
Bounded Prefix-Suffix Duplication�

Marius Dumitran1, Javier Gil2, Florin Manea3, and Victor Mitrana2

1 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 010014 Bucharest, Romania

dmarius1@yahoo.com
2 Department of Organization and Structure of Information

Polytechnic University of Madrid, Crta. de Valencia km. 7 – 28031 Madrid, Spain
jgil@eui.upm.es, victor.mitrana@upm.es

3 Department of Computer Science, Christian-Albrechts University of Kiel
Christian-Albrechts-Platz 4, 24118 Kiel, Germany

flm@informatik.uni-kiel.de

Abstract. We consider a restricted variant of the prefix-suffix dupli-
cation operation, called bounded prefix-suffix duplication. It consists in
the iterative duplication of a prefix or suffix, whose length is bounded
by a constant, of a given word. We give a sufficient condition for the
closure under bounded prefix-suffix duplication of a class of languages.
Consequently, the class of regular languages is closed under bounded
prefix-suffix duplication; furthermore, we propose an algorithm decid-
ing whether a regular language is a finite k-prefix-suffix duplication
language. An efficient algorithm solving the membership problem for
the k-prefix-suffix duplication of a language is also presented. Finally, we
define the k-prefix-suffix duplication distance between two words, extend
it to languages and show how it can be computed for regular languages.

1 Introduction

Treating sets of chromosomes and genomes as languages raises the possibility
that the structural information contained in biological sequences can be gen-
eralized and investigated by formal language theory methods [13]. Thus, the
interpretation of duplication as a formal operation on words has inspired a se-
ries of works in the area of formal languages opened by [3,14] and continued by
several other papers, e.g., [10] and the references therein. In [6] one considers
duplications that appear at the both ends of the words only, called prefix-suffix
duplications, inspired by the case of telomeric DNA. In this context, one inves-
tigates the class of languages that can be defined by the iterative application
of the prefix-suffix duplication to a word and tries to compare it to other well
studied classes of languages. It is shown that the languages of this class have a
rather complicated structure even if the initial word is rather simple.

Several problems remained unsolved in the aforementioned paper. This is the
mathematical motivation for the work presented here. By considering a weaker

� Florin Manea’s work is supported by the DFG grant 596676. Victor Mitrana’s work
is partially supported by the Alexander von Humboldt Foundation.

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 176–187, 2014.
c© Springer International Publishing Switzerland 2014

Bounded Prefix-Suffix Duplication 177

variant of the prefix-suffix duplication, called bounded prefix-suffix duplication,
we are able to solve, in this new setting, some of the problems that remained
unsolved in [6]. Another motivation is related to the biochemical reality that
inspired the definition of this operation. It seems more practical and closer to the
biological reality to consider that the factor added by the prefix-suffix duplication
cannot be arbitrarily long. One should note that the investigation we pursue here
is not aimed to tackle real biological facts and provide solutions for them. In fact,
its aim is to provide a better understanding of the structural properties of strings
obtained by prefix-suffix duplication as well as specific tools for the manipulation
of such strings.

We give a brief description of the contents of this work. We first define a
restricted variant of the prefix-suffix duplication called bounded prefix-suffix
duplication. It consists in the duplication of a prefix or suffix whose length is
bounded by a constant of a given word. We give sufficient conditions for a family
of languages to be closed under bounded prefix-suffix duplication. Consequently,
we show that every language generated by applying iteratively the bounded
prefix-suffix duplication to a word is regular. We also propose an algorithm
deciding whether there exists a finite set of words generating a given regular
language w.r.t. bounded-prefix-suffix duplication.

We show that the membership problem for the language obtained by applying
iteratively k-prefix-suffix duplications from a language recognizable in O(f(n))
time can be solved in O(nk log k+n2f(n)) time. In particular, when considering
the k-prefix-suffix duplication language generated by a word x, this problem can
be solved in O(n log k) time, if |x| ≥ k, and O(nk log k) time in the general case.

We then define the k-prefix-suffix duplication distance between two given
words as the minimal number of k-prefix-suffix duplications applied to one of
them in order to get the other one and show how it can be efficiently computed.
This distance is extended to languages and we propose an algorithm for effi-
ciently computing the k-prefix-suffix duplication distance between two regular
languages.

2 Preliminaries

We assume the reader to be familiar with fundamental concepts of formal lan-
guage theory and complexity theory which can be found in many textbooks,
e.g., [12] and [11], respectively.

We start by summarizing the notions used throughout this work. An alphabet
is a finite and nonempty set of symbols. The cardinality of a finite set A is written
|A|. Any finite sequence of symbols from an alphabet V is called a word over V .
The set of all words over V is denoted by V ∗ and the empty word is denoted by
ε; also V + is the set of non-empty words over V , V k is the set of all words over
V of length k, while V ≤k is the set of all words over V of length at most k. Given
a word w over an alphabet V , we denote by |w| its length, If w = xyz for some
x, y, z ∈ V ∗, then x, y, z are called prefix, subword, suffix, respectively, of w. For
a word w, w[i..j] denotes the subword of w starting at position i and ending at

178 M. Dumitran et al.

position j, 1 ≤ i ≤ j ≤ |w|; by convention, w[i..j] = ε if i > j. If i = j, then
w[i..j] is the i-th letter of w which is simply denoted by w[i]. A period of a word
w over V is a positive integer p such that w[i] = w[j] for all i and j with i ≡ j
(mod p). By per(w) (called the period of w) we denote the smallest period of w.
If per(w) < |w| and per(w) divides |w|, then w is a repetition; otherwise, w is
called primitive. A primitively rooted square is a word w that has the form xx
for some primitive word x.

We say that the pair w(i, p) is a duplication (repetition) in w starting at
position i in w if w[i..i + p − 1] = w[i + p..i + 2p − 1]. Analogously, the pair
(i, p)w is a duplication in w ending at position i in w if w[i − 2p + 1..i − p] =
w[i−p+1..i]. In both cases, p is called the length of the duplication. Furthermore,
the pair w(i, p)w is a duplication in w having the middle at position i in w if
w[i − p+ 1..i] = w[i + 1...i+ p].

Despite that the prefix-suffix operation introduced in [6] is a purely mathe-
matical one and the biological reality is just a source of inspiration, it seems
rather unrealistic to impose no restriction on the length of the prefix or suffix
which is duplicated. The restriction considered in this paper concerns the length
of all prefixes and suffixes that are duplicated to the current word. They cannot
be longer than a given constant. This restricted variant of prefix-suffix duplica-
tion is called bounded prefix-suffix duplication. Formally, given a word x ∈ V ∗

and a positive integer k, we define:
– k-prefix duplication, namely PDk(x) = {ux | x = uy for some u ∈ V +, |u| ≤

k}. The k-suffix duplication is defined analogously, that is SDk(x) = {xu | x =
yu for some u ∈ V +, |u| ≤ k}.

– k-prefix-suffix duplication, namely PSDk(x) = PDk(x) ∪ SDk(x).
These operations are naturally extended to languages L by

PDk(L) =
⋃

x∈L

PDk(x), SDk(L) =
⋃

x∈L

SDk(x), PSDk(L) =
⋃

x∈L

PSDk(x).

We further define, for each Θ ∈ {PD , SD ,PSD}:
Θ0

k(x) = {x}, Θn+1
k (x) = Θn

k (x) ∪Θk(Θ
n
k (x)), for n ≥ 0, Θ∗

k(x) =
⋃

n≥0

Θn
k (x).

Furthermore, PSD∗
k(L) =

⋃

x∈L

PSD∗
k(x). A language L ⊆ V ∗ is called a bounded

prefix-suffix duplication language if L = PSD∗
k(x) for some x ∈ V ∗ and k > 0. A

prefix-suffix duplication language is defined analogously, see [6]. When duplica-
tions of arbitrary factors within the word are permitted, we obtain an (arbitrary)
duplication language, see, e.g., [3].

In this paper, we show a series of results of algorithmic nature. All the time
complexity bounds we obtain in this context hold for the RAM with logarithmic
memory-word size. In the algorithmic problems we approach, we are usually
given as input one or more words. These words are assumed to be over an
integer alphabet; that is, if w is the input word, and has length n, then we
assume that its letters are integers from the set {1, . . . , n}. See a discussion
about this assumption in [9]. If the input to our problems is a language, then

Bounded Prefix-Suffix Duplication 179

we assume that this language is specified by a procedure deciding it (e.g., if the
language is regular, then we assume that we are given a DFA accepting it).

We recall basic facts about the data structures we use. For a word u, with
|u| = n, over V ⊆ {1, . . . , n} we can build in linear time a suffix array structure
as well as data structures allowing us to retrieve in constant time the length of
the longest common prefix of any two suffixes u[i..n] and u[j..n] of u, denoted
LCP(i, j). These structures are called LCP data structures in the following. For
details, see, e.g., [8,9]. Similarly, one can construct in linear time data structures
allowing us to retrieve in constant time the length of the longest common suffix
of any two prefixes u[1..i] and u[1..j] of u, denoted LCS (i, j).

We also use a linear data structure, called deque (double-ended queue, see [15]).
This is a doubly linked list for which elements can be added to or removed from
either the front or back. Finally, tries are complete trees whose edges are labeled
with letters of an alphabet V , and ordered according to an (existing) order of
the letters of this alphabet; each path of a trie corresponds to a word over V .

3 Bounded Prefix-Suffix Duplication as a Formal
Operation on Languages

We start with some language theoretical properties of the class of duplication
languages. By combining the results from [1] and [4] (rediscovered in [3] and [14]
for arbitrary duplication languages), and [6] we recall the following result.

Theorem 1.
1. An arbitrary duplication language is regular if and only if it is a language over
an alphabet with at most two symbols.
2. A prefix-suffix duplication language is context-free if and only if it is a language
over the unary alphabet.

Whether or not every arbitrary duplication language is recognizable in poly-
nomial time is open while every prefix-suffix duplication language is in NL.

We say that a class L of languages is closed under bounded prefix-suffix du-
plication if PSD∗

k(L) ∈ L for any L ∈ L and k ≥ 1.

Theorem 2. Every nonempty class of languages closed under union with regu-
lar languages, intersection with regular languages, and substitution with regular
languages, is closed under bounded prefix-suffix duplication.

Proof. Let L be a family of languages having all the required closure properties.
By [7], L is closed under inverse morphism. Let L ⊆ V ∗, with |V | = m, be a
language from L, and k be a positive integer. We define the alphabet

U = V ∪ {p1, p2, . . . , pmk} ∪ {s1, s2, . . . , smk},
and the morphism h : U∗ −→ V ∗ defined by h(a) = a for any a ∈ V and
h(pi) = h(si) = the ith word of length k over V in the lexicographic order, for
all 1 ≤ i ≤ mk. Further, let F be the finite language defined by F = {x ∈ L |
|x| ≤ 2k − 1} and

180 M. Dumitran et al.

E = (L ∪ PSD2k
k (F)) ∩ {x ∈ V + | |x| ≥ 2k}.

As PSD2k
k (F) is a finite language and L is closed under union with regular

languages and intersection with regular languages, it follows that E is still in L.
The following relation is immediate:

PSD∗
k(L) = PSD∗

k(E) ∪ PSD2k
k (F).

It is rather easy to prove that
PSD∗

k(E) = σ(h−1(E) ∩ {p1, p2, . . . , pmk}V ∗{s1, s2, . . . , smk}),
where σ is a substitution defined by σ(pi) = PD∗

k(xi) and σ(si) = SD∗
k(xi),

where xi is the ith word of length k over V in the lexicographic order.
Each language PD∗

k(xi) can be generated by a prefix grammar [5], hence it
is regular. Analogously, each language SD∗

k(xi) is regular. Consequently, σ is a
substitution with regular languages. By the closure properties of L, PSD∗

k(E)
belongs to L, hence PSD∗

k(L) is also in L. �

Much differently from the statements of Theorem 1 we have:

Corollary 1. Every bounded prefix-suffix duplication language is regular.

A language L is said to be a multiple k-prefix-suffix duplication language
if there exists a language E such that L = PSD∗

k(E). If E is finite, then L
is said to be a finite k-prefix-suffix duplication language. Note that given a
regular language L and a positive integer k, a necessary condition such that
L = PSD∗

k(E) holds, for some set E, is L = PSD∗
k(L). By Theorem 2 a finite

automaton accepting PSD∗
k(L) can effectively be constructed and so the above

equality can be algorithmically checked. However, if the equality holds, we cannot
infer anything about the finiteness of E. The problem is completely solved by
the next theorem.

Theorem 3. Let L be a regular language which is a multiple k-prefix-suffix du-
plication language for some positive integer k. There exists a unique minimal
(with respect to inclusion) regular language E, which can be algorithmically com-
puted, such that L = PSD∗

k(E). In particular, one can algorithmically decide
whether L is a finite k-prefix-suffix duplication language.

Proof. Let L ⊆ V ∗ be a multiple k-prefix-suffix duplication language accepted
by the deterministic finite automaton A = (Q, V, f, q, F). We define the language

Mk(L) = {x ∈ L | there is no y ∈ L such that x ∈ PSDk(y)}.
As L = PSD∗

k(L), it follows that
Mk(L) = {x ∈ L | there is no y ∈ L, y
= x such that x ∈ PSD∗

k(y)}.
Claim. If PSD∗

k(E) = L for some E ⊆ L, then the following statements hold:
(i) Mk(L) ⊆ E, and
(ii) PSD∗

k(Mk(L)) = L.

Proof of the claim. (i) Let x ∈ Mk(L) ⊆ L; there exists y ∈ E such that
x ∈ PSD∗

k(y). By the definition of Mk(L), it follows that x = y.
(ii) Clearly, PSD∗

k(Mk(L)) ⊆ L. Let y ∈ L; there exists x ∈ L such that
y ∈ PSD∗

k(x). We may choose x such that x ∈ PSDk(z) for no z ∈ L. Thus,
x ∈ Mk(L), and y ∈ PSD∗

k(Mk(L)), which concludes the proof of the claim.

Bounded Prefix-Suffix Duplication 181

Clearly, Mk(L) = L \ PSDk(L); hence Mk(L) is regular and can effectively
be constructed.

In order to check whether L is a finite k-prefix-suffix duplication language we
first compute Mk(L). Then we check whether Mk(L) is finite. Finally, by Theo-
rem 2, the language PSD∗

k(Mk(L)) is regular and can be effectively computed,
therefore the equality PSD∗

k(Mk(L)) = L can be algorithmically checked. �

3.1 Membership Problem

In the sequel, we will make use of the following classical result from [2]. It is
known that the number of primitively rooted square factors of length at most
2k that occur in a word w at a position is O(log k). Moreover, one can construct
the list of primitively rooted squares of length at most 2k occurring in w in
O(n log k) time. Each square is represented in the list by the starting position
and the length of their root, and the list is ordered increasingly by the starting
position of the squares; when more squares share the same starting position
they are ordered by the length of the root. Moreover, one can store an array of
n pointers, where the ith such pointer gives the memory location of the list of
the primitively rooted squares occurring at position i. A similar list, where the
squares are ordered by their ending position, can be computed in the same time.
Further, we develop our main algorithmic tools.

Lemma 1. Given w ∈ V ∗, of length n, and an integer k ≤ n, we can identify
all prefixes w[1..i] of w such that w ∈ SD∗

k(w[1..i]) in O(n log k) time.

Proof. We propose an algorithm that computes an array S[·], defined by S[i] = 1
if w ∈ SD∗

k(w[1..i]), and S[i] = 0, otherwise. This algorithm has a preprocessing
phase, in which all the primitively rooted squares with root of length at most k
occurring in w are computed. This preprocessing takes O(n log k) time.

Now, we describe the computation of the array S. Initially, all the positions
of this array are initialized to 0, except S[n], which is set to 1. Clearly, this is
correct, as w ∈ SD∗

k(w[1..n]) = SD∗
k(w). Further, we update the values in the

array S using a dynamic programming approach. That is, for i from n to 1, if
S[i] = 1, then we go through all the primitively rooted squares (w[j + 1..i])2,
|i − j| ≤ k, that end at position i in w. For each such factor w[j + 1..i] we set
S[j] = 1. Indeed, w[1..i] can be obtained from w[1..j] by appending w[j + 1..i]
(which is known to be a suffix of w[1..j]); as we already know that w can be
obtained by suffix duplication from w[1..i], it follows that w can be obtained by
suffix duplication from w[1..j]. The processing for each i takes O(log k) time.

It is not hard to see that our algorithm works correctly. Assume that w ∈
SD∗

k(w[1..j]) for some j < n. Let us consider the longest sequence of suffix du-
plication steps (or, for short, derivation) that produces w starting from w[1..j].
Say that this derivation has s ≥ 2 steps, so it can be described by a sequence
of indices j1 = j < j2 < . . . < js = n such that w[1..ji+1] ∈ SDk(w[1..ji] for
1 ≤ i ≤ s− 1. We can show that w[ji + 1..ji+1] is primitive for all i. Otherwise,
w[ji + 1..ji+1] = t� for some word t and � ≥ 2, so we can replace in the original

182 M. Dumitran et al.

derivation the duplication that produces w[1..ji+1] from w[1..ji] by other � du-
plication steps in which t factors are added to w[1..ji]. This leads to a sequence
with more than s duplications steps producing w from w[1..j], a contradiction.
Now, it is immediate that, in our algorithm, S[js] is set to 1 in the first step.
Assuming that for some i we already have S[ji+1] = 1, when considering the
value ji+1 in the main loop of our algorithm, as w[ji + 1..ji+1]

2 is a primitively
rooted square ending on position ji+1, we will set S[ji] = 1. In the end, we will
also have S[j] = S[j1] = 1, so our algorithm works properly. �

Lemma 2. Given w ∈ V ∗, of length n, we can identify all suffixes w[j..n] of w
such that w ∈ PD∗

k(w[j..n]) in O(n log k) time.

The proof is similar to the one of Lemma 1, and it is left to the reader. The output
of the algorithm will be an array P [·], defined by P [j] = 1 if w ∈ PD∗

k(w[j..n]),
and P [j] = 0, otherwise.

The next lemma shows a way to compute the factors of length at least k, from
which w can be obtained by iterated prefix or suffix duplication.

Lemma 3. Given w ∈ V ∗ of length n and a list F of factors of w of length
greater than or equal to k, given by their starting and ending position, ordered
by their starting position, and in case of equality by their ending position, we can
check whether there exists x ∈ F such that w ∈ PSD∗

k(x) in time O(n log k+|F |).
Proof. The main remark of this lemma is that, if w[i..j] is longer than k, then
w ∈ PSD∗

k(w[i..j]) if and only if w[1..j] ∈ PD∗
k(w[i..j]) and w = w[1..n] ∈

SD∗
k(w[1..j]). Equivalently, we have w ∈ PSD∗

k(w[i..j]) if and only if w[1..n] ∈
PD∗

k(w[i..n]) and w[1..n] ∈ SD∗
k(w[1..j]).

This remark suggests the following approach: we first identify all the suffixes
w[j..n] of w such that w ∈ PD∗

k(w[j..n]) and all the prefixes w[1..i] of w such
that w ∈ SD∗

k(w[1..i]); this takes O(n log k), by Lemmas 1 and 2. Now, for
every factor w[i..j] in list F , we just check whether S[i] = P [j] = 1 (that is,
w ∈ PD∗

k(w[i..n]) ∩ SD∗
k(w[1..j])); if so, we decide that w ∈ PSD∗

k(w[i..j]). �

Building on the previous lemmas, we can now solve the membership problem
for PSD∗

k(L) languages, provided that we know how to solve the membership
problem for L on the RAM with logarithmic word size model.

Theorem 4. If the membership problem for the language L can be decided in
O(f(n)) time, then the membership problem for PSD∗

k(L) can be decided in
O(nk log k + n2f(n)).

Proof. Assume that we are given a word w, of length n; we want to test whether
w ∈ PSD∗

k(L) or not. For simplicity, we assume that L is constant (i.e., its
description, given as a procedure deciding L in O(f(n)) time, is not part of the
input). If L was given as part of the input, then we can use exactly the same
algorithm, but one should add to the final time complexity the time needed to
read the description of L and effectively construct a procedure deciding L in
O(f(n)) time.

Bounded Prefix-Suffix Duplication 183

First, let us note that we can identify trivially in O(n2f(n)) the factors of w
that are in L. More precisely, we can produce a list F of factors of w that are
contained in L, specified by their starting and ending position, ordered by their
starting position, and, in case of equality by their ending position. The list F
can be easily split, in O(|F |) time, into two lists: F1, containing the factors of
length at least k, and F2, the list of factors of length less than k. It is worth
noting that |F | ∈ O(n2). By Lemma 3 it follows that we can decide in time
O(n log k + |F1|) whether w ∈ PSD∗

k(x) for some x ∈ F1.
It remains to test whether w ∈ PSD∗

k(x) for some x ∈ F2. The main remark
we make in this case is that there exists x ∈ F2 such that w ∈ PSD∗

k(x) if and
only if there exists y ∈ PSD∗

k(x) such that k ≤ |y| ≤ 2k and w ∈ PSD∗
k(y).

Therefore, we will produce the list F3 of words z ∈ ∪x∈F2PSD∗
k(x) such that z

is a factor of w and k ≤ |z| ≤ 2k.
In order to compute F3 we can use the O(|u|2 log |u|) algorithm proposed in

[6] to decide whether a word u is contained in PSD∗(v). In that algorithm, one
first marks the factors of u that are equal to v. Further, for each possible length
� of the factors of u, from 1 to |u|, and for each i ≤ n where a factor of length
� of u may start, one checks whether u[i..i + � − 1] can be obtained by prefix
(respectively, suffix duplication) from a shorter suffix (respectively, prefix), that
was already known (i.e., marked) to be in PSD∗(v), such that in the last step
of duplication a primitive root x of a primitively rooted square prefix x2 of
u[i..i+ � − 1] was appended to the shorter suffix (respectively, a primitive root
x of a primitively rooted square suffix x2 of u[i..i+ �− 1] was appended to the
shorter prefix). Each time we found a factor of w that can be obtained in this
way from one of its marked prefixes or suffixes, we marked it as part of PSD∗

k(v)
and continued the search with the next factor of w.

In our case, we can pursue the same strategy: taking w in the role of u, and
having already marked the words of F2 (which are factors of w) just like we did
with the occurrences of v, we run the algorithm described above, but only for
� ≤ 2k. Note that the primitive roots of primitively rooted square suffixes or
prefixes of factors w[i..i+ �− 1] with � ≤ 2k have length at most k; hence, each
duplication that is made towards obtaining such a factor is, in fact, a k-prefix-
suffix duplication. In this manner we obtain the factors of w of length at most 2k
that are from PSD∗

k(F2). The time needed to obtain these factors is O(nk log k).
We store this set of factors in F3 just like before: the factors are specified by their
starting and ending position, ordered by their starting position, and, in case of
equality by their ending position. The set F3 may have up to O(nk) factors, as
each of them has length at most 2k.

By Lemma 3, we can decide in time O(n log k + |F3|) = O(nk) whether
w ∈ PSD∗

k(F3). Accordingly, adding the time needed to compute F3 from F2, it
follows that we can decide in time O(nk log k) whether w ∈ PSD∗

k(F2). Hence,
we can decide whether w ∈ PSD∗

k(L) in O(nk log k + n2f(n)) time. �

In fact, there are classes of languages for which a better bound than the one in
Theorem 4 can be obtained. If L is context-free (respectively, regular) the time
needed to decide whether w ∈ PSD∗

k(L) is O(n3) (respectively, O(nk log k+n2)),

184 M. Dumitran et al.

where |w| = n. Indeed, F has always at most n2 elements, and in the case of
context-free (or regular) languages it can be obtained inO(n3) time (respectively,
O(n2)) by the Cocke-Younger-Kasami algorithm (respectively, by running a DFA
accepting L on all suffixes of w, and storing the factors accepted by the DFA).
When L is a singleton, the procedure is even more efficient.

Corollary 2. Given two words w and x, with |w| ≥ |x|, we can decide whether
w ∈ PSD∗

k(x) in time O(|w|k log k). If |x| ≥ k, then we can decide whether
w ∈ PSD∗

k(x) in time O(|w| log k).

Proof. Assume that |w| = n and |x| = m. First, note that the list F of all
occurrences of x in w can be obtained in linear time O(n +m), using, e.g., the
Knuth-Morris-Pratt algorithm [16], and |F | ∈ O(n).

For the first part, we follow the same general approach as in Theorem 4. If
|x| < k, we produce the list of all the factors longer than k, but of length at
most 2k, that can be derived from x. This list is produced in O(nk log k) time.
Therefore, the total complexity of the algorithm is O(nk log k), in this case.

The second result follows now immediately from Lemma 3, as F contains only
words of length at least k. �

4 Bounded Prefix-Suffix Duplication Distances

Given two words x,w and k ≥ 1, the k-prefix-suffix duplication distance between
x and w is defined by

δk(x,w) = inf{� | x ∈ PSD�
k(w) or w ∈ PSD�

k(x)}.
By definition, the k-prefix-suffix duplication distance between two words is equal
to ∞ if the longer word cannot be derived from the shorter. In a similar fash-
ion, we can define k-suffix duplication distance or k-prefix duplication distance
between x and w as the minimum number of k-suffix duplication, respectively,
k-prefix duplication steps, needed to transform x into w or w into x.

Theorem 5. Given k ≥ 1, let x and w be two words of respective length m and
n, n > m. If m ≥ k, then δk(x,w) can be computed in O(n log k). If m < k,
then δk(x,w) can be computed in O(nk log k).

The k-prefix-suffix duplication distance between two words can be extended
to the k-prefix-suffix duplication distance between a word x and a language L
by δk(x, L) = min{δk(x, y) | y ∈ L}. Moreover, one can canonically define the
distance between languages: for two languages L1, L2 and a positive integer k,
we set δk(L1, L2) = min{δk(x, y) | x ∈ L1, y ∈ L2}.

Theorem 6. Given two regular languages L1 and L2 over an alphabet V , recog-
nised by deterministic finite automata with sets of states Q and S, respectively,
and a positive integer k ≥ 1, one can algorithmically compute δk(L1, L2) in
O((k +N)M2|V |2k), where M = max{|Q|, |S|} and N = min{|Q|, |S|}.

Bounded Prefix-Suffix Duplication 185

Proof. Let us assume that both L1 and L2 are given by the minimal deterministic
finite automata accepting them, namely A1 and, respectively, A2. Let A1 =
(Q, V, δ′, q0, Qf) and A2 = (S, V, δ′′, s0, Sf). As a rule, we denote the states of Q
and S by q and s, respectively, with or without indices.

Before starting the main proof, let us briefly explain a series of implementa-
tion details.We work with 5-tuples (q, s1, s2, w1, w2) and 4-tuples (s1, s2, w1, w2),
where w1, w2 ∈ V ∗, |w1| = |w2| ≤ k; moreover, whenever |w1| < k then w1 = w2.

A set T of 5-tuples as above is implemented as a 3-dimensional array MT ,
where MT [q][s1][s2] contains a representation of the set {(w1, w2) ∈ V ∗ × V ∗ |
(q, s1, s2, w1, w2) ∈ T } which is implemented using a trie data structure essen-
tially storing all possible words of length k, augmented with suffix links. Using
this representation we can check in constant time whether or not a certain pair
of words (given as pair of nodes of the trie we construct) is in the set. The same
strategy may be used for implementing a set R of 4-tuples.

For a word w ∈ V ∗, we denote by prefk(w) the longest prefix of length at
most k of w; similarly, let sufk(w) be the longest suffix of length at most k of w.

The algorithm that computes δk(L1, L2) has two similar main parts. In the
first one, we compute the minimum value d1 such that there exists a word x ∈ L2

with x ∈ PSDd1

k (L1). In the second part, we compute, using exactly the same
procedure, the minimum value d2 such that there exists a word y ∈ L1 with
y ∈ PSDd2

k (L2). Then, we conclude that δk(L1, L2) = min{d1, d2}. Hence, it
suffices to describe how the minimum value d1 such that there exists a word
x ∈ L2 with x ∈ PSDd1

k (L1) is computed.
As a preprocessing phase of our algorithm, we compute in O(k|Q|2|V |k) time

(in a naive manner), for each q1 ∈ Q and w ∈ V ≤k all states q2 such that
δ′(q2, w) = q1 and the state q3 = δ(q1, w). Provided that we use the same idea
of storing words as labels of nodes from the trie (the label of w being denoted
#(w)), we can store this information in space O(|Q|2|V |k), so that we can obtain
in constant time, for q1 and #(w), the states q2 and q3 defined above. We then
process the automaton A2 in a similar manner, in time O(|S|2|V |k).

We present now the main part of our algorithm. First, we compute the set
R0 = {(s1, s2, w1, w2) | there exists w ∈ L1 such that δ′′(s1, w) = s2,

prefk(w) = w1, sufk(w) = w2}.
This computation is done as follows. We compute iteratively the sets T i

s, i ≥ 1,
each one containing the tuples (q, s, s1, w1, w2) for which there exists a word w
of length i, with prefk(w) = w1, sufk(w) = w2, δ

′(q0, w) = q and δ′′(s, w) = s1,
but there exists no word w′ shorter than w with the same properties. Clearly,
in such a 5-tuple, |w1| = |w2| and if |w1| < k then w1 = w2. We can implement
the union (over all values of i) of the sets T i

s by marking in a trie storing all
the words of length k over V the nodes corresponding to the words of this set.
The sets T i

s are computed as long as they are non-empty; clearly, if T i
s is empty,

then the sets T j
s are empty, for all j ≥ i. On the other hand, as the number

of all the tuples (q, s, s1, w1, w2) as above is upper bounded by 2|Q||S||V |2k,
there exists i0 such that T i

s = ∅ when i ≥ i0 and T i0−1
s
= ∅. It is not hard

to see that T i+1
s can be computed in time O(k|T i

s |), given the elements of T i
s .

186 M. Dumitran et al.

Indeed, for each 5-tuple (q, s, s1, w1, w2) ∈ T i
s and letter a ∈ V , we compute

the 5-tuple (δ′(q, a), s, δ′′(s1, a), prefk(w1a), sufk(w2a)); note that the nodes of
the trie corresponding to the words prefk(w1a) and sufk(w2a) can be obtained
in O(1) time, by knowing the nodes corresponding to w1 and w2 and using

their suffix links. Then, if the new tuple does not belong to
⋃i

i=1 T
i
s , we add it to

T i+1
s ; by maintaining another trie-structure for

⋃i
i=1 T

i
s , we obtain that checking

whether an element is in this set or adding an element to it is done in O(1) time.
To efficiently go through the elements of T i

s , we store them in a linked list.

We now set T̂s =
⋃i0

i=1 T
i
s . It follows that T̂s is computed in O(|Q||S||V |2k)

time. Therefore, R0 = {(s1, s2, w1, w2) | (q, s1, s2, w1, w2) ∈ ⋃
s∈S T̂s, q ∈ Qf}.

Clearly, it takes O(|Q||S|2|V |2k) time to compute R0. We now set R̂j =
⋃j

i=0 Ri

and iteratively compute the sets Rj , j = 1, 2, . . . as follows:

– Rj+1 = (R1
j+1 ∪R2

j+1) \ R̂j ,

– R1
j+1 = {(s1, s′, w′

1, w
′
2) | there exist (s1, s2, w1, w2) ∈ Rj , and w′ ∈ V ∗

a suffix of w2, such that δ′′(s2, w′) = s′, prefk(w1w
′) = w′

1, sufk(w2w
′) = w′

2},
– R2

j+1 = {(s′, s2, w′
1, w

′
2) | there exist (s1, s2, w1, w2) ∈ Rj , and w′ ∈ V ∗

a prefix of w1, such that δ′′(s′, w′) = s1, prefk(w
′w1) = w′

1, sufk(w
′w2) = w′

2}.

Actually, (s1, s2, w1, w2) ∈ Rj if and only if there exists a word w which can
be obtained by applying j times the k-prefix-suffix duplication to a word from
L1 such that prefk(w) = w1, sufk(w) = w2, and δ′′(s1, w) = s2; furthermore,
there is no word w′ that fulfils the same conditions and can be obtained by
applying less than j times the k-prefix-suffix duplication to the words of L1.
Clearly, all the elements of these sets fulfil the conditions allowing us to use
again a trie implementation for the union of the sets. Using this implementation,
and additionally storing each Rj as a list, the time needed to compute the
set Rj+1 is upper bounded by O(k|Rj |). Indeed, first we construct R2

j+1: for
each tuple (s1, s2, w1, w2) ∈ Rj and prefix x of w1, we use the precomputed
data structures to obtain the state s such that δ′(s, x) = s1 and decide that
(s, s2, prefk(xw1), sufk(xw2)) should be added to Rj+1 (but only if it is not
already in other Rj′ with j′ < j + 1). To implement this efficiently, we consider
the prefixes of x in increasing order with respect to the length, and so we will
get the node corresponding to xa in the trie in O(1) time when we know the
node corresponding to x. Then we construct R1

j+1: for each tuple (s1, s2, w1, w2)
and for each suffix x of w2, we use the precomputed data structures to obtain
s = δ′(s2, x) and decide that (s1, s, prefk(w1x), sufk(w2x)) should be added to
Rj+1 (again, only if it is not in other Rj′ with j′ < j+1). This time we consider
the suffixes x of w2 in decreasing order with respect to their length; in this way,
we get the node corresponding to x from the node corresponding to ax in O(1)
time using the suffix links. The sets Rj are computed until either one meets a
value j0 such that (s0, s, w1, w2) ∈ Rj0 for some s ∈ Sf and w1, w2 ∈ V ≤k, or
Rj = ∅. As the number of all 4-tuples that may appear in all the sets Rj is
bounded by O(|S|2|V |2k), the computation of the sets Rj ends after at most
O(k|S|2|V |2k) steps. It is clear that if the process of computing the sets Rj

Bounded Prefix-Suffix Duplication 187

ends by reaching the value j0 mentioned above, then we conclude that d1 = j0.
Otherwise, d1 = ∞ holds. The correctness of the computation of d1 follows
immediately from the discussions above.

Consequently, the total time needed to compute d1 is O(|V |k + k|Q|2|V |k +
2k|S|2|V |2k+ |Q||S|2|V |2k) = O(k|Q|2|V |k+ |Q||S|2|V |2k). We can use the same
procedure to compute d2, just by changing the roles of L1 and L2. Then, we
return as δk(L1, L2) = min{d1, d2}. The time needed to compute this distance
is O((k +N)M2|V |2k), where M = max{|Q|, |S|} and N = min{|Q|, |S|}. �

Note that if V is a constant size alphabet, then the previous result provides
a cubic algorithm computing the distance between two regular languages. The
following corollary follows from Theorem 6, for L1 = {x} and L2 = L.

Corollary 3. Given a word x, a regular language L accepted by a DFA with q
states, and a positive integer k ≥ 1, one can algorithmically compute δk(x, L) in
O((k + |N |)|M |2|V |2k) time, where M = max{q, |x|} and N = min{q, |x|}.

References

1. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet
generated by copying systems. Inform. Proc. Letters 44(3), 119–123 (1992)

2. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

3. Dassow, J., Mitrana, V., Păun, G.: On the regularity of duplication closure. Bull.
European Assoc. Theor. Comput. Sci. 68, 133–136 (1999)

4. Ehrenfeucht, A., Rozenberg, G.: On the separating power of EOL systems. RAIRO
Inform. Theor. 17(1), 13–22 (1983)

5. Frazier, M., David Page Jr., C.: Prefix grammars: an alternative characterization
of the regular languages. Inf. Process. Lett. 2, 67–71 (1994)

6. Garcia Lopez, J., Manea, F., Mitrana, V.: Prefix-suffix duplication. J. Comput.
Syst. Sci. (in press) doi:10.1016/j.jcss.2014.02.011

7. Ginsburg, S.: Algebraic and automata-theoretic properties of formal languages.
North-Holland Pub. Co. (1975)

8. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York (1997)

9. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

10. Leupold, P.: Reducing repetitions. In: Prague Stringology Conf., pp. 225–236 (2009)
11. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I–III.

Springer, Berlin (1997)
13. Searls, D.B.: The computational linguistics of biological sequences. In: Artificial

Intelligence and Molecular Biology, pp. 47–120. MIT Press, Cambridge (1993)
14. Wang, M.-W.: On the irregularity of the duplication closure. Bull. European Assoc.

Theor. Comput. Sci. 70, 162–163 (2000)
15. Knuth, D.: The Art of Computer Programming, 3rd edn. Fundamental Algorithms,

vol. 1, pp. 238–243. Addison-Wesley (1997), Section 2.2.1: Stacks, Queues, and
Deques, ISBN 0-201-89683-4

16. Knuth, D., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

	Bounded Prefix-Suffix Duplication
	1 Introduction
	2 Preliminaries
	3 Bounded Prefix-Suffix Duplication as a Formal Operation on Languages
	3.1 Membership Problem

	4 Bounded Prefix-Suffix Duplication Distances
	References

