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Abstract. The notion of linear finite transducer (LFT) plays a crucial
role in a family of cryptosystems introduced in the 80’s and 90’s. However,
as far as we know, no study was ever conducted to count and enumerate
these transducers, which is essential to verify if the size of the key space,
of the aforementioned systems, is large enough to prevent an exhaustive
search attack. In this paper, we determine the cardinal of the equivalence
classes on the set of the LFTs with a given size. This result is sufficient
to get an approximate value, by random sampling, for the number of
non-equivalent injective LFTs, and subsequently for the size of the key
space. We introduce a notion of canonical LFT, give a method to verify
if two LFTs are equivalent, and prove that every LFT has exactly one
equivalent canonical LFT. We then show how this canonical LFT allows
us to calculate the size of each equivalence class on the set of the LFTs
with the same number of states.

1 Introduction

Transducers, in the most used sense in automata theory, are automata with
output that realise rational functions. They are widely studied in the literature,
having numerous applications to real world problems. They are essential, for
example, in language and speech processing [4].

In this work we deal only with transducers as defined by Renji Tao [7], and
our motivation comes from their application to Cryptography. According to that
definition, a transducer is a finite state sequential machine given by a quintuple
〈X ,Y, S, δ, λ〉, where: X , Y are the nonempty input and output alphabets, re-
spectively; S is the nonempty finite set of states; δ : S×X → S, λ : S×X → Y,
are the state transition and output functions, respectively. These transducers are
deterministic and can be seen as having all the states as final. Every state in S
can be used as initial, and this gives rise to a transducer in the usual sense, i.e.,
one that realises a rational function. Therefore, in what follows, a transducer is
a family of classical transducers that share the same underlying digraph.

A transducer is called linear if its transition and output functions are linear
maps. These transducers play a core role in a family of cryptosystems, named
FAPKCs, introduced in a series of papers by Tao [8,11,9,10]. Those schemes seem
to be a good alternative to the classical ones, being computationally attractive
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Fig. 1. Schematic representation of FAPKC working principle

and thus suitable for application on devices with very limited computational
resources, such as satellites, cellular phones, sensor networks, and smart cards
[9]. Roughly speaking, in these systems, the private key consists of two injective
transducers, denoted by M and N in Figure 1, where M is a linear finite trans-
ducer (LFT), and N is a non-linear finite transducer (non-LFT) of a special
kind, whose left inverses can be easily computed. The public key is the result of
applying a special product for transducers, C, to the original pair, thus obtain-
ing a non-LFT, denoted by C(M,N) in Figure 1. The crucial point is that it is
easy to obtain an inverse of C(M,N) from the inverses of its factors, M−1 and
N−1, while it is believed to be hard to find that inverse without knowing those
factors. On the other hand, the factorization of a transducer seems to be hard
by itself [12].

The LFTs in the FAPKC systems are of core importance in the invertibility
theory of finite transducers, on which part of the security of these systems relies
on [1]. They also play a crucial role in the key generation process, since in these
systems a pair (public key, private key) is formed using a LFT and two non-
LFTs, as explained above. Consequently, for these cryptosystems to be feasible,
injective LFTs have to be easy to generate, and the set of non-equivalent injective
LFTs has to be large enough to make an exhaustive search intractable.

Several studies were made on the invertibility of LFTs [5,6,13,12,3,1], and
some attacks to the FAPKC systems were presented [2,13,7]. However, as far
as we know, no study was conducted to determine the size of the key space of
these systems. To evaluate that size, one first needs to determine the number of
non-equivalent injective LFTs, the exact value of which seems to be quite hard
to obtain. In order to be able to get an approximate value, one needs to know
the different sizes of the equivalence classes. This is crucial to construct a LFT’s
uniform random generator.

In this work we describe a method to determine the sizes of those equivalence
classes. To accomplish that, a notion of canonical LFT is introduced, being
proved that each equivalence class has exactly one of these canonical LFTs.
It is also shown how to construct the equivalent canonical LFT to any LFT
in its matricial form, and, by introducing a new equivalence test for LFTs, to
enumerate and count the equivalent transducers with the same number of states.

The paper is organized as follows. In Section 2 we introduce the basic defi-
nitions. Section 3 is devoted to the equivalence test on LFTs. The concept of
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canonical LFTs is introduced in Section 4, and the results about the size of the
LFTs equivalence classes are presented in Section 5.

2 Basic Concepts

As usual, for a finite set A, we let |A| denote the cardinality of A, An be the
set of words of A with length n, where n ∈ N, and A0 = {ε}, where ε denotes
the empty word. We put A� = ∪n≥0A

n, the set of all finite words, and Aω =
{a0a1 · · · an · · · | ai ∈ A} is the set of infinite words. Finally, |α| denotes the
length of α ∈ A�.

In what follows, a finite transducer (FT) is a finite state sequential machine
which, in any given state, reads a symbol from a set X , and produces a symbol
from a set Y, and switches to another state. Thus, given an initial state and
a finite input sequence, a transducer produces an output sequence of the same
length. The formal definition of a finite transducer is the following.

Definition 1. A finite transducer is a quintuple 〈X ,Y, S, δ, λ〉, where: X is a
nonempty finite set, called the input alphabet; Y is a nonempty finite set, called
the output alphabet; S is a nonempty finite set called the set of states; δ :
S × X → S, called the state transition function; and λ : S ×X → Y, called the
output function.

Let M = 〈X ,Y, S, δ, λ〉 be a finite transducer. The state transition function δ
and the output function λ can be extended to finite words, i.e., elements of X �,
recursively, as follows:

δ(s, ε) = s δ(s, xα) = δ(δ(s, x), α)

λ(s, ε) = ε λ(s, xα) = λ(s, x) λ(δ(s, x), α),

where s ∈ S, x ∈ X , and α ∈ X �. In an analogous way, λ may be extended to
Xω.

From these definitions it follows that, for all s ∈ S, α ∈ X �, and for all
β ∈ X � ∪ Xω ,

λ(s, αβ) = λ(s, α) λ(δ(s, α), β).

The notions of equivalent states and minimal transducer considered here are
the classical ones.

Definition 2. Let M1 = 〈X ,Y1, S1, δ1, λ1〉 and M2 = 〈X ,Y2, S2, δ2, λ2〉 be two
FTs. Let s1 ∈ S1, and s2 ∈ S2. One says that s1 and s2 are equivalent, and
denote this relation by s1 ∼ s2, if

∀α ∈ X �, λ1(s1, α) = λ2(s2, α).

Definition 3. A finite tranducer is called minimal if it has no pair of equivalent
states.

We now introduce the notion of equivalent transducers used in this context.
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Definition 4. M1 and M2 are said to be equivalent, denoted by M1 ∼ M2, if
the following two conditions are satisfied:

∀s1 ∈ S1, ∃s2 ∈ S2 : s1 ∼ s2 and ∀s2 ∈ S2, ∃s1 ∈ S1 : s1 ∼ s2.

This relation ∼ defines an equivalence relation on the set of FTs.

Definition 5. Let M1 = 〈X ,Y, S1, δ1, λ1〉 and M2 = 〈X ,Y, S2, δ2, λ2〉 be two
FTs. M1 and M2 are said to be isomorphic if there exists a bijective map ψ from
S1 onto S2 such that

ψ(δ1(s1, x)) = δ2(ψ(s1), x)

λ1(s1, x) = λ2(ψ(s1), x)

for all s1 ∈ S1, and for all x ∈ X. The map ψ is called an isomorphism from
M1 to M2.

Finally, we give the definition of linear finite transducer (LFT).

Definition 6. If X ,Y and S are vector spaces over a field F, and both δ : S ×
X → S and λ : S × X → Y are linear maps, then M = 〈X ,Y, S, δ, λ〉 is called
linear over F, and we say that dim(S) is the size of M .

Let L be the set of LFTs over F, and Ln the set of the transducers in L with
size n. The restriction of ∼ to L is also represented by ∼, and the restriction to
Ln is denoted by ∼n.

Definition 7. Let M1 and M2 be two LFTs. M1 and M2 are said to be similar
if there is a linear isomorphism from M1 to M2.

LetM = 〈X ,Y, S, δ, λ〉 be a LFT over a field F. If X ,Y, and S have dimensions
l, m and n, respectively, then there exist matrices A ∈ Mn,n(F), B ∈ Mn,l(F),
C ∈ Mm,n(F), and D ∈ Mm,l(F), such that

δ(s, x) = As+Bx,

λ(s, x) = Cs+Dx,

for all s ∈ S, x ∈ X . The matrices A,B,C,D are called the structural matrices
of M , and l,m, n are called its structural parameters. Notice that if M1 and M2

are two equivalent LFTs with structural parameters l1,m1, n1 and l2,m2, n2,
respectively, then, from the definition of equivalent transducers, one has l1 = l2
and m1 = m2.

A LFT such that C is the null matrix (with the adequate dimensions) is called
trivial.

One can associate to a LFT, M , with structural matrices A,B,C,D, a family
of matrices which are very important in the study of its equivalence class, as will
be clear throughout this paper.
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Definition 8. Let M ∈ Ln with structural matrices A,B,C,D. The matrix

Δ
(k)
M =

⎡
⎢⎢⎢⎣

C
CA
...

CAk−1

⎤
⎥⎥⎥⎦

is called the k-diagnostic matrix of M , where k ∈ N ∪ {∞}.
The matrix Δ

(n)
M will be simply denoted by ΔM and will be referred to as the

diagnostic matrix of M . The matrix Δ
(2n)
M will be denoted by Δ̂M and called

the augmented diagnostic matrix of M .

Definition 9. Let V be a k-dimensional vector subspace of F
n, where F is a

field. The unique basis {b1, b2, . . . , bk} of V such that the matrix [b1 b2 · · · bk]T
is in row echelon form will be here referred to as the standard basis of V .

3 Testing the Equivalence of LFTs

Let M = 〈X ,Y, S, δ, λ〉 be a LFT over a field F with structural matrices A, B,
C, D. Starting at a state s0 and reading an input sequence x0x1x2 . . ., one gets
a sequence of states s0s1s2 . . . and a sequence of outputs y0y1y2 . . . satisfying the
relations

st+1 = δ(st, xt) = Ast +Bxt,

yt = λ(st, xt) = Cst +Dxt,

for all t ≥ 0. The following result is then easily proven by induction [7, Theorem
1.3.1].

Theorem 1. For a LFT as above, si+1 = Ais0 +
∑i−1

j=0 A
i−j−1Bxj , and yi =

CAis0 +
∑i

j=0 Hi−jxj, for i ∈ {0, 1, . . .}, where H0 = D, and Hj = CAj−1B,
j > 0.

Tao, in his book, presents the following necessary and sufficient condition, the
only one known so far, for the equivalence of two states of LFTs [7, Theorem
1.3.3]:

Theorem 2. Let M1 = 〈X ,Y1, S1, δ1, λ1〉 and M2 = 〈X ,Y2, S2, δ2, λ2〉 be two
LFTs. Let s1 ∈ S1, and s2 ∈ S2. Then, s1 ∼ s2 if and only if the null states of
M1 and M2 are equivalent, and λ1(s1, 0

ω) = λ2(s2, 0
ω).

And, as a consequence, he also presents a necessary and sufficient condition
for the equivalence of two LFTs [7, Theorem 1.3.3]:

Corollary 1. Let M1 and M2 be two LFTs. Then, M1 ∼ M2 if and only if their
null states are equivalent, and {λ1(s1, 0

ω) | s1 ∈ S1} = {λ2(s2, 0
ω) | s2 ∈ S2}.
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However, both conditions cannot be checked efficiently, since they involve
working with infinite words. In this section, we explain how they can be reduced
to a couple of conditions that can effectively be verified. These new results will be
essential in Section 5 to compute the sizes of the equivalence classes in Ln/∼n.

The following two Lemmas, which play an important role in the proofs of
the subsequent results, are immediate consequences of the basic fact that right
multiplication performs linear combinations on the columns of a matrix.

Lemma 1. Let A ∈ Mm×k, and B ∈ Mm×l. Then, rank([A|B]) = rank(A) if
and only if there X ∈ Mk×l such that B = AX.

Lemma 2. Let A,B ∈ Mm×k. Then, rank(A) = rank([A|B]) = rank(B) if and
only if there is an invertible matrix X ∈ Mk×k such that B = AX.

For the remainder of this Section, let M1,M2 be two LFTs with structural
matrices A1, B1, C1, D1, and A2, B2, C2, D2 respectively. Let l1,m1, n1 be the
structural parameters of M1, and l2,m2, n2 be the structural parameters of M2.

To simplify the notation, take Δ̃1 = Δ
(n1+n2)
M1

and Δ̃2 = Δ
(n1+n2)
M2

.

Lemma 3. Let s1 ∈ S1 and s2 ∈ S2. Then, λ1(s1, 0
ω) = λ2(s2, 0

ω) if and only
if Δ̃1s1 = Δ̃2s2.

Proof. From Theorem 1, one has that λ1(s1, 0
ω) = λ2(s2, 0

ω) if and only if
C1A

i
1s1 = C2A

i
2s2, for i ≥ 0. Let p1 be the characteristic polynomial of A1, and

p2 the characteristic polynomial of A2. Then, p1 and p2 are monic polynomials
of order n1 and n2, respectively. Moreover, by the Cayley-Hamilton theorem,
p1(A1) = p2(A2) = 0. Thus, p = p1p2 is a monic polynomial of order n1 + n2

such that p(A1) = p(A2) = 0. Therefore An1+n2+k
1 and An1+n2+k

2 , with k ≥ 0,
are linear combinations of lower powers of A1 and A2, respectively, with the
same coefficients. Consequently, C1A

i
1s1 = C2A

i
2s2 for i ≥ 0 is equivalent to

C1A
i
1s1 = C2A

i
2s2 for i = 0, 1, . . . , n1 + n2 − 1, and the result follows. �


The next result states that the (n1+n2)-diagnostic matrices of two equivalent
LFTs, of sizes n1 and n2, can be used to verify if two of their states are equivalent.
It follows from the previous Lemma, and from the fact that if M1 ∼ M2 then,
by Theorem 2, s1 ∼ s2 if and only if λ1(s1, 0

ω) = λ2(s2, 0
ω).

Theorem 3. Let s1 ∈ S1 and s2 ∈ S2. If M1 ∼ M2, then s1 ∼ s2 if and only if
Δ̃1s1 = Δ̃2s2.

Corollary 2. Let M be a LFT, and s1, s2 ∈ M . Then, s1 ∼ s2 if and only if
ΔMs1 = ΔMs2.

Proof. From the last Theorem, s1 ∼ s2 if and only if Δ̂Ms1 = Δ̂Ms2, that is, if
and only if CAis1 = CAis2, for i = 0, 1, . . . , 2n−1. Since the minimal polynomial
of A has, at most, degree n, this latter condition is equivalent to CAis1 = CAis2,
for i = 0, 1, . . . , n− 1. Thus, s1 ∼ s2 if and only if ΔMs1 = ΔMs2. �
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Corollary 3. Let M be a LFT over a field F. Then M is minimal if and only
if rank(ΔM ) = size(M).

Proof. It is enough to notice that the linear application ϕ : S/∼ → F
nm defined

by ϕ ([ s ]∼) = ΔMs is well-defined and injective, by the previous Corollary. �

The following theorem gives a pair of conditions that have to be satisfied for

two LFTs to be equivalent.

Theorem 4. For LFTs M1 and M2 as above, M1 ∼ M2 if and only if the
following two conditions are simultaneously verified:

1. rank(Δ̃1) = rank([Δ̃1 | Δ̃2]) = rank(Δ̃2);
2. D1 = D2 and Δ̃1B1 = Δ̃2B2.

Proof. From Corollary 1 one has that M1 ∼ M2 if and only if the null states of
M1 and M2 are equivalent, and {λ1(s1, 0

ω) | s1 ∈ S1} = {λ2(s2, 0
ω) | s2 ∈ S2}.

The null states of M1 and M2 are equivalent if and only if ∀α ∈ X �, λ1(0, α) =

λ2(0, α). By Theorem 1, this is equivalent to:
∑i

j=0 Hi−jxj =
∑i

j=0 H
′
i−jxj , i

= 0, 1, . . . , |α|, where α = x0x1 · · ·x|α| ∈ X �, H0 = D1, H
′
0 = D2 and Hj =

C1A
j−1
1 B1, H ′

j = C2A
j−1
2 B2 , for j > 0. That is, ∀x0, x1, · · · , x|α| ∈ X the

following equations are simultaneously satisfied:

D1x0 = D2x0

D1x1 + C1B1x0 = D2x1 + C2B2x0

D1x2 + C1B1x1 + C1A1B1x0 = D2x2 + C2B2x1 + C2A2B2x0

...

D1x|α| + · · ·+ C1A
(|α|−1)
1 B1x0 = D2x|α| + · · ·+ C2A

(|α|−1)
2 B2x0.

Using the characteristic polynomials of A1 and A2, as in the proof of Lemma 3,
one sees that when |α| ≥ u the equations after the first u of them are implied
by the previous ones. From the arbitrariness of α, it then follows that system is
satisfied if and only if D1 = D2 and Δ̃1B1 = Δ̃2B2.

From Lemma 3, one has that {λ1(s1, 0
ω) | s1 ∈ S1} = {λ2(s2, 0

ω) | s2 ∈ S2}
if and only if {Δ̃1s1 | s1 ∈ S1} = {Δ̃2s2 | s2 ∈ S2}. This means that the
column space of Δ̃1 is equal to the column space of Δ̃2, which is true if and
only if there exist matrices X,Y such that Δ̃2 = Δ̃1X and Δ̃1 = Δ̃2Y . But,
from Lemma 1, this happens if and only if rank(Δ̃1) = rank([Δ̃1 | Δ̃2]) and
rank(Δ̃2) = rank([Δ̃1 | Δ̃2]). �


Using the conditions in the previous result, it is not hard to write an algorithm
to test the equivalence of two LFTs. The running time of such an algorithm will
be of the same order as the running time of well known algorithms to compute
the rank of a matrix.

Corollary 4. M1 ∼ M2 implies D1 = D2.
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It is important to recall, at this moment, that the size of an LFT is the only
structural parameter that can vary between transducers of the same equivalence
class in L/∼. Moreover, the size of an LFT of an equivalence class [M ]∼, can
never be smaller than rank(ΔM ′), where M ′ is a minimal transducer in [M ]∼.
These facts will be important in Section 5.

The following Corollary is a direct consequence of Lemma 2 and of the first
point of Theorem 4.

Corollary 5. If n = n1 = n2, S1 = S2, and M1 ∼ M2, then there is an
invertible matrix X ∈ Mn×n such that Δ̂M2 = Δ̂M1X.

4 Canonical LFTs

In this section we prove that every equivalence class in L/∼ has one and only one
LFT that satisfies a certain condition1. We also prove that, given the structural
matrices of a LFT, M , one can identify and construct the transducer in [M ]∼
that satisfies that aforesaid condition. LFTs that satisfy that condition are what
we call canonical LFTs.

Lemma 4. Let M ∈ Ln with structural matrices A, B, C, D. Then,

rank(Δ
(k)
M ) = rank(ΔM ), ∀k ≥ n.

Proof. The degree of the minimal polynomial of A is at most n, and so the
matrices CAk, for k ≥ n, are linear combinations of C,CA1, · · · , CAn−1. �


The following result shows that if two minimal LFTs, with the same set of
states, are equivalent, then the two vector spaces generated by the columns of
their diagnostic matrices are equal.

Corollary 6. Let M1 = 〈X ,Y, S, δ1, λ1〉 and M2 = 〈X ,Y, S, δ2, λ2〉 be two min-
imal LFT such that M1 ∼ M2. Then, {ΔM1s | s ∈ S} = {ΔM2s | s ∈ S}.
Proof. If M1 ∼ M2, then {λ1(s, 0

ω) | s ∈ S} = {λ2(s, 0
ω) | s ∈ S}, by Corol-

lary 1. That is, {Δ(∞)
M1

s | s ∈ S} = {Δ(∞)
M2

s | s ∈ S}. Since M1 and M2 are
minimal, from Lemma 4 and Corollary 3 one concludes that {ΔM1s | s ∈ S} =
{ΔM2s | s ∈ S}. �


If M is a minimal LFT, then the columns of ΔM form a basis of the space
{ΔMs | s ∈ S}. Therefore, if M1 and M2 are minimal and equivalent, there is an
invertible matrix X (with adequate dimensions) such that ΔM1X = ΔM2 . Note
that this condition, here obtained for minimal transducers, is less demanding
than the one we have in Corollary 5.

The next result, together with its proof, gives a way to generate LFTs in
[M ]∼, where M is a LFT defined by its structural matrices.

1 The equivalence classes formed by trivial LFTs are excluded.
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Lemma 5. Let M1 = 〈X ,Y, S, δ1, λ1〉 be a non-trivial LFT. Let ψ : S → S be a
vector space isomorphism. Then, there is exactly one LFT M2 = 〈X ,Y, S, δ2, λ2〉
such that ψ is a linear isomorphism from M1 to M2. Moreover, M1 is minimal
if and only if M2 is minimal.

Proof. Let P be the matrix of ψ relative to the standard basis. From its definition
ψ is an isomorphism between M1 and M2 if and only the conditions mentioned
in Section 2 are satisfied. Let x = 0 and s1 ∈ S. From the first condition, one
gets

ψ(δ1(s1, 0)) = δ2(ψ(s1), 0) ⇔ PA1s1 = A2Ps1 ⇔ (PA1 −A2P )s1 = 0.

From the arbitrariness of s1, this is equivalent to PA1 − A2P = 0. Since P is
invertible, one gets A2 = PA1P

−1. The second condition yields

λ1(s1, 0) = λ2(ψ(s1), 0) ⇔ C1s1 = C2Ps1 ⇔ (C1 − C2P )s1 = 0.

Again, from the arbitrariness of s1, this is equivalent to C1 − C2P = 0. Thus,
C2 = C1P

−1.
Now, let s1 = 0 and x ∈ X . Using a similar method, one gets B2 = PB1 and

D1 = D2. Hence, the transducer M2 satisfying the conditions of the theorem is
uniquely determined by ψ. It is then easy to see that the transducer given by
the structural matrices A2 = PA1P

−1, B2 = PB1, C2 = C1P
−1, and D2 = D1

is such that ψ is a linear isomorphism from M1 to M2.
Since M1 and M2 are isomorphic, they are equivalent. Therefore, M1 is mini-

mal if and only if M2 is minimal. �

Recalling that GLn(F) denotes the set of n × n invertible matrices over the

field F, one has:

Corollary 7. Let M ∈ Ln be a non-trivial minimal LFT over a finite field F.
Then, the number of minimal LFTs in [M ]∼ is |GLn(F)|.

Moreover, from the proof of Lemma 5, one gets that, given an invertible
matrix X , there is exactly one minimal transducer in [M ]∼ which has ΔMX
as diagnostic matrix. The same is not true if M is not minimal, as it will be
shown in the next section. The aforementioned proof also gives an explicit way
to obtain that transducer from the structural matrices of M .

Proposition 1. Let M1 = 〈X ,Y, S, δ1, λ1〉 be a LFT. Let ψ : S → S be a vector
space isomorphism. Let M2 be the LFT constructed from M1 and ψ(s) = Ps as
described in the proof of the last Theorem. Then, ΔM1s = ΔM2ψ(s).

Proof. Let s ∈ S, then

ΔM2ψ(s) =

⎡
⎢⎢⎢⎣

C1P
−1

C1A1P
−1

...
C1A

n−1
1 P−1

⎤
⎥⎥⎥⎦Ps =

⎡
⎢⎢⎢⎣

C1

C1A1

...
C1A

n−1
1

⎤
⎥⎥⎥⎦ s = ΔM1s.

�
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The next Theorem gives the condition that was promised at the beginning of
this section.

Theorem 5. Every non-trivial equivalence class in L/∼ has exactly one LFT
M = 〈X ,Y, S, δ, λ〉 which satisfies the condition that {ΔMe1, ΔMe2, · · · , ΔMen}
is the standard basis of {ΔMs | s ∈ S}, where {e1, e2, · · · , en} is the standard
basis of S.

Proof. Given the structural matrices of a LFT, Tao shows [7, Theorem 1.3.4]
how to compute an equivalent minimal LFT. This implies, in particular, that
every LFT is equivalent to a minimal LFT. Thus, to get the result here claimed,
it is enough to prove that if M1 = 〈X ,Y, S, δ1, λ1〉 is a non-trivial minimal LFT,
then M1 is equivalent to exactly one finite transducer M2 = 〈X ,Y, S, δ2, λ2〉 such
that {ΔM2e1, ΔM2e2, . . . , ΔM2en} is the standard basis of {ΔM1s | s ∈ S}. First,
let us notice that, since M1 is minimal, ΔM1 is left invertible, and consequently
s is uniquely determined by ΔM1s. Let B = {b1, b2, · · · , bn} be the standard
basis of {ΔM1s | s ∈ S}. Let si be the unique vector in S such that bi = ΔM1si,
for i = 1, 2, . . . , n. Let ψ : S → S be defined by ψ(si) = ei. Then ψ is a
vector space isomorphism. Let M2 be the LFT constructed from M1 and ψ as
described in the proof of Lemma 5. Then, M2 ∼ M1 and M2 is minimal, which,
by Corollary 6, implies {ΔM2s | s ∈ S} = {ΔM1s | s ∈ S}. From Proposition 1
one also has ΔM2ei = ΔM2ψ(si) = ΔM1si = bi, for i = 1, 2, · · · , n. Therefore,
{ΔM2e1, ΔM2e2, . . . , ΔM2en} is the standard basis of {ΔM1s | s ∈ S}. The
uniqueness easily follows from the fact that all choices made are unique. �


Finally we can state the definition of canonical LFT here considered.

Definition 10. Let M = 〈X ,Y, S, δ, λ〉 be a linear finite transducer. One says
that M is a canonical LFT if {ΔMe1, ΔMe2, · · · , ΔMen} is the standard basis
of {ΔMs | s ∈ S}, where {e1, e2, · · · , en} is the standard basis of S.

The proofs of Theorem 5 and Lemma 5 show that given the structural matrices
of a LFT, M , one can identify and construct the canonical transducer in [M ]∼.

5 On the Size of Equivalence Classes of LFTs

In what follows we only consider LFTs defined over finite fields with q elements,
Fq, because these are the ones commonly used in Cryptography.

In this section we explore how the size of the equivalence classes in Ln/∼n

varies with the size n. Given a minimal LFT M1 in Ln1 , our aim is to count the
number of transducers in Ln2 , with n2 ≥ n1, that are equivalent to M1.

The following result shows that given M1 ∈ Ln1 , one can easily construct an
equivalent transducer in Ln2 , for any n2 ≥ n1, which can then be used to count
the number of transducers in Ln2 that are equivalent to M1, as well as the size
of the equivalence classes in S.
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Proposition 2. Let M1 be the LFT over Fq with structural matrices A1, B1,
C1, D1, and structural parameters l,m, n1. Let n

′ ∈ N, and M2 be the LFT with
structural matrices

A2 =

[
A1 0n1×n′

0n′×n1 0n′×n′

]
, B2 =

[
B1

0n′×l

]
, C2 =

[
C1 0m×n′

]
, and D2 = D1.

Then, M1 ∼ M2. The structural parameters of M2 are l,m, n2, where n2 =
n1 + n′.

Proof. Take u = n1+n2. Notice that C2A
i
2 = [C1A

i
1 0m×n′ ], for i = 0, 1, . . . , u−

1. That is, Δ
(u)
M2

= [Δ
(u)
M1

0um×n′ ]. The result is then trivial by Theorem 4. �

The next result counts the number of LFTs in Ln2 that are equivalent to M2,

where M2 is the LFT defined from M1 as described in Proposition 2. Because
M1 ∼ M2, this yields the number of LFTs in Ln2 that are equivalent to M1.

Theorem 6. Let M1 be a minimal LFT in Ln1 with structural matrices A1,
B1, C1, D1, and structural parameters l,m, n1. Let M2 be the LFT described in
Proposition 2. The number of finite transducers M ∈ Ln2 which are equivalent
to M2 is (qn2 − 1)(qn2 − q) · · · (qn2 − qr−1)q(n2+l)(n2−r), where r = rank(Δ̂M2).

Proof. The theorem follows from the next three facts, that we will prove in the
remaining of this section.

1. For all matrices Δ1, Δ2 ∈ {Δ̂M | M ∈ Ln2 and M ∼ M2}, the number
of LFTs that are equivalent to M2 and have Δ1 as augmented diagnostic
matrix is equal to the number of LFTs that are equivalent to M2 and have
Δ2 as augmented diagnostic matrix.

2. The number of LFTs equivalent to M2 and have Δ̂M2 as augmented diag-
nostic matrix is q(n2+l)(n2−r), with r = rank(Δ̂M2).

3. The size of {Δ̂M | M ∈ Ln2 and M ∼ M2} is (qn2−1)(qn2−2) · · · (qn2−qr−1),
with r = rank(Δ̂M2).

�

From Corollary 5, if two LFTs M and M ′ are equivalent, there is an invertible

matrixX such thatΔM ′ = ΔMX . The first of the above items is then an instance
of the following result.

Theorem 7. Let M ∈ Ln. Let SΔ = {M ′ ∈ Ln | M ′ ∼ M and Δ̂M ′ = Δ}.
Then, for every X ∈ GLn(Fq), |SΔ̂M

| = |SΔ̂MX |.
Proof. Let f : SΔM → SΔMX such that f(M) = M ′, where M ′ is the transducer
defined by the matrices A′ = X−1AX , B′ = X−1B, C′ = CX and D′ = D.
It is straightforward to see that Δ̂M ′ = Δ̂MX , and that the application f is
bijective. �
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To prove item 2, let us count the number of transducers M ∈ Ln2 that are
equivalent to M2 and have Δ̂M2 as augmented diagnostic matrix. One has to
count the possible choices for the structural matrices A, B, C and D, of M , that
satisfy the condition 2 of Theorem 4, and Δ̂M2 = Δ̂M (which implies condition
1). The choice for D is obvious and unique from condition 2, as well as the
choice for C (from condition Δ̂M2 = Δ̂M ). How many choices does one have for
A such that the condition Δ̂M2 = Δ̂M is satisfied? And, how many choices for
B such that Δ̂M2 = Δ̂M and the second condition is satisfied, i.e., such that
Δ̂MB2 = Δ̂MB? The following result gives the number of possible choices for A,
and the proof gives the form of these matrices.

Theorem 8. Let M1 be a minimal LFT in Ln1 with structural matrices A1,
B1, C1, D1, and M2 the LFT described in Proposition 2. There are exactly

qn2(n2−rank(ΔM2 )) matrices A ∈ Mn2×n2(Fq) such that C2A
i
2 = C2A

i, for i =
0, 1, · · · , 2n2 − 1.

Proof. Let A ∈ Mn2×n2(Fq) be such that C2A
i
2 = C2A

i, for i = 0, 1, . . . , 2n2−1.
Then, C2A

i
2 = C2A

i−1
2 A, for i = 0, 1, . . . , 2n2 − 1.

Take A =

[
E1 E2

E3 E4

]
, with E1 ∈ Mn1×n1(Fq), E2 ∈ Mn1×n′(Fq), E3 ∈

Mn′×n1(Fq), E4 ∈ Mn′×n′(Fq), and n′ = n2−n1. Then, from C2A
i
2 = C2A

i−1
2 A,

for i ∈ {1, . . . , 2n2 − 1}, one gets that [C1A
i
1 0m×n′

]
=

[
C1A

i−1
1 E1 C1A

i−1
1 E2

]
,

for i ∈ {1, . . . , 2n2 − 1}, i.e., C1A
i
1 = C1A

i−1
1 E1, and C1A

i−1
1 E2 = 0, for

i ∈ {1, . . . , 2n2 − 1}. This is equivalent to Δ
(2n2−1)
M1

A1 = Δ
(2n2−1)
M1

E1, and

Δ
(2n2−1)
M1

E1 = 0, or Δ
(2n2−1)
M1

(A1 − E1) = 0 and Δ
(2n2−1)
M1

E1 = 0. Since M1

is minimal, by Lemma 4 and Corollary 3, rank(Δ
(2n2−1)
M1

) = rank(ΔM1) = n1 =

number of columns of Δ
(2n2−1)
M1

. Therefore, E1 = A1 and E2 = 0. Consequently,

any matrix A with the same first n1 rows as A2 satisfies C2A
i
2 = C2A

i, for
i = 0, 1, . . . , 2n2 − 2, and those matrices A are the only ones that satisfy condi-
tion 2. Because the last n2−n1 rows of A can be arbitrarily chosen, and A has n2

columns, one gets that there are qn2(n2−n1) matrices A that satisfy the required
conditions. Since n1 = rank(ΔM1) = rank(ΔM2 ) (because M1 is minimal, and
M1 ∼ M2), the result follows. �


Now, for each matrix A such that Δ̂M2 = Δ̂M , i.e., C2A
i
2 = C2A

i , for
i = 0, 1, . . . , 2n2 − 1, one wants to count the number of matrices B that satisfy
Δ̂MB2 = Δ̂MB, that is, satisfy C2A

iB2 = C2A
iB , for i = 0, 1, . . . , 2n2 − 1.

Theorem 9. Let M1 be a minimal LFT with structural matrices A1, B1, C1,
D1, and structural parameters l,m, n1. Let M2 be the LFT described in Proposi-

tion 2. Given a matrix A such that Δ̂M2 = Δ̂M , there are exactly ql(n2−rank(ΔM2 ))

matrices B ∈ Mn2×l(Fq) such that C2A
iB2 = C2A

iB for i = 0, 1, · · · , 2n2 − 1.

Proof. Let A be a matrix such that Δ̂M2 = Δ̂M , and B such that Δ̂MB2 = Δ̂MB.
Then, Δ̂M2B2 = Δ̂M2B. Consequently, ΔM2B2 = ΔM2B, which is equivalent to
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ΔM2(B2 − B) = 0. Since B has n2 rows, one concludes that there are exactly
n2 − rank(ΔM2 ) rows in B whose entries can be arbitrarily chosen to have a
solution of ΔM2(B2 − B) = 0. Therefore, and since B has l columns, there are

ql(n2−rank(ΔM2 )) matrices B that satisfy condition 2 of Theorem 4. �

From this one concludes that the number of transducers in Ln2 that are equiv-

alent toM2 and that have the same augmented diagnostic matrix is q(n2+l)(n2−r),
where r = rank(Δ̂M2 ), which proves item 2. Item 3 is covered by the following
two results together with Corollary 5.

Theorem 10. Let A ∈ Mm×n(Fq) such that rank(A) �= n. Then, the num-
ber of matrices X ∈ GLn(Fq) such that AX = A is (qn − qrank(A))(qn −
qrank(A)+1) · · · (qn − qn−1). If rank(A) = n, only the identity matrix satisfies
this condition.

Proof. Let X ∈ GLn(Fq) be such that AX = A. Then, there are n − rank(A)
rows in X whose entries can be arbitrarily chosen to have a solution of AX = A.
But, since X has to be invertible, one has qn−qrank(A) possibilities for the “first”
of those rows, qn − qrank(A)+1 for the “second”, qn − qrank(A)+2 for the “third”,
and so on. Therefore, there are (qn − qrank(A))(qn − qrank(A)+1) · · · (qn − qn−1)
matrices X that satisfy the required condition. �


The following result is a direct consequence of the previous Theorem and the
size of GLn(Fq).

Corollary 8. Let A ∈ Mm×n(Fq). Then, the number of matrices of the form
AX, where X ∈ GLn(Fq) is (qn − 1)(qn − q) · · · (qn − qrank(A)−1).

Since augmented diagnostic matrices of LFTs in the same equivalence class
have the same rank, Theorem 6 can be generalized to:

Corollary 9. Let M be a LFT with structural parameters l,m,n. Then

|[M ]∼n | = (qn − 1) (qn − q) · · · (qn − qr−1
)
q(n+l)(n−r), where r = rank (ΔM ) .

Given the structural matrices of a LFT, the last Corollary gives a formula to
compute the number of equivalent LFTs with the same size.

6 Conclusion

We presented a way to compute the number of equivalent LFTs with the same
size, by introducing a canonial form for LFTs and a method to test LFTs equiv-
alence. This is essencial to have a LFT uniform random generator, and to get
an approximate value for the number of non-equivalent injective LFTs, which is
indispensable to evaluate the key space of the FAPKC systems.

In future work we plan to use the results in the last section to deduced a
recurrence relation that gives the number of non-equivalent LFTs of a given size.
This, together with the approximate value for the number of non-equivalent
injective LFTs, will allow us to verify if random generation of LFTs is a feasible
option to generate keys.
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