigned to a previously
non-detected one ”Target 2”.

It can be seen in (b) Fig. 6, that the false decisions rate depends on the
parameter λ for the GNN and Fayad’s algorithms, and depends on parameter
γ for the other algorithms. The result shows that the algorithms reach equal
performances for given values of λ and γ. When the probability p is known, λ
can be determined according to Equation (2) and γ can be deduce using Equation
(15).

A last simulation including the two precedent tests is added in the following.
It tries to train the optimal parameters λ and γ on the scenario of Fig. 7, without
any a priori knowledge.

Results of this simulation are obtained separately for λ depending algorithms
(GNN and Fayad’s algorithms) and γ depending algorithms (Denœux, Mercier
and Lauffenberger’s algorithms). They are depicted in Fig. 8.

As expected this last results show the necessity to adequately choose the
algorithms parameters for a tracking assignment purpose. They also confirms
that the trained optimal parameters λ = 46 and γ = 0.015 are linked by the
relation of Equation (15) presented in Section 3, since 0.015 ' −log(0.5)/46.

A final test is added to give an idea on the computational complexity of the
studied algorithms. Computational times for an increasing number of observa-
tions are depicted in Fig. 9.

Test in Fig. 9 shows that Fayad’s algorithm is the most computationally de-
manding. It is followed by Mercier’s algorithm. GNN and Deneoux’s algorithms
seem to be the less complex algorithms.
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5 Conclusion

This paper proposes a comparison study of various assignment algorithms in
a context of multi-target tracking based on kinematic data. These algorithms
depends on parameters that must be trained, otherwise, the performances are
decreased. Contrarily to previous articles, it is shown here that the standard
GNN algorithm with optimized parameters provides the same best performances
than other algorithms. It is also less time-consuming. It is shown that there exists
a relation between the optimized design parameters λ and γ.

It can be noticed that Lauffenberger’s algorithm makes wrong decisions in
conflicting scenarios. This is a priori due to the use of a decision making process
based on conflict, where generated conflict in such situation is high and then
refutes all assignments.

In the future, we will tackle the possible benefits of using belief functions in
multi-sensors cases.

Acknowledgments. The authors are very grateful to Prof. T. Denœux for
having shared the MatlabTM code of his assignment algorithm.
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Abstract. Belief functions usually contain some internal conflict. Based
on Hájek-Valdés algebraic analysis of belief functions, a unique decom-
position of a belief function into its conflicting and non-conflicting part
was introduced at ISIPTA’11 symposium for belief functions defined on
a two-element frame of discernment.

This contribution studies the conditions under which such a decom-
position exists for belief functions defined on a three-element frame. A
generalisation of important Hájek-Valdés homomorphism f of semigroup
of belief functions onto its subsemigroup of indecisive belief functions
is found and presented. A class of quasi-Bayesian belief functions, for
which the decomposition into conflicting and non-conflicting parts exists
is specified. A series of other steps towards a conflicting part of a be-
lief function are presented. Several open problems from algebra of belief
functions which are related to the investigated topic and are necessary
for general solution of the issue of decomposition are formulated.

Keywords: Belief function, Dempster-Shafer theory, Dempster’s semi-
group, conflict between belief functions, uncertainty, non-conflicting part
of belief function, conflicting part of belief function.

1 Introduction

Belief functions represent one of the widely used formalisms for uncertainty
representation and processing; they enable representation of incomplete and un-
certain knowledge, belief updating, and combination of evidence [20].

When combining belief functions (BFs) by the conjunctive rules of combi-
nation, conflicts often appear which are assigned to ∅ by the non-normalised
conjunctive rule ∩© or normalised by Dempster’s rule of combination ⊕. Combi-
nation of conflicting BFs and interpretation of conflicts is often questionable in
real applications; hence a series of alternative combination rules were suggested
and a series of papers on conflicting BFs were published, e.g., [13, 16–18, 22].

In [5, 10, 11], new ideas concerning interpretation, definition, and measure-
ment of conflicts of BFs were introduced. We presented three new approaches to
interpretation and computation of conflicts: combinational conflict, plausibility
conflict, and comparative conflict. Later, pignistic conflict was introduced [11].
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A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 212–222, 2014.
c© Springer International Publishing Switzerland 2014



Conflicting Part of Belief Function 213

When analyzing mathematical properties of the three approaches to conflicts
of BFs, there appears a possibility of expression of a BF Bel as Dempster’s sum
of a non-conflicting BF Bel0 with the same plausibility decisional support as the
original BF Bel has and of an indecisive BF BelS which does not prefer any of
the elements of frame of discernment. A new measure of conflict of BFs based
on conflicting and non-conflicting parts of BFs is recently under development.

A unique decomposition to such BFs Bel0 and BelS was demonstrated for BFs
on 2-element frame of discernment in [6]. The present study analyses possibility
of its generalisation and presents three classes of BFs on a 3-element frame for
which such decomposition exists; it remains an open problem for other BFs.

2 Preliminaries

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions
(BFs) [20] on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also [4–9].
A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that∑

A⊆Ω m(A) = 1; its values are called basic belief masses (bbm). m(∅) = 0 is
usually assumed, if it holds, we speak about normalised bba. A belief function
(BF) is a mapping Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅�=X⊆A m(X). A plausibil-

ity function Pl(A) =
∑

∅�=A∩X m(X). There is a unique correspondence between
m and the corresponding Bel and Pl; thus we often speak about m as a BF.

A focal element is X ⊆ Ω, such that m(X) > 0. If all of the focal elements
are singletons (i.e. one-element subsets of Ω), this is what we call a Bayesian
belief function (BBF). If all of the focal elements are either singletons or whole Ω
(i.e. |X | = 1 or |X | = |Ω|), this is what we call a quasi-Bayesian belief function
(qBBF). If all focal elements have non-empty intersections (or all are nested),
we call this a consistent BF (or a consonant BF, also a possibility measure).

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕m2)(A) =∑
X∩Y=AKm1(X)m2(Y ) for A �= ∅, where K= 1

1−κ , κ =
∑

X∩Y=∅m1(X)m2(Y ),
and (m1 ⊕m2)(∅) = 0 [20]; putting K = 1 and (m1 ⊕m2)(∅) = κ we obtain the
non-normalised conjunctive rule of combination ∩©, see, e. g., [21].

We say that BF Bel is non-conflicting (or conflict free, i.e., it has no internal
conflict), when it is consistent; i.e., whenever Pl(ωi) = 1 for some ωi ∈ Ωn. Oth-
erwise, BF is conflicting, i.e., it contains an internal conflict [5]. We can observe
that Bel is non-conflicting if and only if the conjunctive combination of Bel with
itself does not produce any conflicting belief masses1 (when (Bel ∩©Bel)(∅) = 0).

Un is the uniform Bayesian belief function2 [5], i.e., the uniform probability
distribution on Ωn. The normalised plausibility of singletons3 of Bel is the BBF

(prob. distrib.) Pl P (Bel) such, that (Pl P (Bel))(ωi) =
Pl({ωi})∑

ω∈Ω Pl({ω}) [1, 4].

1 Martin calls (m∩©m)(∅) autoconflict of the BF [18].
2 Un which is idempotent w.r.t. Dempster’s rule ⊕, and moreover neutral on the set
of all BBFs, is denoted as nD0′ in [4], 0′ comes from studies by Hájek & Valdés.

3 Plausibility of singletons is called the contour function by Shafer [20], thus P l P (Bel)
is in fact a normalisation of the contour function.
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Let us define an indecisive (indifferent) BF as a BF which does not pre-
fer any ωi ∈ Ωn, i.e., a BF which gives no decisional support for any ωi, i.e.,
a BF such that h(Bel) = Bel ⊕ Un = Un, i.e., Pl({ωi}) = const., that is,
(Pl P (Bel))({ωi}) = 1

n . Let us further define an exclusive BF as a BF Bel such4

that Pl(X) = 0 for a certain ∅ �= X ⊂ Ω; the BF is otherwise non-exclusive.

2.2 Belief Functions on a Two-Element Frame of Discernment;
Dempster’s Semigroup

Let us suppose that the reader is slightly familiar with basic algebraic notions
like a group, semigroup, homomorphism, etc. (Otherwise, see e.g., [3, 14, 15].)

We assume Ω2 = {ω1, ω2}, in this subsection. We can represent any BF on Ω2

by a couple (a, b), i.e., by enumeration of itsm-values a = m({ω1}), b = m({ω2}),
where m({ω1, ω2}) = 1 − a − b. This is called Dempster’s pair or simply d-pair
[14, 15] (it is a pair of reals such that 0 ≤ a, b ≤ 1, a+ b ≤ 1).

The set of all non-extremal d-pairs (i.e., d-pairs different from (1, 0) and (0, 1))
is denoted by D0; the set of all non-extremal Bayesian d-pairs (where a+b = 1) is
denoted by G; the set of d-pairs such that a = b is denoted by S (set of indecisive
d-pairs); the set where b = 0 by S1 (a = 0 by S2), simple support BFs. Vacuous
BF is denoted as 0 = (0, 0) and 0′ = U2 = (12 ,

1
2 ), see Figure 1.

Fig. 1. Dempster’s semigroup D0. Homomorphism h is here a projection of the triangle
D0 to G along the straight lines running through (1, 1). All of the d-pairs lying on the
same ellipse are mapped by homomorphism f to the same d-pair in semigroup S.

The (conjunctive) Dempster’s semigroup D0 = (D0,⊕, 0, 0′) is the set D0

endowed with the binary operation ⊕ (i.e., with Dempster’s rule) and two dis-
tinguished elements 0 and 0′. Dempster’s rule can be expressed by the formula

(a, b) ⊕ (c, d) = (1 − (1−a)(1−c)
1−(ad+bc) , 1 − (1−b)(1−d)

1−(ad+bc) ) for d-pairs [14]. In D0 it is de-

fined further: −(a, b) = (b, a), h(a, b) = (a, b)⊕ 0′ = ( 1−b
2−a−b ,

1−a
2−a−b ), h1(a, b) =

1−b
2−a−b , f(a, b) = (a, b) ⊕ (b, a) = (a+b−a2−b2−ab

1−a2−b2 , a+b−a2−b2−ab
1−a2−b2 ); (a, b) ≤ (c, d)

iff [h1(a, b) < h1(c, d) or h1(a, b) = h1(c, d) and a ≤ c] 5.

4 BF Bel excludes all ωi such, that P l({ωi}) = 0.
5 Note that h(a, b) is an abbreviation for h((a, b)), similarly for h1(a, b) and f(a, b).
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Theorem 1. (i) G = (G,⊕,−, 0′,≤) is an ordered Abelian group, isomorphic
to the additive group of reals with the usual ordering. G≤0′ , G≥0′ are its cones.
(ii) The sets S, S1, S2 with operation ⊕ and the ordering ≤ form ordered com-
mutative semigroups with neutral element 0; all isomorphic to (Re,+,−, 0,≤)≥0.
(iii) h is ordered homomorphism: D0 −→ G; h(Bel) = Bel⊕ 0′ = Pl P (Bel).
(iv) f is homomorphism: (D0,⊕,−, 0, 0′) −→ (S,⊕,−, 0); (but, not ordered).
(v) Mapping − : D0 −→ D0, −(a, b) = (b, a) is automorphism of D0.

2.3 Dempster’s Semigroup on a 3-Element Frame of Discernment

Analogously to d-pairs we can represent BFs by six-tuples (d1,d2,d3,d12,d13,d23)=
(m({ω1}),m({ω2}),m({ω3}),m({ω1, ω2}),m({ω1, ω3}), m({ω2, ω3})), i.e. by enu-
meration of its 23 − 2 values, where the (23 − 1)-th value m(Ω3) = 1 −

∑
i di.

Thus there is a significant increase of complexity considering 3-element frame of
discernment Ω3. While we can represent BFs on Ω2 by a 2-dimensional triangle,
we need a 6-dimensional simplex in the case of Ω3. Further, all the dimensions
are not equal: there are 3 independent dimensions corresponding to singletons
from Ω3, but there are other 3 dimensions corresponding to 2-element subsets of
Ω3, each of them somehow related to 2 dimensions corresponding to singletons.

Dempster’s semigroup D3 on Ω3 is defined analogously to D0. First algebraic
results on D3 were presented at IPMU’12 [8] (a quasi-Bayesian case D3−0, the
dimensions related to singletons only, see Figure 2) and a general case in [9].

Let us briefly recall the following results on D3 which are related to our topic.

Fig. 2. Quasi-Bayesian BFs on Ω3 Fig. 3. General BFs on 3-elem. frame Ω3

Theorem 2. (i) D3−0 = (D3−0,⊕, 0, U3) is subalgebra of D3 = (D3,⊕, 0, U3),
where D3−0 is set of non-exclusive qBBFs D3−0 = {(a, b, c, 0, 0, 0)}, D3 is set of
all non-exclusive BFs on Ω3, 0 = (0, 0, 0, 0, 0, 0), and U3 = (13 ,

1
3 ,

1
3 , 0, 0, 0).

(ii) G3 = ({(a, b, c, 0, 0, 0) | a+b+c= 1; 0 < a, b, c},⊕, ”−”, U3) is a subgroup of
D3, where ”−” is given by −(a, b, c, 0,0,0) = ( bc

ab+ac+bc ,
ac

ab+ac+bc ,
ab

ab+ac+bc , 0,0,0).
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(iii a) S0 = ({(a, a, a, 0, 0, 0) | 0≤ a≤ 1
3},⊕, 0), S1 = ({(a, 0, 0, 0, 0, 0) | 0≤ a <

1},⊕, 0), S2, S3, are monoids with neutral element 0, all are isomorphic to the
positive cone of the additive group of reals Re≥0 (S0 to Re≥0+ with ∞).

(iii b) Monoids S=({(a, a, a, b, b, b)∈D3},⊕, 0) and SPl=({(d1, d2, ..., d23)∈D3 |
Pl(d1, d2, ..., d23)=U3},⊕, 0) are alternative generalisations of Hájek-Valdés S,
both with neutral idempotent 0 and absorbing one U3. (note that set of BFs
{(a, a, a, a, a, a)∈D3} is not closed under ⊕, thus it does not form a semigroup).

(iv) Mapping h is homomorphism: (D3,⊕, 0, U3) −→ (G3,⊕, ”−”, U3); h(Bel) =
Bel ⊕ U3 = Pl P (Bel) i.e., the normalised plausibility of singletons.

See Theorems 2 and 3 in [8] and [9], assertion (iv) already as Theorem 3 in [6].
Unfortunately, a full generalisation either of − or of f was not yet found [8, 9].

3 State of the Art

3.1 Non-conflicting and Conflicting Parts of Belief Functions on Ω2

Using algebraic properties of group G, of semigroup S (including ’Dempster’s
subtraction’ (s, s)⊕(x, x) = (s′, s′), and ’Dempster’s half’ (x, x)⊕(x, x) = (s, s),
see [6]) and homomorphisms f and h we obtain the following theorem for BFs
on Ω2 (for detail and proofs see [6]):

Theorem 3. Any BF (a, b) on a 2-element frame of discernment Ω2 is Demp-
ster’s sum of its unique non-conflicting part (a0, b0) ∈ S1 ∪ S2 and of its unique
conflicting part (s, s) ∈ S, which does not prefer any element of Ω2, that is,

(a, b) = (a0, b0) ⊕ (s, s). It holds true that s = b(1−a)
1−2a+b−ab+a2 = b(1−b)

1−a+ab−b2 and

(a0, b0) = (a−b
1−b , 0) ⊕ (s, s) for a ≥ b; and similarly that s = a(1−b)

1+a−2b−ab+b2 =
a(1−a)

1−b+ab−a2 and (a0, b0) = (0, b−a
1−a )⊕ (s, s) for a ≤ b. (See Theorem 2 in [6].)

3.2 Non-Conflicting Part of BFs on General Finite Frames

We would like to verify that Theorem 3 holds true also for general finite frames:

Hypothesis 1 We can represent any BF Bel on an n-element frame of discern-
ment Ωn = {ω1, ..., ωn} as Dempster’s sum Bel = Bel0⊕BelS of non-conflicting
BF Bel0 and of indecisive conflicting BF BelS which has no decisional support,
i.e. which does not prefer any element of Ωn to the others, see Figure 4.

Using algebraic properties of Bayesian BFs and homomorphic properties of
h we have a partial generalisation of mapping ”−” to sets of Bayesian and
consonant BFs, thus we have −h(Bel) and −Bel0.

Theorem 4. (i) For any BF Bel on Ωn there exists unique consonant BF Bel0
such that, h(Bel0 ⊕BelS) = h(Bel) for any BelS such that BelS ⊕ Un = Un.

(ii) If for h(Bel) = (h1,h2,..., hn,0,0,...,0) holds true that, 0<hi<1, then unique
BF −Bel0 and −h(Bel) exist, such that,(h(−Bel0⊕Bels)=−h(Bel)and h(Bel0)⊕
h(−Bel0)=Un (See Theorem 4 in [6].)
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Corollary 1. (i) For any consonant BF Bel such that Pl({ωi}) > 0 there
exists a unique BF −Bel; −Bel is consonant in this case.

Let us notice the importance of the consonance here: a stronger statement for
general non-conflicting BFs does not hold true on Ω3, for detail see [6].

Fig. 4. Schema of Hypothesis 1 Fig. 5. Detailed schema of a decomposi-
tion of BF Bel

Including Theorem 4 into the schema of decomposition we obtain Figure 5.
We have still partial results, as we have only underlined BFs; to complete the
diagram, we need a definition of −Bel for general BFs on Ω3 to compute Bel⊕
−Bel; we further need an analysis of indecisive BFs to compute BelS ⊕ −BelS
and resulting BelS and to specify conditions under which a unique BelS exists.

4 Towards Conflicting Parts of BFs on Ω3

4.1 A General Idea

An introduction to the algebra of BFs on a 3-element frame was performed, but a
full generalisation of basic homomorphisms of Dempster’s semigroup − and f is
still missing [6–9]. We need f(Bel) = −Bel⊕Bel to complete the decomposition
diagram (Figure 5) according to the original idea from [6].

Let us forget for a moment a meaning of ′−′ and its relation to group ’minus’
in subgroups G and G3; and look at its construction −(a, b) = (b, a). It is a
simple transposition of m-values of ω1 and ω2 in fact. Generally on Ω3 we have:

Lemma 1. Any transposition τ of a 3-element frame of discernment Ω3 is an au-
tomorphism of D3. τ12(ω1, ω2, ω3) = (ω2, ω1, ω3), τ23(ω1, ω2, ω3) = (ω1, ω3, ω2),
τ13(ω1, ω2, ω3) = (ω3, ω2, ω1).
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Theorem 5. Any permutation π of a 3-element frame of discernment Ω3 is an
automorphism of D3.

For proofs of statements in this section see [12] (Lems 2–5 and Thms 6–9).
Considering function ’−’ as transposition (permutation), we have f(a, b) =

(a, b)⊕ (b, a) a Dempster’s sum of all permutations of Bel given by (a, b) on Ω2.
Analogously we can define

f(Bel) =
⊕
π∈Π3

π(Bel),

where Π3 = {π123, π213, π231, π132, π312, π321}, i.e., f(a, b, c, d, e, f ; g) =⊕
π∈Π3

π(a, b, c, d, e, f ; g) = (a, b, c, d, e, f ; g)⊕(b, a, c, d, f, e; g)⊕(b, c, a, f, d, e; g)
⊕(a, c, b, e, d, f ; g)⊕ (c, a, b, e, f, d; g)⊕ (c, b, a, f, e, d; g).

Theorem 6. Function f :D3−→S, f(Bel)=
⊕

π∈Π3
π(Bel) is homomorphism of

Dempster’s semigroup D3 to its subsemigroup S=({(a,a,a,b,b,b;1−3a−3b)},⊕).

Having homomorphism f , we can leave a question of existence −Bel such
that h(−Bel) = −h(Bel), where ’−’ from group of BBFs G3 is used on the
right hand side. Unfortunately, we have not an isomorphism of S subsemigroup
of D3 to the additive group of reals as in the case of semigroup S of D0, thus
we still have an open question of subtraction there. Let us focus, at first, on the
subsemigroup of quasi-Bayesian BFs for simplification.

4.2 Towards Conflicting Parts of Quasi-Bayesian BFs on Ω3

Let us consider qBBFs (a, b, c, 0, 0, 0; 1−a−b−c) ∈ D3−0 in this section. Following
Theorem 6 we obtain the following formulation for qBBFs:

Theorem 7. Function f :D3−0−→S, f(Bel)=
⊕

π∈Π3
π(Bel) is homomorphism

of Dempster’s semigroup D3−0 to its subsemigroup S0=({(a,a,a,0,0,0;1−3a)},⊕).

S0 is isomorphic to the positive cone of the additive group of reals, see The-
orem 2, thus there is subtraction which is necessary for completion of diagram
from Figure 5. Utilising isomorphism with reals, we have also existence of ’Demp-
ster’s sixth’6 which is needed to obtain preimage of f(Bel) in S0. Supposing Hy-
pothesis 1, Bel = Bel0⊕BelS , thus f(Bel) =

⊕
π∈Π3

π(Bel0)⊕
⊕

π∈Π3
π(BelS);

all 6 permutations are equal to identity for any qBBF BelS ∈ S0), thus we have
f(Bel) =

⊕
π∈Π3

π(Bel0)⊕
⊕

(6-times) BelS in our case):

Lemma 2. ’Dempster’s sixth’.
Having f(BelS) in S0, there is unique f−1(f(BelS)) ∈ S0, such that⊕

(6-times) f
−1(f(BelS)) = f(BelS). If BelS ∈ S0 then f−1(f(BelS)) = BelS.

On the other hand there is a complication considering qBBFs on Ω3 that
their non-conflicting part is a consonant BF frequently out of D3−0. Hence we
can simply use the advantage of properties of S0 only for qBBFs with singleton
simple support non-conflicting parts.

6 Analogously we can show existence of general ’Demspter’s k-th’ for any natural k
and any BF Bel from S0, but we are interested in ’Dempster’s sixth’ in our case.



Conflicting Part of Belief Function 219

Lemma 3. Quasi-Bayesian belief functions which have quasi-Bayesian non-
conflicting part are just BFs from the following sets Q1 = {(a, b, b, 0, 0, 0) | a≥b},
Q2 = {(b, a, b, 0, 0, 0) | a ≥ b}, Q3 = {(b, b, a, 0, 0, 0) | a ≥ b}. Q1, Q2, Q3 with
oplus are subsemigroups of D3−0; their union Q = Q1 ∪ Q2 ∪ Q3 is not closed
w.r.t. ⊕. (Q1,⊕) is further subsemigroup of D1−2=3 = ({(d1, d2,d2,0,0,0)},⊕,0,U3),

for detail on D1−2=3 see [8, 9], following this, we can denote (Qi,⊕) as Di≥j=k
i−j=k.

Fig. 6. Quasi-Bayesian BFs with unique
decomposition into Bel0 ⊕BelS

For quasi-Bayesian BFs out of Q (i.e. BFs
from D3−0 \Q) we have not yet decompo-
sition into conflicting and non-conflicting
part according to Hypothesis 1, as we have
not f(Bel0) ∈ S0 and have not subtraction
in S in general. BFs from D3−0 \Q either
have their conflicting part in SPl \ S0 or
in SPl \ S or have not conflicting part ac-
cording to Hypothesis 1 (i.e. their conflict-
ing part is a pseudo belief function out of
D3). Solution of the problem is related to
a question of subtraction in subsemigroups
S and SPl, as f(Bel0) is not in S0 but in
S \ S0 for qBBFs out of Q. Thus we have
to study these qBBFs together with gen-
eral BFs from the point of view of their
conflicting parts.

Theorem 8. Belief functions Bel from Q = D1≥2=3
1−2=3 ∪D2≥1=3

2−1=3 ∪D3≥1=2
3−1=2 have

unique decomposition into their conflicting part BelS ∈ S0 and non-conflicting
part in S1 (S2 or S3 respectively).

4.3 Towards Conflicting Parts of General Belief Functions on Ω3

There is a special class of general BFs with singleton simple support non-
conflicting part, i.e. BFs with f(Bel0) ∈ S0. Nevertheless due to the generality
of Bel, we have f(Bel) ∈ S in general, thus there is a different special type of
belief ’subtraction’ ( (a, a, a, b, b, b)) (c, c, c, 0, 0, 0, 0) ).

Following the idea from Figure 5, what do we already have?
We have the entire right part: given Bel, Bel ⊕ U3, and non-conflicting part
Bel0 (Theorem 4 (i)); in the left part we have −Bel⊕ U3 = −(Bel ⊕ U3) using
G3 group ’−’ (Theorem 2 (ii)) and −Bel0 = (−Bel ⊕ U3)0 (a non-conflicting
part of −Bel ⊕ U3). In the central part of the figure, we only have U3 and
−Bel0 ⊕ Bel0 in fact. As we have not −Bel we have not −Bel ⊕ Bel, we use
f(Bel) =

⊕
π∈Π3

π(Bel) instead of it; f(Bel) ∈ S in general.
We can compute −Bel0 ⊕ Bel0; is it equal to f(Bel0)? We can quite easily

find a counter-example, see [12]. Thus neither −Bel⊕Bel is equal to f(Bel) =⊕
π∈Π3

π(Bel) in general. What is a relation of these two approaches? What is
their relation to the decomposition of Bel?

Lemma 4. −Bel0 ⊕Bel0 is not equal to
⊕

π∈Π3
π(Bel) in general. Thus there

are two different generalisations of homomorphism f to D3.
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Learning this, we can update the diagram of decomposition of a BF Bel into
its conflicting and non-conflicting part as it is in Figure 8.

Fig. 7. SPl — subsemigroup of
general indecisive belief functions Fig. 8. Updated schema of decomposition of Bel

5 Open Problems for a Future Research

There are three main general open problems from the previous section:
– Elaboration of algebraic analysis, especially of sugbroup SPl (indecisive BFs).
– What are the properties of two different generalisations of homomorphism

f ; what is their relationship?
– Principal question of the study: verification of Hypothesis 1; otherwise a

specification of sets of BFs which are or are not decomposable (Bel0⊕BelS).
Open is also a question of relationship to and of possible utilisation of Cuzzolin’s
geometry [2] and Quaeghebeur-deCooman extreme lower probabilities [19].

6 Summary and Conclusions

New approach to understanding operation ’−’ and homomorphism f from D0

(a transposition of elements instead of some operation related to group ’minus’
of G, G3) is introduced in this study.

The first complete generalisation of Hájek-Valdés important homomorphism
f is presented. Specification of several classes of BFs (on Ω3) which are decom-
posable into Bel0 ⊕BelS , and several other partial results were obtained.

The presented results improve general understanding of conflicts of BFs and
of the entire nature of BFs. These results can be also used as one one of the
mile-stones to further study of conflicts between BFs. Correct understanding of
conflicts may consequently improve a combination of conflicting belief functions.
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Abstract. Interventions are important for an efficient causal analysis.
To represent and reason with interventions, the graphical structure is
needed, the so-called causal networks are therefore used. This paper deals
with the handling of uncertain causal information where uncertainty is
represented with a belief function knowledge. To simplify knowledge ac-
quisition and storage, we investigate the representational point of view of
interventions when conditional distributions are defined per single par-
ent. The mutilated and augmented causal belief networks are used in
order to efficiently infer the effect of both observations and interventions.

1 Introduction

Causality is a crucial concept in Artificial Intelligence (AI) as well as in infor-
mation systems. It comes to describe, interpret and analyze information and
phenomena of our environment [3]. Besides, it enables to anticipate the dynam-
ics of events when the system is evolving using interventions [8], [10] which are
exterior manipulations that force target variables to have specific values. Upon
acting on the cause, we are in a good position to say that the effect will also
happen. However, an observation is seeing and monitoring phenomena happen-
ing by themselves without any manipulation on the system. Indeed, the “do”
operator is used [8] to to deal with the effects of interventions.

Graphical models are compact and simple representations of uncertainty dis-
tributions. They are increasingly popular for reasoning under uncertainty due
to their simplicity, their ability to easily express the human reasoning. A proba-
bility distribution, as good as it is, does not distinguish between equiprobability
and ignorance situations. To tackle this problem, alternative networks have been
proposed (e.g. possibility theory [1], [6], belief function theory [2], [11]). A causal
network [8] is a graphical model which plays an important role for the achieve-
ment of a coherent causal analysis. In this network, arcs do not only represent
dependencies, but also cause/effect relationships.

In this paper, we use the belief function theory [9] as a tool for knowledge
representation and reasoning with uncertainty. Indeed, this theory has well un-
derstood connections to other frameworks such as probability, possibility and
imprecise probability theories.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 223–232, 2014.
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Note that unlike Bayesian networks [7], conditional distributions in belief
networks can be defined per single parent [11]. The main advantage of defining
conditionals per edge is to simplify knowledge acquisition and storage. In fact,
it first enables experts to express their beliefs in a more flexible way. Then,
it allows to reduce the size of the conditional tables and therefore to decrease
the storage complexity. Therefore, this paper focuses on the representation of
uncertain knowledge and on the handling of standard interventions in causal
belief networks where conditional distributions are defined per single parent.

The rest of the paper is organized as follows: in Section 2, we provide a brief
background on the belief function theory. In Section 3, we recall the existing
causal belief networks where beliefs are defined for all parents as for Bayesian
networks. In Section 4, we propose a mutilated and an augmented based ap-
proaches to handle interventions on causal belief networks where beliefs are de-
fined per edge. Section 5 concludes the paper.

2 Belief Function Theory

Let Θ be a finite set of elementary events, called the frame of discernment. Beliefs
are expressed on subsets belonging to the powerset of Θ denoted 2Θ. The basic
belief assignment (bba), denoted by mΘ or m, is a mapping from 2Θ to [0,1]
such that:

∑
A⊆Θ m(A)=1. m(A) is a basic belief mass (bbm) assigned to A. It

represents the part of belief exactly committed to the event A of Θ. Subsets of
Θ such that m(A) > 0 are called focal elements. A bba is said to be certain if the
whole mass is allocated to a unique singleton of Θ. If the bba has Θ as a unique
focal element, it is called vacuous and it represents the case of total ignorance.
Two bbas provided by two distinct and independent sources m1 and m2 may be
combined to give one resulting mass using the Dempster’s rule of combination.

m1 ⊕m2(A) = K ·
∑

B∩C=A

m1(B)m2(C), ∀B,C ⊆ Θ (1)

where K−1 = 1−
∑

B∩C=∅
m1(B)m2(C).

Dempster’s rule of conditioning allows us to update the knowledge of an expert
in the light of a new information. m(A|B) denotes the degree of belief of A in
the context of B with A, B ⊆ Θ.

m(A|B) =

{
K.
∑

C⊆B̄

m(A ∪ C) if A ⊆ B,A �= ∅

0 if A �⊆ B
(2)

where K−1=1 − m(∅). Knowing that experts are not fully reliable, a method
of discounting seems imperative to update experts beliefs. The idea is to quan-
tify the reliability of each expert. Let (1- α) be the degree of trust assigned to
an expert. The corresponding bba can be weakened by the discounting method
defined as:

mα(A) =

{
(1− α) ·m(A), ∀ A ⊂ Θ
α+ (1− α) ·m(A), if A = Θ

(3)



Representing Interventional Knowledge in Causal Belief Networks 225

The discounting operation is controlled by a discount rate α taking values be-
tween 0 and 1. If α = 0, the source is fully reliable; whereas if α = 1, the source
of information is not reliable at all.

3 Causal Belief Networks

Causal belief networks [5] are graphical models under an uncertain environment
where the uncertainty is represented by belief masses. This model represents an
alternative and an extension to Bayesian causal networks. It allows the detection
of causal relationships resulting from acting on some events. Moreover, it is no
more necessary to define all a priori distributions. Indeed, it is possible to define
vacuous bbas on some nodes. It is defined on two levels:

– Qualitative level: represented by a directed acyclic graph (DAG) named G
where G = (V,E) in which the nodes V represent variables, and arcs E
describe the cause-effect relations embedded in the model. Parents of a given
variable Ai denoted by PA(Ai) are seen as its immediate causes. An instance
from the set of parents ofAi is denoted Pa(Ai). Each variableAi is associated
with its frame of discernment ΘAi representing all its possible instances.

– Quantitative level: is the set of normalized bbas associated to each node
in the graph. Conditional distributions can be defined for each subset of
each variable Ai (subik ⊆ ΘAi) in the context of its parents such that:∑
subik⊆ΘAi

mAi(subik|Pa(Ai)) = 1

4 Handling Interventions: Conditional bbas Defined Per
Edge

In belief networks, conditional distributions can be defined as for Bayesian net-
works [2], [5] or per edge [11] in order to simplify knowledge acquisition and
storage under uncertainty. In this latter, the knowledge about the relations be-
tween two nodes are assumed to be issued from different sources (called local
conditional beliefs). Conditional distributions can be conjunctively aggregated
into one distribution representing the relation between a node and all its parents.
Thus, each node Ai is defined in the context of its parent. An instance from a
single parent of Ai is denoted by Paj(Ai).

Handling interventions and computing their effects on the system can be done
by making changes on the structure of the causal belief network. The two meth-
ods developed are namely, belief graph mutilation and belief graph augmentation
methods. These methods were proved to be equivalent when conditional distri-
butions are defined for all parents [5]. Besides, they were used to handle non
standard interventions [4]. In the following, we will propose and explain how to
define the different conditional distributions on the altered causal belief graphs
to handle interventions.
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4.1 A Mutilated Based Approach

An external action will alter the system. Thus, an intervention is interpreted as
a surgery by cutting off the edges pointing to the node concerned by the action.
The rest of the network remains unchanged. Therefore, this action makes the
direct causes (parents) of the variable concerned by the intervention not more
responsible of its state. However, beliefs on these direct causes should not be
modified.

Let G = (V,E) be a causal belief network where conditional distributions are
defined per edge and let Ai be a variable in G forced to take the value aij upon
to the intervention do(aij). We define mutilation on two steps:

– Each arc linking Ai to each one of its parents Paj(Ai) will be deleted. The re-
sulting graph is denoted Gmut. In the mutilated graph, it corresponds to ob-
servingAi = aij . Thus, it simply consists of conditioning the mutilated graph
by the value aij and it is defined as follows : mGmut(.|aij) = mG(.|do(aij))

– The external action do(aij) imposes the specific value aij to the variable
Ai. The conditional distribution of the target variable becomes a certain bba
which is defined as follows:

mAi

Gmut
(subik) =

{
1 if subik = {aij}
0 otherwise

(4)

Example 1. Let us consider the network presented in Fig. 1. They concern a
description of knowledge regarding the link between smoking S (ΘS = {s1, s2}
where s1 is yes and s2 is no) and having yellow teeth T (ΘT = {t1, t2} where
t1 is yellow and t2 is otherwise). After acting on a variable by forcing T to take
the value t1, the state of T will become independent from the fact of smoking
(S). Therefore, the link relating S to T will be deleted. This is represented by the
network in Fig. 2. Note that initial beliefs about smoking remain the same.

S 

s1 s2 
t1 0.7 0.4 
t2 0.1 0.6 
ƟT 0.2 0 

s1 0.9 
ƟS 0.1 

mS  

mT (.| si)  

T 

Causal 
relationship 

Fig. 1. A causal belief network

t1 1 
t2 0 
ƟT 0 

s1 0.9 
ƟS 0.1 

mS  

mT (.| si)  

S 

T 

Fig. 2. Graph mutilation upon the in-
tervention do(t1)

4.2 An Augmented Based Approach

Another alternative to graphically represent interventional knowledge is to add
a new fictive variable DO as a parent node of the variable Ai concerned by the
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manipulation. This added variable will totally control its state and its condi-
tional distributions becomes a certain bba. Thus, the parents set of the variable
Ai denoted PA is transformed to PA′ = PA ∪ {DO}. The DO node takes val-
ues in do(x), x ∈ {ΘAi∪ {nothing}}. do(nothing) represents the case when no
interventions are made. do(aij) means that the variable Ai is forced to take the
certain value aij . The resulting graph is called an augmented graph and de-
noted by Gaug. This method allows to represent the effect of observations and
interventions.

Regarding the bba assigned to the added fictive node (i.e., DO), two cases are
considered:

– If there is no interventions, then the causal belief network allows to model
the effect of observations as on the initial causal graph. Hence, mDO

Gaug
(do(x))

is defined by:

mDO
Gaug

(do(x)) =

{
1 if x = nothing
0 otherwise

(5)

– If there is an intervention forcing the variable Ai to take the value aij , then
mDO

Gaug
(do(x)) is defined by:

mDO
Gaug

(do(x)) =

{
1 if x = {aij}
0 otherwise

(6)

Remind that unlike [5], the conditional distributions of the initial causal belief
network are defined per single parent. Doing this way is assuming that condi-
tional distributions defined in the context of each cause can be issued by different
local sources. Consequently, on the augmented causal belief graph, we will have a
source given the DO node, i.e., the intervention and a source or multiple sources
given the initial causes. In the following, we will explain how to define and mod-
ify the conditional distributions in context of all these causes.

(A) Defining conditionals given the DO node

The DO node can take values in do(x), x ∈ {ΘAi∪ nothing}. do(nothing)
means that there are no actions on the variable concerned by the action.
do(aij) means that the variable Ai is forced to take the value aij . In the
following, we will detail how to define the conditional distribution given the
DO node in both cases.

– Interventions not occurring:

In the case where no interventions are performed, the state of the vari-
able concerned by the action will not depend on the intervention (i.e.,
from the DO node). The conditional bba given the DO node is not infor-
mative. Indeed, it only depends on the observations of the initial causes.
This situation represents the state of total ignorance represented with
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the belief function theory by the vacuous bba. Therefore, the conditional
distribution given the DO node becomes a vacuous bba by allocating one
to the whole frame of discernment. Accordingly, the new distribution of
the node DO is defined as:

• For each subik ⊆ ΘAi and x = {nothing}

mAi

Gaug
(subik|do(nothing)) =

{
1 if subik = ΘA

0 otherwise
(7)

Example 2. Let us continue with the same events mentioned in Exam-
ple 1. When there is no intervention, the DO node is taking the value
nothing and the conditional distributions of ΘT given the DO node is
vacuous. It expresses the state of total ignorance (i.e., if we do not act
on T, we ignore if the state of T will be t1 or t2). This is represented
by the causal belief network depicted in Fig. 3.

do(t1 ) 0 
do(t2) 0 

do(nothing) 1 

mDO  
 

do(nothing) 
t1 0 
t2 0 
ƟT 1 

mT (.|do(x))  

mS  S DO 

T 
mT (.|si)  

Fig. 3. Defining conditionals given the DO node when no interventions occurring

The main advantage of handling interventions by graph augmentation,
is that it allows to represent the effect of observations (when the added
node takes the value nothing).

Proposition 1. Let Gaug be an augmented causal belief network where
conditional beliefs are defined per single parent. In the case of not acting
on the system, i.e., the DO node is set to the value nothing, the bba
mGaug (.|do(nothing)) encodes the same joint distribution as the original
causal belief network where V ′ = DO ∪ V .

mV ′
Gaug

(.|do(nothing)) = mV
G (8)

– Interventions occurring:

Upon an intervention, the experimenter puts the target variable Ai into
exactly one specific state aij ∈ ΘAi . Accordingly, he is assumed to com-
pletely control his manipulation and he is in a good position to know
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the state of the variable concerned by the action. Thus, the bba of the
target variable becomes a certain bba. Therefore, the conditional distri-
bution given the DO node is defined as:

• For each subik ⊆ ΘAi and x = {aij}

mDO
Gaug

(subik|do(aij)) =
{
1 if x = {aij}
0 otherwise

(9)

Example 3. Let us continue with the Fig. 4 which illustrates a causal
belief augmented graph on which an intervention do(t1) forces the variable
T to take the specific value t1. The conditional bba given the intervention is
transformed into a certain bba focused on t1.

do(t1 ) 
t1 1 
t2 0 
ƟT 0 

do(t1 ) 1 
do(t2) 0 

do(nothing) 0 

mDO  

mT (.|do(x))  

mS  
S DO 

T 
mT (.|si)  

Fig. 4. Defining conditionals given the DO node upon do(t1)

(B) Defining conditionals given the initial causes

In what follows, we will explain how to modify the conditional distribution
of the target variable given the initial causes when no intervention is occur-
ring and also in the case of an intervention.

– Interventions not occurring:

When there is no interventions, only the initial parents of each node
affect its state. Therefore, conditional beliefs given the initial causes on
the augmented graph in the case of no interventions are kept the same
as for the initial graph where:

mAi

Gaug
(subik|Paj(Ai)) = mAi

G (subik|Paj(Ai)) (10)

Example 4 When there is no interventions, the DO node takes the
value nothing. It does not control the state of the variable T concerned by
the action. This is interpreted as having yellow teeth are dependent and
effects of only one cause which is smoking. The conditional distributions
of T given S in the initial graph represented in Example 1 are kept the
same for the causal belief augmented network represented in Fig. 5.
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s1 s2 
t1 0.7 0.4 
t2 0.1 0.6 
ƟT 0.2 0 

s1 0.9 
ƟS 0.1 

mS  

mT (.|si)  

do(t1 ) 0 
do(t2) 0 

do(nothing) 1 

mDO  
 S DO 

T mT (.|do(x))  

Fig. 5. Defining conditionals given the initial causes in the case of not acting

– Interventions occurring:

An intervention is an external action which completely controls the
state of the target variable and succeeds to force the variable Ai to
take a certain value aij . After acting on a variable, we assume that its
initial causes are no more responsible of its state. In fact, the effect
of the initial causes should no longer be considered. Thus, the source
who predicted that the distribution of the target variable is defined
by the initial distribution is considered as unreliable and should be
weakened. The belief function theory allows to take into account the
reliability of the sources of information using the discounting method.
Thus, the difference between what was predicted and the actual value
is considered as its discounting factor. Hence, the modified conditional
bba of the target variable given the initial causes becomes as follows:

mAi,α
Gaug

(subik|Paj(Ai)) =

{
α if subik = ΘA

1− α otherwise
(11)

In the case of interventions, the source is considered as unreliable since
by definition only the intervention controls the state of its target. Hence,
the source predicting that the state of the target variable will depend
on the initial causes is totally unreliable, i.e., α = 1, the conditional bba
becomes as follows:

m
Ai,α(.|Paj(Ai))

Gaug
(subik|Paj(Ai)) =

{
1 if subik = ΘA

0 otherwise
(12)

As for causal belief networks where conditional beliefs are defined for all par-
ents, the augmented based approach and the mutilated based approach are equiv-
alent to graphically represent interventions using causal belief networks where
conditional beliefs are defined per single parent and lead to the same results.

Proposition 2. Let G be a causal belief network where conditional distributions
are defined per single parent and Gmut and Gaug its corresponding mutilated and
augmented graphs after acting on the variable Ai by forcing it to take the value
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aij. Computing the effects of interventions using the mutilation of the graph or
its augmentation gives the same results.

mV
Gmut

(.|aij) = mV ′
Gaug

(.|do(aij)) (13)

If it is needed, one can combine the conditional distributions defined per edge
using the Dempster’s rule of combination. Note that after the fusion process,
the causal belief network where conditional distributions are defined per single
parents collapse into a causal belief network where conditional distributions are
originally defined for all parents. This is true in the case where no interventions
are performed and also when acting on the system.

To get the conditional bba given all the parent nodes, Dempster’s rule of
combination is used to aggregate the conditional distribution given the initial
causes with the conditional bba given the DO parent.

Proposition 3. Let G be a causal belief network where conditional distributions
are defined per single parent, the new distribution of the target variable Ai de-
fined in the context of all its initial parents (mAi

Gaug
(.|PA(Ai))) including the

DO node (mAi

Gaug
(.|do(x))) is computed by combining the aggregated conditional

bbas defined per single parent Paj, with the conditional distribution given the
intervention as follows:

mAi

Gaug
(.|do(x), Pa(Ai)) = mAi

Gaug
(.|do(x)) ⊕ ( ⊕

Paj(Ai)∈PA(Ai)
mAi

Gaug
(.|Paj(Ai)))

(14)
Example 5 Let us continue with the two events smoking S and having yel-

low teeth T. The distribution of the target variable T is computed from the
combined effect of the intervention with the original cause S. Let us consider
mV

Gaug
(.|do(t1)) and mV

Gaug
(.|si) as depicted in Fig. 6. After combining them us-

ing Dempster’s rule of combination, we find the same conditional table of the
one of Fig. 7 where beliefs where defined from the beginning for all parents.

do(t1 ) 
t1 1 
t2 0 
ƟT 0 

s1 s2 
t1 0.7 0.4 
t2 0.1 0.6 
ƟT 0.2 0 

s1 0.9 
ƟS 0.1 

do(t1 ) 1 
do(t2) 0 

do(nothing) 0 

mS  mDO  

mT(.|si)  
mT (.|do(x))  

S DO 

T 

Fig. 6. An augmented causal belief
network: conditional distributions per
single parent

(s1 , do(t1 )) (s2 , do(t1) 
t1 1 1 
t2 0 0 
ƟT 0 0 

s1 0.9 
ƟS 0.1 

mS  mDO  

mT (.|(si, do(t)) ) 

do(t1 ) 1 
do(t2) 0 

do(nothing) 0 

S DO 

T 
mT (.|si)  

Fig. 7. An augmented causal belief
network: conditional distributions for
all parents
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5 Conclusion

This paper provides a mutilated and an augmented based approach to handle in-
terventions on a causal belief network where conditional distributions are defined
per single parent. By reducing the size of the conditional tables, our model allows
to simplify knowledge acquisition and storage. Doing this way is assuming that
conditional distribution can be defined by different local sources. Consequently,
we have a source given the DO node, i.e., the intervention and a source or multi-
ple sources given the initial causes. For that, we have modified the distributions
defined in the context of the initial causes when beliefs are defined per edge.

As future works, we intend to investigate on propagation algorithms to deal
with interventions in causal belief networks where conditional beliefs are defined
per single parent.
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Abstract. In this paper, an extension of the belief Analytic Hierar-
chy Process (AHP) method is proposed, based on the belief function
framework. It takes into account the fact that the pair-wise compari-
son between criteria and alternatives may be uncertain and imprecise.
Therefore, it introduces a new way to cope with expert judgments. Thus
to express his preferences, the decision maker is allowed to use a belief
assessment instead of exact ratios. The proposed extension also models
the relationship between the alternative and criterion levels through con-
ditional beliefs. Numerical examples explain in detail and illustrate the
proposed approach.

1 Introduction

Analytic Hierarchy Process (AHP) method [5] is one of the widely preferred
multi-criteria decision making (MCDM) methods and has successfully been ap-
plied to many practical problems. Using this approach, the decision maker mod-
els a problem as a hierarchy of criteria and alternatives. Then, the expert assesses
the importance of each element at each level using a pair-wise comparison ma-
trix, where elements are compared to each other.

Though its main purpose is to capture the expert’s knowledge, the standard
AHP still cannot reflect the human thinking style. It is often criticized for its use
of an unbalanced scale of estimations and its inability to adequately handle the
uncertainty and imprecision associated with the mapping of the decision maker’s
perception to a crisp number [4].

In order to model imperfect judgments, the AHP method was modified by
many researchers. Under the belief functions framework, Beynon et al. have
proposed a method called the DS/AHP method [1] comparing not only single
alternatives but also groups of alternatives. Besides, several works has been
defined by Utkin [10]. Also, Ennaceur et al. [2] [3] have developed the belief
AHP approach that compares groups of criteria to subsets of alternatives. Then,
they model the causality relationship between these groups of alternatives and
criteria.

Taking into account the above, we propose an extension of the belief AHP
method [3], a Multi-Criteria Decision Making (MCDM) method under the belief
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function framework. On the one hand, our proposed method takes into account
the conditional relationships between alternatives and criteria. In fact, our aim
is to more imitate the expert reasoning since he tries to express his prefer-
ences over the sets of alternatives regarding each criterion and not regardless of
the criteria. Consequently, we try to represent the influences of the criteria on
the evaluation of alternatives. On the other hand, our method takes into account
the fact that the pair-wise comparison may be uncertain and imprecise. There-
fore, it introduces a new way to cope with expert judgments. Thus to express his
assessments, the decision maker is allowed to use subjective assessments instead
of using numerical values. Then, a preference degree may be assigned to each
expert’s response. With our method, the expert does not require to complete
all the comparison matrix. He can then derive priorities from incomplete set of
judgments. Therefore, a new procedure is employed, he only selects the related
linguistic variable to indicate whether a criterion or alternative was more or less
important to its partner by “yes” or “no”.

The proposed method uses the pair-wise comparisons with the minimal infor-
mation. Therefore, using our proposed approach, we cannot get the best alter-
native but at least we can choose the most cautious one.

In what follows, we first present some definitions needed for belief function
context. Next, we describe the belief AHP method in section 3. Then, section 4
details our new MCDM method, and gives an example to show its application.
Finally, section 5 concludes the paper.

2 Belief Function Theory

2.1 Basic Concepts

The Transferable Belief Model (TBM) is a model to represent quantified belief
functions [9]. Let Θ be the frame of discernment representing a finite set of
elementary hypotheses related to a problem domain. We denote by 2Θ the set
of all the subsets of Θ [6].

The impact of a piece of evidence on the different subsets of the frame of
discernment Θ is represented by the so-called basic belief assignment (bba) [6].
A bba is a function denoted by m that assigns a value in [0, 1] to every subset
A of Θ such that: ∑

A⊆Θ

m(A) = 1 . (1)

The value m(A), named a basic belief mass (bbm), represents the portion of
belief committed exactly to the event A.

2.2 Operations on the Product Space

Vacuous Extension. This operation is useful, when the referential is changed
by adding new variables. Thus, a marginal mass function mΘ defined on Θ will
be expressed in the frame Θ ×Ω as follows [7]:

mΘ↑Θ×Ω(C) = mΘ(A) if C = A×Ω,A ⊆ Θ . (2)
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Marginalization. Given a mass distribution defined on Θ×Ω, marginalization
corresponds to mapping over a subset of the product space by dropping the extra
coordinates. The new belief defined on Θ is obtained by [7]:

mΘ×Ω↓Θ(A) =
∑

{B⊆Θ×Ω|B↓Θ=A)}

mΘ×Ω(B), ∀A ⊆ Θ . (3)

B↓Θ denotes the projection of B onto Θ.

Ballooning Extension. Let mΘ[ω] represents your beliefs on Θ conditionnally
on ω a subset of Ω. To get rid of conditioning, we have to compute its ballooning
extension. The ballooning extension is defined as [7]:

mΘ[ω]⇑Θ×Ω(A× ω ∪Θ × ω̄) = mΘ[ω](A), ∀A ⊆ Θ . (4)

3 Belief AHP Method

The belief AHP method is a MCDM method that combines the AHP approach
with the belief function theory [3]. This method investigates some ways to define
the influences of the criteria on the evaluation of alternatives.

3.1 Identification of the Candidate Alternatives and Criteria

Let Ω = {c1, . . . , cm} be a set of criteria, and let Ck be the notation of a subset
of Ω. The groups of criteria can be defined as [2]:

∀ k, j|Ck, Cj ∈ 2Ω, Ck ∩ Cj = ∅ and ∪j Cj = Ω (with Cj exclusive). (5)

This method suggests to allow the expert to express his opinions on groups
of criteria instead of single one. So, he chooses these subsets by assuming that
criteria having the same degree of preference are grouped together. On the other
hand and similarly to the criterion level, the decision maker compares not only
pairs of single alternatives but also sets of alternatives between each other (Θ =
{a1, . . . , an} is a set of alternatives)[2].

3.2 Pair-Wise Comparisons and Preference Elicitation

After identifying the set of criteria and alternatives, the weights of each element
have to be defined. The expert has to provide all the pair-wise comparisons
matrices. In this study, Saaty’s scale is chosen in order to evaluate the importance
of pairs of grouped elements in terms of their contribution. Thus, the priority
vectors are then generated using the eigenvector method.
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3.3 Updating the Alternatives Priorities

Within this framework, we have Ci ⊆ 2Ω and we have the criterion priority
vector is regarded as a bba, denoted by mΩ.

Furthermore, Belief AHP tries to model the influences of the criteria on the
evaluation of alternatives by conditional belief. So, given a pair-wise comparison
matrix which compares the sets of alternatives according to a specific criterion, a
conditional bba can be represented by: mΘ[cj ](Ak) = wk, ∀Ak ⊆ 2Θ and cj ∈
Ω where mΘ[cj ](Ak) means that we know the belief about Ak regarding cj .

Then, the aggregation procedure can be represented as follows. In fact, pri-
orities concerning criteria and groups of criteria are defined on the frame of
discernment Ω, whereas the sets of alternatives are defined on Θ. The idea was
to standardize the frame of discernment. First, at the criterion level, the bba
that represents criteria weights is extended from Ω to Θ ×Ω:

mΩ↑Θ×Ω(B) = mΩ(Ci) B = Θ × Ci, Ci ⊆ Ω . (6)

Second, at the alternative level, the idea was to use the deconditionalization
process in order to transform the conditional belief into a new belief function.
In this case, the ballooning extension technique is applied:

mΘ[cj ]
⇑Θ×Ω(Ak × cj ∪Θ × c̄j) = mΘ[cj ](Ak), ∀Ak ⊆ Θ . (7)

Once the frame of discernment Θ×Ω is formalized, the belief AHP approach
proposes to combine the obtained bba with the importance of their respective
criteria to measure their contribution using the conjunctive rule of combination
∩© and we get [8]:

mΘ×Ω =
[
∩©j=1,...,mmΘ[cj ]

⇑Θ×Ω
]

∩©mΩ↑Θ×Ω . (8)

Finally, to choose the best alternatives, this method proposes to marginalize
the obtained bba (in the previous step) on Θ (frame of alternatives) by trans-
ferring each mass mΘ×Ω to its projection on Θ. Then, the pignistic probabilities
[8] are used to make our choices:

BetP (aj) =
∑

Ai⊆Θ

|aj ∩ Ai|
|Ai|

mΘ×Ω↓Θ(Ai)

(1 −mΘ×Ω↓Θ(∅)) , ∀aj ∈ Θ . (9)

3.4 Example

To describe this approach, we consider the problem of “purchasing a car” pre-
sented in [3]. Suppose that this problem involves four criteria: Ω = {Comfort
(c1), Style (c2), Fuel (c3), Quietness (c4)}, and three selected alternatives: Θ =
{Peugeot(p),Renault(r),Ford(f)}. For more details see [3].

At the criterion level, the criterion weights are expressed by a basic belief as-
sessment (bba). We get: mΩ({c1}) = 0.58, mΩ({c4}) = 0.32 and mΩ({c2, c3}) =
0.1.
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Table 1. Priorities values

c1 Priority c2 Priority c3 Priority c4 Priority

{p} 0.806 {p} 0.4 {r} 0.889 {f} 0.606
{p, r, f} 0.194 {r, f} 0.405 {p, r, f} 0.111 {p, r, f} 0.394

{p, r, f} 0.195

Next, we propose to model the alternative score by means of conditional bba
(see Table 1).

According to the belief AHP approach, the next step is to standardize the
criterion and the alternative frames of discernment. For the criterion level, the
resulting bba’s is summarized in Table 2.

Table 2. Vacuous extension of bba

bbm Vacuous extension Values

mΩ({c1}) {(p, c1), (r, c1), (f, c1)} 0.58

mΩ({c4}) {(p, c4), (r, c4), (f, c4)} 0.32

mΩ({c2, c3}) {(p, c2), (r, c2), (f, c2), (p, c3), (r, c3), (f, c3)} 0.1

After normalizing the criteria’s bba, the next step is to transform the condi-
tional belief into joint distribution using Equation 7 (see Table 3).

Table 3. Ballooning extension of conditional bba

Conditional bbm Ballooning extension Values

mΘ[c1]({p}) {(p, c1), (p, c2), (p, c3), (p, c4), (r, c2),
(r, c3), (r, c4), (f, c2), (f, c3), (f, c4)} 0.806

mΘ[c1]({p, r, f}) {(p, c1), (p, c2), (p, c3), (p, c4),
(r, c1), (r, c2), (r, c3), (r, c4), (f, c1), (f, c2), (f, c3), (f, c4)} 0.194

As explained before, once the ballooning extensions are obtained, we can apply
Equation 8, to combine the obtained bba with the criterion weights (bba).

Next, to choose the best alternatives, we must define the beliefs over the frame
of alternatives Θ and the pignistic probabilities can be computed. We get:
BetP (p) = 0.567, BetP (r) = 0.213 and BetP (f) = 0.220.

As a consequence, the alternative “Peugeot” is the recommended car since it
has the highest values.

4 An Extension of the Belief AHP Method

The Belief AHP method is an interesting tool for solving multi-criteria decision
problems. It provides the expert the possibility to select only some subsets of
alternatives and groups of criteria.
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However, this approach suffers from some weaknesses. In fact, in reality, the
elicitation of preferences may be rather difficult since expert would not be able
to efficiently express any kind of preference degree between the available alter-
natives and criteria. Therefore, the belief AHP method is extended to handle
the presented problems.

4.1 Belief Pair-Wise Comparison

Under this approach, a new elicitation procedure is introduced. Thus to model
his assessments, the decision maker has to express his opinions qualitatively.
He indicated whether a criterion (or alternative) was more or less important to
its partner by “yes” or “no”. Moreover, we accept that the expert may define
uncertain or even unknown assessments. Indeed, we assume that each subset
of criteria is described by a basic belief assignment defined on the possible re-
sponses. For instance, in a problem of purchasing a car, the following type of
subjective judgments was frequently used: “the comfort criterion is evaluated to
be more important than style with a confidence degree of 0.8”. In fact, the deci-
sion maker responses to the question “is comfort criterion important regarding
the style criterion?”. Thus, the answer was: comfort criterion is more preferable
than style criterion and 0.8 is referred to the degree of belief. Then, to compute
the criteria weight, we describe a new pair-wise comparison procedure where the
following steps must be respected:

1. The first step is to model the pair-wise comparison matrix. Let dij is the
entry from the ith column of pair-wise comparison matrix (dij represents the
different bbm’s of the identified bba).

If m
ΩCi

j (.) = dij , then m
ΩCj

i (.) = m̄
ΩCi

j (.) = dij (10)

where m
ΩCi

j represents the importance of Ci with respect to the subset of
criteria Cj (for simplicity, we denote the subset of criteria by j instead of
Cj), i �= j, and m̄ is the negation of m. The negation m̄ of a bba m is defined
as m̄(A) = m(Ā), ∀A ⊂ Ω.
As regarding the previous example, if we have “the comfort criterion (C) is
evaluated to be more important than style criterion (S) with a confidence
degree of 0.8”, that is mΩC

S ({yes}) = 0.8, then we can say that “the style
criterion is evaluated to be less important than comfort criterion with a
confidence degree of 0.8”: mΩS

C ({no}) = 0.8.
2. Once the pair-wise comparison matrix is completed, our objective is then

to obtain the priority of each subset of criteria. The idea is to combine the
obtained bba using the conjunctive rule of combination [8] ((m1 ∩©m2)(A) =∑

B,C⊆Θ,B∩C=Am1(B)m2(C)).
Indeed, this function is chosen since we can regard each subset of criteria as
a distinct source of information which provides distinct pieces of evidence.
We will get the following bba:

mΩCi = ∩©m
ΩCi

j ,where j = {1, . . . , k} (11)
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At this stage, we want to know which criterion is the most important. In
fact, the obtained bba measures the confidence degree assigned to a specific
criterion regarding the overall criteria. However, these obtained bba repre-
sents the belief over all possible answers (yes or no). The idea is then to
standardize all the frames of discernment. Obviously, we propose to use the
concept of refinement operations [6], which allows to establish relationships
between different frames of discernment in order to express beliefs on any-
one of them. The objective consists in obtaining one frame of discernment
Ω from the set ΩCk

by splitting some or all of its events:

mΩCk
↑Ω(ρk(ω)) = mΩCk (ω) ∀ω ⊆ ΩCk

(12)

where the mapping ρk from ΩCk
to Ω is a refinement, and ρk({yes}) = {Ck}

and ρk({no}) = {Ck}.
3. Finally, the obtained bba mΩCk

↑Ω can be combined using the conjunctive
rule of combination in order to get mΩ.

The similar process is repeated to get the alternatives priorities mΘ[ck](Ai)
representing the opinions-beliefs of the expert about his preferences regarding
the set of alternatives.

Then, the vacuous extension is used at the criterion level and the ballooning
extension is assumed at the alternative level in order to standardize the frame
of discernment. So, the vacuous extension is used to extend the frame of criteria
to the frame of alternatives and the ballooning is applied for the deconditioning
process. After that, these obtained bba can be combined. Next, the marginal-
ization technique is applied by transferring each mass to its projection on Θ.
The final priority is then computed using the pignistic probabilities to make our
choice.

4.2 Illustrative Example

Let us consider the previous example (see Section 3.5). After identifying the
subsets of criteria and alternatives, the pair-wice comparison matrices should be
constructed.

Computing the Criteria Weights. After collecting the expert beliefs, we
have generated the following associated belief functions (see Table 4).

From Table 4, the expert may say that {c1} is evaluated to be more important
than {c4} with a confidence degree of 0.4. That means, 0.4 of beliefs are exactly
committed to the criterion {c1} is more important than {c4}, whereas 0.6 is
assigned to the whole frame of discernment (ignorance).

Then, the next step consists in combining the bba’s corresponding to each
criterion using the Equation 11. The obtained bba is reported in Table 5.

Subsequently, we proceed now with the standardization of our frame of dis-
cernment. By applying the Equation 12, we get for example: mΩ{c1}↑Ω({c1}) =
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Table 4. The weights preferences assigned to the criteria according to the expert’s
opinion

{c1} {c4} Ω1 = {c2, c3}

{c1}
m

Ω{c1}
{c1} (Ω{c1}) = 1 m

Ω{c1}
{c4} ({yes}) = 0.4 m

Ω{c1}
Ω1

({yes}) = 0.9

m
Ω{c1}
{c4} (Ω{c1}) = 0.6 m

Ω{c1}
Ω1

(Ω{c1}) = 0.1

{c4}
m

Ω{c4}
{c1} ({no}) = 0.4 m

Ω{c4}
{c4} (Ω{c4}) = 1 m

Ω{c4}
Ω1

({no}) = 0.3

m
Ω{c4}
{c1} (Ω{c4}) = 0.6 m

Ω{c4}
Ω1

(Ω{c4}) = 0.7

Ω1 = {c2, c3}
m

ΩΩ1
{c1}({no}) = 0.9 m

ΩΩ1
{c4}({yes}) = 0.3 m

ΩΩ1
Ω1

(ΩΩ1) = 1

m
ΩΩ1
{c1}(ΩΩ1) = 0.1 m

ΩΩ1
{c4}(ΩΩ1) = 0.7

Table 5. Belief pair-wise matrix: Partial combination

{c1} {c4} Ω1 = {c2, c3}

Weight
mΩ{c1}({yes}) = 0.94 mΩ{c4}({no}) = 0.58 mΩΩ1 ({yes}) = 0.03

mΩ{c1}(Ω{c1}) = 0.06 mΩ{c4}(Ω{c4}) = 0.42 mΩΩ1 ({no}) = 0.63
mΩΩ1 (∅) = 0.27

mΩΩ1 (ΩΩ1) = 0.07

Table 6. Belief pair-wise matrix: Refinement

{c1} {c4} Ω1 = {c2, c3}

Weight
mΩ

{c1}({c1}) = 0.94 mΩ
{c4}({c1, c2, c3}) = 0.58 mΩ

{c2,c3}({c2, c3}) = 0.03

mΩ
{c1}(Ω) = 0.06 mΩ

{c4}(Ω) = 0.42 mΩ
{c2,c3}({c1, c4}) = 0.63

mΩ
{c2,c3}(∅) = 0.27

mΩ
{c2,c3}(Ω) = 0.07

mΩ{c1}({yes}). To simplify, we can note by mΩ
{c1} the bba mΩ{c1}↑Ω. These bba’s

are presented in Table 6.
At this stage, the obtained bba’s can be combined using the conjunctive rule

of combination. We get: mΩ(∅) = 0.2982, mΩ({c1}) = 0.6799, mΩ({c2, c3}) =
0.0018, mΩ({c1, c2, c3}) = 0.0024, mΩ({c1, c4}) = 0.0159 and mΩ(Ω) = 0.0018.

Computing the Alternatives Priorities. Like the criterion level, the judg-
ments between decision alternatives over different criteria are dealt within an
identical manner. For example, to evaluate the alternatives according to the
criterion c1 we get Table 7.

As in the criterion level, for the subset of alternatives {p}, we use Equa-

tion 11 in order to combine the obtained bba: mΘ{p} [c1] = m
Θ{p}
{p} [c1] ∩©m

Θ{p}
{r,f}[c1]

(mΘ{p} [c1]({yes}) = 0.95 andmΘ{p} [c1]({Θ{p}}) = 0.05). Then, a similar process

is repeated for the rest of alternatives, and we getmΘ{r,f} [c1] (m
Θ{r,f} [c1]({no}) =

0.95 and mΘ{r,f} [c1](Θ{r,f}) = 0.05).
Subsequently, we proceed now with the standardization of our frame of dis-

cernment. By applying Equation 12, we get the following: mΘ{p}↑Θ[c1]({p}) =
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Table 7. Belief pair-wise matrix regarding c1 criterion

c1 {p} {r, f}

{p} m
Θ{p}
{p} [c1](Θ{p}) = 1 m

Θ{p}
{r,f}[c1]({yes}) = 0.95

m
Θ{p}
{r,f}[c1](Θ{p}) = 0.05

{r, f} m
Θ{r,f}
{p} [c1]({no}) = 0.95 m

Θ{r,f}
{r,f} [c1](Θ{r,f}) = 1

m
Θ{r,f}
{p} [c1](Θ{r,f}) = 0.05

0.95 and mΘ{p}↑Θ[c1](Θ) = 0.05. Also, mΘ{r,f}↑Θ[c1]({p}) = 0.95 and
mΘ{r,f}↑Θ[c1](Θ) = 0.05.

Finally, the obtained bba’s can be directly combined using the conjunctive
rule of combination. For simplicity, we denote mΘ{p}↑Θ[c1] by mΘ[c1], we get:
mΘ[c1]({p}) = 0.9975 and mΘ[c1]({Θ}) = 0.0025.

Then, as shown in the previous step, the computation procedure is repeated
for the rest of comparison matrices.

Updating the Alternatives Priorities. As shown in the previous example,
at the criterion level, the vacuous extension is used to standardize the frame
of discernment mΩ↑Θ×Ω. At the alternative level, the ballooning extension is
applied mΘ[cj ]

⇑Θ×Ω . Then, the obtained bba can be directly combined by using
Equation 8 as exposed in Table 8.

Table 8. The obtained bba: mΘ×Ω

mΘ×Ω bbm mΘ×Ω bbm

{(p, c1), (f, c1), (r, c1)} 0.28 {(p, c1), (f, c1)} 0.16

{(p, c1)} 0.008 {(r, c2), (r, c3), (f, c2), (p, c2)} 0.03

{(f, c4)} 0.0016 {(p, c4), (f, c4), (r, c4)} 0.11

{(p, c2), (f, c2), (r, c2), (p, c3), (f, c3)} 0.007 ∅ 0.4034

To choose the best alternatives, we must define our beliefs over the frame
of alternatives. As a result, the obtained bba is marginalized on Θ, we obtain
the following distribution: mΘ×Ω↓Θ({p, r, f}) = 0.427, mΘ×Ω↓Θ({p}) = 0.008,
mΘ×Ω↓Θ({f}) = 0.0016, mΘ×Ω↓Θ({p, f}) = 0.16 and mΘ×Ω↓Θ(∅) = 0.4034.

We can now calculate the overall performance for each alternative and deter-
mine its corresponding ranking by computing the pignistic probabilities:

BetP (p) = 0.3863, BetP (r) = 0.3752 and BetP (f) = 0.2385.
As a consequence, the alternative “Peugeot” is the recommended car since it

has the highest values. The alternative r may also be chosen since it has a value
close to p. For the sake of comparison, we have obtained the same best alternative
as in the previous example. This would give the expert reasonable assurance in
decision making. Our objective is then not to obtain the best alternative but to
identify the most cautious one since it is defined with less information.
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5 Conclusion

In this paper, the proposed method has extended the belief AHP model into
more uncertain environment. Indeed, our approach develops a new pair-wise
comparison technique in order to facilitate the elicitation process and to han-
dle the problem of uncertainty. It leads to more simple comparison procedure
without eliciting additional information. In fact, experts do not need to provide
precise comparison judgments. They select only some subsets of alternatives in
accordance with a certain criterion, and groups of criteria. Then, the proposed
method models the imprecise judgments based on an appropriate mathematical
framework of the belief function theory.
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Abstract. We investigate whether pairwise dependence properties re-
lated to all the bivariate margins of a trivariate copula imply the cor-
responding trivariate dependence property. The main finding is that, in
general, information about the pairwise dependence is not sufficient to
infer some aspects of global dependence. In essence, dependence is a
multi-facet property that cannot be easily reduced to simplest cases.

Keywords: Copula, Dependence, Stochastic model.

1 Introduction

Copula models have enjoyed a great popularity, especially in recent years, since
they allow us to express the link (i.e. the dependence) among different random
variables in a concise, yet powerful, way (see, for instance, [9,10,15] and references
therein). However, while our state-of-the-art knowledge of copula theory seems
quite established in the bivariate case, the higher–dimensional case still poses
several challenging problems. In particular, the study of dependence properties
of a random vector requires special care when we pass from dimension 2 to
dimension 3 (or more), since possible extensions are not so obvious.

Here, we are interested whether it is possible that (some) trivariate models
preserve dependence properties that are related to their bivariate margins. For
instance, it is well known that pairwise independence among random variables
does not correspond to global independence of all vector components. In the
same way, we will show that positive pairwise dependence rarely corresponds to
global positive dependence. This poses the natural question whether it is possible
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to infer some multivariate property of our random vector starting with a lower-
dimensional and marginal information about the bivariate margins. This problem
has important practical implications since it warns against the indiscriminate use
of step-wise statistical procedures for fitting copulas to data.

In this paper, by using basic notions of positive dependence, we present some
illustrations about the preservation of pairwise properties in the trivariate case.
The main message is that stochastic dependence has so many facets that cannot
be recovered from its lower–dimensional projections.

2 Pairwise and Global Independence and Comonotonicity

In this paper, we assume that the reader is familiar with basic properties of
copulas and quasi–copulas, as presented, for instance, in [15]. Moreover, the
results are mainly presented in the trivariate case for sake of illustration.

We start with the concept of independence for random variables. We recall
that a d–dimensional continuous random vector X = (X1, . . . , Xd) is formed by
independent components if, and only if, the copula of X is given by Πd(u) =∏d

i=1 ui.
As known, if C is a 3–copula whose bivariate margins are equal to Π2, then

C is not necessarily equal to Π3. Consider, for instance, the copula

C(u1, u2, u3) = u1u2u3(1 + α(1− u1)(1 − u2)(1 − u3)) (1)

for any α ∈ [−1, 1], with α �= 0.
In fact, if we consider the class P3,2

Π2
of all 3–copulas whose bivariate margins

are all equal to Π2, the elements of P3,2
Π2

actually may vary according to the
following bounds (see [2,4,16,19]).

Proposition 1. If C ∈ P3,2
Π2

, then, for every u1, u2 and u3 in [0, 1],

CL(u1, u2, u3) ≤ C(u1, u2, u3) ≤ CU (u1, u2, u3),

where

CL(u1, u2, u3) = max{u1W2(u2, u3), u2W2(u1, u3), u3W2(u1, u2)} (2)

CU (u1, u2, u3) = min{u1u2, u1u3, u2u3, (1− u1)(1− u2)(1− u3) + u1u2u3}, (3)

and W2(u, v) = max{u + v − 1, 0} is the Fréchet–Hoeffding lower bound for
2–copulas.

Notice that both CL and CU are proper 3–quasi–copulas, as noted in [19,
Example 10].

In order to give an idea about the way the bounds on special classes of (quasi)–
copulas may improve our information with respect to the general case, we may
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consider a measure recently introduced in [16]. This (multivariate) measure is
defined for any d–quasi-copula Q by

μd(Q) =

(d+ 1)!

∫
[0,1]d

Q(u) du− 1

d!− 1
.

Basically, μd measures the distance between a d-quasi-copula Q and the d–
dimensional Fréchet–Hoeffding lower bound Wd(u) = max{

∑d
i=1 ui − d+ 1, 0}.

Note that μd(Md) = 1, where Md(u) = min{u1, . . . , ud}, and μd(Wd) = 0. Thus,
given two d-quasi-copulasQ1 and Q2 such that Q1(u) ≤ Q2(u) for all u in [0, 1]d,
μd(Q2)−μd(Q1) represents the normalized L1-distance between Q1 and Q2. Note
that if CL and CU are the 3–quasi-copulas given by (2) and (3), respectively,
then μ3(CL) = 31/100 and μ3(CU ) = 49/100. In this case the Fréchet-Hoeffding
bounds have been narrowed by a factor of μ3(CU )− μ3(CL) = 9/50 (or 18%).

Together with the independence case, there are two other basic dependence
properties of random vectors.

The first property is the comonotonicity. We say that a continuous random
vector X is comonotonic if its copula is the Fréchet–Hoeffding upper bound Md.
The following result follows (see, for instance, [3, Theorem 3]).

Proposition 2. Let C be a d–copula. Then C = Md if, and only if, all bivariate
margins of C are equal to M2.

The second property is the counter-monotonicity. In two dimensions, we say
that a continuous random vector X is counter–comonotonic if its copula is the
Fréchet–Hoeffding lower bound W2. However, this notion does not have a natural
extension to the trivariate case, since a trivariate vector with all pairwise margins
equal to W2 does not exist (see also [13, section 2]).

3 Pairwise and Global Dependence

We start by considering the definition of orthant dependence (see [11]).

Definition 1. Let X = (X1, X2, · · · , Xd) be a d–dimensional continuous ran-
dom vector (d ≥ 3). We say that:

(a) X is positively lower orthant dependent (PLOD) if

P [X ≤ x] ≥
d∏

i=1

P [Xi ≤ xi]

for all x = (x1, x2, · · · , xd) ∈ Rd.
(b) X is is positively upper orthant dependent (PUOD) if

P [X ≥ x] ≥
d∏

i=1

P [Xi ≥ xi]

for all x = (x1, x2, · · · , xd) ∈ Rd.
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Related notions of negative dependence like NLOD and NUOD can be given by
changing the middle inequality sign in previous definitions.

If the random vector X has associated copula C, then we say that C is PLOD
if C(u) ≥ Πd(u) for all u ∈ [0, 1]d, and C is PUOD if C(u) ≥ Πd(u) for
all u ∈ [0, 1]d, where C denotes the survival function related to C (for formal
definition, see [5]). We recall that the survival function of a 3–copula C is given,
for every u ∈ [0, 1]3, by

C(u) =1− u1 − u2 − u3

+ C12(u1, u2) + C13(u1, u3) + C23(u2, u3)− C(u1, u2, u3), (4)

where C12, C13 and C23 are the bivariate margins of C. Notice that, if Ĉ is the

survival copula related to C, then
ˆ̂
C = C (in fact, Ĉ(u) = P [X > 1− u]). Thus

we have the following result.

Proposition 3. Let C be a d–copula. Then, C is PLOD if and only if Ĉ is
PUOD. Similarly, C is NLOD if and only if Ĉ is NUOD.

Notice that, in the bivariate case, PLOD and PUOD coincide, and they are
denoted by the term PQD (positively quadrant dependent). Analogously, NLOD
and NUOD coincide and are denoted by NQD (negatively quadrant dependent).

We denote by P3,2
PQD and P3,2

NQD the class of all 3–copulas whose all bivariate

margins are PQD and NQD, respectively. The class P3,2
PQD (respectively, P3,2

NQD)
includes the class of all trivariate copulas that are PLOD or PUOD (respectively,
NLOD or NUOD): see, for instance, [14]. We denote the classes of 3–copulas that
are PLOD, PUOD, NLOD and NUOD, respectively, by means of the symbols:
P3
PLOD, P3

PUOD, P3
NLOD and P3

NUOD.
Notice that P3

PLOD \ P3
PUOD �= ∅ and P3

PUOD \ P3
PLOD �= ∅. Analogous con-

siderations hold for the related negative concepts. In fact, the following example
holds.

Example 1. Let C be a member of the FGM family of 3-copulas given by

C(u1, u2, u3) = u1u2u3[1 + α12u1 u2 + α13 u1 u3 + α23u2 u3 + α123u1 u2 u3],

where, for every t ∈ [0, 1], t := 1 − t, and the parameters satisfy the following
inequality

1 +
∑

1≤i<j≤3

αijξiξj + α123ξ1ξ2ξ3 ≥ 0

for any ξ1, ξ2, ξ3 ∈ {−1, 1}. For a copula C in this family, it holds that C is
PUOD if, and only if,

α12u1u2 + α13u1u3 + α23u2u3 − α123u1u2u3 ≥ 0

for every (u1, u2, u3) ∈ [0, 1]3. Moreover, C is PLOD if, and only if,

α12u1 u2 + α13u1 u3 + α23u2 u3 + α123u1 u2 u3 ≥ 0
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for every (u1, u2, u3) ∈ [0, 1]3. So, for example, if

(α12, α13, α23, α123) = (1/9, 1/9, 1/9,−8/9),

then C ∈ P3,2
PQD ∩ P3

PUOD , but C is not PLOD. Instead, if

(α12, α13, α23, α123) = (1/9, 1/9, 1/9, 8/9),

then C ∈ P3,2
PQD ∩ P3

PLOD, but it is not PUOD.

However, under some additional properties C ∈ P3,2
PQD may have a global

dependence property.

Proposition 4. Let C ∈ P3,2
PQD.

(a) If C is NLOD then C is PUOD.
(b) If C is NUOD then C is PLOD.

Proof. Let C be a NLOD copula belonging to P3,2
PQD. Then, for all u ∈ [0, 1]3,

we have

C(u) = 1− u1 − u2 − u3 + C12(u1, u2) + C13(u1, u3) + C23(u2, u3)− C(u1, u2, u3)

≥ 1− u1 − u2 − u3 + u1u2 + u1u3 + u2u3 − u1u2u3,

from which it follows that C is PUOD.
Analogously, let C be a NUOD copula belonging to P3,2

PQD. Then, for all u ∈
[0, 1]3, we have

C(u) = 1− u1 − u2 − u3 + C12(u1, u2) + C13(u1, u3) + C23(u2, u3)− C(u1, u2, u3)

≤ (1− u1)(1− u2)(1− u3),

which implies that

C(u1, u2, u3) ≥C12(u1, u2)− u1u2 + C13(u1, u3)− u1u3 + C23(u2, u3)− u2u3

+ u1u2u3

Therefore, C is PLOD.

Analogously, we can prove the following result.

Proposition 5. Let C ∈ P3,2
NQD.

(a) If C is PLOD then C is NUOD.
(b) If C is PUOD then C is NLOD.

In particular, in the case of pairwise independence, Propositions 4 and 5 imply
the following result.

Corollary 1. Let C be in P3,2
Π2

. The following statements hold:
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(a) C is PUOD if and only if C is NLOD;
(b) C is PLOD if and only if C is NUOD.

Example 2. Consider the 3-copula C of type (1), where α ∈ [−1, 1]. If α ≥ 0,
then C is PLOD and NUOD. If α ≤ 0, then C is NLOD and PUOD.

If we impose the 3–copula C to have a specific form, then the pairwise positive
dependence may be globally preserved as the following proposition shows.

Proposition 6. Let C be a 3–copula of type

C(u1, u2, u3) = C1(C2(u1, u2), u3) (5)

for every (u1, u2, u3) ∈ [0, 1]3 and suitable 2–copulas C1 and C2. The following
statements hold:

(a) C1, C2 are PQD if and only if C is PLOD;
(b) C1, C2 are NQD if and only if C is NLOD.

Trivially, the previous result applies to Archimedean and nested Archimedean
copulas [7,8,17]. Notice that copulas of type (5) have been investigated in [18].

Proposition 7. Let C be a 3–copula of type

C(u1, u2, u3) = u3C1

(
C2 (u1, u3)

u3
,
C3 (u2, u3)

u3

)
(6)

for every (u1, u2, u3) ∈ ]0, 1]3 and suitable 2–copulas C1, C2 and C3. The follow-
ing statements hold:

(a) C1, C2, C3 are PQD if and only if C is PLOD;
(b) C1, C2, C3 are NQD if and only if C is NLOD.

Notice that copulas of type (6) have been investigated in [1] (for an applica-
tion, see [20]).

Finally, we present some bounds for the class of copulas with a given pairwise
dependence.

If C is a trivariate copula with bivariate margins C12, C13 and C23, it was
proved in [11, Theorem 3.11] that

FL ≤ C ≤ FU , (7)

where

FU (u1, u2, u3) = min{C12(u1, u2), C13(u1, u3), C23(u2, u3), 1− u1 − u2 − u3

+C12(u1, u2) + C13(u1, u3) + C23(u2, u3)} (8)

FL(u1, u2, u3) = max{0, C12(u1, u2) + C13(u1, u3)− u1, C12(u1, u2)

+C23(u2, u3)− u2, C13(u1, u3) + C23(u2, u3)− u3}. (9)

Thus, we have:
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Proposition 8. For every C ∈ P3,2
PQD we have

CL(u) ≤ C(u) ≤M3(u), (10)

and for every D ∈ P3,2
NQD we have

W3(u) ≤ D(u) ≤ CU (u), (11)

where CL and CU are the 3–quasi-copulas given by (2) and (3), respectively.
Moreover, the bounds are best-possible.

Proof. If C ∈ P3,2
PQD, from (7) it follows that C(u) ≥ CL(u). Since this lower

bound is the best-possible lower bound in the class of trivariate copulas whose
bivariate margins are Π2 (recall Proposition 1), it is the best-possible lower
bound in P3,2

PQD, and since M3 is a 3–copula, from Proposition 2, (10) follows.

If D ∈ P3,2
NQD, the proof of the upper bound of (11) is similar to the previ-

ous case. The lower bound follows by the general proof of sharpness of lower
Fréchet–Hoeffding bounds for copulas provided, for instance, in [15, Theorem
2.10.13]. In fact, it is a consequence of the fact that the copula constructed in
[15, Theorem 2.10.13] via a multilinear interpolation preserves the property of
having the bivariate margins that are NQD, as shown in [6, Proposition 11, part
b].

We compare the bounds in Proposition 8 to the Fréchet-Hoeffding bounds by
using the measure μ3. Observe that μ3(M3)−μ3(CL) = 0.69 and μ3(CU ) = 0.49.

4 Concluding Remarks

In this work, we have investigated the possible preservation of some bivariate
properties of copulas to higher dimensions. In general, loosely speaking we have
noticed that if the three 2-margins of a 3-copula C have some bivariate de-
pendence property, then C rarely has the corresponding trivariate dependence
property. For instance,

– Pairwise independence does not imply mutual independence;
– PQD of all bivariate margins does not imply PLOD or PUOD for the corre-

sponding 3–copula.

The same considerations also apply to other interesting dependence properties
of copulas. For instance:

– Pairwise exchangeability does not imply mutual exchangeability. Consider,
e.g., the copula

C(u1, u2, u3) = u1 min(u2, u3).

– Bivariate Gaussian margins do not imply that C is trivariate Gaussian. See
[12].



250 F. Durante et al.

Even some pairwise measure-theoretic properties of copulas do not extend to the
multivariate case, as the following example shows.

Example 3. Let C0 be a 3-copula with the following probability mass distribu-
tion: Assign probability mass 1/2 uniformly to the triangle in [0, 1]3 with vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1); and a probability mass 1/2 uniformly to the trian-
gle with vertices (1, 1, 0), (1, 0, 1), and (0, 1, 1) (see [14, Example 4]). The three
2-margins of C0 are Π2.

A probabilistic interpretation for uniform (0, 1) random variables U , V , and
W with this copula C0 as their joint distribution function is that

P(〈U + V +W 〉 = 0) = 1,

where 〈x〉 = x − *x+ denotes the fractional part of the non-negative number x.
Then these random variables (and this copula C0) have the following properties:

(a) U , V , and W are pairwise independent but not mutually independent.
(b) All 2-margins of C0 are PQD, but C0 is neither PLOD nor PUOD.
(c) All 2-margins of C0 have full support, but C0 does not.
(d) All 2-margins of C0 are absolutely continuous, but C0 is singular.

Notice that the copula C0 above is a member of the family {Cθ}θ∈[0,1] of 3-
copulas which are distribution functions of U , V , W for which P(〈U + V +W 〉 =
θ) = 1.

To conclude, we can say that pairwise properties are only one aspect of the
multi-facet nature of high–dimensional models. Following [13], we can say that
the step from 2 to 3 dimensions is a giant step.
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Abstract. This paper continues previous work on additive generators of overlap
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1 Introduction

Classification problems often faced in many applications, such as image processing [1],
decision making and preference modeling [2,3], may involve the assignment of an ob-
ject to one of the possible classes that are considered in the problem, according to the
membership degree (e.g., a preference or support degree) of such object to each one
of those classes. It is well known that t-norms and t-conorms have been widely used
as the main aggregation operators in this context. However, in many situations the as-
sociativity property satisfied by t-norms and t-conorms is not required. This is the case
when the classification problem consists of deciding between one of just two classes [2].
Based on this idea, Bustince et al. [3,4] introduced the concepts of overlap and grouping
functions.

Overlap and grouping functions are used to measure, respectively, the degree in
which an object is simultaneously supported by both classes and the degree in which
the object is supported by the combination of the two classes [5]. In fuzzy preference
modeling and decision making, overlap functions allow the definition of the concept
of indifference, and Bustince et al. [3] developed an algorithm, which makes use of

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 252–261, 2014.
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overlap functions, to elaborate on an alternative preference ranking that penalizes the
alternatives for which the expert is not sure about his/her preference. On the other hand,
the concept of grouping functions – the N-dual notion of overlap functions – can be
used for evaluating the amount of evidence in favor of either of the two alternatives.
Thus, its negation provides a measure of incomparability [3].

Notice that there exists a close relation between overlap and grouping functions
and some particular classes of t-norms and t-conorms, respectively. A very important
way for constructing t-norms and t-conorms is the use of additive generators [6] (see,
also, [7] for the representation of aggregation functions, and [8,9] for a study of ad-
ditive generators of t-norms and t-conorms considering an interval-valued fuzzy ap-
proach [10,11,12,13]), and also. This practice offers more flexibility and can improve
the performance in applications [14].

Keeping the advantages of using additive generators in mind, in previous work we
introduced the notion of additive generators of overlap functions [15]. Now, the present
paper extends the previous work, by introducing the construction of grouping functions
by means of additive generators, so that one can simplify the choice of an appropriate
overlap/grouping function for a given problem, reducing also the computational com-
plexity by only considering single-variable functions instead of bivariate ones.

The paper is organized as follows. Section 2 summarizes preliminary concepts. In
Section 3, we present the main results related to additive generators of overlap functions
introduced in previous work. Section 4 introduces the concept of additive generator
pair of grouping functions, with some important results and examples. Section 5 is the
Conclusion, pointing to future work.

2 Preliminary Concepts

A function A : [0, 1]n → [0, 1] is said to be an n-ary aggregation function if it satisfies
the following two conditions:
(A1) A is increasing1 in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then

A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);
(A2) Boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

In this paper, we are interested in overlap and grouping functions [3,4,5,16], impor-
tant classes of aggregation functions that are related in some sense to triangular norms
(t-norms) and triangular conorms (t-conorms), respectively.
Definition 1. A bivariate aggregation function T : [0, 1]2 → [0, 1] is said to be a t-
norm if it satisfies the following properties: (T1) commutativity; (T2) associativity; and
(T3) boundary condition: ∀x ∈ [0, 1] : T (x, 1) = x.

Definition 2. A bivariate aggregation function S : [0, 1]2 → [0, 1] is a t-conorm if
it satisfies the following properties: (S1) commutativity; (S2) associativity; and (S3)
boundary condition: ∀x ∈ [0, 1] : S(x, 0) = x.

A t-conorm is positive if and only if it has no non-trivial one divisor, that is, if
S(x, y) = 1 then either x = 1 or y = 1.

1 In this paper, an increasing (decreasing) function does not need to be strictly increasing (de-
creasing).
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Definition 3. A function N : [0, 1]→ [0, 1] is said to be a fuzzy negation if the follow-
ing conditions hold: (N1) boundary conditions: N(0) = 1 and N(1) = 0; (N2) N is
decreasing: if x ≤ y then N(y) ≤ N(x).

The function N : [0, 1] → [0, 1], defined by N(x) = 1 − x, is usually called stan-
dard negation or simply fuzzy negation. If a fuzzy negation N is a continuous strictly
decreasing function then it is said to be a strict negation. For a strict negation N and an
aggregation function A : [0, 1]2 → [0, 1], its N -dual AN : [0, 1]2 → [0, 1] is given by

AN (x, y) = N−1(A(N(x), N(y)). (1)

3 Additive Generators of Overlap Functions

The concept of overlap functions was firstly introduced by Bustince et al. [4]. Several
recent studies have analysed important properties of overlap functions, such as migrativ-
ity, homogeneity, idempotency, Lipschitzianity and their additive generators. Observe
that, contrary to the case of t-norms, the class of overlap functions is convex. [4,5,15,16]

Definition 4. A bivariate function O : [0, 1]2 → [0, 1] is said to be an overlap function
if it satisfies the following conditions: (O1) O is commutative; (O2) O(x, y) = 0 if and
only if xy = 0; (O3) O(x, y) = 1 if and only if xy = 1; (O4) O is increasing; (O5) O
is continuous.

Example 1. [15, Example 3] It is possible to find several examples of overlap functions,
such as any continuous t-norm with no zero divisors (property (O2)). On the other hand,
the function OmM : [0, 1]2 → [0, 1], given by OmM (x, y) = min(x, y)max(x2, y2),
is a non associative overlap functions having 1 as neutral element, and, thus, it is not a
t-norm. The overlap function O2(x, y) = x2y2 or, more generally, Op(x, y) = xpyp,
with p > 0, p �= 1, is neither associative nor has 1 as neutral element.

The concept of additive generator pair of an overlap function was firstly introduced
by Dimuro and Bedegral [15], allowing the definition of overlap functions (as two-
place functions) by means of one-place functions (their additive generator pair). This
concept of additive generator pair was inspired by Vicenı́k’s work [6] related to additive
generators of (non-continuous) t-norms, based on a pair of functions composed by a
(non-continuous) one-place function and its pseudo-inverse. In the definition introduced
in [15], since overlap functions are continuous, the additive generator pair is composed
by continuous functions, satisfying certain properties that allow them to play analogous
role to the Vicenı́k’s additive generator (and its pseudo-inverse).

Proposition 1. [15, Corollary 2] Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be
continuous and decreasing functions such that: (1) θ(x) = ∞ if and only if x = 0; (2)
θ(x) = 0 if and only if x = 1; (3) ϑ(x) = 1 if and only if x = 0; (4) ϑ(x) = 0 if
and only if x = ∞. Then, the function Oθ,ϑ : [0, 1]2 → [0, 1], defined by Oθ,ϑ(x, y) =
ϑ(θ(x) + θ(y)), is an overlap function.

Proposition 2. [15, Proposition 2] Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be
continuous and decreasing functions such that (1) ϑ(x) = 1 if and only if x = 0; (2)
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ϑ(x) = 0 if and only if x =∞; (3) 0 ∈ Ran(θ); (4) Oθ,ϑ(x, y) = ϑ(θ(x)+θ(y)) is an
overlap function. Then, the following conditions also hold: (5) θ(x) =∞ if and only if
x = 0; (6) θ(x) = 0 if and only if x = 1;

(θ, ϑ) is called an additive generator pair of the overlap function Oθ,ϑ, and Oθ,ϑ is
said to be additively generated by the pair (θ, ϑ).

Example 2. [15, Example 4] Consider the functions θ : [0, 1] → [0,∞] and ϑ :
[0,∞]→ [0, 1], defined, respectively by:

θ(x) =

{
−2 lnx if x �= 0
∞ if x = 0

and ϑ(x) =

{
e−x if x �=∞
0 if x =∞,

which are continuous and decreasing functions, satisfying the conditions 1-4 of Corol-
lary 1. Then, whenever x �= 0 and y �= 0, one has that:

Oθ,ϑ(x, y) = ϑ(θ(x) + θ(y)) = e−(−2 ln x−2 ln y) = elnx2y2

= x2y2.

Otherwise, if x = 0, it holds that Oθ,ϑ(0, y) = ϑ(θ(0) + θ(y)) = ϑ(∞ + θ(y)) = 0,
and, similarly, if y = 0, then Oθ,ϑ(x, 0) = 0. It follows that Oθ,ϑ(x, y) = x2y2, and so
we recover the non associative overlap function O2, given in Example 1.

4 Additive Generators of Grouping Functions

The notion of grouping function was firstly introduced by Bustince et al. [3]:

Definition 5. A bivariate function G : [0, 1]2 → [0, 1] is said to be a grouping function
if it satisfies the following conditions:

(G1) G is symmetric;
(G2) G(x, y) = 0 if and only if x = y = 0;
(G3) G(x, y) = 1 if and only if x = 1 or y = 1;
(G4) G is increasing;
(G5) G is continuous.

Grouping and overlap functions are N -dual concepts (Eq. (1)). It is immediate that:

(i) A bivariate function O : [0, 1]2 → [0, 1] is an overlap function if and only if GO :
[0, 1]2 → [0, 1], defined by

GO(x, y) = ON = 1−O(1 − x, 1 − y), (2)

is a grouping function;
(ii) Dually, a function G : [0, 1]2 → [0, 1] is a grouping function if and only if OG :

[0, 1]2 → [0, 1], defined by

OG(x, y) = GN = 1−G(1 − x, 1− y), (3)

is an overlap function.
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Example 3. Considering the overlap functions discussed in Example 1, then the N -
duals of such functions are grouping functions. Thus, it is immediate that continuous
t-conorms with no divisors of 1 (property (G3)) are grouping functions. Moreover, by
Eq. (2), the function G2(x, y) = GO2 (x, y) = 1 − (1 − x)2(1 − y)2, or, more gen-
erally, Gp(x, y) = GOp(x, y) = 1 − (1 − x)p(1 − y)p, with p > 1, is a grouping
function that is neither associative nor has 0 as neutral element (and, therefore, it is
not a t-conorm). Other example of grouping function that is not a t-conorm is the non
associative grouping function that has 0 as neutral element given by

GmM (x, y) = GOmM (x, y) = 1−min{1− x, 1− y}max{(1− x)2, (1− y)2}.

Lemma 1. Let σ : [0, 1]→ [0,∞] be an increasing function such that
1. σ(x) + σ(y) ∈ Ran(σ), for x, y ∈ [0, 1] and
2. if σ(x) = σ(1) then x = 1.

Then σ(x) + σ(y) ≥ σ(1) if and only if x = 1 or y = 1.

Proof. (⇒) Since σ is increasing and σ(x) + σ(y) ∈ Ran(σ), for each x, y ∈ [0, 1],
one has that σ(x) + σ(y) ≤ σ(1). Thus, if σ(x) + σ(y) ≥ σ(1), then it holds that
σ(x) + σ(y) = σ(1). Suppose that σ(1) = 0. Then, since σ is increasing, one has that
σ(x) = 0, for each x ∈ [0, 1], which is contradiction with condition 2, and, thus, it holds
that σ(1) > 0. Now, suppose that σ(1) �= 0 and σ(1) �=∞. Then, since σ(1) �= 0, one
has that σ(1) + σ(1) > σ(1), which is also a contradiction. It follows that σ(1) = ∞
and, therefore, since σ(x) + σ(y) = σ(1), we have that σ(x) = ∞ or σ(y) = ∞.
Hence, by condition 2, one has that x = 1 or y = 1. (⇐) It is straightforward. ,-

Lemma 2. [15, Lemma 3] Consider functions σ : [0, 1] → [0,∞] and ς : [0,∞] →
[0, 1] such that: ∀x0 ∈ [0, 1] : ς(σ(x)) = x0 ⇔ x = x0. Then it holds that: ∀x0 ∈
[0, 1] : σ(x) = σ(x0)⇔ x = x0.

Theorem 1. Let σ : [0, 1]→ [0,∞] and ς : [0,∞]→ [0, 1] be continuous and increas-
ing functions satisfying the conditions of Lemmas 1 and 2 such that
1. σ(x) + σ(y) ∈ Ran(σ), for x, y ∈ [0, 1] ;
2. ς(σ(x)) = 0 if and only x = 0;
3. ς(σ(x)) = 1 if and only x = 1;
4. σ(x) + σ(y) = σ(0) if and only x = 0 and y = 0.

Then, the function Gσ,ς : [0, 1]
2 → [0, 1], defined by

Gσ,ς(x, y) = ς(σ(x) + σ(y)), (4)

is a grouping function.

Proof. We show that the conditions of Definition 5 holds. The proofs of the commuta-
tivity (condition (G1)) and continuity (Condition (G5)) properties are immediate. Then:
Gσ,ς(x, y) = 0 ⇔ ς(σ(x) + σ(y)) = 0 by Eq. (4)

⇔ ς(σ(z)) = 0 for some z ∈ [0, 1] by Condition 1

⇔ z = 0 ⇔ σ(z) = σ(0) = σ(x) + σ(y) = σ(0) by Condition 2, Lemma 2

⇔ x = 0 and y = 0 by Condition 4
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which proves the condition (G2). Also, one has that:

Gσ,ς(x, y) = 1⇔ ς(σ(x) + σ(y)) = 1 by Eq. (4)

⇔ ς(σ(z)) = 1 for some z ∈ [0, 1] by Condition 1;

⇔ z = 1⇔ σ(z) = σ(1) by Condition 3, Lemma 2

⇔ σ(x) + σ(y) = σ(1)⇔ x = 1 or y = 1 by Lemma 1,

which proves the condition (G3). Finally, to prove the condition (G4), considering z ∈
[0, 1] with y ≤ z, then σ(y) ≤ σ(z). It follows that Gσ,ς(x, y) = ς(σ(x) + σ(y)) ≤
ς(σ(x) + σ(z)) = Gσ,ς(x, z), since ς and σ are increasing. ,-

Corollary 1. Let σ : [0, 1] → [0,∞] and ς : [0,∞] → [0, 1] be continuous and
increasing functions such that

1. σ(x) =∞ if and only if x = 1;
2. σ(x) = 0 if and only if x = 0;
3. ς(x) = 1 if and only if x =∞;
4. ς(x) = 0 if and only if x = 0.

Then, the function Gσ,ς : [0, 1]
2 → [0, 1], defined by Gσ,ς(x, y) = ς(σ(x) + σ(y)), is a

grouping function.

Proof. It follows from Theorem 1. ,-

Proposition 3. Let σ : [0, 1] → [0,∞] and ς : [0,∞] → [0, 1] be continuous and
increasing functions such that

1. ς(x) = 0 if and only if x = 0;
2. ς(x) = 1 if and only if x =∞;
3. 0 ∈ Ran(σ);
4. Gσ,ς(x, y) = ς(σ(x) + σ(y)) is a grouping function.

Then, the following conditions also hold:
5. σ(x) =∞ if and only if x = 1;
6. σ(x) = 0 if and only if x = 0;

Proof. If Gσ,ς is a grouping function, then it follows that:

5. (⇒) By Condition 2, it holds that: σ(x) =∞ ⇒ σ(x) + σ(y) =∞(for some y �=
1)⇒ ς(σ(x) + σ(y)) = 1⇒ Gσ,ς(x, y) = 1⇒ x = 1.
(⇐) Consider y ∈ [0, 1] such that σ(y) �= ∞. By Condition 2, one has that: x =
1⇒ Gσ,ς(x, y) = 1⇒ ς(σ(x) + σ(y)) = 1⇒ σ(x) + σ(y) =∞⇒ σ(x) =∞.

6. (⇒) Consider y ∈ [0, 1] such that σ(y) = 0, which is possible due to Condition
3. Then, by Condition 1, one has that:sigma(x) = 0 ⇒ σ(x) + σ(y) = 0 ⇒
ς(σ(x) + σ(y)) = 0⇒ Gσ,ς(x, y) = 0⇒ x = y = 0.
(⇐) By Condition 1, it follows that: x = 0⇒ Gσ,ς(x, 0) = 0⇒ ς(σ(x)+σ(0)) =
0⇒ σ(x) + σ(0) = 0⇒ σ(x) = σ(0) = 0 ,-

(σ, ς) is called an additive generator pair of the grouping function Gσ,ς , and Gσ,ς is
said to be additively generated by the pair (σ, ς).
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Theorem 2. Let θ : [0, 1]→ [0,∞] and ϑ : [0,∞]→ [0, 1] be continuous and decreas-
ing functions, satisfying the conditions 1-4 of Proposition 1, and consider the functions
σθ : [0, 1]→ [0,∞] and ςϑ : [0,∞]→ [0, 1], defined, respectively, by:

σθ(x) = θ(1 − x) and ςϑ(x) = 1− ϑ(x). (5)

If (θ, ϑ) is an additive generator pair of an overlap function Oθ,ϑ : [0, 1]2 → [0, 1],
then the function Gσθ,ςϑ : [0, 1]2 → [0, 1], defined by

Gσθ,ςϑ(x, y) = ςϑ(σθ(x) + σθ(y)) (6)

is a grouping function.

Proof. It follows that:

Gσθ,ςϑ(x, y) = ςϑ(σθ(x) + σθ(y)) = 1− ϑ(θ(1 − x), θ(1 − y)) by Eqs. (6), (5)

= 1−Oθ,ϑ(1− x, 1− y) = GOθ,ϑ
(x, y), by Prop. (1), Eq. (2)

and it is immediate that Gσθ ,ςϑ is a grouping function. ,-

Proposition 4. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be continuous and
decreasing functions, satisfying the conditions 1-4 of Proposition 1, and consider the
functions σθ : [0, 1]→ [0,∞] and ςϑ : [0,∞]→ [0, 1], defined by Equations (5). Then,
σθ and ςϑ satisfy the conditions of Corollary 1.

Proof. Since θ and ϑ are continuous and decreasing, then, for all x, y ∈ [0, 1], whenever
x < y it follows that σθ(x) = θ(1− x) < θ(1− y) = σθ(y), and, for all x, y ∈ [0,∞],
whenever x < y, one has that ςϑ(x) = 1 − ϑ(x) < 1 − ϑ(y) = ςϑ(y), and, thus σθ

and ςϑ are both continuous and increasing. Since θ and ϑ satisfy the conditions 1-4 of
Proposition 1, it follows that: (1) σθ(x) =∞ if and only if θ(1−x) =∞ if and only if
x = 1; (2) σθ(x) = 0 if and only if θ(1− x) = 0 if and only if x = 0; (3) ςϑ(x) = 1 if
and only if 1−ϑ(x) = 1 if and only if x =∞; (4) ςϑ(x) = 0 if and only if 1−ϑ(x) = 0
if and only if x = 0. Therefore, σθ and ςϑ satisfy the conditions of Corollary 1. ,-

Corollary 2. Let θ : [0, 1] → [0,∞] and ϑ : [0,∞] → [0, 1] be continuous and
decreasing functions, and σθ : [0, 1] → [0,∞] and ςϑ : [0,∞] → [0, 1], defined,
respectively, by Equations (5). Then, if (θ, ϑ) is an additive generator pair of an overlap
function Oθ,ϑ : [0, 1]2 → [0, 1], then (σθ, ςϑ) is an additive generator pair of the
grouping function Gσθ ,ςϑ = GOθ,ϑ

.

Proof. It follows from Theorem 2, Proposition 4 and Corollary 1. ,-

Conversely, it is immediate that:

Corollary 3. Let σ : [0, 1] → [0,∞] and ς : [0,∞] → [0, 1] be continuous and
increasing functions such that (σ, ς) is an additive generator pair of a grouping function
Gσ,ς : [0, 1]

2 → [0, 1]. Then the functions θσ : [0, 1]→ [0,∞] and ϑς : [0,∞]→ [0, 1],
defined, respectively by θσ(x) = σ(1−x) and ϑς(x) = 1− ς(x), constitute an additive
generator pair of the overlap function OGσ,ς .
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Example 4. Consider the functions θ : [0, 1]→ [0,∞] and ϑ : [0,∞]→ [0, 1], defined,
respectively by:

θ(x) =

{
−2 lnx if x �= 0
∞ if x = 0

and ϑ(x) =

{
e−x if x �=∞
0 if x =∞,

which are continuous and decreasing functions, satisfying the conditions 1-4 of Propo-
sition 1. In Example 2, we showed that (θ, ϑ) is an additive generator pair of the
overlap function O2(x, y) = x2y2, given in Example 1. Now, consider the functions
σθ : [0, 1]→ [0,∞] and ςϑ : [0,∞]→ [0, 1], given in Equations (5). It follows that

σθ(x) =

{
−2 ln(1 − x) if x �= 1
∞ if x = 1

and ςϑ(x) =

{
1− e−x if x �=∞
1 if x =∞.

Then, whenever x �= 1 and y �= 1, one has that

Gσθ,ςϑ(x, y) = ςϑ(σθ(x)+σθ(y)) = 1−e−(−2 ln(1−x)−2 ln(1−y)) = 1−(1−x2)(1−y2).

Otherwise, if x = 1, then σθ(1) =∞, and, thus, Gσθ ,ςϑ(1, y) = 1. Similarly, if x = 1,
one has that Gσθ ,ςϑ(x, 1) = 1. It follows that Gσθ,ςϑ(x, y) = 1 − (1 − x2)(1 − y2) =
G2(x, y), where G2 is the grouping function given in Example 3, such that G2 = GO2 .

It is immediate that:
Corollary 4. In the same conditions of Theorem 1, whenever ς = σ(−1) then Gσ,ς is a
positive t-conorm.

Theorem 3. Let G : [0, 1]2 → [0, 1] be a grouping function having 0 as neutral ele-
ment. Then, if G is additively generated by a pair (σ, ς), with σ : [0, 1] → [0,∞] and
ς : [0,∞]→ [0, 1] satisfying the conditions of Theorem 1, then G is associative.

Proof. If 0 is the neutral element of G, then, since σ(0) = 0, one has that:

y = G(0, y) = ς(σ(0) + σ(y)) = ς(0 + σ(y)) = ς(σ(y)). (7)

Since σ(x) + σ(y) ∈ Ran(σ), for x, y ∈ [0, 1], then there exists w ∈ [0, 1] such that

σ(w) = σ(x) + σ(y). (8)

It follows that

G(x,G(y, z)) = ς(σ(x) + σ(ς(σ(y) + σ(z)))) by Eq. (4)

= ς(σ(x) + σ(ς(σ(w)))) = ς(σ(x) + σ(w)) by Eqs. (8), (7)

= ς(σ(x) + σ(y) + σ(z)) = by Eq. (8)

= ς(σ(u) + σ(z)) = ς(σ(ς(σ(u))) + σ(z)) by Eqs. (8), (7)

= ς(σ(ς(σ(x) + σ(y))) + σ(z)) = G(G(x, y), z) by Eqs. (8), (4). ,-

Corollary 5. Let G : [0, 1]2 → [0, 1] be a grouping function additively generated by a
pair (σ, ς). G is a t-conorm if and only if 0 is a neutral element of G.

Notice that whenever S is a positive continuous t-conorm (that is, a grouping func-
tion) that is additively generated by a function s : [0, 1]→ [0,∞] [6], then it is also ad-
ditively generated by a pair (σ, ς) in the sense of Theorem 1, with σ = s and ς = s(−1),
and vice-versa, where s(−1) is the pseudo-inverse of s. We have also the next results.
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Proposition 5. A grouping function G : [0, 1]2 → [0, 1] is additively generated if and
only if the function fG : [0, 1]→ [0, 1] given by fG(x) = G(x, 0) is strictly increasing,
and f−1

G ◦G : [0, 1]2 → [0, 1] is a positive t-conorm.

Proposition 6. G : [0, 1]2 → [0, 1] is an additively generated grouping function if and
only if there are two strict negations N1, N2 : [0, 1] → [0, 1] such that G(x, y) =
N2(Sp(N1(x), N1(y))), where Sp : [0, 1]2 → [0, 1] is the probabilistic sum given by
Sp(x, y) = x+ y − xy.

5 Conclusion

In this paper, we have introduced the notion of additive generator pair of grouping
functions, presenting results and examples, so giving some directions in order to reduce
the computational complexity of algorithms that apply grouping functions, and to obtain
a more systematic way for their choice in practical applications.

Future theoretical work is concerned with the study of the influence of important
properties (e.g., the migrativity, homogeneity and idempotency properties) in additively
generated grouping functions and their respective additive generator pairs. We also in-
tend to extend the concepts of additive generator pairs of overlap and grouping functions
to the interval-valued setting, following the approach adopted in [8,9].

Future applied work is related to the application in the context of hybrid BDI-fuzzy2

agent models, where the evaluation of social values and exchanges are of a qualitative
and subjective nature [18,19,20]. Overlap and grouping functions will be used for deal-
ing with indifference and incomparability when reasoning on the agent’s fuzzy belief
base. Observe that the computational complexity in this kind of problems is crucial
since, in general, we have a large belief base.
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3. Bustince, H., Pagola, M., Mesiar, R., Hüllermeier, E., Herrera, F.: Grouping, overlaps, and
generalized bientropic functions for fuzzy modeling of pairwise comparisons. IEEE Trans-
actions on Fuzzy Systems 20(3), 405–415 (2012)

4. Bustince, H., Fernandez, J., Mesiar, R., Montero, J., Orduna, R.: Overlap functions. Nonlin-
ear Analysis 72(3-4), 1488–1499 (2010)

2 BDI stands for “Beliefs, Desires, Intentions”, a particular cognitive agent model [17].



On Additive Generators of Grouping Functions 261

5. Jurio, A., Bustince, H., Pagola, M., Pradera, A., Yager, R.: Some properties of overlap and
grouping functions and their application to image thresholding. Fuzzy Sets and Systems 229,
69–90 (2013)

6. Vicenı́k, P.: Additive generators of associative functions. Fuzzy Sets and Systems 153(2),
137–160 (2005)

7. Mayor, G., Trillas, E.: On the representation of some aggregation functions. In: Proceedings
of the XVI International Symposium on Multiple-Valued Logic (ISMVL 1986), Blacksburg,
pp. 110–114 (1986)

8. Dimuro, G.P., Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S.: Interval additive generators
of interval t-norms and interval t-conorms. Information Sciences 181(18), 3898–3916 (2011)

9. Dimuro, G.P., Bedregal, B.R.C., Reiser, R.H.S., Santiago, R.H.N.: Interval additive genera-
tors of interval t-norms. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI),
vol. 5110, pp. 123–135. Springer, Heidelberg (2008)

10. Bedregal, B.C., Dimuro, G.P., Santiago, R.H.N., Reiser, R.H.S.: On interval fuzzy S-
implications. Information Sciences 180(8), 1373–1389 (2010)

11. Dimuro, G.: On interval fuzzy numbers. In: 2011 Workshop-School on Theoretical Computer
Science, WEIT 2011, pp. 3–8. IEEE, Los Alamitos (2011)

12. Reiser, R.H.S., Dimuro, G.P., Bedregal, B.C., Santiago, R.H.N.: Interval valued QL-
implications. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp.
307–321. Springer, Heidelberg (2007)

13. Bedregal, B.C., Dimuro, G.P., Reiser, R.H.S.: An approach to interval-valued R-implications
and automorphisms. In: Carvalho, J.P., Dubois, D., Kaymak, U., da Costa Sousa, J.M. (eds.)
Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and
2009 European Society of Fuzzy Logic and Technology Conference, IFSA/EUSFLAT, pp.
1–6 (2009)
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Abstract. After introducing fusion functions, the directional mono-
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1 Introduction

Aggregation of data into one representative value is a basic tool in many scientific
domains such as multi-criteria decision support, fuzzy logic, economy, sociology,
etc. The common framework for inputs and outputs of aggregation functions is
usually the unit interval [0, 1]. A function A : [0, 1]n → [0, 1] is said to be an
aggregation function if it is increasing, i.e., A(x1, . . . , xn) ≤ A(y1, . . . , yn) when-
ever (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n, xi ≤ yi, i = 1, . . . , n, and if it satisfies
the boundary conditions A(0, . . . , 0) = 0, A(1, . . . , 1) = 0. However, increasing
monotonocity that is one of the basic properties of aggregation functions, is vi-
olated in the case of several other fusion techniques frequently applied in real
data processing, e.g., implications which are characterized by hybrid monotonic-
ity [1,7], or the mode function [2,12].

The aim of this paper is to generalize the theory of aggregation functions [6,2].
Note, that the unit interval can be replaced by any interval [a, b] � [−∞,∞],
but in this paper, we will only deal with the unit interval [0, 1], both for inputs
and outputs of generalized aggregation functions.

The paper is organized as follows: In Section 2, fusion functions on the interval
[0, 1] and their directional monotonicity are introduced and exemplified. Section

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 262–268, 2014.
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3 is devoted to the study of some properties of r-monotone fusion functions. In
Section 4, for some distinguished fusion functions we investigate the sets of all
vectors r with respect to which they are r-increasing. Finally, some concluding
remarks are added.

2 Fusion Functions

Let I be the unit interval [0, 1] and In = {x = (x1, . . . , xn) | xi ∈ I, i = 1, . . . , n}.

Definition 2.1. Let n ∈ N, n ≥ 2. A fusion function is an arbitrary function
F : In → I.

Definition 2.2. Let r be a real vector, r �= 0. A fusion function F : In → I
is r-increasing (r-decreasing) if for all points x ∈ In and all c > 0 such that
x+ cr ∈ In, it holds

F (x+ cr) ≥ F (x) (F (x+ cr) ≤ F (x)). (1)

Note, that the common name for r-increasing and r-decreasing fusion func-
tions is “r-monotone” fusion functions. From now on, the set of all real n-
dimensional vectors r �= 0 will be denoted by Vn. These vectors will be called
directions, and monotonicity introduced in Definition 2.2 will be called the di-
rectional monotonicity of fusion functions.

Example 2.1. Consider the Gödel implication IG : I2 → I, given by

IG(x, y) =

{
1 if x ≤ y,
y otherwise.

It is clear that IG is a (1, 1)-increasing fusion function. It is also (0, 1)-increasing,
but it is not (1, 0)-increasing (in fact it is (1, 0)-decreasing).

However, the Reichenbach implication IR : I2 → I, IR(x, y) = 1 − x + xy, is
neither (1, 1)-increasing nor (1, 1)-decreasing. If we consider r = (1, 1) and take,
for example, x = (0.1, 0.2) and c = 0.2, then x + cr = (0.3, 0.4), and we have
IR(0.3, 0.4) = 0.82 and IR(0.1, 0.2) = 0.92, i.e., IR is not (1, 1)-increasing. If
we consider x = (0.4, 0.5) and c = 0.2, then x + cr = (0.6, 0.7) and because
IR(0.6, 0.7) = 0.82 > IR(0.4, 0.5) = 0.8, IR is not (1, 1)-decreasing.

Example 2.2. Consider the function F : I2 → I, F (x, y) = x− (max{0, x− y})2.
F is a continuous fusion function. Though F (0, 0) = 0 and F (1, 1) = 1, F is not
an aggregation function. However, this function can be used in decision making
when a decision is made by a very skilled person (evaluation x) and some less
skilled person (evaluation y). F is, e.g., (1, 1)-increasing, (0, 1)-increasing, but it
is neither (1, 0)-increasing nor (1, 0)-decreasing.

Example 2.3. The weighted Lehmer mean Lλ : I
2 → I, Lλ(x, y) =

λx2+(1−λ)y2

λx+(1−λ)y

(with convention 0
0 = 0), where λ ∈]0, 1[, is (1− λ, λ)-increasing.
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For each i ∈ {1, . . . , n}, let ei = (ε1, . . . , εn) be the vector with εi = 1 and
εj = 0 for each j �= i. Functions which are ei-increasing (ei-decreasing) for each
i = 1, . . . , n, are in fact functions known as increasing (decreasing) functions.
So, aggregation functions A : In → I are fusion functions which are ei-increasing
for each i = 1, . . . , n, and satisfy the boundary conditions A(0, . . . , 0) = 0 and
A(1, . . . , 1) = 1, compare, e.g., [2,6]. Similarly, implications I : I2 → I are e1-
decreasing and e2-increasing fusion functions, satisfying the boundary conditions
I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

3 Some Properties of r-monotone Fusion Functions

Let us summarize several important properties of r-monotone fusion functions.

Proposition 3.1. A fusion function F : In → I is r-decreasing if and only if F
is (−r)-increasing.

Theorem 3.1. Let a fusion function F : In → I have the first-order partial
derivatives with respect to each variable. If F is r-increasing and s-increasing
for some vectors r and s in Vn, then F is u increasing for each u = ar + bs,
where a ≥ 0, b ≥ 0, a+ b > 0.

Proposition 3.2. Let F : In → I be an r-increasing fusion function. If ϕ : I→
I is an increasing (decreasing) function then G = ϕ ◦ F is an r-increasing
(decreasing) fusion function.

Proposition 3.3. Let F1, . . . , Fk : I
n → I be r-increasing fusion functions and

let F : Ik → I be an increasing function. Then the function G = F (F1, . . . , Fk)
is an r-increasing fusion function.

Remark 3.1. Note, that in the previous proposition, the r-increasing monotonic-
ity of F is not sufficient for the r-increasing monotonicity ofG. For example, con-
sider the functions F, F1, F2 : [0, 1]

2 → [0, 1], given by F1(x, y) = x−(max{0, x−
y})2, see Example 2.2, F2(x, y) = IL(x, y), where IL is the �Lukasiewicz implica-

tion given by IL(x, y) = min{1, 1−x+y}, and F (x, y) = x2+y2

x+y , i.e., the Lehmer

mean for λ = 1/2, see Example 2.3. All these functions are (1, 1)-increasing. Put

G = F (F1, F2). As G(x, x) = x2+1
x+1 , we get G(0, 0) = 1, G(1/2, 1/2) = 5/6, and

G(1, 1) = 1, which shows that G is not (1, 1)-increasing.

Proposition 3.4. Let F : In → I be an increasing fusion function and fi : [0, 1]
→ [0, 1], i = 1, . . . , n, be monotone functions. If a function G : In → I is defined
by

G(x1, . . . , xn) = F (f1(x1), . . . , fn(xn)) ,

then G is r-increasing for each vector r = (r1, . . . , rn) with the property:

∀ i ∈ {1, . . . , n}, ri ≥ 0 if fi is increasing and ri ≤ 0 if fi is decreasing.
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Proposition 3.5. Let F : In → I be an r-increasing fusion function and let
functions g and fi, i = 1, . . . , n, be in {idI, 1− idI}. If a function H : In → I is
defined by

H(x1, . . . , xn) = g (F (f1(x1), . . . , fn(xn))) ,

then H is s-increasing where

s = (−1)g(0)
(
(−1)f1(0)r1, . . . , (−1)fn(0)rn

)
.

For a fusion function F : [0, 1]n → [0, 1], let us define its dual as the fusion
function F d : [0, 1]n → [0, 1], F d(x1, . . . , xn) = 1− F (1 − x1, . . . , 1− xn).

Corollary 3.1. If a fusion function F : In → I is r-increasing then also its dual
F d is r-increasing.

Corollary 3.2. Functions F and F d are directionally increasing with respect to
the same vectors.

4 D↑ -sets of Fusion Functions

For a fusion function F : In → I, let D↑(F ) be a set of all real vectors r =
(r1, . . . , rn) ∈ Vn for which F is r-increasing. Clearly, for each aggregation func-
tion A : In → I, D↑(A) contains the set V +

n = {r ∈ Vn | r1 ≥ 0, . . . , rn ≥ 0}. Sim-
ilarly, for each implication : I2 → I, D↑(I) 	 {r = (r1, r2) ∈ V2 | r1 ≤ 0, r2 ≥ 0}.
Note, that by Corollary 3.2, for each fusion function F we haveD↑(F ) = D↑(F d).

Example 4.1. Consider the Lukasiewicz t-norm TL : I
2 → I, TL(x, y) =

max{0, x+ y− 1}. It holds D↑(TL) = {r = (r1, r2) | r2 ≥ −r1}. So, D↑(TL) is a
superset of the set V +

2 . Moreover, for the �Lukasiewicz t-conorm SL, as SL = T d
D,

we have D↑(SL) = D↑(TL), see Corollary 3.2.
For the Lukasiewicz implication IL : I2 → I, IL(x, y) = min{1, 1− x+ y}, we

have D↑(IL) = {r = (r1, r2) | r2 ≥ r1}. The result follows from the fact that
IL(x, y) = 1− TL(x, 1− y), see Proposition 3.5.

From Example 2.3, it follows that the Lehmer mean L1/2 is (1, 1)-increasing
(i.e., weakly monotone in terminology used by Wilkin and Beliakov in [12]). Even
a stronger result is valid.

Proposition 4.1. Let L1/2 : I
2 → I be the Lehmer mean given by

L1/2(x, y) =
x2 + y2

x+ y
.

The only vectors with respect to which the function L1/2 is r-increasing are
vectors r = α(1, 1) with α > 0.

Remark 4.1. It can be shown that, in general, for the weighted Lehmer mean
Lλ, λ ∈]0, 1[, see Example 2.3, it holds D↑(Lλ) = {α(1− λ, λ) | α > 0}.
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In several applications, linear/piece-wise linear fusion functions are consid-
ered. Recall that a continuous fusion function F is piece-wise linear if and
only if it can be obtained by the patchwork technique with linear functions
Bj , j = 1, . . . , k.

Lemma 1. The next claims are equivalent:

(i) A linear function F : In → I is r-increasing.
(i) For a fixed connected set E ⊆ In with positive volume, F |E is r-increasing.

Lemma 2. If F : In → I is a continuous piece-wise linear fusion function de-

termined by linear functions B1, . . . , Bk, then D↑(F ) =
k⋂

j=1

D↑(Bj).

In the next proposition, D↑-sets of linear fusion functions are determined.

Proposition 4.2. Let a fusion function F : In → I be linear, i.e., F (x) = b +
n∑

i=1

aixi. Then

D↑(F ) = {(r1, . . . , rn) ∈ Vn |
n∑

i=1

airi ≥ 0}.

Corollary 4.1. Let w = (w1, . . . , wn) be a weighting vector, i.e., for each i ∈
{1, . . . , n}, wi ≥ 0 and

n∑
i=1

wi = 1. Let Ww : In → I be the weighted arithmetic

mean, Ww(x1, . . . , xn) =
n∑

i=1

wixi. Then

D↑(Ww) =

{
(r1, . . . , rn) ∈ Vn |

n∑
i=1

wiri ≥ 0

}
.

OWA operators [13] and Choquet integrals [3,5] are also special piece-wise
linear fusion functions. From Proposition 4.2 and Lemma 2 one can deduce the
following consequences for OWA operators and Choquet integrals.

Corollary 4.2. Let Aw : In → I be an OWA operator corresponding to a weight-
ing vector w. Then

D↑(Aw) =
⋂
σ∈Ω

D↑ (Wσ(w)

)
=
⋂
σ∈Ω

{
r = (r1, . . . , rn) ∈ Vn |

n∑
i=1

wσ(i)ri ≥ 0

}
, (2)

where Ω is the set of all permutations σ : {1, . . . , n} → {1, . . . , n} and σ(w) =
(wσ(1), . . . , wσ(n)).
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Note, that (2) can also be written as

D↑(Aw) = {r = (r1, . . . , rn) ∈ Vn | ∀σ ∈ Ω :
n∑

i=1

wσ(i)ri ≥ 0}.

Corollary 4.3. Let Chμ be the Choquet integral corresponding to a capacity μ.
Then

D↑(Chμ) =
⋂
σ∈Ω

D↑ (Wσ(μ)

)
=
⋂
σ∈Ω

{
r = (r1, . . . , rn) ∈ Vn |

n∑
i=1

wμ
σ,iri ≥ 0

}
, (3)

where wμ
σ,i = μ({σ(i), . . . , σ(n)})−μ({σ(i+1), . . . , σ(n)}) with convention wμ

σ,n =
μ({σ(n)}).

Again, (3) can be written as

D↑(Chμ) =

{
r = (r1, . . . , rn) ∈ Vn | ∀σ ∈ Ω :

n∑
i=1

wμ
σ,iri ≥ 0

}
.

Example 4.2. Consider the OWA operator A : I2 → I, A(x, y) = 1
3 min{x, y} +

2
3 max{x, y}. Then

D↑(A) = D↑ (W(1/3,2/3)

)
∩ D↑ (W(2/3,1/3)

)
= {(r1, r2) ∈ V2 | r1 + 2r2 ≥ 0, 2r1 + r2 ≥ 0},

see Fig. 4.1.

Fig. 4.1. Graphical illustration of the set D↑(A) for the OWA operator from Example
4.2

Note, that the Sugeno integral [10], Shilkret integral [9], hierarchical Choquet
integral [4,8], twofold integral [11] are also continuous piece-wise linear functions,
which allow to determine the set of all directions in which they are increasing.
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5 Concluding Remarks

We have introduced and discussed fusion functions on the unit interval I and
their directional monotonicity. This property is related to the directional deriva-
tive (if it exists). We have only considered the unit interval I for input and
output values. All introduced notions can easily be rewritten for any subinterval
of the extended real line. However, not all of our results have the same form
when open or unbounded intervals are considered. The aim of this contribution
is to open the theory of fusion functions and directional monotonicity. Observe
that our results generalize the results of Wilkin and Beliakov [12] concerning
so-called weak monotonicity.
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Abstract. This paper proposes a qualitative approach to solve multi-
criteria decision making problems under possibilistic uncertainty. De-
pending on the decision maker attitude with respect to uncertainty (i.e.
optimistic or pessimistic) and on her attitude with respect to criteria (i.e.
conjunctive or disjunctive), four ex-ante and four ex-post decision rules
are defined and investigated. In particular, their coherence w.r.t. the
principle of monotonicity, that allows Dynamic Programming is studied.

1 Introduction

A popular criterion to compare decisions under risk is the expected utility model
(EU ) axiomatized by Von Neumann and Morgenstern [9]. This model relies on
a probabilistic representation of uncertainty: an elementary decision is repre-
sented by a probabilistic lottery over the possible outcomes. The preferences of
the decision maker are supposed to be captured by a utility function assigning
a numerical value to each consequence. The evaluation of a lottery is then per-
formed through the computation of its expected utility (the greater, the better).
When several independent criteria are to be taken into account, the utility func-
tion is the result of the aggregation of several utility functions ui (one for each
criterion). The expected utility of the additive aggregation can then be used
to evaluate the lottery, and it is easy to show that it is equal to the additive
aggregation of the mono-criterion expected utilities.

These approaches presuppose that both numerical probability and additive
utilities are available. When the information about uncertainty cannot be quan-
tified in a probabilistic way the topic of possibilistic decision theory is often
a natural one to consider. Giving up the probabilistic quantification of uncer-
tainty yields to give up the EU criterion as well. The development of possibilistic
decision theory has lead to the proposition and the characterization of (mono-
criterion) possibilistic counterparts of expected utility: Dubois and Prade [3]
propose two criteria based on possibility theory, an optimistic and a pessimistic
one, whose definitions only require a finite ordinal scale for evaluating both util-
ity and plausibility. Likewise, qualitative approaches of multi-criteria decision

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 269–279, 2014.
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making have been advocated, leading to the use of Sugeno Integrals (see e.g.
[1,8]) and especially weighted maximum and weighted minimum [2].

In this paper, we consider possibilistic decision problems in the presence of
multiple criteria. The difficulty is here to make a double aggregation. Several
attitudes are possible: shall we consider the pessimistic/optimistic utility value
of a weighted min (or max)? or shall we rather aggregate with a weighted min (or
max) the individual pessimistic (or optimistic) utilities provided by the criteria?
In short, shall we proceed in an ex-ante or ex-post way?

The remainder of the paper is organized as follows: Section 2 presents a
refresher on possibilistic decision making under uncertainty using Dubois and
Prade’s pessimistic and optimistic utilities, on one hand, and on the qualita-
tive approaches of MCDM (mainly, weighted min and weighted max), on the
other hand. Section 3 develops our proposition, defining four ex-ante and four
ex-post aggregations, and shows that when the decision maker attitude is ho-
mogeneous, i.e. either fully min-oriented or fully max-oriented, the ex-ante and
the ex-post possibilistic aggregations provide the same result. Section 4 studies
the monotonicity of these decision rules, in order to determine the applicability
of Dynamic Programming to sequential decision making problems.1

2 Background on One-Stage Decision Making in a
Possibilistic Framework

2.1 Decision Making under Possibilistic Uncertainty (U+ and U−)

Following Dubois and Prade’s possibilistic approach of decision making under
qualitative uncertainty, a one stage decision can be seen as a possibility distri-
bution over a finite set of outcomes also called a (simple) possibilistic lottery
[3]. Since we consider a finite setting, we shall write L = 〈λ1/x1, . . . , λn/xn〉 s.t.
λi = πf (xi) is the possibility that decision f leads to outcome xi; this possi-
bility degree can also be denoted by L[xi]. We denote L the set of all simple
possibilistic lotteries.

In this framework, a decision problem is thus fully specified by a set Δ of
possibilistic lotteries on a set of consequences X and a utility function u : X �→
[0, 1]. Under the assumption that the utility scale and the possibility scale are
commensurate and purely ordinal, Dubois and Prade have proposed the following
qualitative degrees for evaluating any simple lottery L = 〈λ1/x1, . . . , λn/xn〉:

Optimistic utility (U+) [3,15,16]: U+(L) = max
xi∈X

min(λi, u(xi)) (1)

Pessimistic utility (U−) [3,14]: U−(L) = min
xi∈X

max((1 − λi), u(xi))

(2)

1 Proofs relative to this paper are omitted for lack of space; they are available on
ftp://ftp.irit.fr/IRIT/ADRIA/PapersFargier/ipmu14.pdf
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The value U−(L) is high only if L gives good consequences in every “rather
plausible” state. This criterion generalizes the Wald criterion, which estimates
the utility of an act by its worst possible consequence. U−(L) is thus “pes-
simistic” or “cautious”. On the other hand, U+(L) is a mild version of the
maximax criterion which is “optimistic”, or “adventurous”: act L is good as
soon as it is totally plausible that it gives a good consequence.

2.2 Multi-criteria Decision Making (MCDM) Using Agg+ and
Agg−

The previous setting assumes a clear ranking of X by a single preference cri-
terion, hence the use of a single utility function u. When several criteria, say
a set C = {c1...cp} of p criteria, have to be taken into account, u shall be
replaced by a vector u = 〈u1, . . . , up〉 of utility functions uj : X �→ [0, 1]
and the global (qualitative) utility of each consequence x ∈ X can be evalu-
ated either in a conjunctive, cautious, way according to the Wald aggregation
(Agg−(x) = min

cj∈C
uj(x)), or in an disjunctive way according to its max-oriented

counterpart (Agg+(x) = max
cj∈C

uj(x)). When the criteria are not equally impor-

tant, a weight wj ∈ [0, 1] can be associated to each cj . Hence the following
definitions relative to multi-criteria utilities [2]:

Agg+(x) = max
cj∈C

min(wj , uj(x)). (3)

Agg−(x) = min
cj∈C

max((1 − wj), uj(x)). (4)

These utilities are particular cases of the Sugeno integral [1,8,13]:

Aggγ,u(L) = max
λ∈[0,1]

min(λ, γ(Fλ)) (5)

where Fλ = {cj ∈ C, uj(x) ≥ λ}, γ is a monotonic set-function that reflects the
importance of criteria’s set. Agg+ is recovered when γ is the possibility measure
based on the weight distribution (γ(E) = max

cj∈E
wj), and Agg− is recovered when

γ corresponds to necessity measure (γ(E) = min
cj /∈E

(1− wj)).

3 Multi-criteria Decision Making under Possibilistic
Uncertainty

Let us now study possibilistic decision making in a multi-criteria context. Given
a set X of consequences, a set C of independent criteria we define a multi-criteria
decision problem under possibilistic uncertainty as triplet 〈Δ,w,u〉2 where:

2 Classical problems of decision under possibilistic uncertainty are recovered when
|C| = 1 ; Classical MCDM problems are recovered when all the lotteries in Δ asso-
ciate possibility 1 to some xi and possibility 0 to all the other elements of X: Δ is
identified to X, i.e. is a set of “alternatives” for the MCDM decision problem.
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– Δ is a set of possibilistic lotteries;
– w ∈ [0, 1]p is a weighting vector: wj denotes the weight of criterion cj ;
– u = 〈u1, . . . , up〉 is a vector of p utility functions on X : uj(xi) ∈ [0, 1] is the

utility of xi according to criterion cj ;

Our aim consists in comparing lotteries according to decision maker’s prefer-
ences relative to their different consequences (captured by the utility functions)
and the importance of the criteria (captured by the weighting vector). To do
this, we can proceed in two different ways namely ex-ante or ex-post :

– The ex-ante aggregation consists in first determining the aggregated utilities
(Agg+ or Agg−) relative to each possible consequence xi of L and then
combine them with the possibility degrees.

– The ex-post aggregation consists in computing the (optimistic or pessimistic)
utilities relative to each criterion cj , and then perform the aggregation (Agg+

or Agg−) using the criteria’s weights.

We borrow this terminology from economics and social welfare economics,
were agents play the role played by criteria in the present context (see e.g.
[7,10]). Setting the problem in a probabilistic context, these works have shown
that the two approaches can lead to different results (this is the so-called “timing
effect”) and that their coincide iff the collective utility is affine. As a matter of
fact, it is easy to show that the expected utility of the weighted sum is the sum
of the expected utilities.

Let us go back to possibilistic framework. The decision maker’s attitude with
respect to uncertainty can be either optimistic (U+) or pessimistic (U−) and her
attitude with respect to criteria can be either conjunctive (Agg−) or disjunctive
(Agg+), hence the definition of four approaches of MCDM under uncertainty,
namely U++, U+−, U−+ and U−−; the first (resp. the second) indices denoting
the attitude of the decision maker w.r.t. uncertainty (resp. criteria).

Each of these utilities can be computed either ex-ante or ex-post. Hence the
definition of eight utilities:

Definition 1. Given a possibilistic lottery L on X, a set of criteria C defining
a vector of utility functions u and weighting vector w, let:

U++
ante(L) = max

xi∈X
min(L[xi],max

cj∈C
min(uj(xi), wj)). (6)

U−−
ante(L) = min

xi∈X
max((1 − L[xi]), min

cj∈C
max(uj(xi), (1− wj))). (7)

U+−
ante(L) = max

xi∈X
min(L[xi], min

cj∈C
max(uj(xi), (1− wj))). (8)

U−+
ante(L) = min

xi∈X
max((1 − L[xi]),max

cj∈C
min(uj(xi), wj)). (9)

U++
post(L) = max

cj∈C
min(wj , max

xi∈X
min(uj(xi), L[xi])). (10)
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U−−
post(L) = min

cj∈C
max((1− wj), min

xi∈X
max(uj(xi), (1 − L[xi]))). (11)

U+−
post(L) = min

cj∈C
max((1− wj),max

xi∈X
min(uj(xi), L[xi])). (12)

U−+
post(L) = max

cj∈C
min(wj , min

xi∈X
max(uj(xi), (1 − L[xi]))). (13)

Interestingly, the optimistic aggregations are related to their pessimistic coun-
terparts by duality as stated by the following proposition.

Proposition 1. Let P = 〈Δ,w,u〉 be a qualitative decision problem, let P τ =
〈Δ,w,uτ 〉 be the inverse problem, i.e. the problem such that for any xi ∈ X, cj ∈
C, uτ

j (xi) = 1− uj(xi). Then, for any L ∈ Δ:

U++
ante(L) = 1− U τ−−

ante (L) U++
post(L) = 1− U τ−−

post (L)
U−−
ante(L) = 1− U τ++

ante (L) U−−
post(L) = 1− U τ++

post (L)
U+−
ante(L) = 1− U τ−+

ante (L) U+−
post(L) = 1− U τ−+

post (L)
U−+
ante(L) = 1− U τ+−

ante (L) U−+
post(L) = 1− U τ+−

post (L)

As previously said the ex-ante and the ex-post approaches coincide in the prob-
abilistic case. Likewise, the following Proposition 2 shows that when the deci-
sion maker attitude is homogeneous, i.e. either fully min-oriented or fully max-
oriented, the ex-ante and the ex-post possibilistic aggregations provide the same
result.

Proposition 2. For any L ∈ L, U++
ante(L) = U++

post(L) and U−−
ante(L) = U−−

post(L).

Hence, for any multi-criteria decision problem under possibilistic uncertainty,
U++
ante (resp. U−−

ante) is equal to U++
post (resp. U

−−
post). Such an equivalence between

the ex-ante and ex-post does not hold for U+− nor for U−+, as shown by the
following counter-example.

Counter-example 1. Consider a set C of two equally important criteria c1
and c2, and a lottery L (cf. Figure 1) leading to two equi-possible consequences
x1 and x2 such that x1 is good for c1 and bad for c2, and x2 is bad for c1 and
good for c2; i.e. L[x1] = L[x2] = 1, w1 = w2 = 1, u1(x1) = u2(x2) = 1 and
u2(x1) = u1(x2) = 0.

1 

1 

x1 , u(x1) = <1,0> 

L 
x2, u(x2) = <1,0> 

1 L’ x3, u(x3) = <0.5,0.5> 

Fig. 1. Lotteries L and L′ relative to counter-example 1

We can check that U+−
ante(L) = 0 �= U+−

post(L) = 1:
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U+−
ante(L) = max ( min(L[x1],min(max(u1(x1), (1− w1)),max(u2(x1), (1−w2)))),

min(L[x2],min(max(u1(x2), (1− w1)),max(u2(x2), (1−w2))))).
= max ( min(1,min(max(1, (1− 1)),max(0, (1− 1)))) ,

min(1,min(max(0, (1− 1)),max(1, (1− 1)))))
= 0.

U+−
post(L) = min ( max((1− w1),max(min(u1(x1), L[x1]),min(u1(x2), L[x2]))),

max((1− w2),max(min(u2(x1), L[x1]),min(u2(x2), L[x2])))).
= min ( max((1− 1),max(min(1, 1),min(0, 1))) ,

max((1− 1),max(min(0, 1),min(1, 1))))
= 1 .

The ex-ante and ex-post approaches may lead to different rankings of lotteries.
Consider for instance, a lottery L′ leading to the consequence x3 for sure, i.e.
L′[x3] = 1 and L′[xi] = 0, ∀i �= 3 (such a lottery is called a constant lottery),
with u1(x3) = u2(x3) = 0.5 . It is easy to check that U+−

ante(L
′) = U+−

post(L
′) = 0.5

i.e. U+−
ante(L) < U+−

ante(L
′) while U+−

post(L) > U+−
post(L

′).
Using the same lotteries L and L′, we can show that:

U−+
ante(L) = 1 �= U−+

post(L) = 0 and that U−+
ante(L

′) = U−+
post(L

′) = 0.5; then

U−+
post(L

′) > U−+
post(L) while U−+

ante(L
′) < U−+

ante(L): like U+−, U−+ are subject to
the timing effect.

In summary, U−+ and U+− suffer from the timing effect, but U−− and U++ do
not.

4 Multi-criteria Sequential Decision Making under
Possibilistic Uncertainty

Possibilistic sequential decision making relies on possibilistic compound lotter-
ies [3], that is a possibility distributions over (simple or compound) lotteries.
Compound lotteries indeed allow the representation of decision policies or “strate-
gies”, that associate a decision to each decision point: the execution of the deci-
sion may lead to several more or less possible situations, where new decisions are
to be made, etc. For instance, in a two stages decision problem, a first decision is
made and executed; then, depending on the observed situation, a new, one stage,
decision is to be made, that lead to the final consequences. The decisions at the
final stage are simple lotteries, and the decision made at the first stage branches
on each of them. The global strategy thus defines to a compound lottery .

To evaluate a strategy by U+, U− or, in the case of MCDM under uncer-
tainty by any of the eight aggregated utility proposed in Section 3, the idea
is to “reduce” its compound lottery into an equivalent simple one. Consider
a compound lottery L = 〈λ1/L1, . . . , λm/Lm〉; the possibility of getting con-
sequence xi ∈ X from one of its sub lotteries Lk is πk,i = min(λk, Lk[xi])
(for the shake of simplicity, suppose that L′

k are simple lotteries; the princi-
ple trivially extends to the general case). Hence, the possibility of getting xi

from L is the max, over all the Lk’s, of πk,i. Thus, [3] have proposed to re-
duce a compound lottery 〈λ1/L1, . . . , λm/Lm〉 into a simple lottery, denoted by
Reduction(〈λ1/L1, . . . , λm/Lm〉), that is considered as equivalent to the com-
pound one: Reduction(〈λ1/L1, . . . , λm/Lk〉) is the simple lottery that associate
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(a) (b)

1

1 x1

x2

x3

x4

0.8

0.7

1

0.6

1

0.7

0.8

x1

x2

x3

x4

L2L1

Fig. 2. A compound lottery L1 (a) and its reduction L2 (b)

to each xi the possibility degree maxk=1..m min(λk, Lk[xi]) (with L[xi] = 0 when
none of the Lk’s give a positive possibility degree to consequence xi). See Figure
2 for an example.

From a practical point of view, sequential decision problems are generally
stated through the use of compact representation formalisms, such as possibilis-
tic decision trees [4], possibilistic influence diagrams [5,6] or possibilistic Markov
decision processes [11,12]. The set of potential strategies to compare,Δ, is gener-
ally exponential w.r.t. the input size. So, an explicit evaluation of each strategy
in Δ is not realistic. Such problems can nevertheless be solved efficiently, without
an explicit evaluation of the strategies, by Dynamic Programming algorithms as
soon as the decision rule leads to transitive preferences and satisfies the principle
of weak monotonicity. Formally, for any decision rule O (e.g. U+, U− or even any
of the decision rules proposed in the previous Section) over possibilistic lotteries,
≥O is said to be weakly monotonic iff whatever L, L′ and L′′ and whatever (α,β)
such that max(α, β) = 1:

L $O L′ ⇒ 〈α/L, β/L′′〉 $O 〈α/L′, β/L′′〉. (14)

Such property ensures that each sub-strategy of an optimal strategy is optimal in
its sub-problem. This allows Dynamic Programming algorithms to build optimal
strategies in an incremental way (e.g. in decision tree, from the last decision to
the root of the tree).

[5,4] have shown that U+ and U− are monotonic. Let us now study whether
it is also the case for the ex-ante and ex-post rules proposed in the previous
Section. The ex-ante approaches are the easiest to handle: once the vectors of
utilities have been aggregated according to Agg− (resp. Agg+), these approaches
collapse to the classical U+ and U− approaches. It is then easy to show that:

Proposition 3. U++
ante, U

−−
ante, U

+−
ante and U−+

ante satisfy the weak monotonicity.

Concerning U++
post and U−−

post, recall that the full optimistic and full pessimistic ex-
post utilities are equivalent to their ex-ante counterparts thanks to Proposition
2. This allows us to show that:
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Proposition 4. U−−
post and U++

post satisfy the weak monotonicity.

It follows from Propositions 3 and 4 that when the decision is based either on an
ex-ante approach, or on U++

post or U
−−
post, the algorithms proposed by Sabbadin et

al. [12,5] can be used on multi-criteria possibilistic decision trees and influence
diagrams after their transformation into single-criterion problems: it is enough
to aggregate the vectors of utilities leading to the consequences x into single
utilities using Agg+ (for U++

ante, U
−+
ante, U

++
post) or Agg− (for U−−

ante, U
+−
ante, U

−−
post)

to get an equivalent single criterion problem where the criterion to optimize is
simply U+ (for U++

ante, U
+−
ante, U

++
post) or U

− (for U−−
ante, U

−+
ante, U

−−
post).

Such approach cannot be applied when optimizing U−+
post or U+−

post. First be-

cause U+−
post(L) �= U+−

ante(L) and U−+
post(L) �= U+−

ante(L), i.e. the reduction of the
problem to the optimization w.r.t. U+ (resp. U−) of a single criterion prob-
lem obtained by aggregating the utilities with Agg− (resp. Agg+) can lead to
a wrong result. Worst, it is not even possible to apply Dynamic Programming,
since U−+

post and U+−
post do not satisfy the weak monotonicity property, as shown

by the following counter-example:

Counter-example 2. Let X = {x1, x2, x3} and consider two equally impor-
tant criteria c1 and c2 (w1 = w2 = 1) with : u1(x1) = 1, u1(x2) = 0.8,
u1(x3) = 0.5; u2(x1) = 0.6, u2(x2) = 0.8, u2(x3) = 0.8. Consider the lotter-
ies L = 〈1/x1, 0/x2, 0/x3〉, L′ = 〈0/x1, 1/x2, 0/x3〉 and L′′ = 〈0/x1, 0/x2, 1/x3〉:
L gives consequence x1 for sure, L′ gives consequence x2 for sure and L′′ gives
consequence x3 for sure. It holds that:
U−+
post(L) = Agg−(x1) = max(1, 0.6) = 1

U−+
post(L

′) = Agg−(x2) = max(0.8, 0.8) = 0.8.

Hence L >U−+
post

L′ with respect to the U−+
post rule.

Consider now the compound lotteries L1 = 〈1/L, 1/L′′〉 and L2 = 〈1/L′, 1/L′′〉. If
the weak monotonicity principle were satisfied, we would get: L1 >U−+

post
L2.Since:

Reduction(〈1/L, 1/L′′〉) = 〈1/x1, 0/x2, 1/x3〉 and Reduction(〈1/L′, 1/L′′〉) =
〈0/x1, 1/x2, 1/x3〉. We have:
U−+
post(L1) = U−+

post(Reduction(〈1/L, 1/L′′〉)) = 0.6.

U−+
post(L2) = U−+

post(Reduction(〈1/L′, 1/L′′〉)) = 0.8.
Hence, L1 <U−+

post
L2 while L >U−+

post
L′, which contradicts weak monotonicity.

Using the fact that U+−
post = 1−U τ−+

post , this counter-example is modified to show

that also U+−
post does not satisfy the monotonicity principle. Consider two equally

important criteria, cτ1 and cτ2 with w1 = w2 = 1 with: uτ
1(x1) = 0, uτ

1(x2) = 0.2,
uτ
1(x3) = 0.5; uτ

2(x1) = 0.4, uτ
2(x2) = 0.2, uτ

2(x3) = 0.2. Consider now the same
lotteries L, L′ and L′′ presented above. It holds that:

U+−
post(L) = Agg−(x1) = 0 < U+−

post(L
′) = Agg−(x2) = 0.2, while

U+−
post(Reduction(〈1/L, 1/L′′〉)) = 0.4 > U+−

post(Reduction(〈1/L′, 1/L′′〉)) = 0.2.



Solving Multi-criteria Decision Problems under Possibilistic Uncertainty 277

The lack of monotonicity of U−+
post is not as dramatic as it may seem. When

optimizing U−+
post(L), the decision maker is looking for a strategy that is good

w.r.t. U− for at least one (important) criterion since we can write:

U−+
post(L) = max

cj∈C
min(wj , U

−
j (L))

where U−
j (L) = min

xi∈X
max((1 − L[xi]), uj(xi)) is the pessimistic utility of L ac-

cording to the sole criterion cj . This means that if it is possible to get for each
criterion cj a strategy that optimizes U−

j (and this can be done by Dynamic Pro-
gramming, since the pessimistic utility do satisfy the principle of monotonicity),
the one with the higher U−+

post is globally optimal. Formally:

Proposition 5. Let L be the set of lotteries that can be built on X and let:

– Δ∗ = {L∗
1, . . . , L

∗
p} s.t. ∀L ∈ L, cj ∈ C, U−

j (L∗
j ) ≥ U−

j (L);

– L∗ ∈ Δ∗ s.t. ∀L∗
j ∈ Δ∗: max

cj∈C
min(wj , U

−
j (L∗)) ≥ max

cj∈C
min(wj , U

−
j (L∗

i )).

It holds that, for any L ∈ L, U−+
post(L

∗) ≥ U−+
post(L).

Hence, it is enough to optimize w.r.t. each criterion cj separately to get one
optimal strategy for each of them ; a strategy optimal w.r.t. U−+

post is then ob-

tained by comparing the U−+
post values of these p candidate strategies. .

Let us finally study U+−
post; it is always possible to define, for each j, U+

j (L) =
max
xi∈X

min(L[xi], uj(xi)) as the optimistic utility of L according to this sole crite-

rion and to write that U+−
post(L) = min

cj∈C
max((1−wj), U

+
j (L)). But this remark is

helpless, since the lottery L maximizing this quantity is not necessarily among
those maximizing the U+

j ’s: one lottery optimal for U+
1 w.r.t. criterion c1 can be

very bad for U+
2 and thus bad for U+−

post. The polynomial approach proposed in

the previous paragraph for optimizing U−+
post does not hold for U+−

post.

5 Conclusion

This paper has provided a first decision theoretical approach for evaluating multi-
criteria decision problems under possibilistic uncertainty. The combination of the
multi-criteria dimension, namely the conjunctive aggregation with a weighted
min (Agg−) or the disjunctive aggregation with a weighted max (Agg−) and the
decision maker’s attitude with respect to uncertainty (i.e. optimistic utility U+or
pessimistic utility U−) leads to four approaches of MCDM under possibilistic
uncertainty. Considering that each of these utilities can be computed either
ex-ante or ex-post, we have proposed the definition of eight aggregations, that
eventually reduce to six: U++

ante (resp. U−−
ante) has been shown to coincide with

U++
post (resp. U

−−
post); such a coincidence does not happen for U+− and U−+, that

suffer from timing effect.
Then, in order to use these decision rules in sequential decision problems, we

have proven that all ex-ante utilities (i.e. U++
ante, U

−−
ante, U

+−
ante, U

−+
ante) satisfy the
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weak monotonicity while for the ex-post utilities, only U++
post and U−−

post satisfy
this property. This result means that Dynamic Programming algorithms can be
used to compute strategies that are optimal w.r.t. the rules. We have also shown
that the optimization of U+−

post can be handled thanks to a call of a series of
optimization of pessimistic utilities (one for each criterion). The question of the
optimization of U−+

post still remains open.
This preliminary work call for several developments. From a theoretical point

of view we have to propose a general axiomatic characterization of our six de-
cision rules. Moreover, considering that the possibilistic aggregations used here
are basically specializations of the Sugeno integral, we aim at generalizing the
study of MCDM decision making under uncertainty through the development
of double Sugeno Integrals. We shall also extend the approach, considering that
the importance of the criteria is not absolute but may depend on the node con-
sidered. From a more practical point of view, we shall propose and test suitable
algorithms to solve sequential qualitative multi-criteria decision problems, e.g.
influence diagrams and decision trees.
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813 68 Bratislava, Slovak Republic
{radko.mesiar,andrea.stupnanova}@stuba.sk

Abstract. We recall first graded classes of copula - based integrals and
their specific form when a finite universe X is considered. Subsequently,
copula - based generalizations of OWA operators are introduced, as co-
pula - based integrals with respect to symmetric capacities. As a par-
ticular class of our new operators, recently introduced OMA operators
are obtained. Several particular examples are introduced and discussed
to clarify our approach.

Keywords: copula, decomposition integral, OMA operator, OWA ope-
rator, symmetric capacity, universal integral.

1 Introduction

Ordered weighted averages, in short OWA operators, were introduced in 1988 by
Yager [20] in order to unify in one class arithmetic mean, maximum and mini-
mum operators. Formally, OWA operators can be seen as convex combinations

of order statistics. Namely, for a given weighting vector w ∈ [0, 1]
n
,

n∑
i=1

wi = 1,

OWAw : [0, 1]
n → [0, 1] is given by

OWAw(x) =

n∑
i=1

wi x(i), (1)

where (·) is a permutation of {1, . . . n} such that x(1) ≥ · · · ≥ x(n), i.e.,
x(1) = max{x1, . . . xn}, x(2) is the second biggest value from the input n-tuple
x = {x1, . . . , xn}, ... , x(n) = min{x1, . . . , xn}. OWA operators are popular both
from theoretical and applied point of view, see e.g. edited volumes [22,23].
Note also that there are several generalizations of OWA operators, such as
weighted OWA (WOWA) [19], induced OWA (IOWA) [21], generalized OWA
(GOWA) [1], etc.

An important step in understanding the nature of OWA operators was their
representation by means of Choquet integral due to Grabisch [5], compare also
[13]. For a given weighting vector w ∈ [0, 1]

n
, consider the universe X =

{1, . . . , n} and introduce a capacity mw : 2X → [0, 1] given by

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 280–288, 2014.
c© Springer International Publishing Switzerland 2014
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mw(A) =

|A|∑
i=1

wi = v|A|,

where |A| is the cardinality of the set A, and v0 = 0 by convention. The capacity
mw is called a symmetric capacity, reflecting the fact that for any integral the
corresponding functional is symmetric. Observe also that vn = 1 = mw(X), and
that vi − vi−1 = wi, i = 1, . . . , n. Formally, the vector v ∈ [0, 1]n can be seen
as cumulative version of the weighting vector w ∈ [0, 1]

n
. Denoting the Choquet

integral [2] with respect to a capacity m as Chm, Grabisch’s representation of
OWA operators can be written as

OWAw(x) = Chmw(x). (2)

Due to Schmeidler’s axiomatic characterization of the Choquet integral [15],
OWA operators can be seen as symmetric comonotone additive aggregation
functions [6], i.e., non-decreasing mappings A : [0, 1]

n → [0, 1] satisfying the
boundary conditions A(0) = 0, A(1) = 1, and such that :

� for each x,y ∈ [0, 1]
n
satisfying x+y ∈ [0, 1]

n
and (xi −xj)(yi− yj) ≥ 0 for

each i, j ∈ {1, . . . , n}, it holds

A(x+ y) = A(x) +A(y). (3)

� for each permutation σ of {1, . . . , n}, and each x ∈ [0, 1]n,
A(x) = A(xσ(1), . . . , xσ(n)). Observe that then A = OWAw, where the
weighting vector w ∈ [0, 1]

n
is linked to the cumulative vector v ∈ [0, 1]

n

determined by vi = A(1, . . . , 1︸ ︷︷ ︸
i−times

, 0, . . . , 0).

Recently, ordered modular averanges (OMA operators ) were introduced in
[11], characterized as symmetric comonotone modular idempotent aggregation
functions, i.e., the comonotone additivity (3) was replaced by the idempotency

A(x, . . . , x) = x for all x ∈ [0, 1],

and the comonotone modularity

A(x ∨ y) +A(x ∧ y) = A(x) +A(y)

valid for all comonotone x,y ∈ [0, 1]
n
. OMA operators were shown to coincide

with copula - based integrals introduced by Klement et al. [9,8] with respect
to symmetric capacities. In particular, considering the independence copula Π ,
OWA operators are rediscovered.

In the last months, new hierarchical families of copula - based integrals were
introduced [12,10]. Here the ideas of universal integrals [8] and decomposition
integrals [4] interfered first into the description of functionals being simultane-
ously universal and decomposition integrals, and afterwards resulted into the
introduction of new copula - based families of integrals. The main idea of this
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contribution is to introduce and study the functionals obtained from the above
mentioned copula - based integrals with respect to symmetric capacities. Then,
as particular cases, OWA and OMA operators are also covered, and, moreover,
several other operators known from the literature, such as ordered weighted
maximum OWMax [3].

The paper is organized as follows. In the next section, the basics of copulas are
given, and hierarchical families of copula - based integrals introduced in [10] are
recalled. Section 3 brings copula - based generalizations of OWA operators and
discusses some particular cases. In Section 4, product - based generalizations of
OWA operators are studied. Finally, some concluding remarks are added.

2 Copulas and Copula - Based Integrals

A (binary) copula C : [0, 1]2 → [0, 1] was introduced by Sklar [17] to characterize
the link between marginal and joint distribution functions of random vector
(U, V ). Axiomatically, a copula is an aggregation function with a neutral element
e = 1, i.e.,

C(x, 1) = C(1, x) = x for all x ∈ [0, 1],

which is supermodular, i. e.,

C(x ∨ y) + C(x ∧ y) ≥ C(x) + C(y) for all x,y ∈ [0, 1]
2
.

For more details on copulas we recommend the monographs [7,14].
In [10], compare also [12], C-based integrals forming a hierarchical family

I
(1)
C ≤ I

(2)
C ≤ · · · ≤ I

(n)
C ≤ · · · ≤ IC ≤ IC ≤ · · · ≤ IC(n) ≤ · · · ≤ IC(2) ≤ IC(1),

were introduced. These integrals act on any measurable space (X,A), however,
we will consider them only on a fixed space (X, 2X), with X = {1, . . . , n}. Then

I
(n)
C = I

(n+1)
C = · · · = IC = IC = · · · = IC(n+1) = IC(n),

thus we restrict our considerations to integrals

I
(1)
C ≤ · · · ≤ I

(n−1)
C ≤ I

(n)
C = IC(n) ≤ IC(n−1) ≤ · · · ≤ IC(1).

For a given capacity m : 2X → [0, 1], and any input vector x ∈ [0, 1]
n
, they

are respectively defined by, for i = 1, . . . , n,

I
(i)
C = max

{ i∑
j=1

[
C
(
x(kj),m(x ≥ x(kj))

)
− C
(
x(kj),m(x ≥ x(kj−1))

)] ∣∣
1 ≤ k1 < · · · < ki ≤ n

}
, (4)
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and by

IC(i) = min

{ i∑
j=1

[
C
(
x(kj),m(x ≥ x(kj+1−1))

)
− C
(
x(kj),m(x ≥ x(kj−1))

)] ∣∣
1 = k1 < · · · < ki ≤ n

}
, (5)

where kj ∈ {1, . . . , n}, m(x ≥ t) = m({i ∈ X |xi ≥ t}), and x(k0) = 2 by

convention (i.e., m(x ≥ x(k0)) = 0 ) and ki+1 =

{
min{r |x(r) = 0} if x(n) = 0

n+ 1 else.

Observe that the integrals IC(n) = I
(n)
C can be represented as follows, compare

[9,8]:

(IC(n))m(x) =PC

(
{(x, y) ∈ [0, 1]

2|y ≤ m(x ≥ x)}
)
=

=PC

(
{(x, y) ∈ [0, 1]

2|y < m(x ≥ x)}
)
= (I

(n)
C )m(x),

where PC : B([0, 1]2) → [0, 1] is the unique probability measure related to the
copula C (for more details see [14]).

Note that for each copula C,

(IC(1))m(x) = C(x(1),m(x > 0))

and
(I

(1)
C )m(x) = sup

{
C(xi,m(x ≥ xi)) | i ∈ {1, . . . , n}

}
.

For the product copula Π : [0, 1]
2 → [0, 1], Π(x, y) = xy, IΠ(n) = I

(n)
Π is the

Choquet integral on X , while for the comonotonicity copula M : [0, 1]
2 → [0, 1],

M(x, y) = min{x, y}, IM(n) = I
(n)
M is the Sugeno integral [18]. Observe also that

I
(1)
Π is the Shilkret integral [16] and

I
(1)
Π < I

(2)
Π < · · · < I

(n)
Π = IΠ(n) < IΠ(n−1) < · · · < IΠ(1).

On the other hand, I
(1)
M = · · · = IM(2) is the Sugeno integral, and IM(2) < IM(1) (i.e.,

there is a capacity m and an input vector x so that (IM(2))m(x) < (IM(1))m(x)).

3 Copula - Based Generalizations of OWA Operators

We propose to generalize OWA operators as copula - based integrals with respect
to symmetric measures.

Definition 1. Let C : [0, 1]
2 → [0, 1] be a fixed copula, let w ∈ [0, 1]

n
be a

weighting vector and consider an integral parameter i ∈ {1, . . . , 2n − 1}. Then
the operator COWAw

(i) : [0, 1]n → [0, 1] given by

COWAw
(i) = (I

(i)
C )mw(x) if i ≤ n
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and
COWAw

(i) = (IC(2n−i))mw (x) if i ≥ n

is called a copula C - based generalized OWA operator of order i.

Theorem 1. Let w ∈ [0, 1]
n
be a weighting vector and let v ∈ [0, 1]

n
be the

corresponding cumulative vector. Then,

� if i ≤ n

COWAw
(i)(x) = max

{
i∑

j=1

[
C(x(kj), vkj )− C(x(kj), vkj−1)

]∣∣1 ≤ k1 < · · · < ki ≤ n

}
,

� if i ≥ n

COWAw
(i)

(x) = min

⎧⎨
⎩

2n−i∑
j=1

[
C(x(kj)

, vkj+1−1) − C(x(kj)
, vkj−1)

]∣∣1 = k1 < · · · < k2n−i ≤ n

⎫⎬
⎭ .

Proposition 1. C-based generalized OWA operators of order n coincide with
OMA operators introduced in [11]. In particular, ΠOWAw

(n) = OWAw and

MOWAw
(n) = OWMaxw.

Proposition 2. For a given weighting vector w ∈ [0, 1]
n
, let v ∈ [0, 1]

n
be the

corresponding cumulative vector. Then, for any given copula C,

COWAw
(1)(x) = sup

{
C(x(j), vj)

∣∣ j ∈ {1, . . . , n}} ,
and

COWAw
(2n−1)(x) = C(x(1), vk), where k =

∣∣{j ∈ {1, . . . , n}|xj > 0}
∣∣.

Observe that ΠOWAw
(1)(x) = sup{x(j) · vj | j ∈ {1, . . . , n}} can be seen as the

biggest area of a rectangle R = [0, u] × [0, v] contained in the area

{(x, y) ∈ [0, 1]
2| y ≤ v|{x≥x}|}.

The smallest cumulative vector v∗ = (0, . . . , 0, 1) is related to the weighting
vector w∗ = (0, . . . , 0, 1) and to the smallest capacity mw∗ = m∗ : 2X → [0, 1],

m∗(A) =

{
1 if A = X

0 else.

Similarly, the greatest cumulative vector v∗ = (1, 1, . . . , 1) is related to w∗ =
(1, 0, . . . , 0) and to the greatest capacity m∗ : 2X → [0, 1],

m∗(A) =

{
0 if A = ∅
1 else.

It is not difficult to check that, independently of copula C and order i,

COWAw∗(x) = min{x1, . . . , xn} = x(n)
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and

COWAw∗(x) = max{x1, . . . , xn} = x(1).

Moreover, for any weighting vector w, and any constant input vector
c = (c, . . . , c),

COWAw
(i)(c) = c.

The symmetry of all COWAw
(i) operators is obvious.

4 Product - Based Generalizations of OWA Operators

Based on Theorem 1, we see that if the order i ≤ n, then

ΠOWAw
(i)(x) =max

⎧⎨⎩
i∑

j=1

x(kj) · (vkj − vkj−1 )
∣∣ 1 ≤ k1 < · · · < ki ≤ n

⎫⎬⎭
=max

⎧⎨⎩
i∑

j=1

⎛⎝ kj∑
r=kj−1+1

wr

⎞⎠ · x(kj)

∣∣ 1 ≤ k1 < · · · < ki ≤ n

⎫⎬⎭ ,

compare also [12], while if i ≥ n, then

ΠOWAw
(i)(x) =min

⎧⎨⎩
2n−i∑
j=1

x(kj) · (vkj+1−1 − vkj−1)
∣∣ 1 = k1 < · · · < k2n−i ≤ n

⎫⎬⎭
=min

⎧⎨⎩
2n−i∑
j=1

⎛⎝kj+1−1∑
r=kj

wr

⎞⎠ · x(kj)

∣∣ 1 ≤ k1 < · · · < k2n−i ≤ n

⎫⎬⎭ .

Observe that each product - based generalization of OWA operators, i.e., each
ΠOWAw

(i), i = 1, . . . , 2n− 1, is positively homogeneous and shift invariant, i.e.,

ΠOWAw
(i)(c · x) = c ·ΠOWAw

(i)(x)

and

ΠOWAw
(i)(d+ x) = d+ΠOWAw

(i)(x)

for all x ∈ [0, 1]n and d, c > 0 such that c · x and d + x ∈ [0, 1]n (here d =
(d, . . . , d)).

Observe that due to the genuine extension of the product copula Π to the
product on [0,∞[2, all operators ΠOWA(i) can be straightforwardly extended to
act on [0,∞[ (the same holds for the domain ]−∞,∞[ of all real numbers).

Example 1. Consider the unique additive symmetric capacity μ : 2X → [0, 1],

μ(A) = |A|
n , related to the constant weighting vector w =

(
1
n , . . . ,

1
n

)
, linked
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to the cumulative vector v =
(
1
n ,

2
n , . . . ,

n
n

)
, and consider the input vector x =(

1, n−2
n−1 , . . . ,

1
n−1 , 0

)
. Then:

ΠOWAw
(1)(x) =max

{
n− j

n− 1
· j
n

∣∣ j ∈ {1, . . . , n}
}

=

{
n

4(n−1)
if n is even

n+1
4n

if n is odd
,

ΠOWAw
(2)(x) =

{
n

3(n−1)
if n = 3k

n+1
3n

else
,

ΠOWAw
(n)(x) =

1

2
,

ΠOWAw
(2n−2)(x) =

{
3n−4
4n−4

if n is even

3n−1
4n

if n is odd
,

and

ΠOWAw
(2n−1)(x) =

n− 1

n
.

Observe that in all cases, if n→∞, then the corresponding ΠOWAw operators
are approaching in limit the corresponding Π-based integral on X = [0, 1], with
respect to the standard Lebesque measure λ, and from the identity function
f : X → [0, 1], f(x) = x. Thus:

lim
n→∞

ΠOWAw
(1)(x) =(I

(1)
Π )λ(f) =

1

4
(Shilkret integral),

lim
n→∞

ΠOWAw
(2)(x) =(I

(2)
Π )λ(f) =

1

3
,

lim
n→∞

ΠOWAw
(n)(x) =(I

(∞)
Π )λ(f) =

1

2
(Choquet integral),

lim
n→∞

ΠOWAw
(2n−2)(x) =(IΠ(2))λ(f) =

3

4
,

and

lim
n→∞

ΠOWAw
(2n−1)(x) =(IΠ(1))λ(f) =1.

5 Concluding Remarks

We have introduced a concept of copula - based generalizations of OWA opera-
tors, covering among others also OWMax and OMA operators. Formally, COWA
operators can be seen as solutions of optimization problems related to their order
i. For example, in the case of COWAw

(2) (ΠOWAw
(2)),we choose two indices

1 ≤ j < k ≤ n, replace the input vector x = (xi, . . . , xn) by

xj,k = (x(j), . . . , x(j)︸ ︷︷ ︸
j−times

, x(k), . . . , x(k)︸ ︷︷ ︸
(k−j)−times

, 0, . . . , 0),

and apply to corresponding C-based OMA operator OMAw to xj,k ( we compute
OWAw(xj,k)). Then we look for the maximal value OMAw(xj,k) (OWAw(xj,k)),



Copula - Based Generalizations of OWA Operators 287

running over all pairs (j, k) ∈ {1, . . . , n}2, j < k. We expect applications of
COWA operators in several branches based on multicriteria decision procedures.

Acknowledgments. The support of the grants VEGA 1/0171/12 and APVV–
0073–10 is kindly announced.
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Abstract. Aggregation functions on [0, 1] with annihilator 0 can be seen as a
generalized product on [0, 1]. We study the generalized product on the bipo-
lar scale [−1, 1], stressing the axiomatic point of view. Based on newly intro-
duced bipolar properties, such as the bipolar increasingness, bipolar unit element,
bipolar idempotent element, several kinds of generalized bipolar product are in-
troduced and studied. A special stress is put on bipolar semicopulas, bipolar
quasi-copulas and bipolar copulas.

Keywords: Aggregation function, bipolar copula, bipolar scale, bipolar semi-
copula, symmetric minimum.

1 Introduction

Recall that an aggregation function A : [0, 1]2 → [0, 1] is characterized by boundary
conditions A(0, 0) = 0 and A(1, 1) = 1, and by the increasingness of A, i.e., the
sections A(x, ·) and A(·, y) are increasing for each x, y ∈ [0, 1]. For more details see
[2,5]. The productΠ : [0, 1]2 → [0, 1] has additionally 0 as its annihilator, and thus each
aggregation function A : [0, 1]2 → [0, 1] with annihilator 0 (i.e., A(x, 0) = A(0, y) for
all x, y ∈ [0, 1]) can be seen as a generalization of the product Π on the unipolar
scale [0, 1]. Observe that the class P of generalized products on the scale [0, 1] has the
smallest aggregation function A∗ : [0, 1]2 → [0, 1] given by

A∗(x, y) =

{
1 if x = y = 1,
0 else

(1)
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A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 289–295, 2014.
c© Springer International Publishing Switzerland 2014



290 S. Greco, R. Mesiar, and F. Rindone

as its minimal element, and its maximal element A∗ : [0, 1]2 → [0, 1] is given by

A∗(x, y) =

{
0 if xy = 0,
1 else.

(2)

Moreover P is a complete lattice (with respect to pointwise suprema and infima),
and it contains, among others, geometric mean G, harmonic mean H , minimum M , etc.
Convex sums of these extremal generalized products, give rise to a parametric family
connecting them.

The most distinguished subclasses of P are

– the class S of semicopulas, i.e., aggregation functions from P having e = 1 as
neutral element, S(x, 1) = S(1, x) = x for all x ∈ [0, 1], see [1,3];

– the class T of triangular norms, i.e., of associative and commutative semicopulas,
[9,13];

– the class Q of quasi-copulas, i.e. 1−Lipschitz aggregation functions from P (ob-
serve thatQ � S), [12];

– the class C of copulas, i.e. supermodular functions from P (observe that C � Q),
[12].

Observe that the product Π belongs to any of mentioned classes, similarly as M .
Among several applications of the generalized product functions, recall their role as
conjunctions in fuzzy logic [8], or their role of multiplications in the area of general
integrals [10,14].

Integration on bipolar scale [−1, 1] requires a bipolar function B : [−1, 1]2 →
[−1, 1] related to the standard product Π : [−1, 1]2 → [−1, 1] (we will use the same
notation Π for the product independently of the actual scale). Up to standard product Π
applied, e.g., in the case of Choquet integral on [−1, 1], or in the case of bipolar capac-
ities based Choquet integral, Grabisch [4] has introduced a symmetric Sugeno integral
on [−1, 1] based on the symmetric minimum BM : [−1, 1]2 → [−1, 1], BM (x, y) =
sign(xy)min(|x|, |y|). The aim of this paper is to generalize the bipolar product on
[−1, 1] in a way similar to generalized product on [0, 1], and to study special classes of
such generalizations. Clearly, the idea to study generalized products stems from bipo-
lar integrals. In turn, bipolar integrals are inserted in the rich domain of bipolarity. A
wide literature, developed in very recent years, has demonstrated how bipolarity must
be considered in modeling human reasoning.

The paper is organized as follows. In the next section, several properties of bipolar
functions are proposed, and the generalized bipolar product is introduced. Section 3
is devoted to bipolar semicopulas and bipolar triangular norms, while in Section 4 we
study bipolar quasi-copulas and bipolar copulas. Finally, some concluding remarks are
added.

2 Generalized Bipolar Product

Considering the function F : [−1, 1]2 → [−1, 1], several algebraic and analytic proper-
ties can be considered in their standard form, such as the commutativity, associativity,
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annihilator 0, continuity, Lipschitzianity, supermodularity, etc. Note that the bipolar
product Π : [−1, 1]2 → [−1, 1] as well as the symmetric minimum BM : [−1, 1]2 →
[−1, 1] satisfy all of them. However, there are some properties reflecting the bipolarity
of the scale [−1, 1].

Recall that a mapping S : [0, 1]2 → [0, 1] is a semicopula [1,3], whenever it is non-
decreasing in both variables and 1 is the neutral element, i.e., S(x, 1) = S(1, x) = x
for all x ∈ [0, 1]. When considering the product Π : [−1, 1]2 → [−1, 1], we see that 1
is its neutral element. More, it holds Π(−1, x) = Π(x,−1) = −x for all x ∈ [−1, 1].

Definition 1. Let F : [−1, 1]2 → [−1, 1] be a mapping such that F (x, 1) = F (1, x) =
x and F (−1, x) = F (x,−1) = −x for all x ∈ [−1, 1]. Then 1 is called a bipolar
neutral element for F .

Simple bipolar semicopulas BS , introduced for bipolar universal integrals in [6], are
fully determined by standard semicopulas S : [0, 1]2 → [0, 1], by means of BS(x, y) =
(sign(xy))S(|x|, |y|). Observe that 1 is a bipolar neutral element for any simple bipolar
semicopula BS . Concerning the monotonicity required for semicopulas, observe that
considering the product Π , or any simple bipolar semicopula BS (note that BΠ = Π ,
abusing the notation Π both for the product on [−1, 1] and on [0, 1]), these mappings
are non-decreasing in both coordinates when fixing an element from the positive part of
the scale, while they are non-increasing when fixing an element from the negative part
of the scale [−1, 1].

Definition 2. Let F : [−1, 1]2 → [−1, 1] be a mapping such that the partial mappings
F (x, ·) and F (·, y) are non-decreasing for any x, y ∈ [0, 1] and they are non-increasing
for any x, y ∈ [−1, 0]. Then F will be called a bipolar increasing mapping.

Similarly, inspired by the symmetric minimum BM , we introduce the notion of a
bipolar idem potent element.

Definition 3. Let F : [−1, 1]2 → [−1, 1] be given. An element x ∈ [0, 1] is called a
bipolar idempotent element of F whenever it satisfies F (x, x) = F (−x,−x) = x and
F (−x, x) = F (x,−x) = −x.

Recall that the class P of generalized products on [0, 1] can be characterized as the
class of all the increasing mappings F : [0, 1]2 → 0, 1] such that F |{0,1}2 = Π |{0,1}2 .
Inspired by this characterization, we introduce the class BP of all generalized bipolar
products as follows.

Definition 4. A function B : [−1, 1]2 → [−1, 1] is a generalized bipolar product when-
ever it is bipolar increasing and B|{−1,0,1}2 = Π |{−1,0,1}2 .

Theorem 1. B ∈ BP if and only if there are A1, A2, A3, A4 ∈ P such that

B(x, y) =

⎧⎪⎪⎨⎪⎪⎩
A1(x, y) if (x, y) ∈ [0, 1]2

−A2(−x, y) if (x, y) ∈ [−1, 0]× [0, 1]
A3(−x,−y) if (x, y) ∈ [−1, 0]2
−A4(x,−y) if (x, y) ∈ [0, 1]× [−1, 0].

(3)
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Due to Theorem 1, each B ∈ BP can be identified with a quadruple (A1, A2, A3, A4) ∈
P4.

Definition 5. Let A ∈ P . then BA = (A,A,A,A) ∈ BP , given by BA(x, y) =
sign(xy)A(|x|, |y|), is called a simple generalized bipolar product (simple GBP , in
short).

Evidently, BM is a simple GBP related to M , while BΠ = Π . Observe that

BA∗(x, y) =

{
Π(x, y) if (x, y) ∈ {−1, 1}
0 else,

and

BA∗(x, y) = sign(xy).

However BA∗ and BA∗ are not extremal elements of BP. The class BP is a complete
lattice (considering pointwise sup and inf) with top element B∗ = (A∗, A∗, A

∗, A∗)
and bottom element B∗ = (A∗, A

∗, A∗, A
∗), given by

B∗(x, y) =

⎧⎨⎩
1 if xy > 0
−1 if xy = −1
0 else,

(4)

and

B∗(x, y) =

⎧⎨⎩
−1 if xy < 0
1 if xy = 1
0 else.

(5)

As in the case of generalized products on the scale [0, 1], to obtain a parametric
family connecting B∗ and B∗ it is enough to consider their convex sum.

3 Bipolar Semicopulas and Bipolar t-norms

Based on the idea of a bipolar neutral element e = 1, we introduce now the bipolar
semicopulas, compare also [7].

Definition 6. A mapping B : [−1, 1]2 → [−1, 1] is called a bipolar semicopula when-
ever it is bipolar increasing and 1 is a bipolar neutral element of B.

Based on Theorem 1 we have the next result

Corollary 1. A mapping B : [−1, 1]2 → [−1, 1] is a bipolar semicopula if and only if
there is a quadruple (S1, S2, S3, S4) of semicopulas so that

B(x, y) =

⎧⎪⎪⎨⎪⎪⎩
S1(x, y) if (x, y) ∈ [0, 1]2

−S2(−x, y) if (x, y) ∈ [−1, 0]× [0, 1]
S3(−x,−y) if (x, y) ∈ [−1, 0]2
−S4(x,−y) if (x, y) ∈ [0, 1]× [−1, 0].

(6)
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It is not difficult to check that the extremal bipolar semicopulas are related to ex-
tremal semicopulas M (the greatest semicopula given by M(x, y) = min(x, y)) and
Z (the smallest semicopula, called also the drastic product, and given by Z(x, y) =
min(x, y) if 1 ∈ {x, y} and Z(x, y) = 0 else).

We have also the next results.

Proposition 1. Let B ∈ B be a bipolar semicopula such that each x ∈ [0, 1] is its
bipolar idempotent element. Then B = BM is the symmetric minimum introduced by
Grabisch [4].

Associativity of binary operations (binary functions) is a strong algebraic property,
which, in the case of bipolar semicopulas characterizes a particular subclass of B.

Theorem 2. A bipolar semicopula B ∈ B is associative if and only if B is a simple
bipolar semicopula, B = BS , where S ∈ S is an associative semicopula.

Typical examples of associative bipolar semicopulas are the product Π and the sym-
metric minimum BM . Recall that a symmetric semicopula S ∈ S, i.e., S(x, y) =
S(y, x) for all x, y ∈ [0, 1], which is also associative is called a triangular norm [13,9].

Definition 7. A symmetric associative bipolar semicopula B ∈ B is called a bipolar
triangular norm.

Due to Theorem 2 it is obvious that a bipolar semicopula B ∈ B is a bipolar triangu-
lar norm if and only if B = BT , where T : [0, 1]2 → [0, 1] is a triangular norm, i.e. if
B(x, y) = (sign(xy))T (|x|, |y|). Obviously,the product, Π , and the symmetric mini-
mum, BM , are bipolar triangular norms. The smallest semicopula Z is also a triangular
norm and the corresponding bipolar triangular norm BZ : [−1, 1]2 → [−1, 1] is given
by

BZ(x, y) =

{
0 if (x, y) ∈]− 1, 1[2,
xy else.

(7)

Observe that the genuine n-ary extension BZ : [−1, 1]n → [−1, 1], n > 2, is given
by

BZ(x1, . . . , xn) =

{
0 if #{i | xi ∈]− 1, 1[} ≥ 2,
Πn

i=1xi else.
(8)

Also W : [−1, 1]2 → [−1, 1] given by W (x, y) = max(0, x + y − 1) is a tri-
angular norm, and consequently also BW : [−1, 1]2 → [−1, 1] given by BW (x, y) =
(sign(xy))max(0, x+y−1) is a bipolar triangular norm. Moreover, its n-ary extension
BW : [−1, 1]n → [−1, 1], n > 2, is given by

BW (x1, . . . , xn) = (sign(Πn
i=1xi))max(0,

∑
xi − n+ 1).

Note that several construction methods for bipolar semicopulas were proposed in [7].
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4 Bipolar Quasi-copulas and Copulas

In this section, we extend the notion of quasi-copulas and copulas acting on the unipolar
scale [0, 1] to the bipolar scale [−1, 1].

Definition 8. Let B ∈ BP be 1−Lipschitz, i.e.,

|B(x1, x2)−B(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|, for all x1, x2, y1, y2 ∈ [−1, 1].

Then B is called a bipolar quasi-copula.

Based on theorem 1 we have the following result.

Corollary 2. B ∈ GP is a bipolar quasi-copula if and only if B = (Q1, Q2, Q3, Q4) ∈
Q4.

Evidently, each bipolar quasi-copula is also a bipolar semicopula.

Definition 9. Let B ∈ GP has a bipolar neutral element e = 1 and let B be super-
modular, i.e.,

B(x1 ∨ x2, y1 ∨ y2) +B(x1 ∧ x2, y1 ∧ y2) ≥ B(x1, y1) +B(x2, y2),

for all x1, x2, y1, y2 ∈ [−1, 1]. Then B is called a bipolar copula.

Corollary 3. B ∈ GP is a bipolar copula if and only if B = (C1, C2, C3, C4) ∈ C4.

Observe that each bipolar copula B is also a bipolar quasi-copula, and that the class
of all bipolar quasi-copulas BQ is a sup− (inf −) closure of the class BC of all bipolar
copulas. Π and BM are typical example of simple bipolar copulas.

As an example of a bipolar copula B which is not simple, we consider the function
B : [−1, 1]2 → [−1, 1] given by

B(x, y) = xy + |xy|(1− |x|)(1 − |y|).

ThenB = (C1, C2, C1, C2) whereC1, C2 ∈ C are Farlie-Gumbel-Morgenstern copulas
[12] given by

C1(x, y) = xy + xy(1 − x)(1 − y)

and
C2(x, y) = xy − xy(1− x)(1 − y).

5 Concluding Remarks

We have introduced and discussed bipolar generalizations of the product, including
bipolar semicopulas, bipolar triangular norms, bipolar quasi-copulas and bipolar copu-
las. Observe that our approach to bipolar aggregation can be seen as a particular case of
the multi-polar aggregation proposal as given in [11] for dimension n=2. Though there
is a minor overlap with conjunctive aggregation functions in the area of Atanassov’s
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intuitionistic framework, our concept is rather different (especially, the bipolar neutral
element makes the difference). Observe that our approach brings a generalization of the
product (considered as a multiplication for integrals) into the bipolar framework, where
it is supposed to play the role of multiplication when constructing integrals. For the fu-
ture research, it could be interesting to look on our generalized product as a conjunctive-
like connective and the try to develop a dual concept of generalized bipolar sums, and
related bipolar connectives. We expect application of our results in multicriteria deci-
sion support when considering bipolar scales, especially when dealing with bipolar ca-
pacities based integrals. Observe that simple bipolar semicopulas were already applied
when introducing universal integrals on the bipolar scale [−1, 1], see [6].
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Abstract. In this work we study the behavior of the FARC-HD method when
addressing multi-class classification problems using the One-vs-One (OVO) de-
composition strategy. We will show that the confidences provided by FARC-HD
(due to the use of the product in the inference process) are not suitable for this
strategy. This problem implies that robust strategies like the weighted vote obtain
poor results. For this reason, we propose two improvements: 1) the replacement
of the product by greater aggregations whose output is independent of the number
of elements to be aggregated and 2) the definition of a new aggregation strategy
for the OVO methodology, which is based on the weighted vote, in which we only
take into account the confidence of the predicted class in each base classifier. The
experimental results show that the two proposed modifications have a positive
impact on the performance of the classifier.

Keywords: Classification, One-vs-One, Fuzzy Rule-Based Classification Sys-
tems, Aggregations.

1 Introduction

There are different techniques in data mining to solve classification problems. Among
them, Fuzzy Rule-Based Classification Systems (FRBCSs) are widely used because
they provide an interpretable model by using linguistic labels in the antecedents of their
rules [8]. In this work we use the FARC-HD algorithm [2], which is currently one of
the most accurate and interpretable FRBCSs.

We can distinguish two types of problems in classification: binary (two-class) and
multi-class problems. Multi-class classification is usually more difficult because of the
higher complexity in the definition of the decision boundaries. A solution to cope with
multi-class classification problems is to use decomposition techniques [10], which try
to divide the original multi-class problem into binary problems that are easier to solve.
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In the specialized literature a number of decomposition strategies have been pro-
posed [10]. One of the most used is the One-vs-One (OVO) decomposition strategy. In
OVO, the original multi-class problem is divided into as many new sub-problems as
possible pairs of classes, where each one is addressed with an independent base classi-
fier. When classifying a new instance, all base classifiers are queried and their outputs
are combined to make the final decision. This technique usually works better than ad-
dressing the problem directly [5].

In this work we will try to improve the performance of the FARC-HD algorithm in
multi-class classification problems using the OVO strategy. Obviously, the aggregation
of the classifiers in the OVO strategy directly depends on the confidences provided
by the base classifiers. In the case of FARC-HD, we consider the association degree
obtained for each class of the problem as the confidence.

We will show that using aggregation strategies that usually have a robust and accurate
performance (such as the weighted vote [7]), we do not obtain good results using FARC-
HD as base classifier due to the confidences obtained. This is due the fact that using
the product in the inference process of FARC-HD produces very small confidences
for each pair of classes and it also implies that the rules with the largest number of
antecedents are penalized. Another problem is that the confidences returned by each
binary classifier are not related. In order to address these problems, we propose to adapt
the confidences of FARC-HD to OVO, aiming to obtain a more accurate aggregation,
which consequently can lead to improve the classification in the OVO model.

In our proposal, we apply in the inference process aggregation operators whose result
is greater than that of the product and we impose them the condition that they cannot de-
crease their results when the number of antecedents of the rule increases. Furthermore,
we propose an alternative to the usage of the weighted voting in the aggregation phase
of OVO strategy. More specifically, we propose an aggregation strategy named WinWV
in which we do not consider the confidences obtained by non-predicted classes, since
its usage is not appropriate for the classification.

In order to assess the quality of the methods, we use twenty numerical datasets [1]
and we contrast the results obtained using non-parametric statistical tests. In these ex-
periments, we study which is the best aggregations in the inference process for FARC-
HD that allows us to obtain a better overall OVO classification. To do so, we compare
the results of this new hybridization against the original FARC-HD classifier when deal-
ing with multi-class classification problems using different aggregations.

The structure of the paper is as follows. In Section 2, we briefly introduce FRBCSs.
Section 3 contains an introduction to the decomposition of multi-class problems. In
Section 4, we describe in detail our proposals to use FARC-HD with the OVO strat-
egy. Section 5 contains the experimental framework description and the analysis of the
achieved results. Finally, in section 6 we draw the conclusions.

2 Fuzzy Rule-Based Classification Systems

Any classification problem consists of P training examples xp = (xp1, . . . ,xpn), p =
1,2, . . . ,P where xpi is the value of the i-th attribute (i = 1,2, . . . ,n) of the p-th training
example. Each example belongs to a class yp ∈ C and C= {1,2, ...,m}, where m is the
number of classes of the problem.
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In this work we use the FARC-HD method [2], which is a FRBCSs that makes use
of rules whose structure is as follows:

Rule R j : If x1 is A j1 and . . . and xn is A jn then Clase = Cj with RWj (1)

where R j is the label of the j-th rule, x = (x1, . . . ,xn) is an n-dimensional pattern vector
that represents the example, A ji is a fuzzy set, Cj ∈ C is the class label and RWj is the
rule weight, which is computed using the confidence of the rule [9].

The three steps of the fuzzy rule learning method of FARC-HD are the following:

1. Fuzzy association rules extraction for classification: A search tree is constructed
for each class from which the fuzzy rules are obtained. The number of linguistic
terms in the antecedents of the rules is limited by the maximum depth of the tree.

2. Candidate rule prescreening: In this phase the most interesting fuzzy rules among
the fuzzy rules obtained in the previous stage are selected. To do so, a weighted
scheme of examples is applied, which is based on the coverage of the fuzzy rules.

3. Genetic rule selection and lateral tuning: An evolutionary algorithm is used both to
tune the lateral position of the membership function and to select the most precise
rules from the rule base generated in the previous steps.

In order to classify a new example, FARC-HD uses a fuzzy reasoning method called
additive combination, which predicts the class that obtains the largest confidence ac-
cording to Equation 2.

con fl(xp) = ∑
R j∈BR; Cj=l

b j(xp), l = 1,2, . . . ,m (2)

with b j(xp) = μA j(xp) ·RWj = T (μA j1(xp1), . . . ,μA jn j (xpn j)) ·RWj (3)

where b j(xp) is the association degree of the example xp with the rule j, μA j (xp) is the
matching degree of the example xp with the antecedent of the rule j, μA ji(xpi) is the
membership degree of the example with the i-th antecedent of the rule, T is a t-norm
(in the case of FARC-HD the product t-norm), and n j the number of antecedents of the
rule j.

3 Decomposition of Multi-class Problems: One-vs-One Strategy

Decomposition strategies [10] face multi-class classification problems using binary
classifiers, commonly known as base classifiers. These strategies are not only use-
ful when working with classifiers that only distinguish between two classes but also
with those that can directly handle multi-class problems. Even in this later case, the
results achieved by means of the application of decomposition strategies are usually
enhanced [5].

3.1 One-vs-One Strategy

The OVO strategy is one of the the most used decomposition strategies, where a prob-
lem of m classes is divided in m(m− 1)/2 binary sub-problems (all possible pairs of
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classes) that are faced by independent base classifiers. A new instance is classified by
combining the output of each base classifier. Each base classifier distinguishes a pair of
classes {Ci,Cj} and it returns a couple of confidence degrees ri j,r ji ∈ [0,1] in favor of
classes Ci,Cj, respectively. These outputs are stored in the score-matrix as follows.

R =

⎛⎜⎜⎜⎝
− r12 · · · r1m

r21 − ·· · r2m
...

...
rm1 rm2 · · · −

⎞⎟⎟⎟⎠ (4)

Finally, the outputs of the base classifiers are aggregated and the predicted class
obtained. In the next section, we present the aggregation strategies of the score-matrices
that we consider in this work.

3.2 Aggregation Methods

The method used to aggregate the outputs of the base classifiers is a key factor for
the classification process [5]. In this work, we consider three well-known aggregation
methods.

– Voting strategy (VOTE) [4]: Each base classifier votes for the predicted class and
the class having the largest number of votes is given as output.

Class = arg max
i=1,...,m

∑
1≤ j �=i≤m

si j (5)

where si j is 1 if ri j > r ji and 0 otherwise.
– Weighted Voting (WV) [7]: Each base classifier votes for both classes based on the

confidences provided for the pair of classes. The class having the largest value is
given as output.

Class = arg max
i=1,...,m

∑
1≤ j �=i≤m

rn
i j (6)

where Rn is the normalized voting matrix.
– Non-Dominance Criteria (ND) [3]: The score-matrix is considered as a fuzzy pref-

erence relation. Then non-dominance degree is computed, being the winning class
the one with the highest value.

Class = arg max
i=1,...,m

{
1− sup

j∈C
r′ji

}
(7)

where R′ is the normalized and strict score-matrix.

3.3 Confidence Provided by the Base Classifiers

According to the aforementioned aggregation methods, it is clear that one of the most
important factors is the value used as confidence. In the case of FARC-HD, we con-
sider the association degree of each class as the confidence, i.e., the obtained value in
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Equation 2. However, as we will show when using the weighted voting strategy (consid-
ered one of the most robust ones [7]), these values do not provide the expected results.
If FARC-HD is directly used to face multi-class classification problems, the obtained
confidences are irrelevant once the example is classified. However, in the case of using
FARC-HD as a base classifier, the confidences provided for each class are aggregated
either when they are the predicted class or not. Therefore, it is very important to obtain
good confidences since they are the values aggregated when making the final classifi-
cation.

Another problem inherent to the OVO decomposition method is the non-competent
classifiers [6]. The learning process of each base classifier is performed using only
the examples belonging to the two classes that this classifiers will classify and conse-
quently, it ignores the examples belonging to other classes. Therefore, the remainder
classes are unknown for these classifiers and their outputs are irrelevant when classify-
ing examples of those classes. However, these outputs are aggregated in the same way
as the relevant ones. This problem can lead to incorrectly label the example in certain
situations, which stresses the problem we have mentioned about the lack of suitability
of the confidences provided by the FARC-HD classifier.

4 FARC-HD and OVO: Improving the Combination

Following Equation 3 shown in Section 2, it can be observed that the inference method
used by FARC-HD diminishes the values of the association degrees of the fuzzy rules
having more antecedents, which affects the combination in OVO as we have stated in the
previous section. This is due to the usage of the product as the t-norm when computing
the matching degree of the example with the fuzzy rules. Thus, fuzzy rules with more
antecedents will provide lower confidences.

In order address this problem and to obtain more appropriate confidences for its
subsequent treatment with the OVO strategy, we propose to modify both the first two
stages of inference process of FARC-HD (Section 4.1) and the aggregation phase of the
OVO method (Section 4.2).

4.1 Improving Confidence Estimations for OVO: Computing the Association
Degree with Specific Aggregations

In this work, we propose the usage of t-norms greater than the product or even means
with certain properties to compute the association degrees. In order to do so, we have
considered the minimum as an alternative to the product, since it is the largest t-norm,
and the geometric mean as a representative of means, since it has some properties sim-
ilar to those of the product. Moreover, in both cases, the result obtained is not affected
by the number of antecedents of the fuzzy rules (their results do not decrease as the
product does).

Therefore, we propose to modify Equation 3, replacing the product t-norm by either
the minimum t-norm or the geometric mean. This change affects the computation of
the association degree b j(xp), which in turn modifies the value of con fl(xp), that is,
the confidences used in the score-matrix of OVO. Thus, we intend to show that the
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usage of these aggregation methods can significantly improve the confidences of the
base classifiers for their subsequent processing in the classification process. Next, the
proposed modifications of Equation 3 are presented.

– Minimum: The obtained association degree is the minimum among the membership
degrees of the example with the antecedents of the fuzzy rule and the rule weight.

b j(xp) = min( min
i=1,...,n j

μA ji(xpi),RWj) (8)

– Geometric Mean: The matching degree is computed as the geometric mean of the
membership degrees of the example with the antecedent of the fuzzy rules and then,
the association degree is computed as the geometric mean among the matching
degree and the rule weight.

b j(xp) =

(
n j

√
n j

∏
i=1

μA ji(xpi) ·RWj

)1/2

(9)

4.2 Adapting the Weighted Voting to OVO: WinWV

Besides the modification of the aggregation methods in the inference process of the base
classifiers, we propose a new aggregation method for OVO strategy named WinWV ,
which is a modification of the WV. Since all the obtained confidences by FARC-HD are
not appropriate for the WV, we propose to consider only the confidence of the predicted
class, whereas that of the non-predicted class is not taken into account:

Class = arg max
i=1,...,m

∑
1≤ j �=i≤m

si j (10)

where si j is rn
i j if ri j > r ji and 0 otherwise.

5 Experimental Study

The experimental study is carried out with three main objectives:

1. To observe the improvement obtained when we change the product in the inference
method of FARC-HD by either the minimum t-norm or the geometric mean, which
return greater values, in the OVO model (Section 5.3).

2. To show the necessity of a new aggregation strategy (WinWV) for FARC-HD using
OVO, instead of the commonly used WV (Section 5.4).

3. To study the improvement obtained when combining the OVO decomposition tech-
nique using FARC-HD as base classifier versus the direct usage of FARC-HD in
multi-class classification problems (Section 5.5).

In the remainder of this section we present the experimental framework (Section 5.1),
the achieved results (Section 5.2) and their correponding analysis (Sections 5.3, 5.4
and 5.5).
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Table 1. Summary of the features of the datasets used in the experimental study

Dataset #Ex. #Atr. #Clas. Dataset #Ex. #Atr. #Clas.

autos 159 25 6 penbased 1100 16 10
balance 625 4 3 satimage 643 36 7
cleveland 297 13 5 segment 2310 19 7
contraceptive 1473 9 3 shuttle 2175 9 5
ecoli 336 7 8 tae 151 5 3
glass 214 9 7 thyroid 720 21 3
hayes-roth 132 4 3 vehicle 846 18 4
iris 150 4 3 vowel 990 13 11
newthyroid 215 5 3 wine 178 13 3
pageblocks 548 10 5 yeast 1484 8 10

5.1 Experimental Framework

In order to carry out the experimental study, we use twenty numerical datasets selected
from the KEEL dataset repository [1], whose main features are introduced in Table 1.

The configuration used for the FARC-HD method is the one recommended by the
authors: 5 labels for each fuzzy partition, the maximum tree depth is 3, minimum sup-
port of 0.05, minimum confidence of 0.8, populations formed by 50 individuals, 30 bits
per gene for the Gray codification and a maximum of 20000 evaluations.

We have used a 5 folder cross-validation scheme so as to obtain the results for each
method. In order to support the quality of the methods we apply non-parametric sta-
tistical tests [11]. More specifically, we use the Wilcoxon’s rank test to compare two
methods, the Friedman aligned ranks test to check whether there are statistical differ-
ences among a group of methods and the Holm post-hoc test to find the algorithms that
reject the null hypothesis of equivalence against the selected control method.

5.2 Experimental Results

Table 2 shows the accuracy obtained in testing in every dataset by all the methods
studied. We observe 5 groups of results, where the first one corresponds to the original
FARC-HD algorithm using the three aggregation methods to compute the association
degree in the inference process. The four remainder groups correspond to the different
aggregation strategies considered in OVO. The best result of each group is highlighted
in bold-face while the best overall result in each dataset is underlined.

5.3 Analysis of Aggregations in the Association Degree

In this section, we analyze the effect produced by the modification of the aggregation
method in the computation of association degree in the inference process of FARC-HD.
In Table 2 we can observe that in the case of the original FARC-HD, the replacement of
the product by a greater aggregation does not produce significant changes in the results.
However, in the case of the aggregation strategies considered in OVO, the geometric
mean obtains the best result in all of them, generally with large differences. Anyway,
we can not base our conclusions on the overall results, so we carry out a multiple com-
parison in order to compare the two proposed aggregation methods and the product
t-norm when using the original FARC-HD method and for each combination method
used in the OVO strategy.
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Table 2. Accuracy obtained in testing by each method
FARC OVO

VOTE ND WV WinWV

Dataset PROD MIN GM PROD MIN GM PROD MIN GM PROD MIN GM PROD MIN GM

autos 83,26 81,44 77,49 78,85 80,66 80,84 78,85 79,32 80,89 75,76 79,89 79,62 76,30 81,26 78,35
balance 86,08 85,59 88,16 84,79 84,77 85,90 84,31 85,10 86,22 80,95 79,82 80,95 83,99 83,81 85,26
cleveland 56,93 56,30 54,89 57,97 55,24 59,29 56,92 54,90 59,99 55,93 57,24 60,66 56,94 56,58 59,66
contraceptive 53,91 53,57 53,56 54,31 54,04 53,23 53,97 53,70 53,37 53,97 54,58 54,25 53,97 53,84 53,57
ecoli 83,50 82,60 81,37 83,77 83,68 83,18 83,72 84,26 82,66 84,96 85,27 81,97 85,24 84,62 84,62
glass 66,25 66,86 71,59 68,22 72,08 72,00 67,27 69,68 71,93 68,23 72,55 68,44 67,68 72,00 70,66
hayes-roth 81,26 79,73 78,19 81,92 81,92 83,41 81,15 81,15 82,64 81,92 81,92 83,41 81,92 81,92 83,41
iris 96,00 95,33 95,33 94,67 94,67 94,67 94,67 94,67 94,00 95,33 95,33 94,67 94,67 94,67 94,67
newthyroid 94,88 97,67 94,42 96,28 96,74 96,28 96,28 96,74 96,28 95,81 94,42 94,88 96,28 96,74 96,28
pageblocks 94,01 93,63 94,72 93,45 94,89 94,36 93,99 94,69 94,53 93,63 93,97 93,27 93,63 95,07 94,35
penbased 93,20 91,65 94,01 94,02 93,92 94,37 94,83 94,37 93,55 93,83 93,64 91,93 94,19 94,29 93,83
satimage 80,60 80,75 80,10 83,07 82,92 82,44 81,52 81,22 80,27 78,09 75,45 80,10 82,44 82,00 83,54
segment 93,03 92,77 93,12 92,77 94,42 95,46 93,33 94,33 95,33 92,25 93,25 90,74 93,33 94,37 94,07
shuttle 94,39 98,44 99,54 93,80 98,71 99,77 93,66 98,75 99,77 93,34 91,77 92,78 93,75 97,65 98,62
tae 55,48 58,78 54,88 54,70 58,75 60,77 55,35 58,75 61,42 53,44 55,42 58,77 56,73 59,42 61,42
thyroid 93,62 92,51 92,51 93,47 92,65 92,51 93,47 92,65 92,37 93,06 92,65 92,51 93,47 92,65 92,51
vehicle 68,80 73,04 70,68 73,41 71,85 73,62 73,29 72,92 73,74 72,82 72,33 72,91 74,00 72,09 73,86
vowel 75,35 72,63 66,77 89,80 89,09 91,92 90,00 89,49 90,00 82,53 81,82 81,82 86,46 86,77 87,37
wine 95,03 94,38 94,43 95,01 96,09 97,78 95,55 96,09 97,19 95,01 96,04 97,17 94,96 95,50 96,63
yeast 58,97 58,77 59,17 60,72 61,00 59,10 61,33 61,46 59,84 60,04 60,65 57,69 61,19 61,67 59,57

Total 80,23 80,32 79,75 81,25 81,90 82,54 81,17 81,71 82,30 80,05 80,40 80,43 81,06 81,85 82,11

Table 3 shows the results obtained by both the Friedman’s aligned ranks test and the
Holm’s test. These results are grouped by the method used to perform the comparison
(FARC-HD or each OVO aggregation) and by the aggregation methods used to compute
the association degree (which is the subject of the study). The first column corresponds
to the different aggregations over the original FARC-HD, while in the other columns
the different OVO strategies considered in this work (ND, VOTE, WV and WinWV) are
shown. In each row, we show the aggregation used to compute the association degree
(PROD, MIN and GM). The value of each cell corresponds to the rank obtained with
the Friedman’s aligned-rank test that compares the three ways of computing the asso-
ciation degree in each column. The value that is shown in brackets corresponds to the
adjusted p-value obtained by the Holm’s test using as control method the one having the
smallest rank in the same column, which is shown in bold-face. The adjusted p-value is
underlined when there are statistical differences (α = 0.05).

Table 3. Friedman’s Aligned Ranks Test and Holm’s test

FARC OVOVOTE OVOND OVOWV OVOWinWV

PROD 28,00 39,05 (0,003) 36,90 (0,057) 31,67 (1,489) 39,55 (0,006)
MIN 28,75 (0,891) 30,72 (0,103) 29,80 (0,365) 29,87 28,70 (0,324)
GM 34,75 (0,443) 21,72 24,8 29,95 (1,489) 23,25

As it can be observed in the first column of Table 3, the best aggregation method
is the product when we use the original FARC-HD, although there are no statistical
differences between the three aggregations. However, in the case of the OVO aggre-
gations, we can observe that the best method to compute the association degree is the
geometric mean in all cases. In addition, the geometric mean is statistically better than
the product and it is better than the minimum in almost all cases despite not being sig-
nificant differences. The exception to this situation is when we use the WV, since it is
severely affected by the poorer quality of the confidences of the non-predicted classes
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(studied in the next subsection). Thus, the aggregation to compute the association de-
gree that shows the best results is that obtaining the highest aggregated values , that is,
the geometric mean.

5.4 Analysis of the WV: WinWV vs. WV

Looking at the results presented in Table 2, we can observe how those obtained by
WV are quite different from those obtained by the remainder OVO aggregations. In this
subsection, we will show that despite the fact that apparently the difference between
WV and WinWV are small, when using FARC-HD it allows us to obtain significant
statistical differences.

In order to do so, we have carried out a number of pair-wise comparisons using
the Wilcoxon’s test, where we confront the original WV method against the proposed
modification, with each of the aggregations that we have considered to compute the
association degree in FARC-HD. Table 4 shows the results of these comparisons, where
we can see how the usage of the new aggregation strategy provides significantly better
results than the original WV method.

Table 4. Wilcoxon’s test to compare the weighted vote and WinWV

Comparison R+ R- Hypothesis p-value

OVOWV
PROD vs. OVOWinWV

PROD 56,5 153,5 Rejected OVOWinWV
GM 90% 0,059

OVOWV
MIN vs. OVOWinWV

MIN 46,5 163,5 Rejected OVOWinWV
GM 95% 0,018

OVOWV
GM vs. OVOWinWV

GM 28,0 182,0 Rejected OVOWinWV
GM 95% 0,003

5.5 Best Multi-class Model for FARC-HD: FARC-HD vs. FARC-HD OVO

Finally, we want to check which is the best model to address multi-class classification
problems with FARC-HD. We have shown that the geometric mean is better for any of
the OVO aggregations, whereas the product provides better results in the case of FARC-
HD. Therefore, we will carry out different pair-wise comparisons to check whether the
usage of OVO (with the geometric mean) statistically improves the behavior of the
original FARC-HD classifier.

Table 5. Wilcoxon’s test to compare the original FARC-HD and the considered combinations for
FARC-HD OVO

Comparison R+ R- Hypothesis p-value

FARCPROD vs. OVOND
GM 164,0 46,0 Rejected by OVOND

GM 95% 0,03

OVOVOTE
GM 173,0 37,0 Rejected OVOVOT E

GM 95% 0,01

OVOWinWV
GM 171,0 39,0 Rejected OVOWinWV

GM 95% 0,01

OVOWV
GM 108,5 101,5 Not rejected 0,84
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The results of the statistical tests are shown in the Table 5. According to them, we
can confirm that using OVO model is statistically better than the usage of FARC-HD in
all cases except for the one using the original WV (which is solved with WinWV).

6 Conclusions

In this work, we have faced multi-class classification problems with FARC-HD. In or-
der to improve the obtained results, we have used the OVO strategy modifying both
the inference process of FARC-HD (substituting the product t-norm with greater ag-
gregations) and the WV aggregation of OVO (not using the confidences that have been
obtained by the non-predicted classes).

These adaptations have allowed us to show the importance of the inference process
when the OVO model is considered, since the confidence values are used beyond the
FARC-HD classification. In addition, we found that the usage of OVO is suitable for
the FARC-HD classifier, but this synergy is better when the inference process is adapted
appropriately.
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7. Hüllermeier, E., Vanderlooy, S.: Combining predictions in pairwise classification: An optimal
adaptive voting strategy and its relation to weighted voting. Pattern Recognition 43(1), 128–
142 (2010)

http://www-stat.stanford.edu/~jhf/ftp/poly.ps.Z


306 M. Elkano et al.

8. Ishibuchi, H., Nakashima, T., Nii, M.: Classification and modeling with linguistic informa-
tion granules: Advanced approaches to linguistic Data Mining. Springer, Berlin (2004)

9. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification
systems. IEEE Transactions on Fuzzy Systems 13(4), 428–435 (2005)

10. Lorena, A.C., Carvalho, A.C., Gama, J.M.: A review on the combination of binary classifiers
in multiclass problems. Artificial Intelligence Review 30(1-4), 19–37 (2008)

11. Sheskin, D.: Handbook of parametric and nonparametric statistical procedures. Chapman &
Hall/CRC (2006)



Pre-orders and Orders Generated
by Conjunctive Uninorms

Dana Hliněná1, Martin Kalina2, and Pavol Kráľ3

1 Dept. of Mathematics FEEC Brno Uni. of Technology
Technická 8, Cz-616 00 Brno, Czech Republic

hlinena@feec.vutbr.cz
2 Slovak University of Technology in Bratislava

Faculty of Civil Engineering, Department of Mathematics
Radlinského 11, Sk-813 68 Bratislava, Slovakia

kalina@math.sk
3 Dept. of Quantitative Methods and Information Systems,

Faculty of Economics, Matej Bel University
Tajovského 10, Sk-975 90 Banská Bystrica, Slovakia

pavol.kral@umb.sk

Abstract. This paper is devoted to studying of (pre-)orders of the unit
interval generated by uninorms. We present properties of such generated
pre-orders. Further we give a condition under which the generated rela-
tion is just a pre-order, i.e., under which it is not anti-symmetric. We
present also a new type of uninorms, which is interesting from the point
of view of generated pre-orders.

Keywords: Uninorm, non-representable uninorm, generated pre-order,
twisted minimum, twisted maximum.

1 Introduction and Preliminaries

In this paper we study pre-orders generated by uninorms. The main idea is
based on that of Karaçal and Kesicioğlu [8]. Further we introduce a new type
of uninorms containing twisted minimum and/or twisted maximum. This type
of uninorms is interesting from the point of view of generated pre-orders. As we
will see later in the text, they provide arbitrarily many classes of equivalence
containing infinitely many elements.

1.1 Uninorms

In 1996 Yager and Rybalov [15] proposed uninorms as a natural generalisa-
tion of both t-norms and t-conorms (for details on t-norms and their duals,
t-conorms, see, e.g., [10]). Since that time researchers study properties of several
distinguished families of uninorms. A complete characterization of representable
uninorms can be found in [4].
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Definition 1. A uninorm U is a function U : [0, 1]2 → [0, 1] that is increasing,
commutative, associative and has a neutral element e ∈ [0, 1].

Some special classes of uninorms were studied, e.g., in papers [2–5, 7, 12, 13].
An overview of basic properties of uninorms is in [1]. Because of lack of space
we provide only a very brief introduction to uninorms.

A uninorm U is said to be conjunctive if U(x, 0) = 0, and U is said to be
disjunctive if U(1, x) = 1, for all x ∈ [0, 1].

In the theory of fuzzy measures and integrals with respect to fuzzy measures,
uninorms play the role of pseudo-multiplication [11].

A uninorm U is called representable if it can be written in the form

U(x, y) = g−1(g(x) + g(y)) ,

where g : [0, 1] → [−∞,∞] is a continuous strictly increasing function with
g(0) = −∞ and g(1) = ∞. Note yet that for each generator g there exist two
different uninorms depending on convention we take: ∞ − ∞ = ∞, or ∞ −
∞ = −∞. In the former case we get a disjunctive uninorm, in the latter case a
conjunctive uninorm.

Representable uninorms are "almost continuous", i.e., they are continuous
everywhere on [0, 1]2 except of points (0, 1) and (1, 0).

Conjunctive and disjunctive uninorms are dual in the following way

Ud(x, y) = 1− Uc(1− x, 1 − y) ,

where Uc is an arbitrary conjunctive uninorm and Ud its dual disjunctive uni-
norm. Assuming Uc has a neutral element e, the neutral element of Ud is 1− e.

For an arbitrary uninorm U and arbitrary (x, y) ∈ ]0, e[× ]e, 1]∪ ]e, 1]× ]0, e[
we have

min{x, y} ≤ U(x, y) ≤ max{x, y} . (1)

We say that a uninorm U contains a "zoomed-out" representable uninorm in
a square ]a, b[2 for 0 ≤ a < e < b ≤ 1 (where a �= 0 and/or b �= 1), if there
exists a continuous function g̃ : [a, b] → [−∞,∞] such that g̃(a) = −∞, g̃(b) =
∞, g̃(e) = 0 and

U(x, y) = g̃−1(g̃(x) + g̃(y)) for x, y ∈ ]a, b[ . (2)

1.2 Orders Generated by T-norms

In [9] t-norms on bounded lattices were introduced.

Definition 2. Let L be a bounded lattice. A function T : L2 → L is said to
be a t-norm if T is commutative, associative, monotone and 1L is its neutral
element.

Each uninorm U with a neutral element 0 < e < 1, when restricted to the
square [0, e]2, is a t-norm (on the lattice L = [0, e] equipped with meet and
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join) and when restricted to the square [e, 1]2, is a t-conorm (on the lattice
L = [e, 1] equipped with meet and join). We will denote this t-norm by TU and
the t-conorm by SU .

In [8], for a given t-norm T on a bounded lattice L a relation .T generated
by T was introduced. The definition is as follows

Definition 3. Let T : L2 → L be a given t-norm. For arbitrary x, y ∈ L we
denote x .T y if there exists � ∈ L such that T (y, �) = x.

Proposition 1. ([8]) Let T be an arbitrary t-norm. The relation .T is a partial
order. Moreover, if x .T y holds for x, y ∈ L then x ≤ y, where ≤ is the order
generated by lattice operations.

Dually, we can introduce a partial order .S for arbitrary t-conorm S by

x .S y if there exists � ∈ [0, 1] such that S(y, �) = x .

However, in this case we have

x .S y ⇒ x ≥ y .

2 Examples of Uninorms and Consequences for
Generated (Pre-)orders

In this section we provide basic definitions necessary for our considerations,
some examples of uninorms illustrating what problems we are facing and finally
properties of the (pre-)order .U .

2.1 Basic Definitions

We start our considerations on uninorms by introducing a relation .U .

Definition 4. Let U be arbitrary uninorm. By .U we denote the following re-
lation

x .U y if there exists � ∈ [0, 1] such that U(y, �) = x .

Associativity of U implies transitivity of .U . Existence of a neutral element e
implies reflexivity of .U . However, anti-symmetry of .U is rather problematic.

Since for representable uninorm U and for arbitrary x ∈ ]0, 1[ and y ∈ [0, 1]
there exists �y such that U(x, �y) = y, the relation .U is not necessarily anti-
symmetric.

Lemma 1. Let U be arbitrary uninorm. The relation .U is a pre-order.

We introduce a relation ∼U .

Definition 5. Let U be arbitrary uninorm. We say that x, y ∈ [0, 1] are U -
indifferent if

x .U y and y .U x .

If x, y are U -indifferent, we write x ∼U y.
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Lemma 2. For arbitrary uninorm U the relation ∼U is an equivalence relation.

We can factorize [0, 1] by ∼U . On the equivalence classes we introduce a relation

U .

Definition 6. Let U be arbitrary uninorm. Further, let x̃, ỹ be equivalence
classes of ∼U . We denote x̃ 
U ỹ if for all x ∈ x̃ and all y ∈ ỹ we have
x .U y.

Lemma 3. For arbitrary uninorm U the relation 
U is an order on [0, 1] fac-
torized by ∼U .

2.2 Examples of Uninorms

In [6] some examples of non-representable uninorms were presented. We pick up
at least two of them, namely the uninorm constructed in Example 2.1.(b) and in
Example 2.4.(a). The latter one was published in [6] with a mistake. This means
that formula (4) is an erratum to Example 2.4.(a) from [6].

Example 1. (a)

U1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{x, y}, if min{x, y} ≥ 1
2 ,

min{x, y}, if max{x, y} = 1
2 ,

0, if min{x, y} ≤ 1
4 and max{x, y} < 1

2 ,
or if min{x, y} = 0 and max{x, y} > 1

2 ,
2i−1
2i+1 , for i ∈ {1, 2, 3, . . .},

if 2i−1−1
2i < min{x, y} ≤ 2i−1

2i+1 and max{x, y} > 1
2 ,

or if 2i−1
2i+1 < min{x, y} ≤ 2i+1−1

2i+2

and max{x, y} < 1
2 .

(3)

(b)

U2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

max{x, y}, if min{x, y} ≥ 0.5,
0, if max{x, y} < 0.5 and min{x, y} ≤ 0.4,

or if min{x, y} = 0,
0.4y − 0.1, if y ≥ 0.5 and 0.1 ≤ x ≤ 0.4y − 0.1,
0.4x− 0.1, if x ≥ 0.5 and 0.1 ≤ y ≤ 0.4x− 0.1,
min{x, y}, otherwise.

(4)

Now we present new types of uninorms which will play an important role in
describing of properties of the pre-order .U . In Example 2(b) we use a t-norm,
constructed in [14].

Example 2. We show two uninorms, both of them can be further generalized.
For simplicity we will set e = 1

2 . In the square ] 14 ,
3
4 [

2 a representable uninorm
will be zoomed-out. Particularly, we will consider its generator

g(x) =

{
ln(4x− 1), for x ∈ ] 14 ,

1
2 ] ,

− ln(3− 4x), for x ∈ ] 12 ,
3
4 [ .

(5)
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Fig. 1. Uninorm U1
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Fig. 2. Uninorm U2
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We will denote Ur(x, y) = g−1(g(x) + g(y)) for (x, y) ∈ ] 14 ,
3
4 [, though Ur is not

a uninorm because of its domain.
(a) We are going to construct a uninorm U3. To do this, we choose function
f(z) = z

2 −
1
8 that will represent values U3(

1
8 , z) for z ∈ [ 14 ,

3
4 ] . Using this func-

tion and Ur we will compute all other values in the rectangle ]0, 14 [× ] 14 ,
3
4 [, and

by commutativity we get also values in the rectangle ] 14 ,
3
4 [× ]0, 14 [ . In general,

f : [ 14 ,
3
4 ] → [0, 14 ] is a function that is continuous, strictly increasing and ful-

filling f(14 ) = 0, f(12 ) = 1
8 and f(34 ) = 1

4 . These properties (and the way of
construction) guarantee that for arbitrary x ∈ ]0, 14 [ and z ∈ ]0, 14 [ there exists
unique y ∈ ] 14 ,

3
4 [ such that U(x, y) = z (meaning that all elements of ]0, 14 [ will

be U3-indifferent).
Let us now construct the values of U3 in the rectangle A = ]0, 14 [× ] 14 ,

3
4 [.

Using function f , for arbitrary x ∈ ]0, 1
4 [ there exists unique ȳ ∈ ] 14 ,

3
4 [ such that

x = U(18 , ȳ). Namely, ȳ = f−1(x) = 2x+ 1
4 . For arbitrary (x, y) ∈ A we get

U3(x, y) = U3

(
U3(

1

8
, ȳ), y

)
= U3

(
1

8
, U3(ȳ, y)

)
, (6)

and U3(ȳ, y) = Ur(ȳ, y). Since U3(
1
8 , z) = f(z) for z ∈ [ 14 ,

3
4 ], this implies

U3(x, y) = U3

(
1
8 , Ur(ȳ, y)

)
= f(Ur(ȳ, y)). Finally, using the definition of f and

the formula for ȳ, we have that

U3(x, y) =
Ur(2x+ 1

4 , y)

2
− 1

8
. (7)

For (x, y) /∈ ]0, 1
4 [× ] 14 ,

3
4 [∪ ] 14 ,

3
4 [× ]0, 14 [, we define

U3(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if min{x, y} = 0, or if max{x, y} ≤ 1
4 ,

1, if min{x, y} ≥ 3
4 ,

1
4 , if 0 < min{x, y} ≤ 1

4 and max{x, y} ≥ 3
4 ,

or if min{x, y} = 1
4 and max{x, y} > 1

4 ,
Ur(x, y), if (x, y) ∈ ] 14 ,

3
4 [

2,
max{x, y}, if 1

4 < min{x, y} < 3
4 and max{x, y} ≥ 3

4 .

(8)

In Figure 3 we have sketched level-functions of U3 for level 1
16 ,

1
8 ,

3
16 in the rectan-

gles ]0, 14 [× ] 14 ,
3
4 [ and ] 14 ,

3
4 [× ]0, 14 [ . Yet we show associativity of U3. Of course,

only the case x ∈ ]0, 1
4 [ and y1, y2 ∈ ] 14 ,

3
4 [ is interesting. For all other cases

associativity of U3 is trivial. Formula (6) implies

U3(x, U3(y1, y2)) = U3(x, Ur(y1, y2)) =
Ur(2x+ 1

4 , Ur(y1, y2))

2
− 1

8
,

U3(U3(x, y1), y2) = U3

(
Ur(2x+ 1

4 , y1)

2
− 1

8
, y2

)
=

Ur(Ur(2x+ 1
4 , y1), y2)

2
− 1

8
,

and by associativity of Ur we get equality of the above two formulas and the
proof is finished. In the last formula we have used twice equality (6).
(b) We use similar considerations as by constructing of the uninorm U3. Just
in this case we have two different function, g1(z) = z

4 −
1
16 = U4(

1
16 , z) and
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Fig. 3. Uninorm U3

g2(z) =
z
4 + 1

16 = U4(
3
16 , z). I.e., g1 will act in the rectangle ]0, 18 [× ] 14 ,

3
4 [ , and

g2 in ] 18 ,
1
4 [× ] 14 ,

3
4 [ .

For x ∈ ]0, 18 [ we have uniquely given ȳ such that x = g1(ȳ), implying ȳ =
4x+ 1

4 . Followingly, for x ∈ ]0, 1
8 [ and y ∈ ] 14 ,

3
4 [ we get formula

U4(x, y) = U4

(
U4(

1

16
, 4x+

1

4
), y

)
=

U4(y, 4x+ 1
4 )

4
− 1

16
. (9)

For x ∈ ] 18 ,
1
4 [ we have uniquely given ȳ such that x = g2(ȳ), implying ȳ = 4x− 1

4 .
Hence, for x ∈ ] 18 ,

1
4 [ and y ∈ ] 14 ,

3
4 [ we get formula

U4(x, y) = U4

(
U4(

1

16
, 4x+

1

4
), y

)
=

Ur(y, 4x− 1
4 )

4
+

1

16
. (10)

For (x, y) /∈ ]0, 14 [× ] 14 ,
3
4 [∪ ] 14 ,

3
4 [× ]0, 14 [, we define

U4(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if min{x, y} = 0,
or if max{x, y} ≤ 1

4 and min{x, y} ≤ 1
8 ,

1
8 , if min{x, y} > 1

8 and max{x, y} ≤ 1
4 ,

or if 0 < min{x, y} ≤ 1
8 and max{x, y} ≥ 3

4 ,
or if min{x, y} = 1

8 and max{x, y} ∈ ] 14 ,
3
4 [ ,

1
4 , if 1

8 < min{x, y} ≤ 1
4 and max{x, y} ≥ 3

4 ,
if 1

8 < min{x, y} ≤ 1
4 and max{x, y} ≥ 3

4 ,
or if min{x, y} = 1

4 and max{x, y} > 1
4 ,

1, if min{x, y} ≥ 3
4 ,

Ur(x, y), if (x, y) ∈ ] 14 ,
3
4 [

2,
max{x, y}, if 1

4 < min{x, y} < 3
4 and max{x, y} ≥ 3

4 .

(11)

In Figure 4 we have sketched level-functions of U4 for level 1
32 ,

1
16 ,

3
32 ,

5
32 ,

3
16 ,

7
32

in the rectangles ]0, 14 [× ] 14 ,
3
4 [ and ] 14 ,

3
4 [× ]0, 14 [ . We skip proving associativity

of U4 since this proof follows the same idea as that one used for U3.

The construction method used in uninorms U3, U4 in the rectangles ]0, 14 [× ] 14 ,
3
4 [

and ] 14 ,
3
4 [× ]0, 14 [ , is called twisting of minimum.
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Fig. 4. Uninorm U4

Remark 1.

– In the same way as we have twisted minimum in uninorms U3, U4, we could
twist also maximum.

– In general, if U is a uninorm with a zoomed-out representable uninorm Ur in
a square ]a, b[ , and an L-shaped area ]c1, a[

2\ ]c2, a[
2 is an area of constant-

ness, we can twist minimum in the rectangle ]c1, c2[× ]a, b[ , in case c2 < e
and we can twist maximum in the same rectangle in case e < c1.

– Particularly, we could modify U3 (and also U4) in such a way that in any
rectangle ]c1, c2[× ]a, b[ with c2 < 1

4 we could twist minimum, and in any
rectangle ]c1, c2[× ]a, b[ with c1 > 3

4 we could twist maximum. In this way
we could construct uninorms U having arbitrarily many open intervals such
that elements of each of these intervals are U -indifferent.

2.3 Properties of �U

A natural question concerning the pre-order .U is, under which conditions it is
an order and under which conditions this order .U restricted to [0, e] coincides
with .TU , and restricted to [e, 1] coincides with .SU .

Proposition 2. Let U be a uninorm. The following statements are equivalent

(a) For arbitrary x ∈ [0, e] and y ∈ [e, 1] we have U(x, y) ∈ {x, y}.
(b) Arbitrary x1, x2 ∈ [0, e] yield x1 .U x2 if and only if x1 .TU x2,

arbitrary y1, y2 ∈ [e, 1] yield y1 .U y2 if and only if y1 .SU y2.

Remark 2. There are many non-representable uninorms which do not fulfil
Proposition 2(a) (cf. uninorms U1 – U4 from Examples 1 and 2).
Though if U is a uninorm fulfilling Proposition 2(a), i.e., we have an order .U

that, restricted to [0, e] coincides with .TU , and restricted to [e, 1] coincides
with .SU , not all properties of the structures ([0, e],.TU ) and ([e, 1],.SU ) are
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inherited in the structure ([0, 1],.U ). Particularly, if

U(x, y) =

⎧⎨⎩min{x, y}, if min{x, y} = 0,
or if min{x, y} < e and max{x, y} < 1,

max{x, y}, otherwise,

then the interval ]0, e[ has no join and the interval ]e, 1[ has no meet in the
order .U , but we have ∨

�TU

]0, e[ = e,
∧
�SU

]e, 1[= 1 .

Proposition 3. Let U is either a representable uninorm or it has a zoomed-out
representable uninorm in a square ]a, b[ 2.
(a) The relation .U is not anti-symmetric.
(b) The relation 
U is an order on the classes of equivalence. The class contain-
ing e is the greatest in 
U . All other classes of equivalence containing infinitely
many elements are mutually incomparable.

3 Open Problem and Conclusions

In Proposition 3 we have formulated a sufficient condition for a uninorm U
under which .U is not anti-symmetric. Whether this condition is also sufficient
for violating the anti-symmetry of .U , remains an open problem.

In this paper we have started studying the relation .U . Because of lack of
space we have presented just two basic properties formulated in Propositions 2
and 3. Further we have introduced a new type of uninorms constructed using
twisting of minimum and/or twisting of maximum.
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Abstract. We develop the concept of a general factoraggregation oper-
ator introduced by the authors on the basis of an equivalence relation
and applied in two recent papers for analysis of bilevel linear program-
ming solving parameters. In the paper this concept is generalized by
using a fuzzy equivalence relation instead of the crisp one. We show how
the generalized factoraggregation can be used for construction of exten-
sional fuzzy sets and consider approximations of arbitrary fuzzy sets by
extensional ones.

Keywords: Aggregation operator, general aggregation operator, fuzzy
equivalence relation, extensional fuzzy set.

1 Introduction

The paper deals with some generalization of the concept of factoraggregation
introduced, studied and applied by the authors in [7] and [8]. Factoraggregation is
a special construction of a general aggregation operator based on an equivalence
relation. The idea of factoraggregation is based on factorization, which allows to
aggregate fuzzy subsets taking into account the classes of equivalence, i.e. the
partition generated by an equivalence relation. The factoraggregation operator
was specially designed in the context of bilevel linear programming in order to
analyse the satisfaction degree of objectives on each level and to choose solving
parameters values.

In this paper we develop the concept of a factoraggregation operator by using
a t-norm T and a T -fuzzy equivalence relation E instead of the crisp one. We
define generalized T -fuzzy factoraggregation with respect to E and consider its
properties. Taking into account that fuzzy equivalence relations represent the
fuzzification of equivalence relations and extensional fuzzy subsets play the role
of fuzzy equivalence classes we consider the generalized fuzzy factoraggregation
in the context of extensional fuzzy sets.

Within the theory of fuzzy logic the first researcher, who pointed the relevance
of extensional fuzzy sets, was L.A. Zadeh [10]. Extensional fuzzy sets are a key
concept in the comprehension of the universe set under the effect of an T -fuzzy
equivalence relation as they correspond with the observable sets or granules of

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 317–326, 2014.
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the universe set [5]. In our paper we show how the generalized factoraggregation
operator can be used for construction of extensional fuzzy sets.

The paper is structured as follows. In the second section we recall the defini-
tions of an ordinary aggregation operator and of a general aggregation operator
acting on fuzzy structures. Then we give the definition of a factoraggregation
operator corresponding to an equivalence relation, which is a case of the general
aggregation operator.

The third section is devoted to the concept of a generalized T -fuzzy factorag-
gregation with respect to a T -fuzzy equivalence relation. We recall the definition
of a T -fuzzy equivalence relation E and modify the construction of factoraggre-
gation by involving E. We show that all properties of the definition of a general
aggregation operator such as the boundary conditions and the monotonicity hold
for the generalized T -fuzzy factoraggregation operator.

The fourth section contains the main result on generalized fuzzy factorag-
gregation in the context of extensional fuzzy sets. We show that in the case of
lower semi-continuous t-norm T the result of generalized T -fuzzy factoraggre-
gation corresponding to E is extensional with respect to T -fuzzy equivalence
E. Finally the generalized T -fuzzy factoraggregation approach is applied for ap-
proximation of arbitrary fuzzy sets by extensional ones. The proposed method
of approximation is tested by considering numerical examples from [5].

2 Factoraggregation

In this section we recall the definition of a factoraggregation operator, which is
based on an equivalence relation. This concept was introduced and studied in [7,
8]. Let us start with the classical notion of an aggregation operator (see e.g.
[1–3]).

Definition 1. A mapping A : [0, 1]n → [0, 1] is called an aggregation operator
if and only if the following conditions hold:

(A1) A(0, . . . , 0) = 0;
(A2) A(1, . . . , 1) = 1;
(A3) for all x1, . . . , xn, y1, . . . , yn ∈ [0, 1]:

if x1 ≤ y1, . . . , xn ≤ yn, then A(x1, . . . , xn) ≤ A(y1, . . . , yn).

The integer n represents the arity of the aggregation operator, that is, the
number of its variables. Conditions (A1) and (A2) are called the boundary con-
ditions of A, but (A3) means the monotonicity of A.

The general aggregation operator Ã acting on [0, 1]D, where [0, 1]D is the set
of all fuzzy subsets of a set D, was introduced in 2003 by A. Takaci [9]. We
denote by . a partial order on [0, 1]D with the least and the greatest elements
0̃ and 1̃ respectively.

Definition 2. A mapping Ã : ([0, 1]D)n → [0, 1]D is called a general aggregation
operator if and only if the following conditions hold:
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(Ã1) Ã(0̃, . . . , 0̃) = 0̃;
(Ã2) Ã(1̃, . . . , 1̃) = 1̃;
(Ã3) for all μ1, ..., μn, η1, ..., ηn ∈ [0, 1]D :

if μ1 . η1, . . . , μn . ηn, then Ã(μ1, . . . , μn) . Ã(η1, . . . , ηn).

We consider the case:

μ . η if and only if μ(x) ≤ η(x) for all x ∈ D,

for μ, η ∈ [0, 1]D. The least and the greatest elements are indicators of ∅ and D
respectively, i.e.

0̃(x) = 0 and 1̃(x) = 1 for all x ∈ D.

There exist several approaches to construct a general aggregation operator
Ã based on an ordinary aggregation operator A. The most simplest one is the
pointwise extension of an aggregation operator A:

Ã(μ1, μ2, ..., μn)(x) = A(μ1(x), μ2(x), ..., μn(x)),

where μ1, μ2, ..., μn ∈ [0, 1]D are fuzzy sets and x ∈ D.
A widely used approach to constructing a general aggregation operator Ã is

the T - extension [9], whose idea comes from the classical extension principle
and uses a t-norm T (see e.g. [4]):

Ã(μ1, μ2, ..., μn)(x) = sup
x=A(u1,u2,...,un)

T (μ1(u1), μ2(u2), ..., μn(un)).

Here μ1, μ2, . . . , μn ∈ [0, 1]D and x, u1, u2, . . . , un ∈ D, where D = [0, 1].
Another method of constructing a general aggregation operator is factorag-

gregation [7, 8]. This method is based on an equivalence relation ρ defined on
a set D and it allows to aggregate fuzzy subsets of D taking into account the
classes of equivalence ρ, i.e. the corresponding partition of D.

Definition 3. Let A : [0, 1]n → [0, 1] be an ordinary aggregation operator and ρ
be an equivalence relation defined on a set D. An operator

Ãρ : ([0, 1]
D)n → [0, 1]D

such as

Ãρ(μ1, μ2, . . . , μn)(x) = sup
u∈D:(u,x)∈ρ

A(μ1(u), μ2(u), . . . , μn(u)), (1)

where x ∈ D and μ1, μ2, . . . , μn ∈ [0, 1]D, is called a factoraggregation operator
corresponding to ρ.

Relation ρ factorizesD into the classes of equivalence. Operator Ãρ aggregates
fuzzy sets μ1, μ2, . . . , μn in accordance with these classes of equivalence. In this
construction for evaluation of Ãρ(μ1, μ2, . . . , μn)(x) we take the supremum of
aggregation A of values μ1(u), μ2(u), . . . , μn(u) on the set of all points u, which
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are equivalent to x with respect to ρ, i.e. we consider all elements u ∈ D such
that (u, x) ∈ ρ.

In our previous papers [7, 8] this construction was used for the analysis of
solving parameters for bilevel linear programming problems with one objective
on the upper level PU with the higher priority in optimization than multiple
objectives on the lower level PL = (PL

1 , PL
2 , ..., PL

n ):

PU : y0(x) = c01x1 + c02x2 + ...+ c0kxk −→ min

PL
i : yi(x) = ci1x1 + ci2x2 + ...+ cikxk −→ min, i = 1, n

D :

{
aj1x1 + aj2x2 + ...+ ajkxk ≤ bj , j = 1,m,

xl ≥ 0, l = 1, k,

where k, l,m, n ∈ N, ajl, bj, cil ∈ R, j = 1,m, l = 1, k, i = 0, n,
and x = (x1, ..., xk) ∈ Rk, D ⊂ Rk is non-empty and bounded.

The factoraggregation was applied to the membership functions of the objec-
tives, which characterise how the corresponding objective function is close to its
optimal value (see [11]):

μi(x) =

⎧⎪⎪⎨⎪⎪⎩
1, yi(x) < ymin

i ,
yi(x) − ymax

i

ymin
i − ymax

i

, ymin
i ≤ yi(x) ≤ ymax

i ,

0, yi(x) > ymax
i ,

where ymin
i and ymax

i are the individual minimum and the individual maximum
of the objective yi subject to the given constraints, i = 0, n. The introduced
operator aggregates the membership functions on the lower level considering the
classes of equivalence generated by the membership function on the upper level:

Ã(μ1, μ2, ..., μn)(x) = max
μ0(x)=μ0(u)

A(μ1(u), μ2(u), ..., μn(u)), x ∈ D.

In this case μ0 generates the equivalence relation ρμ0 :

(u, v) ∈ ρμ0 ⇐⇒ μ0(u) = μ0(v).

The role of this equivalence in the construction of factoraggregation follows from
the hierarchy between the objectives, it was explained in details in [7, 8].

The factoraggregation operator (1) is a general aggregation operator. In the
next section we generalize this construction by using a t-norm T and a T -fuzzy
equivalence relation E instead of the crisp one.

3 Generalization of Factoraggregation

In order to generalize the concept of factoraggregation we recall the definition
of a T -fuzzy equivalence relation. Fuzzy equivalence relations were introduced in
1971 by L.A. Zadeh [10] for the strongest t-norm TM and later were developed
and applied by several authors in more general cases.
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Definition 4. Let T be a t-norm and E be a fuzzy relation on a set D, i.e. E
is a fuzzy subset of D ×D. A fuzzy relation E is a T -fuzzy equivalence relation
if and only if for all x, y, z ∈ D it holds

(E1) E(x, x) = 1 (reflexivity);
(E2) E(x, y) = E(y, x) (symmetry);
(E3) T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

We modify the construction (1) by using a T -fuzzy equivalence relation in order
to obtain a T -fuzzy generalization of factoraggregation.

Definition 5. Let A : [0, 1]n → [0, 1] be an ordinary aggregation operator, T be
a t-norm and E be a T -fuzzy equivalence relation defined on D. An operator

ÃE,T : ([0, 1]D)n → [0, 1]D

such as

ÃE,T (μ1, μ2, . . . , μn)(x) = sup
u∈D

T (E(x, u), A(μ1(u), μ2(u), . . . , μn(u))), (2)

where x ∈ D and μ1, μ2, . . . , μn ∈ [0, 1]D, is called a generalized T -fuzzy factor-
aggregation corresponding to E.

Let us note that in the case of crisp equivalence relations, i.e. when E = Eρ

for an equivalence relation ρ, where

Eρ(x, y) =

{
1, (x, y) ∈ ρ,

0, (x, y) /∈ ρ,

we obtain ÃEρ,T = Ãρ (see (1)):

ÃEρ,T (μ1, μ2, . . . , μn)(x) = sup
u∈D

T (Eρ(x, u), A(μ1(u), μ2(u), . . . , μn(u)))

= sup
u∈D:(u,x)∈ρ

T (1, A(μ1(u), μ2(u), . . . , μn(u)))

= sup
u∈D:(u,x)∈ρ

A(μ1(u), μ2(u), . . . , μn(u)) = Ãρ(μ1, μ2, . . . , μn)(x).

Let us prove that the construction (2) gives us a general aggregation operator.
We must show that conditions (Ã1), (Ã2) and (Ã3) are satisfied.

Proposition 1. Let A : [0, 1]n → [0, 1] be an ordinary aggregation operator, T
be a t-norm and E be a T -fuzzy equivalence relation defined on D. Operator
ÃE,T given by (2) is a general aggregation operator.

Proof. First we prove the boundary conditions:
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1)

ÃE,T (0̃, . . . , 0̃)(x) = sup
u∈D

T (E(x, u), A(0̃(u), . . . , 0̃(u)))

= sup
u∈D

T (E(x, u), A(0, . . . , 0)) = sup
u∈D

T (E(x, u), 0) = 0̃(x);

2)

ÃE,T (1̃, . . . , 1̃)(x) = sup
u∈D

T (E(x, u), A(1̃(u), . . . , 1̃(u)))

= sup
u∈D

T (E(x, u), A(1, . . . , 1)) = sup
u∈D

T (E(x, u), 1) = sup
u∈D

E(x, u) = 1̃(x).

To prove the monotonicity of ÃE,T we use the monotonicity of A and T :

μi . ηi, i = 1, 2, . . . , n

=⇒ A(μ1(u), . . . , μn(u)) ≤ A(η1(u), . . . , ηn(u)) for all u ∈ D

=⇒ T (E(x, u), A(μ1(u), . . . , μn(u))) ≤ T (E(x, u), A(η1(u), . . . , ηn(u)))

for all x ∈ D and for all u ∈ D

=⇒ sup
u∈D

T (E(x, u), A(μ1(u), . . . , μn(u)))

≤ sup
u∈D

T (E(x, u), A(η1(u), . . . , ηn(u))) for all x ∈ D

=⇒ ÃE,T (μ1, . . . , μn) . ÃE,T (η1, . . . , ηn).

Now we illustrate the generalized T -fuzzy factoraggregation on some particu-
lar numerical example. Here and throughout the paper the numerical inputs are
taken from [5].

Let us consider the discrete universe D = {x1, x2, x3, x4, x5} and the following
TM -fuzzy equivalence relation E in matrix form, where TM is the minimum t-
norm:

E =

⎛⎜⎜⎜⎜⎝
1 0.9 0.7 0.4 0.2
0.9 1 0.7 0.4 0.2
0.7 0.7 1 0.4 0.2
0.4 0.4 0.4 1 0.2
0.2 0.2 0.2 0.2 1

⎞⎟⎟⎟⎟⎠ .

This equivalence relation is also TL-transitive and TP -transitive, i.e. transitive
with respect to the Lukasiewicz t-norm TL and product t-norm TP respectively.

Let us take the following fuzzy subsets of D:

μ1 =

⎛⎜⎜⎜⎜⎝
0.9
0.5
0.6
0.8
0.3

⎞⎟⎟⎟⎟⎠ , μ2 =

⎛⎜⎜⎜⎜⎝
0.2
0
0.2
0.6
0.9

⎞⎟⎟⎟⎟⎠ , μ3 =

⎛⎜⎜⎜⎜⎝
0.7
0.5
0.1
0.8
0.6

⎞⎟⎟⎟⎟⎠ , μ4 =

⎛⎜⎜⎜⎜⎝
0.1
0.9
0.2
0.8
0.5

⎞⎟⎟⎟⎟⎠ .
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Now we consider the minimum aggregation operator A = MIN and obtain the
following generalized T -fuzzy factoraggregation:

ÃE,T (μ1, μ2, μ3, μ4)(x) = max
u∈D

T (E(x, u),min(μ1(u), μ2(u), μ3(u), μ4(u))).

Taking T = TL, T = TM and T = TP as a result we obtain the fuzzy subsets
μTL , μTM and μTP respectively:

μTL =

⎛⎜⎜⎜⎜⎝
0.1
0
0.1
0.6
0.3

⎞⎟⎟⎟⎟⎠ , μTM =

⎛⎜⎜⎜⎜⎝
0.4
0.4
0.4
0.6
0.3

⎞⎟⎟⎟⎟⎠ , μTP =

⎛⎜⎜⎜⎜⎝
0.24
0.24
0.24
0.6
0.3

⎞⎟⎟⎟⎟⎠ .

Similarly, taking A = AV G, T = TL, T = TM and T = TP we obtain the
following fuzzy subsets:

μTL =

⎛⎜⎜⎜⎜⎝
0.5
0.5
0.3
0.8
0.6

⎞⎟⎟⎟⎟⎠ , μTM =

⎛⎜⎜⎜⎜⎝
0.5
0.5
0.5
0.8
0.6

⎞⎟⎟⎟⎟⎠ , μTP =

⎛⎜⎜⎜⎜⎝
0.5
0.5
0.3
0.8
0.6

⎞⎟⎟⎟⎟⎠ .

4 Construction of Extensional Fuzzy Sets

Dealing with fuzzy equivalence relations usually extensional fuzzy sets attracts
an additional attention. These sets correspond to the fuzzification of classical
classes of equivalence, they play the role of fuzzy equivalence classes altogether
with their intersections and unions.

Definition 6. Let T be a t-norm and E be a T -fuzzy equivalence relation on a
set D. A fuzzy subset μ ∈ [0, 1]D is called extensional with respect to E if and
only if:

T (E(x, y), μ(y)) ≤ μ(x) for all x, y ∈ D.

Let us show that we can obtain extensional fuzzy sets as a result of generalized
T -fuzzy factoraggregation. It is important that the result of generalized T -fuzzy
factoraggregation corresponding to E is extensional with respect to E even in
the case, when aggregated fuzzy sets are not extensional.

Proposition 2. Let T be a lower semi-continuous t-norm and E be a T -fuzzy
equivalence relation on a set D. Then fuzzy set ÃE,T (μ1, μ2, . . . , μn) is exten-
sional with respect to E for each n ∈ N and for all fuzzy sets μ1, ..., μn ∈ [0, 1]D.

Proof. We prove the following inequality

T (E(x, y), ÃE,T (μ1, μ2, . . . , μn)(y)) ≤ ÃE,T (μ1, μ2, . . . , μn)(x)
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for all x, y ∈ D:

T (E(x, y), ÃE,T (μ1, μ2, . . . , μn)(y))

= T (E(x, y), sup
u∈D

T (E(y, u), A(μ1(u), μ2(u), . . . , μn(u))))

= sup
u∈D

T (E(x, y), T (E(y, u), A(μ1(u), μ2(u), . . . , μn(u))))

= sup
u∈D

T (T (E(x, y), E(y, u)), A(μ1(u), μ2(u), . . . , μn(u)))

≤ sup
u∈D

T (E(x, u), A(μ1(u), μ2(u), . . . , μn(u)))

= ÃE,T (μ1, μ2, . . . , μn)(x).

And now we will propose a method to approximate an arbitrary fuzzy set by
an extensional one. We recall two approximation operators φE and ψE , which
appear in a natural way in the theory of fuzzy rough sets (see e.g. [6]). Fuzzy sets
φE(μ) and ψE(μ) were introduced to provide upper and lower approximation of
a fuzzy set μ by extensional fuzzy sets with respect to fuzzy equivalence relation
E.

Definition 7. Let T be a lower semi-continuous t-norm and E be a T -fuzzy
equivalence relation on a set D.
The maps φE : [0, 1]D → [0, 1]D and ψE : [0, 1]D → [0, 1]D are defined by:

φE(μ)(x) = sup
y∈D

T (E(x, y), μ(y)), ψE(μ)(x) = inf
y∈D

−→
T (E(x, y)|μ(y))

for all x ∈ D and for all μ ∈ [0, 1]D, where
−→
T is the residuation of T defined for

all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1] | T (α, x) ≤ y}.

The approximations φE(μ) and ψE(μ) in general are not the best approxi-
mations of μ by extensional fuzzy subsets. It is important to understand how
φE(μ) and ψE(μ) should be aggregated to obtain an aggregation with good ap-
proximative properties. In [5] the authors provided and compared two methods
for Archimedean t-norms: one is by taking the weighted quasi-arithmetic mean
of φE(μ) and ψE(μ) and another by taking powers with respect to a t-norm of
lower approximation ψ(μ). Unfortunately, the proposed methods could not be
applied in the case when t-norm T does not satisfy the required restrictions.

It is easy to show that by taking an arbitrary aggregation of φE(μ) and ψE(μ)
we will not necessary obtain an extensional fuzzy set. If we take the following
TM -fuzzy equivalence relation E′ and fuzzy set μ′ to approximate:

E′ =

(
1 0.7
0.7 1

)
, μ′ =

(
0.2
0.8

)
,
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and apply the arithmetic mean aggregation operator AV G to upper and lower
approximations φE′(μ′) and ψE′(μ′), then the result

μ̃′ =

(
0.45
0.5

)
is not extensional with respect to E′.

Our approach is to apply to φE(μ) and ψE(μ) the generalized T -fuzzy fac-
toraggregation corresponding to E, thus obtaining an approximation of μ by
extensional fuzzy subset

ÃE,T (φE(μ), ψE(μ)).

As ordinary aggregation operator A one should take an aggregation operator,
which satisfies the property of internality (or compensation) (see e.g. [3]). In the
case when A = MAX we obtain the upper approximation:

ÃE,TM (φE(μ), ψE(μ))(x) = φE(μ).

By analogy, in the case when A = MIN we obtain the lower approximation:

ÃE,TM (φE(μ), ψE(μ))(x) = ψE(μ).

Now we will illustrate our approach with several examples. Let us consider E
and fuzzy sets μ1, μ2, μ3, μ4 from the previous section. In the case of finite D to
evaluate the error of approximation we use the Euclidean distance between an
original fuzzy set μ ∈ [0, 1]D and the result of factoraggregation:

dT (A, μ) = ‖μ− ÃE,T (φE(μ), ψE(μ))‖.

For example, by taking T = TM and A = AV G and applying the correspond-
ing factoraggregation ÃE,TM (φE(μ), ψE(μ)), we obtain the approximations of
fuzzy sets μ1, μ2, μ3, μ4, and then evaluate dTM (AV G, μi) and compare with
dTM (MAX,μi), dTM (MIN, μi) for different i:

dTM (MAX,μ1) = 0.4123, dTM (MIN, μ1) = 0.4123, dTM (AV G, μ1) = 0.3000,

dTM (MAX,μ2) = 0.4899, dTM (MIN, μ2) = 1.1180, dTM (AV G, μ2) = 0.6344,

dTM (MAX,μ3) = 0.6325, dTM (MIN, μ3) = 1.1225, dTM (AV G, μ3) = 0.6124,

dTM (MAX,μ4) = 0.9434, dTM (MIN, μ4) = 1.1402, dTM (AV G, μ4) = 0.7566.

The approximation by factoraggregation of φE(μ) and ψE(μ) for some initial
fuzzy sets provides better results than upper and lower approximations and
could be improved by involving weights into averaging operator. The problem of
choosing optimal weights remains beyond the frames of this paper.

Next we take T = TL and A = MAX , A = MIN , A = AV G, and evaluate
the approximation errors:

dTL(MAX,μ1) = 0.3000, dTL(MIN, μ1) = 0.3000, dTL(AV G, μ1) = 0.2121,
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dTL(MAX,μ2) = 0.1000, dTL(MIN, μ2) = 0.1414, dTL(AV G, μ2) = 0.0866,

dTL(MAX,μ3) = 0.3162, dTL(MIN, μ3) = 0.3317, dTL(AV G, μ3) = 0.2179,

dTL(MAX,μ4) = 0.8062, dTL(MIN, μ4) = 0.7071, dTL(AV G, μ4) = 0.5362.

As one can see, the smallest errors for all the given sets are obtained for the ag-
gregation A = AV G, and these results are comparable with the approximations
obtained in [5].

Our approach has been tested for one particular fuzzy equivalence relation E
and for four fuzzy subsets of the discrete universe. A deeper analysis should be
performed to make a conclusion on approximative properties of factoraggregation
depending on the choice of ordinary aggregation operatorA. Our future work will
focus on the problem of choosing optimal weights considering approximations by
generalized factoraggregation based on weighted averaging operators.
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1 Introduction

Let X,Y be nonempty sets (e.g., nontrivial real intervals) and let F : X∗ → Y be
a varying-arity function, where X∗ = ∪n�0X

n. The n-th component Fn of F is
the restriction of F to Xn, i.e., Fn = F |Xn . We convey that X0 = {ε} and that
F0(ε) = ε, where ε denotes the 0-tuple. For tuples x = (x1, . . . , xn) and y =
(y1, . . . , ym) in X∗, the notation F (x,y) stands for F (x1, . . . , xn, y1, . . . , ym),
and similarly for more than two tuples. The length |x| of a tuple x ∈ X∗ is a
nonnegative integer defined in the usual way: we have |x| = n if and only if
x ∈ Xn.

In this note we are first interested in the associativity property for varying-
arity functions. Actually, there are different equivalent definitions of this prop-
erty (see, e.g., [6, 7, 11, 13, 15]). Here we use the one introduced in [15, p. 24].

Definition 1 ( [15]). A function F : X∗ → X is said to be associative if for
every x,y, z ∈ X∗ we have F (x,y, z) = F (x, F (y), z).

As an example, the real-valued function F : IR∗ → IR defined by Fn(x) =∑n
i=1 xi is associative.
Associative varying-arity functions are closely related to associative binary

functions G : X2 → X , which are defined as the solutions of the functional
equation

G(G(x, y), z) = G(x,G(y, z)), x, y, z ∈ X.

In fact, we show (Corollary 6) that a binary function G : X2 → X is associative
if and only if there exists an associative function F : X∗ → X such that G = F2.

Based on a recent investigation of associativity (see [7, 8]), we show that an
associative function F : X∗ → X is completely determined by its first two com-
ponents F1 and F2. We also provide necessary and sufficient conditions on the

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 327–334, 2014.
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components F1 and F2 for a function F : X∗ → X to be associative (Theorem 7).
These results are gathered in Section 3.

The main aim of this note is to introduce and investigate the following gen-
eralization of associativity, called preassociativity.

Definition 2. We say that a function F : X∗ → Y is preassociative if for every
x,y,y′, z ∈ X∗ we have

F (y) = F (y′) ⇒ F (x,y, z) = F (x,y′, z).

For instance, any real-valued function F : IR∗ → IR defined as Fn(x) =
f(
∑n

i=1 xi) for every n ∈ IN, where f : IR → IR is a continuous and strictly
increasing function, is preassociative.

It is immediate to see that any associative function F : X∗ → X necessarily
satisfies the equation F1◦F = F (take x = ε and z = ε in Definition 1). Actually,
we show (Proposition 8) that a function F : X∗ → X is associative if and only
if it is preassociative and satisfies F1 ◦ F = F .

It is noteworthy that, contrary to associativity, preassociativity does not in-
volve any composition of functions and hence allows us to consider a codomain Y
that may differ from the domain X . For instance, the length function F : X∗ →
IR defined as F (x) = |x| is preassociative.

In this note we mainly focus on those preassociative functions F : X∗ → Y
for which F1 and F have the same range. (When Y = X , the latter condition is
an immediate consequence of the condition F1 ◦F = F and hence those preasso-
ciative functions include the associative ones). Similarly to associative functions,
we show that those functions are completely determined by their first two com-
ponents (Proposition 12) and we provide necessary and sufficient conditions on
the components F1 and F2 for a function F : X∗ → Y to be preassociative and
have the same range as F1 (Theorem 15). We also give a description of these
functions as compositions of the form F = f ◦H , where H : X∗ → X is associa-
tive and f : ran(H)→ Y is one-to-one (Theorem 13). This is done in Section 4.
Finally, in Section 5 we focus on some noteworthy axiomatized classes of asso-
ciative functions and show how they can be extended to classes of preassociative
functions.

The terminology used throughout this paper is the following. We denote by
IN the set {1, 2, 3, . . .} of strictly positive integers. The domain and range of any
function f are denoted by dom(f) and ran(f), respectively. The identity function
is the function id: X → X defined by id(x) = x.

The proofs of our results have intentionally been omitted due to space limi-
tation but will be available in an extended version of this note.

2 Preliminaries

Recall that a function F : Xn → X is said to be idempotent (see, e.g., [11]) if
F (x, . . . , x) = x for every x ∈ X . A function F : X∗ → X is said to be idempotent
if Fn is idempotent for every n ∈ IN.
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We now introduce the following definitions. We say that F : X∗ → X is unarily
idempotent if F1(x) = x for every x ∈ X , i.e., F1 = id. We say that F : X∗ → X
is unarily range-idempotent if F (x) = x for every x ∈ ran(F ), or equivalently,
F1 ◦ F = F . We say that F : X∗ → Y is unarily quasi-range-idempotent if
ran(F1) = ran(F ). Since this property is a consequence of the condition F1 ◦F =
F , we see that unarily range-idempotent functions are necessarily unarily quasi-
range-idempotent.

We now show that any unarily quasi-range-idempotent function F : X∗ → Y
can always be factorized as F = F1 ◦H , where H : X∗ → X is a unarily range-
idempotent function. First recall that a function g is a quasi-inverse [17, Sect. 2.1]
of a function f if

f ◦ g|ran(f) = id|ran(f),
ran(g|ran(f)) = ran(g).

For any function f , denote by Q(f) the set of its quasi-inverses. This set is
nonempty whenever we assume the Axiom of Choice (AC), which is actually just
another form of the statement “every function has a quasi-inverse.”

Proposition 3. Assume AC and let F : X∗ → Y be a unarily quasi-range-
idempotent function. For any g ∈ Q(F1), the function H : X∗ → X defined as
H = g ◦ F is a unarily range-idempotent solution of the equation F = F1 ◦H.

3 Associative Functions

As observed in [15, p. 25] (see also [5, p. 15] and [11, p. 33]), associative functions
F : X∗ → X are completely determined by their unary and binary components.
Indeed, by associativity we have

Fn(x1, . . . , xn) = F2(Fn−1(x1, . . . , xn−1), xn), n � 3, (1)

or equivalently,

Fn(x1, . . . , xn) = F2(F2(. . . F2(F2(x1, x2), x3) . . .), xn), n � 3. (2)

We state this immediate result as follows.

Proposition 4. Let F : X∗ → X and G : X∗ → X be two associative functions
such that F1 = G1 and F2 = G2. Then F = G.

A natural and important question now arises: Find necessary and sufficient
conditions on the components F1 and F2 for a function F : X∗ → X to be
associative. To answer this question we first yield the following characterization
of associative functions.

Theorem 5. A function F : X∗ → X is associative if and only if

(i) F1 ◦ F1 = F1 and F1 ◦ F2 = F2,
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(ii) F2(x1, x2) = F2(F1(x1), x2) = F2(x1, F1(x2)),
(iii) F2 is associative, and
(iv) condition (1) or (2) holds.

Corollary 6. A binary function F : X2 → X is associative if and only if there
exists an associative function G : X∗ → X such that F = G2.

Theorem 5 enables us to answer the question raised above. We state the result
in the following theorem.

Theorem 7. Let F1 : X → X and F2 : X
2 → X be two functions. Then there

exists an associative function G : X∗ → X such that G1 = F1 and G2 = F2

if and only if conditions (i)–(iii) of Theorem 5 hold. Such a function G is then
uniquely determined by Gn(x1, . . . , xn) = G2(Gn−1(x1, . . . , xn−1), xn) for n � 3.

Thus, two functions F1 : X → X and F2 : X
2 → X are the unary and binary

components of an associative function F : X∗ → X if and only if these functions
satisfy conditions (i)–(iii) of Theorem 5. In the case when only a binary func-
tion F2 is given, any unary function F1 satisfying conditions (i) and (ii) can be
considered, for instance the identity function. Note that it may happen that the
identity function is the sole possibility for F1, for instance when we consider the
binary function F2 : IR

2 → IR defined by F2(x1, x2) = x1+x2. However, there are
examples where F1 may differ from the identity function. For instance, for any
real number p � 1, the p-norm F : IR∗ → IR defined by Fn(x) = (

∑n
i=1 |xi|p)1/p

is associative but not unarily idempotent (here |x| denotes the absolute value of
x). Of course an associative function F that is not unarily idempotent can be
made unarily idempotent simply by setting F1 = id. By Theorem 5 the resulting
function is still associative.

4 Preassociative Functions

In this section we investigate the preassociativity property (see Definition 2) and
describe certain classes of preassociative functions.

As mentioned in the introduction, any associative function F : X∗ → X is
preassociative. More precisely, we have the following result.

Proposition 8. A function F : X∗ → X is associative if and only if it is pre-
associative and unarily range-idempotent (i.e., F1 ◦ F = F ).

Remark 9. The function F : IR∗ → IR defined as Fn(x) = 2
∑n

i=1 xi is an in-
stance of preassociative function which is not associative.

Let us now see how new preassociative functions can be generated from given
preassociative functions by left and right compositions with unary maps.

Proposition 10 (Right composition). If F : X∗ → Y is preassociative then,
for every function g : X → X, the function H : X∗ → Y , defined as Hn =
Fn ◦ (g, . . . , g) for every n ∈ IN, is preassociative. For instance, the squared
distance function F : IR∗ → IR defined as Fn(x) =

∑n
i=1 x

2
i is preassociative.
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Proposition 11 (Left composition). Let F : X∗ → Y be a preassociative
function and let g : Y → Y be a function. If g|ran(F ) is constant or one-to-
one, then the function H : X∗ → Y defined as H = g ◦ F is preassociative.
For instance, the function F : IR∗ → IR defined as Fn(x) = exp(

∑n
i=1 xi) is

preassociative.

We now focus on those preassociative functions which are unarily quasi-range-
idempotent, that is, such that ran(F1) = ran(F ). As we will now show, this
special class of functions has interesting properties. First of all, just as for as-
sociative functions, preassociative and unarily quasi-range-idempotent functions
are completely determined by their unary and binary components.

Proposition 12. Let F : X∗ → Y and G : X∗ → Y be preassociative and unar-
ily quasi-range-idempotent functions such that F1 = G1 and F2 = G2, then
F = G.

We now give a description of the preassociative and unarily quasi-range-idem-
potent functions as compositions of associative functions with unary maps.

Theorem 13. Assume AC and let F : X∗ → Y be a function. The following
assertions are equivalent.

(i) F is preassociative and unarily quasi-range-idempotent.
(ii) There exists an associative function H : X∗ → X and a one-to-one function

f : ran(H)→ Y such that F = f ◦H. In this case we have F = F1 ◦H, f =
F1|ran(H), f

−1 ∈ Q(F1), and we may choose H = g ◦ F for any g ∈ Q(F1).

Remark 14. If condition (ii) of Theorem 13 holds, then by (1) we see that F can
be computed recursively by

Fn(x1, . . . , xn) = F2((f
−1 ◦ Fn−1)(x1, . . . , xn−1), xn), n � 3.

A similar observation was already made in a more particular setting for the
so-called quasi-associative functions, see [18].

We now provide necessary and sufficient conditions on the unary and binary
components for a function F : X∗ → X to be preassociative and unarily quasi-
range-idempotent. We have the following two results.

Theorem 15. Assume AC. A function F : X∗ → Y is preassociative and unar-
ily quasi-range-idempotent if and only if ran(F2) ⊆ ran(F1) and there exists
g ∈ Q(F1) such that

(i) H2(x1, x2) = H2(H1(x1), x2) = H2(x1, H1(x2)),
(ii) H2 is associative, and
(iii) the following holds

Fn(x1, . . . , xn) = F2((g ◦ Fn−1)(x1, . . . , xn−1), xn), n � 3,

or equivalently,

Fn(x1, . . . , xn) = F2(H2(. . . H2(H2(x1, x2), x3) . . .), xn), n � 3,
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where H1 = g ◦ F1 and H2 = g ◦ F2.

Theorem 16. Assume AC and let F1 : X → Y and F2 : X
2 → Y be two

functions. Then there exists a preassociative and unarily quasi-range-idempotent
function G : X∗ → Y such that G1 = F1 and G2 = F2 if and only if ran(F2) ⊆
ran(F1) and there exists g ∈ Q(F1) such that conditions (i) and (ii) of Theo-
rem 15 hold, where H1 = g ◦ F1 and H2 = g ◦ F2. Such a function G is then
uniquely determined by Gn(x1, . . . , xn) = G2((g ◦ Gn−1)(x1, . . . , xn−1), xn) for
n � 3.

5 Axiomatizations of Some Function Classes

In this section we derive axiomatizations of classes of preassociative functions
from certain existing axiomatizations of classes of associative functions. We re-
strict ourselves to a small number of classes. Further axiomatizations can be
derived from known classes of associative functions.

5.1 Preassociative Functions Built from Aczélian Semigroups

Let us recall an axiomatization of the Aczélian semigroups due to Aczél [1] (see
also [2, 8, 9]).

Proposition 17 ( [1]). Let I be a nontrivial real interval (i.e., nonempty and
not a singleton). A function H : I2 → I is continuous, one-to-one in each ar-
gument, and associative if and only if there exists a continuous and strictly
monotonic function ϕ : I → J such that

H(xy) = ϕ−1 (ϕ(x) + ϕ(y)) ,

where J is a real interval of one of the forms ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or
IR = ]−∞,∞[ (b � 0 � a). For such a function H, the interval I is necessarily
open at least on one end. Moreover, ϕ can be chosen to be strictly increasing.

Proposition 17 can be extended to preassociative functions as follows.

Theorem 18. Let I be a nontrivial real interval (i.e., nonempty and not a
singleton). A function F : I∗ → IR is preassociative and unarily quasi-range-
idempotent, and F1 and F2 are continuous and one-to-one in each argument if
and only if there exist continuous and strictly monotonic functions ϕ : I → J
and ψ : J → IR such that

Fn(x) = ψ(ϕ(x1) + · · ·+ ϕ(xn)), n ∈ IN,

where J is a real interval of one of the forms ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or
IR = ]−∞,∞[ (b � 0 � a). For such a function F , we have ψ = F1 ◦ ϕ−1 and I
is necessarily open at least on one end. Moreover, ϕ can be chosen to be strictly
increasing.
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5.2 Preassociative Functions Built from t-norms and Related
Functions

Recall that a t-norm (resp. t-conorm) is a function H : [0, 1]2 → [0, 1] which is
nondecreasing in each argument, symmetric, associative, and such thatH(1, x) =
x (resp. H(0, x) = x) for every x ∈ [0, 1]. Also, a uninorm is a function
H : [0, 1]2 → [0, 1] which is nondecreasing in each argument, symmetric, asso-
ciative, and such that there exists e ∈ ]0, 1[ for which H(e, x) = x for every
x ∈ [0, 1]. For general background see, e.g., [3, 10–13,17].

T-norms can be extended to preassociative functions as follows.

Theorem 19. Let F : [0, 1]∗ → IR be a function such that F1 is strictly increas-
ing (resp. strictly decreasing). Then F is preassociative and unarily quasi-range-
idempotent, and F2 is symmetric, nondecreasing (resp. nonincreasing) in each
argument, and satisfies F2(1, x) = F1(x) for every x ∈ [0, 1] if and only if there
exists a strictly increasing (resp. strictly decreasing) function f : [0, 1]→ IR and
a t-norm H : [0, 1]∗ → [0, 1] such that F = f ◦H. In this case we have f = F1.

If we replace the condition “F2(1, x) = F1(x)” in Theorem 19 with “F2(0, x) =
F1(x)” (resp. “F2(e, x) = F1(x) for some e ∈ ]0, 1[”), then the result still holds
provided that the t-norm is replaced with a t-conorm (resp. a uninorm).

5.3 Preassociative Functions Built from Ling’s Axiomatizations

Recall an axiomatization due to Ling [14]; see also [4, 16].

Proposition 20 ( [14]). Let [a, b] be a real closed interval, with a < b. A
function H : [a, b]2 → [a, b] is continuous, nondecreasing in each argument, as-
sociative, and such that H(b, x) = x for all x ∈ [a, b] and H(x, x) < x for all
x ∈ ]a, b[, if and only if there exists a continuous and strictly decreasing function
ϕ : [a, b]→ [0,∞[, with ϕ(b) = 0, such that

H(xy) = ϕ−1(min{ϕ(x) + ϕ(y), ϕ(a)}).

Proposition 20 can be extended to preassociative functions as follows.

Theorem 21. Let [a, b] be a real closed interval and let F : [a, b]∗ → IR be a
function such that F1 is strictly increasing (resp. strictly decreasing). Then F
is unarily quasi-range idempotent and preassociative, and F2 is continuous and
nondecreasing (resp. nonincreasing) in each argument, F2(b, x) = F1(x) for every
x ∈ [a, b], F2(x, x) < F1(x) (resp. F2(x, x) > F1(x)) for every x ∈ ]a, b[ if
and only if there exists a continuous and strictly decreasing function ϕ : [a, b]→
[0,∞[, with ϕ(b) = 0, and a strictly decreasing (resp. strictly increasing) function
ψ : [0, ϕ(a)]→ IR such that

Fn(x) = ψ(min{ϕ(x1) + · · ·+ ϕ(xn), ϕ(a)}).

For such a function, we have ψ = F1 ◦ ϕ−1.
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Abstract. To provide in-time reactions to a large volume of surveillance
data, uncertainty-enabled event reasoning frameworks for closed-circuit
television and sensor based intelligent surveillance system have been in-
tegrated to model and infer events of interest. However, most of the
existing works do not consider decision making under uncertainty which
is important for surveillance operators. In this paper, we extend an event
reasoning framework for decision support, which enables our framework
to predict, rank and alarm threats from multiple heterogeneous sources.

1 Introduction

In recent years, intelligent surveillance systems have received significant atten-
tions for public safety due to the increasing threat of terrorist attack, anti-social
and criminal behaviors in the present world. In order to analyze a large volume
of surveillance data, in the literature, there are a couple of event modeling and
reasoning systems. For example, Finite State Machines [5], Bayesian Networks
[3], and Event composition with imperfect information [10,11], etc.

However, the decision support issue has not been properly addressed, espe-
cially on how to rank the potential threats of multiple suspects and then focus on
some of the suspects for further appropriate actions (taking immediate actions
or reenforced monitoring, etc.) based on imperfect and conflicting information
from different sources. This problem is extremely important in the sense that
in real-world situations, a security operator is likely to make decisions under a
condition that the security resources are limited whilst several malicious behav-
iors happen simultaneously. Consider an airport scenario, a surveillance system
detects that there is a very high chance that two young people are fighting in the
shopping area, and at the same time, there are a medium chance that a person
may leave a bomb in airport terminal 1. Now suppose there is only one security
team available at that moment, which security problem should be first presented
to the security team?

In order to address this problem, in this paper, we extend the event model-
ing framework [10,11] with a decision support model for distributed intelligent
surveillance systems, using a multi-criteria fusion architecture. More specifically,
based on Dempster-Shafer (D-S) theory [14], we first improve the event model-
ing framework proposed in [10,11] to handle the multi-criteria event modeling.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 335–344, 2014.
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Then we use a normalized version of the Hurwicz’s criterion [4] to obtain the
degree of potential threat of each suspect (or suspects if they work as a team)
with respect to each criterion. Finally, according to some background knowledge
in surveillance, we apply a weighted aggregation operation to obtain the overall
degree of potential threat for each suspect after considering all related criteria,
from which we can set the priority for each subject.

This paper advances the state of the art on information analysis for intelli-
gent surveillance systems in the following aspects. (i) We identify two factors
that influence the potential threats in surveillance system: belief and utility. (ii)
We propose an event modeling and reasoning framework to estimate the poten-
tial threats based on heterogeneous information from multiple sources. (iii) We
introduce a weighted aggregation operator to combine the degrees of potential
threats of each criterion and give an overall estimation to each subject.

The rest of this paper is organized as follows. Section 2 recaps D-S theory and
the event modeling framework in [10,11]. Section 3 extends the event modeling
framework in [10,11] to handle the multi-criteria issue. Section 4 develops a
decision support model with an aggregation operator to handle the problem of
judging the degrees of potential threats for multiple suspects. Sections 5 provides
a case study to illustrate the usefulness of our model. Finally, Section 6 discusses
the related work and concludes the paper with future work.

2 Preliminaries

This section recaps some basic concepts in D-S theory [14].

Definition 1. Let Θ be a set of exhaustive and mutually exclusive elements,
called a frame of discernment (or simple a frame). Function m : 2Θ→ [0, 1] is a
mass function if m(∅) =0 and

∑
A⊆Θ m(A)=1.

One advantage of D-S theory is that it provides a method to accumulate and
combine evidence from multiple sources by using Dempster combination rule:

Definition 2 (Dempster combination rule). Let m1 and m2 be two mass
functions over a frame of discernment Θ. Then Dempster combination rule
m12 = m1

⊕
m2 is given by:

m12(x) =

⎧⎪⎨⎪⎩
0 if x = ∅∑

Ai
⋂

Bj=x

m1(Ai)m2(Bj)

1−
∑

Ai
⋂

Bj=∅
m1(Ai)m2(Bj)

if x �= ∅ (1)

In order to reflect the reliability of evidence, a Discount rate was introduced
by which a mass function can be discounted [8]:

Definition 3. Let m be a mass function over frame Θ and τ (0 ≤ τ ≤ 1) be a
discount rate, then the discounted mass function mτ is defined as:

mτ (A) =

{
(1− τ)m(A) if A ⊂ Θ
τ + (1− τ)m(Θ) if A = Θ

(2)
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Finally, in order to reflect the belief distributions from preconditions to the
conclusion in an inference rule, in [9], a modeling and propagation approach was
proposed based on the notion of evidential mapping Γ ∗.

Definition 4. Γ ∗ : 2ΘE → 22
ΘH×[0,1] is an evidential mapping, which estab-

lishes relationships between two frames of discernment ΘE, ΘH , if Γ ∗ assigns a
subset Ei ⊆ ΘE to a set of subset-mass pairs in the following way:

Γ ∗(Ei) = ((Hi1, f(Ei → Hi1)), . . . , (Hit, f(Ei → Hit))) (3)

where Hij ⊆ ΘH , i = 1, . . . , n, j = 1, . . . , t, and f : 2ΘE × 2ΘH → [0, 1]
satisfying: (i) Hij �= ∅, j = 1, . . . , t; (ii) f(Ei → Hij) ≥ 0, j = 1, . . . , t; (iii)
t∑

j=1

f(Ei → Hij) = 1; (iv) Γ ∗(ΘE) = ((ΘH , 1)).

So a piece of evidence on ΘE can be propagated to ΘH through evidential
mapping Γ ∗ as follows:

mΘH (Hj) =
∑
i

mΘE (Ei)f(Ei → Hij). (4)

3 Multiple Criteria Event Modeling Framework

In this section, we extend the event reasoning framework introduced in [10] to
include multi-criteria, in order to allow for better decision making.

Definition 5. In a multi-criteria event modeling framework, an elementary event
e for detecting the potential threats is a tuple (EType, occT, IDs, rb, sig, Criterion,

Weight, IDp, s1 , . . . , sn), where: (i) EType: describes the event type; (ii) occT : a
time point (or duration) for the observed event; (iii) IDs: the source ID for a de-
tected event; (iv) rb: the degree of reliability of a source; (v) sig: the degree of signif-
icance of a given event based on domain knowledge; (vi) Criterion: describes one of
the attributes that can reveal some level of potential threat for a target, such as age,
gender, and so on;1 (vii) Weight: the degree of a criterion’s importance for detect-
ing a potential threat; (viii) IDp: person ID for a detected event; (ix) si: additional
attributes required to define event e.

We can associate an event with a mass value and a utility function for a given
criterion. For example: eg,142 =(FCE, 9 :01pm − 9 :05pm, 42, 0.9, 0.6, gender, 0.2, 13,

mg
42({male})=0.3, Ug) means that for an event type FCE at 9:01pm to 9:05pm,

the gender classification program used by camera 42, whose degree of reliabil-
ity is 0.9, detects that at Foreign Currency Exchange office (FCE), person with
ID = 13 is recognized as male with a certainty of 30%. The significance of this
event is 0.6, the weight of gender criterion for detecting a potential threat is

1 We will use the word “criterion” in this paper to define an attribute that can reveal
some level of potential threat of an observed subject. Therefore, we can distinguish
“criterion” from other attributes, such as person ID, location, etc.
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0.2, and Ug is the utility function that shows the level of potential threat for
the gender criterion. Related events are grouped together to form event clusters
where events in the same cluster share the same event type, occT, Criterion,
IDs, IDp, but may assign different mass values to subsets of the same frame.
For example, two events for the person with ID 13 that are detected by camera
42 at 9:01pm to 9:05pm at FCE with the mass values mg

42({male}) = 0.3 and
mg

42({female, male}) = 0.7 respectively are from the same cluster. Moreover,
The mass items (i.e., the subsets and the mass values on the subsets) of all the
events in an event cluster exactly form a mass function.

Compared with the model in [10], we retain the components EType, sID
and rb, whilst the differences are: (i) we represent events with a time duration,
which is more realistic in real-life applications; (ii) we keep the person ID as
a common attribute, since it is important for surveillance applications; (iii) the
degree of significance in our definition indicates the relative importance of a given
event based on the background information. For example, an event detected in
an area with high crime statistics at midnight is more significant than that in
an area of low-crime in the morning; (iv) in our model, an elementary event
can only have one criterion attribute. For example, a man boards a bus at
8:00am is an elementary event, but a young man boards a bus at 8:00am is
not an elementary event since both age (yonng) and gender (man) are criterion
attributes. In fact, since a classification algorithm only focuses on one criterion
attribute, this semantics of elementary is natural; (v) we introduce the attribute
Weight to reflect the importance of a criterion when determining a potential
threat. For example, age and gender usually are not the critical evidence to
detect the potential threat, while behaviors, such as holding a knife, fighting,
etc., are more important in determining the dangerous level of a subject; (iv)
we introduce the Utility function to distinguish different levels of threats for
the outcomes of each criterion. For example, the threat level of a young person
should be higher than the threat level of an old person.

There might be a set of event clusters that have the same criterion and event
type but with different source IDs or observation times. For example, a person
broads a bus with its back facing camera 4 at 9:15pm and then sits down with its
face partially detected by camera 6 at 9:20pm. Suppose the gender classification
algorithm shows that mg

4({male}) = 0.5 and mg
4({female, male}) = 0.5 by

camera 4 and mg
6({male}) = 0.7 and mg

6({female, male}) = 0.3 by camera 6.
Since these two classification results (in two clusters) refer to the same criterion
about the same subject from different sources, mass functions (after possible
discounting) defined in the two clusters are combined using Dempster’s rule.
When an event is described with a duration, this event can be instantiated at
any time point within this duration, That is, we can replace the duration with
any time point within the duration. This is particularly useful when combining
mass functions from different clusters, since events in these clusters may not
share exactly the same time points or durations, but as long as their durations
overlap, they can be combined. This is an improvement over [10], which cannot
handle such situation. Finally, a combined mass function must assign mass values
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to events in a derived event cluster. In this cluster, every derived event shares the
same EType, sig, Criterion, Weight, IDp, location, Uc as the original events,
but occT , IDs, and rb are the union of those of the original events, respectively.

Now, we consider event inference in our framework. Different from the rule
definition in [10], an inference rule in our framework is defined as a tuple (EType,
Condition,mIET , U IET ), where: (i) mIET in our method is a mass function for
possible intentions of a subject. It means the prediction of the subject’s intention
based on historic data or experts’ judgement when the rule is triggered. For
example, mIET for the event inference rule about loitering in a ticket counter is
a mass function over a frame of discernment {Rob, Wait For Some Friends}.
(ii) We only consider the behavior of the subjects to infer their intentions. Here,
we divide behavior into different categories, such as movements (obtained by
trajectory tracking), relations with objects, relations with peoples (obtained by
the binary spatial relations of objects or people [12]), hand actions to detect a
fight (obtained by 2D locations of the hands), etc.

The reasons of these changes are: (i) It is not reasonable to ask experts to
directly assign the degree of a potential threat without aggregating the factors
that contribute to the threat, such as the significance of an event, the weight of
different attributes, the outcomes of each criterion, etc.. Thus, defining mIET

over the frame of discernment about possible intentions of a subject is more
reasonable than the fixed frame of discernment: {Theart, Not Theart}. (ii) It
can reduce the amount of inference rules since we only consider the behaviors
of the subjects to infer their intentions. (iii) It follows the well-known social
psychology study result that humans can infer the intentions of others through
observations of their behaviors [6].

Finally, since events appeared in the condition of inference rules are themselves
uncertain, we also apply the notion evidential mapping to obtain the mass func-
tions of inferred events as [11]. Here is an example for the event inference rule
in our model about the possible intentions of a subject in the shopping area.

Example 1. The rule describing that a person loitering in the Foreign Currency Ex-
change office (FCE) could be suspicious can be definedas (EType, Conditions,mIPL,
U IPL) where EType is the Intention of Person loitering in FCE; Conditions is
mm

i ({loitering}) > 0.5AND e.location = FCE AND tn− t0 > 10min;mIPL can
be mIPL({Rob}) = 0.5, mIPL({Waiting Friends}) = 0.3, mIPL({Rob,
Waiting Friends}) = 0.2; and U IPL can be U IPL = {u(Rob) = 9, u(Waiting
Friends)=3}.

4 A Multi-criteria System for Threat Ranking

In this section, we will construct a decision support system that can automati-
cally rank the potential threat degree of different subjects in a multiple criteria
surveillance environment under uncertainty.
First, we calculate the degrees of potential threat for each criterion by ex-

tending the approach in [15]:
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Definition 6. For a subject with ID x w.r.t. a given criterion c specified by
mass function mc,x over Θ = {h1, ..., hn}, where hi is a positive value indicating
the utility (level of potential threat) of each possible outcome for criterion c,
its expected utility interval (interval degree of potential threat) is EUIc(x) =
[Ec(x), Ec(x)], where

Ec(x) =
∑
A⊆Θ

mx,c(A)min{hi | hi ∈ A}, Ec(x) =
∑
A⊆Θ

mx,c(A)max{hi | hi ∈ A}.

Second, we apply the transformational form of the Hurwicz’s criterion [4], to
find the point-valued degree of potential threat w.r.t. each criterion:

Definition 7. Let EUIc(x) = [Ec(x), Ec(x)] be an interval-valued expected level
of potential threat of criterion c for subject with ID x, δc(x) = sig be the degree
of significance for the events, then the point-valued degree of potential threat for
subject with ID x w.r.t. criterion c is given by:

νc(x) = (1− δc(x))Ec(x) + δc(x)Ec(x). (5)

Finally, we combine the potential threats w.r.t. each criterion by the following
aggregation operator and then obtain the overall degree of potential threat of
each subject.

Definition 8. Let C be the whole set of related criteria, nuc(x) be the point-
valued degree of potential threat for subject with ID x w.r.t. criterion c, wc be
the weight of each criterion c, and k be the highest utility value for the outcomes
of all criteria, then the overall degree of potential threat for subject x, denoted
as Ox, is given by

Ox =
2
∑

c⊆C wcnuc(x)∑
c⊆C(k + 1)wc

(6)

In fact, Equation (6) is a form of weighting average, where
∑

c⊆C wcnuc(x)
is the overall value that considers the weighting effect of each criterion for the
overall evaluation of potential threat,

∑
c⊆C(k+1)wc/2 is the averaging operator

designed to avoid the situation that the more criteria the surveillance system
detects, the higher value the potential threat is, and (k + 1)/2 can be consider
as an intermediate value to distinguish low threat levels from high threat levels.

Now, we reveal some properties of our model by the following Theorems:

Theorem 1. Let EUIc(x) = [Ec(x), Ec(x)] be an interval-valued expected util-
ity of criterion c for subject x, δc(x) and δ′c(x) be the degrees of significance for
two different surveillance scenarios, and δc(x) ≥ δ′c(x), then νc(x) ≥ ν′c(x).

Proof. By Equation (5), δc(x) ≥ δ′c(x) and E ≥ E, we have:

νc(x) − ν′c(x) = (δc(x) − δ′c(x))(Ec(x)− Ec(x)) > 0. �

From Theorem 1 with δc(x) representing significance, we can see that the
point-valued degree of potential threats w.r.t. each criterion for the subjects
would be higher if the set of events happen in an area with high crime statistics
than that if the set of events happen in a lower crime area.
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Theorem 2. Let EUIc(i) = [Ec(i), Ec(i)] be an interval-valued expected level of
potential threat of the criterion c for subject with ID i (i ∈ {x, y}), and δc(i) be
the degrees of significance for the event of subject with ID i, then the point-valued
degree of potential threat for these two subjects satisfies:

(i) if Ec(x) > Ec(y), then νc(x) > νc(y);
(ii) if Ec(x) > Ec(y), Ec(x) > Ec(y), and δc(x) ≥ δc(y), then νc(x) > νc(y).

Proof. (i) By δc(k) ∈ [0, 1] (k ∈ {x, y}) and Definition 7, we have Ec(k) ≤
νc(k) ≤ Ec(k). As a result, by Ec(x) > Ec(y), we have

νc(x)− νc(y) ≥ Ec(k)− νc(y) ≥ Ec(k)− Ec(y) > 0.

So, item (i) holds.
(ii) When Ec(x)>Ec(y), Ec(x)>Ec(y), and 0≤δc(y)≤δc(x)≤1, we have

νc(x)−νc(y) ≥ (Ec(x)− Ec(y)) + δc(x)(Ec(x) − Ec(x))− δc(x)(Ec(y)− Ec(y))

= (1− δc(x))(Ec(x) − Ec(y)) + δc(x)(Ec(x)− (Ec(y))

> 0.

So, item (ii) holds. �
In fact, Theorem 2 states two intuitions when considering the point-valued

degree of potential threat of any two suspects: (i) for a given criterion, if the
lowest expected level of potential threat for a suspect is higher than the highest
expected level of potential threat of another suspect, the point-valued degree
of potential threat of the first one should be higher; and (ii) if the degree of
significance for the events of a suspect is not less than that of another, and the
lowest and highest expected levels of potential threat of this suspect are higher
than those of another respectively, the point-valued degree of potential threat of
the first one should be higher.

Theorem 3. Let Ox and Oy be the overall degrees of potential threat for subject
x and y, C′ = C ∪ s and C′′ = C ∪ r be the whole sets of related criteria for
subjects x and y, k be the highest utility value for the outcomes of all criteria,
and for any criterion c ∈ C, we have nuc(x) = nuc(y). Suppose νs(x) > νr(y)
and ws = wr, then Ox > Oy.

Proof. By Definition 8, nuc(x) = nuc(y), νs(x) > νr(y), and ws = wr we have:

Ox −Oy =
2(wsnus(x) +

∑
c⊆C wcnuc(x))

(k + 1)(ws +
∑

c⊆C wc)
−

2(wrnur(y) +
∑

c⊆C wcnuc(x))

(k + 1)(wr +
∑

c⊆C wc)

=
2ws(nus(x)− νr(y))

(k + 1)(ws +
∑

c⊆C wc)

> 0.

Actually, Theorem 3 means that the increase of the point-valued degree of po-
tential threat about a given criterion for a subject will cause the increase of the
overall degree of potential threat for this subject, ceteris paribus.
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Table 1. Event modeling for the airport security surveillance scenario

event Etype occT IDs rb sig Criterion Weight IDp Location mass value utility

ea,1
42 SA 9:01pm 42 0.9 0.7 age 0.3 13 FCE {young}, 0.3 Ua

ea,2
42 SA 9:01pm 42 0.9 0.7 age 0.3 13 FCE {young, old}, 0.7 Ua

ea,1
45 SA 9:03-9:15pm 45 0.9 0.7 age 0.3 13 FCE {young}, 0.6 Ua

ea,2
45 SA 9:03-9:15pm 45 0.9 0.7 age 0.3 13 FCE {young, old}, 0.4 Ua

eg,142 SA 9:01pm 42 0.9 0.7 gender 0.3 13 FCE {female}, 0.4 Ug

eg,242 SA 9:01pm 42 0.9 0.7 gender 0.3 13 FCE {female, male}, 0.6 Ug

eg,145 SA 9:03-9:15pm 45 0.9 0.7 gender 0.3 13 FCE {male}, 0.7 Ug

eg,245 SA 9:03-9:15pm 45 0.9 0.7 gender 0.3 13 FCE {female, male}, 0.3 Ug

em,1
42 SA 9:01pm 42 0.9 0.7 move 0.8 13 FCE {to east, loitering}, 0.8

em,2
42 SA 9:01pm 42 0.9 0.7 move 0.8 13 FCE Θm, 0.2

em,1
45 SA 9:03-9:15pm 45 0.9 0.7 move 0.8 13 FCE {loiter}, 0.9

em,2
45 SA 9:03-9:15pm 45 0.9 0.7 move 0.8 13 FCE Θm, 0.1

ea,1
29 CC 9:03pm 29 1 0.9 age 0.3 19 MoC {young}, 0.7 Ua

ea,2
29 CC 9:03pm 29 1 0.9 age 0.3 19 MoC {young, old}, 0.3 Ua

eg,129 CC 9:03pm 29 1 0.9 age 0.3 19 MoC {male}, 0.7 Ug

eg,229 CC 9:03pm 29 1 0.9 age 0.3 19 MoC {male, female}, 0.3 Ug

esr,129 CC 9:03pm 29 1 0.9 sr 0.8 19 MoC {unmatch}, 0.8 Usr

esr,229 CC 9:03pm 29 1 0.9 sr 0.8 19 MoC {unmatch,match}, 0.2 Usr

Where Θm = {to east, . . . , to north, stay, loitering}; Ua : {ua(young)=6, ua(old)=2};
Ug : {ug(male)= 6, ug(female) =4}; Usr = {usr(unmatch) = 8, usr(match) = 4}; and the scale
of measurement for the level of potential threat is H = {1, . . . , 9}.

5 Case Study

Let us consider a scenario in an airport between at 9:00pm to 9:15pm, which
covers the following two areas: Shopping Area (SA) and Control Center (CC).
– in the Shopping Area (SA), a person (id: 13) loiters near a Foreign Currency

Exchange office (FCE) for a long time. Also, camera 42 catches its back
image at the entrance of the shopping area at 9:01pm and camera 45 catches
its side face image at FCE from 9:03pm to 9:15pm;

– in the Control Center (CC), the face of a person (id: 19) appears in the
camera 29 in the middle of the corridor (MoC) to the control center at
9:03pm. However, the person’s face does not appear in camera 23 monitoring
the entrance to the corridor.

We assume that video classification algorithms can detect age, gender, behav-
ior, and then re-acquire subjects (sr) when needed. We also assume that there is
only one security team available. What should the system do at this moment?

First, the surveillance system detects the elementary events for each person
as shown in Table 1 based on the information of multiple sensors.

For example, the first row in Table 1 means that for an event type SA in FCE
at 9:01pm, the age classification program used by camera 42, whose degree of
reliability is 0.9, detects a person with ID = 13 as male with a certainty of 30%.
The significance of this event is 0.6, the weight of age criterion for detecting
a potential threat is 0.3, and Ua is the utility function that shows the level of
potential threat for the age criterion. Moreover, some events in the table are
within the same event cluster, such as ea,142 and ea,242 which share the same event
type, occT, Criterion, IDs, IDp, but assign different mass values to different
subsets of the same frame and the sum of these mass values is 1.



Decision Support Event Reasoning Framework 343

Second, since some sensors are not completely reliable in our example, we
obtain the discounted mass functions by Definition 2. For example, consider the
age criterion for the person in FCE, we have :

ma
42({young})= 0.3× 0.9 = 0.27, ma

42({young, old})= 0.1 + 0.7× 0.9 = 0.73;

ma
45({young})= 0.54, ma

45({young, old})= 0.46.

Third, we consider the combination of mass functions associated with events
in different clusters (from different sources) where these events are all about a
common criterion, using Dempster’s rule in Definition 1. For example, consider
the age criterion for the person in FCE, we have:

ma
42&45({young})= (0.27×0.54+0.27×0.46+0.73×0.54)/1 = 0.664,

ma
42&45({young, old})= (0.73×0.46)/1 = 0.336.

Note that each mass value is associated with a derived event, such as, for the
person in FCE,ma

42&45({young})= 0.664 is associated with ea,142&45=(SA, 9:01−9:15

pm, 42&45, 0.9, 0.7, age, 0.3, 13, FCE, ma
42&45({young})=0.664, Ua).

Forth, we consider event inference. For the person in FCE, by the inference
rule in Example 1, mm

42&45({to east, lotering}) = 0.137, mm
42&45({lotering}) = 0.81,

mm
42&45(Θm)=0.053, andEquation (4),we havemIPL({Rob}) = 0.41, mIPL({Waiting

Friends}) = 0.24, mIPL({Rob, Waiting Friends}) = 0.35.
Fifth, we obtain the expected utility interval for each criterion of each person

by Definition 6. For example, for the person (id:13) in FCE, we have

E13,a=4.656, E13,a=6; E13,g = 5.044, E13,g= 5.656; E13,IPL= 5.43, E13,IPL= 7.542.

Sixth, we obtain the point-valued degree of potential threat for each criterion
of each person by Definition 7. For example, for the person (id:13) in FCE:

νa(13) = (1− 0.7) × 4.656 + 0.7× 6 = 5.6; νg(13) = 5.47; νIPL(13) = 6.91.

Seventh, we get the overall degree of potential threat of each target after
considering all relative criteria at 9:15pm by Definition 8:

O13 =
2(0.3× 5.6 + 0.3× 5.47 + 0.8 × 6.91)

(9 + 1)(0.3 + 0.3 + 0.8)
= 1.26; O19 = 1.41.

Hence, in this example, we derive that id 19 is more dangerous than id 13.
Thus, If we have only one security team available at that moment, the surveil-
lance system will suggest to prevent the further action of the person (id: 19) in
the control center first.

6 Related Work and Summary

Ahmed and Shirmohammadi in [1] designed a probabilistic decision support
engine to prioritizes multiple events in different cameras. In this model, they
incorporated the feedbacks of operators, event correlation and decision modula-
tion to rank the importance of events. Jousselme et al. [7] presented the concept
of a decision support tool together with the underlying multi-objective opti-
mization algorithm for a ground air traffic control application. However, none of
these models provides a method to handle multiple criteria information under
uncertainty as our model does. Moreover, the problem of information fusion has
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become a key challenge in the realm of intelligent systems. A common method
to handle this challenge is to introduce aggregation operators. Albusac et al.
in [2] analyzed different aggregation operators and proposed a new aggregation
method based on the Sugeno integral for multiple criteria in the domain of in-
telligent surveillance. Also, Rudas et al. in [13] offered a comprehensive study of
information aggregation in intelligence systems from different application fields
such as robotics, vision, knowledge based systems and data mining, etc. How-
ever, to the best of our knowledge, there is no research considering the decision
making problem under uncertainty in surveillance systems.

In this paper, we introduced our extended event reasoning framework, inte-
grating a multi-criteria decision making element in sensor network based surveil-
lance systems. We also discussed some properties of our framework. Our next
step of work is to experiment the decision making element with surveillance data.
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Abstract. Several domains, such as fuzzy logic programming, formal
concept analysis and fuzzy relation equations, consider basic operators
which need to have associated residuated implications. Adjoint triples
are formed by operators satisfying weak properties, usefully used in these
domains. This paper presents the comparison of these triples with other
general operators considered in these frameworks.
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1 Introduction

Many domains in mathematics and information sciences are formed by different
types of algebraic structures such as many-valued logics, generalized measure
and integral theory, quantum logics and quantum computing, etc.

T-norms [16,26,27], which are defined in the unit interval [0, 1], are the opera-
tors used most often in applicative examples. However, these operators are very
restrictive and several applications need more general structures.

Adjoint triples are a general structure which has been developed to increase
the flexibility of the framework, since conjunctors are neither required to be
commutative nor associative. These operators are useful in fuzzy logic program-
ming [22,23], fuzzy formal concept analysis [20] and fuzzy relation equations [10].

Other important generalizations of t-norms and residuated implications ex-
ist, such as implication triples [25], sup-preserving aggregations [3], unorms [17],
uninorms [28,14] and extended-order algebras [15]. These operators are defined
following the same motivation of adjoint triples in order to reduce the mathemat-
ical requirements of the basic operators used for computation in the considered
framework.

This paper recalls the settings in which these operators are defined, shows a
comparison among them and investigates when the general considered operators
have adjoint implications and so, they can be used to define concept-forming
operators, rules in a residuated logic program or in a general fuzzy relation
equation.
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2 Adjoint Triples and Duals

The operators forming these triples arise as a generalization of a t-norm and
its residuated implication. Since the general conjunctor assumed in an adjoint
triple need not be commutative, we have two different ways of generalizing the
well-known adjoint property between a t-norm and its residuated implication,
depending on which argument is fixed.

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3×P2 → P1, ↖ : P3×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if &, ↙,↖ satisfy the adjoint property, for all
x ∈ P1, y ∈ P2 and z ∈ P3:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x

Note that this property generalizes the residuation condition [13] for no com-
mutative operators. Straightforward consequences can be obtained from the ad-
joint property, such as the monotonicity properties.

Proposition 1. If (&,↙,↖) is an adjoint triple, then

1. & is order-preserving on both arguments, i.e. if x1, x2, x ∈ P1, y1, y2, y ∈ P2

and x1 ≤1 x2, y1 ≤2 y2, then (x1 & y) ≤3 (x2 & y) and (x& y1) ≤3 (x& y2);
and

2. ↙, ↖ are order-preserving on the first argument and order-reversing on the
second argument, i.e., if x1, x2, x ∈ P1, y1, y2, y ∈ P2, z1, z2, z ∈ P3 and
x1 ≤1 x2, y1 ≤2 y2, z1 ≤3 z2, then (z1 ↙ y) ≤1 (z2 ↙ y), (z ↙ y2) ≤1 (z ↙
y1), (z1 ↖ x) ≤2 (z2 ↖ x) and (z ↖ x2) ≤2 (z ↖ x1);

Moreover, the adjoint implications are unique.

Proposition 2. Given a conjunctor &, its residuated implications are unique.

Example of adjoint triples are the Gödel, product and Łukasiewicz t-norms
together with their residuated implications. Note that, the Gödel, product and
Łukasiewicz t-norms are commutative, then the residuated implications satisfy
that↙G=↖G,↙P=↖P and↙L=↖L. These adjoint triples are defined on [0, 1]
as:

&G(x, y) = min(x, y) z ↖G x =

{
1 if x ≤ z

z otherwise

&P(x, y) = x · y z ↖P x = min(1, z/x)

&L(x, y) = max(0, x+ y − 1) z ↖L x = min(1, 1− x+ z)

Example 1. Given m ∈ N, the set [0, 1]m is a regular partition of [0, 1] in m
pieces, for example [0, 1]2 = {0, 0.5, 1} divide the unit interval in two pieces.
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A discretization of the product t-norm is the operator &∗
P : [0, 1]20 × [0, 1]8 →

[0, 1]100 defined, for each x ∈ [0, 1]20 and y ∈ [0, 1]8 as:

x&
∗
P y =

1100 · x · y2
100

whose residuated implications ↙∗
P : [0, 1]100 × [0, 1]8 → [0, 1]20, ↖∗

P : [0, 1]100 ×
[0, 1]20 → [0, 1]8 are defined as:

b↙∗
P a =

*20 ·min{1, b/a}+
20

b↖∗
P c =

*8 ·min{1, b/c}+
8

Hence, the triple (&∗
P,↙∗

P,↖∗
P) is an adjoint triple and the operator &∗

P is
straightforward neither commutative nor associative. Similar adjoint triples can
be obtained from the Gödel and Łukasiewicz t-norms.

“Dual” adjoint triples. In several settings is useful considering the duals of
the assumed operators. For instance, this relation can be used to relate different
frameworks [3,18], in which the assumed operators are used to compute in one
setting and the duals are considered to obtain another “dual” setting. However,
in general, they cannot be used in the same framework as we show next.

Given an adjoint triple (&,↙,↖), we may consider two extra operators
↙d : P3 × P2 → P1, ↖d : P3 × P1 → P2 satisfying the equivalence

z ↙d y ≤1 x iff z ≤3 x& y iff z ↖d x ≤2 y

which can be called dual adjoint property.
However these operators cannot be associated with the conjunctor & of an

adjoint triple, when, for instance, P1 and P3 have a maximum element, 31,33

and P2 and P3 have a minimum element,⊥2,⊥3, where⊥3 �= 33. This is because,
from the adjoint property of & and ↖, we obtain the condition 31 & y = 33,
for all y ∈ P2, and from the dual adjoint property of & and ↙d the equality
x&⊥2 = ⊥3 holds, for all x ∈ P1. Therefore, from both equalities, we obtain
the chain ⊥3 = 31 &⊥2 = 33, which leads us to a contradiction.

3 Comparison with Other Operators

This section presents four important kinds of operators used in several framework
and the comparison with the adjoint triples. We will show that these operators
are particular cases of the conjunctor of an adjoint triple, when the residuated
implications are considered.

3.1 Implication Triples

Implication triples and adjointness algebras were introduced in [25] and a lot of
properties were studied in several papers.
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Definition 2. Let (L,≤L) (P,≤P ) be two posets with a top element 3P in
(P,≤P ). An adjointness algebra is an 8-tuple (L,≤L, P,≤P ,3P , A,K,H), sat-
isfying the following four conditions:

1. The operation A : P × L → L is antitone in the left argument and iso-
tone in the right argument, and it has 3P as a left identity element, that is
A(3P , γ) = γ, for all γ ∈ L. We call A an implication on (L, P ).

2. The operation K : P × L → L is isotone in each argument and has 3P as
a left identity element, that is K(3P , β) = β, for all β ∈ L. We call K a
conjunction on (L, P ).

3. The operation H : L × L → P is antitone in the left argument and isotone
in the right argument, and it satisfies, for all β, γ ∈ L, that

H(β, γ) = 3P if and only if β ≤L γ

We call H a forcing-implication on L.
4. The three operations A, K and H, are mutually related by the following

condition, for all α ∈ P and β, γ ∈ L:

β ≤L A(α, γ) iff K(α, β) ≤L γ iff α ≤P H(β, γ)

which is called the adjointness condition.

We call the ordered triple (A,K,H) an implication triple on (L, P ).

These operators were initially related in [7]. In order to relate adjoint triples
to implication triples, we must consider that the antecedent and consequent
elements are evaluated in the right and left arguments of the implications of
the adjoint triples, respectively, and that this evaluation is the opposite for the
implications in the implication triples. Therefore, we define ↙op : P2×P3 → P1,
↖op : P1 × P3 → P2, as y ↙op z = z ↙ y and x↖op z = z ↖ x, for all x ∈ P1,
y ∈ P2 and z ∈ P3.

The following result relates the adjoint implication to implication triples and
it was proven in [6].

Theorem 1 ([6]). Given an adjoint triple (&,↙,↖) with respect to the posets
(P1,≤1), (P2,≤2), (P3,≤3). If P2 = P3 and P1 has a maximum 31 as a left
identity element for &, then (&,↙op,↖op) is an implication triple.

Example 2. The adjoint triple (&∗
P,↙∗

P,↖∗
P) given in Example 1 is not an im-

plication triple. This operator is non-commutative and non-associative at the
same time, but it does not satisfy that 1 is a left identity for &∗

P, that is, there
exists an element y ∈ [0, 1]8 such that 1&∗

P y �= y. For instance, if y = 0.625,
then 1&∗

P 0.625 = 0.63. In addition, [0, 1]8 �= [0, 1]100.

Therefore, adjoint triple are more general than implication triples.
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3.2 Sup-preserving Aggregation Operators

In [2] an interesting problem in concept lattice theory is solved using an inf-
residuum relation equation. These results have been extended in [11]. Specifically,
in this last paper the property-oriented concept lattices are considered to solve
sup-t-norm and inf-residuum relational equations and, moreover, several results
in order to obtain the whole set of solutions of these equations, using fuzzy
formal concept analysis, have been presented.

With respect to the flexibility in the definition of the fuzzy relation equations,
to the best of our knowledge, one of the more general frameworks is given in [3],
in which general operators are considered and an unification of the sup-t-norm
and inf-residuum products of relations is given.

Next, we will compare these operators with the adjoint triples and show that
the latter are more general and so, the equations introduced in [3] are a particular
case of the multi-adjoint relation equations.

Definition 3. A sup-preserving aggregation structure ( aggregation structure,
for short) is a quadruple (L1,L2,L3,�), where Li = (Li,.i), with i ∈ {1, 2, 3},
are complete lattices and � : L1 × L2 → L3 is a function which commutes with
suprema in both arguments, that is,⎛⎝∨

j∈J

aj

⎞⎠� b =
∨
j∈J

(aj � b) a�

⎛⎝ ∨
j′∈J′

bj′

⎞⎠ =
∨

j′∈J′
(a� bj′)

for all a, aj ∈ L1 (j ∈ J), b, bj′ ∈ L2 (j′ ∈ J ′).

From the results given in [3] the following theorem is obtained.

Theorem 2 ([3]). Given an aggregation structure � : L1×L2 → L3, there exist
two mappings �◦ : L3 × L2 → L1 and ◦� : L1 × L3 → L2, satisfying that

a1 � a2 ≤3 a3 iff a2 ≤2 a1 ◦� a3 iff a1 ≤1 a3 �◦ a2

for all a1 ∈ L1, a2 ∈ L2, a3 ∈ L3.

This is the adjoint property, hence the following result is obtained.

Corollary 1. The triple (�,�◦, ◦�d), where a3◦�da1 = a1◦�a3, for all a1 ∈ L1,
a3 ∈ L3, is an adjoint triple.

However the inverse is not true, since only posets are needed in the definition
of an adjoint triple. Although in multi-adjoint relation equations we need to
consider adjoint triples related to two complete lattices L1, L2 and a poset
(P,≤). This last one need not be a complete lattice. Therefore, in the setting of
fuzzy formal concept analysis both triples are not equivalent either.

The generality of (P,≤) is very important since, for instance, it can be a
multilattice [4,5,19,24]. For example, an interesting fuzzy relation defined in a
multilattice is given in [24]. Furthermore, in order to solve the proposed problem
in multi-adjoint logic programming, several adjoint triples are needed, which
permits the multi-adjoint relation equations.
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3.3 U-norms

Another general operators are the u-norms [17]. U-norms have been presented
as a generalization of the following three functions: arithmetic mean, continuous
Archimedean t-norm and “fuzzy and” with γ < 1.

Definition 4. A u-norm is a function U : [0, 1]×[0, 1]→ [0, 1], such thatU(0, 0) =
0, U(1, 1) = 1, and U is strictly increasing on the set D = {(x, y) ∈ [0, 1]× [0, 1] |
0 < U(x, y)}.

Clearly, the Gödel t-norm is not a u-norm and so, the conjunctor of an adjoint
triple could not be a u-norm. On the other hand, an arbitrary u-norm may not
form an adjoint triple:

Example 3. The weighted power mean Mw1,w2,r with w1, w2 ∈ [0, 1], w1+w2 = 1
and r ∈ R is defined as

Mw1,w2,r(x, y) =

{
(w1x

r + w2y
r)1/r if r �= 0

xw1yw2 if r = 0

for all x, y ∈ R. This operator is a u-norm if w1, w2 > 0 and 0 < r < ∞ [17]. If
we consider w1 = w2 = 0.5 and r = 1, then we have that

M0.5,0.5,1(x, y) = 0.5x+ 0.5y, for all x, y ∈ R

and this u-norm has not got adjoint implications, since the conjunctor of an
adjoint triple satisfies that x&⊥ = ⊥ and, in this case, M0.5,0.5,1(x, 0) =

x
2 �= 0,

for all x ∈ R \ {0}. Therefore, M0.5,0.5,1(x, y) cannot be in an adjoint triple.

However, in order to solve fuzzy relation equations with u-norms introduced
in [17], the authors need to consider continuous u-norms and these operators
have two adjoint implications [21], which straightforwardly shows that the con-
sidered u-norms are a particular case of a conjunctor in an adjoint triple. As a
consequence, the setting given in [17] is a particular case of multi-adjoint relation
equations as well.

3.4 Uninorms

Uninorms are a generalisation of t-norms and t-conorms [28]. These operators
are characterized by having a neutral element which is not necessarily equal to
0 (as for t-norms) or 1 (as for t-conorms).

Definition 5. A uninorm on ([0, 1],≤) is a commutative, associative, increasing
mapping U : [0, 1]× [0, 1]→ [0, 1] for which there exists an element e ∈ [0, 1] such
that U(e, x) = x, for all x ∈ [0, 1]. The element e is called the neutral element
of U .

Given a uninorm U on the unit interval, there exists a t-norm TU , a t-conorm
SU on ([0, 1],≤) and two increasing bijective mappings φe : [0, e] → [0, 1] and
ψe : [e, 1]→ [0, 1] with increasing inverse, such that [14]
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1. For all x, y ∈ [0, e], U(x, y) = φ−1
e (TU (φe(x), φe(y)))

2. For all x, y ∈ [e, 1], U(x, y) = ψ−1
e (SU (ψe(x), ψe(y)))

The last property shows that the behavior of a uninorm is similar to a t-
norm for elements less or equal than e and as a t-conorm for elements greater
or equal than e. Therefore, a uninorm might not necessarily be the conjunctor
of an adjoint triple, which will be shown next.

Note that, if (&,↙,↖) is an adjoint triple then it satisfies the adjoint prop-
erty. This property can be adequately interpreted in terms of multiple-valued
inference as asserting both that the truth-value of z ↙ y is the maximal x
satisfying x& z ≤ y.

In the following, we will consider a uninorm on ([0, 1],≤) which does not
satisfy this last property.

Example 4. Given e ∈ ]0, 1[, the operator Ue on ([0, 1],≤) defined, for each x, y ∈
[0, 1], by

Ue(x, y) =

{
max(x, y) if x ≥ e and y ≥ e

min(x, y) if otherwise

is a uninorm. If we assume that Ue is the conjunctor of an adjoint triple, then
its adjoint implication ↙ must satisfy that:

z ↙ y = max{x ∈ [0, 1] | Ue(x, y) ≤ z}

If we consider e = 0.5, y = 0.7 and z = 0.6, it can be proven that the maximum
does not exist.

Therefore, in general, a uninorm may not have adjoint implications and so,
be part of an adjoint triple. A particular case of uninorms, widely studied and
used [1,8], are the left-continuous uninorms. As these operators have adjoint
implications, the left-continuous uninorms are a particular case of adjoint con-
junctors. For example, the conjunctor of the adjoint triple defined in Example 1
is not a left-continuous uninorm since &∗

P is neither commutative nor associative.

3.5 Extended-Order Algebras

In [9] simple implications are considered in order to introduce different algebraic
structures. This section only recalls several algebraic structures given in [15] and
compares the considered operators with the conjunctor of an adjoint triple.

Definition 6 ([15]). A w-eo algebra is a triple (P,→,3) where P is a non-
empty set, → : P × P → P is a binary operation and 3 a fixed element of P ,
satisfying for all a, b, c ∈ P the following conditions1

(o1) a→ 3 = 3 (upper bound condition)
(o2) a→ a = 3 (reflexivity condition)
1 Note that the names of the properties are those in [15].
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(o3) a→ b = 3 and b→ a = 3 then a = b (antisymmetry condition)
(o4) a→ b = 3 and b→ c = 3 then a→ c = 3 (weak transitivity condition)

Given a w-eo algebra (P,→,3), the relation ≤ determined by the operation →,
by means of the equivalence

a ≤ b if and only if a→ b = 3, for all a, b ∈ P

is an order relation in P . Moreover, 3 is the greatest element in (P,≤). This
order relation was called the natural order in P , in [15].

Note that the previous equivalence is the property that satisfies a forcing-
implication [25]. Hence, given a poset (P,≤) with a greatest element 3 and
→ : P × P → P is a forcing-implication on P , then (P,→,3) is a w-eo algebra.

When the natural order in a w-eo algebra (P,→,3) provides a complete lat-
tice, we say that (P,→,3) is a complete w-eo algebra (P,→,3), in short, a w-ceo
algebra. In this case, we will write L and . instead of P and ≤, respectively.

Definition 7. Let L be a non-empty set, → : L×L→ L a binary operation and
3 a fixed element of L. The triple (L,→,3) is a right-distributive w-ceo algebra,
if it is a w-ceo algebra and satisfies the following condition, for any a ∈ L and
B ⊆ L

(d′r) a→
∧
b∈B

b =
∧
b∈B

(a→ b)

Next results relate the notions presented above to the implication triples in-
troduced in [25].

Proposition 3. Let (L,.) be a complete lattice and (A,K,H) an implication
triple on (L,L). Then, the triple (L,H,3) is a right-distributive w-ceo algebra.

Proposition 4. Let (L,.) be a complete lattice and (A,K,H) an implication
triple on (L,L). If K(x,3) = x, for all x ∈ L, then (L,A,3) is a right-
distributive w-ceo algebra.

From now on, we only consider the operation H since less hypotheses need to
be assumed. Analogous results for A can be obtained considering the boundary
condition noted in Proposition 4.

Note that, if (L,.) is a complete lattice and (A,K,H) is an implication triple
on (L,L), by Proposition 3, we have that (L,H,3) is a right-distributive w-ceo
algebra. In this environment, the adjoint product ⊗ : L × L → L introduced
in [9,15] and defined as

a⊗ x =
∧
{t ∈ L | x . a→ t}

for all a, x ∈ L, is not the operator K given in Definition 2, whenever ⊗ or K
are not commutative. Therefore, the properties shown in Proposition 4.1 of [9]
cannot be related to properties of implication triples presented in [25], in general.
Although, these can be related if ⊗ or K are commutative.
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In [9] is introduced an additional binary operation  : L× L→ L satisfying

a . b  c iff a⊗ b . c iff b . a→ c

for all a, b, c ∈ L. Then the triple (,⊗,→) is not an implication triple on (L,L)
since K is not defined in the same way that ⊗. Moreover, we cannot identify →
with H because (⊗,→) does not satisfy the same adjoint property that (K,H).
Moreover, → cannot be A because A is not a forcing-implicaton.

However, we can define the operation ⊗′ : L× L→ L by

a⊗′ x =
∧
{t ∈ L | a . x→ t}

for all a, x ∈ L. This operator coincides with the operator K, given in Defini-
tion 2, and satisfies the adjointness condition given in the same definition. As a
consequence, the triple (,⊗′,→) is an implication triple on (L,L).

Proposition 5. Given a complete lattice (L,.) and the mappings , ⊗ and
→ defined above, the triple (,⊗,→) is an adjoint triple with respect to L.

4 Conclusions and Future Work

From the comparison of adjoint triples with u-norm, uninorms, sup-preserving
operators, extended-order algebras, we have proven that these operators are a
particular case of adjoint triples when the residuated implications are demanded.
From this comparison, the properties introduced in different papers can be con-
sidered to provide extra properties among these operators.

In the future more operators and properties will be studied. Moreover, a gener-
alization of the transitivity property will be introduced in which these operators
will be involved.
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1 Introduction

Since Zadeh introduced the concept of a fuzzy set in 1965 [13], the interest
for the different possible extensions of such sets has been increasingly growing,
both from a theoretical and from an applied point of view [2,7,10]. Among the
extensions of fuzzy sets some of the most relevant ones are the interval-valued
fuzzy sets [11], the Atanassov’s intuitionistic fuzzy sets [1] and the type-2 fuzzy
sets [14], which encompass the two previous ones. In this work we focus on the
latter.

Although many works devoted to such sets can be found in the literature,
we believe that it is necessary to expand the theoretical framework for them,
with an eye kept in the application in fields such as decision making or image
processing.

� We acknowledge financial support from the Ministry of Economy and Competitive-
ness of Spain under grant MTM2012-37894-C02-02 and TIN2011-29520.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 355–363, 2014.
c© Springer International Publishing Switzerland 2014



356 M.J. Campión et al.

As an extension of the concept of a fusion operator relative to fuzzy sets
(functions that take m values (membership degrees) in [0, 1] and give back a
new value in [0, 1]), and taking into account that the membership values of the
elements in a type-2 fuzzy set are given in terms of new fuzzy sets over the
referential [0, 1] (that is, by means of functions defined over [0, 1]) we define
fusion operators for type-2 fuzzy sets as mappings that take m functions from
[0, 1] to [0, 1] into a new function in the same domain. That is, functions of
the type F :

(
[0, 1][0,1]

)m → [0, 1][0,1]. Our goal is to study these functions in a
way as general as possible because no restriction is imposed to the membership
values of a type-2 fuzzy set. So we do not require a priori any property such as
continuity, monotonicity, symmetry, etc.

In the theoretical study of fusion operators for type-2 fuzzy sets we pay special
atention to some basic notions, namely the concept of pointwise fusion and the
concept of representable fusion. Both concepts are related to the fact that, in
order to know the value of the fusion operator F at some point x of its domain, we
only need to know the values at that point (and not elsewhere) of the functions
we are going to fuse.

The structure of this work is the following: in the next section we recall the
notion of type-2 fuzzy set and we introduce the concept of a fusion operator. In
section 3 we study the characterization of representable fusion operators. Then,
we consider union and intersection between type-2 fuzzy sets as a special case
of fusion operators. We finish the paper with some concluding remarks, as well
as pointing out some future research lines.

2 Fusion of Type-2 Fuzzy Sets

In this section we recall the concepts of a fuzzy set and a type-2 fuzzy set.
Throughout this paper we will denote by X a non-empty set that will represent
the universe of discourse.

Definition 1. A fuzzy set A on the universe X is defined as

A = {(x, μA(x))|x ∈ X}

where μA : X −→ [0, 1] is the membership degree of the element x to the set A.

In [14], Zadeh proposed type-2 fuzzy sets (T2FS) as a generalization of fuzzy
sets (also called type-1 fuzzy sets). In type-2 fuzzy sets, the membership degree
of an element to the set considered is given by a fuzzy set whose referential set
is [0, 1]. That is, the membership degree of an element to a type-2 fuzzy set
is a function in [0, 1][0,1], the set of all possible functions from [0, 1] to [0, 1].
Throughout the paper, we will adopt the mathematical formalization of the
notion of type-2 fuzzy set introduced in [3,9].

Definition 2. A type-2 fuzzy set A on the universe X is defined as

A = {(x, μA(x))|x ∈ X}

where μA : X → [0, 1][0,1].
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In almost every application of fuzzy logic (e.g. decision making problems,
approximate reasoning, machine learning or image processing, among others), it
is very usual to fuse or aggregate several membership degrees into a single value
which preserves as much information as possible from the inputs. This kind
of functions take m degrees of membership and gives back a new membership
degree. That is, those fusing functions are mappings

F : [0, 1]m → [0, 1].

If we want to fuse m fuzzy sets over the same referential X , we use a function
F that acts on the m-tuple of the membership degrees of the element x ∈ X in
each of the considered fuzzy sets.

A particular case of fusion operators are the well-known aggregation func-
tions. Such functions are fusion operators to which some additional properties
(monotonicity and boundary conditions) are demanded.

Our idea in this work is to study the fusion of type-2 fuzzy sets. Notice that
for these sets it does not exist a natural order, so the definition of aggregation
functions may be difficult. On the other hand, as the membership of each element
is given by a function in [0, 1][0,1], in order to fuse several membership functions
we just need to define and study mappings

F :
(
[0, 1][0,1]

)m
→ [0, 1][0,1].

In the next section we formally define the concept of a fusion operator and
we study its former properties.

3 Definition of a Fusion Operator, and Related Concepts

In this section we define and study the main properties of fusion operators F :
([0, 1][0,1])m → [0, 1][0,1].

Definition 3. Let (f1, . . . , fm) ∈ ([0, 1][0,1])m stand for a m-tuple of maps from
[0, 1] into [0, 1]. A map fm+1 ∈ [0, 1][0,1] is said to be a fusion of (f1, . . . , fm) if
there exists a map

F : ([0, 1][0,1])m → [0, 1][0,1]

such that

fm+1 = F (f1, . . . , fm) (1)

In this case the map F is said to be an m-dimensional fusion operator.

First of all, we should observe that we do not require any specific property to
fusion operators, since such study does not lie in the scope of the present work.
Our general purpose is to make an approach to fusion operators as general as
possible. Of course, in the future we will study those fusion operators which are
continuous, monotone, etc.
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3.1 Pointwise Fusion Operators

From the definition of a fusion operator, the first question that arises is the
following: To what extent is necessary to know the values taken by the functions
fi? Depending on the situation it may happen that given a point x ∈ [0, 1],
in order to calculate the value fm+1(x) we compulsorily need to have at hand
the values of the functions fi at points different from x. However, sometimes it
suffices to know, just, the values of the functions fi at the point x ∈ [0, 1]. This
idea leads to the notion of a pointwise fusion operator.

Definition 4. A map fm+1 ∈ [0, 1][0,1] is said to be a pointwise fusion of
(f1, . . . , fm) if there exists a map W : [0, 1]m → [0, 1] such that:

fm+1(x) = W (f1(x), . . . , fm(x)) (2)

for every x ∈ [0, 1]. In this case, the map W is said to be a pointwise m-
dimensional fusion operator, whereas the functional equation
fm+1(x) = W (f1(x), . . . , fm(x)) is said to be the structural functional equation
of pointwise fusion operators.

Example 1. A prototypical example of a pointwise fusion operator is the arith-

metic mean of the m functions, where fm+1(x) =
f1(x)+...+fm(x)

m for all x ∈ [0, 1].

3.2 Representable Fusion Operators

Next, we study a class of fusion operators which are closely related to pointwise
fusion operators, namely, the so-called representable fusion operators.

Definition 5. Let F : ([0, 1][0,1])m → [0, 1][0,1] denote an m-dimensional fusion
operator of maps from [0, 1] into [0, 1]. Then F is said to be representable if
there is a map W : [0, 1]m → [0, 1] such that:

F (f1, . . . , fm)(x) = W (f1(x), . . . , fm(x)) (3)

holds for every x ∈ [0, 1] and (f1, . . . , fm) ∈ ([0, 1][0,1])m.

Remark. Notice that in Definition 4 the maps f1, . . . , fn are fixed a priori,
so W depends on f1, . . . , fn. However, in Definition 5, f1, . . . , fn may vary in
[0, 1][0,1], so that W will depend, directly, on F .

For instance, if f1 = |sin(x)| , f2(x) = sin2(x), f3(x) = sin4(x) it is true that
f3(x) ≤ f2(x) ≤ f1(x) holds for every x ∈ [0, 1].

If f4(x) = median{f1(x), f2(x), f3(x)} it is clear that f4 is the projection
over the second component, namely f2. Obviously, this will not happen when
the tuple (f1, f2, f3) takes arbitrary values in ([0, 1][0,1])3.

Given a set of m functions f1, . . . , fm, the function W satisfies the properties
of the definition of a pointwise fusion operator.

Proposition 1. Let f1, . . . , fm ∈
(
[0, 1][0,1]

)m
be a fixed m-tuple of functions.

If F :
(
[0, 1][0,1]

)m → [0, 1][0,1] is a representable fusion operator, then F is a
pointwise fusion operator.
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Proof: If we call fm+1 = F (f1, . . . , fm), then it follows that fm+1(x) =
W (f1(x), . . . , fm(x)) for all x ∈ [0, 1].

Observe that, although there exists a relation between the properties of point-
wise and representability, they are conceptually different. For a pointwise fusion
operator, the functions f1, . . . , fm are fixed beforehand. Therefore, the problem
consists in solving the functional equation:
fm+1(x) = W (f1(x), . . . , fm)(x). On the other hand, for representable fusion
operators, we start from a fusion operator F that satisfies the functional equa-
tion F (f1, . . . , fm)(x) = W (f1(x), . . . , fm(x)) for every x ∈ [0, 1] and every tuple
(f1, . . . , fm) ∈

(
[0, 1][0,1]

)m
. Therefore, the idea is to find the map W depending

only on F and not on the tuple of functions f1, . . . , fm. The difference between
both concepts can also be seen discussed in Section 5 through a case study.

4 Characterization of Representable Fusion Operators

In this section we characterize representable fusion operators. To do so, we start
by introducing three properties that are going to help us to achieve the desired
characterization.

Definition 6. Let F : ([0, 1][0,1])m → [0, 1][0,1] be an m-dimensional fusion op-
erator. Then F is said to be:

– fully independent if it holds that:

(f1(x), . . . , fm(x)) = (g1(t), . . . gm(t)) ⇒ F (f1, . . . , fm)(x) = F (g1, . . . , gm)(t)
(4)

for every x, t ∈ [0, 1] and (f1, . . . , fm), (g1, . . . , gm) ∈ ([0, 1][0,1])m.
– independent as regards maps if it holds that:

(f1(x), . . . , fm(x)) = (g1(x), . . . gm(x)) ⇒ F (f1, . . . , fm)(x) = F (g1, . . . , gm)(x)
(5)

for every x ∈ [0, 1] and (f1, . . . , fm), (g1, . . . , gm) ∈ ([0, 1][0,1])m

– pointwise independent if it holds that:

(f1(x), . . . , fm(x)) = (f1(t), . . . fm(t)) ⇒ F (f1, . . . , fm)(x) = F (f1, . . . , fm)(t)
(6)

for every x, t ∈ [0, 1] and (f1, . . . , fm) ∈ ([0, 1][0,1])m

Theorem 1. Let F : ([0, 1][0,1])n → [0, 1][0,1] be an m-dimensional fusion oper-
ator. The following statements are equivalent:

(i) F is representable,
(ii) F is fully independent,
(iii) F is independent as regards maps, and pointwise independent.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are straightforward. To prove (iii) ⇒
(i), let (y1, . . . , ym) ∈ [0, 1]m. Let cyi : [0, 1]→ [0, 1] be the constant map defined
by cyi(x) = yi for every x ∈ [0, 1] (i = 1, . . . ,m). Fix an element x0 ∈ [0, 1]. De-
fine now W : [0, 1]m → [0, 1] as W (y1, . . . , ym) = F (cy1 , . . . , cym)(x0). Observe
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that the choice of x0 is irrelevant here, since F is pointwise independent. In
order to see that W represents F , fix x ∈ [0, 1] and (f1, . . . , fm) ∈ ([0, 1][0,1])m.
Let ci : [0, 1] → [0, 1] be the constant map given by ci(t) = fi(x) for every
t ∈ [0, 1] (i = 1, . . . ,m). Since F is independent as regards maps, it follows that
F (f1, . . . , fm)(x) = F (c1, . . . , cm)(x). But, by definition of W , we also have
that F (c1, . . . , cm)(x) = W (f1(x), . . . , fm(x)). Therefore F (f1, . . . , fm)(x) =
W (f1(x), . . . , fm(x)) and we are done. ,-

Example 2. The following m-dimensional fusion operators from [0, 1] into [0, 1]
are obviously representable:

(i) each projection πi : ([0, 1]
[0,1])m → [0, 1][0,1], where πi(f1, . . . , fm) = fi for

every (f1, . . . , fm) ∈ ([0, 1][0,1])m (i = 1, . . . ,m),
(ii) each constant operator mapping any m-tuple (f1, . . . , fm) ∈ ([0, 1][0,1])m to

a (fixed a priori) map g : [0, 1]→ [0, 1].

Moreover, any m-ary operation in [0, 1] immediately gives rise to a repre-
sentablem-dimensional fusion operator. Indeed, given a mapH : [0, 1]m → [0, 1],
it is clear that the m-dimensional fusion operator FH : ([0, 1][0,1])m → [0, 1][0,1]

given by FH(f1, . . . , fm)(x) = H(f1(x), . . . , fm(x)) for every x ∈ [0, 1] and
(f1, . . . , fm) ∈ ([0, 1][0,1])m is representable through H .

In the spirit of Definition 6 and Theorem 1 we finish this section by considering
that an m-tuple of functions from a set [0, 1] into another set [0, 1] has been fixed .
We furnish a result concerning the structural functional equation of pointwise
aggregation.

Theorem 2. Let (f1, . . . , fm) ∈ ([0, 1][0,1])m denote a fixed m-tuple of maps
from [0, 1] into [0, 1]. Let fm+1 : [0, 1]→ [0, 1] be a map. The following statements
are equivalent:

(i) There exists a solution W : [0, 1]m → [0, 1] of the structural functional equa-
tion of pointwise aggregation so that fm+1(x) = W (f1(x), . . . , fm(x)) holds
for every x ∈ [0, 1].

(ii) The implication (f1(x), . . . , fm(x)) = (f1(t), . . . fm(t))⇒ fm+1(x) = fm+1(t)
holds true for all x, t ∈ [0, 1].

Proof. The implication (i) ⇒ (ii) is obvious. To prove that (ii) ⇒ (i), we choose
an element y0 ∈ [0, 1], and define W as follows: given (y1, . . . ym) ∈ [0, 1]m

we declare that W (y1, . . . ym) = fm+1(x) if there exists x ∈ [0, 1] such that
(y1, . . . ym) = (f1(x), . . . fm(x)); otherwise, W (y1, . . . ym) = y0. ,-

5 A Case Study: Union and Intersection of Type-2 Fuzzy
Sets as Fusion Operators

In this section we focus on two key concepts to deal with type-2 fuzzy sets:
the union and intersection. Recall that the union and intersection of two type-2



First Approach of Type-2 Fuzzy Sets via Fusion Operators 361

fuzzy sets is a new type-2 fuzzy set. Therefore, we can interpret the union and
intersection of type-2 fuzzy sets as a special case of fusion of type-2 fuzzy sets.

It is important to say that it does not exist a unique definition for union
and intersection of type-2 fuzzy sets. However, the operations considered in this
work cover several cases since they act in the same way. For each element in
the referential set, we use a function that fuses the membership functions of
that element to each set. So these operations can be seen as fusion operators

F :
(
[0, 1][0,1]

)2 → [0, 1][0,1].

5.1 Union and Intersection Based on Minimum and Maximum

Considering type-2 fuzzy sets as a special case of L-fuzzy sets launched by
Goguen [5], the union and intersection of type-2 fuzzy sets is stated leaning
on the union and intersection of fuzzy sets, as follows [6].

Definition 7. Let f1, f2 ∈ [0, 1][0,1] be two maps. The operations (respectively
called union and intersection)

∪,∩ :
(
[0, 1][0,1]

)2 → [0, 1][0,1] are defined as

(f1 ∪ f2)(x) = max(f1(x), f2(x)) and (7)

(f1 ∩ f2)(x) = min(f1(x), f2(x)). (8)

Proposition 2. The mappings ∪,∩ :
(
[0, 1][0,1]

)2 → [0, 1][0,1] are representable

fusion operators for all f1, f2 ∈ [0, 1][0,1].

5.2 Union and Intersection of Type-2 Fuzzy Sets Based on Zadeh’s
Extension Principle

The problem with the previous definition of union and intersection of type-2
fuzzy sets is that these concepts do not retrieve the usual union and intersection
of fuzzy sets [4]. In order to avoid this trouble, another definition of union and
intersection of type-2 fuzzy sets was given based on Zadeh’s extension principle
[9,4,8,12].

Definition 8. Let f1, f2 ∈ [0, 1][0,1] be two maps. The operations (again, respec-
tively called union and intersection)

-,, :
(
[0, 1][0,1]

)2 → [0, 1][0,1] are defined as

(f1 - f2)(x) = sup{(f1(y) ∧ f2(z)) : y ∨ z = x} and (9)

(f1 , f2)(x) = sup{(f1(y) ∧ f2(z)) : y ∧ z = x}. (10)

Observe that the fusion operators - and , are completely different from ∪
and ∩. In general, for any f1, f2 ∈ [0, 1][0,1] it is not possible to know the value
(f1 - f2)(x) knowing only the values f1(x) and f2(x).
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Proposition 3. The mappings -,, :
(
[0, 1][0,1]

)2 → [0, 1][0,1] fail to be repre-
sentable fusion operators.

Another result in this direction may be seen in [12] and states that, under
certain conditions, if we fix the functions f1, f2, we can see union and intersection
of fuzzy sets as pointwise fusion operators.

Proposition 4. The following statements hold true:

(i) If f1, f2 ∈ [0, 1][0,1] are increasing mappings then the operation - is a point-
wise fusion operator.

(ii) If f1, f2 ∈ [0, 1][0,1] are decreasing mappings then the operation , is a point-
wise fusion operator.

Proof. This follows from Corollary 5 in [12] but we include here an alternative
proof, for the sake of completeness.

(i) For the case -, let us see that {(y, z)|y ∨ z = x} = {(x, z)|z ≤ x} ∪
{(y, x)|y ≤ x}.

In the first situation, namely for {(x, z)|z ≤ x}, since the funtion f2 is in-
creasing, we get f2(z) ≤ f2(x) for all z ≤ x. So, f1(x)∧ f2(z) ≤ f1(x)∧ f2(x) for
all z ≤ x. In particular, supz≤x{f1(x) ∧ f2(z)} ≤ f1(x) ∧ f2(x). Moreover, since
the point (x, x) lies in the considered set, we have that supz≤x{f1(x)∧ f2(z)} =
f1(x) ∧ f2(x).

In a similar way, in the second situation, for {(y, x)|y ≤ x}, it holds that
supy≤x{f1(y) ∧ f2(x)} = f1(x) ∧ f2(x).

Therefore (f1 - f2)(x) = sup{(f1(y) ∧ f2(z) : y ∨ z = x} =
∨(supz≤x{f1(x) ∧ f2(z)}, supy≤x{f1(y) ∧ f2(x)}) = f1(x) ∧ f2(x).
Hence the union is a pointwise fusion operator.
(ii) This case, for the intersection ,, is handled in an entirely analogous way

to the case - just discussed. ,-

6 Conclusions

In this work we have studied a first approach to the fusion of type-2 fuzzy sets.
We have defined the concepts of a pointwise fusion operator and a representable
fusion operator. Their properties are very interesting if we have in mind possible
future applications in problems of decision making or image processing.

We have focused on two operations on type-2 fuzzy sets, namely the union
and the intersection. Because these operations are particular cases of fusion
operators in our sense, we have accordingly analyzed their properties of pointwise
aggregationship and representability.

In future works, our idea is to study fusion operators that satisfy additional
properties as continuity, boundary conditions or monotonicity. This study could
be very useful to establish a link between our fusion operators and aggregation
functions on type-2 fuzzy sets.
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Abstract. Averaging behaviour of aggregation functions depends on the
fundamental property of monotonicity with respect to all arguments. Un-
fortunately this is a limiting property that ensures that many important
averaging functions are excluded from the theoretical framework. We pro-
pose a definition for weakly monotone averaging functions to encompass
the averaging aggregation functions in a framework with many commonly
used non-monotonic means. Weakly monotonic averages are robust to
outliers and noise, making them extremely important in practical appli-
cations. We show that several robust estimators of location are actually
weakly monotone and we provide sufficient conditions for weak mono-
tonicity of the Lehmer and Gini means and some mixture functions. In
particular we show that mixture functions with Gaussian kernels, which
arise frequently in image and signal processing applications, are actually
weakly monotonic averages. Our concept of weak monotonicity provides
a sound theoretical and practical basis for understanding both monotone
and non-monotone averaging functions within the same framework. This
allows us to effectively relate these previously disparate areas of research
and gain a deeper understanding of averaging aggregation methods.

Keywords: aggregation functions, monotonicity, means, penalty-based
functions, non-monotonic functions.

1 Introduction

The aggregation of a set of inputs into a single representative quantity arises nat-
urally in many application domains. Growing interest in aggregation problems
has led to the development of many new mathematical techniques to support
both the application and understanding of aggregation methods. A wide range of
aggregation functions now appear within the literature, including the classes of
weighted quasi-arithmetic means, ordered weighted averages, triangular norms
and co-norms, Choquet and Sugeno integrals and many more. Recent books [2,6]
provide a comprehensive overview of this field.

The class of averaging functions, commonly known as means, are frequently
applied in problems in statistical analysis, automated decision support and in
image and signal processing. Classical means (such as the median and arith-
metic mean) share a fundamental property with the broader class of aggregation
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functions; that of monotonicity with respect to all arguments [2, 6]. In decision
making, monotonicity of the aggregation plays an important role: an increase
in any input or criterion should not lead to a decrease of the overall score or
utility. In many application areas though, where data may contain outliers or
be corrupted by noise, monotonic averages generally perform poorly as aggre-
gation operators. This is due specifically to monotonicity which (apart from the
median) makes them sensitive to translation of individual input values. In such
domains non-monotonic averages are often applied. For example, in statistical
analysis, the robust estimators of location are used to measure central tendancy
of a data set, with many estimators having a breakdown point of 50% [11].

There are many other non-monotonic means appearing in the literature: the
mode (an average possibly known to the Greeks ), Gini means, Lehmer means,
Bajraktarevic means [2, 3] and mixture functions [7, 10] being particularly well
known cases. These means have significant practical and theoretical importance
and are well studied, however being non-monotonic they are not classified as
aggregation functions.

Ideally we want a formal framework for averaging functions that encom-
passes the non-monotonic means and places them within in context with existing
(monotonic) averaging aggregation. This new framework would enable a better
understanding of the relationships within this broader class of functions and lead
to a deeper understanding of non-monotonic averaging as aggregation.

We achieve these aims in this article by relaxing the monotonicity require-
ment for averaging aggregation and propose a new definition that encompasses
many non-monotonic averaging functions. This definition rests on the property
of directional monotonicity in the direction of the vector (1, 1, . . . , 1), which is
obviously implied by shift-invariance as well as by the standard definition of
monotonicity. We call this property weak monotonicity within the context of
aggregation functions and we investigate it herein in the context of means.

The remainder of this article is structured as follows. In Section 2 we provide
the necessary mathematical foundations that underpin the subsequent mate-
rial. Section 3 contains our fundamental contribution, the definition of weakly
monotonic averaging functions, along with some relevant examples. We examine
several classes of non-monotonic means derived from the mean of Bajraktarevic
in Section 4 and provide sufficient conditions for weak monotonicity. In Section
5 we consider φ−transforms of weakly monotonic averages and determine con-
ditions for the preservation of weak monotonicity under transformations. Our
conclusions are presented in Section 6.

2 Preliminaries

2.1 Aggregation Functions

The following notations and assumptions are used throughout this article. Con-
sider any closed, non-empty interval I = [a, b] ⊆ R̄ = [−∞,∞]. Without loss
of generality we assume that the domain of interest is quantified by In, with
n implicit within the context of use. Tuples in In are defined as x = (xi,n|n ∈
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N, i ∈ {1, ..., n}), though we write xi as the shorthand for xi,n such that it is
implicit that i ∈ {1, ..., n}. In is assumed ordered such that for x,y ∈ In, x ≤ y
implies that each component of x is no greater than the corresponding compo-
nent of y. Unless otherwise stated, a constant vector given as a is taken to mean
a = a(1, 1, ..., 1)︸ ︷︷ ︸ = a1

n−times

, a ∈ R.

Consider now the following definitions:

Definition 1. A function F : In → R̄ is monotonic (non decreasing) if and
only if, ∀x,y ∈ In,x ≤ y then F (x) ≤ F (y).

Definition 2. A function F : In → I is an aggregation function in In if and
only if F is monotonic non-decreasing in I and F (a) = a, F (b) = b.

The two fundamental properties defining an aggregation function are mono-
tonicity with respect to all arguments and bounds preservation.

Definition 3. A function F is called idempotent if for every input
x = (t, t, ..., t), t ∈ I the output is F (x) = t.

Definition 4. A function F has averaging behaviour (or is averaging) if for
every x it is bounded by min(x) ≤ F (x) ≤ max(x).

Definition 5. A function F : In → I is shift-invariant (stable for transla-
tions) if F (x+ a1) = F (x) + a whenever x,x+ a1 ∈ In and F (x) + a ∈ I.

Technically the definition of shift-invariance expresses stability of aggregation
functions with respect to translation. Because the term shift-invariance is much
in use, e.g. [2, 5], we adopt it for the remainder of this paper.

Definition 6. Let φ : I→ I be a bijection. The φ-transform of a function F
is the function Fφ(x) = φ−1 (F (φ(x1), φ(x2), ..., φ(xn))).

An important example of φ−transforms are the negations, with the standard
negation being φ(t) = 1− t.

2.2 Means

For monotonic functions averaging behaviour and idempotency are equivalent,
however without monotonicity, idempotence does not imply averaging. We will
follow many recent authors (e.g., [3]) and take the definition of a mean - a
term used synonymously with averaging aggregation - to be any function (not
necessarily monotonic) that has averaging behaviour.

Definition 7. A function M : In → I is called a mean if and only if it has
averaging behaviour.
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Examples of well known monotonic means found within the literature include the
weighted arithmetic mean, weighted quasi-arithmetic mean, ordered weighted
average (OWA) and the median.

An important class of means that are not necessarily monotonic are those
expressed by the mean of Bajraktarevic (a generalisation of the weighted quasi-
arithmetic means).

Definition 8. Let w = (w1, ..., wn) be a vector of weight functions wi : I →
[0,∞), and let g : I → R̄ be a strictly monotonic function. The mean of Ba-
jraktarevic is the function

Mg
w(x) = g−1

⎛⎜⎜⎜⎜⎝
n∑

i=1

wi(xi)g(xi)

n∑
i=1

wi(xi)

⎞⎟⎟⎟⎟⎠ . (2.1)

In the case that g(xi) = xi and all wi are distinct functions, the Bajraktarevic
mean is a generalised mixture function (or generalised mixture operator). If all
wi are equivalent then we obtain the mixture functions

Mw(x) =

n∑
i=1

w(xi)xi

n∑
i=1

w(xi)

. (2.2)

A particularly interesting sub-class of Bajraktarevic means are Gini means
Gp,q, obtained by setting w(xi) = xq

i and g(xi) = xp−q
i when p �= q, or g(xi) =

log(xi) if p = q,

Gp,q(x) =

⎛⎜⎜⎜⎜⎝
n∑

i=1

xp
i

n∑
i=1

xq
i

⎞⎟⎟⎟⎟⎠
1

p−q

. (2.3)

Gini means include as a special case (q = 0) the power means and hence
include the minimum, maximum and the arithmetic mean as specific cases. An-
other special case of the Gini mean is the Lehmer mean, obtained when p = q+1.
The contra-harmonic mean is the Lehmer mean with q = 1. We investigate these
means further in Section 4.

3 Weak Monotonicity

3.1 Main Definition

The definition of weak monotonicity provided herein is prompted by applications
and intuition, which suggests that an aggregate value does not decrease if all
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inputs increase equally, as the relative positions of the inputs are unchanged.
Additionally, in many situations it is reasonable to expect that a small increase
in one or a few values will also cause an increase in the aggregate value, however a
larger increase may then cause a decrease in the aggregate. Such a circumstance
would occur when a data value is moved so that it is then considered an outlier
from the significant cluster present in the inputs. These properties lead us to the
concept of weak monotonicity and thus the following definition.

Definition 9. A function f is called weakly monotonic non-decreasing (or
directionally monotonic) if F (x+ a1) ≥ F (x) for any a > 0, 1 = (1, ..., 1)︸ ︷︷ ︸

n−times

, such

that x,x+ a1 ∈ In.

Remark 1. Monotonicity implies weak monotonicity and hence all aggregation
functions are weakly monotonic. By Definition 5 all shift-invariant functions are
also weakly monotonic.

Remark 2. If F is directionally differentiable in In then weak monotonicity is
equivalent to non-negativity of the directional derivative D1(F )(x) ≥ 0.

3.2 Examples of Weakly Monotonic Means

Herein we consider several examples of means generally considered to be non-
monotonic and we show that they are actually weakly monotonic. We begin by
considering several of the robust estimators of location, then investigate mixture
functions and some interesting means from the literature.

Example 1. Mode: The mode is perhaps the most widely applied estimator
of location, depicting the most frequent input. It may be expressed in penalty
form [4] as the minimiser of the function

P(x, y) =
n∑

i=1

p(xi, y) where p(xi, y) =

{
0 xi = y

1 otherwise
.

Since F (x + a1) = argmin
y
P(x + a1, y) = argmin

y

n∑
i=1

p(xi + a, y) is minimised

by the value y = F (x) + a then the mode is shift-invariant and thus weakly
monotonic.

Remark 3. The penalty P associated with the mode is not quasi-convex and as
such it may have several minimisers. Thus the mode may not be uniquely de-
fined, in which case we must apply a reasonable convention. Suitable conventions
include choosing the the smallest or the largest value from the set of minimisers.
All non-monotonic means expressed by non-quasi-convex penalties also require
such conventions.
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Robust estimators of location are calculated using the shortest contiguous sub-
sample of x containing at least half of the values. The candidate sub-samples
are the sets Xk = {xj : j ∈ {k, k + 1, ..., k +

⌊
n
2

⌋
}, k = 1, ...,

⌊
n+1
2

⌋
. The length

of each contiguous set is taken as ‖Xk‖ =
∣∣∣xk+* n

2 + − xk

∣∣∣ and thus the index of

the shortest sub-sample is

k∗ = argmin
i
‖Xi‖ , i = 1, ...,

⌊
n+ 1

2

⌋
.

Under the translation x̄ = x+a1 the length of each sub-sample is unaltered since∥∥X̄k

∥∥ =
∣∣∣x̄k+* n

2 + − x̄k

∣∣∣ = ∣∣∣(xk+* n
2 + + a)− (xk + a)

∣∣∣ = ∣∣∣xk+* n
2 + − xk

∣∣∣ = ‖Xk‖
and thus k∗ remains the same. Thus, to establish the weak monotonicity of
estimators based on the shortest half of the data we need only consider the
effect of translation on the function applied to X∗

k .

Example 2. Least Median of Squares (LMS): The LMS is the midpoint of
the set X∗

k and is given by the minimiser μ of the penalty function

P(x, y) = median
{
(xi − y)2 |y ∈ I, xi ∈ Xk∗

}
.

It is evident that the value y minimising the penalty P(x+ a1, y) is y = μ+ a.
Hence F (x + a1) = F (x) + a and the LMS is shift-invariant and thus weakly
monotonic.

Example 3. The Shorth [1] is the arithmetic mean of Xk∗ and is given by

F (x) =
1

h

h∑
i=1

xi, xi ∈ Xk∗ , h =
⌊n
2

⌋
+ 1.

Since membership of the set Xk∗ is unaltered by translation and the arithmetic
mean is shift-invariant, then the shorth is shift-invariant and hence weakly mono-
tonic.

In the next section we present conditions for the weak monotonicity of several
classes of means derived from the mean of Bajraktarevic.

4 Weakly Monotonic Mixture Functions

Monotonicity of mixture functions given by Eqn. (2.2) was investigated in [8,
9] where some sufficient conditions have been established in cases where the
weighting function w is monotonic.

A particularly interesting case for which w is not monotonic is that in which
the weighting function is Gaussian; i.e., w(x) = exp(−(x−a)2/b2). Such mixture
functions arise in the implementation of convolution-based filters in image and
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signal processing and thus represent an extremely important example of non-
monotonic means. With some calculation it can be shown that the directional
derivative of a mixture function A with Gaussian weight function is given by

Du(A) ∝
n∑

i=1

w2
i +

1

b2

n∑
i=1

n∑
j �=i

(b2 − (xi − xj)
2)wiwj ,

with u = 1√
n
(1, 1, ..., 1) and wi = w(xi). This expression is non-negative for

all xi, xj ∈ [0, 1], b ≥ 1, independent of a. By varying parameters a and b we
generate either monotone increasing, decreasing (both convex and concave) or
unimodal quasi-convex weight functions, which produce weakly monotonic mix-
ture functions.

Proposition 1. Let A be a mixture function defined by eqn. (2.2) with generator

w(x) = e−( x−a
b )2 . Then A is weakly monotonic for all a, b ∈ R and x ∈ [0, 1]n.

Mesiar [9] showed that mixture functions may be expressed in penalty form by

P(x, y) =
n∑

i=1

w(xi)(xi − y)2.

It follows that if w is shift-invariant then so too is the mixture function and
hence it is weakly monotonic. We can extend this result to weight functions of
the form w = w(‖xi − f(x)‖p) such that if f is shift-invariant then the mixture
function is weakly monotonic.

For the Gini means, given by Eqn. (2.3), we present the following results
without proof, which are beyond the scope of this paper and which will appear
in a subsequent publication.

Theorem 1. The Gini mean Gp,q for p, q ∈ R defined in (2.3) is weakly mono-
tonic on [0,∞)n if and only if

(n− 1)

((
q

p− 1

)p−1 (
q − 1

p

)q−1
) 1

p−q

≤ 1

and p > q with q �∈ (0, 1) or p < q with p �∈ (0, 1).

Taking the case p = q + 1, we obtain the Lehmer means, Lq, which are also
not generally monotonic. Lehmer means are also mixture functions with weight
function w(t) = tq, which is neither increasing for all q ∈ R nor shift-invariant.
For q < 0 the value of the Lehmer mean at x with at least one component xi = 0
is defined as the limit when xi → 0+, so that Lq is continuous on [0,∞)n.

Theorem 2. The Lehmer mean of n arguments,

Lq(x) =

n∑
i=1

xq+1
i

n∑
i=1

xq
i

, q ∈ R \ (0, 1),
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is weakly monotonic on [0,∞)n if n ≤ 1 +
(

q+1
q−1

)q−1

.

Remark 4. Interestingly, as

(
q + 1

q − 1

)q−1

=

((
1 +

2

q − 1

) q−1
2

)2

,

and the right hand side is increasing (with q) and approaches e2 as q → ∞, we
have a restriction that for all q > 1 weak monotonicity holds for at most n < 9
arguments. This restricts the use of Lehmer means for positive q in applications
requiring some aspect of monotonicity.

Corollary 1 The contra-harmonic mean (Lq, q = 1) is weakly monotonic only
for two arguments.

5 Duality and φ-transforms

Herein we consider the φ−transform of a weakly monotonic function. We know
that standard monotonicity is preserved under φ−transform, when φ is a strictly
monotonic function. Consider now functions of the form

ϕ(x) = (ϕ(x1), ϕ(x2), ..., ϕ(xn))

with ϕ any twice differentiable and invertible function.

Proposition 2. If A : In → In is weakly monotonic and ϕ : I → I is a lin-
ear function then the φ−transform Aϕ(x) = F (x) = ϕ−1 (A(ϕ(x))) is weakly
monotonic.

Corollary 2 The dual Ad of a weakly monotonic function A is also weakly
monotonic under standard negation.

Weak monotonicity is not preserved under all nonlinear transforms, although
of course for specific functions this property will be preserved for some specific
choices of φ.

Proposition 3. The only functions φ which preserve weak monotonicity of all
weakly monotonic functions are linear functions.

Proof. Consider the example of a shift-invariant and hence weakly monotonic
function whose φ−transform is not weakly monotonic in general. The function
F (x, y) = D(y−x)+ x+y

2 , where D is the Dirichlet function (which takes values
0 at rational numbers and 1 at irrational numbers) is one such example. Taking
generalised derivatives of F we obtain

Fx = −D′(y − x) +
1

2
and Fy = D′(y − x) +

1

2
,
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from which it follows that Fx + Fy = 1 ≥ 0.
Consider the φ−transformofF given byFφ(x, y) = φ−1(F (φ(x), φ(y))) and the

sum of its partial derivatives. We need only consider the function F (φ(x), φ(y)) in
which case we find that

F (φ(x), φ(y)))x + F (φ(x), φ(y)))y = D′(φ(y) − φ(x))(φ
′
(y)− φ

′
(x))

+
φ′ (x) + φ′ (y)

2
.

The first term is zero only when φ
′
(x) = φ

′
(y) for all x, y. That is, φ

′
(x) is con-

stant and hence φ is a linear function. In all other cases the generalised derivative
of D takes values +∞ and −∞, and hence the sum of partial derivatives can be
negative.

The next result shows that for some shift-invariant functions, such as the
Shorth and LMS estimators, weak monotonicity is preserved under ϕ−transforms
with increasing invertible functions φ such that ln(ϕ′) is concave.

Lemma 1. Let ϕ be any twice differentiable and invertible function. Then the
function ϕ

(
ϕ−1(x) + c

)
is concave if and only if: lnϕ′ is concave when ϕ′ > 0;

or, ln |ϕ′| is convex for ϕ′ < 0, for every c ∈ R, c ≥ 0 and x ∈ In.

Lemma 2. Let x be ordered such that xi ≤ xj for i < j and let Xi denote the
subset {xi, . . . , xi+h} for some fixed h. Let ΔXi = ‖Xi‖ = |xi+h − xi| denote
the length of the interval containing Xi. If ϕ is a concave increasing function
then for i < j, ΔXj ≤ ΔXi implies that Δϕ(Xi) ≥ Δϕ(Xj), where Δϕ(Xi) =
|ϕ(xi+h)− ϕ(xi)|.

Proposition 4. Consider a robust estimator of location A based on the shortest
contiguous half of the data. Let ϕ be a twice differentiable strictly increasing and
thus invertible function, such that lnφ′ is concave. Then A(x + a1) ≥ A(x)
implies ϕ−1(A(ϕ(x + a1))) ≥ ϕ−1(A(ϕ(x))).

Proof. Denote by y = ϕ(x) and x = ϕ−1(y) (with functions applied componen-
twise) and we have ϕ′ > 0. We must show that

A(ψc(y)) = A(ϕ(ϕ−1(y) + c)) ≥ A(y).

By Lemma 1 function ψc is concave. By Lemma 2 we have ΔXi ≤ ΔXj ⇒
Δψc(Xi) ≤ Δψc(Xj) for i ≥ j. Hence the starting index of the shortest half
cannot decrease after the transformation ψc and the result follows directly.

Corollary 3 Let A be a robust estimator of location based on the shortest con-
tiguous half of the data. Let ϕ be twice differentiable strictly increasing function
such that ln |φ′| is convex. Then the ϕ-dual of A is weakly monotonic.

Proposition 4 serves as a simple test to determine which ϕ-transforms pre-
serve weak monotonicity of averages such as the Shorth and LMS estimator. For
example ϕ(x) = ex does preserve weak monotonicity and ϕ(x) = ln(x) does not.
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6 Conclusion

We have presented a novel definition of weak monotonicity that enables us to
encompass within the same framework the monotonic averaging aggregation
functions and many means thought to be purely non-monotonic. We have demon-
strated that several of the commonly used robust estimators of location are
weakly monotonic and provided sufficient conditions for the weak monotonicity
of the Lehmer means, Gini means and certain mixture functions. In particular we
have shown that the nonlinear convolution-based filters with Gaussian kernels,
used commonly in signal and image processing, are actually weakly monotonic
averaging functions. We demonstrated that weak monotonicity is not preserved
under all nonlinear transforms, and we found a class of transforms that preserve
weak monotonicity of such functions as the shorth and LMS estimator.

This study was prompted by two significant issues that have arisen within our
work on aggregation functions. The first is that many means reported in the lit-
erature lie outside the current definition of aggregation functions, which requires
monotonicity in all arguments. The second issue is that of practical application.
Monotonic means are generally sensitive to noise and outliers, common features
of data collected in real world contexts. In averaging these data we employ non-
monotonic averages. Improving our understanding of these functions and how
they fit within the existing framework of aggregation functions is an important
step in the development of this field of study.
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Abstract. In this contribution, the extension of F-transform to F s-
transform for functions of two variables is introduced. The F s-transform
components are characterized as orthogonal projections, and some of
their properties are discussed. The aim of this study is to present the
possibility of using the technique of F 1-transform in big data processing
and to suggest a good searching mechanism for large databases.
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1 Introduction

In this paper, we focus on the F-transform technique and its extension to the
F-transform of a higher degree (F s-transform). The aim is to describe the formal
conception of this technique, demonstrate some of its properties and introduce
its application to big data processing.

“Big data” refers to data that exceeds the processing capacity of conventional
database systems, e.g., geographical data, medical data, social networks, and
banking transactions. The data are generally of high volume, high velocity or
high variety. The benefit gained from the ability to process large amounts of data
is that we can create effective models and use them for databases of a custom
size.

It is not feasible to handle large databases with classical analytic tools. We are
not able to process every item of data in a reasonable amount of time. Therefore,
we are searching for an alternative way to obtain the desired information from
these data.

The F-transform is a technique that was developed as tool for a fuzzy modeling
[1]. Similar to conventional integral transforms (the Fourier and Laplace trans-
forms, for example), the F-transform performs a transformation of an original
universe of functions into a universe of their “skeleton models”. Each component
of the resulting skeleton model is a weighted local mean of the original function
over an area covered by a corresponding basic function. The F-transform is a

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 374–383, 2014.
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simplified representation of the original function, and it can be used instead of
the original function to make further computations easier.

Initially, the F-transform was introduced for functions of one or two variables.
This method proved to be very general and powerful in many applications. The
F-transform of functions of two variables shows great potential in applications
involving image processing, particularly, image compression [2], image fusion [3],
and edge detection [4], [5].

Generalization of the ordinary F-transform to the F-transform of a higher de-
gree in the case of functions of one variable was introduced in [6]. An extension
of the F-transform of the first degree (F 1-transform) to functions of many vari-
ables was introduced in [7]. Many interesting properties and results have been
proven in those studies .

The aim of this contribution is to introduce the F-transform of a higher degree
(F s-transform) for functions of two variables and to show how this technique can
be successfully applied for searching for patterns in big data records.

The paper is organized as follows: Section 2 recalls the basic tenets of the
fuzzy partition and introduces a particular Hilbert space. In Section 3, the F s-
transform of functions of two variables is introduced. The inverse F s-transform is
established in Section 4. In Section 5, an illustrative application of F 1-transform
to big data is presented. Finally, conclusions and comments are provided in
Section 6.

2 Preliminaries

In this section, we briefly recall the basic tenets of the fuzzy partition and in-
troduce a particular Hilbert space.

2.1 Generalized Fuzzy Partition

Let us recall the concept of a generalized fuzzy partition [8].

Definition 1. Let x0, x1, . . . , xn, xn+1 ∈ [a, b] be fixed nodes such that a = x0 ≤
x1 < . . . < xn ≤ xn+1 = b, n ≥ 2. We say that the fuzzy sets A1, . . . , An : [a, b]→
[0, 1] constitute a generalized fuzzy partition of [a, b] if for every k = 1, . . . , n
there exists h

′
k, h

′′
k ≥ 0 such that h

′
k + h

′′
k > 0, [xk − h

′
k, xk + h

′′
k ] ⊆ [a, b] and the

following conditions are fulfilled:

1. (locality) – Ak(x) > 0 if x ∈ (xk − h
′
k, xk + h

′′
k ) and Ak(x) = 0 if x ∈

[a, b] \ [xk − h
′
k, xk + h

′′
k ];

2. (continuity) – Ak is continuous on [xk − h
′
k, xk + h

′′
k ];

3. (covering) – for x ∈ [a, b],
∑n

k=1 Ak(x) > 0.

By the locality and continuity, it follows that
∫ b
a Ak(x)dx > 0.

If the nodes x0, x1, . . . , xn, xn+1 are equidistant, i.e., for all k = 1, . . . , n+ 1,
xk = xk−1+h, where h = (b−a)/(n+1), h

′
> h/2 and two additional properties

are satisfied,
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6. h
′
1 = h

′′
1 = h

′
2 = . . . = h

′′
n−1 = h

′
n = h

′′
n = h

′
, and Ak(xk − x) = Ak(xk + x)

for all x ∈ [0, h
′
], k = 1, . . . , n;

7. Ak(x) = Ak−1(x − h) and Ak+1(x) = Ak(x − h) for all x ∈ [xk, xk+1],
k = 2, . . . , n− 1;

then the fuzzy partition is called an (h, h
′
)-uniform generalized fuzzy partition.

Remark 1. A fuzzy partition is called a Ruspini partition if

n∑
k=1

Ak(x) = 1, x ∈ [a, b].

Fig. 1. Example of a generalized fuzzy partition of [a, b]

The concept of generalized fuzzy partition can be easily extended to the uni-
verse D = [a, b]× [c, d]. We assume that [a, b] is partitioned by A1, . . . , An and
that [c, d] is partitioned by B1, . . . , Bm, according to Definition 1. Then, the
Cartesian product [a, b] × [c, d] is partitioned by the Cartesian product of cor-
responding partitions where a basic function Ak × Bl is equal to the product
Ak · Bl, k = 1, . . . , n, l = 1, . . . ,m.

1

2

3

4

1

1.5

2

2.5

3
0

0.2

0.4

0.6

0.8

1

Fig. 2. Example of a cosine-shaped fuzzy partition of [a, b]× [c, d]

For the remainder of this paper, we fix the notation related to fuzzy partitions
of the universe D = [a, b]× [c, d].
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2.2 Spaces L2(Ak), L2(Ak)× L2(Bl)

Throughout the following subsections, we fix integers k, l from {1, . . . , n}, {1, . . . ,
m}, respectively.

Let L2(Ak) be a Hilbert space of square-integrable functions f : [xk−1, xk+1]→
R with the inner product 〈f, g〉k given by

〈f, g〉k =

∫ xk+1

xk−1

f(x)g(x)Ak(x)dx. (1)

Analogously, the same holds for the space L2(Bl).
Then, the Hilbert space L2(Ak) × L2(Bl) of functions of two variables f :

[xk−1, xk+1]×[yl−1, yl+1]→ R is given by the Cartesian product of the respective
spaces L2(Ak) and L2(Bl). The inner product is defined analogously to (1).

Remark 2. The functions f, g ∈ L2(Ak) × L2(Bl) are orthogonal in L2(Ak) ×
L2(Bl) if

〈f, g〉kl = 0.

In the sequel, by L2([a, b]×[c, d]), we denote a set of functions f : [a, b]×[c, d]→
R such that for all k = 1, . . . , n, l = 1, . . . ,m, f |[xk−1,xk+1]×[yl−1,yl+1] ∈ L2(Ak)×
L2(Bl), where f |[xk−1,xk+1]×[yl−1,yl+1] is the restriction of f on [xk−1, xk+1] ×
[yl−1, yl+1].

2.3 Subspaces Lp
2(Ak), L

s
2(Ak × Bl)

Let space Lp
2(Ak), p ≥ 0, (Lr

2(Bl), r ≥ 0) be a closed linear subspace of L2(Ak)
(L2(Bl)) with the orthogonal basis given by polynomials

{P i
k(x)}i=0,...,p, ({Qj

l (y)}j=0,...,r),

where p (r) denotes a degree of polynomials and orthogonality is considered in
the sense of (2).

Then, we can introduce space Ls
2(Ak ×Bl), s ≥ 0 as a closed linear subspace

of L2(Ak)× L2(Bl) with the basis given by orthogonal polynomials

{Sij
kl(x, y)}i=0,...,p; j=0,...,r; i+j≤s = {P i

k(x) ·Q
j
l (y)}i=0,...,p; j=0,...,r; i+j≤s. (2)

Remark 3. Let us remark that the space Ls
2(Ak × Bl) is not the same as the

Cartesian product Lp
2(Ak)×Lr

2(Bl); the difference is in using fewer of the possible
combinations of orthogonal basis polynomials. Therefore, s ≤ (p + 1)(r + 1).
In the case where s = (p + 1)(r + 1), the space Ls

2(Ak × Bl) coincides with
Lp
2(Ak)× Lr

2(Bl).

In point of fact, s is the maximal degree of products P i
k(x)Q

j
l (y) such that

i+ j ≤ s. For example, the basis of the space L1
2(Ak ×Bl) is established by the

following polynomials

P 0
k (x)Q

0
l (y)︸ ︷︷ ︸

S00
kl (x,y)

, P 1
k (x)Q

0
l (y)︸ ︷︷ ︸

S10
kl (x,y)

, P 0
k (x)Q

1
l (y)︸ ︷︷ ︸

S01
kl (x,y)

. (3)
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The following lemma characterizes the orthogonal projection of a function
f ∈ L2([a, b]× [c, d]) or the best approximation of f in the space Ls

2(Ak ×Bl).

Lemma 1. Let f ∈ L2([a, b] × [c, d]) and let Ls
2(Ak × Bl) be a closed linear

subspace of L2(Ak)×L2(Bl), as specified above. Then, the orthogonal projection
F s
kl of f on Ls

2(Ak ×Bl), s ≥ 0, is equal to

F s
kl =

∑
0≤i+j≤s

cijklS
ij
kl (4)

where

cijkl =
〈f, Sij

kl〉kl
〈Sij

kl, S
ij
kl〉kl

=

∫ yl+1

yl−1

∫ xk+1

xk−1
f(x, y)Sij

kl(x, y)Ak(x)Bl(y)dx dy∫ yl+1

yl−1

∫ xk+1

xk−1
(Sij

kl(x, y))
2Ak(x)Bl(y)dx dy

. (5)

3 Direct F s-transform

Now let f ∈ L2([a, b] × [c, d]) and let Ls
2(Ak × Bl) , s ≥ 0 be a space with the

basis given by
{Sij

kl(x, y)}i=0,...,p; j=0,...,r; i+j≤s.

In the following, we define the direct F s-transform of the given function f .

Definition 2. Let f ∈ L2([a, b] × [c, d]). Let F s
kl, s ≥ 0 be the orthogonal pro-

jection of f |[xk−1,xk+1]×[yl−1,yl+1] on Ls
2(Ak×Bl), k = 1, . . . , n, l = 1, . . . ,m. We

say that (n ×m) matrix Fs
nm[f ] is the direct F s-transform of f with respect to

A1, . . . , An, B1, . . . , Bm, where

Fs
nm[f ] =

⎛⎜⎝F s
11 . . . F s

1m
...

...
...

F s
n1 . . . F s

nm

⎞⎟⎠ . (6)

F s
kl, k = 1, . . . , n, l = 1, . . . ,m is called the F s-transform component.

By Lemma 1, the F s-transform components have the representation given
by (4).

We will briefly recall the main properties of the F s-transform, s ≥ 0.

(A) The F s-transform of f , s ≥ 0, is an image of a linear mapping from
L2([a, b]× [c, d]) to Ls

2(A1 ×B1) × . . .× Ls
2(An ×Bm) where, for all func-

tions f, g, h ∈ L2([a, b]× [c, d]) such that f = αg + βh, where α, β ∈ R, the
following holds:

Fs
nm[f ] = αFs

nm[g] + βFs
nm[h]. (7)

(B) Let f ∈ L2([a, b]× [c, d]). The kl-th component of the F s-transform, s ≥ 0,
of the given function f gives the minimum to the function

c00kl , . . . , c
ij
kl =

∫ b

a

∫ d

c

(f(x, y)−
∑

i+j≤s

cijklS
ij
kl)

2Ak(x)Bl(y)dx dy, (8)

Therefore, F s
kl is the best approximation of f in Ls

2(Ak×Bl), k = 1, . . . , n, l =
1, . . . ,m.
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(C) Let f be a polynomial of degree t ≤ s. Then, any F s-transform component
F s
kl, s ≥ 0, k = 1, . . . , n, l = 1, . . . ,m coincides with f on [xk−1, xk+1] ×

[yl−1, yl+1].
(D) Every F s-transform component F s

kl, s ≥ 1, k = 1, . . . , n, l = 1, . . . ,m,
fulfills the following recurrent equation:

F s
kl = F s−1

kl +
∑

i+j=s

cijklS
ij
kl. (9)

The following lemma describes the relationship between the F 0-transform and
F s-transform components.

Lemma 2. Let Fs
nm[f ] = (F s

11, . . . , F
s
nm), where F s

kl, k = 1, . . . , n, l = 1, . . . ,m
s ≥ 0 is given by (4), be the F s-transform of f with respect to the given partition
{Ak ×Bl}, k = 1, . . . , n, l = 1, . . . ,m. Then, (c0011, . . . , c

00
nm) is the F 0-transform

of f with respect to Ak ×Bl, k = 1, . . . , n, l = 1, . . . ,m.

The proof is analogous to that of the case of functions of one variable given
in [6].

Any F s-transform component F 0
kl, F

1
kl, . . . , F

s
kl, k = 1, . . . , n, l = 1, . . . ,m

s ≥ 0, can approximate the original function f ∈ L2([a, b]× [c, d]) restricted to
[xk−1, xk+1]× [yl−1, yl+1]. The following lemma says that the quality of approx-
imation increases with the degree of the polynomial.

Lemma 3. Let the polynomials F s
kl, F

s+1
kl , k = 1, . . . , n, l = 1, . . . ,m s ≥ 0, be

the orthogonal projections of f |[xk−1,xk+1]×[yl−1,yl+1] on the subspaces Ls
2(Ak×Bl)

and Ls+1
2 (Ak ×Bl), respectively. Then,

‖ f |[xk−1,xk+1]×[yl−1,yl+1] − F s+1
kl ‖kl≤‖ f |[xk−1,xk+1]×[yl−1,yl+1] − F s

kl ‖kl . (10)

The proof is analogous to that of the case of functions of one variable given
in [6].

3.1 Direct F 1-transform

In this section, we assume that s = 1 and give more details to the F 1-transform
and its components.

The F 1-transform components F 1
kl, k = 1, . . . , n, l = 1, . . . ,m, are in the form

of linear polynomials

F 1
kl = c00kl + c10kl (x− xk) + c01kl (y − yl), (11)

where the coefficients are given by

c00kl =

∫ yl+1

yl−1

∫ xk+1

xk−1
f(x, y)Ak(x)Bl(y)dx dy

(
∫ xk+1

xk−1
Ak(x)dx)(

∫ yl+1

yl−1
Bl(y)dy)

, (12)
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c10kl =

∫ yl+1

yl−1

∫ xk+1

xk−1
f(x, y)(x − xk)Ak(x)Bl(y)dx dy

(
∫ xk+1

xk−1
(x− xk)2Ak(x)dx)(

∫ yl+1

yl−1
Bl(y)dy)

, (13)

c01kl =

∫ yl+1

yl−1

∫ xk+1

xk−1
f(x, y)(y − yl)Ak(x)Bl(y)dx dy

(
∫ xk+1

xk−1
Ak(x)dx)(

∫ yl+1

yl−1
(y − yl)2Bl(y)dy)

. (14)

Lemma 4. Let f ∈ L2([a, b]× [c, d]) and {Ak × Bl}, k = 1, . . . , n, l = 1, . . . ,m
be an (h, h

′
)-uniform generalized fuzzy partition of [a, b] × [c, d]. Moreover, let

functions f , Ak, Bl be four times continuously differentiable on [a, b] × [c, d].
Then, for every k, l, the following holds:

c00kl = f(xk, yl) +O(h2), c10kl =
∂f

∂x
(xk, yl) +O(h), c01kl =

∂f

∂y
(xk, yl) +O(h).

The proof can be found in [7].

4 Inverse F s-transform

The inverse F s-transform of the original function f is defined as a linear combi-
nation of basic functions and F s-transform components.

Definition 3. Let Fs
nm[f ] = (F s

kl), k = 1, . . . , n, l = 1, . . . ,m be the F s-
transform of given function f ∈ L2([a, b] × [c, d]). We say that the function

f̂s : [a, b]× [c, d]→ R represented by

f̂ s(x, y) =

∑n
k=1

∑m
l=1 F

s
klAk(x)Bl(y)∑n

k=1

∑m
l=1 Ak(x)Bl(y)

, x ∈ [a, b], y ∈ [c, d], (15)

is the inverse F s-transform of the function f .

Remark 4. From Definition 3 and property (9) of the F s-transform compo-
nents, the recurrent formula below easily follows:

f̂s(x, y) = ˆf s−1(x, y) +

∑n
k=1

∑m
l=1

∑
i+j=s c

ij
klS

ij
klAk(x)Bl(y)∑n

k=1

∑m
l=1 Ak(x)Bl(y)

. (16)

In the following theorem, we show that the inverse F s-transform approximates
an original function, and we estimate the quality of the approximation. Based
on Lemma 3, the quality of the approximation increases with the increase of s.

Theorem 1. Let {Ak × Bl}, k = 1, . . . , n, l = 1, . . . ,m be an h-uniform fuzzy

partition (with the Ruspini condition) of [a, b]× [c, d], and let f̂ s be the inverse
F s-transform of f with respect to the given partition. Moreover, let functions f ,
Ak, and Bl be four times continuously differentiable on [a, b] × [c, d]. Then, for
all (x, y) ∈ [a, b]× [c, d], the following estimation holds true:∫ b

a

∫ d

c

|f(x, y)− f̂ s(x, y)|dxdy ≤ O(h). (17)
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5 Illustrative Application

In this section, we present an illustrative application of F 1-transform to big data.
The application shows how an effective searching mechanism in large databases
can be constructed on the basis of F 1-transform. The detailed characterization
is as follows.

Let o be a sound (voice) signal represented by the function o : T → V , where
T = {0, ..., tmax} is a discrete set of regular time moments and V is a certain
range.

Assume that the signal o is an example of a very large record (big data),
i.e., tmax = 220× 60 sec, sampled at every second. We are given a small sound
pattern oP that is represented by oP : TP → V , where TP is a set of time
moments measured in seconds such that TP = {1, . . . , 6}. The goal is to find
occurrences of the pattern oP in the given sound signal o in a reasonable amount
of time. See the illustrative example on Fig. 3.

Fig. 3. An extraction of a big sound signal o (Left) and a small sound pattern oP

(Right). The red mark indicates the first occurrence of the recognized pattern in the
given signal.

The naive approach is to make a sliding comparison between the values of the
pattern oP and the values in o. For this comparison, the following measure of
closeness can be used:

|TP |∑
j=0

|o(t+ j)− oP (j)|, t ∈ T. (18)

This method is very computationally complex and time consuming.
Our approach is as follows. We apply the direct F 1-transform to the record of

the sound signal o and to the pattern oP , and we obtain their vectors of compo-
nents F1

n[o], F
1
m[oP ], respectively. The dimensions of F1

n[o], F
1
m[oP ] are signifi-

cantly less than the dimensions of the original data o, oP . Instead of comparing
all values of oP and o, we suggest to compare the components of F 1-transform
F1

n[o] and F1
m[oP ].

Finally, the algorithm is realized by the following steps:
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S 1: Read data o and compute F1
n[o] = (F 1

1 , . . . , F
1
n)o w.r.t. the (h, h

′
)-uniform

generalized fuzzy partition. This step is realized just once and can be stored
independently.

S 2: Read data oP and compute F1
m[oP ] = (F 1

1 , . . . , F
1
m)oP w.r.t. the same fuzzy

partition.
S 3: Compute the measure of closeness (18) between components of F1

n[o] and
F1

m[oP ]. The pattern is recognized if the closeness is less than a predefined
threshold of tolerance.

Experiment

For our experiment, we took a record of a sound signal, o with tmax = 220× 60
sec, and a record of a small sound pattern, oP with tmax ≈ 6.4 sec. The records
were taken unprofessionally. In fact, the sounds were both part of a piece of
music recorded by a microphone integrated in a notebook computer. Therefore,
the records are full of noise (because of the microphone, surroundings, etc.) and
they may, for example, differ in volume of the sounds.

We applied the naive approach to these records and obtained the following
results:

– 5.463 · 1012 computations,
– run time ≈ 11 h.

Then, we applied the approach based on F 1-transform and obtained the fol-
lowing results:

– 1.081 · 107 computations,
– run time ≈ 0.008 s.

In this experiment, we used a fuzzy partition with triangular shaped fuzzy sets
and tested the fuzzy partition for h = 1 ∗ 10n, n = 2, 4, 6, 8. The optimal length
for the experiment demonstrated above is for n = 4. For the larger n = 6, 8,
multiple false occurrences of the searched pattern were found. A possible solution
is to make the algorithm hierarchical, i.e., use the larger h at the beginning
and then use the smaller h for the detected results. This approach can achieve
extremely fast recognition by making the algorithm sequentially more accurate.

Remark 5. The task discussed here is usually solved as speech recognition, where
words are individually separated and then each of them is compared with words
in a database. The most similar words are then found as results. The speech
recognition is mostly solved by neural networks. Comparing different speech
recognition approaches will be our future task.

From a different point of view, this task can be discussed as an example of
reducing the dimension of big data. The sub-sampling algorithm is often used in
this task. We tried to apply this algorithm to the task above, and, for comparison,
we used the same reduction of dimensions as in the F 1-transform algorithm. The
sub-sampling algorithm failed; it did not find the searched pattern correctly.
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The example demonstrates the effectiveness of the technique of F 1-transform
in big data processing. A good searching mechanism for large databases can be
developed on the basis of this technique. Similar applications can be developed
in the area of image processing, where searching of patterns is a very popular
problem. The F s-transform, s > 1, technique can be efficiently applied as well.
This will be the focus of our future research.

6 Conclusion

In this paper, we presented the technique of F-transform and our vision of its ap-
plication in big data processing. We discussed the extension to the F s-transform,
s ≥ 1, for functions of two variables. We characterized the components of the
F s-transform as orthogonal projections and demonstrated some of their proper-
ties. Finally, we introduced an illustrative application of using the F 1-transform
in searching for a pattern in a large record of sound signals.
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Abstract. When querying databases, users often wish to express vague concepts,
as for instance asking for the cheap hotels. This has been extensively studied in
the case of relational databases. In this paper, we propose to study how such use-
ful techniques can be adapted to NoSQL graph databases where the role of fuzzi-
ness is crucial. Such databases are indeed among the fastest-growing models for
dealing with big data, especially when dealing with network data (e.g., social net-
works). We consider the Cypher declarative query language proposed for Neo4j
which is the current leader on this market, and we present how to express fuzzy
queries.

Keywords: Fuzzy Queries, NoSQL Graph Databases, Neo4j, Cypher, Cypherf.

1 Introduction

Graph databases have attracted much attention in the last years, especially because of
the collaborative concepts of the Web 2.0 (social and media networks etc.) and the
arriving Web 3.0 concepts.

Specific databases have been designed to handle such data relying on big dense net-
work structures, especially within the NoSQL world. These databases are built to re-
main robust against huge volumes of data, against their heterogeneous nature and the
high speed of the treatments applied to them, thus coping with the so-called Big Data
paradigm.

They are currently gaining more and more interest and are applied in many real world
applications, demonstrating their power compared to other approaches. NoSQL graph
databases are known to offer great scalability [1].

Among these NoSQL graph databases, Neo4j appears to be one of the most ma-
ture and deployed [2]. In such databases, as for graphs, nodes and relationships be-
tween nodes are considered. Neo4j includes nodes and relationships labeling with the
so-called types. Moreover, properties are attached to nodes and relationships. These
properties are managed in Neo4j using the key:value paradigm.

Fig. 1 shows an example of hotels and customers database. The database contains
hotels located in some cities and visited by some customers. Links are represented by
the :LOCATED and :VISIT relationships. The hotels and people and relationships are
described by properties: id, price, size (number of rooms) for hotels; id, name, age for
people. One specificity is that relationships in Neo4j are provided with types (e.g., type
“hotel” or “people” in the example) and can also have properties as for nodes. This

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 384–395, 2014.
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allows to represent in a very intuitive and efficient manner many data from the real
world. For instance, :LOCATED has property distance, standing for the distance to city
center.

Fig. 1. Neo4j database console user interface: Example for Hotels and Customers

All NoSQL graph databases require the developers and users to use graph concepts
to query data. As for any other repository, when querying such NoSQL graph databases,
users either require specific focused knowledge (e.g., retrieving Peter’s friends) or ask
for trend detection (e.g., detecting trends and behaviours within social networks).

Queries are called traversals. A graph traversal refers to visiting elements, i.e. nodes
and relations. There are three main ways to traverse a graph:

– programmaticaly, by the use of an API that helps developers to operate on the
graph;

– by functional traversal, a traversal based on a sequence of functions applied to a
graph;

– by declarative traversal, a way to explicit what we want to do and not how we want
to do it. Then, the database engine defines the best way to achieve the goal.
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In this paper, we focus on declarative queries over a NoSQL graph database. The
Neo4j language is called Cypher.

For instance on Fig. 1, one query is displayed to return the customers who have
visited the “Ritz” hotel.They are both displayed in the list and circled in red in the
graph.

We consider in this paper the manipulating queries in READ mode.

Fig. 2. Displaying the Result of a Cypher Query

However, none of the query languages embeds a way for dealing with flexible queries,
for instance to get cheap hotels or popular ones, where cheap and popular are fuzzy
sets.

This need has nevertheless been intensively studied when dealing with other database
paradigms, especially with relational databases.

In this paper, we thus focus on the declarative way of querying the Neo4j system
with the Cypher query language and we extend it for dealing with vague queries.

The rest of the paper is organised as follows. Section 2 reports existing work from
the literature regarding fuzzy queries and presents the Cypher language. Section 3 intro-
duces the extension of the Cypher language to Cypherf and Section 4 shows how such
an extension can be implemented. Section 5 concludes the paper and provides some
ideas for future work.

2 Related Work

2.1 Neo4j Cypher Language

Queries in Cypher have the following syntax1:

[START]
[MATCH]
[OPTIONAL MATCH WHERE]
[WITH [ORDER BY] [SKIP] [LIMIT]]
RETURN [ORDER BY] [SKIP] [LIMIT]

1 http://docs.neo4j.org/refcard/2.0/
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

http://docs.neo4j.org/refcard/2.0/
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
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As shown above, Cypher is comprised of several distinct clauses:

– START: Starting points in the graph, obtained via index lookups or by element IDs.
– MATCH: The graph pattern to match, bound to the starting points in START.
– WHERE: Filtering criteria.
– RETURN: What to return.
– CREATE: Creates nodes and relationships.
– DELETE: Removes nodes, relationships and properties.
– SET: Set values to properties.
– FOREACH: Performs updating actions once per element in a list.
– WITH: Divides a query into multiple, distinct parts.

2.2 Fuzzy Queries

Many works have been proposed for dealing with fuzzy data and queries. All cannot be
reported here. [3] proposes a survey of these proposals.

[4, 5] consider querying regular databases by both extending the SQL language and
studying aggregating subresults. The FSQL/SQLf and FQL languages have been pro-
posed to extend queries over relational databases in order to incorporate fuzzy descrip-
tions of the information being searched for.

Some works have been implemented as fuzzy database engines and systems have
incorporated such fuzzy querying features [6, 7].

In such systems, fuzziness in the queries is basically associated to fuzzy labels, fuzzy
comparators (e.g., fuzzy greater than) and aggregation over clauses. Thresholds can be
defined for the expected fulfillment of fuzzy clauses.

For instance, on a crisp database describing hotels, users can ask for cheap hotels that
are close to city center, cheap and close to city center being fuzzy labels described
by fuzzy sets and their membership functions respectively defined on the universe of
prices and distance to the city center.

Many works have been proposed to investigate how such fuzzy clauses can be de-
fined by users and computed by the database engine, especially when several clauses
must be merged (e.g., cheap AND close to city center).

Such aggregation can consider preferences, for instance for queries where price is
prefered to distance to city center using weighted t-norms.

Thresholds can be added for working with α−cuts, such as searching for hotels
where the degree cheap is greater than 0.7.

As we consider graph data, the works on fuzzy ontology querying are very close and
relevant for us [8, 9].

[8] proposes the f-SPARQL query language that supports fuzzy querying over on-
tologies by extending the SPARQL language. This extension is based on threshold query
(e.g., asking for people who are tall at a degree greater than 0.7) or general fuzzy queries
based on semantic functions.

It should be noted that many works have dealt with fuzzy databases for represent-
ing and storing imperfect information in databases: fuzzy ER models, fuzzy object
databases, fuzzy relational databases, fuzzy ontologies-OWL [10], etc. Fuzziness can
then impact many levels, from metadata (attributes) to data (tuples), and cover many
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semantics (uncertainty, imprecision, inconsistency, etc.) as recalled in [3]. These works
are not reported here as we consider fuzzy queries over crisp data.

3 Fuzzy Queries over NoSQL Graph databases: Towards the
Cypherf Language

In this paper, we address fuzzy READ queries over regular NoSQL Neo4j graph
databases. We claim that fuzziness can be handled at the following three levels:

– over properties,
– over nodes,
– over relationships.

3.1 Cypherf over Properties

Dealing with fuzzy queries over properties is similar to the queries from the literature on
relational databases and ontologies. Such queries are defined by using linguistic labels
(fuzzy sets) and/or fuzzy comparators.

Such fuzzy queries impact the START , MATCH , WHERE and RETURN
clauses from Cypher.

In the WHERE clause, it is then possible to search for cheap hotels in some
databases, or for hotels located close to city center2. Note that these queries are differ-
ent as the properties being addressed are respectively linked to a node and a relationship.

Listing 1.1. Cheap Hotels

1 MATCH (h :Hotel )
2 WHERE CHEAP (price ) > 0
3 RETURN h
4 ORDER BY CHEAP (h ) DESC

Listing 1.2. Hotels Close to City Center

1 MATCH (c :City )< -[ :LOCATED ]−(h :Hotel )
2 WHERE CLOSE (c , h ) > 0
3 RETURN h
4 ORDER BY CLOSE (c , h ) DESC

In the START clause, it is possible to define which nodes and relationships to start
from by using fuzzy labels, as for instance:

Listing 1.3. Starting from Cheap Hotels

1 START h :Hotel (CHEAP (price ) > 0 )
2 RETURN h
3 ORDER BY CHEAP (h ) DESC

2 For the sake of simplicity, the fuzzy labels and membership functions are hereafter denoted by
the same words.
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Listing 1.4. Starting from location links close to city center

1 START l=relationship :LOCATED (CLOSE (distance )>0 )
2 MATCH (h :Hotel ) -[ :LOCATED ] -> (c :City )
3 RETURN h
4 ORDER BY CLOSE (h , c ) DESC

In the MATCH clause, integrating fuzzy labels is also possible:

Listing 1.5. Matching Hotels Close to City Center

1 MATCH (h :Hotel ) -[ :LOCATED {CLOSE (distance )>0} ] -> (c :City )
2 RETURN h
3 ORDER BY CLOSE (h , c ) DESC

In the RETURN clause, no selection will be operated, but fuzzy labels can be
added in order to show the users the degree to which some values match fuzzy sets, as
for instance:

Listing 1.6. Fuzziness in the Return Clause

1 MATCH (h :Hotel ) -[ :LOCATED ] -> (c :City )
2 RETURN h , CLOSE (h , c ) AS 'ClosenessToCityCenter '
3 ORDER BY ClosenessToCityCenter DESC

Distance to City 
Center (meters)200 1000

CloseToCityCenter

0

1

Membership
Degree

Fig. 3. Fuzzy Cypher Queries: an Example

When considering fuzzy queries over relational databases, the results are listed and
can be ranked according to some degrees. When considering graph data, graphical rep-
resentations are of great interest for the user comprehension and interaction on the data.
For instance, Fig 2 shows how a result containing two items (the two customers who
went to Ritz hotel) is displayed in the Cypher console, demonstrating the interest of the
graphic display.
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It would thus be interesting to investigate how fuzzy queries over graph may be
displayed, showing the graduality of membership of the objects to the result. For this
purpose, we propose to use the work from the literature on fuzzy graph representation
and distored projection as done in anamorphic maps [11].

3.2 Cypherf over Nodes

Dealing with fuzzy queries over nodes allows to retrieve similar nodes. It is set at a
higher level from queries over properties although it may use the above-defined queries.

For instance, it is possible to retrieve similar hotels:

Listing 1.7. Getting Similar Hotel Nodes

1 MATCH (h1 :Hotel ) , (h2 :Hotel )
2 WITH h1 AS hot1 , h2 AS hot2 , SimilarTo (hot1 ,hot2 ) AS sim
3 WHERE sim > 0 . 7
4 RETURN hot1 ,hot2 , sim

In this framework, the link between nodes is based on the definition of measures
between the descriptions. Such measures integrate aggregators to deal with the several
properties they embed. Similarity measures may for instance be used and hotels may all
the more be considered as their prices and size are similar.

It should be noted that such link could be materialized by relationships, either for
performance concerns, or because it was designed this way. In the latter case, such
query amounts to a query as defined above.

3.3 Cypherf over Relationships

As for nodes, such queries may be based on properties. But it can also be based on the
graph structure in order to better exploit and benefit from it.

In Cypher, the structure of the pattern being searched is mostly defined in the
MATCH clause.

The first attempt to extend pattern matching to fuzzy pattern matching is to consider
chains and depth matching. Chains are defined in Cypher in the MATCH clause with
consecutive links between objects. If a node a is linked to an object b at depth 2, the
pattern is writen as (a) − [∗2]− > (b). If a link between a and b without regarding the
depth in-between is searched, then it is writen (a) − ()− > (b). The mechanism also
applies for searching objects linked trough a range of nodes (e.g., between 3 and 5):
(a)− [∗3..5]− > (b).

We propose here to introduce fuzzy descriptors to define extended patterns where
the depth is imprecisely described. It will then for instance be possible to search for
customers linked through almost 3 hops. The syntax ∗∗ is proposed to indicate a fuzzy
linker.

Listing 1.8. Fuzzy Patterns

1 MATCH (c1 :customer ) -[ :KNOWS**almost3 ] -> (c2 :customer )
2 RETURN c1 , c2
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It is related to fuzzy tree and graph mining [12] where some patterns emerge from
several graphs even they do not occur exactly the same way everywhere regarding the
structure.

Another possibility is not to consider chains but patterns where several links from
and to nodes.

In our running example, popular hotels may for instance be chosen when they are
chosen by many people. This is similar as the way famous people are detected if they
are followed by many people on social networks.

In this example, a hotel is popular if a large proportion of customers visited it.
In Cypher, such queries are defined by using aggregators. For instance, the following

query retrieves hotels visited by at least 2 customers:

Listing 1.9. Aggregation

1 MATCH (c :Customer ) -[ :VISIT ] -> (h :Hotel )
2 WITH c AS cust , count ( * ) AS cpt
3 WHERE cpt>1
4 RETURN cust

Such crisp queries can be extended to consider fuzziness:

Listing 1.10. Aggregation

1 MATCH (c :Customer ) -[ :VISIT ] -> (h :Hotel )
2 WITH c AS cust , count ( * ) AS cpt
3 WHERE POPULAR (cpt ) > 0
4 RETURN cust

All fuzzy clauses described in this section can be combined. The question then risen
is to implement them in the existing Neo4j engine.

4 Implementation Challenges

4.1 Architecture

There are several ways to implement fuzzy Cypher queries:

1. Creating an overlay language on top of the Cypher language that will produce as
ouput Cypher well formatted queries to do fuzzy work;

2. Extending the Cypher queries and using the existing low level API behind;
3. Extending the low level API with optimized functions, offering the possibility only

to developpers to use it;
4. Combining the last two possibilities: using an extended cypher query language over

an enhanced low level API.

Every possibility is debated in this section. The reader will find at the end of this
section a summary of the debates.
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Fig. 4. Implementation Ways

4.2 Creating an Overlay Language

Concept. The concept is to create a high-level fuzzy DSL language that will be used to
generate Cypher well-formed queries. The generated Cypher queries will be executed
by the existing Neo4j engine.

A grammar must be defined for this external DSL which can rely on the existing
Cypher syntax and only enhance it with new fuzzy features. The output of the generation
process is pure Cypher code. In this scenario, Cypher is used as a low level language to
achieve fuzzy queries.

Discussion. This solution is a cheap and non intrusive solution but has several huge
drawbacks:

– Features missing, indeed every fuzzy query shown in Section 3 cannot be expressed
by the current cypher language (e.g., listing 1.4);

– Performance issue, Cypher is not designed for fuzzy queries neither for being used
as an algorithmic language. All the fuzzy queries will produce Cypher query codes
that are not optimized for fuzzy tasks;

– Lack of user-friendliness, Each query cannot be executed directly against the Neo4j
environnement, it needs a two-step process: (i) write a fuzzy query, then compile it
to get the cypher query; (ii) use the cypher generated queries on the Neo4j database

4.3 Extending the Cypher Queries

Concept. The idea is to extend the Cypher language to add new features. Cypher offers
various types of functions: scalar functions, collection functions, predicate functions,
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mathematical functions, etc. To enhance this language with fuzzy features, we propose
to add a new type of functions: fuzzy functions. Fuzzy functions are used in the same
way as other functions of Cypher (or SQL) as shown in section 3.

Cypher is an external DSL. Therefore, somewhere it needs to be parsed. The query
correctness must be checked and then it should be executed. In the Cypher case, retriev-
ing the results we asked for.

In order to write Cypher, the Neo4j’s team had defined its grammar, which gives the
guidelines of how the language is supposed to be structured and what is and isnt valid. In
order to express this definition, we can use some variation of EBNF syntax [13], which
provides a clear way to expose the language definition. To parse this syntax, Cypher
uses Scala language Parser Combinator library.

Then, to extend the Cypher engine, the Cypher grammar must be extended regarding
the current grammar parser. Once the cypher query is parsed, the code has to be bound
on the current programmatic API to achieve the desired result.

Discussion. This work needs a deeper comprehension of the Neo4j engine and more
skills on Java/Scala programming language (used to write the Neo4j engine and API)
than the previous solutions. The main advantage of this is to offer an easy and user-
friendly way to use the fuzzy feature. The disavantages of this solution are:

– Performance issue. This solution should have better performance than the previous
one but it stills built on the current Neo4j engine API that is not optimized for fuzzy
queries (e.g., degree computing);

– Cost of maintenance. Until Neo4j accepts to inlude this contribution to the Neo4j
project, it will be needed to upgrade each new version of Neo4j with these enhance-
ments. If this feature is built in a plugin, it will be necessary to check that the API
has not been broken by the new version (if so an upgrade of the fuzzy plugin will
be required).

4.4 Extending Low Level API

Concept The scenario is to enhance the core database engine with a framework to
handle efficiently the fuzzy queries and to extend the programming API built on it to
provide to developpers access to this new functionnality.

Discussion. This solution offers a high performance improvment but needs high Neo4j
skills, possibly high maintenance costs, a poor user friendly experience (only develop-
pers can use it) and a costly development process.

4.5 Extending Cypher over an Enhanced Low Level API

Concept. The last and not the least possibility is to combine the solutions from Sections
4.3 and 4.4: adding to the database engine the feactures to handle the fuzzy queries,
extending the API and extending the Cypher language.
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Discussion. This solution is user-friendly, provides optimized performance but has a
heavy development cost (skills, tasks, etc.) and a high cost of maintenance.

4.6 Summary and Prototype

The first solution is a non intrusive solution with limited perspectives. It is more a hack
than a real long termes solution. The best, but most costly, solution still the last one:
extend cypher query language and build a low level API framework to extend the Neo4j
database engine to support such kind of queries.

A prototype based on the extension of cypher over an enhanced API is under devel-
opement, fuzzy queries can be run, as shown in Fig. 5.

Fig. 5. Protoype Developed

5 Conclusion

In this paper, we propose an extension of the declarative NoSQL Neo4j graph database
query language (Cypher). This language is applied on large graph data which represent
one of the challenges for dealing with big data when considering social networks for
instance. A protoype has been developed and is currently being enhanced.

As we consider the existing Neo4j system which is efficient, performance is guaran-
teed. The main property of NoSQL graph databases, i.e. the optimized O(1) low com-
plexity for retrieving nodes connected to a given one, and the efficient index structures
ensure that performances are optimized.

Future works include the extension of our work to the many concepts possible with
fuzziness (e.g., handling fuzzy modifiers), the study of fuzzy queries over historical
NoSQL graph databases as introduced in [14] and the study of definition fuzzy struc-
tures: Fuzzy Cypher queries for Data Definition or in WRITE mode (e.g., inserting
imperfect data). The implementation of the full solution relying on our work, currently
in progress, will be completed by these important extensions.
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Abstract. The growing presence of Resource Description Framework
(RDF) as a data representation format on the web brings opportunity
to develop new approaches to data analysis. One of important tasks is
learning categories of data. Although RDF-based data is equipped with
properties indicating its type and subject, building categories based on
similarity of entities contained in the data provides a number of benefits.
It mimics an experience-based learning process, leads to construction
of an extensional-based hierarchy of categories, and allows to determine
degrees of membership of entities to the identified categories. Such a
process is addressed in the paper.

Keywords: RDF triples, similarity, clustering, fuzziness.

1 Introduction

Any software agent that wants to make decisions as well as reason about things
related to its environment should be able to collect data and build a model of
things it experienced. In order to do this, it requires abilities to process data and
put it in some kind of a structure.

If we think about the web not only as a repository of data but also as an
environment where agents reside, it becomes important to represent data and
information in a way that is suitable for processing. However, textual format is
the most common on the web. Multiple processing tools and methods – from
language processing to expert systems – are required to analyze textual docu-
ments.

One of the most important contributions of the Semantic Web concept [1] is
the Resource Description Framework (RDF) [13]. This framework is a recom-
mended format for representing data. Its fundamental idea is to represent each
piece of data as a triple: <subject-property-object>, where the subject

is an entity being described, object is an entity describing the subject, and
property is a “connection” between subject and object. In other words, the
property-object is a description of the subject. For example, London is city
is a triple with London as its subject, is the property, and city its object.
In general a subject of one triple can be an object of another triple, and
vice versa. This results in a network of interconnected triples, and constitutes

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 396–405, 2014.
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an environment suitable for constructing new processes for analyzing data, and
converting it to useful and more structured information.

With a growing number of RDF triples on the web – more than 62 billions
right now (http://stats.lod2.eu) – processing data represented as RDF triples is
gaining attention. There are multiple works focusing on RDF data storage and
querying strategies using a specialized query language SPARQL [10] [9]. More
and more publications look at handling RDF triples directly.

The work described in [4] looks at the efficient processing of information in
RDF data sources for detecting communities. A process of identifying relevant
datasets for a specific task or topic is addressed in [8]. A hierarchical clustering
algorithm is used for inferring structural summaries to support querying LD
sources in [2]. Linked data classification is a subject of the work presented in [3],
while an approach for formalizing the hierarchy of concepts from linked data is
described in [12].

In this paper we focus on building categories as a learning process in which
agents model experienced environment via hierarchy of categories. It is a data-
driven process that depends on a set of collected data. We explore an idea of
treating RDF triples as feature-based descriptions of entities. We describe a
method for determining similarity between them. Further, a methodology for
building and updating categories of entities, as well as naming them is intro-
duced. We also incorporate aspects of fuzziness in calculating degrees of confor-
mance of entities to categories.

2 RDF Data and Category Learning: Overview

2.1 RDF-Triples as Definitions of Entities

A single RDF-triple<subject-property-object> can be perceived as a feature
of an entity identified by the subject. In other words, each single triple is a
feature of its subject. Multiple triples with the same subject constitute a
definition of a given entity. A simple illustration of this is shown in Fig. 1(a).
It is a definition of London. If we think “graphically” about it, a definition of
entity resembles a star, we will call it an RDF-star.

Quite often a subject and object of one triple can be involved in multiple
other triples, i..e, they can be objects or subjects of other triples. In such a
case, multiple definitions – RDF-stars – can share features, or some of the fea-
tures can be centres of another RDF-stars. Such interconnected triples constitute
a network of interleaving definitions of entities, Fig. 1(b).

Due to the fact that everything is connected to everything, we can state that
numerous entities share features among themselves. In such a case, comparison
of entities is equivalent to comparison of RDF-stars. This idea is a pivotal aspect
of the learning approach described here. It enables categorization, incremental
updates, as well as establishing degrees of belonging of entities to categories.
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(a) (b)

Fig. 1. RDF-stars: a definition of London with one of its features enhanced (a), inter-
connected RDF-stars representing: London, Edinburgh, France, Japan, United King-
dom and United States (b)

2.2 Learning: Construction and Augmenting Processes

In a nutshell, the proposed process of building categories contains a number of
activities that can be divided into phases: identification of clusters of RDF-stars;
augmenting the clusters with names and memberships degrees; and incremental
updating of the clusters and their hierarchy.

Identification of clusters starts with constructing a similarity matrix. Once a
set of triples (RDF-stars) is obtained, for example as the result of a walk done by
an agent, similarity values are determined for all pairs of RDF-stars. The matrix
is an input to an aggregative clustering algorithm. The result is a hierarchy of
clusters (groups of RDF-stars) with the most specific clusters at the bottom, and
the most abstract one (one that contains everything) at the top (see Section 3).

The next phase is augmenting clusters. Each cluster is labeled with a set of
common features of RDF-stars that belong to the same cluster. Elements of the
similarity matrix are used to determine the most characteristic – representative –
RDF-star for each cluster. Degrees of membership of each RDF-star to its cluster
are also calculated based on the similarity matrix. The process is described in
Section 4.

A very important aspect of the proposed learning process is handling of in-
coming, new RDF-stars and their placement in the hierarchy of categories. An
approach presented here, Section 5, is an adaptation of [5] to our clustering al-
gorithm and RDF environment. Any time a new RDF-star is encountered by an
agent, its similarity values to all other RDF-stars are determined. They are used
to put the new RDF-star in a proper place in the hierarchy.

3 Building Clusters

All interconnected RDF-stars constitute a graph, and it seemed graph segmenta-
tion could be used to identify groups of highly interconnected – similar – nodes.
However, all nodes (entities) of this graph are not equally important. Some of
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them are the centres of RDF-stars, i.e., they are subjects of multiple triples,
and we will call them defined entities, while some are just objects of RDF
triples, we will call them defining entities. All nodes which play only the role of
defining entities should not be involved in the categorization process. They do
not have any features for the comparison purposes. Therefore, instead of graph
segmentation methods we use an agglomerative hierarchical clustering method.

3.1 Similarity of RDF Entities

The agglomerative clustering requires a single similarity matrix. The similarity
matrix is built with RDF-stars as rows and columns. The similarity between
RDF-stars is calculated using a feature-based similarity measure that resembles
the Jaccard’s index [7]

In the proposed approach, a similarity value between two defined entities
(RDF-stars) is determined by a number of common features. In the case of RDF-
stars, it nicely converts into checking how many defining entities they shared.
The idea is presented in Fig. 2. The defined entities Edinburgh and London share
a number of defining entities, and some of these entities are connected to the
defined entities with the same property (black circles in Fig. 2).

London

Edinburgh 

- same property 

Fig. 2. Similarity of RDF-stars: based on shared objects connected to the defined en-
tities with the same properties

In general, a number of different comparison scenarios can be identified. It de-
pends on interpretation of the term “entities they share”. The possible scenarios
are:

– identical properties and identical objects;
– identical properties and similar objects;
– similar properties and identical objects;
– similar properties and similar objects;

For details, please see [7]. The similarity assessment process used in the paper
follows the first scenario.
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3.2 Similarity Matrix and Clustering

A similarity matrix for a set of RDF-stars constructed using the similarity eval-
uation technique presented in the previous subsection is used for hierarchical
clustering. The clusters are created via an aggregation process in a bottom-up
approach. Two clusters of a lower level are merged to create a cluster at a higher
level.

At the beginning each RDF-star is considered as a one-element cluster. All
aggregation decisions are made based on a distance between clusters calculated
using an extended Wards minimum variance measure [11]. This measure takes
into account heterogeneity between clusters and homogeneity within clusters.
The distances are calculated based on entries from the modified similarity ma-
trix. The modified similarity matrix is de facto a distance matrix created from
subtracting the similarity values from a constant equal to the highest similarity
value plus epsilon. The two clusters with the smallest distance are merged to be-
come a new cluster. Distances (Ward’s measures) between the new cluster and
the remaining clusters are calculated. This agglomeration process is repeated un-
til only a single cluster is left. The pseudocode for the agglomerative hierarchical
clustering used here is presented below.

WardClustering(RDFstars)
begin:

create_distance_matrix(RDFstars)
clusterList ⇐ create_intial_clusters(RDFstars)
pairList ⇐ create_pairs(clusterList)
clusterPairDistances = calculate_distances(pairList)
while (length(clusterList) > 1)

find_pair_with_minimum_distance(clusterPairDistances)
newCluster = aggregate_clusters_with_min_distance()
remove_clusters_with_min_distance(clusterList)
for (each cluster from clusterList)

calculate_Ward_measure(cluster, newCluster)
update(pairList)
update(clusterPairDistances)

update(clusterList, newCluster)
end.

3.3 Running Example: Clustering

The described approach to construct categories is illustrated with a simple run-
ning example. The data used here is presented in Fig 3. The part (a) is a visu-
alization of six entities – RDF-stars – that constitute an input to the algorithm.
They are: London, Edinburgh, United Kingdom, France, Japan, and United
States. The part (b) of the figure, shows the clustering results in the form of the
dendogram.

4 From Clusters to Categories

4.1 RDF Properties and Concept Naming

The clustering algorithm operates on defined entities (centres of RDF-starts).
Once the clusters are defined, we retrieve all entities – the whole network of
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(a) (b)

Fig. 3. Six entities used for the running example: RDF-stars (a), the dendogram of
clustering results (b)

interconnected nodes. As the result, all clusters contain full RDF-stars with
both defined entities and defining entities.

We “transform” each cluster into a category, i.e., we label each cluster by
a name that represents the meaning of its members. This is accomplished via
taking into account two properties and inspect all triples in a given cluster:

– <subject-dcterm:subject-object>,
– <subject-rdf:type-object>.

We look for all objects that are the same for all defined entities in a single
cluster. These objects are labels of the cluster. We repeat this process for all
clusters. We start at the top – the most general concept, and go further (deeper)
into the hierarchy adding more labels. The categories at the bottom are the most
specific, they have the largest number of labels.

4.2 Fuzziness: Degree of Belonging to Categories

So far, we have treated categories as crisp sets – all RDF-stars fully belong
to their categories. However, when we look closer we find out that similarity
between members of the same category has different values. This would imply
that an RDF-star belongs to its category to a degree. Let us propose a method
for determining that degree.

This task starts with identification of the centres of categories. We extract
entries from the similarity matrix that are associated with RDF-stars from a
given category, and identify a single RDF-star which has the largest number of
commonalities with other RDF-stars. Let Ci is a category of N RDF-stars, and
let RSk represents k-th star. Its conformance to all other RDF-stars from this
category is:

confRSk
=

N−1∑
m=1,m �=k

sim(RSk, RSm)
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where sim(·, ·) is an appropriate entry from the similarity matrix. Then the
centre is:

centerID = argmax
m=1...N

(confRSm)

We treat this RDF-star as the most representative entity of the category, and
make it its centre. Once the centre is determined, we use its conformance level
as a reference and compare it with conformance values of other RDF-stars in
the same category:

μ(RSk) =
confRSk

confRScenterID

In such a way we are able to determine degrees of membership of RDF-stars to
the categories.

4.3 Running Example: Naming and Membership Degrees

Now, we name the clusters identified in our running example, Section 3.3, and
assign membership values to RDF-stars (entities). The results are shown in Ta-
ble 1. It contains labels associated with each category. Please note that the
cluster C1 is labeled with all labels of its predecessors in the hierarchy, i.e., la-
bels of clusters C5 and C4. The values of membership of entities to clusters are
given besides entities’ names.

Table 1. Running example: naming and membership values for identified clusters

C5:
Thing, Feature, Place, Populated Place, Administrative District, Physical Entity
Region, YagoGeoEntity, Location Underspecified
France(0.95), UK(1.00), Japan(0.88), US(0.86), London(0.69), Edinburgh(0.67)

C4:
Member states of the United Nations, G20 nations
Liberal democracies, G8 nations
France(1.00), UK(1.00), Japan(0.91), US(0.86)

C1:
Member states of the EU C3:
Countries in Europe Countries C2:
Western Europe Bordering British capitals
Member states of NATO ThePacific Capitals in Europe
Countries bordering the Atlantic Ocean Settlement, City

France(1.00), UK(1.00) Japan(1.00), US(1.00) London(1.00), Edinburgh(1.00)

5 Incremental Concept Building

5.1 Process Overview

The process of learning is never complete. Therefore, a procedure suitable for
updating the already existing hierarchy of categories is proposed. Any incoming
new data – the result of agent’s walk on the web – can be added to the hierarchy.
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We have adopted an incremental procedure proposed in [5]. We use Ward’s
measure to decide about a node for placing a new RDF-star. The flowchart of
the algorithm can be seen below:

incrementalClustering(currentNode, newEntity)
begin:
distance ⇐ calculate_Ward_measure(currentNode, newEntity)
height ⇐ obtain_Node_Distance(currentNode)
if (height < distance)

newNode ⇐ createLeafNode(newEntity)
attachNode(newNode, currentNode)

else
LChild ⇐ getChildL(currentNode)
RChild ⇐ getChildR(currentNode)
distL = calculate_Ward_measure(LChild, newEntity)
distR = calculate_Ward_measure(RChild, newEntity)
if (distL < distR)

incrementalClustering(LChild, newEntity)
else

incrementalClustering(RChild, newEntity)
end.

The process starts at the top, and as long as the distance of a new entity
to the category at a given node is smaller than the node’s height (the value of
Ward’s measure calculated for sibling nodes) we go deeper into the hierarchy.
A decision is made, based on Ward’s values, which way to go: should it be a
left branch or a right one. The Ward’s measures are used to ensure the final
hierarchy is the same as the hierarchy that would be constructed if all data were
used from the beginning.

5.2 Running Example: Incremental Building

In order to illustrate an incremental updating of the hierarchy, let us go back
to our running example. We added a number of entities on one-by-one basis:
Basel, Paul Gauguin, Buster Keaton, Henri Matisse, Pablo Picasso, and Charlie
Chaplin. The dendogram of a new hierarchy is shown in Fig 4.

Fig. 4. The dendogram of all entities used for the running example
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Fig. 5. Case Study: original RDF data and the dendogram with the results

6 Case Study

The application of the proposed learning method with a larger data set is pre-
sented here. A number of triples are loaded from dbpedia.org. The data contains:
four groups of individuals – painters, actors, writers and mathematicians; and
a number of geographical locations – countries and cities, Fig. 5(a). The den-
dogram representing the hierarchy is shown in Fig. 5(b). It contains not only
entities that have been explicitly loaded, but also entities – the cluster “persons’
works” – that are parts of the originally loaded RDF-stars.

7 Discussion and Conclusion

One of the most important aspects of the proposed method is the fact that it is
an experience- and data-driven process. In the case of both running example and
case study, we can observe changes in membership values across categories at
different hierarchy levels. Also, the centres of categories are changing. For exam-
ple, two individuals: Picasso and Gauguin belong to the same low level category.
Their membership values are 0.79 and 0.86, respectively. If we look at Picasso
at higher level categories its membership values changes to 0.90 and 0.61. These
changes in Picasso’s membership are the result of different content of categories
and changes in their representative entities – centres. Our experiments indicate
that the composition of categories and membership values depend on collected
information, especially what it is and how detailed it is, but not when it is ab-
sorbed. The method mimics a learning process, i.e., clusters, their centres and
members, together with their degrees of belonging, are changing and improving
when more information is collected.



Learning Categories from Linked Open Data 405

The paper introduce a methodology for a gradual learning categories of RDF
data based on data that are being collected via agents and software systems.
The hierarchy of categories can be updated via constant inflow of new data.
Additionally, categories are labeled, and all entities are associated with values
representing degrees of membership of these entities to categories at different
levels of the constructed hierarchy. It would be interesting to further investigate
how selection of a similarity measure from possible ones (Section 3.1) influences
the clusterization process.
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Abstract. Criticisms exist for fuzzy set theory which do not reside in
classical (or “crisp”) set theory, some such issues exhibited by fuzzy set
theory regard the law of excluded middle and law of contradiction. There
are also additional complexities in fuzzy set theory for monotonicity, or-
der and cardinality. Fuzzy set applications either avoid these issues, or
use them to their advantage. The X-μ approach, however, attempts to
solve some of these issues through analysis of inverse fuzzy membership
functions. Through the inverse fuzzy membership function it is possible
to computationally calculate classical set operations over an entire fuzzy
membership. This paper firstly explores how the X-μ approach compares
to both classical/crisp set theory and conventional fuzzy set theory, and
explores how the problems regarding the laws of excluded middle and
contradiction might be solved using X-μ. Finally the approach is imple-
mented and applied to an area of big data over the world-wide-web, using
movie ratings data.

1 Introduction

Uncertainty plays a very large role in data analysis and data mining, and there-
fore probabilistic methods have permeated almost every aspect of data analysis
and data mining. It has, however, been argued [1] that probability is good for
modelling some uncertainties, and fuzzy set theories are suitable for other un-
certainties and vagueness. There has been some work on translation of fuzzy
sets into probabilistic models, including initial work in the use of Kleene Logic
by Lawry and Martin [2] and of multisets by Goertzel [3] as stepping stones. It
should be noted that fuzzy set theory and probability are not competitors, and
have been associated, with the earliest work in the form of fuzzy probabilities [4].
The research presented in this paper uses fuzzy set theory to model vagueness
and statistical measures of cardinality. Big data, particularly data that is put
together by a wide community, also provides its own advantages and disadvan-
tages, where some aspects of uncertainties and vagueness are resolved and others
become increasingly challenging.

There have, however, been many critiques of fuzzy set theory (e.g. [5], [6])
which highlight potential flaws in conventional fuzzy set theory. These are usually
in respect to either the methods of fuzzification and defuzzification of sets, or,
conventional fuzzy set operations not adhering to the same laws of classical set

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 406–415, 2014.
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theory, such as the law of contradiction and the law of excluded middle. There
have been a number of methods proposed in existing research which attempt to
solve many of these issues [7],[8],[9]. The research presented in this paper extends
the existing development of the X-μ approach [9],[10],[11]. Section 2 discusses
the mathematics behind the X-μ approach and how it differs from conventional
fuzzy set theory, particularly by detailing how the existing problems with the
laws of contradiction and excluded middle are resolved. It then discusses the
precise methods of X-μ set operations from an analytic/symbolic perspective.
Section 3 first describes one particular implementation of the X-μ approach
using a symbolic computation engine within a popular programming language,
then describes the application of the theory and its implementation within the
domain of association rule mining over a big data set found on the world wide
web - in the form of the MovieLens data set1.

2 Theory

Fuzzy set theory is an extension to classical set theory where each element within
a set (finite or infinite) has a membership value μ. Fuzzy membership values are
either stored within a lookup table, or have some algebraic membership function.
A membership function is defined as:

μ : U → [0, 1]

Where μ is a membership function applicable to a particular fuzzy set, it is often
simplified to A(x) where A is the label for the fuzzy set, and x is some element
of the universe.

Conventional fuzzy set theory states that there are the following fuzzy set
operations:

– Fuzzy Negation: ¬A(x) = 1−A(x)
– Fuzzy Union: (A ∪B)(x) = max(A(x), B(x))
– Fuzzy Intersection: (A ∩B)(x) = min(A(x), B(x))

2.1 Laws of Set Theory: Conventional Fuzzy Set Theory

Some laws of classic set theory do not necessarily hold for fuzzy sets. For example,
the classical law of contradiction states:

A ∩ ¬A = ∅

Whereas, when applied to a fuzzy set; the membership function returns values
between 0 and 1, therefore creating a non-empty set, for each item x:

(A ∩ ¬A)(x) = min(A(x), 1 −A(x)) >= 0

1 MovieLens Dataset is publicly available from the world-wide-web
http://grouplens.org/datasets/movielens/ (December 2013).
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The result of fuzzy intersection can have elements which are greater than 0, and
the law of contradiction requires all members to have elements which are exactly
equal to 0 (i.e. an empty set).

The law of excluded middle can also be a problem in conventional fuzzy set
theory, for example in classical/crisp set theory:

A ∪ ¬A = U

Whereas, when applied to a fuzzy set, for each item x:

(A ∪ ¬A)(x) = max(A(x), 1 −A(x)) <= 1

The result of a fuzzy union may have elements which are greater than 0 and less
than 1, and the law of excluded middle requires all members to have elements
which are exactly equal to 1 (i.e. in this case all members of the universal set).

α-cuts allow us to slice a fuzzy set at a defined point (called α). An α-cut
selects elements of a fuzzy set which have a membership value greater than or
equal to α. The definition of a traditional α-cut is:

αA = {x ∈ X | A(x) >= α}

The result is a classical (or “crisp”) set, the membership property is eliminated
from the resultant set with the assumption that all members are now full mem-
bers. The α-cut function is anti-monotonic (decreasing or staying the same in
size with each alpha-cut).

Let α1 < α2, then
α1A ⊇ α2A

2.2 Laws of Set Theory: X-μ Approach

The X-μ approach [9][10][11] uses an inverse fuzzy membership function:

μ−1 : [0, 1]→ P (U)

Which takes a value between 0 and 1 (inclusive), and returns a subset from
the (crisp) power set P of the universe U. This could be calculated using the
following set builder notation:

μ−1(α) = {x | x ∈ U, μ(x) >= α}

Here α is used as in a conventional fuzzy α-cut, the difference being that it
is applied to the universal set rather than a particular subset of the universal
set. We also use X as an alternative label to μ−1. The result can be visualised
graphically as a rotated chart. Figure 1 would be where:

μmedium(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5x− 0.5 for x > 1.0 ∧ x < 3.0

1.0 for x ≥ 3.0 ∧ x ≤ 4.0

−0.5x+ 3.0 for x > 4.0 ∧ x < 6.0

0.0 otherwise
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Fig. 1. An μ graph (Left) and X-μ graph (Right) for linguistic term ‘Medium’

Or in X-μ form:

Xmedium =

{
[2.0α+ 1.0,−2.0α+ 6.0] for α ≥ 0.0 ∧ α ≤ 1.0

∅ otherwise

This technique differs from both traditional techniques, and techniques by
Sánchez [8], in that it is also capable of working as an analytical or symbolic
system. For example, when two fuzzy sets are combined through union or inter-
section, it is possible, to combine their X-μ functions into a new combined X-μ
function. An analysis on the differences between this technique and the Sánchez
technique is available in existing literature [10] [11].

2.3 X-μ Fuzzy Set Operations

X-μ set operations are classical set operations performed upon subsets returned
by the inverse membership function of a fuzzy set. When a membership function
is algebraic (rather than a lookup table), these set operations (union, intersec-
tion etc.) can be performed via algebraic modification. The clearest difference
between traditional fuzzy set operations and X-μ operations is in the set differ-
ence operator. For a formal definition of X-μ operators please see Martin[10].

For the following set theory processes, the following two height-based examples
are used, and are bounded between 0.0 and 7.0 (i.e. the universal set). For some
membership function representing the fuzzy category “Tall”:

XTall(α) = {x | x ∈ U ∧ (0.2 ∗ α+ 5.8 <= x)}
= [0.2α+ 5.8, 7.0]

For some membership function representing the fuzzy category “Small”:

XSmall(α) = {x | x ∈ U ∧ (x <= 1.0 ∗ α+ 6.0)}
= [0.0,−1.0α+ 6.0]
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X-μ Union
The result from an X-μ union is identical to a conventional fuzzy set union, but
rotated. At each point alongX there exists a lower and upper μ value. The result
is also equivalent to standard set theory for any value of α. The membership
functions can be merged thus to represent two membership functions under
union:

XSmall∪Tall = XSmall(α) ∪XTall(α) = [0.0, 6.0− 1.0α] ∪ [5.8 + 0.2α, 7.0]

X-μ Intersection
As with X-μ union, the result from an X-μ intersection are identical to a conven-
tional fuzzy set intersection, but rotated. They are also equivalent to standard
set theory for any value of α. The membership functions can be merged thus to
represent two fuzzy memberships intersected:

XSmall∩Tall = XSmall(α) ∩XTall(α) = [0.0, 6.0− 1.0α] ∩ [5.8 + 0.2α, 7.0]

X-μ Set Difference
Set difference is where the most clear difference lies in comparison to conventional
fuzzy set difference. In conventional fuzzy set difference the difference of the μ
value is found against full membership (i.e. 1.0). In the X-μ the interval difference
is found using interval set difference thus:

XSmall−Tall = [0.0, 6.0− 1.0α] ∩ [0.0, 5.8 + 0.2α]

2.4 X-μ Numbers

Fuzzy Numbers, first developed by [12], fuzzify traditional numbers to allow for
linguistic terms such as ‘around 5’, ‘almost 42’ or ‘much larger than 333’. These
are defined using the domain in which the fuzzy number exists, and the level of
vagueness required for that particular context. X-μ numbers are single-valued
quantities related to the gradual elements introduced by Dubois and Prade[7],
in that the inverse is found from their fuzzy membership. If the membership is
calculated analytically, then fuzzy arithmetic operations can also be performed
analytically. The focus of X-μ numbers is on modelling single values that vary
with membership, whereas other techniques often model imprecise values. An
analysis of X-μ numbers shall appear in a future publication.

3 Practice

3.1 Implementation

An object-orientated class library has been developed to represent generic X-μ
functions in addition to more specialised classes for functions in common shapes.
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Common shapes include: upward gradients, downward gradients, triangular func-
tions and trapezoidal functions. The python programming language2 was used to
develop this library. This language was chosen for its familiarity, in addition to its
object-orientated and functional programming syntax, and its add-on libraries
for symbolic computation and graphing. However, almost any other program-
ming language could be chosen for such a library. The abstract X-μ function
allows for the following operations:

– Set Operations: X-μ Set Union, X-μ Set Intersection, X-μ Set Difference and
Negation

– Number Operations: X-μ Number Addition, X-μ Number Subtraction, X-μ
Number Multiplication and Power, X-μ Number Division

Wherever possible the implementation of the above operations are performed
symbolically using the SymPy framework3, which is an industry and academic
supported framework for Python providing classes and functions for symbolic
computing. Our X-μ library also provides a simplified function for generating
graphs, which utilises the matplotlib framework4.

3.2 Example - MovieLens

MovieLens5 is a web-based system by the University of Minnesota which allows
its users to rate movies in a star-based framework, where one star indicates a
dislike of a movie and 5 stars indicates a strong like of a movie. Their initial
purpose for developing the system was for the data to be used in experimen-
tal recommender systems, and its dataset is provided freely and openly on the
GroupLens Research Group6 website under a bespoke usage license. The whole
dataset is a little higher than 10 million ratings records, however two subsets
of sizes 1 million and 100 thousand have also been provided on the GroupLens
website in order to test scalability of experimental algorithms.

The MovieLens dataset has been used as a data source in our X-μ framework,
for association rule calculations. Association Rule Mining was developed in the
early 1990s[13][14], and an X-μ variant was developed by Lewis and Martin[11],
and Martin[9]. The purpose for building a fuzzy model and performing associ-
ation analysis on this dataset is to discover ‘high’ and ‘low’ rated films with

2 The official documentation for the Python programming language is available on the
world wide web: http://www.python.org/ (December 2013).

3 SymPy is a symbolic computation framework for python, and is free and open source
software: http://sympy.org/ (December 2013).

4 Matplotlib is a plotting library based on the plotting functionality of other
well known mathematics software, it is available over the world wide web:
http://matplotlib.org/ (December 2013).

5 MovieLens as a user-based system is available on the world wide web:
http://movielens.umn.edu/ (December 2013).

6 GroupLens content for the MovieLens database is available freely on the world wide
web under a bespoke attribution license:
http://grouplens.org/datasets/movielens/ (December 2013).
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Fig. 2. X-μ support calculations for Star Wars, Toy Story and their intersection

a more human-like understanding, ‘high’ and ‘low’ both being naturally fuzzy.
Two X-μ functions have been developed to represent such terms:

Xlow rated = [1.0,−3.0α+ 4.0]

Xhigh rated = [3.0α+ 2.0, 5.0]

With the conjoint supports being symbolically created, for example:

high rating(α) ∩ low rating(α) = [1.0,−3.0α+ 4.0] ∩ [3.0α+ 2.0, 5.0]

The association confidence of each low and high rating for both films in both
directions are then calculated, and the results are plotted with a predetermined
resolution (or ‘granularity’), as found in Figure 4, which shows the combination
of the confidences in various aspects of ‘Star Wars’ and ‘Toy Story’, for both low
and high rating memberships. Along the X axis is the membership value, and the
Y axis holds the confidence value. These two particular films share a viewer-base
which thinks highly of both films, as can be seen in the two association rules:
high rated(StarWars) → high rated(ToyStory) and high rated(ToyStory)→
high rated(StarWars), a movie critic might analyse this as being due to both
movies being accessible and enjoyable by the whole family. If however, the high
rating confidences are analysed for the original Star Wars and Star Trek movies,
then our movie critic description may be different.

Figure 5 finds that the rule high rated(StarWars) → high rated(StarT rek)
decreases as μ increases, whereas the association rule high rated(StarT rek) →
high rated(StarWars) increases rapidly. This indicates that those fans of the
original Star Trek movie are likely going to be impressed by the original Star
Wars movie. A movie critics analysis may be that as Star Trek is a niche film in
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Fig. 3. X-μ support calculations for Star Trek, Star Wars and their intersection

Fig. 4. X-μ association confidence calculations on the memberships of
{low rating, high rating} × {StarWars,T oyStory}
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Fig. 5. X-μ association confidence calculations on high ratings for Star Wars and Star
Trek original movies

the science fiction genre, and Star Wars also being in the science fiction genre
then there is likely to be a common fan-base. However, Star Wars is a wider
reaching and is more accessible to a range of movie tastes, and will therefore
have a wider fan-base than Star Trek, meaning the confidence is likely to be
lower than its inverse.

4 Conclusion

In this paper the essentials of the X-μ approach have been presented, and placed
in context with both classical (crisp) set theory and conventional fuzzy set theory.
The laws of contradiction and excluded middle have been discussed, and X-μ set
operations provided which adhere to those laws. An implementation and an
example application based on a form of data mining known as attribute-based
association rule mining was described. This example used real-world data in the
form of the MovieLens dataset, a large dataset (or ‘big data’) available for free
on the world wide web. The X-μ approach to fuzzy numbers and fuzzy arithmetic
has also been introduced, but due to space limitations and the theoretical nature
these aspects were unable to be described in-depth in this paper. Future work
will include in-depth research in the automatic discovery of rules and patterns,
particularly utilising spatial and temporal fuzzy datasets.
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Sébastien Destercke1 and Olivier Strauss2

1 Heudiasyc, UMR 7253, Rue Roger Couttolenc, 60203 Compiegne, France
sebastien.destercke@hds.utc.fr

2 LIRMM (CNRS & Univ. Montpellier II), 161 Rue Ada, F-34392 Montpellier Cedex 5, France
olivier.strauss@lirmm.fr

Abstract. In this paper, we are interested in extending the classical Kolmogorov-
Smirnov homogeneity test to compare two samples of interval-valued observed
measurements. In such a case, the test result is interval-valued, and one major
difficulty is to find the bounds of this set. We propose a very efficient computa-
tional method for approximating these bounds by using a p-box (pairs of upper
and lower cumulative distributions) representation of the samples.

Keywords: Interval data, homogeneity test, approximation, p-box.

1 Introduction

In many applications, the precise value of data may only be known up to some precision,
that is it may be interval-valued. Common examples are censored data (e.g., censor
limitations) or digital data. When performing statistical tests, ignoring this imprecision
may lead to unreliable decisions. For instance, in the case of digital data, quantization
can hide the information contained in the data and provide unstable decision.

It is therefore advisable to acknowledge this imprecision in statistical tests, if only to
provide results robust to this imprecision. By robust, we understand tests that will remain
cautious (i.e., will abstain to say something about the null hypothesis) if not enough
information is available. However, treating this imprecision usually leads to an increased
computational costs, as shown by various authors in the past [6,7,3]. This means that
developing efficient methods to compute statistics with interval data is a critical issue.

In this paper, we explore the extension of the Kolmogorov-Smirnov (KS) homogene-
ity test to interval data, and more precisely its computational aspects. To our knowledge,
this aspect has not been considered in the past, even if some but not much works on the
KS test with interval or fuzzy data exist [4,5]. Approximate and exact bounds that are
straightforward to compute are provided in Section 3, while notations and reminders
are given in Section 2.

In Section 4, we illustrate our results on a image based medical diagnosis problem.
Indeed, in such problems a common task is to detect whether two regions of a quantized
image have similar pixel distributions.

2 Preliminary Material

Komogorov-Smirnov (KS) homogeneity test [1] is commonly used to compare two
samples A= {ai|i = 1, . . . ,n,ai ∈ R} and B= {bi|i = 1, . . . ,m,bi ∈R} of measurements

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 416–425, 2014.
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to determine whether or not they follow the same probability distribution. Those sam-
ples are supposed to be independently drawn from a continuous one-dimensional real-
valued probability distributions.

If FA (FB) denote the empirical cumulative distributions built from A (B), that is if

FA(x) =
#{a ∈ A|a≤ x}

n
(1)

with #E the cardinal of a set E , then the KS test statistic KS is defined by:

KS(A,B) = sup
x∈R
|FA(x)−FB(x)|

Under the null hypothesis H0 that the two-samples are drawn from the same dis-
tribution, the statistic β (n,m)KS(A,B) converges to the Kolmogorov distribution, with

β (n,m) =
√

1
n +

1
m . Using the critical values of the Kolmogorov distribution, the null

hypothesis can be rejected at level α if KS(A,B) > β (n,m)κα . One common value of
this rejection threshold is κ0.05 = 1.36.

As this test makes very few assumptions about the samples (i.e., it is non-parametric)
and aims at testing a complex hypothesis (with respect to, e.g., comparing two means),
it requires in practice relatively large samples to properly reject the null hypothesis.

In this paper, we explore the case where observations are interval-valued, i.e., they
correspond to two sets [A] = {[ai,ai]|i = 1, . . . ,n} and [B] = {[bi,bi]|i = 1, . . . ,m} of
real-valued intervals. As recalled in the introduction and further explored in Section 4,
such imprecision may be the result of some quantization process.

In the next section, we study the interval-valued statistic resulting from such data,
and in particular provide efficient approximative (and sometimes exact) bounds for it,
using the notion of p-box.

3 Kolmogorov-Smirnov Test with Interval-Valued Data

Let us first introduce some notations. We will call selection of [A] a set S[A] of values
S[A] := {ai|i = 1, . . . ,n,ai ∈ [ai,ai]} where each ai is picked inside the interval [ai,ai],
i = 1, . . . ,n. We will denote by S ([A]) the set of all selections of [A]. To a selection
S[A] corresponds an empirical cumulative distribution FS[A] obtained by Eq. (1), and we
denote by F ([A]) the (non-convex) set of such empirical cumulative distributions.

Given this, the imprecise Kolmogorov-Smirnov Test

[KS]([A], [B]) = [KS([A], [B]),KS([A], [B])]

is an interval such that

KS([A], [B]) = inf
S[A]∈S ([A]),
S[B]∈S ([B])

sup
x∈R
|FS[A] (x)−FS[B](x)|, (2)

KS([A], [B]) = sup
S[A]∈S ([A]),
S[B]∈S ([B])

sup
x∈R
|FS[A] (x)−FS[B](x)|. (3)
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Computing such values is not, a priori, a trivial task since the number of possible se-
lections for both sets of intervals [A] and [B] are usually infinite. It should however be
noted that, as the empirical cumulative distributions can only take a finite number of
values (i.e., {0,1/n,2/n, . . . ,1} for [A]), so does the test. Yet, we are only interested in the
extreme values it can take.

In the sequel, we propose to use the formalism of p-boxes to approximate those
bounds KS([A], [B]) and KS([A], [B])

3.1 Approximating p-box

A p-box [2] [F,F ] is a pair of cumulative distributions such that F(x) ≤ F(x) for any
x ∈ R. The usual notion of cumulative distribution is retrieved when F = F , and a p-
box usually describes an ill-known cumulative distribution that is known to lie between
F and F . That is, to a p-box [F,F ] we can associate a set Φ([F ,F ]) of cumulative
distributions such that

Φ([F ,F ]) = {F |∀x ∈ R,F(x)≤ F(x)≤ F(x)}.

Here, we will use it as an approximating tool.
For a set of intervals [A], let us denote by Sa and Sa the particular selections Sa =

{ai|i = 1, . . . ,n} and Sa = {ai|i = 1, . . . ,n}. Then, we define the p-box [F [A],F [A]] ap-
proximating [A] as

F [A] := FSa and F [A] := FSa .

We have the following property

Proposition 1. Given a set of intervals [A], we have F ([A])⊆Φ([F [A],F [A]])

Proof. Consider a given selection SA. For every ai in this selection, we have

ai ≤ ai ≤ ai.

Since this is true for every i = 1, . . . ,n, this means that FSA is stochastically dominated1

by FSA.
and stochastically dominates FSA , i.e.

FSa(x)≤ FSA(x)≤ FSa(x),∀x ∈ R

and as this is true for every selection SA, we have F ([A])⊆ Φ([F [A],F [A]]). To see that
the inclusion is strict, simply note that FSA can only take a finite number of values, while
cumulative distributions in Φ([F [A],F [A]]) can be strictly monotonous.

This shows that the associated (convex) set Φ([F [A],F [A]]) is actually a conservative
approximation of F ([A]). The next example illustrates both the p-box [F [A],F [A]] and
Proposition 1.

1 Recall that F1 stochastically dominates F2 if F1 ≤ F2.
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Example 1. Consider the case where we have 3 sampled intervals, with the three fol-
lowing intervals:

[a1,a1] = [2,7]
[a2,a2] = [6,12]
[a3,a3] = [10,16]

Figure 1 illustrates the obtained p-box and one cumulative distribution (F̂) included
in Φ([F [A],F [A]]). However, F̂ is not in F ([A]), since any empirical cumulative dis-
tribution obtained from a selection on 3 intervals can only takes its values in the set
{0,1/3,2/3,1}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1/3

1/2

2/3

1

x values

F
(x

)

F [A]

F [A]

F̂

Fig. 1. P-box of Example 1

3.2 Approximating KS([A], [B]) and KS([A], [B])

Consider two samples [A] and [B] and the associated p-boxes [F [A],F [A]] and [F [B],F [B]].

We can now introduce the approximated imprecise KS Test [̃KS] = [KS˜ , K̃S] such that:

K̃S([A], [B]) = sup
x∈R

max{|F [A](x)−F [B](x)|, |F [A](x)−F [B](x)|}, (4)

KS˜([A], [B]) = sup
x∈R

D[A],[B](x), (5)

with

D[A],[B](x) =

⎧⎨⎩
0 if [F [A](x),F [A](x)]∩ [F [B](x),F [B](x)] �= /0

min{|F [A](x)−F [B](x)|, |F [A](x)−F [B](x)|} otherwise

These approximations are straightforward to compute (if n + m intervals are ob-
served, at worst they require 2n+ 2m computations once the p-boxes are built). We
also have the following properties:



420 S. Destercke and O. Strauss

Proposition 2. Given a set of intervals [A] and [B], we have K̃S([A], [B]) = KS([A], [B])

Proof. The value K̃S([A], [B]) is reached on x either for a pair {F [A],F [B]} or {F [A],F [B]}.
As any pair F1,F2 with F1 ∈ Φ([F [A],F [A]]) and F2 ∈ Φ([F [B],F [B]]) would have a KS

statistic lower than K̃S([A], [B]), and given the inclusion of Proposition 1, this means
that KS([A], [B]) ≤ K̃S([A], [B]). To show that they coincide, it is sufficient to note that
all distributions F [A],F [A],F [B],F [B] can be obtained by specific selections (i.e., the one
used to build the p-boxes).

�

This shows that the upper bound is exact. Concerning the lower bound, we only have
the following inequality:

Proposition 3. Given a set of intervals [A] and [B], we have KS˜([A], [B])≤ KS([A], [B])

Proof. Immediate, given the inclusion of Proposition 1 and the fact that KS˜([A], [B]) is
the minimal KS statistics reached by a couple of cumulative distributions respectively
in [F [A],F [A]] and [F [B],F [B]]

�

And unfortunately this inequality will usually be strict, as shows the next example.

Example 2. Consider the case where n = 2, m = 3 and where
⋂n

i=1[ai,ai] = /0,
⋂m

i=1[bi,
bi] = /0. This means that, for every selection S[A] ∈S ([A]) and S[B] ∈S ([B]), we have
that the empirical cumulative distributions FS[A] and FS[B] respectively takes at least one
value in {1/2} and in {1/3,2/3}. This means that KS([A], [B]) �= 0 (as every cumulative
distributions coming from selections will assume different values), while it is possible
in such a situation to have KS˜ ([A], [B]) = 0.

Consider the following example:

[a1,a1] = [1,8]
[
b1,b1
]
= [2,7]

[a2,a2] = [9,15]
[
b2,b2
]
= [6,12][

b3,b3
]
= [10,16]

A simple look at Figure 2 allows us to see that KS˜([A], [B]) = 0 in this case.

The inequality between KS˜ ([A], [B]) and KS([A], [B]) can also be strict when
KS˜([A], [B]) �= 0. It should be noted that the discrepancy between KS˜([A], [B]) and
KS([A], [B]) will decrease as the number of sampled intervals increases. Finally, a no-
ticeable situation where KS˜ ([A], [B]) will be an exact bound (KS˜([A], [B])=KS([A], [B]))
is when [F [A],F [A]] and [F [B],F [B]] are disjoint, that is either F([A])>F([B]) or F([A])<
F([B]).

3.3 Decision Making Using an Imprecise-Valued Test

One of the main features of this extension is that it provides a pair of (conservative)
bounds KS˜ ([A], [B]) and K̃S([A], [B]) rather than a precise value KS(A,B). In contrast
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Fig. 2. P-boxes of Example 2

with usual tests that either reject or do not reject an hypothesis, this leads to three pos-
sible decisions: the answer to the test can be yes, no or unknown, the last one occurring
when available information is insufficient.

In fact, interpreting this test is straightforward. Let γ = β (n,m)κα be the significance
level.

– If KS˜ ([A], [B]) > γ then we can conclude that there is no possible selections S[A]
of [A] and S[B] of [B] such that KS(S[A],S[B]) ≤ γ and thus the hypothesis that the
two-samples are drawn from the same distribution can be rejected at a level α .

– On the contrary, if K̃S([A], [B]) < γ then there is no possible selections S[A] of [A]
and S[B] of [B] such that KS(S[A],S[B]) ≥ γ and thus the hypothesis that the two-
samples are drawn from the same distribution cannot be rejected at a level α .

– Otherwise, we will conclude that our information is too imprecise to lead to a clear
decision about rejection.

This new test will therefore point out those cases where the data imprecision is too
important to lead to a clear decision. As we shall see in the next section, it allows one to
deal with quantization in a new way, namely it can detect when the disturbance or loss of
information induced by the quantization makes the test inconclusive. It should be noted
that, as K̃S([A], [B]) is an approximated lower bound, indecision may also be due to this
approximation, yet experiments of the next section indicate that this approximation is
reasonable.

4 Experimentation

The experimentation we propose is based on a set of medical images acquired by a
gamma camera. In such applications, statistical hypothesis testing is often used to de-
termine whether pixels distribution in two different regions of an image are similar or
not. Physicians usually try to control the probability of making a decision leading to
harmful consequences, and make it as low as possible (usually 0.05).

The advantage of using a KS test in this case is that it makes very few assumption
about the distribution. However, in such applications, it is quite common to deal with
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quantized information, i.e., real-valued information constrained to belong to a small
subset of (integer) values. Since the KS test is designed to compare pairs of continuous
distributions, it is necessary to ensure that the statistical test is robust with respect to the
data model. Indeed, the value of the statistic computed from quantized data may differ
markedly from the calculation based on original (non-quantized) but unavailable data.

Physicians would usually try to avoid a wrong decision, and prefer to acquire addi-
tional data when the actual data are not fully reliable. Thus, knowing that no decision
can be taken based on the current set of data is a valuable piece of information.

We illustrate this weakness of the usual KS test with a set of medical images ac-
quired by a gamma camera (nuclear medicine images) whose values are quantified on a
restricted number of values. This experiment also highlights the ability of the extended
KS test to avoid wrong decisions induced by quantization. It aims at mimicking real
medical situations where the nuclear physician has to compare the distribution of val-
ues in two regions of interest in order to decide whether or not a patient has a specific
disease.

The set of images is made of 1000 planar acquisitions of a Hoffman 2-D brain phan-
tom (acquisition time: 1 second; average count per image 1.5 kcounts, 128×128 images
to satisfy the Shannon condition), representing 1000 measures of a random 2D image
(see Figure (3)). Due to the fact that nuclear images are obtained by counting the pho-
tons that have been emitted in a particular direction, pixel values in a nuclear image
can be supposed to be contaminated by Poisson distributed noise. Due to the very short
acquisition time, the images were very noisy, i.e. the signal to noise ratio was very low.
More precisely, the average pixel value in the brain corresponded to a 69% coefficient
of variation of the Poisson noise. Moreover, the number of different possible values to
be assigned to a pixel was low and thus, within those images, the impact of quantization
was high: pixel possible values were {0,256,512,768,1024,1280,1536,1792,2048}.

To obtain less noisy and less quantized images, we summed the raw images (see e.g.
Figure (4)). The higher the number of summed images, the higher the average pixel
value, and thus the higher the signal to noise ratio and the higher is the number of
possible values for each pixel. When summing the 1000 raw images, we obtained the
high dynamic resolution and high signal to noise ratio image depicted in Figure (5).a.

We use the KS test to decide whether the two regions depicted in Figures (5).b and
(5).c can be considered as being similar or not (the null hypothesis). Considering the
number of pixels in each region (n = 183, m = 226), the significance level for a p-value
α = 0.05 is γ ≈ 0.1910. Testing the two regions with the reference image (Figure (5).a)
provides the following values: KS(A,B)≈ 0.2549, KS˜([A], [B])≈ 0.2505 K̃S([A], [B])≈
0.2549, leading to conclude that the similarity of regions A and B should be rejected at
a level 0.05, which can be considered as our ground truth.

We use the KS test for comparing the same regions but with 300 pairs of images that
have been randomly selected in the set of 1000 original images. In that case, the classical
test accepts the similarity of the two regions, while the imprecise test is inconclusive
for each pairs: KS˜([A], [B]) < γ < K̃S([A], [B]). We now do the same test with images
having a higher dynamic obtained by summing p = 2,3, . . . ,40 images. For each value
of p, we count the number of times the classical test provides the right answer, i.e.
reject the null hypothesis at level 0.05 (γ ≤ KS(A,B)). We then compute the ratio of
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Fig. 3. 6 acquisitions of the Hoffman 2-D brain phantom

Fig. 4. 6 images obtained by summing up 10 raw acquisitions of the Hoffman 2-D brain phantom

a) b) c)

Fig. 5. Reference image obtained by summing the 1000 raw images (a), region A (b) and region
B (c) selected on the reference image

this count over 300. For the extended KS test, we compute two ratios: the ratio of times
when γ ≤KS˜ ([A], [B]), i.e. we must reject the null hypothesis at level 0.05, and the ratio

of times when γ ≤ K̃S([A], [B]), i.e. we can reject the null hypothesis at level 0.05. We
also compute the number of times where the test is inconclusive, i.e. KS˜([A], [B])< γ <

K̃S([A], [B]).
Figure (6) plots these ratio versus p, the number of summed images. On one hand,

concerning the classical KS test, it can be noticed that depending on the quantification
level, the answer to the test differs. In fact, when the number of pixel’s possible val-
ues is low, the test concludes that H0 cannot be rejected most of the time, leading to
a decision that the two distributions are similar even though they are not. When p in-
creases, so increases pixel’s possible values and increases the ratio of correct answer.
Thus, quantization has a high impact on the conclusions of a classical KS test.

On the other hand, concerning the extended KS test, it can be noticed that the null
hypothesis can always be rejected. The impact of the quantization only affects the ratio
of times when the null hypothesis must be rejected. Thus the impact of quantization
here is much more sensible, in the sense that when quantization is too severe (informa-
tion is too poor), the test abstains to make a decision. Also, in all cases, the test is either
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Fig. 6. Correct decision ratio with the classical test (black) and with the extended test (blue for
can be rejected, red for must be rejected), superimposed with the proportion of times extended
test is inconclusive (green)

inconclusive or provides the right answer, and is therefore never wrong, which is what
we could expect from a robust test.

5 Conclusions

In this paper, we have introduced efficient methods to approximate the bounds of the
KS test with interval-valued data. We have demonstrated that the upper bound is exact
while the lower bound is, in general, only a lower approximation. However, the exper-
iments have shown that this is not too conservative approximation and still allows to
take decision when enough information is available.

The obvious advantages of this paper proposal is its efficiency (computational time is
almost linear in the number of sampled intervals), however we may search in the future
for exact rather than approximated lower bounds. Since KS test result only depends on
the ordering (i.e., ranking) of sampled elements between them, a solution would be to
explore the number of possible orderings among elements of [A] and [B], or to identify
the orderings for which the lower bound is obtained (the number of such orderings,
while finite, may be huge).

Finally, it would also be interesting to investigate other non-parametric homogeneous
tests, such as the Cramer-Von Mises one.
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Abstract. The paper studies the continuity of rules for updating im-
precise probability models when new data are observed. Discontinuities
can lead to robustness issues: this is the case for the usual updating
rules of the theory of imprecise probabilities. An alternative, continuous
updating rule is introduced.

Keywords: coherent lower and upper previsions, natural extension, reg-
ular extension, α-cut, robustness, Hausdorff distance.

1 Introduction

Imprecise probability models must be updated when new information is gained.
In particular, prior (coherent) lower previsions must be updated to posterior
ones when new data are observed. Unfortunately, the usual updating rules of
the theory of imprecise probabilities have some discontinuities. These can lead
to robustness problems, because an arbitrarily small change in the prior lower
previsions can induce a substantial change in the posterior ones.

In the next section, the discontinuity of the usual updating rules is illustrated
by examples and formally studied in the framework of functional analysis. Then,
in Sect. 3, an alternative, continuous updating rule is introduced and discussed.
The final section gives directions for further research.

2 Discontinuous Updating Rules and Robustness Issues

Let Ω be a nonempty set of possible states of the world. A (bounded) uncertain
payoff depending on the true state of the world ω ∈ Ω can be represented by an
element of L, the set of all bounded real-valued functions on Ω. In the Bayesian
theory, the uncertain belief or information about the true state of the world
ω ∈ Ω is described by a (finitely additive) probability measure P on Ω [1,2].
The expectation P (X) of an uncertain payoff X ∈ L is its integral with respect
to this probability measure [3, Chap. 4]. Hence, P denotes the probability as
well as the expectation: P (A) = P (IA), where IA denotes the indicator function
of the event A ⊆ Ω.
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Let P be the set of all expectation functionals P : L → R corresponding to
integrals with respect to a (finitely additive) probability measure on Ω. In the
theory of imprecise probabilities, the elements of P are called linear previsions
and are a special case of coherent lower and upper previsions. A (coherent) lower
prevision P : L → R is the (pointwise) infimum of a nonempty set M ⊆ P of
linear previsions [4, Sect. 3.3]. Hence, a lower prevision P is determined by the
setM(P ) = {P ∈ P : P ≥ P} of all linear previsions (pointwise) dominating it.

Let P be the set of all (coherent) lower previsions P : L → R. The upper
prevision P : L → R conjugate to a lower prevision P is the (pointwise) supre-
mum of M(P ). Hence, P (X) = −P (−X) for all X ∈ L, and P is linear (i.e.,
P ∈ P ⊆ P) if and only if P = P . As in the case of linear previsions, P and
P denote also the corresponding lower and upper probabilities: P (A) = P (IA)
and P (A) = P (IA) = 1 − P (Ac) for all A ⊆ Ω. However, contrary to the case
of linear previsions, in general these lower and upper probability values do not
completely determine the corresponding lower and upper previsions.

Linear previsions and lower (or upper) previsions are quantitative descriptions
of uncertain belief or information. When an event B ⊆ Ω is observed, these
descriptions must be updated. The updating is trivial when B = Ω or when B
is a singleton. Hence, in order to avoid trivial results, it is assumed that B is a
proper subset of Ω with at least two elements.

In the Bayesian theory, a linear prevision P ∈ P with P (B) > 0 is updated
to P ( · |B), the conditional linear prevision given B. That is, the integral with
respect to the probability measure P conditioned on B. When P (B) = 0, the
Bayesian updating of the linear prevision P is not defined.

In the theory of imprecise probabilities, there are two main updating rules:
natural extension and regular extension [4, Appendix J]. According to both rules,
a lower prevision P ∈ P with P (B) > 0 is updated to the infimum P ( · |B) of
all conditional linear previsions P ( · |B) with P ∈M(P ). The natural extension
updates each lower prevision P ∈ P such that P (B) = 0 to the vacuous condi-
tional lower prevision given B. That is, the lower prevision V ( · |B) such that
V (X |B) = infω∈B X(ω) for all X ∈ L, describing the complete ignorance about
ω ∈ B. By contrast, the regular extension updates a lower prevision P ∈ P
such that P (B) > 0 to the infimum P ( · |B) of all conditional linear previsions
P ( · |B) with P ∈ M(P ) and P (B) > 0, and updates only the lower previsions
P ∈ P such that P (B) = 0 to the vacuous conditional lower prevision given B.
Hence, the natural and regular extensions are always defined, and they agree for
all lower previsions P ∈ P such that either P (B) > 0 or P (B) = 0.

Both natural and regular extensions generalize the Bayesian updating: if a
lower prevision P is linear and P (B) = P (B) > 0, then P ( · |B) is the conditional
linear prevision given B. If a lower prevision P is linear and P (B) = P (B) = 0,
then the conditional linear prevision given B does not exist, and both natural
and regular extensions update P to V ( · |B), which is not linear. But with lower
previsions, besides the cases with P (B) and P (B) both positive or both zero,
there is also the case with P (B) > P (B) = 0. The fact that there are two
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different updating rules for this case shows that it is more challenging than the
others.

Example 1. A simple instance of discontinuity in the updating of lower and
upper previsions is the following [5, Example 2]. Let X be a function on Ω
with image {1, 2, 3}, and let P be the lower prevision determined by the set
M(P ) = {P ∈ P : P (X) ≥ x}, where x ∈ [1, 3]. That is, P is the lower prevision
based on the unique assessment P (X) = x.

Assume that the event B = {X �= 2} is observed and the lower prevision P
must be updated. If x > 2, then P (B) = x−2 > 0, and both natural and regular
extensions update P to P ( · |B), with in particular P (X |B) = x. On the other
hand, if x ≤ 2, then P (B) = 1 > P (B) = 0, and the regular extension updates P
to P ( · |B), while the natural extension updates it to V ( · |B). However, P ( · |B)
and V ( · |B) are equal when x < 2, while they are different when x = 2, with in
particular P (X |B) = 2 and V (X |B) = 1.

Therefore, according to both rules, the updated lower previsions of X are
discontinuous functions of x ∈ [1, 3] at x = 2. These functions are plotted as
a solid line in Fig. 1 (the other functions plotted in Fig. 1 will be discussed in
Sect. 3). Hence, inferences and decisions based on imprecise probability models
can depend in a discontinuous way from the prior assessments, and this can lead
to robustness issues [5].

Pα(X |B)

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

α = 0.5
α = 0.1
α ↓ 0
α ↑ 1

P (X)

Fig. 1. Updated lower prevision Pα(X |B) from Example 1 as a function of P (X) = x,
for some values of α ∈ (0, 1)

Example 2. A more important instance of discontinuity in the updating of lower
and upper previsions is the following [6, Example 9]. Let X1, . . . , X10, Y1, . . . , Y10

be 20 functions on Ω with image {0, 1}, and for each t ∈ (0, 1), let Pt ∈ P be a
linear prevision such that
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Pt(X1 = x1, . . . , X10 = x10, Y1 = y1, . . . , Y10 = y10)

=

∫ 1

0

θt−1+
∑10

i=1 xi (1− θ)10−t−
∑10

i=1 xi

Γ (t)Γ (1− t)
dθ ε

∑10
i=1 |xi−yi| (1 − ε)10−

∑10
i=1 |xi−yi|

for all x1, . . . , x10, y1, . . . , y10 ∈ {0, 1}, where ε ∈ [0, 1/2]. That is, Pt describes a
Bayesian model in which X1, . . . , X10 follow the beta-Bernoulli distribution with
(prior) expectation t and variance t (1−t)/2, while each Yi is independent of the
other 18 variables given Xi = xi, with conditional probability ε that Yi �= xi.

Let the lower prevision P ∈ P be the infimum of all linear previsions Pt

with t ∈ (0, 1), and assume that the event B = {
∑9

i=1 Yi = 7} is observed.
That is, P describes an imprecise beta-Bernoulli model for X1, . . . , X10 with
hyperparameter s = 1 [7], but instead of the (latent) variablesXi, only the proxy
variables Yi can be observed, which can be wrong with a (small) probability ε.
In the first 9 binary experiments, 7 successes are (possibly incorrectly) reported,
and the updated lower prevision of a success in the last experiment is the quantity
of interest.

If ε > 0, then P (B) ≥ ε10 > 0, and both natural and regular extensions
update P to P ( · |B), with in particular P (X10 |B) = 0 [6]. On the other hand,
if ε = 0, then P (B) > P (B) = 0, and the regular extension updates P to
P ( · |B), while the natural extension updates it to V ( · |B), with in particular
P (X10 |B) = 0.7 and V (X10 |B) = 0 [7].

Hence, according to the natural extension, the updated lower prevision of
X10 is a continuous function of ε ∈ [0, 1/2]. However, since vacuous conditional
previsions are not very useful in statistical applications, the usual updating rule
for the imprecise beta-Bernoulli model is regular extension, according to which
the updated lower prevision of X10 is a discontinuous function of ε ∈ [0, 1/2] at
ε = 0. That is, the assumption that the experimental results can be incorrectly
reported with an arbitrarily small positive probability leads to very different
conclusions than the assumption that the results are always correctly reported.
This is an important robustness problem of the imprecise beta-Bernoulli and
other similar models [6].

In order to investigate more carefully such discontinuities in the updating
of imprecise probability models, a metric on the set P of all (coherent) lower
previsions can be introduced. Lower previsions are functionals on the set L of all
bounded real-valued functions on Ω. The set L has a natural norm, which makes
it a Banach space: the supremum norm ‖·‖∞, defined by ‖X‖∞ = supω∈Ω |X(ω)|
for all X ∈ L [8, Sect. 4.5].

The set P of all linear previsions is a subset of the dual space L∗ of L,
consisting of all continuous linear functionals on L [3, Sect. 4.7]. The dual space
of L is a Banach space when endowed with the dual norm ‖ · ‖, defined by
‖F‖ = supX∈L : ‖X‖∞≤1 |F (X)| for all F ∈ L∗ [8, Sect. 2.3]. The dual norm
induces a metric d on P such that the distance between two linear previsions
P, P ′ ∈ P is 2 times the total variation distance between the corresponding
(finitely additive) probability measures [8, Sect. 4.5]:
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d(P, P ′) = sup
X∈L : ‖X‖∞≤1

|P (X)− P ′(X)| = 2 sup
A⊆Ω

|P (A)− P ′(A)| .

A lower prevision is determined by a nonempty set of linear previsions. The
Hausdorff distance between two nonempty sets M,M′ ⊆ P of linear previsions
is defined as

dH(M,M′) = max

{
sup
P∈M

inf
P ′∈M′

d(P, P ′), sup
P ′∈M′

inf
P∈M

d(P, P ′)

}
.

The next theorem shows that the Hausdorff distance can be used to extend d to a
metric on P , which can also be interpreted as a direct generalization of the metric
induced by the the dual norm. However, the connection with the total variation
distance is lost, because in general the lower and upper probability measures do
not completely determine the corresponding lower and upper previsions.

Theorem 1. The metric d on P can be extended to a metric on P by defining,
for all P , P ′ ∈ P,

d(P , P ′) = sup
X∈L : ‖X‖∞≤1

∣∣P (X)− P ′(X)
∣∣ = dH

(
M(P ),M(P ′)

)
.

Proof. The first equality clearly defines a metric on P that extends the met-
ric d on P . The second equality can be shown by generalizing the proof of [9,
Theorem 2] to the case of a possibly infinite set Ω. Let P , P ′ ∈ P , and define
f : (P,X) �→ P (X)−P ′(X) onM(P )×L, where P ′ ∈ P . In the weak∗ topology,
M(P ) is compact and Hausdorff [4, Appendix D], while f is continuous and con-
vex in P , and concave in X . Therefore, the minimax theorem [10, Theorem 2]
implies

inf
P∈M(P )

sup
X∈L : ‖X‖∞≤1

|P (X)− P ′(X)| = sup
X∈L : ‖X‖∞≤1

inf
P∈M(P )

(P (X)− P ′(X)),

since the absolute value on the left-hand side has no effect, because P, P ′ are
linear and X can be replaced by −X . Hence,

sup
P ′∈M(P ′)

inf
P∈M(P )

d(P, P ′) = sup
X∈L : ‖X‖∞≤1

sup
P ′∈M(P ′)

inf
P∈M(P )

(P (X)− P ′(X))

= sup
X∈L : ‖X‖∞≤1

(
P (X)− P ′(X)

)
,

and analogously, by exchanging the roles of P and P ′,

sup
P∈M(P )

inf
P ′∈M(P ′)

d(P, P ′) = sup
X∈L : ‖X‖∞≤1

(
P ′(X)− P (X)

)
,

from which the desired result follows. ,-

The continuity of the updating rules can now be studied with respect to the
metric d on P. The next theorem shows that, contrary to Bayesian updating, the
usual updating rules of the theory of imprecise probabilities are not continuous
on the whole domain on which they are defined.



A Continuous Updating Rule for Imprecise Probabilities 431

Theorem 2. The Bayesian updating rule P �→ P ( · |B) on {P ∈ P : P (B) > 0}
is continuous.

The regular extension P �→ P ( · |B) is continuous on {P ∈ P : P (B) > 0},
but not on

{
P ∈ P : P (B) > 0

}
. The same holds for the natural extension.

Proof. Let g : P → L∗ and h : P → R be the two functions that are defined by
g(P ) = P ( · IB) and h(P ) = P (B), respectively, for all P ∈ P . The functions g, h
are uniformly continuous with respect to the dual and Euclidean norms, respec-
tively, since ‖P ( · IB)− P ′( · IB)‖ ≤ d(P, P ′) and |P (B) − P ′(B)| ≤ 1/2d(P, P ′)
for all P, P ′ ∈ P . Hence, their ratio g/h : P �→ P ( · |B) is continuous on the set
{P ∈ P : P (B) > 0}, and uniformly continuous on the set {P ∈ P : P (B) > α},
for all α ∈ (0, 1).

For each α ∈ (0, 1), let Sα be the power set of {P ∈ P : P (B) > α}. The
uniform continuity of P �→ P ( · |B) on {P ∈ P : P (B) > α} implies the uniform
continuity ofM �→ {P ( · |B) : P ∈M} on Sα\{∅} with respect to the Hausdorff
pseudometric dH , for all α ∈ (0, 1).

Therefore, in order to complete the proof of the continuity of P �→ P ( · |B)
on {P ∈ P : P (B) > 0}, it suffices to show that the sets {P ( · |B) : P ∈M(P )}
andM (P ( · |B)) are equal for all P ∈ P such that P (B) > 0. That is, it suffices
to show that {P ( · |B) : P ∈M(P )} is nonempty, weak∗-compact, and convex,
for all P ∈ P such that P (B) > 0 [4, Sect. 3.6], but this is implied by the fact
that the function P �→ P ( · |B) on {P ∈ P : P (B) > 0} is weak∗-continuous and
maintains segments [11, Theorem 2].

Finally, let X be a function on Ω with image {1, 2, 3} such that B = {X �= 2},
and for each x ∈ [1, 3], let P x be the lower prevision based on the unique assess-
ment Px(X) = x. Example 1 implies that both regular and natural extensions
updating of P x are discontinuous functions of x ∈ [1, 3] at x = 2. Hence, in
order to prove that both regular and natural extensions are not continuous on{
P ∈ P : P (B) > 0

}
, it suffices to show that the function x �→ P x on [1, 3] is

continuous.
Let x, x′ ∈ [1, 3] with x < x′. For each P ∈ P such that x ≤ P (X) < x′,

another P ′ ∈ P with P ′(X) = x′ and d(P, P ′) ≤ 2 (x′ − x) can be obtained
by moving some probability mass from {X �= 3} to {X = 3}. Therefore,
dH (M(P x),M(P x′)) ≤ 2 (x′ − x), and the function x �→ P x on [1, 3] is thus
continuous. ,-

Hence, the case with P (B) > P (B) = 0 is a source of discontinuity in the usual
updating rules of the theory of imprecise probabilities. Unfortunately, this case
is very common and leads to robustness issues in practical applications of the
theory, such as the ones based on the imprecise beta-Bernoulli model discussed
in Example 2. In the next section, an alternative updating rule avoiding these
difficulties is introduced.

3 A Continuous Updating Rule

The discontinuities of the regular extension when P (B) > P (B) = 0 are due
to the fact that in this case M(P ) contains linear previsions P with arbitrarily
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small P (B), so that their updating P �→ P ( · |B) is arbitrarily sensitive to small
changes in P . However, these linear previsions are almost refuted by the observed
data B. In fact, in a hierarchical Bayesian model with a second-order probability
measure onM(P ), the linear previsions P ∈M(P ) with arbitrarily small P (B)
would not pose a problem for the updating, since they would be downweighted
by the (second-order) likelihood function P �→ P (B). Theorem 2 implies that the
updating of such a hierarchical Bayesian model would be continuous, if possible
(i.e., if the second-order probability measure is not concentrated on the linear
previsions P ∈M(P ) with P (B) = 0).

The regular extension updates a lower prevision P ∈ P such that P (B) > 0 by
conditioning onB all linear previsionsP ∈ M(P ) with positive likelihoodP (B). A
simpleway to define an alternative updating rule avoiding the discontinuities of the
regular extension is to discard not only the linear previsions with zero likelihood,
but also the too unlikely ones. The α-cut rule updates each lower prevision P ∈ P
such that P (B) > 0 to the infimum Pα( · |B) of all conditional linear previsions
P ( · |B) with P ∈M(P ) andP (B) ≥ αP (B), where α ∈ (0, 1). That is, the linear
previsions whose (relative) likelihood is below the threshold α are discarded from
the setM(P ), before conditioning onB all linear previsions in this set. Hence, the
α-cut updating corresponds to the natural and regular extensions when P (B) ≥
αP (B) > 0, and thus in particular it generalizes the Bayesian updating.

From the standpoint of the theory of imprecise probabilities, the α-cut updat-
ing rule consists in replacing the lower prevision P by Pα before updating it by
regular extension (or natural extension, since they agree in this case), where the
lower prevision Pα is obtained from P by including the unique additional assess-
ment Pα(B) ≥ αP (B). That is, M(Pα) =M(P )∩

{
P ∈ P : P (B) ≥ αP (B)

}
.

Updating rules similar to the α-cut have been suggested in the literature on
imprecise probabilities [12,13,14,15]. When P (B) > 0, the regular extension
P ( · |B) is the limit of the α-cut updated lower prevision Pα( · |B) as α tends to
0. Furthermore, when Ω is finite and P corresponds to a belief function on Ω, the
limit of the α-cut updated lower prevision Pα( · |B) as α tends to 1 corresponds
to the result of Dempster’s rule of conditioning [16,12].

Example 1 (continued). Since P (B) = 1, the α-cut updating of P is well-defined,
and M(Pα) = {P ∈ P : P (X) ≥ x and P (B) ≥ α}. Therefore, Pα and P are
equal if and only if x ≥ 2+α. However, Pα( · |B) and P ( · |B) can be equal also
when Pα and P are not, and in fact, Pα( · |B) and P ( · |B) differ if and only
if 2 − α < x < 2. That is, the α-cut updating of P corresponds to the regular
extension updating when x /∈ (2− α, 2) (and thus also to the natural extension
updating when x /∈ (2−α, 2]), with in particular Pα(X |B) = 0 when x ≤ 2−α,
and Pα(X |B) = x when x ≥ 2. If 2 − α < x < 2, then the α-cut updating
of P differs from the natural or regular extensions updating, with in particular
Pα(X |B) = x/α + 2− 2/α.

Hence, the updated lower prevision Pα(X |B) is a continuous, piecewise linear
function of x ∈ [1, 3], which is plotted in Fig. 1 for some values of α ∈ (0, 1).
Since the slope of the central line segment is 1/α, the limit as α tends to 0 leads
to the discontinuity of the regular extension P (X |B) at x = 2.
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Example 2 (continued). Since P (B) > 0, the α-cut updating of P is well-defined.
The explicit consideration of Pα is not necessary for calculating Pα(X10 |B). In
fact, the (relative) profile likelihood function

λ : p �→ sup
P∈M(P ) :P (B)>0, P (X10 |B)=p

P (B)

P (B)

on [0, 1] can be easily obtained [11, Theorem 3], and Pα(X10 |B) = inf{λ ≥ α}.
That is, Pα(X10 |B) is the infimum of the α-cut of the profile likelihood λ,
consisting of all p ∈ [0, 1] such that λ(p) ≥ α.

The (relative) profile likelihood function λ is plotted in Fig. 2 for some values
of ε ∈ [0, 1/2], together with the threshold α = 0.01. In particular, P 0.01(X10 |B)
has approximately the values 0.701, 0.704, 0.718, and 0.727, when ε is 0, 0.01,
0.05, and 0.1, respectively. Hence, there is no hint of any discontinuity of the
updated lower prevision Pα(X10 |B) as a function of ε ∈ [0, 1/2].

λ
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Fig. 2. Profile likelihood function of P (X10 |B) from Example 2, for some values of
ε ∈ [0, 1/2]

The next theorem shows that, contrary to the usual updating rules of the
theory of imprecise probabilities, the α-cut updating rule is continuous on the
set of all lower previsions P with P (B) > 0, and thus avoids the robustness
issues related to discontinuity of updating. Moreover, the α-cut rule has the huge
advantage of allowing to use the vacuous prevision as prior imprecise prevision
in statistical analyses, and still get non-trivial conclusions, while this is not
possible with the natural or regular extensions. For these reasons, the α-cut
updating rule has been successfully used in several practical applications of the
theory of imprecise probabilities [17,18,19].

Theorem 3. The α-cut updating rule P �→ Pα( · |B) on
{
P ∈ P : P (B) > 0

}
is continuous for all α ∈ (0, 1).
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Proof. The α-cut updating rule is the composition of the two functions P �→ Pα

on
{
P ∈ P : P (B) > 0

}
and P �→ P ( · |B) on {P ∈ P : P (B) > 0}. Theorem 2

implies that the latter is continuous, so only the continuity of the former remains
to be proved.

Let δ ∈ R>0 and let P , P ′ ∈
{
P ′′ ∈ P : P ′′(B) > 0

}
such that d(P , P ′) < δ. If

P ∈M(Pα), then P ∈M(P ), and thus there is a P ′ ∈ M(P ′) with d(P, P ′) < δ.
Moreover, there is also a P ′′ ∈ M(P ′) such that P ′′(B) = P ′(B) [4, Sect. 3.6].
Finally, define Pδ = γ P ′ + (1− γ)P ′′, where

γ =
2 (1− α)P ′(B)

2 (1− α)P ′(B) + (α+ 1) δ
.

Then Pδ ∈ M(P ′
α), since M(P ′) is convex, and Pδ(B) > αP ′(B) is implied by

P ′(B) > P (B) − δ/2 ≥ αP (B) − δ/2 > α
(
P ′(B)− δ/2

)
− δ/2. That is, for each

P ∈M(Pα), there is a Pδ ∈ M(P ′
α) such that d(P, Pδ) < γ δ + (1 − γ) 2.

Since the roles of P and P ′ can be exchanged, d(Pα, P
′
α) ≤ γ δ+(1−γ) 2, and

therefore the function P �→ Pα on
{
P ∈ P : P (B) > 0

}
is continuous, because

limδ↓0 (γ δ + (1− γ) 2) = 0. ,-

4 Conclusion

In the present paper, the α-cut updating rule for imprecise probability models
has been introduced. It is continuous and allows to use the vacuous prevision as
prior imprecise prevision in statistical analyses. Therefore, it avoids the robust-
ness problems of the usual updating rules of the theory of imprecise probabilities,
and the difficulties related to the choice of near-ignorance priors.

As a consequence, the α-cut rule cannot always satisfy the property of coher-
ence between conditional and unconditional previsions [20], since this property
is incompatible with both the continuity of the updating and the successful use
of vacuous priors in statistical analyses. The relative importance of these proper-
ties depends on the application field and on the exact interpretation of imprecise
probabilities, as will be discussed in future work.

Anyway, the α-cut updating rule is not iteratively consistent. That is, when
the updating is done in several steps, the order in which the data come in can
influence the result. This iterative inconsistency can be resolved if the imprecise
probability models are generalized by including also the second-order likelihood
functions as part of the models [21,11]. The corresponding generalization of the
α-cut updating rule remains continuous, as will also be discussed in future work.
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Abstract. Stability arises as the consistency criterion in a betting inter-
pretation for hyperreal imprecise previsions, that is imprecise previsions
(and probabilities) which may take infinitesimal values. The purpose of
this work is to extend the notion of stable coherence introduced in [8]
to conditional hyperreal imprecise probabilities. Our investigation ex-
tends the de Finetti-Walley operational characterisation of (imprecise)
prevision to conditioning on events which are considered “practically
impossible” but not “logically impossible”.

1 Introduction and Motivation

This paper combines, within a logico-algebraic setting, several extensions of the
imprecise probability framework which we aim to generalise so as to represent
infinitesimal imprecise probabilities on fuzzy events.

Imprecise conditional probabilities, as well as imprecise conditional previsions,
have been investigated in details byWalley [12] in the case where the conditioning
event ψ is boolean and has non-zero lower probability. There, a de Finetti-style
interpretation of upper and lower probability and of upper and lower prevision in
terms of bets is proposed. In Walley’s approach, the conditional upper prevision,
U(x|ψ) of the gamble x given the event ψ is defined to be a number α such that
U(xψ · (x − α)) = 0, where xψ = 1 if ψ is true and xψ = 0 if ψ is false.
When the lower probability of ψ is non-zero, there is exactly one α satisfying
the above condition, and hence, the upper conditional prevision is well-defined.
Likewise, the lower conditional prevision of x given ψ is the unique β such that
L(xψ · (x − β)) = 0. However, the uniqueness of α and β is only guaranteed if
the lower probability of ψ is not zero, otherwise, there might be infinitely many
solutions of the above equations.

In terms of bets, the rationality of an assessment of upper probabilities (or
of upper previsions) corresponds to the absence of inadmissible bets, that is, of
bets for which there is an alternative strategy for the gambler which ensures
to him a strictly better payoff whatever the outcome of the experiment will be.
In the case of conditional upper and lower previsions, however, the absence of
inadmissible bets might be due to the fact that the conditioning event has lower
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probability zero (remind that when the conditioning event is false the bet is
invalidated, and hence the payoff of any bet on the conditional event is zero).
So, the presence of events with lower probability zero might force the absence
of inadmissible bets even in non-rational assessments. For instance, if we chose
a point at random on the surface of Earth, and φ denotes the event: the point
belongs to the western hemisphere and ψ denotes the event the point belongs to
the equator, the assessment φ|ψ �→ 0, ¬φ|ψ �→ 0 avoids inadmissible bets (in case
the point does not belong to the equator), but is not rational.

The goals of this paper are the following:
(1) To provide for a treatment of conditional upper and lower previsions when

the conditioning event is many-valued and when the conditioning event has prob-
ability zero. For probabilities in the usual sense, this goal has been pursued in [8].

(2) To model conditional or unconditional bets in which truth values and bet-
ting odds may be non-standard. In particular, to every non-zero event with prob-
ability zero we assign an infinitesimal non-zero probability, so that we may avoid
conditioning events with probability zero. Then taking standard parts we obtain a
probability (or, in the case of many-valued events, a state) in the usual sense.

(3) The basic idea is the following: we replace the concept of coherence (ab-
sence of inadmissible bets) by a stronger concept, namely, stable coherence. Not
only inadmissible bets are ruled out, but, in addition, the absence of inadmissible
bets is preserved if we modify the assessment by an infinitesimal in such a way
that no lower probability assessments equal to zero are allowed for events which
are not impossible. The main result (Theorem 5) will be that stable coherence
for an assessment of conditional upper probability corresponds to the existence
of a non-standard upper probability which extends the assessment modulo an
infinitesimal and assigns a non-zero lower probability to all non-zero events.

Our main result has important foundational consequences. For stable coher-
ence allows us to distinguish between events which are regarded as practically
impossible and events which are indeed logically impossible. It is well-known
that this subtle but crucial difference can only be captured by so-called regu-
lar probability functions which are characterised by Shimony’s notion of strict
coherence. A companion paper will address this point in full detail.

For reasons of space all proofs are omitted from this version of the paper.

2 Algebraic Structures for Non-standard Probability

We build on [8], which can be consulted for further background on MV-algebra
and related structures.1 Specifically, we work in the framework of unital lat-
tice ordered abelian groups, which can be represented as algebras2 of bounded

1 [2] provides a basic introduction and [11] a more advanced treatment, including
states and their relationship with coherence. The basic notions of universal algebras
we use are provided by [1].

2 Algebras will be usually denoted by boldface capital letters (with the exception of
the standard MV-algebra on [0, 1] and the standard PMV+-algebra on [0, 1] which
are denoted by [0, 1]MV and by [0, 1]PMV , respectively) and their domains will be
denoted by the corresponding lightface capital letters.
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functions from a set X into a non-standard extension, R∗, of R. Hence, their el-
ements may be interpreted as bounded random variables (also called gambles in
[12]). The set of bounded random variables is closed under sum, subtraction and
under the lattice operations. Since we are interested in extending the framework
of [8] to imprecise conditional prevision and probability, we also need a product
operation. It turns out that appropriate structure is constituted by the c-s-u-f
integral domains.

Definition 1. A commutative strongly unital function integral domain (c-s-u-f
integral domain for short) is an algebra R = (R,+,−,∨,∧, ·, 0, 1) such that:

(i) (R,+,−,∨,∧, 0) is a lattice ordered abelian group and 1 is a strong unit
of this lattice ordered group.

(ii) (R,+,−, ·, 0, 1) is a commutative ring with neutral element 1.
(iii) The identity x+ · (y ∨ z) = (x+ · y) ∨ (x+ · z) holds, where x+ = x ∨ 0.
(iv) The quasi identity: x2 = 0 implies that x = 0 holds.

Remark 1. In [7] it is shown that every c-s-u-f integral domain embeds into an
algebra of the form (R∗

fin)
H , where R∗ is an ultrapower of the real field, Rfin is

the c-s-u-f domain consisting of all finite elements of R∗, and H is an index set3.
In particular, every c-s-u-f integral domain embeds into the product of totally
ordered integral domains, and this fact justifies the name of these structures.

Let (G, u) be a unital lattice ordered group. We define Γ (G, u) to be the algebra
whose domain is the interval [0, u], with the constant 0 and with the operations
∼ x = u − x and x ⊕ y = (x + y) ∧ u. Moreover if h is a homomorphism of
unital lattice ordered abelian groups (G, u) and (G′, u′) (i.e., a homomorphism of
lattice ordered groups such that h(u) = u′), we define Γ (h) to be the restriction of
h to Γ (G, u). Likewise, given a c-s-u-f integral domain (F, u) and denoting by F−

the underlying lattice ordered abelian group, we define ΓR(F, u) to be Γ (F−, u)
equipped with the restriction of · to Γ (F−, u). Moreover given a homomorphism
h of c-s-u-f integral domains from (F, u) into (F′, u′) we denote by ΓR(h) its
restriction to ΓR(F, u).

Theorem 1. (1) (see [10]). Γ is a functor from the category of unital lattice
ordered abelian groups into the category of MV-algebras. Moreover Γ has an
adjoint Γ−1 such that the pair (Γ, Γ−1) is an equivalence of categories.

(2) (see [7]). ΓR is a functor from the category of c-s-u-f integral domains
into the category of PMV+-algebras. Moreover ΓR has an adjoint Γ−1

R such that
the pair (ΓR, Γ

−1
R ) is an equivalence of categories.

Remark 2. Theorem 1 tells us that the algebra of gambles, represented by a uni-
tal lattice ordered abelian group or of a c-s-u-f integral domain, is completely
determined by the algebra of [0, u]-valued gambles, whose elements may be re-
garded as many-valued events. MV and PMV+-algebras provide rich semantics
for the logic of many-valued events.

3 Of course, the embedding sends u, the neutral element for product, in to 1.
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Let A be an MV-algebra, and let (G, u) be a lattice ordered unital abelian group
such that Γ (G, u) = A. Let R∗ be an ultrapower of the real field, and let R∗

fin

be the set of all finite elements of R∗ and let [0, 1]∗ = Γ (R∗
fin, 1).

We say that R∗ is (G, u)-amenable if for all g ∈ G, if g �= 0, then there is
a homomorphism h from G into R∗

fin, considered as a lattice ordered abelian
group, such that h(u) = 1 and h(g) �= 0. We say that [0, 1]∗ is A-amenable if for
all a ∈ A, if a �= 0, then there is a homomorphism h from A into [0, 1]∗, such
that h(u) = 1 and h(g) �= 0.

Lemma 1. Let (G, u) be a unital lattice ordered abelian group, let R∗ be an
ultrapower of R and [0, 1]∗ = Γ (R∗, 1) = Γ (R∗

fin, 1). Then [0, 1]∗ is Γ (G, u)-
amenable iff R∗ is (G, u)-amenable.

In [8], the following result is shown:

Proposition 1. For every MV-algebra A, an A-amenable ultrapower [0, 1]∗, of
[0, 1] exists.

It follows:

Corollary 1. For each unital lattice ordered abelian group (G, u), a (G, u)-
amenable ultrapower R∗ of R exists.

In the sequel, we will need MV-algebras with product or c-s-u-f domains in
order to treat conditional probability in an algebraic setting. Moreover we need
to treat probabilities in terms of bets in such a way that zero probabilities will be
replaced by infinitesimal probabilities. We would like to have a richer structure
in which not only MV-operations or lattice ordered group operations, but also
product and hyperreal numbers are present. The construction presented in the
next lines provides for such structures.

Definition 2. Let (R∗
fin, 1) be (G, u)-amenable, let H be the set of all homo-

morphisms from (G, u) into (R∗
fin, 1), and let Φ be defined, for all g ∈ G, by

Φ(g) = (h(g) : h ∈ H). By Π(G, u,R∗
fin), we denote the subalgebra of (R∗

fin)
H

(with respect to the lattice ordered group operations and to product in R∗
fin) gen-

erated by Φ(G) and by the elements of R∗
fin, thought of as constant maps from

H into R∗ (in the sequel, by abuse of language, we denote by α the function
from H into R∗

fin which is constantly equal to α).
Likewise, if A is an MV-algebra and [0, 1]∗ is an ultrapower of [0, 1]MV which

is A-amenable, if H is the set of all homomorphisms from A into [0, 1]∗ and Φ
is defined, for all a ∈ A by Φ(a) = (h(a) : h ∈ H), then Π(A, [0, 1]∗) denotes the
subalgebra of ([0, 1]∗)H generated by [0, 1]∗ and by Φ(A).

It can be proved that both (G, u) and R∗
fin are embeddable into Π(G, u,R∗

fin)
and both A and [0, 1]∗ are embeddable in Π(A, [0, 1]∗), see [8].

Lemma 2. Π(G, u,R∗
fin) = Γ−1(Π(Γ (G, u), [0, 1]∗)).
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3 Fuzzy Imprecise Probabilities over the Hyperreals

We are now in a position to introduce the notion of fuzzy imprecise hyperpre-
visions, which, as usual, lead in a special case, to probabilities. We will focus
on upper hyper previsions and probabilities (lower notions will be obtained as
usual). Naturally enough, our first step requires us to extend propositional val-
uations to the hyperreals.

Definition 3. Let (G, u) be a unital lattice ordered abelian group and suppose
that R∗ is (G, u) amenable. Let A = Γ (G, u) and [0, 1]∗ = ΓR(R

∗
fin, 1), A

∗ =
Π(A, [0, 1]∗), G∗ = Π(G, u,R∗

fin). A hypervaluation on G∗ (resp., on A∗) is
a homomorphism v∗ from G∗ into R∗

fin (resp., from A∗ into [0, 1]∗) such that
for every α ∈ R∗

fin (resp., in [0, 1]∗), v∗(α∗) = α. A hyperprevision on (G, u)
is a function P ∗ from G∗ into R∗

fin such that for all α,∈ R∗
fin and x, y ∈ G∗,

the following conditions hold:
(1) P ∗(α∗x) = αP ∗(x).
(2) if x ≥ y, then P ∗(x) ≥ P ∗(y).
(3) P ∗(x + y) = P ∗(x) + P ∗(y).
(4) P ∗(u) = 1.
(5) There are hypervaluations v, w such that v(x) ≤ P ∗(x) ≤ w(x).

A hyperstate on A∗ is a map S∗ from A∗) into [0, 1]∗ such that, for all
α ∈ [0, 1]∗ and for all x, y ∈ A∗, the following conditions hold:

(a) S∗(u) = 1

(b) S∗(α∗ · x) = α · S∗(x)

(c) if x� y = 0, then S∗(x⊕ y) = S∗(x) + S∗(y)

(d) there are hypervaluations v, w such that v(x) ≤ S∗(x) ≤ w(x).

Definition 4. An upper hyperprevision is a function U∗ on G∗ which satisfies
(2), (4), (5), with P ∗ replaced by U∗, and

(1)’ U∗(α∗x) = αU∗(x), provided that α ≥ 0.
(3)’ U∗(x+ y) ≤ U∗(x) + U∗(y).
(6) U∗(x+ α) = U∗(x) + α.

An upper hyperstate on A∗ is a function U∗
0 from A∗ into [0, 1]∗ such that,

for all x, y ∈ A∗ and for all α ∈ [0, 1]∗, the following conditions hold:

(i) U∗
0 (u) = 1.

(ii) If x ≤ y, then U∗
0 (x) ≤ U∗

0 (y).

(iii) U∗
0 (α · x) = α · U∗

0 (x) and if α� x = 0, then U∗
0 (x ⊕ α) = U∗

0 (x) + α.

(iv) U∗
0 (x⊕ y) ≤ U∗

0 (x) ⊕ U∗
0 (y).

(v) U∗
0 (x⊕ α) = U∗

0 (a) + α whenever x� α = 0.
(vi) There are hypervaluations v, w such that v(x) ≤ U∗

0 (x) ≤ w(x).
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Remark 3. (1) A valuation on a lattice ordered abelian group G∗ (resp., on A∗)
is a homomorphism v from G∗ into R (resp., from A into [0, 1]PMV ) such that
v(α) = α for every standard real α. Moreover, a prevision on G∗ is a map into
R which satisfies (2), (3) and (4), as well as (1) for all standard α and (5) with
hypervaluations replaced by valuations. Likewise, a state on A∗ is a map into
[0, 1] which satisfies (a) and (c), as well as (b) for all standard α and (d) with
hypervaluations replaced by valuations.

Moreover, an upper prevision on G∗ is a map into R which satisfies (2), (4)
and (3)’, as well as (1)’ and (6) for all standard α and (5) with hypervaluations
replaced by valuations. Finally, an upper hyperstate on A∗ is a map into [0, 1]
which satisfies (i), (ii) and (iv), as well as (iii) and (v) for all standard α and
(vi) with hypervaluations replaced by valuations.

Hence, hypervaluations, hyperprevisions, hyperstates, upper hypeprevisions
and upper hyperstates are natural non-standard generalizations of valuations,
previsions, states, upper previsions and upper states, respectively.

(2) The restriction to A∗ of a hyperprevision P ∗ (resp., an upper hyperprevi-
sion U∗) on G∗, is a hyperstate (resp., an upper hyperstate). Moreover, a hyper-
state S∗ (resp, a hyper upper state U∗

0 ) on A
∗ has a unique extension P ∗ (resp.,

U∗) to a hyper prevision (resp., to a hyper upper prevision) on G∗. Indeed, given
a ∈ G∗, there are positive integers M,N such that 0 ≤ a+N

M ≤ u. So, a+N
M ∈ A∗,

and it suffices to define P ∗(a) = M ·S∗(a+N
M )−N , and U∗(a) = M ·U∗

0 (
a+N
M )−N .

Note that in [5] it is shown that the definition does not depend on the choice of
the integers M and N such that a+N

M ∈ A.
(3) Let U∗

0 be an upper hyperstate on A∗ and U∗ be the unique upper hyper-
prevision on G∗ extending U∗

0 . Then for all x ∈ A∗, the upper hyperprobability,
U∗
0 (x), of x, is a number α such that the upper hyperprevision, U∗(x−α) of the

gamble x − α, is 0. Indeed, U∗(x − α) = U∗(x) − α (because α is a constant),
and hence, U∗

0 (x) = U∗(x) = α iff U∗(x − α) = 0. This means that the upper
hyperprevision of a gamble x is a number α such that the upper hyperprevision
of the payoff of the gambler when he bets 1 with betting odd α, namely x − α,
is 0.

(4) Given an upper hyperprevision U∗, its corresponding lower hyperprevision
is L∗(x) = −U∗(−x). Likewise, if U∗

0 is an upper hyperstate, its corresponding
lower hyperstate is given by L∗

0(x) = 1− U∗
0 (¬x).

(5) If U∗ is an upper hypeprevision, then U∗(x) = U∗(x + y − y) ≤ U∗(x +
y)+U∗(−y), and hence, U∗(x)+L∗(y) ≤ U∗(x+ y) ≤ U∗(x)+U∗(y). Likewise,
if U∗

0 is an upper hyperstate and L∗
0 is its corresponding lower hyperstate and if

x� y = 0, then U∗
0 (x) + L∗

0(y) ≤ U∗
0 (x ⊕ y) ≤ U∗

0 (x) + U∗
0 (y).

We now present a betting interpretation of hyper upper previsions, which will
lead to the appropriate notion of coherence. We begin by recalling a character-
isation of coherence as avoiding inadmissible bets given in [6] (the terminology
“bad bet” was used there.)

Definition 5. Let (G, u) be a unital lattice ordered abelian group, and let Λ =
x1 �→ α1, . . . , xn �→ αn be an assessment of upper previsions on the bounded



442 H. Hosni and F. Montagna

random variables x1, . . . , xn ∈ G. The associated betting game is as follows:
the gambler can bet only non-negative numbers λ1, . . . , λn on x1, . . . , xn, and
the payoff for the bookmaker corresponding to the valuation v on (G, u) will be∑n

i=1 λi · (αi − v(xi)).
Let W be a set of valuations on (G, u). An inadmissible W bet is a bet μi ≥ 0

on xi (for some i ≤ n) such that there is a system of non-negative bets λ1, . . . , λn

which guarantees a better payoff to the gambler, independently of the valuation
v ∈ W , that is, for every valuation v ∈ W ,

∑n
j=1 λj ·(v(xj)−αj) > μi·(v(xi)−αi).

An inadmissible bet is an inadmissible W bet, where W is the set of all valuations
on (G, u).

The assessment Λ is said to be W coherent if it excludes inadmissible W -bets,
and coherent if it excludes inadmissible bets.

In [6] it is shown that an assessment of upper probability avoids inadmissible
bets iff it can be extended to an upper prevision. The result was shown first,
although in a different setting, by Walley in [12].

In [6] it is also shown that given gambles x1, . . . , xm and given an upper
prevision U , for i = 1, . . . ,m there is a prevision Pi such that Pi(xi) = U(xi) and
Pi(x) ≤ U(x) for every gamble x. Moreover, as shown in [11], there are valuations
vi,j and non-negative reals λj,i, i = 1, . . . ,m+ 1, j = 1, . . . ,m such that for j =

1, . . . ,m,
∑m+1

i=1 λi,j = 1 and for h, j = 1, . . . ,m, sj(xh) =
∑m+1

i=1 λi,jvi,j(xh). In
other words, we can assume that each Pi is a convex combination of valuations.

Hence, coherence for upper previsions is equivalent to the following condition:

Theorem 2. Let Λ = x1 �→ α1, . . . , xm �→ αm be an assessment as in Definition
5. Then Λ is coherent (i.e., avoids inadmissible bets) iff there are valuations vi,j :
j = 1, . . . ,m, i = 1, . . . ,m+1 and non-negative real numbers λi,j : j = 1, . . . ,m,

i = 1, . . . ,m+ 1, such that, letting for j = 1, . . . ,m, Pj(x) =
∑m+1

i=1 λi,jvi,j(x),
the following conditions hold:

(i) For j = 1, . . . ,m,
∑m+1

i=1 λi,j = 1.
(ii) For j = 1, . . . ,m, Pi(xj) ≤ αj.
(iii) Pi(xi) = αi.

In words, Λ avoids inadmissible bets iff there are m convex combinations,
P1, . . . , Pm, of valuations, such that for j = 1, . . . ,m, αj = max{Ph(xj) : h =
1, . . . ,m}.
The result above4 may be extended to non-standard assessments, to hypervalu-
ations and to upper hyper previsions. First of all, we consider a (G, u)-amenable
ultrapower, R∗, of R, and we set G∗ = Π(G, u,R∗

fin). Then we consider a hy-
perassessment Λ := x1 �→ α1, . . . , xn �→ αn with x1, . . . , xn ∈ G∗. Let W be a
set of hypervaluations. We say that Λ is W -coherent if it rules out inadmissible
W -bets, that is, for i = 1, . . . , n and for every λ, λ1, . . . , λn ≥ 0, there is a hy-
pervaluation v∗ ∈ W such that λ · (v∗(xi) − αi) ≥

∑n+1
j=1 λj · (v∗(xj) − αj). We

4 Our coherence criterion resembles very closely a number of similarly-minded gener-
alisations of de Finetti’s own notion of coherence, among others that of [3].
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say that Λ is R∗-coherent if it is W -coherent, where W is the set of all hyperval-
uations on G∗, and that Λ is coherent if it is R◦-coherent for some ultrapower,
R◦, of R∗. Similar definitions can be given for assessments of upper hyperprob-
ability on algebras of the form A∗ = Π(A, [0, 1]∗) (in this case, hypervaluations
are homomorphisms from A∗ into [0, 1]∗ which preserve the elements of [0, 1]∗,
and (upper) hyperprevisions must be replaced by (upper) hyperstates).

Recall that there is a bijection between upper hyperprevisions on G∗ =
Π(G, u,R∗

fin) and upper hyperstates on A∗ΓR(Π(G, u,R∗
fin)): the restriction

to A∗ of an upper hyperprevision is an upper hyperstate, and every upper hy-
perstate on A∗ has a unique extension to an upper hyperprevision U∗ on G∗.

By a similar argument, there is a bijection between coherent assessments
on G∗ and coherent assessments on A∗. Indeed, clearly, a coherent assessment
on A∗ is also a coherent assessment on G∗. Conversely, given any assessment
Λ =: x1 �→ α1, . . . , xk �→ αk on G∗, there are integers Mi, Ni, with Mi > 0,
such that 0 ≤ xi+Ni

Mi
≤ u. Now let ai =

xi+Ni

Mi
, and let Λ0 be the assessment:

Λ0 =: a1 �→ α1+N1

M1
, . . . , ak �→ αk+Nk

Mk
on A∗. Then Λ avoids inadmissible bets iff

Λ0 avoids inadmissible bets, and Λ can be extended to an upper hyperprevision
U∗ iff Λ0 extends to its restriction U∗

0 to A∗, which is an upper hyperstate
on A∗. Hence, in the sequel we will often identify upper hyperprevisions on G∗

with their restriction to A∗, and the assessment Λ on G∗ with its corresponding
assessment Λ0 on A∗.

Theorem 3. Let Λ = x1 �→ α1, . . . , xm �→ αm be a hyperassessment on an
algebra of the form G∗ (hence, αi ∈ R∗

fin). Then the following are equivalent:

(1) Λ is coherent.

(2) There is an upper hyperprevision U∗ s.t. for i = 1, . . . ,m, U∗(xi) = αi.

(3) There are hypervaluations v∗i,j : j = 1, . . . ,m, i = 1, . . . ,m + 1 and non-
negative hyperreal numbers (possibly, in an ultrapower of R∗) λi,j : j = 1, . . . ,m,

i = 1, . . . ,m+ 1, such that, letting for j = 1, . . . ,m, P ∗
j (x) =

∑m+1
i=1 λi,jv

∗
i,j(x),

the following conditions hold:
(i) For j = 1, . . . ,m,

∑m+1
i=1 λi,j = 1.

(ii) For j = 1, . . . ,m, P ∗
i (xj) ≤ αj.

(iii) P ∗
i (xi) = αi.

We express this fact saying that Λ is the supremum of m convex combinations
of m+ 1 hypervaluations

We conclude this section with a result that, up to infinitesimals, a coherent
assessment can be extended by a faithful upper hyperprevision (an upper hyper-
prevision U∗ is faithful if U∗(x) = 1 implies x = 1, or equivalently if L∗(x) = 0
implies x = 0, where L∗(x) = 1 − U∗(¬x) is the lower prevision associated to
U∗).

Theorem 4. For every coherent assessment a1 �→ α1, . . . , an �→ αn of upper
previsions on (G, u) there is a faithful upper hyperprevision U∗ on G∗ such that
for i = 1, . . . , n, U∗(ai)− αi is infinitesimal.



444 H. Hosni and F. Montagna

4 Conditional Imprecise Non-standard Probabilities

[9] gives the following betting interpretation of conditional probability: when
the conditioning event ψ is many-valued, we assume that betting on φ|ψ is like
betting on φ with the proviso that only a part of the bet proportional to the
truth value v(ψ) of ψ will be valid. Hence, the gambler’s payoff corresponding to
the bet λ in a conditional bet on φ|ψ is λv(ψ)(v(φ)−α), where α is the betting
odd. If λ = 1, and if we identify any formula with its truth value, the payoff
is expressed by ψ(φ − α). Hence, the upper conditional probability of φ given
ψ is obtained by imposing the upper prevision of the payoff to be zero. That
is, the upper conditional probability U∗

0 (φ|ψ) of φ given ψ must be a number α
such that U∗(ψ(φ−α)) = 0, where U∗ is the unique upper hyperprevision which
extends U∗

0 .
A desirable condition is that for a given hyper upper probability U∗

0 there is a
unique α such that U∗

0 (ψ(φ− α)) = 0. Clearly one cannot expect this condition
to hold when for instance U∗

0 (ψ) = 0. Indeed, the random variable φ − α is
bounded (it takes values in [−1, 1]), and hence for any choice of α ∈ [0, 1],
−ψ ≤ ψ(φ− α) ≤ ψ, and
0 = −U∗(ψ) ≤ U∗(−ψ) ≤ U∗(ψ(φ − α)) ≤ U∗(ψ) = 0.
This equality holds independently of α, and hence we are in the bad situation

where any α might serve as an upper probability of φ|ψ. We will see that such
an inadmissible situation is avoided when U∗

0 (¬ψ) < 1, or equivalently, when the
lower prevision L∗

0(ψ) is strictly positive.

Lemma 3. Suppose L∗
0(ψ) > 0. Then there is at most one α such that U∗(ψ(φ−

α)) = 0.

The argument used to prove the lemma shows that if L∗
0(ψ) = L∗(ψ) > 0,

then the upper conditional probability U∗
0 (φ|ψ), if it exists, can be uniquely

recovered from the (unconditional) upper hyperstate U∗
0 . In the standard case,

such a conditional upper probability is shown to exist by a continuity argument,
while it is not clear whether it exists in the non-standard case (we have shown
uniqueness, not existence). However, for a given finite assessment we will prove
that such a conditional upper probability exists, in a sense which will be made
precise in Theorem 5 below. Before discussing it, we introduce completeness.

Definition 6. An assessment of conditional upper probability is said to be com-
plete if for any betting odd φ|ψ �→ α on a conditional event φ|ψ, it also contains
a betting odd ¬ψi �→ βi on the negation of the conditioning event ψ.

A complete assessment Λ : φi|ψi �→ αi, ¬ψi �→ βi, i = 1, . . . , n of conditional
upper probability is said to be stably coherent if there is a hyperassessment

Λ′ : φi|ψi �→ α′
i, ¬ψi �→ β′

i, i = 1, . . . , n

which avoids inadmissible bets, differs from Λ by an infinitesimal and such that,
for every i, β′

i < 1.
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The requirement of a betting odd β on the negation of the conditioning event
and not on the conditioning event itself may look strange. However, imposing
a betting odd for the upper hyperprevision of the negation of ψ is the same
as imposing the betting odd 1 − β for the lower hyperprevision of ψ. So, in a
complete assessment we really impose conditions on the lower prevision of the
conditioning event.

Stable coherence is the consistency criterion for conditional hyper upper prob-
abilities: when the probability assigned to the conditioning events is 0, it is quite
possible that any assignment to conditional events avoids inadmissible bets. Now
stable coherence says that inadmissible bets are also avoided if the bookmaker
changes the lower probabilities of the conditioning events by an infinitesimal so
that a positive number is assigned to them. Our main theorem shows that stable
coherence corresponds to faithful upper hyperprevisions.

Theorem 5. Let Λ : φi|ψi �→ αi, ¬ψi �→ βi, i = 1, . . . , n be an assessment of
conditional upper probability. Then Λ is stably coherent if there is a faithful
hyper upper prevision U∗ s.t. for i = 1, . . . , n, U∗(¬ψi))− βi is an infinitesimal,
and U∗(ψi(φi − α′

i)) = 0 for some α′
i such that αi − α′

i is infinitesimal.

References

1. Burris, S., Sankappanavar, H.P.: A course in Universal Algebra. Springer (1981)
2. Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-valued

Reasoning. Kluwer, Dordrecht (2000)
3. Coletti, G., Scozzafava, R.: Stochastic independence in a coherent setting. Annals

of Mathematics and Artificial Intelligence 35, 151–176 (2002)
4. Di Nola, A.: Representation and reticulation by quotients of MV-algebras. Ricerche

di Matematica (Naples) 40, 291–297
5. Fedel, M., Hosni, H., Montagna, F.: A logical characterization of coherence for im-

precise probabilities. International Journal of Approximate Reasoning 52(8), 1147–
1170 (2011)

6. Fedel, M., Keimel, K., Montagna, F., Roth, W.D.: Imprecise probabilities, bets
and functional analytic methods in �Lukasiewicz logic. Forum Mathematicum 25(2),
405–441 (2013)

7. Montagna, F.: Subreducts of MV algebras with product and product residuation.
Algebra Universalis 53, 109–137 (2005)

8. Montagna, F., Fedel, M., Scianna, G.: Non-standard probability, coherence and
conditional probability on many-valued events. Int. J. Approx. Reasoning 54(5),
573–589 (2013)

9. Montagna, F.: A notion of coherence for books on conditional events in many-
valued logic. Journal of Logic and Computation 21(5), 829–850 (2011)

10. Mundici, D.: Interpretations of AF C� algebras in �Lukasiewicz sentential calculus.
J. Funct. Analysis 65, 15–63 (1986)

11. Mundici, D.: Advanced �Lukasiewicz calculus and MV-algebras. Trends in Logic,
vol. 35. Springer (2011)

12. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Monographs on
Statistics and Applied Probability, vol. 42. Chapman and Hall, London (1991)



Coherent T -conditional Possibility Envelopes

and Nonmonotonic Reasoning

Giulianella Coletti1, Davide Petturiti2, and Barbara Vantaggi2

1 Dip. Matematica e Informatica, Università di Perugia, Italy
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Abstract. Envelopes of coherent T -conditional possibilities and coher-
ent T -conditional necessities are studied and an analysis of some infer-
ence rules which play an important role in nonmonotonic reasoning is
carried out.

Keywords: Envelopes, Coherence, T -conditional possibility, Possibilis-
tic logic, Nonmonotonic reasoning.

1 Introduction

Starting from the seminal work by Adams [1,2], nonmonotonic reasoning has
been developed under the interpretations of an uncertainty measure, in partic-
ular probability and possibility (see for instance [17,27,18,28,29,7,8,11,4,6,5,9]),
although other measures have been considered [10,19,20].

In the coherent probabilistic setting (see [27,12]), the inference rules of System
P have been analysed in the framework of g-coherent imprecise probabilistic
assessments: a knowledge base formed by a set of constraints αi ≤ P (Ei|Hi) ≤
βi, consistent with at least a coherent conditional probability, is considered and
the propagation of the intervals [αi, βi] to other events is studied.

In this paper, relying on the general concepts of T -conditional possibility and
necessity introduced in [13,21] and the relevant notions of coherent assessment
and coherent extensions [13,21,22,3], we cope with a similar problem, but related
to intervals [αi, βi] expressing lower and upper bounds of coherent extensions of
a coherent T -conditional possibility (or necessity) or, in general, of a class of
coherent T -conditional possibilities (or necessities).

In other words, our coherence-based approach is finalized to study how the
lower and upper possibility (or necessity) bounds propagate in a generalized
inference process: the concept of “entailment” is formalized as a possibilistic
inferential problem and inference rules derived from it are investigated. In par-
ticular, we show that under a necessity knowledge base by taking the degenerate
interval [1, 1] as a numerical assessment to model the weak implication, the clas-
sical Adam’s rules are obtained.

For this aim we need to study and characterize the envelopes of a class of
coherent T -conditional possibilities or of coherent T -conditional necessities.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 446–455, 2014.
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2 T -Conditional Possibility

Different definitions of T -conditional possibility have been introduced as a de-
rived concept of a possibility measure based on t-norms [31] and their residuum
[23,25]. In this paper we consider T -conditional possibility as a primitive con-
cept, that is as a function defined on conditional events satisfying a set of axioms
[13,22] (for the relationship among this one and the other definitons see also [15]):

Definition 1. Let A be a Boolean algebra, H ⊆ A0 an additive set (i.e., closed
under finite disjunctions), with A0 = A \ {∅}, and T a t-norm. A function
Π : A×H → [0, 1] is a T -conditional possibility if it satisfies:

(CP1) Π(E|H) = Π(E ∧H |H), for every E ∈ A and H ∈ H;
(CP2) Π(·|H) is a finitely maxitive possibility on A, for every H ∈ H;
(CP3) Π(E ∧ F |H) = T (Π(E|H), Π(F |E ∧H)), for every H,E ∧H ∈ H and

E,F ∈ A.

The conditional dual function N : A×H → [0, 1] of a T -conditional possibility
Π on A×H is defined for every E|H ∈ A×H as N(E|H) = 1−Π(Ec|H) and is
called T -conditional necessity. By axiom (CP2) it follows that, for everyH ∈ H,
N(·|H) is a finitely minitive necessity on A. Due to duality we can limit to study
the properties of T -conditional possibilities.

When H = A0, Π [N ] is said to be a full T -conditional possibility [full T -
conditional necessity] on A. In Definition 1 no particular property is required
to the t-norm T , nevertheless, since (as shown in [26,22,32]) the continuity of
T is fundamental in order to guarantee the extendability of a T -conditional
possibility to a full T -conditional possibility, in what follows we assume T is a
continuous t-norm even when not explicitly stated.

Given an arbitrary Boolean algebraA and any continuous t-norm T , we denote
by T -CPoss(A) the class of all the full T -conditional possibilities on A.

Theorem 1. The set T -CPoss(A) is a compact subset of [0, 1]A×A0

endowed
with the usual product topology of pointwise convergence.

Proof. By Thychonoff’s theorem [0, 1]A×A0

is a compact space endowed with the
usual product topology of pointwise convergence. Then to prove the assertion
it is sufficient to show that T -CPoss(A) is a closed subset of [0, 1]A×A0

, i.e.,
that the limit Π of any pointwise convergent sequence (Πi)i∈N of elements of
T -CPoss(A) is a full T -conditional possibility on A × A0. This immediately
follows from continuity on [0, 1]2 of both operators max and T. �

Proposition 1. The function Π∗ : A×A0 → [0, 1] defined for E|H ∈ A× A0

as

Π∗(E|H) =

{
0 if E ∧H = ∅,
1 otherwise,

(1)

belongs to T -CPoss(A), for every continuous t-norm T . Moreover, for any
E|H ∈ A×A0 it holds Π∗(E|H) = max{Π(E|H) : Π ∈ T -CPoss(A)}.
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Proof. It is immediate to see that Π∗ is a full T -conditional possibility on A, for
every T, and that Π ≤ Π∗ for every Π ∈ T -CPoss(A), where the inequality is
intended pointwise on the elements of A×A0. �

A full T -conditional possibility Π(·|·) on A is not necessarily “represented”
by means of a single finitely maxitive possibility measure (see [22,32,14]), but in
general an agreeing T -nested class of possibility measures is needed.

3 Coherent T -conditional Possibilities

Boolean conditions on the domain of Π in Definition 1 are essential, since oth-
erwise axioms (CP1)–(CP3) can result only vacuously satisfied.

In order to deal with an assessmentΠ on an arbitrary set of conditional events
G = {Ei|Hi}i∈I we need to resort to the concept of coherence [22], originally
introduced by de Finetti (trough the concept of coherent bet) in the context of
finitely additive probabilities [24].

Definition 2. Let G = {Ei|Hi}i∈I be an arbitrary family of conditional events
and T a continuous t-norm. A function Π : G → [0, 1] is a coherent T -
conditional possibility (assessment) on G if there exists a T -conditional
possibility Π ′ : A × H → [0, 1], where A = 〈{Ei, Hi}i∈I〉 and H is the additive
set generated by {Hi}i∈I , such that Π ′

|G = Π.

As already pointed out in Section 2, an equivalent definition can be given
by requiring the existence of a full T -conditional possibility on A extending
the assessment Π given on G. In [32] the coherence of an assessment on G has
been characterized in terms of the coherence on every finite subfamily F ⊆
G (the latter studied in [22]), for every continuous t-norm. Moreover, for the
minimum and strict t-norms, the following possibilistic version of the de Finetti’s
fundamental theorem has been proved [32,22].

Theorem 2. Let G = {Ei|Hi}i∈I be an arbitrary family of conditional events
and T = min or a strict t-norm. A function Π : G → [0, 1] can be extended as
a coherent T -conditional possibility Π ′ on G′ ⊃ G if and only if Π is a coherent
T -conditional possibility.

Let us stress that coherence does not impose any constraint of uniqueness, in-
deed, in general there can be infinitely many extensions of a coherent assessment.
For this, denote

T -CExt(Π,G,A) = {Π ′ ∈ T -CPoss(A) : Π ′
|G = Π} . (2)

The following compactness result holds for every continuous t-norm.

Theorem 3. The set T -CExt(Π,G,A) is a compact subset of [0, 1]A×A0

en-
dowed with the usual product topology of pointwise convergence.
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Proof. Theorem 2 implies T -CExt(Π,G,A) �= ∅, moreover, by Theorem 1,
T -CPoss(A) is a compact space endowed with the relative topology inherited

from [0, 1]A×A0

. Hence, it is sufficient to prove that T -CExt(Π,G,A) is a closed
subset of T -CPoss(A). For that we need to show that the limitΠ ′ of every point-
wise convergent sequence (Π ′

i)i∈N of elements of T -CExt(Π,G,A) extends Π ,
as Π ′ is a full T -conditional possibility on A by Theorem 1. Then the conclusion
follows since, for every E|H ∈ G, Π ′(E|H) = lim

i→∞
Π ′

i(E|H) = lim
i→∞

Π(E|H) =

Π(E|H). �

In the particular case T is the minimum or a strict t-norm [26,22,32] the set
T -CExt(Π,G,A) can be written as the Cartesian product of (possibly degener-
ate) intervals

T -CExt(Π,G,A) = ×
E|H∈A×A0

KE|H , (3)

with KE|H = [Π(E|H), Π(E|H)] ⊆ [0, 1], for every E|H ∈ A × A0. If KE|H
is non-degenerate, by selecting an extension Π ′ of Π on G′ = G ∪ {E|H} s.t.
Π ′(E|H) ∈ KE|H it follows T -CExt(Π ′,G′,A) ⊂ T -CExt(Π,G,A).

4 Coherent T -conditional Possibility Envelopes

Let G = {Ei|Hi}i∈I be an arbitrary family of conditional events and A =
〈{Ei, Hi}i∈I〉, we denote by T -CCohe(G) the set of coherent T -conditional pos-
sibilities on G, that is:

T -CCohe(G) = {Π|G : Π ∈ T -CPoss(A)}. (4)

By Theorem 1 and Proposition 1 it trivially follows that T -CCohe(G) is a
compact subset of [0, 1]G endowed with the usual product topology of pointwise
convergence, moreover, the function Π∗ : G → [0, 1] defined as in (1) dominates
every coherent T -conditional possibility in T -CCohe(G) and belongs to this set.

Let us consider now the Goodman-Nguyen’s relation ⊆GN [30] between con-
ditional events, which generalizes the usual implication among events:

Ei|Hi ⊆GN Ej |Kj ⇔ Ei ∧Hi ⊆ Ej ∧Hj and Ec
j ∧Hj ⊆ Ec

i ∧Hi. (5)

In case T = min or a strict t-norm, the following result can be proven (which
has an analogue for conditional probability [16,28]).

Theorem 4. For all Ei|Hi, Ej |Hj ∈ G the following statements are equivalent:

(i) Ei|Hi ⊆GN Ej |Hj or Ei ∧Hi = ∅ or Ec
j ∧Hj = ∅;

(ii) Π(Ei|Hi) ≤ Π(Ej |Hj), for every Π ∈ T -CCohe(G).

Proof. The implication (i) ⇒ (ii) has been proven in [15]. To prove (ii) ⇒ (i)
suppose by absurd that condition (i) does not hold, i.e., Ei|Hi �⊆GN Ej |Hj

and Ei ∧ Hi �= ∅ and Ec
j ∧ Hj �= ∅, which implies (Ei ∧ Hi ∧ Ec

j ∧ Hj) �= ∅.
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It is easy to prove that the assessment Π(Ei|Hi) = 1 and Π(Ej |Hj) = 0 is
coherent, thus by virtue of Theorem 2, Π can be extended as a coherent T -
conditional possibility Π ′ on G. Hence, there exists Π ′ ∈ T -CCohe(G) such
that Π ′(Ei|Hi) > Π ′(Ej |Hj) and we get a contradiction with condition (ii). �
A result analogous to Theorem 4 holds for T -conditional necessities.

The following theorem, which is the analogue of Theorem 8 in [27] given in
the framework of conditional probability, follows by Theorem 1.

Theorem 5. Let G = {Ei|Hi}i∈I be an arbitrary set of conditional events. Then
the following statements are equivalent:

(i) the assessment Π∗(Ei|Hi) = 1 for all i ∈ I belongs to T -CCohe(G);
(ii) for every ε > 0, there exists an assessment Πε(Ei|Hi) ≥ 1 − ε for all i ∈ I,

belonging to T -CCohe(G).
Now we consider a class P ⊆ T -CCohe(G), whose information can be sum-

marized by means of its lower and upper envelopes.

Definition 3. Let G = {Ei|Hi}i∈I be an arbitrary family of conditional events.
A pair of functions (Π,Π) on G are coherent T -conditional possibility en-
velopes if there exists a class P ⊆ T -CCohe(G) of coherent T -conditional
possibilities such that Π = inf P and Π = supP.

In general, Π,Π are not elements of T -CCohe(G), since this space is not
closed under pointwise minimum and maximum.

Example 1. Let G = {E ∧ F |H,E|H,F |E ∧H,E|Hc, Ec|Hc} with E,F,H log-
ically independent events, and Π1, Π2 ∈ T -CCohe(G) s.t. Π1(E ∧ F |H) =
Π1(E|H) = Π1(E|Hc) = Π2(E ∧ F |H) = Π2(F |E ∧ H) = Π2(Ec|Hc) = 0.2,
Π1(F |E ∧ H) = Π1(Ec|Hc) = Π2(E|H) = Π2(E|Hc) = 1. Consider Π∗ =
min{Π1, Π2} and Π∗ = max{Π1, Π2}. It holds max{Π∗(E|Hc), Π∗(E

c|Hc)} =
0.2 �= 1 and Π∗(E ∧ F |H) = 0.2 �= 1 = T (Π∗(E|H), Π∗(F |E ∧ H)), thus
Π∗, Π

∗ /∈ T -CCohe(G).
By duality, a pair of functions (N,N) on G′ = {Ec

i |Hi}i∈I are coherent T -
conditional necessity envelopes if there exists a pair of coherent T -conditional
possibility envelopes (Π,Π) on G, such that N(Ec

i |Hi) = 1 − Π(Ei|Hi) and
N(Ec

i |Hi) = 1−Π(Ei|Hi), for every Ec
i |Hi ∈ G′.

Notice that no assumption is made about the class P ⊆ T -CCohe(G), which
could be a non-closed subset of T -CCohe(G): this implies that, in general, the
pointwise infimum and supremum of P could not be attained by an element of
P. Nevertheless, since T -CCohe(G) is compact, the closure cl(P) is a subset of
T -CCohe(G) and it holds inf P = min cl(P) and supP = max cl(P), thus we
can always consider a closed set of coherent T -conditional possibilities on G.

In case of a finite set G = {E1|H1, . . . , En|Hn}, the coherence of an assessment
(Π,Π) on G can be characterized in terms of the existence of a finite class
P2n ⊆ T -CCohe(G), which is therefore a closed subset of T -CCohe(G). The
class P2n is composed at most by 2n coherent T -conditional possibilities on G,
that can be determined solving for each event Ei|Hi two suitable sequences of
systems.
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Theorem 6. Let G = {E1|H1, . . . , En|Hn} be a finite set of conditional events
and (Π,Π) a pair of assessments on G. Let A = 〈{Ei, Hi}i=1,...,n〉 and CA be
the corresponding set of atoms. The following statements are equivalent:

(i) (Π,Π) are coherent T -conditional possibility envelopes on G;
(ii) for every i ∈ {1, . . . , n} and u ∈ {0, 1} there exist a natural number k ≤ n

and a sequence Si,u
α (α = 0, . . . , k), with unknowns xα

r ≥ 0 for Cr ∈ Cα,

Si,u
α :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
Cr⊆Ei∧Hi

xα
r = T

(
θi, max

Cr⊆Hi

xα
r

)
if max

Cr⊆Hi

xα−1
r < 1[

θi =

{
Π(Ei|Hi) if u = 0
Π(Ei|Hi) if u = 1

]
max

Cr⊆Ej∧Hj

xα
r = T

(
θj , max

Cr⊆Hj

xα
r

)
if j �= i and max

Cr⊆Hj

xα−1
r < 1[

Π(Ej |Hj) ≤ θj ≤ Π(Ej |Hj)
]

xα
r ≥ xα−1

r if Cr ∈ Cα

xα−1
r = T

(
xα
r , max

Cj∈Cα

xα−1
j

)
if Cr ∈ Cα

max
Cr∈Cα

xα
r = 1

admitting solution xα (whose r-th component is xα
r ) with x

−1 = 0, C0 = CA,
Cα = {Cr ∈ Cα−1 : xα−1

r < 1} for α ≥ 1, and Ck+1 = ∅.

Proof. (ii) ⇒ (i). For i = 1, . . . , n, the solutions of systems Si,0
α and Si,1

α give
rise to two full T -conditional possibilities on A whose restrictions Πi,0 and Πi,1

on G are such that Πi,0(Ei|Hi) = Π(Ei|Hi) and Π(Ej |Hj) ≤ Πi,0(Ej |Hj) ≤
Π(Ej |Hj) for i �= j, Πi,1(Ei|Hi) = Π(Ei|Hi) and Π(Ej |Hj) ≤ Πi,1(Ej |Hj) ≤
Π(Ej |Hj) for i �= j. Hence the class P2n = {Π1,0, Π1,1, . . . , Πn,0, Πn,1} is a
subset of T -CCohe(G) and is such that Π = minP2n and Π = maxP2n, where
the minimum and maximum are intended pointwise on the elements of G.

(i) ⇒ (ii). If (Π,Π) are coherent T -conditional possibility envelopes then
there exists a class P ⊆ T -CPoss(G) such that Π = inf P and Π = supP. By
the compactness of T -CPoss(G), the closure cl(P) is a subset of T -CPoss(G)
and it holds Π = min cl(P) and Π = max cl(P). In turn, this implies for
i = 1, . . . , n the existence of two coherent T -conditional possibilities Πi,0, Πi,1 ∈
cl(P) such that Πi,0(Ei|Hi) = Π(Ei|Hi) and Π(Ej |Hj) ≤ Πi,0(Ej |Hj) ≤
Π(Ej |Hj) for i �= j, Πi,1(Ei|Hi) = Π(Ei|Hi) and Π(Ej |Hj) ≤ Πi,1(Ej |Hj) ≤
Π(Ej |Hj) for i �= j. The coherence of Πi,0 and Πi,1 implies their extendabil-

ity as full T -conditional possibilities Πi,0′ and Πi,1′ on A: the distributions of
the possibility measures in the T -nested classes representing Πi,0′ and Πi,1′ are
exactly the solutions of sequences Si,0

α and Si,1
α . �

Example 2. Consider the events A,B,C such that A ⊆ B, which generate the
atoms C1 = Ac ∧Bc ∧Cc, C2 = Ac ∧B ∧Cc, C3 = A∧B ∧Cc, C4 = A∧B ∧C,
C5 = Ac ∧B ∧ C, C6 = Ac ∧Bc ∧ C. The following assessment is given:
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Π(A|C) = 0.2, Π(A|C) = 0.3

)
,
(
Π(B|C) = 0.5, Π(B|C) = 1

)(
Π(A|B ∨C) = 0.3, Π(A|B ∨C) = 0.5

)
.

We prove that (Π,Π) are coherent min-conditional possibility envelopes.
For A|C, the relevant system with unknowns x0

r ≥ 0, r = 1, . . . , 6, is

S1,0
0 :

⎧⎪⎪⎨⎪⎪⎩
x0
4 = min

{
0.2,max{x0

4, x
0
5, x

0
6}
}

max{x0
4, x

0
5} = min

{
θ2,max{x0

4, x
0
5, x

0
6}
}

[0.5 ≤ θ2 ≤ 1]
max{x0

3, x
0
4} = min

{
θ3,max{x0

2, x
0
3, x

0
4, x

0
5, x

0
6}
}
[0.3 ≤ θ3 ≤ 0.5]

max{x0
1, x

0
2, x

0
3, x

0
4, x

0
5, x

0
6} = 1

and a solution is x0
1 = x0

2 = x0
6 = 1, x0

3 = x0
5 = 0.5, x0

4 = 0.2. Next system S1,0
1

has solution x1
3 = x1

5 = 1, x1
4 = 0.2, while the system S1,0

2 has trivial solution
x2
4 = 1.
By analogous computations, y0

1 = y0
2 = y0

5 = y0
6 = 1, y0

3 = y0
4 = 0.3 is a

solution for the systems S1,1
0 , and y1

3 = y1
4 = 1 is a solution for the system S1,1

1 .
The solutions of sequences S1,0

α and S1,1
α induce two full min-conditional possi-

bilities on A whose restrictions on G are denoted as Π1,0 and Π1,1. The solutions
x0,x1,x2 are still valid for the sequences S2,0

α , related to B|C, and S3,1
α , related

to A|B ∨ C. Analogously, the solutions y0,y1 are still valid for the sequences
S2,1
α and S3,0

α . Hence, P2n = {Π1,0, Π1,1} and Π = minP2n and Π = maxP2n.

Given a pair of coherent T -conditional possibility envelopes (Π,Π) on G, our
aim is to enlarge the assessment on a new event E|H ∈ (A×A0) \ G in such a

way that (Π ′, Π
′
) are coherent T -conditional possibility envelopes on G∪{E|H}

and Π ′
|G = Π , Π

′
|G = Π . Thus we set

Π ′(E|H) = min
{
Π ′(E|H) : Π ′ ∈ T -CPoss(A), Π ≤ Π ′

|G ≤ Π
}
, (6)

Π
′
(E|H) = max

{
Π ′(E|H) : Π ′ ∈ T -CPoss(A), Π ≤ Π ′

|G ≤ Π
}
. (7)

As a consequence of Theorem 6, the bounds Π ′(E|H) and Π
′
(E|H) can be

computed by solving the two optimization problems over the sequence of system
S̃α (α = 0, . . . , k) with unknowns xα

r ≥ 0 for Cr ∈ Cα
minimize /maximize θ

S̃α :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
Cr⊆E∧H

xα
r = T

(
θ, max

Cr⊆H
xα
r

)
if max

Cr⊆H
xα−1
r < 1

max
Cr⊆Ei∧Hi

xα
r = T

(
θi, max

Cr⊆Hi

xα
r

)
if max

Cr⊆Hi

xα−1
r < 1[

Π(Ei|Hi) ≤ θi ≤ Π(Ei|Hi)
]

xα
r ≥ xα−1

r if Cr ∈ Cα

xα−1
r = T

(
xα
r , max

Cj∈Cα

xα−1
j

)
if Cr ∈ Cα

max
Cr∈Cα

xα
r = 1
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Example 3. Given the coherent min-conditional possibility envelopes (Π,Π) of
Example 2, in order to compute the extension on A|Ω we need to solve the
following optimization problems involving the sequence S̃α, whose first system
with unknowns x0

r ≥ 0, r = 1, . . . , 6, results

minimize /maximize θ

S̃0 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max{x0

3, x
0
4} = min{θ,max{x0

1, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6}}

x0
4 = min

{
θ1,max{x0

4, x
0
5, x

0
6}
}

[0.2 ≤ θ1 ≤ 0.3]
max{x0

4, x
0
5} = min

{
θ2,max{x0

4, x
0
5, x

0
6}
}

[0.5 ≤ θ2 ≤ 1]
max{x0

3, x
0
4} = min

{
θ3,max{x0

2, x
0
3, x

0
4, x

0
5, x

0
6}
}

[0.3 ≤ θ3 ≤ 0.5]
max{x0

1, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6} = 1

A solution of S̃0 minimizing θ is x0
1 = 1, x0

r = 0 for r = 2, . . . , 6. Next systems
do not contain the equation involving θ, and for them a sequence of solutions is
x1
2 = x1

5 = x1
6 = 1, x1

3 = x1
4 = 0.3 for the system S̃1, and x2

3 = x2
4 = 1 for the

system S̃2. In analogy, a solution of S̃0 maximizing θ is y0
1 = y0

2 = y0
5 = y0

6 = 1,
y0
3 = 0.5, y0

4 = 0.3. Next systems do not contain the equation involving θ, and
for them a sequence of solutions is y1

3 = 1, y1
4 = 0.3 for the system S̃1, and

y2
4 = 1 for the system S̃2. This implies Π ′(A|Ω) = 0 and Π

′
(A|Ω) = 0.5.

5 Nonmonotonic Inference Rules under Possibility and
Necessity

Now we deal with extensions of coherent T -conditional possibility and neces-
sity envelopes, in a way to study some relevant inferential rules. Given G =
{E1|H1, . . . , En|Hn} we consider a possibility or necessity knowledge base (KB)

Δ = {(Ei|Hi)[πi, πi] : i = 1, . . . , n}, (8)

Δ∗ = {(Ei|Hi)[ni, ni] : i = 1, . . . , n}, (9)

where the assessments {(Π(Ei|Hi) = πi, Π(Ei|Hi) = πi) : i = 1, . . . , n} and
{(N(Ei|Hi) = ni, N(Ei|Hi) = ni) : i = 1, . . . , n} are, respectively, a pair of
coherent T -conditional possibility envelopes and of coherent T -conditional ne-
cessity envelopes on G. We are interested in characterizing the intervals entailed
on new conditional events, starting from a possibility or necessity KB.

The proofs of next theorems follow from the results presented in previous
sections and are omitted for lack of space, moreover, it is easy to check that the
following rules are entailed under both possibility and necessity frameworks:

(Reflexivity) (A|A)[1, 1];
(Left Logical Equivalence) A = B, (C|A)[ϕ

1
, ϕ1] entail (C|B)[ϕ

1
, ϕ1];

(Right Weakening) B ⊆ C, (B|A)[ϕ
1
, ϕ1] entail (C|A)[ϕ1

, 1].

In the following results other inferential rules are studied:
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Theorem 7. Under a possibility KB the following inference rules hold:

(And) (B|A)[π1, π1], (C|A)[π2, π2] entail (B ∧ C|A)[0,min{π2, π2}];
(Cautious Monotonicity) (C|A)[π1, π1], (B|A)[π2, π2] entail

(C|A ∧B)[0, RT (π2, π1)], where RT is the residuum of the t-norm T ;
(Or) (C|A)[π1, π1], (C|B)[π2, π2] entail (C|A ∨B)[min{π1, π2},max{π1, π2}];
(Cut) (C|A ∧B)[π1, π1], (B|A)[π2, π2] entail (C|A)[T (π1, π2), 1];
(Equivalence) (B|A)[π1, π1], (A|B)[π2, π2], (C|A)[π3, π3] entail (C|B)[0, 1].

Theorem 8. Under a necessity KB the following inference rules hold:

(And) (B|A)[n1, n1], (C|A)[n2, n2] entail (B ∧C|A)[min{n1, n2},min{n1, n2}];
(Cautious Monotonicity) (C|A)[n1, n1], (B|A)[n2, n2] entail (C|A∧B)[α, β],

where α = 0 if min{n1, n2} = 0 and α = n1 otherwise, β = 1 if n1 ≥ n2 and
β = n1 otherwise;

(Or) (C|A)[n1, n1], (C|B)[n2, n2] entail (C|A ∨B)[min{n1, n2},max{n1, n2}];
(Cut) (C|A ∧B)[n1, n1], (B|A)[n2, n2] entail (C|A)[min{n1, n2}, β], where β =

1 if n1 = 1 or n2 = 0 and β = n1 otherwise;
(Equivalence) (B|A)[n1, n1], (A|B)[n2, n2], (C|A)[n3, n3] entail (C|B)[α, β], w-

here α = 0 if min{n1, n2, n3} = 0 and α = min{n2, n3} otherwise, β = 1 if
n3 ≥ n1 or n2 = 0 and β = n3 otherwise.

Restricting a possibility KB to the degenerate interval [1, 1] for the premises,
we get the degenerate interval [1, 1] also for the consequence in case of Reflexivity,
Left Logical Equivalence, Right Weakening, Or and Cut rules. A similar situation
occurs for all the inference rules in case of a necessity KB. This results are in
line with those in [20], where the case of a precise possibility or necessity KB
is investigated. We emphasize that, starting from a possibility KB, we obtain
weaker conclusions than under a necessity KB: this is due to the fact that,
since possibility dominates necessity, the values in the intervals assessed for the
necessity are coherent also for the possibility.
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Abstract. We elaborate on hierarchical credal sets, which are sets of
probability mass functions paired with second-order distributions. A new
criterion to make decisions based on these models is proposed. This is
achieved by sampling from the set of mass functions and considering the
Kullback-Leibler divergence from the weighted center of mass of the set.
We evaluate this criterion in a simple classification scenario: the results
show performance improvements when compared to a credal classifier
where the second-order distribution is not taken into account.

Keywords: Credal sets, second-order models, hierarchical credal sets,
shifted Dirichlet distribution, credal classification, decision making.

1 Introduction

Many different frameworks exist for modeling and perform reasoning with un-
certainty, e.g., Bayesian theory [1], Dempster-Shafer theory [8] or coherent lower
previsions [11]. Imprecise probability is a general term referred to theories where
a sharp specification of the probabilities is not required. These approaches are
often considered to be more realistic and robust, while a precise assessment of
the parameters can be hard to motivate. One common way to model imprecision
is by closed convex sets of probability functions, which are also called credal sets.

Even though credal sets are attractive from several viewpoints, one problem
that one can encounter is that the posterior can be highly imprecise and thus
uninformative for a decision maker [5,6]. This is also one of the strengths of
imprecise probability: if there is a serious lack of information, a single decision
cannot be taken unless more information is provided.

However, if one models second-order probability over a credal set, it has been
shown that the distribution can be remarkably concentrated within the set [4].

� This work was partly supported by the Information Fusion Research Program (Uni-
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We aim to further explore whether such a concentration could be exploited to
reduce imprecision and at the same time maintain a high degree of accuracy.

The paper is organized as follows: In Sect. 2, we provide the preliminaries for
the theory of credal sets. In Sects. 3–4, we clarify the relation between credal
sets and second-order models and present the concept of hierarchical credal sets.
In Sects. 5–6, we introduce a new decision criterion that takes second-order
probability into account. In Sect. 7, we evaluate this procedure on a simple clas-
sification scenario, and lastly, in Sect. 8, we provide a summary and conclusions.

2 Credal Sets

Let X be a variable taking its values in X := {x1, . . . , xn}. Uncertainty about
X can be modeled by a single probability mass function (PMF) P (X).1 Given a
function of X , say f : X → R, the corresponding expected value of f according
to P (X) is:2

EP [f ] :=

n∑
i=1

P (xi) · f(xi). (1)

Yet, there are situations where a single PMF cannot be regarded as a realistic
model of uncertainy, e.g., when information is scarce or incomplete [11]. A possi-
ble generalization consists in coping with sets of (instead of single) PMFs. Such
a generalized uncertainty model is called credal set (CS) and notation K(X)
is used here for CSs over X . Expectations based on a CS cannot be computed
precisely as in Eq. (1). Only lower and upper bounds w.r.t. the different PMFs
belonging to the CS can be evaluated, i.e.,

EK [f ] := min
P (X)∈K(X)

EP [f ], (2)

EK [f ] := max
P (X)∈K(X)

EP [f ]. (3)

Optima in Eqs. (2) and (3) can be equivalently evaluated over the convex closure
of K(X). Without lack of generality we therefore assume CSs to be closed and
convex. Furthermore, if the CS is generated by a finite number of linear con-
straints, the two above optimization tasks are linear programs, the CS being the
feasible region and the precise expectation in Eq. (1) the objective function. The
solution of such a linear program can be found in an extreme point of the CS.
We denote the extreme points of K(X) by ext[K(X)]. Under these assumptions,
the CS has a finite number of extreme points, i.e., ext[K(X)] = {Pj(X)}vj=1. Ac-
cordingly, the two optimization tasks can be equivalently solved by computing
the precise expectation only on the extreme points.

1 I.e., a map P : X → R, such that P (xi) ≥ 0 ∀i = 1, . . . , n, and
∑n

i=1 P (xi) = 0.
2 Following the behavioural interpretation of probability, f is regarded as a gamble
(i.e., an uncertain reward), the expectation being the fair price an agent is willing
to pay to buy the gamble on the basis of his/her subjective knowledge about X.
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As an example, the so-called vacuous CS K0(X) is obtained by considering all
the PMFs overX . The extreme points of this CS are degenerate PMFs assigning
all the mass to a single state of X . The expectations as in Eqs. (2) and (3) based
on the vacuous CS are therefore the minimum and the maximum value of f . The
vacuous CS is the least informative uncertainty model, modeling a condition of
ignorance about X . More informative CSs can be induced by a set of probability
intervals (PIs) I := {(li, ui)}ni=1, yielding the following CS:

KI(X) :=

{
P (X)

∣∣∣∣max{0, li} ≤ P (xi) ≤ ui ∀i = 1, . . . , n∑n
i=1 P (xi) = 1

}
. (4)

As an example, if li = 0 and ui = 1 for each i = 1, . . . , n, Eq. (4) returns the
vacuous CS. To guarantee the CS in Eq. (4) to be non-empty, it is sufficient (and
necessary) to require

∑n
i=1 li ≤ 1 and

∑n
i=1 ui ≥ 1. To have so called reachable

PIs, i.e., such that for each pi ∈ [li, ui] there is at least a P (X) ∈ KI(X) for
which P (xi) = pi, the additional condition

∑
j �=i lj+ui ≤ 1 and

∑
j �=i uj+ li ≥ 1

should be met. A non-reachable set of PIs leading to a non-empty CS can be
always made reachable [3].

3 Credal Sets Are (Not) Second-Order Models

Consider an auxiliary variable T whose set of possible values T is in one-to-one
correspondence with ext[K(X)]. For each t ∈ T , the (conditional) PMF P (X |t)
is the extreme point of K(X) associated to t. This defines a conditional model
P (X |T ) for X given T . The following result holds.

Proposition 1 (Cano Cano Moral transformation). Consider a vacuous
CS K0(T ) and combine it with P (X |T ) as follows:3

K ′(X,T ) :=

{
P ′(X,T )

∣∣∣∣P ′(x, t) = P (x|t) · P (t) ∀(x, t) ∈ X × T
P (T ) ∈ K0(T )

}
. (5)

Then marginalize X by summing out T as follows:

K ′(X) :=

{
P ′(X)

∣∣∣∣P ′(x) =
∑

t∈T P ′(x, t)
∀P ′(X,T ) ∈ K ′(X,T )

}
. (6)

The resulting CS coincides with the original one, i.e., K(X) = K ′(X).

This result, originally derived for credal nets in [2], clarifies why CSs should not
be considered hierarchical models: the elements of the CS can be parametrized
by an auxiliary variable, but the imprecision is just moved to the second order,
where we should assume a complete lack of knowledge (modeled as a vacuous
CS). To see this, the above proposition, which only considers the extreme points,
can be extended to the whole CS. We therefore replace the categorical variable

3 This operation is called marginal extension in [11]. Both Eqs. (5) and (6) can be
computed by coping only with the extreme points and then taking the convex hull.
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T with a continuous Θ indexing the elements of K(X). For each P (X) ∈ K(X),
a conditional P (X |Θ = θ) := P (X) is defined, i.e., Θ takes values in K(X).
We denote by π(Θ) a probability density over K(X), i.e., π(Θ) ≥ 0 for each
Θ ∈ K(X) and

∫
Θ∈K(X)

π(Θ) · dΘ = 1. The vacuous CS K0(Θ) includes all the

probability densities over Θ and its convex closure is considered with respect to
the weak topology [11, App. D].

Proposition 2. Combine the unconditional CS K0(Θ) with the conditional
model P (X |Θ) to obtain the following joint CS:

K ′(X) :=

{
P ′(X)

∣∣∣∣P ′(x) :=
∫
Θ∈K(X)

P (x|Θ) · π(Θ) · dΘ
π(Θ) ∈ K0(Θ)

}
. (7)

Then K ′(X) = K(X).

4 Hierarchical Credal Sets

We define a hierarchical credal set (HCS) as a pair (K,π), with π density over
K [5]. Expectations based on these models can be therefore precisely computed,
being the weighted average of the expectations associated to the different PMFs:

EK,π[f ] :=

∫
Θ∈K(X)

EΘ[f ] · π(Θ) · dΘ. (8)

The following result shows how HCS-based expectations can be regarded as
precise expectations.

Proposition 3. The computation of Eq. (8) can be obtained as follows:

EK,π[f ] = EPK,π [f ] (9)

with

PK,π(xi) :=

∫
Θ∈K(X)

Θi · π(Θ) · dΘ, (10)

where Θi is the value of P (X = xi) when P (X) is the PMF associated to Θ.

An obvious corollary of this result is the compatibility of the expectations based
on HCSs with the lower and upper expectation based on CS.

Proposition 4. Given a CS K(X) and a HCS (K,π) with the same CS, then:

EK [f ] ≤ EK,π [f ] ≤ EK [f ]. (11)

Consider for instance a HCS with a uniform density, i.e., π(Θ) ∝ 1 for each
Θ ∈ K(X). With a CS K(X) with only three vertices, PK,π(X) is the center of
mass of the CS and the model can be equivalently formalized as a discrete HCS,
where the density over the whole set of elements of K(X) is replaced by a PMF
assigning probability 1

3 to the three extreme points. This result generalizes to
any HCS as stated by the following proposition.



460 A. Antonucci, A. Karlsson, and D. Sundgren

Proposition 5. Expectations based on a HCS [K(X), π(Θ)] can be equivalently
computed as expectations of a discrete HCS [K(X), P (T )]. The discrete variable
T indexes the elements of ext[K(X)], and the values of P (T ) are a solution of
the following linear system, which always admits a solution:∑

t∈T
P (t) · Pt(xi) = PK,π(xi), (12)

for each xi ∈ X , where Pt(X) is the extreme point of K(X) associated to t.

5 The Shifted Dirichlet Distribution

We restrict HCSs to simplicial forms which means that the set of PIs {(li, ui)}ni=1

strictly satisfies the sufficient inequality conditions of reachability, i.e., ui =
1−
∑

j �=i lj , for each i = 1, . . . , n. The lower bounds {li}ni=1 are therefore sufficient
to specify the PIs. Given a CSKI(X) of this kind, a (continuous) HCS is obtained
by pairing the CS with the so-called shifted Dirichlet distribution [5] (SDD),
which is parametrized by an array of nonnegative weights α := (α1, . . . , αn) and
lower bounds l := (l1, . . . , ln):

πα(Θ) ∝
n∏

i=1

[Θi − li]
αi−1, (13)

for each Θ associated to a P (X) ∈ K(X) and with Θi := P (X = xi), with the
proportionality constant obtained by normalization. The SDD generalizes the
standard Dirichlet distribution where the latter is obtained if the lower bounds
are zero, i.e., the underlying CS is vacuous. Even in this generalized setup the
weights α are associated to the relative strengths of different states. This is
made explicit by the following result about the expectations of HCSs based on
the SDD.

Proposition 6. The weighted center of mass, as in Eq. (10), of HCS associated
to a SDD, say [Kl(X), πa(Θ)], is, for each i = 1, . . . , n:4

PK,π(xi) = li +
αi(1 −

∑n
i=1 li)∑n

j=1 αj
. (14)

This allows one to compute expectations as in Eq. (9). The above considered
continuous HCSs can be therefore equivalently expressed in terms of discrete
HCS with PMF obtained by solving the linear system in Prop. 5 (the equivalence
relation being intended with respect to expectancy).

4 The right-hand side of Eq. (14) rewrites as li + ti(ui − li), where ti := αi/(
∑

i αi).
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6 Decision Making with Hierarchical Credal Sets

Let us discuss the problem of making decisions based on a HCS. Consider a single
P (X) and 0/1 losses. The decision corresponds to identify the most probable
state of X , i.e., x∗

P := argmaxx∈X P (x). Moving to CSs, multiple generalizations
are possible. A popular approach is the maximality criterion [11], which is based
on the notion of credal dominance. Given x, x′ ∈ X , x dominates x′ if P (x) >
P (x′) for each P (X) ∈ K(X). After testing this dominance for each x, x′ ∈ X ,
the set of undominated states, to be denoted as X ∗

K ⊆ X , is returned. It is
straightforward to see that P (X) ∈ K(X) implies x∗

P ∈ X ∗
K . According to Prop.

3, expectations based on a HCS (K,π) can be equivalently computed with the
precise model PK,π(X). The decision is therefore x∗

PK,π
, which belongs to the

maximal set X ∗
K .

Apart from special cases like in Prop. 6, the weighted center of mass PK,π can
be computed only by Monte Carlo integration. This can be done by uniformly
sampling M PMFs from the CS K(X). The corresponding approximation con-
verges to the exact value as follows:∥∥∥∥∥PK,π(X)−

∑M
j=1 wj · P (j)(X)∑M

j=1 wj

∥∥∥∥∥
M→+∞

= O

(
1√
M

)
, (15)

where, for each j = 1, . . . ,M , P (j)(X) is the j-th PMF sampled from K(X) and
wj := π(P j(X)). Uniform sampling from a polytope can be efficiently achieved
by a MCMC-schema, called the “Hit-And-Run” (HAR) algorithm [7]. HAR has
recently been utilized in multi-criteria decision making to sample weights [10],
and here we use of the algorithm for a similar purpose, i.e., sample weights with
respect to a second-order distribution. Note that the second term in the left-
hand side of Eq. (15) is a convex combination of elements of K(X), and hence
belongs to K(X). For sufficiently large M , this returns x∗

PK,π
. We propose a new

criterion, described in Alg. 1 and called HCS-KL, also based on sampling, but
allowing for multiple decisions. The decision based on (the approximation of)
PK,π(X) is replaced by a set of maximal decisions X ∗

K′ , based on CS K ′(X) ⊆
K(X), obtained by removing from the sampled PMFs those at high weighted
KL distance from the weighted center of mass. The idea is that the imprecision
of a CS can be significant whilst the second-order distribution can be quite
concentrated [5], but not so concentrated to always return a single option [4].

7 Application to Classification

The ideas outlined in the previous section are extended here to the multivariate
case and tested on a classification problem. Let us therefore consider a collection
of variables (X0, X1, . . . , Xn). RegardX0 as the variable of interest (i.e., the class
variable) and the remaining ones as those to be observed (i.e., the features).
To assess a joint model over these variables, the so-called naive assumption
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Algorithm 1. The HCS-KL algorithm. The input is a set of PMFs with their
weights, i.e., {P (j)(X), wj}Mj=1. This can be obtained from a HCS (K,π) by
uniformly sampling the PMFs from K(X) (using the HAR algorithm) and com-
puting the weights wj := π(P (j)(X)). Given a value of the parameter 0 ≤ β ≤ 1,
the algorithm returns a set of optimal states X ∗

K′ ⊆ X ∗
K .

1: Compute the weighted center of mass P̃ (X) := (
∑M

j=1 wj)
−1 ∑M

j=1 wjP
(j)(X)

2: P ← {P (k)(X)}Mk=1

3: for j = 1, . . . ,M do

4: if w−1
j KL(P̃ , P (j)) > β ·maxM

k=1

[
w−1

k KL(P̃ , P (k))
]
then

5: P ← P \ {P (j)}
6: end if
7: end for
8: return maximal states K′(X), i.e. X ∗

K′ , with K′(X) convex closure of P

assumes conditional independence between the observable variables given X0.
This corresponds to the following factorization:

P (x0, x1, . . . , xn) = P (x0) ·
n∏

k=1

P (xk|x0). (16)

Given an observation x̃ := (x̃1, . . . , x̃n), the most probable value of X0 is x∗
0 :=

argmaxx0∈X0 P (x0, x̃), which can be solved by Eq. (16) in terms of the local
models: P (X0) and P (Xk|x0) for each k = 1, . . . , n and x0 ∈ X0. In the imprecise
framework, these local models are replaced by CSs. The maximal states are
obtained by testing credal dominance test for x′

0, x
′′
0 ∈ X0, i.e., checking whether

of not the left-hand side of the following equation is greater than one.

min
P (X0)∈K(X0),

P (Xj |x0)∈K(Xj |x0)
∀j∀x0

P (x′
0|x̃)

P (x′′
0 |x̃)

= min
P (X0)∈K(X0)

P (x′
0)
∏n

k=1 P (x̃k|x′
0)

P (x′′
0 )
∏n

k=1 P (x̃k|x′′
0 )

. (17)

The right-hand side is obtained by exploiting the factorization in Eq. (16): the
optimizatiom reduces to a trivial linear-fractional task over P (x′

0) and P (x′′
0 ).

The imprecise Dirichlet model [12] (IDM) can be used to learn CSs from data.
This induces the following PIs parametrized by the lower bounds only:

P (x0) ≥
n(x0)

N + s
(18)

where n(x0) are the data such that X0 = x0, N is the total amount of data,
and s is the equivalent sample size. The conditional CSs K(Xj |x0) are obtained
likewise. For the precise case, a single Dirichlet prior with sample size s and
uniform weights, leading to P (x0) := (N + s)−1(n(x0) + s/|X0|), is considered.

In the hierarchical (credal) case, we pair these CSs with an equal number of
SDDs. If no expert information is available, the SDD parameters can be specified
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by the relative independence assumption [9]. This assumption models a lack of
dependence relations, apart from the necessary normalization constraint, among
the values of Θ. This corresponds to set uniform weights with sum n/(n − 1),
where n is the cardinality of the variable. This is the equivalent sample size of
the SDD: it seems therefore reasonable to use this value for the parameter s in
the IDM (this being also consistent with Walley’s recommendation 1 ≤ s ≤ 2)
and also in the Bayesian case.

To perform classification based on this model, we extend the decision making
criterion HCS-KL described in Alg. 1 to the multivariate case by the procedure
described in Alg. 2. For each local model we sample a PMF and evaluate its
weight. We then compute the posterior PMF, whose weight is just the product
of the weights of the local models. This yields a collection of PMFs with the
corresponding weights, to be processed by HCS-KL.

Algorithm 2. Hierarchical credal classification. A HCS is provided for each Xj

given each value of x0 and a HCS over X0 are provided. Given an observation
of the attributes x̃, a set of possible classes X ∗

0 ⊆ X0 is returned.

1: for j = 1, . . . ,M do
2: Uniformly sample P j(X0) from K(X0)
3: Uniformly sample P j(Xk|x0) from K(Xk|x0), ∀k ∀x0

4: Compute P j(X0|x̃) [see Eq. (16)].
5: wj = πX0(P

j(X0)) ·
∏

k,x0
πXk,x0(P

j(Xk|x0))
6: end for
7: return X ∗

0 :=HCS-KL({P j(X0|x̃), wj}Mj=1) (see Alg. 1)

7.1 Numerical Results

We validate classification based on Alg. 2 against the traditional NBC (see Eq.
(16)) and its credal extension as in Eq. (17). These three approaches are called
hierarchical, Bayesian, and credal. We use four datasets from the UCI repository
with twofold cross validation. The accuracy of the Bayesian is compared with the
utility-based u80 performance descriptor for other approaches. This descriptor,
proposed in [13], is the state of the art for compare credal models with traditional
ones under the assumption of (high) risk aversion to variability in the previsions.
Regarding the choice of β and M in Alg. 2, β = .25 appears a reasonable choice
to obtain results that clearly differs from the Bayesian case (corresponding to
β ' 0) and the credal (corresponding to β ' 1), and M = 200 was sufficient
to always observe convergence in the outputs.5 We see that the hierarchical
approach always outperforms the credal one (see Table 1).

5 A R implementation is freely available at http://ipg.idsia.ch/software.



464 A. Antonucci, A. Karlsson, and D. Sundgren

Table 1. Numerical evaluation. For each dataset, size, number of classes, accuracy of
the Bayesian and u80-accuracy of the credal and hierarchical approaches are reported.

Dataset Size Classes Bayesian Credal Hierarchical

Contact Lenses 24 3 77.2 53.7 72.2
Labor 51 2 87.0 92.7 93.7
Hayes 160 4 59.5 51.1 72.4
Monk 556 2 64.1 70.6 72.9

8 Summary and Conclusion

We have extended CSs to a hierarchical uncertainty structure where beliefs can
be expressed over the imprecision. We have introduced a simple decision cri-
terion, based on KL divergence, that take second-order information into con-
sideration. Preliminary tests on a classification benchmark are promising: the
second-order information leads as expected to more accurate decisions. In our
future research, we will explore more ways of modeling second-order information
for decision making, including how one can express second-order information over
a CS that are not simplicial and the determination of some reasonable shape of a
credbility region that contains a certain degree of second-order probability mass.

A Proofs

Proof of Proposition 1. Given a P̃ (X) ∈ K′(X), let P̃ (X,T ) ∈ K′(X,T ) be the
joint PMF whose marginalization produced P̃ (X). Similarly let P̃ (T ) ∈ K0(T ) de-
note the PMF whose combination with P (X|T ) produced P̃ (X,T ). We have P̃ (X) =∑

t P (X|t)P̃ (t). This means that P̃ (X) is a convex combination of the extreme points
of K(X). Thus, it belongs to K(X). This proves K′(X) ⊆ K(X). To prove the oppo-
site inclusion consider a P̂ (X) ∈ K(X). By definition, this is a convex combination
of the extreme points of K(X), i.e., P̂ (X) =

∑
j αjPj(X). Thus, by simply setting

P (t) = αj , where t is the element of T associated to the j-th vertex of K(X) we prove
the result. ��

Proof of Proposition 2. The proof is a simplified version of that of Prop. 1. Given
a P ′(X) ∈ K′(X), P ′(X) also belongs to K(X) because it is a convex combination
of elements of K(X), which is a closed and convex set. This proves K′(X) ⊆ K(X),
while the opposite inclusion follows from the fact that any P̂ (X) ∈ K(X) also belongs
to K′(X) and this can be seen by choosing a degenerate distribution π(Θ) assigning all
the probability density to P̂ (X). ��

Proof of Proposition 3. Let us rewrite put the expression of a precise expectation
as in Eq. (1) in Eq. (8):

EK,π[f ] =

∫
Θ∈K(X)

n∑
i=1

Θi · f(xi) · π(Θ)dΘ (19)

The result in Eq. (9) follows by moving the sum and the value of the function out of
the integral.
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Proof of Proposition 4. The proof is straightforward.

Proof of Proposition 5. It is sufficient to note that the left-hand side of Eq. (12) is
the weighted center of mass of the discrete HCS. Thus, the two HCSs have the same
weighted center of mass and hence they return the same expectations. Moreover, the
matrix of the coefficient has full rank because of the definition of extreme point of a
convex set, and the linear system therefore always admits a solution.

Proof of Proposition 6. The mean of variable θi in a Dirichlet distribution with
parameters −→α = (α1, . . . , αn) is αi∑n

j=1 αj
. In the SDD the variables θi are linearly

transformed so that 0 �→ li and 1 �→ 1 −
∑

j �=i li. The mean is by this transformation
equal to

li +
αi(1−

∑n
i=1 li)∑n

j=1 αj
.
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Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520,
pp. 379–391. Springer, Heidelberg (2012)

10. Tervonen, T., van Valkenhoef, G., Basturk, N., Postmus, D.: Hit-and-run enables
efficient weight generation for simulation-based multiple criteria decision analysis.
European Journal of Operational Research 224(3), 552–559 (2013)

11. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall
(1991)

12. Walley, P.: Inferences from multinomial data: learning about a bag of marbles.
Journal of the Royal Statistical Society. Series B (Methodological) 58, 3–57 (1996)
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Abstract. We present a variant of the CONEstrip algorithm for check-
ing whether the origin lies in a finitely generated convex cone that can be
open, closed, or neither. This variant is designed to deal efficiently with
problems where the rays defining the cone are specified as linear combi-
nations of propositional sentences. The variant differs from the original
algorithm in that we apply row generation techniques. The generator
problem is WPMaxSAT, an optimization variant of SAT; both can be
solved with specialized solvers or integer linear programming techniques.
We additionally show how optimization problems over the cone can be
solved by using our propositional CONEstrip algorithm as a prepro-
cessor. The algorithm is designed to support consistency and inference
computations within the theory of sets of desirable gambles. We also
make a link to similar computations in probabilistic logic, conditional
probability assessments, and imprecise probability theory.

Keywords: sets of desirable gambles, linear programming, row gener-
ation, satisfiability, SAT, PSAT, WPMaxSAT, consistency, coherence,
inference, natural extension.

1 Introduction

The CONEstrip algorithm [12] determines whether a finitely generated general
convex cone contains the origin. A general convex cone can be open, closed, or
ajar, i.e., neither open nor closed. This linear programming-based algorithm is
designed for working with uncertainty models based on (non-simple) sets of desir-
able gambles [15,16,13] and their generalizations [14]. In particular, it can be used
for checking the consistency criteria such models have to satisfy—specifically,
coherence and avoiding partial loss—and for drawing deductive inferences from
such models—typically, performing natural extension.

In the CONEstrip algorithm, the so-called gambles defining the cone had to
be specified as vectors on some explicitly given, finite possibility space. The spec-
ification of the gambles as linear combinations of indicator functions of events
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belonging to some finite set often provides a more natural and economical for-
mulation of the uncertainty model.

Events can be formalized as logical propositions; an elementary event of the
underlying possibility space corresponds to a conjunction of all these proposi-
tions or their negation. The cardinality of the underlying possibility space is
therefore exponential in the number of events. So even though it is possible to
write down the gambles as vectors on the underlying possibility space and apply
the CONEstrip algorithm, this would be very inefficient: the size of the linear
programs involved is linear in the cardinality of the possibility space.

Therefore we need a variant of the algorithm that works efficiently in the
propositional context sketched. We present such a variant in this paper. It pre-
serves the structure of CONEstrip as an iteration of linear programs, each one
‘stripping away’ a superfluous part of the general cone. But now these linear
programs are solved using a row generation technique—each row corresponding
to an elementary event—as was already suggested by Walley et al. [17, Sec. 4,
comment (d)] for a CONEstrip predecessor. Only the rows necessary for solving
the linear programs are generated, and those already generated are carried over
from one linear program to the next.

So instead of solving one big problem, we solve multiple smaller ones. The
sub-problem to be solved to generate a row is WPMaxSAT, weighted partial
maximum satisfiability. This was already discovered by Georgakopoulos et al.
[6, Sec. 3] for the related dual PSAT, probabilistic satisfiability. WPMaxSAT
is an optimization variant of SAT, propositional satisfiability [4]. Both can be
tackled using binary linear programming techniques or specific algorithms [9,7,5].

The original impulse to work on this problem came from Cozman and di Ianni’s
recent contribution to the field [5], where many relevant references are listed,
among which Hansen et al.’s classic review [8] cannot remain unmentioned here.
The goal was to design a ‘direct algorithm’ [17] for sets of desirable gambles
in their full generality. To present the result, we first get (re)acquainted with
the standard CONEstrip algorithm in Section 2 and then build up towards the
propositional variant in Section 3. In Section 4, we make a link to established
problems that can be seen as special cases.

2 Preliminaries

A Representation of General Convex Cones. General convex cones can be
open, closed, or ajar, i.e., neither open nor closed. Any finitely generated general
convex cone can by definition be generated as the convex hull of a finite number
of finitely generated open cones.

Let us formalize this definition: The possibility space is denoted by Ω. The set
of all gambles is then G = Ω → R. Now consider a finite set R0 of finite subsets
of G, each containing the generators of an open cone, then a gamble f in G
belongs to the general cone R0 if and only if the following feasibility problem
has a solution:
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find λD ∈ [0, 1] and νD ∈ (R>0)D for all D in R0

such that
∑

D∈R0
λD = 1 and

∑
D∈R0

λD
∑

g∈D νD,gg ≤≥ f.
(1)

Here h :=
∑

D∈R0
λD

∑
g∈D νD,gg ≤≥ f represents h(ω) ≤ f(ω) for all ω in ΩΓ

and h(ω) ≥ f(ω) for all ω in ΩΔ, with ΩΓ and ΩΔ problem-specific sets that
satisfy ΩΓ ∪ ΩΔ = Ω. Using inequality instead of equality constraints allows us
to omit (up to |Ω|) indicator functions of singletons or their negation that may
be present in the representation R0.

The formulation of this problem includes strict inequalities and bilinear con-
straints. The former issue puts this problem outside of the class of standard
mathematical programming problems. The latter issue makes it a non-linear
problem, and therefore one with non-polynomial worst-case computational com-
plexity. Below, we are going to go over the solution to both issues [12].

The subscript 0 in R0 indicates that it is the representation of the original
cone. In the algorithms we discuss, smaller cones will iteratively be derived from
it; their representation Ri gets the iteration number i as a subscript.

The CONEstrip Algorithm. To eliminate the strict inequalities νD ∈ (R>0)D

from Problem (1) we are going to replace the νD using τD ∈ (R≥1)D and σ ∈ R≥1
such that τD = σνD for all D in R0:

find λD ∈ [0, 1] and τD ∈ (R≥1)D for all D in R0 and σ ∈ R≥1

s.t.
∑

D∈R0
λD ≥ 1 and

∑
D∈R0

λD
∑

g∈D τD,gg ≤≥ σf.
(2)

Note that we have also relaxed the convex coefficient constraint, because it gives
us the flexibility we need next, without changing the problem.

To get rid of the non-linearity, we first replace λDτD with new variables μD
for all D in R0 and add a constraint that forces μD to behave as λDτD:

find λD ∈ [0, 1] and μD ∈ (R≥0)D for all D in R0 and σ ∈ R≥1

s.t.
∑

D∈R0
λD ≥ 1 and

∑
D∈R0

∑
g∈D μD,gg ≤≥ σf

λD ≤ μD ≤ λDμD for all D in R0.

(3)

Notice that now λD ∈ {0, 1} for any solution, functioning as a switch between
μD = 0τD = 0 and μD = 1τD ∈ (R≥1)D, so that μD/σ effectively behaves
as λDνD.

We could replace the non-linear constraints μD ≤ λDμD by μD ≤ λDMD,
where MD is a positive real number ‘guaranteed to be’ larger than max μD, but
this may be numerically problematic. Another approach is to remove the non-
linear constraint, causing λD = 0 to not force μD = 0 anymore—λD > 0 still
forces μD ∈ (R>0)D. However, by maximizing

∑
D∈R0

λD, the components of λ
will function as a witness: if λD = 0, then we should have μD = 0. This is the
basis of the iterative CONEstrip algorithm:
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Initialization. Set i := 0.
Iterand. Does the linear programming problem below have a solution (λ̄, μ̄, σ̄)?

maximize
∑

D∈Ri
λD

subject to λD ∈ [0, 1] and μD ∈ (R≥0)D for all D in Ri and σ ∈ R≥1
∑

D∈Ri
λD ≥ 1 and

∑
D∈Ri

∑
g∈D μD,gg ≤≥ σf

λD ≤ μD for all D in Ri.
(4)

No. f /∈ R0. Stop.
Yes. Let Q := {D ∈ Ri : λ̄D = 0} and set Ri+1 := Ri \ Q.

Is {D ∈ Q : μ̄D = 0} = Q?
Yes. Set t := i + 1; f ∈ Rt ⊆ R0. Stop.
No. Increase i’s value by 1. Reiterate.

This algorithm terminates after at most |R0|−1 iterations. The ‘raw’ complexity
of the ith linear programming problem is polynomial in |Ri|,

∑
D∈Ri

|D|, and |Ω|.
The terminal cone Rt is the largest ‘subcone’ of R0 that contains f in its relative
interior; so Rt is included in a face of R0.

Optimization Problems. We can solve optimization problems with continu-
ous objective functions over the general cone: First ignore the objective and run
the CONEstrip algorithm on the representation R0 to obtain a terminal repre-
sentation Rt. Then we can optimize over the topological closure of the terminal
general cone Rt, due to the continuity of the objective function:

optimize a continuous function of μ

subject to μ ∈ (R≥0)∪Rt and
∑

g∈∪Rt
μgg ≤≥ f.

(5)

When the objective function is linear in μ, we get a linear programming problem.

3 An Algorithm for Proposition-Based Gambles

We saw that Problem (4) was polynomial in the size |Ω| of the possibility space.
When, as is often done, the gambles involved in the representation of the general
cone are specified as linear combinations of indicator functions of Boolean propo-
sitions, |Ω| becomes exponential in the number of propositions. In this section
we present an approach that avoids having to deal directly with an exponential
number of constraints in such a propositional context.

How Structured Gambles Generate Structured Problems. We are not
going to dive into the propositional framework directly, but first we are go-
ing to show how gambles that are linear combinations of a number of basic
functions generate a specific exploitable structure in the problems we consider.
Assume that any gamble g in {f}∪⋃ R0 can be written as a linear combination
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∑
φ∈Φ gφφ with a finite set of basic functions Φ ⊂ G and coefficients gφ in R.1

Then (
∑

D∈Ri

∑
g∈D μD,gg) − σf =

∑
φ∈Φ κφφ if for all φ in Φ we define κφ as

(
∑

D∈Ri

∑
g∈D μD,ggφ) − σfφ. So in Problem 4 we can rewrite the constraints

on the variables μ and σ in terms of gambles as constraints on the variables κ in
terms of basic functions by adding constraints linking the κ with the μ and σ.

Increasing the number of constraints in this way is productive only when we
can deal with them more efficiently. How this can be done is discussed below.

Row Generation. A standard technique for dealing with large numbers of con-
straints in mathematical programming is row generation: The original problem
is first relaxed by removing most or all constraints; in our problem, the con-
straints

∑
φ∈Φ κφφ ≤≥ 0 are removed. Then, in an iterative procedure, constraints

are added back. Each such constraint or ‘row’ corresponds to some elementary
event ω in Ω, i.e., is of the form

∑
φ∈Φ κφφ(ω) ≤≥ 0. Each iteration the problem

is solved under the present constraints, resulting in a solution vector κ̄.
So which constraints should be added back? Constraints that are satisfied

by the present solution κ̄ will have no discernable impact, as κ̄ will remain
feasible. Therefore, constraints that are violated by κ̄ must be generated. There
may be many violated constraints and one would want to generate deep ‘cuts’,
those that constrain κ most, as less are needed than when generating shallow
cuts. However, generating deep cuts may be computationally more complex than
generating shallow cuts, so a trade-off needs to be made between the number
of iterations and the complexity of the constraint generation process. For our
problem, argmaxω∈Ω|∑φ∈Φ κ̄φφ(ω)| would generate a deep cut.

So when does the procedure stop? The original problem is infeasible if con-
straint generation is infeasible, or when an intermediate problem turns out to
be infeasible, given that it is a relaxation of the original problem. When no
violated constraint can be generated given a solution κ̄, then the problem is
feasible and—in case of an optimization problem—this solution is optimal. That
the problem stops eventually is guaranteed, because we could in principle add
all constraints back. But actually, the number of iterations needed is polynomial
in the number of variables involved [6, Lemma 2]; so, for us, polynomial in |Φ|.

The Propositional Context. Now we take the basic functions φ in Φ to be
expressed as propositional sentences. The operations permitted in such sentences
are the binary disjunction ∨—‘or’—and conjunction ∧—‘and’—, and the unary
negation ¬. The {0, 1}-valued binary variables appearing in the sentence are the
so-called literals β�, where � belongs to a given, finite index set LΦ :=

⋃
φ∈Φ Lφ.

For example, ϕ(β) := (β♠ ∨ ¬β♣) ∧ β♥ is a sentence with Lϕ := {♠, ♣, ♥}.
The possibility space can be expressed in terms of the literals in the following

way: Ω := {β ∈ {0, 1}LΦ∪Lψ : ψ(β) = 1}, where ψ is a given sentence restricting

1 The set Φ and objects that depend on it will in general also depend on the iteration
number i: as gambles are effectively removed from R0 to obtain Ri, basic functions
appearing only in the expressions for removed gambles can be removed from Φ. We
do not make this explicit in this paper to limit the notational burden.
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the possible truth assignments—instantiations of β—that are valid elementary
events. For example, there is a one-to-one relationship between {1, 2, 3} and
{β ∈ {0, 1}2 : β1 ∨ β2 = 1} with element vectors viewed as bit strings. Similarly,
ΩΓ := {β ∈ Ω : ψΓ (β) = 1} and ΩΔ := {β ∈ Ω : ψΔ(β) = 1}. In a propositional
context, we use sentences instead of the corresponding sets.

Two important special cases [1,11, PSAT vs. CPA] are (i) no restrictions, i.e.,
ψ identically one, and (ii) Lψ = LΦ := Φ with φ(β) := βφ for all φ in Φ. It is
actually always possible to have φ(β) = βφ by using extensions L := Lψ ∪LΦ ∪Φ
and χ(β) := ψ(β) ∧ ∧

φ∈Φ

(
(βφ ∧ φ(β)) ∨ (¬βφ ∧ ¬φ(β))

)
. We will do so.

The propositional sentences we consider can in principle take any form.
However, it is useful for algorithm design to write such sentences in some
canonical ‘normal’ form. Given the connections of this work with PSAT, proba-
bilistic satisfiability, we use the form standard in that field, CNF, conjunctive—
or clausal—normal form. In this form, a sentence is written as a conjunction
of clauses; a clause is a disjunction of literals and negated literals. Formally,
χ(β) =

∧k
m=1

( ∨
�∈Pm

β� ∨ ∨
�∈Nm

¬β�

)
, where k is the number of conjuncts in

the CNF of χ(β) and Pm ⊆ L and Nm ⊆ L with Pm ∩ Nm = ∅ are the index
sets of the mth conjunct’s plain and negated disjuncts, respectively. The trans-
formation of any sentence ϕ into CNF with a number of clauses linear in the
number of operations in ϕ is an operation with polynomial complexity [10].

Row Generation in the Propositional Context. In the propositional con-
text, we must in each iteration generate constraints of the form

∑
φ∈Φκφβ̄φ ≤≥ 0,

by generating some truth assignment β̄ in {0, 1}L . To generate deep cuts, the
assignment β̄ must be such that |∑φ∈Φ κ̄φβ̄φ| is relatively large, where κ̄ is the
linear-program solution vector generated earlier in the iteration.

Generating valid truth assignments corresponds to solving a SAT problem:
determining (whether there is) a β in {0, 1}L such that χ(β) = 1. General
SAT is NP-complete. There exist many specialized SAT solvers. Also, any SAT
problem can be formulated as a binary linear programming problem:

find β ∈ {0, 1}L

such that
∑

�∈Pm
β� +

∑
�∈Nm

(1 − β�) ≥ 1 for all 1 ≤ m ≤ k.
(6)

Here, each constraint corresponds to a conjunct in the CNF of χ.
A SAT solver blindly generates instances, which will typically not result in

deep cuts. To generate deep cuts, we need to take the constraint expression into
account. A binary linear programming problem that does just this presents itself:

optimize
∑

φ∈Φ κ̄φβφ

subject to β ∈ {0, 1}L
∑

�∈Pm
β� +

∑
�∈Nm

(1 − β�) ≥ 1 for all 1 ≤ m ≤ k.

(7)

In case of minimization, the β-instance generated is denoted δ̄; in case of maxi-
mization it is denoted γ̄.
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In essence, this Problem (7) is WPMaxSAT, weighted partial maximum SAT:
now, part of the clauses are hard—those of χ—and part of them are weighted
soft clauses—the κ̄φβφ, essentially—, whose total weight is maximized. General
WPMaxSAT is NP-hard. Specialized WPMaxSAT solvers generally accept only
positive integers as weights. The integral nature can be ensured by rescaling
and rounding, so we can assume κ̄ has integer components. For positivity, the
weights are replaced by their absolute value; their sign is expressed through the
corresponding soft clause: For maximization, one must use κ̄φβφ if κ̄φ > 0 and
|κ̄φ|(¬βφ) if κ̄φ < 0. For minimization, one must use κ̄φ(¬βφ) if κ̄φ > 0 and
|κ̄φ|βφ if κ̄φ < 0. A big advantage of WPMaxSAT-based row generation is that
κ̄ satisfies all the constraints generated in earlier iterations, so these will not be
generated again.

A Propositional CONEstrip Algorithm. We combine the original CONE-
strip algorithm as described at the end of Section 2 with as constraint generators
SAT for bootstrapping and WPMaxSAT subsequently:

Initialization. Set i := 0.
Are χ ∧ ψΓ and χ ∧ ψΔ satisfiable?
Neither. The original problem is not well-posed. Stop.
Either or both.

• If χ∧ψΓ is satisfied by some γ̄, set Γ0 := {γ̄}; otherwise set Γ0 := ∅.
• If χ∧ψΔ is satisfied by some δ̄, set Δ0 := {δ̄}; otherwise set Δ0 := ∅.

Iterand.
1. Does the linear programming problem below have a solution (λ̄, μ̄, σ̄, κ̄)?

maximize
∑

D∈Ri
λD

subject to λD ∈ [0, 1] and μ ∈ (R≥0)D for all D in Ri and σ ∈ R≥1

∑
D∈Ri

λD ≥ 1 and

{∑
φ∈Φ κφβ̄φ ≤ 0 for all β̄ in Γi

∑
φ∈Φ κφβ̄φ ≥ 0 for all β̄ in Δi

λD ≤ μD for all D in Ri

where κφ := (
∑

D∈R0

∑
g∈D μD,ggφ) − σfφ ∈ R for all φ in Φ.

(8)

No. f /∈ R0. Stop.
Yes. Let Q := {D ∈ Ri : λ̄D = 0} and set Ri+1 := Ri \ Q.

2. • If Γi �= ∅, let γ̄ be the solution of the WPMaxSAT for maximizing∑
φ∈Φ κ̄φβφ under the hard clauses χ ∧ ψΓ ; set Γi+1 := Γi ∪ {γ̄}.

Otherwise, set γ̄ identically zero.
• If Δi �= ∅, let δ̄ be the solution of the WPMaxSAT for minimizing∑

φ∈Φ κ̄φβφ under the hard clauses χ ∧ ψΔ; set Δi+1 := Δi ∪ {δ̄}.
Otherwise, set δ̄ identically zero.

Is
∑

φ∈Φ κ̄φγ̄φ ≤ 0 ≤ ∑
φ∈Φ κ̄φδ̄φ and {D ∈ Q : μ̄D = 0} = Q?

Yes. Set t := i + 1; f ∈ Rt ⊆ R0. Stop.
No. Increase i’s value by 1. Reiterate.
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In this algorithm, the cone stripping and constraint generation iterations are
merged. This can be done because if λD = 0 for some D in Ri, then certainly
λD = 0 when additional constraints are added.

The complexity of the algorithm is determined by (i) the number of iterations:
polynomial in |Φ| [6,11] and linear in |R0|; (ii) the complexity of the ‘master’
linear program: polynomial in |Φ|, |R0|, and

∑
D∈R0

|D|; and (iii) the complex-
ity of constraint generation—in the worst case exponential in k and polynomial
in |L| [2]. So we have replaced a procedure with guaranteed exponential complex-
ity due to an exponential number of constraints by a procedure that often has
decent practical complexity. Because of the reduction to standard problems—
SAT and WPMaxSAT, or binary linear programming—advances in solvers for
those problems can directly be taken advantage of.

Before an implementation can be called mature, it must support ‘restarting’ of
the SAT and WPMaxSAT solvers, meaning that preprocessing—such as variable
elimination—needs to be done only once, before the first iteration. This could
provide efficiency gains similar to those obtained by algorithms for probabilistic
reasoning from the Italian school [1,3].

Optimization Problems. Again, we can solve optimization problems with
continuous objective functions over the general cone: First ignore the objective
and run the propositional CONEstrip algorithm on the representation R0 to
obtain a terminal representation Rt and terminal instance sets Δt and Γt. Then
we optimize over the topological closure of the terminal general cone Rt:

Initialization. Set i := t.
Iterand.

1. Solve the following optimization problem to obtain the solution (μ̄, κ̄):

optimize a continuous function of μ

subject to μ ∈ (R≥0)∪Rt and

{∑
φ∈Φ κφβ̄φ ≤ 0 for all β̄ in Γi

∑
φ∈Φ κφβ̄φ ≥ 0 for all β̄ in Δi

where κφ := (
∑

g∈∪Rt
μggφ) − fφ ∈ R for all φ in Φ.

(9)

2. • If Γi �= ∅, let γ̄ be the solution of the WPMaxSAT for maximizing∑
φ∈Φ κ̄φβφ under the hard clauses χ ∧ ψΓ ; set Γi+1 := Γi ∪ {γ̄}.

Otherwise, set γ̄ identically zero.
• If Δi �= ∅, let δ̄ be the solution of the WPMaxSAT for minimizing∑

φ∈Φ κ̄φβφ under the hard clauses χ ∧ ψΔ; set Δi+1 := Δi ∪ {δ̄}.
Otherwise, set δ̄ identically zero.

Is
∑

φ∈Φ κ̄φγ̄φ ≤ 0 ≤ ∑
φ∈Φ κ̄φδ̄φ?

Yes. μ̄ is optimal. Stop.
No. Increase i’s value by 1. Reiterate.

When the objective function is linear in μ, we now get an iteration of linear
programming problems.
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4 Some Special Cases
The propositional CONEstrip algorithm presented in the preceding section can
be directly applied to problems in desirability theory. We here make a link with
other, more established theories by describing how the standard problems in
those theories can be encoded as problems in desirability theory. In all of the
cases discussed, ψΓ is identically one and ψΔ is identically zero.

A probability assessment P (φ) = pφ for some event φ corresponds to an open
cone with representation Dφ,pφ

:= {φ − pφ1, pφ1 − φ, 1}, where 1 denotes the
constant gamble 1. For the classical PSAT problem, assessments are given for a
set Φ of events and the questions is asked whether a probability mass function on
the possibility space exists that satisfies these assessments. This problem can be
solved applying the propositional CONEstrip algorithm to R0 := {Dφ,pφ

: φ ∈ Φ}
and f identically zero: there is a satisfying probability mass function if and only
if the problem is infeasible; no such mass function is explicitly constructed.

This setup can be generalized to conditional probability assessments P (φ|ϕ) =
pφ|ϕ; these correspond to D(φ|ϕ),pφ|ϕ := {φ ∧ ϕ − pφ|ϕϕ, pφ|ϕϕ − φ ∧ ϕ, ϕ}. Given
assessments for a set ΦC of conditional events, the propositional algorithm can be
applied to R0 := {D(φ|ϕ),pφ|ϕ : (φ|ϕ) ∈ ΦC} and f identically zero to determine
whether there exists a satisfying full conditional probability mass function.

A further generalization is to lower (and upper) conditional expectations of
gambles g given as linear combinations of sentences: P (g|ϕ) = pg|ϕ corresponds
to D(g|ϕ),pg|ϕ := {g ∧ ϕ − pg|ϕϕ, ϕ}. When given a set of such assessments, the
propositional CONEstrip algorithm can be applied to check whether they incur
partial loss. Also, in this context, to calculate the lower expectation via natural
extension for a gamble h conditional on an event ξ, we need to include the set
Dξ := {−ξ, 0, ξ} in the representation R0, use f := h ∧ ξ, and maximize the
objective μξ − μ−ξ.

5 Conclusions
We presented an algorithm for checking consistency of and doing inference with
uncertainty models based on fully general finitely generated sets of desirable gam-
bles, with gambles specified as linear combinations of propositional sentences. It
is designed to avoid a sure exponential computational complexity. As far as we
know, it is the first such algorithm presented in the literature.

We have made a preliminary implementation and verified that the algorithm
works. Ongoing work consists in improving the implementation and setting up
numerical experiments to test the practical efficiency relative to the standard
CONEstrip algorithm—for the general problem—and other algorithms—for spe-
cial cases. Further research directions will be determined by their results.
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Abstract. Often, in dynamical systems such as farmer’s crop choices,
the dynamics are driven by external non-stationary factors, such as
rainfall, temperature and agricultural input and output prices. Such dy-
namics can be modelled by a non-stationary Markov chain, where the
transition probabilities are multinomial logistic functions of such external
factors. We extend previous work to investigate the problem of estimat-
ing the parameters of the multinomial logistic model from data. We use
conjugate analysis with a fairly broad class of priors, to accommodate
scarcity of data and lack of strong prior expert opinion. We discuss the
computation of bounds for the posterior transition probabilities. We use
the model to analyse some scenarios for future crop growth.

Keywords: multinomial logistic regression, Markov chain, robust
Bayesian, conjugate, maximum likelihood, crop.

1 Introduction

Imagine we wish to model crop distributions, for instance to predict the likely
effect of a change of an agricultural policy on a farmer’s crop choice. Assume
a finite number of crop types can be planted in a particular parcel of land at
a particular time. Arable farmers generally grow crops in rotation in order to
prevent build-up of pests and diseases, and they aim to maximise yields and profit
margins over the period of the rotation. The most advantageous crops to include
vary with soil type and climate conditions. The rotation is generally driven by the
length of the period required between successive plantings of the most valuable
crop that can be grown, in order to allow pests and diseases to decline to non-
damaging or readily controllable levels. Rotating crops also spreads risk in the
face of weather variability and annual fluctuations in commodity prices.

Future crop rotations may be influenced by climate change, either by affecting
the biology of the crops themselves or the pests and diseases that attack them.
If changes in climate conditions favour one crop over another, this may lead to
changes in profitability of different crops, and hence the balance of the rotation.
Such changes on a large scale may have implications for food security as well
as landscape and environmental impacts. It is therefore of interest to examine
how crop rotations may change in response to future changes in climate, the
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profitability of crops, or other relevant factors. Although we may have a reason-
ably sized database, some crop types are quite rare, and so for those there may
be very few observations. Moreover, prior expert information can be difficult to
obtain. How can we make reasonable inferences about future crop distributions?

In this paper, we investigate the impact of rainfall and crop profit margin
on a farmer’s decision when faced with a choice of wheat, barley, or anything
else. We have already discussed a simpler version of this problem [14]. In this
paper we generalise our method for making reliable inferences from any number
of categorical observations that are modelled using a Markov chain, where the
transition probabilities are influenced by any number of regressors, when both
data and expert knowledge are limited. We perform a robust Bayesian analysis
using a set of prior distributions that are conjugate to the multinomial logit
likelihood. We discuss the computation of bounds for the posterior transition
probabilities when we use sets of distributions.

Standard logistic regression uses a generalized linear model [11] with the in-
verse of the logistic function as link function. Multinomial logit models extend
the standard logistic regression model when we need more than two categorical
outcomes. The model we consider is the baseline category logit model [1].

When we have limited data, we may want to include expert knowledge into
our analysis to improve the quality of our inferences. Bayesian analysis is a
useful way to include expert knowledge, where a prior distribution represents
the expert’s initial uncertainty about the parameters of interest.

However, there are times when specifying a prior distribution is difficult [5,2],
which can be problematic, particularly when data is limited. In such cases, in-
ferences may be quite sensitive to the prior. Therefore, robust Bayesian analysis
uses a set of prior distributions to more accurately represent prior uncertainty.
This results in a set of posterior distributions which is then used for inference,
resulting in bounds on probabilities and expectations. There is a large body of
work on probability bounding [5,9,2,15]. We follow a similar approach to the
imprecise Dirichlet model [16] to make robust inferences from categorical obser-
vations, using a near-vacuous set of prior distributions.

Performing a robust Bayesian analysis can often be computationally intensive.
Wediscuss an efficientbutapproximate approach to estimating theposterior values
of the parameters in this paper, using maximum a posteriori (MAP) estimation.

We use conjugate priors in our analysis. Diaconis and Ylvisaker [8] introduced
the theory of conjugate priors for exponential families. Chen and Ibrahim [6] used
this work to propose a conjugate prior for generalized linear models, including
logistic regression. Our approach is inspired by Chen and Ibrahim.

The novel contributions of this paper are:

1. We extend our model to cope with any (finite) number of categories.
2. We also extend the model to allow any (finite) number of regressors.
3. We perform some dynamic simulations of various deterministic scenarios.

This paper is structured as follows. Section 2 introduces the model. Section 3
describes the conjugate distributions, and discusses the parameters of the model.
Section 4 explains the posterior inference and explores computation when using
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sets of distributions. In section 5 we perform some calculations with the model.
Section 6 concludes the paper, and details areas of future research.

2 Multinomial Logit Model

We model crop rotations on a particular field as a non-stationary Markov chain,
with J states, corresponding to J crop choices. Denote time by k. The crop grown
at time k is denoted Yk. This choice is influenced by regressorsXk0, Xk1, . . . , XkM ,
and previous crop choice Yk−1. As usual in a regression analysis, we set Xk0 = 1.
Thus, we have the vector of regressorsXk = (1, Xk1, . . . , XkM ). For example, we
will investigate the impact of rainfall prior to sowing (Xk1), and the difference
in profit margin between wheat and barley prior to sowing (Xk2), on a choice
between wheat, barley, and any other crops (so J = 3). Repeated or heavy rain-
fall not only delays or prevents sowing at the desirable time period but can also
cause soil erosion [4]. The differences between profit levels of wheat and barley
would underpin a farmer’s economic decision-making. We denote the transition
probabilities by:

πij(x) := P (Yk+1 = j|Yk = i,Xk = x) (1)

The vector x contains the values of the regressors, i represents the farmer’s
previous crop choice, and j the farmer’s current crop choice. We assume a multi-
nomial logistic regression model for πij(x), with J2(M + 1) model parameters
βijm, where i ∈ {1, . . . , J}, j ∈ {1, . . . , J}, m ∈ {0, . . . ,M}:

πij(x) :=
exp(βijx)∑J

h=1 exp(βihx)
(2)

where we use the notation βijx =
∑M

m=0 βijmxm. Without loss of generality we
can set βiJm = 0. We call this the baseline-category logit model [1].

3 Parameter Estimation

3.1 Data

We now wish to estimate the parameters of the model, given some data. We
have ni(x) observations where the previous crop was i, and the regressors were
x. Obviously ni(x) will be zero at all but a finite number of x ∈ X , where
X := {1} × RM . Of these ni(x) observations, the crop choice was j in kij(x)

cases. Obviously, ni(x) =
∑J

j=1 kij(x) for each i. Table 1 shows an extract from
the data set.

3.2 Likelihood

The likelihood of our model is:

p(k|x, n, β) =
J∏

i=1

∏
x∈X

(
ni(x)

ki1(x), . . . , kiJ (x)

) J∏
j=1

πij(x)
kij (x) (3)
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Table 1. Crop rotation data

profit current
previous margin crop current current current
crop rain difference total wheat barley others
i x1 x2 ni(x) ki1(x) ki2(x) ki3(x)

1 76 93 1 1 0 0
2 15 156 1 1 0 0
1 19 115 1 0 1 0
3 6 129 1 0 1 0
...

...
...

...
...

...
...

For conjugate analysis, we rewrite this directly as a function of the parameters:

∝
J∏

i=1

exp

⎛⎝∑
x∈X

⎡⎣⎛⎝ J∑
j=1

kij(x)βijx

⎞⎠− ni(x) ln

J∑
j=1

eβijx

⎤⎦⎞⎠ (4)

3.3 Conjugate Prior and Posterior

Following [3, p. 266, Proposition 5.4], we can now simply define a conjugate prior
distribution for our model parameters:

f0(β|s0, t0) ∝
J∏

i=1

exp

⎛⎝∑
x∈X

s0i(x)

⎡⎣ J∑
j=1

t0ij(x)(βijx)− ln

J∑
j=1

eβijx

⎤⎦⎞⎠ (5)

where s0i and t0ij are non-negative functions such that s0i(x) = t0ij(x) = 0 for

all but a finite number of x ∈ X , with 0 ≤ t0ij(x) ≤ 1 and
∑J

j=1 t0ij(x) = 1 on
those points x where s0i(x) > 0.

We can update our prior distribution to the posterior distribution in the usual
way:

f(β|k, n, s0, t0) = f0(β|sn, tn) (6)

where

sni(x) :=s0i(x) + ni(x) tnij(x) :=
s0i(x)t0ij(x) + kij(x)

s0i(x) + ni(x)
(7)

Note that the subscript n here simply denotes the fact we are considering
posterior hyperparameters, as opposed to the prior hyperparameters which are
denoted by subscript 0. This is standard practice in conjugate analysis [3].
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4 Inference

4.1 Posterior Transition Probability

To study future crop rotation scenarios, we are mostly interested in the posterior
transition probability:

π̂ij(x) := P (Yk+1 = j|Yk = i,Xk = x, k, n, s0, t0) (8)

=

∫
RJ2×(M+1)

πij(x)f(β|k, n, s0, t0) dβ (9)

=

∫
RJ×(M+1)

πij(x)f(βi|ki, ni, s0i, t0i) dβi (10)

where it is worth recalling that πij(x) is a non-linear function of our model
parameters β. We are interested in evaluating Eq. (10). The challenge is the
evaluation of the integral. We have a number of options.

We can evaluate the integral numerically, for example using an MCMCmethod.
However, as eventually we want to use sets of distributions, this may not neces-
sarily be the most sensible route to take. We have performed an initial analysis
using an adaptive Metropolis-Hastings algorithm, but it was very slow, even
for small J and M . Of course, there are advanced MCMC methods which may
speed things up, but that goes beyond the scope of this paper. A more detailed
analysis, including full MCMC simulation, is planned.

Therefore, we may prefer to rely on faster approximations of the integral. We
could approximate the prior by a multivariate normal distribution. Chen and
Ibrahim [6] showed that for large sample sizes, in the specific case where J = 2,
this approximation yields good results. Whilst the mean is easily approximated
by the mode, the covariance structure is less obvious (see [6, Theorem 2.3]).

A more crude but very fast approximation is to use the MAP estimate for β,
and to assume that all our probability mass is at this estimate. We obtain an
estimate β∗ of β, and then our estimate of π̂ij is simply:

π̂ij(x) :=
exp(β∗

ijx)∑J
h=1 exp(β

∗
ihx)

(11)

This approximation is obviously horribly crude, but we note that it corre-
sponds to the maximum likelihood estimate, where the data has been augmented
with pseudo counts. Hence, it reflects current practice quite well. In the rest of
this paper we will use the MAP approach.

4.2 Sets of Prior Distributions

We now want to propose sets of prior distributions, in a similar vein to Walley’s
imprecise Dirichlet model [16]. For now, we study the inferences resulting from
a fixed prior function for s0i(x), namely:

s0i(x) :=

{
s if x ∈ X,

0 otherwise,
(12)
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for some finite set X ⊂ X , and a vacuous set T of prior functions for t0. X is
the set of regressor values where we specify prior beliefs. As in the imprecise
Dirichlet model [16, Section. 2.5], smaller values of s typically produce tighter
posterior predictive bounds.

Perhaps this deserves some explanation. For conjugate analysis with a likeli-
hood from a full rank exponential families, such as multinomial sampling, the
predictive expectation is a convex combination of the natural statistic and its
corresponding hyperparameter [8, eq. (2.10)], where s controls the weight on
the prior. In such cases, smaller values of s always produce tighter posterior
predictive bounds provided that the prior predictive is vacuous. However, our
likelihood comes from an exponential family that does not have full rank. Conse-
quently, the predictive MAP estimate depends on the hyperparameters t0 and s
in non-linear and possibly even non-monotone ways. As such, situations where a
smaller s value produces wider posterior predictive bounds cannot be excluded.
Nevertheless, we have never observed such behaviour in any of our numerical re-
sults. An intuitive explanation for this is that s still relates to the prior variance,
and hence, still weighs the influence of the prior on the posterior predictive.

4.3 Posterior Transition Probability Bounds

If we can find a MAP estimate for all t0 ∈ T, we obtain a set B∗ of solutions
β∗, one for each t0 ∈ T. Each member of B∗ corresponds to an estimate of the
posterior transition probability, as in Eq. (11). Therefore;

π̂ij(x) ≈ inf
β∗∈B∗

exp(β∗
ijx)∑J

h=1 exp(β
∗
ihx)

π̂ij(x) ≈ sup
β∗∈B∗

exp(β∗
ijx)∑J

h=1 exp(β
∗
ihx)

(13)

are the desired lower and upper posterior approximations of the transition prob-
ability.

4.4 Choice of T

The choice of T affects the posterior inferences. We follow a similar approach to
that of the imprecise Dirichlet model [16]. We are dealing with situations with
very little prior expert information, and so we identify a reasonably vacuous set
of prior distributions. One such way of achieving this is by choosing:

Tv := {t0 : t0ij(x) = 0 when x /∈ X,

0 < t0ij(x) < 1,

J∑
j=1

t0ij(x) = 1 when x ∈ X} (14)

for each i. However, for high dimensional problems, this is somewhat computa-
tionally involved. We will restrict ourselves to the extreme points of Tv, namely:

T′
v := {t0 : t0ij(x) = 0 when x /∈ X,

t0ij(x) ∈ {0, 1},
J∑

j=1

t0ij(x) = 1 when x ∈ X} (15)
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for each i. It is easy to see that even the size of this set can become large very
quickly for higher dimensional problems, making the speed of computation even
more important. Of course, the inferences we make can be made more precise by
choosing a less general set. However, we want to build a model which can still
make reasonable inferences when faced with a severe lack of prior information.
Hence, from here on in, we proceed with using T′

v.

5 Example

We now use our model to explore the relationship between crop choice, rainfall,
and profit margin difference for a region in England. Our dataset consists of
1000 observations of crop rotations [13], rainfall [10], and the crop profit margin
difference between wheat and barley [12].

Firstly, we will use the model to estimate π̂ij(x) and π̂ij(x) as in Eq. (13).
We use T′

v, and set s = 2. Figures 1 and 2 show the results. The black box
represents π̂ij(x), while the grey box shows π̂ij(x) for i = 1, 2 and j = 1, 2, 3.
Note, that we have omitted the graph for i = 3 due to space requirements.
We show results for various levels of rainfall and profit margin difference. For
example x = (1, 10, 70) shows the transition probabilities for low rainfall and
low profit margin difference, while x = (1, 10, 140) shows transition probabilities
for low rainfall and high profit margin difference, and so on.
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Fig. 1. Transition probabilities when previous crop grown is wheat (i = 1)
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Fig. 2. Transition probabilities when previous crop grown is barley (i = 2)

The obvious result to note is that, generally, the transition probability is
highest for planting the same crop twice in a row. Changes between transition
probabilities at different levels of rainfall and profit margin difference are not as
obvious, but they do exist. For example, when the previous crop is wheat, the
probability of the next crop being wheat increases with profit margin difference,
which is a logical result. We also see that when the previous crop is wheat, the
probability of the next crop being wheat increases with rainfall too. Strangely,
when the previous crop grown is barley, the model suggests we are more likely to
grow barley again even as the profit margin difference increases. This is counter-
intuitive, but it perhaps suggests that there are other factors at play other than
rainfall and profit, which future work will investigate.

We now consider future crop distributions. For this we use the imprecise
Markov chain. Calculations use the methodology for imprecise Markov chains
developed in [7]. Our initial distribution is calculated empirically from the data.
It is 32% wheat, 13% barley, and 55% others. We also require future scenarios
for rainfall, and the profit margin difference between wheat and barley. For
ease, we assume the scenarios are constant in time. We consider two scenarios—
the rainfall and profit margin difference are low, and the rainfall and profit
margin difference are high. Figure 3 shows the results. We see that when the
rainfall and profit margin difference remain low, the probability of wheat will
decrease. The opposite is true when the rainfall and profit margin difference
remain high. The probability of growing barley remains reasonably level. As
expected, the probability bounds widen as time increases. Of course, these results
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Fig. 3. Future crop distributions under different constant scenarios

aren’t particularly realistic, as rainfall and crop profit margins are not stationary
in time. Future analysis is planned.

6 Conclusion

We extended previous work to be able to model multiple crop choices and multi-
ple regressors.We proposed a model for multinomial imprecise logistic regression,
using sets of conjugate prior distributions, to get bounds on the posterior tran-
sition probabilities of growing wheat, barley or anything else, as functions of
rainfall and the difference in profit between wheat and barley.

We care about robustness because, for certain rare crop types, very little data
is available. By using sets of prior distributions, our approach allows us to make
robust inferences even from near-vacuous prior information.

For computational reasons, we use MAP estimation to approximate the actual
posterior expectation. Other options, such as MCMC, are computationally far
more complex.

The application of this work to crop rotation modelling is still at an early stage.
Farmers are faced with more than just three crop choices, and there are other vari-
ables that effect their choice. Furthermore, the future is not a fixed constant in time.
Indeed, land use in the United Kingdom is strongly influenced by the EU’s Com-
mon Agricultural Policy (CAP), which affects the relative profitability of different
alternative land uses through subsidies. The model can be used to evaluate the im-
pact of recent CAP reforms, such as the decoupling of direct payments from crop
production, with farmers no longer required to produce commodities to be entitled
to support, but to keep land in good environmental condition. In particular, as the
decoupling has aligned EU prices for cereals with world prices, the model can be
used to study the effect changes in world prices has on arable rotations. Providing
that suitable data is available, the model can also be used to predict the impact of
any future CAP reforms, or to analyse how the frequency of crops following wheat
varies under different circumstances – wheat being the most valuable crop grown
over much of the UK arable area – a question particularly interesting to land use
analysts. Future work will investigate issues such as these.
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Abstract. Evidential networks are frameworks of interest commonly
used to represent uncertainty and to reason within the belief function for-
malism. Despite their success in handling different uncertain situations,
the exponential computational complexity which occurs when carrying
out the exact inference in these networks makes the use of such models
in complex problems difficult. Therefore, with real applications reaching
the size of several tens or hundreds of variables, it becomes important
to address the serious problem of the feasibility of the exact evidential
inference. This paper investigates the issue of applying an approximate
algorithm to the belief function propagation in evidential networks.

1 Introduction

Bayesian networks [11,13] are powerful tools for representing uncertainty using
probability. These probabilistic graphical models are especially effective for de-
scribing complex systems when a complete knowledge of their states is available.
If not, the use of alternative to probabilistic networks like possibilistic [4], credal
[6] and evidential networks [2,22] is more appropriate. Evidential graphical mod-
els have gained popularity in the last decade as a tool for modeling uncertain
human reasoning in a large variety of applications including reliability analysis
[23] and threat assessment [3], and have provided a suitable framework for han-
dling imprecise probabilities [18]. One of the most commonly used models in the
evidential setting is the Evidential Network with Conditional belief functions
(ENC) [22]. The propagation algorithm in this network is restricted to graphs
with only binary relations among variables. In order to deal with n-ary relations
between variables, a generalization of ENC, called Directed EVidential Network
with conditional belief functions (DEVN) was formalized in [2].

Intuitively, a DEVN is represented by a directed acyclic graph (DAG) G
which consists of a set N= {N1, . . . ,Nn} of nodes and a set E= {E1, . . . , Em} of
edges. Instead of probabilities, uncertainty is expressed in a DEVN by defining
a conditional belief function BelNi

for each node Ni in the context of its par-
ents. The major challenge in this model has been to limit the computational
complexity of the following belief chain rule which computes the global belief
function BelN1,...,Nn by combining all the conditional belief functions BelNi

in
this network using repeated application of Dempster’s rule of combination1:
1 Dempster’s rule of combination is traditionally interpreted as an operator for fusing
belief functions (see Section 2).
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BelN1,...,Nn = BelN1
⊗ . . .⊗ BelNn (1)

where symbol ⊗ denotes the operator of Dempster’s rule of combination (DRC).
One main and significant reason for the popularity of the DEVNs is their

ability of modeling cases of partial and complete ignorance.
Despite this advantageous feature, the computational complexity of the exact

inference in these models makes sometimes the reasoning process intractable.
In fact, to avoid computing explicitly the global belief function using equation
(1), the exact methods proposed for inference in these networks are based on
the local computation technique [2]. Under these inference methods, DRC is the
pivot mechanism for the propagation of belief functions.

In [12], Orponen has proved that the exact computation of a belief function
Bel which is the combination of d given belief functions Bel1,. . . ,Beld using DRC
is a #P-complete problem. Since the number of variables in the evidential
networks modeling real applications is usually large, and the size of variables’
domains grows exponentially with their number, the reasoning process tends to
be infeasible. This is due to the exponential explosion problem of the combination
operation which is in the core of this process.

Many works have gotten around the computational problem of DRC by con-
sidering approximate techniques. Barnett has shown that for a very special case,
it is possible to compute the combined belief Bel in linear time [1]. In [7], Bar-
nett’s approach has been extended to allow dealing with another case: the hier-
archical case. However, Shafer and Logan have shown in [15] that this case can
be tackled more efficiently and a generalization of their algorithm was proposed
for belief function propagation in Markov trees [17] having a small product space
associated with the largest clique, a condition that cannot be always satisfied. In
[21], an alternative approach using the Monte Carlo algorithm was developed for
an approximate calculation of belief functions combination. The computational
complexity of this calculation is linear. Motivated by this result, we present in
this paper an algorithm for belief function propagation in DEVNs based on the
Monte Carlo method for calculating combined belief functions. To the best of
our knowledge, this is the first algorithm dealing with inference in these eviden-
tial networks by approximating combination of belief functions to improve the
complexity of the propagation algorithm.

The paper is organized as follows: Section 2 reviews the main concepts of the
evidence theory and the DEVN. Section 3 presents the Monte Carlo algorithm.
The exact inference algorithm in DEVN is presented in section 4 while our pro-
posed approximate algorithm for belief function propagation in these networks
is developed in section 5. Experimental tests are presented in section 6.

2 Evidence Theory and Directed Evidential Networks
with Conditional Belief Functions: Background

The evidence theory [14,19] is a general framework for reasoning under uncer-
tainty based on the modeling of evidence.
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Definition 1. Let N= {N1, . . . ,Nn} be a set of random discrete variables. Each
variable Ni in N assumes its values over a finite space ΘNi

, named the frame of
discernment.

Definition 2. All possible subsets S of ΘNi are elements of its power set which

is denoted by 2ΘNi and formally defined as 2ΘNi={S : S ⊆ ΘNi}.
Definition 3. A mass function or a basic belief assignment (bba) m

Ni
defined

over ΘNi
is a mapping from the power set 2ΘNi onto the interval [0,1] such as:∑

S⊆ΘNi

m
Ni
(S) = 1 (2)

where m
Ni
(S) is the mass or the degree of belief to support a subset S of ΘNi

.

A subset S of ΘNi
for which the mass m

Ni
(S) > 0 is called a focal element.

Definition 4. A bba can be equivalently represented by a non additive measure:
a belief function. Given a bba m

Ni
associated with a variable Ni, the belief in

a subset S of ΘNi , denoted by BelNi(S), represents the total belief committed
to S without being also committed to S. BelNi

(S) is obtained by summing the
masses of all the subsets Q of S. It is defined as follows:

BelNi
(S) =

∑
Q⊆S,Q�=∅

m
Ni
(Q) (3)

Definition 5. Let X and Y be two disjoint subsets of N. Their frames, denoted
by ΘX and ΘY , are the Cartesian product of the frames of the variables they
include, respectively. Let m

X
be a mass function defined over ΘX . The vacuous

extension of m
X

to ΘX × ΘY
2 produces a new mass function m

XY
defined as

follows:
m

X↑XY
(S′) =

{
m

X
(S) if S′ = S ×ΘY , S ⊆ ΘX

0 otherwise
(4)

Definition 6. Suppose m
X
and m

Y
are two mass functions defined on the spaces

ΘX and ΘY , respectively. The combination of m
X

and m
Y

into a single mass
function m

XY
, can be done, ∀S ⊆ ΘX×ΘY , using the following DRC:

m
XY

(S) = (m
X
⊗m

Y
)(S) =

∑
S1∩S2=S

m
X↑XY

(S1)×m
Y ↑XY

(S2)

1−
∑

S1∩S2=∅
m

X↑XY
(S1)×m

Y ↑XY
(S2)

(5)

where both m
X↑XY

and m
Y ↑XY

are computed using the equation (4).

Definition 7. Directed evidential networks with conditional belief functions

(denoted as DEVNs) combine the evidence theory and graphs for representing
uncertain knowledge. A DEVN defined over the set of variables N consists of

2 × denotes the Cartesian product.
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two representational components: (i) a DAG G whose nodes are in one-to-one
correspondence with random variables in N and whose edges represent depen-
dency relationships between these variables, and (ii) a set of local parameters
expressing the uncertain information in G. A parameter must be specified:

1. for each root node Ni in G. This parameter is an a priori mass function m
Ni

defined over ΘNi
using the equation (2).

2. for each parent node Nj of each child node Ni in G. This parameter is a
conditional mass function m

Ni
[Nj] defined over Ni conditionally to its parent

Nj.

3 The Monte Carlo Algorithm to Approximate the DRC

The Monte Carlo algorithm for approximating the results of the DRC was de-
veloped by Wilson in [21]. This algorithm is based on the hint representation,
which is used for modeling the uncertainty in the theory of hints [9].

3.1 Theory of Hints

The theory of hints [9] is a mathematical interpretation of the evidence the-
ory based on probability theory. In this theory, uncertain information about a
particular variable A is represented by a hint HA over its frame of discernment.

Let ΘA = {θ1A, . . . ,θzA} be the frame of discernment of the variable A.
The hint HA is defined to be a quadruple (ΩA,PA,ΓA,ΘA). ΩA = {ω1, . . . , ωx}
is a finite set of different possible interpretations, such as for each focal element
S ⊆ ΘA, there is an interpretation ωu ∈ ΩA. In other words, if ωu ∈ ΩA is
a correct interpretation, then the correct value taken by A belongs to a subset
ΓA(ωu) ⊆ ΘA, where ΓA is a compatibility function which assigns to each pos-
sible interpretation in ΩA the corresponding focal element. PA is a probability
distribution which assigns a probability pA(ωu) to each possible interpretation
ωu ∈ ΩA. The probability assigned by PA to each interpretation is in fact the
mass of the corresponding focal element.

To better understand the representation of the hint, let us consider a variable
A taking three values in ΘA = {θ1A,θ2A,θ3A}.

Its mass function is defined as follows: mA({θ1A})=0.2; mA({θ1A,θ2A})=0.1;
mA({θ1A,θ2A,
θ3A})=0.3 and mA({θ2A,θ3A})=0.4.

The corresponding hint HA is expressed by the quadruple (ΩA,PA,ΓA,ΘA)
where ΩA = {ω1, ω2, ω3, ω4} contains exactly four interpretations corresponding
to the four focal elements, the compatibility function ΓA associates to each in-
terpretation ωu ∈ ΩA the corresponding focal element as follows:
ΓA(ω1) = {θ1A}; ΓA(ω2) = {θ1A,θ2A}; ΓA(ω3) = {θ1A,θ2A,θ3A} and ΓA(ω4) =
{θ2A,θ3A}, and the probability function PA associates to each interpretation ωu ∈
ΩA the probability pA(ωu) representing the mass of the corresponding focal el-
ement. Formally, pA(ωu) = mA(ΓA(ωu)). Thus, the probabilities are as follows:
pA(ω1) = mA(ΓA(ω1)) = 0.2; pA(ω2) = 0.1; pA(ω3) = 0.3 and pA(ω4) = 0.4.
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The evidence relative to a given proposition S ∈ 2ΘA is defined in the theory
of hints by:

mA(S) =
∑

ωu∈ΩA:ΓA(ωu)=S

pA(ωu) (6)

The corresponding belief function is then defined as follows:

BelA(S) =
∑

ωu∈ΩA:ΓA(ωu)⊆S

pA(ωu) (7)

For combining d hints H1
A, . . . , H

d
A defined over the same frame of discernment

ΘA, where each hint Hk
A (k=1, . . . , d) is expressed by (Ωk

A,P
k
A,Γ

k
A,ΘA), the DRC

can be used to obtain the resulting hint HA as follows:

HA = H1
A ⊗ . . .⊗Hd

A (8)

HA is defined by the quadruple (ΩA,PA,ΓA,ΘA), where:
ΩA = Ω1

A × . . .×Ωd
A, ΓA and PA assign to each interpretation ω = (ω1, . . . , ωd)

of ΩA the corresponding focal element and probability, respectively, by the fol-
lowing equations:

ΓA(ω) =

d⋂
k=1

Γ k
A(ω

k) (9) pA(ω) = p′(ω)/p′(ΩA) (10)

where ωk ∈ Ωk
A and p′(ω) =

∏d
k=1 p

k
A(ω

k).

Let X and Y be two disjoint subsets of the set of variables N, having the frames
ΘX and ΘY , respectively. A hint HX =(ΩX , PX , ΓX , ΘX) defined on ΘX can be
extended to ΘXY = ΘX ×ΘY by simply replacing ΓX(ω), where ω ∈ ΩX , with
ΓX↑XY (ω) = ΓX(ω) × ΘY . The resulting hint HXY = (ΩX , PX , ΓX↑XY , ΘXY )
is called the vacuous extension of HX from ΘX to ΘXY .

3.2 The Monte Carlo Algorithm Principle

Let Bel1A, . . . ,Bel
d
A be d belief functions defined on the frame ΘA, and let BelA

be their combination using the Monte Carlo algorithm (MCA).
Using the hint representation (see Section 3.1), each belief function BelkA

(k=1, . . . , d) is represented by its corresponding hint Hk
A (k=1, . . . , d) which is

defined by the quadruple (Ωk
A,P

k
A,Γ

k
A,ΘA).

Let HA = (ΩA,PA,ΓA,ΘA) denote the hint representation of BelA, where
ΩA = Ω1

A × . . . × Ωd
A. For ω ∈ ΩA, where ω = (ω1, . . . , ωd) and ωk ∈ Ωk

A, ΓA

and PA are defined using equations (9) and (10), respectively.
For a subset S ⊆ ΘA, BelA(S) is defined in the theory of hints as follows:

BelA(S) = pA(ΓA(ω) ⊆ S|ΓA(ω) �= ∅) (11)

To compute BelA(S) for a subset S ⊆ ΘA, the MCA simulates the last equa-
tion by repeating a large number of trials T, where for each trial this algorithm:
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(1) picks randomly an element ωk from each set of interpretations Ωk

A, where
k=1,. . . ,d, to get an element ω = (ω1, . . . , ωd) ∈ ΩA.

(2) repeats (1) if ΓA(ω) = ∅, till ΓA(ω) has been a non-empty set.

(3) checks the trial’s success: if ΓA(ω) ⊆ S, then the trial succeeds and the
number of trials that succeed TS3 is incremented by 1, otherwise it fails.

BelA(S) is then estimated by the average value of TS over the T trials. In
fact, Wilson has proved that the proportion of trials that succeed converges to
BelA(S) [21].

Although the use of the MCA for combining beliefs has been suggested in
[11], no work has exploited it in evidential networks for the belief function prop-
agation. In the sequel, we use MC to denote the combination using the MCA.

4 Exact Inference in Directed Evidential Networks with
Conditional Belief Functions

The key problem in DEVNs is to perform the evidential inference, which in-
tuitively means computing the marginal belief Bel(Ni) of a particular node Ni.
Let N={N1, . . . ,Nn} be a set of variables in the graphical representation G of a
DEVN taking their values over the frames of discernment ΘN1

, . . . , ΘNn
. Reason-

ing by computing directly the global belief function over the Cartesian product
ΘN1

× . . .×ΘNn
using equation (1) and then marginalizing it to the frame ΘNi

of
the variable Ni is impractical for the computational problems of DRC presented
previously. Algorithms for inference in DEVNs were developed in [2] based on the
local computation technique to solve these problems. These methods for propa-
gation of beliefs in DEVNs perform inference by using a computational structure
namely the modified binary join tree (MBJT) [2] which is an adaptation of the
binary join tree (BJT) proposed by Shenoy in [16].

The main idea is to delete all loops from G gathering some variables in a
same node. The resulting MBJT is a tree G’=(N’,E’) where each node in N’ is a
non-empty subset of N, the set of nodes in the graphical representation G. This
tree satisfies the Markovian property according to which, if a variable belongs to
two different nodes in N’, then it belongs to all the nodes in the path between
them. Two kinds of nodes in N’ can be defined as:

(i) nodes or clusters formed by a subset S of nodes in G (i.e S ⊆ N). These nodes
are called joint nodes, and uncertainty in them is given in terms of joint belief
functions defined over the frame of discernment ΘS of the variables in S.

(ii) nodes formed by a subset S of nodes in G, such as S contains a particular
child node Ni and its parents in G. These nodes are called conditional nodes
since there is a conditional dependency relation between variables in the
subset S. Uncertainty is expressed in these nodes in terms of conditional
belief functions over the frame of discernment of the child node.

3 The number of trials that succeed TS=0 in the beginning.
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In this paper, only the essential elements about a formal treatment on building
MBJTs are provided, and the reader is referred to [2] for more details.

For the evidential inference in a DEVN G, a message-passing algorithm be-
tween neighboring nodes is carried out in the corresponding MBJT G’ and
computations are performed locally. This message-passing algorithm has three
phases: an initialization phase (IP), a transferring-message phase (TMP) during
which an inward and an outward phases are performed in the tree G’, and a
computation-marginals phase (CMP) during which the algorithm calculates the
marginal belief distribution for every desired variable in the graph. The message-
passing algorithm in MBJT is more detailed in [2].

5 Approximate Inference in DEVNs by the MCA

Exact reasoning in DEVNs involves the application of the DRC to perform the
combination operation which is the pivot mechanism for belief propagation. It is
noteworthy to mention that computations using this rule are performed locally
only in the joint nodes of a MBJT over the frame of discernment of the vari-
ables forming them [2]. We must also mention that conditional nodes showing
conditional dependency relationships among the variables forming them do not
perform any computation during the TMP and they are not concerned with the
application of the DRC. The complexity of the exact inference in a DEVN is
exponential in the maximum joint node size of its corresponding MBJT [10].

The inference algorithm we propose is based on the use of the MCA to approx-
imate the combined belief functions of joint nodes. This proposal is motivated
by the good accuracy and computational complexity this algorithm has [21]. In
general, the amount of computation the MCA requires, increases linearly with
the number of belief functions (NBF) being combined and also with the size
of the frame of discernment (SF), while the amount of computation the DRC
requires increases exponentially with NBF and SF.

The main idea of our approximate algorithm is to reduce the amount of com-
putation resulting from the use of the DRC during the message propagation
process in the DEVNs.

The phases that take most of the time in the exact message propagation
algorithm are TMP and CMP since only both of them require the application
of the DRC. That is why, these two phases are the focus of our approximation.

The approximate inference algorithm works by first transforming the DAG
G defining the graphical component of the DEVN into a MBJT G’, using the
different construction steps of the standard MBJT generation algorithm [2], then
by message passing up and down the tree G’. The principle of propagation of
messages is similar to that used in the exact inference method. The difference
is that the large amount of calculation resulting from the use of the DRC is
moved outside the new propagation algorithm which switches from the DRC to
the MCA whenever it is necessary to perform the combination operation.

The basic MCA, presented in Section 3.2, combines belief functions defined
on the same frame of discernment. So, to allow the application of this algorithm
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for the belief propagation in DEVNs, we must extend it by allowing the be-
lief functions being combined to be defined on different frames. To do that, if
Bel1, . . . ,Beld, denoting the belief functions to be combined, are defined on the
frames Θ1, . . . , Θd, respectively, then to MC -combine them using the MCA, we
must:

(1) represent each belief Belk (k=1, . . . , d) by its hint Hk = (Ωk,P k,Γ k,Θk).

(2) vacuously extend each hint representation Hk defined over Θk (k=1, . . . , d)
to the joint frame Θ = Θ1 × . . .×Θd (The vacuous extension of a hint was
presented in Section 3.1).

(3) Let Bel denote the combination of Bel1, . . . ,Beld and let H=(Ω,P ,Γ ,Θ) be
its hint representation, where Ω=Ω1× . . .×Ωd, and P and Γ are computed
using equations (10) and (9), respectively. For each subset S ⊆ Θ, compute
Bel(S) by simulating the equation Bel(S)= p(Γ (ω) ⊆ S|Γ (ω) �= ∅), where
ω ∈ Ω, using the three steps of the MCA presented in Section 3.2.

Our approximate message passing algorithm, based on the MCA, has the
same skeleton as the exact one. So, in order to distinguish these two algorithms,
we call ours MCMP which means Monte Carlo Message Passing algorithm and
we refer to the exact one as EMP which means Exact Message Passing algorithm.

The MCMP is divided into 3 phases:

(1) an initialization phase (IP) during which the algorithm associates each
conditional belief distribution in G with the corresponding conditional node
in G’ and each a priori one with the corresponding joint node (same as in
EMP).

(2) a transferring-message phase (TMP) during which the algorithm:

(a) picks a node in G’ and designates it as a root node R (same as in EMP)

(b) applies an inward phase by collecting messages from the leaves towards
R. When a node N’i in G’ receives messages from all its inward neighbors,
it updates its marginal belief by MC -combining its initial belief with all

the received belief functions (i.e. the received messages), then it sends a
message to its only neighbor towards the root. This phase ends when R
collects from all its neighboring nodes the inward messages, and updates
its marginal by MC -combining them with its initial belief function.

(c) applies an outward phase by distributing messages away from R towards
each leaf node in G’. Each node waits for the outward message from its
neighbor, and upon receiving it, it updates its marginal by MC -combining

its own belief distribution with all the received messages, and sends a
message to each node from which it received a message in step (b).

(3) a computation-marginals phase (CMP) during which the approximate
algorithm calculates the marginal distribution for every desired variable in
the graph by MC -combining its own belief function with all the inward mes-

sages and also the outward message received from all its neighbors during
steps (b) and (c) of the transferring-message phase.
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6 Experiments

In this section, we aim to test experimentally the performance of the MCMP
and to compare it with the EMP efficiency. To perform the tests, we have used
a benchmark made of two networks modeling two classical systems in the re-
liability field, namely the 2-out-of-3 system and the bridge system [20], with
4 and 12 variables, respectively. The first model is singly-connected while the
second one is multiply-connected. Adding to these two networks, we have also
used other DEVNs having from 30 to 50 nodes. These networks are defined via
random topologies which may either be singly-connected or multiply-connected.
The number of states for each variable in the two models representing the two
systems is set to 2. For the other random networks, the number of states is ran-
domly picked from the range [4,10]. The maximum number of links per node is
fixed to 4.

All the models are quantified by belief functions which are also randomly
generated using the algorithm proposed in [5] for random generation of mass
functions. For the MCMP, we have made tests on each network using different
values for the number of trials T.

Table 1. Experimental results

Networks NT MCMP\ EMP T CPUT Distance

The 20 100 19 secs 0.023
2-out-of-3 20 MCMP 1000 30 secs 0.0032
System 20 10000 2 mins 0.89 ∗ 10e− 003
Network - EMP - 18 secs -
The 20 100 28 secs 0.166

Bridge 20 MCMP 1000 45 secs 0.045
System 20 10000 4 mins 0.009
Network - EMP - 28 secs -
30-50 10 100 20 mins 0.047

Random 10 MCMP 1000 53 mins 0.0012
Singly-Conn 10 10000 2 hours 0.0004
Networks - EMP - 3 hours -
30-50 10 100 54 mins 0.112

Random 10 MCMP 1000 1 hour 0.0058
Multiply-Conn 10 10000 2 hours 0.0001

Networks - EMP - 4 hours -

Before commenting on the results in Table 1, note that for each network, the
MCMP is tested several times for each fixed number of trials T. The second
column shows the number of tests (NT) for each network. The fourth column
shows the number of trials (T), and the fifth one shows the average central
processing unit time (CPUT).
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Based on the results presented in the table, we notice that for the two networks
modeling the 2-out-of-3 and the bridge systems, the MCMP is not outperforming
the EMP in terms of running time. We believe that this is due to the fact that
DRC, on which the EMP is based, is still feasible and provides quick answers
to simple problems where the corresponding models consist of small number
of variables with relatively small number of states. This is, also, due to the
relatively high number of trials (T≥100) which prevents rapid response of the
MCA comparing it to the DRC response to such simple problems.

The accuracy of the MCMP was first measured by computing, for each net-
work in the presented benchmark, the dissimilarity between the exact distribu-
tion and the approximate one in each node using Jousselme’s distance [8], which
is one of the most appropriate measures used for calculating the dissimilarity
between two mass functions m1

Ni

and m2
Ni

. This distance is defined as:

d(m1

Ni

,m2

Ni

) =

√
1

2
(m1

Ni

−m2
Ni

)D(m1
Ni

,m2
Ni

) (12)

where D is the Jaccard index defined by:

D(A,B) =

{
0 if A = B = ∅
|A∩B|
|A∪B| ∀A,B ∈ 2ΘNi

(13)

The dissimilarity measure quantifies how much the two distributions are dif-
ferent. The smaller is the dissimilarity, the more accurate is the MCMP. The last
column of Table 1 reports these results, i.e. the upper dissimilarity in each net-
work. The results denote a good accuracy. Even more impressive are the results
of the MCMP with T=10000.

In most cases, the lower dissimilarity is very close to 0, and in some other
cases, it is null which means that approximation is exact for these cases. The ex-
perimental results on the whole benchmark show that the dissimilarity is reduced
when increasing the number of trials.

Experiments show speedup and good accuracy of the MCMP on the random
networks with relatively large number of variables and frames. The results shown
in Table 1, for the randomly generated networks, denote that the MCMP takes
less time than the EMP even with T= 10000. We believe the main reason for
this is the fact that, with large networks, the DRC becomes inefficient in terms
of running times. Indeed, the MCMP produces also good accuracy on the whole
generated networks. For instance, for the randomly generated singly-connected
networks, the upper dissimilarity=0.047 with T=100.

The accuracy of the MCMP was also evaluated by calculating the confidence
intervals for the approximate mass functions. We have especially focused in Table
2 on the exact and the estimated beliefs of three randomly chosen nodes of the
bridge system: N6, N10 and N12. The experimentation depicted in the second row
of the table was conducted on the node N10. The second, the third and the
fourth columns report the masses of the exact distribution, the rest of columns
present the confidence intervals of the masses of the approximate distribution.
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Table 2. Confidence intervals

Nodes EMP MCMP
N6 0.4685 0.4486 0.0705 [0.4817, 0.4947] [0.4373, 0.452] [0.0672, 0.0748]
N10 0.7271 0 0.281 [0.728, 0.7482] [0, 0] [0.2545, 0.2727]
N12 0.7084 0.2429 0.0457 [0.7085, 0.7182] [0.24, 0.2434] [0.044, 0.048]

The results show clearly that the estimated values computing by the MCMP are
closed to the exact ones.

There are cases where the EMP blocks, while the MCMP provides answers.
The corresponding experimentation showed that when the frame of discernment
of the combined beliefs contains 9 values, then combining just two generated
beliefs using the EMP becomes impossible. We increased the number of values
to 15, and the MCMP was only limited by the running-time but did not block.

Unfortunately, we identified some cases where the MCMP is not practical and
we observed that when the conflict between the randomly generated beliefs is
very high, the MCMP becomes unusable.

The preliminary promising results regarding the accuracy and the MCMP
tendency to be speedy relatively with the size of the network and the frames,
invite practical applications of this algorithm for large DEVNs.

7 Conclusion

We have presented in this paper a new algorithm based on the Monte Carlo ap-
proach for approximate evidential networks propagation. The experiments show
that the algorithm can deal efficiently with large networks having large number
of variables and large frames and provides good accuracy results. As a future
work, we intend to test the algorithm on larger networks, and to deal with the
conflict management when combining beliefs by using the Markov Chain Monte
Carlo algorithm in the DEVNs.
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Abstract. We propose two models, one continuous and one categor-
ical, to learn about dependence between two random variables, given
only limited joint observations, but assuming that the marginals are pre-
cisely known. The continuous model focuses on the Gaussian case, while
the categorical model is generic. We illustrate the resulting statistical
inferences on a simple example concerning the body mass index. Both
methods can be extended easily to three or more random variables.

Keywords: bivariate data, categorical data, copula, Gaussian copula,
robust Bayesian, imprecise probability.

1 Introduction

Sklar’s theorem [10] states that any multivariate distribution of k variables can
be expressed through a density on [0, 1]k with uniform marginals—this density
is called a copula—and the marginal distributions of each of the variables. For
this reason, copulas [7] have become an indispensible tool to model and learn
statistical dependence in multivariate models: they allow of estimation of the
dependence structure, separately from the marginal structure.

Estimating dependence requires joint observations, which in many cases are
only available in small amounts, while substantial amounts of marginal data may
be available. For example, when studying the reliability of a system, it is common
to have good information about the reliability of each system component, yet
to have only little information about joint failures [11]. Imprecise probabilities
provide one possible theoretical basis for dealing with small sample sizes, by
representing knowledge as a set of distributions [3,13,1], rather than a single
distribution necessarily based on somewhat arbitrary assumptions [6].

Copulas and imprecise probabilities have been studied in the literature by
various researchers. The Fréchet–Hoeffding copula bounds, which represent com-
pletely unknown dependence, are used for instance in probabilistic arithmetic [16]
and p-boxes [4,12]. One theoretical difficulty is that there is no straightforward
imprecise equivalent of Sklar’s theorem, say, expressing any set of joint distribu-
tions as a sets of copulas along with a set of marginal distributions [9]: it appears
that, when working with sets of distributions, separating the dependence struc-
ture from the marginal structure is a lot more difficult in general.

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 498–507, 2014.
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In this paper, we propose and investigate a few statistical models for ro-
bust dependence learning from limited data. We state an imprecise version of
Sklar’s theorem when marginal distributions are fully known, separating pre-
cise marginals from the imprecise dependence structure. We propose a range of
parametric models for the bivariate categorical case. Finally, we demonstrate
our findings on a toy example: estimating the body mass index from height and
mass data.

Section 2 explores a continuous model, focusing on the multivariate normal
model, while section 3 provides a first exploration of a generic categorical model.

2 Robust Bayesian Correlation Learning for Bivariate
Normal Sampling

We start with revising a simple and well-studied model: sampling from the bi-
variate normal distribution. We will derive some new results that are relevant to
dependence learning. Our analysis starts from Quaeghebeur and De Cooman’s
robust Bayesian framework for sampling from the exponential family [8].

2.1 Inference with Known Mean and Unknown Covariance Matrix

Let Zi := (Zi1, . . . , Zik) be a multivariate normally distributed random variable
with known mean—which we can assume to be zero without loss of generality
through translation of the data—but unknown covariance matrix Σ ∈ Rk×k. A
particular realisation of Zi is denoted by a lower case letter zi := (zi1, . . . , zik) ∈
Rk. The likelihood of an i.i.d. sample z1, . . . , zn is

f (z1, . . . , zn | Σ) ∝ |Σ|−n/2
n∏

i=1

exp

(
−1

2
zTi Σ

−1zi

)
(1)

= |Σ|−n/2 exp

[
−1

2

n∑
i=1

tr
(
ziz

T
i Σ

−1
)]

, (2)

where the data zi ∈ Rk are organised as row vectors, so ziz
T
i is the matrix

containing zi�zi�′ in row � and column �′.
A family of conjugate priors for this density is the family of inverse Wishart

distributions with hyperparameters ν0 > 0 and Ψ0 ∈ Rk×k positive definite [2]:

f (Σ | ν0, Ψ0) ∝ |Σ|−
ν0+k+1

2 exp

[
−1

2
tr
(
Ψ0Σ

−1
)]

. (3)

The posterior distribution is obtained by updating the hyperparameters through

νn = ν0 + n, Ψn = Ψ0 +

n∑
i=1

ziz
T
i . (4)
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The prior expected covariance matrix is given by

E (Σ | ν0, Ψ0) =
Ψ0

ν0 − k − 1
=: Σ0 (5)

and therefore, through conjugacy, the posterior expected covariance matrix is

E (Σ | z1, . . . , zn, ν0, Ψ0) = E (Σ | νn, Ψn) =
Ψn

νn − k − 1
(6)

=
Ψ0 +
∑n

i=1 ziz
T
i

ν0 + n− k − 1
(7)

=
(ν0 − k − 1)Σ0 +

∑n
i=1 ziz

T
i

ν0 + n− k − 1
=: Σn. (8)

For robust Bayesian analysis aiming to learn about the dependence between
two random variables, we now need to identify a reasonable set of prior distribu-
tions, or, in our conjugate setting, a reasonable set of hyperparameters ν0 and
Ψ0.

The formula for the posterior expected covariance matrix shows that ν0 de-
termines our learning speed, that is, how many observations n we need before
starting to move towards our data. So, ν0 is similar to the s value in the im-
precise Dirichlet model [14]. Here too, we will simply assume ν0 to be fixed to
whatever value is judged to lead to a reasonable learning speed. For fixed ν0,
any particular choice of Ψ0 corresponds to a prior covariance matrix Σ0.

Let us now study the bivariate case (k = 2) in more detail. We will write Xi

for Zi1 and Yi for Zi2. We would choose

Ψ0 = ν′0

[
σ2
X ρ0σXσY

ρ0σXσY σ2
Y

]
(9)

where ν′0 = ν0 − k − 1 = ν0 − 3, if we had prior standard deviations σX > 0
and σY > 0 for the two components as well as the prior correlation coefficient
ρ0 ∈ [−1, 1]. For this paper focusing on dependence, we are mostly interested in
cases where the marginals are well known, i.e. well known prior σX and σY , but
unknown prior correlation ρ0. We will therefore study the set of priors with all
parameters fixed, except for ρ0, which we assume to be vacuous a priori. Without
loss of generality, by rescaling, we can assume that σX = σY = 1, leaving us
with just two hyperparameters: ν0 > 0 and ρ0 ∈ [−1, 1].

The posterior covariance matrix becomes

Σn =
1

ν′0 + n

[
ν′0 +
∑n

i=1 x
2
i ν′0ρ0 +

∑n
i=1 xiyi

ν′0ρ0 +
∑n

i=1 xiyi ν′0 +
∑n

i=1 y
2
i

]
. (10)

Provided that the sample variance is approximately equal to the prior variance,
i.e.

n∑
i=1

x2
i ≈ nσ2

X = n,

n∑
i=1

y2i ≈ nσ2
Y = n, (11)
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our expression for Σn becomes [
1 ρn
ρn 1

]
, (12)

where

ρn =
ν′0ρ0 +

∑n
i=1 xiyi

ν′0 + n
. (13)

Equation (12) is the covariance matrix of a bivariate normal with unit marginal
variances and correlation coefficient ρn. For vacuous prior correlation, ρ0 ∈
[−1, 1], we thus get the following posterior bounds on the correlation:

ρ
n
=
−ν′0 +

∑n
i=1 xiyi

ν′0 + n
, ρn =

ν′0 +
∑n

i=1 xiyi
ν′0 + n

, (14)

provided that our observations, and our prior, have unit variance and zero mean
(which we can achieve by linear transformation without loss of generality).

This analysis generalises easily to cases with more than two variables, k >
2—we leave this to the reader. Essentially, we simply have to deal with more
correlation parameters.

2.2 Application to the Body Mass Index Example

We now illustrate our model on the evaluation of the body mass index R =
X/Y 2, where X is a person’s weight in kilograms and Y is his or her height
in meters. The body mass index is commonly used to detect under- and over-
weight. We aim (i) to assess the dependence between X and Y in a particular
population, and (ii) to extract a robust inference about R in this population.

We consider 30 paired observations of heights and weights of girls aged 11
[5, p. 75]. The weight X has sample mean x̄ = 36.2, sample standard deviation
sX = 7.7, with no strong evidence against normality (p-value1 0.017). The height
Y has sample mean ȳ = 1.448, sample standard deviation sY = 0.077, with no
evidence against normality whatsoever (p-value 0.711). We will assume that X
and Y have known means, equal to x̄ and ȳ. We also assume that, a priori, σX =
7.7 and σY = 0.077 in eq. (9), but we are vacuous about the prior correlation.
For reference, it may be useful to note that the sample correlation between X
and Y is in fact 0.742. For the sake of the example, we assume that the sample is
drawn from a bivariate normal distribution, although there is reasonably strong
evidence against joint normality (p-value 0.00388).

Figure 1 shows the bounds on the correlation of the posterior covariance ma-
trix in eq. (10) with ν′0 = 2 and ρ0 ∈ [−1, 1]. The two values converge steadily
with a final interval [ρ

30
, ρ30] = [0.630, 0.759]. The expectation of R is bounded

by E(R) = 17.10 and E(R) = 17.16. Similarly, we may wonder about the prob-
ability of R to be in a “healthy” range, which is about A = [14, 19.5] for girls
aged 11. We obtain bounds P (R ∈ A) = 0.66 and P (R ∈ A) = 0.71. Note that
bounds were obtained by straightforward numerical optimisation.

1 Throughout, we test for normality using the Shapiro-Wilk test.
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Fig. 1. Lower and upper correlation estimates ρ
n
and ρn as a function of the sample

size n, with ν′
0 = 2. The solid horizontal line denotes the sample correlation for n = 30.

3 Robust Bayesian Dependence Learning for Bivariate
Categorical Data

3.1 The Model

Consider a bivariate categorical random quantity Z := (X,Y ) with X taking
values in a finite set X = {1, . . . ,mX}, and Y taking values in a finite set Y =
{1, . . . ,mY }. The parameters θx and φy determine the marginal distributions:

p (x | θ) = θx, p (y | φ) = φy . (15)

We assume that mX ≥ 2, mY ≥ 2, θx > 0 and φy > 0.
We are interested in learning the dependence structure of X and Y . One very

general way to express the full joint distribution of (X,Y ) is by introducing
parameters wxy such that

p (x, y | θ, φ, w) = wxyθxφy, (16)

subject to the constraints ∑
x∈X

∑
y∈Y

wxyθxφy = 1, (17)

∑
x∈X

wxyθx = 1, (18)∑
y∈Y

wxyφy = 1. (19)
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Equations (18) and (19) simply follow from∑
x∈X

wxyθxφy =
∑
x∈X

p (x, y | θ, φ, w) = p (y | θ, φ, w) = φy, (20)∑
y∈Y

wxyθxφy =
∑
y∈Y

p (x, y | θ, φ, w) = p (x | θ, φ, w) = θx, (21)

respectively. This model specification is over-parametrized, but it allows us to
model the marginal distributions and the dependence structure separately, where
the matrix w plays precisely a similar role as a copula in general bivariate models
for (usually) continuous random quantities. However, a key difference and major
difficulty with the above model is that the constraints on w depend on θ and φ:
the separation is thus not as complete as with copulas, where the dependence
structure is parametrised independently of the marginals. For this reason, it
seems most natural to consider a two-stage situation where we first learn about
the marginal parameters θ and φ, followed by learning about the dependence
structure w conditional on what we learnt about θ and φ.

3.2 Inference for Known Marginals

For this reason, as a stepping stone towards general inference about θ, φ, and
w, here we consider a scenario where the marginal distributions are already
fully known, and we only aim at inference about w. While this may appear
somewhat restrictive, and perhaps even artificial, there are practical scenarios
where one has very substantial information about the probability distributions
for the random quantities X and Y separately, but relatively little information
about their joint distribution.

There are (mX − 1)(mY − 1) degrees of freedom for the components of w.
In case data is limited, to enable sufficiently useful inference, it seems natural
to assume a reduced-dimensional parametric form for w, which may naturally
correspond to an (assumed) ordering of the categories, as we will illustrate in
section 3.3. Let nxy denote the number of observations of (X,Y ) = (x, y), with
total number of observations n =

∑
x∈X
∑

y∈Y nxy and row and column totals
denoted by nx∗ =

∑
y∈Y nxy and n∗y =

∑
x∈X nxy, respectively. So, there are

nx∗ observations of X = x and n∗y observations of Y = y.
Without further restrictions on w, it seems tempting to fit the model to match

the non-parametric maximum likelihood estimate

p̂ (x, y | w) =
nxy

n
(22)

by setting

ŵxy =
nxy

nθxφy
. (23)

A problem is that this estimate will usually violate eqs. (18) and (19). For
instance, ∑

x∈X
ŵxyθx =

∑
x∈X

nxy

nθxφy
θx =

n∗y
nφy

�= 1 (24)
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as soon as
n∗y
n �= φy . A proper maximum likelihood estimate would maximize

the likelihood subject to all constraints embodied by eqs. (17) to (19). Solving
this optimisation problem poses an interesting challenge.

Bayesian inference for w will face a similar challenge: w lives in a convex
subspace of RmX×mY determined by eqs. (17) to (19). Application of Bayes’s
theorem requires numerical integration over this space. Nevertheless, the basic
principles behind Bayesian inference for w are simple, and sensitivity analysis is
similar to the imprecise Dirichlet model [14]. Specific dimension-reduced models,
where we have a much better handle on the parameter space, will be illustrated
in more detail in section 3.3.

The likelihood is given by∏
x∈X

∏
y∈Y

(wxyθxφy)
nxy , (25)

so as conjugate prior we can choose

f (w | α0) ∝ g(w)
∏
x∈X

∏
y∈Y

(wxyθxφy)
α0xy , (26)

where α0xy > 0 and g is some arbitrary non-negative function (as long as the
right hand side integrates to a finite value). With ν0 :=

∑
xy α0xy, this prior

distribution can be interpreted as reflecting prior information equivalent to ν0
observations of which α0xy were (X,Y ) = (x, y). The corresponding posterior
distribution is clearly f (w | αn) with αnxy = α0xy + nxy.

Sensitivity analysis on this model could then follow an approach similar to
Walley’s imprecise Dirichlet model [14], by taking the set of all prior distributions
for a fixed value of ν0. In case of an informative set of prior distributions, one
may also allow the value of ν0 to vary within a set to allow prior-data conflict
modelling [15].

As already mentioned, the remaining key difficulty is to integrate the conju-
gate density over the parameter space. For this reason, in the next section, we
consider a reduced model.

3.3 Reduced Model

As a first and basic example of a reduced parametric form, consider the case
X = Y = {1, 2, 3} with known θx = φy = 1/3 for all x and y ∈ {1, 2, 3}. If the
categories are pairwise ordered in some natural manner, then it might be quite
reasonable to specify

w =

⎡⎣1 + 2α 1− α 1− α
1− α 1 + 2α 1− α
1− α 1− α 1 + 2α

⎤⎦ (27)

with α ∈ [0, 1]. It is easily verified that this model satisfies eqs. (17) to (19): the
full matrix sums to 9, and each of the rows and colums sum to 3.
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Note that there is no logical requirement to avoid α ∈ [−1/2, 0), we just
use this small example as an illustration. In this model, α = 0 corresponds
to full independence between X and Y , whereas α = 1 corresponds to perfect
correlation X = Y . Therefore, this corresponds to a scenario where we may
suspect positive correlation between X and Y , but we are unsure about the
strength of correlation. Note that the actual model reduction is achieved by
additionally assuming that X = Y = x has the same probability for all x ∈
{1, 2, 3}, and similar for X = x ∩ Y = y for all x �= y.

With these assumptions, statistical inference is concerned with learning about
the parameter α ∈ [0, 1]. The likelihood function is

(1 + 2α)t(1− α)n−t (28)

with t = n11 + n22 + n33 and n =
∑

xy nxy as before. The maximum likelihood
estimate is

α̂ =

{
3t−n
2n if 3t ≥ n,

0 otherwise.
(29)

For a Bayesian approach to inference for this model, we can define a conjugate
prior

f (α | ν0, τ0) ∝ (1 + 2α)τ0(1 − α)ν0−τ0 (30)

with τ0 ∈ [0, ν0], with the possible interpretation that it reflects prior information
which is equivalent to ν0 observations of which τ0 have X = Y .

The posterior distribution is simply f (α | ν0 + n, τ0 + t) . Sensitivity analysis
is again straightforward by taking the set of prior distributions for τ0 ∈ [0, ν0]
and a fixed ν0. For instance, we would get the following robust estimate for the
posterior mode of α:

α̂n =

[
3t− ν0 − n

2(ν0 + n)
,
3t+ 2ν0 − n

2(ν0 + n)

]
(31)

when 3t ≥ ν0 + n, with similar formulas when 3t < ν0 + n (truncating negative
values to zero).

3.4 Application to the Body Mass Index Example

To apply the categorical model to our data, we must first discretize them, with
the ordering of the categories following the ordering of natural numbers. To
obtain three categories with uniform marginals, we simply discretized the 99%
prediction intervals of each Gaussian marginals of section 2.2, obtaining X =
{[17, 32], [32, 39], [39, 56]} and Y = {[1.24, 1.41], [1.41, 1.47], [1.47, 1.64]}.

Figure 2 shows the bounds on the posterior mode α̂n in eq. (31), with ν0 = 2.
The results are similar to those obtained in section 2.2, showing that even this
very simple discretized model can capture the correlation between X and Y ,
with the bounds on α̂30 being [0.56, 0.66]. From these values and the bounds of
the categories, we can easily obtain bounds on the expectation of R: E(R) = 12.9
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Fig. 2. Bounds on α̂n as a function of the sample size n, with ν0 = 2

and E(R) = 22.4, which gives a much wider interval than in section 2.2. This is
due to the very rough discretization: a finer discretization would likely provide
a narrower interval. The lower and upper probabilities of A = [14, 19.5] are this
time P (R ∈ A) = 0 and P (R ∈ A) = 0.96, which are almost vacuous and again
show that to have meaningful inferences, a finer discretization is needed.

4 Conclusion

In this paper, we have introduced two preliminary models—a continuous one and
a discrete one—to model dependence when joint data is limited, but assuming
that the marginals are precisely known. The continuous model focused on the
very special multivariate normal case. However, already in our simple example,
we have seen that joint normality is rarely satisfied in practice. A major chal-
lenge is to provide methods for dependence modelling, that are both flexible and
computationally tractable, whilst still producing useful inferences.

Even though the models and example studied are very preliminary, we feel
that extensions of the discrete model could provide more flexibility, whilst still
being easy to learn and to compute with. We see it as a promising path to learn
dependency structures with imprecise probabilistic models. In particular, it can
be seen as a way to approximate a continuous model, as we did in the example.
In the future we plan to work on such extensions and on the identification of
parametric matrices of weights more flexible than the reduced one presented
here.

Finally, an obvious extension to the present work would be to relax the
assumption that marginals are precisely identified, and to work with sets of
marginals instead. However, this raises challenging theoretical issues, as defin-
ing a well-founded extension or equivalent formulation of Sklar’s theorem for
imprecise models is far from trivial.
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Abstract. In order to develop a brain computer interface (BCI), the present au-
thors investigated the brain activity during recognizing or recalling some im-
ages of line drawings. The middle frontal robe is known to be related to the 
function of central executive system on working memory. It is supposed to be 
so called headquarters of the higher order function of the human brain.Taking 
into account these facts, the authors recorded Electroencephalogram (EEG) 
from subjects looking and recalling four types of line drawings of body part, te-
tra pod, and further ten types of tetra pods, home appliances and fruits that were 
presented on a CRT. They investigated a single trial EEGs of the subjects pre-
cisely after the latency at 400ms, and determined effective sampling latencies 
for the discriminant analysis to some types of images. They sampled EEG data 
at latencies from 400ms to 900ms at 25ms intervals by the four channels such 
as Fp2, F4, C4 and F8. Data were resampled -1 ms and -2 ms backward. Results 
of the discriminant analysis with the jack knife (cross validation) method for 
four type objective variates, the discriminant rates for two subjects were more 
than 95 %, and for ten objective variates were almost 80%. 

Keywords: image recognition, single trial Electroencephalogram, canonical 
discriminant analysis, brain computer interface. 

1 Introduction 

According to researches on the human brain, the primer process of visual stimulus is 
done on V1 in the occipital robe. In the early stage of it, a stimulus from the right visual 
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field is processed on the left hemisphere and a stimulus from the left visual field is 
processed on the right hemisphere. Then the process goes to the parietal associative  
area [1].  

Higher order process of the brain thereafter has its laterality. For instance, 99% of 
right-handed people and 70% of left-handed people have their language area on the 
left hemisphere as the Wernicke’s area and the Broca’s area [2, 3]. Besides these 
areas, language is also processed on the angular gyrus (AnG), the fusiform gyrus 
(FuG), the inferior frontal gyrus (IFG) and the prefrontal area (PFA) [4].  

By use of the equivalent current dipole localization (ECDL) method [5] applied to 
the event related potentials (ERPs), summed and averaged EEGs, some of the present 
authors have investigated that at first equivalent current dipole (ECD) was localized 
to the right middle temporal gyrus with arrow symbols, and then they were estimated 
in areas related to the working memory for spatial perception, such as the right infe-
rior or the right middle frontal gyrus. Further, as with kanji characters, ECD was loca-
lized to the prefrontal area and the precentral gyrus [6-9], [11].  

However, in the case of the mental translation, activities were observed on areas 
around same latencies regardless to the Kanji or the arrow. After on the right frontal 
lobe, which is so called the working memory, ECDs were localized to the de Broca’s 
area which is said to be the language area for speech. Like in our preceding re-
searches, it was found that peak latencies were almost the same but polarities of po-
tentials were reversed (Fig. 1) on the frontal lobe in the higher order process [10].  

The middle frontal robe is known to be related to the function of central executive 
system on working memory from the research on the focus and by fMRI. Functions of 
the central executive system are to select information from the outer world, to hold 
memory temporally, to order functions following it, to evaluate these orders and to 
decide and order for erasing information stored temporally.  It is supposed to be so 
called headquarters of the higher order function of the brain.  

Some of the present authors thought that this reversion of EEG potential could play 
a switch to control a robot. Appling these facts to the brain computer interface (BCI), 
the authors compared each channel of EEGs and its latency.  They found that the 
channel No.4 (F4), No.6 (C4) and No.12 (F8) according to the International 10-20 
system were effective to discriminate the four types of EEGs in mental translation. 
Each discrimination ratio was more than 80% [10].  

Those data to discriminate were off lined and fixed, once it was tried the jack knife 
statistical method, discriminant ratio fell down to around 50%. Hence, the present 
paper improved the precedent method by adding an EEG channel No.2 (Fp2), and a 
number of data were tripled as resampling -1ms and -2ms backward from the 
precedent data and reassembled [12]. After the results of the discriminant analysis 
with the jack knife (cross validation) method, the mean of discriminant ratio was 
98.40%. 
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               0                      500                    1000[ms] 

Fig. 1. Comparison between ERPs for rightward (above) and for leftward (below) 

2 EEGs Measurements on Recognition and Recalling 

Subjects are two university students, that were 22-year-olds, had normal visual acuity, 
and their dominant hands are the right ones. The subjects put on an electrode cap with 
19 active electrodes and watched a 21-inch CRT 30cm in front of them. Each stimulus 
was displayed on the CRT.  

Stimuli to be presented had been stored on the disk of a PC as a file and they were 
presented in random order. Their heads were fixed on a chin rest on the table. Posi-
tions of electrodes on the cap were according to the international 10-20 system and 
other two electrodes were fixed on the upper and lower eyelids for eye blink monitor-
ing. Impedances were adjusted to less than 10k . Reference electrodes were put on . Reference electrodes were put on 
both earlobes and the ground electrode was on the base of the nose. 

EEGs were recorded on the multi-purpose portable bio-amplifier recording device 
(Polymate, TEAC) by means of the electrodes; the frequency band was between 1.0 
Hz and 2000 Hz. Output was transmitted to a recording PC. Analog outputs were 
sampled at a rate of 1 kHz and stored on a hard disk in a PC. 

In the experiment, subjects were presented four types and ten types of line draw-
ings of body part, tetrapod, home appliance, that were presented on a CRT. In the first 
masking period, during 3000ms no stimulus was presented except a gazing point. In 
the second period (recognizing period), stimulus was presented in the center of CRT 
during 2000ms, and it was followed by a masking period of 3000ms: the third period. 
Then in the fourth period during 2000ms (recalling period), visual stimulus was hid-
den and a subject read the name of stimulus silently. Each stimulus was presented at 
random, and measurement was repeated thirty times for each stimulus, so the total 
was 120 times. In these cycles, we measured EEGs during the second and the fourth 
period during 2000ms (Fig. 2).  
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Fig. 2. Schema of the recognition and recalling image experiment 

3 Single trial EEGs Discrimination by Use of Canonical 
Discriminant Analysis 

3.1 Data Sampling from EEGs for Canonical Discriminant Analysis 

By use of single trial EEGs data (Fig. 1), that were measured in the experiment with 
directional symbols, some of the present authors had attempted the canonical discri-
minant analysis; one of the methods of the multivariate analysis. From the result of 
our preceding research [12], the pathway goes to the right frontal area at the latency 
after 400ms. So we sampled EEGs from latency of 400ms to 900ms at 25ms intervals, 
from 399ms to 899ms at 25ms intervals and from 398ms to 898ms at 25ms intervals.  

Electrodes that lie near to the right frontal area are Fp2 (No.2), F4 (No.4), C4 
(No.6) and F8 (No.12) (Fig. 4) according to the International 10-20 system, so we 
chose these four channels among 19 channels. Although the EEGs are time series 
data, we regarded them as vectors in an 84, i. e. 21 by 4, dimensional space. So the 
total sample data were 360.  
 

 

Fig. 3. Single trial EEGs in recalling period for image of body part (mouth, finger, ear and foot 
from the upper) 

  

B. Presenting 
recognition stimulus 

3000ms 

A. Presenting 
fixation point 

3000ms

C. Presenting 
fixation point 

3000ms 

D. Recalling 
stimulus 
3000ms 

Repeated A, B, C and D
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Fig. 4. Position of selected electrodes on right side lateral view 

For the use of real time application, it is natural to use a small number of EEGs 
channels and/or sampling data. Some of the authors have investigated to minimize a 
number of EEGs channels and a number of sampling data [10]. They investigated the 
minimal sampling number to obtain complete discriminant ratio (100%) for the same 
subjects by three channels. However, the sampling interval was 50 ms between the 
latency 400ms and 900ms. The above analyses were done by use of the statistical 
software package JUSE-Stat Works/v4.0 MA (Japanese Union of Scientists and Engi-
neers). These results showed a possibility of control in four types of order by use of 
EEGs. We must note that the discriminant analyses have to be done one by one for 
each single trial data. So the discriminant coefficients should be determined for each 
single data for BCI. To improve a single trial discriminant ratio, we adopted the jack-
knife (cross validation) method.  

3.2 Canonical Discriminant Analysis by Learning with Sampling Data 

In order to apply the results to BCI, discriminant coefficients should be fixed by some 
learning process. We grouped each thirty single trial EEGs data into four types, i. e. 
120 trials, to play as learning data (Fig. 5). 
 

 
           0                      500                       1000[ms] 

Fig. 5. Selected channels of EEGs and their sampling points: bold lines denote sampling points 
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3.3 Results of Canonical Discrimination 

We gathered each single trial EEGs data to play as learning data. For four type of 
mental translation (four objective variates), the number of experiments was thirty. 
These data were resampled three times, in three types of sample timing. Sampling 
data 1 are taken from latency of 400 ms to 900 ms at 25 ms interval (21 sampling 
points), sampling data 2 are taken from latency of 399 ms to 899 ms at 25 ms interval 
and sampling data 3 are taken from latency of 398 ms to 898 ms at 25 ms interval.  
Each data has one criterion variable i. e. a type of image, and 84 explanatory variates. 
Because explanatory variates consist of four channels by 21 sampling data, the learn-
ing data are 360 with 84 variates. And each criterion variable has four type index, e. 
g. mouth, finger, ear and foot. We had tried so called the jackknife statistics (cross 
validation), we took one sample to discriminate, and we used the other samples left as 
learning data, and the method was repeated.  

The subjects were two undergraduate students; however, two samples in recogni-
tion period of EEGs were taken twice in two days, so the total number of experiments 
was six. We denote each experimental data according to the subjects as HF1, HF2, 
YN1, YN2, HF3, and YN3. We tried to discriminate the four types by 360 samples 
using the canonical discriminant analysis. As a result, the mean of discriminant ratio 
was 98.40% (Table 1, 2, 3, 4, 5 and 6). These results are acceptable for an application 
of BCI. 

Table 1. Result of discrimination: recognition of body part (HF1) 

Obs./Pred. Mouth Finger Ear Foot Total 

Mouth 59 0 0 1 60 

Finger 0 60 0 0 60 

Ear 1 0 57 2 60 

Foot 0 0 2 58 60 

Total 60 60 59 61 240 

Discrimination rate: 97.5% 

Table 2. Result of discrimination: recognition of body part (HF2) 

Obs./Pred. Mouth Finger Ear Foot Total 

Mouth 59 0 0 1 60 

Finger 0 60 0 0 60 

Ear 0 0 60 0 60 

Foot 0 1 0 59 60 

Total 59 61 60 60 240 

Discrimination rate: 99.1% 

 



514 T. Yamanoi et al. 

Table 3. Result of discrimination: recognition of body part (YN1) 

Obs./Pred. Mouth Finger Ear Foot Total 

Mouth 60 0 0 0 60 

Finger 0 60 0 0 60 

Ear 0 0 60 0 60 

Foot 0 0 0 60 60 

Total 60 60 60 60 240 

Discrimination rate: 100.0% 

Table 4. Result of discrimination: recognition of body part (YN2) 

Obs./Pred. Mouth Finger Ear Foot Total 

Mouth 59 0 0 1 60 

Finger 2 58 0 0 60 

Ear 0 0 60 0 60 

Foot 0 0 0 60 60 

Total 61 58 60 61 240 

Discrimination rate: 98.8% 
 

Table 5. Result of discrimination: recognition of tetra pod (HF) 

Obs./Pred. Dog Giraffe Bear Lion Total 

Dog 59 0 0 1 60 

Giraffe 0 56 1 3 60 

Bear 0 0 60 0 60 

Lion 0 3 0 57 60 

Total 59 59 61 61 240 

Discrimination rate: 96.7% 

Table 6. Result of discrimination: recognition of tetrapod (YN) 

Obs./Pred. Dog Giraffe Bear Lion Total 

Dog 59 0 1 0 60 

Giraffe 1 59 0 0 60 

Bear 0 0 60 0 60 

Lion 0 1 1 58 60 

Total 60 60 62 58 240 

Discrimination rate: 98.3% 
 

Further the present authors tried to discriminate ten stimuli, those were as tetra 
pods, home appliances and fruits. The stimuli were also drawn with lines as before. 
The subjects were two undergraduate students. We denote each experimental data 
according to the subjects as YS1, YS2 and YN. Two samples in recognition period of 
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EEGs were taken twice in two days for the subject YS. Tetra pods were Dog (Do), 
Cow (Co), Horse (Ho), Giraffe (Gi), Bear (Be), Rhino (Rh), Deer (De), Sheep (Sh), 
Lion (Li), and Camel (Ca). Home appliances were Iron (Ir), Toaster (To), Hair Dryer 
(Dr), Sewing Machine (Se), Rice Cooker (Ri), Fun, Washing Machine (Wa), Vacuum 
Cleaner (Va), Electronic Range (Ra) and Refrigerator (Fr). Fruits were Strawberry 
(Sb), Persimmon (Pe), Cherry (Ch), Water Melon (Wm), Pineapple (Pa), Banana 
(Ba), Grapefruit (Gf), Melon (Mel), Peach (Pe) and Apple (Ap).   As a result, dis-
criminant ratios were almost 80% (Table 7, 8 and 9). These results are also acceptable 
for an application of BCI. 

Table 7. Result of discrimination: recalling of tetra pod (YS1) 

Obs./Pred. Do  Co  Ho  Gi  Be  Rh  De  Sh  Li  Ca  Total 
Do  17  2  1  0  0  1  3  0  0  0  24  
Co  0  19  3  1  0  0  1  0  0  0  24 
Ho  0  1  20  2  1  0  0  0  0  0  24 
Gi  0  1  0  20  1  0  0  0  1  1  24 
Be  0  0  0  0  19  0  1  0  4  0  24 
Rh  0  0  0  0  1  20  1  1  1  0  24  
De  0  1  2  0  3  1  17  0  0  0  24  
Sh  0  1  2  0  0  1  2  18  0  0  24  
Li  0  2  1  1  0  0  1  0  18  1  24  
Ca  0  1  3  0  1  0  1  0  1  17  24  

Total 17  28  32  24  26  23  27  19  25  19  240  

Discrimination rate: 77.1% 
 

Table 8. Result of discrimination: recalling of home appliance (YS2) 

Obs./Pred. Ir To Dr Se Ri Fun Wa Va Ra Fr Total 

Ir 19  0  2  1  0  0  2  0  0  0  24  

To 0  19  1  0  2  0  2  0  0  0  24 

Dr 0  0  18  0  3  0  2  0  1  0  24 

Se 0  0  1  21  1  0  1  0  0  0  24 

Ri 0  0  1  0  18  0  5  0  0  0  24 

Fun 0  0  1  1  1  19  1  0  1  0  24  

Wa 0  1  0  0  2  1  20  0  0  0  24  

Va 0  0  3  0  1  0  1  19  0  0  24  

Ra 0  0  1  0  1  1  1  0  20  0  24  

Fr 0  0  0  0  2  1  1  0  0  20  24  

Total 19  20  28  23  31  21  36  19  22  20  240  

Discrimination rate: 80.4% 
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Table 9. Result of discrimination: recalling of fruits (YN) 

Obs./Pred. Sb Pe Ch Wm Pa Ba Gf Mel Pe Ap Total 

Sb 18  1  1  0  1  1  1  0  0  1  24  

Pe 0  18  0  0  2  0  2  0  0  2  24 

Ch 1  0  20  0  0  0  0  0  0  3  24 

Wm 1  2  0  16  1  1  1  0  1  1  24 

Pa 5  0  0  0  17  0  0  0  0  2  24 

Ba 0  0  0  0  2  18  3  0  0  1  24  

Gf 2  0  0  1  1  0  19  0  1  0  24  

Mel 1  1  0  0  0  0  2  19  0  1  24  

Pe 1  1  1  0  0  0  1  0  20  0  24  

Ap 1  0  0  0  1  0  4  0  0  18  24  

Total 30  23  22  17  25  20  33  19  22  29  240  

Discrimination rate: 77.1% 
 

Fruits were Strawberry (Sb), Persimmon (Pe), Cherry (Ch), Water Melon (Wm), 
Pineapple (Pa), Banana (Ba), Grapefruit (Gf), Melon (Mel), Peach (Pe) and Apple 
(Ap). 

4 Concluding Remarks 

In this study, the authors investigated a single trial EEGs of the subject precisely after 
the latency at 400 ms, and determined effective sampling latencies for the canonical 
discriminant analysis to some four types of image. We sampled EEG data at latency 
around from 400 ms to 900 ms in three types of timing at 25ms intervals by the four 
channels Fp2, F4, C4 and F8. And data were resampled -1 ms and -2 ms backward. 
From results of the discriminant analysis with jack knife method for four type objec-
tive variates, the mean discriminant ratio for two subjects was 96.8%. On recalling 
four types of images, one could control four type instructions for a robot or a wheel 
chair i. e. forward, stop, turn clockwise and turn counterclockwise. Furthermore, we 
tried to discriminate ten types single trial EEGs, the mean discriminant ratio for two 
subjects was 78.2%. In practical applications to the brain computer interface, it is 
fairly good that the mean discriminant ratio becomes around 80%. By these ten types 
instruction, one could control a robot in more complicated movements. 

Acknowledgements. This research has been partially supported by the grant from the 
ministry of education, sports, science and technology to the national project in the 
High-tech Research Center of Hokkai-Gakuen University ended in March 2013. 

 



 Brain Computer Interface by Use of Single Trial EEG on Recalling of Several Images 517 

References 

1. McCarthy, R.A., Warrington, E.K.: Cognitive neuropsychology: a clinical introduction. 
Academic Press, San Diego (1990) 

2. Geschwind, N., Galaburda, A.M.: Cerebral Lateralization, The Genetical Theory of Natu-
ral Selection. Clarendon Press, Oxford (1987) 

3. Parmer, K., Hansen, P.C., Kringelbach, M.L., Holliday, I., Barnes, G., Hillebrand, A., 
Singh, K.H., Cornelissen, P.L.: Visual word recognition: the first half second. NeuroI-
mage 22(4), 1819–1825 (2004) 

4. Yamanoi, T., Yamazaki, T., Vercher, J.L., Sanchez, E., Sugeno, M.: Dominance of recog-
nition of words presented on right or left eye - Comparison of Kanji and Hiragana. In: 
Modern Information Processing, From Theory to Applications, pp. 407–416. Elsevier 
Science B.V., Oxford (2006) 

5. Yamazaki, T., Kamijo, K., Kiyuna, T., Takaki, Y., Kuroiwa, Y., Ochi, A., Otsubo, H.:  
PC-based multiple equivalent current dipole source localization system and its applica-
tions. Res. Adv. in Biomedical Eng. 2, 97–109 (2001) 

6. Yamanoi, T., Toyoshima, H., Ohnishi, S., Yamazaki, T.: Localization of brain activity  
tovisual stimuli of linear movement of a circleby equivalent current dipole analysis  
(in Japanese). In: Proceeding of the 19th Symposium on Biological and Physical Engineer-
ing, pp. 271–272 (2004) 

7. Yamanoi, T., Toyoshima, H., Ohnishi, S., Sugeno, M., Sanchez, E.: Localization of the 
Brain Activity During Stereovision by Use of Dipole Source Localization Method. In: The 
Forth International Symposium on Computational Intelligence and Industrial Application, 
pp. 108–112 (2010) 

8. Hayashi, I., Toyoshima, H., Yamanoi, T.: A Measure of Localization of Brain Activity for 
the Motion Aperture Problem Using Electroencephalogram. In: Developing and Applying 
Biologically-Inspired Vision System: Interdisciplinary Concept, ch. 9, pp. 208–223 (2012) 

9. Yamanoi, T., Tanaka, Y., Otsuki, M., Ohnishi, S., Yamazaki, T., Sugeno, M.: Spatiotem-
poral Human Brain Activities on Recalling Names of Bady Parts. Journal of Advanced 
Computational Intelligence and Intelligent Informatics 17(3) (2013) 

10. Yamanoi, T., Toyoshima, H., Yamazaki, T., Ohnishi, S., Sugeno, M., Sanchez, E.: Micro 
Robot Control by Use of Electroencephalograms from Right Frontal Area. Journal of Ad-
vanced Computational Intelligence and Intelligent Informatics 13(2), 68–75 (2009) 

11. Toyoshima, H., Yamanoi, T., Yamazaki, T., Ohnishi, S.: Spatiotemporal Brain Activity 
During Hiragana Word Recognition Task. Journal of Advanced Computational Intelli-
gence and Intelligent Informatics 15(3), 357–361 (2011) 

12. Yamanoi, T., Toyoshima, H., Yamazaki, T., Ohnishi, S., Sugeno, M., Sanchez, E.: Brain 
Computer Interface by use Electroencephalograms from Right Frontal Area. In: The 6th 
International Conference on Soft Computing and Intelligent Systems, and The 13th Inter-
national Symposium on Advanced Intelligent Systems, pp. 1150–1153 (2012) 



Model Reference Gain Scheduling Control of a PEM
Fuel Cell Using Takagi-Sugeno Modelling
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Abstract. In this paper, a solution for the oxygen stoichiometry control problem
for Proton Exchange Membrane (PEM) fuel cells is presented. The solution re-
lies on the use of a reference model, where the resulting nonlinear error model is
brought to a Takagi-Sugeno (TS) form using the nonlinear sector approach. The
TS model is suitable for designing a controller using Linear Matrix Inequalities
(LMI)-based techniques, such that the resulting closed-loop error system is sta-
ble with poles placed in some desired region of the complex plane. Simulation
results are used to show the effectiveness of the proposed approach. In particular,
the PEM fuel cell can reach asymptotically the oxygen stoichiometry set-point
despite all the considered stack current changes.

Keywords: Takagi-Sugeno model, Reference model based control, Gain-
scheduling, PEM Fuel Cell, LMIs.

1 Introduction
Proton Exchange Membrane (PEM, also known as Polymer Electrolyte Membrane) fuel
cells are one of the most promising technologies to be used, in a near future, as power
supply sources in many portable applications. A good performance of these devices is
closely related to the kind of control that is used, so a study of different control alterna-
tives is justified [1]. A fuel cell integrates many components into a power system, which
supplies electricity to an electric load or to the grid. Several devices, such as DC/DC or
DC/AC converters, batteries or ultracapacitors, are included in the system and, in case
the fuel cell is not fed directly with hydrogen, a reformer must also be used. Therefore,
there are many control loops schemes depending on the devices that must be controlled.
The lower control level takes care of the main control loops inside the fuel cell, which are
basically fuel/air feeding, humidity, pressure and temperature. The upper control level
is in charge of the whole system, integrating the electrical conditioning, storage and re-
former (if necessary). Many control strategies have been proposed in literature, ranging
from feedforward control [1], LQR [2] or Model Predictive Control [3].

Recently, the complex and nonlinear dynamics of the power generation systems
based on fuel cell technology, described in detail in [4], led to the use of linear mod-
els that include parameters varying with the operating point (known as LPV models)
not only for advanced control techniques [5] but also for model-based fault diagnosis
algorithms [6]. The use of Takagi-Sugeno (TS) models [7] is an alternative to the LPV
models, as proposed in [8]. This paper will follow this last approach.

In this paper, a solution for the oxygen stoichiometry control problem for PEM fuel
cells using TS models is presented. The solution relies on the use of a reference model,

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 518–527, 2014.
© Springer International Publishing Switzerland 2014
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where the resulting nonlinear error model is brought to a TS form using the nonlinear
sector approach [9]. The TS model is suitable for designing a controller using Linear
Matrix Inequalities (LMI)-based techniques, such that the resulting closed-loop error
system is stable with poles placed in some desired region of the complex plane [10].
Simulation results are used to show the effectiveness of the proposed approach. In par-
ticular, the PEM fuel cell can reach asymptotically the oxygen stoichiometry set-point
despite all the considered stack current changes.

The structure of the paper is the following: Section 2 shows how, starting from the
nonlinear model of a PEM fuel cell, and using a reference model, a model of the error
dynamics suitable for TS modelling can be derived. Section 3 presents the methodol-
ogy to design a TS controller based on the TS model of the error. Section 4 illustrates
the performance of the proposed TS control strategy in simulation. Finally, Section 5
provides the main conclusions and future work.

2 Model Reference Control of the PEM Fuel Cell System

2.1 PEM Fuel Cell Description

A fuel cell is an electrochemical energy converter that converts the chemical energy
of fuel into electrical current. It has an electrolyte, a negative electrode and a positive
electrode, and it generates direct electrical current through an electrochemical reaction.
Typical reactants for fuel cells are hydrogen as fuel and oxygen as oxidant that, once
the reaction takes place, produce water and waste heat.

The basic physical structure of a fuel cell consists of an electrolyte layer in con-
tact with a porous anode and cathode electrode plates. There are different kinds of
electrolyte layers. Here a PEM (Polymer Electrolyte Membrane or Proton Exchange
Membrane) fuel cell is used. The PEM has a special property: it conducts protons but
is impermeable to gas (the electrons are blocked through the membrane). Auxiliary
devices are required to ensure the proper operation of the fuel cell stack.

2.2 PEM Fuel Cell System Model

The model used in this work has been presented in [4]. The model is widely accepted
in the control community as a good representation of the behaviour of a Fuel Cell Stack
(FCS) system.

Air Compressor. The air compressor is decomposed into two main parts. One part
concerns the electric motor, whereas the other part concerns the compressor box. The
compressor motor is modelled using a direct current electric motor model. A compres-
sor flow map is used to determine the air flow rate Wcp, supplied by the compressor.
The model of the air compressor is given by:

ω̇cp =
ηcp

Jcp

kt

Rcm
(υcm− kvωcp)−

CpTatm

Jcpωcpηcp

⎡⎣( psm

patm

) γ−1
γ
− 1

⎤⎦Wcp (1)

where υcm is the motor supply voltage (V).
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Supply Manifold. Manifolds are modelled as a lumped volume in pipes or connec-
tions between different devices. The following differential equation is used to model
the supply manifold pressure behaviour:

ṗsm =
γRa

Vsm

{
Wcp

[
Tatm +

Tatm

ηcp

[(
psm

patm

) γ−1
γ
−1

]]
−ksm,out

(
psm−

mO2,caRO2 Tst

Vca

)
Tsm

}
(2)

Return Manifold. An equation similar to the one introduced for the supply manifold
is used to describe the return manifold behaviour:

ṗrm =
RaTrm

Vrm

[
kca,out

(
mO2,caRO2Tst

Vca
− prm

)
− krm,out (prm− patm)

]
(3)

Anode Flow Dynamics. The hydrogen supplied to the anode is regulated by a pro-
portional controller. The controller takes the differential pressure between anode and
cathode to compute the regulated hydrogen flow:

ṁH2,an = K1(K2 psm−
mH2,anRH2 Tst

Van
)−MH2

nIst

2F
(4)

Cathode Flow Dynamics. The cathode flow dynamics is described by the following
differential equation:

ṁO2,ca = ksm,out psm−
mO2,caRO2 Tst

Vca
(ksm,out + kca,out)+ kca,out prm−MO2

nIst

4F
(5)

Oxygen Stoichiometry. The efficiency optimization of the current system can be
achieved by regulating the oxygen mass inflow toward the stack cathode [11]. If an
adequate oxidant flow is ensured through the stack, the load demand is satisfied with
minimum fuel consumption. In addition, oxygen starvation and irreversible damage are
averted. To accomplish such an oxidant flow is equivalent to maintaining at a suitable
value the oxygen stoichiometry, defined as:

λO2 =
ksm,out

(
psm−

mO2 ,caRO2
Tst

Vca

)
MO2

nIst
4F

(6)

The overall model has five state variables (the compressor speed ωcp (rad/s), the pres-
sure in the supply manifold psm (Pa), the pressure in the return manifold prm (Pa), the
mass of hydrogen in the anode mH2,an (kg) and the mass of oxygen in the cathode mO2,ca

(kg)) and three inputs, two of which can be used as control variables (the compressor
mass flow Wcp (kg/s) and the return manifold outlet orifice constant krm,out (ms)) while
the other (the current in the stack Ist (A)) can be considered as a disturbance input that
can be included in the reference model in order to generate an appropriate feedforward
action and make the feedback loop insensitive to its variations. The values used in this
work have been taken from [12], and are listed in Table 1.
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2.3 Reference Model

Let us define the following reference model:

ṗre f
sm =

γRa

Vsm

{
W re f

cp

[
Tatm +

Tatm

ηcp

[(
psm

patm

) γ−1
γ
−1

]]
−ksm,out

(
pre f

sm −
mre f

O2,caRO2Tst

Vca

)
Tsm

}
(7)

ṗre f
rm =

RaTrm

Vrm

[
kca,out

(
mre f

O2,caRO2Tst

Vca
− pre f

rm

)
− kre f

rm,out (prm− patm)

]
(8)

ṁre f
O2,ca = ksm,out pre f

sm −
mre f

O2,caRO2Tst

Vca
(ksm,out + kca,out)+ kca,out pre f

rm −MO2

nIst

4F
(9)

The reference model provides the state trajectory to be tracked by the real PEM
fuel cell, starting from the reference inputs W re f

cp and kre f
rm,out . The values of the refer-

ence inputs to be fed to the reference model (feedforward actions) are obtained from
steady-state considerations about the fuel cell system, so as to keep the supply manifold
pressure and the oxygen stoichiometry at some desired values p∞

sm and λ re f
O2

.

2.4 Error Model

By subtracting the reference model equations (7)-(9) and the corresponding system
equations (2), (3), (5), and by defining the tracking errors e1 � pre f

sm − psm, e2 � pre f
rm −

prm, e3 � mre f
O2,ca−mO2,ca, and the new inputs u1 � W re f

cp −Wcp, u2 � kre f
rm,out − krm,out ,

the error model for the PEM Fuel Cell can be brought to the following representation:

ė1 =−
γRa

Vsm
ksm,outTsm

(
e1−

RO2Tst

Vca
e3

)
+ b11 (psm)u1 (10)

ė2 =−
RaTrmkca,out

Vrm

(
e2−

RO2Tst

Vca
e3

)
+ b22 (prm)u2 (11)

ė3 = ksm,oute1 + kca,oute2− (ksm,out + kca,out)
RO2Tst

Vca
e3 (12)

with:

b11 (psm) =
γRa

Vsm

⎡⎣Tatm +
Tatm

ηcp

⎡⎣( psm

patm

) γ−1
γ
− 1

⎤⎦⎤⎦ (13)

b22 (prm) =−
RaTrm

Vrm
(prm− patm) (14)
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Table 1. List of parameters and values

Variable Description Value and Unit
ηcp Compressor efficiency 0.8
γ Specific heat capacity of gas 1.4

Ra Air gas constant 286.9J/(kgK)
RO2 Oxygen gas constant 259.8J/(kgK)
RH2 Hydrogen gas constant 4124.3J/(kgK)

Vsm Supply manifold volume 0.02m3

Vca Cathode volume 0.01m3

Vrm Return manifold volume 0.005m3

Van Anode volume 0.005m3

Tatm Air temperature 298.15K
Tst Temperature in the stack 350K
Tsm Supply manifold temperature 300K
Trm Return manifold temperature 300K
patm Air pressure 101325Pa

ksm,out Supply manifold outlet flow constant 0.3629 ·10−5 kg/sPa
kca,out Cathode outlet flow constant 0.2177 ·10−5 kg/sPa
MH2 Hydrogen molar mass 2.016 ·10−3 kg/mol
MO2 Oxygen molar mass 32 ·10−3 kg/mol

n Number of cells in the fuel cell stack 381
F Faraday constant 96485C/mol
K1 Proportional gain 2.1
K2 Nominal pressure drop coefficient 0.94
Jcp Combined inertia of motor and compressor 5 ·10−5 kgm2

kt Torque constant 0.0153Nm/A
Rcm Resistance 0.82Ω
kv Motor constant 0.0153V s/rad
Cp Specific heat capacity of air 1004J/kgK

3 Controller Design Scheme

From the previous section, the PEM Fuel Cell error model can be expressed in a TS
form, as follows:

IF ϑ1(k) is Mi1 AND ϑ2(k) is Mi2

T HEN

{
ei(k+ 1) = Ae(k)+Biu(k)
yi(k) =Ce(k)

i = 1, . . . ,N
(15)

where e ∈ Rne is the error vector, ei ∈ Rne is the error update due to the i-th rule of the
fuzzy model, u∈Rnu is the input vector, and ϑ1(k), ϑ2(k) are premise variables (in this
paper, ϑ1(k) = b11(psm(k)) and ϑ2(k) = b22(prm(k))).

The entire fuzzy model of the error system is obtained by fuzzy blending of the
consequent submodels. For a given pair of vectors e(k) and u(k), the final output of the
fuzzy system is inferred as a weighted sum of the contributing submodels:
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e(k+ 1) =

N
∑

i=1
wi (ϑ(k)) [Ae(k)+Biu(k)]

N
∑

i=1
wi (ϑ(k))

=
N

∑
i=1

hi (ϑ(k)) [Ae(k)+Biu(k)] (16)

y(k) =Ce(k) (17)

where wi (ϑ(k)) and hi (ϑ(k)) are defined as follows:

wi (ϑ(k)) = Mi1 (ϑ1(k))Mi2 (ϑ2(k)) hi (ϑ(k)) = wi(ϑ (k))

∑N
i=1 wi(ϑ (k)) (18)

where Mi1 (ϑ1(k)) and Mi2 (ϑ2(k)) are the grades of membership of ϑ1(k) and ϑ2(k) in
Mi1 and Mi2, respectively, and hi (ϑ(k)) is such that:

∑N
i=1 hi (ϑ(k)) = 1 hi (ϑ(k))≥ 0 i = 1, . . . ,N (19)

The error submodels in (15) are controlled through TS error-feedback control rules:

IF ϑ1(k) is Mi1 AND ϑ2(k) is Mi2

T HEN ui(k) = Kie(k) i = 1, . . . ,N
(20)

such that the overall controller output is inferred as the weighted mean:

u(k) =
N

∑
i=1

hi (ϑ(k))Kie(k) (21)

Since the vector of premise variables ϑ(k) is a function of the state variables psm and
prm, (21) represents a nonlinear gain-scheduled control law. The goal of the controller
design is to find the matrices Ki such that the resulting closed-loop error system is stable
with the poles of each subsystem in some desired region of the complex plane.

In this paper, both stability and pole clustering are analyzed within the quadratic
Lyapunov framework, where a single quadratic Lyapunov function is used to assure
the desired specifications. Despite the introduction of conservativeness with respect to
other existing approaches, where the Lyapunov function is allowed to be parameter-
varying, the quadratic approach has undeniable advantages in terms of computational
complexity.

In particular, the TS error system (16), with the error-feedback control law (21), is
quadratically stable if and only if there exist Xs = XT

s > 0 and matrices Ki such that
[13]: (

−Xs (A+B jKi)Xs

Xs (A+B jKi)
T −Xs

)
< 0 i, j = 1, . . . ,N (22)

On the other hand, pole clustering is based on the results obtained by [14], where
subsets D of the complex plane, referred to as LMI regions, are defined as:

D = {z ∈C : fD (z) < 0} (23)

where fD is the characteristic function, defined as:

fD (z) = α + zβ + z̄β T = [αkl +βklz+βlkz̄]k,l∈[1,m] (24)
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where α = αT ∈Rm×m and β ∈Rm×m. Hence, the TS error system (16), with the error-
feedback control law (21), has its poles in D if there exist XD = XT

D > 0 and matrices
Ki such that:[

αklXD +βkl (A+B jKi)XD +βlkXD (A+B jKi)
T
]

< 0
k,l∈[1,m]

i, j = 1, . . . ,N (25)

Two issues arising when using (22) and (25) for design:

– conditions (22) and (25) are Bilinear Matrix Inequalities (BMIs), since the products
of the variables Ki by the matrices Xs and XD appear. In order to reduce the BMIs
to Linear Matrix Inequalities (LMIs), a common Lyapunov matrix Xs = XD = X is
chosen, and the change of variables Γi � KiX is introduced;

– in TS systems where only the input matrix B changes according to the considered
subsystem, the solution provided by (22) and (25) exhibits too conservatism, due to
the fact that a given Ki has to guarantee stability/pole clustering for all the possible
B j. In order to reduce such conservatism, a gridding approach is considered for
obtaining the TS model, and the design conditions are written at the grid points
only. Even though the stability and the pole clustering specification are theoretically
guaranteed only at the grid points, from a practical point of view such specifications
should be guaranteed by choosing a grid of points dense enough.

Hence, the conditions to be used for finding the gains Ki are the following:(
−X AX +BiΓi

XAT +Γ T
i BT

i −X

)
< 0 i = 1, . . . ,N (26)

[
αklX +βkl (AX +BiΓi)+βlk

(
XAT +Γ T

i BT
i

)]
k,l∈[1,m]

< 0 i = 1, . . . ,N (27)

These LMIs can be solved efficiently using available software, e.g. the YALMIP
toolbox [15] with SeDuMi solver [16].

4 Simulation Results

The TS control design technique described in Section 3 has been applied to the error
model of the PEM Fuel Cell presented in Section 2, where the state matrix is given as
follows:

A =

⎛⎝ −21.8644 0 1.9881 ·108

0 −37.4749 3.4076 ·108

3.6290 ·10−6 2.1770 ·10−6 −52.7940

⎞⎠
By considering that the supply and the return manifold pressures prm and psm can

take values in given intervals:

prm ∈
[
1.3 ·105,13 ·105

]
psm ∈
[
1.3 ·105,13 ·105

]
it is obtained that the elements of the input matrix vary in the indicated ranges:

B =

⎛⎝b11(psm) 0
0 b22(prm)
0 0

⎞⎠ ∈
⎛⎝[1.3 ·105,13 ·105

]
0

0
[
1.3 ·105,13 ·105

]
0 0

⎞⎠
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The nonlinear sector approach has been applied to obtain a TS model by dividing
these intervals into 30 points each. This leads to a grid of 900 pairs (b11,b22), i.e.,
submodels.

Using this model, a TS controller with the structure (20) has been designed using
(26) to assure stability and using (27) to achieve pole clustering in a circle of radius 0.4
and center (0.599,0). This controller needs an observer to estimate the error between
the reference and the real states of the PEM fuel cell. Even though the observer is
implemented as a TS observer (see [10] for more details about TS observers) due to
the variability of the values b11(psm) and b22(prm), the design of the observer can be
performed using an LTI exact pole placement technique, since both the A and the C
matrices of the TS PEM Fuel Cell error model are constant. In particular, in this work
the error observer eigenvalues have been put in {0.3,0.25,0.2}.

The results shown in this paper refer to a simulation which lasts 300s, where abrupt
change in the stack current Ist(t) and the desired oxygen excess ratio λ re f

O2 (t) were in-
troduced. The PEM fuel cell initial states have been chosen as follows:⎡⎢⎢⎣

psm(0)
prm(0)

mH2,an(0)
mO2,ca(0)

⎤⎥⎥⎦=
⎡⎢⎢⎣

1.6 ·105 Pa
1.6 ·105 Pa
5 ·10−4 kg

0.01kg

⎤⎥⎥⎦
A Gaussian noise with zero mean and standard deviation equal to 5 ‰ of the mea-

surement has been considered for both the available sensors (state variables psm and
prm). Fig. 1 shows the evolution of the stack current Ist during the simulation and the
tracking of the desired oxygen excess ratio. It can be seen that the reference is cor-
rectly followed independently of the values taken by the stack current. This is done by
changing the compressor mass flow Wcp and the return manifold outlet constant krm,out ,
taking into account both the feedforward and the feedback control law, as shown in Fig.
2. Finally, the values taken by the state variables are shown in Fig. 3.
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Fig. 1. Current in the stack and oxygen excess ratio
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5 Conclusions

In this paper, the problem of controlling the oxygen stoichiometry for a PEM fuel cell
has been solved. The proposed solution relies on the use of a reference model that
describes the desired behaviour. The resulting nonlinear error model is brought to a
TS form that is used for designing a TS controller using LMI-based techniques. The
results obtained in simulation environment have demonstrated the effectiveness of the
proposed technique. As future work, the proposed TS approach will be compared with
the LPV approach in order to see the advantages and disavantages of each one of these
two techniques.
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Abstract. This paper deals with nonlinear systems, which are modeled
by T-S fuzzy model containing nonlinear functions in the consequent part
of the fuzzy IF-THEN rules. This will allow modeling a wider class of
systems with smaller modeling errors. The consequent part of each rule
is assumed to contain a linear part plus a sector-bounded nonlinear term.
The proposed controller guarantees exponential convergence of states by
utilizing a new non-quadratic Lyapunov function for Lyapunov stabil-
ity analysis and Linear Matrix Inequality (LMI) formulation. Moreover,
new relaxation methods are introduced for further reduction of conserva-
tiveness and maximizing the region of attractions. Numerical examples
illustrate effectiveness of the proposed method.

Keywords: Fuzzy Sugeno, Nonlinear Subsystem, Non-Quadratic
Lyaponuv.

1 Introduction

Takagi-Sugeno (T-S) fuzzy model is a well-known tool for nonlinear system mod-
eling with increasing interest in recent years. As T-S model is a universal approx-
imator, it can model any smooth nonlinear system with any degree of accuracy.
Furthermore, the local linear subsystems of this model allow one to use powerful
linear systems tools, such as Linear Matrix Inequalities (LMIs), to analyze and
synthesize T-S fuzzy systems.

As complexity of the system increases, the number of rules in the fuzzy model
and hence, the number and dimensions of LMIs (used for the stability analysis)
increase and become harder to solve. Many works in literature are devoted to
decrease the conservativeness of these LMIs in order to apply them to a wider
class of systems [1–3].

One different possible solution is to use nonlinear local subsystems for the T-S
model. A priori it seems that this method increases the complexity of the fuzzy
model, whereas it decreases the number of rules and at the same time increases

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 528–538, 2014.
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the model accuracy. The key idea of using nonlinear terms in the subsystems is
to use some kind of nonlinearity, which is less complicated than the nonlinearities
of the main system. One main class of T-S system with nonlinear consequent is
the polynomial fuzzy systems, which has attracted the attention of researchers
in recent years [4–6]. Another possible form of nonlinear consequent part is a
linear subsystem plus a nonlinear term, which is used by Dong et al. [7] and
[8] and Dong [9], where they have employed sector-bounded functions in the
subsystems.

In this paper, a similar form of the Dong’s model is employed. In other words,
every subsystem in the Sugeno model contains a linear term plus a nonlinear term
in the consequent part of the fuzzy IF-THEN rules. However, to avoid conser-
vativeness introduced by the sector conditions, a novel non-quadratic Lyapunov
function is introduced.

The reminder of the paper is organized as follows. In Section 2, nonlinear
Sugeno model is described. In Section 3, existing methods on stabilization of
nonlinear Sugeno system as well as new proposed methods are introduced. Sim-
ulation results are given in Section 4. Section 5 concludes the paper.

2 Problem Statement

Consider a class of nonlinear systems described by

ẋ(t) = fa
(
x(t)
)
+ fb
(
x(t)
)
ϕ
(
x(t)
)
+ g
(
x(t)
)
u(t)

y(t) = fya
(
x(t)
)
+ fyb
(
x(t)
)
ϕ
(
x(t)
) (1)

where x(t) ∈Rnx is the state, u(t)∈Rnu is the control input, y(t)∈Rny is the
measurable output, fn

(
x(t)
)
: n∈ [a, b, ya, yb] and g

(
x(t)
)
∈ R(nx×nu) are non-

linear functions and ϕ
(
x(t)
)
∈R(nx×nϕ) is a vector of sector-bounded nonlinear

functions satisfying

ϕi

(
x(t)
)
∈ co{ELix(t), EUix(t)}, 1 ≤ i ≤ s (2)

or without loss of generality

ϕi

(
x(t)
)
∈ co{0, Eix(t)}, 1 ≤ i ≤ s (3)

which results ϕi

(
x(t)
)(

Eix(t) − ϕi

(
x(t)
))
≥ 0. Considering Γ > 0, it immedi-

ately results that

ϕT
(
x(t)
)
Γ−1Ex(t) − ϕT

(
x(t)
)
Γ−1ϕ
(
x(t)
)
≥ 0. (4)

where Γ is diagonal.
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2.1 Nonlinear Sugeno Model

The system (1) can be represented by a T-S fuzzy system with local nonlinear
models as follows:

Plant Rule i :

IF z1(t) is Mi1(z), . . . , and zp(t) is Mip(z) THEN:

ẋ(t) = Aix(t) +Gxiϕ
(
x(t)
)
+Biu(t) +D1iν(t)

y(t) = Cix(t) +Gyiϕ
(
x(t)
)
+D2iν(t)

(5)

where Ai ∈ R(nx×nx), Bi ∈ R(nx×nu), Ci ∈ R(ny×nx), Gxi ∈ R(nx×nϕ), Gyi ∈
R(ny×nϕ), D1i ∈ R(nx×nν) and D2i ∈ R(ny×nν) (i = 1, . . . , r) are constant ma-
trices, in which r is the number of rules, nx is the number of states, nu is the
number of inputs, ny is the number of outputs, nϕ is the number of nonlinear
functions in ϕ(x) vector and nν is the dimension of ν. Moreover, z1(t), . . . , zp(t)
are the premise variables, Mij denote the fuzzy sets and ν(t) is a band-limited
white noise. In this case, the whole fuzzy system can be represented as

ẋ(t) =

r∑
i=1

ωi(z)
[
Aix(t) +Gxiϕ

(
x(t)
)
+Biu(t) +D1iν(t)

]
y(t) =

r∑
i=1

ωi(z)
[
Ci

(
x(t)
)
+Gyiϕ

(
x(t)
)
+D2iν(t)

] (6)

where

ωi(z) =
hi(z)∑r

k=1 hk(z)
, hi(z) = Πp

j=1μij(z). (7)

and μij(z) is the grade of membership of zj in Mij .

3 Controller Design

The control scheme used in this paper is as follows:

Controller Rule i :

IF z1(t) is Mi1(z), . . . , and zp(t) is Mip(z) THEN:

u(t) = Kaix(t) +Kbiϕ
(
x(t)
)
.

(8)

From (5) and (8), the closed-loop fuzzy system can be obtained as follows:

ẋ(t) = (Ai +BiKai)x(t) + (Gxi +BiKbi)ϕ
(
x(t)
)
+D1iν(t)

y(t) = Cix(t) +Gyiϕ
(
x(t)
)
+D2iν(t)

(9)

In this section, the conditions for asymptotic convergence of the states of the
system (5) by the controller (8) will be given. The following lemmas are used in
this paper.
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Lemma 1. [10] If the following conditions hold:

Ξii < 0, 1 < i < r

1

r − 1
Ξii +

1

2
(Ξij + Ξji) < 0, 1 < i �= j < r

(10)

then, the following inequality holds:

r∑
i=1

r∑
j=1

αiαjΞij < 0 (11)

where 0 ≤ αi ≤ 1 and
∑r

i=1 αi = 1.

Lemma 2. Matrix inversion lemma [11]: For matrices of the correct size, the
following property holds:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (12)

In the following theorem, sufficient conditions for stability of the system dynamic
(9) will be given.

Theorem 1. [8] If there exist matrices P = PT > 0, Xai and Xbi, 1 ≤ i ≤ r,
and diagonal matrix Γ > 0 such that (10) is satisfied with Ξij defined as

Ξij =

[
He(AiP +BiXaj) ∗

ΓGT
xi +XT

bjB
T
i + EP −2Γ

]
(13)

then, fuzzy system (5) is asymptotically stable using controller (8) with

Kai = XaiP
−1 Kbi = XbiΓ

−1 1 ≤ i ≤ r. (14)

In (13), He(A) denotes the Hermit of matrix A and * indicates the symmetric
term.

Corollary 1. If there exist matrices P = PT > 0, Xai and Xbi, 1 ≤ i ≤ r, and
diagonal matrix Γ > 0 such that (10) is satisfied with Ξij defined as

Ξij =

[
He(AiP +BiXaj) + βP ∗
ΓGT

xi +XT
bjB

T
i + EP −2Γ

]
(15)

then, fuzzy system (5) is asymptotically stable via controller (8) with decay rate β.
I.e., if V (x(t)) is a Lyapunov function for system (9) then V̇ (x(t)) < −βV (x(t)))

Proof. Based on the Theorem 1, the proof is easily obtained.
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3.1 Non-quadratic Stabilization

Based on Theorem 1, the nonlinear term is treated as a disturbance that must
be compensated. This may yield a more conservative solution to the problem.
The following theorem reduces this conservativeness.

Theorem 2. If there exist matrices P = PT > 0, Xai and Xbi, 1 ≤ i ≤ r, and
diagonal matrix Γ > 0 such that (10) holds with Ξij defined as below

Ξij =

[
He(AiP +BiXaj) ∗

Ξ21
ij Ξ22

ij

]
(16)

where
Ξ21

ij = ΓGT
i +XT

bjB
T
i + EP + αE(AiP +BiXaj)

Ξ22
ij = He(−Γ + αE(GiΓ +BiXbj))

(17)

then, fuzzy system (5) is asymptotically stable via controller (8) with Kai and
Kbi defined in (14), if the Jacobian matrix of the vector ϕ

(
x(t)
)
is symmetric.

Proof. Let define the following non-quadratic Lyapunov function:

V
(
x, ϕ(x)

)
:= xT (t)P−1x(t) + 2α

∫ x

0

ϕT (y)Γ−1E dy. (18)

Then, if the Jacobian matrix of the vector ϕ
(
x(t)
)
is symmetric, the integral in

(18) is path independent and hence, the time derivative of (18) becomes

V̇
(
x, ϕ(x)

)
= 2ẋT (t)P−1x(t) + 2αϕT

(
x(t)
)
Γ−1Eẋ(t)

=

[
x(t)

ϕ
(
x(t)
)]T [He(P−1Ai + P−1BiKai) ∗

Ξ̃21
ij Ξ̃22

ij

] [
x(t)

ϕ
(
x(t)
)] (19)

where
Ξ̃21

ij = (Gxi +BiKbj)
TP−1 + αΓ−1E(Ai +BiKaj)

Ξ̃22
ij = α(Γ−1E(Gi +BiKbj) + ∗).

(20)

Substituting (14) into (16) and pre- and post-multiplying it by diag[P−1, Γ−1]
and its transpose, and based on (19) and (4) it follows that V̇

(
x, ϕ(x)

)
< 0,

which completes the proof.

Remark 1. To show that the selected V
(
x, ϕ(x)

)
is a Lyapunov function, it is

necessary to investigate its positiveness. It is obvious that V
(
x, ϕ(x)

)
for x(t) = 0

is equal to zero. Based on (4), it yields

ϕT
(
x(t)
)
Γ−1Ex(t) > 0 (21)

and as a result ∫ x

0

ϕT (y)Γ−1E dy > 0. (22)
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Therefore, if α ≥ 0, then V
(
x, ϕ(x)

)
> 0. For α < 0 a bound on the value of

this integral should be found. To this aim, note that if ϕ
(
x(t)
)
is bounded to

the sector
[
0 Ex(t)

]
, then its integral from 0 to x(t) is less than the area of this

sector. In other words∫ x

0

ϕT (y)Γ−1E dy <
1

2
xT (t)ETΓ−1Ex(t) (23)

Therefore, to guarantee the positiveness of the Lyapunov function, the inequlity
P−1 + αETΓ−1E > 0 must be satisfied. This can be converted into an LMI as[

P ∗
EP − 1

αΓ

]
> 0. (24)

Remark 2. If by changing Ξij in (17) as

Ξ22
ij = He(αE(GiΓ +BiXbj))

Ξ21
ij = ΓGT

i +XT
bjB

T
i + αE(AiP +BiXaj)

(25)

Ξij < 0 still holds, then the condition of sector boundedness of ϕ
(
x(t)
)
is not

necessary for making V̇
(
x, ϕ(x)

)
< 0. However, to guarantee positiveness of the

Lyapunov function, a milder condition on ϕ
(
x(t)
)
must be satisfied. That is,

ϕT
(
x(t)
)
Ex(t) > 0.

Corollary 2. If there exist matrices P = PT > 0, Xai and Xbi, 1 ≤ i ≤ r, and
diagonal matrix Γ > 0 such that (10) holds with Ξij defined as below

Ξij =

⎡⎣He(AiP +BiXaj) + βP ∗ ∗
βEP − β

αΓ 0
Ξ21

ij 0 Ξ22
ij

⎤⎦ (26)

where Ξ21
ij and Ξ22

ij are defined in (17), then, fuzzy system (5) is asymptotically
stable via controller (8) with decay rate β.

Proof. Based on (23) and the proof of Theorem 2, proof can be easily obtained.

3.2 Maximum Region of Attraction

One of the property of the Lyapunov’s method is that it can be used to find the
region of attraction of states or an estimate of it. This region is usually estimated
by the largest ball V (x(t)) = c contained in the domain of the system definition,
where V̇ (x(t)) < 0 [12]. The invariant ellipsoid ε =

{
x ∈ Rn, xTP−1x ≤ 1

}
is

contained in polytope P =
{
x ∈ Rn, aTk x ≤ 1, k = 1, . . . , q

}
if the following set

of linear inequalities are satisfied:

aTk P
−1ak < 1, k = 1, . . . , q. (27)
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Applying the Schur complement, (27) can be rewritten as[
1 aTk
ak P

]
> 0. (28)

On the other hand, The largest invariant ellipsoid ε in P can be found by the
following optimization problem [13]:

maxλ

subject to:P > λI
(29)

where λ > 0 and I is an identity matrix. Since Lyapunov function (18) is not an
ellipsoid, it is rather difficult to find its maximum value by a convex optimization
problem. Instead, two surrounding ellipsoids can be determined. To this aim, the
following lemma is stated.

Lemma 3. Lyapunov function (18) with α > 0 is bounded as

xTP−1x < V (x, ϕ(x)) < xTP−1x+ αxETΓ−1Ex (30)

Proof. based on (22) and (23), the proof is straightforward. Next, the following
theorem can be stated.

Theorem 3. In Theorem 2, the maximum region of attraction of states can be
found by the following optimization problem:

max λ

subject to:

[
P − λI PET

EP (1/α)Γ + EPET

]
> 0

and

[
1 aTk
ak P

]
> 0

(31)

Proof. Based on (3), the Lyapunov function is always outside the ellipsoid ε1 ={
x ∈ Rn, xT

(
P−1 + αETΓ−1E

)
x ≤ 1
}
and inside the ellipsoid ε2 = {x ∈ Rn,

xTP−1x ≤ 1}. In order to guarantee that the region V (x(t)) < 1 is inside the
polytope P, it suffices to check whether ε2 satisfies this condition, which is equal
to aTk P

−1ak < 1, k = 1, . . . , q. And in order to maximize the region of attraction,
it is enough to maximize ε1, which can be stated as the following optimization
problem:

max λ

subject to: (P−1 + αETΓ−1E)
−1

> λI.
(32)

Based on the matrix inversion lemma, the condition in (32) can be written as

P + PET (− 1

α
Γ − EPET )−1EP − λI > 0 (33)
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which is equal to [
P − λI PET

EP ( 1
α )Γ + EPET

]
> 0. (34)

4 Simulations

In this section, simulations are given to illustrate the effectiveness of the new
non-quadratic Lyapunov function. It is shown that the proposed method can
design fuzzy controllers with less conservatism than the conventional methods
with a larger region of attraction. All LMIs are solved using YALMIP [14] as a
parser and SeDuMi as a solver.

Example 1. Consider the following system (Example 1 in [15] with minor mod-
ifications):

ẋ(t) =

[
a+ bx2

2 −1
2 c+ dx2

2

]
x(t) +

[
1
−x2

2

]
u(t) +

[
b 0
1 d

] [
x3
1

sin(x2)

]
(35)

with a = −0.2363, b = 0.0985, c = −0.7097 and d = 0.3427. Suppose x1 ∈
[−1 1] and x2 ∈ [−2 2]. By selecting x2

2 as the premise variable and ϕ
(
x(t)
)
=[

x3
1 sin(x2)

]T
, this system can be modeled by sector nonlinearity approach as

follows:

A1 =

(
a −1
2 c

)
, A2 =

(
a+ 4b −1

2 c+ 4d

)
B1 =

(
1
−4

)
,

B2 =

(
1
0

)
Gx1 = Gx2 =

(
b 0
1 d

)
, E =

(
1 0
0 1

)
.

(36)

Part1: Comparing Nonlinear T-S vs. Linear T-S
To show the effectiveness of modeling a system using nonlinear Sugeno model,
this system is modeled with a traditional Sugeno model with linear local sub-
systems as follows:

A1 =

(
a −1
1 c

)
, A2 =

(
a+ 4b −1

1 c+ 4d

)
A3 =

(
a+ b −1
1 c

)
,

A4 =

(
a+ 5b −1

1 c+ 4d

)
A5 =

(
a −1
3 c

)
, A6 =

(
a+ 4b −1

3 c+ 4d

)
A7 =

(
a+ b −1
3 c

)
, A8 =

(
a+ 5b −1

3 c+ 4d

)
B1 =

(
1
−4

)
, B2 =

(
1
0

)
, B3 =

(
1
−4

)
, B4 =

(
1
0

)
B5 =

(
1
−4

)
, B6 =

(
1
0

)
, B7 =

(
1
−4

)
, B8 =

(
1
0

)
.

(37)

Note that in this case, the system model and hence the controller, have eight
rules. Moreover, note that x1 is one of the premise variables now. Figure 1 com-
pares the feasibility area of these models by changing parameters b and d. The
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−0.5

0
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d

Fig. 1. Feasible area of Example 1 for parameters b and d: linear T-S [16] (Star) and
non-linear T-S (Theorem 1) (Circle)

Fig. 2. Left: Stability area for Theorem 1 (blue line) and Theorem 2 (green line). Right:
System Time response for Theorem 2 (Top) and Theorem 1 (Bottom).

simulation results show that the nonlinear Sugeno model can control a larger
class of systems.

Part2: Comparing Non-Quadratic Lyapunov Function vs. Quadratic one in
Nonlinear T-S
The convergence region is compared in Figure 2 for Theorem 2 (α = 0.5) and
Theorem 1. It should be mentioned that conditions of Theorem 3 have also
been applied in this case. The dash line shows the state trajectories for some
initial conditions for Theorem 3. Figure 2 also shows system time responses
for Theorems 1 and 3. The decay rates are shown in Figure 3, which shows
improvement of the decay rate by changing from quadratic (Corollary 1) to non-
quadratic (Corollary 2) Lyapunov function. In addition to these benefits, the
non-quadratic Lyapunov function increases the feasibility area. As an example,
for b = 0.1 and d = 1, no result can be obtained for Theorem 1 while Theorem 2
provides a feasible solution with α = −1. The Lyapunov function is also shown
in Figure 3 to show its positivity while α is negative.
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Fig. 3. Left: Non-quadratic Lyapunov function for Example 1 (α = −1). Right: Decay
rate (β) based on Corollary 1 (solid line) and Corollary 2 (dotted line).

5 Conclusion

In this paper, T-S model with nonlinear consequent part was considered to reduce
the number of rules in a fuzzy system. In this model, each sub-system is supposed
to be linear plus a sector-bounded nonlinearity. This may recall of a traditional
linear T-S plus disturbance but a major difference is that the controller for these
systems also includes the nonlinear term. This resulted in introducing a non-
quadratic Lyapunov function considering the nonlinear term, which can improve
the decay-rate and the Lyapunov level.
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Technology, Ministry of Higher Education and Research, Region Nord Pas de
Calais and CNRS.
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Model Following Control of a Unicycle Mobile

Robot via Dynamic Feedback Linearization
Based on Piecewise Bilinear Models
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Abstract. We propose a dynamic feedback linearization of a unicycle
as a non-holonomic system with a piecewise bilinear (PB) model. Input-
output (I/O) dynamic feedback linearization is applied to stabilize PB
control system. We propose a method for nonlinear model following con-
troller to the unicycle robot. Although the controller is simpler than the
conventional I/O feedback linearization controller, the tracking perfor-
mance based on PB model is the same as the conventional one. Examples
are shown to confirm the feasibility of our proposals by computer simu-
lations.

Keywords: Piecewise bilinear model, dynamic feedback linearization,
non-holonomic system, model following control.

1 Introduction

This paper deals with the model following control of a unicycle robot using dy-
namic feedback linearization based on piecewise bilinear (PB) models. Wheeled
mobile robots are completely controllable. However they cannot be stabilized
to a desired position using time invariant continuous feedback control [1]. The
wheeled mobile robot control systems have a non-holonomic constraint. Non-
holonomic systems are much more difficult to control than holonomic ones. Many
methods have been studied for the tracking control of unicycle robots. The back-
stepping control methods are proposed in (e.g. [2], [3]). The sliding mode control
methods are proposed in (e.g., [4], [5]), and also the dynamic feedback lineariza-
tion methods are in (e.g., [6], [7]). For non-holonomic robots, it is never possible
to achieve exact linearization via static state feedback [8]. It is shown that the
dynamic feedback linearization is an efficient design tool to solve the trajectory
tracking and the setpoint regulation problem in [6], [7].

In this paper, we consider PB model as a piecewise approximation model of
the unicycle robot dynamics. The model is built on hyper cubes partitioned in

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 539–548, 2014.
c© Springer International Publishing Switzerland 2014
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state space and is found to be bilinear (bi-affine) [9], so the model has simple
nonlinearity. The model has the following features: 1) The PB model is derived
from fuzzy if-then rules with singleton consequents. 2) It has a general approxi-
mation capability for nonlinear systems. 3) It is a piecewise nonlinear model and
second simplest after the piecewise linear (PL) model. 4) It is continuous and
fully parametric. The stabilizing conditions are represented by bilinear matrix
inequalities (BMIs) [10], therefore, the design of the stabilizing controller needs
long time computing. To overcome these difficulties, we have derived stabilizing
conditions [11], [12], [13] based on feedback linearization, where [11] and [13]
apply input-output linearization and [12] applies full-state linearization.

We propose a dynamic feedback linearization for PB control system and the
model following control [14] for a unicycle robot system. The control system
has the following features: 1) Only partial knowledge of vertices in piecewise
regions is necessary, not overall knowledge of an objective plant. 2) These control
systems are applicable to a wider class of nonlinear systems than conventional
I/O linearization. 3) Although the controller is simpler than the conventional
I/O feedback linearization controller, the tracking performance based on PB
model is the same as the conventional one.

This paper is organized as follows. Section 2 introduces the canonical form
of PB models. Section 3 presents PB modeling of the unicycle mobile robot.
Section 4 proposes a model following controller design using dynamic feedback
linearization based on PB model. Section 5 shows examples demonstrating the
feasibility of the proposed methods. Section 6 summarizes conclusions.

2 Canonical Forms of Piecewise Bilinear Models

2.1 Open-Loop Systems

In this section, we introduce PB models suggested in [9]. We deal with the two-
dimensional case without loss of generality. Define vector d(σ, τ) and rectangle

Rστ in two-dimensional space as d(σ, τ) ≡ (d1(σ), d2(τ))
T
,

Rστ ≡ [d1(σ), d1(σ + 1)]× [d2(τ), d2(τ + 1)]. (1)

σ and τ are integers: −∞ < σ, τ <∞ where d1(σ) < d1(σ+1), d2(τ) < d2(τ +1)
and d(0, 0) ≡ (d1(0), d2(0))

T . Superscript T denotes a transpose operation.
For x ∈ Rστ , the PB system is expressed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)fo(i, j),

x =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)d(i, j),

(2)
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where fo(i, j) is the vertex of nonlinear system ẋ = fo(x),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωσ
1 (x1) = (d1(σ + 1)− x1)/(d1(σ + 1)− d1(σ)),

ωσ+1
1 (x1) = (x1 − d1(σ))/(d1(σ + 1)− d1(σ)),

ωτ
2 (x2) = (d2(τ + 1)− x2)/(d2(τ + 1)− d2(τ)),

ωτ+1
2 (x2) = (x2 − d2(τ))/(d2(τ + 1)− d2(τ)),

(3)

and ωi
1(x1), ω

j
2(x2) ∈ [0, 1]. In the above, we assume f(0, 0) = 0 and d(0, 0) = 0

to guarantee ẋ = 0 for x = 0.
A key point in the system is that state variable x is also expressed by a convex

combination of d(i, j) for ωi
1(x1) and ωj

2(x2), just as in the case of ẋ. As seen
in equation (3), x is located inside Rστ which is a rectangle: a hypercube in
general. That is, the expression of x is polytopic with four vertices d(i, j). The
model of ẋ = f(x) is built on a rectangle including x in state space, it is also
polytopic with four vertices f(i, j). We call this form of the canonical model (2)
parametric expression.

Representing ẋ with x in Eqs. (2) and (3), we obtain the state space expression
of the model found to be bilinear (biaffine) [9], so the derived PB model has
simple nonlinearity. In PL approximation, a PL model is built on simplexes
partitioned in state space, triangles in the two-dimensional case. Note that any
three points in three-dimensional space are spanned with an affine plane: y =
a + bx1 + cx2. A PL model is continuous. It is, however, difficult to handle
simplexes in the rectangular coordinate system.

2.2 Closed-Loop Systems

We consider a two-dimensional nonlinear control system.{
ẋ =fo(x) + go(x)u(x),

y =ho(x).
(4)

The PB model (5) is constructed from a nonlinear system (4).{
ẋ =f(x) + g(x)u(x),

y =h(x),
(5)

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)fo(i, j), g(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)go(i, j),

h(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)ho(i, j), x =

σ+1∑
i=σ

τ+1∑
j=τ

ωi
1(x1)ω

j
2(x2)d(i, j),

(6)

and fo(i, j), go(i, j), ho(i, j) and d(i, j) are vertices of the nonlinear system (4).
The modeling procedure in region Rστ is as follows:
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1. Assign vertices d(i, j) for x1 = d1(σ), d1(σ + 1), x2 = d2(τ), d2(τ + 1) of
state vector x, then partition state space into piecewise regions (see Fig. 1).

2. Compute vertices fo(i, j), go(i, j) and ho(i, j) in equation (6) by substituting
values of x1 = d1(σ), d1(σ + 1) and x2 = d2(τ), d2(τ + 1) into original
nonlinear functions fo(x), go(x) and ho(x) in the system (4). Fig. 1 shows
the expression of f(x) and x ∈ Rστ .

d1(σ)

d1(σ + 1)

d2(τ )

d2(τ + 1)

f1(σ + 1, τ )

f1(σ, τ )

f1(σ, τ + 1)

f1(σ + 1, τ + 1)

ωσ+1
1

ωσ
1

ωτ+1
2

ωτ
2

f1(x)

Fig. 1. Piecewise region (f1(x) =
∑σ+1

i=σ

∑τ+1
j=τ ωi

1ω
j
2f1(i, j), x ∈ Rστ )

The overall PB model is obtained automatically when all vertices are assigned.
Note that f(x), g(x) and h(x) in the PB model coincide with those in the original
system at vertices of all regions.

3 Dynamic Feedback Linearization of Unicycle Mobile
Robot [7]

We consider a unicycle mobile robot model.⎛⎝ẋẏ
θ̇

⎞⎠ =

⎛⎝cos θsin θ
0

⎞⎠ v +

⎛⎝00
1

⎞⎠ω, (7)

where x and y are the position coordinates of the center of the wheel axis, θ
is the angle between the center line of the vehicle and the x axis. The control
inputs are the forward velocity v and the angular velocity ω. In this case, we
consider η = (x, y)T as the output, the time derivative of η is calculated as

η̇ =

(
ẋ1

ẋ2

)
=

(
cosx3 0
sinx3 0

)(
v
ω

)
,
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where x1 = x, x2 = y, x3 = θ. The linearized system of (7) at any points
(x1, x2, x3) = (x, y, θ) is clearly not controllable and the only v affects η̇. To
proceed, we need to add an integrator of the forward velocity input v. The new
input a is the acceleration of the unicycle. The time derivative of η̈ is obtained
as

η̈ =a

(
cosx3

sinx3

)
+ vω

(
− sinx3

cosx3

)
=

(
cosx3 −v sinx3

sinx3 v cosx3

)(
a
ω

)
and the matrix multiplying the modified input (a, ω) is nonsingular if v �= 0.
Since the modified input is obtained as (a, ω), the integrator with respect to the
input v is added to the original input (v, ω). Finally, the stabilizing controller
of the unicycle system (7) is presented as a dynamic feedback controller.{

v̇ =u1 cosx3 + u2 sinx3,

ω =(−u1 sinx3 + u2 cosx3)/v,
(8)

where (u1, u2) is the linearized controller of the unicycle system (7).

4 PB Modeling and Model Following Controller Design
of the Unicycle Model

4.1 PB Model of the Unicycle Model

We construct PB model of the unicycle system. The state space of θ in the
unicycle model (7) is divided by the 9 vertices x3 ∈ {−2π,−7π/4, . . . , 2π}. The
PB model is constructed as⎛⎝ẋ1

ẋ2

ẋ3

⎞⎠ =

⎛⎝f1f2
0

⎞⎠ v +

⎛⎝00
1

⎞⎠ω, (9)

f1 =
σ+1∑
i=σ

wi(x3)f1(d3(i)), f2 =
σ+1∑
i=σ

wi(x3)f2(d3(i))

wσ(x3) =
d3(σ + 1)− x3

d3(σ + 1)− d3(σ)
, wσ+1(x3) =

x3 − d3(σ)

d3(σ + 1)− d3(σ)
,

where x3 ∈ [d3(σ), d3(σ+1)], wi(x3) ≥ 0, i = σ, σ+1 and wσ(x3)+wσ+1(x3) = 1.
Table 1 shows a part of the PB model of the unicycle system. We can construct
PB model with respect to x3 and v. The PB model structure is independent of
the vertex position v since v is the linear term. This paper constructs the PB
model with respect to the nonlinear term of x3.
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Table 1. PB model of the unicycle system

d3(1) = d3(2) = d3(3) = d3(4) = d3(5) = · · · d3(8) = d3(9) =
−2π −7π/4 −3π/2 −5π/4 −π · · · 7π/4 2π

f1(d3(i)) 1 0.707 0 -0.707 1 · · · 0.707 1

f2(d3(i)) 0 0.707 1 0.707 0 · · · -0.707 0

4.2 Model Following Controller Design Using Dynamic Feedback
Linearization Based on PB Model

We define the output as η = (x1, x2)
T in the same manner as the previous

section, the time derivative of η is calculated as

η̇ =

(
ẋ1

ẋ2

)
=

σ+1∑
i=σ

wi(x3)

(
f1(d3(i)) 0
f2(d3(i)) 0

)(
v
ω

)
= v

σ+1∑
i=σ

wi(x3)

(
f1(d3(i))
f2(d3(i))

)
The time derivative of η doesn’t contain the control input ω. An integrator on
the forward velocity input v is considered as v̇ = a. We continue to calculate the
time derivative of η̇ then we get

η̈ =a

σ+1∑
i=σ

wi(x3)

(
f1(d3(i))
f2(d3(i))

)
+ vẋ3

1

Δd3

(
f1(d3(σ + 1))− f1(d3(σ))
f2(d3(σ + 1))− f2(d3(σ))

)
= G

(
a
ω

)
,

where ω = ẋ3, Δd3 = d3(σ + 1)− d3(σ),

G =

(
G11 G12

G21 G22

)
=

⎛⎜⎜⎜⎜⎝
σ+1∑
i=σ

wi(x3)f1(d3(i))
v(f1(d3(σ + 1))− f1(d3(σ)))

Δd3
σ+1∑
i=σ

wi(x3)f2(d3(i))
v(f2(d3(σ + 1))− f2(d3(σ)))

Δd3

⎞⎟⎟⎟⎟⎠ .

If v �= 0, we can derive the input (a, ω): (a, ω)T = G−1(u1, u2)
T so as to obtain

η̈ = (u1, u2)
T . Note that v = 0 means that the unicycle doesn’t move.

The I/O linearized system can be formulated as{
ż =Az +Bu,

y =Cz,
(10)

where z = (x1, x2, ẋ1, ẋ2) ∈ 94,

A =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
0 0
0 0
1 0
0 1

⎞⎟⎟⎠ , C =

⎛⎜⎜⎝
1 0
0 1
0 0
0 0

⎞⎟⎟⎠
T

.
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In this case, the state space of the unicycle system is divided into 17 vertices.
Therefore the system has 16 local PB models. Note that all the linearized systems
of these PB models are the same as the linear system (10).

In the same manner of (8), the dynamic feedback linearizing controller of the
PB system (9) is obtained⎧⎪⎪⎨⎪⎪⎩

v̇ =
1

G11G22 −G12G21
(u1G22 − u2G12) ,

ω =
1

G11G22 −G12G21
(−u1G21 + u2G11) ,

(11)

u =
(
u1, u2

)T
= −Fz. (12)

The stabilizing linear controller u = −Fz of the linearized system (10) can be
obtained so that the transfer function C(sI −A)−1B is Hurwitz.

Note that the dynamic controller (11) based on PB model is simpler than the
conventional one (8). Since the nonlinear terms of controller (11) are not the
original nonlinear terms (e.g., sinx3, cosx3) but the piecewise approximation
models.

4.3 Model Following Control for PB System

We apply a model reference control [14] to the unicycle model (7). Consider the
following reference signal model {

ẋr =fr

ηr =hr

The controller is designed to make the error signal e = (e1, e2)
T = η − ηr → 0

as t→∞. The time derivative of e is obtained as

ė =η̇ − η̇r = v

σ+1∑
i=σ

wi(x3)

(
f1(d3(i))
f2(d3(i))

)
−
(
hr1

hr2

)
.

Furthermore the time derivative of ė is calculated as ë = η̈−η̈r = −H+G(a, ω)T ,
where H = (H1, H2)

T = (ḣr1 , ḣr2)
T , The model following controller⎧⎪⎪⎨⎪⎪⎩

v̇ =
1

G11G22 −G12G21
((u1 +H1)G22 − (u2 +H2)G12) ,

ω =
1

G11G22 −G12G21
(−(u1 +H1)G21 + (u2 +H2)G11)

(13)

yields the linear closed loop system ë = u = (u1, u2)
T . The linearized system

and controller u = −Fz are obtained in the same manners as (10) and (12). The
coordinate transformation vector is z = (e1, e2, ė1− hr1 , ė2− hr2)

T . Note that
the dynamic controller (13) based on PB model is simpler than the conventional
one on the same reason of Section 4.2.
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5 Simulation Results

We consider two nonlinear systems as the nonlinear reference models. Although
the controller is simpler than the conventional I/O feedback linearization con-
troller, the tracking performance based on PB model is the same as the conven-
tional one. In addition, the controller is capable to use a nonlinear system with
chaotic behavior as the reference model.

5.1 Eight-Shaped Reference Trajectory

Consider an eight-shaped reference trajectory as the reference model.(
xr1

xr2

)
=

(
sin t

10
sin t

20

)
(14)

The feedback gain is calculated as

F =

(
1 0 1.7321 0
0 1 0 1.7321

)
,

which stabilizes the linearized system (10). To substitute the feedback gain for
(13), we get the model following controller. The initial positions are set at
(x, y) = (−1, 0) and (xr, yr) = (0, 0). Fig. 2 shows the simulation result. The
solid line is the reference signal and the dotted line is the signal of PB model.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Fig. 2. Eight-shaped reference trajectory
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5.2 Van der Pol Oscillator

Consider the following nonlinear system as a reference model.(
ẋr1

ẋr2

)
=

(
xr2

α(1− x2
r1)xr2 − xr1

)
(15)

where α = 2 is the constant. The feedback gain F is the same as the previous
example. We select the initial positions (x, y) = (1, 1) and (xr, yr) = (1, 1). Fig.
3 shows the trajectories of this simulation result. The solid line is the reference
signal and the dotted line is the signal of PB model.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

x

y

Fig. 3. Van del pol reference trajectory

6 Conclusions

We have proposed a dynamic feedback linearization of a unicycle as a non-
holonomic system with a PB model. The approximated model is fully paramet-
ric. I/O dynamic feedback linearization is applied to stabilize PB control system.
PB modeling with feedback linearization is a very powerful tool for analyzing
and synthesizing nonlinear control systems. We have proposed a method for non-
linear model following controller to the unicycle robot. Although the controller is
simpler than the conventional I/O feedback linearization controller, the tracking
performance based on PB model is the same as the conventional one. Exam-
ples have been shown to confirm the feasibility of our proposals by computer
simulations.
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6. d’Andréa-Novel, B., Bastin, G., Campion, G.: Dynamic feedback linearization of
nonholonomic wheeled mobile robot. In: The 1992 IEEE International Conference
on Robotics and Automation, pp. 2527–2531 (1992)

7. Oriolo, G., Luca, A.D., Vendittelli, M.: WMR control via dynamic feedback lin-
earization: Design, implementation, and experimental validation. IEEE Transac-
tion on Control System Technology 10(6), 835–852 (2002)

8. Luca, A.D., Oriolo, G., Vendittelli, M.: Stabilization of the unicycle via dynamic
feedback linearization. In: The 6th IFAC Symposium on Robot Control (2000)

9. Sugeno, M.: On stability of fuzzy systems expressed by fuzzy rules with singleton
consequents. IEEE Trans. Fuzzy Syst. 7(2), 201–224 (1999)

10. Goh, K.C., Safonov, M.G., Papavassilopoulos, G.P.: A global optimization ap-
proach for the BMI problem. In: Proc. the 33rd IEEE CDC, pp. 2009–2014 (1994)

11. Taniguchi, T., Sugeno, M.: Piecewise bilinear system control based on full-state
feedback linearization. In: SCIS & ISIS 2010, pp. 1591–1596 (2010)

12. Taniguchi, T., Sugeno, M.: Stabilization of nonlinear systems with piecewise bilin-
ear models derived from fuzzy if-then rules with singletons. In: FUZZ-IEEE 2010,
pp. 2926–2931 (2010)

13. Taniguchi, T., Sugeno, M.: Design of LUT-controllers for nonlinear systems with
PB models based on I/O linearization. In: FUZZ-IEEE 2012, pp. 997–1022 (2012)

14. Taniguchi, T., Eciolaza, L., Sugeno, M.: Look-Up-Table controller design for non-
linear servo systems with piecewise bilinear models. In: FUZZ-IEEE 2013 (2013)



An Anti-windup Scheme for PB Based FEL

Luka Eciolaza1, Tadanari Taniguchi2, and Michio Sugeno1

1 European Centre for Soft Computing, Mieres, Asturias, Spain
luka.eciolaza@softcomputing.es, michio.sugeno@gmail.com

2 Tokai University, Hiratsuka, Kanagawa, 2591292, Japan
taniguchi@tokai-u.jp

Abstract. Anti-windup methods deal with saturation problems in systems with
known actuator limits. Part of the controller design is devoted to constraint han-
dling in order to avoid pernicious behaviour of the systems. Feedback error learn-
ing is an on-line learning strategy of inverse dynamics. It sequentially acquires an
inverse model of a plant through feedback control actions. In previous works we
proposed an approach to implement the FEL control scheme through Piecewise
Bilinear models. In this paper, a PB based FEL implementation scheme is pro-
posed, where saturations provoked by the input constraints are taken into account
for the inverse model learning algorithm.

1 Introduction

Actuators which deliver the control signal in physical applications are in the majority of
cases subject to limits in their magnitude or rate. Apart from restricting the achievable
performance, if these limits are not treated carefully, considering them appropriatedly
in the controller design, they could result in a pernicious behaviour of the system.

The study of anti-windup probably began in industry where practitioners noticed per-
formance degradation in systems where saturation occurred [1]. The term windup refers
to the saturation in systems with integral controllers. During saturation, the integrator’s
value builds up of charge and the subsequent dissipation of this charge causes long
settling times and excessive overshoot, degrading substantially system’s performance.
Modifications to the controller which avoided this charge build-up were often termed
as anti-windup.

There are two main approaches to avoid saturation problems in systems which are
known to have actuator limits [1]. The one-step approach, where a single controller at-
tempts to ensure that all nominal performace specifications are met and also handles the
saturation constraits imposed by the actuators. This approach has often been criticized
due to its conservatism.

On the other hand, the anti-windup approach separates the controller design in two
steps where one part is devoted to achieving nominal performance and the other part is
devoted to constraint handling. A controller which does not explicitly take into account
the saturation constraints is first designed, using standard design tools. Then, the anti-
windup compensator is designed to handle the saturation constraints.

In the conventional form of anti-windup, no restriction is placed upon the nominal
controller design and, assuming no saturation is encountered, this controller alone dic-
tates the behaviour of the linear closed loop. It is only when saturation is encountered

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 549–558, 2014.
c© Springer International Publishing Switzerland 2014
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that the anti-windup compensator becomes active and acts to modify the closed-loops
behaviour such that it is more resilient to saturation.

In this paper, we want to analyze the influence of input constraints for the implemen-
tation of Feedback Error Learning (FEL) scheme. We will propose a new inverse model
learning approach where the saturation will be taken into account.

This article follows on with our previous work [2] where we proposed the approach
to implement FEL based on Piecewise Bilinear (PB) models.

FEL scheme, proposed by [3], was originally inspired on biological control sys-
tems which usually are systems with time delays and strong nonlinearities. Fast and
coordinated limb movements cannot be executed solely under feedback control, since
biological feedback loops are slow and have small gains. Thus, the brain uses inverse
dynamical models in order to calculate necessary feed-forward commands from de-
sired trajectory information, see [4]. FEL and the inverse model identification scheme
represent an important role for the quick and smooth motions of the limbs in human
motor control. The FEL has the feature that the learning and control can be performed
simultaneously.

Fig. 1. Feedback error learning architecture

A typical schematic of the FEL control system is shown in Fig. 1. It consists of the
combination of a feedback controller that ensures the stability of the system and an
adaptive feedforward controller that improves control performance. An inverse model
as a feedforward controller is learned by FEL so as to minimize the square error be-
tween uff , the output of a feedforward controller and u0, the ideal feedforward control
based on an inverse model. Using a conventional steepest descent method for the min-
imization, the parameters of a feedforward controller can be sequentially updated in
proportion to (uff − u0). However since the ideal u0 is unknown, this error signal
is approximated with ufb called feedback error in FEL. As it is shown in Fig. 1, u
(the control input to a plant) is equal to uff + ufb, and uff − u0 is replaced with
uff − u = ufb. After learning is complete, i.e., y(t) = r(t), then ufb tends to zero
and feedback control is partially replaced by feedforward control. Thus, u = uff the
feedforward controller should be serving as the inverse of the original plant.

In [2] we concluded the PB model represents the most convenient model to imple-
ment FEL with regard to nonlinear modeling, control objective and on-line learning
capability. Previously the FEL scheme was normally implemente via neural networks
[5], [6], [7], however they are not convenient for control purpose. On the other hand,
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FEL was analyzed by control system community, [8], [9], [10], however these analysis
were only made for linear systems.

The PB model, proposed in [11], is very effective for modeling and control of non-
linear systems. It is a fully parametric model to represent Linear/Nonlinear systems.
PB model has a big number of parameters to tune, but [12] showed that the global tun-
ing of PB models can be made in a very simple and efficient way. PB models are very
convenient for control purpose as they are interpretable (for instance as LUT), easy to
compute and simple to handle.

The rest of the paper is organized as follows. Sections 2 introduces how we can
implement FEL using PB models. Section 3 presents the approacht proposed in this
paper to implement FEL with Anti-Windup. Section 4 presents some simulations and
section 6 concludes the paper with some discussion and final remarks of the results.

2 PB Model-Based FEL

As is explained in the previous section, Fig. 1 illustrates the feedback error learning
architecture. It consists of an objective plant to be controlled with a feedback controller
and, in addition, a feedforward controller to be learned by FEL. The objective of control
is to minimize the error e between the reference signal r and the plant output y.

In the FEL approach, the feedback controller action is converted into motor
command error and used to learn the feedforward controller. By FEL, eventually the
feedback control is replaced by feedforward control. FEL includes the features of si-
multaneous learning and control, making it an adaptive controller.

2.1 PB Models

The PB model is a fully parametric model to represent Linear/Nonlinear systems. It is
designed to be easily applicable for control purpose. In the model, bilinear functions
are used to regionally approximate any given function. The obtained model is built on
piecewise rectangular regions, and each region is defined by four vertices partitioning
the state space. A bilinear function is a nonlinear function of the form y = a + bx1 +
cx2 + dx1x2, where any four points in the three dimensional space are spanned with a
bi-affine plane.

If a general case of an affine two-dimensional nonlinear control system is considered,⎧⎨⎩ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) + g(x1, x2) · r
y = h(x1, x2)

(1)

where r is the input (control, reference or both). For the PB representation of a state-
space equation, a coordinate vector d(σ, τ) of the state space and a rectangle 9ij must
be defined as,

d(i, j) ≡ (d1(i), d2(j))
T (2)

Rij ≡ [d1(i), d1(i+ 1)]× [d2(j), d2(j + 1)] (3)
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where i ∈ (1, . . . , n1) and j ∈ (1, . . . , n2) are integers, and d1(i) < d1(i + 1),
d2(j) < d2(j + 1). The PB models are formed by matrices of size (n1 × n2), where
n1 and n2 represent the number of partitions of dimension x1 and x2 respectively. Each
value in the matrix is referred to as a vertex in the PB model. The operational region
of the system is divided into (n1 − 1 × n2 − 1) piecewise regions that are analyzed
independently.

The PB model was originally derived from a set of fuzzy if-then rules with singleton
consequents [11] such that

if x is W στ , then ẋ is f(σ, τ) (4)

which in a two-dimensional case, x ∈ 92 is a state vector, W στ = (wσ
1 (x1), w

τ
2 (x2))

T

is a membership function vector, f(σ, τ) = (f1(σ, τ), f2(σ, τ))
T ∈ 9 is a singleton

consequent vector, and σ, τ ∈ Z are integers (1 ≤ σ ≤ n1, 1 ≤ τ ≤ n2) defined by,

σ(x1) = d1(max(i)) where d1(i) ≤ x1, (5)

τ(x2) = d2(max(j)) where d2(j) ≤ x2. (6)

The superscript T denotes transpose operation.
For x ∈ 9στ , the PB model that approximates f1(x1, x2) in (1) is expressed as,

f1(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)f1(i, j), (7)

where ⎧⎪⎪⎨⎪⎪⎩
wσ

1 (x1) = 1− α,
wσ+1

1 (x1) = α,
wτ

2 (x2) = 1− β,
wτ+1

2 (x2) = β,

(8)

and

α =
x1 − d1(σ)

d1(σ + 1)− d1(σ)
(9)

β =
x2 − d2(τ)

d2(τ + 1)− d2(τ)
(10)

in which case wi
1, w

j
2 ∈ [0, 1]. PB models representing f2(x1, x2), g(x1, x2) and

h(x1, x2) in (1) have the same form. In every region of the PB models, i.e.: f1(x1, x2),
the values are computed through bilinear interpolation of the corresponding four ver-
texes.

2.2 FEL: On-Line Sequential Learning Algorithm

Let us express a plant model for the sake of simplicity as y = p(u) where y is output and
u control input. We also denote its inverse in a similar manner as u = p−1(y), assuming
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that a plant is invertible. We note that an inverse model used in FEL is usually written
as uff = p−1(r). We consider a feedforward controller expressed as uff = p−1(r, ṙ),
where r is a desired output yd and ṙ is ẏd.

In what follows, we deal with a feedforward controller with two inputs r, ṙ and
single output uff . We will initially assume that an objective plant is unknown and its
feedback controller is given. In a realistic nonlinear system control scenario, both plant
identification and controller design could also be performed through PB models.

Let u0 be an ideal feedforward control based on a pseudo-inverse model. We design
a feedforward controller so that uff = u0. That is, we learn uff , i.e., identify the
feedforward controller parameters, to minimize the performance index

I =
(uff − u0)

2

2
(11)

where the PB representation of the feedforward controller is,

uff = p−1(r, ṙ) =

σ+1∑
i=σ

τ+1∑
j=τ

wi
1(r)w

j
2(ṙ)V (i, j) (12)

I can be sequentially minimized using the derivative of (11)

∂I

∂V
=

∂uff

∂V
(uff − u0). (13)

However, the error (uff − u0) is not available since u0 is unknown. Therefore
Kawato [3] suggested to use ufb for (uff − u0) since u = ufb + uff . This is why
ufb is called a feedback error playing a role as the error (uff − u0). FEL is a learning
scheme based on a signal ufb, a feedback error signal.

Then we have
∂I

∂V
=

∂uff

∂V
ufb =

∂p−1(r, ṙ)

∂V
ufb (14)

The sequential learning of each vertex of a region is made using the following algo-
rithm:

Vnew(i,j) = Vold(i,j) − δ
∂uff

∂V (i, j)
ufb (15)

where δ is an adjustable parameter as a learning rate. This is the conventional steepest
descent algorithm to minimize a performance index. If learning is successfully com-
pleted, i.e., Vnew = Vold, then ufb must become zero, and only uff works.

In the case of a two dimensional PB model, if we develop (12), with (8) (9) and (10),
we have:

uff = p−1(r, ṙ) = (1− α)(1 − β)V(σ,τ) + (1 − α)βV(σ,τ+1)

+α(1− β)V(σ+1,τ) + αβV(σ+1,τ+1).
(16)

(V(σ,τ), V(σ,τ+1), V(σ+1,τ), V(σ+1,τ+1)) refer to the values of 4 vertexes of a region and
as the function is linear, the calculation of partial derivatives (∇p−1) is straightforward.



554 L. Eciolaza, T. Taniguchi, and M. Sugeno

3 Anti-windup

Anti-windup techniques are used to deal with stability and performance degradation
problems for systems with saturated inputs. There have bee several studies around this
phenomenon as explained in [1], [13]. Anti-windup techniques have evolved from many
diverse sources. Modern techniques provide LMI conditions for the synthesis of anti-
windup compensators with which guarantees on stability can be made.

In this paper we focus on more conventional anti-windup methods. We want to show
that PB model based FEL implementation can be made even for systems with actuator
constraints. The saturations provoked by these constraints are taken into account for the
inverse model learning algorithm.

Windup was initially observed in PID controllers designed for SISO control systems
with a saturated actuator. If the error is positive for a substantial time, the control signal
us gets saturated at the high limit umax.

us = S(u) =

⎧⎨⎩
umin, ifu < umin

u, ifumin ≤ u ≤ umax

umax, ifu > umax

(17)

The integrator continues accumulation the error while the error remains positive and
actuator saturated. The control signal remains saturated at this point, due to the large
integral value, until the error becomes negative and remains negative for a sufficiently
long time to make the integral value small again. This effect causes large overshoots
and sometimes instability in the output.

To avoid windup, the actuators output us is measured and en extra feedback path
is provided in the controller. The difference between the controller output u and the
acuator output us is used as error signal to correct the windup effect eaw = us − u.

In the conventional anti-windup scheme, shown in Fig. 2, the compensation is pro-
vided by feeding the difference us − u through a high gain X to the controller input e.
When the actuator saturates, the feedback signal us − u attemps to drive the difference
to zero. This prevents the integrator from winding up.

Fig. 2. Conventional Anti-windup
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4 FEL with Anti-windup for Actuator Constraints

Based on the conventional anti-windup approach, we have implemented the FEL control
scheme for a plant with input constraints as shown in Fig. 3.

From Fig. 3, we have us = S(u) and u = ufb+uff , where S is a saturator to model
input constraints, u an input to the saturator, us its output, ufb feedback control, and
uff feedforward control.

Suppose that us is an ideal feedforward control which should be realized by the
inverse model. Then an error signal to learn the inverse model can be chosen as,

ue = us − uff , (18)

where uff is a current feedforward control based on an inverse model under learning.
Since u = ufb + uff , we obtain that

ue = us − uff ⇔ ue = us − (u− ufb)⇔ ue = ufb + us − u. (19)

The signal (ufb) used for learning the inverse model in (15) will be modified to

Vnew(i,j) = Vold(i,j) − δ
∂uff

∂V (i, j)
(ufb + us − u) (20)

When actuator is saturated the inverse model output (uff ) is limited to the saturation
limits (umin, umax).

We note that if there is no input contraint, then we have, since us = u,

ue = ufb (21)

which is the conventional error signal used in FEL. And so, when controller is perform-
ing within actuator saturation limits, the FEL will work as explained in seciton 2.

Fig. 3. Implemented FEL with anti-windup scheme
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5 Simulations

For the simulation of the FEL with Anti-Windup scheme proposed in previous section
and shown in Fig. 3, we have used a linear second order plant controlled by a PID.

The plant P is described by the state-space matrices (Ap,Bp,Cp,Dp)

Ap =

[
0 1

−10 −10

]
, Bp =

[
0
10

]
, Cp =

[
1 0
]
, Dp =

[
0
]
. (22)

Fig. 4. Reference in black. Blue: Plant value without limitations and a PID controller. Red: Plant
Saturated without Anti-Windup action. Green: Plant Saturated with Anti-Windup action.

The PID controler implemented to control the plant has the following constants,
KP = 20, KI = 30KD = 2.5. KI is very big in order to make sure that windup effect
occurs when actuator constraints are used.

Fig. 4 shows the performance of the plant with only the feedback loop controlled
by the PID. The reference signal, in black, is superposed by the plant output with no
constraints, in blue. In this case tracking is perfect. After that an acutator contraint is
set to 1.2. For this case, the red line, shows the performance of the plant without the
Anti-Windup scheme. In this case the plant can not meet the reference signal, and the
windup effect can be observed clearly each time reference signal has a sudden change.
Finally the green line shows the performance of the plant with the mentioned actuator
constraints and Anti-Windup scheme implemented. In this case the performance clearly
improves with respect to the red line and the windup effect is avoided. The Anti-Windup
gain used is KAW = 5.

In Fig. 5, the performance of the plant implementing the FEL scheme is shown with-
out actuator constraints. A sinusoidal reference signal with variable amplitude is used.
It can be observed that ufb action tends to zero while the inverse model of the plant is
learned. In this case, the learning rate has been set to δ = 0.16× sr, where sr refers to
the sample rate.

Finally, in Fig. 6, the performance of the plant controlled under the FEL scheme
with actuator constraints is shown. In this case we consider the inverse model has been
already learned and the main control action u is defined by uff while ufb is close to
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Fig. 5. FEL scheme with no saturation. a) refernce signal, in black, and the plant output, in blue,
are superposed. b) Feedback action of controller in red, the feedforward in green, and the total
u = ufb + uff in blue.

Fig. 6. FEL with actuator constraints and Anti-Windup action, once after the inverse model learn-
ing is done. a) refernce signal, in black, and the plant output, in blue. b) Feedback action of
controller in red, the feedforward in green, and the total u = ufb + uff in blue.

zero. Using the same, sinusoidal reference signal with variable amplitude, it can be
observed that at some point the actuator gets saturated and the plant can not meet the
refernce input. At this point, ufb gets to saturation limits and the learning of the inverse
model is limited, preventing uff from windup effect. However, when the reference
signal gets back to achievable values, the plant can track the reference almost perfectly
and main control action u is once again defined by uff while ufb is close to zero.
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6 Conclusions

In this paper, a PB model based FEL implementation scheme is proposed, where satura-
tions provoked by the actuator constraints are taken into account for the inverse model
learning algorithm. The windup effect when learning the inverse model is avoided using
the difference between the controller output u and the constrained actuator output us in
order to limit the inverse model learning.
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Abstract. On setting of general information (i.e.without probability)
we define, by axiomatic way, general misinformation of an event. We
give a class of measures of misinformation, solving a sistem of functional
equations, given by the properties of the misinformation.

Then, we propose some aggregation operators of these general misin-
formation.
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1 Introduction

On setting of the axiomatic theory of general information (i.e.without probabil-
ity) [4, 5, 6, 7, 8, 9], we define a measure of misinformation which we link to
every information of a crisp event.

For example, misinformation could be given by a bad reliability of the source
or by a poor ability to take into a good testing the received information.

This misinformation is called by us general, because it is defined without using
probability measure.

The paper develops in the following way: in Sect.2 we recall some prelimi-
naires, in Sect.3 we present the axiomatic definition of misinformation without
probability and we propose a class of its measures.

In Sect.4 we propose some aggregation operators for the introduced measures.
Sect.5 is devoted to the conclusion.

2 Preliminaires

Let X be an abstract space and A a σ−algebra of all subsets of X , such that
(X,A) is measurable.

We recall that measure J(·) of general information (i.e. without probability)
is a mapping J(·) : A → [0,+∞] such that ∀ A,A′ ∈ A :

(i) A
′ ⊃ A⇒ J(A

′
) ≤ J(A) ,

(ii) J(∅) = +∞ ,
(iii) J(X) = 0 .

A. Laurent et al. (Eds.): IPMU 2014, Part III, CCIS 444, pp. 559–564, 2014.
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3 General Misinformation

Now, we present the following

Definition 1 Fixed any measure of general information J, measure of general
misinformation MJ is a mapping

MJ(·) : A → [0,+∞]

such that ∀ A,A′ ∈ A :
(j) A

′ ⊃ A⇒MJ(A
′
) ≤MJ(A) ,

(jj) MJ(∅) = +∞ ,
(jjj) MJ(X) = 0 .

We suppose that misinformation of an event A ∈ A depends on measure of gen-
eral information J(A) and on measure of reliability of the source of information
ρ(A) and our capacity of take into a good testing the received information τ(A).
For the previuos functions ρ and τ, we propose that

ρ : A → [0,+∞] ,

such that:
(a) A

′ ⊃ A⇒ ρ(A
′
) ≤ ρ(A) , as J(A′) ≤ J(A) ,

(b) ρ(∅) = +∞ ,
(c) ρ(X) = 0 ,

and

τ : A → [0,+∞] ,

such that
(a′) A

′ ⊃ A⇒ τ(A
′
) ≤ τ(A) , as J(A′) ≤ J(A) ,

(b
′
) τ(∅) = +∞ ,

(c
′
) τ(X) = 0 .

Now, we are expressing MJ(A) as a function Φ of J(A), ρ(A), τ(A), in the
following way:

MJ(A) = Φ
⎧⎩J(A), ρ(A), τ(A)

⎫⎭ (1)

where Φ : H → [0,+∞] with

H =
{
(x, y, z) : x = J(A), y = ρ(A), z = τ(A), x, y, z ∈ [0,+∞]

}
.

Putting J(A) = x, J(A) = x′, ρ(A) = y, ρ(A′) = y′, τ(A) = z, τ(A′) = z′, the
(1) becomes

MJ(A) = Φ
⎧⎩x, y, z⎫⎭. (2)
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The properties of ρ and τ above and (2) take to the following:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(I) Φ(x, y, z) ≤ Φ(x′, y′, z′)
∀ x ≤ x′, y ≤ y′, z ≤ z′,

(II) Φ(+∞,+∞,+∞) = +∞,

(III) Φ(0, 0, 0) = 0.

As regards a class of functions Φ(x, y, z) which satisfies the previous condi-
tions, we can give the following:

Theorem 1. If h : [0,+∞]→ [0,+∞] is an continuous strictly increasing func-
tion with h(0) = 0 and h(+∞) = +∞, the function

Φ
⎧⎩x, y, z⎫⎭ = h−1

⎧⎩h(x) + h(y) + h(z)
⎫⎭ (3)

verifies the conditions (I), (II), (III).

Proof. The (I) is valid as h is monotone, the (II) and (III) are satisified by
the values of h.

4 Some Aggregation Operators of General
Misinformation

Many authors have studied aggregation operators, for example, [3, 10, 2]. In [12,
13] we have applied the aggregation operators to general conditional information.
We shall use again the same procedure for the characterization of some forms of
aggregation operators of general misinformation.

Let M be the family of the misinformation MJ(·). The aggregation op-
erator L : M → [0,K], 0 ≤ K ≤ [0,+∞] of n ∈ [0,+∞) misinformation
MJ(A1), ...,MJ(Ai), ...,MJ(An), with Ai ∈ A, i = 1, ..., n, has the following
properies as in [12, 13]:

(I) idempotence : MJ(Ai) = λ, ∀i = 1, ..., n =⇒

L
⎧⎩λ, ..., λ︸ ︷︷ ︸

n times

⎫⎭ = λ;

(II) monotonicity : MJ(A1) ≤MJ(A
′
1) =⇒

L
⎧⎩MJ(A1), ...,MJ (Ai), ...,MJ(An)

⎫⎭ ≤
L
⎧⎩MJ(A

′
1), ...,MJ (Ai), ...,MJ(An)

⎫⎭,
A

′
1, Ai ∈ A, i = 1, ..., n;

(III) continuity from below : MJ(A1,m)↗MJ(A1) =⇒
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L
⎧⎩MJ(A1,m), ...,MJ(Ai), ...,MJ (An)

⎫⎭ ↗ L
⎧⎩MJ(A1), ...,MJ(Ai), ...,

MJ(An)
⎫⎭ A

′
1, Ai ∈ A, i = 1, ..., n.

Putting MJ(Ai) = xi, i = 1, ...n, MJ(A
′
1) = x

′
1, MJ(A1,m) = x1,m, with

xi, i = 1, ...n, x
′
1, x1,m ∈ [0, 1], we obtain the following system of functional

equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I ′) L
⎧⎩λ, ..., λ︸ ︷︷ ︸

n times

⎫⎭ = λ,

(II ′) x1 ≤ x
′
1 =⇒ L

⎧⎩x1, ..., xn

⎫⎭ ≤ L
⎧⎩x′

1, ...xn

⎫⎭,
(III ′) x1,m ↗ x1 =⇒
L
⎧⎩x1,m, ..., xn

⎫⎭↗ L
⎧⎩x1, ...xn

⎫⎭.
For the solution of the system [(I ′)− (III ′)], we propose the following:

Theorem 2. Two natural solutions of the system [(I ′)− (III ′)] are

L(x1, ..., xn) =

n∧
i=1

xi

and

L(x1, ..., xn) =

n∨
i=1

xi.

Proof. The proof is immediate.

Theorem 3. A class of solution of the system [(I ′)− (III ′)] is

L(x1, ..., xn) = h−1
⎧⎩h(x1) + ...+ h(xn)

n

⎫⎭,
where h : [0, 1] → [0,K](0 ≤ K ≤ +∞) is a continuous, strictly increasing
function with h(0) = 0 and h(1) = K.

Proof. The proof is immediate.

5 Remark

1) If the function h is linear, then the aggregation operator L is the aritmetica
mean.

2) All these results can be extended to fuzzy sets [11, 14].
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6 Conclusion

First, we have given the definition of measure of general misinformation MJ(A)
of a set A, second we have proposed it as a function of the general information
J(A), reliability of the source ρ(A), and our capacity τ(A) of taking into a good
testing. We have obtained the following form:

MJ(A) = h−1
⎧⎩h(J(A)) + h(ρ(A)) + h(τ(A))

⎫⎭ ,

where h : [0, 1] → [0,K] is any continuous strictly increasing function with
h(0) = 0 and h(1) = K,

Finally, we have proposed some classes of aggregation operators of misinfor-
mation solving a suitable system of functional equations:

1) L
⎧⎩MJ(A1), ...,MJ(An)

⎫⎭ =
n∧

i=1

MJ(Ai) ,

2) L
⎧⎩MJ(A1), ...,MJ(An)

⎫⎭ =

n∨
i=1

MJ(Ai) ,

3) L
⎧⎩MJ(A1), ...,MJ(An)

⎫⎭ = h−1
⎧⎩Σn

i=1h(M(Ai))

n

⎫⎭,
where h : [0, 1] → [0,K](0 ≤ K ≤ +∞) is a continuous, strictly increasing

function with h(0) = 0 and h(1) = K.
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Asmuss, Svetlana III-317
Aupetit, Michaël I-588
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Dimuro, Graçaliz Pereira III-252
Divari, Maria III-559
Doan, The-Vinh I-345
Dockhorn, Alexander II-46
Doutre, Sylvie II-345
Dray, Gérard II-294
Dubois, Didier I-216, I-335
Durante, Fabrizio III-243
Duthil, Benjamin I-536
Dutra, Luciano I-189
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Medina, Jesús II-214, III-81, III-345
Mercier, David III-190, III-200
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