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Abstract. We consider the model of one-way automata with quantum
and classical states (qcfas) introduced in [23]. We show, by a direct
approach, that qcfas with isolated cut-point accept regular languages
only, thus characterizing their computational power. Moreover, we give
a size lower bound for qcfas accepting regular languages, and we explic-
itly build qcfas accepting the word quotients and inverse homomorphic
images of languages accepted by given qcfas with isolated cut-point,
maintaining the same cut-point, isolation, and polynomially increasing
the size.

Keywords: quantum automata, regular languages, descriptional com-
plexity.

1 Introduction

Since we can hardly expect to see a full-featured quantum computer in the
near future, it is natural to investigate the simplest and most restricted model
of computation where the quantum paradigm outperforms the classical one.
Classically, one of the simplest model of computation is a finite automaton.
Thus, quantum finite automata (qfas) are introduced and investigated by several
authors.

Originally, two models of qfas are proposed: measure-once qfas [9,16], where
the probability of accepting words is evaluated by “observing” just once, at
the end of input processing, and measure-many qfas [13], having such an ob-
servation performed after each move. Several variations of these two models,
motivated by different possible physical realizations, are then proposed. Thus,
e.g., enhanced [19], reversible [10], Latvian [1], and measure-only qfas [6] are
introduced. Results in the literature (see, e.g., [1,3,15]) show that all these mod-
els of qfas are strictly less powerful than deterministic finite automata (dfas),
although retaining a higher descriptional power (i.e., they can be significantly
smaller than equivalent classical devices).

To enhance the low computational power of these “purely quantum” sys-
tems, hybrid models featuring both a quantum and a classical component are
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studied. Examples of such hybrid systems are qfas with open time evolution
(gqfas) [11,14], qfas with control language (qfcs) [3,17], and qfas with quan-
tum and classical states (qcfas) [23], this latter model being the one-way re-
striction of the model introduced in [2]. It is proved that the class of languages
accepted with isolated cut-point by gqfas and qfcs coincides with the class of
regular languages, while for qcfas it is only known that they can simulate dfas.
A relevant feature of these hybrid models is that they can naturally and directly
simulate several variants of qfas by preserving the size. This property makes
each of them a good candidate as a general unifying framework within which to
investigate size results for different quantum paradigms [4,5,8,18].

In this paper, we focus on the model of qcfas. We completely characterize
their computational power and study some descriptional complexity issues. It
may be interesting to point out that the relevant difference between qfcs and
qcfas rely in the communication policy between the two internal components:
in qcfas a two-way information exchange between the classical and quantum
parts is established, while in qfcs only the quantum component affects the
dynamic of the classical one. Here, by a direct approach, we show that the
two-way communication is not more powerful than one-way communication. In
fact, we prove that qcfas accept with isolated cut-point regular languages only
(exactly as qfcs), thus characterizing their computational power. We obtain this
result by studying properties of formal power series associated with qcfas.

We continue the investigations on qcfas by studying their descriptional power.
Our approach for proving regularity of languages accepted with isolated cut-
point by qcfas enables us to give a lower bound for the size complexity of
qcfas, which is logarithmic in the size of equivalent dfas, in analogy with
qfcs [7]. Next, we study the size cost of implementing some language opera-
tions on qcfas. Results for Boolean operations are provided in [23]. Here, we
explicitly construct qcfas accepting word quotients and inverse homomorphic
images of languages accepted by given qcfas with isolated cut-point, maintain-
ing the same cut-point, isolation, and polynomially increasing the size. For other
types of qfas, these two latter operations are investigated, e.g., in [1,17].

2 Preliminaries

2.1 Linear Algebra

We quickly recall some notions of linear algebra, useful to describe the quan-
tum world. For more details, we refer the reader to, e.g., [22]. The fields of real
and complex numbers are denoted by R and C, respectively. Given a complex
number z = a + ib, we denote its conjugate by z∗ = a − ib and its modulus by
|z| = √

zz∗. We let Cn×m and C
n (shorthand for C1×n) denote, respectively, the

set of n×mmatrices and n-dimensional row vectors with entries in C. We denote
by [0]n×m ([0]n) the zero matrix in C

n×m (Cn×n). The identity matrix in C
n×n

is denoted by In. We let 0n (1n) be the zero vector (the vector of all ones) in C
n.

When the dimension is clear from the context, we simply write [0], I, 0, and 1.
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We let ej = (0, . . . , 0, 1, 0, . . . , 0) be the characteristic vector having 1 in its jth
component and 0 elsewhere. Given a vector ϕ ∈ C

n, we denote by (ϕ)j ∈ C its
jth component.

Given a matrix M ∈ C
n×m, we let Mij denote its (i, j)th entry. The transpose

of M is the matrix MT ∈ C
m×n satisfying MT

ij = Mji, while we let M∗ be the

matrix satisfying M∗
ij = (Mij)

∗. The adjoint of M is the matrix M † = (MT )
∗
.

For matrices A,B ∈ C
n×m, their sum is the n×m matrix (A+B)ij = Aij+Bij .

For matrices C ∈ C
n×m and D ∈ C

m×r, their product is the n × r matrix
(CD)ij =

∑m
k=1 CikDkj . For matrices A ∈ C

n×m and B ∈ C
p×q, their direct

sum and Kronecker (or tensor or direct) product are the (n+ p)× (m+ q) and
np×mq matrices defined, respectively, as

A⊕B =

(
A [0]
[0] B

)

, A⊗B =

⎛

⎜
⎝

A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

⎞

⎟
⎠ .

When operations can be performed, we have that (A⊗B) · (C⊗D) = AC⊗BD
and (A⊕B) · (C ⊕D) = AC⊕BD. For vectors ϕ ∈ C

n and ψ ∈ C
m, their direct

sum is the vector ϕ⊕ ψ = (ϕ1, . . . , ϕn, ψ1, . . . , ψm) ∈ C
n+m.

A Hilbert space of dimension n is the linear space Cn of n-dimensional complex
row vectors equipped with sum and product by elements in C, in which the inner
product 〈ϕ, ψ〉 = ϕψ† is defined, for ϕ, ψ ∈ C

n. The norm of a vector ϕ ∈ C
n

is given by ‖ϕ‖ =
√〈ϕ, ϕ〉. If 〈ϕ, ψ〉 = 0 (and ‖ϕ‖ = 1 = ‖ψ‖), than ϕ and ψ

are orthogonal (orthonormal). Two subspaces X,Y ⊆ C
n are orthogonal if any

vector in X is orthogonal to any vector in Y . In this case, we denote by X � Y
the linear space generated by X ∪Y . For vectors ϕ and ψ, ‖ϕ⊗ ψ‖ = ‖ϕ‖ · ‖ψ‖.

A matrix M ∈ C
n×n is said to be unitary whenever MM † = I = M †M .

Equivalently, M is unitary if and only if it preserves the norm, i.e., ‖ϕM‖ = ‖ϕ‖
for any ϕ ∈ C

n. It is easy to see that, given two unitary matrices A and B, the
matrices A⊕B, A⊗B, and AB are unitary as well.

A matrix H ∈ C
n×n is said to be Hermitian (or self-adjoint) whenever

H = H†. A matrix P ∈ C
n×n is a projector if and only if P is Hermitian

and idempotent, i.e., P 2 = P . Given the Hermitian matrix H , let c1, . . . , cs be
its eigenvalues and E1, . . . , Es the corresponding eigenspaces. It is well known
that each eigenvalue ck is real, that Ei is orthogonal to Ej for i �= j, and
that E1 � · · · � Es = C

n. Thus, every vector ϕ ∈ C
n can be uniquely decom-

posed as ϕ = ϕ1 + · · · + ϕs for unique ϕj ∈ Ej . The linear transformation
ϕ �→ ϕj is the projector P (cj) onto the subspace Ej . Actually, the Hermi-
tian matrix H is biunivocally determined by its eigenvalues and projectors as
H =

∑s
i=1 ciP (ci). We note that {P (c1), . . . , P (cs)} is a complete set of mutu-

ally orthogonal projectors, i.e.,
∑s

i=1 P (ci) = I and P (ci)P (cj)
† = [0] for i �= j.

For the Hermitian matrix H =
∑s

i=1 ciP (ci), we define the circulant matrix
built on P (c1), . . . , P (cs) as
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Ξ(H) =

⎛

⎜
⎜
⎜
⎝

P (c1) P (c2) · · · P (cs)
P (c2) P (c3) · · · P (c1)

...
...

. . .
...

P (cs) P (c1) · · · P (cs−1)

⎞

⎟
⎟
⎟
⎠

.

The following lemma will be useful later:

Lemma 1. Given a Hermitian matrix H, the matrix Ξ(H) is unitary.

2.2 Languages and Formal Power Series

We assume familiarity with basics in formal language theory (see, e.g., [12]). The
set of all words (including the empty word ε) over a finite alphabet Σ is denoted
by Σ∗. For a word ω ∈ Σ∗, we let: |ω| denote its length, ωi its ith symbol,
ω[j] = ω1ω2 · · ·ωj its prefix of length 0 ≤ j ≤ |ω| with ω[0] = ε. For any n ≥ 0,
we let Σn = {ω ∈ Σ∗ | |ω| = n}.

For a language L ⊆ Σ∗ and two words v, w ∈ Σ∗, the word quotient of L
with respect to v, w is the language v−1Lw−1 = {x ∈ Σ∗ | vxw ∈ L}. For two
alphabets Σ,Δ, a language L ⊆ Δ∗, and a homomorphism φ : Σ∗ → Δ∗, the in-
verse homomorphic image of L is the language φ−1(L) = {x ∈ Σ∗ | φ(x) ∈ L}.
For a word y ∈ Δ∗, we set φ−1(y) = {x ∈ Σ∗ | φ(x) = y}. Thus, we have
φ−1(L) =

⋃
y∈L φ−1(y).

A formal power series (in noncommuting variables) with coefficients in C is
any function ρ :Σ∗ → C, usually expressed by the formal sum ρ =

∑
ω∈Σ∗ ρ(ω)ω.

We denote by C〈〈Σ〉〉 the set of formal power series ρ : Σ∗ → C. An important
subclass of C〈〈Σ〉〉 is the class CRat〈〈Σ〉〉 of rational series [20].

One among possible characterizations of CRat〈〈Σ〉〉 is given by the notion of
linear representation. A linear representation of dimension m of a formal power
series ρ ∈ C〈〈Σ〉〉 is a triple (π, {A(σ)}σ∈Σ , η), with π, η ∈ C

m and A(σ) ∈ C
m×m,

such that, for any ω ∈ Σ∗, we have

ρ(ω) = πA(ω)η† = π

⎛

⎝
|ω|∏

i=1

A(ωi)

⎞

⎠ η†.

In [21], it is shown that a formal power series is rational if and only if it has a
linear representation (of finite dimension).

Given a real valued ρ ∈ C〈〈Σ〉〉 (i.e., with ρ(ω) ∈ R, for any ω ∈ Σ∗) and a
real cut-point λ, the language defined by ρ with cut-point λ is defined as the set

Lρ,λ = {ω ∈ Σ∗ | ρ(ω) > λ}.
The cut-point λ is said to be isolated if there exists a positive real δ such that
|ρ(ω)− λ| > δ, for any ω ∈ Σ∗.

We call bounded series any ρ ∈ C
Rat〈〈Σ〉〉 admitting a linear representation

(π, {A(σ)}σ∈Σ , η) such that ‖πA(ω)‖ ≤ K, for a fixed positive constant K and
every ω ∈ Σ∗. In [3], it is proved the following
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Theorem 1. Let ρ ∈ C
Rat〈〈Σ〉〉 be a real valued bounded series defining the

language Lρ,λ with isolated cut-point λ. Then, Lρ,λ is a regular language.

2.3 Finite Automata

A deterministic finite automaton (dfa) is a 5-tuple D = 〈S,Σ, τ, s1, F 〉, where S
is the finite set of states, Σ the finite input alphabet, s1 ∈ S the initial state,
F ⊆ S the set of accepting states, and τ : S ×Σ → S is the transition function.
An input word is accepted by D if the induced computation starting from the
initial state ends in some accepting state after consuming the whole input. The
set LD of all words accepted by D is called the accepted language. A linear rep-
resentation for the dfa D is the 3-tuple (α, {M(σ)}σ∈Σ , β), where α ∈ {0, 1}|S|

is the characteristic row vector of the initial state, M(σ) ∈ {0, 1}|S|×|S| is the
boolean transition matrix satisfying (M(σ))ij = 1 if and only if τ(si, σ) = sj ,
and β ∈ {0, 1}|S|×1 is the characteristic column vector of the final states. The
accepted language can now be defined as LD = {ω ∈ Σ∗ | αM(ω)β = 1}, where
we let M(ω) =

∏|ω|
i=1 M(ωi).

We introduce the model of a finite automaton with quantum and classical
states [23]. In what follows, we denote by U(Cn) (O(Cn)) the set of unitary
(Hermitian) matrices on C

n. As we will see, unitary matrices describe the evo-
lution of the quantum component of the automaton, while Hermitian matrices
represent observables to be measured.

Definition 1. A one-way finite automaton with quantum and classical states
(qcfa) is formally defined by the 9-tuple A = 〈Q,S,Σ, Υ,Θ, τ, π1, s1, F 〉, where:
– Q is the finite set of orthonormal quantum basis states for the Hilbert space

C
|Q| within which the quantum states are represented as vectors of norm 1,

– S is the finite set of classical states,
– Σ is the finite input alphabet; its extension by a right endmarker symbol

� �∈ Σ defines the tape alphabet Γ = Σ ∪ {�},
– π1 ∈ C

|Q| is the initial quantum state, satisfying ‖π1‖ = 1,
– s1 ∈ S is the initial classical state,
– F ⊆ S is the set of classical accepting states,
– Υ : S × Γ → U(C|Q|) is the mapping assigning, according to the current

classical state and scanned tape symbol, a unitary transformation defining
the evolution of the quantum state,

– Θ : S × Γ → O(C|Q|) is the mapping assigning, according to the current
classical state and scanned tape symbol, a Hermitian matrix defining the
observable to be measured on the quantum state,

– τ : S×Γ×C → S is the mapping defining the next classical state as a function
of the current classical state, scanned tape symbol, and measurement outcome
from a set C.

When addressing the size, we say that the qcfa A in Definition 1 has |Q| quan-
tum basis states and |S| classical states.
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Let us now explain in details how A works. Given an input word ω ∈ Σ∗,
we let w = ω� be the associated tape word to be processed by A. At any time
along the computation on w, the quantum state of A is represented by a vector
π ∈ C

|Q| with ‖π‖ = 1, while its classical state is an element from S. The
computation starts in the quantum state π1, in the classical state s1, and by
scanning w1. Then, the transformations associated with symbols in w are applied
in succession. Precisely, the transformation associated with a state s ∈ S and a
tape symbol γ ∈ Γ consists of three steps:

– First: the unitary transformation Υ (s, γ) is applied to the current quantum
state π, yielding the new quantum state π′ = πΥ (s, γ).

– Second: the observable Θ(s, γ) =
∑m

i=1 ciP (s, γ)(ci) is measured on π′,
leading to one among the possible measurement outcomes from the set
C(s, γ) = {c1, . . . , cm}. According to quantum mechanics principles, the out-

come ci is returned with probability pi = ‖π′P (s, γ)(ci)‖2, and correspond-
ingly the quantum state π′ collapses to the quantum state π′P (s, σ)(ci)/

√
pi.

– Third: the current classical state s switches to τ(s, γ, ci), and the tape
symbol γ is consumed.

The input word ω is accepted by A if the classical state reached after processing
the right endmarker � of the corresponding tape word w is an accepting state,
i.e., it belongs to F . Otherwise, ω is rejected. Clearly, accepting ω takes place
with a certain probability we are now going to explicate.

Let C =
⋃

s∈S, γ∈Γ C(s, γ) be the set of measurement outcomes of all observ-
ables associated with A. Indeed, in a standard fashion, we can define τ∗ as the
extension to

⋃
i≥0(S × Γ i × Ci) of the classical evolution τ : S × Γ × C → S.

More precisely, for any s ∈ S, w ∈ Γn, y ∈ Cn, we let

τ∗(s, ε, ε) = s, and
τ∗(s, w[j], y[j]) = τ(τ∗(s, w[j − 1], y[j − 1]), wj , yj) for 1 ≤ j ≤ n.

So, for a tape word w = ω� ∈ Σn−1�, the probability that A accepts the corre-
sponding input word ω can be written as

EA(ω) =
∑

{y ∈ Cn | τ∗(s1, w, y) ∈ F} ‖π1A(w, y)‖2 , with (1)

A(w, y) =

n∏

i=1

Υ (τ∗(s1, w[i − 1], y[i− 1]), wi)P (τ∗(s1, w[i − 1], y[i− 1]), wi)(yi)

and the convention that P (s, γ)(c) = [0] whenever c /∈ C(s, γ). We maintain this
convention throughout the rest of the paper. The function EA : Σ∗ → [0, 1] is
usually known as the stochastic event induced by A. We notice that, in principle,
A may exhibit a nonzero probability of accepting non well-formed inputs, i.e.,
words in Γ ∗ \ Σ∗�. However, it is easy to see that, by augmenting the classical
component with two new states, we can obtain a qcfa behaving as A on words in
Σ∗� and rejecting with certainty words in Γ ∗\Σ∗�. So, without loss of generality,
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throughout the rest of the paper, we will always be assuming the qcfa A to have
this latter behavior.

We let ρA ∈ C〈〈Γ 〉〉, the real valued formal power series associated with A,
be defined as ρA(ω�) = EA(ω) for every ω ∈ Σ∗, and yielding 0 on words in
Γ ∗ \Σ∗�. The language accepted by A with cut-point λ is defined to be the set

LA,λ = (LρA,λ)�
−1 = {ω ∈ Σ∗ | EA(ω) > λ}.

As for formal power series, the cut-point λ is said to be isolated if there exists
a positive real δ such that |EA(ω) − λ| > δ, for any ω ∈ Σ∗. Acceptance with
δ-isolated λ = 1/2 is also known in the literature as bounded error acceptance
with error probability 1/2− δ. It may be verified that, by adding one quantum
basis state, isolated cut-point acceptance may be turned into bounded error
acceptance.

As a final observation, we note that, for the model of qcfa in Definition 1,
acceptance is determined by accepting states in the classical component. Al-
ternatively, acceptance could be settled in the quantum component through an
accepting/rejecting outcome of the measurement on �. These two models of ac-
ceptance are actually equivalent.

3 Characterizing the Power of qcfas

The fact that any regular language can be accepted by a qcfa comes trivially,
due to the presence of the classical component (see [23] for formal details). Here,
we focus on the converse, and show that the language accepted by any qcfa A
with isolated cut-point is regular. To this aim, we prove that the associated
formal power series ρA is bounded rational, and so we can apply Theorem 1. This
direct approach also enables us to state a size lower bound for qcfas accepting
regular languages with isolated cut-point.

Consider a qcfa A = 〈Q,S = {s1, . . . , sk}, Σ, Υ,Θ, τ, π1, s1, F 〉, with q quan-
tum basis states, k classical states, and C =

⋃
s∈S,γ∈Γ C(s, γ) the set of all

possible measurement outcomes. We let the linear representation of the classi-
cal component be the 3-tuple 〈α, {T (γ, c)}γ∈Γ,c∈C, β〉, where α = e1 ∈ {0, 1}k
is the characteristic vector of the initial state s1, β ∈ {0, 1}k is the character-

istic vector of the set F of accepting states, and T (γ, c) =
∑k

i=1 e
T
i ⊗ enext(i),

with next(i) = j ⇔ sj = τ(si, γ, c), is the k × k transition matrix on γ ∈ Γ ,
c ∈ C induced by τ . Moreover, we let D(si, γ, c) = eTi ⊗ enext(i) be the k × k
matrix T (γ, c) “restricted” to the ith row.

We let the 3-tuple Li(A) = 〈ϕ1, {M(γ)}γ∈Γ , η〉, with ϕ1∈ C
q2k, η ∈{0, 1}q2k,

and M(γ) ∈ C
q2k×q2k, be defined as:

– ϕ1 = α⊗ π1 ⊗ π∗
1 ,

– M(γ) =
∑

s∈S, c∈C D(s, γ, c)⊗ Υ (s, γ)P (s, γ)(c)⊗ Υ ∗(s, γ)P ∗(s, γ)(c),
– η =

∑q
j=1 β ⊗ ej ⊗ ej .
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We are going to prove that Li(A) is a linear representation of the formal power
series ρA, meaning that ρA is rational, as pointed out in Section 2.2.

We begin by the following lemma which, very roughly speaking, says that
a state vector of Li(A) “embodies” the evolution of the classical part of A in
its first components (namely, by the operator T (w, y) below), while the others
account for the dynamics of the quantum part (by the operator A(w, y)):

Lemma 2. For any w ∈ Γn and y ∈ Cn, we let M(w) =
∏n

i=1 M(wi) and
T (w, y) =

∏n
i=1 T (wi, yi). Then, for any two vectors v1, v2 ∈ C

q, we have

(α⊗ v1 ⊗ v∗2)M(w) =
∑

y∈Cn

αT (w, y)⊗ v1 A(w, y) ⊗ (v2 A(w, y))
∗ .

This enables us to state

Theorem 2. Given a qcfa A, the associated formal power series ρA is rational.

Proof. It suffices to show that Li(A) = 〈ϕ1, {M(γ)}γ∈Γ , η〉 is a linear represen-
tation for ρA, i.e.:

ρA(w) = ϕ1M(w) η†, for any w ∈ Γn.

Indeed, by Lemma 2, we have

ϕ1M(w) η =

⎛

⎝
∑

y∈Cn

αT (w, y)⊗ π1 A(w, y)⊗ (π1 A(w, y))
∗

⎞

⎠ ·
q∑

j=1

β† ⊗ ej
† ⊗ ej

†

=
∑

y∈Cn

αT (w, y)β† ·
q∑

j=1

∣
∣
∣(π1 A(w, y))j

∣
∣
∣
2

=
∑

{y ∈ Cn | τ∗(s1, w, y) ∈ F} ‖π1A(w, y)‖2 ,

which, according to (1), is EA(ω) if w = ω� ∈ Σn−1�, and 0 otherwise. ��
To show boundedness of ρA, we need a generalization of Lemma 1 in [3]:

Lemma 3. For a given n ≥ 0, let {U(y[i − 1]) | y ∈ Cn, 1 ≤ i ≤ n} be a set
of unitary matrices, and {R(y[i − 1])(yi) | y ∈ Cn, 1 ≤ i ≤ n} a set of matrices
such that, for any 0 ≤ i ≤ n − 1 and any word ŷ ∈ Ci, the nonzero matrices in
the set {R(ŷ)(c) | c ∈ C} define an observable (i.e., they form a complete set of
mutually orthogonal projectors). Then, for any complex vector π, we get

∑

y∈Cn

∥
∥
∥
∥
∥
π

n∏

i=1

U(y[i− 1])R(y[i− 1])(yi)

∥
∥
∥
∥
∥

2

= ‖π‖2. (2)

We are now ready to prove boundedness of the series associated with qcfas:

Theorem 3. Given a qcfa A, the associated formal power series ρA is bounded.
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Proof. Consider the linear representation Li(A) = 〈ϕ1, {M(γ)}γ∈Γ , η〉 of ρA. We
show that, for any w ∈ Γn, we get ‖ϕ1M(w)‖ ≤ 1. Indeed, we have

‖ϕ1M(w)‖ =

∥
∥
∥
∥
∥
∥

∑

y∈Cn

αT (w, y) ⊗ (π1A(w, y)) ⊗ (π1A(w, y))
∗

∥
∥
∥
∥
∥
∥

(by Lemma 2)

≤
∑

y∈Cn

‖αT (w, y)‖ · ‖π1A(w, y)‖2 (by triangular inequality)

=
∑

y∈Cn

‖π1A(w, y)‖2 = ‖π1‖2 = 1 (by Lemma 3 on A(w, y)).

��
In conclusion, we get our main result

Theorem 4. The class of languages accepted by qcfas with isolated cut-point
coincides with the class of regular languages.

Proof. As observed at the beginning of this section, qcfas accept all regular
languages. For the converse, Theorems 1, 2, and 3 ensures that, for any qcfa A
and any isolated cut-point λ, the language LρA,λ is regular. This, together with
the fact that regular languages are closed under word quotient, clearly implies
that LA,λ = (LρA,λ)�

−1 is regular. ��
A natural question arising from Theorem 4 is the size-cost of converting a given

qcfa A into a language-equivalent dfa. Starting from the linear representation
Li(A) which has dimension q2k, we can apply the Rabin-like technique presented
in [7] to get an equivalent dfa whose number of states is bounded as:

Theorem 5. For any qcfa A with q quantum basis states, k classical states,
and δ-isolated cut-point λ, there exists a m-state dfa accepting LA,λ, with

m ≤
(

1 +
4
√
qk

δ

)q2k

.

We quickly point out that this result can be used “the other way around”, to
get a size lower bound for qcfas accepting regular languages, namely: any qcfa

with q quantum states, k classical states, and δ-isolated cut point accepting a
regular language whose minimal dfa has μ states, must satisfy

qk ≥
(

log(μ)

log(5/δ)

) 4
9

.

The optimality of such lower bound is an open problem. As a partial answer,
we can immediately state that the optimal lower bound cannot be raised to
ω(log(μ)), since an asymptotically optimal lower bound of log(μ)/(2 log(1+2/δ))
is obtained in [5] for measure-once quantum automata, which are easily simu-
lated by qcfas with the same number of quantum basis states and 3 classical
states [23].
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4 Size-Cost of Language Operations on qcfas

By the characterization in the previous section, we immediately get that the
class of languages accepted by qcfas with isolated cut-point is closed under
word quotients and inverse homomorphic images. Here, we are going to explicitly
construct qcfas that accept word quotients and inverse homomorphic images of
regular languages defined by qcfas. This allows us to study the cost, in terms
of quantum basis states and classical states, of implementing such operations on
qcfas.

It is well known that on dfas both word quotients and inverse homomor-
phisms can be easily implemented without increasing the number of states. Here,
we perform such operations on qcfas by polynomially increasing the size and
preserving cut-point and isolation.

We begin by approaching the construction of qcfas for word quotients. We
construct qcfas for accepting σ−1L and Lσ−1, for given σ ∈ Σ and a lan-
guage L ⊆ Σ∗ accepted by a qcfa with isolated cut-point. By iterating these
constructions, one obtains a qcfa for v−1Lw−1, for given v, w∈Σ∗.

Theorem 6. Let L ⊆ Σ∗ be a language accepted with δ-isolated cut-point λ by
a qcfa A with q quantum basis states and k classical states. Then, for any given
σ0 ∈ Σ, there exists a qcfa B with at most q2 quantum basis states and k + 1
classical states that accepts σ−1

0 L with δ-isolated cut-point λ.

Proof. Let the qcfa A= 〈Q,S,Σ, Υ,Θ, τ, π0, s0, F 〉. To avoid too heavy techni-
calities, we assume that all observables associated with A exhibit the same set
C = {c0, . . . , ch−1} of outcomes. So, for any s ∈ S and σ ∈ Σ ∪ {�}, we have

Θ(s, σ) =
∑h−1

j=0 cjP (s, σ)(cj). However, our technique can be easily adapted to
the general case.

We construct the qcfa B = 〈Q̂, S ∪ {ŝ0}, Σ, Υ̂ , Θ̂, τ̂ , π̂0, ŝ0, F 〉 such that:

– Q̂ =
{
ej ⊗ π | π ∈ Q, ej ∈ C

h, 1 ≤ j ≤ h
}
,

– π̂0 =
⊕h−1

j=0 π0Υ (s0, σ0)P (s0, σ0)(cj),

– for s ∈ S and σ ∈ Σ ∪ {�}, we set Υ̂ (s, σ) =
⊕h−1

j=0 Υ (s, σ), and Υ̂ (ŝ0, σ) =
⊕h−1

j=0 Υ (τ(s0, σ0, cj), σ),

– for s ∈ S∪{ŝ0} and σ ∈ Σ∪{�}, we set Θ̂(s, σ)=
∑h−1

j=0

∑h−1
i=0 ĉi,jP̂ (s, σ)(ĉi,j),

with P̂ (s, σ)(ĉi,j) = [0](j−1)q⊕P (slj , σ)(ci)⊕ [0](h−j)q and slj = τ(s0, σ0, cj)

if s = ŝ0, otherwise slj = s. We let Ĉ = {ĉi,j | 0 ≤ i, j ≤ h− 1} be the set
of the outcomes of all observables associated with B,

– for s ∈ S and σ ∈ Σ∪{�}, we set τ̂ (s, σ, ĉi,j) = τ(s, σ, ci), and τ̂ (ŝ0, σ, ĉi,j) =
τ∗(s0, σ0σ, cjci).

We describe intuitively how the qcfa B on input ω� mimics the computation
of A on input σ0ω�. The initial quantum state π̂0 consists of h blocks. Each
one represents the unitary evolution of A on σ0 from states π0 and s0, followed
by one among the h projections associated with the observable Θ(s0, σ0). Upon
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reading the first input symbol, B implements in the jth block the evolution
in A associated with the classical state τ(s0, σ0, cj) and symbol ω1, followed
by a measurement yielding the result ĉi,j . Such a measurement simulates the
outcome sequence cjci possibly obtained in A while processing the input prefix
σ0ω1. From ω2 on, the computation of A is simulated in the jth block, in which
an outcome ĉi,j corresponds to the outcome ci in A. One may verify that the
probability that B accepts ω coincides with the probability that A accepts σ0ω.
Clearly, B has k + 1 classical states and hq ≤ q2 quantum basis states. ��
Theorem 7. Let L ⊆ Σ∗ be a language accepted with δ-isolated cut-point λ
by a qcfa A with q quantum basis states and k classical states. Then, for any
given σ0 ∈ Σ, there exists a qcfa B with at most q2 quantum basis states and
k classical states that accepts Lσ−1

0 with δ-isolated cut-point λ.

Proof. Let the qcfa A = 〈Q,S,Σ, Υ,Θ, τ, π0, s0, F 〉. As in the previous proof,

all the observables of A are assumed of the form Θ(s, σ) =
∑h−1

j=0 cjP (s, σ)(cj).

We construct the qcfa B = 〈Q̂, S,Σ, Υ̂ , Θ̂, τ̂ , π̂0, s0, F 〉 such that:

– Q̂ =
{
ej ⊗ π | π ∈ Q, ej ∈ C

h, 1 ≤ j ≤ h
}
,

– π̂0 = π0 ⊕ 0q(h−1),

– for s ∈ S and σ ∈ Σ, we set Υ̂ (s, σ) = Υ (s, σ) ⊕ Iq(h−1), and Υ̂ (s, �) =(⊕h−1
j=0 Υ (s, σ0)

)
·Ξ(Θ(s, σ0)) ·

(⊕h−1
j=0 Υ (τ(s, σ0, cj), �)

)
, where Ξ(Θ(s, σ0))

is the unitary circulant matrix addressed in Lemma 1.
– for s ∈ S and σ ∈ Σ ∪ {�}, we set Θ̂(s, σ) =

∑h−1
j=0

∑h−1
i=0 ĉi,jP̂ (s, σ)(ĉi,j),

with P̂ (s, σ)(ĉi,j) = [0](j−1)q ⊕P (slj , σ)(ci)⊕ [0](h−j)q and slj = τ(s, σ0, cj)

if σ = �, otherwise slj = s. We let Ĉ = {ĉi,j | 0 ≤ i, j ≤ h− 1} be the set
of the outcomes of all observables associated with B,

– for s ∈ S and σ ∈ Σ, we set τ̂ (s, σ, ĉi,j) = τ(s, σ, ci) and τ̂ (s, �, ĉi,j) =
τ∗(s, σ0�, cjci).

The initial quantum state π̂0 consists of h blocks, all being zero blocks except
the first being π0. On the symbols of the tape word ω� preceding the endmarker,
B implements in the first block the same computation as A, leading to a state
vector π′ ⊕ 0q(h−1). Upon reading �, the application of the operator Υ̂ (s, �) has
the effect of storing the vector π′Υ (s, σ0)P (s, σ0)(cj)Υ (τ(s, σ0, cj), �) in the jth
block. Moreover, the outcome ĉi,j of the measurement on � in B corresponds
to the outcome sequence cjci possibly obtained in A while processing the input
suffix σ0�. Clearly, the probability that B accepts ω coincides with the probability
that A accepts ωσ0. The number of classical states in B remains k, while the
number of quantum states is hq ≤ q2. ��

Let us now focus on constructing qcfas for inverse homomorphic images. We
recall that a homomorphism φ : Σ∗ → Δ∗ of a free monoid into another is
entirely defined by the image of each symbol in Σ.

Theorem 8. Let L ⊆ Σ∗ be a language accepted with δ-isolated cut-point λ by a
qcfa A with q quantum basis states and k classical states. Then, for any given
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homomorphism φ : Σ → Δ∗, with m = max {|φ(σ)| | σ ∈ Σ}, there exists a
qcfa B with at most qm+1 quantum basis states and qmk classical states that
accepts φ−1(L) with δ-isolated cut-point λ.

Proof. For reader’s ease of mind, we exhibit our construction for a homomor-
phism φ : {a, b} → {α, β}∗ defined as φ(a) = αβ and φ(b) = β, so that m = 2.
Yet, we consider the language L to be accepted by a qcfa A with binary ob-
servables. These assumptions do not substantially affect the generality of our
construction. So, let the qcfa A = 〈Q,S, {α, β}, Υ, Θ, τ, π0, s0, F 〉, where all ob-
servables are assumed to have the form Θ(s, σ) = 0 · P (s, σ)(0) + 1 · P (s, σ)(1)
and hence with C = {0, 1} as set of outcomes.

We construct the qcfa B = 〈Q̂, Ŝ, {a, b}, Υ̂ , Θ̂, τ̂ , π̂0, (s0, 0), F̂ 〉 such that:

– Q̂ =
{
ej ⊗ π | π ∈ Q, ej ∈ C

4, 1 ≤ j ≤ 4
}
,

– Ŝ = {(s, j) | s ∈ S, 0 ≤ j ≤ 3},
– π̂0 = π0 ⊕ 03q,

– for (s, 0) ∈ Ŝ, we set Υ̂ ((s, 0), a) =

(
A0 A1

A1 A0

)

·
(
B0 [0]
[0] B1

)

, where

Ai = Υ (s, α)P (s, α)(i) ⊕ Υ (s, α)P (s, α)(i),

Bi =

(
Υ (τ(s, α, i), β)P (τ(s, α, i), β)(0) Υ (τ(s, α, i), β)P (τ(s, α, i), β)(1)
Υ (τ(s, α, i), β)P (τ(s, α, i), β)(1) Υ (τ(s, α, i), β)P (τ(s, α, i), β)(0)

)

,

and Υ̂ ((s, 0), b) = C ⊕ C, where

C =

(
Υ (s, β)P (s, β)(0) Υ (s, β)P (s, β)(1)
Υ (s, β)P (s, β)(1) Υ (s, β)P (s, β)(0)

)

;

for (s, j) ∈ Ŝ with j �= 0, we set

Υ̂ ((s, j), a) = Πj · Υ̂ ((s, 0), a), Υ̂ ((s, j), b) = Πj · Υ̂ ((s, 0), b),

where Π =

⎛

⎜
⎜
⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ ⊗ Iq is the circular block permutation matrix,

– for (s, j) ∈ Ŝ and σ ∈ {a, b}, we set Θ̂((s, j), σ) =
∑3

i=0 ci·[0]iq⊕Iq⊕[0](3−i)q,

– for (s, j)∈ Ŝ and 0 ≤ i ≤ 3, we set τ̂((s, j), a, ci)=(τ∗(s, αβ, bin2(i)), i), and
τ̂ ((s, j), b, ci) = (τ∗(s, β, bin1(i)), i), where bin2(i) is the binary representa-
tion of i on 2 bits, while bin1(i) = 0−1bin2(i) ∪ 1−1bin2(i),

– F̂ = {(s, j) ∈ Ŝ | s ∈ F}.
The evolution matrices of the qcfa B can be regarded as block matrices with
blocks of dimension q × q. For 0 ≤ i, j ≤ 3, the (i, j)th block of Υ̂ ((s, i), a) is
Υ (s, α)P (s, α)(j1)Υ (τ(s, α, j1), β)P (τ(s, α, j1), β)(j2) with j1j2 = bin2(j), while
the (i, j)th block of Υ̂ ((s, i), b) is Υ (s, α)P (s, α)(j) for j = 0, 1, and is [0]q for j =
2, 3. Analogously, π̂0 consists of 4 blocks, all being zero blocks except the first
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being π0. On reading a (b), the evolution matrix in B simulates the sequence
of evolutions and measurements of A while processing αβ (β), and stores each
possible resulting quantum state in each block. Then, the observable acts on the
jth block, and the outcome cj represents the outcome sequence bin2(j) (bin1(j);
notice that the possible outcomes of the measurements on b are only c0 and c1)
in A. At any time, only one block of the quantum state of B is nonzero. This
information is encoded in the classical state so that the evolution matrix in B
selected by the classical state always stores in the jth block the result of the
simulation of A for the outcome sequence bin2(j) (bin1(j)). The function τ̂
mimics the transition function τ in the state first component, and stores in the
second component the index of the nonzero block of the quantum state of B. One
may verify that the probability that B accepts ω coincides with the probability
that A accepts φ−1(ω). The number of classical states is 22k = |C|mk ≤ qmk,
while the number of quantum basis states is 22q = |C|mq ≤ qm+1. ��
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