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Preface

The 19th International Conference on Implementation and Application of Au-
tomata (CIAA 2014) was organized by the Institut für Informatik of the Univer-
sität Giessen and took place at the campus of natural sciences. It was a four-day
conference starting July 30 and ending August 2, 2014. The Universität Giessen
is one of the older universities in the German-speaking part of Europe. It was
founded in 1607.

The CIAA conference series is a major international venue for the dissem-
ination of new results in the implementation, application, and theory of au-
tomata. The previous 18 conferences were held in the following locations: Halifax
(2013), Porto (2012), Blois (2011), Winnipeg (2010), Sydney (2009), San Fran-
cisco (2008), Prague (2007), Taipei (2006), Nice (2005), Kingston (2004), Santa
Barbara (2003), Tours (2002), Pretoria (2001), London Ontario (2000), Potsdam
(WIA 1999), Rouen (WIA 1998), London Ontario (WIA 1997 and WIA 1996).

This volume contains the invited contributions and the accepted papers pre-
sented at CIAA 2014. The submission and refereeing process was supported by
the EasyChair conference management system. In all, 36 papers were submit-
ted by authors in 23 different countries, including Argentina, Brazil, Canada,
China, Czech Republic, France, Germany, Greece, Hungary, Italy, Japan, Korea
Republic, Latvia, The Netherlands, Poland, Portugal, Romania, Russian Feder-
ation, Slovakia, Spain, Switzerland, Ukraine, and the USA. Each submission was
reviewed by at least three referees and discussed by the Program Committee.
A total of 21 full papers were selected for presentation at the conference. There
were four invited talks presented by Javier Esparza, Friedrich Otto, Giovanni
Pighizzini, and Georgios Ch. Sirakoulis. We warmly thank the invited speak-
ers and all authors of the submitted papers and the members of the Program
Committee for their excellent work in making this selection. We also thank the
additional external reviewers for their careful evaluation. All these efforts were
the basis for the success of the conference. The collaboration with Springer for
preparing this volume was very efficient and pleasant. We like to thank in par-
ticular Alfred Hofmann and Anna Kramer from Springer for their help. We are
grateful to the additional members of the Organizing Committee consisting of
Susanne Gretschel, Sebastian Jakobi, Andreas Malcher, Katja Meckel, Heinz
Rübeling, Bianca Truthe, and Matthias Wendlandt for their support of the ses-
sions and the accompanying events.



VI Preface

Finally, we are indebted to all participants for attending the conference. We
hope that this conference will be a successful and fruitful meeting, will bear
new ideas for investigations, and will bring together people for new scientific
collaborations. Looking forward to CIAA 2015 in Ume̊a, Sweden.

August 2014 Markus Holzer
Martin Kutrib
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Nicholas Tran
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Partial Derivative and Position Bisimilarity Automata . . . . . . . . . . . . . . . . 264
Eva Maia, Nelma Moreira, and Rogério Reis
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FPsolve: A Generic Solver

for Fixpoint Equations over Semirings�

Javier Esparza, Michael Luttenberger, and Maximilian Schlund

Technische Universität München, Munich, Germany
{esparza,luttenbe,schlund}@in.tum.de

Abstract. We introduce FPsolve, an implementation of generic algo-
rithms for solving fixpoint equations over semirings. We first illustrate
the interest of generic solvers by means of a scenario. We then succinctly
describe some of the algorithms implemented in the tool, and provide
some implementation details.

1 Introduction

We present FPsolve1, a solver for algebraic systems of equations first introduced
in [17]. These are systems of equations of the form

X1 = f1(X1, X2, . . . , Xn) · · · Xn = fn(X1, X2, . . . , Xn)

where f1, . . . , fn are polynomials in the variables X1, X2, . . . , Xn. The coeffi-
cients of the polynomials can be elements of any semiring satisfying some weak
conditions, which ensure that there exists a unique smallest solution. FPsolve
implements a number of generic algorithms, i.e. algorithms parametric in the
semiring operations of addition and multiplication, plus possibly the Kleene star
operation.

Algebraic systems naturally arise in various settings:

– The language of a context-free grammar like X → aXX | b is the least
solution of the equation X = aXX+ b over the semiring whose elements are
languages, with union and concatenation of languages as sum and product.

– Shortest-paths problems on finite graphs and on some infinite graphs, like
those generated by weighted pushdown automata, can be reduced to solving
fixed-point equations over a semiring having the possible edge weights as
elements [7,16].

– Data-flow equations associated to many intra- and interprocedural dataflow
analyses are fixed-point equations over complete lattices [13], which can often
be recast as equations on semirings [16,6].

� This work was funded by the DFG project “Polynomial Systems on Semirings: Foun-
dations, Algorithms, Applications”.

1 Freely available from https://github.com/mschlund/FPsolve

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014

https://github.com/mschlund/FPsolve


2 J. Esparza, M. Luttenberger, and M. Schlund

– Authorization problems (like, for instance, the authorization problem for the
SPKI/SDSI authorization system), can be recast as a reachability problem
in weighted pushdown automata [12], and thus to algebraic systems [6].

– Computing the reputation of a principal in a reputation system (a system in
which principals can recommend other principals, and rules are used to com-
pute reputation out of a set of direct recommendations) reduces to solving
an algebraic system [5].

– Evaluating a Datalog query can be reformulated as the problem of deciding
whether a non-terminal of a context-free grammar is productive or not, and
so it also amounts to solving a system of equations. Moreover, several prob-
lems concerning the computation of provenance information, an important
research topic in database theory, reduces to solving an associated algebraic
system over different semirings. [11]

The paper is structured as follows. Section 2 motivates by means of a scenario
the interest of generic solvers for algebraic systems. Section 3 describes the basic
algorithms and data structures used in FPsolve . Finally, Section 4 briefly
describes the implementation.

2 Scenario: A Recommendation System

We succinctly describe SDSIRec, a recommendation system inspired by the
SDSI authorization system [12], and very close to the reputation system de-
scribed in [5].

SDSIRec distinguishes customers (denoted by x, y, z) and products (denoted
by p). Given a collection of individual recommendations of products by cus-
tomers, SDSIRec computes an aggregated customer rating for each product.
Individual recommendations are described in SDSIRec by means of rules of the
form:

x.Rec
w−−→ p (1)

x.Trust
w−−→ y (2)

The term x.Rec denotes the fuzzy set of all products recommended by customer
x. The rule x.Rec

w−−→ p denotes that p belongs to x.Rec with weight w, i.e., that
x recommends p with “rating” w. Analogously, x.Trust denotes the fuzzy set of
all customers (whose recommendations are) trusted by x. The set of all weights,
denoted by S, contains the special weight �, which explicitly states that p resp. y
does not belong to x.Rec resp. x.Trust; assigning a rule the weight � is equivalent
to removing the rule from the input.

Besides direct recommendation and direct trust, SDSIRec also takes into
account indirect recommendation of products via trust in other customers. For
instance, consider the following scenario:

Jesse.Trust
w1−−→Walt

Walt.Rec
w2−−→FPsolve
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Since Walt recommends FPsolve with weight w2, and Jesse trusts the recom-
mendations of Walt (his former high-school teacher) with weight w1, SDSIRec

infers that Jesse indirectly recommends FPsolve with some weight w1 � w2,
where � abstracts from the concrete way how the weights should be combined
into a new weight. The operator must satisfy � � w = � = w � �, so that the
interpretation of � as a non-existing rule is preserved. The inference is modeled
be the following (hard coded) rules:

x.Trust
λ−→x.Trust.Trust (3)

x.Rec
μ−→x.Trust.Rec (4)

Rule (3) states that the set of customers trusted by x contains the set of cus-
tomers trusted by customers trusted by x. Analogously, rule (4) states that the
set of products recommended by x contains all products recommended by cus-
tomers trusted byx. As these rules may lead to cycles, i.e. x might trust herself,
thereby recommending to herself the products recommended by her, SDSIRec

allows one to specify discount factors λ and μ to dampen resp. penalize these
effects. The special weight � (required to satisfy w�� = w = ��w) can be used
to disable this discounting. SDSIRec then treats the rules (1) to (4) as rewrite
rules in the sense of a pushdown system [16]. For instance, we get

Jesse.Rec
μ−→Jesse.Trust.Rec

w1−−→Walt.Rec
w2−−→FPsolve

Jesse.Rec
μ−→Jesse.Trust.Rec

λ−→Jesse.Trust.Trust.Rec
w1−−→Walt.Trust.Rec

The first “path” with weight μ � w1 � w2 captures that Jesse indirectly rec-
ommends FPsolve. The second path is an example of a path that cannot be
extended to a recommendation of p: Since Walt trusts nobody (as specified by
the input system), SDSIRec can never rewrite Walt.Trust to Walt.

In order to compute to what extent p belongs to x.Rec SDSIRec finally
aggregates the weight of the (possibly infinitely many) paths leading from x.Rec
to p. We use ⊕ to denote the operator that is used to aggregate the weights
of different paths. It is well-known that if 〈S,⊕,�, �, �〉 forms an ω-continuous
semiring, then the problem of aggregating over all possible paths can be recast as
computing the least solution of an algebraic system (see below) [9,16,6]. Recall
that 〈S,⊕,�, �, �〉 is a semiring if ⊕ and � are associative and have neutral
elements � and �, respectively, ⊕ is commutative, � distributes over ⊕, and any
product with � as factor evaluates to �. Given a, b ∈ S, we say a � b if there is
c ∈ S such that a+ c = b. A semiring is naturally ordered if the relation � is a
partial order. An ω-continuous semiring is a naturally ordered semiring extended
by an infinite summation-operator

∑
that satisfies some natural properties. In

particular, for every sequence (ai)i≥0 the supremum sup{
∑

0≤i≤k ai | k ∈ �}
w.r.t. � exists, and is equal to

∑
i∈� ai [14].

Let Rxp and Txy be variables standing for the total weights with which x
recommends p or trusts y, and let rxp, txy denote the weights of the direct rec-

ommendation, or the direct trust of x in p and y, respectively (i.e. x.Rec
rxp−−−→ p

resp. x.Trust
txy−−−→ y).
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If 〈S,⊕,�, �, �〉 is an ω-continuous semiring, then the total weights are the
unique smallest solution w.r.t. � of the following algebraic system (cf. [9,16,6])

Rxp = rxp ⊕
⊕
y

μ� Txy �Ryp for all consumers x, products p

Txy = txy ⊕
⊕
z

λ� Txz � Tzy for all consumers x, y

The key point of our argumentation is that in an application like the above we
are interested in solving the same set of equations over many different semirings.
Even further, users of the system may be interested in first defining their own
semiring, and then solving the system. To illustrate this, let us examine several
different interpretations of “weight”, all of them very natural:

Weights as Scores. The most natural interpretation of weights is perhaps as
scores. A consumer x gives a product p or another consumer Y a score, corre-
sponding to its degree of satisfaction with p, or its degree of trust in the recom-
mendations of Y . If we assume that scores are real numbers in the interval [0, 1],
and choose ⊕ and ⊗ as sum and product of real numbers, we obtain the prob-
abilistic semiring. Then Rxp represents the total weight of all recommendation
paths leading from x to p. If we choose the Viterbi semiring 〈[0, 1],max, ·, 0, 1〉
instead, then Rxp returns the weight of the strongest recommendation path.

Weights as Expire Times. Direct recommendations and trust, represented by
rules of types (1) and (2,) can (and should) have an expire time. If we choose
⊕ to be the maximum and � the minimum over the reals, then Rxp returns the
earliest time at which all recommendation paths from x to p will have expired.

Weights as Provenance Information. If a system user does not trust some con-
sumers, she may wish to compute, for each recommendation path from x to p,
the set of consumers in the path. Or she may want to know the set of consumers
visited along the recommendation path of maximal weight. Such provenance
information can be computed within the semiring framework. For this it is con-
venient to treat all non-zero parameters rxp, txy, λ, μ as formal parameters (free
variables).

– To compute for each path the set of consumers involved, one can use the
Why-semiring, well-known in provenance theory. Semiring elements are sets
of sets of consumers. We set rxp = {{x}} and txy = {{x, y}} (and treat λ as
{{λ}} and μ as {{μ}}), and define:
• {X1, . . . , Xn} � {Y1, . . . , Yn} := {X1 ∪ Y1, x1 ∪ Y2, . . . , Xn ∪ Ym}, and
• {X1, . . . , Xn} ⊕ {Y1, . . . , Yn} := {X1, . . . , Xn, Y1, . . . , Ym}.

– If we wish to compute the provenance of the recommendation of maximal
weight, we can use the following semiring: as semiring elements we choose
the pairs (α,X), where α ∈ [0, 1] and X is a set of consumers. We set
txy = (w, {x, y}) with w ∈ (0, 1], and analogously for rxp. The abstract
operators are instantiated as follows:
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• (α1, X1)� (α2, X2) := (α1α2, X1 ∪X2), and
• (α1, X1)⊕ (α2, X2) := (max{α1, α2}, if α1 ≥ α2 then X1 else X2)

These examples show that, instead of creating new tools for each new semiring,
it can be better to implement a generic tool, with generic algorithms applicable
to any semiring, or at least to any semiring in a broad class.

3 Algorithms and Data Structures

The two main generic schemes implemented in FPsolve for the approxima-
tion (and sometimes exact computation) of the least solution of an algebraic
system are classical fixpoint iteration and Newton’s method. Following [15,10],
we introduce them as procedures that “unfold” the algebraic system up to a
certain depth which allows both to unify and at the same time simplify their
presentation.

Classical Fixed-Point Iteration. Given an algebraic system of equations X =
F (X) over an ω-continuous semiring, Kleene’s theorem states that the system
has a unique least solution μF with respect to the natural order �, and that
μF is the supremum of the sequence F (0), F 2(0), . . . , F i(0) [14]. So μF can be
approximated by computing successive elements of the sequence. If the semiring
further satisfies the ascending chain property (for every ω-chain a1 � a2 � . . .
eventually ak = ak+1 = ak+2 = . . .) then μF = F i(0) for some i ≥ 0, and so μF
can be effectively computed.

As explained in e.g. [15], an algebraic system can be associated a context-free
grammar. For instance, for the system

X = a�X �X ⊕ b (5)

we obtain the grammar
X → aXX | b (6)

Conversely, we assign to a derivation tree of the grammar a value in the semiring,
given by the product of its leaves (the ordered product if the semiring is not
commutative); further, we assign to a set of derivation trees the sum of the
values of its elements. The following result can be proved by a simple induction
on k:

F k(0) is the sum over the set of all derivation trees of the grammar of
height less than k.

Building on this observation, for every k we “unfold” (5) into an acyclic system
over variables X<h and X=h for every h ≤ k, such that the solutions of X<h

and X=h are the values of the derivation trees of height less than h and equal
to h, respectively. For this, we obviously have to set

X<0 = 0 X=0 = b and X<h+1 = X<h ⊕X=h for all h ∈ � (7)
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In order to obtain the defining equation of X=h we observe that the trees of
height h can be partitioned into those whose left subtree has height h − 1, and
those whose left subtree has height strictly smaller than h − 1 and whose right
subtree has height h− 1, i.e. we partition by means of the first position from the
right at which a subtree of height exactly h− 1 is rooted. This leads to

X=h = a�X<h �X=h−1 ⊕ a�X=h−1 �X<h−1. (8)

We can see the unfolding up to depth k as a symbolic representation of F k(0),
which implicitly uses subterm sharing (arithmetic circuit). When the coefficients
of the algebraic system (a, b in our example) are formal parameters, we can
efficiently compute F k(0) for different values a, b, by just plugging them into the
unfolded system.

Newton’s Method. Newton’s method for arbitrary ω-continuous semirings, as
described in [9], can be much faster than Kleene iteration. It is shown in [10]
that the method can also be presented as an unfolding of the algebraic system:
This time, the system is unfolded w.r.t. the Strahler number or dimension of
its associated derivation trees (see [10,15]). The dimension of a rooted tree t is
defined as the height of the largest perfect binary tree that is a minor of t.

Consider again equation (5). We split X into a family of variables X<d and
X=d for d ∈ �. The solutions of the unfolded system for X<d and X=d will now
be the value of the derivation trees of dimension less than d, and equal to d,
respectively. Just as before, we have

X<0 = 0 X=0 = b and X<d+1 = X<d ⊕X=d for all d ∈ �. (9)

In order to derive the defining equation of X=d, observe that there are three
possible cases for a tree of dimension d: either the left subtree has dimension d,
and the right subtree has dimension at most d−1; or vice versa; or both subtrees
have dimension exactly d − 1 (this is the case in which the root of the minor
coincides with the root of the tree). So we get

X=d = a�X=d �X<d ⊕ a�X<d �X=d ⊕ a�X=d−1 �X=d−1. (10)

However, this unfolding does not represent an arithmetic circuit as it is not yet
acyclic: X=d appears on both sides of the equation. But equation (10) is linear
in X=d, and so, if multiplication is commutative, we can replace it by (with
�⊕ � = �)

X=d = �� a�X=d �X<d ⊕ a�X=d−1 �X=d−1 (11)

and use Kleene’s theorem [14] to replace it by

X=d =
(
�� aX<d

)∗ � a�
(
X=d−1

)2
(12)

where the Kleene star is defined, as usual, by x∗ :=
∑

k∈� xk (and is well defined
for any ω-continuous semiring).2 The new system is acyclic, i.e. an arithmetic

2 In the noncommutative case, one may resort to an instance of the semiring of contexts
in order to obtain a rational tree expression.
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circuit w.r.t. ⊕, �, and ∗, and as in the previous case, can be used as a com-
pact symbolic representation of the d-th Newton approximation, useful when a, b
are formal parameters (see Fig. 1 for an example). In particular, every Newton
approximation can be represented by means of a rational expression.

To actually compute the solution for particular values of a and b, we can then
use straight-forward constant propagation going from bottom (X=0, X<0) to top
(X<d). However, for this the Kleene star x∗ must be effectively computable in
the given semiring representation. This is indeed the case for several important
semirings. The simplest example is the probability semiring, where for every
rational number x ∈ [0, 1) we have x∗ = 1/(1 − x). Tropical semirings are
another example. For instance, over the integers extended by least (−∞) and
greatest element (+∞) , with addition given by min and multiplication given
by + (on �), we have x∗ = 0 if x ≥ 0 and x = −∞ otherwise. A third example
is the semiring of semilinear sets of vectors with components in � ∪ {∞}, with
X ⊕ Y := X ∪ Y , and X � Y := {x+ y | x ∈ X, y ∈ Y }.

Connection to Newton’s Method over the Reals. Applying Newton’s method to
g(X) := f(X)−X = aX2−X + b (interpreted over the reals) starting form the
initial approximation X = 0 we obtain the sequence:

X0 := 0 Xd+1 = Xd −
g(Xd)

g′(Xd)
= Xd −

aX2
d −Xd + b

2aXd − 1
= Xd +

aX2
d −Xd + b

1− 2aXd
.

Setting Yd := Xd+1 −Xd this can be written as

Yd = 2aXdYd + (aX2
d −Xd + b).

Straight-forward induction now shows that over the nonnegative reals the val-
ues of Xd and X<d resp. Yd and X=d coincide [10]. In particular, the defining
equation of X=d can be seen as the generalization of the derivative of aX2 in
the noncommutative case.

Multivariate Case. Both unfoldings immediately generalize to the setting of mul-
tiple variables X,Y, . . .. As mentioned above, in the univariate case we use the
fact that the solution of an equation X = aX + b is given by a∗b. In the multi-
variate case, when the semiring is commutative, we have to deal with systems of
linear equations X = AX +B for a matrix A and a vector B over the semiring.
It is well known that the solution is given by A∗B, where A∗ =

∑∞
i=0 A

i, and
matrix multiplication is defined as for the natural or the real numbers, but re-
placing sum and product by the operations of the semiring being considered. In
the next section, we describe the two algorithms for computing A∗ implemented
in FPsolve.

3.1 Solving Linear Equations

As mentioned above, solving a linear equation amounts to computing A∗ for a
given square matrix A over a semiring. Given a matrix A, the algorithms returns
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a matrix whose elements are semiring expressions over the semiring operations
and the Kleene star. So, intuitively, the algorithms reduce the problem of com-
puting the star of a matrix to computing the star of semiring elements.

FPsolve implements both the well-known Floyd-Warshall algorithm, and the
recursive divide-and-conquer approach.

Generalized Floyd-Warshall. The Floyd-Warshall algorithm for solving the
all-pairs-shortest-path problem in weighted (finite) graphs carries directly over
to the setting of generic ω-continuous semirings, even if addition ⊕ is not idem-
potent (cf. [7]). (In fact, it suffices when the semiring 〈S,⊕,�, �, �〉 is closed but
not necessarily ω-continuous.) The following description is an optimized variant
of the algorithm in [7] which reduces the number of semiring operations required.

input : Matrix A ∈ Sn×n over a semiring S.
output: Reflexive-transitive closure A∗.

B := A
for k = 1 . . . n do

Bk,k := B∗
k,k

for i = 1 . . . n, i �= k do
Bi,k = Bi,k �Bk,k

for j = 1 . . . n, j �= k do
Bi,j := Bi,j ⊕ Bi,k �Bk,j

end

end
for j = 1 . . . n,j �= k do

Bk,j = Bk,k �Bk,j

end

end
return B

Algorithm 1. Generalized Floyd-Warshall algorithm over semirings

From the description of the algorithm it is easy to count that the total number
of semiring operations (i.e. +, ·,∗) needed is T (n) = 2n3 − 2n2 + n ∈ Θ(n3).

Divide-and-Conquer. This algorithm recursively applies the formula for com-
puting the Kleene star of a 2× 2-matrix:

M =

[
A B
C D

]
M∗ =

[
F αG∗

G∗β G∗

]
with

α = A∗B
β = CA∗

G = D+Cα
F = αG∗β +A∗

.

Given a n× n-matrix M (n > 2), the entries A,B,C,D become submatrices of
M to which the algorithm is then applied recursively; the recursion stops when
either n = 2 or n = 1. A formal proof of correctness (for any Conway semiring)
goes back to Ésik and Kuich (cf. [7]).
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Altogether we need two recursive calls, six matrix multiplications (the term
αG∗ appears twice and thus needs to be evaluated only once), and two matrix
additions. Hence, the number of operations needed by this algorithm can be
expressed by the recurrence relation3

T (n) = 2T
(n

2

)
+ 6

[
2
(n

2

)3

−
(n

2

)2
]
+ 2

(n

2

)2

= 2T
(n

2

)
+

3

2
n3 − n2

Which can be solved exactly (setting T (n) = 1 and n = 2l) resulting in T (n) =
2n3 − 2n2 + n ∈ Θ(n3). Hence this algorithm uses the same number of opera-
tions as Floyd-Warshall. Both algorithms need n3 − 2n2 + n additions, n3 − n
multiplications, and n Kleene stars.

Symbolic Solving. Recall our initial example

X = a�X �X ⊕ b

and its unfolding w.r.t. dimension for an arbitrary d ∈ � (assuming � is com-
mutative)

X=d = �� a�X=d �X<d ⊕ a�X=d−1 �X=d−1

As X<d = X<d−1⊕X=d−1, every iteration of Newton’s method essentially con-
sists of solving this linear equation after substituting for the variables X<d and
X=d−1 the already computed solution. Analogously, in the multivariate setting
essentially the same linear equation system has to be solved over and over again.
FPsolve thus allows to first compute a symbolic solution of the linear system
by treating X<d and X=d−1 as formal parameters which allows to share common
subexpressions and thus obtain a succinct symbolic representation of a Newton
approximation. This allows to efficiently evaluate a Newton approximation of an
algebraic system for several different semiring interpretations.

Consider the generic linear equation system(
x
y

)
=

(
a b
c d

)
·
(
x
y

)
+

(
e
f

)
Treating a, . . . , f as formal parameters over some semiring, the (symbolic) solu-
tion of this system is given by(

x
y

)
=

(
a∗b(ca∗b⊕ d)∗ca∗e⊕ a∗b(ca∗b⊕ d)∗f ⊕ a∗e

(ca∗b⊕ d)∗ca∗e⊕ (ca∗b⊕ d)∗f

)
where we have omitted the � for readability.

3 Note that multiplying two n×n matrices requires n3−n2 operations (via the school-
book method – we cannot use e.g. Strassen’s algorithm as we lack a difference oper-
ator!).
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Fig. 1. Succinctly repre-
senting all terms of the
product A∗ · (e, f)T via a
BDD-like sharing of subex-
pressions. By reversing the
direction of all edges this
can be read as an arithmetic
circuit with output gates
colored in grey.

The internal representation of these terms is shown
in Fig. 1: FPsolve stores the expressions as part
of an “abstract syntax DAG” (reversing the direc-
tion of the edges we obtain an arithmetic circuit
with gates for addition, multiplication, and Kleene
star) similar to BDD libraries like CUDD, where
we have colored the x- resp. y-component in light
resp. dark grey; this representation allows to re-
duce both the memory consumption, and the re-
evaluation of identical subterms.

In this simple 2 × 2 case the concrete recursive
approach (as stated above) computes 10 semiring
operations, the same if the symbolic solution is com-
puted (using the same recursive algorithm). This
holds in general if all elements of the input matrix
are different. However, in general input matrices
can have the same element in many different po-
sitions, then even the recursive algorithm will com-
pute some identical subexpressions multiple times
(that occur in different execution branches) since it
cannot guess them a priori. In this case, symbolic
solving allows for a global subexpression detection
after the whole matrix-star has been computed.

Although the symbolic approach significantly re-
duces the number of semiring operations needed,
the overhead from computing and storing the sym-
bolic solution is not always negligible. This is partic-
ularly true for numeric semirings (like the semiring
of positive reals) that are implemented using ma-
chine precision floating point numbers – for these
the semiring operations are so fast that the over-
head outweighs the benefits of symbolic solving.

We therefore give the user the freedom of choice whether to use the concrete
(i.e. in every iteration) or symbolic (i.e. solve once then plug in in every iteration)
method of solving linear equations.

3.2 Decomposition into Strongly-Connected Components

To efficiently process large algebraic systems, FPsolve supports a decomposi-
tion of the system into strongly connected components (SCCs). To make this
precise recall the definition of dependency graph: Its nodes are the variables oc-
curring in the algebraic system; its edges are induced by the defining equations:
we have an edge from variable X to variable Y if Y occurs in the defining equa-
tion of X . X depends on Y if there is a path from X to Y in the dependency
graph. To determine the value of variable X it then suffices to determine the val-
ues of all variables on which X depends. Using Tarjan’s algorithm we therefore
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partition the dependency graph into SCCs, and process these SCCs in reverse
topological ordering (“bottom up”). In particular when using Newton’s method
this can lead to a noticeable speed-up in the computation of the Kleene star.

4 Implementation

Currently, FPsolve comprises roughly 8, 000 lines of C++. The code can be
obtained freely from https://github.com/mschlund/FPsolve. We use several
existing frameworks and libraries:

– CPPUnit for writing unit-tests.
– boost for IO-tasks (parsing, command-line arguments).
– Genepi, Mona, and Lash for representing semilinear sets via NDDs.
– libfa for representing elements of “lossy” semirings (i.e. semirings satisfying

1 � a for any semiring element a �= � – this generalizes the downward closure
of languages) as finite automata.

FPsolve features data structures for commutative as well as non-commutative
polynomials, different solvers (semi-naive fixpoint iteration, Newton’s method),
and several predefined semirings (semilinear sets, real numbers, tropical and
boolean semiring) as well as some generic constructions (via C++ templates) to
build new semirings from existing ones like the direct product of two semirings
or the semiring of matrices over some semiring.

The focus of our library is to provide generic algorithms and to be easily
extensible. One of our goals was to make it easy for users to write their own
semiring-constructions or tailor the generic solving algorithms to their needs.

The library consists of three main parts:

– Data structures (polynomials, matrices, BDD-like DAG-structure to support
subterm sharing)

– Semirings (semilinear sets, positive real numbers, why semiring, generic
product semiring, . . . )

– Solvers (Kleene solver, Newton solver)

Figure 2 shows a simplified view of the main structure of our library. Observe
that many classes are templated which produces efficient code due to compile-
time polymorphism.

4.1 Invocation of the Standalone Solver

FPsolve also includes a callable solver and a parser for equation systems that
demonstrates the use of the library.

To apply the standalone solver, one has to describe the algebraic system as a
BNF-style context-free grammar. Variables of the system are enclosed in angle
brackets, multiplication is not explicitly written, the addition x+ y is written as
x | y. To solve the following system over the reals

X = 0.5XY + 0.5 Y = 0.3Y + 0.7X

we would create a text file test.g containing:

https://github.com/mschlund/FPsolve
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Commutative Polynomial

SR:Semiring

Non commutative Polynomial

SR:Semiring

Semiring

Float Tuple

T1:Semiring
T2:Semiring

Free SemilinSet

NewtonSolver

SR:Semiring
LinSolver:LSType
Poly:Polynomial

LSType

SymbolicLinSolver ConcreteLinSolver

Fig. 2. A (simplified) part of our architecture

<X> ::= 0.5 <X> <Y> | 0.5;

<Y> ::= 0.3 <Y> | 0.7 <X>;

The simplest invocation of the tool is then

$ ./fpsolve -f test.g --float

This minimal set of parameters specifies

1. the input file containing the algebraic system (-f test.g).
2. the semiring over which the system and its constants (like 0.3) are to be

interpreted (here --float ).

The tool outputs:

$ ./fpsolve -f test.g --float

Newton Concrete

Iterations: 3

Solving time: 0 ms (196 us)

X == 0.875

Y == 0.875

By default, the number of Newton iterations for a system of n equations is
n + 1 – for commutative, idempotent semirings this suffices to compute the
exact solution [8].

A more sophisticated use of the tool’s options would be the following:

$ ./fpsolve -f test.g --float -i 10 -s newtonSymb

Newton Symbolic

Iterations: 10

Solving time: 0 ms (536 us)

X == 0.999023

Y == 0.999023
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Here, we select

1. the number of iterations (-i 10)
2. the solving algorithm to use (switch -s), possible choices are newtonSymb,

newtonConc, kleene.

For larger equation systems there is the possibility to decompose the system into
SCCs and solve them bottom-up (switch --scc).

4.2 Custom Semirings and Extensions

It is very easy and straightforward to extend our library with new semirings, it
merely requires three steps:

– Implement all semiring operations (addition ⊕, multiplication �, star ∗)
– Define a constructor that takes a string-argument (effectively a small parser)
– Add a new command-line switch to the main-method together with a call to

the solving function.

The second point delegates the IO/parsing task for semiring-elements to the
implementer. This enables us to parse equation systems into the most general
intermediate format (non-commutative polynomials over the free semiring) and
then to map these to the user-defined semiring. Since our input-parser takes quite
some time to compile (due to boost::spirit and templates), by this approach
we avoid to touch the parser and the need for recompilation.

The semiring operations �,⊕ (+ and *) are implemented in the abstract base-
class Semiring using += and *=. Any new semiring should be derived from the
abstract class StarableSemiring and has to implement the three operations
*=, +=,star(). Take for instance the “MaxProvenance” semiring from the end
of Section 2 consisting of pairs (α,X) of real numbers and sets of variables with

(α1, X1)� (α2, X2) := (α1α2, X1 ∪X2)
(α1, X1)⊕ (α2, X2) := (max{α1, α2}, if α1 ≥ α2 then X1 else X2)

(α,X)∗ := (1, ∅)

To implement this simple semiring, we derive from StarableSemiring the new
class MaxProvSR with members weight and prov storing α (e.g. as a float) and
X (e.g. as a set<>), respectively. What remains is then to implement the three
operators *=, +=,star(). For instance, the addition-assignment operator could
be implemented as

MaxProvSR MaxProvSR::operator+=(const MaxProvSR& elem)

{

if(this->weight < elem.weight) {

this->weight = elem.weight;

this->prov = elem.prov;

}

return *this;

}
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Inheritance then takes care of the implementation of the addition operator. Im-
plementing the remaining two operators is just as straight-forward. To make the
semiring available in the command line tool, a corresponding switch and a parser
for reading semiring elements from the input have to implemented in addition.

To check our claim of “easy extendability”, we made a rather naive implemen-
tation of the Why-semiring for this paper which took about two hours (until all
bugs were eliminated4). Once a new semiring is defined and the main-method is
adapted, all solvers just work out-of-the-box to solve algebraic systems like the
following (file test/grammars/bintrees.g):

<X> ::= a<X><X> | c;

$ ./fpsolve --why -f ../test/grammars/bintrees.g

Newton Concrete

Iterations: 2

Solving time: 0 ms (214 us)

X == {{a,c},{c}}

$ ./fpsolve --why -f ../test/grammars/bintrees.g -s kleene -i 2

Kleene solver

Iterations: 2

Solving time: 0 ms (281 us)

X == {{a,c},{c}}

5 Conclusions and Related Tools

We have introduced FPsolve, an implementation of generic algorithms for solv-
ing fixpoint equations on semirings. The algorithms are parametric on the semi-
ring. New semirings can be easily added by defining implementations of the sum,
product and (possibly) Kleene star operations.

As mentioned in the introduction, many program analysis problems can be
reduced to solving fixpoint equations on semirings. This has lead to a number
of implementations and tools. An early effort is the Fixpoint-Analysis Machine
for solving systems of boolean fixpoint equations [18]. The tool can deal with
hierarchical and alternating fixpoints, but is not parametric on the equation
domain. The Weighted Pushdown Systems Library and Weighted Automata
Library (see [16,3,2]), and Goblint (see [4,1] implement many sophisticated
algorithms for semirings satisfying the ascending chain condition.

While FPsolve is currently an academic tool, we have illustrated its potential
interest outside theoretical computer science by means of an application scenario,
namely a recommendation system. Genericity allows the users of the system
to aggregate the information given by individual recommendations in different,
personalized ways, by defining their own semiring.

4 We developed a small collection of unit-tests (also generic tests that can be instan-
tiated with any semiring) and encourage any user who implements new semirings to
use and adapt them during development.
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Abstract. Much work has been done to obtain classes of picture lan-
guages that would correspond to the classes of the Chomsky hierarchy
for string languages, and finally the class REC of recognizable picture lan-
guages has been agreed on as the class that corresponds to the ‘regular
string languages.’ This class has several nice characterizations in terms
of regular expressions, tiling automata, and on-line tesselation automata,
and it has nice closure properties, but it also has two main drawbacks:
all its characterizations are highly nondeterministic in nature, and it
contains languages that are NP-complete. Consequentially, various de-
terministic subclasses of REC have been defined. Mainly, however, these
definitions are quite complex, and it is not clear which of the resulting
classes should be considered as ‘the’ class of deterministic recognizable
picture languages. Here we present some recent developments obtained
in a research project that aims at finding a deterministic model of a
two-dimensional automaton that has the following desirable properties:

– the automaton should be conceptually simple,
– the class of languages accepted should be as large as possible,
– it should have nice closure properties,
– the membership problem for each of these languages should be solv-

able in polynomial time,
– but when restricted to one-row pictures (that is, strings), only the

regular languages should be accepted.

In the course of the project, several types of two-dimensional automata
have been defined and investigated. Here these types of automata and
the classes of picture languages accepted by them are compared to each
other and to the classes REC and DREC, and their closure properties and
algorithmic properties are considered.

Keywords: picture language, two-dimensional automaton, Sgraffito au-
tomaton, restarting automaton.

1 Introduction

The theory of automata and formal languages is one of the classical subjects
of theoretical computer science. One of its most celebrated achievements is cer-
tainly the hierarchy of language classes known as the ‘Chomsky hierarchy.’ Par-
ticularly the two lower classes, that is, the class REG of regular languages and
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the class CFL of context-free languages and its subclass DCFL of deterministic
context-free languages, have found many applications in theoretical research as
well as in practical work. It may, however, be less well-known that already in
the 1960’s work started on extending these notions from strings to pictures, that
is, from one-dimensional objects to two-dimensional objects. Here at least three
approaches are to be mentioned:

– M. Blum and C. Hewitt extended the notion of finite-state acceptor to two
dimensions, obtaining the four-way finite automaton (4FA) and the four-way
marker automaton [3],

– A. Rosenfeld introduced the isometric array grammars [28] which generate
pictures by performing rewrite sequences in the plane,

– G. Siromoney, R. Siromoney, and K. Krithivasan presented the matrix gram-
mars [29] which generate pictures by first deriving a horizontal string of in-
termediate symbols and by then performing vertical rewrites in parallel on
that string.

The 4FAs and the right-linear matrix grammars of [29] are quite weak with
respect to their expressive power, while the isometric array grammars are very
expressive. Accordingly, in the years since, many more analytical and generative
methods have been proposed and investigated for describing picture languages.
One of the major concerns in these studies has been the quest for a class of
picture languages that could rightfully be considered as the two-dimensional
equivalent of the class REG of regular (string) languages. Here we mention only
some of them:

– the two-dimensional on-line tessellation automaton (2OTA) of K. Inoue and
A. Nakamura [10] is a two-dimensional cellular automaton that processes a
given picture of size m by n by performing m+n−1 global steps that sweep
across the picture from the top-left corner to the bottom-right corner,

– D. Giammarresi and A. Restivo presented tiling systems in [6], which consist
of a finite number pictures of size 2 by 2 (the so-called tiles) over a finite
alphabet Γ and a projection π : Γ → Σ, and which define the set of all
pictures P over Σ for which there exists a picture P ′ of the same size over
Γ that can be covered with the given tiles such that P = π(P ′) holds,

– in [7] D. Giammarresi and A. Restivo also presented regular expressions for
picture languages, defining several different classes of picture languages.

As it turned out, the class of picture languages that are accepted by 2OTAs
coincides with the class of picture languages that are defined by tiling systems
and with the class of languages that can be defined by complementation-free
regular expressions with projection.

This class is now known as the class REC of recognizable two-dimensional lan-
guages. It has many nice closure properties and various different characteriza-
tions that can be interpreted as two-dimensional analogs to characterizations of
the regular (string) languages, and in addition, the string languages contained in
REC are just the regular languages. Accordingly, this class is generally considered
as the appropriate generalization of the regular languages to two dimensions.
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However, there is a serious drawback: the class REC contains languages that
are NP-complete [16]. Thus, from a complexity theoretical point of view, the
languages are much more complicated than the regular (string) languages. Con-
sequentially, much work has been spent on deriving deterministic variants of the
different nondeterministic characterizations of REC. These include the following:

– Already in [3], M. Blum and C. Hewitt considered deterministic 4-way finite
automata (4DFA), showing that these automata are strictly weaker than the
nondeterministic variants.

– In [10] K. Inoue and A. Nakamura also introduced deterministic two-
dimensional on-line tessellation automata (2DOTA), and they proved that
the class of picture languages accepted by these automata is incomparable
to the class of languages accepted by (deterministic) 4-way finite automata
with respect to inclusion.

– The class DREC of deterministic recognizable two-dimensional languages of
M. Anselmo, D. Giammarresi and M. Madonia [1], which are defined by
deterministic tiling systems. DREC is a proper subclass of REC, and the
membership problem for a language L in DREC is solvable deterministically
in linear time (in the size of the given picture).

– A different notion of deterministically recognizable two-dimensional lan-
guages was obtained by K. Reinhardt [27], who uses tiles of size 2 by 1
and of size 1 by 2, and who describes a rewriting process that is to produce
a unique tiling for a given input picture.

– Asanextensionof thepreviousnotion,B.Borchert andK.Reinhardt also intro-
duced thenotionofSudoku-deterministically recognizable picture languages [4],
where a transformation process similar to the way in which a Sudoku puzzle is
being solved is used to transform a given input picture into a unique tiling.

– Deterministic tiling automata have been studied by M. Anselmo, D. Gi-
ammarresi, and M. Madonia in [2]. Given an input picture P , such an au-
tomaton scans P based on a fixed scanning strategy using a given tiling
system and a particular data structure. It turned out that the class of pic-
ture languages that are accepted by these automata coincides with the class
DREC mentioned above.

Thus, quite a large number of different deterministic subclasses of the recog-
nizable picture languages have been considered, and it is not clear which of them
is the ‘right’ one. Some of them are too small, while for others the accepting de-
vices are not very intuitive. This led to a research program that aims at deriving
a class of two-dimensional automata that satisfy all of the following conditions:

– the automata should be conceptually simple, that is, it should be ‘easy’ to
design automata of this type for interesting example languages;

– they should be more powerful than the class DREC of deterministic recogniz-
able languages of [1], but when restricted to the one-dimensional case (that
is, strings), this model should only accept the regular languages;

– the membership problem for the accepted languages should be decidable in
polynomial time;

– and the class of accepted picture languages should have nice closure properties.
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In the present survey we present some recent models of two-dimensional au-
tomata that were developed in the course of this program:

– the deterministic Sgraffito automaton of F. Mráz and D. Pr̊uša [23],
– the restarting tiling automaton of the same authors [22],
– the deterministic two-dimensional three-way ordered restarting automa-

ton [19], and
– the deterministic two-dimensional extended two-way ordered restarting au-

tomaton [18].

We will present these automata in turn, providing simple examples and stat-
ing their main properties. As we will see, these types of deterministic two-
dimensional automata are quite expressive, and the corresponding membership
problems are solvable in polynomial time, but unfortunately, none of them meets
all the conditions listed above. Accordingly, the quest for such a type of two-
dimensional automaton is continuing.

This paper is structured as follows. In the next section we introduce basic no-
tions and notation on picture languages, and we restate the definitions of some
types of two-dimensional automata from the literature in short. Then we con-
sider the Sgraffito automaton from [23] and its main properties, and we study the
deterministic Sgraffito automaton, presenting the main results from [25] and [26].
In the next section we turn to two-dimensional variants of the restarting automa-
ton by looking at the restarting tiling automaton, before we study deterministic
2-dimensional 4-way ordered restarting automata in Section 6, deterministic 2-
dimensional 3-way ordered restarting automaton in Section 7, and deterministic
2-dimensional (extended) 2-way ordered restarting automata in Section 8. The
paper closes with a short summary and some open problems.

2 Pictures and Picture Languages

We use the common notation and terms on pictures and picture languages (see,
e.g., [7]). For a finite alphabet Σ, Σ∗,∗ denotes the set of rectangular pictures
over Σ, that is, if P ∈ Σ∗,∗, then P is a two-dimensional array of symbols
from Σ. We denote the number of rows and columns of a picture P by rows(P )
and cols(P ), respectively. The pair (rows(P ), cols(P )) is called the size of P . The
empty picture Λ is defined as the only picture of size (0, 0), and for all m,n ≥ 1,
Σm,n denotes the set of pictures of size (m,n) over Σ. A picture language over
Σ is a subset of Σ∗,∗. For 1 ≤ i ≤ rows(P ) and 1 ≤ j ≤ cols(P ), P (i, j) (or
shortly Pi,j) identifies the symbol located in row i and column j of P .

Two (partial) binary operations are used to concatenate pictures. Let P
and Q be pictures over Σ of sizes (k, l) and (m,n), respectively. The column
concatenation P �Q is defined if and only if k = m, while the row concatenation
P �Q is defined if and only if l = n. These products are depicted below:
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P �Q =

⎡⎢⎣P1,1 . . . P1,l Q1,1 . . . Q1,n

...
. . .

...
...

. . .
...

Pk,1 . . . Pk,l Qm,1 . . . Qm,n

⎤⎥⎦ and P �Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1,1 . . . P1,l

...
. . .

...
Pk,1 . . . Pk,l

Q1,1 . . . Q1,n

...
. . .

...
Qm,1 . . . Qm,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We also define Λ �P = P �Λ = Λ �P = P �Λ = P for any picture P . These
operations are extended to languages by taking L1

�L2 = {P1
�P2 | Pi ∈ Li }

and L1
�L2 = {P1

�P2 | Pi ∈ Li }.
The column closure L∗ �

of a picture language L is defined as L∗ �
=

⋃
i≥0 L

i �,

where L0 �
= {Λ} and Li �= L �L(i−1) �

for all i ≥ 1. Similarly, the row closure
L∗ �

is defined as L∗ �
=

⋃
i≥0 L

i �, where L0 �
= {Λ} and Li �= L �L(i−1) �

for all i ≥ 1. These two operations can be seen as the extensions of the Kleene
star from string languages to picture languages.

Also we consider the clockwise rotation PR and the transposition PT of a
picture P ∈ Σm,n:

PR =

⎡⎢⎣Pm,1 . . . P1,1

...
. . .

...
Pm,n . . . P1,n

⎤⎥⎦ , and PT =

⎡⎢⎣P1,1 . . . Pm,1

...
. . .

...
P1,n . . . Pm,n

⎤⎥⎦ .

Let π : Γ → Σ be a mapping, where Γ is an alphabet. Then π induces
a mapping from Γ ∗,∗ to Σ∗,∗ by sending P ∈ Γm,n to P ′ ∈ Σm,n such that
P ′(i, j) = π (P (i, j)) for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. This mapping is called a
projection from Γ ∗,∗ to Σ∗,∗, and P ′ is simply written as π(P ). Note that each
of these operations naturally extends to languages.

Let S = {�,�,�,⊥,#} be a set of five special markers, called sentinels. In
what follows, we will always assume implicitly that Σ ∩ S = ∅ for any alphabet
Σ considered. In order to enable our automata to be defined below to detect the
border of a picture P ∈ Σm,n easily, we define the boundary picture P̂ over Σ∪S
of size (m+ 2, n+ 2), which is illustrated in Figure 1. Here the symbols �,�,�
and ⊥ uniquely identify the corresponding borders (left, right, top, bottom) of P̂ ,

while the symbol # marks the corners of P̂ .

P

#

#

#

#

�

�...
�

�...

⊥ ⊥ ⊥ ⊥. . .

� � � �. . .

Fig. 1. The boundary picture P̂

As mentioned in the introduction, a large variety of accepting devices has
been studied in the literature. Here we restate some of them in short.
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The 4-way finite automaton (4FA) is the two-dimensional variant of the finite-
state acceptor. Such an automaton is defined by a tuple A = (Q,Σ, q0, qa, qr, δ),
where Q is a finite set of states, q0, qa, qr ∈ Q are the initial state, the accepting
state, and the rejecting state, respectively, and δ : ((Q � {qa, qr}) × Σ) →
2(Q×{L,R,U,D}) is the transition relation [3]. Here L,R,U, and D denote directions
(left, right, up, down). The 4FA A accepts a picture P ∈ Σ∗,∗ if it has an
accepting computation on P starting in its initial state q0 from position (1, 1).
If δ is a (partial) function, then A is a deterministic 4-way finite automaton
(4DFA). It is known that, in contrast to the one-dimensional case, L(4DFA) is a
proper subclass of L(4FA).

The two-dimensional on-line tessellation automaton (2OTA) is a restricted
type of cellular automaton [10]. For an input P ∈ Σ∗,∗, a cell is placed at
each position (i, j) of P . Then a computation is performed that consists in
rows(P ) + cols(P ) − 1 many parallel steps. During the k-th step, each cell at
coordinates (i, j), where i+ j − 1 = k, performs a state-transition that depends
on P (i, j) and on the states of its left and top neighbour cells. If a neighbour
lies at the border of P , it is a fictive cell the state of which is defined as the
corresponding symbol of P̂ . The result of the computation is determined by the
final state of the cell at the bottom-right corner of P .

Also for the 2OTA, the deterministic variant, the 2DOTA, is strictly weaker
than the nondeterministic variant, and L(4FA) is properly contained in L(2OTA),
while L(2DOTA) is incomparable to both, L(4DFA) and L(4FA), with respect to
inclusion [10].

Finally, we turn to tiling systems. A tile is a square picture of size (2,2), and

for a picture P , B2,2(P̂ ) denotes the set of all tiles that are subpictures of P̂ .
Now a picture language L ⊆ Σ∗,∗ is called a local language, if there exists a finite
set of tiles Θ such that L = {P ∈ Σ∗,∗ | B2,2(P̂ ) ⊆ Θ }, that is, P ∈ L if and

only if all tiles that are subpictures of P̂ belong to Θ. This fact is expressed as
L = L(Θ).

A tiling system (TS) is given through a tuple T = (Σ,Γ,Θ, π), where Σ and
Γ are two finite alphabets, Θ is a finite set of tiles over Γ ∪S, and π : Γ → Σ is a
projection. The language L = L(T ) ⊆ Σ∗,∗ that is defined by T is the projection
π(L(Θ)) of the local language specified by Θ. L(TS) is called the class of tiling
recognizable languages [6]. Since L(TS) = L(2OTA) [11], and since this class has
many nice closure properties, it is simply being referred to as REC. The class
DREC is obtained by the restriction to d-deterministic tiling systems, where d is
a corner-to-corner direction, that is, based on the chosen direction d, the tiling
of a given picture P ∈ L is unique [1]. The class DREC coincides with the closure
of L(2DOTA) under rotation, and L(4DFA) �⊆ DREC.

3 Sgraffito Automata

Our first model is the so-called Sgraffito automaton of D. Pr̊uša and F. Mráz
introduced in [23]. It is a two-dimensional extension of the one-dimensional
constant-visit machine studied by Hennie [8].
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Let H = {R,L,D,U,Z} be the set of possible head movements, where the first
four elements denote directions (right, left, down, up), while Z stands for zero
(no) movement. Furthermore, let ν : (S �{#}) → H denote the mapping that
is defined by ν(�) = R, ν(�) = L, ν(�) = D, and ν(⊥) = U, that is, for each

occurrence of a sentinel from {�,�,�,⊥} within a boundary picture P̂ , ν yields
the direction to the nearest field of the proper picture P .

Definition 1. A two-dimensional Sgraffito automaton (2SA) is given by a tuple
A = (Q,Σ, Γ, δ, q0, QF , μ), where

– Q is a finite, nonempty set of states,
– Σ is an input alphabet,
– Γ is a working alphabet such that Σ ⊆ Γ ,
– q0 ∈ Q is the initial state,
– QF ⊆ Q is the set of final states,
– δ : (Q�QF )× (Γ ∪ S) → 2Q×(Γ∪S)×H is a transition relation such that the

following properties are satisfied for each pair (q, a) ∈ (Q � QF ) × (Γ ∪ S)
and each transition (q′, a′, d) ∈ δ (q, a):
• if a ∈ S, then d = ν(a) and a′ = a, and
• if a /∈ S, then a′ /∈ S,

– and μ : Γ → N is a weight function such that the condition μ(a′) < μ(a)
holds for all transitions (q′, a′, d)∈δ(q, a) satisfying a ∈ Γ .

The Sgraffito automaton A is deterministic, that is, a 2DSA, if |δ(q, a)| ≤ 1 for
all q ∈ Q and a ∈ Γ ∪ S.

The notions of configuration and computation of the 2SA A are defined as
usual. Let P ∈ Σ∗,∗ be a given input picture for A. In the initial configuration
of A on input P , the working tape contains the boundary picture P̂ , A is in its
initial state q0, and its head scans the top-left corner of P , that is, cell (2, 2)

of P̂ . Now A walks across this boundary picture, and it cannot leave the space
covered by P̂ . Furthermore, when executing a transition step at a position (i, j)
of P , then it must replace the current symbol, say a, at that position by a
symbol, say a′, that has strictly less weight than a. It follows that A can visit
each position of P , and therewith of P̂ , at most |Γ | many times. The machine
A is said to accept P if there is a computation of A that starts in the initial
configuration on input P and that finishes in a state fromQF . By L(A) we denote
the picture language that consists of all pictures that are accepted by A, and
L(2SA) (L(2DSA)) denotes the class of all picture languages that are accepted
by (deterministic) Sgraffito automata.

The advantage of the Sgraffito automaton over the constant-visit machine is
its constructiveness. While it is undecidable in general whether a given Turing
machine is a Hennie machine (see, e.g., [21]), the property of being weight-
reducing can easily be checked algorithmically.

The first result on Sgraffito automata shows that, when restricted to one-row
pictures, that is, strings, the 2SAs accept exactly the class of regular languages.
Actually, this is just a slight generalization of a theorem by Hennie [8].
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Theorem 2. [23] Let A be a 2SA that accepts a one-dimensional picture lan-
guage L(A) ⊆ Σ1,∗ = Σ∗. Then L(A) is a regular (string) language.

In order to formulate the next result, we consider the two-dimensional variants
Lcopy of the copy language and L̂copy of the marked copy language. The former
contains those pictures over Σ = {�,�} that are of the form U �U , where U is a
square picture over Σ, and the latter is the picture language over Σ̂ = {�,�,�}
that consists of all pictures U �C �U , where U is a square picture over Σ,
and C is a column of symbols � (see Figure 2). Lcopy and L̂copy are widely used
examples of rather complicated picture languages [7].

(a) (b)

Fig. 2. Sample pictures from (a) Lcopy and (b) L̂copy

The following technical result can be proved based on a notion of horizon-
tal crossing sequence [23] that is a rather straightforward generalization of the
notion of crossing sequence as, for example, presented in [9].

Lemma 3. (a) Let L ⊆ Lcopy be a picture language over Σ accepted by a 2SA,
and let f : 2Σ

∗,∗ ×N → N be the function that is defined by taking f(L, n) to
be the number of pictures in L of size (n, 2n). Then f(L, n) ∈ 2O(n log n).

(b) Let L ⊆ L̂copy be a picture language over Σ̂ accepted by a 2SA, and let
f : 2Σ

∗,∗ ×N → N be the function that is defined by taking f(L, n) to be the
number of pictures in L of size (n, 2n+ 1). Then f(L, n) ∈ 2O(n logn).

As an immediate application we obtain the following negative results.

Corollary 4. [23] Lcopy and L̂copy are not accepted by any 2SA.

Concerning the various operations on languages, the following closure prop-
erties have been established for Sgraffito automata.

Theorem 5. [23] The language class L(2SA) is closed under union, intersec-
tion, rotation, transposition, row and column concatenation, row and column
closure, and projection, but it is not closed under complement.

The language of ‘permutations’ Lperm is the subset of Lcopy that consists of
those pictures Q �Q for which each row and each column of Q contains the
symbol � exactly once. An example is shown in Figure 3. It is known that Lcopy

and Lperm are not in REC, while their complements belong to REC [7,15]. It is
easily seen that a 2OTA can be simulated by a 2SA, and it can be shown that
Lperm is accepted by a 2DSA. This yields the following proper inclusion.
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Fig. 3. A sample picture from Lperm

Theorem 6. [23] REC � L(2SA).

Thus, Sgraffito automata are conceptually simple, they only accept regular
string languages, and the class of accepted picture languages has nice closure
properties, but they are too powerful as they accept a proper superclass of REC.

4 Deterministic Sgraffito Automata

The language Lperm �∈ REC is accepted by a deterministic Sgraffito automaton.
Further, the following closure and non-closure properties hold.

Theorem 7. [23] The language class L(2DSA) is closed under union, intersec-
tion, rotation, transposition, and complement, but it is neither closed under row
or column concatenation nor under projection.

As DREC coincides with the closure of L(2DOTA) under rotation [2], and as
each 2DOTA can be simulated by a 2DSA, we obtain the following.

Theorem 8. [23] DREC � L(2DSA).

In fact, the 2DSA is very expressive. This follows from the observation that
a depth-first search (DFS) on certain graphs that are represented by two-
dimensional arrays (pictures) can be implemented on 2DSAs.

Let G = (V,E) be a directed graph that satisfies the following conditions:

1. V ⊆ {1, . . . ,m} × {1, . . . , n} × U for some integers m, n and a finite set U .
2. For every edge ((i1, j1, u1), (i2, j2, u2)) in E, |i1 − i2|+ |j1 − j2| ≤ 1.

Then G can be represented by a picture P of size (m,n), where the field at a
position (i, j) records the vertices of the form (i, j, u) (u ∈ U) in V and the out-
going edges of these vertices. Since the edges only go to the vertices represented
in the field itself and in its neighbouring fields, it is only necessary to represent
O(|U |) many vertices and edges in each tape field.

Assume that a 2DSA A is given this representation of G as input. To tra-
verse G, it assigns a status to vertices as well as to edges. Initially, each vertex
has status unexplored. When a vertex v is visited during the DFS for the first
time, its status is changed to open, and when the DFS backtracks to v, then
its status is set to explored. Analogously, each edge e has initially the status
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unexplored. This changes when e is being traversed. If it leads to an unexplored
vertex, its status is set to discovery, otherwise its status is set to back. The edges
with status discovery will form DFS-trees at the end of the search. This search
can now be realized as follows:

1. If there is no vertex with status unexplored at the current field, go to 3.
2. While there is a vertex v with status unexplored (possibly fulfilling some

additional requirement), mark it as open and start the DFS, which will
return to v at the end.

3. If not all fields have been scanned yet, move the head to the next field in
the current row or to the first field of the next row when the right border is
reached. Continue with 1.

The whole process visits and rewrites each tape field O(|U |) many times, and
hence, it can be realized by a 2DSA.

For example, a simple application of the DFS could be used to check whether
the black pixels within a black and white picture form just a single connected
component. Further, this strategy can be used to obtain simulations of other
two-dimensional types of automata by deterministic Sgraffito automata.

Let B = (Q,Σ, q0, qa, qr, δ) be a 4FA (see Section 2), and let P ∈ Σ∗,∗ be an
input picture. With B and P we associate a directed graph G = (V,E):

– V = { (i, j, q) | 1 ≤ i ≤ rows(P ), 1 ≤ j ≤ cols(P ), q ∈ Q },
– E = { ((i1, j1, q1), (i2, j2, q2)) | (q2, d) ∈ δ(q1, P (i1, j1)), and

(i2, j2) is reached from (i1, j1) by a move according to d }.

Then B accepts on input P iff there is a vertex of the form (i, j, qa) that is
reachable from (1, 1, q0) in G. Now a 2DSA A can be designed that, on input P ,
simulates the DFS on the graph G, and that accepts iff B accepts, which yields
L(4FA) ⊆ L(2DSA).

Using the same approach the following results have been derived, where 4AFA
denotes the four-way alternating automaton [15], SDREC denotes the Sudoku-
deterministically recognizable picture languages [4], and 2DM1A denotes the class
of deterministic four-way one-marker automata, that is, deterministic four-way
finite automata that can use an additional marker [3].

Theorem 9. [23,25,26] L(4AFA) ∪ SDREC ∪ L(2DM1A) ⊆ L(2DSA).

D. Giammaresi and A. Restivo studied the problem of which functions can
be represented by recognizable picture languages. Let Σ = {�} denote a one-
letter alphabet. A function f : N → N is called representable if the language
Lf = {�n,f(n) | n ∈ N } belongs to REC. A representable function cannot grow
faster than an exponential function [7]. However, using 2DSAs, functions can be
represented that grow faster than any exponential function.

Theorem 10. [26] The language L! = {�n,n! | n ∈ N } is accepted by a 2DSA.

Since the number of different crossing sequences of a 2DSA between two neigh-
bouring columns of height n is 2O(n logn), the above is a function with the fastest
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possible growth that is accepted by a 2DSA. Also the following result is an im-
mediate consequence.

Corollary 11. DREC ∩ {�}∗,∗ � L(2DSA) ∩ {�}∗,∗.

Thus, the deterministic Sgraffito automaton is a type of two-dimensional au-
tomaton that is very intuitive, that is quite expressive, and that only accepts reg-
ular string languages. In addition, it is easily seen that the membership problem
for the language L(A) is decidable in linear time for each 2DSAA. Unfortunately,
L(2DSA) is not closed under some important operations.

5 Restarting Tiling Automata

The restarting automaton was proposed by P. Jančar, F. Mráz, M. Plátek, and
J. Vogel in [13] as a formal way of modelling the linguistic technique of ‘analysis
by reduction.’ On input w ∈ Σ∗, a restarting automaton M scans w from left to
right until it detects a small factor u that can be simplified, that is, u is rewritten
into a shorter factor v, say. Then M starts the whole process again, this time on
the simplified string obtained by the rewrite process. This continues until either
an error is detected, and M rejects, or until a simple string is obtained that is
then accepted by M . Since the 1990’s many different variants and extensions
of the basic model of the restarting automaton have been proposed and investi-
gated, and many well-known language classes have been characterized by certain
types of restarting automata (see, e.g., [20] for a survey).

As the restarting automaton is a fairly intuitive model, it is only natural to
look for two-dimensional extensions of it. However, it is required in general that
each rewrite step of a restarting automaton is strictly length-reducing, a require-
ment that is not easily carried over to the two-dimensional setting. H. Messer-
schmidt and M. Stommel have studied a corresponding model in [17], in which
each rewrite step consists in an application of a replacement rule that is then
followed by a consolidation step that transforms the result of the replacement
into a proper picture. Their main result states that each Church-Rosser picture
language is accepted by a deterministic two-dimensional restarting automaton
of an appropriate type. Here we will not go into any details concerning these
automata as the model is technically quite involved and not very intuitive. How-
ever, it may have practical applications (see [17]).

Instead we turn to the restarting tiling automaton, which was introduced by
F. Mráz and D. Pr̊uša in [22] (see [24] for an extended presentation). The restart-
ing tiling automaton combines the rewrite/restart capability of the restarting
automaton with the acceptance condition of the tiling automaton. To describe
this model, we introduce the notion of a ‘scanning strategy.’

A scanning strategy determines the way in which an automaton scans a given
input picture. It is given through a pair s = (cs, f), where cs ∈ {1, 2, 3, 4}
is a starting position, and f : N4 → N2 is a computable partial function.
Here cs = 1 denotes the top-left corner, 2 denotes the top-right corner, 3
stands for the bottom-right corner, and 4 stands for the bottom-left corner,
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and f(i, j,m, n) = (i′, j′) states that in a picture of size (m,n), position (i′, j′) is
scanned immediately after position (i, j). It is required that, if (i0, j0) is the start-
ing position in a picture P of size (m,n), and if (ir, jr) = f(ir−1, jr−1,m, n) for
all r ≥ 1, then the sequence (i0, j0), (i1, j1), . . . , (i(m+1)·(n+1)−1, j(m+1)·(n+1)−1)
is a permutation of the set of all positions of tiles of size (2, 2) in the boundary
picture P̂ . In [2] and in [5] some additional restrictions are studied for scanning
strategies, but no such additional restrictions are used by F. Mráz and D. Pr̊uša
in [22]. An example is the scanning strategy νrow = (1, frow), where

frow(i, j,m, n) =

{
(i, j + 1), if j < n+ 1,
(i+ 1, 1), if j = n+ 1 and i < m+ 1,

which scans a picture row by row from left to right starting at the top-left corner.

Definition 12. A two-dimensional restarting tiling automaton, a 2RTA for
short, is given through a sixtuple M = (Σ,Γ,ΘF , δ, ν, μ), where Σ is a finite
input alphabet, Γ is a finite working alphabet containing Σ, ΘF ⊆ (Γ ∪S)2,2 is a
set of accepting tiles, ν = (cν , fν) is a scanning strategy, μ : Γ → N is a weight
function, and δ ⊆ { (U → V ) | U, V ∈ (Γ ∪ S)2,2 } is a set of rewrite rules such
that, in every rule (U → V ) ∈ δ, there is a single position (i, j) of U that is
changed, and moreover, if U(i, j) = a ∈ Γ is rewritten into V (i, j) = b ∈ Γ , then
μ(a) > μ(b) holds.

The symbols from Γ �Σ are called auxiliary symbols, as they cannot occur in
any input picture. Given a picture P ∈ Σm,n as input, the automaton M works
in cycles, proceeding as follows:

– at the beginning of each cycle, the scanning window of M of size (2, 2) is
placed on the corner of the boundary picture P̂ that corresponds to the
starting position cν of the scanning strategy ν;

– nowM scans P̂ step by step, moving its window according to the function fν ;
– when M reaches a position such that the tile being scanned is of the form U

for some rule (U → V ) ∈ δ, then M replaces this tile by the corresponding
tile V and restarts, that is, its scanning window is repositioned on the initial
position corresponding to cν , completing the current cycle;

– when M succeeds to scan P̂ completely without encountering a possible
rewrite, then it halts, finishing the current computation. M is said to accept
if at this point the boundary picture obtained only contains tiles of size (2, 2)
that belong to the set ΘF .

By L(M) we denote the language accepted by M, which is the set of all pictures
P ∈ Σ∗,∗ for which M has an accepting computation.

Observe that a 2RTA M may contain several different rewrite rules with the
same left-hand side U . Hence, M is in general nondeterministic. If, however, δ
contains at most one rule with left-hand side U for every tile U ∈ (Γ ∪S)2,2, then
M is a deterministic two-dimensional restarting tiling automaton (a 2DRTA).

We illustrate the workings of a 2RTA by a simple example taken from [22].



28 F. Otto

Example 13. Let M = (Σ,Γ,ΘF , δ, νrow, μ) be defined as follows:

– Σ = {a} and Γ = {a, 1},

– ΘF =

{
# �
� 1

,
� �
1 a

,
� �
a a

,
� #
a � ,

a �
a � ,

a �
1 � ,

1 a
a 1

,
a 1
a a

,
a a
1 a

,
a a
a a

,

# #
# #

,
� #
1 � ,

� 1
# ⊥ ,

1 �
⊥ #

,
a 1
⊥ ⊥ ,

a a
⊥ ⊥ ,

� a
# ⊥ ,

� a
� a

,
� 1
� a

}
,

– δ =

{
# �
� a

→ # �
� 1

,
1 a
a a

→ 1 a
a 1

}
, and

– μ : Γ → N is defined by μ(a) = 2 and μ(1) = 1.

Then M is a 2DRTA that accepts the unary picture language L(M) = {P ∈
Σ∗,∗ | rows(P ) = cols(P ) } of quadratic pictures over Σ. In fact, given a picture
P ∈ Σm,n as input, M rewrites each letter a on the main diagonal of P into 1,
proceeding from the top to the bottom. The picture is accepted, if the bottom-
right corner is hit by this process, which happens if and only if m = n.

We denote by ν-2RTA the class of two-dimensional restarting tiling automata
that use the scanning strategy ν, and L(ν-2RTA) denotes the corresponding class
of picture languages. A picture language L is called strategy independent if, for
each scanning strategy ν, there exists a ν-2RTA Mν such that L(Mν) = L
holds. The class of all strategy independent languages is denoted by si-2RTL.
Analogously, one can define the class si-2DRTL of strategy independent languages
that are accepted by 2DRTAs. For these classes the following closure properties
have been obtained.

Theorem 14. [22] The classes si-2RTL and si-2DRTL are closed under union,
intersection, projection, transposition, and rotation.

For 2DRTAs also the following result has been obtained.

Theorem 15. [22] If ν is a scanning strategy for which the last position scanned
is always in the same corner for any input picture of any positive size, then the
class L(ν-2DRTA) is closed under complement.

It has been noted that L(νrow-2RTA) is also closed under row and column
concatenation, but it is open whether this result holds for the class si-2RTL.
Concerning the expressive power of the 2RTA, the following is known.

Theorem 16. [24]
(a) L(2SA) is contained in si-2RTL, and L(2DSA) is contained in si-2DRTL.
(b) There exists a non-regular string language that is accepted by a 2DRTA.

The example language in (b) is based on a very particular non-continuous
scanning strategy. With the scanning strategy νrow, 2RTA can only accept regular
string languages, which implies the following.

Theorem 17. [22] When restricted to languages of one-row pictures, then the
class si-2RTL coincides with the class of regular (string) languages.
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6 Ordered Restarting Automata

Here we consider a model of a restarting automaton for picture languages that
is closer to the original idea of the restarting automaton, the deterministic two-
dimensional four-way ordered restarting automaton. It has a finite set of states,
and it has a scanning window of size (3, 3). Based on its current state and
the current contents of the window, it can move in either of the four possible
directions and change its state, or it can perform a combined rewrite/restart
step similar to the restarting tiling automaton. It accepts by executing a specific
accept instruction. Formally this automaton is defined as follows, where H =
{R,L,D,U} is the set of possible window movements.

Definition 18. A deterministic two-dimensional four-way ordered restarting
automaton, a det-2D-4W-ORWW-automaton for short, is given through a
7-tuple M = (Q,Σ, Γ,S, q0, δ, >), where

– Q is a finite set of states containing the initial state q0,
– Σ is a finite input alphabet, Γ is a finite tape alphabet containing Σ such

that Γ ∩ S = ∅, > is a partial ordering on Γ , and
– δ : Q× (Γ ∪ S)3,3 → (Q×H) ∪ Γ ∪ {Accept} is the transition function that

satisfies the following five restrictions for all q ∈ Q and all C ∈ (Γ ∪ S)3,3:
1. if C1,2 = �, then δ(q, C) �= (q′,U) for all q′ ∈ Q,
2. if C2,3 =�, then δ(q, C) �= (q′,R) for all q′ ∈ Q,
3. if C2,1 =�, then δ(q, C) �= (q′,L) for all q′ ∈ Q,
4. if C3,2 = ⊥, then δ(q, C) �= (q′,D) for all q′ ∈ Q,
5. if δ(q, C) = b ∈ Γ , then C(2, 2) > b with respect to the ordering >.

To simplify the presentation we say that the window of M is at position (i, j)
to mean that the field in the center of the window is at row i and column j of P .
Given a picture P ∈ Σm,n as input, M begins its computation in state q0 with
its read/write window reading the subpicture of size (3, 3) of P̂ at the upper left
corner, that is, the window is at position (1, 1). Thus, M sees the subpicture⎛⎝# � �

� P1,1 P1,2

� P2,1 P2,2

⎞⎠. Applying its transition function, M now moves through P̂ until

it reaches a state q and a position with current contents C of the read/write
window such that

– either δ(p, C) is undefined, or
– δ(p, C) = Accept, or
– δ(p, C) = b for some letter b ∈ Γ such that C2,2 > b.

In the first case, M gets stuck, and so the current computation ends without
accepting, in the second case, M halts and accepts, and in the third case, M
replaces the symbol C2,2 by the symbol b, moves its read/write window back to
the upper left corner, and reenters its initial state q0. This latter step is called
a combined rewrite/restart step. A picture P ∈ Σ∗,∗ is accepted by M, if the
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computation of M on input P ends with an Accept instruction. By L(M) we
denote the language consisting of all pictures over Σ that M accepts.

Next we illustrate the way in which the det-2D-4W-ORWW-automaton works
by an example.

Example 19. Lcopy is not accepted by any Sgraffito automaton (Corollary 4).
Here we present a det-2D-4W-ORWW-automaton M4c for this language. On in-
put P ∈ Σm,n, M4c proceeds as follows, where Σ = {�,�}, �1,�1,�2,�2 are
four new symbols, and � > � > �1 > �1 > �2 > �2 holds:

1. M4c first checks that P satisfies the condition n = 2m. If n �= 2m, then M4c

halts without acceptance, otherwise, it moves to position (1,m+ 1), marks
the letter P (1,m+1) = a ∈ Σ by replacing it by the symbol a1, and restarts.

2. In the next cycles, M4c checks that each row of P contains a string of the
form uu ∈ Σ2m. For doing so M4c proceeds row by row, from the top to the
bottom. In the first of these cycles, it will eventually reach the symbol a1. At
that point, it stores the symbol a in its finite-state control, and it moves to
the left end of the first row, where it compares the symbol a to the symbol
b = P (1, 1) ∈ Σ. If a �= b, then M4c halts without acceptance; otherwise, it
replaces P (1, 1) = a by a1 and restarts.

3. In the next cycle, M4c will encounter the symbol a1 at position (1, 1). It will
then move right until it gets to the symbol a1 at position (1,m+ 1), which
it will replace by the symbol a2.

4. In the next cycle, M4c will encounter the symbol a2 at position (1,m+ 1).
It will then move to the left and replace a1 at position (1, 1) by a2 as well.

5. In the next cycles the contents of the first row has the form u2vu2w, where
u2 ∈ {�2,�2}+ and v, w ∈ Σm−|u2|. M4c now compares the first letter c of
w to the first letter d of v by first rewriting c into c1, by then rewriting d
into d1, if c = d, by rewriting c1 into c2, and finally by rewriting d1 into d2.

6. After all rows have been checked successfully, M4c halts on reaching the
bottom-right corner and accepts.

This example shows that det-2D-4W-ORWW-automata are quite expressive.
In [26] it is shown that 2DSAs are strictly weaker than the two-dimensional
deterministic forgetting automata (det-FA-automata) of Jǐrička and Král [14],
which are bounded two-dimensional Turing machines that are allowed to rewrite
by only using a special symbol @. In comparison to the 2DSA, there is no bound
on the number of visits to any tape field. However, the det-2D-4W-ORWW-
automata are at least as expressive as these automata.

Theorem 20. L(det-FA) ⊆ L(det-2D-4W-ORWW).

Proof. Let A be a det-FA, and let P ∈ Σ∗,∗ be an input picture. We describe a
det-2D-4W-ORWW-automatonM that simulates A. Obviously, M can simulate
A step by step, performing the same move operations and the same rewrite
operations. However, there is the problem that M restarts after executing a
rewrite operation. Hence, we must devise a way in which M can rediscover the
position of the latest rewrite operation.
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For that, we introduce auxiliary letters of the form [a, q, i], where a ∈ Σ is an
input symbol, q is a state of A, and i ∈ {1, 2} is an additional index. The pair
(a, q) will be used to encode the information that A replaced the symbol a by @
while in state q. The index i will be used to help M to find the correct position.
This is done as follows, where we distinguish four cases.

1. If the current picture does not contain any of the above auxiliary symbols,
no rewrite has been executed yet. Thus, in this situation M simulates A
step by step until it reaches the position at which A would execute its first
rewrite step. If this position contains the symbol a ∈ Σ, and if A is in state q,
then M replaces a by the symbol [a, q, 2] and restarts.

2. If the current picture contains a single auxiliary symbol which is of the form
[a, q, 2], then M starts simulating A from that position, but without actually
performing the replacement of a by @. This continues until the next rewrite
operation of A is detected, which would replace a symbol b by @, while A
is in some state p. The automaton M will then replace the symbol b by the
auxiliary symbol [b, p, 1] and restart.

3. If the current picture contains an auxiliary symbol of the form [a, q, 2] and an
auxiliary symbol of the form [b, p, 1], then the former marks the last but one
rewrite operation of A, while the latter marks the latest rewrite operation
of A. Now M simply rewrites [a, q, 2] into @ and restarts.

4. If the current picture contains a single auxiliary symbol which is of the form
[b, p, 1], then M simply rewrites [b, p, 1] into [b, p, 2] and restarts.

Thus, M uses a single cycle to simulate the computation of A up to the first
rewrite step, and then it uses three cycles each time it simulates a part of the
computation of A that leads from a rewrite step to the next one. ��

It remains open whether the inclusion in Theorem 20 is proper. Further, it
is known that det-FA working over strings accept all deterministic context-free
languages [12]. This implies that det-2D-4W-ORWW-automata are too expres-
sive for our purposes. To overcome this problem we restrict the potential head
movements of the two-dimensional ordered restarting automata.

7 Deterministic Three-Way ORWW-Automata

Here we consider the deterministic two-dimensional three-way ordered restarting
automaton.

Definition 21. A deterministic two-dimensional three-way ordered restarting
automaton, a det-2D-3W-ORWW-automaton for short, is given through a 7-tuple
M = (Q,Σ, Γ,S, q0, δ, >), where all components are defined as for a det-2D-
4W-ORWW-automaton with the restriction that H = {R,D,U} is taken in the
definition of the transition function δ, that is, no move-left steps are possible.

In principle, it could happen that a det-2D-3W-ORWW-automaton M does
not terminate on some input picture, as it may get stuck on a column, moving
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up and down. To avoid this, we require explicitly that M halts on all input
pictures! This can be realized by either providing a simple pattern, e.g., up∗ −
down∗ − up∗ − down∗, such that on each column, the sequence of up and down
movements must fit this pattern, or one could use an external counter that,
for each column entered in the course of a computation, counts the number of
uninterrupted up and down movements, making sure that the computation fails
as soon as more than (m · |Q|)- many such steps are encountered on a column of
height m. Actually, in most cases termination follows from the fact that within
a column, an automaton is just looking for an occurrence of a specific symbol,
and if that is not found, then the computation fails anyway.

Given a picture P ∈ Σm,n as input, a det-2D-3W-ORWW-automaton M =
(Q,Σ, Γ,S, q0, δ, >) can execute at most m · n · (|Γ | − 1) many cycles. As each
cycle takes at mostm·n·|Q|many steps, we see that for accepting P ,M executes
at most m2 · n2 · (|Γ | − 1) · |Q| many steps. A multi-tape Turing machine that
stores P column by column needs m steps to simulate a single move-right step
of M . As M can execute at most n− 1 move-right steps in any cycle, we obtain
the following result.

Theorem 22. [19] L(det-2D-3W-ORWW) ⊆ DTIME((size(P))2).

When restricted to one-row pictures P ∈ Σ1,∗, then the det-2D-3W-ORWW-
automaton coincides with the deterministic ordered restarting automaton intro-
duced in [19]. Accordingly, the following result holds.

Theorem 23. [19] When restricted to one-row inputs, the det-2D-3DW-ORWW-
automaton just accepts the regular (string) languages.

It is known that deterministic Sgraffito automata can be simulated by det-
2D-3W-ORWW-automata [19]. In fact, we even have the following inclusion, as
a 2DRTA that is scanning its input column by column from left to right is easily
simulated by a det-2D-3W-ORWW-automaton.

Theorem 24. si-2DRTL � L(det-2D-3W-ORWW).

To see that this inclusion is proper, consider the following picture language
L1col over Σ = {a, b}:

L1col = {P ∈ Σ2n,1 | n ≥ 1, P (1, 1) . . . P (n, 1) = (P (n+ 1, 1) . . . P (2n, 1))R },

that is, L1col consists of all pictures with a single column of even length such
that the content of this column read from top to bottom is a palindrome. Based
on the fact that a det-2D-3W-ORWW-automaton can freely move up and down
a column, it can be shown that this language is accepted by some det-2D-3W-
ORWW-automaton. By Theorem 14, the class si-2DRTL is closed under the oper-
ation of rotation. This operation turns the language L1col into the string language
Lpal = {w ∈ Σ+ | |w| = 0 mod 2, w = wR } of palindromes of even length,
which is a non-regular language. As si-2DRTL only contains regular string lan-
guages (Theorem 17), it follows that L1col is not contained in si-2DRTL. This
shows that the inclusion in Theorem 24 is proper. It also shows the following
negative result.
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Corollary 25. L(det-2D-3W-ORWW) is neither closed under rotation nor un-
der transposition.

In addition, the following closure and non-closure properties can be shown.

Theorem 26. The language class L(det-2D-3W-ORWW) is closed under union,
intersection and complement, but it is neither closed under projection nor under
column concatenation.

To conclude this section we turn to another example that illustrates the limi-
tations of the det-2D-3W-ORWW-automaton. Let Lpal,2 be the following picture
language over Σ = {a, b,�}:

Lpal,2 = {P ∈ Σ2,2n | n ≥ 1, P (1, 1) . . . P (1, n) = (P (1, n+ 1) . . . P (1, 2n))R,
P (1, i) ∈ {a, b} and P (2, i) = � for all 1 ≤ i ≤ 2n },

that is, Lpal,2 consists of all two-row pictures such that the first row contains a
palindrome of even length over {a, b}, and the second row contains �-symbols.

Proposition 27. Lpal,2 �∈ L(det-2D-3W-ORWW).

Proof. Assume to the contrary that there exists a det-2D-3W-ORWW-automaton
M = (Q,Σ, Γ,S, q0, δ, >) on Σ = {a, b,�} such that L(M) = Lpal,2. We analyze
the accepting computations ofM on pictures of the form Pw

�PR
w ∈ Lpal,2, where

Pw =

[
a1 a2 . . . an a
� � . . . � �

]
, PR

w =

[
a an . . . a2 a1
� � . . . � �

]
, and w = a1 . . . an ∈ {a, b}n.

We say that M is on Pw (PR
w ) if the active position of its read/write window

is on a tape field that belongs to Pw (PR
w ). As M cannot make any move-left

steps, we see that each cycle of M consists of an initial part during which M is
on Pw, which is then possibly followed by a part during which M is on PR

w . In
particular, when M performs a rewrite step on Pw, then it did not visit PR

w at
all during the corresponding cycle. Accordingly, the computation of M on input
Pw

�PR
w can be divided into two types of phases:

– a left-phase consists of a sequence of cycles during which M executes rewrite
steps on Pw;

– a right-phase consists of a sequence of cycles during which M executes
rewrite steps on PR

w .

Obviously, an accepting computation of M on an input of the form Pw
�PR

w

cannot consist of a single left-phase only. Thus, after a (possibly empty) left-
phase, a right-phase follows. As M is deterministic, this right-phase cannot end
until at least one element in the first column of PR

w has been rewritten, and the
same is true also for all later right-phases. In fact, we say that a right-phase
ends as soon as an element of the first column of PR

w is being rewritten, and
we associate with each right-phase a triple (r,m,X) that indicates that this
right-phase ended by placing the symbol X ∈ Γ into the tape field at position
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(m,n + 2). It follows either a left-phase or already the next right-phase. In
addition, we see that altogether there are at most 2 · (|Γ | − 1) + 1 many right-
phases and at most as many left-phases.

We are interested in the configurations of M in which it enters the tape
fields of PR

w during a right-phase, which are called enter configurations. An enter
configuration is described by a pair (q,m), where q ∈ Q is the current state ofM,
and m ∈ {1, 2} is the row of P on which the active field of the window is located.

During the execution of a right-phase, the behaviour ofM is influenced by the
current contents of the last column of Pw. This column has two entries, each of
which can be rewritten at most |Γ |−1 times. Hence, in order to keep track of the
contents of this column, we use the triple (l,m,X) to denote that M executes a
rewrite that places the symbol X ∈ Γ into the tape field at position (m,n+ 1).

Now we can associate a generalized crossing sequence GCS(M, Pw
�PR

w ) with
the accepting computation of M on input Pw

�PR
w by appending the triples of

the form (l,m,X), the enter configurations of the form (q,m), and the triples of
the form (r,m,X) in the sequence in which the corresponding operations occur
in the computation. Based on the observations above, it can be shown that there
is only a constant number of such generalized crossing sequences.

However, there are 2n many pictures of the form Pw
�PR

w . Hence, if n is suffi-
ciently large, then there are more pictures of this form than there are generalized
crossing sequences. Hence, there exist two strings w, x ∈ {a, b}n, w �= x, such
that GCS(M, Pw

�PR
w ) = GCS(M, Px

�PR
x ). It can now be shown that together

with these pictures, M also accepts the picture Pw
�PR

x �∈ Lpal,2. ��

Using the same kind of reasoning it can be shown that the lan-
guage Lcopy is not accepted by any det-2D-3W-ORWW-automaton, either.
As L(det-2D-3W-ORWW) is closed under complement, this implies that
(Lcopy)

c ∈ L(2SA)�L(det-2D-3W-ORWW). Together with the fact that L1col ∈
L(det-2D-3W-ORWW)�L(2SA), this yields the following incomparability results.

Corollary 28. The class of picture languages L(det-2D-3W-ORWW) is incom-
parable to the classes L(2SA) and REC with respect to inclusion.

8 Deterministic Two-Way ORWW-Automata

To get rid of the termination problem for two-dimensional ORWW-automata,
we restrict the possible window movements even further.

Definition 29. A deterministic two-dimensional two-way ordered restarting
automaton, a det-2D-2W-ORWW-automaton for short, is given through a 7-tuple
M = (Q,Σ, Γ,S, q0, δ, >), where all components are defined as for a det-2D-4W-
ORWW-automaton with the restriction that H = {R,D} is taken in the definition
of the transition function δ, that is, no move-left or move-up steps are possible.

By interchanging move-right steps and move-down steps, it is immediate that
the language class L(det-2D-2W-ORWW) is closed under transposition. In fact,
the following closure and non-closure results can be derived.
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Theorem 30. The language class L(det-2D-2W-ORWW) is closed under trans-
position, union, intersection, and complement, but it is neither closed under
projection nor under column or row concatenation.

When restricted to one-row pictures, then the det-2D-2W-ORWW-automaton
coincides with the det-2D-3W-ORWW-automaton, and so it only accept regular
string languages. Concerning the expressive power of the det-2D-2W-ORWW-
automaton, we have the following result.

Theorem 31. DREC � L(det-2D-2W-ORWW) ⊆ L(2DSA).
Proof. First it can be shown that each 2DOTA can be simulated by a det-2D-
2W-ORWW-automaton. Actually, this simulation works for each possible corner-
to-corner direction, and hence, as DREC coincides with the closure of L(2DOTA)
under rotation, the first inclusion follows. In [2] it is shown that the language
Lframes over {0, 1} that consists of all square pictures P for which (i) the first row
equals the first column, (ii) the second row equals the reverse of the second-last
column, (iii) the second-last row equals the reverse of the second column, and (iv)
the last row equals the last column, is not in DREC, but as L(det-2D-2W-ORWW)
is closed under intersection, and as each of the defining conditions for the ele-
ments of Lframes can be verified by a det-2D-2W-ORWW-automaton, it follows
that this language is accepted by a det-2D-2W-ORWW-automaton.

Finally, let M be a det-2D-2W-ORWW-automaton on Σ. On input P ∈ Σ∗,∗,
M scans this picture, starting at the upper left corner, until it executes a rewrite
step at some position (i, j). Now a 2DSA A can simulate the computation of M
step by step until it reaches position (i, j). As A must perform a rewrite in
each step, we can assume that A encodes the corresponding state of M at each
position visited together with the information on the last two steps that M
performed when it moved to the current position. After performing its rewrite
step, M restarts, but as it is deterministic, it will follow the same path again,
entering the same states at the same positions, until it reaches a position (k, l) ∈
{(i− 1, j), (i, j− 1), (i− 1, j− 1)} such that the new symbol at (i, j) is contained
in its window of size (3, 3). From the information stored at position (i, j), A
can determine this position. It then moves to the position (k, l), extracts the
corresponding state ofM from the symbol written at that position, and continues
to simulate M from that point on. It follows that A can enter a particular tape
field at most a constant number of times (once at the first time this position
is reached by M, once each time a field immediately to the right or down is
rewritten, and once again each time the contents of the field itself has been
rewritten). ��

It is, however, still open whether the second inclusion in Theorem 31 is proper.
The problem lies in the fact that, in order to simulate the computation of a 2DSA,
a det-2D-2W-ORWW-automaton must be able to rediscover the actual head posi-
tion of the 2DSA after each restart step. In fact, it is not known whether the lan-
guage Lperm (see Section 3) is accepted by any det-2D-2W-ORWW-automaton.
We therefore consider an extension of this model in which the move-right and
move-down steps are slightly more general.
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Definition 32. A deterministic two-dimensional extended two-way ordered re-
starting automaton, a det-2D-x2W-ORWW-automaton for short, is given through
a 7-tuple M = (Q,Σ, Γ,S, q0, δ, >), where all components are defined as for
a det-2D-2W-ORWW-automaton, but the move-right and move-down steps are
extended as follows:

1. When the window contains the right border marker �, but not the bottom
marker, then an extended move-right step shifts the window to the beginning
of the next row, that is, if the central position of the window is on the last
field of row i for some i < rows(P ), then it is moved to the first field of
row i+ 1.

2. When the window contains the bottom marker ⊥, but not the right border
marker, then an extended move-down step shifts the window to the top of the
next column, that is, if the central position of the window is on the bottom-
most field of column j for some j < cols(P ), then it is moved to the top-most
field of column j + 1.

3. In any cycle, as soon as M executes an extended move-right (move-down)
step, then for the rest of this cycle, it cannot execute any extended move-down
(move-right) steps.

Finally, M is called a stateless det-2D-x2W-ORWW-automaton (or a stl-det-2D-
x2W-ORWW-automaton) if it has just a single state. The components Q and q0
refering to states will be suppressed within the description of such an automaton.

When restricted to one-row pictures P ∈ Σ1,∗, then the det-2D-x2W-ORWW-
automaton coincides with the det-2D-3W-ORWW-automaton. Thus, we obtain
the following result, where the part on stateless variants is an easy extension.

Corollary 33. When restricted to one-row inputs, then the (stl-)det-2D-x2W-
ORWW-automaton just accepts the regular (string) languages.

Given a picture P ∈ Σm,n as input, a det-2D-x2W-ORWW-automatonM can
execute at most m ·n · (|Γ |− 1) many cycles. In each cycle M can either execute
up to n move-right steps, n · (m − 1) move-down steps, and (n − 1) extended
move-down steps, or m move-down steps, m · (n − 1) move-right steps, and
(m− 1) extended move-right steps. Thus, M executes at most m2 ·n2 · (|Γ | − 1)
many steps. Hence, a two-dimensional Turing machine can simulate M in time
O(m2 · n2). A multi-tape Turing machine T that stores P column by column
needs m steps to simulate a single move-right step of M, and it needs m ·n steps
to simulate an extended move-right step, that is, it may need up to O(m3 · n2)
many steps to simulate M. Hence, we obtain the following upper bound.

Theorem 34. [18] L(det-2D-x2W-ORWW) ⊆ DTIME((size(P))3).

As a 2DRTA is stateless, it is easily seen that a 2DRTA that is scanning its
input row by row from top to bottom can be simulated by a stateless det-2D-
x2W-ORWW-automaton. This yields the following inclusion.

Theorem 35. si-2DRTL ⊆ L(stl-det-2D-x2W-ORWW).
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It is still open whether or not this is a proper inclusion. From the definition
the following closure properties are immediate.

Proposition 36. The classes of picture languages L(det-2D-x2W-ORWW) and
L(stl-det-2D-x2W-ORWW) are closed under transposition and complement.

Thus, the language L1col is not accepted by any det-2D-x2W-ORWW-auto-
maton. On the other hand, the following result holds.

Proposition 37. [18] Lpal,2 ∈ L(det-2D-x2W-ORWW).

Proof. Let Mpal,2 = (Q,Σ, Γ,S, q0, δ, >) be defined by Γ = Σ ∪ {a1, a2, b1, b2,
↑1, ↑2}, where a > b > a1 > b1 > a2 > b2 > � > ↑1 > ↑2, and by defining
δ in such a way that Mpal,2 proceeds as follows. As the det-2D-4W-ORWW-
automaton M4c of Example 19, Mpal,2 marks the letters in the first row with
indices 1 and 2, alternating between marking the first unmarked letter from the
left and the first unmarked letter from the right. To distinguish these two cases,
the second row is used. First M scans the first row completely from left to right.
If during this sweep it realizes that the first unmarked letter from the right must
be marked, then it simply does this and restarts. If, however, it realizes at the
end of this sweep that the first unmarked letter from the left should have been
marked, then it executes an extended move-right step, and then it replaces the
letter in row 2 that is below the first unmarked letter from the left in row 1 by
the symbol ↑1 or ↑2, depending on the current situation. In this way it indicates
that the corresponding letter in row 1 must be marked in the next cycle by index
1 or 2, respectively. ��

From the results on L1col and Lpal,2 we obtain the following.

Corollary 38. The class of picture languages L(det-2D-x2W-ORWW) is incom-
parable under inclusion to the class of picture languages L(det-2D-3W-ORWW).

Actually, Lpal,2 also separates the det-2D-x2W-ORWW-automata from their
stateless variants.

Proposition 39. [18] Lpal,2 �∈ L(stl-det-2D-x2W-ORWW).

Proof. Assume that M = (Σ,Γ,S, δ, >) is a stl-det-2D-x2W-ORWW-automaton
over Σ = {a, b,�} such that L(M) = Lpal,2. Given Pw

�PR
w (see the proof of

Prop. 27) as input, M will perform an accepting computation, which consists of
a finite sequence of cycles that is followed by an accepting tail computation. We
now split this computation into a finite number of phases, where we distinguish
between four types of phases:

1. A left-only phase (O) consists of a sequence of cycles in which the window
of M stays on the left half of the picture.

2. An upper-right phase (U) consists of a sequence of cycles in which all rewrite
steps are performed on the right half of the picture, and in addition, in the
first of these cycles,M enters the right half of the picture through move-right
steps in row 1.
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3. A lower-left phase (L) is a sequence of cycles in which all rewrite steps are
performed in the left half of the picture, and in addition, the first of these
cycles contains an extended move-right step.

4. A lower-right phase (R) is a sequence of cycles in which all rewrite steps
are performed in the right half of the picture, and in addition, in the first
of these cycles, M enters the right half of the picture through a move-right
step in row 2 or after executing an extended move-down step.

Obviously, the sequence of cycles of the computation of M on input Pw
�PR

w

can uniquely be split into a sequence of phases if we require that each phase is
of maximum length. Thus, this computation can be described in a unique way
by a string α over the alphabet Ω = {O,U, L,R}.

Concerning the possible changes from one phase to the next there are some
restrictions based on the fact that M is stateless. For example, while M is in a
lower-right phase (R), it just moves through the left half of the current picture
after each rewrite/restart step. Thus, M cannot get into another phase until it
performs a rewrite step that replaces a symbol in the first column of the right
half of the picture. Only then may follow a left-only phase (O) or a lower-left
phase (L). However, in a fixed column, less than 2 · |Γ | many rewrite steps can
be performed, and so |α|R ≤ 1 + 2 · |Γ |. By analyzing all cases, it can be shown
that |α| ≤ 13 + 24 · |Γ |.

Now we associate a generalized crossing sequence GCS(Pw
�PR

w ) with the

computation of M on Pw
�PR

w by inserting a 2-by-2 picture

(
c d
e f

)
after each

letter X of α, where
(
c
e

)
is the contents of the rightmost column of the left half

and
(
d
f

)
is the contents of the leftmost column of the right half of the picture

at the end of the phase represented by the letter X . Thus, GCS(Pw
�PR

w ) is a
string of length at most 26 + 48 · |Γ | over the finite alphabet Ω ∪ Γ 2,2 of size
4+ |Γ |4, that is, there are only finitely many different such crossing sequences. If
n is sufficiently large, then there are two strings w, x ∈ {a, b}n, w �= x, such that
GCS(Pw

�PR
w ) = GCS(Px

�PR
x ). As M accepts both Pw

�PR
w and Px

�PR
x , it

follows that M will also accept on input Pw
�PR

x �∈ Lpal,2, a contradiction. ��

Together with Proposition 37 this yields the following separation result.

Theorem 40. L(stl-det-2D-x2W-ORWW) � L(det-2D-x2W-ORWW).

By using the technique from the proof of Proposition 37, also the following
can be shown.

Proposition 41. Lcopy ∈ L(det-2D-x2W-ORWW).

Thus, we see that L(det-2D-x2W-ORWW) is not contained in L(2SA), but it
remains the question of whether L(2SA) ⊂ L(det-2D-x2W-ORWW) holds. We
complete this section with some more closure properties.

Theorem 42. [18] The language classes L(stl-det-2D-x2W-ORWW) and
L(det-2D-x2W-ORWW) are closed under union and intersection.
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9 Conclusion

We have studied six different models of deterministic two-dimensional restarting
automata, comparing them to the (deterministic) Sgraffito automata and the
well-known classes REC and DREC. The taxonomy of classes of picture languages
obtained is summarized by the diagram in Figure 4.

L(det-2D-4W-ORWW)

si-2RTL L(det-2D-x2W-ORWW)

��

L(det-2D-3W-ORWW)

��������������

L(stl-det-2D-x2W-ORWW)

��

L(2SA)

?

��

si-2DRTL

?
��

������������������������

L(2DSA)

������������� ?

��

REC

��

L(det-2D-2W-ORWW)

?
��

DREC

���������������
��

Fig. 4. Hierarchy of classes of picture languages accepted by various types of two-
dimensional automata. Question marks indicate inclusions not known to be proper.

For all these deterministic types of automata, the membership problem is
solvable in polynomial time. When restricted to one-row pictures, that is, string
languages, then all these models (and also the non-deterministic restarting tiling
automaton and the Sgraffito automaton) only accept the regular languages with
the sole exception of the det-2D-4W-ORWW-automaton, which accepts some
string languages that are not even growing context-sensitive. Accordingly, the
latter model is far too expressive for our purposes.

Class of Picture Languages ∪ ∩ c R T π � � ∗ � ∗ �

REC + + − + + + + + + +

DREC − − + + + ? ? ? ? ?

L(2DSA) + + + + + − − − ? ?

si-2DRTL + + ? + + + ? ? ? ?

L(det-2D-2W-ORWW) + + + ? + − − − ? ?

L(stl-det-2D-x2W-ORWW) + + + ? + ? ? ? ? ?

L(det-2D-x2W-ORWW) + + + ? + ? ? ? ? ?

L(det-2D-3W-ORWW) + + + − − − − ? ? ?

Fig. 5. The known closure properties for some deterministic classes of picture lan-
guages. An entry ‘+’ stands for a known closure property, ‘−’ marks a known negative
result, and ‘?’ indicates that the corresponding result is still open.
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For the deterministic Sgraffito automaton and the deterministic tiling au-
tomaton the most closure properties have been established, but compared to the
class REC, all other classes have less nice closure properties. A summary of the
known closure properties is presented in the table in Figure 5, where c denotes
the operation of complement, R denotes rotation, T stands for transposition,
and π denotes projections.

The deterministic Sgraffito automaton and the det-2D-x2W-ORWW-auto-
maton seem to be the most intuitive models, as the det-2D-3W-ORWW-auto-
maton favors vertical over horizontal movements, which yields a completely
asymmetric behaviour with respect to transpositions, and the class si-2DRTL
has a very unhandy definition, as in order to prove that a language belongs to
this class, accepting deterministic restating tiling automata must be provided for
all strategies. Finally, we remark that for all the types of automata considered
the emptiness problem is undecidable, as this problem is already undecidable for
DREC (see, e.g., [7]).

Acknowledgement. The author thanks Frantǐsek Mráz from Charles Univer-
sity in Prague for many helpful discussions on the topics and results presented
here.
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Abstract. The investigation of automata and languages defined over
a one letter alphabet shows interesting differences with respect to the
case of alphabets with at least two letters. Probably, the oldest example
emphasizing one of these differences is the collapse of the classes of reg-
ular and context-free languages in the unary case (Ginsburg and Rice,
1962). Many differences have been proved concerning the state costs
of the simulations between different variants of unary finite state au-
tomata (Chrobak, 1986, Mereghetti and Pighizzini, 2001). We present an
overview of those results. Because important connections with
fundamental questions in space complexity, we give emphasis to unary
two-way automata. Furthermore, we discuss unary versions of other com-
putational models, as one-way and two-way pushdown automata, even
extended with auxiliary workspace, and multi-head automata.

In Memory of Alberto Bertoni,
who taught me how beautiful theoretical computer science is.

1 Introduction

In 1962, Ginsburg and Rice discovered that in the case of languages defined
oven a one letter alphabet, called unary languages, the classes of regular and
context-free languages collapse [13]. Probably, this is the oldest example which
emphasizes a difference between the unary and the general case. Many other
results in formal language and complexity theory have been proved under the
hypothesis of unrestricted or at least two letter alphabets, while different prop-
erties have been obtained in the one letter case, showing that unary languages
(also called tally sets) have interesting and sometimes surprising properties.

In this paper we present an overview of some of these results. A large part
of the paper is devoted to devices accepting unary regular languages and to
their descriptional complexity. In particular, we discuss the state costs of the
optimal simulations between different types of unary automata. We will empha-
size the role of normal forms for unary one-way and two-way automata in these
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studies. We also consider pushdown automata in both the deterministic and the
nondeterministic cases.

In the last part of the paper, we shortly discuss some extensions of these mod-
els that are able to recognize unary nonregular languages, as one-way auxiliary
pushdown automata, two-way pushdown automata, and multi-head automata.
An interesting topic related to these extensions is the study of minimal amounts
of extra resources (e.g., workspace on auxiliary tapes, number of head reversals)
which make these devices more powerful than finite automata in the recognition
of unary languages. Many problems in this area are still open.

The unary case could seem a kind of “separate world”: special properties,
different methods (many of them deriving from number theory), etc. Actually
the investigation of the unary case is also related to some general and relevant
questions. For instance, as we will discuss in the paper, the question of the opti-
mal state cost of removing nondeterminism from two-way automata in the unary
case is strictly related to the question of the power of nondeterminism in space
bounded machines over general alphabets. In fact, proving that polynomially
many states are not sufficient to simulate unary two-way nondeterministic au-
tomata by equivalent two-way deterministic automata will separate deterministic
and nondeterministic logarithmic space [11].

We will keep the presentation at an informal level, trying to avoid, as much
as possible, technical details, that can be found in the references. Due to many
results on the unary case, the paper does not pretend to be exhaustive. We
partially cover some topics that in our opinion are relevant and that are related
to our research experience.

Throughout the paper, we use the symbol Σ to denote an alphabet, namely
a non empty finite set of symbols. Sometimes we write general alphabet to em-
phasize that there are no restrictions on the cardinality of Σ, in contrast with
unary alphabet, to indicate that the cardinality of Σ is 1, in which case we stipu-
late Σ = {a}. We also write nonunary alphabet when we want to restrict to the
case #Σ ≥ 2. A similar meaning is associated with general, unary, and nonunary
case. We use standard notations from formal language theory as in [15,46]. Since
in the unary case each string is represented by an integer, there is a natural
bijection between unary languages and subsets of N, namely unary languages
can be identified with sets of nonnegative integers.

2 Unary Finite Automata: Optimal Simulations

In this section we discuss some properties of finite automata over a unary al-
phabet. The focus is mainly on the costs, in term of states, of the simulations
between different variant of automata.

A one-way finite state automaton is denoted as a tuple A = (Q,Σ, δ, q0, F ),
where, as usual, Q is the finite set of states, Σ is the input alphabet, δ is the
transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.
The language accepted by A is denoted as L(A). As usual, we consider deter-
ministic and nondeterministic versions of these devices indicated, for brevity, as
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1dfas and 1nfas, respectively. We emphasize that those devices are one-way,
namely at each transition they move the input head one position to the right, in
contrast with two-way deterministic and nondeterministic variants, indicated as
2dfas and 2nfas, respectively. The transition function of a 2dfa associates with
each pair (q, a) ∈ Q×Σ a next state p and a direction d ∈ {−1, 0,+1}, where d =
−1 and d = +1 mean that the head is moved one position to the left and to the
right, respectively, while d = 0 means that the head is kept on the same tape cell.
In the case of 2nfas, the transition function can associate to each pair (q, a) a set
of pairs (p, d), representing different nondeterministic choices. Furthermore, in
two-way automata the input is assumed to be surrounded by two special symbols,
the left end-marker and the right end-marker. Hence, the transition function is
defined even on those symbols, with the restriction that from the left end-marker
the head cannot move to the left, while from the right end-marker it cannot move
to the right. In the literature, slightly different acceptance conditions for two-
way automata have been used (e.g., just reaching a final state or reaching a
final state with the head on the right end-marker). Since these small technical
differences do not affect the power of the models and slightly change the number
of states, here we can avoid to enter into these details. However, it is useful to
emphasize that computations of two-way automata can enter into infinite loops.
All those computations are rejecting.

Since the beginning of automata theory, it is well-known that all the just
mentioned variants of finite automata have the same computational power, in
fact all of them characterize the class of regular languages [41]. The state costs of
the simulations between these variants of finite automata have been investigated,
in the general case, in several papers (e.g., [47,35,43]). Here, we discuss these costs
in the unary case. Before doing that, we present some fundamental properties of
unary automata.

It can be easily observed that the transition graph of a 1dfa A consists of
a path (frequently called tail) of μ ≥ 0 states which starts from the initial
state and of a loop of λ ≥ 1 states, which is reachable by an edge from the
last state of the initial path (see Figure 1). From this observation, it follows
that L(A) ⊆ {a0, a1, . . . , aμ−1}∪{aμ} ·{a0, a1, . . . , aλ−1} ·{aλ}∗. In other words,
for each K ≥ μ, aK ∈ L(A) if and only if aK+λ ∈ L(A). Hence, to each unary
regular language corresponds an ultimately periodic set of integers. It is trivial
to observe that the converse also holds.

�

� � �

���

�

�

���
� �

������

a
a a

a

aaa

��a ��a ��a ��a �� �� ��a

Fig. 1. A 1dfa accepting the language {a1, a2} ∪ {a5} · {a2, a6} · {a7}∗
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There are two special cases.

– If μ = 0, namely the initial path is empty and the initial state belongs to
the loop, then the set of integers corresponding to L(A) is periodic. In this
case L(A) is said to be a λ-cyclic language, or just a cyclic language.

– If we allow the transition function to be partial, then the graph could con-
tain only the initial path, thus implying that the accepted language is a
subset of {a0, a1, . . . , aμ−1}. Of course, the transition function can be made
complete by introducing a loop consisting of just one (rejecting) state.

Now, let us turn our attention to the nondeterministic case. Each directed graph
with a selected vertex marked as initial state and some vertices appointed as
final states can be interpreted as a 1nfa. This form does not look so simple
as the one of unary 1dfas. In spite of that, as shown by Chrobak, with only a
polynomial increasing in the number of states each 1nfa can be turned into an
equivalent 1nfa whose transition graph has a very simple structure, which we
are now going to describe [4].

A 1nfa is in Chrobak Normal form if its transition graph consists of an initial
deterministic path and s ≥ 0 disjoint loops. The last state in the path is con-
nected via s outgoing edges to each of the loops. This is the only place where a
nondeterministic decision can be taken by the automaton. (See Figure 2.) Hence,
during each computation, the automaton can make at most one nondeterminis-
tic choice. (Notice that for s = 1 we obtain 1dfas.) Chrobak proved that each
unary n-state 1nfa can be converted into a 1nfa with an initial path of O(n2)
states and a total number of the states in the loops ≤ n.
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Fig. 2. A 1nfa in Chrobak normal form

Some remarks on this fundamental result and on related works are suitable.
The original proof by Chrobak contains a subtle error which has been discovered
and fixed by To [51]. A polynomial time algorithm for converting unary 1nfas
into Chrobak normal form has been obtained by Martinez and independently im-
proved by Gawrychowski and Sawa [31,7,45]. Geffert gave a completely different
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and very detailed proof of the Chrobak normal form, reducing the state bound:
except for the case of the trivial loop of length n, each unary n-state 1nfa can be
converted into an equivalent 1nfa in Chrobak normal form with at most n2 − 2
states on the initial path and a total number of states in the loops ≤ n− 1 [8].
The length of the initial path has been further reduced to n2−n [7]. Summing up:

Theorem 1. For each unary n-state 1nfa different from the trivial loop of
length n there exists an equivalent 1nfa in Chrobak normal form with an initial
path consisting of at most n2−n states and a set of loops whose total number of
states is at most n− 1.

Once a 1nfa A is in Chrobak normal form, it quite easy to convert it into an
equivalent 1dfa A′, by replacing the loops by a single loop which simulates “in
parallel” all of them. Suppose that A contains s ≥ 1 loops of length 1, 2, . . . , s,
respectively. Then a loop of length lcm{1, 2, . . . , s} (the least common multiple
of loop lengths) is enough for A′. (See Figure 3.)
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Fig. 3. A 1nfa in Chrobak normal form and an equivalent 1dfa

Now two questions arise:

1. How many states has the automaton A′ so obtained?
In other terms, we ask how much can be lcm{1, 2, . . . , s} with respect to n,
the number of states of A′.

2. Is the length lcm{1, 2, . . . , s} really necessary for the loop?

The answer to the second question is positive, as shown in [4, Thm. 4-5]. Hence,
answering to the first question is useful not only to obtain an upper bound for
the state cost of the conversion, but even to have a tight bound. To this aim,
we consider the maximum value which can be assumed by the least common
multiple of positive integers with a given sum, namely the following function,
studied by Landau at the beginning of the last century [24,25]:

F (n) = {lcm{1, 2, . . . , s} | s ≥ 1 and 1 + 2 + · · ·+ s = n} .

The best known approximation of F (n) is due to Szalay [49]. For our purposes,

the estimation F (n) = eΘ(
√
n·lnn) is enough [5].

Combining the state bounds for the conversion of 1dfas into Chrobak normal
form, with the above estimation of F (n), the following result follows:



Investigations on Automata and Languages over a Unary Alphabet 47

Theorem 2 ([28,4]). Each unary n-state 1nfa can be simulated by an equiva-

lent 1dfa with eΘ(
√
n·lnn) states. Furthemore, this bound is tight.

In the general case, it is well-known that using the subset construction each n-
state 1nfa can be converted into an equivalent 1dfa with 2n states. Furthermore,
this bound cannot be reduced in the worst case, as witnessed by examples over
a two letter alphabet [29,35,37]. Hence, the cost of the conversion of 1nfas into
equivalent 1dfas in the unary case is strictly lower than in the general case, even
if it is superpolynomial.

Chrobak normal form suggests a different way to deterministically check the
membership to the language accepted by a unary 1nfa, when it is possible to
rescan the input tape, as in two-way automata.

A 1nfa Ac in Chrobak normal form with an initial path of μ states and s
loops of length 1, 2, . . . , s, respectively, can be simulated by a 2dfa A′ which
completely traverses the input at most s+1 times as follows. A first traversal is
made to check whether or not the input length is less than μ. If so, the input is
accepted or rejected according to the initial path of Ac. Otherwise, in a second
traversal, it is tested if the input is accepted on the first loop. This can be
implemented using 1 states to simulate a counter modulo 1. If the input is not
accepted, then a third traversal is made to check, using a counter modulo 2, if
the input is accepted by the second loop of Ac, and so on. The 2dfa A′ can be
implemented using μ+ 1+ · · ·+ s+2 states (μ+1 for the first traversal, i for
each of the next traversals, i = 1, . . . , s, plus one accepting state). Considering
the state costs of the conversion into Chrobak normal form, it turns out that
each unary n-state 1nfa can be converted into an equivalent 2dfa with O(n2)
states. Furthermore, the bound is tight [4]. Actually, when the language is cyclic,
the first scan can be removed and an equivalent 2dfa with no more than n states
can be obtained [33].

Using similar ideas, the tight costs of the simulation of 2dfas by 1dfas

and 1nfas has been proved to be eΘ(
√
n·lnn) [4]. These researches have been

deepened by Mereghetti and Pighizzini, considering unary 2nfas [34]. They
proved that the state cost of the simulation of unary n-state 2nfas by 1dfas is

also eΘ(
√
n·lnn). This means that removing two-way motion or nondeterministic

choices has the same cost as removing both of them.
These simulations with their costs are summarized in Figure 4. Notice that

the state cost of the simulation of 2nfas by 2dfas is unknown. This question is
open even in the general case, where it has been formulated by Sakoda and Sipser
in 1978, together with the question of the state cost of the optimal conversion of
1nfas into equivalent 1dfas, which in the general case is also open [43]. Since
the question of Sakoda and Sipser is quite relevant in automata and complexity
theory (for recent discussions and overviews see [19,39]), and even in the unary
case important results related to this question have been obtained, the next
section will be devoted to present some interesting properties of unary 2nfas,
and some results related to the Sakoda and Sipser question in the unary case.
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Fig. 4. Costs of the optimal simulations between different kinds of unary automata. An
arc labeled f(n) from a vertex x to a vertex y means that a unary n-state automaton in

the class x can be simulated by an f(n)-state automaton in the class y. The eΘ(
√
n·lnn)

costs for the simulations of 1nfas and 2dfas by 1dfas as well as the cost Θ(n2) for

the simulation of 1nfas by 2dfas have been proved in [4]. The eΘ(
√
n·lnn) cost for the

simulation of 2nfas by 1dfas has been proved in [34]. The other eΘ(
√
n·lnn) costs are

easy consequences. All the n costs are trivial. The arc labeled “?” represents the open
question of Sakoda and Sipser. For an upper bound see Theorem 4.

3 Unary Two-Way Automata

Due to the possibility of nondeterministic choices and head reversals, even in the
unary case the computations of 2nfas can have very complicated structures.
However, as shown by Mereghetti and Pighizzini studying the simulation of
unary 2nfas by 1dfas, for each computation of a unary 2nfa it is always possible
to find another computation which has a simple pattern and which is in some
sense equivalent [34]. This analysis was further refined in [9], obtaining a kind
of normal form which can be seen as a generalization of Chrobak normal form
to 2nfas.

Let us go back for a while to unary 1nfas. Chrobak normal form essentially
states that a unary 1nfa on each sufficiently long string has to compute the input
length modulo one integer which is nondeterministically selected in a given set.
In the normal form for unary 2nfas, the acceptance of each sufficiently long
string is decided by computing the input length modulo some integers from a
given set. The input tape is completely traversed several times to compute, in
each traversal, the input length modulo one on these integers. We now present
and discuss this form and its main consequences.

We say that two automata A and A′ are almost equivalent if their accepted
languages L(A) and L(A′) coincide with the possible exception of a finite number
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of strings. For example, from the discussion in Section 2 we can observe that
each 1dfa is almost equivalent to a 1dfa whose transition graph is a simple
loop (i.e, a 1dfa accepting a cyclic language).

The normal form for unary 2nfas is given in following result, proved in [9]
(for further details see also [11]).

Theorem 3. For each unary n-state 2nfa A there exists an almost equivalent
2nfa M such that:

– M can makes nondeterministic choices and can reverse the head direction
only when the input head is visiting the end-markers,

– M has at most 2n+ 2 states.

More into details, the set of states of M is the union of s+1 disjoint sets {qI , qF },
Q1, . . . , Qs, such that:

– the set {qI , qF } consists of the initial and final states only, with qI �= qF ,
– each Qi, i = 1, . . . , s, represents a deterministic loop of i ≤ n states, used

to traverse the entire input tape either from the left to the right end-marker
or in the opposite direction,

– the computation of M starts on the left end-marker in the state qI ,
– the accepting state qF can be reached only on the left end-marker; at that

moment M stops and accepts the input.

Furthermore, L(A) and L(M) can differ only on strings of length at most 5n2.

We observe that the automaton M obtained in Theorem 3 uses the nondeter-
minism and head reversals in a very restricted way, i.e., only at the end-markers.
Hence, on “real” input symbols the behavior of M is deterministic, without the
possibility of changing the head direction. Looking at the details given in the
second part of the statement, we can observe that a computation of M is a se-
quence of complete traversals of the input (alternating the direction from left to
right and from right to left), where in each traversal M counts the length of the
input modulo an integer in a given set {1, . . . , s}, where i = #Qi, i = 1, . . . , s.

We also point out that the 2nfa M can be easily turned into an automaton
“fully” equivalent to the original 2nfa A, by adding O(n2) states, used to fix
the “errors”, in a preliminary scan of the input.

Theorem 3 was the starting point to prove several relevant results on unary
2nfas, that we now briefly mention.

Theorem 4 ([9]). Each unary n-state 2nfa can be simulated by an equivalent

2dfa with eO(ln2n) states.

The proof of this result has been given using a divide-and-conquere procedure,
similar to the famous one used by Savitch to remove nondeterminism from space
bounded machines (by squaring the space) [44]. The key point is the observation
that if the 2nfa M in Theorem 3 has an accepting computation on an input am,
then it should also have an accepting computation which visits the left end-
marker at most N times, where N is the number of states of M . The procedure
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tests state reachability at the left end-marker using a recursion on the number
of visits of this end-marker.

At the moment we do not have a matching lower bound for this simulation.
The best known lower bound is quadratic and derives from the cost of the simu-
lation of 1nfas by 2dfas (cf. Fig. 4). Indeed, this is the already mentioned open
question of Sakoda and Sipser restricted to the unary case.

Theorem 5 ([10]). Each unary n-state 2nfa accepting a language L can be
transformed into a 2nfa with O(n8) states accepting the complement of L.

Even the proof of this result starts from the above observation which gives a
bound on the number of visits to the left end-marked in shortest accepting
computations. In this case, an inductive counting procedure (as in the proof of
the famous Immerman-Szelepcsényi result [17,50]) is used to generate all the
states that can be reached at the left end-marker in a given number of visits.

A further result that has been obtained using the form of 2nfas given in
Theorem 3 states an important relationship between the question of Sakoda and
Sipser and the problem of the power of the nondeterminism in logarithmic space
bounded computations. Let us denoted by L the class of languages accepted by
deterministic Turing machines which work in logarithmic space and by NL the

corresponding nondeterministic class. The question L
?
= NL is still open. The

Graph Accessibility Problem (GAP, for short: given a direct graph G = (V,E)
with two fixed vertices s, t, decide whether or not G contains a path from the
source s to the destination t) is complete for NL [18]. As a consequence, GAP ∈ L
if and only if L = NL.

Given a 2nfa M in the form given in Theorem 3, the membership problem
for L(M) can be reduced to GAP, as proved by Geffert and Pighizzini [11]. The
reduction associates with each input string am a graph Gm = (Q,Em) whose
set of vertices coincides with the set Q of the states of M and whose set of
edges Em contains the pair (p, q) if and only if M can traverse the input am

starting at one end-marker in the state p and reaching the opposite end-marker
in the state q. Since an accepting computation should start in the state qI with
the head at the left end-marker and end in the state qF at the same end-marker,
deciding whether or not am is accepted by M is equivalent to decide if the answer
to GAP for the graph Gm (with source qI and destination qF ) is positive. Due
to the properties of M , the above outlined reduction can be computed by a
deterministic transducer having a number of states polynomial with respect to
the number of states of M . Adapting techniques used in space complexity to
two-way automata, the following result has been proved:

Theorem 6 ([11]). If L = NL then each unary n-state 2nfa can be simulated
by an equivalent 2dfa with a number of states polynomial in n.

The best known upper bound for the simulation of unary 2nfas by equivalent
2dfas is the superpolynomial bound presented in Theorem 4. As a consequence
of Theorem 6 proving the optimality of such a bound, or proving a smaller
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but still superpolynomial lower bound for the simulation of unary 2nfas by
equivalent 2dfas would separate L and NL in the general case, thus solving a
longstanding open problem in complexity theory. Hence, this result gives evi-
dence of the fact that the unary case is not a “separate world”: its investigation
has relevant implications in the general case.

Concerning Theorem 6, it is quite natural to wonder if the converse also
holds. Trying to prove that, the main problem is related to uniformity. Adding
uniformity conditions to the conversion of 2nfas into equivalent 2dfas even a
stronger result has been obtained [11]. More interestingly, by replacing L with
its nonuniform variant L/poly, defined in terms of machines with polynomial
advice [21], Kapoutis and Pighizzini proved the following:

Theorem 7 ([20]). L/poly ⊇ NL if and only if each unary n-state 2nfa can be
simulated by an equivalent 2dfa with a number of states polynomial in n.

The only-if direction in Theorem 7 derives immediately from Theorem 6.
The proof of the converse implication also uses GAP. In particular this problem,
restricted to graphs with n vertices, is reduced to the membership problem for
the unary language accepted by a 2nfa An with a number of state polynomial
in n. The details can be found in [20] together with other results proving the
equivalence of L/poly ⊇ NL with other statements.

Using a result from nonuniform complexity [42] and adapting the technique
used to prove Theorem 6, the following result has also been obtained:

Theorem 8 ([11]). Each unary n-state 2nfa can be simulated by an equivalent
unambiguous 2nfa with a number of states polynomial in n.

4 Beyond Finite Automata

As mentioned in the introduction, each unary context-free language is regular.
So the analysis presented in Section 2 on the costs of the optimal simulations
between finite automata in the unary case (summarized in Figure 4) can be ex-
tended to include pushdown automata (pdas, for short) and context-free gram-
mars (cfgs).

While in the case of finite automata the number of states is a reasonable
measure for the size of the description, in the case of pdas we need to consider
some other parameters (we remind the reader that each context-free language
can be accepted by a pda with just one state). We can measure the size of a pda

by counting the number of symbols needed to write down its transition table. In a
similar way, for a context-free grammar, we can consider the number of symbols
used to write down the productions. In the case of grammars in Chomsky normal
form, the number of variables is considered a reasonable parameter, because it
is polynomially related to the total size of the description. For more details we
address the reader to [14].

In the general case, in 1971 Meyer and Fischer proved that for any given re-
cursive function f and for arbitrarily large integers n there exists a context-free
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grammar G whose description uses n symbols, such that G generates a regular
language and each 1dfa accepting L requires at least f(n) states, thus implying
that there is no a recursive bound between the size of context-free grammars
(and of pushdown automata) generating regular languages and the number of
states of equivalent finite automata [35]. The construction of Meyer and Fischer
uses a binary alphabet, leaving open the unary case, which has been studied by
Pighizzini, Shallit, and Wang proving, in contrast, recursive bounds [40].

Theorem 9. For any unary cfg in Chomsky normal form with h variables
there exists an equivalent 1nfa with at most 22h−1 + 1 states and an equivalent
1dfa with less than 2h

2

states.

The bounds stated in Theorem 9 cannot be significantly improved. In fact in
the same paper, for each integer h a very simple Chomsky normal form grammar

generating the language (a2
h−1

)+, which requires 2h−1+1 states to be accepted
by a 1nfa, was presented. A more complicated example was also given, showing
for infinitely many integers h a unary grammar in Chomsky normal form with h
variables such that each equivalent 1dfa needs at least 2ch

2

states, for a suitable
constant c.

Since the conversion of a context-free grammar G into Chomsky normal form
produces a grammar with a polynomial number of variables with respect to the
total size of the description of the original grammar, and since the conversion of a
pushdown automaton into an equivalent context-free grammar is also polynomial
in the size, we can conclude that the conversions of unary context-free grammars
and pushdown automata into equivalent 1dfas or 1nfas are polynomial in size.

We more closely look to the case of pushdown automata. Each pda can be
turned into a normal form where each push operation add exactly one symbol on
the stack (this conversion is also polynomial in size). As a corollary of Theorem 9,
it has been proved that each unary pda in this form, with n states and m stack
symbols can be transformed into an equivalent 1dfa with 2O(n4m2) states [40]. In
the case of deterministic pushdown automata the upper bound has been reduced
to 2nm [38]. Since the size of a pushdown automaton in this normal form is
polynomial in n and m, it turns out that this bound is exponential in the size
of the given dpda. Furthermore, this bound cannot be significanly improved.
(An alternative proof and other results relating unary dpda with straight-line
programs have been recently obtained by Chistikov and Majumdar [2]).

In the general case, in 1966 Ginsburg and Greibach proved that each dpda of
size s accepting a regular language can be simulated by a finite automaton with
a number of states bounded by a function which is triply exponential in s [12].
The bound was reduced to a double exponential in 1975 by Valiant and it cannot
be further reduced because a matching lower bound [52,35]. In the unary case,
however, an exponential upper bound in s has been obtained. By summarizing:

Theorem 10. Let M be a unary pda with n states and a pushdown alphabet
of m symbols such that each operation can push at most one symbol on the stack.
Then M can be simulated by an equivalent 1dfa A with 2O(n4m2) states. The
number of states of A reduces to 2nm if M is deterministic.
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5 Beyond Regular Languages

In the previous sections we discussed descriptional complexity aspects of unary
finite and pushdown automata. Now, we focus on devices that, even in the unary
case, are more powerful. We are not going to consider general devices as Turing
machines, but some computational models obtained adding a few extra features
to the ones considered in previous sections. A tool that will be used in this
section is the set of powers of 2 written in unary notation, namely the language
Lp = {a2m | m ≥ 0}. Being a nonregular language, Lp cannot be accepted by
any of the devices considered in the previous sections.

Let us start by considering two extensions of pdas.
The first extension is obtained by adding a “small” worktape to those devices.

The model so obtained is called one-way auxiliary pushdown automata (1aux-
pdas, for short) [1]. The space used by those devices is measured by taking
into account only the worktape. Hence, 1aux-pdas working in space O(1) are
equivalent to pdas.

The language Lp can be recognized by a unary 1aux-pda M that in each
configuration keeps in the pushdown store and in the auxiliary tape an encoding
of the number of input symbols read so far. Given an integer m, let us consider
its binary representation. Let 0 ≤ k1 < k2 < · · · < ks be the positions of the
digit 1 (from the less significant position), namely, m = 2k1 + 2k2 + · · · + 2ks .
After reading am the auxiliary tape contains k1 written in binary, while the
pushdown store contains (from the top) an encoding of the sequence k2, . . . , ks.
It is easy to write down the operations that M has to perform, while moving
one position to the right, to get from the representation of m that of m + 1.
On input an, the maximum number that can be written on the worktape is the
position of the most significant digit in the representation of n, which is written
in binary. Hence, M uses O(log logn) space. Furthermore, M is deterministic.
This suggested the following questions:

– Is it possible to use a smaller amount of space to recognize Lp on these
devices (possibly making use also of nondeterminism)?

– Does there exist a language which is accepted in o(log logn) space but not
in O(1) space on those devices?

To answer the last question, we need to be more precise about space notions. In
fact, different space notions can be formulated (for an overview see, e.g., [32]).
Among them, strong space is defined by requiring that the space bound is sat-
isfied by all computations on each input, while weak space is defined by requir-
ing that the bound is satisfied by at least one accepting computation on each
string in the language. Brandenburg has shown that each language accepted by
a 1aux-pda in strong o(log logn) space is context-free, i.e., it is accepted in O(1)
space [1]. Hence, in the strong case the answer to both questions is negative.

For weak space, the situation is completely different. Chytil proved that for
each k ≥ 1 there exists a noncontext-free language accepted by a 1aux-pda in
weak O(log log · · · log︸ ︷︷ ︸

k times

n) space [6]. Hence, the answer to the second question is
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positive. However, the witness language is defined over a nonunary alphabet.
Hence, this does not give any answer to the first question and, in general, on the
unary case. Indeed, the result by Chytil cannot be proved with unary witnesses:
using Theorem 10, it has been shown that in the unary case 1aux-pdas working
in weak o(log logn) space are no more powerful that pdas, hence they recognize
only regular languages [40]. As a consequence, Lp is an example of nonregular
language accepted by a 1aux-pda using a minimal amount of extra space. We
believe that this language requires a minimal amount of resources even on other
computational models, as we are now going to discuss.

Another extension of pdas is obtained by allowing to move the head on both
directions on the input tape. The resulting models, two-way pushdown automata
(2pdas), are more powerful than pdas, even when restricted to a unary alphabet.
For instance the language Lp is accepted using iterated divisions by 2. To this
aim, we can define a 2pda A which, while moving the input head from left to
right, for each two input positions pushes one symbol on the stack, and while
popping symbols off the stack, for each two symbols that are removed, A moves
the input head one position to the left. At the beginning, A scans all the input
from left to right, leaving N/2 symbols on the pushdown store, where N is the
input length. If N is odd then the input is rejected. Otherwise, A makes its
pushdown store empty, while moving the input head to the left, so reaching the
cell at distance N/4 from the right end-marker and rejecting if N/2 is odd. At
this point, A starts to move the input head to the right to leave N/8 symbols
on the pushdown, and so on, representing in this way N/2k for increasing values
of k. When N/2k = 1, A stops and accepts.

The languageLp is just a very simple example of nonregular language accepted
by unary 2pdas. Actually, these devices are very powerful: as shown in 1984 by
Monien, the unary encoding of each language in P, the class of languages accepted
in polynomial time by deterministic Turing machines, is accepted by a 2pda [36].

We point out that, in the previous example, a string of length n is accepted
by reversing the direction of the input head O(log n) times. As a consequence of
a result by Liu and Weiner, it follows that if a 2pda accepts a unary language L
by reversing its input head a constant number of times, then L is regular [27].
It should be interesting to know whether or not there is a unary nonregular
language accepted by a 2pda using o(log n) reversals. In our knowledge, at the
moment this problem is open. Furthermore, unary 2pdas which can make only a
constant number of “turns” of the pushdown accept only regular languages [3].
Hence a similar problem can be formulated with respect to the number of turns
of the pushdown store. For recent results on 2pdas with restrictions on head
reversals and number of turns we address the reader to [30].

We finally consider multi-head finite automata. The language Lp can be rec-
ognized by deterministic finite automaton with 2 two-way heads. The algorithm
is very similar to the one above outlined for accepting the same language on
2pdas. We can also observe that the total number of reversals used on in-
puts of length n is O(log n). As a consequence of a result by Sudborough,
multi-head automata making a constant number of head reversals accept only
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regular languages [48]. Even in this case, we can ask about the existence of a
unary nonregular language accepted by a multi-head automaton using o(log n)
reversals. Descriptional complexity aspects of unary one-way multi-head au-
tomata have been recently studied in [23]. We point out that even adding multiple
input heads to 2pdas, if the number of reversals is constant then in the unary
case only regular languages are accepted [16].

6 Final Remarks

We presented an overview on some results related to unary automata and lan-
guages. Some of the results we mentioned (e.g., those from [27,16,48]) are more
general, taking into account semilinear sets or bounded languages. Other results
originally proved for the unary case have been generalized. We shortly mention
a few of those generalizations.

First of all, the Chrobak normal form for unary automata has been general-
ized by Kopczynski and To, providing a normal form for the representation of
semilinear subsets of Nm [22]. Lavado, Pighizzini, and Seki studied automata
determinization under Parikh equivalence, proving that for each n-state 1nfa

accepting a language L there exists a 1dfa with eΘ(
√
n·lnn) states accepting a

language L′ with the same Parikh image as L [26]. The proof makes use of the
above mentioned extension of Chrobak normal form to semilinear sets. They
also proved that for each n-variable context-free grammar in Chomsky normal
form generating a language L, there exists a 1dfa with 2O(h2) states accepting
a Parikh equivalent language L′, so extending the results discussed in Section 4.
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24. Landau, E.: Über die maximalordnung der permutation gegebenen grades. Archiv
der Mathematik und Physik 3, 92–103 (1903)

25. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen I. Teubner,
Leipzig (1909)

26. Lavado, G.J., Pighizzini, G., Seki, S.: Converting nondeterministic automata and
context-free grammars into Parikh equivalent one-way and two-way deterministic
automata. Inf. Comput. 228, 1–15 (2013)

27. Liu, L., Weiner, P.: Finite-reversal pushdown automata and semi-linear sets. In:
Proc. of Sec. Ann. Princeton Conf. on Inf. Sciences and Systems, pp. 334–338
(1968)
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Abstract. Cellular Automata (CA) as bio-inspired parallel computa-
tional models of self-reproducing organisms can capture the essential
features of systems where global behavior arises from the collective ef-
fect of simple components which interact locally. In this aspect, CAs
have been considered as a fine candidate to model pedestrian behavior
and crowd dynamics in a fine manner. In specific, for crowd modeling,
the CA models show evidence of a macroscopic nature with microscopic
extensions, i.e. they provide adequate details in the description of human
behavior and interaction, whilst they retain the computational cost at
low levels. In this paper several CA models for crowd evacuation taking
into consideration different modeling principles, like potential fields tech-
niques, obstacle avoidance, follow-the-leader principles, grouping theory,
etc. will be presented in an attempt to accomplish efficient crowd evac-
uation simulation. Moreover, an integrated system based on CAs that
operates as an anticipative crowd management tool in cases of medium
density crowd evacuation for indoor and outdoor environments is also
shown, and its results different real world cases and different environ-
ments prove its efficiency. Finally, robot guided evacuation with the help
of CAs is also presented. Quite recently, an evacuation system was pro-
posed, based on an accurate CA model capable of assessing the human
behavior during emergency situations takes advantage of the simulation
output to provide sufficient information to a mobile robotic guide, which
in turn guides people towards a less congestive exit at a time.

Keywords: Cellular Automata, Crowd Dynamics, Modeling, Simula-
tion, Hardware Implementation.

1 Introduction

When we are at a major sporting event or traveling on public transport or
shopping around in shopping precincts, our safety and comfort depend crucially
on our fellow crowd members and on the design and operation of the facility
we are in. Consequently, the need for realistic and efficient in case of emer-
gency crowd dynamics modeling approaches is of utter importance. As a result,
pedestrian dynamics have been reported following a great variety of approach-
ing methods, such as Cellular Automata (CA)-based [1], lattice-gas and social
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force models [2], fluid-dynamic [3] and agent-based [4], and methods related to
game theory [5]. All approaches can be qualitatively distinguished, focusing on
different characteristics that each of them dominantly display. In general, crowd
movement simulation models can also be categorized into macroscopic and mi-
croscopic ones. In some models, pedestrians are ideally considered as homoge-
neous individuals, whereas in others, they are treated as heterogeneous groups
with different features (e.g., gender, age, psychology). There are methods, where
collective phenomena emerge from the complex interactions among individuals
(self-organizing effects), thus describing pedestrian dynamics in a microscopic
scale. Other methods treat crowd as a whole, modeling pedestrian dynamics on
a macroscopic scale. There are models discrete in space and time and others
spatial-temporally continuous.
Moreover, crowd movement could be defined as a non linear problem with

many factors affecting it. A system of Partial Differential Equations (PDEs)
could effectively approach it. The result is a system of PDEs very difficult to
handle, which would also be demanding in terms of computer power, complexity
and computation time. CA can act as an alternative to PDEs [12]. In CA based
approach, the space under study is presented as a unified grid of cells with local
attributes, which are generated by a set of rules that describe the behavior of
the individuals. The state of each cell is defined according to the rules, the
state of the cell at the previous time step and the current state of neighboring
cells. Consequently, literature reports a variety of CA-based models investigating
crowd behavior under different circumstances [6,7].
In this paper, some CA models for the simulation of crowd dynamics are going

to be presented. In specific, a CA model based on electrostatic-induced poten-
tial, inspired by the Coulomb force as motion-driving mechanism, calculates the
Euclidean distance between the destination (source) and the pedestrian (test
charge), allowing smoother change of direction. Introducing an electric field ap-
proach, charges of different magnitude represent main or internal exits as well
as obstacles and walls [8,9,11]. A somehow different CA model also applies an
efficient method to overcome obstacles. Based on the generation of a virtual field
along obstacles, a pedestrian moves along the axis of the obstacle towards the
direction that the field increases its values, leading her/him to avoid the obstacle
effectively [13]. Moreover, a bio–inspired CA-based model for crowd dynamics
where the driving mechanism emanates from the characteristic collective behav-
ior of biological organisms (e.g. school of fishes, flock of birds, etc.) is also pre-
sented [14,15]. The adoption of a CA approach enhanced with memory capacity
allows the development of a microscopically–induced model with macroscopi-
cal characteristics. Due to the fact that in terms of simplicity, regularity, ease of
mask generation, silicon-area utilization, and locality of interconnections [10,11],
CA are the most promising computational architecture, the CA models can be
easily implemented in Field Programmable Gate Array (FPGA) Circuits leading
to support decision system for monitoring crowd dynamics in real-time, provid-
ing valuable near optimum management of crowd services. In this direction,
an anticipative crowd management system preventing clogging in exits during
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pedestrian evacuation processes based on some of the proposed CA models is
also presented. Finally, robot guided evacuation is presented [16]; namely, an
evacuation system based on an accurate CA model and capable of assessing the
human behavior during emergency situations takes advantage of the simulation
output to provide sufficient information to a mobile robotic guide, which in turn
guides people towards a less congestive exit at a time.

2 CA Models for Crowd Dynamics

CA Basics : A CA consists of a regular uniform n-dimensional lattice (or array),
usually of infinite extent. At each site of the lattice (cell), a physical quantity
takes on values. The value of this physical quantity over all the cells is the global
state of the CA, whereas the value of this quantity at each site is its local state.
A CA is characterized by five properties:

1. the number of spatial dimensions (n);
2. the width of each side of the array (w). wj is the width of the jth side of the
array, where j = 1, 2, 3, ..., n;

3. the width of the neighborhood of the cell (r);
4. the states of the CA cells;
5. the CA rule, which is an arbitrary function F .

The state of a cell, at time step (t+ 1), is computed according to F , a func-
tion of the state of this cell at time step (t) and the states of the cells in its
neighborhood at time step (t). For a 2-d CA, two neighborhoods are often con-
sidered: Von Neumann, which consists of a central cell and its four geographical
neighbors north, west, south and east; and the Moore neighborhood contains, in
addition, second nearest neighbors northeast, northwest, southeast and south-
west, i.e. nine cells. In most practical applications, when simulating a CA rule, it
is impossible to deal with an infinite lattice. The system must be finite and have
boundaries, resulting to various types of boundary conditions such as periodic
(or cyclic), fixed, adiabatic or reflection.
CA model based on electrostatic-induced potential fields: A 2-d CA
model based on electrostatic-induced potential fields was introduced to sim-
ulate efficiently crowd dynamics in the process of developing an active guid-
ing system of crowd during evacuation. Certain attributes of crowd behavior,
such as collective effects, blockings in front of exits as well as random to co-
herent motion due to a common purpose have been successfully incorporated
in the model. Motion mechanism is based on an virtual potential field gener-
ated by electric charges at selected positions that attract pedestrians towards
exit point or repel them from obstacles and walls. Assuming that each bounded
area that includes an exit corresponds to an independent level then coupling
among different fields is avoided. Efficient updating rules demonstrate global
behavioral patterns that distinctly characterize mass egress. Each pedestrian is
represented by a test charge, with such a small magnitude that when placing it at
a point has a negligible affect on the field around the point (Fig. 1). Furthermore,
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the direction towards each of pedestrians should move is precisely determined.
The model calculates the exact Euclidean distance between the destination
(source) and the pedestrian (test charge); hence it achieves advanced estima-
tion of crowd behavior. It is a field similar to an electrostatic one, described by
the equation below, though it has some differences in order to be applicable in
pedestrian motion.

�F (�r) =
q

4πεo

N∑
i=1

Qi(�r − �ri)

|�r − �ri|3
=

q

4πεo

N∑
i=1

Qi

Ri
2 R̂i = q �E(�r) (1)

In Eq. 1, Qi and �ri are the magnitude and the position of the ith charge, re-
spectively, R̂i is the unit vector in the direction of �Ri = �r − �ri, i.e. a vector
pointing from charge Qi to charge q and Ri is the magnitude of �Ri, i.e. the
distance between charges Qi and q and �E the corresponding electric field. The
unit vector in space is expressed, in Cartesian notation, as a linear combination
of i = [1; 0] and j = [0; 1] and the values of its scalar components are equal to the
cosine of the angle formed by the unit vector with the respective basis vector [8].
The force is attracting when generated by charges located at exits and repulsive
when generated by charges that represent obstacles or walls [9]. The distance
calculated is the exact Euclidean distance, thus introducing increased precision
in the model as far as the direction of pedestrian concerns [11].
In the CA grid every cell covers an extent of approximately 40× 40 cm2 [17].

Each cell corresponds to the fixed area that a person could occupy [1]. CA cells
obtain discrete values, thus indicating their status; either free or occupied. Dur-
ing each time step, the algorithm aims at the definition of the direction that an
individual should move towards to reach the closest exit trying to occupy one
of the eight possible states of its closest neighborhood (Moore). More explicitly,
according to the attracting force from the exit of the room and the repelling
forces from obstacles and walls, the coordinates of the next cell-target are cal-
culated. In case that the cell-target is free or it has not been defined as target
from another pedestrian, then the initial pedestrian moves towards. Otherwise,
the pedestrian searches for a neighboring cell equidistant from the exit with the
initial target-cell. In case that the target-cell is an exit, it is checked whether
this is free or not. Only if the exit is free does the pedestrian move towards it.
The convergence of the resultant force plays significant role on the driving mech-
anism of the model. In fact, the convergence of the resultant force upon a test
charge towards the point that the closest source is located defines the direction
of movement of each pedestrian, which is towards the closest exit (as shown in
Fig. 1(c)). More details about the mathematical calculations of the convergence
of the resultant force can be found in [11].
CA model for automated obstacle avoidance: A distinct feature of the
model is an automated, computationally fast and efficient method to enables
obstacle avoidance based on the effect of a virtual field generated near obstacles
[13]. Inside the field, a pedestrian moves towards the direction of greater field
values. Following that direction a pedestrian is enabled to overcome efficiently
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(a) (b)

(c)

Fig. 1. (a) The effect of a test charge, which represents a pedestrian, on the field around
the point and (b) the corresponding effect of an ordinary charge (right). (c) Graphical
solution of the case of the convergence of the resultant force upon a test charge.

even complex obstacles. Specifically, in the general case, obstacle field values are
increasing forming a parabola, which is described by the following equation:

F (x) =
1

2p
(x− xo)

2
, p > 0∀ ∈ {[xwl, xwr] ∩ (xA − xwl �= 0 ∪ xwr − xB �= 0)}

(2)

xo =
xB − xA

2
(3)

In eq. 2, p corresponds to the parameter of the parabola, which also defines
the distance between the two branches of the graphical representation of the
function. In fact, as 1

2p → 0, then the width of the parabola increases. Moreover,
(xA, yA), (xB , yB) represent the coordinates of the edges of the obstacle, whereas,
xwl, xwr correspond respectively to the very left and very right x -axis coordinate
of the walls. Equation 3 defines xo, which corresponds to the x -axis coordinate
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of the middle point of the obstacle. In case that the obstacle is bonded to a wall,
then the field is generated according to the common coordinate of the obstacle
and the wall, as described by eqs. 4 and 5:

xA − xwl = 0 ⇒ F (x) =
1

2p
(x− xwl)

2 (4)

xwl − xB = 0 ⇒ F (x) =
1

2p
(x− xwr)

2 (5)

The length of the obstacle is given by:

Lobstacle = xB − xA (6)

whereas the length of the area between walls is given by:

m = xwr − xwl (7)

In the case of complex obstacles the corresponding field is generated by the
superposition of fields that correspond to fundamental obstacles. Fig. 2 clarifies
the effect of the auto-defined obstacle field to the direction of pedestrian move-
ment, in correspondence to the location and the shape of the obstacle. It should
be mentioned that above mathematical presentation takes into account geomet-
rically shaped obstacles, however with slight modification can be successfully
applied to arbitrary shaped obstacles as well. More details can be found in [13].
Hardware Implementation of CA models: It should be also noticed that
the aforementioned CA model is orientated as a real-time processing module of
an embedded system that could prevent clogging in exits under emergency condi-
tions. More specifically, the initialization process could be originated along with
a detecting and tracking algorithm supported by cameras and the automatic
response of the processor provides the location of pedestrians around escape
points. Consequently, the realization of the model becomes a rational additional
step. Moreover, in terms of circuit design and layout, ease of mask generation,
silicon-area utilization and maximization of achievable clock speed CA are per-
haps the computational structures best suited for a fully parallel hardware re-
alization [10,13]. In contrast to the serial computers, the implementation of the
model is motivated by parallelism, an inherent feature of CA that contributes to
further acceleration of the model’s operation. The hardware implementation of
the presented model is based on FPGA logic (for example the schematic design
of the closest exit tracker can be seen in Fig 3. The dedicated processor could
be used as a real-time processing module of an embedded system, dedicated to
surveillance that responds fast under crowd evacuation emergency conditions.
More techical details about CA design and the target FPGA in [11].
Follow-the-Leader CA Model: Furthermore, a CA-based computational
model has been developed that simulates the movement of a crowd formed by
individuals, following some of the basic principles of flocking. The driving mech-
anism of the model is based on the acceptance that each member of the crowd
moves independently. Whenever possible, a group of individuals approaches the
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(a) (b)

(c) (d)

Fig. 2. (a) The graphical representation of the obstacle field in case that the obstacle
lays between walls. The values of the field increase in the direction from left to right for
half the length of the obstacle and the vice versa for the other half. Thus, the pedestrian
is enabled to move following the one direction or the other, as indicated by arrows. (b)
The response of the obstacle field, in case that the exit is closer to the left edge of the
obstacle (XA = Xwl). (c) The case of a vertical obstacle and the corresponding field.
(d) The case of a complex obstacle. The final field is generated by the superposition of
field cases (b) and (c).

closest exit following the shortest route. Thus, each member is supposed to have
a complete knowledge of the space topology and acts completely rational. The
model has been developed to simulate crowd movement both in 2-d and 3-d, ac-
cording to flocking principles and incorporating the Follow-the-Leader technique
[14]. Following nature’s practice, the model allows dynamical transitions of the
role of the leader among the members of the group. Particularly, in case that
a member of the group appears in front of the leader also following the same
direction of movement, then a leader’s role transition occurs. The member in
front becomes the leader, whereas the leader turns into a simple member. An
individual follows the leader until it reaches the target, e.g. the exit. Further-
more, the model enables the creation of different groups in the crowd, assigning
to each group a leader and the corresponding members. It favors the dynamic
grouping rather than the static one.
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Fig. 3. Structure of a cell of the CA grid for Euclidean based calculations

As far as the members of the group concern, their movement is defined by the
same set of rules as the one that defines the movement of individuals towards
an exit. From a mathematical point of view, the direction of movement of the
individuals relies on a potential field. It derives from the negative gradient of a
function that involves the distance (Manhattan) of each point of the area from
the position of the leader. In the case of two–dimensions, the function f(x, y) is
defined as follows:

f(x, y) = abs (x− xo) + abs (y − yo) (8)

where (xo, yo) correspond to the coordinates of the leader.
The corresponding gradient of the function f(x, y) is defined as:

(9a)−∇f(x, y) = −
(
∂f(x, y)

∂x
�i+

∂f(x, y)

∂y
�j

)

(9b)−∇f(x, y) = −
(
∂abs(x− xo)

∂x
�i+

∂abs(y − yo)

∂y
�j

)
It can be thought as a collection of vectors pointing in the direction of decreasing
values of f(x, y).
Spatially, the whole process is divided in eight subsections, i.e. for the case

that the leader moves i) downwards (y > yo), ii) upwards (y < yo), iii) to the
left (x > xo), iv) to the right (x < xo), v) downwards and to the right (y > yo)
and (x < xo), vi) downwards and to the left (y > yo) and (x > xo), vii) upwards
and to the left (y < yo) and (x > xo) and viii) upwards and to the right (y < yo)
and (x < xo), respectively. For instance, in the case that the leader moves
downwards and to the right (i.e. case (v)), the corresponding potential field that
is derived from equations 9, is depicted in Figure 4. The adoption of sectors
is based on the simple fact that even in real life bounded areas are divided to
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(a) (b)

Fig. 4. The corresponding potential field in the case that the leader is positioned at
(xo = 2, yo = −2) and moving downwards and to the right. (a) All individuals within
blue–arrows area follow the leader (red spot). Four sectors in 3–D (b) Gates placed at
the center of the internal sides of the sectors.

multiple sub-areas with their own formation and their own exits. Each sub-area
shares the same properties with the total area, thus enabling the use of the
property of the superposition. Hence, the scalability of the method is reassured,
allowing its application in more complicated areas. The movement of the leaders
through sections takes place as follows: depending on the direction of the leaders
motion, each section is supplied with two gates that the leaders use to enter the
section. The leaders move towards the exits following the same rules that the
members of the flock use to follow the leader.
The 3-d CA is defined in a cubic space, the dimensions of which are variable,

taking into consideration that each cell needs three coordinates (i, j, k) to be
properly defined. The neighborhood of each cell is shaped by its 26 closest cells,
whereas there are four (4) sectors that divide the space in four rectangular
parallelepipeds (Fig. 4a). In case that we wish to test the behavior of the model
in 3-d dimensions, the following scheme takes place; the leaders pass through the
sectors following the 1-2-3-4-1 sequence for the clockwise direction or 4-3-2-1-4
for the anti–clockwise one. Adopting similar logic as in two-dimensions, the gate
that influences one sector lies inside the following sector. The gates are placed
at the center of the internal sides of the sectors (Fig. 4b).
Different simulation processes were taken into account in order to verify the

response of the model and investigate its efficiency [14]. Particularly, these vari-
ous simulation scenarios demonstrated distinct features of crowd movement such
as flocking, increasing crowd density in turnings and crowd movement decelera-
tion as self-organized groups try to pass obstacles, transition from a random to
a coordinated motion, etc. Please also check [14],[15] for further analytical pre-
sentation of the under study simulation scenarios and the corresponding results.
Anticipative crowd management tool based on CA model : An integrated
system that operates as an anticipative crowd management tool in cases of
medium density crowd evacuation was also developed based on CA models [12].
Preliminary real data evaluation processes indicate that it responds fast in order
to prevent clogging in exits under emergency conditions. The system consists of



Cellular Automata for Crowd Dynamics 67

three modules; the detecting and tracking algorithm, the CA model of possible
route estimation and the sound and optical signals. The initialization process
is originated from the detecting and tracking algorithm, which is supported by
cameras. The automatic response of the algorithm provides the location of pedes-
trians around escape points at any time, thus providing instant initialization
data to the model of possible route estimation. However, its role is not confined
exclusively for initialization purposes. Instead, it also operates as a control and
rectifying mechanism, by checking and correcting periodically the response of the
CA dynamic model originated from electrostatic-induced potential fields. The re-
sponse of the route estimation model is compared to the output of the tracking
algorithm. In cases of large differences, the model is re-initialized according to
the current conditions of the tracking algorithm. Finally, sound and optical sig-
nals enable the system to redirect pedestrians, enhancing its effectiveness and
efficiency [12]. System operation is developed in four successive stages, setting
out with the detection and tracking of pedestrians that enable dynamic initial-
ization and continuing with the estimation of their possible route for the very
near future. Then, among all possible exit points, the most suitable is proposed
as an alternative, triggering the activation of appropriate guiding signals, sound
and optical. The criterion of suitability is the distance of the congested exit from

(a) (b)

(c) (d)

Fig. 5. (a) Initialization of the pedestrian movement model outdoor. (c) The transition
from the first stage of the anticipative system, i.e. the detection algorithm to the second
one, i.e. the crowd movement model. Red-dotted areas correspond to areas of interest
in front of exits. (b) Two successive frames displaying response of individuals during
alarm activation in a teaching room. In frame (b), people move towards exit A, not
having reached the area of surveillance yet. Alarm is activated in frame (d).
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Fig. 6. The proposed robot guided evacuation system’s architecture

an alternative one. Hence, the closest free exit is preferred. A few paradigms of
the system process for outdoor and indoor study cases are depicted in Fig. 5.
CA based Robot Crowd Evacuation : Recently, a robot guided evacuation
was proposed, to the best of our knowledge, for the first time in literature [16].
The proposed framework relies on the well established CA simulation models,
while it employs a real world evacuation implementation assisted by a mobile
robot. More specifically, the implementation of a CA model capable of assessing
the humans’behavior during evacuation occasions has been presented. Then, an
evacuation framework based on an assistant robot that deploys in emergency
situations is exhibited. The main attribute of the introduced method is the
coexistence of a discrete CA simulation model and a real wold continuous imple-
mentation combined with the development and usage of a custommade robotic
platform. Thus, the method exploits both the computational speed of the dis-
crete simulation and the added value of a real robotic implementation. Addition-
ally, the entire evacuation algorithm is accompanied by a custommade assistant
robot which attracts a group of evacuees from a congestive exit and redirects
them towards to a less crowded one. The proposed evacuation framework has
been evaluated on real world conditions and exhibited remarkable performance
in terms of speed during the evacuation proving: a) the credibility of the CA
simulation modeling and b) the necessity of an intelligent mobile aid during the
evacuation procedure.

3 Conclusions

CA have been proven quite efficient to model successfully crowd dynamics. In
this paper, several CA models and corresponding systems for crowd dynamics
were briefly presented taking into consideration different modeling principles,
like potential fields techniques, obstacle avoidance, follow the leader principles,
grouping theory, etc. Moreover, due to their inherent parallelism CA, some of
these models have been implemented in hardware and have been considered as
basis of an anticipation crowd management system which is able of preventing
clogging in exits during crowd evacuation processes. Finally, robot guided evac-
uation was presented, based on an accurate CA model capable of assessing the
human behavior during emergency situations takes advantage of the simulation
output to provide sufficient information to a mobile robotic guide, which in turn
guides people towards a less congestive exit at a time.
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Abstract. The notion of linear finite transducer (LFT) plays a crucial
role in a family of cryptosystems introduced in the 80’s and 90’s. However,
as far as we know, no study was ever conducted to count and enumerate
these transducers, which is essential to verify if the size of the key space,
of the aforementioned systems, is large enough to prevent an exhaustive
search attack. In this paper, we determine the cardinal of the equivalence
classes on the set of the LFTs with a given size. This result is sufficient
to get an approximate value, by random sampling, for the number of
non-equivalent injective LFTs, and subsequently for the size of the key
space. We introduce a notion of canonical LFT, give a method to verify
if two LFTs are equivalent, and prove that every LFT has exactly one
equivalent canonical LFT. We then show how this canonical LFT allows
us to calculate the size of each equivalence class on the set of the LFTs
with the same number of states.

1 Introduction

Transducers, in the most used sense in automata theory, are automata with
output that realise rational functions. They are widely studied in the literature,
having numerous applications to real world problems. They are essential, for
example, in language and speech processing [4].

In this work we deal only with transducers as defined by Renji Tao [7], and
our motivation comes from their application to Cryptography. According to that
definition, a transducer is a finite state sequential machine given by a quintuple
〈X ,Y, S, δ, λ〉, where: X , Y are the nonempty input and output alphabets, re-
spectively; S is the nonempty finite set of states; δ : S×X → S, λ : S×X → Y,
are the state transition and output functions, respectively. These transducers are
deterministic and can be seen as having all the states as final. Every state in S
can be used as initial, and this gives rise to a transducer in the usual sense, i.e.,
one that realises a rational function. Therefore, in what follows, a transducer is
a family of classical transducers that share the same underlying digraph.

A transducer is called linear if its transition and output functions are linear
maps. These transducers play a core role in a family of cryptosystems, named
FAPKCs, introduced in a series of papers by Tao [8,11,9,10]. Those schemes seem
to be a good alternative to the classical ones, being computationally attractive
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Fig. 1. Schematic representation of FAPKC working principle

and thus suitable for application on devices with very limited computational
resources, such as satellites, cellular phones, sensor networks, and smart cards
[9]. Roughly speaking, in these systems, the private key consists of two injective
transducers, denoted by M and N in Figure 1, where M is a linear finite trans-
ducer (LFT), and N is a non-linear finite transducer (non-LFT) of a special
kind, whose left inverses can be easily computed. The public key is the result of
applying a special product for transducers, C, to the original pair, thus obtain-
ing a non-LFT, denoted by C(M,N) in Figure 1. The crucial point is that it is
easy to obtain an inverse of C(M,N) from the inverses of its factors, M−1 and
N−1, while it is believed to be hard to find that inverse without knowing those
factors. On the other hand, the factorization of a transducer seems to be hard
by itself [12].

The LFTs in the FAPKC systems are of core importance in the invertibility
theory of finite transducers, on which part of the security of these systems relies
on [1]. They also play a crucial role in the key generation process, since in these
systems a pair (public key, private key) is formed using a LFT and two non-
LFTs, as explained above. Consequently, for these cryptosystems to be feasible,
injective LFTs have to be easy to generate, and the set of non-equivalent injective
LFTs has to be large enough to make an exhaustive search intractable.

Several studies were made on the invertibility of LFTs [5,6,13,12,3,1], and
some attacks to the FAPKC systems were presented [2,13,7]. However, as far
as we know, no study was conducted to determine the size of the key space of
these systems. To evaluate that size, one first needs to determine the number of
non-equivalent injective LFTs, the exact value of which seems to be quite hard
to obtain. In order to be able to get an approximate value, one needs to know
the different sizes of the equivalence classes. This is crucial to construct a LFT’s
uniform random generator.

In this work we describe a method to determine the sizes of those equivalence
classes. To accomplish that, a notion of canonical LFT is introduced, being
proved that each equivalence class has exactly one of these canonical LFTs.
It is also shown how to construct the equivalent canonical LFT to any LFT
in its matricial form, and, by introducing a new equivalence test for LFTs, to
enumerate and count the equivalent transducers with the same number of states.

The paper is organized as follows. In Section 2 we introduce the basic defi-
nitions. Section 3 is devoted to the equivalence test on LFTs. The concept of
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canonical LFTs is introduced in Section 4, and the results about the size of the
LFTs equivalence classes are presented in Section 5.

2 Basic Concepts

As usual, for a finite set A, we let |A| denote the cardinality of A, An be the
set of words of A with length n, where n ∈ N, and A0 = {ε}, where ε denotes
the empty word. We put A� = ∪n≥0A

n, the set of all finite words, and Aω =
{a0a1 · · · an · · · | ai ∈ A} is the set of infinite words. Finally, |α| denotes the
length of α ∈ A�.

In what follows, a finite transducer (FT) is a finite state sequential machine
which, in any given state, reads a symbol from a set X , and produces a symbol
from a set Y, and switches to another state. Thus, given an initial state and
a finite input sequence, a transducer produces an output sequence of the same
length. The formal definition of a finite transducer is the following.

Definition 1. A finite transducer is a quintuple 〈X ,Y, S, δ, λ〉, where: X is a
nonempty finite set, called the input alphabet; Y is a nonempty finite set, called
the output alphabet; S is a nonempty finite set called the set of states; δ :
S × X → S, called the state transition function; and λ : S ×X → Y, called the
output function.

Let M = 〈X ,Y, S, δ, λ〉 be a finite transducer. The state transition function δ
and the output function λ can be extended to finite words, i.e., elements of X �,
recursively, as follows:

δ(s, ε) = s δ(s, xα) = δ(δ(s, x), α)

λ(s, ε) = ε λ(s, xα) = λ(s, x) λ(δ(s, x), α),

where s ∈ S, x ∈ X , and α ∈ X �. In an analogous way, λ may be extended to
Xω.

From these definitions it follows that, for all s ∈ S, α ∈ X �, and for all
β ∈ X � ∪ Xω ,

λ(s, αβ) = λ(s, α) λ(δ(s, α), β).

The notions of equivalent states and minimal transducer considered here are
the classical ones.

Definition 2. Let M1 = 〈X ,Y1, S1, δ1, λ1〉 and M2 = 〈X ,Y2, S2, δ2, λ2〉 be two
FTs. Let s1 ∈ S1, and s2 ∈ S2. One says that s1 and s2 are equivalent, and
denote this relation by s1 ∼ s2, if

∀α ∈ X �, λ1(s1, α) = λ2(s2, α).

Definition 3. A finite tranducer is called minimal if it has no pair of equivalent
states.

We now introduce the notion of equivalent transducers used in this context.
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Definition 4. M1 and M2 are said to be equivalent, denoted by M1 ∼ M2, if
the following two conditions are satisfied:

∀s1 ∈ S1, ∃s2 ∈ S2 : s1 ∼ s2 and ∀s2 ∈ S2, ∃s1 ∈ S1 : s1 ∼ s2.

This relation ∼ defines an equivalence relation on the set of FTs.

Definition 5. Let M1 = 〈X ,Y, S1, δ1, λ1〉 and M2 = 〈X ,Y, S2, δ2, λ2〉 be two
FTs. M1 and M2 are said to be isomorphic if there exists a bijective map ψ from
S1 onto S2 such that

ψ(δ1(s1, x)) = δ2(ψ(s1), x)

λ1(s1, x) = λ2(ψ(s1), x)

for all s1 ∈ S1, and for all x ∈ X. The map ψ is called an isomorphism from
M1 to M2.

Finally, we give the definition of linear finite transducer (LFT).

Definition 6. If X ,Y and S are vector spaces over a field F, and both δ : S ×
X → S and λ : S × X → Y are linear maps, then M = 〈X ,Y, S, δ, λ〉 is called
linear over F, and we say that dim(S) is the size of M .

Let L be the set of LFTs over F, and Ln the set of the transducers in L with
size n. The restriction of ∼ to L is also represented by ∼, and the restriction to
Ln is denoted by ∼n.

Definition 7. Let M1 and M2 be two LFTs. M1 and M2 are said to be similar
if there is a linear isomorphism from M1 to M2.

LetM = 〈X ,Y, S, δ, λ〉 be a LFT over a field F. If X ,Y, and S have dimensions
l, m and n, respectively, then there exist matrices A ∈ Mn,n(F), B ∈ Mn,l(F),
C ∈ Mm,n(F), and D ∈Mm,l(F), such that

δ(s, x) = As+Bx,

λ(s, x) = Cs+Dx,

for all s ∈ S, x ∈ X . The matrices A,B,C,D are called the structural matrices
of M , and l,m, n are called its structural parameters. Notice that if M1 and M2

are two equivalent LFTs with structural parameters l1,m1, n1 and l2,m2, n2,
respectively, then, from the definition of equivalent transducers, one has l1 = l2
and m1 = m2.

A LFT such that C is the null matrix (with the adequate dimensions) is called
trivial.

One can associate to a LFT, M , with structural matrices A,B,C,D, a family
of matrices which are very important in the study of its equivalence class, as will
be clear throughout this paper.
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Definition 8. Let M ∈ Ln with structural matrices A,B,C,D. The matrix

Δ
(k)
M =

⎡⎢⎢⎢⎣
C
CA
...

CAk−1

⎤⎥⎥⎥⎦
is called the k-diagnostic matrix of M , where k ∈ N ∪ {∞}.

The matrix Δ
(n)
M will be simply denoted by ΔM and will be referred to as the

diagnostic matrix of M . The matrix Δ
(2n)
M will be denoted by Δ̂M and called

the augmented diagnostic matrix of M .

Definition 9. Let V be a k-dimensional vector subspace of Fn, where F is a
field. The unique basis {b1, b2, . . . , bk} of V such that the matrix [b1 b2 · · · bk]

T

is in row echelon form will be here referred to as the standard basis of V .

3 Testing the Equivalence of LFTs

Let M = 〈X ,Y, S, δ, λ〉 be a LFT over a field F with structural matrices A, B,
C, D. Starting at a state s0 and reading an input sequence x0x1x2 . . ., one gets
a sequence of states s0s1s2 . . . and a sequence of outputs y0y1y2 . . . satisfying the
relations

st+1 = δ(st, xt) = Ast +Bxt,

yt = λ(st, xt) = Cst +Dxt,

for all t ≥ 0. The following result is then easily proven by induction [7, Theorem
1.3.1].

Theorem 1. For a LFT as above, si+1 = Ais0 +
∑i−1

j=0 A
i−j−1Bxj , and yi =

CAis0 +
∑i

j=0 Hi−jxj, for i ∈ {0, 1, . . .}, where H0 = D, and Hj = CAj−1B,
j > 0.

Tao, in his book, presents the following necessary and sufficient condition, the
only one known so far, for the equivalence of two states of LFTs [7, Theorem
1.3.3]:

Theorem 2. Let M1 = 〈X ,Y1, S1, δ1, λ1〉 and M2 = 〈X ,Y2, S2, δ2, λ2〉 be two
LFTs. Let s1 ∈ S1, and s2 ∈ S2. Then, s1 ∼ s2 if and only if the null states of
M1 and M2 are equivalent, and λ1(s1, 0

ω) = λ2(s2, 0
ω).

And, as a consequence, he also presents a necessary and sufficient condition
for the equivalence of two LFTs [7, Theorem 1.3.3]:

Corollary 1. Let M1 and M2 be two LFTs. Then, M1 ∼ M2 if and only if their
null states are equivalent, and {λ1(s1, 0

ω) | s1 ∈ S1} = {λ2(s2, 0
ω) | s2 ∈ S2}.
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However, both conditions cannot be checked efficiently, since they involve
working with infinite words. In this section, we explain how they can be reduced
to a couple of conditions that can effectively be verified. These new results will be
essential in Section 5 to compute the sizes of the equivalence classes in Ln/∼n.

The following two Lemmas, which play an important role in the proofs of
the subsequent results, are immediate consequences of the basic fact that right
multiplication performs linear combinations on the columns of a matrix.

Lemma 1. Let A ∈ Mm×k, and B ∈ Mm×l. Then, rank([A|B]) = rank(A) if
and only if there X ∈ Mk×l such that B = AX.

Lemma 2. Let A,B ∈ Mm×k. Then, rank(A) = rank([A|B]) = rank(B) if and
only if there is an invertible matrix X ∈ Mk×k such that B = AX.

For the remainder of this Section, let M1,M2 be two LFTs with structural
matrices A1, B1, C1, D1, and A2, B2, C2, D2 respectively. Let l1,m1, n1 be the
structural parameters of M1, and l2,m2, n2 be the structural parameters of M2.

To simplify the notation, take Δ̃1 = Δ
(n1+n2)
M1

and Δ̃2 = Δ
(n1+n2)
M2

.

Lemma 3. Let s1 ∈ S1 and s2 ∈ S2. Then, λ1(s1, 0
ω) = λ2(s2, 0

ω) if and only
if Δ̃1s1 = Δ̃2s2.

Proof. From Theorem 1, one has that λ1(s1, 0
ω) = λ2(s2, 0

ω) if and only if
C1A

i
1s1 = C2A

i
2s2, for i ≥ 0. Let p1 be the characteristic polynomial of A1, and

p2 the characteristic polynomial of A2. Then, p1 and p2 are monic polynomials
of order n1 and n2, respectively. Moreover, by the Cayley-Hamilton theorem,
p1(A1) = p2(A2) = 0. Thus, p = p1p2 is a monic polynomial of order n1 + n2

such that p(A1) = p(A2) = 0. Therefore An1+n2+k
1 and An1+n2+k

2 , with k ≥ 0,
are linear combinations of lower powers of A1 and A2, respectively, with the
same coefficients. Consequently, C1A

i
1s1 = C2A

i
2s2 for i ≥ 0 is equivalent to

C1A
i
1s1 = C2A

i
2s2 for i = 0, 1, . . . , n1 + n2 − 1, and the result follows. ��

The next result states that the (n1+n2)-diagnostic matrices of two equivalent
LFTs, of sizes n1 and n2, can be used to verify if two of their states are equivalent.
It follows from the previous Lemma, and from the fact that if M1 ∼ M2 then,
by Theorem 2, s1 ∼ s2 if and only if λ1(s1, 0

ω) = λ2(s2, 0
ω).

Theorem 3. Let s1 ∈ S1 and s2 ∈ S2. If M1 ∼ M2, then s1 ∼ s2 if and only if
Δ̃1s1 = Δ̃2s2.

Corollary 2. Let M be a LFT, and s1, s2 ∈ M . Then, s1 ∼ s2 if and only if
ΔMs1 = ΔMs2.

Proof. From the last Theorem, s1 ∼ s2 if and only if Δ̂Ms1 = Δ̂Ms2, that is, if
and only if CAis1 = CAis2, for i = 0, 1, . . . , 2n−1. Since the minimal polynomial
of A has, at most, degree n, this latter condition is equivalent to CAis1 = CAis2,
for i = 0, 1, . . . , n− 1. Thus, s1 ∼ s2 if and only if ΔMs1 = ΔMs2. ��
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Corollary 3. Let M be a LFT over a field F. Then M is minimal if and only
if rank(ΔM ) = size(M).

Proof. It is enough to notice that the linear application ϕ : S/∼ → Fnm defined
by ϕ ([ s ]∼) = ΔMs is well-defined and injective, by the previous Corollary. ��

The following theorem gives a pair of conditions that have to be satisfied for
two LFTs to be equivalent.

Theorem 4. For LFTs M1 and M2 as above, M1 ∼ M2 if and only if the
following two conditions are simultaneously verified:

1. rank(Δ̃1) = rank([Δ̃1 | Δ̃2]) = rank(Δ̃2);
2. D1 = D2 and Δ̃1B1 = Δ̃2B2.

Proof. From Corollary 1 one has that M1 ∼ M2 if and only if the null states of
M1 and M2 are equivalent, and {λ1(s1, 0

ω) | s1 ∈ S1} = {λ2(s2, 0
ω) | s2 ∈ S2}.

The null states of M1 and M2 are equivalent if and only if ∀α ∈ X �, λ1(0, α) =

λ2(0, α). By Theorem 1, this is equivalent to:
∑i

j=0 Hi−jxj =
∑i

j=0 H
′
i−jxj , i

= 0, 1, . . . , |α|, where α = x0x1 · · ·x|α| ∈ X �, H0 = D1, H
′
0 = D2 and Hj =

C1A
j−1
1 B1, H ′

j = C2A
j−1
2 B2 , for j > 0. That is, ∀x0, x1, · · · , x|α| ∈ X the

following equations are simultaneously satisfied:

D1x0 = D2x0

D1x1 + C1B1x0 = D2x1 + C2B2x0

D1x2 + C1B1x1 + C1A1B1x0 = D2x2 + C2B2x1 + C2A2B2x0

...

D1x|α| + · · ·+ C1A
(|α|−1)
1 B1x0 = D2x|α| + · · ·+ C2A

(|α|−1)
2 B2x0.

Using the characteristic polynomials of A1 and A2, as in the proof of Lemma 3,
one sees that when |α| ≥ u the equations after the first u of them are implied
by the previous ones. From the arbitrariness of α, it then follows that system is
satisfied if and only if D1 = D2 and Δ̃1B1 = Δ̃2B2.

From Lemma 3, one has that {λ1(s1, 0
ω) | s1 ∈ S1} = {λ2(s2, 0

ω) | s2 ∈ S2}
if and only if {Δ̃1s1 | s1 ∈ S1} = {Δ̃2s2 | s2 ∈ S2}. This means that the
column space of Δ̃1 is equal to the column space of Δ̃2, which is true if and
only if there exist matrices X,Y such that Δ̃2 = Δ̃1X and Δ̃1 = Δ̃2Y . But,
from Lemma 1, this happens if and only if rank(Δ̃1) = rank([Δ̃1 | Δ̃2]) and
rank(Δ̃2) = rank([Δ̃1 | Δ̃2]). ��

Using the conditions in the previous result, it is not hard to write an algorithm
to test the equivalence of two LFTs. The running time of such an algorithm will
be of the same order as the running time of well known algorithms to compute
the rank of a matrix.

Corollary 4. M1 ∼ M2 implies D1 = D2.
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It is important to recall, at this moment, that the size of an LFT is the only
structural parameter that can vary between transducers of the same equivalence
class in L/∼. Moreover, the size of an LFT of an equivalence class [M ]∼, can
never be smaller than rank(ΔM ′), where M ′ is a minimal transducer in [M ]∼.
These facts will be important in Section 5.

The following Corollary is a direct consequence of Lemma 2 and of the first
point of Theorem 4.

Corollary 5. If n = n1 = n2, S1 = S2, and M1 ∼ M2, then there is an
invertible matrix X ∈Mn×n such that Δ̂M2 = Δ̂M1X.

4 Canonical LFTs

In this section we prove that every equivalence class in L/∼ has one and only one
LFT that satisfies a certain condition1. We also prove that, given the structural
matrices of a LFT, M , one can identify and construct the transducer in [M ]∼
that satisfies that aforesaid condition. LFTs that satisfy that condition are what
we call canonical LFTs.

Lemma 4. Let M ∈ Ln with structural matrices A, B, C, D. Then,

rank(Δ
(k)
M ) = rank(ΔM ), ∀k ≥ n.

Proof. The degree of the minimal polynomial of A is at most n, and so the
matrices CAk, for k ≥ n, are linear combinations of C,CA1, · · · , CAn−1. ��

The following result shows that if two minimal LFTs, with the same set of
states, are equivalent, then the two vector spaces generated by the columns of
their diagnostic matrices are equal.

Corollary 6. Let M1 = 〈X ,Y, S, δ1, λ1〉 and M2 = 〈X ,Y, S, δ2, λ2〉 be two min-
imal LFT such that M1 ∼ M2. Then, {ΔM1s | s ∈ S} = {ΔM2s | s ∈ S}.

Proof. If M1 ∼ M2, then {λ1(s, 0
ω) | s ∈ S} = {λ2(s, 0

ω) | s ∈ S}, by Corol-

lary 1. That is, {Δ(∞)
M1

s | s ∈ S} = {Δ(∞)
M2

s | s ∈ S}. Since M1 and M2 are
minimal, from Lemma 4 and Corollary 3 one concludes that {ΔM1s | s ∈ S} =
{ΔM2s | s ∈ S}. ��

If M is a minimal LFT, then the columns of ΔM form a basis of the space
{ΔMs | s ∈ S}. Therefore, if M1 and M2 are minimal and equivalent, there is an
invertible matrix X (with adequate dimensions) such that ΔM1X = ΔM2 . Note
that this condition, here obtained for minimal transducers, is less demanding
than the one we have in Corollary 5.

The next result, together with its proof, gives a way to generate LFTs in
[M ]∼, where M is a LFT defined by its structural matrices.

1 The equivalence classes formed by trivial LFTs are excluded.
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Lemma 5. Let M1 = 〈X ,Y, S, δ1, λ1〉 be a non-trivial LFT. Let ψ : S → S be a
vector space isomorphism. Then, there is exactly one LFT M2 = 〈X ,Y, S, δ2, λ2〉
such that ψ is a linear isomorphism from M1 to M2. Moreover, M1 is minimal
if and only if M2 is minimal.

Proof. Let P be the matrix of ψ relative to the standard basis. From its definition
ψ is an isomorphism between M1 and M2 if and only the conditions mentioned
in Section 2 are satisfied. Let x = 0 and s1 ∈ S. From the first condition, one
gets

ψ(δ1(s1, 0)) = δ2(ψ(s1), 0) ⇔ PA1s1 = A2Ps1 ⇔ (PA1 −A2P )s1 = 0.

From the arbitrariness of s1, this is equivalent to PA1 − A2P = 0. Since P is
invertible, one gets A2 = PA1P

−1. The second condition yields

λ1(s1, 0) = λ2(ψ(s1), 0) ⇔ C1s1 = C2Ps1 ⇔ (C1 − C2P )s1 = 0.

Again, from the arbitrariness of s1, this is equivalent to C1 − C2P = 0. Thus,
C2 = C1P

−1.
Now, let s1 = 0 and x ∈ X . Using a similar method, one gets B2 = PB1 and

D1 = D2. Hence, the transducer M2 satisfying the conditions of the theorem is
uniquely determined by ψ. It is then easy to see that the transducer given by
the structural matrices A2 = PA1P

−1, B2 = PB1, C2 = C1P
−1, and D2 = D1

is such that ψ is a linear isomorphism from M1 to M2.
Since M1 and M2 are isomorphic, they are equivalent. Therefore, M1 is mini-

mal if and only if M2 is minimal. ��

Recalling that GLn(F) denotes the set of n × n invertible matrices over the
field F, one has:

Corollary 7. Let M ∈ Ln be a non-trivial minimal LFT over a finite field F.
Then, the number of minimal LFTs in [M ]∼ is |GLn(F)|.

Moreover, from the proof of Lemma 5, one gets that, given an invertible
matrix X , there is exactly one minimal transducer in [M ]∼ which has ΔMX
as diagnostic matrix. The same is not true if M is not minimal, as it will be
shown in the next section. The aforementioned proof also gives an explicit way
to obtain that transducer from the structural matrices of M .

Proposition 1. Let M1 = 〈X ,Y, S, δ1, λ1〉 be a LFT. Let ψ : S → S be a vector
space isomorphism. Let M2 be the LFT constructed from M1 and ψ(s) = Ps as
described in the proof of the last Theorem. Then, ΔM1s = ΔM2ψ(s).

Proof. Let s ∈ S, then

ΔM2ψ(s) =

⎡⎢⎢⎢⎣
C1P

−1

C1A1P
−1

...
C1A

n−1
1 P−1

⎤⎥⎥⎥⎦Ps =

⎡⎢⎢⎢⎣
C1

C1A1

...
C1A

n−1
1

⎤⎥⎥⎥⎦ s = ΔM1s.

��
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The next Theorem gives the condition that was promised at the beginning of
this section.

Theorem 5. Every non-trivial equivalence class in L/∼ has exactly one LFT
M = 〈X ,Y, S, δ, λ〉 which satisfies the condition that {ΔMe1, ΔMe2, · · · , ΔMen}
is the standard basis of {ΔMs | s ∈ S}, where {e1, e2, · · · , en} is the standard
basis of S.

Proof. Given the structural matrices of a LFT, Tao shows [7, Theorem 1.3.4]
how to compute an equivalent minimal LFT. This implies, in particular, that
every LFT is equivalent to a minimal LFT. Thus, to get the result here claimed,
it is enough to prove that if M1 = 〈X ,Y, S, δ1, λ1〉 is a non-trivial minimal LFT,
then M1 is equivalent to exactly one finite transducer M2 = 〈X ,Y, S, δ2, λ2〉 such
that {ΔM2e1, ΔM2e2, . . . , ΔM2en} is the standard basis of {ΔM1s | s ∈ S}. First,
let us notice that, since M1 is minimal, ΔM1 is left invertible, and consequently
s is uniquely determined by ΔM1s. Let B = {b1, b2, · · · , bn} be the standard
basis of {ΔM1s | s ∈ S}. Let si be the unique vector in S such that bi = ΔM1si,
for i = 1, 2, . . . , n. Let ψ : S → S be defined by ψ(si) = ei. Then ψ is a
vector space isomorphism. Let M2 be the LFT constructed from M1 and ψ as
described in the proof of Lemma 5. Then, M2 ∼ M1 and M2 is minimal, which,
by Corollary 6, implies {ΔM2s | s ∈ S} = {ΔM1s | s ∈ S}. From Proposition 1
one also has ΔM2ei = ΔM2ψ(si) = ΔM1si = bi, for i = 1, 2, · · · , n. Therefore,
{ΔM2e1, ΔM2e2, . . . , ΔM2en} is the standard basis of {ΔM1s | s ∈ S}. The
uniqueness easily follows from the fact that all choices made are unique. ��

Finally we can state the definition of canonical LFT here considered.

Definition 10. Let M = 〈X ,Y, S, δ, λ〉 be a linear finite transducer. One says
that M is a canonical LFT if {ΔMe1, ΔMe2, · · · , ΔMen} is the standard basis
of {ΔMs | s ∈ S}, where {e1, e2, · · · , en} is the standard basis of S.

The proofs of Theorem 5 and Lemma 5 show that given the structural matrices
of a LFT, M , one can identify and construct the canonical transducer in [M ]∼.

5 On the Size of Equivalence Classes of LFTs

In what follows we only consider LFTs defined over finite fields with q elements,
Fq, because these are the ones commonly used in Cryptography.

In this section we explore how the size of the equivalence classes in Ln/∼n

varies with the size n. Given a minimal LFT M1 in Ln1 , our aim is to count the
number of transducers in Ln2 , with n2 ≥ n1, that are equivalent to M1.

The following result shows that given M1 ∈ Ln1 , one can easily construct an
equivalent transducer in Ln2 , for any n2 ≥ n1, which can then be used to count
the number of transducers in Ln2 that are equivalent to M1, as well as the size
of the equivalence classes in S.
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Proposition 2. Let M1 be the LFT over Fq with structural matrices A1, B1,
C1, D1, and structural parameters l,m, n1. Let n

′ ∈ N, and M2 be the LFT with
structural matrices

A2 =

[
A1 0n1×n′

0n′×n1 0n′×n′

]
, B2 =

[
B1

0n′×l

]
, C2 =

[
C1 0m×n′

]
, and D2 = D1.

Then, M1 ∼ M2. The structural parameters of M2 are l,m, n2, where n2 =
n1 + n′.

Proof. Take u = n1+n2. Notice that C2A
i
2 = [C1A

i
1 0m×n′ ], for i = 0, 1, . . . , u−

1. That is, Δ
(u)
M2

= [Δ
(u)
M1

0um×n′ ]. The result is then trivial by Theorem 4. ��

The next result counts the number of LFTs in Ln2 that are equivalent to M2,
where M2 is the LFT defined from M1 as described in Proposition 2. Because
M1 ∼ M2, this yields the number of LFTs in Ln2 that are equivalent to M1.

Theorem 6. Let M1 be a minimal LFT in Ln1 with structural matrices A1,
B1, C1, D1, and structural parameters l,m, n1. Let M2 be the LFT described in
Proposition 2. The number of finite transducers M ∈ Ln2 which are equivalent
to M2 is (qn2 − 1)(qn2 − q) · · · (qn2 − qr−1)q(n2+l)(n2−r), where r = rank(Δ̂M2).

Proof. The theorem follows from the next three facts, that we will prove in the
remaining of this section.

1. For all matrices Δ1, Δ2 ∈ {Δ̂M | M ∈ Ln2 and M ∼ M2}, the number
of LFTs that are equivalent to M2 and have Δ1 as augmented diagnostic
matrix is equal to the number of LFTs that are equivalent to M2 and have
Δ2 as augmented diagnostic matrix.

2. The number of LFTs equivalent to M2 and have Δ̂M2 as augmented diag-
nostic matrix is q(n2+l)(n2−r), with r = rank(Δ̂M2).

3. The size of {Δ̂M | M ∈ Ln2 and M ∼ M2} is (qn2−1)(qn2−2) · · · (qn2−qr−1),
with r = rank(Δ̂M2).

��

From Corollary 5, if two LFTs M and M ′ are equivalent, there is an invertible
matrixX such thatΔM ′ = ΔMX . The first of the above items is then an instance
of the following result.

Theorem 7. Let M ∈ Ln. Let SΔ = {M ′ ∈ Ln | M ′ ∼ M and Δ̂M ′ = Δ}.
Then, for every X ∈ GLn(Fq), |SΔ̂M

| = |SΔ̂MX |.

Proof. Let f : SΔM → SΔMX such that f(M) = M ′, where M ′ is the transducer
defined by the matrices A′ = X−1AX , B′ = X−1B, C′ = CX and D′ = D.
It is straightforward to see that Δ̂M ′ = Δ̂MX , and that the application f is
bijective. ��
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To prove item 2, let us count the number of transducers M ∈ Ln2 that are
equivalent to M2 and have Δ̂M2 as augmented diagnostic matrix. One has to
count the possible choices for the structural matrices A, B, C and D, of M , that
satisfy the condition 2 of Theorem 4, and Δ̂M2 = Δ̂M (which implies condition
1). The choice for D is obvious and unique from condition 2, as well as the
choice for C (from condition Δ̂M2 = Δ̂M ). How many choices does one have for
A such that the condition Δ̂M2 = Δ̂M is satisfied? And, how many choices for
B such that Δ̂M2 = Δ̂M and the second condition is satisfied, i.e., such that
Δ̂MB2 = Δ̂MB? The following result gives the number of possible choices for A,
and the proof gives the form of these matrices.

Theorem 8. Let M1 be a minimal LFT in Ln1 with structural matrices A1,
B1, C1, D1, and M2 the LFT described in Proposition 2. There are exactly

qn2(n2−rank(ΔM2 )) matrices A ∈ Mn2×n2(Fq) such that C2A
i
2 = C2A

i, for i =
0, 1, · · · , 2n2 − 1.

Proof. Let A ∈Mn2×n2(Fq) be such that C2A
i
2 = C2A

i, for i = 0, 1, . . . , 2n2−1.
Then, C2A

i
2 = C2A

i−1
2 A, for i = 0, 1, . . . , 2n2 − 1.

Take A =

[
E1 E2

E3 E4

]
, with E1 ∈ Mn1×n1(Fq), E2 ∈ Mn1×n′(Fq), E3 ∈

Mn′×n1(Fq), E4 ∈Mn′×n′(Fq), and n′ = n2−n1. Then, from C2A
i
2 = C2A

i−1
2 A,

for i ∈ {1, . . . , 2n2− 1}, one gets that
[
C1A

i
1 0m×n′

]
=

[
C1A

i−1
1 E1 C1A

i−1
1 E2

]
,

for i ∈ {1, . . . , 2n2 − 1}, i.e., C1A
i
1 = C1A

i−1
1 E1, and C1A

i−1
1 E2 = 0, for

i ∈ {1, . . . , 2n2 − 1}. This is equivalent to Δ
(2n2−1)
M1

A1 = Δ
(2n2−1)
M1

E1, and

Δ
(2n2−1)
M1

E1 = 0, or Δ
(2n2−1)
M1

(A1 − E1) = 0 and Δ
(2n2−1)
M1

E1 = 0. Since M1

is minimal, by Lemma 4 and Corollary 3, rank(Δ
(2n2−1)
M1

) = rank(ΔM1) = n1 =

number of columns of Δ
(2n2−1)
M1

. Therefore, E1 = A1 and E2 = 0. Consequently,

any matrix A with the same first n1 rows as A2 satisfies C2A
i
2 = C2A

i, for
i = 0, 1, . . . , 2n2 − 2, and those matrices A are the only ones that satisfy condi-
tion 2. Because the last n2−n1 rows of A can be arbitrarily chosen, and A has n2

columns, one gets that there are qn2(n2−n1) matrices A that satisfy the required
conditions. Since n1 = rank(ΔM1) = rank(ΔM2 ) (because M1 is minimal, and
M1 ∼ M2), the result follows. ��

Now, for each matrix A such that Δ̂M2 = Δ̂M , i.e., C2A
i
2 = C2A

i , for
i = 0, 1, . . . , 2n2 − 1, one wants to count the number of matrices B that satisfy
Δ̂MB2 = Δ̂MB, that is, satisfy C2A

iB2 = C2A
iB , for i = 0, 1, . . . , 2n2 − 1.

Theorem 9. Let M1 be a minimal LFT with structural matrices A1, B1, C1,
D1, and structural parameters l,m, n1. Let M2 be the LFT described in Proposi-

tion 2. Given a matrix A such that Δ̂M2 = Δ̂M , there are exactly ql(n2−rank(ΔM2 ))

matrices B ∈ Mn2×l(Fq) such that C2A
iB2 = C2A

iB for i = 0, 1, · · · , 2n2 − 1.

Proof. Let A be a matrix such that Δ̂M2 = Δ̂M , and B such that Δ̂MB2 = Δ̂MB.
Then, Δ̂M2B2 = Δ̂M2B. Consequently, ΔM2B2 = ΔM2B, which is equivalent to
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ΔM2(B2 − B) = 0. Since B has n2 rows, one concludes that there are exactly
n2 − rank(ΔM2 ) rows in B whose entries can be arbitrarily chosen to have a
solution of ΔM2(B2 − B) = 0. Therefore, and since B has l columns, there are

ql(n2−rank(ΔM2 )) matrices B that satisfy condition 2 of Theorem 4. ��
From this one concludes that the number of transducers in Ln2 that are equiv-

alent to M2 and that have the same augmented diagnostic matrix is q(n2+l)(n2−r),
where r = rank(Δ̂M2 ), which proves item 2. Item 3 is covered by the following
two results together with Corollary 5.

Theorem 10. Let A ∈ Mm×n(Fq) such that rank(A) �= n. Then, the num-
ber of matrices X ∈ GLn(Fq) such that AX = A is (qn − qrank(A))(qn −
qrank(A)+1) · · · (qn − qn−1). If rank(A) = n, only the identity matrix satisfies
this condition.

Proof. Let X ∈ GLn(Fq) be such that AX = A. Then, there are n − rank(A)
rows in X whose entries can be arbitrarily chosen to have a solution of AX = A.
But, since X has to be invertible, one has qn−qrank(A) possibilities for the “first”
of those rows, qn − qrank(A)+1 for the “second”, qn − qrank(A)+2 for the “third”,
and so on. Therefore, there are (qn − qrank(A))(qn − qrank(A)+1) · · · (qn − qn−1)
matrices X that satisfy the required condition. ��

The following result is a direct consequence of the previous Theorem and the
size of GLn(Fq).

Corollary 8. Let A ∈ Mm×n(Fq). Then, the number of matrices of the form
AX, where X ∈ GLn(Fq) is (qn − 1)(qn − q) · · · (qn − qrank(A)−1).

Since augmented diagnostic matrices of LFTs in the same equivalence class
have the same rank, Theorem 6 can be generalized to:

Corollary 9. Let M be a LFT with structural parameters l,m,n. Then

|[M ]∼n | = (qn − 1) (qn − q) · · ·
(
qn − qr−1

)
q(n+l)(n−r), where r = rank (ΔM ) .

Given the structural matrices of a LFT, the last Corollary gives a formula to
compute the number of equivalent LFTs with the same size.

6 Conclusion

We presented a way to compute the number of equivalent LFTs with the same
size, by introducing a canonial form for LFTs and a method to test LFTs equiv-
alence. This is essencial to have a LFT uniform random generator, and to get
an approximate value for the number of non-equivalent injective LFTs, which is
indispensable to evaluate the key space of the FAPKC systems.

In future work we plan to use the results in the last section to deduced a
recurrence relation that gives the number of non-equivalent LFTs of a given size.
This, together with the approximate value for the number of non-equivalent
injective LFTs, will allow us to verify if random generation of LFTs is a feasible
option to generate keys.
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Abstract. We consider the model of one-way automata with quantum
and classical states (qcfas) introduced in [23]. We show, by a direct
approach, that qcfas with isolated cut-point accept regular languages
only, thus characterizing their computational power. Moreover, we give
a size lower bound for qcfas accepting regular languages, and we explic-
itly build qcfas accepting the word quotients and inverse homomorphic
images of languages accepted by given qcfas with isolated cut-point,
maintaining the same cut-point, isolation, and polynomially increasing
the size.

Keywords: quantum automata, regular languages, descriptional com-
plexity.

1 Introduction

Since we can hardly expect to see a full-featured quantum computer in the
near future, it is natural to investigate the simplest and most restricted model
of computation where the quantum paradigm outperforms the classical one.
Classically, one of the simplest model of computation is a finite automaton.
Thus, quantum finite automata (qfas) are introduced and investigated by several
authors.

Originally, two models of qfas are proposed: measure-once qfas [9,16], where
the probability of accepting words is evaluated by “observing” just once, at
the end of input processing, and measure-many qfas [13], having such an ob-
servation performed after each move. Several variations of these two models,
motivated by different possible physical realizations, are then proposed. Thus,
e.g., enhanced [19], reversible [10], Latvian [1], and measure-only qfas [6] are
introduced. Results in the literature (see, e.g., [1,3,15]) show that all these mod-
els of qfas are strictly less powerful than deterministic finite automata (dfas),
although retaining a higher descriptional power (i.e., they can be significantly
smaller than equivalent classical devices).

To enhance the low computational power of these “purely quantum” sys-
tems, hybrid models featuring both a quantum and a classical component are

� Partially supported byMIUR under the project “PRIN: Automi e Linguaggi Formali:
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M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 84–97, 2014.
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studied. Examples of such hybrid systems are qfas with open time evolution
(gqfas) [11,14], qfas with control language (qfcs) [3,17], and qfas with quan-
tum and classical states (qcfas) [23], this latter model being the one-way re-
striction of the model introduced in [2]. It is proved that the class of languages
accepted with isolated cut-point by gqfas and qfcs coincides with the class of
regular languages, while for qcfas it is only known that they can simulate dfas.
A relevant feature of these hybrid models is that they can naturally and directly
simulate several variants of qfas by preserving the size. This property makes
each of them a good candidate as a general unifying framework within which to
investigate size results for different quantum paradigms [4,5,8,18].

In this paper, we focus on the model of qcfas. We completely characterize
their computational power and study some descriptional complexity issues. It
may be interesting to point out that the relevant difference between qfcs and
qcfas rely in the communication policy between the two internal components:
in qcfas a two-way information exchange between the classical and quantum
parts is established, while in qfcs only the quantum component affects the
dynamic of the classical one. Here, by a direct approach, we show that the
two-way communication is not more powerful than one-way communication. In
fact, we prove that qcfas accept with isolated cut-point regular languages only
(exactly as qfcs), thus characterizing their computational power. We obtain this
result by studying properties of formal power series associated with qcfas.

We continue the investigations on qcfas by studying their descriptional power.
Our approach for proving regularity of languages accepted with isolated cut-
point by qcfas enables us to give a lower bound for the size complexity of
qcfas, which is logarithmic in the size of equivalent dfas, in analogy with
qfcs [7]. Next, we study the size cost of implementing some language opera-
tions on qcfas. Results for Boolean operations are provided in [23]. Here, we
explicitly construct qcfas accepting word quotients and inverse homomorphic
images of languages accepted by given qcfas with isolated cut-point, maintain-
ing the same cut-point, isolation, and polynomially increasing the size. For other
types of qfas, these two latter operations are investigated, e.g., in [1,17].

2 Preliminaries

2.1 Linear Algebra

We quickly recall some notions of linear algebra, useful to describe the quan-
tum world. For more details, we refer the reader to, e.g., [22]. The fields of real
and complex numbers are denoted by R and C, respectively. Given a complex
number z = a + ib, we denote its conjugate by z∗ = a − ib and its modulus by
|z| =

√
zz∗. We let Cn×m and Cn (shorthand for C1×n) denote, respectively, the

set of n×mmatrices and n-dimensional row vectors with entries in C. We denote
by [0]n×m ([0]n) the zero matrix in Cn×m (Cn×n). The identity matrix in Cn×n

is denoted by In. We let 0n (1n) be the zero vector (the vector of all ones) in Cn.
When the dimension is clear from the context, we simply write [0], I, 0, and 1.
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We let ej = (0, . . . , 0, 1, 0, . . . , 0) be the characteristic vector having 1 in its jth
component and 0 elsewhere. Given a vector ϕ ∈ Cn, we denote by (ϕ)j ∈ C its
jth component.

Given a matrix M ∈ Cn×m, we let Mij denote its (i, j)th entry. The transpose
of M is the matrix MT ∈ Cm×n satisfying MT

ij = Mji, while we let M∗ be the

matrix satisfying M∗
ij = (Mij)

∗. The adjoint of M is the matrix M † = (MT )
∗
.

For matrices A,B ∈ Cn×m, their sum is the n×m matrix (A+B)ij = Aij+Bij .
For matrices C ∈ Cn×m and D ∈ Cm×r, their product is the n × r matrix
(CD)ij =

∑m
k=1 CikDkj . For matrices A ∈ Cn×m and B ∈ Cp×q, their direct

sum and Kronecker (or tensor or direct) product are the (n+ p)× (m+ q) and
np×mq matrices defined, respectively, as

A⊕B =

(
A [0]
[0] B

)
, A⊗B =

⎛⎜⎝A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

⎞⎟⎠ .

When operations can be performed, we have that (A⊗B) · (C⊗D) = AC⊗BD
and (A⊕B) · (C ⊕D) = AC⊕BD. For vectors ϕ ∈ Cn and ψ ∈ Cm, their direct
sum is the vector ϕ⊕ ψ = (ϕ1, . . . , ϕn, ψ1, . . . , ψm) ∈ Cn+m.

A Hilbert space of dimension n is the linear space Cn of n-dimensional complex
row vectors equipped with sum and product by elements in C, in which the inner
product 〈ϕ, ψ〉 = ϕψ† is defined, for ϕ, ψ ∈ Cn. The norm of a vector ϕ ∈ Cn

is given by ‖ϕ‖ =
√
〈ϕ, ϕ〉. If 〈ϕ, ψ〉 = 0 (and ‖ϕ‖ = 1 = ‖ψ‖), than ϕ and ψ

are orthogonal (orthonormal). Two subspaces X,Y ⊆ Cn are orthogonal if any
vector in X is orthogonal to any vector in Y . In this case, we denote by X � Y
the linear space generated by X ∪Y . For vectors ϕ and ψ, ‖ϕ⊗ ψ‖ = ‖ϕ‖ · ‖ψ‖.

A matrix M ∈ Cn×n is said to be unitary whenever MM † = I = M †M .
Equivalently, M is unitary if and only if it preserves the norm, i.e., ‖ϕM‖ = ‖ϕ‖
for any ϕ ∈ Cn. It is easy to see that, given two unitary matrices A and B, the
matrices A⊕B, A⊗B, and AB are unitary as well.

A matrix H ∈ Cn×n is said to be Hermitian (or self-adjoint) whenever
H = H†. A matrix P ∈ Cn×n is a projector if and only if P is Hermitian
and idempotent, i.e., P 2 = P . Given the Hermitian matrix H , let c1, . . . , cs be
its eigenvalues and E1, . . . , Es the corresponding eigenspaces. It is well known
that each eigenvalue ck is real, that Ei is orthogonal to Ej for i �= j, and
that E1 � · · · � Es = Cn. Thus, every vector ϕ ∈ Cn can be uniquely decom-
posed as ϕ = ϕ1 + · · · + ϕs for unique ϕj ∈ Ej . The linear transformation
ϕ $→ ϕj is the projector P (cj) onto the subspace Ej . Actually, the Hermi-
tian matrix H is biunivocally determined by its eigenvalues and projectors as
H =

∑s
i=1 ciP (ci). We note that {P (c1), . . . , P (cs)} is a complete set of mutu-

ally orthogonal projectors, i.e.,
∑s

i=1 P (ci) = I and P (ci)P (cj)
† = [0] for i �= j.

For the Hermitian matrix H =
∑s

i=1 ciP (ci), we define the circulant matrix
built on P (c1), . . . , P (cs) as
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Ξ(H) =

⎛⎜⎜⎜⎝
P (c1) P (c2) · · · P (cs)
P (c2) P (c3) · · · P (c1)

...
...

. . .
...

P (cs) P (c1) · · · P (cs−1)

⎞⎟⎟⎟⎠ .

The following lemma will be useful later:

Lemma 1. Given a Hermitian matrix H, the matrix Ξ(H) is unitary.

2.2 Languages and Formal Power Series

We assume familiarity with basics in formal language theory (see, e.g., [12]). The
set of all words (including the empty word ε) over a finite alphabet Σ is denoted
by Σ∗. For a word ω ∈ Σ∗, we let: |ω| denote its length, ωi its ith symbol,
ω[j] = ω1ω2 · · ·ωj its prefix of length 0 ≤ j ≤ |ω| with ω[0] = ε. For any n ≥ 0,
we let Σn = {ω ∈ Σ∗ | |ω| = n}.

For a language L ⊆ Σ∗ and two words v, w ∈ Σ∗, the word quotient of L
with respect to v, w is the language v−1Lw−1 = {x ∈ Σ∗ | vxw ∈ L}. For two
alphabets Σ,Δ, a language L ⊆ Δ∗, and a homomorphism φ : Σ∗ → Δ∗, the in-
verse homomorphic image of L is the language φ−1(L) = {x ∈ Σ∗ | φ(x) ∈ L}.
For a word y ∈ Δ∗, we set φ−1(y) = {x ∈ Σ∗ | φ(x) = y}. Thus, we have
φ−1(L) =

⋃
y∈L φ−1(y).

A formal power series (in noncommuting variables) with coefficients in C is
any function ρ :Σ∗ → C, usually expressed by the formal sum ρ =

∑
ω∈Σ∗ ρ(ω)ω.

We denote by C〈〈Σ〉〉 the set of formal power series ρ : Σ∗ → C. An important
subclass of C〈〈Σ〉〉 is the class CRat〈〈Σ〉〉 of rational series [20].

One among possible characterizations of CRat〈〈Σ〉〉 is given by the notion of
linear representation. A linear representation of dimension m of a formal power
series ρ ∈ C〈〈Σ〉〉 is a triple (π, {A(σ)}σ∈Σ , η), with π, η ∈ Cm and A(σ) ∈ Cm×m,
such that, for any ω ∈ Σ∗, we have

ρ(ω) = πA(ω)η† = π

⎛⎝ |ω|∏
i=1

A(ωi)

⎞⎠ η†.

In [21], it is shown that a formal power series is rational if and only if it has a
linear representation (of finite dimension).

Given a real valued ρ ∈ C〈〈Σ〉〉 (i.e., with ρ(ω) ∈ R, for any ω ∈ Σ∗) and a
real cut-point λ, the language defined by ρ with cut-point λ is defined as the set

Lρ,λ = {ω ∈ Σ∗ | ρ(ω) > λ}.

The cut-point λ is said to be isolated if there exists a positive real δ such that
|ρ(ω)− λ| > δ, for any ω ∈ Σ∗.

We call bounded series any ρ ∈ CRat〈〈Σ〉〉 admitting a linear representation
(π, {A(σ)}σ∈Σ , η) such that ‖πA(ω)‖ ≤ K, for a fixed positive constant K and
every ω ∈ Σ∗. In [3], it is proved the following
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Theorem 1. Let ρ ∈ CRat〈〈Σ〉〉 be a real valued bounded series defining the
language Lρ,λ with isolated cut-point λ. Then, Lρ,λ is a regular language.

2.3 Finite Automata

A deterministic finite automaton (dfa) is a 5-tuple D = 〈S,Σ, τ, s1, F 〉, where S
is the finite set of states, Σ the finite input alphabet, s1 ∈ S the initial state,
F ⊆ S the set of accepting states, and τ : S ×Σ → S is the transition function.
An input word is accepted by D if the induced computation starting from the
initial state ends in some accepting state after consuming the whole input. The
set LD of all words accepted by D is called the accepted language. A linear rep-
resentation for the dfa D is the 3-tuple (α, {M(σ)}σ∈Σ , β), where α ∈ {0, 1}|S|

is the characteristic row vector of the initial state, M(σ) ∈ {0, 1}|S|×|S| is the
boolean transition matrix satisfying (M(σ))ij = 1 if and only if τ(si, σ) = sj ,
and β ∈ {0, 1}|S|×1 is the characteristic column vector of the final states. The
accepted language can now be defined as LD = {ω ∈ Σ∗ | αM(ω)β = 1}, where
we let M(ω) =

∏|ω|
i=1 M(ωi).

We introduce the model of a finite automaton with quantum and classical
states [23]. In what follows, we denote by U(Cn) (O(Cn)) the set of unitary
(Hermitian) matrices on Cn. As we will see, unitary matrices describe the evo-
lution of the quantum component of the automaton, while Hermitian matrices
represent observables to be measured.

Definition 1. A one-way finite automaton with quantum and classical states
(qcfa) is formally defined by the 9-tuple A = 〈Q,S,Σ, Υ,Θ, τ, π1, s1, F 〉, where:

– Q is the finite set of orthonormal quantum basis states for the Hilbert space
C|Q| within which the quantum states are represented as vectors of norm 1,

– S is the finite set of classical states,
– Σ is the finite input alphabet; its extension by a right endmarker symbol

� �∈ Σ defines the tape alphabet Γ = Σ ∪ {�},
– π1 ∈ C|Q| is the initial quantum state, satisfying ‖π1‖ = 1,
– s1 ∈ S is the initial classical state,
– F ⊆ S is the set of classical accepting states,
– Υ : S × Γ → U(C|Q|) is the mapping assigning, according to the current

classical state and scanned tape symbol, a unitary transformation defining
the evolution of the quantum state,

– Θ : S × Γ → O(C|Q|) is the mapping assigning, according to the current
classical state and scanned tape symbol, a Hermitian matrix defining the
observable to be measured on the quantum state,

– τ : S×Γ×C → S is the mapping defining the next classical state as a function
of the current classical state, scanned tape symbol, and measurement outcome
from a set C.

When addressing the size, we say that the qcfa A in Definition 1 has |Q| quan-
tum basis states and |S| classical states.
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Let us now explain in details how A works. Given an input word ω ∈ Σ∗,
we let w = ω� be the associated tape word to be processed by A. At any time
along the computation on w, the quantum state of A is represented by a vector
π ∈ C|Q| with ‖π‖ = 1, while its classical state is an element from S. The
computation starts in the quantum state π1, in the classical state s1, and by
scanning w1. Then, the transformations associated with symbols in w are applied
in succession. Precisely, the transformation associated with a state s ∈ S and a
tape symbol γ ∈ Γ consists of three steps:

– First: the unitary transformation Υ (s, γ) is applied to the current quantum
state π, yielding the new quantum state π′ = πΥ (s, γ).

– Second: the observable Θ(s, γ) =
∑m

i=1 ciP (s, γ)(ci) is measured on π′,
leading to one among the possible measurement outcomes from the set
C(s, γ) = {c1, . . . , cm}. According to quantum mechanics principles, the out-

come ci is returned with probability pi = ‖π′P (s, γ)(ci)‖2, and correspond-
ingly the quantum state π′ collapses to the quantum state π′P (s, σ)(ci)/

√
pi.

– Third: the current classical state s switches to τ(s, γ, ci), and the tape
symbol γ is consumed.

The input word ω is accepted by A if the classical state reached after processing
the right endmarker � of the corresponding tape word w is an accepting state,
i.e., it belongs to F . Otherwise, ω is rejected. Clearly, accepting ω takes place
with a certain probability we are now going to explicate.

Let C =
⋃

s∈S, γ∈Γ C(s, γ) be the set of measurement outcomes of all observ-
ables associated with A. Indeed, in a standard fashion, we can define τ∗ as the
extension to

⋃
i≥0(S × Γ i × Ci) of the classical evolution τ : S × Γ × C → S.

More precisely, for any s ∈ S, w ∈ Γn, y ∈ Cn, we let

τ∗(s, ε, ε) = s, and
τ∗(s, w[j], y[j]) = τ(τ∗(s, w[j − 1], y[j − 1]), wj , yj) for 1 ≤ j ≤ n.

So, for a tape word w = ω� ∈ Σn−1�, the probability that A accepts the corre-
sponding input word ω can be written as

EA(ω) =
∑

{y ∈ Cn | τ∗(s1, w, y) ∈ F} ‖π1A(w, y)‖2 , with (1)

A(w, y) =

n∏
i=1

Υ (τ∗(s1, w[i − 1], y[i− 1]), wi)P (τ∗(s1, w[i − 1], y[i− 1]), wi)(yi)

and the convention that P (s, γ)(c) = [0] whenever c /∈ C(s, γ). We maintain this
convention throughout the rest of the paper. The function EA : Σ∗ → [0, 1] is
usually known as the stochastic event induced by A. We notice that, in principle,
A may exhibit a nonzero probability of accepting non well-formed inputs, i.e.,
words in Γ ∗ \ Σ∗�. However, it is easy to see that, by augmenting the classical
component with two new states, we can obtain a qcfa behaving as A on words in
Σ∗� and rejecting with certainty words in Γ ∗\Σ∗�. So, without loss of generality,
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throughout the rest of the paper, we will always be assuming the qcfa A to have
this latter behavior.

We let ρA ∈ C〈〈Γ 〉〉, the real valued formal power series associated with A,
be defined as ρA(ω�) = EA(ω) for every ω ∈ Σ∗, and yielding 0 on words in
Γ ∗ \Σ∗�. The language accepted by A with cut-point λ is defined to be the set

LA,λ = (LρA,λ)�
−1 = {ω ∈ Σ∗ | EA(ω) > λ}.

As for formal power series, the cut-point λ is said to be isolated if there exists
a positive real δ such that |EA(ω) − λ| > δ, for any ω ∈ Σ∗. Acceptance with
δ-isolated λ = 1/2 is also known in the literature as bounded error acceptance
with error probability 1/2− δ. It may be verified that, by adding one quantum
basis state, isolated cut-point acceptance may be turned into bounded error
acceptance.

As a final observation, we note that, for the model of qcfa in Definition 1,
acceptance is determined by accepting states in the classical component. Al-
ternatively, acceptance could be settled in the quantum component through an
accepting/rejecting outcome of the measurement on �. These two models of ac-
ceptance are actually equivalent.

3 Characterizing the Power of qcfas

The fact that any regular language can be accepted by a qcfa comes trivially,
due to the presence of the classical component (see [23] for formal details). Here,
we focus on the converse, and show that the language accepted by any qcfa A
with isolated cut-point is regular. To this aim, we prove that the associated
formal power series ρA is bounded rational, and so we can apply Theorem 1. This
direct approach also enables us to state a size lower bound for qcfas accepting
regular languages with isolated cut-point.

Consider a qcfa A = 〈Q,S = {s1, . . . , sk}, Σ, Υ,Θ, τ, π1, s1, F 〉, with q quan-
tum basis states, k classical states, and C =

⋃
s∈S,γ∈Γ C(s, γ) the set of all

possible measurement outcomes. We let the linear representation of the classi-
cal component be the 3-tuple 〈α, {T (γ, c)}γ∈Γ,c∈C, β〉, where α = e1 ∈ {0, 1}k

is the characteristic vector of the initial state s1, β ∈ {0, 1}k is the character-

istic vector of the set F of accepting states, and T (γ, c) =
∑k

i=1 e
T
i ⊗ enext(i),

with next(i) = j ⇔ sj = τ(si, γ, c), is the k × k transition matrix on γ ∈ Γ ,
c ∈ C induced by τ . Moreover, we let D(si, γ, c) = eTi ⊗ enext(i) be the k × k
matrix T (γ, c) “restricted” to the ith row.

We let the 3-tuple Li(A) = 〈ϕ1, {M(γ)}γ∈Γ , η〉, with ϕ1∈ Cq2k, η ∈{0, 1}q
2k
,

and M(γ) ∈ Cq2k×q2k, be defined as:

– ϕ1 = α⊗ π1 ⊗ π∗
1 ,

– M(γ) =
∑

s∈S, c∈C D(s, γ, c)⊗ Υ (s, γ)P (s, γ)(c)⊗ Υ ∗(s, γ)P ∗(s, γ)(c),

– η =
∑q

j=1 β ⊗ ej ⊗ ej .
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We are going to prove that Li(A) is a linear representation of the formal power
series ρA, meaning that ρA is rational, as pointed out in Section 2.2.

We begin by the following lemma which, very roughly speaking, says that
a state vector of Li(A) “embodies” the evolution of the classical part of A in
its first components (namely, by the operator T (w, y) below), while the others
account for the dynamics of the quantum part (by the operator A(w, y)):

Lemma 2. For any w ∈ Γn and y ∈ Cn, we let M(w) =
∏n

i=1 M(wi) and
T (w, y) =

∏n
i=1 T (wi, yi). Then, for any two vectors v1, v2 ∈ Cq, we have

(α⊗ v1 ⊗ v∗2)M(w) =
∑
y∈Cn

αT (w, y)⊗ v1 A(w, y) ⊗ (v2 A(w, y))∗ .

This enables us to state

Theorem 2. Given a qcfa A, the associated formal power series ρA is rational.

Proof. It suffices to show that Li(A) = 〈ϕ1, {M(γ)}γ∈Γ , η〉 is a linear represen-
tation for ρA, i.e.:

ρA(w) = ϕ1M(w) η†, for any w ∈ Γn.

Indeed, by Lemma 2, we have

ϕ1M(w) η =

⎛⎝ ∑
y∈Cn

αT (w, y)⊗ π1 A(w, y)⊗ (π1 A(w, y))∗

⎞⎠ ·
q∑

j=1

β† ⊗ ej
† ⊗ ej

†

=
∑
y∈Cn

αT (w, y)β† ·
q∑

j=1

∣∣∣(π1 A(w, y))j

∣∣∣2
=

∑
{y ∈ Cn | τ∗(s1, w, y) ∈ F} ‖π1A(w, y)‖2 ,

which, according to (1), is EA(ω) if w = ω� ∈ Σn−1�, and 0 otherwise. ��

To show boundedness of ρA, we need a generalization of Lemma 1 in [3]:

Lemma 3. For a given n ≥ 0, let {U(y[i − 1]) | y ∈ Cn, 1 ≤ i ≤ n} be a set
of unitary matrices, and {R(y[i − 1])(yi) | y ∈ Cn, 1 ≤ i ≤ n} a set of matrices
such that, for any 0 ≤ i ≤ n − 1 and any word ŷ ∈ Ci, the nonzero matrices in
the set {R(ŷ)(c) | c ∈ C} define an observable (i.e., they form a complete set of
mutually orthogonal projectors). Then, for any complex vector π, we get

∑
y∈Cn

∥∥∥∥∥π
n∏

i=1

U(y[i− 1])R(y[i− 1])(yi)

∥∥∥∥∥
2

= ‖π‖2. (2)

We are now ready to prove boundedness of the series associated with qcfas:

Theorem 3. Given a qcfa A, the associated formal power series ρA is bounded.
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Proof. Consider the linear representation Li(A) = 〈ϕ1, {M(γ)}γ∈Γ , η〉 of ρA. We
show that, for any w ∈ Γn, we get ‖ϕ1M(w)‖ ≤ 1. Indeed, we have

‖ϕ1M(w)‖ =

∥∥∥∥∥∥
∑
y∈Cn

αT (w, y) ⊗ (π1A(w, y)) ⊗ (π1A(w, y))
∗

∥∥∥∥∥∥ (by Lemma 2)

≤
∑
y∈Cn

‖αT (w, y)‖ · ‖π1A(w, y)‖2 (by triangular inequality)

=
∑
y∈Cn

‖π1A(w, y)‖2 = ‖π1‖2 = 1 (by Lemma 3 on A(w, y)).

��

In conclusion, we get our main result

Theorem 4. The class of languages accepted by qcfas with isolated cut-point
coincides with the class of regular languages.

Proof. As observed at the beginning of this section, qcfas accept all regular
languages. For the converse, Theorems 1, 2, and 3 ensures that, for any qcfa A
and any isolated cut-point λ, the language LρA,λ is regular. This, together with
the fact that regular languages are closed under word quotient, clearly implies
that LA,λ = (LρA,λ)�

−1 is regular. ��

A natural question arising from Theorem 4 is the size-cost of converting a given
qcfa A into a language-equivalent dfa. Starting from the linear representation
Li(A) which has dimension q2k, we can apply the Rabin-like technique presented
in [7] to get an equivalent dfa whose number of states is bounded as:

Theorem 5. For any qcfa A with q quantum basis states, k classical states,
and δ-isolated cut-point λ, there exists a m-state dfa accepting LA,λ, with

m ≤
(
1 +

4
√
qk

δ

)q2k

.

We quickly point out that this result can be used “the other way around”, to
get a size lower bound for qcfas accepting regular languages, namely: any qcfa

with q quantum states, k classical states, and δ-isolated cut point accepting a
regular language whose minimal dfa has μ states, must satisfy

qk ≥
(

log(μ)

log(5/δ)

) 4
9

.

The optimality of such lower bound is an open problem. As a partial answer,
we can immediately state that the optimal lower bound cannot be raised to
ω(log(μ)), since an asymptotically optimal lower bound of log(μ)/(2 log(1+2/δ))
is obtained in [5] for measure-once quantum automata, which are easily simu-
lated by qcfas with the same number of quantum basis states and 3 classical
states [23].
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4 Size-Cost of Language Operations on qcfas

By the characterization in the previous section, we immediately get that the
class of languages accepted by qcfas with isolated cut-point is closed under
word quotients and inverse homomorphic images. Here, we are going to explicitly
construct qcfas that accept word quotients and inverse homomorphic images of
regular languages defined by qcfas. This allows us to study the cost, in terms
of quantum basis states and classical states, of implementing such operations on
qcfas.

It is well known that on dfas both word quotients and inverse homomor-
phisms can be easily implemented without increasing the number of states. Here,
we perform such operations on qcfas by polynomially increasing the size and
preserving cut-point and isolation.

We begin by approaching the construction of qcfas for word quotients. We
construct qcfas for accepting σ−1L and Lσ−1, for given σ ∈ Σ and a lan-
guage L ⊆ Σ∗ accepted by a qcfa with isolated cut-point. By iterating these
constructions, one obtains a qcfa for v−1Lw−1, for given v, w∈Σ∗.

Theorem 6. Let L ⊆ Σ∗ be a language accepted with δ-isolated cut-point λ by
a qcfa A with q quantum basis states and k classical states. Then, for any given
σ0 ∈ Σ, there exists a qcfa B with at most q2 quantum basis states and k + 1
classical states that accepts σ−1

0 L with δ-isolated cut-point λ.

Proof. Let the qcfa A= 〈Q,S,Σ, Υ,Θ, τ, π0, s0, F 〉. To avoid too heavy techni-
calities, we assume that all observables associated with A exhibit the same set
C = {c0, . . . , ch−1} of outcomes. So, for any s ∈ S and σ ∈ Σ ∪ {�}, we have

Θ(s, σ) =
∑h−1

j=0 cjP (s, σ)(cj). However, our technique can be easily adapted to
the general case.

We construct the qcfa B = 〈Q̂, S ∪ {ŝ0}, Σ, Υ̂ , Θ̂, τ̂ , π̂0, ŝ0, F 〉 such that:

– Q̂ =
{
ej ⊗ π | π ∈ Q, ej ∈ Ch, 1 ≤ j ≤ h

}
,

– π̂0 =
⊕h−1

j=0 π0Υ (s0, σ0)P (s0, σ0)(cj),

– for s ∈ S and σ ∈ Σ ∪ {�}, we set Υ̂ (s, σ) =
⊕h−1

j=0 Υ (s, σ), and Υ̂ (ŝ0, σ) =⊕h−1
j=0 Υ (τ(s0, σ0, cj), σ),

– for s ∈ S∪{ŝ0} and σ ∈ Σ∪{�}, we set Θ̂(s, σ)=
∑h−1

j=0

∑h−1
i=0 ĉi,jP̂ (s, σ)(ĉi,j),

with P̂ (s, σ)(ĉi,j) = [0](j−1)q⊕P (slj , σ)(ci)⊕ [0](h−j)q and slj = τ(s0, σ0, cj)

if s = ŝ0, otherwise slj = s. We let Ĉ = {ĉi,j | 0 ≤ i, j ≤ h− 1} be the set
of the outcomes of all observables associated with B,

– for s ∈ S and σ ∈ Σ∪{�}, we set τ̂ (s, σ, ĉi,j) = τ(s, σ, ci), and τ̂ (ŝ0, σ, ĉi,j) =
τ∗(s0, σ0σ, cjci).

We describe intuitively how the qcfa B on input ω� mimics the computation
of A on input σ0ω�. The initial quantum state π̂0 consists of h blocks. Each
one represents the unitary evolution of A on σ0 from states π0 and s0, followed
by one among the h projections associated with the observable Θ(s0, σ0). Upon
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reading the first input symbol, B implements in the jth block the evolution
in A associated with the classical state τ(s0, σ0, cj) and symbol ω1, followed
by a measurement yielding the result ĉi,j . Such a measurement simulates the
outcome sequence cjci possibly obtained in A while processing the input prefix
σ0ω1. From ω2 on, the computation of A is simulated in the jth block, in which
an outcome ĉi,j corresponds to the outcome ci in A. One may verify that the
probability that B accepts ω coincides with the probability that A accepts σ0ω.
Clearly, B has k + 1 classical states and hq ≤ q2 quantum basis states. ��

Theorem 7. Let L ⊆ Σ∗ be a language accepted with δ-isolated cut-point λ
by a qcfa A with q quantum basis states and k classical states. Then, for any
given σ0 ∈ Σ, there exists a qcfa B with at most q2 quantum basis states and
k classical states that accepts Lσ−1

0 with δ-isolated cut-point λ.

Proof. Let the qcfa A = 〈Q,S,Σ, Υ,Θ, τ, π0, s0, F 〉. As in the previous proof,

all the observables of A are assumed of the form Θ(s, σ) =
∑h−1

j=0 cjP (s, σ)(cj).

We construct the qcfa B = 〈Q̂, S,Σ, Υ̂ , Θ̂, τ̂ , π̂0, s0, F 〉 such that:

– Q̂ =
{
ej ⊗ π | π ∈ Q, ej ∈ Ch, 1 ≤ j ≤ h

}
,

– π̂0 = π0 ⊕ 0q(h−1),

– for s ∈ S and σ ∈ Σ, we set Υ̂ (s, σ) = Υ (s, σ) ⊕ Iq(h−1), and Υ̂ (s, �) =(⊕h−1
j=0 Υ (s, σ0)

)
·Ξ(Θ(s, σ0)) ·

(⊕h−1
j=0 Υ (τ(s, σ0, cj), �)

)
, where Ξ(Θ(s, σ0))

is the unitary circulant matrix addressed in Lemma 1.
– for s ∈ S and σ ∈ Σ ∪ {�}, we set Θ̂(s, σ) =

∑h−1
j=0

∑h−1
i=0 ĉi,jP̂ (s, σ)(ĉi,j),

with P̂ (s, σ)(ĉi,j) = [0](j−1)q ⊕P (slj , σ)(ci)⊕ [0](h−j)q and slj = τ(s, σ0, cj)

if σ = �, otherwise slj = s. We let Ĉ = {ĉi,j | 0 ≤ i, j ≤ h− 1} be the set
of the outcomes of all observables associated with B,

– for s ∈ S and σ ∈ Σ, we set τ̂ (s, σ, ĉi,j) = τ(s, σ, ci) and τ̂ (s, �, ĉi,j) =
τ∗(s, σ0�, cjci).

The initial quantum state π̂0 consists of h blocks, all being zero blocks except
the first being π0. On the symbols of the tape word ω� preceding the endmarker,
B implements in the first block the same computation as A, leading to a state
vector π′ ⊕ 0q(h−1). Upon reading �, the application of the operator Υ̂ (s, �) has
the effect of storing the vector π′Υ (s, σ0)P (s, σ0)(cj)Υ (τ(s, σ0, cj), �) in the jth
block. Moreover, the outcome ĉi,j of the measurement on � in B corresponds
to the outcome sequence cjci possibly obtained in A while processing the input
suffix σ0�. Clearly, the probability that B accepts ω coincides with the probability
that A accepts ωσ0. The number of classical states in B remains k, while the
number of quantum states is hq ≤ q2. ��

Let us now focus on constructing qcfas for inverse homomorphic images. We
recall that a homomorphism φ : Σ∗ → Δ∗ of a free monoid into another is
entirely defined by the image of each symbol in Σ.

Theorem 8. Let L ⊆ Σ∗ be a language accepted with δ-isolated cut-point λ by a
qcfa A with q quantum basis states and k classical states. Then, for any given
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homomorphism φ : Σ → Δ∗, with m = max {|φ(σ)| | σ ∈ Σ}, there exists a
qcfa B with at most qm+1 quantum basis states and qmk classical states that
accepts φ−1(L) with δ-isolated cut-point λ.

Proof. For reader’s ease of mind, we exhibit our construction for a homomor-
phism φ : {a, b} → {α, β}∗ defined as φ(a) = αβ and φ(b) = β, so that m = 2.
Yet, we consider the language L to be accepted by a qcfa A with binary ob-
servables. These assumptions do not substantially affect the generality of our
construction. So, let the qcfa A = 〈Q,S, {α, β}, Υ, Θ, τ, π0, s0, F 〉, where all ob-
servables are assumed to have the form Θ(s, σ) = 0 · P (s, σ)(0) + 1 · P (s, σ)(1)
and hence with C = {0, 1} as set of outcomes.

We construct the qcfa B = 〈Q̂, Ŝ, {a, b}, Υ̂ , Θ̂, τ̂ , π̂0, (s0, 0), F̂ 〉 such that:

– Q̂ =
{
ej ⊗ π | π ∈ Q, ej ∈ C4, 1 ≤ j ≤ 4

}
,

– Ŝ = {(s, j) | s ∈ S, 0 ≤ j ≤ 3},
– π̂0 = π0 ⊕ 03q,

– for (s, 0) ∈ Ŝ, we set Υ̂ ((s, 0), a) =

(
A0 A1

A1 A0

)
·
(
B0 [0]
[0] B1

)
, where

Ai = Υ (s, α)P (s, α)(i) ⊕ Υ (s, α)P (s, α)(i),

Bi =

(
Υ (τ(s, α, i), β)P (τ(s, α, i), β)(0) Υ (τ(s, α, i), β)P (τ(s, α, i), β)(1)
Υ (τ(s, α, i), β)P (τ(s, α, i), β)(1) Υ (τ(s, α, i), β)P (τ(s, α, i), β)(0)

)
,

and Υ̂ ((s, 0), b) = C ⊕ C, where

C =

(
Υ (s, β)P (s, β)(0) Υ (s, β)P (s, β)(1)
Υ (s, β)P (s, β)(1) Υ (s, β)P (s, β)(0)

)
;

for (s, j) ∈ Ŝ with j �= 0, we set

Υ̂ ((s, j), a) = Πj · Υ̂ ((s, 0), a), Υ̂ ((s, j), b) = Πj · Υ̂ ((s, 0), b),

where Π =

⎛⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎠ ⊗ Iq is the circular block permutation matrix,

– for (s, j) ∈ Ŝ and σ ∈ {a, b}, we set Θ̂((s, j), σ) =
∑3

i=0 ci·[0]iq⊕Iq⊕[0](3−i)q,

– for (s, j)∈ Ŝ and 0 ≤ i ≤ 3, we set τ̂((s, j), a, ci)=(τ∗(s, αβ, bin2(i)), i), and
τ̂ ((s, j), b, ci) = (τ∗(s, β, bin1(i)), i), where bin2(i) is the binary representa-
tion of i on 2 bits, while bin1(i) = 0−1bin2(i) ∪ 1−1bin2(i),

– F̂ = {(s, j) ∈ Ŝ | s ∈ F}.

The evolution matrices of the qcfa B can be regarded as block matrices with
blocks of dimension q × q. For 0 ≤ i, j ≤ 3, the (i, j)th block of Υ̂ ((s, i), a) is
Υ (s, α)P (s, α)(j1)Υ (τ(s, α, j1), β)P (τ(s, α, j1), β)(j2) with j1j2 = bin2(j), while
the (i, j)th block of Υ̂ ((s, i), b) is Υ (s, α)P (s, α)(j) for j = 0, 1, and is [0]q for j =
2, 3. Analogously, π̂0 consists of 4 blocks, all being zero blocks except the first
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being π0. On reading a (b), the evolution matrix in B simulates the sequence
of evolutions and measurements of A while processing αβ (β), and stores each
possible resulting quantum state in each block. Then, the observable acts on the
jth block, and the outcome cj represents the outcome sequence bin2(j) (bin1(j);
notice that the possible outcomes of the measurements on b are only c0 and c1)
in A. At any time, only one block of the quantum state of B is nonzero. This
information is encoded in the classical state so that the evolution matrix in B
selected by the classical state always stores in the jth block the result of the
simulation of A for the outcome sequence bin2(j) (bin1(j)). The function τ̂
mimics the transition function τ in the state first component, and stores in the
second component the index of the nonzero block of the quantum state of B. One
may verify that the probability that B accepts ω coincides with the probability
that A accepts φ−1(ω). The number of classical states is 22k = |C|mk ≤ qmk,
while the number of quantum basis states is 22q = |C|mq ≤ qm+1. ��
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Abstract. We continue the study of the shuffle of individual words, and
the problem of decomposing a finite automaton into the shuffle on words.
There is a known polynomial time algorithm to decide whether the shuffle
of two words is a subset of the language accepted by a deterministic
finite automaton [5]. In this paper, we consider the converse problem
of determining whether or not the language accepted by a deterministic
finite automaton is a subset of the shuffle of two words. We provide a
polynomial time algorithm to decide whether the language accepted by a
deterministic finite automaton is a subset of the shuffle of two words, for
the special case when the skeletons of the two words are of fixed length.
Therefore, for this special case, we can decide equality in polynomial time
as well. However, we then show that this problem is coNP-Complete in
general, as conjectured in [2].

1 Introduction

The shuffle operation (denoted by here) on words describes the set of all
words that can be obtained by interleaving the letters of the operands in all
possible ways, such that the order of the letters of each operand is preserved
(the operation can then be extended to languages). There have been a number
of theoretical results and algorithms involving shuffle such as [10] which showed
that the so-called shuffle languages obtained from finite languages via union,
concatenation, Kleene star, shuffle and shuffle closure, are in P. In [12], it is
shown that given a word w, and n other words, it is NP-Complete to decide if
w is in the shuffle of the n words.

Despite the length of time since the operator was introduced [7], there remains
a number of standard formal language theoretic questions involving shuffle that
are unsolved. For example, there is a long-standing open problem as to whether
it is decidable to decompose an arbitrary regular language into the shuffle of
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two languages. Certain special cases are known to be decidable however, such
as for commutative regular languages and locally testable languages, while it is
undecidable for context-free languages [6].

Indeed, even the special case of the shuffle of individual words, rather than
sets of words, has received considerable attention but there remains a number
of yet unsolved problems. In [1], it is shown that the shuffle of individual words
(with at least two letters) has a unique shuffle decomposition over words. That
result was extended in [3] to show that the shuffle of two words (each with at
least two letters) has a unique shuffle decomposition over arbitrary sets.

However, the complexity of taking a language as input, and determining if
it has a decomposition into the shuffle of two words, remains an open question
(which also depends on the method that the language uses as input). Despite
this, in [5], it is shown that if a language accepted by a deterministic finite
automaton (DFA) M has a decomposition into words, there is an algorithm
that finds the unique decomposition into words in time linear in the lengths
of the words (sublinear in the size of the automaton). However, if the input
automaton is not decomposable, the algorithm cannot always determine that it
is not decomposable, but will instead in those cases output two strings u and
v, despite L(M) not having any shuffle decomposition. As the algorithm does
not have knowledge regarding whether L(M) has a decomposition, one could
take the output strings u and v, and test if their shuffle is equal to L(M), thus
testing whether L(M) was itself decomposable. One way to do this would be to
construct a DFA accepting u v, and test equality with L(M), however it was
shown in [4] that the size of minimal DFAs accepting the shuffle of two strings
can grow exponentially in the length of the strings. Therefore, it still remains an
open problem as to whether there is a polynomial time algorithm to test if the
language accepted by a DFA has a decomposition into the shuffle of words.

Here, we are interested in testing inclusion between the language accepted
by a DFA and the shuffle of two words. One direction of this problem, testing
whether the shuffle of two strings is contained in the language accepted by a
DFA has a known polynomial time algorithm [5,2]. In this paper, we investigate
the complexity of the converse of this problem. It is shown that given a DFA M
and words u, v ∈ Σ+, the problem of deciding whether or not L(M) ⊆ u v
is coNP-Complete, as conjectured in [2]. However, for the special case of the
problem on words u, v with fixed-length skeletons (the length of a skeleton is
the number of “lettered sections”), we provide a polynomial time algorithm.
This also gives a polynomial time algorithm to decide if L(M) = u v for this
special case. However, the exact complexity of deciding whether L(M) = u v
in general remains open despite the fact that we know it takes polynomial time
to check u v ⊆ L(M) and it is coNP-Complete to check L(M) ⊆ u v.

2 Preliminaries

Let N0 be the set of non-negative integers. An alphabet Σ is a finite, non-empty
set of letters. The set of all words over Σ is denoted by Σ∗, and this set contains
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the empty word, λ. The set of all non-empty words over Σ is denoted by Σ+.
For n ∈ N0, let Σn be all words of length n over Σ.

Let Σ be an alphabet. For a word w ∈ Σ∗, the length of w is denoted by |w|.
Let w(i) be the i-th letter of w, let w[i] be the word which is the first i characters
of w, and let w[i, j] be the subword between characters i and j where these are
undefined if i or j are not in {1, . . . , |w|}, or if j < i. The skeleton of w is λ if
w = λ, and is a1a2 · · · an where w = aα1

1 aα2
2 · · · aαn

n , n ≥ 1, αi > 0, ai ∈ Σ, 1 ≤
i ≤ n, aj �= aj+1, 1 ≤ j < n. For example, the skeleton of aaaaabbbabbbb is abab.

Let u, v ∈ Σ∗. The shuffle of u and v is defined as u v = {u1v1 · · ·unvn |
u = u1 · · ·un, v = v1 · · · vn, ui, vi ∈ Σ∗, 1 ≤ i ≤ n}. For example, aab ba =
{aabba, aabab, ababa, abaab, baaba, baaab}. We say u is a prefix of v, written u ≤p

v, if v = ux, for some x ∈ Σ∗. Let w, x ∈ Σ∗. The left quotient of x by w, written
w−1x = x1 if x = wx1, and undefined otherwise.

We assume the reader to be familiar with deterministic finite automata (DFAs),
nondeterministic finite automata (NFAs), the subset construction commonly
used to convert an NFA into an equivalent DFA, and minimal DFAs. See [13,9]
for an introduction and more details on finite automata.

3 Fixed-Length Skeleton Polynomial Algorithm

The purpose of this section is to give special cases on an input DFA M and
u, v ∈ Σ+ whereby there is a polynomial algorithm to decide whether or not
L(M) ⊆ u v. In particular, the main result is that when u and v have fixed-
length skeletons, there is a polynomial time algorithm. We will see in the next
section that in general, this problem is coNP-Complete and therefore there likely
is not a polynomial time algorithm (unless P = coNP ).

We will start by examining the complement of the problem. That is, the
problem of whether there exists some w ∈ L(M) such that w /∈ u v (or
whether L(M) �⊆ u v). If we can provide a polynomial time algorithm to
solve this problem for some special cases, then we can solve the problem of
L(M) ⊆ u v for those cases.

Given two words u, v ∈ Σ+, there is an “obvious” NFA accepting u v with
(|u| + 1) · (|v| + 1) states, where each state is an ordered pair representing the
position within both u and v. This NFA is called the naive NFA and is defined
formally in [4].

First notice, that if we could construct a DFA accepting u v in polynomial
time, then we could build a DFA accepting (u v)c (the complement) in poly-
nomial time, using the standard algorithm to take the complement of a DFA
(Theorem 3.2, [9]). Similarly, we could build a DFA accepting L(M) ∩ (u v)c

in polynomial time, using the standard algorithm for taking the intersection of
two DFAs (Theorem 3.3, [9]). Moreover we could test whether this set is empty
in polynomial time (Theorem 3.7, [9]).

Proposition 1. Let M be any DFA. Let F be a subset of Σ+ × Σ+ such that
there exists a polynomial f from N0 × N0 to N0 and an algorithm A converting
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any pair (u, v) ∈ F to a DFA accepting u v in time less than or equal to
f(|u|, |v|). Then we can test whether or not L(M) ⊆ u v in polynomial time,
for any (u, v) ∈ F . Similarly for testing whether L(M) = u v.

The ability to test for equality follows from the existing polynomial time algo-
rithm to determine if u v ⊆ L(M) [5].

In particular, the algorithm A from this proposition could simply be to con-
struct the naive NFA for u v and then to use the standard subset construction
algorithm applied to the naive NFA accepting u v for (u, v) ∈ F , which could
produce DFAs that are polynomial in size for certain sets F . Therefore, if there
is a subset F of Σ+×Σ+ such that the subset construction applied to the naive
NFAs create DFAs that are polynomial in size, then we have a polynomial time
algorithm to decide if L(M) ⊆ u v, for all (u, v) ∈ F .

Before establishing the main result of this section, we first need the following
definition and three lemmas.

Let u, v, w ∈ Σ+, where w = aα1
1 aα2

2 · · · aαn
n , ai �= ai+1, 1 ≤ i < n, αl > 0, ai ∈

Σ, 1 ≤ l ≤ n. For each l, 0 ≤ l ≤ n, let

g(w, u, v, l) = {(i, j) | aα1
1 aα2

2 · · · aαl

l ∈ u[i] v[j] and either u(i+ 1) = al+1 or
v(j + 1) = al+1 or (i = |u| and j = |v|)}.

Note that if i = |u| then u(i + 1) is undefined forcing u(i + 1) = al+1 to not be
true, as with the case where j = |v|.

For example, if u = aabbaabb, v = aabbaaa and w = aabbaabbaabbaaa, then
g(w, u, v, 3) = {(6, 0), (4, 2), (2, 4)}.

The definition of g can be rewritten recursively as follows:

Lemma 1. For all l, 1 ≤ l ≤ n,

g(w, u, v, l) = {(h,m) | (i, j) ∈ g(w, u, v, l − 1), u[i+ 1, h] = aγl , v[j + 1,m] = aδl
for some γ, δ ≥ 0, either (h,m) = (|u|, |v|) or
u(h+ 1) = al+1 or v(m+ 1) = al+1}.

Next, we will show the following three conditions are equivalent, and then use
condition 1 within the decision procedure below.

Lemma 2. The following conditions are equivalent:

1. g(w, u, v, l) �= ∅ for all l, 0 ≤ l ≤ n, and (|u|, |v|) ∈ g(w, u, v, n),
2. (|u|, |v|) ∈ g(w, u, v, n),
3. w ∈ u v.

This can be seen as conditions 2 and 3 are equivalent from the definition of g.
Further, condition 1 implies 2 directly. And condition 3 implies 1 as w ∈ u v
implies that for all l, 0 ≤ l < n, aα1

1 · · · aαl

l al+1 ∈ u[i] v[j] for some i, j.
Next, we see that as long as the g function is of size bounded by a constant

for each w ∈ L(M), there is a polynomial algorithm.



102 F. Biegler and I. McQuillan

Lemma 3. Let k be a constant, M a DFA and u, v ∈ Σ+. If, for every w ∈
L(M) where w = aα1

1 · · · aαn
n , ai �= ai+1, 1 ≤ i < n, αj > 0, aj ∈ Σ, 1 ≤ j ≤ n,

and for every l, 0 ≤ l ≤ n, the inequality |g(w, u, v, l)| ≤ k is true, then there is
a polynomial time algorithm for deciding whether or not L(M) ⊆ u v, and for
deciding whether L(M) = u v.

Proof. We will construct a logspace bounded nondeterministic Turing machine
for the algorithm, and use the fact that NLOGSPACE is a subset of P (Corollary
to Theorem 7.4 in [11]). It will decide if L(M) �⊆ u v; that is, if there exists
w such that w ∈ L(M) but w /∈ u v. We will use condition 1 of Lemma 2
combined with Lemma 1. The Turing Machine will guess a word w ∈ L(M),
where w = aα1

1 · · ·aαn
n , ai �= ai+1, 1 ≤ i < n, αl > 0, al ∈ Σ, 1 ≤ l ≤ n, and

for every l from 0 to n, writes out the list of all (i, j) such that aα1
1 · · ·aαl

l ∈
u[i] v[j], where either (i, j) = (|u|, |v|), or u(i+ 1) = al+1, or v(j + 1) = al+1,
which must be of size at most k. Indeed this can be done by at first writing out
the elements of g(w, u, v, 0) ((0, 0) if either u(1) or v(1) is equal to a1, and ∅
otherwise). Then, if after writing out the list {(i1, j1), . . . , (iq, jq)} after reading
aα1
1 · · · aαl

l , l < n, then for a
αl+1

l+1 , the new list is obtained as follows: by taking
each (ip, jp), 1 ≤ p ≤ q, removing it from the list and adding (ip+γ, jp+δ), where
γ+δ = αl+1, such that the subword of u starting at position ip+1 is aγp+1, and the

subword of v starting at position jp+1 is aδp+1 and either (ip+γ, jp+δ) = (|u|, |v|),
or aγp+1ap+2 is a subword of u starting at position ip+1, or aδp+1ap+2 is a subword
of v starting at position vp+1. This will accurately calculate each set g(w, u, v, l)
by Lemma 1. If we do this for all (ip, jp), the resulting list must be of size less
than or equal to k after each step l by the assumption and therefore we can store
the numbers in logspace. Moreover, (|u|, |v|) does not appear in the final list if
and only if w /∈ u v by Lemma 2. ��

These three lemmas allow to prove the main result of this section.

Theorem 1. Let M be a DFA, and let u, v ∈ Σ+ with fixed-length skeletons.
Then, there is a polynomial time algorithm to decide whether or not L(M) ⊆
u v, and to decide whether L(M) = u v.

Proof. Let u = bβ1

1 bβ2

2 · · · bβp
p , bj �= bj+1, 1 ≤ j < p, βi > 0, bi ∈ Σ, 1 ≤ i ≤ p, and

let v = cγ1

1 cγ2

2 · · · cγq
q , cj �= cj+1, 1 ≤ j < q, γi > 0, ci ∈ Σ, 1 ≤ i ≤ q, where p and

q are fixed. Let k be the maximum of p and q. If, for all w ∈ L(M) and every l
from 1 to the length of the skeleton of w, it is true that |g(w, u, v, l)| is less than
or equal to some constant, then the result follows from Lemma 3.

Let w = aα1
1 aα2

2 · · ·aαn
n , aj �= aj+1, 1 ≤ j < n, αi > 0, ai ∈ Σ, 1 ≤ i ≤

n. Then we can build a directed acyclic graph G = (V,E) such that V =⋃
0≤l≤n g(w, u, v, l) and

E = {(x, y) | x = (i, j) ∈ g(w, u, v, l) for some l, 0 ≤ l < n, y = (h,m) ∈
g(w, u, v, l + 1) s. t. a

αl+1

l+1 ∈ u[i+ 1, h] v[j + 1,m] and either
u(h+ 1) = al+2 or v(m+ 1) = al+2 or (h = |u| and m = |v|)}.
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It is clear that w ∈ u v if and only if there is a path from (0, 0) to (|u|, |v|) in
G from Lemma 1 and Lemma 2. Also, every x ∈ V is reachable from (0, 0) via
at least one path.

Let l be such that 0 ≤ l < n, and let (i, j) ∈ g(w, u, v, l). Consider a
αl+1

l+1 .
Assume al+1 �= a(i+1) and al+1 �= v(j+1). Then there is no outgoing edge from
(i, j). Assume that al+1 = u(i+1) but al+1 �= v(j+1). If u[i+1, i+αl+1] = a

αl+1

l+1

and either u(i + αl+1 + 1) = al+2 or v(j + 1) = al+2 or (i + αl+1 = |u| and
j = |v|), then (i, j) has one outgoing edge. Otherwise (i, j) has no outgoing
edges. Similarly if al+1 �= u(i + 1) and vl+1 = v(j + 1). Then the only way of
having more than one outgoing edge from (i, j) is if al+1 = u(i+ 1) = v(j + 1).
But in this situation, from (i, j), there are at most two outgoing edges since all
copies of al+1 must be consumed from either u or v by the definition of g.

Let (i0, j0) = (0, 0), (i1, j1), . . . , (ix, jx) (with x ≤ n and potentially x = n) be
a sequence of vertices such that eα connects (iα, jα) to (iα+1, jα+1) for all α, 0 ≤
α < x. Let (p0, q0), . . . , (pm, qm) be the subsequence of (i0, j0), (i1, j1), . . . , (ix, jx)
such that there are two outgoing edges in G from (pα, qα), 0 ≤ α ≤ m. This list
is of size at most 2k since each one consumes one section of the skeleton of u
or v. Further, it can be shown (omitted for reasons of space) that, if every such
path has at most 2k branching points, the number of elements in g(w, u, v, l) is
at most 22k+1 − 1 for every l, which is a constant since k is a constant. ��

4 General coNP-Completeness

The purpose of this chapter is to show that given a DFA M and words u, v ∈ Σ+,
the problem of determining whether or not L(M) ⊆ u v is coNP-Complete.

To show in general (for any u, v and M), this problem is not solvable in
polynomial time, we need to examine pairs of words u, v whereby the DFA
created from the subset construction accepting u v is not polynomial in size
by Proposition 1. Indeed, we know that such automata exist, as in [4], an infinite
subset of Σ+ × Σ+ is demonstrated such that for each (u, v) in the subset,
the minimal DFA accepting u v requires an exponential number of states.
These word pairs are quite similar to those constructed in Theorem 2 below.
The existence of minimal DFAs accepting the shuffle of two words that requires
an exponential number of states is not enough information on its own though to
show that testing L(M) ⊆ u v cannot be done in polynomial time, as there
could in principle be an algorithm that tests this fact without first constructing
the minimal DFA accepting u v (as is the case for the converse problem, which
can be tested in polynomial time).

We will examine the complement of that problem; that is, the problem of
whether there exists some w ∈ L(M) such that w /∈ u v. We will show that this
problem is NP-Complete. This implies that the problem of determining whether
or not L(M) ⊆ u v is coNP-Complete, by Proposition 10.1 of [11], which states
that the complement of an NP-Complete language is coNP-Complete.

Throughout the proof, we will refer to Example 1 for the purposes of intuition.
It is helpful to follow the example together with the proof.
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Theorem 2. Let M be a DFA and let u, v ∈ Σ+ where Σ has at least two
letters. The problem of determining whether there exists w ∈ L(M) such that
w /∈ u v is NP-Complete.

Proof. It is clear that this problem is in NP since we can construct a nonde-
terministic Turing Machine that guesses a word in L(M) and then verifies that
w /∈ u v (we can test membership in the naive NFA accepting u v, and NFA
membership testing can be done in polynomial time [8]).

Thus, we need to show that the problem is NP-hard. Let F be an instance
of the satisfiability problem with X = {x1, . . . , xp} the set of Boolean variables,
and C = {c1, . . . cq} the set of clauses over X where each clause in C has three
literals. This problem is known as 3SAT and it is NP-Complete (Proposition 9.2
of [11]). We will also assume without loss of generality that q ≥ 2. For a variable
x, let x+ be the literal obtained from the variable x as true (simply the variable
x), and x− be the literal obtained from the variable as false (the negation of
x). If d is a truth assignment, then d is a function from X to {+,−} (true or
false). We extend d to a function on clauses, where d(c) = + if c contains at
least one literal that matches the sign of d applied to its variable, and d(c) = −
if all literals have differing signs than its variables on d.

We will first provide the construction. Although technical, we will refer
throughout the proof to Example 1, located after the proof, for intuition. Next,
we construct the two words u, v, and the DFA accepting the language L. The
words u and v depend only on the number of variables and clauses. The lan-
guage L accepts a different string for every possible truth assignment to the
variables X . Each such string contains a substring for each variable consecu-
tively, and within each such substring, another sequence of substrings for each
clause consecutively.

Let f(ci, xj , α) be a function from C ×X × {+,−} such that

f(ci, xj , α) =

{
bbbabaaa if ci does not contain literal xα

j ,

bbbbaaaa otherwise (if ci does contain literal xα
j ).

Then, let

u = (aabb)q−1(aabababb(aabb)q−2)p(aabb),

v = (aabb)q−1(aabbaabb(aabb)q−2)p(aabb),

g(xj , α) = f(c1, xj , α)f(c2, xj , α) · · · f(cq, xj , α), xj ∈ X,α ∈ {+,−},
y(d) = g(x1, d(x1)) · · · g(xp, d(xp)), d a function from X to {+,−},

Y = {y(d) | d a function from X to {+,−}},
L = a(aabb)q−1aaa · Y · bbbb(aabb)q−1.

Below, we will show that F is satisfiable if and only if there exists a word in
L that is not in u v. First, notice that we can build u and v in polynomial
time, and they depend only on the number of variables and clauses in F .

We will build a DFA accepting L in polynomial time in several steps. First, we
can build a DFA accepting each f(ci, xj , α) which only has 9 states since each
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accepts only one word of length 8. We can also build all f(ci, xj , α) in O(pq)
time. Then, we can accept each g(xj , α) in polynomial time. We can then build
a DFA accepting {g(xj ,+), g(xj ,−)} for every j. Indeed, if xj is a variable, and l
is the length of the longest common prefix of g(xj ,+) and g(xj ,−), then we can
build a DFA that reads this common prefix and then switches to one of two states
based on whether the next letter is from g(xj ,+) or g(xj ,−). Then, from the two
different states, it reads what remains of either g(xj ,+) or g(xj ,−). Upon reading
the last symbol of either, the DFA switches to a common final state. Thus, we can
build a DFA accepting {g(xj,+), g(xj ,−)} in polynomial time. Next, note that
Y = {g(x1,+), g(x1,−)} · {g(x2,+), g(x2,−)} · · · {g(xp,+), g(xp,−)}. Hence, we
can also build an automaton accepting Y in polynomial time by concatenating
the DFA for {g(x1,+), g(x1,−)} to that of {g(x2,+), g(x2,−)}, and so on, for all
p variables. Then we can transform the DFA accepting Y into one accepting L in
polynomial time. In Example 1, we provide an instance of the 3SAT problem and
show its DFA (accepting Y ) created by this construction in Figure 1. Intuitively,
notice that every path through the automaton corresponds to a different truth
assignment. For each variable, consecutively, taking the upper path corresponds
to setting that variable to be true, and the lower path corresponds to setting
that variable to be false.

For a prefix w of a word in L, we let

h(w) = {(i, j) | w ∈ u[i] v[j]}.

We will show next that d is a satisfying truth assignment if and only if
h(a(aabb)q−1aaa · y(d)) = ∅.

Each word of Y is composed of y(d) where d is any assignment of the variables.
That is, each word is of the form g(x1, α1) · · · g(xp, αp) where α1, . . . , αp can be
any assignment of each variable to + (true) or − (false). Each g(xj , α) is a
string where we concatenate for each clause bbbabaaa when xα

j is not in the
clause (either the variable is not in the clause at all, or only the negation of xα

j

is in the clause), and bbbbaaaa when the literal is in the clause.
Every word in L starts with a(aabb)q−1, and indeed, for any q ≥ 2,

h(a(aabb)q−1) = {(4q − 4l, 4l− 3), (4q − 4l− 3, 4l) | 1 ≤ l < q},

(proof omitted due to space constraints). This part is essentially identical to a
claim in Theorem 13 of [4]. Intuitively, in Figure 2, this can be seen visually
as the set of points at the bottom diagonal of the “duplication section”, where
l = 1 occurs for the first two points, followed by l = 2 for the next two points,
etc. Then,

h(a(aabb)q−1aaa) = {(4q − 4l+ 2, 4l− 2) | 1 ≤ l ≤ q}

(this is diagonal below the previous diagonal marked on the diagram as β0),
as the point (4q − 4l, 4l − 3) gives one point two rows down and one column
to the right, (4q − 4l + 2, 4l − 2), while the point (4q − 4l − 3, 4l) gives one
point one row down and two columns to the right, (4q − 4l − 3 + 1, 4l + 2) =
(4q − 4(l + 1) + 2, 4(l+ 1)− 2).
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This paragraph will first explain the intuition regarding the rest of the proof
before the formal proof (again, while referencing Example 1 and its figures).
Looking at Figure 2, at the diagonal marked β0, there is a dot for each clause,
spaced evenly apart. Then, a sequence of words will be read that are each either
bbbabaaa or bbbbaaaa between consecutive diagonal lines marked as βk, for some
k. At first, if bbbabaaa is read, then the first “clause” can pass the horizontal line
marked “prune x1”, as it does in the diagram, and end with a single point four
rows down and four columns to the right on the next diagonal. If bbbbaaaa is read,
then the “clause” gets cut off instead (as the second clause does in the figure when
reaching the “prune x1” line). Then, as some word of (bbbabaaa+ bbbbaaaa)q is
read, each clause is being “cut off”, one at a time if and only if the literal x−

1 is
in the clause (by having the word bbbbaaaa). Any clause not at the “prune” line
(either before or after the line) leads to an identical point on the next diagonal
four rows down and four columns to the right when reading either bbbabaaa
or bbbbaaaa. Thus, it is only the prune line that affects whether the clause
continues, and each clause reaches the “‘prune x1” line consecutively as each
f(ci, x1, d(x1)) is read, for each i, 1 ≤ i ≤ q. Moreover, since M consecutively
reads an entire word, either g(x1,+) = f(c1, x1,+) · · · f(cq, x1,+) or g(x1,−) =
f(c1, x1,−) · · · f(cq, x1,−), this enforces that x1 is set to true or false identically
for each clause. This process then continues for each variable from x2, . . . , xp

using the consecutive prune lines. Should a “clause” continue past all prune
lines, that means that all three literals in the clause were the opposite sign
as the function d applied to those variables, implying that it corresponds to a
non-satisfiable truth assignment. Therefore, if every word in L(M) has at least
one path continue past every prune line, then no possible truth assignment is
satisfying. Conversely, if a clause does get cut off, that means that one of the
variables in the clause has the same value as d. Therefore, if every clause has
some variable set as in d (F is satisfiable), then every clause gets cut off by some
prune line and wd /∈ u v. This is the case in Example 1 and Figure 2.

Formally, it can be shown that (proof omitted due to space constraints)

h(a(aabb)q−1aaa ·y(d)) = {(4q−4l+2+4pq, 4l−2+4pq) | 1 ≤ l ≤ q, d(cl) = −}.

This means that after reading y(d), if all of the clauses are satisfied by d,
then h(a(aabb)q−1aaa · y(d)) = ∅. Therefore, if we add any suffix to the end
of a(aabb)q−1aaa · y(d), it cannot be in u v. Hence, a(aabb)q−1aaa · y(d) ·
bbbb(aabb)q−1 /∈ u v.

Conversely, if after reading y(d), at least one of the clauses is not satisfied by
d. Then, h(a(aabb)q−1aaa ·y(d)) �= ∅, and there must exist some l, 1 ≤ l ≤ q such
that d(cl) = − and (4q − 4l + 2 + 4pq, 4l − 2 + 4pq) ∈ h(a(aabb)q−1aaa · y(d)).
Notice that |u| = |v| = 4q + 4pq, and so for each l between 1 and q, there are
4l− 2 letters left from u and 2+ 4(q− l) letters left from v. Then what remains
of u is bb(aabb)l−1 and what remains of v is bb(aabb)q−l. But every point in this
set can reach point (|u|, |v|) on input bbbb(aabb)q−1 since (l−1)+(q− l) = q−1.

Hence, there exists a word in L that is not in u v if and only F is satisfiable.
��
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Example 1. Consider the following instance of 3SAT with clauses c1 = (x+
1 ∨

x+
2 ∨x+

3 ), c2 = (x−
1 ∨x+

2 ∨x−
3 ), c3 = (x+

1 ∨x−
2 ∨x−

3 ). From this, we can construct
each g(xj , α) as follows:

g(x1,+) =

f(c1,x1,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x1,+)︷ ︸︸ ︷
bbbabaaa

f(c3,x1,+)︷ ︸︸ ︷
bbbbaaaa

g(x1,−) =

f(c1,x1,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x1,−)︷ ︸︸ ︷
bbbbaaaa

f(c3,x1,−)︷ ︸︸ ︷
bbbabaaa

g(x2,+) =

f(c1,x2,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x2,+)︷ ︸︸ ︷
bbbbaaaa

f(c3,x2,+)︷ ︸︸ ︷
bbbabaaa

g(x2,−) =

f(c1,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c3,x2,−)︷ ︸︸ ︷
bbbbaaaa

g(x3,+) =

f(c1,x3,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x3,+)︷ ︸︸ ︷
bbbabaaa

f(c3,x3,+)︷ ︸︸ ︷
bbbabaaa

g(x3,−) =

f(c1,x3,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x3,−)︷ ︸︸ ︷
bbbbaaaa

f(c3,x3,−)︷ ︸︸ ︷
bbbbaaaa

From this, we can construct the set Y . In Figure 1, we draw the automa-
ton accepting the set Y (and therefore, a(aabb)q−1aaa must be prepended and
bbbb(aabb)q−1 must be appended to transform it into a DFA accepting L).

This instance has a solution d : x1 → −, x2 → −, x3 → +. Then consider the
word wd = a(aabb)2aaa · y(d) · bbbb(aabb)2, where y(d) is equal to

f(c1,x1,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x1,−)︷ ︸︸ ︷
bbbbaaaa

f(c3,x1,−)︷ ︸︸ ︷
bbbabaaa︸ ︷︷ ︸

g(x1,−)

f(c1,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c2,x2,−)︷ ︸︸ ︷
bbbabaaa

f(c3,x2,−)︷ ︸︸ ︷
bbbbaaaa︸ ︷︷ ︸

g(x2,−)

f(c1,x3,+)︷ ︸︸ ︷
bbbbaaaa

f(c2,x3,+)︷ ︸︸ ︷
bbbabaaa

f(c3,x3,+)︷ ︸︸ ︷
bbbabaaa︸ ︷︷ ︸

g(x3,+)

.

This word is in L(M) as seen in Figure 1 by taking the lower path, then the next
lower path, then the upper path. But this word is not in u v as demonstrated
in Figure 2. The dots are placed at indices (i, j) where each prefix of wd is in
u[i] v[j]. The additional annotation in the diagram is referred to in the proof
of Theorem 2.

If instead we tried the assignment d′ : x1 → +, x2 → −, x3 → + (which is
not a satisfying truth assignment), then first “clause 1” gets cut off by the x1

prune line since x+
1 ∈ c1, then “clause 2” can go through the line since x+

1 /∈ c2,
then “clause 3” gets cut off since x+

1 ∈ c3. Then “clause 1” is already cut off
and doesn’t reach the x2 prune line, then “clause 2” can continue as x−

2 /∈ c2.
Then when “clause 2” reaches the x3 prune line, it can continue since x+

3 /∈ c2.
So, at least one clause passes all prune lines and reading the remaining portion
of wd gives a word in u v, and thus d′ is not satisfiable. But if there is at least
one word in L that is not in u v, then this corresponds to a satisfying truth
assignment. Hence, at least one word in L is not in u v if and only if there is
some satisfying truth assignment.
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x
bbb

b

a

(bbbb)−1g(x1, +)

(bbba)−1g(x1,−)

bbb
b

a

(bbbb)−1g(x2, +)

(bbba)−1g(x2,−)

bbb
b

a

(bbbb)−1g(x3, +)

(bbba)−1g(x3,−)

x

Fig. 1. The DFA accepting Y obtained from the instance of 3SAT from Example 1.
We use a word on a transition as a compressed notation to represent a sequence of
non-branching transitions.

top

lowerright

Duplication

Prune x1

Prune x2

Prune x3
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c3
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β4 β5 β6

Since
x
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Since
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2 ∈ c3
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x3 ∈ c1

Thus, wd /∈ u v
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Fig. 2. The word u is labelling the vertical axis and v is labelling the horizontal axis.
Considering the word wd from Example 1, a dot is placed at (i, j) if wd has a prefix
in u[i] shuffled with v[j]. Only a portion of the diagram is shown, and u and v con-
tinue along the axes, although there are no dots in the rest of the diagram. The lines
connecting the dots demonstrates the change of states by reading individual characters.
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As mentioned earlier, because testing L(M) �⊆ u v is an NP-Complete prob-
lem, this implies that testing whether L(M) ⊆ u v is a coNP-Complete prob-
lem.

Corollary 1. Let M be a DFA and let u, v ∈ Σ+, where Σ has at least two
letters. The problem of determining whether L(M) ⊆ u v is coNP-Complete.

Despite the now known complexity of both deciding whether L(M) ⊆ u v
and u v ⊆ L(M), the exact complexity of deciding whether or not L(M) =
u v is not immediate. In the proof of Theorem 2, had we started with u, v,M
under the assumption that u v ⊆ L(M), and shown coNP-Completeness as to
whether L(M) ⊆ u v, then that would imply that testing whether L(M) =
u v would also be coNP-Complete. However, in the proof of Theorem 2, there
are many words in u v that are not in L(M) and it is not clear how one could
alterM to solve the problem while still creating it in polynomial time. Hence, the
problem of calculating the exact complexity of testing whether L(M) = u v
remains an open problem.
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Abstract. Partial words are sequences of characters from an alphabet
in which some positions may be marked with a “hole” symbol, 
. We can
create a 
-substitution mapping this symbol to a subset of the alphabet,
so that applying such a substitution to a partial word results in a set of
full words (ones without holes). This setup allows us to compress regular
languages into smaller partial languages. Deterministic finite automata
for such partial languages, referred to as 
-DFAs, employ a limited non-
determinism that can allow them to have lower state complexity than the
minimal DFAs for the corresponding full languages. Our paper focuses on
algorithms for the construction of minimal partial languages, associated
with some 
-substitution, as well as approximation algorithms for the
construction of minimal 
-DFAs.

1 Introduction

Words over some finite alphabet Σ are sequences of characters from Σ and
the set of all such sequences is denoted by Σ∗ (we also refer to elements of
Σ∗ as full words). The empty word ε is the unique sequence of length zero. A
language over Σ is a subset of Σ∗. The regular languages are those that can be
recognized by finite automata. A deterministic finite automaton, or DFA, is a
tuple M = (Q,Σ, δ, s, F ): a set of states, an input alphabet, a transition function
δ : Q × Σ → Q, a start state, and a set of accept or final states. The machine
M accepts w if and only if the state reached from s after reading w is in F . In a
DFA, δ is defined for all state-symbol pairs, so there is exactly one computation
for any word. In contrast, a non-deterministic finite automaton, or NFA, is a
tuple N = (Q,Σ,Δ, s, F ), where Δ : Q×Σ → 2Q is the transition function that
maps state-symbol pairs to zero or more states, and consequently may have zero
or more computations on a given word. Additionally, N accepts a word w if any
computation on w ends in an accept state. Two automata are equivalent if they
recognize the same language, so every NFA has an equivalent DFA. In general,
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M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 110–123, 2014.
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NFAs allow for a more compact representation of a given language. The state
complexity of an automaton with state set Q is |Q|. If a given NFA has state
complexity n, the smallest equivalent DFA may require as many as 2n states.

Partial words over Σ are sequences of characters from Σ� = Σ ∪ {&}, where
& /∈ Σ is a “hole” symbol representing an “undefined” position. A partial lan-
guage over Σ is a subset of Σ∗

� , the set of all partial words over Σ. A partial
language, subset of Σ∗

� , is associated with a full language, subset of Σ∗, through
a &-substitution σ : Σ∗

� → 2Σ
∗
, defined such that σ(a) = {a} for all a ∈ Σ,

σ(&) ⊆ Σ, σ(uv) = σ(u)σ(v) for all u, v ∈ Σ∗
� , and σ(L) =

⋃
w∈L σ(w) for

all L ⊆ Σ∗
� . A &-substitution, then, maps a partial language to a full language

and is completely defined by σ(&); e.g., if σ(&) = {a, b} and L = {&a, b&c} then
σ(L) = {aa, ba, bac, bbc}. By reversing this process, we can compress full lan-
guages into partial languages. We can easily extend regular languages to regular
partial languages as the subsets of Σ∗

� that are regular when treating & as a char-
acter in the input alphabet. We can recognize them using partial word DFAs,
introduced by Dassow et al. [4]. A &-DFA Mσ = (Q,Σ�, δ, s, F ), associated with
some σ, is defined as a DFA that recognizes a partial language L, but that is also
associated with the full language σ(L). Balkanski et al. [1] proved that given a
&-DFA with state complexity n associated with some σ and recognizing L, the
smallest DFA recognizing σ(L) may require as many as 2n − 1 states.

Given classes of automata A,B and a finite automaton A from A, the problem
A → B-Minimization asks for an automaton B from B that has the lowest state
complexity possible while maintaining L(A) = L(B), i.e., the language that A ac-
cepts is the language that B accepts. We will abbreviate A → A-Minimization

by A-Minimization. Now, let DFA, NFA, and &-DFA be the class of all DFAs,
NFAs, and &-DFAs, respectively. It is known that DFA-Minimization can be
done in O(n logn) time [7], where n is the number of states in the input DFA,
and that DFA → NFA-Minimization is PSPACE-complete [8]. Looking at &-
DFAs as DFAs over the extended alphabet Σ� makes the minimization step
easy (&-DFAs are DFAs, so &-DFA-Minimization is DFA-Minimization), and
in general, A → &-DFA-Minimization and &-DFA → A-Minimization are not
defined because &-DFAs accept partial languages (not full languages). We thus
define a slightly different problem for &-DFAs: given a DFA M , Minimal-&-DFA
asks for the smallest &-DFA (over all possible &-substitutions) associated with
L(M). Using the methods from Björklund and Martens [2], it is a simple ex-
ercise to show that Minimal-&-DFA is NP-hard, so we discuss an approach to
approximating minimal &-DFAs. Note also that Holzer et al. [6] have recently
further studied the computational complexity of partial word automata prob-
lems and have shown that many problems are PSPACE-complete, among them is
Minimal-&-DFA.

The contents of our paper are as follows: In Section 2, we set our notation and
introduce the σ-minimal partial languages given a &-substitution σ. In Section 3,
we approximate minimal finite partial languages, associated with a &-substitution
σ, by describing our Minlang algorithm. We then prove that running Minlang
a polynomial number of times in the size of the input with our Redundancy
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Check algorithm outputs the unique minimal partial language corresponding to
the input language given σ. We describe our Partial Language Check algorithm
that given a &-DFA Mσ and a finite language L, verifies that σ(L(Mσ)) = L and
that Mσ is a “contender” for a minimal &-DFA for L given σ. We also discuss
the algorithms’ runtime. In Section 4, we adapt Minlang for infinite languages.
Finally in Section 5, we conclude with some open problems.

2 Approximating Minimal �-DFAs

The complexity of a minimal DFA may be exponentially larger than that of a
minimal &-DFA for the same language. Balkanski et al. [1] gave a construction
whereby for any integer n > 1 there exists a &-DFA with n states such that the
minimal DFA for the same language has 2n − 1 states. Fig. 1 illustrates their
construction for n = 3.
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a, b, 
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0201

12012
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a

b
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a, b

Fig. 1. Left: A 3-state 
-DFA Mσ, with σ(
) = {a, b}. Right: The smallest DFA M
satisfying L(M) = σ(L(Mσ)), which has 23 − 1 = 7 states.

Since the problem of finding a minimal &-DFA (over all &-substitutions) for the
full language L accepted by a given DFA is NP-hard, we give an approximation
via minimal partial languages associated with L and &-substitutions σ, i.e., σ-
minimal partial languages. The smallest among associated &-DFAs thus provides
an approximation for a &-DFA with minimal state complexity for L. Before
stating our definition, we recall some background material (see [3] for more
information).

A partial word u is contained in a partial word v, denoted by u ⊂ v, if they
have the same length and if a position defined in u is defined by the same letter
in v (abbreviate “u ⊂ v, u �= v” by “u � v”). Partial word u is compatible
with partial word v, denoted by u ↑ v, if they have the same length and if a
position defined in both u and v is defined by the same letter, in which case the
least upper bound of u and v, denoted by u ∨ v, is the partial word such that
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u ⊂ (u∨ v), v ⊂ (u∨ v), and if u ⊂ w and v ⊂ w then (u∨ v) ⊂ w. For example,
aa&b& ↑ a&b&& and (aa&b& ∨ a&b&&) = aabb&. Fixing a &-substitution σ over Σ, a
set X ⊆ Σ∗

� covers a partial word w if x ↑ w for all x ∈ X and σ(w) ⊆ σ(X); if
X is a singleton {x}, we abbreviate “X covers w” by “x covers w”.

Definition 1. Let L be a full regular language over alphabet Σ, and let σ be a
&-substitution over Σ. The σ-minimal partial language for L is the unique partial
language Lmin,σ such that

1. σ(Lmin,σ) = L;
2. for all partial languages L′ satisfying σ(L′) = L, |Lmin,σ| ≤ |L′|;
3. the partial words in Lmin,σ are as weak as possible, i.e., for no partial word

w ∈ Lmin,σ does there exist x satisfying σ(x) ⊆ L and x � w.

For each &-substitution σ, there exists a partial language Lopt,σ such that
a minimal &-DFA recognizing Lopt,σ is identical to a minimal &-DFA for L =
σ(Lopt,σ). The σ-minimal partial language Lmin,σ is “close” to Lopt,σ and, as
a result, a minimal &-DFA recognizing Lmin,σ is a “good” approximation for a
minimal &-DFA for L associated with σ. The more &’s we have in our partial
words, the more we are taking advantage of the non-determinism that the &-
DFAs embody.

For convenience of notation, when referring to a particular &-substitution σ,
we replace σ with σ(&), e.g., {a&, &b} is an {a, b}-minimal partial language for
{aa, ab, bb}. Note that a& covers both aa and ab, and &b covers both ab and bb.

3 Computing Minimal �-DFAs

We describe our algorithms for approximating minimal &-DFAs. The input and
output finite languages are represented by listing their words.

3.1 Our Minlang Algorithm

Algorithm 1, referred to as Minlang, is an efficient algorithm for approximating
Lmin,σ. Pseudocode is given below, as well as an example of its execution on the
full language L = {aaa, aab, aac, aba, abb, aca, acb, bac, cac} with σ(&) = {a, b, c}
(see Figs. 2–3). Note that the output Lσ ofMinlang is not necessarily σ-minimal.
In our example, Lmin,σ = {a&a, a&b, &ac} and Lσ = {aa&, a&a, a&b, &ac}, the par-
tial word aa& being redundant. However, Minlang is useful as both an approxi-
mation and as a stepping stone toward the minimal partial language in the sense
of Definition 1 (see Section 3.2).

For any finite language L and &-substitution σ, the output of Minlang on
input L and σ is a tree that can easily be converted to a &-DFA with the start
state represented by the root node, the accept states by the terminal nodes, and
the transitions by the edges. Running standard DFA minimization algorithms
on this &-DFA results in an approximation of a minimal &-DFA for L.

Proposition 1. The language Lσ output by Minlang satisfies σ(Lσ) = L.
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Algorithm 1. Minlang Given as input a finite language L over Σ and a &-
substitution σ, computes a partial language Lσ that approximates Lmin,σ

1. put L into a prefix tree with leaf nodes marked as terminals
2. for each node n in a reverse level-order traversal of the tree do
3. if parent(n) = u has children on every branch of σ(
) then
4. order children of u by non-decreasing height, c1, . . . , ck
5. initialize C = {all terminal paths from c1 (including ε if c1 is terminal node)}
6. for m ∈ {c2, . . . , ck} do
7. for all w ∈ C do
8. remove w from C
9. if there is a terminal path from m to mx such that x ⊂ w then
10. add w to C
11. if there is a terminal path from m to mx such that w ⊂ x then
12. add x to C for all such x
13. if C is empty then
14. break
15. if C is non-empty then
16. add a 
-transition from node u to a new node u
 and a terminal path from

node u
 to a new node u
w, for each w ∈ C
17. for each pair a ∈ σ(
), w ∈ C, start from uaw, unmark uaw as a terminal

node and move upwards, deleting the path until a node is found that has
more than one child or is terminal

abb aca acbabaaa
 bac cac

aa ca

c

baab ac

a b

ε

a b c

a b
c a

a


 a
b

a
b

c c

Fig. 2. Starting with the prefix tree for L = {aaa, aab, aac, aba, abb, aca, acb, bac, cac},
Minlang begins at the leaf nodes, compiling C when a node’s parent has children for
every letter in σ(
) = {a, b, c}. This consolidates aa’s children into a single child, aa
.
Then Minlang examines nodes at reverse depth 1 and their parents, finding children
for every letter in σ(
) at the node a. Then C = {a, b}, adding a transition from a to
a
 and from a
 to children a
a and a
b, removing the b and c branches from a, but
leaving the a branch as it does not contain any words in C.
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Fig. 3. Left: Minlang examines nodes at reverse depth 2 and their parents, finding
children for every letter in σ(
) at the node ε. Then C = {ac}, adding a transition from
ε to 
 and from 
 a terminal path to 
ac, removing the b and c branches from ε, but
leaving the a branch as it does not contain any words in C. Right: the final tree output
by Minlang. The words in Lσ are the labels of the terminal nodes in the tree.

Proof. First, a node u in the tree for L has a representation x in the tree for Lσ

if u ∈ σ(x). Now, the proof is by strong induction on the reverse depth, i.e., the
height of the tree minus the depth of a given node. We show that for each n ≥ 1,
all nodes at reverse depth n− 1 or less in the tree for Lσ have their σ-image in
the tree for L implying σ(Lσ) ⊆ L, and all nodes at reverse depth n− 1 or less
in the tree for L have a representation in the tree for Lσ implying L ⊆ σ(Lσ).

For the inductive step, consider a node u′ at reverse depth n, with parent u,
in the tree for Lσ. If u

′ = ua for some a ∈ Σ, then by the inductive hypothesis,
all nodes uav, where v �= ε, in the tree for Lσ have their σ-image in the tree for
L. So the σ-image of u′, i.e., σ(u)a, is in the tree for L. If u′ = u&, then all nodes
u&v, where v �= ε, in the tree for Lσ have their σ-image in the tree for L. So the
σ-image of u′, i.e., {σ(u)a | a ∈ σ(&)}, is in the tree for L.

Consider a node u′ at reverse depth n, with parent u, in the tree for L. First,
suppose that Minlang finds that from u, there is a transition labeled by a in the
tree for L, for each a ∈ σ(&). By the inductive hypothesis, each node uav, where
a ∈ σ(&) and v �= ε, in the tree for L has a representation x&y in the tree for Lσ.
So ua, where a ∈ σ(&), has a representation x& in the tree for Lσ. Next, suppose
that Minlang does not find such transitions from u. Set u′ = ua for some a ∈ Σ.
By the inductive hypothesis, each node uav, where v �= ε, in the tree for L has
a representation xay in the tree for Lσ (|x| = |u| and |y| = |v|). So, ua has a
representation xa in the tree for Lσ. In either case, u′ has a representation in
the tree for Lσ. ��

The next lemma gives properties of the language output by Minlang.

Lemma 1. The language Lσ output by Minlang satisfies the following:

1. For x ∈ Lσ, there exists some w ∈ Lmin,σ such that x ↑ w; similarly, for
w ∈ Lmin,σ, there exists some x ∈ Lσ such that x ↑ w.
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2. For w ∈ Lmin,σ, there is no x ∈ Lσ \ Lmin,σ such that x ⊂ w.
3. For w ∈ Lmin,σ and x ∈ Lσ, if w ⊂ x, then w = x; consequently, if w ∈

Lmin,σ, there is no x ∈ Lσ such that w � x.
4. For w ∈ Lmin,σ and x ∈ Lσ, if x ↑ w, then w ∈ Lσ.

Proof. For Statement 1, by Definition 1 and Proposition 1, σ(Lmin,σ) = σ(Lσ) =
L, and let x ∈ Lσ. Then σ(x) ⊆ L, and take x̂ ∈ σ(x). Thus x̂ ∈ L, and so
x̂ ∈ σ(w) for some w ∈ Lmin,σ. Then x ⊂ x̂ and w ⊂ x̂, so by definition, x ↑ w.

For Statement 2, suppose towards a contradiction that for w ∈ Lmin,σ, x ∈ Lσ

and x �∈ Lmin,σ, we have x ⊂ w. Since x �= w, we can write x � w, and since
σ(Lσ) = L by Proposition 1, we know that σ(x) ⊆ L contradicting Defini-
tion 1(3).

For Statement 3, we show by induction on k that for w ∈ Lmin,σ and x ∈ Lσ,
if w ⊂ x, then the suffix of length k of x equals the suffix of length k of w. For the
inductive step, suppose towards a contradiction that w = w′&v and x = x′av′

where a ∈ Σ� and |v| = |v′| = k. By the inductive hypothesis, v = v′. Since
w′ ⊂ x′, we have that {σ(x′)bσ(v) | b ∈ σ(&)} ⊆ σ(w) ⊆ L. Hence the node
σ(x′) has children on every branch of σ(&), and each node σ(x′)bv is marked
as terminal. Thus Minlang adds v to C and iterates over each child σ(x′)b. It
adds a &-transition from σ(x′) to σ(x′)& and a terminal path from σ(x′)& to
σ(x′)&v, and it switches the a to a & in the (k + 1)th last character’s index, a
contradiction. Thus the suffix of length k + 1 of x is identical to the suffix of
length k + 1 of w.

For Statement 4, we show the result by induction on the length of w. Assume
that w ∈ Lmin,σ, x ∈ Lσ, and x ↑ w. For the inductive step, suppose w = cw′

and x = c′x′, with |c| = |c′| = 1, such that x′ ↑ w′, c ↑ c′. First, suppose that
c �= &. Consider the language L′ = {t′ | ct′ ∈ Lmin,σ} and the tree T ′ that results
from applying Minlang to the tree for σ(L′). Then, clearly, w′ ∈ L′, so by the
inductive hypothesis, T ′ contains a terminal path to w′. Hence the tree for Lσ

contains a terminal path from c to cw′, thus w = cw′ ∈ Lσ. Now, suppose that
c = &. Then σ(&w′) ⊆ L implies that dσ(w′) ⊆ L for all d ∈ σ(&). Then if we
consider each language Ldσ constructed from taking the sub-tree of Lσ with d
as the root node, we have that w′ ∈ Ldmin,σ , where Ldmin,σ is a minimal language
such that σ(Ldmin,σ ) = σ(Ldσ). By Statement 1, there exists some t′ ∈ Ldσ such
that w′ ↑ t′, so by the inductive hypothesis, Ldσ contains a terminal path to w′.
Then since every child d ∈ σ(&) contains a path to w′, Minlang adds &w′ = w
to Lσ. ��

From Lemma 1, we can easily derive the following proposition.

Proposition 2. The language Lσ output by Minlang satisfies Lmin,σ ⊆ Lσ.

Proof. Let w ∈ Lmin,σ. Then by Lemma 1(1), there exists some x ∈ Lσ such
that x ↑ w. By Lemma 1(4), w ∈ Lσ. ��
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Fig. 4. Left: a minimal 
-DFA recognizing Lσ = {
aa, a
b, aa
}, where σ(
) = {a, b},
output by Minlang has 8 states. Right: a minimal 
-DFA recognizing Lmin,σ =
{
aa, a
b}, which is also a minimal 
-DFA for the full language L = σ(Lσ) = σ(Lmin,σ),
has 7 states. Error states are omitted.

Fig. 4 illustrates a minimal &-DFA for Lσ, the language output by Minlang
that has more states than a minimal &-DFA for the full language L as a result
of redundancies in the Minlang approximation.

3.2 Our Redundancy Check Algorithm

We describe a second algorithm, referred to as Redundancy Check, to fine-tune
the result of Minlang, guaranteed to output Lmin,σ exactly. We prove the cor-
rectness of the algorithm and give a worst-case runtime bound. Redundancy
occurs when a partial word w is already covered by some set X ⊆ Lmin,σ, i.e.,
σ(w) ⊆ σ(X). In Algorithm 2, V is the set of suffixes v of partial words u&v in
Lσ, where u is a fixed word with no holes, Ra is the set of suffixes r of partial
words uar in Lσ, where a ∈ Σ� and r is compatible with some element of V ,
and r is the part of the image σ(r) that is left uncovered by the elements of
V . Referring to Figs. 2–3, Redundancy Check is illustrated by Fig. 5. Redun-
dancy Check maintains the relationship Lmin,σ ⊆ Lσ while removing from Lσ

any partial words not in Lmin,σ.

Algorithm 2. Redundancy Check Given as input the output Lσ of Minlang,
computes Lmin,σ

1. for all u
, u ∈ Σ∗ do
2. V = {v | u
v ∈ Lσ}
3. for all children ua of u for a ∈ σ(
) do
4. compile Ra = {r | r ↑ v for some v ∈ V, uar ∈ Lσ}
5. for all r ∈ Ra do
6. let r = σ(r) \ {r ∨ v | r ↑ v for v ∈ V }
7. if for every e ∈ r there is a path uae′ ∈ Lσ such that e′ ⊂ e then
8. delete r
9. compile Lσ from the tree (every root-to-terminal path)
10. return Lσ
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Fig. 5. Left: for u = ε, the thick dashed path gives the set V = {ac} from the pseu-
docode of Redundancy Check. The thin dashed path is the only element r = a
 ∈ Ra.
Then r = {aa, ab, ac} \ {ac} = {aa, ab}. The dotted paths from a labeled 
a, 
b repre-
sent e′ ⊂ e ∈ r, hence we delete r. Right: the final language tree for the {a, b, c}-minimal
partial language for L, Lmin,σ = {a
a, a
b, 
ac}.

Theorem 1. Given as input a finite language L over Σ and a &-substitution σ,
Minlang followed by Redundancy Check returns Lmin,σ. The runtime is polyno-
mial in the size of the input.

Proof. Recall by Definition 1 that Lmin,σ is a minimal partial language with its
words of the weakest form such that σ(Lmin,σ) = L. We claim that Redundancy
Check removes the elements of the output of Minlang, Lσ, that are redundant.
It follows directly from Proposition 2 and our claim that Lσ = Lmin,σ.

To prove our claim, consider some element x that is removed by our Redun-
dancy Check. Thus x = uar for some u ∈ Σ∗, r ∈ Σ∗

� , and a ∈ σ(&), and there
exists w = u&y ∈ Lmin,σ such that y ∈ Σ∗

� and y ↑ r. Then for x to be removed,
r ∈ Ra, which means that r ↑ v for some v ∈ V , i.e., u&v ∈ Lσ, which is the
case since y ∈ V . Then for every e ∈ r, there must be some path uae′ ∈ Lσ such
that e′ ⊂ e. But if this is the case, then uae′ ⊂ uae for all such e′. This means
precisely that σ(x) ⊆ σ(Lσ \ {x}), and hence x �∈ Lmin,σ, so we remove x.

Similarly, if x �∈ Lmin,σ and x ∈ Lσ, then there must be some minimal set X ⊆
Lmin,σ ⊆ Lσ such that σ(x) ⊆ σ(X). If we take an element ofX with a hole in the
leftmost position of any partial word in X , say u&v, we have that x = uar where
a ∈ Σ�, and r ↑ v since x ↑ w for every w ∈ X . Then clearly v ∈ V and r ∈ Ra.
Any intersection between σ(r) and {r ∨ v} is removed from σ(r). Removing from
σ(r) all elements r ∨ z with r ↑ z and z ∈ V yields the set r, so every path in r
contains a weaker path, and hence x is removed from Lσ. ��

3.3 Our Partial Language Check Algorithm

We describe a third algorithm, referred to as Partial Language Check, that ver-
ifies if σ(L(Mσ)) = L when given as input a &-DFA Mσ = (Q,Σ�, δ, s, F ),
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associated with a &-substitution σ, and a finite language L over Σ. A con-
tender for a minimal &-DFA for a finite language L is a &-DFA Mσ such that
|L(Mσ)| ≤ |L|.

Algorithm 3. Partial Language Check Given a &-substitution σ, a &-DFA Mσ =
(Q,Σ�, δ, s, F ), and a finite language L over Σ, checks whether σ(L(Mσ)) = L

1. run standard DFA minimization on Mσ

2. compile the list P of all paths from s to any f ∈ F (if any grows longer than �, the
length of the longest word in L, terminate and return false)

3. compile L′ from P (if |L′| grows larger than |L|, terminate and return false)
4. let �′ be the length of the longest word in L′

5. if �′ �= � then return false
6. let L′

σ be the result of running Minlang on L′ and σ
7. while L′

σ continues to change with each pass (at most � times) do
8. run Minlang on L′

σ

9. run Redundancy Check on L′
σ

10. run Minlang with Redundancy Check on L, creating Lmin,σ

11. for each w ∈ Lmin,σ do
12. if w ∈ L′

σ then delete w from L′
σ

13. else return false
14. if L′

σ is non-empty then return false
15. else return true

Referring to the notation used in the pseudocode of Algorithm 3, for a word
w ∈ Lmin,σ, the weakest covering set X for w is the set of those words x ∈ L′

σ

such that x ↑ w, L′
σ contains no element z satisfying z � x, and σ(w) ⊆ σ(X).

Theorem 2. Let L be a language over alphabet Σ and σ be a &-substitution over
Σ. If L′ is a partial language such that σ(L′) = L, the language L′

σ produced by
running Minlang at most  times on L′ and then running Redundancy Check is
equal to Lmin,σ, where  denotes the length of the longest word in L.

Proof. First, we claim that for any partial language L′ such that σ(L′) = L, if
L′
σ is the language produced by running Minlang as many times as necessary on

L′, then Lmin,σ ⊆ L′
σ. To prove our claim, let w ∈ Lmin,σ. Since L′

σ is a partial
language associated with L, L′

σ contains some weakest covering set X for w.
We show that for all x ∈ X and any factorizations w = uv and x = u′v′ where
|v| = |v′|, we have that u′ ↑ u and v′ ⊂ v. We do this by induction on |v|. For the
inductive step, consider the factorizations w = uv = uay and x = u′v′ = u′a′y′

where |a| = |a′| = 1 and |y| = |y′|. By the inductive hypothesis, u′a′ ↑ ua and
y′ ⊂ y, so u′ ↑ u. Suppose a �= & or a′ = &. To have u′a′ ↑ ua, we must have
a′ ⊂ a, hence v′ = a′y′ ⊂ ay = v. Otherwise, since X ⊆ L′

σ covers w, u′by′ ∈ L′
σ

for all b ∈ σ(&), and a pass of Minlang clearly results in u′&y′ ∈ L′
σ. This implies

u′&y′ � u′a′y′, contradicting the fact that X is a weakest covering set for w.
Thus, for every w ∈ Lmin,σ, we have x ⊂ w for all x ∈ X . By Lemma 1(3),
x = w, so w ∈ L′

σ. Hence Lmin,σ ⊆ L′
σ.
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Next, we claim that if  is the length of the longest word in L, no more than
 passes of Minlang are required for our first claim to hold. To see this, if L′ is a
partial language for L with &-substitution σ, the language tree for L′ is of height
. Likewise, the tree for L′

σ, the language produced by running Minlang on L′,
is of height . The only case where we require an additional pass of Minlang on
L′
σ is when in the previous pass of Minlang, some partial word u&xay, where

u, x, y ∈ Σ∗
� and a ∈ σ(&), is added to L′

σ such that it is then possible to add
u&x&y′ to L′

σ for some y′ ∈ Σ∗
� with y ⊂ y′. As this newly-available addition can

only occur at a strictly lower level of the tree than the previous addition, the
tree is correctly minimized to depth k by the kth pass. Then, minimization is
complete after at most  passes.

By our two claims, Lmin,σ ⊆ L′
σ after at most  passes of Minlang. By Theo-

rem 1, we have that Redundancy Check on L′
σ removes all redundant elements

of L′
σ, resulting in simply Lmin,σ. ��

We finally prove Partial Language Check ’s correctness and runtime.

Theorem 3. Given as input a finite language L, a &-substitution σ, and a &-
DFA Mσ, Partial Language Check runs in polynomial time in the size of the
input. It properly verifies that σ(L(Mσ)) = L and that Mσ is a contender for a
minimal &-DFA for L given σ.

Proof. To see that Partial Language Check properly verifies that σ(L(Mσ)) = L
and that Mσ is a contender for a minimal &-DFA for L given σ, it first minimizes
Mσ to optimize runtime. It compiles all paths from the start state s to all accept
states f ∈ F and consolidates the paths into a partial language L′ = L(Mσ).
However, a contender for a minimal &-DFA for L never accepts a language larger
than L, so if it finds that |L′| has grown larger than |L| at any given point in
the compiling of L′, it immediately terminates and returns false, as this &-DFA
is no longer a contender for a minimal &-DFA for L.

If the length ′ of the longest word in L′ is not the length  of the longest word
in L, then clearly L′ is not a partial language for L, so it suffices to terminate
and return false.

The next step is to run Minlang followed by Redundancy Check on L and
Minlang at most  times on L′ followed by Redundancy Check. By Theorem 1
and Theorem 2, this produces the unique σ-minimal partial language for L and
for σ(L′). Hence if σ(L′) = L, then Lmin,σ = L′

σ. It then checks if the two
languages Lmin,σ and L′

σ are equal. If not, it returns false, and if so, it returns
true (Lines 14–15). Hence it returns true if and only if σ(L(Mσ)) = L and Mσ

is a contender for a minimal &-DFA for L given σ. ��

4 Adapting Minlang for Infinite Languages

We can extend regular expressions to partial words by adding & to the basic reg-
ular expressions. This leads naturally to the concept of regular partial languages
as the sets of partial words that match partial regular expressions. It is possible
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to run a slightly modified version of Minlang on an infinite language L using the
following process. In place of a complete list of the words in L, we use a regular
expression for L along with a given &-substitution σ.

First, convert a regular expression for our language L into a slightly modified
but equivalent form: distribute out unions whenever possible and separate the
expression into a list of words that are unioned together at the outer most level.
Call this list L, as it is evidently equivalent. Note that the only remaining unions
must be inside a Kleene star block. Denote the start of a Kleene star block with
“ [ ” and the end of it with “ ] ”.

Then, put L into a prefix tree. However, whenever we start a Kleene star
block, each element that is unioned together is the child of the “ [ ” character.
The end of each element in the Kleene star block has a child to the same joint
“ ] ” node that continues on with the suffix of the block.

Next, perform the same algorithm as Minlang with respect to the given &-
substitution σ, except when deleting redundant paths for some word w, if w =
u ] v and the “]” node has multiple parents, only delete the nodes relating to u
according to the algorithm’s requirements and break the tie from the “]” node
to its parent in the path of u.

Hence Minlang finds all possible &’s and removes redundancies in this tree.
Then a trained traversal of the tree that matches every “ [ ” node with its de-
scendant balanced “ ] ” node and unions all paths from the same “ [ ” node to the
joined “ ] ” node yields all regular expressions with the maximum number of &’s
in place. We call the resulting list of regular expressions represented, Lσ. The
modified algorithm runs in polynomial time of the input regular expression.

This modification of Minlang does not produce an equivalent minimal partial
language Lσ for the infinite language L. First, such a definition does not make
sense, as we cannot produce a language of minimal size, since any partial lan-
guage for L is infinite. Thus we focus on the equivalent of Definition 1(3): for
no partial word w ∈ Lσ does there exist x satisfying σ(x) ⊆ L and x � w. We
cannot guarantee that Lσ meets this criterion, as Lσ is dependent on the regular
expression used for L and not on the infinite language that the regular expres-
sion represents. The problem lies in the representation of a Kleene star block.
While ab(cb)∗b ≡ a(bc)∗bb, the regular expression ab(cb)∗b+ a(bc)∗ab+ a(bc)∗cb,
that uses the former form, finds no &’s when the modified Minlang is run on
it. However, the regular expression a(bc)∗bb+ a(bc)∗ab+ a(bc)∗cb, that uses the
latter form, finds a(bc)∗&b.

Checking all possible configurations of a loop for every loop used in a reg-
ular expression for the language is intractable. We could use a standardized
configuration of a loop, such as the unambiguous form from [5]. For a regular
expression composed of regular expressions x, y, define x(yx)∗ to be the unam-
biguous form, as a DFA is easily constructed from it. This is opposed to any
u(vyu)∗v where uv = x. However, even with a standardized unambiguous form,
a(ba)∗ + (ab)∗b+ (ab)∗c finds no &’s, while (ab)∗a+ (ab)∗b+ (ab)∗c finds (ab)∗&.
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Fig. 6. A language tree representing the regular expression a(a+ b+ c)∗b. Running the
modified Minlang produces the desired regular expression a
∗b.

5 Conclusion and Open Problems

The choice of a &-substitution σ can vastly change the state complexity of a
minimal &-DFA, associated with σ, for a given DFA. Fig. 7 illustrates different
&-substitutions resulting in different state complexities for minimal &-DFAs, as-
sociated with them. An open problem is to develop computational techniques
for selecting an optimal &-substitution σ for a given DFA M , that is, optimality
occurs when a minimal &-DFA for L(M), associated with σ, has the same state
complexity as a minimal &-DFA for L(M) over all possible &-substitutions. Be-
cause a solution to the σ-Choice problem is defined in terms of a solution to the
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Fig. 7. Top: A minimal 
-DFA, associated with σ(
) = {a, b}, having 7 states including
the error state, a sink non-accept state. Bottom: A minimal 
-DFA for the same full
language, associated with σ(
) = {a, c}, having 8 states including the error state.
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Minimal-&-DFA problem, which is NP-hard, it does not make sense to define
or attempt to solve the σ-Choice problem separately from the Minimal-&-DFA
problem.

Another open problem is the one of extending &-DFAs. In light of the un-
derstanding that &-DFAs are weakly non-deterministic, it makes sense to ask
whether meaningful extensions of the class &-DFA exist, and what properties
those extensions might have. In particular, what would happen if we created
additional &-like symbols, say &1, . . . , &k?

A World Wide Web server interface has been established at

www.uncg.edu/cmp/research/planguages2

for automated use of a program that given a &-substitution σ and a full language
L, computes the σ-minimal partial language for L. This is our own implemen-
tation, we do not use any known automata library.

References

1. Balkanski, E., Blanchet-Sadri, F., Kilgore, M., Wyatt, B.J.: Partial word DFAs. In:
Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 36–47. Springer, Heidel-
berg (2013)

2. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. Journal
of Computer and System Sciences 78, 198–210 (2012)

3. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words.
Chapman & Hall/CRC Press, Boca Raton (2008)
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Abstract. We search for the largest syntactic semigroup of a star-free
language having n left quotients; equivalently, we look for the largest
transition semigroup of an aperiodic finite automaton with n states.

We first introduce unitary semigroups generated by transformations
that change only one state. In particular, we study complete unitary semi-
groups which have a special structure, and we show that each maximal
unitary semigroup is complete. For n � 4 there exists a complete unitary
semigroup that is larger than any aperiodic semigroup known to date.

We then present even larger aperiodic semigroups, generated by trans-
formations that map a non-empty subset of states to a single state; we
call such transformations and semigroups semiconstant. In particular, we
examine semiconstant tree semigroups which have a structure based on
full binary trees. The semiconstant tree semigroups are at present the
best candidates for largest aperiodic semigroups.

Keywords: aperiodic, monotonic, nearly monotonic, partially mono-
tonic, semiconstant, transition semigroup, star-free language, syntactic
complexity, unitary.

1 Introduction

The state complexity of a regular language is the number of states in a complete
minimal deterministic finite automaton (DFA) accepting the language [14]. An
equivalent notion is that of quotient complexity, which is the number of left
quotients of the language [1]; we prefer quotient complexity since it is a language-
theoretic notion. The usual measure of complexity of an operation on regular
languages [1,14] is the quotient complexity of the result of the operation as a
function of the quotient complexities of the operands. This measure has some
serious disadvantages, however. For example, as shown in [5], in the class of
star-free languages all common operations have the same quotient complexity
as they do in the class of arbitrary regular languages with two small exceptions.
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Thus quotient complexity fails to differentiate between the very special class of
star-free languages and the class of all regular languages.

It has been suggested that other measures of complexity—in particular, the
syntactic complexity of a regular language, which is the cardinality of its syntactic
semigroup [12]—may also be useful [2]. Syntactic complexity is the same as the
cardinality of the transition semigroup of a minimal DFA accepting the language,
and it is this latter representation that we use here. The syntactic complexity of
a class of languages is the size of the largest syntactic semigroups of languages
in that class as a function of the quotient complexities of the languages. Since
the syntactic complexity of star-free languages is considerably smaller than that
of regular languages, this measure succeeds in distinguishing the two classes.

The class of star-free languages is the smallest class obtained from finite
languages using only boolean operations and concatenation, but no star. By
Schützenberger’s theorem [13] we know that a language is star-free if and only if
the transition semigroup of its minimal DFA is aperiodic, meaning that it con-
tains no non-trivial subgroups. Star-free languages and the DFAs that accept
them were studied by McNaughton and Papert in 1971 [11].

Two aperiodic semigroups, monotonic and partially monotonic, were studied
by Gomes and Howie [8]. Their results were adapted to finite automata in [4],
where nearly monotonic semigroups were also introduced; they are larger than
the partially monotonic ones and were the largest aperiodic semigroups known
to date for n � 7. For n � 8 the largest aperiodic semigroups known to date
were those generated by DFAs accepting R-trivial languages [3]. The syntactic
complexity of R-trivial languages is n!. As to aperiodic semigroups, tight upper
bounds on their size were known only for n � 3.

The following are the main contributions of this paper:

1. Using the method of [10], we have enumerated all aperiodic semigroups for
n = 4, and we have shown that the maximal aperiodic semigroup has size 47,
while the maximal nearly monotonic semigroup has size 41. Although this
may seem like an insignificant result, it provided us with strong motivation
to search for larger semigroups.

2. We studied semigroups generated by transformations that change only one
state; we call such transformations and semigroups unitary. We characterized
unitary semigroups and computed their maximal sizes up to n = 1, 000. For
n � 4 the maximal unitary semigroups are larger than any previously known
aperiodic semigroup.

3. For each n we found a set of DFAs whose inputs induce semiconstant tree
transformations that send a non-empty subset of states to a single state, and
have a structure based on full binary trees. For n � 4, there is a semicon-
stant tree semigroup larger than the largest complete unitary semigroup. We
computed the maximal size of these transition semigroups up to n = 500.

4. We derived formulas for the sizes of complete unitary and semiconstant tree
semigroups. We also provided recursive formulas characterizing the maximal
complete unitary and semiconstant tree semigroups; these formulas lead to
efficient algorithms for computing the forms and sizes of such semigroups.
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Our results about aperiodic semigroups are summarized in Tables 1 and 2 for
small values of n. Transformation 1 is the identity; it can be added to unitary
and semiconstant transformations without affecting aperiodicity. The classes are
listed in the order of increasing size when n is large.

There are two more classes of syntactic semigroups that have the same com-
plexity as the semigroups of finite languages [4]: those of cofinite and reverse
definite languages. The lower bound for definite languages ([4]) is the same as
the tight upper bound for J -trivial languages ([3]), but it is not known whether
this is also an upper bound for definite languages.

Omitted proofs can be found in [6].

Table 1. Large aperiodic semigroups

n : 1 2 3 4 5 6 7 8

Monotonic
(2n−1

n

)
1 3 10 35 126 462 1, 716 6, 435

Part. mon. e(n) − 2 8 38 192 1, 002 5, 336 28, 814

Near. mon. e(n) + n − 1 − 3 10 41 196 1, 007 5, 342 28, 821

Finite (n − 1)! 1 1 2 6 24 120 720 5, 040

J -trivial e(n − 1)!� 1 2 5 16 65 326 1, 957 13, 700

R-trivial n! 1 2 6 24 120 720 5, 040 40, 320

Complete unitary with 1 − 3 10 45 270 1, 737 13, 280 121, 500

Semiconstant tree with 1 − 3 10 47 273 1, 849 14, 270 126, 123

Aperiodic 1 3 10 47 ? ? ? ?

Table 2. Large aperiodic semigroups continued

n : 9 10 11 12 13

Monotonic 24, 310 92, 378 352, 716 1, 352, 078 5, 200, 300

Part. mon. 157, 184 864, 146 4, 780, 008 26, 572, 086 148, 321, 344

Near. mon. 157, 192 864, 155 4, 780, 018 26, 572, 097 148, 321, 352

Finite 40, 320 362, 880 3, 628, 800 39, 916, 800 479, 001, 600

J -trivial 109, 601 986, 410 9, 864, 101 108, 505, 112 1, 302, 061, 345

R-trivial 362, 880 3, 628, 800 39, 916, 800 479, 001, 600 6, 227, 020, 800

Comp. unit., 1 1, 231, 200 12, 994, 020 151, 817, 274 2, 041, 564, 499 29, 351, 808, 000

Sc. tree, 1 1, 269, 116 14, 001, 630 169, 410, 933 2, 224, 759, 334 31, 405, 982, 420

Aperiodic ? ? ? ? ?

2 Terminology and Notation

Let Σ be a finite alphabet. The elements of Σ are letters and the elements of
Σ∗ are words, where Σ∗ is the free monoid generated by Σ. The empty word
is denoted by ε, and the set of all non-empty words is Σ+, the free semigroup
generated by Σ. A language is any subset of Σ∗.

Suppose n � 1. Without loss of generality we assume that our basic set
under consideration is Q = {0, 1, . . . , n − 1}. A deterministic finite automaton
(DFA) is a quintuple D = (Q,Σ, δ, 0, F ), where Σ is a finite non-empty alphabet,
δ : Q×Σ → Q is the transition function, 0 ∈ Q is the initial state, and F ⊆ Q is
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the set of final states. We extend δ to Q×Σ∗ and to 2Q ×Σ∗ in the usual way.
A DFA D accepts a word w ∈ Σ∗ if δ(0, w) ∈ F . The language accepted by D is
L(D) = {w ∈ Σ∗ | δ(0, w) ∈ F}.

By the language of a state q of D we mean the language Lq(D) accepted by the
DFA (Q,Σ, δ, q, F ). A state is empty (also called dead or a sink) if its language
is empty. Two states p and q of D are equivalent if Lp(D) = Lq(D). Otherwise,
states p and q are distinguishable. A state q is reachable if there exists a word
w ∈ Σ∗ such that δ(0, w) = q. A DFA is minimal if all its states are reachable
and pairwise distinguishable.

A transformation of Q is a mapping of Q into itself. Let t be a transformation
of Q; then qt is the image of q ∈ Q under t. If P is a subset of Q, then Pt = {qt |

q ∈ P}. An arbitrary transformation has the form t =

(
0 1 · · · n− 2 n− 1

p0 p1 · · · pn−2 pn−1

)
,

where pq = qt for q ∈ Q. We also use t = [p0, . . . , pn−1] as a simplified notation.
The composition of two transformations t1 and t2 of Q is a transformation t1 ◦ t2
such that q(t1 ◦ t2) = (qt1)t2 for all q ∈ Q. We usually write t1t2 for t1 ◦ t2.

Let TQ be the set of all nn transformations of Q; then TQ is a monoid under
composition. The identity transformation 1 maps each element to itself, that is,
q1 = q for all q ∈ Q. A permutation of Q is a mapping of Q onto itself. For
k � 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆ Q is a
k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. A k-cycle is denoted
by (q0, q1, . . . , qk−1). If a transformation t of Q acts like a k-cycle on some P ⊆ Q,
we say that t has a k-cycle. A transformation has a cycle if it has a k-cycle for
some k � 2. For p �= q, a transposition is the 2-cycle (p, q). A transformation is
aperiodic if it contains no cycles. A transformation semigroup is aperiodic if it
contains only aperiodic transformations.

In any DFA D, each word w ∈ Σ∗ induces a transformation tw of Q defined by
qtw = δ(q, w) for all q ∈ Q. The set of all transformations of Q induced in D by
non-empty words is the transition semigroup of D, a subsemigroup of TQ. A DFA
is aperiodic if its transition semigroup is aperiodic. If D is minimal, its transition
semigroup is isomorphic to the syntactic semigroup of the language L(D) [11,12].
A language is regular if and only if its syntactic semigroup is finite. The size of
the syntactic semigroup of a language is called its syntactic complexity. We deal
only with transition semigroups and view syntactic complexity as the size of the
transition semigroup.

If T is a set of transformations, then 〈T 〉 is the semigroup generated by T .
If D = (Q,Σ, δ, 0, F ) is a DFA, the transformations induced by letters of Σ are
called generators of the transition semigroup of D, or simply generators of D.

3 Unitary and Semiconstant DFAs

We now define a new class of aperiodic DFAs among which are found the largest
transition semigroups known to date. We also study several of its subclasses.
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A unitary transformation t, denoted by (p → q), has p �= q, pt = q and rt = r
for all r �= p. A DFA is unitary if each of its generators is unitary. A semigroup
is unitary if it has a set of unitary generators.

A constant transformation t, denoted by (Q → q), has pt = q for all p ∈ Q.
A transformation t is semiconstant if it maps a non-empty subset P of Q to a
single element q and leaves the remaining elements of Q unchanged. It is de-
noted by (P → q). A constant transformation is semiconstant with P = Q, and
a unitary transformation (p → q) is semiconstant with P = {p}. A DFA is semi-
constant if each of its generators is semiconstant. A semigroup is semiconstant
if it has a set of semiconstant generators.

For each n � 1 we shall define several DFAs. Let m, n1, n2, . . . , nm be positive
natural numbers. Also, let n = n1 + · · ·+ nm, and for each i, 1 � i � m, define
ri by ri =

∑i−1
j=1 nj . For i = 1, . . . ,m, let Qi = {ri, ri +1, . . . , ri+1 − 1}; thus the

cardinality of Qi is ni. Let Q = Q1 ∪ · · · ∪Qm = {0, . . . , n− 1}; the cardinality
of Q is n. The sequence (n1, n2, . . . , nm) is called the distribution of Q.

A binary tree is full if every vertex has either two children or no children. Let
ΔQ be a full binary tree with m leaves labeled Q1, . . . , Qm from left to right.
To each node v ∈ ΔQ, we assign the union Q(v) of all the sets Qi labeling the
leaves in the subtree rooted at v.

With each full binary tree we can associate different distributions. A full
binary tree ΔQ with a distribution attached is denoted by ΔQ(n1, n2, . . . , nm)
and is called the structure of Q. This structure will uniquely determine the
transition function δ of the DFAs defined below.

We can denote the structure of Q as a binary expression. For example, the
expression ((3, 2), (4, 1)) denotes the full binary tree in which the leaves are
labeled Q1, Q2, Q3, and Q4, where |Q1| = 3, |Q2| = 2, |Q3| = 4, |Q4| = 1, and
the interior nodes are labeled by Q1 ∪Q2, Q3 ∪Q4 and Q1 ∪Q2 ∪Q3 ∪Q4. On
the other hand, the expression (((3, 2), 4), 1) has interior nodes labeled Q1 ∪Q2,
Q1 ∪Q2 ∪Q3 and Q1 ∪Q2 ∪Q3 ∪Q4.

Definition 1 (Transformations)

Type 1: Suppose n > 1 and (n1, n2, . . . , nm) is a distribution of Q. For all
i = 1, . . . ,m and q, q+1 ∈ Qi Type 1 transformations are the unitary trans-
formations (q → q + 1) and (q + 1 → q).

Type 2: Suppose n > 1 and (n1, n2, . . . , nm) is a distribution of Q. If 1 � i �
m − 1 and i < j � m, for each q ∈ Qi and p ∈ Qj, (q → p) is a Type 2
transformation.

Type 3: Suppose n > 1 and ΔQ(n1, n2, . . . , nm) is a structure of Q. For each
internal node w the semiconstant transformation (Q(w) → min(Q(w))) is of
Type 3.

Type 4: The identity transformation 1 on Q is of Type 4.

In the following DFAs the transition function is defined by a set of transfor-
mations and the alphabet consists of letters inducing these transformation.
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Definition 2 (DFAs). Suppose n > 1.

1. If there is no i ∈ {1, . . . ,m− 1} such that |Qi| = |Qi+1| = 1, then any DFA
of the form Du(n1, . . . , nm) = (Q,Σu, δu, 0, {n − 1}), where δu has all the
transformations of Types 1 and 2, is a complete unitary DFA.

2. Dui(n1, . . . , nm) = (Q,Σui, δui, 0, {n− 1}) is Du(n1, . . . , nm) with 1 added.
3. Any DFA Dsct(ΔQ(n1, . . . , nm)) = (Q,Σsct, δsct, 0, {n− 1}), where δsct has

all the transformations of Types 1, 2 and 3, is a semiconstant tree DFA.
4. Dscti(ΔQ(n1, . . . , nm)) = (Q,Σscti, δscti, 0, {n−1}) is Dsct(ΔQ(n1, . . . , nm))

with 1 added.

Following [7], we define a bipath (bidirectional path) to be a graph (V,E),
where V = {v0, . . . , vk−1} for some k � 1, and for each vq, vq+1 ∈ V there
are two edges (vq, vq+1) and (vq+1, vq). If k = 1, ({v0}, ∅) is a trivial bipath.
If we ignore self-loops, each edge in the graph uniquely determines a unitary
transformation, and the states in each Qi in Du(n1, . . . , nm) constitute a bipath.
Also, the graph of Du(n1, . . . , nm) is a sequence (Q1, . . . , Qm) of bipaths, where
there are transitions from every q in Qi to every p in Qj, if i < j.

Example 1. Figure 1 shows three examples of unitary DFAs. In Fig. 1 (a) we have
DFA Du(3), where the letter apq induces the unitary transformation (p → q). In
Fig. 1 (b) we present Du(3), where only the transitions between different states
are included to simplify the figure. Also, the letter labels are deleted because
they are easily deduced. Next, in Figs. 1 (c) and (d), we have the DFAs Du(3, 1)
and Du(2, 2, 2), respectively. We shall return to these examples later.

Remark 1. All four DFAs of Definition 2 are minimal as is easily verified.

4 Unitary Semigroups

We study unitary semigroups because their generators are the simplest. We begin
with three previously studied special semigroups.

Monotonic Semigroups [4,8,9]
A transformation t of Q is monotonic if there exists a total order � on Q such

that, for all p, q ∈ Q, p � q implies pt � qt. A DFA is monotonic if each of its
generators is monotonic. A semigroup is monotonic if it has a set of monotonic
generators. We assume that � is the usual order on integers.

The following result of [8] is somewhat modified for our purposes:

Proposition 1 (Gomes and Howie). The set M of all
(
2n−1

n

)
− 1 monotonic

transformations other than 1 is an aperiodic semigroup generated by GM =
{(q → q + 1) | 0 � q � n− 2} ∪ {(q → q − 1) | 1 � q � n − 1}, and no smaller
set of unitary transformations generates M .

Corollary 1. The transition semigroup of Dui(n) is the semigroup M ∪ {1} of
all monotonic transformations.
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a10, a12, a21

1

4 5

32

0

(d)

0 1 2

a01 a12

0 1 2

a10 a21

0 1 2

3

(a)

(c)

(b)

a01, a21

a01, a10, a12

Fig. 1. Unitary DFAs: (a) Du(3); (b) Du(3) simplified; (c) Du(3, 1); (d) Du(2, 2, 2)

Figure 1 (b) shows Du(3) and Dui(3), if 1 is added. The transition semigroup
of Dui(3) has ten elements and is the largest aperiodic semigroup for n = 3 [4].

Partially Monotonic Semigroups [4,8]
A partial transformation t of Q is a partial mapping of Q into itself. If t is

defined for q ∈ Q, then qt is the image of q under t; otherwise, we write qt = �.
By convention, �t = �. The domain of t is the set dom(t) = {q ∈ Q | qt �= �}.
A partial transformation is monotonic if there exists an order � on Q such that
for all p, q ∈ dom(t), p � q implies pt � qt.

We start with all partial transformations of Q\{n−1} and add state (n−1) for
the undefined value �. The resulting transformations are partially monotonic.
The next result follows from [8]:

Proposition 2. For n � 2, the DFA Dui(n−1, 1) = (Q,Σui, δui, 0, {n−1}) has
the following properties:

1. Each of the 3n−4 transformations of Dui(n−1, 1) is partially monotonic.
Thus Dui(n− 1, 1) is partially monotonic, and hence aperiodic.

2. The transition semigroup PMQ of Dui(n − 1, 1) consists of all the e(n)

partially monotonic transformations of Q, where e(n) =
∑n−1

k=0

(
n−1
k

)(
n+k−2

k

)
.

3. Each generator is idempotent, and 3n− 4 is the smallest number of idem-
potent generators of PMQ. Moreover, each generator except 1 is unitary, and
3n− 5 is the smallest number of unitary generators of PMQ \ {1}.

For n � 4 the semigroup of all partially monotonic transformations is larger
than the semigroup of all monotonic transformations.
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General Unitary Semigroups
A set {t0, . . . , tk−1} of unitary transformations is k-cyclic if it has the form

t0 = (q0 → q1), t1 = (q1 → q2), . . . , tk−2 = (qk−2 → qk−1), tk−1 = (qk−1 → q0),
where the qi are distinct.

Lemma 1. Let T be a set of unitary transformations.
1. If T has a k-cyclic subset {t0, . . . , tk−1} with k � 3, then 〈T 〉 is not

aperiodic.
2. If T contains a subset T6 = {t01, t10, t12, t13, t21, t31} where ti,j = (qi → qj)

and q0, q1, q2, q3 ∈ Q, then 〈T 〉 is not aperiodic.

Theorem 1. If D = (Q,Σ, δ, 0, F ) is unitary, the following are equivalent:
1. D is aperiodic.
2. The set of generators of D does not contain any k-cyclic subsets with

k � 3, and does not contain any sets of type T6.
3. Every strongly connected component of D is a bipath.

Proof. 1 ⇒ 2: This follows from Lemma 1.
2 ⇒ 3: Consider a strongly connected component C. If |C| = 1, the claim

holds. Otherwise, suppose p ∈ C and (p → q) is a transition. Then there must
also be a directed path from q to p. If the last transition in that path is (r → p),
where r �= q, then the set of generators must contain a k-cyclic subset with
k � 3, which is a contradiction. Hence the transition (q → p) must be present.

Next, suppose that there are transitions (p → q), (p → r), and (p → s).
By the argument above there must also be transitions (q → p), (r → p), and
(r → s). But then the set of generators contains a subset of type T6, which is
again a contradiction.

It follows that every strongly connected component is a bipath, and the graph
of the transitions of D is a loop-free connection of such bipaths.

3 ⇒ 1: Since a bipath is monotonic, it is aperiodic by Proposition 1. By
Schützenberger’s theorem [13], the language of all words taking any state of the
bipath to any other state of that bipath is star-free. Since the graph of D is a
loop-free connection of bipaths, the language of all words taking any state of D
to any other state of D is star-free. Hence D is aperiodic. ��

A unitary DFA is complete if the addition of any unitary transition results in
a DFA that is not aperiodic.

Theorem 2. A maximal aperiodic unitary semigroup is isomorphic to the tran-
sition semigroup of a complete unitary DFA Du(n1, . . . , nm), where (n1, . . . , nm)
is some distribution of Q.

Proof. We know that an aperiodic unitary DFA D is a loop-free connection of
bipaths. Let Q1, . . . , Qm be the bipaths of D. There exists a linear ordering <
of them, such that there is no transformation (p → q) for q ∈ Qi, p ∈ Qj, i < j.
If all possible transformations (q → p) for q ∈ Qi, p ∈ Qj , i < j are present,
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then D is isomorphic to Du(n1, . . . , nm). Otherwise we can add more unitary
transformations of Type 2 and obtain a larger semigroup. ��

For each distribution (n1, . . . , nm), we calculate the size of the transition semi-
group of Dui(n1, . . . , nm).

Theorem 3. The cardinality of the transition semigroup of Dui(n1, . . . , nm) is

m∏
i=1

⎛⎝(2ni − 1

ni

)
+

ni−1∑
h=0

(
m∑

j=i+1

nj

)ni−h(
ni

h

)(
ni + h− 1

h

)⎞⎠ . (1)

Note that each factor of the product in Theorem 3 depends only on ni and
on the sum k = ni+1 + · · · + nm. Hence if Dui(n1, . . . , nm) is maximal, then
Dui(n2, . . . , nm) is also maximal and so on. Consequently, we have

Corollary 2. Let mui(n) be the cardinality of the largest transition semigroup
of DFA Dui(n1, . . . , nm) with n states. If we define mui(0) = 1, then for n > 0

mui(n) = max
j=1,...,n

(
mui(n− j)

((
2j − 1

j

)
+

j−1∑
h=0

(n− j)j−h

(
j

h

)(
j + h− 1

h

)))
.

(2)

This leads directly to a dynamic algorithm taking O(n3) time for computing
mui(n) and the distributions (n1, . . . , nm) yielding the maximal unitary semi-
groups. This holds assuming constant time for computing the internal terms in
the summation and summing them, where, however, the numbers can be very
large. The precise complexity depends on the algorithms used for multiplication,
exponentiation and calculation of binomial coefficients.

We were able to compute the maximal Dui up to n = 1, 000. Here is an ex-
ample of the maximal one for n = 100: Dui(12, 11, 10, 10, 9, 8, 8, 7, 6, 5, 5, 4, 3, 2);
its syntactic semigroup size exceeds 2.1× 10160. Compare this to the previously
known largest semigroup of an R-trivial language; its size is 100! which is ap-
proximately 9.3 × 10157. On the other hand, the maximal possible syntactic
semigroup of any regular language for n = 100 is 10200.

Asymptotic Lower Bound
We were not able to compute the tight asymptotic bound on the maximal

size of unitary semigroups. However, we computed a lower bound which is larger
than n!, the previously known lower bound for the size of aperiodic semigroups.

Theorem 4. For even n the size of the maximal unitary semigroup is at least

n!(n+ 1)!

2n((n/2)!)2
.

For n = 100 the bound exceeds 7.5× 10158. Larger lower bounds can also be
found using increasing values of j in Dui(j, j, . . . , j), but the complexity of the
calculations increases, and such bounds are not tight.
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5 Semiconstant Semigroups

Nearly Monotonic Semigroups [4]
Let KQ be the set of all constant transformations of Q, and NMQ = PMQ ∪

KQ. We call the transformations in NMQ nearly monotonic with respect to
the usual order on integers. For n � 4 the semigroup of all nearly monotonic
transformations is larger than that of all partially monotonic ones.

Semiconstant Tree Semigroups
An example of a maximal semiconstant tree DFA for n = 6 is Dscti((2, 2), 2);

its transition semigroup has 1,849 elements. For n � 4, the maximal semiconstant
tree semigroup is the largest aperiodic semigroup known.

Definition 3. Let A = (QA, ΣA, δA, qA, FA) and B = (QB, ΣB, δB, qB, FB) be
DFAs, where QA ∩ QB = ∅, and ΣA ∩ ΣB = ∅. The semiconstant sum of A
and B is denoted by C = (A,B) and is the DFA (QC , ΣC, δC , qA, FB), where
QC = QA ∪ QB. For each transition t in δA, we have a transition t′ in δC such
that qt′ = qt for q ∈ QA and qt′ = q otherwise. Dually, we have transitions
defined by t in δB. Moreover, we have a unitary transformation (p → q) for each
p ∈ QA, q ∈ QB, and a constant transformation (QC → qA).

Lemma 2. The semiconstant sum C = (A,B) is minimal if and only if every
state of A is reachable from qA, the states of B are pairwise distinguishable, and
FB is non-empty.

For m > 1, each Dscti(ΔQ(n1, . . . , nm)) is a semiconstant sum of two smaller
semiconstant tree DFAs Dscti(ΔQleft

(n1, . . . , nr)), defined by the left subtree of
the root of ΔQ(n1, . . . , nm), and Dscti(ΔQright

(nr+1, . . . , nm)), defined by the
right subtree.

Lemma 3. If A and B are aperiodic, so is their semiconstant sum.

Proof. Suppose that 〈(A,B)〉 contains a cycle t. This cycle cannot include both
a state from A and a state from B, since the only way to map a state from
B to a state from A in (A,B) is by a constant transformation, and a constant
transformation cannot be used as a generator of a cycle. Hence all the cyclic
states must be either in QA or QB, which contradicts the assumption that A
and B are aperiodic. ��

An DFA is transition-complete if it is aperiodic and adding any transition to
it destroys aperiodicity.

Lemma 4. If A and B are transition-complete, so is their semiconstant sum.

Corollary 3. All semiconstant tree DFAs of the form Dscti(ΔQ(n1, . . . , nm))
are transition-complete.

In order to count the size of the semigroup of a semiconstant sum, we extend
the concept of partial transformations to k-partial transformations.
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Definition 4. A k-partial transformation of Q is a transformation of Q into
Q ∪ {�1,�2, . . . ,�k}, where �1,�2, . . . ,�k are pairwise distinct, and distinct
from all q ∈ Q.

Let A = (Q,Σ, δ, s, F ) be a DFA, and let t be a k-partial transformation of
Q. We say that t is consistent for A if there exists t′ in δ such that if qt ∈ Q,
then qt = qt′ for all q ∈ Q.

The set of consistent k-partial transformations of a semigroup describes its
potential for forming a large number of transformations, when used in a semicon-
stant sum. For a fixed n � 6, there exist semigroups with smaller cardinalities
than the maximal ones, but with larger numbers of consistent k-partial transfor-
mations for some k. Thus k-partial transformations are useful for finding such
non-maximal semigroups, as they can result in larger semigroups when used in
compositions.

The transition semigroup of A can be characterized by a function fA : N → N
counting all consistent k-partial transformations for a given k. For example, for
k = 1, fA is the number of all consistent partial transformations forA. For a DFA
A = Dui(n1, . . . , nm), fA(1) is the size of the semigroup of Dui(n1, . . . , nm, 1).

From Theorem 3 we know that the number of consistent k-partial transfor-
mations for a bipath of size n having an identity transformation is mbi(n, k) =(
2n−1

n

)
+

∑n−1
h=0 k

n−h
(
n
h

)(
n+h−1

h

)
.

Theorem 5. Let A and B be strongly connected DFAs with n and m states,
respectively. Let fA(k) and fB(k) be the functions counting their consistent k-
partial transformations. Then the function fC counting the consistent k-partial
transformations of the semiconstant sum C = (A,B) is fC(k) = fA(m+k)fB(k)+
n(k + 1)n((k + 1)m − km).

Corollary 4. The number of k-partial transformations of Dscti(ΔQ(n1, . . . , nm))
of size n is:

fD(k) =

{
mbi(n, k), if m = 1;

fDleft(r + k)fDright (k) + �(k + 1)�((k + 1)r − kr), if m > 1,

where Dleft is the DFA defined by ΔQleft
(n1, . . . , ni), the left subtree of the tree

ΔQ(n1, . . . , nm), Dright is defined by ΔQright
(ni+1, . . . , nm), the right subtree of

ΔQ(n1, . . . , nm), and , r are the numbers of states in Dleft and Dright, respec-
tively.

Proof. This follows from Theorems 3 and 5. ��

The size of the semigroup of DFA Dscti(n1, . . . , nm) is fD(0).

Corollary 5. Let mscti(n, k) be the maximal number of k-partial transforma-
tions of a semiconstant DFA Dscti(n1, . . . , nm) with n states. Then

mscti(n, k) = max

⎧⎪⎨⎪⎩
mbi(n, k)

max
s=1,...,n−1

{
mscti(n− s, s+ k)mscti(s, k)

+ (n− s)(k + 1)n−s((k + 1)s − ks)

}
.

(3)
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The maximal size of semigroups of the DFAs Dscti with n states is mscti(n, 0).
Instead of a bipath and the value mbi(n, k) we could use any strongly con-

nected automaton with an aperiodic semigroup. If such a semigroup would have
a larger number of k-partial transformations than our semiconstant tree DFAs
for some k, then we could obtain even larger aperiodic semigroups.

The corollary results directly in a dynamic algorithm working in O(n3) time
(assuming constant time for arithmetic operations and computing binomials) for
computing mscti(n, 0), and the distribution with the full binary tree yielding the
maximal semiconstant tree semigroup.

We computed the maximal semiconstant tree semigroups up to n = 500. For
n = 100, for example, one of the maximal DFAs is

Dscti (((((((2, 2), (2, 2)), ((2, 2), (2, 2))), (((2, 2), (2, 2)), ((2, 2), 3))),

((((2, 2), 3), (3, 3)), ((3, 3), (3, 3)))), ((((3, 2), (3, 2)), ((3, 2), (2, 2))),

((2, 2), (2, 2)))), (((3, 3), (3, 2)), ((2, 2), 2))),

and its syntactic semigroup size exceeds 3.3× 10160.
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Abstract. We show that the upper bound (n− k) · 2n + k · 2n−1 on the
state complexity of the square of a regular language recognized by an
n-state deterministic finite automaton with k final states is tight in the
ternary case for every k with 1 ≤ k ≤ n−2. Using this result, we are able
to define a language that is hard for the square operation on languages
accepted by alternating finite automata. In the unary case, the known
upper bound for square is 2n − 1, and we prove that each value in the
range from 1 to 2n − 1 may be attained by the state complexity of the
square of a unary language with state complexity n whenever n ≥ 5.

1 Introduction

Square is an operation on formal languages which is defined as L2 = L·L = {uv |
u ∈ L and v ∈ L}. It is known that if a regular language L is recognized by an n-
state deterministic finite automaton (DFA), then the language L2 is recognized
by a DFA of at most n · 2n − 2n−1 states [11]. This upper bound follows from
the upper bound m · 2n − 2n−1 on the state complexity of the concatenation
K · L = {uv | u ∈ K and v ∈ L} of languages K and L recognized by m-state
and n-state DFAs, respectively [9, 14]; here, the state complexity of a regular
language is the smallest number of states in any DFA recognizing this language.

Yu et al. [14] proved that the upper bound for concatenation is tight in the
ternary case by describing languages over a three-letter alphabet that meet this
upper bound for their concatenation. The binary witnesses have been presented
already in [9], however no proof has been given here. The tightness of this upper
bound in the binary case is proved in [5].

In [14] it is shown that the upper bound m·2n−2n−1 for concatenation cannot
be met if the first language is accepted by an m-state DFA that has more than
one final state. In such a case, the upper bound is (m− k) · 2n + k · 2n−1, where
k is the number of final states in the DFA for the first language [14].

� Research supported by grant APVV-0035-10.

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 136–147, 2014.
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The tightness of these bounds has been studied in [4], where binary witnesses
are described for every k with 1 ≤ k ≤ n−1. Later these results have been useful
for defining languages that are hard for concatenation of languages accepted by
alternating finite automata (AFAs). The known upper bound for alternating
finite automata is 2m + n + 1 [3], and the authors of [3] wrote: ”. . . we show
that 2m + n + 1 states suffice for an AFA to accept the concatenation of two
languages accepted by AFA with m and n states, respectively. We conjecture
that this number is actually necessary in the worst case, but have no proof.”

This open problem is almost solved in [6] by taking binary languages KR

and LR accepted by 2m-state and 2n-state DFAs, respectively, both with half
of states final, that meet the upper bound for concatenation in [4]. Then, as
shown in [6], the languages K and L are accepted by m-state and n-state AFAs,
respectively, and every AFA for the languageK ·L requires at least 2m+n states.

Motivated by the same problem for the square operation on alternating finite
automata, we study this operation in more detail in this paper. The upper bound
n ·2n−2n−1 on the state complexity of the square of a language recognized by an
n-state DFA is known to be tight in the binary case. Rampersad [11] described
a language over a binary alphabet recognized by an n-state DFA with one final
state whose square meets this upper bound.

As in the case of concatenation, this upper bound cannot be met by a language
accepted by an n-state DFA that has more than one final state. Here, the upper
bound for concatenation gives the upper bound (n − k) · 2n + k · 2n−1 on the
state complexity of the square of a language recognized by an n-state DFA with
k final states. In the first part of our paper, we show that these upper bounds
are tight in the ternary case for every k with 1 ≤ k ≤ n− 2. We are not able to
prove the tightness in the case of k = n− 1, and we conjecture that in this case,
the upper bound cannot be met. The binary case remains open as well.

Using these results, we are able to describe a language L accepted by an n-
state AFA such that every AFA for the language L2 needs at least 2n+n states.
This is smaller just but one than the upper bound 2n+n+1 which follows from
the known upper bound 2m + n+ 1 for concatenation of AFA languages [3].

In the second part of the paper, we study the square operation on unary regu-
lar languages. In the unary case, the known upper bound on the state complexity
of the square of a language recognized by an n-state unary DFA is 2n− 1 [11].
We are interested in the question which values in the range from 1 to 2n−1 may
be attained by the state complexity of the square of a unary language with state
complexity n. We prove that for every n with n ≥ 5, the hierarchy of possible
complexities is contiguous with no gaps in it. For every n and α with n ≥ 5 and
1 ≤ α ≤ 2n− 1, we are able to define a unary language L with state complexity
n such that the state complexity of the language L2 is α. This is in contrast to
the results for the star of unary languages [2], where there are at least two gaps
of length n of values in the range from 1 to (n− 1)2 +1 that cannot be attained
by the star of any unary language with state complexity n.

We first recall some basic definitions; for further details, the reader may refer
refer to [12, 13].
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A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, I, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the
transition function which is extended to the domain 2Q×Σ∗ in the natural way,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. The
language accepted by A is the set L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}. An NFA
A is deterministic (and complete) if |I| = 1 and |δ(q, a)| = 1 for each q in Q and
each a in Σ. In such a case, we write q · a = q′ instead of δ(q, a) = {q′}.

The state complexity of a regular language L, sc(L), is the number of states
in the minimal DFA for L. It is well known that a DFA is minimal if all its states
are reachable from its initial state, and no two of its states are equivalent.

The concatenation of two languages K and L is the language K · L = {uv |
u ∈ K and v ∈ L}. The square of a language L is the language L2 = L · L.

The reverse of a string w is defined by εR = ε and (wa)R = awR for a string w
and a symbol a. The reverse of a language L is the language LR = {wR | w ∈ L}.

A language is called unary (binary, ternary) if it is defined over an alphabet
containing one (two, three, respectively) symbols.

2 Square for Automata with k Final States

In this section we consider languages over an alphabet of at least two symbols.
The state complexity of concatenation of regular languages accepted by an m-
state and an n-state DFAs is known to be m · 2n − 2n−1 [9, 14]. However, if the
first automaton has k final states, then the upper bound for concatenation is
(m − k) · 2n + k · 2n−1 [14], and it is known to be tight in the binary case for
every k with 1 ≤ k ≤ n− 1 [4].

It follows that the upper bound on the complexity of square is n · 2n − 2n−1.
A binary witness language meeting this bound is presented in [11]. If a language
is accepted by an n-state DFA with k final states, then the upper bound is
(n− k) · 2n + k · 2n−1. For the sake of completeness, we give a simple alternative
proof here.

Lemma 1. Let n ≥ 2 and 1 ≤ k ≤ n − 1. If a language L is accepted by an
n-state DFA with k final states, then sc(L2) ≤ (n− k) · 2n + k · 2n−1.

Proof. Let L be a language accepted by a DFA A = (Q,Σ, ·, 0, F ), where Q =
{0, 1, . . . , n − 1} and |F | = k. Construct an NFA N for the language L2 from
the DFA A as follows. Take two copies of the DFA A; the states in the first copy
are labeled by q0, q1, . . . , qn−1, and the states of the second copy are labeled by
0, 1, . . . , n−1. For each state qi and each symbol a, add the transition on a from
qi to the initial state 0 of the second copy whenever i ·a ∈ F . The initial state of
the NFA N is q0 if 0 /∈ F , otherwise N has two initial states q0 and 0. The final
states of N are final states in the second copy, thus states in F .

Consider the subset automaton of the NFA N . Each reachable subset of the
subset automaton is of the form {qi}∪S, where S ⊆ {0, 1, . . . , n− 1}. Moreover,
if i ∈ F , then S must contain the state 0. It follows that the number of reachable
states in the subset automaton is at most (n− k) · 2n + k · 2n−1. ��
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Fig. 1. A DFA A of a language meeting the bound (n− k) · 2n + k · 2n−1 for square

Our next aim is to show that the bounds (n − k) · 2n + k · 2n−1 can be met
by languages over a three-letter alphabet assuming that 1 ≤ k ≤ n− 2. We are
not able to prove the tightness in the case of k = n− 1, and we conjecture that
in this case, the bound 2n + (n− 1) · 2n−1 cannot be met.

Lemma 2. Let n ≥ 3 and 1 ≤ k ≤ n − 2. There exists a ternary regular
language L accepted by an n-state DFA with k final states and such that sc(L2) =
(n− k) · 2n + k · 2n−1.

Proof. Let L be the language accepted by the DFA A = (Q, {a, b, c}, ·, 0, F )
shown in Fig. 1, in which Q = {0, 1, . . . , n− 1}, F = {i | n− k ≤ i ≤ n− 1}, and

q · a = (q + 1) mod n;
q · b = q if q �= 1 and 1 · b = 0;
q · c = 1 if q �= n− 1 and (n− 1) · c = n− 1;

notice that the automaton A restricted to the alphabet {a, b} and with k = 1 is
the Rampersad’s witness automaton meeting the upper bound n · 2n − 2n−1 on
the state complexity of the square of regular languages [11].

Construct an NFAN for the language L2 as described in the proof of Lemma 1.
The NFA N is shown in Fig. 2; to keep the figure transparent, we omitted the
transitions on c going to states q1 and 1.

Our goal is to show that the subset automaton corresponding to the NFA N
has (n− k) · 2n + k · 2n−1 reachable and pairwise distinguishable states.

To this aim consider the following family of subsets of the states of N :

R =
{
{qi} ∪ S | 0 ≤ i ≤ n− k − 1, S ⊆ {0, 1, . . . , n− 1}

}
∪

{
{qi} ∪ T | n− k ≤ i ≤ n− 1, T ⊆ {0, 1, . . . , n− 1} and 0 ∈ T

}
.
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Fig. 2. An NFA N for the language (L(A))2; the transitions on c going to states q1
and 1 are omitted
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The family R consists of (n − k) · 2n + k · 2n−1 subsets, and we are going to
show that all of them are reachable and pairwise distinguishable in the subset
automaton of the NFA N .

We prove reachability by induction on the size of subsets. The initial state
of the subset automaton is {q0}, and the following transitions show that all the
subsets in R of size at most two are reachable:

{q0} a−→{q1} a−→ · · · a−→{qn−k−1} a−→{qn−k, 0} ab−→ {qn−k+1, 0} ab−→ · · · ab−→ {qn−1, 0},

{qn−1, 0} a−→ {q0, 1} b−→ {q0, 0},

{q0, 1}
(ab)j−1

−−−−−→ {q0, j} where 2 ≤ j ≤ n− 1, and

{q0, (j − i) mod n} ai

−→ {qi, j} where 1 ≤ i ≤ n− k − 1, 0 ≤ j ≤ n− 1.

Now let 2 ≤ t ≤ n, and assume that each subset in R of size t is reachable in
the subset automaton. Let us show that then also each subset in R of size t+ 1
is reachable.

To this aim let S = {qi, j1, j2, . . . , jt}, where 0 ≤ j1 < j2 < · · · < jt ≤ n− 1,
be a subset in R of size t+ 1. Consider several cases:

(1) Let n− k ≤ i ≤ n− 1, so j1 = 0. We show that the set S is reachable by
induction on i.

(1a) If i = n − k, then S is reached from {qn−k−1, j2 − 1, j3 − 1, . . . , jt − 1}
by a, and the latter set is reachable by induction on t.

(1b) Suppose i > n − k. If j2 ≥ 2, then the set S is reached from the set
{qi−1, 0, j2−1, . . . , jt−1} by ab. If j2 = 1, then the set S is reached from the set
{qi−1, n − 1, 0, j3 − 1, . . . , jt − 1} by a. Both sets containing qi−1 are reachable
by induction on i.

(2) Let i = 0. There are four subcases:
(2a) Let j1 = 0 and j2 = 1. Take S′ = {qn−1, n− 1, 0, j3− 1, . . . , jt− 1}. Then

S′ is reachable as shown in case (1), and it goes to S by a.
(2b) Let j1 = 0 and j2 ≥ 2. Take S′ = {qn−1, 0, j2−1, j3−1, . . . , jt−1}. Then

S′ is reachable as shown in case (1), and it goes to S by ab.
(2c) Let j1 = 1. Take S′ = {qn−1, 0, j2 − 1, j3 − 1, . . . , jt − 1}. Then S′ is

reachable as shown in case (1), and it goes to S by a.
(2d) Let j1 ≥ 2. Take S′ = {q0, 1, j2− j1+1, j3− j1+1, . . . , jt− j1+1}. Then

S′ is reachable as shown in case (2c), and it goes to S by (ab)j1−1.

(3) Let 1 ≤ i ≤ n− k − 1. Take S′ = {q0, (j1 − i) mod n, . . . , (jt − i) mod n}.
Then S′ is reachable as shown in cases (2a-2d), and it goes to S by ai.

This proves the reachability of all the subsets in R.
To prove distinguishability, notice that the string c is accepted by the NFA

N only from the state n − 1; remind that state 1 is not final since we have
k ≤ n − 2. Next, notice that exactly one transition on a goes to each of the
states in {q1, q2, . . . , qn−1, 1, 2, . . . , n − 1}, and exactly one transition on c goes
to state 0. It follows that the string an−1−ic is accepted only from the state i,
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where 0 ≤ i ≤ n − 2, the string can−1c is accepted only from the state qn−1,
and finally the string an−1−ican−1c is accepted only from the state qi, where
0 ≤ i ≤ n− 2. Fig. 3 illustrates this for n = 5 and k = 3. This means that all the
states in the subset automaton of the NFA N are pairwise distinguishable since
two distinct subsets must differ in a state q of N , and the string that is accepted
only from q distinguishes the two subsets. This proves distinguishability, and
concludes the proof. ��

0 1 2 3 4

a a a a

a a a a

cc

qq
0 1

caca c2a ca c 34

ca c44 444 2a ca c3a ca c4 aca ca ca c

q2 4qq
3

Fig. 3. The strings accepted only from the corresponding states; n = 5 and
k = 3. Notice that exactly one transition on a goes to each of the states in
{q1, q2, . . . , qn−1, 1, 2, . . . , n − 1}, and exactly one transition on c goes to state 0. The
unique acceptance of appropriate strings follows from these facts.

As a corollary of the two lemmata above, we get the following result.

Theorem 1 (Square: k Final States). Let n ≥ 3 and 1 ≤ k ≤ n− 2. Let L
be a language over an alphabet Σ accepted by an n-state DFA with k final states.
Then sc(L2) ≤ (n− k) · 2n + k · 2n−1, and the bound is tight if |Σ| ≥ 3. ��

2.1 An Application

In this subsection we show how the witness languages described in Lemma 2 can
be used to define languages that almost meet the upper bound on the square
operation on alternating finite automata.

First, let us give some basic definitions and notations. For details and all
unexplained notions, the reader may refer to [1, 3, 6–8, 12, 13].

An alternating finite automaton (AFA) is a quintuple A = (Q,Σ, δ, s, F ),
where Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input
alphabet, δ is the transition function that maps Q×Σ into the set Bn of boolean
functions, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. For
example, let A1 = ({q1, q2}, {a, b}, δ, q1, {q2}), where transition function δ is
given in Table 1.
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Table 1. The transition function of the alternating finite automaton A1

δ a b

q1 q1 ∧ q2 1

q2 q2 q1 ∨ q2

The transition function δ is extended to the domain Bn ×Σ∗ as follows: For
all g in Bn, a in Σ, and w in Σ∗,

δ(g, ε) = g;

if g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a));

δ(g, wa) = δ(δ(g, w), a).

Next, let f = (f1, . . . , fn) be the boolean vector with fi = 1 iff qi ∈ F . The lan-
guage accepted by the AFA A is the set L(A) = {w ∈ Σ∗ | δ(s, w)(f) = 1}.
In our example we have

δ(s, ab) = δ(q1, ab) =δ(δ(q1, a), b) = δ(q1 ∧ q2, b) = 1 ∧ (q1 ∨ q2) = q1 ∨ q2.

To determine whether ab ∈ L(A1), we evaluate δ(s, ab) at the vector f = (0, 1).
We obtain 0, hence ab /∈ L(A1). On the other hand, we have abb ∈ L(A1) since
δ(s, abb) = δ(q1 ∨ q2, b) = 1 ∨ (q1 ∧ q2), which gives 1 at (0, 1).

An alternating finite automaton A is nondeterministic (NFA) if δ(qk, a) are
of the form

∨
i∈I qi. If δ(qk, a) are of the form qi, then the automaton A is

deterministic (DFA).
Recall that the state complexity of a regular language L, sc(L), is the small-

est number of states in any DFA accepting L. Similarly, the alternating state
complexity of a language L, in short asc(L), is defined as the smallest number
of states in any AFA for L. The following results are well known.

Lemma 3 ([1, 3, 6, 7]). If L is accepted by an AFA of n-states, then LR is
accepted by a DFA of 2n states. If sc(LR) = 2n and the minimal DFA for LR

has 2n−1 final states, then asc(L) = n. ��

It follows that asc(L) ≥ log(sc(LR)). Using the results given by Lemma 2
and Lemma 3, we get a language that almost meets the upper bound on the
complexity of the square operation on AFAs.

Theorem 2 (Square on AFAs). Let L be a language over an alphabet Σ with
asc(L) = n. Then asc(L2) ≤ 2n + n+ 1. The bound 2n + n is met if |Σ| ≥ 3.

Proof. The upper bound follows from the upper bound 2m + n+ 1 on the con-
catenation of AFA languages [3]. Now let LR be the ternary witness for square
from Lemma 2 with 2n states and 2n−1 final states. Then, by Lemma 3, we have
asc(L) = n. By Lemma 2, we get

sc((L2)R) = sc((LR)2) = 2n−1 · 22n + 2n−1 · 22n−1 ≥ 2n−1 · 22n(1 + 1/2).

By Lemma 3, we have asc(L2) ≥ *log(2n−1 · 22n(1 + 1/2))+ = 2n + n, which
proves the theorem. ��
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The above result for square complements the results on the complexity of basic
operations on AFA languages obtained in [6]. The following table summarizes
these results, and compares them to the known results for DFAs [9, 11, 14].

union intersection concatenation reversal star square

AFAs m+ n+ 1 m+ n+ 1 ≥ 2m + n ≥ 2n ≥ 2n ≥ 2n + n

≤ 2m + n+ 1 ≤ 2n + 1 ≤ 2n + 1 ≤ 2n + n+ 1

DFAs mn mn m · 2n − 2n−1 2n 3/4 · 2n n · 2n − 2n−1

3 Square of Languages over Unary Alphabet

A unary alphabet is fundamentally different from the general case. It has a close
relation to the number theory – the length of strings is their only property that
really matters in complexity questions. From this point of view, unary languages
are nothing else than subsets of natural numbers. Instead of writing an ∈ L, we
will write n ∈ L. The square operation is then, in fact, the sum of two numbers
in the language. Let us start with some basic definitions and notations.

For integers i and j with i ≤ j, let [i, j] = {i, i+ 1, . . . , j}.
A DFA A = (Q, {a}, δ, q0, F ) for a unary language is uniquely given by less

information than an arbitrary DFA. Identify states with numbers from the in-
terval [0, n − 1] via q ∼ min{i | δ(q0, ai) = q}. Then A is unambiguously given
by the number of states n, the set of final numbers F , and the “loop” number
 = δ(q0, a

n). This allows us to freely interchange states and their ordinal num-
bers and justifies the notation convention used by Nicaud [10], where (n, , F )
denotes a unary automaton with n states, the loop number , and the set of final
states F . Nicaud also provided the following characterization of minimal unary
automata.

Theorem 3 ([10, Lemma 1]). A unary automaton (n, , F ) is minimal if and
only if both conditions below are true:
(1) its loop is minimal, and
(2) states n − 1 and  − 1 do not have the same finality (that is, exactly one

of them is final). ��

Finite and cofinite languages are always regular, and if they are unary, then
it is easy to determine their state complexity.

Proposition 1. Let L be a unary language. If L is cofinite, then we have sc(L) =
max{m | m /∈ L}+ 2. If L is finite, then sc(L) = max{m | m ∈ L}+ 2. ��

Proposition 2. If a language is (co)finite, then also its square is (co)finite. ��

If ε ∈ L, then every string w in L can be written as εw. This leads to the
following observation.

Proposition 3. If ε ∈ L, then L ⊆ L2. ��
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3.1 Finite Unary Languages

Interestingly, if we consider only finite languages with state complexity n, then
we cannot get any other complexity for square but 2n− 2.

Lemma 4. Let L be a finite unary regular language with sc(L) = n. Then
sc(L2) = 2n− 2.

Proof. By Proposition 1, the greatest number in L is n − 2. It follows that
the greatest member of L2 is the number 2n − 4. Hence L2 is also finite and
sc(L2) = 2n− 4 + 2 = 2n− 2. ��

3.2 General Unary Languages

If we take a unary language with state complexity n, the state complexity of
its square will be between 1 and 2n− 1 [11]. But could it be anywhere between
these two bounds? The next result shows that the answer is yes if n ≥ 5.

Theorem 4. Let n ≥ 5 and 1 ≤ α ≤ 2n− 1. There exists a unary language L
such that sc(L) = n and sc(L2) = α.

Proof. We will provide a witness for every liable combination of n and α. The
proof is structured to four main cases depending on α:

1. α = 2 (the proof works for n ≥ 6),
2. α = 2n− 2 (the proof works for n ≥ 2),
3. 1 ≤ α ≤ n− 1 and α �= 2 (the proof works for n ≥ 8),
4. n ≤ α ≤ 2n− 1 and α �= 2n− 2 (the proof works for n ≥ 2).

All witnesses uncovered by these general proofs are part of Table 2 which is
an overview of the situation for n < 5 and α ≤ n. If the combination of n and α
is liable, one witness is listed, non-existence is indicated by the symbol –.

Table 2. Witnesses for liable combinations of small values of n and α; 2 ≤ n ≤ 7 and
1 ≤ α ≤ n

α n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

1 – (3, 0, {0, 1}) (4, 3, {0, 1, 3}) (5, 4, {0, 1, 2, 4}) (6, 5, {0, 1, 2, 3, 5}) (7, 6, {0, 1, 2, 3, 4, 6})
2 (2, 0, {0}) – – (5, 1, {0, 2}) (6, 0, {0, 2}) (7, 5, {0, 2, 6})
3 (3, 0, {0}) (4, 2, {1, 2}) (5, 0, {0, 2, 3}) (6, 5, {0, 2, 3, 5}) (7, 6, {0, 2, 3, 4, 6})
4 (4, 0, {0}) (5, 0, {0, 3, 4}) (6, 2, {0, 3, 4, 5}) (7, 0, {0, 3, 4, 5})
5 (5, 0, {0}) (6, 2, {0, 2, 5}) (7, 6, {0, 1, 4, 6})
6 (6, 0, {0}) (7, 1, {0, 1, 3})
7 (7, 0, {0})



On the Square of Regular Languages 145

1. Let α = 2 and n ≥ 6. The construction of witnesses depends on the parity
of n. If n is even, then we take the language recognized by the witness DFA
A = (n, 0, F ), where F = {i ∈ [0, n− 1] | i is even and i �= n − 2}. If n is odd,
then the witness DFA is A = (n, n− 2, {i ∈ [0, n− 1] | i is even and i �= n− 3}).

We claim that in both cases L(A)
2
is the language of even numbers with the

corresponding minimal DFA (2, 0, {0}). We give the proof for n even; the proof
for n odd has only slight technical differences.

We first show that A is minimal. The second condition of Theorem 3 is fulfilled
vacantly. The first condition – the minimality of the loop – is satisfied as well:
Any equivalent loop must be of even length as not to accept strings of different
parity. Since there is exactly one even non-accepting state, it cannot be equivalent
with any other state, and the loop is unfactorizable.

Now we show that L(A)2 is the language of all even numbers. Since L(A)
contains only even numbers and the sum of two even numbers is even, L(A)2

contains only even numbers. Let us show that L(A)2 contains all even numbers.

By Proposition 3, we have L(A) ⊆ L(A)
2
. All even numbers missing in L(A)

are in the form kn+(n−2). But these numbers are in L(A)2, since kn+(n−2) =
(2+kn)+(n−4), which is a sum of two numbers in L(A); recall, that 2 �= n−2,
since n ≥ 6.

2. Let α = 2n−2 and n ≥ 2. By Lemma 4, every finite language of complexity
n is a witness in this case; for example, we can take the language {n− 2}.

From now on, our strategy is based on Proposition 1. All our languages will
be cofinite, so their complexity is easily determined by answering the question –
how long is the longest string not contained in this language?

3. Let 1 ≤ α ≤ n − 1, α �= 2, and n ≥ 8. Technically, this case is further
divided to subcases α = 1, α = 3, α = 4, 5 ≤ α ≤ n where α �= n − 1, and
α = n− 1. However, the main idea of the construction is always the same, so we
provide only the witness automata in Fig. 4, and one exemplary proof in the case
of 5 ≤ α ≤ n where α �= n − 1. For this case, consider the language L accepted
by the unary automaton A = (n, n−1, F ), where F = [α−1, n−3]∪{0, 1, n−1}.

First, let us show that the numbers greater than α− 2 are in L2. Since ε ∈ L,
the language L is a subset of L2 by Proposition 3. The only number greater than
α− 2 that is not in L is n− 2. However, we have n− 2 = (n− 3) + 1, which is
the sum of two numbers in L. Therefore, the number n − 2 is in L2. It follows
that all numbers greater than α− 2 are in L2.

Now let us show that α − 2 is not in L2. The only numbers in L that are
smaller than α− 1 are 0 and 1. The sum of any two of them is at most 2, which
is less than α− 2. Thus, by Proposition 1, the state complexity of L2 is α.

4. n ≤ α ≤ 2n − 1 and α �= 2n − 2, n ≥ 2. Consider the unary language
L = {i | i ≥ n − 1}. Then sc(L) = n and sc(L2) = 2n − 1 since the greatest
number that is not in L2 is 2n − 3. By adding an arbitrary number different
than n− 2 to the language L, we get a language with the same state complexity
as L. But the state complexity of the square of the resulting language will be
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Fig. 4. The construction of witnesses for n and α with 1 ≤ α ≤ n

different. Let m = α − n. Then 0 ≤ m ≤ n− 1 and m �= n− 2. Let us see what
happens, if we add the number m to L.

Let Lm = L ∪ {m}. Then we have L2
m = {2m} ∪ {m+ i | i ≥ (n− 1)}. Since

m �= n− 2, we have 2m �= m+ n− 2, and therefore the greatest number that is
not in L2

m is m+ n− 2. It follows that sc(L2
m) = m+ n− 2 + 2 = α. ��

4 Conclusions

We considered the square operation on regular languages. In the unary case, the
state complexity of square is 2n− 1 [11]. We proved that each value in the range
from 1 to 2n − 1 may be attained by the state complexity of the square of a
unary language with state complexity n whenever n ≥ 5.

Next, we studied the square operation on languages over an alphabet of at
least two symbols. The known upper bound in this case is n · 2n − 2n−1, and
it is known to be tight in the binary case [11]. We investigated the square for
languages accepted by automata with more final states. The upper bound on the
state complexity of the square of a language accepted by an n-state DFA with
k final states is (n− k) · 2n + k · 2n−1. We showed that these upper bounds are
tight in the ternary case assuming that 1 ≤ k ≤ n− 2.

The case of k = n− 1 remains open, and we conjecture that the upper bound
2n + (n− 1) · 2n−1 cannot be met in this case. The binary case is open as well.

As an application, we were able to define a ternary language L accepted by an
n-state alternating finite automaton such that every alternating finite automaton
for the language L2 requires at least 2n + n states. This is smaller just by one
than the known upper bound 2n + n+ 1 [3]. Our result on the square operation
complements the results on the complexity of union, intersection, concatenation,
star, and reversal on AFA languages obtained in [6].
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Abstract. A two-way deterministic finite state automaton with one
counter (2D1CA) is a fundamental computational model that has been
examined in many different aspects since sixties, but we know little about
its power in the case of unary languages. Up to our knowledge, the
only known unary nonregular languages recognized by 2D1CAs are those
formed by strings having exponential length, where the exponents form
some trivial unary regular language. In this paper, we present some non-
trivial subsets of these languages. By using the input head as a second
counter, we present simulations of two-way deterministic finite automata
with linearly bounded counters and linear–space Turing machines. We
also show how a fixed-size quantum register can help to simplify some of
these languages. Finally, we compare unary 2D1CAs with two–counter
machines and provide some insights about the limits of their computa-
tional power.

1 Introduction

A finite automaton with one counter is a fundamental model in automata the-
ory. It has been examined in many different aspects since sixties [8]. One recent
significant result, for example, is that the equivalence problem of deterministic
one-way counter automata is NL-complete [2]. After introducing quantum au-
tomata [21,15] at the end of the nineties, quantum counter automata have also
been examined (see a very recent research work in [28]).

A counter is a very simple working memory which can store an arbitrary
long integer that can be incremented or decremented; but only a single bit of
information can be retrieved from it: whether its value is zero or not. It is a well-
known fact that a two-way deterministic finite automaton with two counters is
universal [18,19,22]. Any language recognized by a two-way deterministic finite
automaton with one counter (2D1CA), on the other hand, is in deterministic
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logarithmic space (L) [24].1 Replacing the counter of a 2D1CA with a stack, we
get a two-way deterministic pushdown automaton (2DPDA), that can recognize
more languages [7]. Similarly, nondeterminism also increases the class of the
languages recognized by 2D1CAs [4].

Unary or tally languages, defined over a single letter alphabet, have deserved
special attention. When the input head is not allowed to move to the left (one-
way head), it is a well-known fact that unary nondeterministic pushdown au-
tomata can recognize only regular languages [9]. The same result was shown
for bounded-error probabilistic pushdown automata, too [13]. Currently, we do
not know whether “quantumness” can add any power. Their alternating ver-
sions were shown to be quite powerful: they can recognize any unary language
in deterministic exponential time with linear exponent [3]. But, if we replace the
stack with a counter, only a single family of unary nonregular languages [6] is
known: UPOWER(k) =

{
ak

n | n ≥ 1
}
, for a given integer k ≥ 2. In the case of two-

way head, we know that the unary encoding of every language in deterministic
polynomial time (P) can be accepted by 2DPDAs [20]; however we do not know
whether 2DPDAs are more powerful than 2D1CAs (see also [11]) on unary lan-
guages like in the case of binary languages. Any separation between L and P can
of course answer this question positively, but, it is still one of the big open prob-
lems in complexity theory. On the other hand, researchers also proposed some
simple candidate languages not seemingly accepted by any 2D1CA [11,23], e.g.

USQUARE =
{
an

2 | n ≥ 1
}
. Although it was shown that two–counter machines

(2CAs) cannot recognize USQUARE if the input counter is initialized with n2 (i.e.
no Gödelization is allowed) [12,26], up to our knowledge, there is not any known
nondeterministic, alternating, or probabilistic one-counter automaton for it. We
only know that USQUARE can be recognized by exponential expected time 2D1CAs
augmented with a fixed-size quantum register [28] or realtime private alternat-
ing one-counter automata [5]. Apart from this open problem, we do not know
much about which nonregular unary languages can be recognized by 2D1CAs.
In this paper, we provide some answers to this question. In his seminal paper
[18], Minsky showed that the emptiness problem for 2D1CAs on unary languages
is undecidable. In his proof, he presented a simulation of two-way deterministic
finite automaton with two counters on the empty string by a 2D1CA using its
input head as a second counter. We use a similar idea but as a new programming
technique for 2D1CAs on unary languages that allows to simulate multi-counter
automata and space bounded Turing machines operating on unary or general al-
phabets. A 2D1CA can take the input and the working memory of the simulated
machine as the exponent of some integers encoded on unary inputs. Thus, once
the automaton becomes sure about the correctness of the encoding, it can start
a two-counter simulation of the given machine, in which the second counter is
implemented by the head on the unary input. Based on this idea, we will present
several new nonregular unary languages recognized by 2D1CAs. Our technique

1 Since a 2D1CA using super-linear space on its counter should finally enter an infinite
loop, any useful algorithm can use at most linear space on a counter, which can be
simulated by a logarithmic binary working tape.
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can be applicable to nondeterministic, alternating, and probabilistic cases in a
straightforward way. We also show that using a constant-size quantum memory
can help to replace the encoding on binary alphabets with unary alphabets. Fi-
nally we compare unary 2D1CAs with 2CAs and provide some insights about
the limits of their computational power.

2 Background

Throughout the paper, Σ denotes the input alphabet and the extra symbols ¢
and $ are the end-markers (the tape alphabet is Σ̃ = Σ ∪ {¢, $}). For a given
string w, wr is the reverse of w, |w| is the length of w, and wi is the ith symbol of
w, where 1 ≤ i ≤ |w|. The string ¢w$ is represented by w̃. Each counter model
defined in the paper has a two-way finite read-only input tape whose squares are
indexed by integers. Any given input string, say w ∈ Σ∗, is placed on the tape
as w̃ between the squares indexed by 0 and |w|+ 1. The tape has a single head,
and it can stay in the same position (↓) or move to one square to the left (←) or
to the right (→) in one step. It must always be guaranteed that the input head
never leaves w̃. A counter can store an integer and has two observable states:
zero (0) or nonzero (±), and can be updated by a value from {−1, 0,+1} in one
step. Let Θ = {0,±}.

A two-way deterministic one-counter automaton (2D1CA) is a two-way de-
terministic finite automaton with a counter. Formally, a 2D1CA D is a 6-tuple

D = (S,Σ, δ, s1, sa, sr),

where S is the set of states, s1 ∈ S is the initial state, sa, sr ∈ S (sa �= sr) are
the accepting and rejecting states, respectively, and δ is the transition function
governing the behaviour of D in each step, i.e.

δ : S \ {sa, sr} × Σ̃ ×Θ → S ×{←, ↓,→}× {−1, 0,+1}.

Specifically, δ(s, σ, θ) → (s′, di, c) means that when D is in state s ∈ S \ {sa, sr},
reads symbol σ ∈ Σ̃, and the state of its counter is θ ∈ Θ, then it updates its
state to s′ ∈ S and the position of the input head with respect to di ∈ {←, ↓,→},
and adds c ∈ {−1, 0,+1} to the value of the counter. In order to stay on the
boundaries of w̃, if σ = ¢ then di ∈ {↓,→} and if σ = $ then di ∈ {↓,←}.

At the beginning of the computation, D is in state s1, the input head is placed
on symbol ¢, and the value of the counter is set to zero. A configuration of D on
a given input string is represented by a triple (s, i, v), where s is the state, i is the
position of the input head, and v is the value of the counter. The computation
ends and the input is accepted (resp. rejected) by D when it enters sa (resp. sr).

For any k > 1, a two-way deterministic k-counter automaton (2DkCA) is a
generalization of a 2D1CA and is equipped with k counters; in each transition,
it checks the states of all counters and then updates their values. Moreover, we
call a counter linearly bounded if its value never exceeds O(|w|), where w is the
given input. But restricting this bound to |w| does not change the computational
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power of any kind of automaton having linearly bounded counters, i.e. the value
of any counter can be compressed by any rational number by using extra control
states. A two-counter automaton (2CA) is a 2D2CA over a unary alphabet and
without the input tape: the length of the unary input is placed in one of the
counters at the beginning of the computation. We underline that the length of
the unary input an is placed in the counter as it is: indeed if we allow a suitable
encoding of the input (by Gödelization, e.g. setting its initial value to 2n) a 2CA
can simulate any Turing machine [18,26].

We replace “D” that stands for deterministic in the abbreviations of deter-
ministic machines with “N”, “A”, and “P” for representing the abbreviations of
their nondeterministic, alternating, and probabilistic counterparts.

We finish the section with some useful technical lemmas.

Lemma 1. 2D1CAs can check whether a given string is a member of language
UPOWER(k) = {akn | n ≥ 1}, with k ≥ 2.

Lemma 2. For any given p ∈ Z+, there exists a 2D1CA D that can set the
value of its counter to M if its initial value is M · pn provided that the length of
the input is at least M · pn−1, where M ∈ Z+, p � M , and n > 0.

Lemma 3. The language L = {a2j3k | j, k ≥ 0} can be recognized by a 2D1CA.

Lemma 4. For any given p > 1, a 2D2CA D with values M > 0 and 0 in its
counters can test whether p divides M without moving the input head and, after
testing, it can recover the values of the counters.

3 Main Results

We start with the simulation of linearly bounded multi–counter automata on
unary languages and establish a direct connection with logarithmic-space unary
languages. Secondly, we present the simulation of linear–space Turing machines
on binary languages. Then we generalize this simulation for Turing machines that
use more space and for Turing machines without any resource bound. Thirdly,
we present our quantum result. We finish the section comparing unary 2D1CAs
and 2CAs.

3.1 Simulation of Multi-counter Automata on Unary Alphabet

We assume that all linearly bounded counters do not exceed the length of the
input. Let L ⊆ {a}∗ be a unary language recognized by a 2D2CA M with
linearly bounded counters and w = an be the given input that is placed on the
input tape (between the two end-markers as ¢an$ and indexed from 0 to |w|+1).
We can represent the configurations of M on w with a state, an integer, and a
Boolean variable as follows:

(s, 2i3n−i5c17c2, OnDollar), (1)

where
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– s is the current state,
– OnDollar = true means that the input head is on $,
– OnDollar = false means that the input head is on the ith square, and,
– c1 (resp. c2) represents the value of the first (resp. second) counter.

By using OnDollar variable, we do not need to set i to (n + 1) and this will
simplify the languages that we will define soon. Note that we are using two
exponents, i.e. 2i3n−i, to store the position of the input head. In this way, we
can implicitly store the length of the given input (n).

Lemma 5. A 2D2CA, say M′, can simulate M on w without using its input
head, if its first counter is set to 203n5070.

Proof. For any p ∈ {2, 3, 5, 7}, M′, by help of the second counter, can easily
increase the exponent of p by 1, test whether the exponent of p is zero or not,
and decrease the exponent of p by 1 if it is not zero. Moreover, M′ can keep the
value of OnDollar, which is false at the beginning, by using its control states.
Note that when the exponent of 3 is zero and the input head of M is moved to
the right, the value of OnDollar is set to true; and, whenever the input head
of M leaves the right end-marker, the value of OnDollar is set to false again.
During both operations, the exponents of 2 and 3 remain the same. Thus, M′

can simulate M on w and it never needs to use its input head. ��
Note that, during the simulation given above, 2i3n−i is always less than 3n for
any i ∈ {0, . . . , n}, and so, the values of both counters never exceed 3n5n7n.

Now, we build a 2D1CA, say M′′, simulating the computation of M′ on some
specific unary inputs. Let u ⊆ {a}∗ be the given input.

1. M′′ checks whether the input is of the form 3n5n7n = 105n for a non-
negative integer n (Lemma 1). If not, it rejects the input.

2. M′′ sets its counter to 203n5070 (Lemma 2). Then, by using its input head
as the second counter, it simulates M′ which actually simulates M on an

(Lemma 5). M′′ accepts (resp. rejects) the input ifM ends with the decision
of “acceptance” (resp. “rejection”).

Thus, we can obtain that if L ⊆ {a}∗ can be recognized by a 2D2CA with
linearly bounded counters, then {a105n | an ∈ L} is recognized by a 2D1CA.
Actually, we can replace 105 with 42 by changing the representation given in
Equation 1 as:

(s, 5i7n−i2c13c2, OnDollar),

where 5i7n−i is always less than 7n for any i ∈ {0, . . . , n}.
Theorem 1. If L ⊆ {a}∗ can be recognized by a 2D2CA with linearly bounded
counters, then {a42n | an ∈ L} is recognized by a 2D1CA.

Based on this theorem, we can easily show some languages recognized by
2D1CAs, e.g. {

a42
n2

| n ≥ 0
}

and
{
a42

p | p is a prime
}
.

We can generalize our result for 2DkCAs with linearly bounded counters in a
straightforward way.
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Theorem 2. Let k > 2 and p1, . . . , pk+1 be some different prime numbers such
that one of them is greater than the (k+1)th prime number. If L ⊆ {a}∗ can be
recognized by a 2DkCA with linearly bounded counters, then{

a(p1·p2···pk+1)
n

| an ∈ L
}

is recognized by a 2D1CA.

Proof. Let P = {p1, . . . , pk+1}. Since one prime number in P , say pk+1, is greater
than the (k+1)th prime number, there should be a prime number not in P , say
p′k+1, that is not greater than the (k + 1)th prime number. We can use the
representation given in Equation 1 for a configuration of the 2DkCA:(

s, pik+1(p
′
k+1)

n−ipc11 pc22 · · · pckk , OnDollar
)
.

pik+1(p
′
k+1)

n−i is always less than pnk+1, and so, the integer part of the configu-
ration is always less than (p1 · p2 · · · pk+1)

n. As described before, a 2D1CA can
check whether the length of the input is a power of (p1 · p2 · · · pk+1), and, if so,
it can simulate the computation of the 2DkCA on the input. The 2D1CA needs
to simulate k counters instead of 2 counters but the technique is essentially the
same. ��

The simulation given above can be easily generalized for nondeterministic,
alternation, and probabilistic models. The input check and the initialization of
the simulation are done deterministically. Therefore, the computation trees of the
simulated and simulating machines have the same structure for the well-formed
inputs, i.e. the inputs not rejected by the initial input check.

Theorem 3. Let k ≥ 2 and p1, . . . , pk+1 be some different prime numbers such
that one of them is greater than the (k + 1)th prime number. If L ⊆ {a}∗ can
be recognized by a 2NkCA (resp. 2AkCA, bounded-error 2PkCA, or unbounded-
error 2PkCA) with linearly bounded counters, then{

a(p1·p2···pk+1)
n | an ∈ L

}
is recognized by a 2N1CA (resp. 2A1CA, bounded-error 2P1CA, or unbounded-
error 2P1CA).

Now, we establish the connection with logarithmic-space unary languages.
The following two easy lemmas are a direct consequence of the fact that, over
unary alphabet, a linear bounded counter can be simulated by the head position
and vice versa.

Lemma 6. Any two-way automaton with k-heads on unary inputs can be sim-
ulated by a two-way automaton with k-linearly bounded counters, where k > 1.

The reverse simulation holds even on generic alphabets.

Lemma 7. Any two-way automaton with k-linearly bounded counters can be
simulated by a two-way automaton with (k + 1)-heads, where k > 1.



154 M. De Biasi and A. Yakaryılmaz

Both simulations work for deterministic, nondeterministic, alternating, and
bounded- and unbounded-error probabilistic models.

Fact 1. [10,14,16] The class of languages recognized by two-way multi-head de-
terministic, nondeterministic, alternating, bounded-error probabilistic, and
unbounded-error probabilistic finite automata are

L,NL,AL(= P),BPL, and PL,

(deterministic, nondeterministic, alternating, bounded-error probabilistic, and
unbounded-error probabilistic logarithmic space) respectively.

Based on this fact, the last two lemmas, and the other results in this section, we
can obtain the following theorem.

Theorem 4. Let L be any unary language in L (resp., NL, P, BPL, and PL).
Then there is an integer p, product of some primes, such that

{apn | an ∈ L}

can be recognized by a 2D1CA (resp., 2N1CA, 2A1CA, bounded-error 2P1CA,
and unbounded-error 2P1CA).

3.2 Simulation of Turing Machines on Binary and General
Alphabets

LetN be a single-tape single-head DTM (deterministic Turing machine) working
on a binary alphabet Σ = {a, b}. Note that its tape alphabet also contains the
blank symbol #. We assume that the input is written between two blank symbols
for DTMs. We define some restrictions on N :

– There can be at most one block of non-blank symbols.
– The tape head is placed on the right end-marker at the beginning of the

computation which makes easier to explain our encoding used by the 2D3CA
given below. Note that this does not change the computational power of the
DTMs.

A configuration of N on a given input, say w ∈ {a, b}∗, can be represented as
usv, where uv ∈ #{a, b}∗# represents the current tape content and s is the
current state. Moreover, the tape head is on the last symbol of #u. The initial
configuration is #w#s1, where s1 is the initial state. Here v is the empty string.
Note that u can never be the empty string.

By replacing a with 0, and b and # with 1s, we obtain a binary number
representation of u and v – we will denote these binary numbers by u and v,
respectively. Now, we give a simulation of N by a 2D3CA, say N ′, on w.2 N ′

does not have a tape but can simulate it by using three counters. During the
simulation, N ′ keeps u and vr on its two counters. If N ′ knows the state and the
symbol under head, it can update the simulating tape. N ′ can keep the state of
N by its internal states and can easily check whether:

2 We refer the reader to [17] for a general theory of simulations.
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– u equals to 1 or is bigger than 1;
– vr equals to 0, equals to 1, or bigger than 1;
– the last digit of u is zero or one; and
– the last digit of vr is zero or one.

Based on these checks, N ′ can simulate the corresponding change on the tape
(in a single step of N ) with the values of the counters.

By a suitable encoding, two counters can simulate k > 2 counters. Let p1, p2,
. . . , pk be co-prime numbers. The values of all k counters, say c1, c2, . . . , ck, can
be represented as pc11 pc22 · · · pckk . A counter can hold this value, and, by using
the second counter, N ′ can check if ci is equal to zero (Lemma 4) and it can
simulate an appropriate increment/decrement operation on ci, where 1 ≤ i ≤ k.
Therefore, we can conclude that a 2D2CA, say N ′′, can simulate N on w by
using prime numbers {2, 3, 5} for encoding, if its first counter is set to 31w1.
Here N ′′ can use the exponents of 3 and 5 for keeping the content of the tape
and the exponent of 2 to simulate the third counter.

Let’s assume that N uses exactly |w|+2 space, i.e. the tape head never leaves
the tape squares initially containing #w#. That is, the binary value of the tape
is always less than twice of 1w1, which is 1w10, during the whole computation.
Then the values of the counters can never exceed 51w1021w10 or 251w141w1, where
the exponents are the numbers in binary. Note that the whole tape is kept by
the exponent of 3 and 5, and so, their product is always less than 51w10.

Theorem 5. If L ⊆ {a, b}∗ can be recognized by a DTM, say N , in space |w|+2
with binary work alphabet, then{

a100
1w1

| w ∈ L
}

can be recognized by a 2D1CA, say N ′′′.

Proof. N ′′′ rejects the input if it is not of the form {a100n} (Lemma 1), where
n > 0. Then, it sets its first counter to 4n (Lemma 2). N ′′′ rejects the input,
if n is not of the form 1w1 for some w ∈ {a, b}. We know that a 2D2CA can
easily do this check if one of its counter is set to n, i.e. it needs to check n is
odd and n /∈ {0, 1, 2}. So, N ′′′ can implement this test by using its input head
as the second counter.

As described above, if its first counter is set to 31w1, the 2D2CA N ′′ can
simulate N on a given input w. Due to the space restriction on N , we also know
that the counter values (of the 2D2CA’s) never exceed 1001w1. So, N ′′′ needs
only to set its counter value to 31w1. N ′′′ firstly sets its counter to 41w130, and
then transfers 1w1 to the exponent of 3. ��

Remark that the language recognized by N ′′′ can also be represented as{
a10

1w10 | w ∈ L
}
.

This representation is more convenient when considering DTMs working on
bigger alphabets.
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Corollary 1. Let k > 2 and L ⊆ {a1, . . . , ak}∗ be a language recognized by a
DTM in space |w| + 2 with a work alphabet having k′ ≥ k elements. Then{

a10
1w10 | w ∈ L

}
can be recognized by a 2D1CA, where w ∈ {a1, . . . , ak}∗ and 1w10 is a number
in base-k′.

Proof. The proof is almost the same by changing base-2 with base-k′. Addition-
ally, the 2D1CA needs to check whether each digit of w is less than k. ��

We know that 2D1CAs can recognize POWER =
{
anba2

n | n > 0
}
[23]. There-

fore, by using a binary encoding, we can give a simulation of exponential space
DTMs where the exponent is linear. Here, the input is supposed to be encoded
into the exponent of the first block of a’s and the working memory in the second
block of a’s.

Theorem 6. Let k > 2 and L ⊆ {a1, . . . , ak}∗ be a language recognized by a
DTM in space 2|w| with a work alphabet having k′ ≥ k elements. Then{

a10
x

ba2
(10x) | x = 1w10 and w ∈ L

}
can be recognized by a 2D1CA, where w ∈ {a1, . . . , ak}∗ and x = 1w10 is a
number in base-k′.

We can generalize this result for any arbitrary space-bounded DTMs. It is not
hard to show that, for any z > 1, 2D1CAs can recognize

POWER(z) =
{
anbaexp(n)baexp

2(n)b · · · baexpz(n) | n > 0
}
.

Corollary 2. Let z > 1 and k > 2 and L ⊆ {a1, . . . , ak}∗ be a language recog-
nized by a DTM in space expz(|w|) with a work alphabet with k′ ≥ k elements.
Then {

a10
x

baexp(10
x)baexp

2(10x)b · · · baexpz(10x) | x = 1w10 and w ∈ L
}

can be recognized by a 2D1CA, where w ∈ {a1, . . . , ak}∗ and x = 1w10 is a
number in base-k′.

Note that, similar to the previous section, all of the above results are valid if
we replace deterministic machines with nondeterministic, alternating, or proba-
bilistic ones.

Now, we present a more general result.

Theorem 7. Let L be a recursive enumerable language and T be a DTM rec-
ognizing it (note that T may not halt on some non-members). The language

LT =
{
a2

1w3S(w)

| w ∈ L
}
,

where S(w) is a sufficiently big number that depends on w, can be recognized by
a two way deterministic one counter automaton D.
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Proof. We use a slight variation of the 2DCA simulation of a DTM given above.

Informally the a3
S(w)

part of the input gives D enough space to complete its
simulation, i.e. decide the membership of w ∈ L using its head position as a
second counter, being sure that its value never exceeds the size of the input.

First we show that if S(w) is large enough then a 2D1CA D can recognize the
language L≥T :

L≥T =
{
a2

1w3k | w ∈ L and k ≥ S(w)
}
.

D checks that the input is in the correct format a2
1w3k (Lemma 3), then it

simulates T on w like showed in the proof of Theorem 5. During its computation,
if D reaches the right end-marker, then it stops and rejects.

Suppose that on input w the Turing machine T does not halt: it visits an
infinite number of empty cells of its tape or it enters an infinite loop. In both

cases, the value of S(w) is irrelevant, and D will never accept the input a2
1w3S(w)

:
in the first case for all values of S(w) D will hit the right end-marker and will
reject; in the second case, if S(w) is too low and D has not enough space to
simulate T in the loop area of the tape it will hit the right end-marker and
reject, if S(w) is large enough, D will also enter the endless loop.

Now suppose that the Turing machine T accepts (resp. rejects) w then there
are two possibilities: a) during its computation the 2D1CA (that uses the head
position like a second counter) never reaches the right end-marker; in this case
it can correctly accept (resp. reject) the input; or b) during its computation the
2D1CA reaches the right end-marker (informally it has not enough space) and
cannot correctly decide the membership of w ∈ L; but in this case we are sure
that there exists a larger value S(w) = s′ > s that assures enough space to end
the computation. Also for every k ≥ S(w), T will correctly accept each string in{

a2
1w3k | w ∈ L

}
.

We can slightly modify D and narrow the language it recognizes to exactly
LT , i.e. making it accept each string in:{

a2
1w3S(w) | w ∈ L

}
,

but reject each string in:

{a21w3i | w ∈ L and i �= S(w)}.

We can divide the natural numbers as follows:

[0, 3N) [3N, 9N) [9N, 27N) ... [3k−1N, 3kN) [3kN, 3k+1N) ...

Let M be the maximum value of the second counter of D during the simulation
of the DTM on w (for each member of L, such value exists). M must be in one
of the above intervals, let’s say in [3k−1N, 3kN). It is obvious that 3M must be
in the next interval [3kN, 3k+1N).
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The second counter can use the set {+3, 0,−3} instead of {+1, 0,−1} for
update operations, i.e. the head moves three steps left or right instead of a
single step, and using the internal states we can allow it to exceed the input
length up to three times its value: when the head reaches the right end-marker
it can keep track that it has made one “fold” and continues moving towards
the left; thereafter, if it reaches the left end-marker, it records that it has made
two folds and continues move rightward, and so on. When, after a fold, it hits
the last end-marker again it can decrease the number of folds and continue. Let
FOLD ∈ {0, 1, 2, 3} store the number of folds. When FOLD becomes 3, then the
2D1CA rejects the input immediately, i.e. the counter value reaches the value of
three times of the input length.

On input a2
1w3k , the second counter, that changes its value by {+3, 0,−3},

will exceed 3kN but will never try to exceed 3k+1N (3kN ≤ 3M < 3k+1N).
So, FOLD must be 1 at least once and never becomes 3. Therefore, the 2D1CA
accepts the input if the simulation ends with the decision of “acceptance” and
FOLD takes a non-zero value at least once but never takes the value of 3.

If the input is a2
1w3k−i

, for some positive integer i, then the second counter
must need to exceed 3kN , so, the FOLD value takes 3 before simulation termi-
nates and the 2D1CA rejects the input.

If the input is a2
1w3k+i

, for some positive integer i, then the second counter
can be at most 3k+1 − 1, so the FOLD value never takes the value of 1 during
the simulation and the 2D1CA rejects the input. Thus, we can be sure that such
k has a minimum value and it corresponds to S(w) in the language LT . ��

Note that if the language L recognized by T is recursive, then the same 2D1CA
D described in Theorem 7 is a decider for LT .

3.3 A Quantum Simplification

Ambainis and Watrous [1] showed that augmenting a two-way deterministic
finite automata (2DFAs) with a fixed-size quantum register3 makes them more
powerful than 2DFAs augmented with a random number generator. Based on a
new programming technique given for fixed-size quantum registers [29], it was
shown that 2D1CAs having a fixed-size quantum register can recognize {an3n |
n ≥ 1}, {a2n32

n

| n ≥ 1}, or any similar language by replacing bases 2 or 3
with some other integers for any error bound [27,25]. Therefore, we can replace

3 It is a constant-size quantum memory whose dimension does not depend on the in-
put length. The machine can apply to the register some quantum operators (unitary
operators, measurements, or superoperators) determined by the classical configura-
tion of the machine. If the operator is a measurement or a superoperator, then there
can be more than one outcome and the next classical transition is also determined
by this outcome, which makes the computation probabilistic. However, as opposed
to using a random number generator, the machine can store some information on
the quantum register and some pre-defined branches can disappear during the com-
putation due to the interference of the quantum states, which can give some extra
computational power to the machine.
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binary encoding with a unary one for Theorem 6 by enhancing a 2D1CA with a
fixed-size quantum register.

Theorem 8. Let k > 2 and L ⊆ {a1, . . . , ak}∗ be a language recognized by a
DTM in space 3|w| with a work alphabet having k′ ≥ k elements. Then{

a10
x3(10

x) | x = 1w10 and w ∈ L
}

can be recognized by a 2D1CA augmented with a fixed-size quantum register for
any error bound, where x = 1w10 is a number in base-k′ and w ∈ {a1, . . . , ak}∗.

Proof. Here the input check can be done by the help of the quantum register by
using the corresponding quantum algorithms given in [27]. Then, our standard
deterministic simulation is implemented. ��

3.4 Unary 2D1CAs versus Two-Counter Machines

Minsky [18] showed that, for any given recursive language L defined over N,

UMINSKY(L) = {a2x | x ∈ L}

can be recognized by a 2CA4. It is clear that UMINSKY(L) is recursive enumer-
able if and only if L is recursive enumerable. Moreover, any language L not
recognizable by any s(n)-space DTM, UMINSKY(L) cannot be recognized by any
log(s(n))-space DTM, for any s(n) ∈ Ω(n). On the other hand, any language
recognized by a 2D1CA is in L (see Footnote 1). Therefore, there are many
recursive and non-recursive languages recognized by 2CAs but not by 2D1CAs.

Neverthless we believe that 2CAs and unary 2D1CAs are incomparable, i.e.
there also exist languages recognizable by a 2D1CA but not by any 2CA. Let
k > 1, Σ = {a0, . . . , ak−1} be the alphabet, and rk : N → Σ∗ be a function
mapping n = (dl · · · d1d0)k, k-ary representation of n, to

rk(n) =

{
ad0ad1 · · · adl

, if n > 0
ε, if n = 0

.

Both 2D1CAs and 2CAs can calculate rk(n) symbol by symbol on the input an,
and the following is immediate:

Lemma 8. If R is a regular languages over an alphabet of k symbols, then a
2D1CA can decide the language L = {an | rk(n) ∈ R}.

Proof. Suppose that F is a DFA that decides R; after transferring the input
to the counter, a 2D1CA can calculate incrementally the digits d0, d1, ..., dl up
to the final fixed digit: it repeatedly divides the counter by k, and di is the
remainder of the division; so it can simulate the transition of F on symbol adi ,
and accept or reject accordingly when it reaches the last digit. ��
4 The definition used by Minsky is a little different than ours but they are equivalent.
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Hence both 2D1CAs and 2CAs can recognize the whole class of unary lan-
guages:

C = {L | L = {an | rk(n) ∈ R} and R is a regular language
over an alphabet of size k}

As an example the family of unary non regular languages {a2n} is contained in
C. But, we conjecture that the following language cannot be recognized by 2CAs:

L⊕ = {an | |r2(n)|+ |r3(n)| ≡ 0 mod 2},

i.e. the binary representation and the ternary representation of n have both even
or odd length. A 2D1CA can easily decide L⊕: after calculating if the length of
the binary representation of n is odd or even, it can recover the input using the
tape endmarkers, and then check if the length of the ternary representation of
n is the same. But there is no way for a 2CA to recover the input, so it should
calculate the binary and ternary representations of n in parallel, which seems
impossible.
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Abstract. We present a type system for automata and rational expres-
sions, expressive enough to encompass weighted automata and transduc-
ers in a single coherent formalism. The system allows to express useful
properties about the applicability of operations including binary hetero-
geneous functions over automata.

We apply the type system to the design of the Vaucanson 2 platform,
a library dedicated to the computation with finite weighted automata,
in which genericity and high efficiency are obtained at the lowest level
through the use of template metaprogramming, by letting the C++ tem-
plate system play the role of a static type system for automata. Between
such a low-level layer and the interactive high-level interface, the type
system plays the crucial role of a mediator and allows for a cleanly-
structured use of dynamic compilation.

1 Introduction

Vaucanson
1 is a free software2 platform dedicated to the computation of and

with finite automata. It is designed with several use cases in mind. First and
foremost it must support experiments by automata theory researchers. As a
consequence, genericity and flexibility have been goals since day one: automata
and transducers must support any kind of semiring of weights, and labels must
not be restricted to just letters. In order to demonstrate the computational
qualities of algorithms, performance must also be a main concern. To enforce
this we aim, eventually, at applying Vaucanson to linguistics, whose problems
are known for their size; on this standpoint we share goals with systems such
as OpenFST [2]. Finally our platform should be easy to use by teachers and
students in language theory courses (a common goal with FAdo [3]), which also
justifies our focus on rational expressions.

1 Work supported by ANR Project 10-INTB-0203 VAUCANSON 2.
2 http://vaucanson.lrde.epita.fr

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 162–175, 2014.
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Among our goals flexibility and efficiency are potentially in conflict. The main
objective of this work is demonstrating how to reconcile them, and how to use
a type system to manage such complexity.

Aiming at both efficiency and flexibility essentially dictates the architecture:
the software needs to be rigidly divided into layers, varying in comfort and speed.

The bottom layer (named static) is a C++ library. For the sake of efficiency
the classical object-oriented run-time method dispatch (associated to the C++

virtual keyword) is systematically avoided, instead achieving compile-time code
generation by using template metaprogramming [1]. This results in a closed
world : new types of automata require the compilation of dedicated code.

At the opposite end of the spectrum, the topmost layer is based on IPython [6].
It is visual (automata are displayed on-screen) and, most importantly, interac-
tive: the user no longer needs to write a C++ or even a Python program, and
instead just interacts with the system using Python as a command language. In
such a high-level environment the closed-world restriction would be unaccept-
able, resulting as it would in error messages such as “this type of automaton is
not supported; please recompile and rerun”. To address this issue Vaucanson

uses on-the-fly generation and compilation of code, relying on our type system
in a fundamental way.

This paper builds on top of ideas introduced last year [4]3. However, in that
work contexts were partitioned and entities of different types could not be mixed
together. In particular algorithms such as the union of automata were “ho-
mogenous”: operands had all the same type, which was that of the result. The
contribution of this paper is to introduce support for heteregeneous types: the
definition of a type calculus, its implementation and, to gain full benefit from it,
dynamic code generation.

This paper is structured as follows. In Sec. 2 we describe the types of weighted
automata, rational expressions and their components. Then, in Sec. 3, we study
how types relate to one another and how to type operations over automata. We
introduce the implementation counterpart of types in Sec. 4, which also explains
how run-time compilation reconciles performances and flexibility. Sec. 5 discusses
the pros and cons of the current implementation.

2 Typing Automata and Rational Expressions

Computing with weighted automata or rational expressions entails reasoning
about types. We should have a system strong enough to detect some unmet pre-
conditions (for instance applying subset construction on an automaton weighted
in Z), and at the same time expressive enough to encompass many different kinds
of automata, including transducers.

3 Names and notations have slightly changed. We now name “Value/ValueSet” the core
design principle in Vaucanson, rather than “Element/ElementSet”. For consistency
with POSIX regular expression syntax, curly braces now denote power: ‘a{2}’ means
aa instead of a·2, which is now written ‘a<2>’. Similarly, ‘a(*min,max)’ is now written
‘a{min,max}’.
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2.1 Weighted Automata

Usually a weighted automaton A is defined as a sextuple (A,K, Q, I, F, E), A
being an alphabet (a finite set of symbols), K a semiring, Q a finite set of states,
I/F initial/final (partial) functions Q → K, and E a (partial) function in Q×A×
Q → K. With such a definition, the generalization to transducers involves turning
the sextuple into a septuple by adding a second output alphabet, changing the
transition function domain to also take output labels into account, among the
rest. Independently from transducers, definitions also need variants for many
alternative cases, such as admitting the empty word as an input or output label.
In Vaucanson this variability is captured by contexts, each composed of one
LabelSet and one WeightSet.

Different LabelSets model multiple variations on labels, members of a monoid:

letterset. Fully defined by an alphabet A, its labels being just letters. It is
simply denoted by A. It corresponds to the usual definition of an NFA.

nullableset. Denoted by A?, also defined by an alphabet A, its labels being
either letters or the empty word. This corresponds to what is often called
ε-NFAs.

wordset. Denoted by A∗, also defined by an alphabet A, its labels being (pos-
sibly empty) words on this alphabet.

oneset Denoted by {1}, containing a single label: 1, the empty word.
tupleset. Cartesian product of LabelSets, L1× · · ·×Ln. This type implements

the concept of transducers with an arbitrary number of “tapes”.

In the implementation LabelSets define the underlying monoid operations, and
a few operators such as comparison.

AWeightSet is a semiring whose operations determine how to combine weights
when evaluating words. Examples of WeightSets include 〈B,∨,∧〉, the family
〈N,+,×〉, 〈Z,+,×〉, 〈Q,+,×〉, 〈R,+,×〉 and tropical semirings such as 〈Z ∪
{∞},min,+〉; moreover tuplesets also allow to combine WeightSets, making
weight tuples into weights.
In the implementation a WeightSet defines the semiring operations and compar-
ison operators, plus some feature tests such as “star-ability” [5].

We may finally introduce contexts, and the definition of automata used in
Vaucanson — a triple corresponding to its type (context), its set of states and
its set of transitions.

Definition 1 (Context). A context C is a pair (L,W ), denoted by L → W ,
where:
– L is a LabelSet, a subset of a monoid,
– W is a WeightSet, a semiring.

Definition 2 ((Typed, Weighted) Automaton). An automaton A is a triple
(C,Q,E) where:
– C = L → W is a context;
– Q is a finite set of states;
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A1

Pre p q Post
$

〈 1
2
〉a

〈 1
3
〉b

〈 1
3
〉b

〈 1
2
〉a

$

A2

r s

〈y + z〉b
〈x∗〉a

〈x∗〉a

〈y + z〉b

Fig. 1. Two (typed) automata: A1, whose context is C1 = {a, b, c} → Q, and A2,
whose context is C2 = {a, b, d} → RatE[{x, y, z} → B], i.e., with rational expressions
as weights. In A1 we reveal the Pre and Post hidden states.

– E is a (partial) function whose domain represents the set of transitions, in:
(Q× L×Q) ∪ ({Pre} × {$} ×Q) ∪ (Q × {$} × {Post}) → (W \ {0}).

Notice that the initial and final functions are embedded in the definition of E
through two special states —the pre-initial and post-final states Pre and Post—
and a special label not part on L and only occurring on pre-transitions (tran-
sitions from Pre) and post-transitions (transitions from Post). This somewhat
contrived definition actually results in much simpler data structures and algo-
rithms: with a unique Pre and a unique Post there is no need to deal with initial
and final weights in any special way. On Fig. 1, automaton A1 is drawn with
explicit Pre and Post states, while A2 is drawn without them.

2.2 Rational Expressions

Definition 3 ((Typed, Weighted) Rational Expression). A rational ex-
pression E is a pair (C,E) where:

– C = L → W , is a context,
– E is a term built from the following abstract grammar

E := 0 | 1 |  | E+ E | E · E | E∗ | 〈w〉E | E〈w〉

where  ∈ L is any label, and w ∈ W is any weight.

The set of rational expressions of type L → W is denoted by RatE[L → W ],
and called a ratexpset. With a bit of caution rational expressions can be used as
weights, as exemplified by automaton A2 in Fig. 1: equipped with the sum of
rational expressions as sum, their concatenation as product, 0 as zero, and 1 as
unit, it is very close to being a semiring4.

Rational expressions may also serve as labels, yielding what is sometimes
named Extended Finite Automata [3], a convenient internal representation to
perform, for example, state elimination, a technique useful to extract a rational
expression from an automaton. So, just like tuplesets, ratexpsets can be used as
either a WeightSet or a LabelSet.

4 Ratexpset do not constitute a semiring for lack of, for instance, equality between
two rational expressions; however rational expressions provide an acceptable approx-
imation of rational series [7, Chap. III], the genuine corresponding semiring.
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〈context〉 ::= 〈labelset〉 "→" 〈weightset〉
〈labelset〉 ::= "{1}" | 〈alphabet〉 | 〈alphabet〉 "?" | 〈alphabet〉 "*"

| 〈ratexpset〉 | 〈labelset〉 × · · · × 〈labelset〉
〈weightset〉 ::= "B" | "N" | "Z" | "Q" | "R" | "Zmin"

| 〈ratexpset〉 | 〈weightset〉 × · · · × 〈weightset〉
〈ratexpset〉 ::= "RatE" 〈context〉

Fig. 2. A Grammar of Types

Fig. 2 shows the precise relation among the different entities introduced up
to this point: LabelSets, WeightSets, contexts, ratexpsets.

3 The Type System

3.1 Operations on Automata

Several binary operations on automata exist: union, concatenation, product,
shuffle and infiltration products, to name a few. To demonstrate our purpose we
consider the simplest one, i.e., the union of two automata, whose behavior is the
sum of the behavior of each operand.

Definition 4 ((Homogeneous) Union of Automata). Let A1 = (C,Q1, E1)
and A2 = (C,Q2, E2) be two automata of the same type C. A1 ∪ A2 is the
automaton (C,Q1 ∪Q2, E1 ∪ E2).

Def. 4 is simple, but has the defect of requiring the two argument automata
to have exactly the same type. Overcoming this restriction and making opera-
tions such as automata union more widely applicable is a particularly stringent
requirement in an interactive system (Sec. 4.3).

Automata union can serve as a good example to convey the intuition of het-
erogeneous operation typing: if its two operands have LabelSets with different al-
phabets, the result LabelSet should have their union as alphabet; if one operand
is an NFA and the other a ε-NFA, their union should also be a ε-NFA. It is also
reasonable to define the union between an automaton with spontaneous transi-
tions only (oneset) and an NFA (letterset) as a ε-NFA (nullableset) — a type
different from both operands’, and intuitively “more general” than either.

Much in the same way, some WeightSets are straightforward to embed into
others: Z into Q, and even Q into RatE[L → Q]. Then, let two automata have
weights in Q and RatE[L → Z]; their union should have weights in the least
WeightSet that contains both Q and RatE[L → Z], which is to say RatE[L → Q].
Once more the resulting type is new: it does not match the type of either operand.

3.2 The Hierarchy of Types

The observations above can be captured by introducing a subtype relation as
a partial order on LabelSets, WeightSets and contexts, henceforth collectively
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denoted as ValueSets. We write V1 <: V2 to mean that V1 is a subtype of V2; in
this case each element of V1 may be used wherever an element of V2 would be
expected, and we have in particular that V1 ⊆ V2. Notice that this makes our
relation reflexive, so for every ValueSet V we have that V <: V .

For simplicity we will focus on free monoids only. Let A,B be any alphabets
such that A ⊆ B. Then we define:

{1} <: A? A <: A? A? <: A∗

A <: B A? <: B? A∗ <: B∗

For WeightSets, if the WeightSet W1 is a sub-semiring of W2, it trivially
holds that W1 <: W2; therefore N <: Z <: Q <: R. The WeightSet B, as the
WeightSet of language recognizers, is worthy of special treatment; in particular
it is convenient to allow heterogeneous operations between automata over B and
automata over other WeightSets, which yields:

B <: N <: Z <: Q <: R B <: Zmin (1)

This allows for instance to restrict the domain of a series realized by a weighted
automaton to the rational language described by a Boolean automaton. For this
reason it is desirable to have B at the bottom of the WeightSet hierarchy, so
that it can be promoted to any other WeightSet simply by mapping false to
the WeightSet zero, and true to its unit. However such conversion requires care
and should not be used blindly; in particular converting an ambiguous Boolean
automaton to another WeightSet leads in general to an automaton which does
not realize the characteristic series of the language recognized by the original.

A context C1 is a subtype of a context C2 if C1 has a LabelSet and a WeightSet
which are respectively subtypes of the LabelSet and WeightSet of C2.

(L1 → W1) <: (L2 → W2) iff L1 <: L2 and W1 <: W2 (2)

As of today tuples of ValueSets do not mix with other values:

(V1 × · · · × Vn) <: (V ′
1 × · · · × V ′

n) iff (Vi <: V ′
i ) for all 1 ≤ i ≤ n (3)

Interestingly, rational expressions can play the role of both labels and weights:

RatE[C1] <: RatE[C2] iff C1 <: C2

L1 <: RatE[L2 → W2] iff L1 <: L2

W1 <: RatE[L2 → W2] iff W1 <: W2

(4)

The subtype relations between LabelSets are summarized in Fig. 3. If two
LabelSets L1 and L2 admit a least upper bound (resp. a greatest lower bound),
we call it the join (resp. the meet) of these two LabelSets and we denote it
by L1 ∨ L2 (resp. the L1 ∧ L2). The cases where no join or meet exists cor-
respond in practice to compilation errors about undefined cases. The join and
meet operations extend naturally to other ValueSets such as WeightSets, tuples,
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A B

A ∩ B

A ∪ B

A? B?

(A ∩ B)?

(A ∪ B)?

A∗ B∗

(A ∩ B)∗

(A ∪ B)∗

{1}

Fig. 3. The Hasse diagram of the LabelSets generated by the two alphabets A and B
showing, for instance, that A? ∨ B = (A ∪ B)?

contexts and rational expressions, as per Equations (1) to (4)). For instance, for
any LabelSet L1, L2 and any WeightSet W1,W2:

RatE[L1 → W1] ∨ L2 := RatE[(L1 ∨ L2) → W1]

RatE[L1 → W1] ∨ W2 := RatE[L1 → (W1 ∨ W2)]

RatE[L1 → W1] ∨ RatE[L2 → W2] := RatE[(L1 → W1) ∨ (L2 → W2)]

At this point we are ready to describe typing for binary operations on hetero-
geneous automata more formally. An operation on two automata with contexts
L1 → W1 and L2 → W2 will yield a result with context (L1 ∨ L2) → (W1 ∨ W2).
As an example we can extend Def. 4 into:

Definition 5 (Heterogeneous Union of Automata). Let A1 = (C1, Q1, E1)
and A2 = (C2, Q2, E2) be two automata. A1∪A2 := (C1 ∨ C2, Q1∪Q2, E1∪E2).

3.3 Type Restriction

The specific semantics of some binary operations let us characterize the result
type more precisely. For instance spontaneous-transition-removal applied to an
automaton with LabelSet A? returns a proper automaton, i.e., an automaton
with LabelSet A. Another interesting example is the product of automata labeled
by letters5, whose behavior is the Hadamard product of series of the behavior of
each operand, if the WeightSet is commutative.

Definition 6 (Product of Automata). Let A1 = ((L1 → W1), Q1, E1) and
A2 = ((L2 → W2), Q2, E2) be two automata, where L1 and L2 are lettersets.
A1&A2 is the accessible part of the automaton (C&, Q&, E&) where C& = (L1 ∧
L2) → (W1 ∨ W2), Q& = Q1 ×Q2, and

((q1, q2), , (q
′
1, q

′
2)) ∈ Dom(E&) iff

{
(q1, , q

′
1) ∈ Dom(E1),

(q2, , q
′
2) ∈ Dom(E2);

E&((q1, q2), , (q
′
1, q

′
2)) = E1(q1, , q

′
1) ·E2(q2, , q

′
2).

5 The product operation can actually be extended to nullablesets, using a more com-
plex algorithm related to weighted transducer composition.
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p, r

q, r

p, s

q, s

〈E〉a

〈F〉b

〈E〉a
〈F〉b

〈F〉b

〈E〉a

〈F〉b

〈E〉a

Fig. 4. A3 = A1 &A2 (see Fig. 1), with
E = 〈 1

2
〉(y + z) and F = 〈 1

3
〉x∗. Its type is

C3 = {a, b} → RatE[{x, y, z} → Q].

Like for other binary operations it would be correct to describe the type of
the result of a product as the join of its operand types; however in this case
the specific operation semantics permits us to be more precise: a product result
transition is created if and only if labels match in the two argument automata,
and therefore the result LabelSet happens to lie in the meet of the argument
LabelSets. By contrast, each weight is computed as the product of argument
weights, in general belonging to two different WeightSets: the WeightSet of the
product hence lies in the join of the argument WeightSets.

Fig. 4 shows the heterogeneous product of A1 and A2 from Fig. 1.

4 Implementation Facet

4.1 The Value/ValueSet Design Principle

The implementation of Vaucanson closely follows its algebraic design illus-
trated in Sec. 2 in terms of labels, weights, automata and rational expressions.
Other entities not shown here also exist, such as polynomials.

In a typical object-oriented implementation each of these concepts would be
implemented as a class, possibly templated. For instance a Boolean weight would
be an instance of some class boolean weight having a bool attribute. However
some of these concepts require run-time meta-data; for instance a letterset needs
a set of letters, so a letter label would aggregate not only a char for the
label, but also the whole alphabet, as a char vector. As a context aggregates
a LabelSet and a WeightSet it requires run-time meta-data as well, and since
rational expressions can also be used as weights, they, too, depend on run-time
meta-data. Therefore weights and LabelSets both need to be associated to meta-
data at run time.

However it would result in an unacceptable penalty to have every instance
carry even a mere pointer to meta-data such as an alphabet (a simple char

label, because of alignment, would then require at least eight bytes, a 8× space
penalty on a 32-bit architecture!). To cut this Gordian knot, as a design principle,
we split traditional values into Value/ValueSet pairs. The value part is but the
implementation of a datum; the ValueSet, on the other hand, stores only one
copy of the meta-data related to the type (such as the alphabet) and performs
the operations on values (such as + for Z and min for Zmin) without relying on
dynamic dispatch.
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This design is asymmetric: ValueSets implement the operations on their Val-
ues; conversely from a Value there is no means to reach the corresponding Val-
ueSet. Values may in fact ultimately come down to plain data types like int or
char.

Following the Value/ValueSet design principle, Vaucanson implements
LabelSets such as oneset, letterset<generatorset>6, nullableset

<generatorset>, wordset<generatorset>, and WeightSets such as b, z, . . . ,
ratexpset<context>; finally, tupleset<ValueSet1, ..., ValueSetn> imple-
ments Cartesian products.

4.2 Computations on Types

Two different sets of routines are needed to support heterogeneous operations
such as the product and sum of automata or rational expressions: first a com-
putation on types based on join and meet, then a conversion of values to these
types.

The computation of joins and meets on basic types is straightforward.

r join(const r&, const b&) { return r(); }

r join(const r&, const z&) { return r(); }

r join(const r&, const q&) { return r(); }

The code snippet above states that R ∨ W := R for W ∈ {B,Z,Q}. Compos-
ite types such as rational expressions, tuples or even contexts follow the same
pattern, but are computed recursively.

Some features new to C++11 let us express the product context computation
(as per Def. 6) quite cleanly, as follows:

template <typename LhsLabelSet, typename LhsWeightSet,

typename RhsLabelSet, typename RhsWeightSet>

auto product_ctx(const context<LhsLabelSet, LhsWeightSet>& lhs,

const context<RhsLabelSet, RhsWeightSet>& rhs)

-> context<decltype(meet(lhs.LabelSet(), rhs.LabelSet())),

decltype(join(lhs.WeightSet(), rhs.WeightSet()))>

{

auto ls = meet(lhs.LabelSet(), rhs.LabelSet());

auto ws = join(lhs.WeightSet(), rhs.WeightSet());

return {ls, ws};

}

Two WeightSets are involved in the process of value conversions: the source
one, which is used below as a key to select the proper conv routine, and the
destination one (r in the following example). Type conversion may require run-
time computation such as the floating-point division below, or even something
more substantial like the construction of a rational expression in other cases.

6 generatorset provides type and value information on the monoid generators; in
practice this corresponds to the type of characters and the alphabet, as a vector of
characters of the appropriate type.
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class r {

using value_t = float;

...

value_t conv(b, b::value_t v) { return v; }

value_t conv(z, z::value_t v) { return v; }

value_t conv(q, q::value_t v) { return value_t(v.num)/value_t(v.den); }

...

};

The process generalizes in a natural way to the case of composite types.
The join, meet and conv functions are used in the implementation of binary

operations such as the product, shown below as an example7; the idea is to first
compute the result type ctx, and then use it to create the result automaton res.

template <typename Ctx1, typename Ctx2>

auto product(const automaton<Ctx1>& lhs, const automaton<Ctx2>& rhs)

-> ...

{

auto ctx = product_ctx(lhs.context(), rhs.context());

auto res = make_automaton(ctx);

auto ws = res.WeightSet(); // a shorthand to the resulting WeightSet.
...

return res;

}

The core of the algorithm consists in an iteration over each reachable left-right
pair of states (lhs src, rhs src); for each pair of transitions with the same label
from lhs src and rhs src, it adds a transition from the source state pair to the
destination state pair, with the same label and the product of weights as weight.

for (auto lhs_trans : lhs.out(lhs_src))

for (auto rhs_trans : rhs.out(rhs_src, lhs_trans.label))

{

auto weight = ws.mul(ws.conv(lhs.WeightSet(), lhs_trans.weight),

ws.conv(rhs.WeightSet(), rhs_trans.weight));

res.add_transition({lhs_src, rhs_src}, {lhs_trans.dst, rhs_trans.dst},

lhs_trans.label, weight);

}

Three WeightSets play a role in the computation of the resulting weight: first
ws.conv(lhs.WeightSet(), lhs trans.weight) promotes the left-hand side
weight from its original WeightSet lhs.WeightSet() to the resulting one ws,
and likewise for the second weight; finally the resulting WeightSet multiplies the
weights (ws.mul(...)). For instance in Fig. 4 there is a transition from state
(p, r) to state (p, s) with label a, and whose weight is the product of 1

2 and
(y + z). The conversion of the first weight corresponds to ‘C3.W.conv(C1.W,
1
2)’, which results in 〈12 〉1; likewise for the second weight: ‘C3.W.conv(C2.W,

7 In the following code excerpts some details have been omitted for clarity.
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〈111〉(y + z)) = 〈11 〉(y + z)’. The resulting WeightSet, C3 then multiplies them:
‘C3.W.mul(〈12 〉1, 〈11 〉(y + z)))’, i.e., 〈12 〉(y + z).

4.3 On-the-Fly Compilation

Code snippets shown so far are all part of the static layer, the statically-typed,
lowest-level Application Program Interface (API) of Vaucanson, which strictly
follows the Value/ValueSet principle. As long as this API is used the compiler
will take care of generating the appropriate versions of the routine for the types
at hand, with no run-time overhead. Programming at this level however offers
little flexibility: the program is written and then compiled, period. Moreover,
types have to be explicitly spelled out in the program.

On top of this static layer, the dyn API takes care of the template parame-
ter book-keeping, memory allocation and deallocation, and even re-unites split
objects: for example a dyn::ratexp aggregates both a (static-level) rational ex-
pression and its (static-level) ratexpset. By design dyn only includes a handful of
types such as dyn::context, dyn::automaton, dyn::weight and dyn::label:
all the wide variety of static-level entities is collapsed into a few categories of
objects carrying their own run-time type information (exposed to the user as
dyn::context objects), so that operations can automatically perform their own
conversions without exposing the user to the type system.

The static/dyn bridge works with registries, one per algorithm. They play
a role similar to virtual tables in C++: to select the precise implementation
of an algorithm that corresponds to the effective type of the operands. These
registries are just dictionaries, mapping each given list of argument types to
the corresponding specific (static) implementation. This mechanism and other
details on the static/dyn bridge have been described in a previous work [4,
Sec. 4.2]; its complete treatment is beyond the scope of this paper.

Several commonly-used basic contexts are precompiled — in other words reg-
istries are initially loaded for some specific types. However, not only the number
of contexts is too large to permit a “complete” precompilation (24: 4 basic La-
belSets times 6 WeightSets), but tupleset and ratexpset also let the user define
an unbounded number of composite ones. Moreover, as demonstrated in Fig. 4,
some operation results belong to contexts that were not even in the operands. For
these reasons only some select contexts can be precompiled, which will certainly
frustrate some users.

On top of dyn Vaucanson offers IPython support (see Fig. 5). IPython is an
enhanced interactive Python environment [6]. Thanks to specific hooks, entities
such as rational expressions feature nice LATEX-based rendering, and automata
are rendered as pictures. This binding of dyn features the familiar Python object-
oriented flavor as in “automaton.minimize()”, and operator overloading as in
“automaton & automaton”. In such an interactive environment (similar to what
formal mathematics environments offer), working with just a finite, predefined
set of types would be unacceptable.

To address these limitations Vaucanson’s dyn layer features run-time code
generation, compilation, and dynamic object loading. The code generation is
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In [4]:

In [5]:

In [6]:

Out[4]: {a, b} → 𝖱𝖺𝗍𝖤[{x, y, z} → 𝔹]

Out[5]: ⟨y + z⟩ a(⟨ ⟩ b)x∗ ∗ (⟨ ⟩ b + ⟨y + z⟩ a ⟨y + z⟩ a)x∗ (⟨ ⟩ b)x∗ ∗ ∗

Out[6]:

0

2

<<1/2>ε>a

1<<1/3>ε>b
<<1/3>ε>b

<<1/2>ε>a

<x*>b

3<y+z>a
<y+z>a

<x*>b

ctx = vcsn.context("lal_char(ab)_ratexpset<lal_char(xyz)_b>"); ctx

r2 = ctx.ratexp('(<x*>b)*<y+z>a(<x*>b+<y+z>a(<x*>b)*<y+z>a)*'); r2

a2 = r2.derived_term().minimize()
a1|a2

Fig. 5. The computation of
A1 ∪ A2 in the IPython note-
book interface of Vaucanson.
The symbol ε denotes the
empty word. Weights in Q
such as 1

2
have been lifted into

the WeightSet of C3:
〈 1
2
〉ε ∈ RatE[{x, y, z} → Q].

a simple translation from the context object into C++ code instantiating the
existing algorithms for a given context and then entering into the appropri-
ate registries. Once the context-plugin is successfully compiled and linked, it is
loaded into the program via dlopen; however, differently from the usual prac-
tice, we do not need dlsym calls to locate plugin functions one by one; rather,
when a plugin is loaded, its initialization code simply adds its functions to the
registries. In other words a plugin compiled on the fly and loaded at run-time is
treated exactly like precompiled contexts.

Because a call in IPython eventually resolves into a call in the static library,
one benefits from both flexibility and efficiency — when C++ algorithms take
most of the time; of course Python-heavy computations would be a different
matter.

5 Future Work and Improvements

The subtype relation among semirings we introduced is natural; however a closer
look at these definitions reveals that several mechanisms are involved, which may
deserve more justification.

5.1 Syntactic and Semantic Improvements of Contexts

Contexts proved to be a powerful concept; however some early design decisions
resulted in limitations, to be lifted in the near future.
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First, the concrete syntax the user must use to define the context is cum-
bersome. For instance C3 = {a, b} → RatE[{x, y, z} → Q] has to be written
lal char(ab) ratexpset<lal char(xyz) q> (see Fig. 5); a syntax closer to the
mathematical notation would be an improvement.

Second, the quantifiers ‘?’ and ‘*’ should probably apply to an entire LabelSet,
and not just to an alphabet like in Fig. 2:

〈labelset〉 ::= "{1}" | 〈alphabet〉 | 〈labelset〉 "?" | 〈labelset〉 "*"

| 〈ratexpset〉 | 〈labelset〉 × · · · × 〈labelset〉

which would allow to define, for instance, two-tape transducers whose labels are
either a couple of letters, or the empty (two-tape) word: ({a, b} × {x, y})?.

Third, our implementation of automata does not follow the Value/ValueSet
pattern, which prevents us from using them like other entities.

5.2 Dynamic Compilation Granularity

The compilation of plugins today is coarse-grained, in that we compile “all” the
existing algorithms for a given context. This is at the same time too much, and
not enough.

It is too much as it may suspend an interactive IPython session for half a
minute even on a fast laptop, to compile and load the given context library;
caching compiled code however makes this cost a one-time penalty.

It is not enough because algorithms such as union have an open set of pos-
sible signatures. The resulting type of the union of two automata might not be
precompiled, in which case, for lack of support for the resulting context, the com-
putation would fail. An unpleasant but effective workaround consists in warning
the system, at runtime, that a given context will be needed.

To address both shortcomings we plan to support fine-grained plugins able to
generate, compile and load code for one function with one signature.

6 Conclusion

We presented a type system for weighted automata and rational expressions —
a novel feature to the best of our knowledge— currently implemented in our
Vaucanson 2 system, but not coupled to any particular platform.

Types lie at the very foundation of our design. At the lowest level, where
performance concerns are strong, we follow the Value/ValueSet principle and
types parameterize C++ template structures and functions; there a calculus on
types based on a subtype relation allows to define operations on automata of
different types and handles value conversions. At a higher level types make up
the bridge between the static low-level API and a dynamic one built on top of it.
Finally, run-time translation of types into C++ code allows to compile, generate,
and load plugins during interactive sessions, for instance under IPython.

Vaucanson2 is free software. Its source code is available athttp://vaucanson.
lrde.epita.fr, along with virtual machine images to let users experiment and
play with the system without need for an installation.

http://vaucanson.lrde.epita.fr
http://vaucanson.lrde.epita.fr
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Abstract. We consider a restricted variant of the prefix-suffix dupli-
cation operation, called bounded prefix-suffix duplication. It consists in
the iterative duplication of a prefix or suffix, whose length is bounded
by a constant, of a given word. We give a sufficient condition for the
closure under bounded prefix-suffix duplication of a class of languages.
Consequently, the class of regular languages is closed under bounded
prefix-suffix duplication; furthermore, we propose an algorithm decid-
ing whether a regular language is a finite k-prefix-suffix duplication
language. An efficient algorithm solving the membership problem for
the k-prefix-suffix duplication of a language is also presented. Finally, we
define the k-prefix-suffix duplication distance between two words, extend
it to languages and show how it can be computed for regular languages.

1 Introduction

Treating sets of chromosomes and genomes as languages raises the possibility
that the structural information contained in biological sequences can be gen-
eralized and investigated by formal language theory methods [13]. Thus, the
interpretation of duplication as a formal operation on words has inspired a se-
ries of works in the area of formal languages opened by [3,14] and continued by
several other papers, e.g., [10] and the references therein. In [6] one considers
duplications that appear at the both ends of the words only, called prefix-suffix
duplications, inspired by the case of telomeric DNA. In this context, one inves-
tigates the class of languages that can be defined by the iterative application
of the prefix-suffix duplication to a word and tries to compare it to other well
studied classes of languages. It is shown that the languages of this class have a
rather complicated structure even if the initial word is rather simple.

Several problems remained unsolved in the aforementioned paper. This is the
mathematical motivation for the work presented here. By considering a weaker

� Florin Manea’s work is supported by the DFG grant 596676. Victor Mitrana’s work
is partially supported by the Alexander von Humboldt Foundation.

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 176–187, 2014.
c© Springer International Publishing Switzerland 2014



Bounded Prefix-Suffix Duplication 177

variant of the prefix-suffix duplication, called bounded prefix-suffix duplication,
we are able to solve, in this new setting, some of the problems that remained
unsolved in [6]. Another motivation is related to the biochemical reality that
inspired the definition of this operation. It seems more practical and closer to the
biological reality to consider that the factor added by the prefix-suffix duplication
cannot be arbitrarily long. One should note that the investigation we pursue here
is not aimed to tackle real biological facts and provide solutions for them. In fact,
its aim is to provide a better understanding of the structural properties of strings
obtained by prefix-suffix duplication as well as specific tools for the manipulation
of such strings.

We give a brief description of the contents of this work. We first define a
restricted variant of the prefix-suffix duplication called bounded prefix-suffix
duplication. It consists in the duplication of a prefix or suffix whose length is
bounded by a constant of a given word. We give sufficient conditions for a family
of languages to be closed under bounded prefix-suffix duplication. Consequently,
we show that every language generated by applying iteratively the bounded
prefix-suffix duplication to a word is regular. We also propose an algorithm
deciding whether there exists a finite set of words generating a given regular
language w.r.t. bounded-prefix-suffix duplication.

We show that the membership problem for the language obtained by applying
iteratively k-prefix-suffix duplications from a language recognizable in O(f(n))
time can be solved in O(nk log k+n2f(n)) time. In particular, when considering
the k-prefix-suffix duplication language generated by a word x, this problem can
be solved in O(n log k) time, if |x| ≥ k, and O(nk log k) time in the general case.

We then define the k-prefix-suffix duplication distance between two given
words as the minimal number of k-prefix-suffix duplications applied to one of
them in order to get the other one and show how it can be efficiently computed.
This distance is extended to languages and we propose an algorithm for effi-
ciently computing the k-prefix-suffix duplication distance between two regular
languages.

2 Preliminaries

We assume the reader to be familiar with fundamental concepts of formal lan-
guage theory and complexity theory which can be found in many textbooks,
e.g., [12] and [11], respectively.

We start by summarizing the notions used throughout this work. An alphabet
is a finite and nonempty set of symbols. The cardinality of a finite set A is written
|A|. Any finite sequence of symbols from an alphabet V is called a word over V .
The set of all words over V is denoted by V ∗ and the empty word is denoted by
ε; also V + is the set of non-empty words over V , V k is the set of all words over
V of length k, while V ≤k is the set of all words over V of length at most k. Given
a word w over an alphabet V , we denote by |w| its length, If w = xyz for some
x, y, z ∈ V ∗, then x, y, z are called prefix, subword, suffix, respectively, of w. For
a word w, w[i..j] denotes the subword of w starting at position i and ending at
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position j, 1 ≤ i ≤ j ≤ |w|; by convention, w[i..j] = ε if i > j. If i = j, then
w[i..j] is the i-th letter of w which is simply denoted by w[i]. A period of a word
w over V is a positive integer p such that w[i] = w[j] for all i and j with i ≡ j
(mod p). By per(w) (called the period of w) we denote the smallest period of w.
If per(w) < |w| and per(w) divides |w|, then w is a repetition; otherwise, w is
called primitive. A primitively rooted square is a word w that has the form xx
for some primitive word x.

We say that the pair w(i, p) is a duplication (repetition) in w starting at
position i in w if w[i..i + p − 1] = w[i + p..i + 2p − 1]. Analogously, the pair
(i, p)w is a duplication in w ending at position i in w if w[i − 2p + 1..i − p] =
w[i−p+1..i]. In both cases, p is called the length of the duplication. Furthermore,
the pair w(i, p)w is a duplication in w having the middle at position i in w if
w[i − p+ 1..i] = w[i + 1...i+ p].

Despite that the prefix-suffix operation introduced in [6] is a purely mathe-
matical one and the biological reality is just a source of inspiration, it seems
rather unrealistic to impose no restriction on the length of the prefix or suffix
which is duplicated. The restriction considered in this paper concerns the length
of all prefixes and suffixes that are duplicated to the current word. They cannot
be longer than a given constant. This restricted variant of prefix-suffix duplica-
tion is called bounded prefix-suffix duplication. Formally, given a word x ∈ V ∗

and a positive integer k, we define:
– k-prefix duplication, namely PDk(x) = {ux | x = uy for some u ∈ V +, |u| ≤

k}. The k-suffix duplication is defined analogously, that is SDk(x) = {xu | x =
yu for some u ∈ V +, |u| ≤ k}.

– k-prefix-suffix duplication, namely PSDk(x) = PDk(x) ∪ SDk(x).
These operations are naturally extended to languages L by

PDk(L) =
⋃
x∈L

PDk(x), SDk(L) =
⋃
x∈L

SDk(x), PSDk(L) =
⋃
x∈L

PSDk(x).

We further define, for each Θ ∈ {PD , SD ,PSD}:
Θ0

k(x) = {x}, Θn+1
k (x) = Θn

k (x) ∪Θk(Θ
n
k (x)), for n ≥ 0, Θ∗

k(x) =
⋃
n≥0

Θn
k (x).

Furthermore, PSD∗
k(L) =

⋃
x∈L

PSD∗
k(x). A language L ⊆ V ∗ is called a bounded

prefix-suffix duplication language if L = PSD∗
k(x) for some x ∈ V ∗ and k > 0. A

prefix-suffix duplication language is defined analogously, see [6]. When duplica-
tions of arbitrary factors within the word are permitted, we obtain an (arbitrary)
duplication language, see, e.g., [3].

In this paper, we show a series of results of algorithmic nature. All the time
complexity bounds we obtain in this context hold for the RAM with logarithmic
memory-word size. In the algorithmic problems we approach, we are usually
given as input one or more words. These words are assumed to be over an
integer alphabet; that is, if w is the input word, and has length n, then we
assume that its letters are integers from the set {1, . . . , n}. See a discussion
about this assumption in [9]. If the input to our problems is a language, then
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we assume that this language is specified by a procedure deciding it (e.g., if the
language is regular, then we assume that we are given a DFA accepting it).

We recall basic facts about the data structures we use. For a word u, with
|u| = n, over V ⊆ {1, . . . , n} we can build in linear time a suffix array structure
as well as data structures allowing us to retrieve in constant time the length of
the longest common prefix of any two suffixes u[i..n] and u[j..n] of u, denoted
LCP(i, j). These structures are called LCP data structures in the following. For
details, see, e.g., [8,9]. Similarly, one can construct in linear time data structures
allowing us to retrieve in constant time the length of the longest common suffix
of any two prefixes u[1..i] and u[1..j] of u, denoted LCS (i, j).

We also use a linear data structure, called deque (double-ended queue, see [15]).
This is a doubly linked list for which elements can be added to or removed from
either the front or back. Finally, tries are complete trees whose edges are labeled
with letters of an alphabet V , and ordered according to an (existing) order of
the letters of this alphabet; each path of a trie corresponds to a word over V .

3 Bounded Prefix-Suffix Duplication as a Formal
Operation on Languages

We start with some language theoretical properties of the class of duplication
languages. By combining the results from [1] and [4] (rediscovered in [3] and [14]
for arbitrary duplication languages), and [6] we recall the following result.

Theorem 1.
1. An arbitrary duplication language is regular if and only if it is a language over
an alphabet with at most two symbols.
2. A prefix-suffix duplication language is context-free if and only if it is a language
over the unary alphabet.

Whether or not every arbitrary duplication language is recognizable in poly-
nomial time is open while every prefix-suffix duplication language is in NL.

We say that a class L of languages is closed under bounded prefix-suffix du-
plication if PSD∗

k(L) ∈ L for any L ∈ L and k ≥ 1.

Theorem 2. Every nonempty class of languages closed under union with regu-
lar languages, intersection with regular languages, and substitution with regular
languages, is closed under bounded prefix-suffix duplication.

Proof. Let L be a family of languages having all the required closure properties.
By [7], L is closed under inverse morphism. Let L ⊆ V ∗, with |V | = m, be a
language from L, and k be a positive integer. We define the alphabet

U = V ∪ {p1, p2, . . . , pmk} ∪ {s1, s2, . . . , smk},
and the morphism h : U∗ −→ V ∗ defined by h(a) = a for any a ∈ V and
h(pi) = h(si) = the ith word of length k over V in the lexicographic order, for
all 1 ≤ i ≤ mk. Further, let F be the finite language defined by F = {x ∈ L |
|x| ≤ 2k − 1} and
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E = (L ∪ PSD2k
k (F )) ∩ {x ∈ V + | |x| ≥ 2k}.

As PSD2k
k (F ) is a finite language and L is closed under union with regular

languages and intersection with regular languages, it follows that E is still in L.
The following relation is immediate:

PSD∗
k(L) = PSD∗

k(E) ∪ PSD2k
k (F ).

It is rather easy to prove that
PSD∗

k(E) = σ(h−1(E) ∩ {p1, p2, . . . , pmk}V ∗{s1, s2, . . . , smk}),
where σ is a substitution defined by σ(pi) = PD∗

k(xi) and σ(si) = SD∗
k(xi),

where xi is the ith word of length k over V in the lexicographic order.
Each language PD∗

k(xi) can be generated by a prefix grammar [5], hence it
is regular. Analogously, each language SD∗

k(xi) is regular. Consequently, σ is a
substitution with regular languages. By the closure properties of L, PSD∗

k(E)
belongs to L, hence PSD∗

k(L) is also in L. �

Much differently from the statements of Theorem 1 we have:

Corollary 1. Every bounded prefix-suffix duplication language is regular.

A language L is said to be a multiple k-prefix-suffix duplication language
if there exists a language E such that L = PSD∗

k(E). If E is finite, then L
is said to be a finite k-prefix-suffix duplication language. Note that given a
regular language L and a positive integer k, a necessary condition such that
L = PSD∗

k(E) holds, for some set E, is L = PSD∗
k(L). By Theorem 2 a finite

automaton accepting PSD∗
k(L) can effectively be constructed and so the above

equality can be algorithmically checked. However, if the equality holds, we cannot
infer anything about the finiteness of E. The problem is completely solved by
the next theorem.

Theorem 3. Let L be a regular language which is a multiple k-prefix-suffix du-
plication language for some positive integer k. There exists a unique minimal
(with respect to inclusion) regular language E, which can be algorithmically com-
puted, such that L = PSD∗

k(E). In particular, one can algorithmically decide
whether L is a finite k-prefix-suffix duplication language.

Proof. Let L ⊆ V ∗ be a multiple k-prefix-suffix duplication language accepted
by the deterministic finite automaton A = (Q, V, f, q, F ). We define the language

Mk(L) = {x ∈ L | there is no y ∈ L such that x ∈ PSDk(y)}.
As L = PSD∗

k(L), it follows that
Mk(L) = {x ∈ L | there is no y ∈ L, y �= x such that x ∈ PSD∗

k(y)}.
Claim. If PSD∗

k(E) = L for some E ⊆ L, then the following statements hold:
(i) Mk(L) ⊆ E, and
(ii) PSD∗

k(Mk(L)) = L.

Proof of the claim. (i) Let x ∈ Mk(L) ⊆ L; there exists y ∈ E such that
x ∈ PSD∗

k(y). By the definition of Mk(L), it follows that x = y.
(ii) Clearly, PSD∗

k(Mk(L)) ⊆ L. Let y ∈ L; there exists x ∈ L such that
y ∈ PSD∗

k(x). We may choose x such that x ∈ PSDk(z) for no z ∈ L. Thus,
x ∈ Mk(L), and y ∈ PSD∗

k(Mk(L)), which concludes the proof of the claim.



Bounded Prefix-Suffix Duplication 181

Clearly, Mk(L) = L \ PSDk(L); hence Mk(L) is regular and can effectively
be constructed.

In order to check whether L is a finite k-prefix-suffix duplication language we
first compute Mk(L). Then we check whether Mk(L) is finite. Finally, by Theo-
rem 2, the language PSD∗

k(Mk(L)) is regular and can be effectively computed,
therefore the equality PSD∗

k(Mk(L)) = L can be algorithmically checked. �

3.1 Membership Problem

In the sequel, we will make use of the following classical result from [2]. It is
known that the number of primitively rooted square factors of length at most
2k that occur in a word w at a position is O(log k). Moreover, one can construct
the list of primitively rooted squares of length at most 2k occurring in w in
O(n log k) time. Each square is represented in the list by the starting position
and the length of their root, and the list is ordered increasingly by the starting
position of the squares; when more squares share the same starting position
they are ordered by the length of the root. Moreover, one can store an array of
n pointers, where the ith such pointer gives the memory location of the list of
the primitively rooted squares occurring at position i. A similar list, where the
squares are ordered by their ending position, can be computed in the same time.
Further, we develop our main algorithmic tools.

Lemma 1. Given w ∈ V ∗, of length n, and an integer k ≤ n, we can identify
all prefixes w[1..i] of w such that w ∈ SD∗

k(w[1..i]) in O(n log k) time.

Proof. We propose an algorithm that computes an array S[·], defined by S[i] = 1
if w ∈ SD∗

k(w[1..i]), and S[i] = 0, otherwise. This algorithm has a preprocessing
phase, in which all the primitively rooted squares with root of length at most k
occurring in w are computed. This preprocessing takes O(n log k) time.

Now, we describe the computation of the array S. Initially, all the positions
of this array are initialized to 0, except S[n], which is set to 1. Clearly, this is
correct, as w ∈ SD∗

k(w[1..n]) = SD∗
k(w). Further, we update the values in the

array S using a dynamic programming approach. That is, for i from n to 1, if
S[i] = 1, then we go through all the primitively rooted squares (w[j + 1..i])2,
|i − j| ≤ k, that end at position i in w. For each such factor w[j + 1..i] we set
S[j] = 1. Indeed, w[1..i] can be obtained from w[1..j] by appending w[j + 1..i]
(which is known to be a suffix of w[1..j]); as we already know that w can be
obtained by suffix duplication from w[1..i], it follows that w can be obtained by
suffix duplication from w[1..j]. The processing for each i takes O(log k) time.

It is not hard to see that our algorithm works correctly. Assume that w ∈
SD∗

k(w[1..j]) for some j < n. Let us consider the longest sequence of suffix du-
plication steps (or, for short, derivation) that produces w starting from w[1..j].
Say that this derivation has s ≥ 2 steps, so it can be described by a sequence
of indices j1 = j < j2 < . . . < js = n such that w[1..ji+1] ∈ SDk(w[1..ji] for
1 ≤ i ≤ s− 1. We can show that w[ji + 1..ji+1] is primitive for all i. Otherwise,
w[ji + 1..ji+1] = t� for some word t and  ≥ 2, so we can replace in the original
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derivation the duplication that produces w[1..ji+1] from w[1..ji] by other  du-
plication steps in which t factors are added to w[1..ji]. This leads to a sequence
with more than s duplications steps producing w from w[1..j], a contradiction.
Now, it is immediate that, in our algorithm, S[js] is set to 1 in the first step.
Assuming that for some i we already have S[ji+1] = 1, when considering the
value ji+1 in the main loop of our algorithm, as w[ji + 1..ji+1]

2 is a primitively
rooted square ending on position ji+1, we will set S[ji] = 1. In the end, we will
also have S[j] = S[j1] = 1, so our algorithm works properly. �

Lemma 2. Given w ∈ V ∗, of length n, we can identify all suffixes w[j..n] of w
such that w ∈ PD∗

k(w[j..n]) in O(n log k) time.

The proof is similar to the one of Lemma 1, and it is left to the reader. The output
of the algorithm will be an array P [·], defined by P [j] = 1 if w ∈ PD∗

k(w[j..n]),
and P [j] = 0, otherwise.

The next lemma shows a way to compute the factors of length at least k, from
which w can be obtained by iterated prefix or suffix duplication.

Lemma 3. Given w ∈ V ∗ of length n and a list F of factors of w of length
greater than or equal to k, given by their starting and ending position, ordered
by their starting position, and in case of equality by their ending position, we can
check whether there exists x ∈ F such that w ∈ PSD∗

k(x) in time O(n log k+|F |).

Proof. The main remark of this lemma is that, if w[i..j] is longer than k, then
w ∈ PSD∗

k(w[i..j]) if and only if w[1..j] ∈ PD∗
k(w[i..j]) and w = w[1..n] ∈

SD∗
k(w[1..j]). Equivalently, we have w ∈ PSD∗

k(w[i..j]) if and only if w[1..n] ∈
PD∗

k(w[i..n]) and w[1..n] ∈ SD∗
k(w[1..j]).

This remark suggests the following approach: we first identify all the suffixes
w[j..n] of w such that w ∈ PD∗

k(w[j..n]) and all the prefixes w[1..i] of w such
that w ∈ SD∗

k(w[1..i]); this takes O(n log k), by Lemmas 1 and 2. Now, for
every factor w[i..j] in list F , we just check whether S[i] = P [j] = 1 (that is,
w ∈ PD∗

k(w[i..n]) ∩ SD∗
k(w[1..j])); if so, we decide that w ∈ PSD∗

k(w[i..j]). �

Building on the previous lemmas, we can now solve the membership problem
for PSD∗

k(L) languages, provided that we know how to solve the membership
problem for L on the RAM with logarithmic word size model.

Theorem 4. If the membership problem for the language L can be decided in
O(f(n)) time, then the membership problem for PSD∗

k(L) can be decided in
O(nk log k + n2f(n)).

Proof. Assume that we are given a word w, of length n; we want to test whether
w ∈ PSD∗

k(L) or not. For simplicity, we assume that L is constant (i.e., its
description, given as a procedure deciding L in O(f(n)) time, is not part of the
input). If L was given as part of the input, then we can use exactly the same
algorithm, but one should add to the final time complexity the time needed to
read the description of L and effectively construct a procedure deciding L in
O(f(n)) time.
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First, let us note that we can identify trivially in O(n2f(n)) the factors of w
that are in L. More precisely, we can produce a list F of factors of w that are
contained in L, specified by their starting and ending position, ordered by their
starting position, and, in case of equality by their ending position. The list F
can be easily split, in O(|F |) time, into two lists: F1, containing the factors of
length at least k, and F2, the list of factors of length less than k. It is worth
noting that |F | ∈ O(n2). By Lemma 3 it follows that we can decide in time
O(n log k + |F1|) whether w ∈ PSD∗

k(x) for some x ∈ F1.
It remains to test whether w ∈ PSD∗

k(x) for some x ∈ F2. The main remark
we make in this case is that there exists x ∈ F2 such that w ∈ PSD∗

k(x) if and
only if there exists y ∈ PSD∗

k(x) such that k ≤ |y| ≤ 2k and w ∈ PSD∗
k(y).

Therefore, we will produce the list F3 of words z ∈ ∪x∈F2PSD∗
k(x) such that z

is a factor of w and k ≤ |z| ≤ 2k.
In order to compute F3 we can use the O(|u|2 log |u|) algorithm proposed in

[6] to decide whether a word u is contained in PSD∗(v). In that algorithm, one
first marks the factors of u that are equal to v. Further, for each possible length
 of the factors of u, from 1 to |u|, and for each i ≤ n where a factor of length
 of u may start, one checks whether u[i..i +  − 1] can be obtained by prefix
(respectively, suffix duplication) from a shorter suffix (respectively, prefix), that
was already known (i.e., marked) to be in PSD∗(v), such that in the last step
of duplication a primitive root x of a primitively rooted square prefix x2 of
u[i..i+  − 1] was appended to the shorter suffix (respectively, a primitive root
x of a primitively rooted square suffix x2 of u[i..i+ − 1] was appended to the
shorter prefix). Each time we found a factor of w that can be obtained in this
way from one of its marked prefixes or suffixes, we marked it as part of PSD∗

k(v)
and continued the search with the next factor of w.

In our case, we can pursue the same strategy: taking w in the role of u, and
having already marked the words of F2 (which are factors of w) just like we did
with the occurrences of v, we run the algorithm described above, but only for
 ≤ 2k. Note that the primitive roots of primitively rooted square suffixes or
prefixes of factors w[i..i+ − 1] with  ≤ 2k have length at most k; hence, each
duplication that is made towards obtaining such a factor is, in fact, a k-prefix-
suffix duplication. In this manner we obtain the factors of w of length at most 2k
that are from PSD∗

k(F2). The time needed to obtain these factors is O(nk log k).
We store this set of factors in F3 just like before: the factors are specified by their
starting and ending position, ordered by their starting position, and, in case of
equality by their ending position. The set F3 may have up to O(nk) factors, as
each of them has length at most 2k.

By Lemma 3, we can decide in time O(n log k + |F3|) = O(nk) whether
w ∈ PSD∗

k(F3). Accordingly, adding the time needed to compute F3 from F2, it
follows that we can decide in time O(nk log k) whether w ∈ PSD∗

k(F2). Hence,
we can decide whether w ∈ PSD∗

k(L) in O(nk log k + n2f(n)) time. �

In fact, there are classes of languages for which a better bound than the one in
Theorem 4 can be obtained. If L is context-free (respectively, regular) the time
needed to decide whether w ∈ PSD∗

k(L) is O(n3) (respectively, O(nk log k+n2)),
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where |w| = n. Indeed, F has always at most n2 elements, and in the case of
context-free (or regular) languages it can be obtained inO(n3) time (respectively,
O(n2)) by the Cocke-Younger-Kasami algorithm (respectively, by running a DFA
accepting L on all suffixes of w, and storing the factors accepted by the DFA).
When L is a singleton, the procedure is even more efficient.

Corollary 2. Given two words w and x, with |w| ≥ |x|, we can decide whether
w ∈ PSD∗

k(x) in time O(|w|k log k). If |x| ≥ k, then we can decide whether
w ∈ PSD∗

k(x) in time O(|w| log k).

Proof. Assume that |w| = n and |x| = m. First, note that the list F of all
occurrences of x in w can be obtained in linear time O(n +m), using, e.g., the
Knuth-Morris-Pratt algorithm [16], and |F | ∈ O(n).

For the first part, we follow the same general approach as in Theorem 4. If
|x| < k, we produce the list of all the factors longer than k, but of length at
most 2k, that can be derived from x. This list is produced in O(nk log k) time.
Therefore, the total complexity of the algorithm is O(nk log k), in this case.

The second result follows now immediately from Lemma 3, as F contains only
words of length at least k. �

4 Bounded Prefix-Suffix Duplication Distances

Given two words x,w and k ≥ 1, the k-prefix-suffix duplication distance between
x and w is defined by

δk(x,w) = inf{ | x ∈ PSD�
k(w) or w ∈ PSD�

k(x)}.
By definition, the k-prefix-suffix duplication distance between two words is equal
to ∞ if the longer word cannot be derived from the shorter. In a similar fash-
ion, we can define k-suffix duplication distance or k-prefix duplication distance
between x and w as the minimum number of k-suffix duplication, respectively,
k-prefix duplication steps, needed to transform x into w or w into x.

Theorem 5. Given k ≥ 1, let x and w be two words of respective length m and
n, n > m. If m ≥ k, then δk(x,w) can be computed in O(n log k). If m < k,
then δk(x,w) can be computed in O(nk log k).

The k-prefix-suffix duplication distance between two words can be extended
to the k-prefix-suffix duplication distance between a word x and a language L
by δk(x, L) = min{δk(x, y) | y ∈ L}. Moreover, one can canonically define the
distance between languages: for two languages L1, L2 and a positive integer k,
we set δk(L1, L2) = min{δk(x, y) | x ∈ L1, y ∈ L2}.

Theorem 6. Given two regular languages L1 and L2 over an alphabet V , recog-
nised by deterministic finite automata with sets of states Q and S, respectively,
and a positive integer k ≥ 1, one can algorithmically compute δk(L1, L2) in
O((k +N)M2|V |2k), where M = max{|Q|, |S|} and N = min{|Q|, |S|}.
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Proof. Let us assume that both L1 and L2 are given by the minimal deterministic
finite automata accepting them, namely A1 and, respectively, A2. Let A1 =
(Q, V, δ′, q0, Qf ) and A2 = (S, V, δ′′, s0, Sf). As a rule, we denote the states of Q
and S by q and s, respectively, with or without indices.

Before starting the main proof, let us briefly explain a series of implementa-
tion details.We work with 5-tuples (q, s1, s2, w1, w2) and 4-tuples (s1, s2, w1, w2),
where w1, w2 ∈ V ∗, |w1| = |w2| ≤ k; moreover, whenever |w1| < k then w1 = w2.

A set T of 5-tuples as above is implemented as a 3-dimensional array MT ,
where MT [q][s1][s2] contains a representation of the set {(w1, w2) ∈ V ∗ × V ∗ |
(q, s1, s2, w1, w2) ∈ T } which is implemented using a trie data structure essen-
tially storing all possible words of length k, augmented with suffix links. Using
this representation we can check in constant time whether or not a certain pair
of words (given as pair of nodes of the trie we construct) is in the set. The same
strategy may be used for implementing a set R of 4-tuples.

For a word w ∈ V ∗, we denote by prefk(w) the longest prefix of length at
most k of w; similarly, let sufk(w) be the longest suffix of length at most k of w.

The algorithm that computes δk(L1, L2) has two similar main parts. In the
first one, we compute the minimum value d1 such that there exists a word x ∈ L2

with x ∈ PSDd1

k (L1). In the second part, we compute, using exactly the same
procedure, the minimum value d2 such that there exists a word y ∈ L1 with
y ∈ PSDd2

k (L2). Then, we conclude that δk(L1, L2) = min{d1, d2}. Hence, it
suffices to describe how the minimum value d1 such that there exists a word
x ∈ L2 with x ∈ PSDd1

k (L1) is computed.
As a preprocessing phase of our algorithm, we compute in O(k|Q|2|V |k) time

(in a naive manner), for each q1 ∈ Q and w ∈ V ≤k all states q2 such that
δ′(q2, w) = q1 and the state q3 = δ(q1, w). Provided that we use the same idea
of storing words as labels of nodes from the trie (the label of w being denoted
#(w)), we can store this information in space O(|Q|2|V |k), so that we can obtain
in constant time, for q1 and #(w), the states q2 and q3 defined above. We then
process the automaton A2 in a similar manner, in time O(|S|2|V |k).

We present now the main part of our algorithm. First, we compute the set
R0 = {(s1, s2, w1, w2) | there exists w ∈ L1 such that δ′′(s1, w) = s2,

prefk(w) = w1, sufk(w) = w2}.
This computation is done as follows. We compute iteratively the sets T i

s, i ≥ 1,
each one containing the tuples (q, s, s1, w1, w2) for which there exists a word w
of length i, with prefk(w) = w1, sufk(w) = w2, δ

′(q0, w) = q and δ′′(s, w) = s1,
but there exists no word w′ shorter than w with the same properties. Clearly,
in such a 5-tuple, |w1| = |w2| and if |w1| < k then w1 = w2. We can implement
the union (over all values of i) of the sets T i

s by marking in a trie storing all
the words of length k over V the nodes corresponding to the words of this set.
The sets T i

s are computed as long as they are non-empty; clearly, if T i
s is empty,

then the sets T j
s are empty, for all j ≥ i. On the other hand, as the number

of all the tuples (q, s, s1, w1, w2) as above is upper bounded by 2|Q||S||V |2k,
there exists i0 such that T i

s = ∅ when i ≥ i0 and T i0−1
s �= ∅. It is not hard

to see that T i+1
s can be computed in time O(k|T i

s |), given the elements of T i
s .
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Indeed, for each 5-tuple (q, s, s1, w1, w2) ∈ T i
s and letter a ∈ V , we compute

the 5-tuple (δ′(q, a), s, δ′′(s1, a), prefk(w1a), sufk(w2a)); note that the nodes of
the trie corresponding to the words prefk(w1a) and sufk(w2a) can be obtained
in O(1) time, by knowing the nodes corresponding to w1 and w2 and using

their suffix links. Then, if the new tuple does not belong to
⋃i

i=1 T
i
s , we add it to

T i+1
s ; by maintaining another trie-structure for

⋃i
i=1 T

i
s , we obtain that checking

whether an element is in this set or adding an element to it is done in O(1) time.
To efficiently go through the elements of T i

s , we store them in a linked list.

We now set T̂s =
⋃i0

i=1 T
i
s . It follows that T̂s is computed in O(|Q||S||V |2k)

time. Therefore, R0 = {(s1, s2, w1, w2) | (q, s1, s2, w1, w2) ∈
⋃

s∈S T̂s, q ∈ Qf}.
Clearly, it takes O(|Q||S|2|V |2k) time to compute R0. We now set R̂j =

⋃j
i=0 Ri

and iteratively compute the sets Rj , j = 1, 2, . . . as follows:

– Rj+1 = (R1
j+1 ∪R2

j+1) \ R̂j ,

– R1
j+1 = {(s1, s′, w′

1, w
′
2) | there exist (s1, s2, w1, w2) ∈ Rj , and w′ ∈ V ∗

a suffix of w2, such that δ′′(s2, w
′) = s′, prefk(w1w

′) = w′
1, sufk(w2w

′) = w′
2},

– R2
j+1 = {(s′, s2, w′

1, w
′
2) | there exist (s1, s2, w1, w2) ∈ Rj , and w′ ∈ V ∗

a prefix of w1, such that δ′′(s′, w′) = s1, prefk(w
′w1) = w′

1, sufk(w
′w2) = w′

2}.

Actually, (s1, s2, w1, w2) ∈ Rj if and only if there exists a word w which can
be obtained by applying j times the k-prefix-suffix duplication to a word from
L1 such that prefk(w) = w1, sufk(w) = w2, and δ′′(s1, w) = s2; furthermore,
there is no word w′ that fulfils the same conditions and can be obtained by
applying less than j times the k-prefix-suffix duplication to the words of L1.
Clearly, all the elements of these sets fulfil the conditions allowing us to use
again a trie implementation for the union of the sets. Using this implementation,
and additionally storing each Rj as a list, the time needed to compute the
set Rj+1 is upper bounded by O(k|Rj |). Indeed, first we construct R2

j+1: for
each tuple (s1, s2, w1, w2) ∈ Rj and prefix x of w1, we use the precomputed
data structures to obtain the state s such that δ′(s, x) = s1 and decide that
(s, s2, prefk(xw1), sufk(xw2)) should be added to Rj+1 (but only if it is not
already in other Rj′ with j′ < j + 1). To implement this efficiently, we consider
the prefixes of x in increasing order with respect to the length, and so we will
get the node corresponding to xa in the trie in O(1) time when we know the
node corresponding to x. Then we construct R1

j+1: for each tuple (s1, s2, w1, w2)
and for each suffix x of w2, we use the precomputed data structures to obtain
s = δ′(s2, x) and decide that (s1, s, prefk(w1x), sufk(w2x)) should be added to
Rj+1 (again, only if it is not in other Rj′ with j′ < j+1). This time we consider
the suffixes x of w2 in decreasing order with respect to their length; in this way,
we get the node corresponding to x from the node corresponding to ax in O(1)
time using the suffix links. The sets Rj are computed until either one meets a
value j0 such that (s0, s, w1, w2) ∈ Rj0 for some s ∈ Sf and w1, w2 ∈ V ≤k, or
Rj = ∅. As the number of all 4-tuples that may appear in all the sets Rj is
bounded by O(|S|2|V |2k), the computation of the sets Rj ends after at most
O(k|S|2|V |2k) steps. It is clear that if the process of computing the sets Rj
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ends by reaching the value j0 mentioned above, then we conclude that d1 = j0.
Otherwise, d1 = ∞ holds. The correctness of the computation of d1 follows
immediately from the discussions above.

Consequently, the total time needed to compute d1 is O(|V |k + k|Q|2|V |k +
2k|S|2|V |2k+ |Q||S|2|V |2k) = O(k|Q|2|V |k+ |Q||S|2|V |2k). We can use the same
procedure to compute d2, just by changing the roles of L1 and L2. Then, we
return as δk(L1, L2) = min{d1, d2}. The time needed to compute this distance
is O((k +N)M2|V |2k), where M = max{|Q|, |S|} and N = min{|Q|, |S|}. �

Note that if V is a constant size alphabet, then the previous result provides
a cubic algorithm computing the distance between two regular languages. The
following corollary follows from Theorem 6, for L1 = {x} and L2 = L.

Corollary 3. Given a word x, a regular language L accepted by a DFA with q
states, and a positive integer k ≥ 1, one can algorithmically compute δk(x, L) in
O((k + |N |)|M |2|V |2k) time, where M = max{q, |x|} and N = min{q, |x|}.
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9. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

10. Leupold, P.: Reducing repetitions. In: Prague Stringology Conf., pp. 225–236 (2009)
11. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I–III.

Springer, Berlin (1997)
13. Searls, D.B.: The computational linguistics of biological sequences. In: Artificial

Intelligence and Molecular Biology, pp. 47–120. MIT Press, Cambridge (1993)
14. Wang, M.-W.: On the irregularity of the duplication closure. Bull. European Assoc.

Theor. Comput. Sci. 70, 162–163 (2000)
15. Knuth, D.: The Art of Computer Programming, 3rd edn. Fundamental Algorithms,

vol. 1, pp. 238–243. Addison-Wesley (1997), Section 2.2.1: Stacks, Queues, and
Deques, ISBN 0-201-89683-4

16. Knuth, D., Morris, J.H., Pratt, V.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)



Recognition of Labeled Multidigraphs

by Spanning Tree Automata

Akio Fujiyoshi

Department of Computer and Information Sciences, Ibaraki University
4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan

fujiyosi@mx.ibaraki.ac.jp

Abstract. In this paper, we study tree automata recognizing labeled
multidigraphs. We define that a labeled multidigraph is accepted by a
tree automaton if and only if the graph has a spanning tree accepted by
the tree automaton. We call this automaton a spanning tree automaton.
The membership problem of labeled multidigraphs for a spanning tree
automaton is NP-complete because the Hamiltonian path problem can
be easily reduced to it. However, it will be shown that the membership
problem is solvable in linear time for graphs of bounded tree-width.

1 Introduction

A spanning tree of a graph is a tree that consists of all of the vertices and some or
all of the edges of the graph. Checking if a graph has a particular spanning tree
has many practical applications. Since a set of particular trees can be defined
by a tree automaton, we define that a graph is accepted by a tree automaton if
and only if the graph has a spanning tree accepted by the tree automaton. We
call this automaton a spanning tree automaton. In this paper, the membership
problem of labeled multidigraphs for a spanning tree automaton is studied, that
is, the problem to determine, for any fixed tree automaton, whether a given
graph is accepted by the tree automaton.

The motivation of this study is to establish a robust and efficient recognition
method for mathematical OCR [2,6,10,9]. As shown in Fig. 1, a mathematical
OCR system constructs a labeled multidigraph representing the adjacency rela-
tion of mathematical symbols from a scanned image. The vertex labels represent
mathematical symbols, while the edge labels represent types of the adjacency
relation of mathematical symbols. From the labeled multidigraph, we want to
obtain the spanning tree representing proper connections of mathematical sym-
bols, which should be syntactically reasonable. In order to define the syntax of
mathematical formulae and verify candidates of the spanning tree, we make use
of spanning tree automata.

In [7,8], spanning tree automata for directed acyclic graphs (DAGs) were
studied. It was shown that the membership problem of DAGs for a spanning
tree automaton is NP-complete by the reduction from the Boolean satisfiability
problem (SAT). A linear-time algorithm solving the membership problem of

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 188–199, 2014.
c© Springer International Publishing Switzerland 2014
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(a)

(b)

(c)

Fig. 1. (a) A scanned image, (b) a labeled multidigraph representing the adjacency
relation of mathematical symbols, and (c) the spanning tree representing proper con-
nections of mathematical symbols

DAGs of tree-width at most 2 was presented. This paper extends the results of
DAGs to labeled multidigraphs.

The membership problem of labeled multidigraphs for a spanning tree au-
tomaton is NP-complete because the membership problem of DAGs is NP-
complete [7,8] and DAGs are a special case of labeled multidigraphs. However,
the proof of NP-completeness of the membership problem of DAGs is rather
complicated. So this paper presents a simpler proof. It will be shown that the
membership problem of non-labeled simple graphs is NP-complete by reducing
the Hamiltonian path problem to the problem.

For labeled multidigraphs of bounded tree-width, we present a positive result.
It will be shown that there exists a linear-time algorithm that solves the mem-
bership problem of labeled multidigraphs of bounded tree-width by using one
theorem from Courcelle [4,1,5]. Courcelle’s theorem states that all graph proper-
ties definable in monadic second-order logic (MSOL) are linear-time decidable for
any graphs with bounded tree-width. A sentence in MSOL describing the prop-
erty “a labeled multidigraph has a spanning tree accepted by a tree automaton”
will be presented.
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This paper is organized as follows: In Section 2, some definition are given; in
Section 3, spanning tree automata are introduced and some basic properties of
them are shown; in Section 4, the membership problem of labeled multidigraphs
for spanning tree automata is studied; and in Section 5, the conclusion is drawn
and future work discussed.

2 Preliminaries

In this paper, we deal with labeled multidigraphs, defined as follows: A labeled
multidigraph is a 6-tuple G = (V,E, tail, head,Σ,Δ, σ, δ), where V is a finite set
of vertices, E is a finite set of edges, tail : E → V is a function assigning to
each edge its tail, head : E → V is a function assigning to each edge its head,
Σ is a finite set of vertex labels, Δ is a finite set of edge labels, σ : V → Σ
is a function assigning to each vertex its label, and δ : E → Δ is a function
assigning to each edge its label. For a pair of edges e, e′ ∈ E, e and e′ are
multiple if tail(e) = tail(e′) and head(e) = head(e′), and e and e′ are symmetric
if tail(e) = head(e′) and head(e) = tail(e′). For a vertex v ∈ V , the incoming
edges of v is the set in(v) = {e ∈ E | head(e) = v}, the indegree of v is |in(v)|,
the outgoing edges of v is the set out(v) = {e ∈ E | tail(e) = v}, and the
outdegree of v is |out(v)|. A source is a vertex of indegree 0, and a sink is a
vertex of outdegree 0. We define the size of a labeled multidigraph G as |V ∪E|,
the number of vertices and edges.

Let E′ ⊆ E be a subset of edges. The edge-induced subgraph of G by E′,
denoted by G[E′], is the labeled multidigraph G′ = (V ′, E′, tail′, head′, Σ,Δ,
σ′, δ′) such that V ′ ⊆ V , tail′ ⊆ tail, head′ ⊆ head, σ′ ⊆ σ, δ′ ⊆ δ and
every vertex in V ′ has at least one incoming or outgoing edge in E′. The
spanning subgraph of G by E′, denoted by G〈E′〉, is the labeled multidigraph
(V,E′, tail′, head′, Σ,Δ, σ, δ′) such that tail′ ⊆ tail, head′ ⊆ head and δ′ ⊆ δ.

Let G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph. G is acyclic
if there is not a subset of edges E′ ⊆ E such that E′ �= ∅ and every vertex of
G[E′] has indegree 1 and outdegree 1. For a pair of distinct vertices u, v ∈ V ,
a simple directed path of G from u to v is an edge-induced subgraph G[E′] for
some E′ ⊆ E such that G[E′] is acyclic and every vertex of G[E′] has indegree 1
and outdegree 1 except that u has indegree 0 and outdegree 1 and v has indegree
1 and outdegree 0.

A labeled rooted tree is a labeled multidigraph T = (V,E, tail, head,Σ,Δ, σ,
δ) such that T is acyclic, T has exactly one source, and there is a unique simple
directed path from the source to every other vertex. The source of a tree is also
called the root, while the sinks are also called leaves. An ordered tree can be
seen as a special labeled rooted tree such that Δ = {1, 2, . . . ,maxd}, maxd is
the maximum outdegree of vertices, and the outgoing edges of each vertex are
uniquely labeled as 1, 2, 3, . . ..

For a labeled multidigraph G = (V,E, tail, head,Σ,Δ, σ, δ), a spanning tree
of G is a spanning subgraph G〈E′〉 for some E′ ⊆ E such that G〈E′〉 is a labeled
rooted tree.

Let X = {x1, x2, . . .} be a fixed countable set of variables.
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Example 1. The following is an example of a labeled multidigraph: G = (V,E,
tail, head,Σ,Δ, σ, δ), where

V = {v1, v2, v3, v4},
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9},
tail = {(e1,v1), (e2,v2), (e3,v1), (e4,v1), (e5,v3), (e6,v2), (e7,v4), (e8,v4), (e9,v3)},
head={(e1,v1), (e2,v1), (e3,v2), (e4,v3), (e5,v1), (e6,v4), (e7,v2), (e8,v3), (e9,v4)},
Σ = {acc, rej},
Δ = {ε, 0, 1},
σ = {(v1, acc), (v2, rej), (v3, rej), (v4, rej)}, and

δ = {(e1, ε), (e2, 1), (e3, 1), (e4, 0), (e5, 0), (e6, 0), (e7, 0), (e8, 1), (e9, 1)}.

One of spanning trees of G is T = (V,E′, tail′, head′, Σ,Δ, σ, δ′), where E′ =
{e3, e4, e6}, tail′ = {(e3, v1), (e4, v1), (e6, v2)},head′ = {(e3, v2), (e4, v3), (e6, v4)},
and δ′ = {(e3, 1), (e4, 0), (e6, 0)}. The root of T is v1.

G and T are illustrated as (a) and (b) in Fig. 2.

(a) (b)

rej

1acc rej

rej

00

rej

1acc rej

rej1

1

1

0 000

Fig. 2. (a) a labeled multidigraph, and (b) one of spanning trees of it

Example 2. The following is an example of an ordered tree: T = (V,E, tail, head,
Σ,Δ, σ, δ), where

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9},
E = {e1, e2, e3, e4, e5, e6, e7, e8},
tail = {(e1, v1), (e2, v1), (e3, v2), (e4, v4), (e5, v4), (e6, v3), (e7, v3), (e8, v8)},
head = {(e1, v2), (e2, v3), (e3, v4), (e4, v5), (e5, v6), (e6, v7), (e7, v8), (e8, v9)},

Σ = {∧,∨,¬, T, F},
Δ = {1, 2},
σ = {(v1,∧), (v2,¬), (v3,∨), (v4,∨), (v5,F ), (v6,F ), (v7,T ), (v8,¬), (v9,T )}, and

δ = {(e1, 1), (e2, 2), (e3, 1), (e4, 1), (e5, 2), (e6, 1), (e7, 2), (e8, 1)}.
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The root of T is v1. T is illustrated in Fig. 3.

�

1 2

1

1

1 2

1 2

Fig. 3. Representation of an ordered tree by a labeled multidigraph

3 Spanning Tree Automaton

In this section, the definition of spanning tree automata and some basic proper-
ties of them are introduced.

3.1 Definition

The definition of spanning tree automata is almost the same as well-known
nondeterministic top-down tree automata for ordered trees [3]. The difference is
that edge labels can be arbitrarily specified for the transition rules of a spanning
tree automaton.

Definition 1. A spanning tree automaton over alphabets Σ and Δ is a five-
tuple A = (Q,Σ,Δ, q0, R) where Q is a finite set of states, q0 ∈ Q is the initial
state, and R is a finite set of transition rules of the following form:

q(f(c1(x1), . . . , cn(xn))) → f(c1(q1(x1)), . . . , cn(qn(xn))),

where n ≥ 0, q, q1, . . . , qn ∈ Q, f ∈ Σ, c1, . . . , cn ∈ Δ, and x1, . . . , xn ∈ X . The
number n is called the width of a transition rule. When n = 0, we write q(f) → f
instead of q(f()) → f().

Let T = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled rooted tree, and let r ∈ V be
the root of T . Let A = (Q,Σ,Δ, q0, R) be a spanning tree automaton. For A, a
state mapping on T is a function μ : V → Q. A state mapping μ on T is acceptable
if μ(r) = q0 and, for each v ∈ V , a transition rule q(f(c1(x1), . . . , cn(xn))) →
f(c1(q1(x1)), . . . , cn(qn(xn))) is in R for some n ≥ 0, μ(v) = q, σ(v) = f , and v
has exactly n outgoing edges e1, . . . , en such that δ(ei) = ci and μ(head(ei)) = qi
for each 1 ≤ i ≤ n. A accepts T if there exists an acceptable state mapping on T .

Let G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph, and let A be a
spanning tree automaton. A accepts G if G has a spanning tree T and A accepts
T . A set S of labeled multidigraphs is recognizable if there exists a spanning tree
automaton A such that S = {G | G is accepted by A}.
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Example 3. The following is an example of a spanning tree automaton: A =
(Q,Σ,Δ, qT , R), where Q = {qT , qF }, Σ = {∧,∨,¬, T, F}, Δ = {1, 2}, and R
consists of transition rules

qF (∧(1(x1), 2(x2))) → ∧(qF (1(x1)), qF (2(x2))),

qF (∧(1(x1), 2(x2))) → ∧(qT (1(x1)), qF (2(x2))),

qF (∧(1(x1), 2(x2))) → ∧(qF (1(x1)), qT (2(x2))),

qT (∧(1(x1), 2(x2))) → ∧(qT (1(x1)), qT (2(x2))),

qF (∨(1(x1), 2(x2))) → ∨(qF (1(x1)), qF (2(x2))),

qT (∨(1(x1), 2(x2))) → ∨(qT (1(x1)), qF (2(x2))),

qT (∨(1(x1), 2(x2))) → ∨(qF (1(x1)), qT (2(x2))),

qT (∨(1(x1), 2(x2))) → ∨(qT (1(x1)), qT (2(x2))),

qF (¬(1(x1))) → ¬(qT (1(x1))), qT (¬(1(x1))) → ¬(qF (1(x1))),

qT (T ) → T , and qF (F ) → F.

The following is a state mapping on T in Example 2 for A: μ = {(v1, qT ),
(v2, qT ), (v3, qT ), (v4, qF ), (v5, qF ), (v6, qF ), (v7, qT ), (v8, qF ), (v9, qT )}. μ is illus-
trated in Fig. 4. Because μ is an acceptable state mapping, the labeled rooted tree
T is accepted by A.

1 2

1

1

1 2

1 2

Fig. 4. A labeled rooted tree and a state mapping on it for A

3.2 Basic Properties

Concerning closedness of recognizable sets labeled multidigraphs, the properties
of spanning tree automata are the same as the case of DAGs [7,8]. Since the
same discussions as in [7,8] hold, we omit proofs.

Proposition 1. The class of recognizable sets of labeled multidigraphs is closed
under union.
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Proposition 2. The class of recognizable sets of labeled multidigraphs is not
closed under intersection.

Proposition 3. The class of recognizable sets of labeled multidigraphs is not
closed under complementation.

The emptiness problem is also the same as the case of DAGs [7,8].

Proposition 4. For a spanning tree automaton A, we can determine whether
there exists a labeled multidigraph accepted by A in linear time in the size of A.

4 Membership Problem

The membership problem of labeled multidigraphs for a spanning tree automaton
is the problem to determine, for any fixed spanning tree automaton, whether a
given labeled multidigraph is accepted by the spanning tree automaton.

4.1 NP-Completeness

The membership problem is NP-complete because the membership problem of
directed acyclic graphs (DAGs) for a spanning tree automaton has been shown
to be NP-complete [7,8] and, obviously, DAGs are a special case of labeled mul-
tidigraphs.

Since many graph problems can be simulated as the membership problem of
labeled multidigraphs for a spanning tree automaton, this paper presents a much
simpler proof than the one in [7,8]. We will show the NP-completeness of the
membership problem of non-labeled simple graphs by reducing the Hamiltonian
path problem to the problem. Non-labeled simple graphs can be seen as a special
case of labeled multidigraphs as follows: A non-labeled simple graph is a labeled
multidigraph S = (V,E, tail, head,Σ,Δ, σ, δ) such that Σ = {f} and Δ = {c}
for some fixed symbols f and c, no multiple edges are contained in E, and each
edge has a symmetric edge.

Theorem 1. The membership problem of non-labeled simple graphs for a span-
ning tree automaton is NP-complete.

Proof. Consider the spanning tree automaton A = (Q,Σ, q0, R), where Q =
{q0}, Σ = {f}, and R = {q0(f(c(x1))) → f(q0(c(x1))), q0(f) → f}.

It is clear that A accepts labeled rooted trees whose vertices have outdegree
at most 1. Therefore, a non-labeled simple graph is accepted by A if and only
if there exists a Hamiltonian path in the graph. Since the Hamiltonian path
problem is NP-hard, this problem is also NP-hard.

On the other hand, given a non-labeled simple graph S, we can nondeter-
ministically obtain a spanning tree T of S and check if T is accepted by A in
polynomial time. Thus the problem is in the class NP. Therefore, the problem
is NP-complete. ��
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Corollary 1. The membership problem of labeled multidigraphs for a spanning
tree automaton is NP-complete.

Proof. NP-hardness is clear from Theorem 1. For any labeled multidigraphG, we
can nondeterministically obtain a spanning tree T of G and check if T is accepted
by A in polynomial time. Thus the problem is in the class NP. Therefore, the
problem is NP-complete. ��

4.2 Linear-Time Solvability of the Membership Problem for Graphs
of Bounded Tree-Width

We will show the linear-time solvability of the membership problem for graphs
of bounded tree-width by using one theorem from Courcelle [4,1,5].

Courcelle’s Theorem . Every graph property definable in monadic second-
order logic (MSOL) can be decided in linear time on graphs of bounded treewidth.

Let G = (V,E, tail, head,Σ,Δ, σ, δ) be a labeled multidigraph, and let A =
(Q,Σ,Δ, q0, R) be a spanning tree automaton. Without loss of generality, we
may assume that Q = {1, . . . ,m}, q0 = 1, and Q ∩ Σ = ∅. Let rmax be the
maximum width of transition rules of A.

We will describe the property “a labeled multidigraph G has a spanning tree
T , and T is accepted by the tree automaton A” in monadic second-order logic.
For that purpose, the property has to be described with propositional logic
connectives (∧, ∨, ¬, ⇒, and ⇔), individual variables (e, e1, e2, r, v, v1, v2, . . .),
set variables (E′, C, P, P1, P2, V, V1, V2, . . .), the membership symbol (∈), the
equals sign (=), existential (∃) and universal (∀) quantifiers over both individual
variables and set variables, and relations representing the graph G.

For Courcelle’s theorem, the following two types of representation of a directed
graph are allowed:

MS1: a domain V with a binary relation E ⊆ V × V .

MS2: a domain V ∪ E with unary relations (i.e., sets) V and E, and binary
relations tail ⊆ E × V and head ⊆ E × V .

MS2 is more expressive than MS1. Since multidigraphs can be only described by
MS2, we will take MS2.

For each f ∈ Σ, let Vf = {v ∈ V | σ(v) = f}, the set of vertices whose label
is f . For each c ∈ Δ, let Ec = {e ∈ E | δ(e) = c}, the set of edges whose label is
c. The labeling functions σ and δ can be represented by these sets for all labels
in Σ and Δ. Thus, the labeled multidigraph G will be represented by the sets V
and E, the binary relations tail and head, and the sets Vf and Ec for all f ∈ Σ
and c ∈ Δ.

The property is described by the following MS2-sentence φ:

φ := ∃E′(subset(E′, E) ∧ spanning-tree(E′) ∧ accept(E′))
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(There exists a subset of edges E′ ⊆ E such that G〈E′〉 is a spanning tree of G
and G〈E′〉 is accepted by the spanning tree automaton A.)

subset(E′, E) := ∀e(e ∈ E′ ⇒ e ∈ E)

(E′ is a subset of E.)

spanning-tree(E′) := one-source(E′) ∧ acyclic(E′) ∧ unique-path(E′)

(G〈E′〉 has exactly one source, G〈E′〉 is acyclic, and there is a unique simple
directed path from the source to every other vertex in G〈E′〉.)

one-source(E′) := ∃r(in0(r, E′)

∧ ∀v((v ∈ V ∧ v �= r) ⇒ ∃e(e ∈ E′ ∧ head(e) = v)))

(There exists a vertex of indegree 0, and the indegree of every other vertex is
more than or equal to 1.)

acyclic(E′) := ¬∃C(∃e(e ∈ C) ∧ subset(C,E′)

∧ ∀v(member(v, C) ⇒ (in1(v, C) ∧ out1(v, C))))

(There does not exist a non-empty subset of edges C ⊆ E′ such that every vertex
of G[C] has indegree 1 and outdegree 1.)

member(v, C) := ∃e(e ∈ C ∧ (head(e) = v ∨ tail(e) = v))

(v is a vertex of G[C].)

unique-path(E′) := ∃r(in0(r, E′) ∧ ∀v((v �= r ∧ v ∈ V )

⇒ ∃P (subset(P,E′) ∧ path(r, v, P )) ∧ ¬∃P1, P2(P1 �= P2

∧ subset(P1, E
′) ∧ path(r, v, P1) ∧ subset(P2, E

′) ∧ path(r, v, P2))))

(G〈E′〉 has a source r and, for every vertex v ∈ V , if v �= r, then there is a
unique simple directed path from r to v.)

path(r, v, P ) := acyclic(P ) ∧ in0(r, P ) ∧ out1(r, P ) ∧ in1(v, P ) ∧ out0(v, P )

∧ ∀u((member(u, P ) ∧ u �= r ∧ u �= v) ⇒ (in1(u, P ) ∧ out1(u, P )))

(G[P ] is a simple directed path from r to v.)

in0(v, E
′) := v ∈ V ∧ ¬∃e(e ∈ E′ ∧ head(e) = v)

(The indegree of a vertex v ∈ V is 0 in G〈E′〉.)

in1(v, E
′) := v ∈ V ∧ ∃e(e ∈ E′ ∧ head(e) = v)∧
¬∃e1, e2(e1 ∈ E′ ∧ e2 ∈ E′ ∧ e1 �= e2 ∧ head(e1) = v ∧ head(e2) = v)
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(The indegree of a vertex v ∈ V is 1 in G〈E′〉.)

out0(v, E
′) := v ∈ V ∧ ¬∃e(e ∈ E′ ∧ tail(e) = v)

(The outdegree of a vertex v ∈ V is 0 in G〈E′〉.)

out1(v, E
′) := v ∈ V ∧ ∃e(e ∈ E′ ∧ tail(e) = v)

∧ ¬∃e1, e2(e1 ∈ E′ ∧ e2 ∈ E′ ∧ e1 �= e2 ∧ tail(e1) = v ∧ tail(e2) = v)

(The outdegree of a vertex v ∈ V is 1 in G〈E′〉.)

accept(E′) := ∃V1, . . . , Vm(vertex(V1, . . . , Vm) ∧ one-in(V1, . . . , Vm)

∧ ∀r(in0(r, E′) ⇒ r ∈ V1) ∧ state-mapping(V1, . . . , Vm, E′))

(There exist subsets of vertices V1, . . . , Vm ⊆ V such that each vertex is in exactly
one of them, the root is in V1, and there is an acceptable state-mapping μ such
that Vi = {v ∈ V | μ(v) = i} for each 1 ≤ i ≤ m.)

vertex(V1, . . . , Vm) := ∀v

⎛⎝ ∧
1≤i≤m

(v ∈ Vi ⇒ v ∈ V )

⎞⎠
(V1, . . . , Vm are subsets of V .)

one-in(V1, . . . , Vm) :=

∀v

⎛⎝v ∈ V ⇒

⎛⎝ ∨
1≤i≤m

v ∈ Vi ∧
∧

1≤i<j≤m

(v �∈ Vi ∨ v �∈ Vj)

⎞⎠⎞⎠
(Each vertex v ∈ V is in in one of the sets V1, . . . , Vm but not in two of them.)

state-mapping(V1, . . . , Vm, E′) :=

∀v

⎛⎝ ∨
0≤n≤rmax

∃e1, . . . , en

⎛⎝outgoingn(v, e1, . . . , en, E
′)

∧
∨

q(f(c1(x1),...,cn(xn)))→f(c1(q1(x1)),...,cn(qn(xn)))∈R

⎛⎝v ∈ Vf ∧ v ∈ Vq

∧
∧

0≤i≤n

(ei ∈ Eci ∧ head(ei) ∈ Vqi )

⎞⎠⎞⎠⎞⎠
(For each v ∈ V , v has exactly n outgoing edges e1, . . . , en ∈ E′ for some
0 ≤ n ≤ rmax, a transition rule q(f(c1(x1), . . . , cn(xn))) → f(q1(c1(x1)), . . . ,
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qn(cn(xn))) is in R, the rule can be applied to v, and appropriate state can be
assigned to each head(ei).)

outgoingn(v, e1, . . . , en, E
′) :=∧

1≤i≤n

(ei ∈ E′ ∧ tail(ei) = v) ∧
∧

1≤i<j≤n

ei �= ej

∧ ¬∃e

⎛⎝e ∈ E′ ∧ tail(e) = v ∧
∧

1≤i≤n

e �= ei

⎞⎠
(v has exactly n outgoing edges {e1, . . . , en} ⊆ E′.)

Clearly, the sentence φ means that there exists a set of edges E′ ⊆ E such
that G(E′) is a spanning tree of G and G(E′) is accepted by the spanning tree
automaton A. By Courcelle’s theorem, the following theorem holds.

Theorem 2. If inputs are restricted to labeled multidigraphs of bounded tree-
width, then the membership problem for a spanning tree automaton is solvable
in linear time on the size of an input graph.

5 Conclusion and Future Work

We have studied the membership problem of labeled multidigraphs for spanning
tree automata. The NP-completeness of the membership problem was shown by
reducing the Hamiltonian path problem to the problem. The linear-time solv-
ability of the membership problem for graphs of bounded tree-width was shown
by using one theorem from Courcelle [4,1,5].

As a future work, we want to construct a polynomial-time algorithm solving
the membership problem for graphs of small tree-width since a linear-time algo-
rithm obtained by Courcelle’s theorem is unusable in practice because of a big
hidden constant.
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Abstract. We present several series of synchronizing automata with
multiple parameters, generalizing previously known results. Let p and
q be two arbitrary co-prime positive integers, q > p. We describe reset
thresholds of the colorings of primitive digraphs with exactly one cycle
of length p and one cycle of length q. Also, we study reset thresholds of
the colorings of primitive digraphs with exactly one cycle of length q and
two cycles of length p.

1 Introduction

A complete deterministic finite automaton A , or simply automaton, is a triple
〈Q,Σ, δ〉, where Q is a finite set of states, Σ is a finite input alphabet, and
δ : Q × Σ $→ Q is a totally defined transition function. Following standard
notation, by Σ∗ we mean the set of all finite words over the alphabet Σ, including
the empty word ε. The function δ naturally extends to the free monoid Σ∗; this
extension is still denoted by δ. Thus, via δ, every word w ∈ Σ∗ acts on the set
Q. For each v ∈ Σ∗ and each q ∈ Q we write q . v instead of δ(q, v) and let
Q . v = {q . v | q ∈ Q}.

An automaton A is called synchronizing, if there is a word w ∈ Σ∗ which
brings all states of the automaton A to a particular one, i.e. |Q .w| = 1. Any
such word w is said to be a reset (or synchronizing) word for the automaton A .
The minimum length of reset words for A is called the reset threshold of A .

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applied areas (robotics, coding theory). At the same
time, synchronizing automata surprisingly arise in some parts of pure mathemat-
ics (algebra, symbolic dynamics, combinatorics on words). See recent surveys by
Sandberg [10] and Volkov [13] for more details on the theory and applications of
synchronizing automata.

One of the most important and natural questions related to synchronizing au-
tomata is the following: given n, how big can the reset threshold of an automaton
with n states be? In 1964 Černý exhibited a series of automata with n states

� Authors are supported by the Presidential Program for Young Researchers, grant
MK-3160.2014.1 and by the Russian Foundation for Basic Research, grant 13-01-
00852.

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 200–210, 2014.
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whose reset threshold equals (n − 1)2 [4]. Soon after he conjectured, that this
series represents the worst possible case, i.e. the reset threshold of every n-state
synchronizing automaton is at most (n−1)2. This hypothesis has become known
as the Černý conjecture. In spite of its simple formulation and many researchers’
efforts, the Černý conjecture remains unresolved for about fifty years. Moreover,
no upper bound of magnitude O(n2) for the reset threshold of a synchronizing
n-state automaton is known so far. The best known upper bound on the reset

threshold of a synchronizing n-state automaton is the bound n3−n
6 found by

Pin [8] in 1983.
In an attempt to understand why the Černý conjecture is so difficult to resolve,

researchers started to look for slowly synchronizing automata, i.e. automata with
n states and reset threshold close to (n− 1)2. First series of such automata were
presented in [2]. The number of known series of slowly synchronizing automata
was significantly increased in [1]. In the latter paper the constructions are based
on the observed connection between slowly synchronizing automata and primi-
tive digraphs with large exponent.

A digraph D is said to be primitive, if there is a positive integer t such that for
every pair of vertices u and v there is a path form u to v of length t. The smallest
t with this property is called the exponent of the digraph D. Equivalently, if M
is the adjacency matrix of D, then t is the smallest number such that M t is
positive. For additional results on the well-established field of primitive digraphs
we refer a reader to [3].

The underlying digraph D(A ) of an automaton A has Q as the set of vertices,
and (u, v) is an edge if u . x = v for some letter x ∈ Σ. A coloring of a digraph
D is an automaton A such that D(A ) is isomorphic to D. Proposition 2 [1]
states, that the reset threshold of an arbitrary n-state strongly connected syn-
chronizing automaton is greater than the exponent of the underlying digraph
minus n. At the same time, the Road Coloring theorem [12] states that any
primitive digraph has at least one synchronizing coloring. Thus, n-state slowly
synchronizing automata can be constructed from the well-known examples [5]
of primitive digraphs on n vertices with exponents close (n− 1)2. This idea was
presented and explored in [1]. In the present paper we generalize several series
of slowly synchronizing automata presented in [1]. Namely, Wn, D ′

n and D ′′
n .

Another motivation for the present paper comes from the following facts.
Computational experiments of Trahtman [11] revealed that not every positive
integer in {1, . . . , (n− 1)2} may serve as the reset threshold of some automaton
with n states over a binary alphabet. For example, there is no automaton with
nine states over a binary alphabet with the reset threshold in the range from 59
to 63. Similar gaps were found for automata with the number of states ranging
from 6 to 10. These results were confirmed in [1]. Moreover, a second gap was
presented, i.e. there are no 9-state automata over a binary alphabet with the
reset threshold from 53 to 55. For 11-state automata a third gap, along with the
first two, was found in the course of computational experiments of Kisielewicz
and Szyku�la [6]. This brings up the following natural question: given n, which
positive integers are reset thresholds of n-state automata? Surprisingly, the set



202 V.V. Gusev and E.V. Pribavkina

En of all possible exponents of primitive digraphs on a fixed number n of vertices
has similar gaps [5] as the set Rn of all possible reset thresholds of n-state
automata. Furthermore, for every n the set En is fully described [3, p. 83].
We hope that study of this similarity could shed light on properties of Rn. The
following statement [7] plays the key role in the description of En: if the exponent

of a primitive digraph D is at least (n−1)2+1
2 + 2, then D has cycles of exactly

two different lengths. This motivates our choice in the present paper to focus on
automata whose underlying digraphs have exactly two different cycle lengths.

Let p and q be two arbitrary co-prime positive integers, q > p. In section 2 we
describe reset thresholds of the colorings of primitive digraphs with exactly one
cycle of length p and one cycle of length q. In section 3 we study reset thresholds
of the colorings of primitive digraphs with exactly one cycle of length q and two
cycles of length p.

2 Wielandt-Type Automata

We start with recalling the following elementary andwell-knownnumber-theoretic
result.

Theorem 1 ( [9, Theorem 2.1.1]). Given two positive co-prime integers p and q,
the largest integer that is not expressible as a non-negative integer combination
of p and q, is (p− 1)(q − 1)− 1.

Let us fix two positive co-prime integers p and q. Without loss of generality, we
assume p < q. Let n be a positive integer, n < p+ q. We define a Wielandt-type
automaton W (n, q, p) as follows (see Fig. 2). The state set Q = {0, 1, . . . , n− 1},
Σ = {a, b}, and the transitions are defined in the following way:

0 . a = q if n > q, and 0 . a = q − p+ 1 if n = q; 0 . b = 1;
i . x = i+ 1 for 1 ≤ i < n− 1 and i �= q − 1 for each x ∈ Σ;
(q − 1) . x = 0 for each x ∈ Σ;
if n > q, then (n− 1) . x = n− p+ 1 for each x ∈ Σ.

In case q = n, p = n− 1 we obtain Wielandt automaton Wn considered in [1]. It
is not hard to observe, that every strongly connected n-state automaton whose
underlying digraph has exactly one cycle of length p and exactly one cycle of
length q is isomorphic to W (n, q, p).

First let us consider the case n = q (see Fig. 1).

Lemma 1. Let A be a strongly connected synchronizing automaton, whose cy-
cles have lengths p and q. If gcd(p, q) = 1, then rt(A ) ≥ (p−1)(q−1). Moreover,
if there are states s, t, and a positive integer  such that:
(i) there is a shortest synchronizing word w which resets the automaton A to s,
(ii) t . u = s for each word u of length ,
then rt(A ) ≥ (p− 1)(q − 1) + .
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. . .

0

1 2

...

q-1

q-p+1

b

a, b

a, b

a, b

a, b

a

Fig. 1. The Wielandt-type automaton W (q, q, p)

Proof. Let A = 〈Q,Σ, δ〉. We prove the first part of the lemma. Consider a
synchronizing word w having shortest possible length. Let s = Q .w be the state
to which the automaton is synchronized. Note, that the word uw is synchronizing
for every u ∈ Σ∗, and Q . uw = s. In particular, we have s .w = s . uw = s. Thus
the word w, as well as the word uw, for every word u, labels a path in the
automaton A from the state s to itself. Every such path can be decomposed
into cycles of lengths p and q. Hence the number |w|, as well as |w| + k, for
each positive integer k, can be represented as a non-negative combination of the
numbers p and q. Thus, by theorem 1, we have rt(A ) ≥ (p− 1)(q − 1).

Assume now that in addition there exist a state t and a positive integer 
such that t . u = s for each word u of length . Suppose, contrary to our claim,
that |w| < (p − 1)(q − 1) + . Let u ∈ Σ∗ be an arbitrary word such that
|uw| = (p−1)(q−1)+ −1. As before, the word uw synchronizes the automaton
A to the state s. But after applying its prefix of length  to the state t we end
up in the state s. Hence there is a path of length (p − 1)(q − 1) − 1 from s to
itself. But this number can not be represented as a non-negative combination of
p and q by theorem 1. A contradiction.

Theorem 2. The reset threshold of the Wielandt-type automaton W (q, q, p)
equals (p− 1)(q − 1) + q − p.

Proof. Any shortest reset word w for this automaton resets it to the state q−p+1,
since it is the only state which is a common end of two different edges with the
same label. Note, that any word of length q − p brings the state 1 to the state
q − p + 1. Lemma 1 implies that the reset threshold of W (q, q, p) is at least
(p− 1)(q − 1) + q − p.

Let us check that the word w = aq−p(baq−1)p−2baq−p synchronizes W (q, q, p).
After applying the prefix aq−p we end up in the cycle C of length p:

Q . aq−p = {0, q − p+ 1, q − p+ 2, . . . , q − 1}.

Next, we show that that the word (baq−1)p−2 brings C to a two-element set. We
state this fact as a separate lemma:



204 V.V. Gusev and E.V. Pribavkina

Lemma 2. Let A be an automaton with the state set Q over the alphabet Σ =
{a, b}. Let q > p be two co-prime positive integers, and let r denote the remainder
of the division of q by p. Let C = {0, 1, . . . , p − 1} be a subset of Q such that
0 . a = 1, 0 . baq−1 = 0, and i . x ≡ i + 1mod p for 1 ≤ i ≤ p − 1 and for all
x ∈ Σ. Then C .(baq−1)p−2 = {0, p− r}.
Proof. First note, that i . baq−1 ≡ i+ rmod p for each state i �= 0. Consider the
equation i+ rx ≡ 0mod p. Since r and p are co-prime, this equation has unique
solution in {1, . . . , p − 1} for every i �= 0. Then i .(baq−1)x = 0. If x �= p − 1,
then i .(baq−1)p−2 = 0. The case x = p − 1 occurs only if i = r. In this case
r .(baq−1)p−2 = p− r.

Returning back to the proof of the theorem, we have C .(baq−1)p−2 = {0, q− r}
(instead of {0, p− r}, since here the numeration of the states in the cycle C is
different from that in lemma 2). The word baq−p brings the latter set to the
singleton q − p+ 1.

Let us consider now the general case of theWielandt-type automatonW (n, q, p)
(see Fig. 2). It is rather easy to see, that given a synchronizing automaton B and

. . .

0

1 2

· · ·

q-1
n-p+1

· · ·
q

n-1 n-p

b

a, b

a, b

a, b

a, b

a a, b

a, b a, b

Fig. 2. The Wielandt-type automaton W (n, q, p)

a congruence ρ, the factor automaton B/ρ is also synchronizing, and rt(B/ρ) ≤
rt(B). In particular, consider the following congruence σ on B: for two states s
and t we have sσt if and only if s . x = t . x for each x ∈ Σ.

Lemma 3. If B is synchronizing, then B/σ is also synchronizing, and

rt(B/σ) ≤ rt(B) ≤ rt(B/σ) + 1.

Proof. The inequality rt(B/ρ) ≤ rt(B) is trivial. The states of B/σ are congru-
ence classes [s]σ of the states s of the automaton B. Let us consider a synchro-
nizing word w for the automaton B/σ. For every pair of states s and s′ of the
original automaton B we have s . w σ s′ . w. But this means that s . wx = s′ . wx
for any letter x ∈ Σ, thus, the word wx resets the automaton B. Thus we have
rt(B) ≤ rt(B/σ) + 1.
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Lemma 4. If n > q, then W (n, q, p)/σ is equal to W (n− 1, q, p), and

rt(W (n, q, p)) = rt(W (n− 1, q, p)) + 1.

Proof. Letw be aword ofminimal length, synchronizing the automatonW (n, q, p).
As in the proof of theorem 2, the wordw resetsW (n, q, p) to the state n−p+1.On
the last stepw brings the states {n−1, n−p} to the staten−p+1.Hencew = w′x,
where x ∈ Σ, andw′ brings the automatonW (n, q, p) to the set {n−1, n−p}. But
these two states form the unique non-trivial σ-class (see Fig. 2). Thus the factor
automatonW (n, q, p)/σ is equal to the Wielandt-type automatonW (n− 1, q, p).
Moreover, it is synchronized by w′. Thus, rt(W (n− 1, q, p)) ≤ rt(W (n, q, p))− 1.
On the other hand, by lemma 3 we have rt(W (n − 1, q, p)) ≥ rt(W (n, q, p)) − 1.
Therefore, we get the required equality.

Theorem 3. The reset threshold of the Wielandt-type automaton W (n, q, p) is
equal to (p− 1)(q − 1) + n− p.

Proof. Since there are n − q states on the path from the state 0 to n − p + 1,
lemma 4 can be applied n − q times to obtain the Wielandt-type automaton
W (q, q, p). By theorem 2, its reset threshold equals (p− 1)(q − 1) + q − p. Each
time lemma 4 is applied, the reset threshold is decreased strictly by 1. Thus the
reset threshold of the automaton W (n, q, p) is equal to (p− 1)(q − 1) + n− p.

3 Dulmage-Mendelsohn-Type Automata

As in the previous section, let q and p be two co-prime positive integers, and
q > p. Let k be a positive integer such that k < min{p, q−p+1}. Here we consider
Dulmage-Mendelsohn-type automata, which are the colorings of the following
primitive digraph D(q, p, k) (see Fig. 3). Its vertex set is {0, . . . , q−1}, the set of
edges is {(i, (i+1)mod q) | 0 ≤ i < q}∪{(0, q−p+1), (k, (q−p+k+1)modq)}.
Note, that D(q, p, k) has exactly one cycle of length q and two cycles of length
p. The digraph D(q, p, k) has only two non-isomorphic colorings Daa(q, p, k) and
Dab(q, p, k) (see Fig. 4).

Lemma 5. (i) Any shortest synchronizing word of the automaton Dab(q, p, k)
synchronizes it to the state q − p+ 1.

(ii) Any shortest synchronizing word of the automaton Daa(q, p, k) synchronizes
it to the state q − p+ 1 when k < q − p.

Proof. Part (i). Let t = q − p + k + 1. Note, that t = k . b = (q − p + k) . a =
(q−p+k) . b. Any shortest synchronizing word w can synchronize the automaton
Dab(q, p, k) either to q− p+1 or t. Suppose, that w synchronizes Dab(q, p, k) to
the state t. By lemma 1 we have |w| ≥ (p−1)(q−1). Moreover, (p−1)(q−1) > k.
Consider the suffix v of w of length k. It is easy to see, that the full preimage
t . v−1 of the state t under the action of the word v is equal to {1, q − p+ 1}. If
k = q − p, then the two incoming edges to the state q− p+1 are labeled by the
letter a, while the only incoming edge to the state 1 is labeled by the letter b.
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Fig. 4. Two Dulmage-Mendelsohn-type automata Daa(q, p, k) and Dab(q, p, k)

A contradiction. If k �= q−p, then the set {1, q−p+1} was necessarily obtained
from the set {0, q − p} by applying the letter b. But {0, q − p} . a = q − p + 1.
Therefore, we can replace the suffix of w of length k + 1 by the letter a, in
order to obtain a shorter synchronizing word. A contradiction. Hence the word
w synchronizes the automaton Dab(q, p, k) to the state q − p+ 1.

The proof of the part (ii) of the lemma is analogous to the part (i) with only
minor changes.

Theorem 4. The reset threshold of the Dulmage-Mendelsohn-type automaton
Dab(q, p, k) is equal to (p− 1)(q − 1) + q − p− k.

Proof. Let w be a reset word for the automaton Dab(q, p, k) having minimal
length. By lemma 5 the word w synchronizes the automaton to the state q−p+1.
Note, that any word of length q−p−k brings the state k+1 to the state q−p+1.
Lemma 1 implies |w| ≥ (p− 1)(q − 1) + q − p− k.

First let us assume that k = q−p. In this case it remains to prove that the word
w1 = (baq−1)p−2baq−p is synchronizing. Let C be the cycle {0, q− p+ 1, q− p+
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2, . . . , q − 1}. Note, that the word baq−1 maps all the states, that do not belong
to C, to the set C.baq−1. Namely, k . baq−1 = (t − 1) . baq−1, where t = k . b;
(k − 1) . baq−1 = (q − 1) . baq−1, (k − 2) . baq−1 = (q − 2) . baq−1, . . . , 1 . baq−1 =
(q − k + 1 = p + 1) . baq−1. Thus it is enough to consider the action of the
word w1 on the cycle C. By lemma 2 we have C .(baq−1)p−2 = {0, q− r}, where
r is the remainder of the division of q by p. But then it is easy to see, that
0 . baq−p = (q − r) . baq−p = q − p+ 1.

Now assume that k < q − p. Let us show that the word

w2 = baq−p−k−1(baq−1)p−2baq−p

is synchronizing. All the states in the range from k to q− p are mapped into the
cycle C under the action of the prefix baq−p−k−1. This prefix maps the remaining
states lying outside the cycle C, i.e. 1, 2, . . . , k − 1, to the states ranging from
q−p−k+1 to q−p−1. Namely, (k− i) . baq−p−k−1 = q−p− i for 1 ≤ i ≤ k−1.
The action of the word baq−1 on the states in {q − p − k + 1, . . . , q − p − 1}
coincides with the action of this word on some states in the cycle C. More
precisely, we have (q − p− i) . baq−1 = (q − i) . baq−1 for 1 ≤ i ≤ k − 1, provided
that for no such i we have q − p − i = k. If q − p − i = k for some i, then
we have k . baq−1 = (t − 1) . baq−1, where t = k . b. In both cases the condition
k < p implies that all the resulting states t − 1, q − 1, . . . , q − k + 1 lie on the
cycle C. Hence the word w2 brings the automaton Dab(q, p, k) into the subset
of C .(baq−1)p−2baq−p. As we have already seen, the latter set is the singleton
q − p+ 1.

Theorem 5. The reset threshold of the Dulmage-Mendelsohn-type automaton
Daa(q, p, k) equals (p−1)(q−1)+q−p−k if k < q−p, and (p−1)(q−1)+2(q−p)
if k = q − p.

Proof. First let us assume that k < q−p. Let w be reset word for the automaton
Daa(q, p, k) having minimal possible length. Lemma 5 implies that the word w
brings the automaton to the state q − p + 1. Note, that any word of length
q− p− k brings the state k+1 to the state q− p+1. Thus by lemma 1 we have
|w| ≥ (p− 1)(q − 1) + q − p− k.

Let us prove that the word w1 = aq−p−k(bak−1baq−k−1)p−2bak−1baq−p−k is
synchronizing. Consider the cycle C = {0, q − p+ 1, q − p+ 2, . . . , q − 1}. Note,
that the prefix aq−p−k maps the states, ranging from k+1 to q−p, to the states
in C. Consider now the action of the prefix aq−p−k on the states from 1 to k.
If q − p − k + 1 > k, then all these states are mapped to some states in C. If
q − p− k + 1 ≤ k, then these states are mapped into C ∪ {q − p− k + 1, . . . , k}.
Next, for each state t from q − p− k + 1 to k we present a state t′ from C such
that t . bak−1 = t′ . bak−1. If t �= k, then it is easy to check that t′ = q − p + t.
Since q − p − k + 1 > 1, we have t′ > q − p + 1. Hence the state t′ ∈ C.
If t = k, then t′ = k + p (recall, that k + p < q). The state k + p belongs
to C. Indeed, from q − p − k + 1 ≤ k and k < p we obtain k + p > 2k ≥
q − p+ 1. Hence the word w1 brings the automaton Daa(q, p, k) into the subset
of C .(bak−1baq−k−1)p−2bak−1baq−p−k. Thus it remains to show, that the latter
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set is a singleton. The argument is similar to the proof of lemma 2. Instead of
the word baq−1 we use the word v = bak−1baq−k−1. First we note, that the word
v fixes the state 0. The word v moves all the other states in C except q−k along
the cycle in the same way as the word baq−1 does in lemma 2. The state q − k
leaves the cycle after applying the prefix bak−1b, but it can be easily seen that
(q−k) . bak−1baq−k−1 = (q−k) . bak−1aaq−k−1. Thus we may treat the state q−k
as if it never left the cycle C. Following the argument in lemma 2, we conclude,
that C . vp−2 = {0, q − r}, where r is the remainder of the division of q by p.
Finally, we observe that 0 . bak−1baq−p−k = (q − r) . bak−1baq−p−k = q − p+ 1.

Consider now the case k = q − p. Let w be a synchronizing word for the
automatonDaa(q, p, k) having minimal possible length. Since the incoming edges
to the state q − p + 1 have different labels, the word w necessarily resets the
automaton to the state q − p + 1 + k. For convenience, let t denote the state
q − p + 1 + k. Every word of length k brings the state q − p + 1 to the state
t. Therefore, by lemma 1 we have |w| ≥ (p − 1)(q − 1) + k. Suppose |w| =
(p − 1)(q − 1) + k + i for some 0 ≤ i ≤ k − 1. Consider the states q − i (the
state 0, if i = 0) and q− p− i. The prefix of w of length k+1+ i will bring one
of these states to the state t depending on the (i + 1)st letter. The remaining
(p − 1)(q − 1) − 1 letters of w will move the state t to itself. But this path is
a combination of cycles of lengths p and q, which is impossible by theorem 1.
Consequently, |w| ≥ (p− 1)(q − 1) + 2k = (p− 1)(q − 1) + 2(q − p).

Let us prove that the word w2 = aq−p(bak−1baq−k−1)p−2bak−1baq−p is syn-
chronizing. The prefix aq−p brings all the states lying outside the cycle C =
{0, q−p+1, q−p+2, . . . , q−1} into C. Arguing as in the previous case we conclude,
that C .(bak−1baq−k−1)p−2 = {0, q − r}. It easy to see, that 0 . bak−1baq−p =
(q − r) . bak−1baq−p = t.

We can partially generalize this result as we did in theorem 3 for the case
of more than q states. We consider a primitive digraph Dλ(q, p, k) presented on
Fig. 5, where 1 ≤ λ < p. For convenience, we set D0(q, p, k) = D(q, p, k). Its
colorings are denoted by Daa

λ (q, p, k) and Dab
λ (q, p, k).

Lemma 6. If 1 ≤ λ < p and z ∈ {a, b}, then Daz
λ (q, p, k)/σ is equal to Daz

λ−1

(q, p, k), and
rt(Daz

λ (q, p, k)) = rt(Daz
λ−1(q, p, k)) + 1.

Proof. Let w be a word synchronizing the automaton Daz
λ (q, p, k) having mini-

mal length. Then w resets the automaton either to the state s, or to the state
t. Let x be the last letter of w, so that w = w′x. The word w′ brings the au-
tomaton Daz

λ (q, p, k) either to the set {q + λ − 1, s− 1}, or {q + 2λ− 1, t− 1}.
These two pairs of states form the two non-trivial σ-classes. Hence the factor
automaton Daz

λ (q, p, k)/σ is equal to Daz
λ−1(q, p, k), and it is synchronized by w′.

Thus rt(Daz
λ (q, p, k)/σ) ≤ rt(Daz

λ (q, p, k))−1. On the other hand, by lemma 3 we
have rt(Daz

λ (q, p, k)/σ) ≥ rt(Daz
λ (q, p, k))− 1, and we get the required equality.

Theorem 6. If 1 ≤ λ < p, then
(i) rt(Dab

λ (q, p, k)) = (p− 1)(q − 1) + q − p− k + λ;
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Fig. 5. The digraph Dλ(q, p, k)

(ii) rt(Daa
λ (q, p, k)) = (p− 1)(q − 1) + q − p− k + λ, if k < q − p;

(iii) rt(Daa
λ (q, p, k)) = (p− 1)(q − 1) + 2(q − p) + λ, if k = q − p.

Proof. Since there are λ states both on the path from the state 0 to s, and from k
to t, and k ≤ k−p, lemma 6 can be applied λ times. Each time lemma 6 is applied,
the reset threshold is decreased strictly by one. In the end, from the automaton
Dab

λ (q, p, k) we obtain the automatonDaa
0 (q, p, k), whose reset threshold is known

by theorem 4. Therefore, we have rt(Dab
λ (q, p, k)) = (p−1)(q−1)+ q−p−k+λ.

In an analogous way from the automaton Daa
λ (q, p, k) we obtain the automaton

Daa
0 (q, p, k). Applying theorem 5, we obtain rt(Daa

λ (q, p, k)) = (p − 1)(q − 1) +
q−p−k+λ in case k < q−p, and rt(Daa

λ (q, p, k)) = (p−1)(q−1)+2(q−p)+λ
if k = q − p.

The case of non-equal number of states on the paths from 0 to s and from
k to t can be treated in a similar way. Suppose there are λ states on one of
these paths, and λ+ μ < p states on the other. We can apply lemma 6 λ times.
Each time the reset threshold decreases strictly by one. In the end we obtain
an automaton in which either the path from 0 to s is an edge, and there are
μ states on the path from k to t, or, vice versa, the path from k to t is an
edge, and there are μ states on the path from 0 to s. We can continue taking
quotients of this automaton by σ, and on each step analyse, whether the reset
threshold strictly decreases by one or remains unchanged. In the end we obtain a
Dulmage-Mendelsohn-type automaton, whose reset threshold is known. But this
analysis is quite technical with many cases to consider. Thus, we don’t present
here explicit proofs and formulas.
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Abstract. Weprove new decidability and undecidability results concern-
ing the finite-ambiguity problem in acceptors, and the finite-valuedness
and lossiness problems in transducers. The acceptors and transducers we
study have infinite memory.

Keywords: acceptors, transducers, ambiguous, finite-valued, lossy.

1 Introduction

It is well-known that it is undecidable, given an NPDAwhose stackmakes only one
reversal (or, equivalently, a linearCFG),whether it is unambiguous. It is also known
that its unbounded ambiguity problem is undecidable [17]. Here, we show that it
is undecidable, given a nondeterministic counter automaton (NCA), whether it is
unambiguous (resp., has unbounded ambiguity). We also show that in the special
case when the counter of the NCAmakes at most r-reversals (i.e., alternations be-
tween increasing and decreasing modes) for a given r ≥ 1, determining whether it
is unambiguous (resp., k-ambiguous for a given k) is decidable. However, deciding
if an r-reversal NCA has unbounded ambiguity is open.

We then turn our attention to transducers. We study the questions of “finite-
valuedness” and “finite-lossiness” of a transducer and their connections to the
ambiguity of the underlying acceptor (i.e., the acceptor obtained by deleting the
outputs).

A transducer T of a given type is k-valued (k ≥ 1) if every accepted input u
is mapped into at most k distinct outputs. T is finite-valued if it is k-valued for
some k. Similarly, a transducer is k-lossy (k ≥ 1) if for every output v, there are
at most k distinct accepted inputs that are mapped into v. T is finitely-lossy if
it is k-lossy for some k.

We prove decidable and undecidable results concerning the finite-valuedness
and finite-lossiness problems for transducers with infinite memory. Similar prob-
lems have been investigated before, e.g., for nondeterministic finite transducers
(NFTs) [1,14,16]) and visibly pushdown transducers [4]. In [16], e.g., it was
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shown that finite-valuedness of NFTs is decidable. In [4], it was shown that
it is decidable if a visibly pushdown transducer is k-valued for a given k. We
show a similar result for 1-ambiguous pushdown transducers. (We note that as
language acceptors, 1-ambiguous pushdown automata are more powerful than
visibly pushdown automata.) The question of whether a transducer with infinite
memory is finite-valued (i.e., k-valued for some k) has not been addressed before,
as far we know. Here, we exhibit such a class with decidable finite-valuedness
problem. The result concerns linear context-free grammars (LCFGs) with out-
puts, where we show that the finite-valuedness problem for LCFGs with outputs
(thus, a finite set of output strings is associated with the application of each rule)
is decidable if the LCFG is finitely-ambiguous. If the LCFG is ambiguous, the
problem becomes undecidable. The decidability of finite-valuedness generalizes
to finitely-ambiguous nonterminal-bounded CFGs with outputs.

Finally, we give a strong undecidability result concerning the equivalence prob-
lem for nondeterministic 2-tape finite automata. Note that a binary relation is ac-
cepted by a 2-tape finite automaton if and only if the relation is defined by anNFT.

We will use the following notation throughout the paper: NPDA for nondeter-
ministic pushdown automaton; DPDA for deterministic pushdown automaton;
NCA for an NPDA that uses only one stack symbol in addition to the bot-
tom of the stack, which is never altered (thus, the stack is a counter); DCA for
deterministic NCA; NFA for nondeterministic finite automaton; DFA for deter-
ministic finite automaton; 2NFA for two-way NFA (with end markers). Formal
definitions can be found in the book [9].

A counter is an integer variable that can be incremented by 1, decremented by
1, left unchanged, and tested for zero. It starts at zero and cannot store negative
values. Thus, a counter is a pushdown stack on unary alphabet, in addition to
the bottom of the stack symbol which is never altered.

An automaton (NFA, NPDA, NCA, etc.) can be augmented with multiple
counters, where the “move” of the machine also now depends on the status (zero
or non-zero) of the counters, and the move can update the counters. See [10] for
formal definitions. It is well known that a DFA augmented with two counters is
equivalent to a Turing machine (TM) [13].

In this paper, we will restrict the augmented counter(s) to only “reverse” once,
i.e., once it decrements, it can no longer increment. Thus, e.g., each counter in
an NPDA with 1-reversal counters makes only one reversal. Note that a counter
that makes r reversals can be simulated by * r+1

2 + 1-reversal counters.

2 Ambiguity in Acceptors

An acceptorM of any type (e.g., NFA, NPDA, etc.) is k-ambiguous (k ≥ 1) if ev-
ery accepted string can be accepted in at most k distinct accepting computations.
Note that 1-ambiguous is the same as unambiguous. M is finitely-ambiguous if
it is k-ambiguous for some k; otherwise, it has unbounded ambiguity.

In this section, we look at the unambiguity and unbounded ambiguity prob-
lems concerning 1-reversal NPDAs (i.e., once the stack pops, it can no longer
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push) and NCAs. It is known and easy to prove (using the undecidability of the
Post Correspondence Problem) that it is undecidable, given a 1-reversal NPDA
M , whether M is k-ambiguous for any k. In [17] it was shown that unbounded
ambiguity for linear context-free grammars (which are equivalent to 1-reversal
NPDAs) is undecidable. Thus:

Theorem 1. It is undecidable, given a 1-reversal NPDA M and an integer k ≥
1, whether M is k-ambiguous (resp., has unbounded ambiguity).

Here, we show that k-ambiguity and unbounded ambiguity for NCAs are also
undecidable.

Theorem 2. It is undecidable, given an NCA M and an integer k ≥ 1, whether
M is k-ambiguous.

Proof. We first consider the case k = 1. The proof uses the undecidability of
the halting problem for 2-counter machines. A close look at the proof in [13] of
the undecidability of the halting problem for 2-counter machines, where initially
one counter has value d1 and the other counter is zero, reveals that the counters
behave in a regular pattern. The 2-counter machine operates in phases in the
following way. Let c1 and c2 be its counters. The machine’s operation can be
divided into phases, where each phase starts with one of the counters equal to
some positive integer di and the other counter equal to 0. During the phase, the
positive counter decreases, while the other counter increases. The phase ends
with the first counter having value 0 and the other counter having value di+1.
Then in the next phase the modes of the counters are interchanged. Thus, a
sequence of configurations corresponding to the phases will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 the initial state, and d1, d2, d3, . . . are positive
integers. Note that the second component of the configuration refers to the value
of c1, while the third component refers to the value of c2. We assume, w.l.o.g.,
that d1 = 1.

Let Z be a 2-counter machine. We assume that if Z halts, it does so in a
unique state qh. Let Z’s state set be Q, and 1 be a new symbol.

In what follows, α is any sequence of the form I1I2 · · · I2m (thus we assume
that the length is even), where Ii = 1kq for some k ≥ 1 and q ∈ Q, represents a
possible configuration of Z at the beginning of phase i, where q is the state and
k is the value of counter c1 (resp., c2) if i is odd (resp., even).

Define Lodd to be the set of all strings α such that

1. α = I1I2 · · · I2m;
2. m ≥ 1;
3. I1 = 1d1q1, where d1 = 1 and q1 is the initial state;
4. I2m = 1vqh for some positive integer v;
5. for odd j, 1 ≤ j ≤ 2m − 1, Ij ⇒ Ij+1, i.e., if Z begins in configuration Ij ,

then after one phase, Z is in configuration Ij+1;
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Similarly, define Leven analogously except that the condition “Ij ⇒ Ij+1” now
applies to even values of j, 2 ≤ j ≤ 2m− 2.

Now, let L = Lodd ∪ Leven. Let Σ be the alphabet over which L is defined.

We can construct an NCA M accepting L ⊆ Σ∗ as follows. Given input x, M
nondeterministically executes (1) or (2) below:

(1) M checks that x is in Lodd deterministically by simulating the 2-counter
machine Z as follows: M reads x = I1I2 · · · I2m = 1d1q11

d2q2 · · · 1d2mq2m and
verifies that d1 = 1, q1 is the initial state, q2m is the halting state qh, and for
odd j, 1 ≤ j ≤ 2m − 1, Ij ⇒ Ij+1. To check that Ij ⇒ Ij+1, M reads the
segment 1djqj and stores 1dj in its counter (call it c) and remembers the state
qj in its finite control. This represents the configuration of Z when one of its
two counters, say c1, has value dj , the other counter, say c2, has value 0, and
its state is qj . Then, starting in state qj , M simulates the computation of Z
by decrementing c (which is simulating counter c1 of Z) and reading the input
segment 1dj+1 until c becomes zero and at which time, the input head of M
should be on qj+1. Thus, the process has just verified that counter c2 of Z has
value 1dJ+1 , counter c1 has value 0, and the state is qj+1.

(2) M checks that x is in Leven, i.e., for even j, 2 ≤ j ≤ 2m− 2, Ij ⇒ Ij+1. M
operates in a similar way as described in (1).

Clearly, M is 2-ambiguous, and it is 1-ambiguous (i.e., unmbiguous) if and only
if the 2-counter machine Z does not halt, which is undecidable. Note that if Z
halts, there is exactly one string in L(M) that is accepted in two distinct ways.
Now for any k ≥ 1, we can construct an NCA Mk, which on any input x, has
k computation paths: One path simulates M and the other k − 1 paths simply
accept x in k− 1 different accepting states. Then Mk is (k +1)-ambiguous, and
it is k-ambiguous if and only if Z does not halt, which is undecidable. ��
Theorem 3. It is undecidable, given an NCA M , whether it has unbounded
ambiguity.

Proof. Let Σ, L, and M be as in the proof of Theorem 2. Let # be a new symbol
not in Σ, and L′ = {x1# · · ·#xn# | n ≥ 1, x1, . . . , xn in Σ∗, there is a 1 ≤ p ≤ n
such that xp is in L}.

We construct an NCM M ′ which accepts L′ as follows. M ′ on input z checks
that z has the valid format, i.e, z = x1# · · ·#xn# for some n ≥ 1, x1, . . . , xn in
Σ∗, and nondeterministically selects a p and simulates M on xp and when M
accepts xp, M

′ accepts z. Clearly, M ′ is unambiguous if M is unambiguous (i.e.,
the 2-counter machine does not halt). If M is ambiguous, then M ′ will accept
the string (xp#)n for any n in linearly distinct ways. It follows that M ′ has
unbounded ambiguity if and only if M is ambiguous (i.e., not unambiguous),
which is undecidable by Theorem 2. ��

In the above proof, M is either unambiguous or linearly ambiguous, but de-
termining which one is undecidable. A simple modification in the construction
yields:
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Corollary 1. It is undecidable, given an NCA M which can only be either un-
ambiguous or exponentially ambiguous, whether it is the former or the latter.

Proof. In the proof of Theorem 3, define L′ = {x1# · · ·#xn# | n ≥ 1, x1, . . . , xn

in Σ∗, for each 1 ≤ i ≤ n, xi is in L}. ��

One interesting case is when the the counter of the NCA makes only one
reversal. More generally, consider a 2NFA augmented with 1-reversal counters.
Assume that it is finite-crossing in the sense that there is a given integer c
such that the input head crosses the boundary between any two adjacent input
symbols at most c times. Then, we have:

Theorem 4. It is decidable, given a finite-crossing 2NFA M augmented with
1-reversal counters and an integer k ≥ 1, whether it is k-ambiguous.

Proof. We first prove the case when k = 1. Assume M has n 1-reversal counters.
GivenM , we construct a new finite-crossing 2NFAM ′ with two sets of n counters
and one special 1-reversal counter, C. M ′, when given a input x (with left and
right end markers), operates as follows. M ′ simulates M while at the same time
uses counter C to count the number of moves M makes (by incrementing C).
At some point during the simulation, M ′ stops incrementing C, which has now
some value t ≥ 0, and records in its finite control the “rule”, r, M uses in step
t+1. M ′ continues the simulation of M . If M accepts x, M ′ then moves its input
head to the left end marker and carries out a second simulation of M using the
second set of 1-reversal counters while decrementing C to count the number of
steps M makes in this second run. When C becomes zero, M ′ checks that the
rule r′, M uses in the next step is different from r. M ′ continues the simulation
and when M accepts, M ′ accepts. It follows that M is 1-ambiguous if and only
if L(M ′) = ∅, which is decidable, since the emptiness problem for finite-crossing
2NFAs augmented with 1-reversal counters is decidable [6].

The proof above generalizes for k ≥ 1. Now M ′ has to make k + 1 runs
(simulations) and uses k(k + 1) 1-reversal counters to verify that there are at
least k + 1 distinct accepting computations. We omit the details. ��

We do not know if unbounded ambiguity is decidable for finite-crossing 2NFAs
augmented with 1-reversal counters. In fact, even for a special case, the question
is open:

Open: Is it decidable, given an NFA augmented with a single 1-reversal counter,
whether it has unbounded ambiguity?

If we consider the unambiguity and unbounded ambiguity problems of lan-
guages (instead of machines), the following was shown by Alan Finkel [5]:

Let Σ = {a, b, c} and d be a symbol not in Σ. Let LM = L(M) be a language
over Σ∗ which is accepted by an NCA M . Let V = {anbmcp | n,m, p ≥ 1, n = m
or m = p} and WM = LMdΣ∗∪Σ∗dV ′, where V ′ = V +. Using the fact that the
universality problem for languages accepted by NCAs is undecidable [9], WM ,
which is clearly accepted by a an NCA, is either unambiguous or exponentially
ambiguous, but determining which is the case is undecidable.
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Now we can change V ′ above to V ′ = {x1 · · ·xn | n ≥ 1, each xi in a+b+c+,
there is a 1 ≤ p ≤ n such that xp is in V }. Then WM (with this V ′) can be ac-
cepted by a 1-reversal NCA, and the above result still holds with “exponentially-
ambiguous” replaced with “linearly-ambiguous”. This is in contrast to our
Theorem 4 which states that k-ambiguity (for any k) for finite-crossing 2NFAs
augmented with 1-reversal counters is decidable.

3 Finite-Valuedness in Transducers

A transducer T is an acceptor with outputs. So, for example, an NPDT is a
nondeterministic pushdown automaton with outputs. So the transitions are rules
of the form:

(q, a, Z) → (p, x, y)

where q, p are states, a is an input symbol or ε, Z is the top of the stack symbol,
x is ε or a string of stack symbols, and y is an output string (possibly ε). In this
transition, T in state q, reads a, ‘pops’ Z and writes x on the stack (if x �= ε,
the rightmost symbol of x becomes the top of the stack), outputs string y, and
enters state p.

We say that (u, v) is a transduction accepted by T if, when started in the
initial state q0, with input u, and the top of the stack is the initial stack symbol
Z0, T enters an accepting state after reading u and producing v. The set of
transductions accepted by T is denoted by L(T ). An NCT (NFT, etc.) is an
NCA (NFA, etc.) with outputs.

A transducer T is k-valued (k ≥ 1) if for every u, there are at most k distinct
strings v such that (u, v) is in L(T ). T is finite-valued if T is k-valued for some k.

A transducer T is k-ambiguous (k ≥ 1) if T with outputs ignored is a k-
ambiguous acceptor. (Again 1-ambiguous is the same as unambiguous).

Theorem 5. It is decidable, given a 1-ambiguous NPDT T augmented with 1-
reversal counters and an integer k ≥ 1, whether T is k-valued.

Proof. Consider the case k = 1,GivenT , we construct anNPDAMwith 1-reversal
counters, which uses two additional 1-reversal counters C(1, 2)
and C(2, 1). M on input x, simulates T suppressing the outputs and accepts x if
it finds two outputs y1 and y2 such that y1 and y2 disagree in some position p and
x is accepted by T . (Note that if |y1| �= |y2|, they disagree on the last symbol of
the longer string.) In order to do this, during the simulation, M uses C(1, 2) and
C(2, 1) to record the positions i and j (chosen nondeterministically) in y1 and y2,
respectively, and the symbols a and b in these positions, such that i = j and a �= b.
Clearly,a and b canbe remembered in the state. Storing i and j need only increment
C(1, 2) andC(2, 1) during the simulation. To check that i = j, after the simulation,
M decrementsC(1, 2) andC(2, 1) simultaneously and verifies that they reach zero
at the same time. Note that since T is 1-ambiguous,M ’s accepting computation on
x (except for the outputs) is unique and therefore the procedure just described can
be accomplished byM on a single accepting run on the input. Clearly,T is 1-valued
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if and only ifL(M) = ∅, which is decidable, since emptiness of NPDAs augmented
with 1-reversal counters is decidable [10].

The above construction generalizes for any k ≥ 1. Now M on input x, checks
that there are at least k + 1 distinct outputs y1, . . . , yk+1. M uses k(k + 1)
additional 1-reversal counters. In the simulation, for 1 ≤ i ≤ k+1, M nondeter-
ministically selects k positions p(i, 1), . . . , p(i, i− 1), p(i, i+ 1), . . . , p(i, k + 1) in
output yi and records these positions in counters C(i, 1), . . . , C(i, i− 1), C(i, i+
1), . . . , C(i, k + 1) and the symbols at these positions in the state. At the end
of the simulation, M accepts x if for all 1 ≤ i, j ≤ k + 1 such that i �= j, the
symbol in position p(i, j) is different from the symbol in position p(j, i) and the
value of counter C(i, j) is the same as the value of C(j, i). ��

The construction in the proof above does not work when T is k-ambiguous
for any k ≥ 2. This is because the computation of T on an input x may not be
unique, so it is possible, e.g., that one accepting run on x produces output y1 and
a different accepting run on x produces output y2. So to determine if y1 �= y2,
we need to simulate two runs on input x, i.e., M will no longer be one-way. In
fact, we can prove:

Theorem 6. For any k ≥ 1, it is undecidable, given a (k + 1)-ambiguous NCT
(resp., 1-reversal NPDT) T , whether T is k-valued.

Proof. In the last part of the proof of Theorem 2, the NCA Mk constructed is
(k+1)-ambiguous, but it is undecidable whether Mk is k-ambiguous. Construct
from Mk an NCT Tk which, on input u, simulates Mk and also outputs the
sequences of “rules” used during the computation. Then Tk is k-valued if and
only if M is k-ambiguous. The proof for NPDT is similar using Theorem 1. ��

However, Theorem 5 holds for finite-crossing 2NFTs augmented with 1-reversal
counters, even when there is no restriction on ambiguity.

Theorem 7. It is decidable, given a finite-crossing 2NFT T augmented with
1-reversal counters and an integer k ≥ 1, whether T is k-valued.

Proof. Given T , we construct a finite-crossing 2NCM M augmented with 1-
reversal counters. Consider the case k = 1. M will have two new 1-reversal
counters C1 and C2. M simulates two accepting runs of T (suppressing the
outputs) and uses C1 and C2 to check that the runs produce two distinct outputs.
For a general k, M simulates k+1 runs of T and checks using k(k+1) 1-reversal
counters to check that the runs generate at least k + 1 distinct outputs. ��

While it is decidable, given an NFT, whether it is finite-valued [16], we have
the following open problem:

Open: Is finite-valuedness for 1-ambiguous NFT augmented with 1-reversal
counters decidable?
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4 Lossiness in Transducers

A transducer T is k-lossy (for a a given k ≥ 1) if there are at most k distinct
inputs that are mapped into the same output. T is finitely-lossy if there is some
k such that T is k-lossy. A 1-lossy transducer is also called a lossless transducer.

A transducer T and an acceptor M are of the same type if they have the same
infinite memory structure. So, e.g., NPDT and DPDT are of the same type as
NPDA and DPDA, NFT and DFT are of the same type as NFA and DFA, etc.

Lossy transducers were studied in [11] as abstract models of communication
channels in analyzing lossy rates of these channels. The following result was
stated in [11], but because of space limitation, the proof was omitted. We give
the proof here for completeness, as we will need this result.

Theorem 8. The following statements are equivalent, where M and T are one-
way acceptor and transducer of the same type:

1. It is undecidable, given a nondeterministic acceptor M , whether M is k-
ambiguous for a given k (resp., finitely-ambiguous).

2. It is undecidable, given a deterministic transducer T , whether T is k-lossy
for a given k (resp., finitely-lossy).

Proof. First we prove that if (1) is undecidable, then (2) is also undecidable.
Let Γ be the set of rules of M (i.e., each rule is represented by a symbol).
We construct a deterministic transducer of the same type as M whose input
alphabet is Γ . Given a string w in Γ ∗ (thus w = r1 · · · rn, where each ri is
a rule), T deterministically simulates M ’s computation by reading w symbol-
by-symbol and executes rule ri and outputting the input symbol or ε involved
in rule ri and making sure that w is an accepting sequence of computation. It
follows that if M is k-ambiguous for a given k (resp., finitely- ambiguous), then
T is k-lossy (resp., finitely-lossy).

Now we show that if (2) is undecidable, then (1) is also undecidable. Suppose
T is a deterministic transducer with input and output alphabets Σ and Δ,
respectively. We construct a nondeterministic acceptor M with input alphabet
Δ. M on input w in Δ∗, guesses a string x in Σ∗ symbol-by-symbol (without
writing them) and simulates T on x and checks that w is the output of T on input
x. M accepts if T accepts. Clearly, since T is deterministic, M is k-ambiguous
for a given k (resp., finitely- ambiguous) if T is k-lossy (resp., finitely-lossy). ��

An NPDT is 1-reversal if its stack only makes one reversal. From Theorems
1, 2, 3, and 8, we get the following corollary (note that DPDT and DCT are the
deterministic versions of NPDT and NCT):

Corollary 2. It is undecidable, given a 1-reversal DPDT (resp., DCT) T , whether
it is k-lossy for a given k (resp., finitely-lossy).

There is a close connection between finite-valuedness and finite-lossiness in
one-way nondeterministic transducers. Let T be a one-way nondeterministic
transducer of a given type. We can construct another nondeterministic one-way
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transducer T ′ of the same type as T such that L(T ′) = {(w, u) : (u,w) ∈ L(T )}.
Clearly, T is k-lossy for a given k (resp., finitely-lossy) if and only if T ′ is k-valued
(resp., finite-valued). The converse is also true.

The above relationship does not hold when the transducers are two-way: The-
orem 7 shows that it decidable, given a finite-crossing 2NFT T augmented with
1-reversal counters and an integer k ≥ 1, whether T is k-valued. However, it is
undecidable, given a 2DFT which makes only 1-turn on the input tape (left-to-
right then right-to-left), whether it is k-lossy for any k [11]. But, since Theorem
7 obviously holds when the input is one-way we have:

Corollary 3. It is decidable, given an NFT T augmented with 1-reversal coun-
ters and an integer k ≥ 1, whether T is k-lossy.

The relationship between valuedness and lossiness does not preserve the de-
gree of ambiguity: We have seen in Theorem 5 that it is decidable, given a 1-
ambiguous NPDT T augmented with 1-reversal counters and an integer k ≥ 1,
whether T is k-valued. However, from Corollary 2, it is undecidable, given a
1-reversal DPDT (i.e., the stack makes only one reversal), whether it is k-lossy
for any k (resp., finitely-lossy).

Finally, we note that it is decidable to determine, given an NFT T , whether
it is finite-valued [16]. Hence, we have:

Corollary 4. It is decidable to determine, given an NFT T , whether T is finitely-
lossy.

5 Finite-Valuedness in Context-Free Transducers

The notions of ambiguous, finite-valuedness, and lossiness can also be defined
for context-free grammars (CFGs) with outputs.

A context-free transducer (CFT) T is a CFG with outputs, i.e., the rules are
of the form A → (α, y), where α is a string of terminals and nonterminals, and
y is an output string (possibly ε). We assume that the underlying CFG G of T ,
i.e., the grammar obtained by deleting the outputs, has no ε-rules (i.e.,no rules
of the form A → ε ) and unit-rules (i.e., no rules of the form A → B), where
A,B are nonterminals). Moreover, we assume that all nonterminals are useful
(i.e., reachable from the start nonterminal S and can reach a terminal string).

Throughout the paper, we will only consider leftmost derivations in T , i.e., at
each step, the leftmost nonterminal is expanded). Thus T generates transduc-
tions (u, v) (where u is a terminal string and v is an output string) derived in a
sequence of rule applications in a leftmost derivation: (S, ε) ⇒+ (u, v)

A nonterminal A in the underlying CFG of a CFT is self-embedding if there
is some leftmost derivation A ⇒+ αAβ where α, β are strings of terminals and
nonterminals. (Note that |αβ| > 0, since there are no ε-rules and unit-rules.)



220 O.H. Ibarra

A CFT T is k-ambiguous for a given k (resp., finitely-ambiguous) if its un-
derlying CFG is k-ambiguous (resp., finitely-ambiguous).

Lemma 1. Let T be a finitely-ambiguous CFT with terminal and nonterminal
alphabets Σ and N , respectively. Let G be its underlying finitely-ambiguous CFG.
Let A be a nonterminal such that A ⇒+ αAβ, where α, β ∈ (Σ ∪N)∗. Then this
derivation (of αAβ) is unique.

Proof. Suppose two distinct derivations A ⇒+ αAβ exist. Then, since A is a
useful nonterminal, there are an exponential (in k) distinct leftmost derivations:
S ⇒∗ xAy ⇒+ xαkAβky ⇒+ xukzvky for some x, u, z, v, y in Σ∗, for any k ≥ 1.
This contradicts the assumption that the CFG G is finitely-ambiguous. ��

Lemma 2. It is decidable, given a finitely-ambiguous CFT T , whether there
exist a nonterminal A and a leftmost derivation A ⇒+ αAβ for some α, β ∈
(Σ ∪ N)∗ (note that αβ| > 0), such that there are at least two distinct outputs
generated in the derivation.

Proof. Let A be a nonterminal and L = {w | w = αAβ, for some α, β ∈ (Σ∪N)∗

such that |αβ| > 0, and A ⇒+ αAβ produces at least two distinct outputs}.
(Thus L ⊆ (Σ ∪N)∗.)

We construct an NPDA M with 1-reversal counters to accept L. M , when
given input w, tries to simulates a leftmost derivation A ⇒+ αAβ (which, if it
exists, is unique, by Lemma 1) and checks that there are at least two distinct
outputs generated in the derivation. Initially, A is the only symbol on the stack.
Each derivation step is of the form B → xϕ, where x is in Σ∗ and ϕ is in
N(Σ∪N)∗∪{ε}. If B is the symbol on the top of the stack, then M simulates this
step by checking that the remaining input segment to be read has prefix x (if x �=
ε) and replacing B by ϕ on the pushdown stack. It uses two 1-reversal counters
C1 and C2 to check that there is a discrepancy in the outputs corresponding to
the derivation A ⇒+ αAβ. Since the derivation A ⇒+ αAβ is unique, this can
be done in the same manner as described in the proof of Theorem 5.

At some point in the derivation, M guesses that the stack contains a string of
the form z = γ1Aγ2, where γ1, γ2 ∈ (Σ∪N)∗. M then pops the stack and checks
that the remaining input yet to be read is γ1Aγ2 and accepts if there were two
distinct outputs generated in the derivation.

It is easily verified that L(M) = L. The result follows since the emptiness
problem for NPDAs with 1- reversal counters is decidable [10]. ��

Lemma 3. Let T be a finitely-ambiguous CFT and G be its underlying CFG.
Suppose for some nonterminal A, there is a leftmost derivation A ⇒+ αAβ for
some α, β ∈ (Σ ∪ N)∗, with |αβ| > 0 such that there are at least two distinct
outputs generated in the derivation. Then T is not finite-valued.

Proof. Suppose there is a self-embedding nonterminal A and a derivation A ⇒+

αAβ, where |αβ| > 0 and there are at least two distinct strings y1 and y2 that
are outputted in the derivation. Since all nonterminals are useful, we have in G,
S ⇒∗ wAx ⇒+ wαAβx ⇒∗ wαkAβkx ⇒+ wukzvkx for some terminal strings
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w, u, z, v, x, for all k ≥ 1. Let y0, y3, y4, y5 be the outputs in the derivations
S ⇒∗ wAx, α ⇒∗ u, A ⇒+ z, and β ⇒∗ v, respectively. We have two cases:

Case 1. |y1| = |y2| but y1 �= y2. Then corresponding to the string wukzvkx
generated by G, there will be an unbounded number of distinct outputs:
y0y

k
1y3y4y5, y0y2y

k−1
1 y3y4y5, y0y2y2y

k−2
1 y3y4y5, ... It follows that CFT T is not

finite-valued.

Case 2. |y1| �= |y2|. Assume, e.g., that |y1| − |y2| = p. Then, again, there will be
an unbounded number of distinct outputs: y0y

k
2y3y4y5 (of length |y0| + k|y2| +

|y3|+ |y4|+ |y5|), y0y1yk−1
2 y3y4y5 (of length |y0|+ k|y2|+ p+ |y3|+ |y4|+ |y5|),

y0y1y1y
k−2
2 y3y4y5 (of length |y0|+ k|y2|+2p+ |y3|+ |y4|+ |y5|), ... So again, the

CFT T is not finite-valued. ��

We now prove the converse of Lemma 3 for linear context-free transducers
(LCFTs). A LCFT is a CFT whose underlying grammar is a linear CFG (LCFG).
Thus, the rules are of the form A → (uBv, y) or A → (u, y), where A,B are
nonterminals, u, v are terminal strings with |uv| > 0, and y is an output string.

Lemma 4. Let T be a finitely-ambiguous LCFT and G be its underlying LCFG.
Suppose there is no nonterminal A for which there is a leftmost derivation A ⇒+

uAv for some u, v ∈ Σ∗, with |uv| > 0 such that there are at least two distinct
outputs generated in the derivation. Then T is finite-valued.

Proof. Let T be m-ambiguous for some m ≥ 1. We will show that for any
string w ∈ L(G), there are at most mdn distinct outputs where n = number of
nonterminals and d is a constant (to be defined later).

Let G ibe the underelying LCFG of T (which is m-ambiguous) Then there are
at most m distinct derivations of any string w in L(G). Let F be one derivation
tree of w. By assumption, every loop in the derivation produces only one output.

Now in F , identify the first (from the root) nonterminal A such that A ⇒+

uAv for some terminal strings u, v and this is the “longest” derivation that A
“reaches” A, i.e., after uAv, A cannot “reach” A any more and can only reach
a nonterminal different from A. By assumption there is one output generated in
this derivation. We consider two cases:

Case 1. Suppose A can reach a self-embedding nonterminal B (which must be
different from A). Then we proceed as above, i.e., identify the first nonterminal
B such that B ⇒+ u′Bv′ for some terminal strings u′, v′. Again there is only
one output generated in this derivation.

By iterating the process described above, we will eventually end up with the
following:
Case 2. A ⇒+ x, where x is a terminal string and, in this derivation, no self-
embedding nonterminal is encountered.

The maximum number of iterations is the number of self -embedding nonter-
minals in the derivation tree F , which is at most n. Now the loops involving
the self-embedding nonterminals do not increase the number of distinct output



222 O.H. Ibarra

values. Let d be the maximum number of distinct outputs that can be gener-
ated in any derivation of the form A ⇒+ xBy or of the form A ⇒+ x, and
no self-embedding nonterminal is encountered in these derivations. Note that d
can effectively be computed. Then the upper bound on the number of distinct
outputs that can be generated in derivation F is dn, independent of the length
of the derivation F . Since there at most m distinct derivations, the number of
distinct outputs that T can produce is at most mdn, independent of the length
of the derivation. It follows that T is finite-valued. ��

Theorem 9. It is decidable, given a finitely-ambiguous LCFT T , whether it is
finite-valued.

Proof. Let G be the underlying LCFG of T . We determine if there is a self-
embedding nonterminal A in G for which there is a derivation A ⇒+ uAv (note
that |uv| > 0), and in this derivation T outputs at least two distinct strings y1
and y2. By Lemma 2, there is an algorithm for this. The result then follows from
Lemmas 3 and 4, ��

When the LCFT is not finitely-ambiguous, Theorem 9 does not hold:

Theorem 10. It is undecidable, given a LCFT T , whether it is finite-valued.

Proof. In [17], it was shown that there is a class of LCFGs for which every
grammar in the class is either unambiguous or unboundedly ambiguous, but
determining which is the case is undecidable. Let G be a LCFG in this class.
Number the rules in G and construct a LCFT T which outputs the rule number
corresponding to each rule. The result then follows. ��

Lemma 4 does not hold for finitely-ambiguous CFTs. For consider the 1-
ambiguous CFT: S → (SA, 0) | (a, 0), A → (a, {0, 1}), where S,A are nonter-
minals, a is a terminal symbol, and 0, 1 are output symbols. This CFT satisfies
the hypothesis of Lemma 4, but it is not finite-valued.

But for the case of nonterminal-bounded context-free transducers (NTBCFTs)
(i.e., there is an s ≥ 1 such that every sentential form derivable in the underlying
grammar has at most s nonterminals), we can show that Lemma 4 holds. Hence:

Theorem 11. It is decidable, given a finitely-ambiguous NTBCFT T , whether
it is finite-valued.

In the journal version of this paper, we will show that finite-valuedness for
1-ambiguous CFTs is decidable.

6 Undecidable Problems Concerning 2-Tape NFAs

A n-tape NFA is an NFA with n (one-way) heads operating independently on n
input tapes. We assume that n-tape NFAs and n- DFAs have right end markers
on the tapes, and acceptance is when all heads eventually reach $ on their tapes
and the machine enters an accepting state. When a head reaches $, it remains
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on $. The set of tuples accepted by a multitape NFA (DFA) M is denoted
by L(M). Note that the set of tuples (language) accepted by 2-tape NFAs are
exactly the set of transductions accepted by NFTs. Multitape finite automata
were introduced in the 1960’s in the papers [3] and [15], and the relations they
define (i.e., accept) are commonly referred to as rational relations. An n-tape
NFA is k-ambiguous if every accepted n-tuple is accepted in at most k distinct
accepting computations.

It is a known result that equivalence of multitape DFAs is decidable [8] (see
also [18] for the complexity of this problem). In fact, this decidability generalizes
to 1-ambiguous multitape NFAs [8]. We will prove a contrasting result below.

A multitape DFA is synchronized [2] if at each step during any accepting
computation, all heads that have not yet reached $ move synchronously one
position to the right. Thus the heads that have not yet reached $ are always
aligned.

The proof of the next result uses ideas in [2,12].

Theorem 12. It is undecidable to determine, given a 2-ambiguous 2-tape NFA
M and a synchronized 2-tape DFA M ′, whether L(M) = L(M ′) (resp., L(M) ⊆
L(M ′)).

Proof. We use the undecidability of the halting problem for deterministic TMs on
blank tape. Let Γ be the alphabet used to encode the sequence w of instantaneous
descriptions (IDs), separated by the separators #’s, that describes the halting
computation of the TM on blank tape, if it exists. Let L = L1 ∪ L2, where
L1 = {(x, y) | x, y ∈ Γ ∗, x �= y} and L2 = {(x, x) | x is the halting sequence of
IDs of the TM on blank tape }. Note that L2 �= ∅ if and only if the TM halts
on blank tape.

We construct a 2-ambiguous 2-tape NFA M that accepts L. Given an input
(x, y), M nondeterministically guesses whether it is in L1 or L2 as follows:

1. If M guesses that (x, y) is in L1, then M moves both heads to the right
simultaneously and accepts if x �= y. Clearly, for this computation, M is
deterministic and synchronized.

2. If M guesses that (x, y) is in L2, then M assumes that the first tape and
second tape are identical. (During the computation, if the tapes are different,
then it does not matter what M does, since the input would already be
accepted when M guesses that the input is in L1.) M initially moves its
second head until it reads the first ID q0# without moving the first head. M
then checks that the (identical tapes) correspond to the computation of the
TM. The first head of M would lag by one ID until the very end stage when
the second head reaches an accepting state, after which the first head moves
to the right end marker, and M accepts. Again the process is deterministic.
The initialization guarantees that the lag is bigger than 0, but upperbounded
by some constant.

Clearly, M is 2-ambiguous. Moreover, it is synchronized and accepts only strings
in L1 if and only if the TM does not halt on blank tape.
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Now construct a synchronized 2-tape DFA M ′ to accept L1. Clearly, L(M
′) ⊆

L(M). It follows that L(M) = L(M ′) if and only L(M) ⊆ L(M ′), and if and
only if the TM does not halt on blank tape, which is undecidable. ��

7 Conclusion

The emptiness problem for NPDAs with reversal-bounded counters has recently
been shown to be NP-complete [7]. Using this result, we can derive lower and
upper bounds for many decidable problems discussed in the paper. We intend
to do this in the journal version of the paper.
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Abstract. We study the Kleene closure operation on regular and prefix-
free languages. Using an alphabet of size 2n, we get the contiguous range
from 1 to 3/4·2n of complexities of the Kleene closure of regular languages
accepted by minimal n-state deterministic finite automata. In the case of
prefix-free languages, the Kleene closure may attain just three possible
complexities n− 2, n− 1, and n.

1 Introduction

Kleene closure is a basic operation on formal languages which is defined as
L∗ = {w | w = v1v2 · · · vk, k ≥ 0, vi ∈ L for all i}. It is known that if a language
L is recognized by an n-state deterministic finite automaton (DFA), then the
language L∗ is recognized by a DFA of at most 3/4 · 2n states [11,14]. The first
worst-case example meeting this upper bound was presented already by Maslov
in 1970 [11], although he claimed upper bound 3/4·2n−1 in his paper. The proof
of the fact that his witness meets the bound 3/4 · 2n can be found in [10].

Yu, Zhuang, and Salomaa [14] proved that the size of the minimal DFA for
Kleene closure depends on the number of final states of a given DFA, and that
the upper bound is 2n−1+2n−1−k, where k is the number of final and non-initial
states. These upper bounds have been shown to be tight in the binary case for
all k with 1 ≤ k ≤ n − 1 in [10]. If a regular language L is accepted by a DFA,
in which the initial state is the unique final state, then L∗ = L. Thus the state
complexities of a language and of its Kleene closure may be the same; here the
state complexity of a regular language L, sc(L), is the smallest number of states
in any DFA recognizing the language L. If a language L over an alphabet Σ
contains all the one-symbol strings a with a ∈ Σ, then L∗ = Σ∗, so sc(L∗) = 1.

Hence we get the range from 1 to 3/4 · 2n of possible values of the state
complexity of the Kleene closure of a regular language with state complexity n,
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in which the values 1, n, 3/4 · 2n, and 2n−1 + 2n−1−k with 2 ≤ k ≤ n − 1 are
attainable by the state complexity of the Kleene closure of binary languages.

In this paper, we consider the question whether or not the remaining values
in this range are attainable. Our motivation comes from the paper by Iwama
et al. [5], in which the authors stated the problem of whether there always
exists a regular language represented by a minimal n-state nondeterministic
finite automaton (NFA) such that the minimal deterministic automaton for the
language has α states for all integers n and α with n ≤ α ≤ 2n. The problem was
solved positively in [9] by using a ternary alphabet. On the other hand, as shown
by Geffert in [3], in the unary case, there are a lot of holes in the range from

n to 2Θ(
√
n logn) that cannot be attained by the state complexity of any unary

language represented by a minimal n-state NFA. However, no specific holes are
known for NFA-to-DFA conversion.

In the case of Kleene closure on unary languages, the holes in the range from
1 to (n− 1)2 + 1 also exists [2]. Moreover, Čevorová in [2] described for every n
two specific holes of length n close to the upper bound (n−1)2+1. On the other
hand, the contiguous range of complexities of Kleene closure from 1 to 3/4 · 2n
have been obtained in [8] using an alphabet that grows exponentially with n.

In the first part of our paper, we improve the result from [8] by decreasing the
size of the alphabet to 2n. We show that for all n and α with 1 ≤ α ≤ 3/4 · 2n,
there exists a language L over an alphabet of size 2n accepted by a minimal
DFA of n states and such that the minimal DFA for L∗ has α states.

In the second part of the paper, we study the Kleene closure operation on
prefix-free languages. Here the known upper bound is n [4], and we prove that
the state complexity of Kleene closure may attain only three values n−2, n−1, n.

First, let us recall some basic definitions. For further details and all unex-
plained notions, the reader may refer to [12,13]. A nondeterministic finite au-
tomaton (NFA) is a quintuple A = (Q,Σ, δ, I, F ), where Q is a finite set of
states, Σ is a finite alphabet, δ : Q×Σ → 2Q is the transition function which is
extended to the domain 2Q × Σ∗ in the natural way, I ⊆ Q is the set of initial
states, and F ⊆ Q is the set of final states. The language accepted by A is the set
L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}. An NFA A is deterministic (and complete)
if |I| = 1 and |δ(q, a)| = 1 for each q in Q and each a in Σ. In such a case, we
write δ(q, a) = q′ or simply q · a = q′ instead of δ(q, a) = {q′}.

The state complexity of a regular language L, sc(L), is the number of states
in the minimal DFA for L. It is well known that a DFA is minimal if all its states
are reachable from its initial state, and no two of its states are equivalent.

Every NFA A = (Q,Σ, δ, I, F ) can be converted to an equivalent DFA A′ =
(2Q, Σ, ·, I, F ′), where R ·a = δ(R, a) and F ′ = {R ∈ 2Q | R∩F �= ∅}. The DFA
A′ is called the subset automaton of the NFA A. The subset automaton need not
be minimal since some of its states may be unreachable or equivalent. However,
if for each state q of the NFA A, there exists a string wq that is accepted by A
only from the state q, then the subset automaton of the NFA A does not have
equivalent states since if two subsets of the subset automaton differ in a state q,
then they are distinguishable by wq.
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The concatenation of two languages K and L is the language K · L = {uv |
u ∈ K and v ∈ L}. The Kleene closure or star a language L is the language
L∗ =

⋃
i≥0 L

i, where L0 = {ε}.

2 Kleene Closure on Regular Languages:
Contiguous Range of Complexities for Linear Alphabet

If a language L is accepted by an n-state DFA, then the language L∗ is accepted
by a DFA of at most 3/4 · 2n states, and this bound is known to be tight in
the binary case [10,11,14]. On the other hand, if a language L contains all one-
symbol strings, then L∗ = Σ∗. Hence all the possible complexities of the star of
a language with state complexity n are in the range from 1 to 3/4 · 2n .

It has been shown in [8] that for all n and α with 1 ≤ α ≤ 3/4 · 2n, there
exists a regular language L over an alphabet of size 2n such that sc(L) = n and
sc(L∗) = α. Thus the range of possible complexities for star is contiguous without
any holes in it providing that the alphabet contains an exponential number of
symbols. The huge alphabet allows us to reach an exponential number of subsets
in a subset automaton for star using a new symbol for each subset. The aim of
this section is to prove a similar result using an alphabet of size at most 2n.

To do this, we will describe three constructions. In each of them, we will add
a new state and transitions on two new symbols to a given n-state DFA A with
sc(L(A)∗) = α. The first construction will produce an (n + 1)-state DFA B
with sc(L(B)∗) = α + 1. The second and the third construction, will result in
(n + 1)-state DFAs C and D with sc(L(C)∗) = 2α and sc(L(D)∗) = 2α + 1,
respectively.

Using the induction hypothesis that all the values from n to 3/4 · 2n − 1
are attainable as the complexities of the star of minimal n-state DFAs over an
alphabet of size 2n, we will be able to show that all the complexities from n+1
to 3/4 · 2n+1− 1 are attainable for minimal (n+1)-state DFAs over an alphabet
of size 2(n+1). The remaining values in the range from 1 to 3/4 ·2n are known to
be attained by the complexity of the star of unary or binary languages [2,8,14].

First, let us recall the construction of an NFA A∗ for the language L∗. Let
a language L be accepted by a DFA A = (Q,Σ, ·, s, F ). To get an NFA A∗ for
the language L∗ from the DFA A, we add a transition on a symbol a from a
state q to the initial state s whenever q · a ∈ F . Moreover, if the initial state s is
non-final, we add a new initial state q0. By each symbol a, the state q0 goes to
{s · a} if s · a /∈ F , and it goes to {s · a, s} if s · a ∈ F .

Throughout this section, all DFAs will have a final initial state. Therefore, in
the construction of the NFA A∗, there is no need to add a new initial state q0.
Let us start with the following example.

Example 1. Consider the 3-state DFA A shown in Fig. 1. The DFA A has two
final states 1 and f . Construct an NFA A∗ for L(A)∗ by adding transitions on
a0, a1, a2 from the states f, 1, 2, respectively, to the initial state 1. The NFA
A∗ and the 4-state subset automaton A′ of the NFA A∗ are shown in Fig. 1
(bottom). Notice that the following conditions are satisfied:
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Fig. 1. The DFA A for a language L (top), the NFA A∗ for the language L∗ (left-
bottom), and the subset automaton A′ (right-bottom)

(C1) the DFA A accepts the string a0 only from the state f , the string a1
only from the state 1, and the string a2 only from the state 2;

(C2) the initial state of the subset automaton A′ is {1}, the subsets {2}, {1, f},
and {1, 2, f} are reachable in the subset automaton A′, while the empty set is
unreachable since A is deterministic.

Since A satisfies (C1), it is minimal. Moreover, it follows from the construction
of the NFA A∗, that the NFA A∗ also satisfies (C1), that is, the string a0 is
accepted by A∗ only from f , and ai is accepted only from i for i = 1, 2. This
means that all the states in the subset automaton A′ of the NFA A∗ are pairwise
distinguishable.

Our aim is to get 4-state DFAs B,C, and D whose stars require 4 + 1, 2 · 4,
and 2 · 4 + 1 states, respectively.

(1) To get a 4-state DFA B for a language whose star requires 5 states, add a
new non-final state 3 to the dfa A, and transitions on two new symbols a3 and
b3 as follows. The new state 3 goes to itself on old symbols a0, a1, and a2. Next,

3 · a3 = f and q · a3 = 2 if q �= 3;
q · b3 = 3 for each state q of B.

The initial state of B is the state 1, and final states are 1 and f . Construct an
NFA B∗ for the star of the language L(B) by adding transitions on a0, a1, a2, a3
from states f, 1, 2, 3, respectively, to the initial state 1. In the subset automaton
B′ of the NFA B∗, all the states that have been reachable in A′ are reachable
since the initial state of B′ is {1}, and we do not change the transitions on
a0, a1, a2 on the states of A. Moreover, state {3} is reached from state {1} by
b3. No other state is reachable in B′ because A′ satisfies (C2). Since B accepts
a0 only from f , and ai only from i (1 ≤ i ≤ 3), DFA B is minimal, and all
the states of the subset automaton B′ are pairwise distinguishable. Finally, the
subset automaton B′ satisfies (C2). Fig. 2 (top) shows the new state and the
new transitions in the DFA B, and the reachability of the states in B′.

(2) Now we would like to duplicate the number of states in the subset automa-
ton A′, that is, to construct a 4-state DFA C for a language whose star requires
2 · 4 states. We again add a new non-final state 3 to the DFA A, going to itself
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Fig. 2. The new state and the new transitions in the DFAs B,C,D (left) and the
reachable states of the subset automata B′, C′, D′ (right)

on each old symbol. This time we define transitions on new symbols a3, c3. The
transitions on a3 are the same as in case (1), and the transitions on c3 are as
follows:

f · c3 = 3 and q · c3 = 1 if q �= f .

The new state and new transitions in the DFA C, and the reachability of the
states in C′ are illustrated in Fig. 2 (middle).

(3) To get a 4-state DFA D for a language whose star requires 2 · 4+1 states,
we again add a new state 3, going to itself on old symbols, and transitions on
new symbols a3 and d3. The transitions on a3 are as above, and

1 · d3 = 3 and q · d3 = 1 if q �= 1.

The new state and new transitions in the DFA D, and the reachability of the
states in D′ are illustrated in Fig. 2 (bottom). ��

Let us show that the above described constructions work in the general case.

Lemma 1. Let 4 ≤ n ≤ α ≤ 3/4 ·2n−1. There exists a regular language L over
an alphabet Σn with |Σn| ≤ 2n such that sc(L) = n and sc(L∗) = α.

Proof. If a DFA A accepts the empty string, then we can construct an NFA A∗

for the language (L(A))∗ from the DFA A by adding the transition on a symbol
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a from a state q to the initial state of A whenever the state q goes by a in A to
a final state.

We prove by induction on n the following claim: For every α with n ≤ α ≤
3/4 ·2n−1, there exists an n-state DFA A over an alphabet Σn of size at most 2n
and such that {a0, a1, . . . , an−1} ⊆ Σn, with the state set Q = {1, 2, . . . , n−1, f},
the initial state 1, the set of final states {1, f}, satisfying the following conditions:

(C1) the string a0 is accepted by A only from the state f , and the string ai
is accepted only from the state i (1 ≤ i ≤ n− 1);

(C2) the subset automaton A′ of the NFA A∗ has α reachable states, and the
states {1}, {2}, {1, f}, {1, 2, f} are reachable in A′, while the empty set is not
reachable.

We first prove the induction step, and then will discuss the basis.
Assume that our claim holds for n and all α with n ≤ α ≤ 3/4 ·2n−1, and let

us show that then it also holds for n+1 and all α with n+1 ≤ α ≤ 3/4 ·2n+1−1.
To this end, let α be an integer with n ≤ α ≤ 3/4 · 2n − 1, and let A be

an n-state DFA satisfying the induction hypothesis. We will show that we are
able to construct (n + 1)-state DFAs B,C,D from the DFA A by adding a
new state n and transitions on two new symbols, so that the star of languages
L(B), L(C), L(D) will require α+1, 2α, and 2α+1 states respectively. Moreover,
the DFAs B,C,D and the subset automata B′, C′, D′ will satisfy (C1) and (C2).

(1) Let us start with the construction of the DFA B for a language whose
star requires α + 1 states. We add a new state n to the DFA A, going to itself
on each symbol in Σn. Next, we add transitions on two new symbols an and bn
defined as follows:

n · an = f and q · an = 2 if q �= n;
q · bn = n for each state q of the DFA B.

Notice that the string an is accepted by B only from the state n, while the
unique acceptance of the other strings ai remains the same as in A. Hence B
satisfies (C1).

Construct the NFA B∗ for the star of the language L(B). In the subset au-
tomaton B′ of the NFA B∗, the initial state is {1}, and all the subsets that are
reachable in the subset automaton A′ are also reachable in B′ because we do
not change the transitions on the symbols in Σn on states of A. Thus B satisfies
(C2). Moreover, the subset {n} is reachable in B′ since {1} goes to {n} by bn.

We need to show that no other subset is reachable in B′. To this aim consider
the family of α+ 1 sets

R =
{
S | S is reachable in A′} ∪

{
{n}

}
.

Since the initial state of B′ is inR, we only need to show that each setR inR goes
to a set in R by each symbol in Σn+1 = Σn ∪ {an, bn}. This is straightforward
for symbols in Σn. Let S be a reachable state of A′. Then S goes to {2} by an.
The set {2} is in R since it is a reachable state of A′ by (C2). By bn, the set S
goes to {n} which is in R. The set {n} goes by bn to itself, and by an to {1, f}
which is R by (C2).
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Due to unique acceptance of the (one-symbol) strings ai, automata B and B′

do not have equivalent states. Thus B is minimal, and the star of the language
L(B) requires exactly α+ 1 states.

(2) Now we describe the construction of the DFA C for a language whose star
requires 2α states. We again add a new state n to the DFA A going to itself on
each symbol in Σn. We also add the transitions on an as in case (1). Thus C
will satisfy (C1). Next, we add transitions on new symbol cn defined as follows:

f · cn = n and q · cn = 1 if q �= f .

Construct the NFA C∗ for L(C)∗. In the subset automaton C′ of the NFA C∗,
all the subsets that are reachable in A′ are reachable as well, and so C′ satisfies
(C2). Moreover, state {1, f} goes to {1, n} by cn, and then to S ∪ {n} for every
reachable set of A′ because state n goes to itself on every symbol in Σn in the
DFA C. Thus each set in the family

R =
{
S | S is reachable in A′} ∪

{
S ∪ {n} | S is reachable in A′}

is reachable in C′. We need to show that no other set is reachable in C′. To do
this, it is enough to show that each set R in R goes to a set in R by each symbol
in Σn+1 = Σn ∪ {an, cn}. This is straightforward for symbols in Σn. Each set S
that is reachable in A′ goes to {2} by an. The set {2} is in R by (C2). By cn,
the set S goes either to {1} or to {1, n}. Both these sets are in R. Now consider
a set S ∪ {n} in R; notice that S is non-empty since A is deterministic. By an,
the set S ∪{n} goes to {1, 2, f}, and by cn, it goes either to {1} or to {1, n}. All
the resulting sets are in R by (C2). Thus no other set is reachable in C′. Since
C satisfies (C1), automata C and C′ do not have equivalent states. Hence the
DFA C is minimal, and the star of the language L(C) requires exactly 2α states.

(3) To get an (n+1)-state DFA D for a language requiring 2α+1 states for its
star, we add a new state n going to itself on each symbol of Σn, and transitions
on all two new symbols an, dn. The transitions on an are the same as above, so
the DFA D satisfies (C1). The transitions on dn are as follows:

1 · dn = n and q · dn = 1 if q �= 1.

Construct the NFA D∗ for the language L(D)∗. Now consider the following
family of 2α+ 1 sets

R =
{
S | S is reachable in A′} ∪

{
S ∪ {n} | S is reachable in A′} ∪

{
{n}

}
;

recall that the empty set is not reachable in A′. Each reachable set in A′ is also
reachable in the subset automaton D′ of the NFA D∗. Next, state {1, f}, which
is reachable in A′ by (C2), goes to {1, n} by dn. From {1, n}, each state S ∪ {n}
with S reachable in A′ is reachable in D′. The set {n} is reached from {1} by
dn. Thus D

′ satisfies (C2). To prove that no other set is reachable in D′, we only
need to show that each set R in the family R goes to a set in R by each symbol
in Σn = Σn−1 ∪ {an, dn}. This is straightforward for symbols in Σn. Let S be a
reachable state in A′. Then S goes to {2} by an, and it goes either to {n} or to
{1, n} by dn. All the resulting sets are in R. Now let R = S ∪ {n}, where S is



Kleene Closure on Regular and Prefix-Free Languages 233

a0

a1 a2

21
a0 a2, a2

a1

a0 a1,

f
,

a0

a1 a2

21
a0 a2, a2

a0 a1,a1

a0

a3

a1

a0

a3

a1 a2
a2

a2

a1

A4,7A 4,4

A 3,4 A 3,5
f

,

1 2 3 f1 2 3 f
20 3a ,a ,a

0 31a ,a ,a

0 2a ,a ,a1

1a ,a ,a 32

a ,a 3

3

2

2 3a ,a 

0

0 a ,a ,a

a ,a ,a10

1

Fig. 3. The basic automata An,α

reachable in A′, thus S is non-empty. By an, the set R goes to {1, 2, f} which is
in R. By dn, it goes either to {1} or to {n} or to {1, n}, all of which are in R.
The set {n} goes to {1, f} by an, and it goes to {1} by dn. Both the resulting
sets are in R. Thus D′ has exactly 2α + 1 reachable states. Since D satisfies
(C1), it is minimal, and the star of the language L(C) requires 2α+ 1 states.

Hence if all the values from n to 3/4 ·2n−1 are attainable as the complexity of
stars of minimal n-state DFAs, then all the complexities from 2n to 3/4 ·2n+1−1
are attainable for minimal (n + 1)-state DFAs using the second and the third
construction. The first construction gives the values from n+ 1 to 2n− 1. This
completes the induction step.

Now, let us deal with the basis. We describe the basic automata for n = 3
and α = 4, 5, as well as for n = 4 and α = 4, 7. All these automata will satisfy
conditions (C1) and (C2). From these automata, using our constructions we can
get all the DFAs with n = 4 and 4 ≤ α ≤ 11, which proves the basis.

The basic automataAn,α for languages Ln,α with sc(Ln,α) = n and sc(L∗
n,α) =

α are shown in Fig. 3. All four DFAs satisfy (C1). The complexity of their star,
as well as the validity of condition (C2), can be verified using a software, for
example, JFLAP [1]. ��

The next two propositions recall the known facts that the remaining values
in the range from 1 to 3/4 · 2n can be attained by unary or binary languages.

Proposition 1 ([2,8]). Let n ≥ 2 and 1 ≤ α ≤ n. There exists a language over
an alphabet of size at most two such that sc(L) = n and sc(L∗) = α. ��

Proposition 2 ([10,11,14]). Let n ≥ 2. There exists a binary language L such
that sc(L) = n and sc(L∗) = 3/4 · 2n. ��

All the results of this section are summarized in the following theorem.

Theorem 1. Let n ≥ 2 and 1 ≤ α ≤ 3/4 · 2n. There exists a regular language
L over an alphabet Σn with |Σn| ≤ 2n such that sc(L) = n and sc(L∗) = α. ��
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We also did some calculations in the binary case. Using the lists of codes of
pairwise non-isomorphic binary automata of 2, 3, 4, and 5 states, we computed
the frequencies of the resulting complexities for Kleene closure, as well as the
average complexity. Every value in the range from 1 to 3/4 ·2n has been obtained
at least once. In the case of n = 6, 7, 8, 9, we considered binary automata, in
which the first symbol is a circular shift of the states, and the second symbol is
generated randomly. We found out that all values from 1 to 3/4·2n are attainable,
that is, for every α with 1 ≤ α ≤ 3/4 · 2n, we found a minimal n-state binary
DFA A such that the state complexity of L(A)∗ is exactly α. All the results can
be found at http://im.saske.sk/∼ palmovsky/Kleene%20Closure.

On the other hand, the situation is different in the unary case. Here the known
upper bound is (n− 1)2 +1, and it is tight [14]. However, as shown in [2], there
are at least two gaps of length n in the range from 1 to (n− 1)2 +1 that cannot
be attained by the state complexity of the star of any unary language with state
complexity n.

3 Kleene Closure on Prefix-Free Languages

If w = uv for a strings u and v, then u is a prefix of w. If, moreover, the string v
is non-empty, then u is a proper prefix of w. A language is prefix-free if it does
not contain two distinct strings, one of which is a prefix of the other. A DFA is
prefix-free if it accepts a prefix-free language. The following characterization of
minimal DFAs accepting prefix-free languages is well known.

Proposition 3 ([4]). Let A be a minimal DFA for a non-empty language L.
Then L is prefix-free if and only if A has exactly one final state that goes to the
dead state on each symbol of the input alphabet. ��

Using this characterization, a DFA A∗ for the star of a prefix-free language L,
accepted by an n-state DFA A = (Q,Σ, ·, s, {f}), can be constructed as follows.
We make the final state f initial, and redirect the transition on each symbol a
from the final state f to the state s · a. This gives an n-state DFA A∗ for the
language L∗ [4]. The aim of this section is to show that the resulting complexity
of L∗ may be n− 2, n− 1 or n. Let us start with the following observation.

Lemma 2. Let A be a minimal prefix-free DFA with the final state f and the
dead state d. Let p and q be two distinct states different from d. Then p and q
can be distinguished by a string w such that the computations of A on the string
w starting in the states p and q do not use any transition from f to d.

Proof. Let · be the transition function ofA. Let a string w be accepted from p and
rejected from q. Then the computation on w from p cannot use any transition
from f to d, otherwise w would be rejected from p. If the computation on w
from q uses a transition from f to d on a symbol a, then w can be factorized as
w = uav such that q · u = f , f · a = d, and d · v = d. Hence u is accepted from
q. Consider the computation on u from p. Since u is a proper prefix of w, this
computation is rejecting, and does not use any transition from f to d. Thus u is
the desired string, and the proof is complete. ��
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Now we are ready to get a lower bound on the state complexity of the star of
prefix-free languages.

Lemma 3. Let L be a prefix-free regular language with sc(L) = n, where n ≥ 3.
Then n− 2 ≤ sc(L∗) ≤ n.

Proof. Let A = ({1, 2, . . . , n − 2, f, d}, Σ, ·, 1, {f}) be the minimal DFA for a
prefix-free language L with the dead state d. Since L is prefix-free, all the tran-
sitions from the final state f go to the dead state d.

To get a DFA A∗ for the language L∗ from the DFA A [4], we make the state
f initial, and redirect the transition from f to d on each symbol a in Σ to the
state 1 · a. In the resulting DFA A∗, the states 1 and d may be unreachable,
while any other state is reachable since A is minimal.

First, consider the case that the state 1 is reachable in A∗. Then all the
reachable states are pairwise distinguishable since d is the only state that does
not accept any string, f is the only final state, and the remaining states are
distinguishable in the DFA A∗ by Lemma 2.

Now, assume that the state 1 is unreachable in A∗, that is, the state 1 does
not have any in-transition in the DFA A. It follows that no out-transition from
the state 1 can be used to show the distinguishability of the states 2, 3, . . . , n−2
in DFA A, and so these states are distinguishable in the DFA A∗ by Lemma 2.
This completes the proof. ��

Lemma 4. Let n ≥ 4 and n − 2 ≤ α ≤ n. There exists a binary prefix-free
language L such that sc(L) = n and sc(L∗) = α.

Proof. The minimal DFAs of prefix-free regular languages whose stars meet the
complexities n, n− 1, and n − 2 are shown in Fig. 4 (top, middle, and bottom,
respectively). ��

1 2 3 ... n−2 f d
a,b a,b a,b

a,b

aa

b

a,b

b

1 2 3

1 2 3
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... n−2 f d
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Fig. 4. The DFAs of the prefix-free languages meeting the complexities n (top), n− 1
(middle), and n− 2 (bottom) for their star
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Let us denote by Rk(n) the set of possible complexities of the star of prefix-free
languages with state complexity n over a k-letter alphabet, that is,

Rk(n) = {sc(L∗) | L ⊆ Σ∗, |Σ| = k, L is prefix-free and sc(L) = n}.

Using this notation, we get the following result.

Theorem 2. Let Rk(n) be the set of possible complexities of the star of prefix-
free languages over a k-letter alphabet, as defined above. Then we have

(a) Rk(1) = Rk(2) = {2} where k ≥ 1;
(b) R1(n) = {n− 2} where n ≥ 3;
(c) R2(3) = {1, 2} and Rk(3) = {1, 2, 3} if k ≥ 3;
(d) Rk(n) = {n− 2, n− 1, n} if k ≥ 2 and n ≥ 4.

Proof. (a) The only prefix-free languages with state complexity 1 and 2 are
the empty language and the language {ε}, respectively. The star of both these
languages is {ε}.

(b) The only prefix-free unary language with the state complexity n, where
n ≥ 3, is the language {an−2}. Its star is the language (an−2)∗ with the state
complexity n− 2.

(c) Using a binary alphabet, we cannot reach the initial and the dead state of
a 3-state DFA A from the initial state. Therefore, in the DFA A∗, at most two
states are reachable. The languages b∗a and a+ b meet the complexities 2 and
1, respectively. The language b∗a over the ternary alphabet {a, b, c} meets the
complexity 3.

(d) The equality is given by Lemma 3 and Lemma 4. ��

We also did some computations. Having the lists of binary minimal and pair-
wise non-isomorphic prefix-free DFAs, we computed the complexities of the stars
of the accepted languages. The table below shows the frequencies of complexities
n− 2, n− 1, and n, and the average complexity for n = 2, 3, 4, 5, 6, 7.

Table 1. The frequencies of the complexities n−2, n−1, n, and the average complexity
of star in the binary case; n = 2, 3, 4, 5, 6, 7

n\sc(L∗) 1 2 3 4 5 6 7 average

2 - 1 - - - - - 2

3 1 2 - - - - - 1.5

4 - 4 18 6 - - - 3.071

5 - - 56 299 166 - - 4.211

6 - - - 1255 7120 5078 - 5.284

7 - - - - 37 733 222 125 184 182 6.600
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4 Conclusions

We investigated the operation of Kleene closure (star) on regular and prefix-free
languages. In the case of regular languages, we obtained the contiguous range
of complexities from 1 to 3/4 · 2n for an alphabet of size 2n. We proved that for
all n and α with 1 ≤ α ≤ 3/4 · 2n, there exists a regular language defined over
an alphabet of size at most 2n with the state complexity n such that the state
complexity of its star is α. This improves a similar result from [8] that uses an
alphabet that grows exponentially with n.

We did some computations in the binary case, and we obtained a contiguous
range of complexities of stars from 1 to 3/4 ·2n for all n with 2 ≤ n ≤ 9. Whether
or not this is true for every n remains open.

In the second part of the paper, we examined a similar problem for prefix-
free languages. We showed that the state complexity of the star of a prefix-free
language with state complexity n may attain just three values n−2, n−1, and n.
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Abstract. We study the NFA reductions by invariant equivalences. It is
well-known that the NFA minimization problem is PSPACE-complete.
Therefore, there have been approaches to reduce the size of NFAs in
low polynomial time by computing invariant equivalence and merging
the states within same equivalence class. Here we consider the nonde-
terminism reduction of NFAs by invariant equivalences. We, in partic-
ular, show that the left-invariant equivalence is more useful than the
right-invariant equivalence for reducing NFA nondeterminism. We also
present experimental evidence for showing that NFA reduction by left-
invariant equivalence achieves the better reduction of nondeterminism
than right-invariant equivalence.

Keywords: Nondeterministic finite automata, Regular expression, NFA
reduction, Invariant equivalences.

1 Introduction

Regular expressions are widely used for many applications such as search engine,
text editor, programming language, and so on. People often use regular expres-
sions to describe a set of pattern strings for the pattern matching problem.

Once a regular expression is given, then we convert a regular expression into an
equivalent nondeterministic finite-state automaton (NFA) by automata construc-
tions such as Thompson construction [21] or the position construction1 [6,17].
In some cases, the obtained NFA should be converted into a deterministic one
by the subset construction. However, the size of the deterministic finite-state
automaton (DFA) for the regular expression may be exponential. In addition
to that, the problem of minimizing NFAs is PSPACE-complete [14], thus, in-
tractable.

Since DFAs are usually much faster than NFAs, the most of applications
prefer DFAs to NFAs. For example, consider the membership problem which is
the simplest form of pattern matching problem based on FAs. Given an FA of
size m and a string of length n, the problem requires O(n) time if the FA is
deterministic whereas it takes O(m2n) time [7,22] in the worst-case if the FA is
nondeterministic.
1 Also known as Glushkov construction.
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Fig. 1. Difference between deterministic and nondeterministic computations

The real problem is, it is impossible to have small DFAs as NFAs for the same
regular languages. It is well known that exponential number of states may be
required for an NFA to be represented by a DFA. As an alternative solution,
there have been many approaches on NFA reduction techniques for the space-
efficient implementations of the applications using regular expressions.

The idea of reducing the size of NFAs by equivalence relations was first pro-
posed by Ilie and Yu [11]. Champarnaud and Coulon [5] modified the idea to use
preorders over the set of states instead of equivalences for the better reduction.
Later, Ilie et al. [9] showed that it is possible to reduce the size of an NFA with
n states and m transitions in O(m logn) time by equivalences and O(mn) time
by preorders. Ilie et al. [10] also showed that the optimal use of equivalences can
be computed in polynomial time and the optimal use of preorders is NP-hard.

Here we consider the problem of reducing the nondeterminism of NFAs by
using invariant equivalences because the nondeterminism is also a very important
factor for the efficient simulation of NFAs. We define the computation graph for
estimating the nondeterminism of NFAs and investigate several properties. Then,
we compare the right- and left-invariant equivalences by reducing NFAs by the
equivalences and give experimental results with uniformly generated random
regular expressions.

The paper is organized as follows. In Section 2, we shall give some defini-
tions and notations. We introduce the well-known construction of the position
automaton from a regular expression in Section 3. We present NFA reduction
by invariant equivalences in Section 4 and consider the nondeterminism of NFAs
in Section 5. The experimental results are given in Section 6. Section 7 concludes
the paper.

2 Preliminaries

Here we briefly recall the basic definitions used throughout the paper. For
complete background knowledge in automata theory, the reader may refer to
textbooks [7,22].
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Let Σ be a finite alphabet and Σ∗ be the set of all strings over the alphabet Σ
including the empty string λ. The size |Σ| of Σ is the number of characters in Σ.
For a string w ∈ Σ∗, we denote the length of w by |w| and the ith character of
w by wi. A language over Σ is any subset of Σ∗. A regular expression over Σ is
∅, λ, or a ∈ Σ, or is obtained by applying the following rules finitely many times.
For two regular expressions R1 and R2, the union R1 +R2, the concatenation
R1 · R2, and the star R∗

1 are regular expressions. For a regular expression R,
the language represented by R is denoted by L(R). The size |R| of a regular
expression R implies the number of symbols including the characters from Σ
and syntactic symbols such as +, ·, and ∗. We denote the number of occurrences
of characters from Σ in R by |R|Σ .

A nondeterministic finite-state automaton (NFA) A is specified by a 5-tuple
(Q,Σ, δ, s, F ), where Q is a finite set of states, Σ is an input alphabet, δ :
Q×Σ → 2Q is a multi-valued transition function, s ∈ Q is the initial state and
F ⊆ Q is a set of final states.

For a transition q ∈ δ(p, a) in A, we say that p has an out-transition and q
has an in-transition. Furthermore, p is a source state of q and q is a target state
of p. The transition function δ can be extended to a function Q×Σ∗ → 2Q that
reflects sequences of inputs. A string w over Σ is accepted by A if there is a
labeled path from s to a state in F such that this path spells out the string w,
namely, δ(s, w) ∩ F �= ∅. The language L(A) recognized by A is the set of all
strings that are spelled out by paths from s to a final state in F . Formally we
write

L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.
For a state q ∈ Q, we denote

LL(A, q) = {w ∈ Σ∗ | q ∈ δ(s, w)}, LR(A, q) = {w ∈ Σ∗ | δ(q, w) ∩ F �= ∅};

when A is understood from the context, we simply write LL(q),LR(q), respec-
tively.

For a state q ∈ Q and a string w ∈ Σ∗, the q-computation tree TA,q,w of A on
w is a labeled tree where the nodes are labeled by elements of Q× (Σ ∪ {λ, !}),
where ! /∈ Σ. Note that TA,q,λ is a single-node tree labeled by (q, λ). Assume
that w = au, where a ∈ Σ, u ∈ Σ∗, and δ(q, a) = ∅. Then, TA,q,w is again a
single-node tree where the only node is labeled by (q, !). If δ(q, a) = {p1, . . . , pm},
where m ≥ 1, then TA,q,w is the tree with the root node labeled by (q, a) and
the root node has m children where the subtree rooted at the ith child is TA,pi,u

for i = 1, . . . ,m. We call the tree TA,s,w the computation tree of A on w and
simply denote TA,w. If there is an accepting computation for w in the NFA A,
TA,w has a leaf labeled by (q, λ), where q ∈ F .

We also define the computation graph GA,w of A on w by merging equivalent
subtrees of the computation tree as a single subtree. If TA,w has two computation
trees TA,q,v as subtrees, where w = uv, w, u, v ∈ Σ∗, and q ∈ Q, then we merge
the trees into one.

We denote the number of nodes and the number of edges of a computation
tree TA,w by |TA,w|N and |TA,w|E , respectively. We define the size |TA,w| of a
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computation tree TA,w to be |TA,w|N + |TA,w|E . Note that the similar notations
are defined analogously for the size of computation graph.

3 NFA Constructions from Regular Expressions

We first recall the well-known construction called the position construction for
obtaining NFAs from regular expressions [6,17]. The automaton obtained from
the construction is called the position automaton which is also called the Glushkov
automaton.

Given a regular expressionR, we first mark each character of R with a unique
index called the position. From the leftmost character of R, we mark the index
of each character with the number from 1 to |R|Σ . The set of indices is called
the positions of R and denoted by pos(R) = {1, 2, . . . , |R|Σ}. We also denote
pos0(R) = pos(R) ∪ {0}. We denote the marked regular expression obtained

from R by R. Note that L(R) ⊆ A
∗
, where A = {ai | a ∈ Σ, 1 ≤ i ≤ |R|Σ}. For

instance, if R = abc+ d(ef)∗, then R = a1b2c3 + d4(e5f6)
∗. For a ∈ Σ, a = a.

For a regular expression R, we define first, last, and follow as follows:

first(R) = {i | aiw ∈ L(R)},

last(R) = {i | wai ∈ L(R)},

follow(R, i) = {j | uaiajv ∈ L(R)}.

We extend follow(R, 0) = first(R) and define last0(R) to be last(R) if λ ∈ L(R)
and last(R) ∪ {0} otherwise.

Then, the position automaton of R is defined as follows:

Apos(R) = (pos0(R), Σ, δpos, 0, last0(R)),

where

δpos = {(i, a, j) | j ∈ follow(R, i), a = aj}.

Notice that the position automaton of R recognizes the same language with the
regular expression R, that is, L(R) = L(Apos(R)).

The position automaton has two useful properties as follows.

Property 1. The position automaton for the regular expression R has always
|R|Σ + 1 states.

Proof. Recall that every position automaton satisfies Property 2. The NFA
Apos(R)/≡L is obtained from Apos(R) by merging states if they are in the
same left-invariant equivalence class. In other words, any two states q and p
are merged if p ≡L q, thus, LL(p) = LL(q). This implies that p and q should
have in-transitions consuming the same character because otherwise LL(p) �=
LL(q). Therefore, the merged state by the left-invariant equivalence ≡L also has
in-transitions labeled by the same character. ��
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Property 1 guarantees that the position automaton always has smaller number
of states than Thompson’s automaton [21].

Property 2. All in-transitions for any state of the position automaton are labeled
by the same character.

Caron and Ziadi [4] named the second property as the homogeneous property.
We say that an FA is homogeneous if all in-transitions to a state have the same
label. The homogeneous property helps to improve the regular expression search
algorithms because we can represent the DFA using O(2|R|Σ + |Σ|) bit-masks
of length |RΣ | instead of O(2|R|Σ · |Σ|) [18,19]. We can compute the position
automaton in quadratic time in the size of regular expression using inductive
definition of first, last, and follow [3].

Note that there have been proposed two more algorithms for obtaining smaller
NFAs than position automata from regular expressions. Antimirov [2] introduced
an NFA construction based on partial derivatives called the partial derivate au-
tomaton. Ilie and Yu [12] constructed an NFA called the follow automaton based
on the follow relation. It is already proven that a partial derivative automaton
and a follow automaton are quotients of the position automaton and always
smaller than the position automaton.

4 NFA Reduction by Invariant Equivalences

There have been many results for reducing the size of NFAs by using invariant
equivalences [9,11,13]. Here we briefly recall how the reduction works.

Basically, the idea of NFA reduction is from DFA minimization in the sense
that we find indistinguishable states and merge them to reduce the size of DFAs.
Let A = (Q,Σ, δ, s, F ) be an NFA. For any two states p and q of A, we say that
p and q are distinguishable if there exists a string w such that δ(q, w)∩F �= ∅ and
δ(p, w)∩F = ∅. Naturally, this leads to the fact that p and q are indistinguishable
if and only if LR(p) = LR(q). If ≡ is an equivalence on Q which is right-invariant
with respect to A, then p ≡ q implies that p and q are indistinguishable.

The largest right-invariant equivalence relation ≡R over Q should satisfy the
following properties:

(i) ≡R ∩(F × (Q− F )) = ∅,
(ii) for any p, q ∈ Q, a ∈ Σ, p ≡R q if for all q′ ∈ δ(q, a), there exists p′ ∈ δ(p, a)

such that q′ ≡R p′.

After computing ≡R, we can reduce the NFA A by simply merging all states
in the same equivalence class. Given an equivalence ≡ and an NFA A, we de-
note the NFA obtained after merging the equivalent states by A/≡. For any
regular expression R, A(R)/≡R is always smaller than the partial derivative au-
tomaton and the follow automaton since ≡R is the largest one among all the
right-invariant equivalence relations.

Note that the largest left-invariant equivalence relation ≡L can be computed
by reversing the given NFA and computing the largest right-invariant equivalence
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of it. Although the partial derivative automaton [2] and the follow automaton [12]
can be obtained by the right-invariant equivalence relations, the left-invariant
equivalence has some nice properties.
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Fig. 2. A position automaton Apos(R) where R = ace+ acf + ade+ adf + bce+ bcf +
bde+ bdf

See the position automaton Apos(R) in Fig. 2 as an inspiring example. Note
that this example is already used in the paper by Ilie and Yu [13]. Fig. 3 is an
NFA reduced by ≡R and Fig. 4 is an NFA reduced by ≡L.
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Fig. 3. An NFA Apos(R)≡R

While the number of states is smaller when reduced by ≡R than ≡L, the
NFA reduced by ≡L is deterministic. Note that the NFA reduction by ≡L does
not always produce DFAs. However, this example implies that the left-invariant
equivalence is useful for reducing nondeterminism of NFAs since the equivalence
relation is computed in the same direction as the simulation of NFAs.

We also mention that the NFA reduction by the left-invariant equivalence pre-
serves the homogeneous property which is very useful for the regular expression
search algorithms.
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Fig. 4. An NFA Apos(R)≡L

Lemma 1. Let R be a regular expression. Then, Apos(R)/≡L is homogeneous.

5 Nondeterminism of NFAs

Many researchers have studied variousmeasures of nondeterminism inNFAs [8,20].
Here we compare the nondeterminism of NFAs using the size of the computation
graph. We give an example for the comparison of the computation tree and the
computation graph.

Example 1. Let A be an NFA described in Fig. 5. Then, the computation tree

a

a

a

b

c

0

1

2

3

4

b

b

b

Fig. 5. An NFA A

and the computation graph of A on the string abbb are depicted in Fig. 6.

Now let us discuss the reason why we compare the nondeterminism of NFAs
using the computation graph instead of the computation tree. Let A be an
NFA of size m and w be a string of length n. Hromkovic̆ et al. [8] showed
that the number of accepting computation can be exponential in the worst-case.
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Fig. 6. The computation tree and the computation graph of the NFA A on the string
aaab

This follows that the size of the computation tree can be also exponential since
a computation tree has corresponding leaves for each accepting computation.
This implies that the size of the computation tree can be quite different with
the runtime complexity for simulating A on w, which is O(m2n) in the worst-
case. On the other hand, the size of computation graph almost coincides with
the algorithmic complexity of NFA simulation.

Lemma 2. Given an NFA A with m states and a string w ∈ Σ∗ of length n,
the following statements hold:

(i) the number of nodes and edges in the computation graph of A on w are at
most mn+ 1 and m+m2(n− 1), respectively, and

(ii) the number of nodes and edges in the computation tree of A on w are at

most mn+1−1
m−1 and mn+1−1

m−1 − 1, respectively.

Proof. We first prove (i). Since we assume that A has only one initial state, the
simulation of A starts with one state. After then, A may simulate all states in
the worst-case because of the nondeterminism. Therefore, the number of nodes
in the computation graph of an NFA can be mn+ 1 in the worst-case.

Moreover, the graph can have m edges from the initial node since A can move
to all states by reading a character in the worst-case. Then, since each state of
A can have m options to move by reading a character, the number of edges in
the computation graph of A can be m+m2(n− 1) in the worst-case.

Now we prove (ii). The computation tree of A on w has one initial node and
has m children by reading any character. Then, every node of the computation
tree can have m children since there can be up to m transitions for each state
and character. Thus, the total number of nodes can be

1 +m+m2 + · · ·+mn−1 +mn =
mn+1 − 1

m− 1
.

Note that the number of edges can be mn+1−1
m−1 − 1 since a tree always has t− 1

edges if there are t nodes. ��
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We have a simple lower bound NFA for the given upper bounds in Lemma 2,
which is an m-state NFA A = (Q,Σ, δ, s, F ), where Q = F and Q = δ(q, a) for
all q ∈ Q and a ∈ Σ. Fig. 7 depicts the lower bound when m = 2.

root root

m

m

m

m

m

m

m2

m3

mn−1

mn

Fig. 7. A lower bound example when m = 2 for the upper bound in Lemma 2

We establish the following result as a corollary.

Corollary 1. Given an NFA A with m states and a string w ∈ Σ∗ of length n,
|GA,w| is in O(m2n) and |TA,w| is in O(mn).

However, the size of the computation graph and tree is linear in the length of
the input string for DFAs in the worst-case.

Lemma 3. Let A = (Q,Σ, δ, s, F ) be a DFA and w ∈ Σ∗ be a string. Then,
|TA,w|N ≤ |w|+ 1 and |TA,w|E ≤ |w|.

Proof. Since A is a DFA, we have only one transition from any state of A to
proceed by reading an input character. Therefore, we always have a sequence of
states visited by reading the string w instead of tree structure. If w = λ, then
|TA,w| = 1 since TA,λ consists of a single node labeled by (s, λ). Otherwise, we
have an accepting computation

s → q1 → q2 → q3 → · · · → q|w|−1 → q|w|

of length |w| + 1 in the worst-case, where δ(s, w1) = q1, δ(qi, wi+1) = qi+1 and
qi ∈ Q for i = 1, . . . , |w|. Note that the sequence itself is the computation tree
in DFAs. If the DFA is incomplete and the computation fails before completed,
the length of the computation becomes shorter than |w|+ 1. ��

Corollary 2. Let A = (Q,Σ, δ, s, F ) be a DFA and w ∈ Σ∗ be a string. Then,
|GA,w|N ≤ |w|+ 1 and |GA,w |E ≤ |w|.

Considering that the size of the computation graph represents the computa-
tional cost for simulating FAs well, it is evident that DFAs are much better than
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NFAs regardless of the size of FAs because they make a deterministic choice at
each step.

Here we consider the advantage of reducing NFAs by the left-invariant equiv-
alence. The empirical studies on NFA reductions show that the right-invariant
equivalence is more powerful in terms of better reduction on the number of
states and transitions. However, it turns out that the left-invariant equivalence
can reduce the nondeterminism of NFAs better than the right-invariant.

Lemma 4. Let A = (Q,Σ, δ, s, F ) be an NFA and A′ be an NFA obtained from
A by merging two equivalent states q and p in Q. Then, there exists a string
w ∈ Σ∗ such that |GA′,w|N < |GA,w|N if and only if LL(p) ∩ LL(q) �= ∅.

Proof.
(⇐=) We first prove the statement that if LL(p) ∩ LL(q) �= ∅, then there exists
a string w such that |GA′,w|N < |GA,w |N . Since LL(p) ∩ LL(q) �= ∅, we say a
string w′ ∈ LL(p) ∩ LL(q). Consider the computation graphs GA,w and GA′,w,
where w = w′u and w′, u ∈ Σ∗. While the computation of A on w maintains two
states p and q after reading w′, the computation of A′ only maintains the merged
state. As a result, the number of nodes in the computation graph decrease.
(=⇒) We prove that if there exists a string w such that |GA′,w|N < |GA,w|N ,
then LL(p)∩LL(q) �= ∅. The decrease on the number of nodes in the computation
graph GA′,w implies that at least one state visited during the simulation of A
on w is merged with the other state. This means that there exists a string w′,
where w′u = w and w′, u ∈ Σ∗, which makes A to visit the merged state. Since
the merged states are p and q by assumption, w′ ∈ LL(p) ∩ LL(q). ��

From Lemma 4, the following result is immediate.

Theorem 1. Let A be an NFA and ≡ be a left-invariant equivalence. If there
exist two distinct equivalent states in A, then there exists a string w ∈ Σ∗ such
that |GA/≡,w| < |GA,w|.

We also observe that NFA reduction by the right-invariant does not guarantee
the reduction of nondeterminism.

Corollary 3. There exist an NFA A with two distinct equivalent states and
a right-invariant equivalence ≡ such that for any string w ∈ Σ∗, |GA/≡,w| <
|GA,w|.

6 Experimental Results

We present experimental results regarding the NFA reduction by invariant equiv-
alences. Especially, we aim to analyze how the NFA reduction affects the nonde-
terminism of NFAs. For experiments, we have used uniformly generated random
regular expressions by FAdo [1].

FAdo [1] is an ongoing project developed by Almeida et al. that provides a set
of formal language manipulation tools. We have used 1,000 uniformly generated
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regular expression by the FAdo system. Note that the random generation of
regular expressions is based on Mairson’s work [16] for generating words in a
context-free language uniformly. The context-free language used for the random
generation of regular expressions is presented by Lee and Shallit [15].

6.1 Size Reduction of NFAs

First we look at the size reduction of NFAs constructed from random regular
expressions by invariant equivalences. See Table 1 for the result.

Table 1. The average states/transitions in position automata and reduced NFAs con-
structed from uniform random regular expressions

|R| |Σ| Number of states/transitions

Apos Apos/≡L Apos/≡R Apos/≡LR Apos/≡RL

20
2 13.2/21.0 11.6/16.9 9.5/14.0 9.2/13.5 9.0/13.3
5 16.3/19.7 15.8/19.0 13.2/16.0 13.0/15.9 13.0/15.8
10 17.3/19.5 17.1/19.2 14.8/16.9 14.7/16.8 14.7/16.7

50
2 29.8/58.3 24.4/41.4 20.2/34.7 19.0/32.4 18.6/31.8
5 36.6/51.8 34.7/47.8 28.4/38.5 27.7/38.0 27.6/37.5
10 40.7/50.1 39.6/48.1 34.1/41.2 33.7/40.8 33.6/40.6

100
2 57.9/122.9 45.5/83.8 38.2/70.2 35.5/65.8 34.7/63.1
5 71.0/108.4 66.3/97.3 54.7/76.5 53.1/75.3 52.9/73.9
10 80.0/103.0 77.8/98.9 67.1/81.9 66.1/81.1 65.9/80.4

When we compare the size reduction effects of the right- and left-invariant
equivalences, it is obvious that the right-invariant equivalence is superior on
average for reducing the size of NFAs from the result.

On the average of all the position automata used in the experiment, the
number of states is reduced 8.3% by ≡L and 22.7% by ≡R. The number of
transitions is reduced 14.8% by ≡L whereas 29.7% is reduced by ≡R.

We also compare two more reductions, where we reduce the NFAs in both di-
rections. For simplicity, we writeApos/≡LR andApos/≡RL instead of (Apos/≡L)/≡R

and (Apos/≡R)/≡L , respectively. On average, ≡RL is slightly better in terms of
the size reduction of NFAs than ≡LR since ≡RL reduces 25.0% of states and
31.6% of transitions whereas ≡LR reduces 25.5% of states and 32.7% of tran-
sitions. However, the difference between the two-way reductions is very small
compared to the difference between ≡R and ≡L.

6.2 Reduction of Nondeterminism

For measuring the degree of the practical nondeterminism in NFAs, we use
the following definition which can be the measurement of nondeterminism for
simulating strings with the NFAs.
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Let A be an NFA and w be a string. Then, we define the redundancy of
simulation RSA,w of A on w as follows:

RSA,w =
|GA,w |E

|w| .

Recall that the number of edges in the computation graphGA,w almost coincides
with the practical time complexity for simulating w on A. We divide |GA,w |E
by |w| to obtain the redundancy of simulation since |w| is the optimal number
of edges in the computation graph for simulating w on any FA A if w ∈ L(A).
Therefore, RSA,w = 1 if the given NFA is deterministic or simulates the string w
deterministically. We conduct experiments with the randomly generated regular
expressions used in the previous experiments.

For generating random strings of the regular expressions, we use a Java library
called Xeger2. We use random strings from the regular expressions instead of
uniformly generated random strings because if the computations fail easily, it is
difficult to compare the nondeterminism of NFAs.

Once we choose 1,000 random regular expressions, we convert the regular
expressions into position automata and reduce the automata by four different
equivalences ≡L, ≡R, ≡LR, and ≡RL. Then, we generate 10,000 random strings
by Xeger for each regular expression and simulate the five types of automata
with the strings.

Table 2 summarizes the result of the experiment. Under the assumption that
the redundancy ratio reflects the nondeterminism of NFAs for simulating strings,
the best reduction is obtained by ≡LR in all cases.

Table 2. The average states/transitions in position automata and reduced NFAs con-
structed from uniform random regular expressions

|R| |Σ| RSA,w

Apos Apos/≡L Apos/≡R Apos/≡LR Apos/≡RL

20
2 1.625 1.331 1.469 1.296 1.401
5 1.103 1.046 1.096 1.046 1.076
10 1.043 1.009 1.043 1.009 1.024

50
2 2.227 1.662 1.946 1.628 1.795
5 1.132 1.043 1.122 1.042 1.086
10 1.062 1.018 1.059 1.018 1.034

100
2 2.516 2.149 2.365 2.115 2.314
5 1.172 1.066 1.164 1.065 1.112
10 1.059 1.015 1.057 1.015 1.033

The interesting result is that ≡L shows the better reduction than ≡R as
anticipated in Theorem 1. On average, the redundancy ratio is reduced 12.4%

2 Xeger generates a random string from a regular expression.
https://code.google.com/p/xeger/

https://code.google.com/p/xeger/
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by ≡L and 4.8% by ≡R. This result clearly suggests that the reduction by the
left-invariant equivalence is more useful than the right-invariant one to reduce
the nondeterminism of NFAs.

One more thing to note is, ≡L shows the better result than ≡RL. Recalling
that ≡LR shows better result than ≡R in terms of the size reduction of NFAs,
this result is noticeable. From the empirical result, ≡LR can be the best option
for reducing the size and the nondeterminism of NFAs at the same time.

7 Conclusions

We have studied the relationship between NFA reductions and nondeterminism
of NFAs. The NFA reduction techniques based on the equivalence and preorder
relations are well investigated in literature.

Here we have considered the NFA reduction by invariant equivalences. While
the most of NFA constructions focus on the right-invariant equivalence for ob-
taining small NFAs from regular expressions, we have revealed that the reduction
by left-invariant equivalence helps to reduce the nondeterminism of NFAs better
than the right-invariant equivalence. We have presented empirical results with
randomly generated regular expressions.

In future, we aim at comparing the NFA reduction techniques by equivalences
and preorders with respect to the nondeterminism of reduced NFAs. Investigat-
ing how to optimally reduce the nondeterminism of NFAs is an open problem.
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Abstract. We show that the only analytic functions computable by fi-
nite state transducers in sofic Möbius number systems are Möbius trans-
formations.
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1 Introduction

Exact real arithmetical algorithms have been introduced in an unpublished
manuscript of Gosper [5] and developped by Vuillemin [16], Potts [14] or Kor-
nerup and Matula [10,9]. These algorithms perform a sequence of input ab-
sorptions and output emissions and update their inner state which may be a
(2× 2× 2)-tensor in the case of binary operations like addition or multiplication
or a (2× 2)-matrix in the case of a Möbius transformation. If the norm of these
matrices remains bounded, then the algorithm runs only through a finite number
of states and can be therefore computed by a finite state transducer. Delacourt
and Kůrka [3] show that this happens if the digits of the number system are
represented by modular matrices, i.e., by matrices with integer entries and unit
determinant. This generalizes a result of Raney [15] that a Möbius transfor-
mation can be computed by a finite state transducer in the number system of
continued fractions. Frougny [4] shows that in positional number systems with
an irrational Pisot base β > 1, the addition can be also computed by a finite
state transducer.

In the opposite direction, Konečný [8] shows that under certain assumptions, a
finite state transducer can compute only Möbius transformations. In the present
paper we strenghten and generalize this result and show that if an analytic func-
tion is computed by a finite state transducer in a number system with sofic ex-
pansion subshift, then this function is a Möbius transformation (Theorem 10).
Since modular number systems have some disadvantages (slow convergence),
we address the question whether a Möbius transformation can be computed
by a finite state transducer also in nonmodular systems which are expansive,
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so that they converge faster. Kůrka and Delacourt [13] show that in the bimod-
ular number system (which extends the binary signed system) the computation
of a Möbius transformation has an asymptotically linear time complexity. Al-
though the norm of the state matrices is not bounded, it remains small most of
the time. In the present paper we show that this result cannot be improved. For
any expansive number systems whose transformations have integer entries and
determinant at most 2 there exists a Möbius transformation which cannot be
computed by a finite state transducer (Theorem 15).

2 Subshifts

For a finite alphabet A denote by A∗ =
⋃

m≥0A
m the set of finite words. The

length of a word u = u0 . . . um−1 ∈ Am is |u| = m. Denote by AN the Cantor
space of infinite words with the metric

d(u, v) = 2−k, where k = min{i ≥ 0 : ui �= vi}.

We say that v ∈ A∗ is a subword of u ∈ A∗ ∪AN and write v � u, if v = u[i,j) =

ui . . . uj−1 for some 0 ≤ i ≤ j ≤ |u|. The shift map σ : AN → AN is defined
by σ(u)i = ui+1. A subshift is a nonempty set Σ ⊆ AN which is closed and
σ-invariant, i.e., σ(Σ) ⊆ Σ. If D ⊆ A∗ then

ΣD = {u ∈ AN : ∀v � u, v �∈ D}

is the subshift (provided it is nonempty) with forbidden words D. Any subshift
can be obtained in this way. A subshift is uniquely determined by its language
L(Σ) = {v ∈ A∗ : ∃u ∈ Σ, v � u}. A nonempty language L ⊆ A∗ is extend-
able, if for each word u ∈ L, each subword v of u belongs to L, and there exists
a letter a ∈ A such that ua ∈ L. If Σ is a subshift, then L(Σ) is an extendable
language and conversely, for each extendable language L ⊆ A∗ there exists a
unique subshift Σ ⊆ AN such that L = L(Σ). The cylinder of a finite word
u ∈ L(Σ) is the set of infinite words with prefix u: [u] = {v ∈ Σ : v[0,|u|) = u}.

3 Finite Accepting Automata

We consider finite automata which accept (regular) extendable languages, so the
classical definition simplifies: we do not need accepting states (see Kůrka [11]).

Definition 1. A (deterministic) finite automaton over an alphabet A is a
triple A = (B, δ, ι), where B is a finite set of states, δ : A×B → B is a partial
transition function, and ι ∈ B is an initial state.

A finite automaton determines a labelled graph, whose vertices are states p ∈ B
and whose labelled edges are p a−→ q provided δ(a, p) = q. For each a ∈ A we have
a partial mapping δa : B → B defined by δa(p) = δ(a, p) and for each u ∈ A∗ we
have a partial mapping δu : B → B defined by δu = δu|u|−1

◦ · · · ◦ δu0 . We write
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∃δu(p) if δu is defined on p. For u ∈ AN we write ∃δu(p) if ∃δu[0,n)
(p) for each

prefix u[0,n) of u. The follower set of a state p ∈ B is Fp = {u ∈ AN : ∃δu(p)}.
We assume that every state of A is accessible from the initial state, i.e., for

every q ∈ B there exists u ∈ A∗ such that δu(ι) = q. The states that are not
accessible can be omitted without changing the function of the automaton. The
language accepted by A is LA = {u ∈ A∗ : ∃δu(ι)}, so a word u is accepted iff
there exists a path with source ι and label u. We say that Σ ⊆ AN is a sofic
subshift, if its language is regular iff it is accepted by a finite automaton, i.e., if
there exists an automaton A such that Σ = Fι = {u ∈ AN : ∃δu(ι)}.

4 Möbius Transformations

On the extended real line R = R∪{∞} we have homogeneous coordinates
x = (x0, x1) ∈ R2 \ {(0, 0)} with equality x = y iff det(x, y) = x0y1 − x1y0 = 0.
We regard x ∈ R as a column vector, and write it usually as x = x0

x1
, for example

∞ = 1
0 . A real Möbius transformation (MT) is a self-map of R of the form

M(x) =
ax+ b

cx+ d
=

ax0 + bx1

cx0 + dx1
,

where a, b, c, d ∈ R and det(M) = ad− bc �= 0. If det(M) > 0, we say that M is
increasing. An MT is determined by a (2× 2)-matrix which we write as a pair
of fractions of its left and right column M = (ac ,

b
d). If m �= 0, then (ma

mc ,
mb
md)

determines the same transformation as M . Denote by M(R) the set of real MT
and by M+(R) the set of increasing MT. The composition of MT corresponds to
the product of matrices. The inverse of a transformation is (ac ,

b
d )

−1 = ( d
−c ,

−b
a ).

Denote by Mn the n-th iteration of M .
The stereographic projection h(z) = (iz + 1)/(z + i) maps R to the unit

circle T = {z ∈ C : |z| = 1} in the complex plane. For each M ∈ M(R) we get

a disc Möbius transformation M̂ : T → T given by M̂(z) = h ◦M ◦ h−1(z).
The circle derivation of M at x ∈ R is

M•(x) = |M̂ ′(h(x))| = | det(M)| · ||x||2
||M(x)||2 ,

where ||x|| =
√

x2
0 + x2

1. The trace and norm of M = (ac ,
b
d ) ∈ M+(R) are

tr(M) =
|a+ d|√
ad− bc

, ||M || =
√
a2 + b2 + c2 + d2√

ad− bc
.

We say that x ∈ R is a fixed point of M if M(x) = x. If M = (ac ,
b
d ) is not the

identity, M(x) = x yields a quadratic equation bx2
0+(d− a)x0x1− cx2

1 = 0 with
discriminant D = (a− d)2 +4bc = (a+ d)2 − 4(ad− bc), so D ≥ 0 iff tr(M) ≥ 2.
If tr(M) < 2, then M has no fixed point and we say that M is elliptic. If
tr(M) = 2, then M has one fixed point and we say that M is parabolic. If
tr(M) > 2, then M has two fixed points and we say that M is hyperbolic.
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Definition 2. The similarity, translation and rotation are transformations
with matrices

Sr =

(
r

0
,
0

1

)
, Tt =

(
1

0
,
t

1

)
, Rt =

(
cos t

2

− sin t
2

,
sin t

2

cos t
2

)
.

Sr is a hyperbolic transformation with the fixed points 0,∞. Tt is a parabolic
transformation with the fixed point ∞, and Rt is an elliptic transformation.

Definition 3. We say that transformations P,Q ∈ M+(R) are conjugated if
there exists a transformation M ∈ M(R) such that Q = M−1PM .

Conjugated transformations have the same dynamical properties and the same
trace. A direct computation shows that tr(PQ) =

∑
i,j PijQji = tr(QP ). It

follows that if Q = M−1PM , then tr(Q) = tr(PMM−1) = tr(P ). If x is a fixed
point of P , then y = M−1x is a fixed point of Q and Q•(y) = P •(x).

Theorem 4 (Beardon [2]).

1. Transformations P,Q ∈ M+(R) are conjugated iff tr(P ) = tr(Q).
2. Each hyperbolic transformation P is conjugated to a similarity with quotient

0 < r < 1. P has an unstable fixed point u(P ) and a stable fixed point s(P )
such that limn→∞ Pn(x) = s(P ) for each x �= u(P ).

3. Each parabolic transformation P is conjugated to the translation T1(x) =
x + 1. P has a unique fixed point s(P ) such that limn→∞ Pn(x) = s(P ) for
each x ∈ R.

4. Each elliptic transformation is conjugated to a rotation Rt with 0 < t ≤ π.

5 Möbius Number Systems

An iterative system over a finite alphabet A is a system of Möbius transfor-
mations F = {Fa ∈ M+(R) : a ∈ A}. For each finite word u ∈ An, we have
the composition Fu = Fun−1 ◦ · · · ◦ Fu0 , so Fuv(x) = Fv(Fu(x)) for any uv ∈ A∗

(Fλ = Id
R
is the identity). The convergence space XF ⊆ AN and the value

function Φ : XF → R are defined by

XF = {u ∈ AN : lim
n→∞

F−1
u[0,n)

(i) ∈ R}, Φ(u) = lim
n→∞

F−1
u[0,n)

(i).

Here i is the imaginary unit. If u ∈ XF then Φ(u) = limn→∞ F−1
u[0,n)

(z) for every

complex z with positive imaginary part and also for most of the real z. The
concept of convergence space is related to the concept of convergence of infinite
product of matrices considered in the theory of weighted finite automata (see
Culik II et al. [6] or Kari et al [7]).

Proposition 5 (Kůrka [12]). Let F be an iterative system over A.

1. For v ∈ A+, u ∈ AN we have vu ∈ XF iff u ∈ XF , and then Φ(vu) =
F−1
v (Φ(u)).
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2. For v ∈ A+ we have v∞ ∈ XF iff Fv is not elliptic. In this case Φ(v∞) =
s(F−1

v ) is the stable fixed point of F−1
v .

Definition 6. We say that (F,Σ) is a number system if F is an iterative
system and Σ ⊆ XF is a subshift such that Φ : Σ → R is continuous and
surjective. We say that (F,Σ) is an expansive number system if for each
u ∈ Σ, we have F •

u0
(Φ(u)) > 1. We say that (F,Σ,A) is a sofic number

system, if (F,Σ) is a number system and A is a finite automaton with LA =
L(Σ).

If (F,Σ) is expansive, then the convergence in Φ(u) = limn→∞ F−1
u[0,n)

(i) is

geometric. In nonexpansive systems this convergence may be much slower (see
Delacourt and Kůrka [13]).

ι0-

1

1-

00-

1

0-

1-

1
0

1-

1

1-

0

0

1

1-

0

p Φ(Fp)

ι R
1 [−1, 1

2
] = [Φ(1

∞
), Φ(01∞)]

0 [−1, 1] = [Φ(1
∞
), Φ(1∞)]

1 [− 1
2
, 1] = [Φ(01

∞
), Φ(1∞)]

0 [ 1
4
,− 1

4
] = [Φ(101

∞
), Φ(101∞)]

Fig. 1. The accepting automaton of the subshift of the binary signed system with
forbidden words D = {10, 00, 10, 00, 11, 11} (left) and Φ-images of the follower sets
(right). Here [ 1

4
,− 1

4
] = {x ∈ R : x ≥ 1

4
or x ≤ − 1

4
} ∪ {∞} is an unbounded interval

which contains ∞.

Example 1. The binary signed system (F,ΣD) has alphabet A = {1, 0, 1, 0},
transformations

F1(x) = 2x+ 1, F0(x) = 2x, F1(x) = 2x− 1, F0(x) = x/2,

and forbidden words D = {10, 00, 10, 00, 11, 11}.

The digits 1, 0 stand for −1 and ∞. A finite word of ΣD can be written as 0
m
u,

where m ≥ 0 and u ∈ {1, 0, 1}∗. If |u| = n then

F−1
0
m
u
(x) = 2m

(u0

2
+ · · ·+ un−1

2n
+

x

2n

)
,

so for u ∈ {1, 0, 1}N we get

Φ(0
m
u) = lim

n→∞
F−1
0
m
u
(i) =

∑
i≥0

ui · 2m−i−1.
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Thus ΣD ⊆ XF and Φ : ΣD → R is continuous and surjective. The subshift ΣD

is sofic. Its accepting automaton has states B = {ι, 1, 0, 1, 0}, initial state ι and
transitions which can be seen in Figure 1 left. Computing for each p ∈ B the
minimum and maximum of paths which start at p, we obtain the Φ-images of
the follower sets in Figure 1 right.

6 Finite State Transducers

Definition 7. A finite state transducer over an alphabet A is a quadruple T =
(B, δ, τ, ι), where (B, δ, ι) is a finite automaton over A and τ : A×B → A∗ is a
partial output function with the same domain as δ.

For each u ∈ A we have a partial mapping τu : B → A∗ defined by induction:
τλ(p) = λ, τua(p) = τu(p)τ(a, δu(p)) (concatenation). The output mapping works
also on infinite words. If u is a prefix of v, then τu(p) is a prefix of τv(p), so for
each p ∈ B and u ∈ AN we have τu(p) ∈ A∗ ∪ AN. A finite state transducer
determines a labelled oriented graph, whose vertices are elements of B. There is

an oriented edge p a/v
−→ q iff δa(p) = q and τa(p) = v. The label of a path is the

concatenation of the labels of its edges, so there is a path p u/v
−→ q iff δu(p) = q

and τu(p) = v.

Definition 8. We say that a finite state transducer T = (B, δ, τ, ι) computes a
real function G : R → R in a number system (F,Σ) with sofic expansion subshift
Σ, if for any u ∈ AN we have ∃δu(ι) iff u ∈ Σ and in this case Φ(τu(ι)) =
G(Φ(u)).

Proposition 9. Assume that a finite state transducer T computes a real func-
tion G in a number system (F,Σ) with sofic expansion subshift. Then for every
state p ∈ B there exists a real function Gp : Φ(Fp) → R such that if w ∈ Fp and
τw(p) = z, then Φ(z) = GpΦ(w). We say that T computes Gp at the state p. If
u, v ∈ L(Σ), δu(p) = q and τu(p) = v then Gq = FvGpF

−1
u .

Proof. Assume that ι u/v
−→ p w/z

−→ and set Gp = FvGF−1
u . By Proposition 5,

GpΦ(w) = FvGF−1
u Φ(w) = FvGΦ(uw) = FvΦ(vz) = Φ(z),

so T computes Gp at p. If p u/v
−→ q w/z

−→ , then

FvGpF
−1
u Φ(w) = FvGpΦ(uw) = FvΦ(vz) = Φ(z),

so T computes FvGpF
−1
u at q and must be equal to Gq.

7 Analytic Functions

A real function G : R → R is analytic, if it can be written as a power series
G(x) =

∑
n≥0 an(x−w)n in a neighbourhood of every point w ∈ R. For w = ∞

this means that the function G(1/x) is analytic at 0. Every rational function,
i.e., a ratio of two polynomials is analytic in R. The functions ex, sinx or cosx
are analytic in R but not in R.
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Lemma 1. Let G : R → R be a nonzero analytic function and let F0, F1 ∈
M+(R) be hyperbolic transformations such that F0G = GF1. Then G is a rational
function.

Proof. Any hyperbolic transformation is conjugated to a similarity Sr(x) = rx
with 0 < r < 1. Thus there exist transformations f0, f1 and 0 < r0, r1 < 1 such
that F0 = f0Sr0f

−1
0 , F1 = f1Sr1f

−1
1 . For H = f−1

0 Gf1 we get

Sr0H = Sr0f
−1
0 Gf1 = f−1

0 F0Gf1 = f−1
0 GF1f1 = Hf−1

1 F1f1 = HSr1 .

Since G is analytic, H also is analytic and H(x) = a0 + a1x + a2x
2 + · · · in a

neighbourhood of zero, so

r0a0 + r0a1x+ r0a2x
2 + · · · = a0 + a1r1x+ a2r

2
1x

2 + · · ·

Since r0 �= 0 we get a0 = 0. If n is the first integer with an �= 0, then r0 = rn1 .
For m > n we get rn1 am = amrm1 , so am = 0. Thus H(x) = anx

n and therefore
G = f0Hf−1

1 is a rational function.

Konečný [8] proves essentially Lemma 1 but makes the assumption that the
derivation of G at the fixed point of F1 is nonzero, i.e., H ′(0) �= 0 which implies
that H is linear. Without the assumption of analyticity, we would get a much
larger class of functions. Given 0 < r0, r1 < 1, let h : [r1, 1] → [r0, 1] be any
continuous function with h(r1) = r0, h(1) = 1. Then the function H : (0,∞) →
(0,∞) defined by H(x) = rn0 · h(r−n

1 · x) for rn+1
1 ≤ x ≤ rn1 , n ∈ Z, satisfies

H(r1x) = r0H(x). We can define H similarly on (−∞, 0), and if we set H(0) = 0,
H(∞) = ∞, then H : R → R is continuous but not necessarily analytic or
differentiable.

To exclude rational functions of degree n ≥ 2, we prove Lemma 2. Recall
that the degree of a rational function is the maximum of the degree of the
numerator and denominator, so rational functions of degree 1 are just Möbius
transformations.

Lemma 2. Let G be a rational function of degree n ≥ 2, and let F0, F1, F2, F3 ∈
M+(R) be hyperbolic transformations such that F0G = GF1, F2G = GF3. Then
F2 has the same fixed points as F0 and F3 has the same fixed points as F1.

Proof. By Lemma 1 there exist transformations f0, f1 and 0 < r0, r1 < 1 such
that F0 = f0Sr0f

−1
0 , F1 = f1Sr1f

−1
1 , and H = f−1

0 Gf1 is a function of the form
H(x) = pxn with n ≥ 2. Since G = f0Hf−1

1 , we get

f−1
0 F2f0H = f−1

0 F2Gf1 = f−1
0 GF3f1 = Hf−1

1 F3f1.

Setting f−1
0 F2f0 = (ac ,

b
d), f

−1
1 F3f1 = (AC , B

D ) we get

(apxn + b)(Cx +D)n = p(cpxn + d)(Ax +B)n

Comparing the coeficients at x2n and x2n−1 we get aCn = pcAn, aCn−1D =
pcAn−1B. Thus pcAnD = aCnD = pcAn−1BC, so pcAn−1(AD − BC) = 0 and
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therefore cA = 0 and it follows aC = 0. Comparing the coeficients at x and x0,
we get bCDn−1 = pdABn−1, bDn = pdBn, so pdABn−1D = bcDn = pdCBn and
pdBn−1(AD−BC) = 0. Thus dB = 0 and it follows bD = 0. We have therefore
proved cA = aC = dB = bD = 0. It follows that either A = D = a = d = 0 or
B = C = b = c = 0. In the former case, F2 and F3 would be elliptic which is
excluded by the assumption. Thus B = C = b = c = 0, so both f−1

0 F2f0 and
f−1
1 F3f1 have the fixed points 0 and ∞, which are also fixed points of Sr0 and

Sr1 . It follows that F2 has the same fixed points as F0 and F3 has the same fixed
points as F1.

Lemma 3. Let G : R → R be an analytic function and let F0, F1 ∈ M+(R) be
parabolic transformations such that F0G = GF1. Then G ∈ M(R) is a MT.

Proof. A parabolic transformation is conjugated to the translation T1(x) = x+1.
Thus there exist transformations f0, f1 such that F0 = f0T1f

−1
0 , F1 = f1T1f

−1
1 .

For H = f−1
0 Gf1 we get T1H = HT1. The function H0(x) = H(x) − x is then

periodic with period 1, i.e., H0(x + 1) = H0(x). Since H0 is analytic at ∞, it
must be zero, otherwise it would not be even continuous at ∞. Thus H(x) = x
and G is an MT.

Lemma 4. Let G : R → R be an analytic function and let F0, F1 ∈ M+(R) be
transformations such that F0G = GF1. If one of the F0, F1 is hyperbolic and the
other is parabolic, then G is the zero function.

Proof. LetH = f−1
0 Gf1 as in the proof of Lemma 3. IfH(x)+1 = H(r1x), where

H(x) = a0 + a1x + · · ·, then we get a0 + 1 = a0 which is impossible. Suppose
r0 ·H(x) = H(x+ 1) with 0 < r0 < 1. If H(0) = 0, then H(n) = 0 for all n ∈ Z
and H = 0, since H is continuous at ∞. If H(0) �= 0, then H(n) = H(0) · rn0 , so
limn→∞ H(n) = 0, limn→−∞ H(n) = ∞ which is impossible.

Theorem 10. Let (F,Σ) be a number system with sofic subshift Σ. If G : R →
R is a nonzero analytic function computed in Σ by a finite state transducer, then
G ∈ M(R) is a Möbius transformation (the determinant of G may be negative).

Proof. Let ι u/v
−→ p w/z

−→ p be a path in the graph of the transducer. By Proposition
9, Gp = FvGF−1

u is analytic and GpFw = FzGp. By Proposition 5, Fw, Fz

cannot be elliptic and by Lemma 1, 3, 4, Gp must be a rational function, so
G = F−1

v GpFu is rational too. Assume by contradiction that the degree of G is
at least n ≥ 2. Then all Gp must have degree n and by Lemma 3 and 4, Fu, Fv

must be hyperbolic whenever p u/v
−→ p. Take any infinite path u/v. There exists

a state p ∈ B which occurs infinitely often in this path, so we have words u(i),
v(i) such that u = u(0)u(1)u(2) · · · and

ι u(0)/v(0)

−→ p u(1)/v(1)

−→ p u(2)/v(2)

−→ p · · · .

By Lemma 2, all Fu(i) with i > 0 have the same fixed points. It follows that
Φ(u) = F−1

u(0)(s), where s is one of the fixed points of Fu(1) . However the set

of such numbers is countable, while the mapping Φ : Σ → R is assumed to be
surjective, so we have a contradiction. Thus Gp ∈ M(R) and thereforeG ∈ M(R).
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8 Rational Transformations and Intervals

Denote by Z the set of integers and by Q = {x ∈ Z2 \ { 0
0} : gcd(x) = 1} the

set of (homogeneous coordinates of) rational numbers which we understand as a
subset of R. Here gcd(x) is the greatest common divisor of x0 and x1. The norm
||x|| =

√
x2
0 + x2

1 of x ∈ Q does not depend on the representation of x. We have

the cancellation map d : Z2 \ { 0
0} → Q given by d(x) = x0/ gcd(x)

x1/ gcd(x) . Denote by

Z2×2 the set of 2× 2 matrices with integer entries and

M(Z) = {M ∈ Z2×2 : gcd(M) = 1, det(M) > 0}.

We say that a Möbius transformation is rational if its matrix belongs to M(Z).
For x ∈ Q we distinguish M · x ∈ Z2 from Mx = d(M · x) ∈ Q. For M =

(ac ,
b
d) ∈ Z2×2 denote by d(M) = (a/gc/g ,

b/g
d/g ), where g = gcd(M), so we have

a cancellation map d : Z2×2 \ {(00 ,
0
0 )} → M(Z). We distinguish the matrix

multiplication M · N from the multiplication MN = d(M · N) in M(Z). The
inverse of M = (ac ,

b
d ) ∈ M(Z) is M−1 = ( d

−c ,
−b
a ), so M · M−1 = det(M) · I,

MM−1 = I.

Lemma 5. If M,N ∈ M(Z), then g = gcd(M · N) divides both det(M) and
det(N).

Proof. Clearly g divides M−1 ·M ·N = det(M) ·N . Since gcd(N) = 1, g divides
det(M). For the similar reason, g divides det(N).

Definition 11. A number system (F,Σ) is rational, if all its transformations
belong to M(Z). A rational number system is modular, if all its transformations
have determinant 1.

Theorem 12 (Delacourt and Kůrka [3]). If (F,Σ) is a sofic modular num-
ber system, then each transformation M ∈ M+(Z) can be computed in (F,Σ) by
a finite state transducer.

Proposition 13. A modular number system cannot be expansive.

Proof. Assume by contradiction that a modular system (F,Σ) is expansive and
let u ∈ Σ be such that Φ(u) = 0, so F •

u0
(0) > 1. If Fu0 = (ac ,

b
d ), then F •

u0
(0) =

1
b2+d2 > 1, so b = d = 0 and therefore det(Fu0 ) = 0 which is a contradiction.

9 The Binary Signed System

It is well-known that in redundant number systems, the addition can be com-
puted by a finite state transducer (see e.g. Avizienis [1] or Frougny [4]), provided
both operands are from a bounded interval. The binary signed system of Exam-
ple 1 is redundant, since the intervals Vp = Φ(Fp) overlap: their interiors cover
whole R. It is not difficult to show that any linear function G(x) = rx, where r is
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rational, can be computed by a finite state transducer. This is based on the fact
that the matrices Fv ·Gp · F−1

u have a common factor which can be cancelled:

(10 ,
0
2m ) · (p0 ,

0
q ) · (

2n

0 , 0
1 ) = (2

np
0 , 0

2mq ),

(2
m

0 , −b
1 ) · (p0 ,

0
q ) · (

1
0 ,

a
2n ) = (2

mp
0 , 2map−2nbq

2nq ),

On the other hand we have

Proposition 14. The function G(x) = x+1 is not computable by a finite state
transducer in the binary signed system.

Proof. Assume that T = (B, δ, τ, ι) computes G(x) = x+ 1. Since τ0∞(ι) = 0
∞
,

there exists p ∈ B and r, s ≥ 0, m,n > 0 such that ι 0
r
/0

s

−→ p 0
n
/0

m

−→ p. However,
for Gp = F0

sGF−1
0
r = (2

r

0 , 1
2s ) we get

F0
mGpF

−1
0
n = (10 ,

0
2m ) · (2r0 , 1

2s ) · (
2n

0 , 0
1 ) = (2

r+n

0 , 1
2m+s ) �= Gp.

and this is a contradiction.

10 Bimodular Systems

We are going to prove another negative result concerning the computation of a
Möbious transformations in expansive number systems. We say that a rational
number system (F,Σ) is bimodular, if Fa ∈ M(Z) and det(Fa) ≤ 2 for each
a ∈ A. Kůrka and Delacourt [13] show that there exists a bimodular number
system (which extends the binary signed system) in which the computation of a
Möbius transformation has an asymptotically linear time complexity. Although
the norm of the state matrices is not bounded, it remains small most of the time.
We show that this result cannot be improved. There exist transformations which
cannot be computed by a finite state transducer.

Lemma 6. Assume F ∈ M(Z) and det(F ) ≤ 2.
1. If F •(0) > 1, then either F = (2c ,

0
1 ), F (0) = 0, or F = (a2 ,

−1
0 ), F (0) = ∞.

2. If F •(∞) > 1, then either F = ( 0
−1 ,

2
d ), F (∞) = 0, or F = (10 ,

b
2 ), F (∞) = ∞.

Proof. Let F = (ac ,
b
d ). If F

•(0) = det(F )
b2+d2 > 1, then det(F ) = 2 since b, d cannot

be both zero. Thus b2 + d2 < 2 and b, d ∈ {−1, 0, 1}, so either F = (2c ,
0
1 ) or

F = (a2 ,
−1
0 ). If F •(∞) = det(F )

a2+c2 > 1, then det(F ) = 2, a, c ∈ {−1, 0, 1} and

either F = (10 ,
b
2 ), or F = ( 0

−1 ,
2
d).

Theorem 15. Let (F,Σ) be a rational bimodular system. Then there exists a
transformation G ∈ M(Z) which cannot be computed by a finite state transducer
in (F,Σ).
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Proof. Denote by mod2 the modulo 2 function. Choose any transformation G
such that G(0) = 0 and mod2(G) = (01 ,

0
0 ), e.g., G(x) = 2x

x+2 . Pick a word u ∈ Σ
with Φ(u) = 0 and assume that we have a finite state transducer which computes
G on u with the result v, so Φ(v) = 0. The computation of the transducer
determines a path whose vertices compute functions Gn,m = Fv[0,m)

GF−1
u[0,n)

and

in each transition we have either Gn,m
un/λ−→ Gn+1,m or Gn,m

λ/vn−→ Gn,m+1. We
show by induction that during the process no cancellation ever occurs: either
det(Gn+1,m) = 2 det(Gn,m) or det(Gn,m+1) = 2 det(Gn,m). Denote by xn =
Φ(u[n,∞)) = Fu[0,n)

Φ(u) = Fu[0,n)
(0), so x0 = 0 and ym = Fv[0,m)

GΦ(u) =
Fv[0,m)

(0), so y0 = 0. Denote by Hn,m = mod2(Gn,m). We show by induction
that xn, ym ∈ {0,∞}, and Hn,m is determined by xn, ym by the table

xn, ym 0, 0 0,∞ ∞, 0 ∞,∞
Hn,m (01 ,

0
0 ) (

1
0 ,

0
0 ) (

0
0 ,

0
1 ) (

0
0 ,

1
0 )

If xn = ym = 0, then F •
un

(0) > 1 so by Lemma 6 either xn+1 = FunFu[0,n)
(0) =

Fun(xn) = 0 and then Hn+1,m = (01 ,
0
0 ) · (

0
c ,

0
1 )

−1 = (01 ,
0
0 ) · (

1
c ,

0
0 ) = (01 ,

0
0 ),

or xn+1 = ∞ and then Hn+1,m = (01 ,
0
0 ) · (

a
0 ,

1
0 )

−1 = (01 ,
0
0 ) · (

0
0 ,

1
a ) = (00 ,

0
1 ).

Similarly F •
vm(0) > 1 so by Lemma 6 either ym+1 = 0 and then Hn,m+1 =

(0c ,
0
1 ) · (

0
1 ,

0
0 ) = (01 ,

0
0 ), or ym+1 = ∞ and then Hn,m+1 = (a0 ,

1
0 ) · (

0
1 ,

0
0 ) = (10 ,

0
0 ).

If (xn, ym) = (0,∞), then either xn+1 = 0 and Hn+1,m = (10 ,
0
0 ) · (

1
c ,

0
0 ) = (10 ,

0
0 ),

or xn+1 = ∞ and Hn+1,m = (10 ,
0
0 ) · (

0
0 ,

1
a) = (00 ,

1
0 ), or ym+1 = 0 and Hn,m+1 =

(01 ,
0
d ) · (

1
0 ,

0
0 ) = (01 ,

0
0 ), or ym+1 = ∞ and Hn,m+1 = (10 ,

b
0 ) · (

1
0 ,

0
0 ) = (10 ,

0
0 ).

If (xn, ym) = (∞, 0) then either xn+1 = 0 and Hn+1,m = (00 ,
0
1 ) · (

d
1 ,

0
0 ) = (01 ,

0
0 ),

or xn+1 = ∞ and Hn+1,m = (00 ,
0
1 ) · (

0
0 ,

b
1 ) = (00 ,

0
1 ), or ym+1 = 0 and Hn,m+1 =

(0c ,
0
1 ) · (

0
0 ,

0
1 ) = (00 ,

0
1 ) or ym+1 = ∞ and Hn,m+1 = (a0 ,

1
0 ) · (

0
0 ,

0
1 ) = (00 ,

1
0 ).

If (xn, yn) = (∞,∞) then either xn+1 = 0 and Hn+1,m = (00 ,
1
0 ) · (

d
1 ,

0
0 ) = (10 ,

0
0 ),

or xn+1 = ∞ and Hn+1,m = (00 ,
1
0 ) · (

0
0 ,

b
1 ) = (00 ,

1
0 ), or ym+1) = 0 and Hn,m+1 =

(01 ,
0
d ) · (

0
0 ,

1
0 ) = (00 ,

0
1 ), or ym+1 = ∞ and Hn,m+1 = (10 ,

b
0 ) · (

0
0 ,

1
0 ) = (00 ,

1
0 ). It

follows that in all cases det(Gn,m) = 2n+m det(G). If n + m �= n′ + m′, then
Gn,m �= Gn′,m′ and the corresponding states of the transducer must be different.
Thus the number of states cannot be finite.

11 Conclusions

We have shown that the only analytical functions in extended real line com-
putable by finite state transducers in Möbius number systems are Möbius trans-
formations. However, many questions remain still open. For example, without
the assumption of analyticity, we obtain a wider class of functions. Namely, in
the signed binary system from Example 1, the function f(x) = |x| can be also
computed by a finite state transducer. Thus the question arises, which continu-
ous, or differentiable (to some degree) functions can be computed in such a way.
Similarly, one can also ask which “wild” functions, such as nowhere continuous,
or continuous but nowhere differentiable functions, can be computable by finite
state transducers in Möbius number systems.
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Société Mathématique de France, Paris (2003)
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Abstract. Minimization of nondeterministic finite automata (NFA) is
a hard problem (PSPACE-complete). Bisimulations are then an attrac-
tive alternative for reducing the size of NFAs, as even bisimilarity (the
largest bisimulation) is almost linear using the Paige and Tarjan al-
gorithm. NFAs obtained from regular expressions (REs) can have the
number of states linear with respect to the size of the REs and conver-
sion methods from REs to equivalent NFAs can produce NFAs without
or with transitions labelled with the empty word (ε-NFA). The stan-
dard conversion without ε-transitions is the position automaton, Apos.
Other conversions, such as partial derivative automata (Apd) or follow
automata (Af ), were proven to be quotients of the position automata
(by some bisimulations). Recent experimental results suggested that for
REs in (normalized) star normal form the position bisimilarity almost
coincide with the Apd automaton. Our goal is to have a better charac-
terization of Apd automata and their relation with the bisimilarity of the
position automata. In this paper, we consider Apd automata for regular
expressions without Kleene star and establish under which conditions
they are isomorphic to the bisimilarity of Apos.

1 Introduction

Regular expressions (REs), because of their succinctness and clear syntax, are
the common choice to represent regular languages. The minimal deterministic
finite automaton (DFA) equivalent to a RE can be exponentially larger than the
RE. However, nondeterministic finite automata (NFAs) equivalent to REs can
have the number of states linear with respect to (w.r.t) the size of the REs. But,
minimization of NFAs is a hard problem (PSPACE-complete). Bisimulations are
then an attractive alternative for reducing the size of NFAs, as even bisimilarity
(the largest bisimulation) can be computed in almost linear time using the Paige
and Tarjan algorithm [20].

Conversion methods from REs to equivalent NFAs can produce NFAs with-
out or with transitions labelled with the empty word (ε-NFA). The standard
conversion without ε-transitions is the position automaton (Apos) [12,17]. Other
conversions such as partial derivative automata (Apd) [1,18], follow automata

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 264–277, 2014.
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(Af ) [14], or the construction by Garcia et al. (Au) [11] were proved to be quo-
tients of the position automata, by specific bisimulations1 [10,14]. When REs are
in (normalized) star normal form, i.e. when subexpressions of the star operator
do not accept ε, the Apd automaton is a quotient of the Af [8].

The Apos bisimilarity was studied in [15], and of course it is always not larger
than all other quotients. Nevertheless, some experimental results on uniform
random generated REs suggested that for REs in (normalized) star normal form
the Apos bisimilarity automata almost coincide with the Apd automata [13].

Our goal is to have a better characterization of Apd automata and their rela-
tion with the Apos bisimilarity. All the above mentioned automata (Apos, Apd,
Af , and Au) can be obtained from a given RE by specific algorithms (without
considering the correspondent bisimulation of Apos) in quadratic time. We aim
to obtain a similar algorithm that computes, directly from a regular expression,
the position bisimilarity automaton.

In this paper, we review the construction of Apd as a quotient of Apos and
study several of its properties. For regular expressions without Kleene star we
characterize the Apd automata and we prove that the Apd automaton is isomor-
phic to the position bisimilarity automaton, under certain conditions. Thus, for
these special regular expressions, we conclude that the Apd is an optimal conver-
sion method. We close considering the difficulties of relating the two automata
for general regular expressions.

2 Regular Expressions and Automata

Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k, the set RE of regular expres-
sions α over Σ is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α + α) | (α · α) | (α)�, (1)

where the symbol · is often omitted. If two regular expressions α and β are
syntactically equal, we write α ≡ β. The size of a regular expression α, |α|,
is its number of symbols, disregarding parenthesis; its alphabetic size, |α|Σ , is
the number of occurrences of letters from Σ; and |α|ε denotes the number of
occurrences of ε in α. A regular expression α is linear if all its letters are distinct.

The language represented by a RE α is denoted by L(α). Two REs α and
β are equivalent if L(α) = L(β), and one writes α = β. We define ε(α) = ε if
ε ∈ L(α) and ε(α) = ∅, otherwise. We can inductively define ε(α) as follows:

ε(σ) = ε(∅) = ∅
ε(ε) = ε
ε(α∗) = ε

ε(α+ β) =

{
ε if (ε(α) = ε) ∨ (ε(β) = ε)

∅ otherwise

ε(αβ) =

{
ε if (ε(α) = ε) ∧ (ε(β) = ε)

∅ otherwise

1 Also called right-invariant equivalence relations.
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The algebraic structure (RE,+, ., ∅, ε) constitutes an idempotent semiring, and
with the Kleene star operator $, a Kleene algebra. The axioms for the star
operator can be defined by the following rules [16]:

ε+ αα� = α� and ε+ α�α = α�,

β + αγ ≤ γ =⇒ α�β ≤ γ and β + γα ≤ γ =⇒ βα� ≤ γ,

where α ≤ β means α+β = β. Given a language L ⊆ Σ� and a word w ∈ Σ�, the
left-quotient of L w.r.t. w is the language w−1L = {x | wx ∈ L}. Brzozowski [6]
defined the syntactic notion of derivative of a RE α w.r.t. a word w, dw(α), such
that L(dw(α)) = w−1L(α), and showed that the set of derivatives of a regular
expression w.r.t. all words is finite, modulo associativity (A), commutativity (C),
and idempotence (I) of + (which we denote by modulo ACI).

In this paper, we only consider REs α normalized under the following condi-
tions:

– The expression α is reduced according to:

• the equations ∅+ α = α+ ∅ = α, ε.α = α.ε = α, ∅.α = α.∅ = ∅;
• and the rule, for all subexpressions β of α, β = γ + ε =⇒ ε(γ) = ∅.

– The expression α is in star normal form (snf) [5], i.e. for all subexpressions
β� of α, ε(β) = ∅.

Every regular expression can be converted into an equivalent normalized RE
in linear time.

A nondeterministic finite automaton (NFA) is a five-tuple A = (Q,Σ, δ, q0,
F ) where Q is a finite set of states, Σ is a finite alphabet, q0 in Q is the initial
state, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. This transition function can be extended to words in the natural way.
The language accepted by A is L(A) = {w ∈ Σ� | δ(q, w) ∩ F �= ∅}. Two
NFAs are equivalent if they accept the same language. If two NFAs A and B
are isomorphic, we write A / B. An NFA is deterministic (DFA) if for all
(q, σ) ∈ Q × Σ, |δ(q, σ)| ≤ 1. A DFA is minimal if there is no equivalent DFA
with fewer states. Minimal DFAs are unique up to isomorphism.

A binary symmetric and reflexive relation R on Q is a bisimulation if ∀p, q ∈ Q
and ∀σ ∈ Σ if pRq then

– p ∈ F if and only if q ∈ F ;
– ∀p′ ∈ δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′Rq′.

The sets of bisimulations on Q are closed under finite union. The largest bisim-
ulation, i.e., the union of all bisimulation relations on Q, is called bisimilar-
ity (≡b), and it is an equivalence relation. Bisimilarity can be computed in
almost linear time using the Paige and Tarjan algorithm [20]. If R is a equiv-

alence bisimulation on Q the quotient automaton A�R can be constructed by
A�R = (Q�R,Σ, δ�R, [q0], F�R), where [q] is the equivalence class that contains

q ∈ Q; S�R = {[q] | q ∈ S}, with S ⊆ Q; and δ�R = {([p], σ, [q]) | (p, σ, q) ∈ δ}.
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It is easy to see that L(A�R) = L(A). The quotient automaton A�≡b
is the min-

imal automaton among all quotient automata A�R, where R is a bisimulation on

Q, and it is unique up to isomorphism. By language abuse, we will call A�≡b
the

bisimilarity of automaton A. If A is a DFA, A�≡b
is the minimal DFA equivalent

to A.

2.1 Position Automaton

The position automaton was introduced independently by Glushkov [12] and
McNaughton and Yamada [17]. The states in the position automaton, equivalent
to a regular expression α, correspond to the positions of letters in α plus an
additional initial state. Let α denote the linear regular expression obtained by
marking each letter with its position in α, i.e., L(α) ∈ Σ

�
where Σ = {σi | σ ∈

Σ, 1 ≤ i ≤ |α|Σ}. For example, the marked version of the regular expression
τ = (ab� + b)�a is τ = (a1b

�
2 + b3)

�a4. The same notation is used to remove the
markings, i.e., α = α. Let Pos(α) = {1, 2, . . . , |α|Σ}, and Pos0(α) = Pos(α)∪{0}.

We consider the construction of the position automaton following Berry and
Sethi [3] and Champarnaud and Ziadi [10], i.e. the c-continuation automaton.
In this way the relation between Apos and Apd is immediate.

If α is linear, for every symbol σ ∈ Σ and every word w ∈ Σ
�
, dwσ(α) is

either ∅ or unique modulo ACI [3]. If dwσ(α) is different from ∅, it is named c-
continuation of α w.r.t. σ ∈ Σ, and denoted by cσ(α). We define c0(α) = dε(α) =
α. This means that we can associate to each position i ∈ Pos0(α), a unique c-
continuation. For example, given τ = (a1b

�
2 + b3)

�a4 we have ca1(τ ) = b�2τ ,
cb2(τ ) = b�2τ , cb3(τ ) = τ , and ca4(τ ) = ε. The c-continuation automaton for α
is Ac(α) = (Qc, Σ, δc, q0, Fc) where Qc = {q0} ∪ {(i, cσi(α)) | i ∈ Pos(α)}, q0 =
(0, c0(α)), Fc = {(i, cσi(α)) | ε(cσi(α)) = ε}, δc = {((i, cσi(α)), b, (j, cσj (α))) |
σj = b ∧ dσj (cσi(α)) �= ∅}. The Ac(τ) is represented in Figure 1.

(0, τ)

(3, τ)

(1, b�2τ)

(4, ε)

(2, b�2τ)

b

a

a

a

a

b

b

b

a

a

a

b

a

b

Fig. 1. Ac(τ )

If we ignore the c-continuations in the label of each state, we obtain the
position automaton.
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Proposition 1 (Champarnaud & Ziadi). ∀α ∈ RE, Apos(α) / Ac(α).

2.2 Partial Derivative Automaton

The partial derivative automaton of a regular expression was introduced inde-
pendently by Mirkin [18] and Antimirov [1]. Champarnaud and Ziadi [9] proved
that the two formulations are equivalent. For a RE α and a symbol σ ∈ Σ, the
set of partial derivatives of α w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ
′) =

{
{ε}, if σ′ = σ

∅, otherwise

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)

∂σ(α
�) = ∂σ(α)α

�

(2)

where for any S ⊆ RE, β ∈ RE, S∅ = ∅S = ∅, Sε = εS = S, and Sβ = {αβ|α ∈
S} if β �= ∅, and β �= ε.

The definition of partial derivative can be extended to sets of regular expres-
sions, words, and languages. Given α ∈ RE and σ ∈ Σ, ∂σ(S) =

⋃
α∈S ∂σ(α)

for S ⊆ RE, ∂ε(α) = α and ∂wσ(α) = ∂σ(∂w(α)), for any w ∈ Σ�, σ ∈ Σ, and
∂L(α) =

⋃
w∈L ∂w(α) for L ⊆ Σ�. We know that

⋃
τ∈∂w(α) L(τ) = w−1L(α).

The set of all partial derivatives of α w.r.t. words is denoted by PD(α) =⋃
w∈Σ� ∂w(α). Note that the set PD(α) is always finite [1], as opposed to what

happens for the Brzozowski derivatives set which is only finite modulo ACI.
The partial derivative automaton is defined by Apd(α) = (PD(α), Σ, δpd, α,

Fpd), where δpd = {(τ, σ, τ ′) | τ ∈ PD(α) and τ ′ ∈ ∂σ(τ)} and Fpd = {τ ∈
PD(α) | ε(τ) = ε}. Considering τ = (ab� + b)�a, the Figure 2 shows Apd(τ).

τ b�τ ε

a

a

b

ab

a, b

Fig. 2. Apd(τ )

Note that if α is a linear regular expression, for every word w, |∂w(α)| ≤ 1 and
the partial derivative coincide with dw(α) modulo ACI. Given the c-continuation
automaton Ac(α), let ≡c be the bisimulation on Qc defined by (i, cσi(α)) ≡c

(j, cσj (α)) if cσi(α) ≡ cσj (α). That the Apd is isomorphic to the resulting quo-
tient automaton, follows from the proposition below. For our running example,
we have (0, cε) ≡c (3, cb3) and (1, ca1) ≡c (2, cb2). In Figure 2, we can see the
merged states, and that the corresponding REs are unmarked.

Proposition 2 (Champarnaud & Ziadi). ∀α ∈ RE, Apd(α) / Ac(α)�≡c
.
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Inductive Characterization of Apd. Mirkin’s construction of the Apd(α) is
based on solving a system of equations αi = σ1αi1 + . . . + σkαik + ε(αi), with
α0 ≡ α and αij , 1 ≤ j ≤ k, linear combinations the αi, 0 ≤ i ≤ n, n ≥ 0. A
solution π(α) = {α1, . . . , αn} can be obtained inductively on the structure of α
as follows:

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α ∪ β) = π(α) ∪ π(β)

π(αβ) = π(α)β ∪ π(β)

π(α�) = π(α)α�.

(3)

Champarnaud and Ziadi [9] proved that PD(α) = π(α) ∪ {α} and that the
two constructions led to the same automaton.

As noted by Broda et. al [4], Mirkin’s algorithm to compute π(α) also provides
an inductive definition of the set of transitions of Apd(α). Let ϕ(α) = {(σ, γ) |
γ ∈ ∂σ(α), σ ∈ Σ} and λ(α) = {α′ | α′ ∈ π(α), ε(α′) = ε}, where both sets
can be inductively defined using (2) and (3). We have, δpd = {α}×ϕ(α)∪F (α)
where the result of the × operation is seen as a set of triples and the set F is
defined inductively by:

F (∅) = F (ε) = F (σ) = ∅, σ ∈ Σ
F (α+ β) = F (α) ∪ F (β)

F (αβ) = F (α)β ∪ F (β) ∪ λ(α)β × ϕ(β)
F (α�) = F (α)α� ∪ (λ(α) × ϕ(α))α�.

(4)

Then, we can inductively construct the partial derivative automaton of α
using the following result.

Proposition 3. For all α ∈ RE, and λ′(α) = λ(α) ∪ ε(α){α},

Apd(α) = (π(α) ∪ {α}, Σ, {α} × ϕ(α) ∪ F (α), α, λ′(α)),

Figure 3 illustrates this inductive construction, where we assume that states
are merged whenever they correspond to syntactically equal REs.

A new proof of Proposition 2 can also be given using the function π. Let π′

be a function that coincides with π except that π′(σ) = {(σ, ε)} and in the two
last rules the regular expression, either β or α�, is concatenated to the second
component of each pair in π′.

Proposition 4. Let α ∈ RE, π′(α) = {(i, cσi(α))|i ∈ Pos(α)}.

By Proposition 4, we can conclude that if we compute π′(α) we obtain exactly2

the set of states Qc \ {(0, cε)} of the c-continuation automaton Ac(α). Then it is
easy to see that π(α) is obtained by unmarking the c-continuations and removing

the first component of each pair, and thus Qc�≡c
= π(α)∪{α}. Considering τ =

(a1b
�
2 + b3)

�a4, π′(τ ) = {(a1, b�2τ ), (b2, b�2τ ), (b3, τ ), (b4, ε)}, which corresponds
exactly to the set of states (excluding the initial) of Ac(τ ), presented in Figure 1.
The set π(τ) is {b�τ, τ, ε}. That the other components are quotients, also follows.

2 Considering, for each position i, the marked letter σi.
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Apd(∅) :
∅

Apd(ε) :
ε

Apd(σ) :
σ ε

σ

Apd(α+ β) :

α + β

∂σ(β)

∂σ(α)

λ(β)

λ(α)
σ

σ

F (α)

F (β)

Apd(αβ) :

αβ ∂σ(α)β λ(α)β ∂
σ′ (β) λ(β)

σ σ′F (α)β F (β)

σ′

Apd(α
�) :

α� ∂σ(α)α� λ(α)α�σ

σ′

F (α)α�

Fig. 3. Inductive construction of Apd. The initial states are final if ε belongs to its
language. Note that only if ε(β) = ε the dotted arrow in Apd(αβ) exists and the state
λ(α)β is final.

3 Apd Characterizations and Bisimilarity

We aim to obtain some characterizations of Apd automaton and to determine

when it coincides with the bisimilarity of the position automaton, i.e. Apos�≡b
.

We assume that all regular expressions are normalized. This ensures that the Apd

is a quotient of Af , so the smaller known direct ε-free automaton construction
from a regular expression. As we discuss in Subsection 3.4, to solve the problem
in the general case it is difficult, mainly because the lack of unique normal forms.
Here, we give some partial solutions. First, we consider linear regular expressions
and, in Subsection 3.2, we solve the problem for regular expressions representing
finite languages.

3.1 Linear Regular Expressions

Given a linear regular expression α, it is obvious that the position automaton
Apos(α) is a DFA. In this case, all positions correspond to distinct letters and
transitions from a same state are all distinct. Thus, Apd(α) is also a DFA.

Proposition 5. If α is a normalized linear regular expression, Apd(α) is mini-
mal.

Proof. By [8, Theorem 2] we know that

cσx(α) �≡ cσy (α) ⇔ {σ | ∂σ(cσx(α)) �= ∅} �= {σ | ∂σ(cσy (α)) �= ∅}
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where α is a normalized linear regular expression and σx and σy are two dis-
tinct letters. We want to prove that any two states cσx(α) and cσy (α) of Apd(α)
are distinguishable. Consider σ′ ∈ Σ such that σ′ ∈ {σ | ∂σ(cσx(α)) �= ∅} but
σ′ /∈ {σ | ∂σ(cσy (α)) �= ∅}. Then δpd(cσx(α), σ

′) = cσ′(α). By construction,
we know that ∃w ∈ Σ� such that δpd(cσ′ (α), w) ∈ Fpd. Let w′ = σ′w. There-
fore δpd(cσx(α), w

′) = δpd(cσ′ (α), w) ∈ Fpd and either δpd is not defined for
(cσy (α), w

′) or δpd(cσy (α), w
′) is a non final dead state. Thus, the two states are

distinguishable. ��

It follows, from this, that for any linear regular expressions α,

Apd(α) / Apos(α)�≡b
.

3.2 Finite Languages

In this section, we consider normalized regular expressions without the Kleene
star operator, i.e. that represent finite languages. These regular expressions are
called finite regular expressions. The following results characterize NFAs that
are Apd automaton.

Proposition 6. The Apd(α) = (PD(α), Σ, δα, α, Fα) automaton of any finite
regular expression α �≡ ∅ has the following properties:

1. The state ε always exists and it is a final state;
2. The state ε is reachable from any other state;
3. All other final states, q ∈ Fα \ {ε}, are of the form (α1 + ε) . . . (αn + ε);
4. |Fα| ≤ |α|ε + 1;
5. The size of each element of PD(α) is not greater than |α|.

Proof. We use the inductive construction of Apd(α).

1. For the base cases this is obviously true. If α is γ+β, then π(α) = π(γ)∪π(β).
As ε ∈ π(γ) and ε ∈ π(β), by inductive hypothesis, then ε ∈ π(α). If α is
γβ, then π(α) = π(γ)β ∪ π(β). As ε ∈ π(β), ε ∈ π(α).

2. If α is ε or σ it is obviously true. Let α be γ + β. The states of Apd(α) are
{α} ∪ π(γ) ∪ π(β). By construction, there exists at least a transition from
the state α to a (distinct) state in π(γ) ∪ π(β). Let α be γβ. The states of
Apd(α) are {α}∪π(γ)β ∪π(β). For β′ ∈ {β}∪π(β), ∃wβ ε ∈ ∂wβ

(β′). In the
same way, for γ′ ∈ {γ}∪π(γ), ∃wγ ε ∈ ∂wγ (γ

′). Thus, for α′ = γ′β ∈ π(γ)β,
we can conclude that ε ∈ ∂wγwβ

(α′). From the state α we can reach the state
ε because the transitions leaving it go to states which reach the state ε.

3. It is obvious, because final states must accept ε.
4. For the base cases it is obviously true. Let α be γ + β. We know that |α|ε =

|γ|ε + |β|ε, |Fα| ≤ |Fγ | + |Fβ | − 1, and that ε(α) = ε if either ε(γ) or ε(β)
are ε. Then |Fα| ≤ |γ|ε + |β|ε + 1 ≤ |α|ε + 1. If α is γβ we know also that
|α|ε = |γ|ε + |β|ε and that ε(α) = ε if ε(γ) and ε(β) are ε. If ε(β) = ε, then
|Fα| ≤ |Fγ |+ |Fβ | − 1. Otherwise, |Fα| = |Fβ |. We have, in the both cases,
|Fα| ≤ |γ|ε + |β|ε + 1 ≤ |α|ε + 1.
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5. If α is ε or σ it is obvious that the proposition is true. Let α be γ + β. For
all αi ∈ π(α) = π(γ) ∪ π(β), |αi| ≤ |γ| or |αi| ≤ |β|, and thus |αi| ≤ |α|. If
α is γβ, then π(α) = π(γ)β ∪ π(β). For γi ∈ π(γ), |γi| ≤ γ. If αi ∈ π(γ)β,
αi = γiβ and |αi| ≤ |γ|+ |β| ≤ |α|. If αi ∈ π(β), |αi| ≤ |β| ≤ |α|. ��

Caron and Ziadi [7] characterized the position automaton in terms of the
properties of the underlying digraph. We consider a similar approach to charac-
terize the Apd for finite languages. We restrict the analysis to acyclic NFAs. We
first observe that Apos are series-parallel automata [19] which is not the case for
all Apd as can be seen considering Apd(a(ac+ b) + bc).

Let A = (Q,Σ, δ, q0, F ) be an acyclic NFA. A is an hammock if it has the
following properties. If |Q| = 1, A has no transitions. Otherwise, there exists an
unique f ∈ F such that for any state q ∈ Q one can find a path from q0 to f
going through q. The state q0 is called the root and f the anti-root. The rank
of a state q ∈ Q, named rk(q), is the length of the longest word w ∈ Σ� such
that δ(q, w) ∈ F . In an hammock, the anti-root has rank 0. Each state q of rank
r ≥ 1, has only transitions for states in smaller ranks and at least one transition
for a state in rank r − 1.

Proposition 7. For every finite regular expression α, Apd(α) is an hammock.

Proof. If the partial derivative automaton has a unique state then it is the Apd(ε)
or Apd(∅) which has no transitions. Otherwise, for all q ∈ PD(α) there exists at
least one path from q0 = α to q because Apd(α) is initially connected; also there
exists at least one path from q to ε, the anti-root, by Proposition 6, item 2. ��

Proposition 8. An acyclic NFA A = (Q,Σ, δ, q0, F ) is a partial derivative au-
tomaton of some finite regular expression α, if the following conditions holds:

1. A is an hammock;
2. ∀q, q′ ∈ Q rk(q) = rk(q′) =⇒ ∃σ ∈ Σ δ(q, σ) �= δ(q′, σ).

Proof. First we give an algorithm that allows to associate to each state of an
hammock A a regular expression. Then, we show that if the second condition
holds, A is the Apd(α) where α is the RE associated to the initial state.

We label each state q with a regular expression RE(q), considering the states
by increasing rank order. We define for the anti-root f , RE(f) = ε. Suppose that
all states of ranks less then n are already labelled. Let q ∈ Q with rk(q) = n. For
σ ∈ Σ, with δ(q, σ) = {q1, . . . , qm} and RE(qi) = βi we construct the regular
expression σ(β1 + · · ·+ βm). Then,

RE(q) =
∑
σ∈Σ

σ(β1 + · · ·+ βm)

where we omit all σ ∈ Σ such that δ(q, σ) = ∅. We have, RE(q0) = α
To show that if A satisfies condition 2. then A / Apd(α), we need to prove

that RE(q) �≡ RE(q′) for all q, q′ ∈ Q with q �= q′. We prove by induction on
the rank. For rank 0, it is obvious. Suppose that all states with rank m < n
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are labelled by different regular expressions. Let q ∈ Q, with rk(q) = n. We
must prove that RE(q) �≡ RE(q′) for all q′ with rk(q′) ≤ n. Suppose that
rk(q) = rk(q′), RE(q) = σ1(α1 + · · · + αn) + · · · + σi(β1 + · · · + βm), and
RE(q′) = σ′

1(α
′
1+ · · ·+α′

n′)+ · · ·+σ′
j(β

′
1+ · · ·+β′

m′). We know that ∃σδ(q, σ) �=
δ(q′, σ). Suppose that σ = σ1 = σ′

1. Then we know that ∃t, t′ αt �= α′
t′ , thus

RE(q) �≡ RE(q′). If rk(q) > rk(q′), then there exists a w ∈ Σ� with |w| = n
such that δ(q, w) ∩ F �= ∅ and δ(q′, w) ∩ F = ∅. Thus RE(q) �≡ RE(q′). ��

3.3 Comparing Apd and Apos�≡b

As we already mentioned, there are many (normalized) regular expressions α

for which Apd(α) / Apos(α)�≡b
. But, even for REs representing finite languages

that is not always true. Taking, for example, τ1 = a(a+b)c+b(ac+bc)+a(c+c),
we have PD(τ1) = {τ1, ac + bc, (a + b)c, c + c, c, ε}, Fpd = {ε}, δpd(τ1, a) =
{(a + b)c, c + c}, δpd(τ1, b) = {ac + bc}, δpd(ac + bc, a) = δpd(ac + bc, b) =
δpd((a + b)c, a) = δpd((a + b)c, b) = {c} and δpd(c + c, c) = δpd(c, c) = {ε}. One

can see that c ≡b (c + c) and (ac+ bc) ≡b (a + b)c. Thus, Apos(τ1)�≡b
has two

states less than Apd(τ1). The states that are bisimilar are equivalent modulo the
+ idempotence and left-distributivity. It is also easy to see that two states are
bisimilar if they are equivalent modulo + associativity or + commutativity.

Considering an order < on Σ and that · < +, we can extend < to REs. Then,
the following rewriting system is confluent and terminating:

α+ (β + γ) → (α+ β) + γ (+ Associativity)

α+ β → β + α if β < α (+ Commutativity)

α+ α → α (+ Idempotence)

(αβ)γ → α(βγ) (. Associativity)

(α+ γ)β → αβ + γβ (Left distributivity).

A (normalized) regular expression α that can not be rewritten anymore by this
system is called an irreducible regular expression modulo ACIAL.

Remark 9. An irreducible regular expression modulo ACIAL α is of the form:

w1 + . . .+ wn + w′
1α1 + . . .+ w′

mαm (5)

where wi, w
′
j are words for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and αj are expressions of the

same form of α, for 1 ≤ j ≤ m. For for each normalized RE without the Kleene
star operator, there exits a unique normal form.

For example, considering a < b < c, the normal form for the RE τ1 given

above is τ2 = ac+ a(ac+ bc)+ b(ac+ bc) and Apd(τ2) / Apos(τ2)�≡b
. As we will

see next, for normal forms this isomorphism always holds.
The following lemmas are needed to prove the main result.

Lemma 10. For σ ∈ Σ, the function ∂σ is closed modulo ACIAL.
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Proof. We know that α has the form w1 + . . .+wn +w′
1α1 + . . .+w′

iαm, where
wi = σvi, vi ∈ Σ�, w′

j = σv′j , v
′
j ∈ Σ�, i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}. Thus,

∀σ ∈ Σ ∂σ(α) = ∂σ(w1) ∪ · · · ∪ ∂σ(wn) ∪ ∂σ(w
′
1)α1 ∪ · · · ∪ ∂σ(w

′
i)αm, where

∂σ(wi) = vi and ∂σ(w
′
j)αj = v′jαj . Then it is obvious that the both possible

results are irreducible modulo ACIAL. Thus the proposition holds. ��

Lemma 11. For w,w′ ∈ Σ�,

1. (∀σ ∈ Σ) |∂σ(w)| ≤ 1.
2. w �= w′ =⇒ (∀σ ∈ Σ) ∂σ(w) �= ∂σ(w

′) ∨ ∂σ(w) = ∂σ(w
′) = ∅.

3. (∀σ ∈ Σ)∂σ(wα) = ∂σ(w)α = {w′α}, if w = σw′.

Proof. 1. Let w = σw′. Then ∂σ(w) = ∂σ(σw
′) = {w′}. For σ �= σ′, ∂σ′(w) = ∅.

2. We need to consider three cases:
(a) if σ �∈ First(w) and σ �∈ First(w′) then ∂σ(w) = ∅ and ∂σ(w

′) = ∅.
(b) if σ ∈ First(w) and σ �∈ First(w′) then ∂σ(w) �= ∅ and ∂σ(w

′) = ∅.
(c) if σ ∈ First(w), σ ∈ First(w′) and w = σv , w′ = σv′ then v �= v′. As

∂σ(w) = v and ∂σ(w
′) = v′ then ∂σ(w) �= ∂σ(w

′).
3. Let w = σw′. Then ∂σ(wα) = ∂σ(w)α = ∂σ(σw

′)α = {w′α}. For σ �= σ′,
∂σ′(wα) = ∅. ��

Proposition 12. Given α and β irreducible finite regular expressions modulo
ACIAL,

α �≡ β =⇒ ∃σ ∈ Σ ∂σ(α) �= ∂σ(β).

Proof. Let α �≡ β. We know that α = w1 + · · ·+ wn + w′
1α1 + · · ·+ w′

mαm and
β = x1+ · · ·+xn′ +x′

1β1+ · · ·+x′
m′βm′ . The sets of partial derivatives of α and

β w.r.t a σ ∈ Σ can be written as:

∂σ(α) = A ∪ ∂σ(wi1 ) ∪ · · · ∪ ∂σ(wij ) ∪ ∂σ(w
′
l1)αl1 ∪ · · · ∪ ∂σ(w

′
lt)αlt ,

∂σ(β) = A ∪ ∂σ(xi′1) ∪ · · · ∪ ∂σ(xi′
j′
) ∪ ∂σ(x

′
l′1
)βl′1 ∪ · · · ∪ ∂σ(x

′
l′
t′
)βl′

t′
,

where the set A contains all partial derivatives ϕ such that ϕ ∈ ∂σ(γ) if, and only
if, γ is a common summand of α and β, i.e. if γ ≡ wi ≡ xj or γ ≡ w′

lαl ≡ x′
kβk

for some i, j, l, and k. Without loss of generality, consider the following three
cases:

1. If i1 �= 0 and i′1 �= 0, we know that for k ∈ {i′1, . . . , i′j′}, wi1 �= xk and, by
Lemma 11, ∂σ(wi1 ) �= ∂σ(xk). And also, by Lemma 11, ∂σ(wi1 ) �= ∂σ(x

′
k)βk,

for k ∈ {l′1, . . . , l′t′}. Thus, ∂σ(wi) ∩ ∂σ(β) = ∅.
2. If i1 �= 0 and i′j = 0, this case corresponds to the second part of the previous

one.
3. If ij = i′j′ = 0, for k ∈ {l′1, . . . , l′t′}, we have w′

l1
αl1 �= x′

kαk and then
either w′

l1
�= x′

k or αl1 �= βk. If w
′
l1
�= x′

k then ∂σ(w
′
l1
) �= ∂σ(x

′
k) and thus

∂σ(w
′
l1
)αl1 �= ∂σ(x

′
k)αk. If αl1 �= βk it is obvious that ∂σ(w

′
l)αl �= ∂σ(x

′
k)αk.

Thus, ∂σ(w
′
l1
)αl1 ∩ ∂σ(β) = ∅. ��

Theorem 13. Let α be a irreducible finite regular expression modulo ACIAL.

Then, Apd(α) / Apos(α)�≡b
.
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Proof. Let Apd(α) = (PD(α), Σ, δpd, α, Fpd). We want to prove that no pair of
states of Apd(α) is bisimilar. As in Proposition 8, we proceed by induction on
the rank of the states. The only state in rank 0 is ε, for which the proposition
is obvious. Suppose that all pair of states with rank m < n are not bisimilar.
Let γ, β ∈ PD(α) with n = rk(γ) ≥ rk(β). Then, there exists γ′ ∈ ∂σ(γ) that
is distinct of every β′ ∈ ∂σ(β), by Proposition 12. Because rk(β′) < n and
rk(γ′) < n, by inductive hypothesis, γ′ �≡b β′. Thus γ �≡b β. ��

Despite Apd(α) / Apos(α)�≡b
, for irreducible REs modulo ACIAL, these NFAs

are not necessarily minimal. For example, if τ3 = ba(a + b) + c(aa + ab), both
NFAs have seven states and a minimal equivalent NFA has four states.

Finally, note that for general regular expressions representing finite languages,
Apos(α)�≡b

can be arbitrarily more succinct than Apd. For example, considering
the family of REs

αn = aa1 + a(a1 + a2) + a(a1 + a2 + a3) + . . .+ a(a1 + a2 + . . .+ an)

the Apd(αn) has n + 2 states and Apos(α)�≡b
has three states independently

of n.

3.4 General Regular Languages

If we consider general regular expressions with the Kleene star operator, it is

easy to find REs α such that Apd(α) �/ Apos(α)�≡b
. This is true even if Apos(α)

is a DFA, i.e. if α is one-unambiguous [5]. For example, for α = aa� + b(ε+ aa�)

the Apd(α) has one more state than Apos(α)�≡b
. Ilie and Yu [15] presented a

family of REs

αn = (a+ b+ ε)(a+ b+ ε) . . . (a+ b+ ε)(a+ b)�,

where (a + b + ε) is repeated n times, for which Apd(αn) has n + 1 states and
Apos(αn)�≡b

has one state independently of n. Considering n = 3 the Apd(α3)
are represented in Figure 4.

α3

α2

α0α1

a, b

a, b

a, b

a, b
a, b

a, b

a, b

Fig. 4. Apd((a+ b+ ε)(a+ b+ ε)(a+ b+ ε)(a+ b)�)

In concurrency theory, the characterization of regular expressions for which
equivalent NFAs are bisimilar has been extensively studied. Baeten et. al [2]
defined a normal form that corresponds to the normal form (5), in the finite case.
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[!t]

q0 q1
a

a, b

Fig. 5. Apos(τ )�≡b

For regular expressions with Kleene star operator the normal form defined by
those authors is neither irreducible nor unique. In that case, we can find regular

expressions α in normal form such that Apd(α) �/ Apos(α)�≡b
. For example,

for τ = (ab� + b)� the Apd(τ) has three states, as seen before in Figure 2,

and Apos(τ)�≡b
has two states, as shown in Figure 5. Other example is τ4 =

a(ε+aa�)+ba�, where |PD(τ4)| = 3, and in Apos(τ4)�≡b
a state is saved because

(ε+ aa�) ≡b a�. This corresponds to an instance of one of the axioms of Kleene
algebra (for the star operator).

As no confluent or even terminating rewrite system modulo these axioms is
known, for general REs it will be difficult to obtain a characterization similar to
the one of Theorem 13.
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Abstract. The expressive power of regularity-preserving multi bottom-
up tree transducers (mbot) is investigated. These mbot have very at-
tractive theoretical and algorithmic properties. However, their expressive
power is not well understood. It is proved that despite the restriction
their power still exceeds that of composition chains of linear extended
top-down tree transducers with regular look-ahead (xtopR), which are a
natural super-class of stsg. In particular, topicalization can be modeled
by such mbot, whereas composition chains of xtopR cannot implement
it. However, the inverse of topicalization cannot be implemented by any
mbot. An interesting, promising, and widely applicable proof technique
is used to prove those statements.

1 Introduction

Statistical machine translation [15] deals with the automatic translation of nat-
ural language texts. A central component of each statistical machine transla-
tion model is the translation model, which is the model that actually performs
the translation. Various other models support the translation (such as language
models), but the type of transformations computable by the system is essentially
determined by the translation model. Various different translation models are
currently in use: (i) Phrase-based [23] systems essentially use a finite-state trans-
ducer [13]. (ii) Hierarchical phrase-based systems [4] use a synchronous context-
free grammar (scfg), and (iii) syntax-based systems use a form of synchronous
tree grammar such as synchronous tree substitution grammars (stsg) [5], syn-
chronous tree-adjoining grammars (stag) [24], or synchronous tree-sequence
substitution grammars (stssg) [25]. In this contribution, we will focus on syntax-
based systems. Since machine translation systems are trained on large data, the
used translation model must meet two contradictory goals. Its expressive power
should be large in order to be able to model all typical phenomena that occur in
translation. On the other hand, the model should have nice algorithmic proper-
ties and important operations should have low computational complexity. The
mentioned models cover a wide spectrum along this axis with scfg and stsg
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as the weakest models with the best parsing complexities. It is thus essential
for the evaluation of a translation model to accurately determine its expressive
power and the complexities of its principal operations [14].

A relatively recent proposal for another translation model suggests the multi
bottom-up tree transducer (mbot) [18,19]. It can be understood as an exten-
sion of stsg that allows discontinuity on the output side or as a restriction of
stssg that disallows discontinuity on the input side. mbot are thus a natural
(half-way) model in between stsg and stssg. In addition, [18,19] demonstrated
that mbot have very good theoretical and algorithmic properties in compari-
son to both stsg and stssg. They have been implemented [2] in the machine
translation frameworkMoses [16] and were successfully evaluated in an English-
to-German translation task, in which they significantly outperformed the stsg

baseline. However, mbot also have a feature called finite copying [7], which
on the positive side yields that the output string language can be a multiple
context-free language (or equivalently a linear context-free rewriting system lan-
guage) [12]. Since this class of languages is much more powerful than context-free
languages, its algorithmic properties are not as nice as those of the regular tree
languages [10,11], which can be used to represent the parse trees of context-free
grammars. It is not clear whether this added complexity is necessary to model
common discontinuities like topicalization.

In this contribution we demonstrate that the regularity-preserving mbot (i.e.,
those whose output is always a regular tree language) retain the power to com-
pute discontinuities such as topicalization. Moreover, these mbot remain more
powerful than arbitrary composition chains [22] of stsg. In particular, no chain
of stsg can implement topicalization. However, whereas stsg can trivially be
inverted, neither mbot nor regularity-preserving mbot can be inverted in gen-
eral. In fact, we show that the inverse of topicalization cannot be implemented
by any mbot, which confirms the bottom-up nature of mbot. Overall, these
results allow us to relate the expressive power of regularity-preserving mbot to
the other classes (see Figure 6). Secondly, we want to promote the use of explicit
links as a tool for analyses. Links naturally record which parts of the input and
output tree have to develop synchronously in a derivation step. However, once
expanded, the “used” links are typically dropped [3]. Here we retain all links in
a special component of the sentential form in the spirit of [20,9]. We investigate
the properties of these links and then use them to prove our main results. With
the links the proofs split into a standard technical part that establishes certain
mandatory links [9] and a rather straightforward high-level argumentation that
refutes that the obtained link ensemble is well-formed. We believe that this proof
method holds much potential and can successfully be applied to many additional
setups.

2 Notation

We write N for the set of all nonnegative integers (including 0). Given a rela-
tion R ⊆ S1 × S2 and S ⊆ S1, we let R(S) = {s2 | ∃s1 ∈ S : (s1, s2) ∈ R}
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and R−1 = {(s2, s1) | (s1, s2) ∈ R} be the elements of S2 related to elements
of S (via R) and the inverse relation of R, respectively. Instead of R({s}) with
s ∈ S1 we also write R(s). The composition of two relations R1 ⊆ S1 × S2 and
R2 ⊆ S2 × S3 is the relation R1 ; R2 ⊆ S1 × S3 given by

R1 ; R2 = {(s1, s3) | R1(s1) ∩R−1
2 (s3) �= ∅} .

As usual, S∗ denotes the set of all (finite) words over a set S with the empty
word ε. We simply write v.w or vw for the concatenation of the words v, w ∈ S∗,
and the length of a word w ∈ S∗ is |w|. Given languages L,L′ ⊆ S∗, we let
L · L′ = {v.w | v ∈ L,w ∈ L′}. An alphabet Σ is a nonempty and finite set of
symbols. Given an alphabet Σ and a set S, the set TΣ(S) of Σ-trees indexed
by S is the smallest set such that S ⊆ TΣ(S) and σ(t1, . . . , tk) ∈ TΣ(S) for all
k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(S). We write TΣ for TΣ(∅).

Whenever we need to address specific parts of a tree, we use positions. Each
position is a word of N∗. The root of a tree has position ε and the position i.p
with i ∈ N and p ∈ N∗ addresses the position p in the ith direct child of the root.
The set pos(t) denotes the set of all positions in a tree t ∈ TΣ(S). We note that
positions are totally ordered by the lexicographic order � on N∗ and partially
ordered by the prefix order ≤ on N∗. The total order � allows us to turn a finite
set P ⊆ N∗ into a vector P by letting P = (w1, . . . , wm) if P = {w1, . . . , wm}
with w1 � · · · � wm. Given a tree t ∈ TΣ(S) its size |t| is the number of its
nodes (i.e., |t| = |pos(t)|), and its height ht(t) coincides with the length of the
longest position (i.e., ht(t) = maxw∈pos(t)|w|).

We conclude this section with some essential operations on trees. To this
end, let t, u ∈ TΣ(S) be trees and w ∈ pos(t) be a position in t. The label
of t at w is t(w). For every s ∈ S, we let poss(t) = {w ∈ pos(t) | t(w) = s}
be those positions in t that are labeled by s. The tree t ∈ TΣ(S) is linear if
|poss(t)| ≤ 1 for every s ∈ S. We let idx(t) = {s ∈ S | poss(t) �= ∅}. Finally, the
expression t[u]w denotes the tree that is obtained from t by replacing the subtree
at w by u. We also extend this notation to sequences u = (u1, . . . , um) of trees
and positions w = (w1, . . . , wm) of t that are pairwise incomparable with respect
to ≤. Thus, t[u]w denotes the tree obtained from t by replacing the subtree at wi

by ui for all 1 ≤ i ≤ m. Formally, t[u]w = (· · · (t[u1]w1) · · · )[um]wm .

3 Formal Models

The main transformational grammar formalism under discussion is the multi
bottom-up tree transducer (mbot), which was introduced by [17,1]. An English
theoretical treatment can be found in [6]. In general, mbot are synchronous
grammars [3] with potentially discontinuous output sides, which makes them
more powerful than the commonly used stsg [5]. Thus, each rule of an mbot

specifies potentially several parts of the output tree. We essentially recall the
definition of [20].

Definition 1. A multi bottom-up tree transducer (for short: mbot) is a tuple
G = (N,Σ, S, P ), where
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NPP-CLR—
PP-CLR
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Fig. 1. Example productions

– N is its finite set of nonterminals,
– Σ is its alphabet of input and output symbols,
– S ∈ N is its initial nonterminal, and
– P ⊆ TΣ(N)×N × TΣ(N)∗ is its finite set of productions such that  /∈ N ,

 is linear, and
⋃

1≤i≤|r| idx(ri) ⊆ idx() for every 〈, n, r〉 ∈ P .

If all productions 〈, n, r〉 ∈ P obey |r| ≤ 1, then G is a (linear) extended top-
down tree transducer with regular look-ahead (xtopR) [21], and if they even
fulfill |r| = 1, then it is a (linear) nondeleting extended top-down tree transducer
(n-xtop).

In comparison to [20] we added the requirement of  /∈ N , which could be
called input ε-freeness. To avoid repetition, we henceforth let G = (N,Σ, S, P )
be an arbitrary mbot. As usual,  and r of a production 〈, n, r〉 ∈ P are called

left- and right-hand side, respectively. We also write 
n
— r instead of 〈, n, r〉.

The productions of our running example mbot are displayed in Figure 1. The
initial nonterminal is S, and we omit an explicit representation of the set N of
nonterminals (containing the various slantedNx and S) and the set Σ of symbols
because they can be deduced from the productions. For completeness’ sake, the
leftmost production on the first line in Figure 1 can be written as

〈S(Nw , NVP), S, S(Nw , NVP, NVP)〉 .

In contrast to [19,2], which present the semantics of mbot using a bottom-
up process based on pre-translations, we present a top-down semantics in the
style of [20] here. As usual [3], the top-down semantics requires us to keep track
of the positions that are supposed to develop synchronously in the input and
output. Such related positions are called linked positions, and the additional data
structure recording the linked positions is called the link structure. Although the
link structure might at first be seen as an overhead (since it is not required for the
bottom-up semantics), it will be an essential tool later on. In fact, all our later
arguments will be based on the link structure, so we explicitly want to promote
the use of link structures and an investigation into their detailed properties.
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S — S ⇒G
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—
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And they VP
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Fig. 2. Partial derivation using the productions of Figure 1. The active links are clearly
marked, whereas disabled links are light.

We start with the introduction of the link structure resulting from a single
production. In fact, the link structure of a production is implicit because we
assume that an occurrence of a nonterminal n in the left-hand side is linked to
all its occurrences in the right-hand side. We usually depict these links as (light)
splines in graphical illustrations of productions (see Figure 1). However, once
we move to the derivation process, an explicit representation of these links is
required to keep track of synchronously developing nonterminals.

Definition 2. Given 
n′
— r ∈ P and positions v and w = (w1, . . . , wm) with

m = |r| to which the production should be applied, we define the link structure

linksv,w(
n′
— r) by

⋃
n∈N,1≤i≤m

(
{v} · posn()

)
×

(
{wi} · posn(ri)

)
.

In other words, besides linking occurrences of the same nonterminal as already
mentioned, we prefix the positions by the corresponding position given as a pa-
rameter. These argument positions will hold the positions to which the produc-
tion shall be applied to. Now we are ready to present the semantics. Simply said,
we select an input position, its actively linked output positions, and a production
that has the right number of right-hand sides. Then we disable the selected links,
substitute the production components into the corresponding selected positions,
and add the link structure of the production to the set of active links. Formally,
a sentential form is simply a tuple 〈t, A,D, u〉 consisting of an input and an out-
put tree t, u ∈ TΣ(N) and two sets of links A,D ⊆ pos(t) × pos(u) containing
active and disabled links, respectively. We let SF(G) be the set of all sentential
forms, and D(G) is the set {〈t,D, u〉 | 〈t, ∅, D, u〉 ∈ SF(G), t, u ∈ TΣ} of all
potential dependencies for nonterminal-free input and output trees. In graphical
representations we only present the input and output trees and illustrate the
links of A and D as clear and light splines, respectively.

Definition 3. We write 〈t, A,D, u〉 ⇒G 〈t′, A′, D′, u′〉 for two sentential forms
〈t, A,D, u〉, 〈t′, A′, D′, u′〉 ∈ SF(G), if there exist a nonterminal n ∈ N , an input
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position v ∈ posn(t) labeled by n, actively linked output positions A(v), and a

production 
n
— r ∈ P such that

– |r| = |A(v)| and w = A(v),
– t′ = t[]v and u′ = u[r]w, and

– A′ = (A\L)∪ linksv,w(
n
— r) and D′ = D∪L with L = {(v, w) | w ∈ A(v)}.

As usual, ⇒∗
G is the reflexive and transitive closure of ⇒G. The mbot G com-

putes the dependencies dep(G) ⊆ D(G) given by

{〈t,D, u〉 ∈ D(G) | 〈S, {(ε, ε)}, ∅, S〉 ⇒∗
G 〈t, ∅, D, u〉} .

Finally, the mbot G computes the relation G ⊆ TΣ × TΣ, which is given by
G = {〈t, u〉 | 〈t,D, u〉 ∈ dep(G)}.

Note that disabled links are often not preserved in the sentential forms in the
literature [3], but we want to investigate and reason about those links as in [20,9],
so we preserve them. The first steps of a derivation using the productions of
Figure 1 are presented in Figure 2.

In the remaining part of this section, we recall the notion of regular tree
languages [10,11] and some properties on dependencies [20,9]. Any subset L ⊆ TΣ

is a tree language, and a tree language L ⊆ TΣ is regular [6] if and only if there
exists an mbot G = (N,Σ, S, P ) such that L = G−1(TΣ) (i.e., L is the domain
of G). A relation R ⊆ TΣ × TΣ preserves regularity if R(L) is regular for every
regular tree language L ⊆ TΣ.

Next, we recall the properties on dependencies of [20,9]. We only define them
for the input side, but assume that they are also defined (in the same manner)
for the output side.

Definition 4. A dependency 〈t,D, u〉 ∈ D(G) is
– input hierarchical if w2 �< w1 and there exists (v1, w

′
1) ∈ D with w′

1 ≤ w2 for
all (v1, w1), (v2, w2) ∈ D with v1 < v2,

– strictly input hierarchical if (i) v1 < v2 implies w1 ≤ w2 and (ii) v1 = v2
implies w1 ≤ w2 or w2 ≤ w1 for all (v1, w1), (v2, w2) ∈ D,

– input link-distance bounded by b ∈ N if for all links (v1, w1), (v1v
′, w2) ∈ D

with |v′| > b there exists (v1v, w3) ∈ D such that v < v′ and 1 ≤ |v| ≤ b,
– strict input link-distance bounded by b if for all positions v1, v1v

′ ∈ pos(t)
with |v′| > b there exists (v1v, w3) ∈ D such that v < v′ and 1 ≤ |v| ≤ b.

The set dep(G) has those properties if each dependency 〈t,D, u〉 ∈ dep(G) has
them.

We also say that dep(G) is input link-distance bounded if there exists an
integer b ∈ N such that it is input link-distance bounded by b. We summarize
the known properties in Table 1.

4 Main Results

In this contribution, we want to investigate the expressive power of regularity-
preserving mbot, which constitute the class of all mbot whose computed re-
lation preserves regularity. This class has very nice (algorithmic) properties
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Table 1. Summary of the properties of the dependencies dep(G) for grammars G
belonging to the various grammar formalisms [20,9]

hierarchical link-distance bounded regular
Model \ Property input output input output domain range pres.

n-xtop strictly strictly strictly strictly ✓ ✓ ✓

xtop
R strictly strictly ✓ strictly ✓ ✓ ✓

mbot ✓ strictly ✓ strictly ✓ ✗ ✗

reg.-pres. mbot ✓ strictly ✓ strictly ✓ ✓ ✓

(see Table 1). It was already argued by [19] that regularity should be preserved
by any grammar formalism (used in syntax-based machine translation) in order
to obtain an efficient representation of the output tree language. In fact, several
(syntactic) ways to obtain regularity preserving mbot are discussed there, but
these all yield subclasses of the class of all regularity-preserving mbot. On the
other hand, xtopR and n-xtop, which are both slightly more powerful than
the commonly used stsg [5] but strictly less powerful than regularity-preserving
mbot, are not closed under composition [21], but always preserve regularity.
Consequently, [22] consider the efficient evaluation of (composition) chains of
n-xtop, and their approach can easily be extended to xtop

R. Obviously, every
chain of xtopR can be simulated by a regularity-preserving mbot because each
individual xtopR can be simulated and mbot are closed under composition [6].
However, the exact relation between these two classes remained open. This ques-
tion is interesting because it solves whether the (non-copying) features of mbot
(such as discontinuity) can be achieved by chains of xtop

R. In particular, it
settles the question whether chains of xtopR can handle discontinuities, which,
in general, cannot be handled by a single xtop

R.
The author assumes that the question remained open because both possible

answers require deep insight. If the classes coincide, then we should be able
to simulate each regularity-preserving mbot by a chain of xtop

R, which is
complicated due to the fact that “regularity-preserving” is a semantic property
on the computed relation. Such a construction would (most likely) shed light
on the exact (syntactic) consequences of the restriction to regularity-preserving
mbot. On the other hand, if regularity-preserving mbot are more powerful than
chains of xtopR (which we prove in this contribution), then we need to exhibit
a relation that cannot be computed by any chain of xtopR, which requires deep
insight into the relations computable by chains of xtopR. Fortunately, there was
recent progress in the latter area. In [8] it was shown that a chain of 3 xtop

R can
simulate any chain of xtopR. Together with the linking technique of [20,9], this
will allow us to present a regularity-preserving mbot that cannot be simulated
by any chain of xtopR. The counterexample is even linguistically motivated in
the sense that it abstractly represents topicalization (see Figure 3), which is a
common form of discontinuity.

Example 5. Let Tpc = (N,Σ, S, P ) be the mbot with N = {S, T, T ′, T ′′, U},
symbols Σ = {σ, δ, γ, α}, and the productions P illustrated in Figure 3. It is



The Power of Regularity-Preserving Multi Bottom-up Tree Transducers 285

σ

T U

S
—

σ

U σ

T U

σ

T σ

T ′ T ′′

U
— T ′′

σ

T T ′

σ

T U

U
— U

σ

T U

δ

T T ′
x
—

δ

T T ′

γ

T

x
—

γ

T
α x

— α

σ

t1 σ

t2 σ

tm−1 σ

tm u

—

σ

u σ

t1 σ

t2 σ

tm−1 tm

Fig. 3. Productions of the counterexample mbot Tpc with x ∈ {T, T ′, T ′′} and relation
(topicalization) computed by it for all m ∈ N and arbitrary trees u, t1, . . . , tm, which
can contain binary δ-symbols, unary γ-symbols, and nullary α-symbols

clearly regularity-preserving because it is straightforward to develop two
n-xtop G1 and G2 that compute transformations similar to topicalization (see
Figure 3), but just preserving u and just preserving t1, . . . , tm, respectively. Thus,
the language Tpc(L) for a regular tree language L is obtained as G1(L)∩G2(L).
Since n-xtop preserve regularity [21], G1(L) and G2(L) are regular tree lan-
guages, and regular tree languages are closed under intersection [10,11]. The
relation computed by Tpc is depicted in Figure 3.

Theorem 6. The relation Tpc cannot be computed by any chain of xtop
R.

Proof (Sketch). We already remarked that 3 xtop
R suffice to simulate any chain

of xtopR according to [8]. Consequently, in order to derive a contradiction we as-
sume that there exist 3 xtop

R G1, G2, G3 such that Tpc = G1 ;G2 ;G3. We know
that dep(G1), dep(G2), dep(G3) are input and output link-distance bounded (see
Table 1), so let b ∈ N be such that all link-distances (for all 3 xtopR) are bounded
by b. Using an involved technical argumentation based on the link properties and
size arguments [9] (using only the symbols γ and α for the trees u, t1, . . . , tm),
we can deduce the existence of the light dependencies depicted in Figure 4 (for
the input and output tree and two intermediate trees without the clearly marked
links), in which m 0 b3. Consequently, the ellipsis (clearly marked dots) in the
output tree (last tree in Figure 4) hides at least b2 links that point to this part
of the output because there must be a link every b positions by the link-distance
bound. Let (v′′1 , w

′′
1 ), . . . , (v

′′
m′′ , w′′

m′′) with m′′ 0 b2 be those links such that
w′′

1 < · · · < w′′
m′′ . These links are marked with (1) in Figure 4. Clearly, w′′

m′′

dominates (via ≤) the positions of the subtrees tm−1 and tm, but it does not
dominate that of the subtree u. The input positions of those links, which point
to positions inside the third tree in Figure 4, automatically fulfill v′′1 ≤ · · · ≤ v′′m′′

since dep(G3) is strictly output hierarchical. A straightforward induction can be
used to show that (for any xtop

R) all links sharing the same input positions must
be incomparable with respect to the prefix order ≤ [9], which uses the restriction
that  /∈ N for each production 〈, n, r〉 ∈ P . Consequently, v′′1 < · · · < v′′m′′ .
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Fig. 4. Illustration of the dependencies discussed in the proof of Theorem 6. Inverted
arrow heads indicate that the link points to a position below the one indicated by the
spline. The links relating the roots of the trees are omitted.

Similarly, we can conclude v′′m′′ < w′
tm−1

, v′′m′′ < w′
tm , and v′′1 �≤ w′

u, where the
last statement uses that dep(G3) is strictly input hierarchical. Repeating essen-
tially the same arguments for dep(G2), we obtain links (v′1, w

′
1), . . . , (v

′
m′ , w′

m′)
with m′ 0 b such that v′′1 ≤ w′

1 < · · · < w′
m′ ≤ v′′m′′ and v′1 < · · · < v′m′ . These

links are labeled by (2) in Figure 4. Moreover, v′m′ < wtm−1 , v
′
m′ < wtm , and

v′1 �≤ wu. Using the arguments once more for dep(G1), we obtain a link (v, w)
such that v′1 ≤ w ≤ v′m′ . This final link is marked (3) in Figure 4. Moreover,
we have v < vtm−1 and v < vtm , but v �≤ vu. However, such a position does not
exist in the input tree, which completes the desired contradiction. ��

It is noteworthy that the proof can be achieved using high-level arguments
based on the links and their properties. In fact, the whole proof is rather straight-
forward once the basic links (light in Figure 4) are established using [9].
Arguably, the omitted part of the proof that establishes those links is quite
technical and involved (using size arguments and thus the particular shape of
the trees u, t1, . . . , tm), but it can be reused in similar setups as it generally
establishes links in the presented way between identical subtrees (for which in-
finitely many trees are possible). The proof nicely demonstrates that the difficult
argumentation via two unknown intermediate trees reduces to (relatively) simple
arguments with the help of the links. The author believes that the links will pro-
vide a powerful and versatile tool in the future and have been neglected for too
long. From Theorem 6 it follows that (some) topicalizations cannot be computed
by any chain of xtopR (or any chain of n-xtop), and since Tpc is computed by
a regularity-preserving mbot, we can conclude that regularity-preserving mbot

are strictly more powerful than chains of xtopR.

Corollary 7. Regularity-preserving mbot are strictly more powerful than com-
position chains of xtop

R (and composition chains of n-xtop).

Our next result will limit the expressive power of mbot. Using the linking
technique [9] once more (this time for mbot), we will prove that the inverse
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Fig. 5. Illustration of the dependencies discussed in the proof of Theorem 8. Inverted
arrow heads indicate that the link points to a position below the one indicated by the
spline. The links relating the roots of the trees are omitted.

relation Tpc−1 cannot be computed by any mbot. This confirms the bottom-up
nature of the device. It can “grab” deeply nested subtrees and transport them
towards the root, but it cannot achieve the converse.

Theorem 8. The relation Tpc−1 cannot be computed by any (composition chain
of) mbot.

Proof (Sketch). Sincembot are closed under composition [6], we need to consider
only a single mbot. In order to derive a contradiction, let G = (N,Σ, S, P ) be an
mbot such that G = Tpc−1. As usual, we know that dep(G) is input and output
link-distance bounded (see Table 1), so let b ∈ N be a suitable bound. Moreover,
let a > |r| for all productions 〈, n, r〉 ∈ P . Hence a is an upper bound for the
length of the right-hand sides. Finally, let k > max(a, b) be our main constant.

Again we need to use a (different, but similar) involved technical argumenta-
tion [9] based on the link properties and size and height arguments (that uses
the symbols δ, γ, and α for the subtrees u, t1, . . . , tm) to deduce the existence of
the light dependencies shown in Figure 5, in which m 0 2k. Consequently, the
ellipsis (clearly marked dots) in the output tree hides at least 2 links that point
to this part of the output because there must be a link every b positions by the
link-distance bound. Let (v, w), (v′, w′) be those links such that w < w′. These
links are clearly indicated in Figure 5.

Clearly, w′ dominates the positions of the subtrees tm and u. Since dep(G) is
strictly output hierarchical (see Table 1), we obtain that (i) v ≤ v′ and (ii) v′ dom-
inates the input positions of the (light) links pointing into the subtrees tm and u.
Obviously, the root ε is the only suitable position, so v = v′ = ε as indicated in Fig-
ure 5. Another straightforward induction can be used to show that (for anymbot)
all links sharing the same input positions must be incomparable with respect to
the prefix order ≤ [9], which uses the restriction that  /∈ N for each production
〈, n, r〉 ∈ P . However, (ε, w) and (ε, w′) are two links with the same source and
comparable target because w < w′, so we derived the desired contradiction. ��

Again we note that the proof could be straightforwardly achieved using high-
level arguments on the links and their interrelation after establishing the basic
links (light in Figure 5). Then the link-distance can be used to conclude the ex-
istence of links and their input and output target can be related to existing links
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MBOT

reg.-pres. MBOT

(XTOPR)3 = (XTOPR)∗

n-XTOP∗ (XTOPR)2

n-XTOP2 XTOPR

n-XTOP

Fig. 6. Hasse diagram for the discussed classes, where C∗ is the composition closure
of class C and the dashed line just indicates that all powers in between form a chain
and are thus strictly contained as well

using the hierarchical properties. In this way, we could in both cases derive a
contradiction in rather straightforward ways, which would not have been possi-
ble without the links. Typically, such (negative) statements are proved using the
fooling technique (see [1] or [21] for examples), which requires a rather detailed
case analysis of all possible intermediate trees and applied productions, which
then individually have to be contradicted. In a scenario with 2 unknown inter-
mediate trees such an approach becomes (nearly) impossible to handle. Thus, we
strongly want to promote the use of links and their interrelations in the analysis
of translation models.

Theorem 8 yields that regularity-preserving mbot are not closed under in-
version. In other words, there are regularity-preserving mbot G (such as Tpc),
whose inverted computed relation G−1 cannot be computed by any mbot.

Corollary 9. Regularity-preserving mbot (and general mbot) are not closed
under inversion.

Let us now collect these results together with some minor consequences in a
Hasse diagram (see Figure 6).
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ministes. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112,
pp. 280–289. Springer, Heidelberg (1981)

18. Maletti, A.: Why synchronous tree substitution grammars? In: Proc. HLT-NAACL
2010, pp. 876–884. Association for Computational Linguistics (2010)

19. Maletti, A.: How to train your multi bottom-up tree transducer. In: Proc. 49th
ACL, pp. 825–834. Association for Computational Linguistics (2011)

20. Maletti, A.: Tree transformations and dependencies. In: Kanazawa, M., Kornai, A.,
Kracht, M., Seki, H. (eds.) MOL 12. LNCS (LNAI), vol. 6878, pp. 1–20. Springer,
Heidelberg (2011)

21. Maletti, A., Graehl, J., Hopkins, M., Knight, K.: The power of extended top-down
tree transducers. SIAM J. Comput. 39(2), 410–430 (2009)

22. May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted tree
transducers. In: Proc. 48th ACL, pp. 1058–1066. Association for Computational
Linguistics (2010)

23. Och, F.J., Ney, H.: The alignment template approach to statistical machine trans-
lation. Comput. Linguist. 30(4), 417–449 (2004)

24. Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. 13th
CoLing, vol. 3, pp. 253–258 (1990)

25. Zhang, M., Jiang, H., Aw, A., Li, H., Tan, C.L., Li, S.: A tree sequence alignment-
based tree-to-tree translation model. In: Proc. 46th ACL, pp. 559–567. Association
for Computational Linguistics (2008)



Pushdown Machines for Weighted Context-Free

Tree Translation

Johannes Osterholzer

Faculty of Computer Science
Technische Universität Dresden

01062 Dresden, Germany
johannes.osterholzer@tu-dresden.de

Abstract. In this paper, we consider weighted synchronous context-
free tree grammars and identify a certain syntactic restriction of these
grammars. We suggest a new weighted tree transducer formalism and
prove that the transformations of the restricted grammars are precisely
those of the linear and nondeleting instances of these transducers.

1 Introduction

Synchronous context-free grammars (or: syntax-directed translation schemata)
were introduced in the context of compiler construction in the late 1960s [12].
They define string transductions by the simultaneous derivation of an input and
an output word. In contrast, modern systems for machine translation of natural
language employ weighted tree transformations to account for the grammatical
structure of the input sentence and the ambiguity inherent in spoken language
(cf. the survey in [10]). Such transformations may be computed by weighted syn-
chronous tree substitution grammars [17], or by weighted linear and nondeleting
extended top-down tree transducers [7]. The former derive input and output
trees simultaneously, while the latter model has unidirectional semantics: it de-
rives the output from its input tree. The advantage of unidirectional semantics
is that it may serve as a starting point to define weighted tree transformations
which are conditional probability distributions [3].

Synchronous context-free tree grammars (scftg) have been proposed as a gen-
eralization of synchronous tree substitution grammars that may allow mod-
elling even more linguistic phenomena [13]. In this work, we consider weighted
scftg (wscftg), and investigate simple wscftg (s-wscftg), a syntactic restriction
of wscftg (Section 3). In Section 4 we introduce a formalism with unidirectional
derivation semantics, called weighted pushdown extended top-down tree trans-
ducer (wpxtop). It is a weighted extended top-down tree transducer [7] whose
finite state control is equipped with a tree pushdown [9,6]. We devise certain
normal forms for s-wscftg as well as for linear and nondeleting wpxtop. Sec-
tion 5 contains the main result: we prove that the transformations of linear and
nondeleting wpxtop are exactly those of s-wscftg. This proof relies on a close
correspondence between the normal forms of the respective formalisms.
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Let us turn back to string grammars: In [12, Thms. 2 and 3], the subclass
of simple synchronous context-free grammars was identified and characterized
by pushdown transducers. Thus, this work is also a generalization of a classical
result from formal languages to weighted tree languages.

2 Preliminaries

We denote the nonnegative integers by N, and {1, . . . , n} by [n] for every n ∈ N.
A set Σ equipped with a function rkΣ : Σ → N is a ranked set, its elements are
symbols. A ranked alphabet is a finite ranked set. Let Σ be a ranked set. When Σ
is obvious, we write rk instead of rkΣ . Let k ∈ N. We setΣ(k) = rk−1

Σ (k). Let U be
a set and Λ denote Σ∪U∪C, where C is made up of the three symbols ‘(’, ‘)’, and
‘,’. If Ω ⊆ Σ(k) and T1, . . . , Tk ⊆ Λ∗, then define Ω(T1, . . . , Tk) = {σ(t1, . . . , tk) |
σ ∈ Ω, ti ∈ Ti, i ∈ [k]}. The set TΣ(U) of trees (over Σ indexed by U) is the
smallest set T ⊆ Λ∗ such that U ⊆ T and for every k ∈ N, Σ(k)(T, . . . , T ) ⊆ T . A
tree α() is abbreviated by α, and TΣ(∅) by TΣ. Let t ∈ TΣ(U). The set of positions
(Gorn addresses) of t is denoted by pos(t) ⊆ N∗. We denote the lexicographic
order on N∗ by ≤lex, the label of t at its position w by t(w), and the subtree
of t at w by t|w. For any Δ ⊆ Σ ∪ U , let posΔ(t) = {w ∈ pos(t) | t(w) ∈ Δ}.
Given k ∈ N, t1, . . . , tk ∈ TΣ(U), and pairwise different u1,. . . , uk ∈ U , denote
by t[u1/t1, . . . , uk/tk] the result of substituting every occurrence of ui in t with
the tree ti, where i ∈ [k]. For V ⊆ U , t is linear (resp. nondeleting) in V if every
v ∈ V occurs at most (resp. at least) once in t. The set of all trees in TΣ(U)
which are linear and nondeleting in U is denoted by T ln

Σ (U). In the following,
let X (resp. Y ) denote the sets of variables {x1, x2, . . .} (resp. {y1, y2, . . .}).
Let k ∈ N. We set Xk = {xi | i ∈ [k]} and Yk = {yi | i ∈ [k]}. Let t1, . . . ,
tk ∈ TΣ. We write t[t1, . . . , tk] for t[x1/t1, . . . , xk/tk] if t ∈ TΣ(Xk), and for
t[y1/t1, . . . , yk/tk] if t ∈ TΣ(Yk). A tree ξ ∈ T ln

Σ (Xk) is a (k-)context (over Σ) if
the variables occur in the order x1, . . . , xk within the word ξ ∈ Λ∗, when read
from left to right. The set of all k-contexts over Σ is denoted by CΣ(Xk). Define
deck(t) = {(ξ, t1 . . . tk) | ξ ∈ T ln

Σ (Xk), t1, . . . , tk ∈ TΣ(U), t = ξ[t1, . . . , tk]}. Let
t ∈ TΣ, and T ⊆ TΣ. Then linT (t) denotes the linearization of t with respect to
T , i.e. the tuple (ξ, t1 . . . tn) such that there is an n ∈ N with (i) ξ ∈ CΣ(Xn),
t1, . . . , tn ∈ T ; (ii) t = ξ[t1, . . . , tn]; and (iii) |posΣ(ξ)| is minimal with respect
to (i) and (ii). Unless stated otherwise, Σ, Γ , and N denote arbitrary ranked
alphabets.

A tuple (S,+, ·, 0, 1) is a semiring if (S,+, 0) is a commutative monoid, (S, ·, 1)
is a monoid, multiplication distributes over addition from the left and from the
right, and 0 is annihilating with respect to multiplication. Following convention,
such a semiring is referred to by its carrier set S. We call S complete if it is
equipped with an infinitary sum

∑
that maps every indexed family of elements

of S into S, where
∑

must extend + and satisfy infinitary associativity, commu-
tativity, and distributivity laws [4]. The Boolean semiring (B,∨,∧, 0, 1,

∨
), with

B = {0, 1}, and the semiring of nonnegative real numbers (R∞
≥0,+, ·, 0, 1,

∑
) are

two examples of complete semirings. In the sequel of this work, let S denote
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an arbitrary complete semiring (S,+, ·, 0, 1,
∑

). A mapping L : TΣ → S is a
weighted tree language, and a mapping τ : TΣ ×TΣ → S a weighted tree transfor-
mation. Refer to [8] for a survey of weighted tree languages and transformations.
Let U , U ′ be sets. We identify any function f : U → B with the subset f−1(1)
of U , and write U ⊆fin U ′ if U is a finite subset of U ′.

3 Weighted Synchronous Context-Free Tree Grammar

Context-free tree grammars (cftg) [14] generalize context-free grammars to trees.
Their sentential forms are trees that consist of terminal and nonterminal symbols
fromΣ, resp.N . Both may appear at any position of the tree. In the application of
a production, a nonterminal A is substituted with its right-hand side, a tree over
N ∪Σ with variables, which are, in turn, substituted with the subtrees of A.

The semantics of synchronous cftg, in particular, is based on the concept of
synchronized trees. We say that two trees ξ and ζ over N ∪Σ are synchronized
if there is a one-to-one relation between the occurrences of nonterminals in ξ
and in ζ. Two nonterminals are linked if they are thus related. The relation is
specified implicitly, by equipping the occurrences of nonterminals in ξ and in ζ
with indices that are unique in the respective tree. Nonterminal occurrences in
ξ and ζ are linked iff both are equipped with the same index. Since the actual
values of the indices are irrelevant, synchronized trees which are identical up to
renaming of indices are identified in the following formalization.

For each M ⊆ N, let N M denote the ranked set {A i | A ∈ N, i ∈ M}, where
rk(A i ) = rk(A) for every i ∈ M . In the sequel, let M , M1, M2, etc., denote
arbitrary finite subsets of N. For every set U , define IM (N,Σ,U) to be the set
of all ξ ∈ TN M ∪Σ(U) such that for every i ∈ M , there is exactly one position
w ∈ pos(ξ) with ξ(w) = A i , for some A ∈ N . In this situation, nt(i)(ξ) denotes A

and pos(i)(ξ) denotes w. The set
(
IM (N,Σ,U)

)2
is denoted by SM (N,Σ,U).

Abbreviate
⋃

M⊆finN
IM (N,Σ,U) by I(N,Σ,U), and

⋃
M⊆finN

SM (N,Σ,U) by
S(N,Σ,U).

Let (ξ1, ξ2) ∈ SM1 (N,Σ,U), and (ζ1, ζ2) ∈ SM2 (N,Σ,U). We say that
(ξ1, ξ2) and (ζ1, ζ2) are identical up to renaming of indices, denoted by (ξ1, ξ2) ≡
(ζ1, ζ2), if there is a function ρ : M1 → M2 such that for every j ∈ {1, 2}, ζj is
the result of replacing every A i ∈ N M1 in ξj by Aρ(i) . The relation ≡ is an
equivalence on S(N,Σ,U). The equivalence class of (ξ1, ξ2) with respect to ≡
is denoted by [ξ1, ξ2] and the factor set S(N,Σ,U)/≡ by S≡(N,Σ,U). We call
(ζ1, ζ2) fresh for (ξ1, ξ2) if M1∩M2 = ∅. When considering the equivalence classes
[ξ1, ξ2] and [ζ1, ζ2], their representatives (ξ1, ξ2) and (ζ1, ζ2) can always be chosen
fresh for each other. We omit U from the above sets’ identifiers whenever U = ∅.

A wscftg can now be understood as a context-free tree grammar such that the
right-hand sides of its productions are (equivalence classes of) pairs of synchro-
nized trees. Formally, a weighted synchronous context-free tree grammar (wscftg)
[13] is a tuple G = (N,S,Σ, Z, P,wt) such that N is a ranked alphabet of non-
terminal symbols, Σ is a ranked alphabet of terminal symbols, Z ∈ N (0) is the
initial nonterminal, P is a finite set of productions p, each of the form
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A(x1, . . . , xk) →
[
ξ, ζ

]
, (1)

where k ∈ N, A ∈ N (k), and furthermore, (i) (ξ, ζ) ∈ SM (N,Σ,Xk) for some
M ⊆fin N; (ii) nt(i)(ξ) = nt(i)(ζ) for every i ∈ M ; (iii) ξ is a k-context, while ζ
is linear and nondeleting in Xk; and finally, (iv) wt : P → S \ {0} is a mapping
that assigns to every production its weight. In a production of the form (1),
the tree ξ is referred to as its input component, and ζ as its output component.
Note that this definition of wscftg is more restricted than the one in [13], as
linked nonterminals must be identical, and therefore of the same rank. However,
for this work we will adhere to the definition above, as the pushdown machine
characterization in Section 5 does not apply to the more general definition. If all
nonterminals of G are nullary, i.e. N = N (0), then G is a weighted synchronous
regular tree grammar (wsrtg).

The set S≡(N,Σ) is the set of sentential forms of G, denoted by SF(G). Given
a production p ∈ P as in (1), we define the binary relation ⇒p

G on SF(G). Let
[η1, η2], [κ1, κ2] ∈ SF(G), where (ξ, ζ) is fresh for (η1, η2). Then [η1, η2] ⇒p

G
[κ1, κ2] if there are i ∈ N, ϕ0, ψ0 ∈ I(N,Σ,X1) both linear and nondeleting in
X1, and ϕ1, . . . , ϕk, ψ1, . . . , ψk ∈ I(N,Σ) such that

η1 = ϕ0

[
A i (ϕ1, . . . , ϕk)

]
, η2 = ψ0

[
A i (ψ1, . . . , ψk)

]
,

κ1 = ϕ0

[
ξ [ϕ1, . . . , ϕk]

]
, and κ2 = ψ0

[
ζ [ψ1, . . . , ψk]

]
.

Note that⇒p
G is indeed well-defined, because ξ and ζ are chosen fresh, and hence

the relation ≡ is compatible with substitution. Refer to Fig. 1 for an example of
a production and its application to a sentential form.

The weight of a tuple of trees (s, t) under the transformation of G is defined as
the sum of the weights of all its derivations, and the weight of such a derivation
is the product of the weights of the contained productions. However, we must
take care not to sum up unappropriately often – therefore the sum is restricted
to derivations that are in a certain sense leftmost. Formally, the relation ⇒p

G,LO
on SF(G) is defined just like ⇒p

G , only with the additional requirement that the
nonterminal A i occurs leftmost-outermost in the tree η1. That is, we require
that for every w ∈ pos(η1), if w <lex pos(i)(η1), then η1(w) /∈ N N . Let m ∈ N,
π0, πm ∈ SF(G), and d = p1 . . . pm ∈ Pm. We write π0 ⇒d

G,LO πm if there are
π1, . . . , πm−1 ∈ SF(G) such that πi−1 ⇒pi

G,LO πi for every i ∈ [m]. The mapping

wt is extended to P ∗ by wt(p1 . . . pm) =
∏m

i=1 wt(pi). Let, for every m ∈ N,
π ∈ SF(G), and s, t ∈ TΣ,

�G�
(m)
π (s, t) =

∑
d∈Pm,

π⇒d
G,LO[s,t]

wt(d) and �G�(s, t) =
∑
m∈N

�G�
(m)
[Z 1 ,Z 1 ](s, t) .

The latter weighted tree transformation �G� : TΣ×TΣ → S is the transformation
of G. Two wscftg G1 and G2 are equivalent if �G1� = �G2�.

Next, we will introduce simple wscftg. Intuitively, we demand that for every
production of the grammar the call structure in its input component is the
same as in its output component. The call structure of a tree ξ comprises the
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A(x1, x2) →

⎡⎢⎢⎢⎣
σ

x1 B

C x2

1

2

,

τ

B

γ

C

x2

γ

x1

1

2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

ϕ0

A

ϕ1 ϕ2

3 ,

ψ0

A

ψ1 ψ2

3

⎤⎥⎥⎥⎥⎥⎦⇒p
G

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ϕ0

σ

ϕ1
B

C
ϕ2

1

2

,

ψ0

τ

B
γ

C ψ2

γ

ψ1

1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 1. A wscftg production p and its application to a sentential form

entirety of the successor relations between the nonterminals and the variables in
ξ. Formally, a wscftg G is called a simple wscftg (s-wscftg) if for every production
in P of the form (1), for every i ∈ M , and for every j ∈ [rk(nt(i)(ξ))], the sets
{ξ(wjv) ∈ N N ∪X | w = pos(i)(ξ), v ∈ pos(ξ|wj)} and {ζ(wjv) ∈ N N ∪X | w =
pos(i)(ζ), v ∈ pos(ζ|wj)} are equal. For example, the production p in Fig. 1 is
the production of a s-wscftg, as in both components, C (resp. x2) is in the first
(resp. second) subtree of B, while x1 has no nonterminal as an ancestor. But p
would not belong to a s-wscftg if x1 and x2 (or B 1 and C 2 ) were exchanged
with each other in the input component. Note that every wsrtg is a s-wscftg.
Also note that there are wscftg whose transformations can not be defined by
s-wscftg, cf. [1, Thm. 2(b)].

Let us introduce a certain normal form for s-wscftg that is closely related
to the Chomsky normal form for context-free grammars. A s-wscftg G is said
to be in normal form if every production p in P is of either of the following
two forms: (i) A(x1, . . . , xk) → [ξ, ξ], for some ξ ∈ TN N (Xk); we then call p a
nonterminal production, and denote the set of all such productions of G by PNT;
or (ii) A(x1, . . . , xk) → [ξ, ζ], for ξ, ζ ∈ TΣ(Xk); then p is a terminal production,
and the set of all such productions of G is denoted by PT.

Lemma 1. For every s-wscftg there is an equivalent s-wscftg in normal form.

Proof. Assume that G is a s-wscftg, and that p ∈ P is of the form (1), but nei-
ther terminal nor nonterminal. Then there must be an occurrence of a terminal
symbol in ξ or in ζ. W.l.o.g., let it occur in ξ at position u. Distinguish the
following two cases: (i) There are positions on the path from the root of ξ to
u that are labeled by a nonterminal. Then let v′ be the one such position of
maximal length (as an element of N∗) and let j ∈ N be such that v′j is a prefix
of u. By definition of G, there must be a position w′ ∈ pos(ζ) with ζ(w′) = ξ(v′).
Set v = v′j and w = w′j. Note that since G is simple, the set of nonterminals
and variables that occur in ξ|v must be equal to the respective set in ζ|w. (ii)
There are no positions on the path from the root of ξ to u that are labeled by
nonterminals. In this case, we set v = w = ε. This concludes the case analysis.

Now let (ϕ, ξ1 . . . ξk1) = linΞ(ξ|v) and (ψ̃, ζ1 . . . ζk2) = linΞ(ζ|w), where Ξ =
X ∪ {ξ ∈ TN N ∪Σ(X) | ξ(ε) ∈ N N }. As G is simple, k1 = k2 (denoted by
k′) and there must be a permutation ω : [k′] → [k′] such that for every j ∈ [k′],
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ξj(ε) = ζω(j)(ε). Let ψ = ψ̃[x1/xω−1(1), . . . , xk′/xω−1(k′)]. Replace the subtrees

ξ|v and ζ|w in p by B l (ξ1, . . . , ξk′ ), resp. B l (ζω(1), . . . , ζω(k′)), where B is a
new nonterminal and l a fresh index, and call this production p′. Moreover,
let p′′ be the production B(x1, . . . , xk′ ) → [ϕ, ψ]. Construct the wscftg G′ =
(N ′, S,Σ, Z, P ′,wt ′) with N ′ = N ∪ {B}, P ′ = P \ {p} ∪ {p′, p′′}, and wt ′(p′) =
wt(p), wt ′(p′′) = 1, while wt ′|P∩P ′ = wt |P∩P ′ . By inspection of the definition, G′

is also simple. One can show that there is a weight-preserving bijection between
successful leftmost-outermost derivations in G and G′, and therefore �G� = �G′�.
Obviously, this construction can only be applied a finite number of times, and
the resulting grammar is an equivalent s-wscftg in normal form. ��

As an example for the above, let p be the production A(x1, x2, x3) → [ξ, ζ], with

[ξ, ζ] =
[
σ
(
x1, B

1
(
σ(C 2 (x2), D

3 (x3))
))
, τ

(
B 1

(
σ(D 3 (x3), C

2 (x2))
)
, x1

)]
.

In the construction’s first iteration the terminal position u = ε in ξ is chosen,
thus case (ii) applies and v = w = ε. Hence p is replaced by a production
p′ = (A(x1, x2, x3) → [ξ′, ζ′], where [ξ′, ζ′] is[

E 4
(
x1, B

1
(
σ(C 2 (x2), D

3 (x3))
))
, E 4 (x1, B

1
(
σ(D 3 (x3), C

2 (x2))
))]

,

and by p′′ of the form E(x1, x2) → [σ(x1, x2), τ(x2, x1)]. In the second iteration
let u = 21 in ξ′, this yields case (i). Then also v = w = 21, and p′ is replaced by
the production A(x1, x2, x3) → [ξ′′, ζ′′], with [ξ′′, ζ′′] equal to[

E 4
(
x1, B

1
(
F 5 (C 2 (x2), D

3 (x3))
))
, E 4 (x1, B

1
(
F 5 (C 2 (x2), D

3 (x3))
))]

,

and by F (x1, x2) → [σ(x1, x2), σ(x2, x1)]. All introduced productions satisfy the
conditions of the normal form, so the construction may terminate at this point.

4 Weighted Pushdown Extended Tree Transducers

In contrast to the productions of wscftg, the rules of wpxtop are asymmetric, and
permit a state-based rewriting of input into output trees. Just as for extended
tree transducers, every rule allows matching the current input tree with a context
of arbitrary height, and their right-hand sides are output trees at whose frontiers
the rewriting process may continue on the remaining subtrees of the input. Unlike
the former however, the derivations of wpxtop are controlled by tree pushdowns
[9,6]. Thus, a rule can additionally inspect the top symbol of the current tree
pushdown, and push further symbols that control the remaining derivation. In
the example derivation step in Fig. 2, the context c has already been produced
as output, while the input tree σ(s1, σ(s2, α)) must yet be rewritten. Since the
tree pushdown is γ(κ1, κ2), the rule r can be applied, producing some output.
The transduction must continue on the remaining inputs s1 and s2, controlled
by the pushdowns κ1 and γ(α, κ2).
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Fig. 2. A wpxtop rule r and its application

A weighted pushdown extended top-down tree transducer (wpxtop) is a tuple
M = (Q,S,Σ, Γ, q0, γ0, R,wt) where Q is a dyadic ranked alphabet of states,
i.e. Q = Q(2), Σ and Γ are ranked alphabets of, resp., terminal and pushdown
symbols, q0 ∈ Q is the initial state, γ0 ∈ Γ (0) is the initial pushdown symbol, and
R is a finite set of rules r of the form

q
(
ξ, γ(y1, . . . , yk)

)
→ ζ , (2)

for some q ∈ Q, k, n ∈ N, γ ∈ Γ (k), ξ ∈ CΣ(Xn), and ζ ∈ TΣ
(
Q(Xn, TΓ (Yk))

)
.

Finally, wt : R → S \ {0} assigns to every rule its weight. We call a wpxtop M
linear and nondeleting (ln-wpxtop) if for every rule from R of the form (2), ζ is
linear and nondeleting in Xn ∪ Yk. It is one-state if |Q| = 1.

Consider a wpxtop M as above. The set of derivation forms of M, denoted
by DF(M), is the set TΣ

(
Q(TΣ, TΓ )

)
. For every r ∈ R of the form (2), define the

binary relation ⇒r
M on DF(M) as follows. Given s, t ∈ DF(M), let s ⇒r

M t if
there are c ∈ TΣ(Q(TΣ, TΓ ) ∪ X1), s1, . . . , sn ∈ TΣ, and κ1, . . . , κk ∈ TΓ such
that x1 appears exactly once in c,

s = c
[
q
(
ξ[s1, . . . , sn], γ(κ1, . . . , κk)

)]
, and

t = c
[
ζ[x1/s1, . . . , xn/sn, y1/κ1, . . . , yk/κk]

]
.

Again, care must be taken that there is no superfluous summation of the weight
of what is essentially the same derivation. Therefore, the leftmost rewrite relation
⇒r

M,L is defined just like ⇒r
M, but the rule r must be applied to the leftmost

state that occurs in s. Formally, we add the restriction that for every v, w ∈
pos(c), if c(w) = x1 and v ≤lex w, then c(v) /∈ Q. Given a sequence d =
r1 . . . rm ∈ Rm, m ∈ N, we write s ⇒d

M,L t if there are ξ0, . . . , ξm ∈ DF(M)
such that s = ξ0, t = ξm and ξi−1 ⇒ri

M,L ξi for every i ∈ [m]. The mapping

wt is extended to R∗ by setting wt(r1 . . . rm) =
∏m

i=1 wt(ri). For every m ∈ N,
κ ∈ TΓ , and s, t ∈ TΣ,

�M�
q,(m)
κ (s, t) =

∑
d∈Rm

q(s,κ)⇒d
M,Lt

wt(d), and �M�(s, t) =
∑
m∈N

�M�
q0,(m)
γ0

(s, t) .
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Fig. 3. Derivation of the example wpxtop M†

We refer to �M� : TΣ × TΣ → S as the transformation of M, and say that two
wpxtop M and M′ are equivalent if �M� = �M′�. From now on, let M denote
the wpxtop (Q,S,Σ, Γ, q0, γ0, R,wt), unless stated otherwise.

As an example for the derivation semantics of wpxtops, consider M† =
(Q,B, Σ, Γ, q0, γ, R,wt) with Q = {q0, q1}, Σ(2) = {σ}, Σ(1) = {δ}, and Σ(0) =
{α, α0, α1}, while Γ (2) = {η}, Γ (1) = {δ}, Γ (0) = {γ}, and Σ(k) = Γ (k) = ∅ for
every k ≥ 3. Let R be given by the eight rules

r1,i = qi(x1, η(y1, y2)) → qi
(
x1, η(δ(y1), δ(y2))

)
,

r2,i = qi
(
σ(x1, x2), η(y1, y2)

)
→ σ

(
q(1−i)(x1, y1), q(1−i)(x2, y2)

)
,

r3,i = qi(x1, δ(y1)) → δ
(
qi(x1, y1)

)
, and

r4,i = qi(α, γ) → αi ,

where i ∈ {0, 1}. Compare Fig. 3 for a derivation of M†. The finite state control
of M† allows rewriting α alternatingly into the symbols α0 and α1, while its
tree pushdown permits producing an equal unbounded number of symbols δ in
independent subtrees. We note that the latter feature of the transformation can
not be achieved by any (input-linear) extended tree transducer [7]. This can be
proved by a pumping argument.

The following parallel derivation lemma will be used implicitly in many sub-
sequent proofs. It allows the decomposition of a nonempty derivation into the
application of a rule and a number of independent subderivations.

Lemma 2. Let k, m ∈ N, q ∈ Q, s, t ∈ TΣ, and κ, κ1, . . . , κk ∈ TΓ with
κ = γ(κ1, . . . , κk) for some γ ∈ Γ (k). Then

�M�
q,(m+1)
κ (s, t) =

∑
r=(q(ξ,γ(y1,...,yk))→ζ)∈R,

linQ(X,TΓ (Y ))(ζ)=(ζ̂,q1(xi1 ,η1)...ql(xil
,ηl)),

(ξ,s1...sn)∈decn(s), (ζ̂,t1...tl)∈decl(t),

m1,...,ml∈N,
∑l

j=1 mj=m

wt(r) ·
l∏

j=1

�M�
qj ,(mj)

ηj [κ1,...,κk]
(sij , tj) .

The wpxtop is related to the following formalisms. If |posΣ(ξ)| ≤ 1 for every rule
of the form (2) and S = B, then M is a top-down pushdown tree transducer [18],

and if also linQ(X,TΓ (Y ))(ζ) = (ζ̂ , q1(x1, η1) . . . qn(x1, ηn)) with ζ̂ = ξ, then M is
a pushdown tree automaton [9]. If Γ = {γ0}, then M is a weighted extended top-
down tree transducer (wxtop) [7]. Obviously, in this case the pushdown symbols
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can be omitted from M and its rules. If S = B and |posΣ(ξ)| = 1 in every
rule, then the wxtop M is a top-down tree transducer [5]. We call a wxtop M a
weighted finite-state relabeling (wqrel) [8, Thm. 5.15] if every rule in R is of the
form q

(
σ(x1, . . . , xk)

)
→ δ

(
q1(x1), . . . , qk(xk)

)
for some k ∈ N, σ, δ ∈ Σ(k), and

q, q1, . . . , qk ∈ Q. A wqrel M is a finite-state relabeling (qrel) [5] if S = B. In
the nomenclature of [6], wxtop are weighted RT(TRfin × TP)-transducers, i.e.
regular tree grammars equipped with a variant of the tree storage type TR that
allows finite lookahead and decomposition, and with a tree pushdown storage
type TP.

In the following lemma, we prove the existence of a one-state normal form for
ln-wpxtop. The reader’s proof idea might be to modify the proof that every cre-
ative dendrolanguage can be generated by a one-state creative dendrogrammar
[15, Thm. 7], in which the state behaviour of a creative dendrogrammar is en-
coded into its pushdown symbols. However, this construction does not preserve
the properties of linearity and nondeletion. Nevertheless, a different encoding of
state transitions on the pushdown can be found which leaves these properties
intact. In this encoding scheme, we replace a pushdown symbol γ ∈ Γ (k) with
(q, γ, q1 . . . qk) ∈ Γ ′(k), where q1, . . . , qk and q are states of the original trans-
ducer M. This new pushdown symbol has the intended meaning that, if M pro-
cesses γ with state q, then it will eventually process the i-th successor symbol γi
of γ with state qi, where i ∈ [k]. Of course, γi should then again be substituted
with a symbol of the form (qi, γi, wi) for some wi ∈ Q∗ – i.e., the structure of the
constructed tree pushdown must reflect possible state transitions of M. Thus,
the described method generalizes the construction of one-state pushdown string
automata, cf. e.g. [11, Lect. 25], to linear and nondeleting trees.

Lemma 3. For every ln-wpxtopM there is an equivalent one-state ln-wpxtopM′.

Proof. The new pushdown alphabet is given by Γ ′(k) = {(q, γ, q1 . . . qk) | γ ∈
Γ (k), q, q1, . . . , qk ∈ Q} for every k ∈ N. For every q ∈ Q, k ∈ N, p1, . . . , pk ∈ Q,
define the qrel Bq

p1...pk
= (Q,B, Γ ∪Γ ′ ∪ Yk, q, RB), where RB contains the rules

pi(yi) → yi and s(γ(x1, . . . , xn)) → (s, γ, s1 · · · sn)
(
s1(x1), . . . , sn(xn)

)
for every i ∈ [k], n ∈ N, γ ∈ Γ (n) and s, s1, . . . , sn ∈ Q. Note that the elements
of Yk are nullary terminal symbols of Bq

p1...pk
. The application of Bq

p1...pk
to a

tree pushdown η ∈ TΓ (Yk) will encode possible state transitions of M into η,
which start out at the root with q and reach yi in state pi.

Construct the wpxtop M′ = (Q′, S,Σ, Γ ′, γ′
0, R

′,wt ′) with Q′ = {$}, and
γ′
0 = (q0, γ0, ε). For every rule r ∈ R of the form (2), where linQ(X,TΓ (Y ))(ζ) =

(ζ̂ , q1(xi1 , η1) . . . qn(xin , ηn)), and every p1, . . . , pk ∈ Q, add all r′ of the form

$
(
ξ, (q, γ, p1 . . . pk)(y1, . . . , yk)

)
→ ζ̂

[
$(xi1 , η

′
1), . . . , $(xin , η

′
n)

]
to R′, where η′j ∈ �B

qj
p1···pk

�(ηj) for j ∈ [n], and wt ′(r′) = wt(r). As the con-
struction modifies no variables from X and Y , M′ is linear and nondeleting.
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To prove equivalence of M and M′, the following auxiliary statement is neces-
sary. Assume n ∈ N, sets Vi and mappings fi : Vi → S for every i ∈ [n]. Then

∑( n∏
i=1

fi(vi)
∣∣∣ v1 ∈ V1, . . . , vn ∈ Vn

)
=

n∏
i=1

∑(
fi(v)

∣∣∣ v ∈ Vi

)
. (3)

This follows from the distributivity of S. Now, we can prove the following propo-
sition by complete induction: for every m ∈ N, q ∈ Q, s, t ∈ TΣ, and κ ∈ TΓ ,∑(

�M′�
�,(m)
κ′ (s, t)

∣∣∣ κ′ ∈ �Bq
ε�(κ)

)
= �M�q,(m)

κ (s, t) . (4)

For m = 0, obviously both sides of the equation are 0, so consider m+1. We ab-
breviate lists of subterms like a1, . . . , an or a1 . . . an by a1,n, the set Q(X,TΓ (Y ))
by U , and Q′(X,TΓ ′(Y )) by U ′. Assume that κ = γ(κ1, . . . , κk) for k ∈ N,
γ ∈ Γ (k), κ1,. . . ,κk ∈ TΓ . Then∑(

�M′�
�,(m+1)
κ′ (s, t)

∣∣∣ κ′ ∈ �Bq
ε�(κ)

)
=

∑(
wt ′(r′) ·

n∏
j=1

�M′�
�,(mj)

η′
j [κ

′
1,k]

(sij , tj)∣∣∣ p1,k ∈ Q, r′ = (�(ξ, (q, γ, p1,k)(y1,k)) → ζ) ∈ R′,

linU′(ζ) = (ζ̂, �(xi1 , η
′
1) . . . � (xin , η

′
n)), κ

′
u ∈ �Bpu

ε �(κu), u ∈ [k],

(ξ, s1,n) ∈ decn(s), (ζ̂, t1,n) ∈ decn(t), m1,n ∈ N,
∑n

j=1 mj = m
)

=
∑(

wt(r) ·
n∏

j=1

∑(
�M′�

�,(mj)

η̂′
j [κ

′
u1,uν

](sij , tj) | linY (ηj) = (η̂j , yu1,ul
),

pu1,ul
∈ Q,

κ′
uν

∈ �B
puν
ε �(κuν ), ν ∈ [l],

η′j ∈ �Bqj
pu1,ul

�(η̂j [y1,l])
)∣∣∣ r = (q(ξ, γ(y1,k)) → ζ) ∈ R, linU (ζ) = (ζ̂, q1(xi1 , η1) . . . qn(xin , ηn)),

(ξ, s1,n) ∈ decn(s), (ζ̂, t1,n) ∈ decn(t), m1,n ∈ N,
∑n

j=1 mj = m
)

=
∑(

wt(r) ·
n∏

j=1

∑(
�M′�

�,(mj)
θ (sij , tj) | θ ∈ �Bqj

ε �(ηj [κ1,k])
)

∣∣∣ r = (q(ξ, γ(y1,k)) → ζ) ∈ R, linU (ζ) = (ζ̂, q1(xi1 , η1) . . . qn(xin , ηn)),

(ξ, s1,n) ∈ decn(s), (ζ̂, t1,n) ∈ decn(t), m1,n ∈ N,
∑n

j=1 mj = m
)

(IH)
=

∑(
wt(r) ·

n∏
j=1

�M�
qj ,(mj)

ηj [κ1,k]
(sij , tj)∣∣∣ r = (q(ξ, γ(y1,k)) → ζ) ∈ R, linU (ζ) = (ζ̂, q1(xi1 , η1) . . . qn(xin , ηn)),

(ξ, s1,n) ∈ decn(s), (ζ̂, t1,n) ∈ decn(t), m1,n ∈ N,
∑n

j=1 mj = m
)

= �M�
q,(m+1)
κ (s, t) .
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First of all, let us explain why the second equation holds. Obviously, the function

fj := λ p1 . . . pk, η
′
1 . . . η

′
n, κ

′
1 . . . κ

′
k. �M′�

�,(mj)

η′
j [κ

′
1,k]

(sij , tj)

only depends on the argument η′j , and on those pu and κ′
u such that yu occurs

in η′j . Because M′ is linear and nondeleting, we can partition {p1, . . . , pk} and
{κ′

1, . . . , κ
′
k} into disjoint sets Pj and Kj of those states and tree pushdowns that

fj depends on. Hence we may apply (3) and swap the sum and the product. In the
following equation, the relabelings of ηj and of the parameters κuν are combined
into a relabeling of η̂j [κu1 , . . . , κul

] = ηj [κ1, . . . , κk]. This is possible because of
[8, Lem. 5.9], since qrels are also bottom-up weighted tree transducers. Now, for
every s, t ∈ TΣ,

�M�(s, t) =
∑
m∈N

�M�q0,(m)
γ0

(s, t) =
∑
m∈N

�M′�
�,(m)
(q0,γ0,ε)

(s, t) = �M′�(s, t) ,

by (4), because �Bq0
ε �(γ0) = {(q0, γ0, ε)}. ��

In the normal form for wpxtop we introduce in the following, the rules of the
transducer are partitioned into two kinds: (i) rules which do neither consume
any input nor produce any output, but may, however, push to the pushdown
storage, and (ii) rules which can consume input and produce output, but may
only pop the root of the pushdown store and push no further symbols. Formally,
a wpxtopM is said to be in index normal form if every rule r ∈ R is of one of the
following forms: (i) q

(
x1, γ(y1, . . . , yk)

)
→ q

(
x1, η

)
for some q ∈ Q, k ∈ N, and

η ∈ TΓ (Yk); then r is an index-creating rule, the set of all such r ∈ R is denoted
RIC; (ii) q

(
ξ, γ(y1, . . . , yk)

)
→ ζ

[
q1(x1, y1), . . . , qk(xk, yk)

]
for some ζ ∈ T ln

Σ (Yk)
and q1, . . . , qk ∈ Q; then r is an index-erasing rule, and the set of all such r ∈ R
is denoted RIE.

1

Lemma 4. For every ln-wpxtop M, there is an equivalent ln-wpxtop M′ in
index normal form. If M is one-state, then so is M′.

Proof. Assume that, w.l.o.g., Γ ∩ R = ∅. We construe the finite set R as a
ranked alphabet with rk(r) = n for each r ∈ R as in (2). Construct the ln-
wpxtop M′ = (Q,S,Σ, Γ ′, q0, γ0, R

′,wt ′), where Γ ′ = Γ ∪R, and for every rule

r from R of the form (2) with linQ(X,TΓ (Y ))(ζ) = (ζ̂, q1(xi1 , ηi1) . . . qn(xin , ηin)),
the two rules

r′ =
(
q(x1, γ(y1, . . . , yk)) → q(x1, r(η1, . . . , ηn))

)
,

with wt ′(r′) = wt(r), and

r′′ =
(
q(ξ, r(y1, . . . , yn)) → ζ̂

[
q1(xi1 , yi1), . . . , qn(xin , yin)

])
,

1 The names of these kinds of rules are not related to the indices from Section 3, but
in analogy to the two kinds of productions of creative dendrogrammars [15].
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with wt ′(r′′) = 1, are inserted into R′. One can show by complete induction that
for every m ∈ N, q ∈ Q, s, t ∈ TΣ, and κ ∈ TΓ ,

�M�
q,(m)
κ (s, t) = �M′�

q,(2m)
κ (s, t) . (5)

Then, for every s, t ∈ TΣ,

�M�(s, t) =
∑
m∈N

�M�
q0,(m)
γ0

(s, t) =
∑
m∈N

�M′�
q0,(2m)
γ0

(s, t) = �M′�(s, t) .

The second equality holds with (5) because, obviously, there are no derivations
d of odd length such that q0(s, γ0) ⇒d

M′,L t. ��

5 Main Result

Now, we can exploit the similarity between s-wscftg in normal form and one-
state wpxtop in index normal form to obtain the proof that both formalisms are
equivalent. We require a further concept, however. Given ξ ∈ I(N,Σ,X), define
ξ↓ as the tree in TN∪Σ(X) which results from ξ by replacing every nonterminal
A i in ξ by A.

Definition 1. Let G = (N,S,Σ, Z, P,wtP ) be a s-wscftg in normal form and
M = ({$}, S,Σ, Γ, $, γ0, R,wtR) be a one-state ln-wpxtop in index normal form.
We say that G and M are related if N = Γ , γ0 = Z, and (i) the production
p =

(
A(x1, . . . , xk) → [ξ, ξ]

)
is in PNT iff the rule r =

(
∗
(
x1, A(y1, . . . , yk)

)
→

∗
(
x1, ξ↓[y1, . . . , yk]

))
is in RIC, with wtP (p) = wtR(r); and (ii) the production

p′ =
(
A(x1, . . . , xk) → [ξ, ζ]

)
is in PT iff the rule r′ =

(
∗
(
ξ, A(y1, . . . , yk)

)
→

ζ
[
∗(x1, y1), . . . , ∗(xk, yk)

])
is in RIE, where wtP (p

′) = wtR(r
′).

Lemma 5. Let G and M from Def. 1 be related. Then �G� = �M�.

Proof. We prove the equation �G�
(m)
[η,η] = �M�

�,(m)
η↓ by complete induction for

every m ∈ N, η ∈ TN N , and s, t ∈ TΣ. The case m = 0 is trivial. So let, w.l.o.g,
η = A 1 (η1, . . . , ηk) for some k ∈ N, A ∈ N (k) and η1, . . . , ηk ∈ TN N , then

�G�
(m+1)
[η,η] (s, t) =

∑(
wt(d)

∣∣∣ d ∈ Pm+1, [η, η] ⇒d
G,LO [s, t]

)
=

∑(
wtP (p) · �G�

(m)
[ξ[η1,k],ξ[η1,k]]

(s, t)
∣∣∣ p = (A(x1,k) → [ξ, ξ]) ∈ PNT, ξ is fresh

)
+

∑(
wtP (p) ·

k∏
j=1

�G�
(mj)

[ηj ,ηj ]
(sj , tj)

∣∣∣ p = (A(x1,k) → [ξ, ζ]) ∈ PT,

(ξ, s1,k) ∈ deck(s), (ζ, t1,k) ∈ deck(t),

m1, . . . ,mk ∈ N,
∑k

j=1 mj = m
)
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(IH)
=

∑(
wtR(r) · �M�

�,(m)
ξ[η1,k]↓(s, t)

∣∣∣ r = �(x1, A(y1,k)) → �(x1, ξ↓[y1,k]) ∈ RIC

)
+

∑(
wtR(r) ·

k∏
j=1

�M�
�,(mj)
ηj↓ (sj , tj)

∣∣∣ ζ ∈ T ln
Σ (Xk),

r = �(ξ,A(y1,k)) → ζ[�(x1, y1), . . . , �(xk, yk)] ∈ RIE,

(ξ, s1,k) ∈ deck(s), (ζ, t1,k) ∈ deck(t),

m1, . . . , mk ∈ N,
∑k

j=1 mj = m
)

=
∑(

wt(d)
∣∣∣ d ∈ Rm+1, $(η↓, s) ⇒d

M,L t
)
= �M�

�,(m+1)
η↓ (s, t) .

In the second step, we have abbreviated the restriction that (ξ, ξ) is fresh for
(η1, η1), . . . , (ηk, ηk) by “ξ is fresh”. Moreover, we again abbreviated sequences
like a1, . . . , an or a1 . . . an by a1,n. Now, for every s, t ∈ TΣ,

�G�(s, t) =
∑
m∈N

�G�
(m)
[Z 1 ,Z 1 ](s, t) =

∑
m∈N

�M�
�,(m)
γ0

(s, t) = �M�(s, t) ,

concluding the proof. ��

Theorem 1. The classes of transformations of s-wscftg and ln-wpxtop are equal.

Proof. Let G be a s-wscftg. By Lemma 1, we can assume that G is in normal form.
But then, a related ln-wpxtop M can be constructed according to Definition 1,
and by Lemma 5, �G� = �M�. Conversely, let M be a ln-wpxtop. By Lemmas 3
and 4, M can be assumed to be one-state and in index normal form. So there is
a related s-wscftg G by Definition 1, and �M� = �G� by Lemma 5. ��

6 Conclusion

In this work, we proved the equivalence of linear and nondeleting weighted push-
down extended tree transducers and simple weighted synchronous context-free
tree grammars, and thus generalized [12, Thms. 2 and 3] to weighted tree trans-
formations.

We conclude with the claim that the characterization in [1, Thm. 1] can also
be generalized to weighted tree transformations. That is, the class of transforma-
tions of s-wscftg is exactly the composition of the classes ln-HOM−1, ln-WSCFT,
and ln-HOM, that contain, respectively, the transformations of inverse linear and
nondeleting tree homomorphisms [7, p. 170], linear and nondeleting weighted
context-free tree grammars (ln-wcftg) [2], and linear and nondeleting tree homo-
morphisms. In fact, the construction for direction ⊆ can be read off directly from
the one-state wpxtop M in index-normal form that is equivalent to a s-wscftg
G by Lemma 5: its index-creating rules determine the productions of a ln-wcftg
G′ over the terminal alphabet Γ , and its index-erasing rules the values of the
homomorphisms h1 and h2. For the other direction ⊇, one may assume the given
ln-wcftg G to be in normal form [16,2]. Then the nonterminal productions of G
directly determine the nonterminal productions of the constructed s-wscftg G′,
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while the terminal productions of G′ are the result of applying the supposed tree
homomorphisms h1 and h2 to the right-hand sides of the terminal productions
of G.

Contrasted to the bimorphism characterization of wscftg over B in [13], the
above characterization gives an idea of the restricted power of s-wscftg in com-
parison to wscftg.
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Abstract. We introduce weighted variable automata over infinite al-
phabets and commutative and idempotent semirings. We prove that the
class of their behaviors is closed under sum, and under scalar, Hadamard,
Cauchy, and shuffle product, as well as star operation. Furthermore, we
consider rational series over infinite alphabets and we state a Kleene-
Schützenberger theorem.

Keywords: Infinite alphabets, weighted variable automata, semirings.

1 Introduction

The concept of finite automata with infinite input alphabets is of increasing re-
search interest in the last years. These models are motivated by real practical
applications especially data bases, system verification, and web services. Several
such automata models have been investigated, namely register (cf. [8,12,14]),
pebble (cf. [12,13]), data automata (cf. [2]), P automata over infinite alphabets
[4] as well as variants of them. Unfortunately, most of these devices are quite
complicated according to implementation and application. In [7], the authors
considered the model of variable finite automata with infinite input alphabets.
The main advantage of this model is the simplicity of its definition and oper-
ation. More precisely, it is based on an underlying finite automaton with finite
input alphabet which consists of a constant subalphabet of the infinite alphabet,
and variable symbols of two types, the bounded variable symbols and one free
variable symbol. The variable automaton recognizes a language in the following
way. Firstly, it computes the language of the underlying automaton. Then, it sub-
stitutes the variable symbols with letters from the infinite alphabet. For these
substitutions concrete requirements are imposed. It was shown that variable fi-
nite automata have nice properties. In [11] (cf. also [10]), the model of variable
automata was extended to the setup of trees over infinite ranked alphabets.

All the aforementioned types of automata refer to qualitative characteristics
of the systems applied to. On the other hand, it is well-known that current
practical applications require also quantitative features and analysis. Usually,
when automata are involved in the investigation, the quantitative analysis is
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achieved by weighted automata models (cf. [5]). According to the authors’ best
knowledge, a quantitative counterpart for automata over infinite alphabets does
not exist. Recently, in [3] the authors considered quantitative infinite alphabets
to model controlled variables for a controller synthesis from incompatible situa-
tions. It is the scope of this paper to introduce weighted automata over semirings
consuming letters from an infinite alphabet. For this, we use the model of [7]
since in the weighted setup it also has a simple definition and implementation.
Therefore, we consider weighted variable automata over commutative and idem-
potent semirings and infinite alphabets, and investigate several closure proper-
ties of the class of their behaviors. For our proofs, we mainly use the techniques
which were developed in [11] for variable tree automata over infinite ranked
alphabets. Furthermore, we introduce rational expressions over infinite alpha-
bets using the same idea as for our automata models. This enables us to state
a Kleene-Schützenberger theorem for the class of series over infinite alphabets
obtained as a consequence of the corresponding seminal result for series over
finite alphabets. A similar approach for defining regular expressions over infinite
alphabets has been followed in [1,9]. Finally, an application of our results, using
the Boolean semiring, derives new results and a Kleene theorem for the class of
languages accepted by variable finite automata of [7].

The structure of the paper is as follows. Besides this Introduction, the paper
contains 5 sections. In Section 2 we present the preliminary notions used in the
sequel. In Section 3 we introduce the model of the weighted variable automaton
and in Section 4 we prove that the class of series accepted by these automata
is closed under sum, scalar product, Hadamard product, Cauchy product, star
operation and shuffle product. In Section 5 we deal with rational series over
infinite alphabets and we state a Kleene-Schützenberger result. In Section 6 we
apply our results to weighted variable automata over the Boolean semiring, and
thus we obtain new results for the class of recognizable languages accepted by
variable finite automata. Finally, in the Conclusion, we refer to open problems
and future research.

2 Preliminaries

Let Σ be an alphabet, i.e., a nonempty (potentially infinite) set. As usually, we
denote by Σ∗ the set of all finite words over Σ and Σ+ = Σ∗ \ {ε}, where ε is
the empty word. A subset L ⊆ Σ∗ is a language over Σ. A word w = σ0 . . . σn−1,
where σ0, . . . , σn−1 ∈ Σ (n ≥ 1), is written also as w = w(0) . . . w(n − 1) where
w(i) = σi for every 0 ≤ i ≤ n − 1. If S is a set, then P (S) will denote the
powerset of S.

A monoid (K, ·, 1) is a nonempty set K which is equipped with an associative
operation · and a unit element 1 such that 1 · k = k · 1 = k for every k ∈ K.
A monoid is called commutative if · is commutative. A semiring (K,+, ·, 0, 1) is
an algebraic structure such that (K,+, 0) is a commutative monoid, (K, ·, 1) is a
monoid, 0 �= 1, · is both left- and right-distributive over +, and 0·k = k ·0 = 0 for
every k ∈ K. If no confusion arises, we shall denote the semiring simply byK and
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the · operation simply by concatenation. The semiringK is called commutative if
the monoid (K, ·, 1) is commutative. Moreover, K is called additively idempotent
(or simply idempotent), if 1 + 1 = 1 which in turn implies that k + k = k for
every k ∈ K.

Example 1. The following structures constitute semirings.

- The semiring of natural numbers (N,+, ·, 0, 1) ,
- the Boolean semiring B = ({0, 1},+, ·, 0, 1),
- the tropical or min-plus semiring (R+∪{∞},min,+,∞, 0) where R+ = {r ∈
R | r ≥ 0},

- the arctical or max-plus semiring (R+ ∪ {−∞},max,+,−∞, 0),
- the Viterbi semiring ( [0, 1] ,max, ·, 0, 1),
- every bounded distributive lattice with the operations supremum and infi-
mum, and especially the fuzzy semiring F = ([0, 1],max,min, 0, 1).

All the previous semirings, except the first one, are idempotent and commutative.

Let Σ be an alphabet and K a semiring. A formal series (or simply series)
over Σ and K is a mapping s : Σ∗ → K. For every w ∈ Σ∗ we write (s, w) for
the value s(w) and refer to it as the coefficient of s on w. The support of s is
the set supp(s) = {w ∈ Σ∗ | (s, w) �= 0}. A series with finite support is called

a polynomial. The constant series k̃ (k ∈ K) is defined, for every w ∈ Σ∗, by(
k̃, w

)
= k. Moreover, for every w ∈ Σ∗, we denote by w the series determined,

for every u ∈ Σ∗, by (w, u) = 1 if u = w and 0, otherwise. The class of all series
over Σ and K is denoted as usual by K 〈〈Σ∗〉〉, and the class of polynomials over
Σ and K by K 〈Σ∗〉.

Let s, r ∈ K 〈〈Σ∗〉〉 and k ∈ K. The sum s + r, the scalar products ks
and sk as well as the Hadamard product s � r are defined elementwise by
(s + r, w) = (s, w) + (r, w), (ks, w) = k · (s, w), (sk, w) = (s, w) · k, and
(s�r, w) = (s, w)·(r, w), respectively, for every w ∈ Σ∗. It is well-known that the

structures
(
K 〈〈Σ∗〉〉 ,+,�, 0̃, 1̃

)
and

(
K 〈Σ∗〉 ,+,�, 0̃, 1̃

)
are semirings, which

moreover are commutative (resp. idempotent) whenever K is commutative (resp.
idempotent).

The Cauchy product of r and s is the series r · s ∈ K 〈〈Σ∗〉〉 defined for every
w ∈ Σ∗ by

(r · s, w) =
∑

{(r, u) · (s, v) | u, v ∈ Σ∗, w = uv}.
The nth-iteration rn ∈ K 〈〈Σ∗〉〉 (n ≥ 0) of a series r ∈ K 〈〈Σ∗〉〉 is defined

inductively by
r0 = ε and rn+1 = r · rn for n ≥ 0.

Then, we have (rn, w) =
∑{∏

1≤i≤n(r, ui) | ui ∈ Σ∗, w = u1 . . . un

}
for every

w ∈ Σ∗. A series r ∈ K 〈〈Σ∗〉〉 is called proper whenever (r, ε) = 0. If r is proper,
then for every w ∈ Σ∗ and n > |w| we have (rn, w) = 0. The star r∗ ∈ K 〈〈Σ∗〉〉
of a proper series r ∈ K 〈〈Σ∗〉〉 is defined by r∗ =

∑
n≥0 r

n. Thus, for every

w ∈ Σ∗ we have (r∗, w) =
∑

0≤n≤|w|
(rn, w).
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Finally, the shuffle product of r and s is the series r� s ∈ K 〈〈Σ∗〉〉 defined
for every w ∈ Σ∗ by

(r� s, w) =
∑

{(r, u) · (s, v) | u, v ∈ Σ∗, w ∈ u� v}
where u� v denotes the shuffle product of u and v.

Next we turn to weighted automata. For this we assume the alphabet Σ to be
finite. A weighted automaton over Σ and K is a quadruple A = (Q, in, wt, ter)
where Q is the finite state set, in : Q → K is the initial distribution, wt : Q ×
Σ×Q → K is a mapping assigning weights to the transitions of the automaton,
and ter : Q → K is the final (or terminal) distribution.

Let w = w(0) . . . w(n−1) ∈ Σ∗. A path of A over w is a sequence of transitions
Pw := ((qi, w(i), qi+1))0≤i≤n−1. The weight of Pw is given by the value

weight(Pw) = in(q0) ·
∏

0≤i≤n−1

wt ((qi, w(i), qi+1)) · ter(qn).

The behavior of A is the series ‖A‖ : Σ∗ → K whose coefficients are given by

(‖A‖ , w) =
∑
Pw

weight(Pw)

for every w ∈ Σ∗.
A series s ∈ K 〈〈Σ∗〉〉 is called recognizable if s = ‖A‖ for some weighted

automaton A over Σ and K. As usual we denote by Rec(K,Σ) the class of
recognizable series over Σ and K. Two weighted automata A = (Q, in, wt, ter)
and A′ = (Q′, in′, wt′, ter′) over Σ and K are called equivalent if ‖A‖ = ‖A′‖.

Finally, a weighted automaton A = (Q, in, wt, ter) over Σ and K is called
normalized if there exist two states qin, qter ∈ Q, qin �= qter, such that:

- in (q) = 1 if q = qin, and 0 otherwise,
- ter (q) = 1 if q = qter, and 0 otherwise, and
- wt ((q, σ, qin)) = wt ((qter, σ, q)) = 0

for every q ∈ Q, σ ∈ Σ. We shall denote a normalized weighted automaton
A = (Q, in, wt, ter) simply by A = (Q, qin, wt, qter). The next result has been
proved by several authors, cf. for instance Chapter 3 in [5].

Proposition 1. Let A = (Q, in, wt, ter) be a weighted automaton over Σ and
K. We can effectively construct a normalized weighted automaton A′ such that
(‖A′‖ , w) = (‖A‖ , w) for every w ∈ Σ+ and (‖A′‖ , ε) = 0.

3 Weighted Variable Automata

In this section, we introduce the concept of weighted variable automata. More-
over, we present preliminary results, needed in Section 4, for the proof of the
closure properties of the behaviors of our models.

Let Σ, Σ′ be (infinite) alphabets. A relabeling from Σ to Σ′ is a mapping
h : Σ → P (Σ′). Next let Γ ⊆ Σ be a finite subalphabet of Σ, Z a finite set
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whose elements are called bounded variables and y an element which is called a
free variable. We assume that the sets Σ, Z, and {y} are pairwise disjoint. A
relabeling h from Γ ∪ Z ∪ {y} to Σ is called valid if

(i) it is the identity on Γ ,1

(ii) card(h(z)) = 1 for every z ∈ Z,
(iii) h is injective on Z and Γ ∩ h(Z) = ∅, and
(iv) h(y) = Σ \ (Γ ∪ h(Z)).

The above definition means that the application of h on a word w over Γ∪Z∪{y}
assigns to every occurrence of a symbol z ∈ Z in w the same symbol from Σ,
but it is possible to assign different symbols from Σ to different occurrences
of y in w. This justifies the names bounded and free for the set of variables Z
and the variable y, respectively. It should be clear that a valid relabeling from
Γ ∪Z∪{y} to Σ is well-defined if it is defined only on Z satisfying conditions (ii)
and (iii). We shall denote by V R(Γ ∪Z ∪ {y}, Σ) the set of all valid relabelings
from Γ ∪ Z ∪ {y} to Σ, and simply by V R(Γ ∪ Z ∪ {y}) if the alphabet Σ is
understood.

We set Δ = Γ ∪ Z ∪ {y} and let w ∈ Σ∗. The preimage of w over Δ is the
set preimΔ(w) = {u ∈ Δ∗ |there exists h ∈ V R(Δ) such that u ∈ h−1(w)}.

Now we are ready to introduce our weighted variable automata.

Definition 1. A weighted variable automaton (wva for short) over Σ and K
is a pair A = 〈Σ,A〉 where Σ is an infinite alphabet and A = (Q, in, wt, ter) is
a weighted automaton over ΓA and K. The input alphabet ΓA of A is defined by
ΓA = ΣA ∪Z ∪{y}, where ΣA ⊆ Σ is a finite subalphabet, Z is a finite alphabet
of bounded variables, and y is a free variable.

The behavior of A is the series ‖A‖ : Σ∗ → K whose coefficients are deter-
mined by

(‖A‖ , w) =
∑

u∈preimΓA
(w)

(‖A‖ , u)

for every w ∈ Σ∗. Clearly, the above sum is finite and thus (‖A‖ , w) is well-
defined for every w ∈ Σ∗.

Two wva A and A′ over Σ and K are called equivalent whenever ‖A‖ = ‖A′‖.
A series r over Σ and K is called v-recognizable if there exists a wva A such

that r = ‖A‖. We shall denote by V Rec (K,Σ) the class of v-recognizable series
over Σ and K. It should be clear that every weighted automaton A over a finite
subalphabet Σ′ ⊆ Σ and K can be considered as a wva such that its transitions
labelled by variables carry the weight 0. Therefore, we get the next result, where
the strictness of the inclusion trivially holds by the definition of wva.

Proposition 2.
⋃

finite Σ′⊆Σ

Rec (K,Σ′) � V Rec (K,Σ) .

1 Abusing notation we identify {σ} with σ, for every σ ∈ Γ .
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Throughout the paper Σ will denote an infinite alphabet and K an
idempotent and commutative semiring.

In the sequel, we will call a wva A = 〈Σ,A〉 over Σ and K, simply a wva.

Definition 2. A wva A = 〈Σ,A〉 is called normalized if A is normalized.

Proposition 3. Let A = 〈Σ,A〉 be a wva. We can effectively construct a normal-
ized wva A′ such that (‖A′‖ , w) = (‖A‖ , w) for every w ∈ Σ+ and (‖A′‖ , ε) = 0.

Next, we wish to investigate closure properties of the class V Rec (K,Σ). For
this, we cannot apply the well-known constructions from classical weighted au-
tomata theory. For instance, let A = 〈Σ,A〉 be a normalized wva, where A =
({qin, q, qter}, qin, wtA, qter), ΓA = {a} ∪ {z} ∪ {y} and transitions with non-
zero weights given by wtA((qin, a, q)) = wtA((q, z, qter)) = 1. Consider also
the normalized wva A′= 〈Σ,A′〉 where A′ = ({q′in, q′ter}, q′in, wtA′ , q′ter), ΓA′ =
{a′}∪{z′}∪{y′} and wtA′((q′in, a

′, q′ter)) = wtA′((q′in, y
′, q′ter)) = 1. Moreover, let

us assume that a �= a′. Clearly, (‖A‖ , aa′) = 1 and (‖A′‖ , a′) = 1. Nevertheless,
if we consider the disjoint union of A and A′, say the weighted automaton B,
then a, a′ ∈ ΓB which implies that we cannot apply a valid relabeling assigning
the letter a′ to z. This in turn, implies that the word aa′ does not belong to the
support of the wva derived by the weighted automaton B. Furthermore, another
problem of this construction is the choice of the free variable among y and y′

which moreover causes new inconsistencies. Similar, even more complex, situa-
tions arise for the constructions of wva proving closure under further properties
like Hadamard, Cauchy, and shuffle product. The subsequent material is needed
for our investigation for the closure properties of V Rec (K,Σ).

Let A = 〈Σ,A〉 be a wva where A = (Q, in, wt, ter) with ΓA = ΣA ∪Z ∪ {y},
and Σ′ ⊆ Σ a finite alphabet such that Σ′ \ΣA �= ∅. We define on V R (ΓA) the
relation ≡Σ′ determined for every h1, h2 ∈ V R (ΓA) by

h1 ≡Σ′ h2 iff h1(σ) ∩Σ′ = h2(σ) ∩Σ′ for every σ ∈ Z ∪ {y}.

It should be clear that ≡Σ′ is an equivalence relation. Moreover, since Z ∪ {y}
and Σ′ are finite, the index of ≡Σ′ is finite. Let V be a set of representatives
of V R (ΓA) / ≡Σ′ . For every h ∈ V , we let Zh = {z ∈ Z | h(z) ∈ Σ′} and
Γh = ΣA ∪ Σ′ ∪ (Z \ Zh) ∪ {y}, and we consider the weighted automaton
Ah = (Qh, inh, wth, terh) over Γh and K, where Qh = {qh | q ∈ Q} is a copy
of Q, inh(qh) = in(q) and terh(qh) = ter(q) for every qh ∈ Qh. The weight
assignment mapping wth is defined as follows. For every qh, q

′
h ∈ Qh, σ ∈ Γh,

we let

wth ((qh, σ, q
′
h)) =

⎧⎪⎪⎨⎪⎪⎩
wt ((q, σ, q′)) if σ ∈ ΣA ∪ (Z \ Zh) ∪ {y}
wt ((q, z, q′)) if σ = h(z) and z ∈ Zh

wt ((q, y, q′)) if σ ∈ h (y) ∩Σ′

0 otherwise.

Without any loss, we assume that the sets Qh are pairwise disjoint. We let QV =⋃
h∈V

Qh, ΓV = ΣA ∪ Σ′ ∪ Z ∪ {y}, and consider the wva A(Σ′,V )=
〈
Σ,A(Σ′,V )

〉
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over Σ and K, where A(Σ′,V ) = (QV , inV , wtV , terV ) is a weighted automaton
with input alphabet ΓV . Its initial and final distribution are defined, respectively,
by inV (q) = inh (q), terV (q) = terh (q) for every q ∈ Qh, h ∈ V . The weight
assignment mapping wtV : QV × ΓV ×QV → K is given by

wtV ((q, σ, q′)) =

{
wth ((q, σ, q

′)) if q, q′ ∈ Qh for some h ∈ V
0 otherwise

for every q, q′ ∈ QV , σ ∈ ΓV .
Since the weighted automaton A(Σ′,V ) is the disjoint union of Ah, h ∈ V , we

get that
∥∥A(Σ′,V )

∥∥ =
∑
h∈V

‖Ah‖. Therefore, for every w ∈ Σ∗, we have

(∥∥A(Σ′,V )

∥∥ , w
)
=

∑
u∈preimΓV

(w)

(∥∥A(Σ′,V )

∥∥ , u
)
=

∑
h∈V

∑
u∈preimΓh

(w)

(‖Ah‖ , u) .

The next result is crucial for the proofs of the closure properties of the class
V Rec(K,Σ).

Lemma 1. ‖A‖ =
∥∥A(Σ′,V )

∥∥ .

Proof. Letw = w (0) . . . w (n− 1) ∈ Σ∗. Consider awordu = u (0) . . . u (n− 1) ∈
preimΓA(w) and a valid relabeling h ∈ V R (ΓA) with w ∈ h (u). We define the
word u′ = u′ (0) . . . u′ (n− 1) ∈ Γ ∗

V as follows.

u′ (i) =

{
u (i) if (u (i) ∈ ΣA ∪ Z \ Zh) or (u (i) = y and w (i) /∈ Σ′ \ΣA)
w (i) if (u (i) ∈ Zh) or (u (i) = y and w (i) ∈ Σ′ \ΣA)

for every 0 ≤ i ≤ n− 1.
We consider the set of valid relabelings V ′ ⊆ V as follows: g ∈ V ′ implies

that g (z) = h (z) for every z ∈ Zh ∩ {u (i) | 0 ≤ i ≤ n− 1} and g (y) ∩ Σ′ =
h (y) ∩ Σ′ whenever u (i) = y and w(i) ∈ Σ′ for some 0 ≤ i ≤ n − 1. Let

P
(A)
u be a path of A over u. Then, by construction of A(Σ′,V ), for every g ∈ V ′,

there exists a path P
(Ag)
u′ of Ag over u′ with weight

(
P

(Ag)
u′

)
= weight

(
P

(A)
u

)
.

Clearly, there are r = card(V ′) such paths and since K is idempotent, we get∑
g∈V ′

weight
(
P

(Ag)
u′

)
= weight

(
P

(A)
u

)
. On the other hand, for every g ∈ V \ V ′

and path P
(Ag)
u′ of Ag, we have weight

(
P

(Ag)
u′

)
= 0. Therefore, we obtain∑

P
(A)
u

weight
(
P (A)
u

)
=

∑
g∈V

∑
P
(Ag)
u′

weight
(
P

(Ag)
u′

)
.

We define the valid relabeling h′ ∈ V R (ΓV ) by h′(z) = h(z) for every z ∈
Z \ Zh, and we let, nondeterministically, h′(z) ∈ Σ \ (ΣA ∪ Σ′ ∪ h (Z \ Zh) ∪
{w (i) | 0 ≤ i ≤ n− 1 and w (i) ∈ h (y)}) for every z ∈ Zh. Then we have w ∈
h′ (u′) which implies that u′ ∈ preimΓV (w).
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Conversely, let u′ = u′ (0) . . . u′ (n− 1) ∈ preimΓV (w). Hence, there is a valid
relabeling h′ ∈ V R (ΓV ) such that w ∈ h′ (u′). By construction of A(Σ′,V ), there
is a valid relabeling h from ΓA to Σ and a word u = u (0) . . . u (n− 1) ∈ Γ ∗

A such
that

u (i) =

⎧⎨⎩u′ (i) if u′ (i) ∈ ΣA ∪ Z \ Zh

z if u′ (i) = h(z) and z ∈ Zh

y if u′ (i) ∈ (h(y) ∩Σ′) ∪ {y}

for every 0 ≤ i ≤ n − 1. Keeping the previous notations, for every g ∈ V ′,

there is a path P
(Ag)
u′ of the weighted automaton Ag over u′. By construction

of A(Σ′,V ), all such paths P
(Ag)
u′ (g ∈ V ′) have the same weight and there exist

r = card(V ′) such paths. Furthermore, for every g ∈ V ′ and P
(Ag)
u′ there is a

path P
(A)
u of A over u with weight

(
P

(A)
u

)
= weight

(
P

(Ag)
u′

)
, and since K is

idempotent we get weight
(
P

(A)
u

)
=

∑
g∈V ′

weight
(
P

(Ag)
u′

)
. On the other hand,

for every g ∈ V \ V ′ and path P
(Ag)
u′ of Ag, we have that weight

(
P

(Ag)
u′

)
=

0. Therefore
∑
g∈V

∑
P
(Ag)
u′

weight
(
P

(Ag)
u′

)
=

∑
P

(A)
u

weight
(
P

(A)
u

)
. We consider the

relabeling h′′ from ΓA to Σ defined in the following way. It is the identity on
ΣA, h

′′(z) = h′(z) for every z ∈ Z \ Zh, h
′′(z) = h(z) for every z ∈ Zh, and

h′′(y) = h′(y)∪ ((h(y) ∩Σ′) \ h (Zh)) (in fact (h(y) ∩Σ′)∩h (Zh) = ∅ since h is
a valid relabeling on ΓA). Trivially h′′ is a valid relabeling and w ∈ h′′(u) which
implies that u ∈ preimΓA (w).

We conclude that for every w ∈ Σ∗ we have

(∥∥A(Σ′,V )

∥∥ , w
)
=

∑
u′∈preimΓV

(w)

(∥∥A(Σ′,V )

∥∥ , u′)
=

∑
u′∈preimΓV

(w)

∑
g∈V

(‖Ag‖ , u′)

=
∑

u′∈preimΓV
(w)

∑
g∈V

∑
P
(Ag)
u′

weight
(
P

(Ag)
u′

)

=
∑

u∈preimΓA
(w)

∑
P

(A)
u

weight
(
P (A)
u

)
=

∑
u∈preimΓA

(w)

(‖A‖ , u)

= (‖A‖ , w)

and our proof is completed.
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4 Closure Properties of the Class V Rec (K,Σ).

In this section, we state the closure of the class of v-recognizable series over the
infinite alphabetΣ and the semiringK, under sum, and under scalar, Hadamard,
Cauchy and shuffle product, as well as star operation. Due to space limitations
we present only the proof for the closure under the shuffle product.

Proposition 4. The class V Rec (K,Σ) is closed under sum.

Proposition 5. The class V Rec (K,Σ) is closed under the scalar products.

Proposition 6. The class V Rec (K,Σ) is closed under Hadamard product.

Proposition 7. The class V Rec (K,Σ) is closed under Cauchy product.

Proposition 8. The class V Rec (K,Σ) is closed under the star operation ap-
plied to proper series.

Proposition 9. The class V Rec (K,Σ) is closed under the shuffle product.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. We consider the proper series r′(i)

(i = 1, 2) over Σ and K defined, for every w ∈ Σ∗, by
(
r′(i), w

)
= (r(i), w) if

w ∈ Σ+, and 0 otherwise.
Then r(1)�r(2) = r′(1)�r′(2)+

(
r(1), ε

)
r(2)+r(1)

(
r(2), ε

)
+

(
r(1), ε

) (
r(2), ε

)
ε̄

and by Propositions 2, 5, and 4, it suffices to show that r′(1)�r′(2) ∈ V Rec (K,Σ).
By Proposition 3, there are normalized wva A(i) =

〈
Σ,A(i)

〉
with A(i) =(

Q(i), q
(i)
in , wt(i), q

(i)
ter

)
over Γ (i) = Σ(i) ∪ Z(i) ∪

{
y(i)

}
and K, accepting respec-

tively r′(i), with i = 1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅
and

(
Z(1) ∪

{
y(1)

})
∩

(
Z(2) ∪

{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=〈

Σ,A
(1)

(Σ(2),V1)

〉
and A(2)

(Σ(1),V2)
=

〈
Σ,A

(2)

(Σ(1),V2)

〉
determined by the procedure

before Lemma 1. By Proposition 3 and Lemma 1 these wva can be also as-

sumed to be normalized hence, let A
(1)

(Σ(2),V1)
=

(
Q

(1)
V1

, q
(1)
inV1

, wt
(1)
V1

, q
(1)
terV1

)
over

Γ (1) ∪ Σ(2) and A
(2)

(Σ(1),V2)
=

(
Q

(2)
V2

, q
(2)
inV2

, wt
(2)
V2

, q
(2)
terV2

)
over Γ (2) ∪ Σ(1). More-

over, without any loss, we assume that Q
(1)
V1

∩ Q
(2)
V2

= ∅. We let y =
(
y(1), y(2)

)
and consider the set H =

(
Z(1) ∪

{
y(1)

})
×

(
Z(2) ∪

{
y(2)

})
\ {y} and a maximal

subset G ⊆ H ∪ Z(1) ∪ Z(2) satisfying the following condition: every element of
Z(1) (resp. of Z(2)) occurs either in at most one pair of H as a left (resp. as
a right) coordinate, or as a single element of G. Assume that G1, . . . , Gm is an

enumeration of all such sets. We let Q = Q
(1)
V1

×Q
(2)
V2

, ΓGj = Σ(1)∪Σ(2)∪Gj∪{y},
for every 1 ≤ j ≤ m, and consider the normalized wva AGj=

〈
Σ,AGj

〉
over Σ

and K with AGj =
(
Q,

(
q
(1)
inV1

, q
(2)
inV2

)
, wtGj ,

(
q
(1)
terV1

, q
(2)
terV2

))
over ΓGj , where

the weight assignment mapping wtGj is defined for every 1 ≤ j ≤ m as follows.
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wtGj

(((
q(1), q(2)

)
, σ,

(
q′(1), q′(2)

)))
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt
(1)
V1

((
q(1), σ, q′(1)

))
if q(2) = q′(2) and σ ∈ Σ(1) ∪Σ(2) ∪

(
Z(1) ∩Gj

)
wt

(2)
V2

((
q(2), σ, q′(2)

))
if q(1) = q′(1) and σ ∈ Σ(1) ∪Σ(2) ∪

(
Z(2) ∩Gj

)
wt

(1)
V1

((
q(1), x(1), q′(1)

))
if q(2) = q′(2) and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

wt
(2)
V2

((
q(2), x(2), q′(2)

))
if q(1) = q′(1) and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

0 otherwise

for every
(
q(1), q(2)

)
,
(
q′(1), q′(2)

)
∈ Q, σ ∈ ΓGj .

Next, we show that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥� ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥= ∑
1≤j≤m

∥∥AGj

∥∥.
For this let w,w1 = w1 (0) . . . w1 (n1 − 1) , w2 = w2 (0) . . . w2 (n2 − 1) ∈ Σ+

such that w ∈ w1�w2, and u1 ∈ preimΓ (1)∪Σ(2) (w1), u2 ∈ preimΓ (2)∪Σ(1) (w2).
Hence, there exist valid relabelings h(1) ∈ V R

(
Γ (1) ∪Σ(2)

)
and h(2) ∈ V R(Γ (2)

∪Σ(1)) such that w1 ∈ h(1) (u1) , w2 ∈ h(2) (u2). We consider a path

Pu1 :
(
q
(1)
inV1

, u1 (0) , q
(1)
1

)
. . .

(
q
(1)
n1−1, u1 (n1 − 1) , q

(1)
terV1

)
ofA

(1)

(Σ(2),V1)
over u1 and

a path Pu2 :
(
q
(2)
inV2

, u2 (0) , q
(2)
1

)
. . .

(
q
(2)
n2−1, u2 (n2 − 1) , q

(2)
terV2

)
of A

(2)

(Σ(1),V2)
over

u2. We distinguish the following cases.

– The sets {w1(0), . . . , w1(n1 − 1)} ∩
(
Σ \

(
Σ(1) ∪Σ(2)

))
and {w2(0), . . . , w2

(n2 − 1)} ∩
(
Σ \

(
Σ(1) ∪Σ(2)

))
are disjoint. Then, if weight(Pu1) �= 0 �=

weight(Pu2), by the definition of the list G1, . . . , Gm, there is a set

J ⊆ {1, . . . ,m} such that for every j ∈ J there is a pathP
(Gj)
u ofAGj overu, for

u ∈ (u1 � u2)∩preimΓGj
(w)withweight

(
P

(Gj)
u

)
=weight(Pu1)weight(Pu2).

SinceK is idempotent it holds
∑
j∈J

weight
(
P

(Gj)
u

)
= weight(Pu1)weight(Pu2)

and thus
∑

1≤j≤m

weight
(
P

(Gj)
u

)
= weight(Pu1)weight(Pu2).

– We assume that
(
{w1(0), . . . , w1(n1 − 1)} ∩

(
Σ \

(
Σ(1) ∪Σ(2)

)))
∩(

{w2(0), . . . , w2(n2 − 1)} ∩
(
Σ \

(
Σ(1) ∪Σ(2)

)))
�= ∅. Moreover, for simplic-

ity, we assume that the two sets have only one common letter σ, and let
0 ≤ l1 < . . . < lr ≤ n1 − 1 and 0 ≤ g1 < . . . < gs ≤ n2 − 1 be the positions
in w1, w2 respectively, such that w1(l1) = . . . = w1(lr) = w2(g1) = . . . =
w2(gs) = σ. Since u1 ∈ preimΓ (1)∪Σ(2) (w1) and u2 ∈ preimΓ (2)∪Σ(1) (w2)
we get that u1(l1) = . . . = u1(lr) = x(1) and u2(g1) = . . . = u2(gs) = x(2)

for some x(1) ∈ Z(1) ∪ {y(1)} and x(2) ∈ Z(2) ∪ {y(2)}. If weight(Pu1) �=
0 �= weight(Pu2), by the definition of the list G1, . . . , Gm, there is a set

J ⊆ {1, . . . ,m} such that for every j ∈ J there is a path P
(Gj)
u′ of AGj over

u′, where u′ is obtained by u by replacing x(1) (resp. x(2)) in u1 (resp. u2)
at the positions l1, . . . , lr (resp. g1, . . . , gs) by the pair

(
x(1), x(2)

)
, and from
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the remaining letters we replace every occurrence of y(1) and y(2) with y,

for u ∈ u1� u2. Again, we have weight
(
P

(Gj)
u′

)
= weight(Pu1)weight(Pu2)

and hence,
∑

1≤j≤m

weight
(
P

(Gj)
u′

)
= weight(Pu1)weight(Pu2). On the other

hand, it is trivially shown that u′ ∈ preimΓGj
(w).

Conversely, keeping the previous notations, for everyw ∈ Σ+,u′∈preimΓGj
(w)

for some 1 ≤ j ≤ m, there are u1 ∈ preimΓ (1)∪Σ(2)(w1), u2 ∈ preimΓ (2)∪Σ(1)(w2)

with w ∈ w1 � w2, such that for every path P
(Gj)
u′ of AGj over u

′, there are paths

Pu1 of A
(1)

(Σ(2),V1)
over u1 and Pu2 of A

(2)

(Σ(1),V2)
over u2, with weight

(
P

(Gj)
u′

)
=

weight(Pu1)weight(Pu2). With the same argument as above, we get∑
1≤j≤m

weight
(
P

(Gj)
u′

)
= weight(Pu1)weight(Pu2).

Now, for every w ∈ Σ+, we get

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥� ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
=

∑
w1,w2∈Σ+

w∈w1�w2

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w1

)(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w2

)

=
∑

w1,w2∈Σ+

w∈w1�w2

∑
u1∈preim

Γ (1)∪Σ(2) (w1)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u1

)

∑
u2∈preim

Γ(2)∪Σ(1) (w2)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u2

)
=

∑
w1,w2∈Σ+

w∈w1�w2

∑
u1∈preim

Γ (1)∪Σ(2) (w1)

∑
Pu1

weight(Pu1)

∑
u2∈preim

Γ (2)∪Σ(1) (w2)

∑
Pu2

weight(Pu2)

=
∑

w1,w2∈Σ+

w∈w1�w2

∑
u1∈preim

Γ (1)∪Σ(2) (w1)

∑
u2∈preim

Γ (2)∪Σ(1) (w2)

∑
Pu1

∑
Pu2

weight(Pu1)weight(Pu2)

=
∑

1≤j≤m

∑
u∈preimΓGj

(w)

∑
P

(Gj)
u

weight
(
P

(Gj)
u

)

=

⎛⎝ ∑
1≤j≤m

∥∥AGj

∥∥ , w
⎞⎠
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which implies that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ � ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ =
∑

1≤j≤m

∥∥AGj

∥∥, i.e., r′(1) �

r′(2) =
∑

1≤j≤m

∥∥AGj

∥∥. Therefore, by Proposition 4, we conclude that r′(1)�r′(2) ∈

V Rec (K,Σ), as required.

5 Rational Series over Infinite Alphabets

In this section, we deal with the notion of rational series over the infinite alphabet
Σ and the semiring K. In fact, we intend to prove a Kleene-Schützenberger type
result for v-recognizable series over Σ and K. For this, we define the notion
of rationality for series over Σ in the same way we did it for v-recognizable
series. Firstly, we recall the concept of rational series over finite alphabets. Let
Γ ⊆ Σ be a finite subalphabet of Σ, Z a finite set of bounded variables, y a
free variable and assume that the sets Σ, Z, and {y} are pairwise disjoint. The
class Rat(K,Δ) of rational series over Δ = Γ ∪Z ∪ {y} and K is the least class
of series containing the polynomials over Δ and K and being closed under sum,
Cauchy product, and star operation applied to proper series.

Definition 3. A series s over Σ and K is called v-rational if there is a finite
alphabet Γ ⊆ Σ and a rational series s′ over Δ = Γ ∪ Z ∪ {y} and K such that

(s, w) =
∑

u∈preimΔ(w)

(s′, u)

for every w ∈ Σ∗.

We shall denote by V Rat(K,Σ) the class of v-rational series over Σ and K.
One could think of alternative definitions, more precisely, by defining rational

series over the infinite alphabet Σ in the same way we do it for rational series
over finite alphabets. It is not difficult to see that such a consideration should
not derive an expressively equivalent notion to wva. Consider for instance the
normalized wva A = 〈Σ,A〉 where A = ({qin, qter}, qin, wt, qter) with ΣA = {a}
and Z = {z}. The only non-zero assignment of wt is given by wt((qin, z, qter)) =
k �= 0. Then trivially, ‖A‖ =

∑
a′∈Σ\{a} ka

′ and it is not difficult to see that
this series is not rational in the sense of rational series over finite alphabets.
Even if we should consider our rational series to contain, by definition, series of
the above form, then still this is not sufficient. For instance let us consider the
normalized wva B = 〈Σ,B〉 where B = ({pin, p, pter}, pin, wt, pter) with ΣB =
{b}, Z = {z, z′} and non-zero weights wt((pin, z, p)) = k, wt((p, z′, pter)) = k′.
Then it is easily obtained that

‖B‖ =
∑

a,a′∈Σ\{b}
a �=a′

kk′aa′.
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On the other hand, the Cauchy product of the series
∑

a∈Σ\{b}
ka

∑
a′∈Σ\{b}

k′a′

clearly differs from ‖B‖. Next, we state our Kleene-Schützenberger type the-
orem for series over Σ and K.

Theorem 1. V Rec(K,Σ) = V Rat(K,Σ).

6 Application to Variable Finite Automata

In this section, we derive new results for the class of languages accepted by
variable finite automata (vfa for short) over the infinite alphabet Σ (cf. [7]). Let
Z be a finite set of bounded variables and y a free variable. Then, a variable
finite automaton over Σ is a pair A = 〈Σ,A〉 where A = (Q,ΓA, I, E, F ) is a
finite automaton with input alphabet ΓA = ΣA ∪ Z ∪ {y} (ΣA ⊆ Σ is a finite
alphabet). The language of A is defined by

L(A) =
⋃

u∈L(A)

h∈V R(ΓA)

h(u).

Then the vfa A = 〈Σ,A〉 can be considered, in the obvious way, as a wva A′

over the Boolean semiring B. Moreover, it holds w ∈ L(A) iff (‖A′‖ , w) = 1 for
every w ∈ Σ∗.

Now, we introduce rational languages over Σ. More precisely, a language L
over Σ is rational if there is a finite alphabet Γ ⊆ Σ and a rational language L′

over Δ = Γ ∪ Z ∪ {y} such that

L =
⋃

u∈L′
h∈V R(Δ)

h(u).

Clearly, for every v-rational series s ∈ V Rat(B, Σ) its support supp(s) is a
rational language over Σ and vice-versa. Now, a straightforward application of
the results of the previous sections, derives the following corollaries.

Corollary 1. The class of recognizable languages over Σ is closed under union,
intersection, concatenation, Kleene star, and shuffle product.2

Corollary 2 (Kleene). A language over Σ is recognizable iff it is rational.

Conclusion

We introduced weighted variable automata over an infinite alphabet Σ and a
commutative and idempotent semiring K. Our model is the extension of variable
finite automata of [7], in the quantitative setup. We proved the closure of the

2 The closure under union and intersection has been also proved in [7].
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class of the behaviors of wva under sum, and under scalar, Cauchy, Hadamard,
and shuffle product, as well as star operation. We considered v-rational series
over Σ and K and showed a Kleene-Schützenberger theorem. The idempotency
property of the semiring K is crucial for our proofs. Therefore, it should be
interesting to state our results by relaxing this property for K. Moreover, it
should be interesting to study the concept of wva over more general structures
than semirings, that are currently used in practical applications, for instance
valuation monoids [6]. In [10,11] the authors considered and studied variable tree
automata over infinite ranked alphabets. We intend to extend and investigate
this model to the quantitative setup.
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1 Facoltà di Informatica, Università della Svizzera Italiana, Via G. Buffi 13,
6900, Lugano, Switzerland

2 University of Latvia, Faculty of Computing, Raina bulv. 19, R̄ıga, 1586, Latvia
3 National Laboratory for Scientific Computing, Petrópolis, RJ, 25651-075, Brazil
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Abstract. We construct zero-error quantum finite automata (QFAs) for
promise problems which cannot be solved by bounded-error probabilistic
finite automata (PFAs). Here is a summary of our results:

1. There is a promise problem solvable by an exact two-way QFA in
exponential expected time, but not by any bounded-error subloga-
rithmic space probabilistic Turing machines.

2. There is a promise problem solvable by a Las Vegas realtime QFA,
but not by any bounded-error realtime PFA. The same problem can
be solvable by an exact two-way QFA in linear expected time but
not by any exact two-way PFA.

3. There is a family of promise problems such that each promise prob-
lem can be solvable by a two-state exact realtime QFAs, but, there
is no such bound on the number of states of realtime bounded-error
PFAs solving the members of this family.

Our results imply that there exist zero-error quantum computational de-
vices with a single qubit of memory that cannot be simulated by any
finite memory classical computational model. This provides a compu-
tational perspective on results regarding ontological theories of quan-
tum mechanics [20,28]. As a consequence we find that classical automata
based simulation models [24,6] are not sufficiently powerful to simulate
quantum contextuality. We conclude by highlighting the interplay be-
tween results from automata models and their application to developing
a general framework for quantum contextuality.

1 Preliminaries

Observables act as windows through which quantum physics allows us to
extract classical information about quantum entities. More precisely, a quantum
observable refers to a Hermitian operator H, whose eigenvalues correspond to
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the classical values a quantum system can take when it is measured. A pair
of observables A and B are compatible if they commute, i.e., AB − BA = 0,
and they are said to be incompatible otherwise. Intuitively, if the operators
commute then it is possible to simultaneously measure them such that the
obtained measurement results co-exist at the same time.

Assume we are given the observables for a quantum system of dimension
greater than two. We choose to assign values to these observables corresponding
to results obtainable if we were to measure the underlying quantum system.
Quantum contextuality refers to the fact that for sets of commuting
observables, there always exists at least one set for which the actual quantum
outcomes would contradict our pre-assigned list. In other words, there is no
classical hidden variable model which produces the same predictions as quantum
physics. This is what Kochen and Specker proved in their seminal 1967 result [25].
We now present a specific example due to Peres and Mermin to make things more
concrete [31,26].

Consider the 3×3 grid G, as depicted in Figure 1. The task is to assign entries
Ai ∈ {−1,+1} for each cell in the grid such that the parity, i.e., the product of
the entries in each row and column is “+1” except for the third column which
is required to have parity “−1”. Let Ri be the parity for row i and Cj be the
parity for column j. The fact that no such assignment exists for the square can
be verified by noting that

∏3
i=1 Ri = 1 while

∏3
j=1 Cj = −1.

A1 A2 A3 1

A4 A5 A6 1

A7 A8 A9 1

1 1 −1 ?

C1 C2 C3

R1

R2

R3

Z⊗� �⊗Z Z⊗Z

�⊗X X⊗� X⊗X

Z⊗X X⊗Z Y⊗Y

Fig. 1. The Peres–Mermin magic square on the left. Each entry in the right square gives
the measurements performed by the players to generate the corresponding output bit
for the Peres–Mermin square. Here X, Y, and Z are the Pauli spin matrices while I is
the identity operator.

Consider Alice and Bob who are presented with the 3 × 3 grid. After
determining a common strategy, the players are spatially separated and the
game proceeds as follows. Alice receives input i and Bob receives input j, each
chosen uniformly random from the set {1, 2, 3}. They are required to output
cell entries corresponding to row i and column j, respectively, such that the
parity requirement is satisfied and furthermore the common cell in their output
is consistent, i.e., both of them assign it with the same value.
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Even though no classical strategy allows the players to win the magic square
game with certainty, if the players share a pair of Bell states given by

|ψ〉 = 1√
2
(|00〉+ |11〉)⊗2

,

then performing the measurements given in Figure 1 result in correlations that
always satisfy the magic square requirements. This does not correspond to a fixed
assignment to the square, just that in each independent run of the game, Alice
and Bob are able to generate output that satisfies the requirements imposed on
the rows and columns.

The recent works have focused on developing a general framework for
contextuality based on generating a hypergraph for a given contextuality
scenario and studying its combinatorial properties [11,2]. Even though graph
theoretic structures are appropriate for modelling contextuality, they lack
the computational perspective that emerges by modelling the computational
procedures that generate contextuality scenarios. Quantum automata provide
exactly such a framework. As a direct consequence of such considerations, we find
that separations between classical and quantum finite automata imply that no
amount of finite memory is in general sufficient to simulate quantum behaviour.
Similar results have also been obtained by Hardy [20] and Montina [28].

Kleinmann et al. [24] and Blasiak [6] have suggested a classical simulation
of Peres-Mermin magic square using classical memory. Cabello and Joosten [10]
have shown that the amount of memory required to simulate the measurement
results of the generalized Peres-Mermin square increasingly violate the Holevo
bound. Cabello [8] proposed the principle of bounded memory which states
that the memory a finite physical system can keep is bounded. On the other
hand, Cabello [7] has also shown that the memory required to produce quantum
predictions grows at least exponentially with the number of qubits n.

We show that a stronger statement follows from our results on the separations
between quantum and classical finite automata. More specifically, there exist
promise problems that quantum automata equipped with a single qubit can
solve with zero-error while no classical finite memory model can solve these
problems with bounded error. In contrast, the exponential separation obtained
by Cabello [7] requires a quantum system of size n. The hidden variable model
for a single qubit due to Bell [5] does not apply since there are only finite bits
available for the classical simulation.

We assume the reader is familiar with the basics of quantum computation [30]
and the basic models in automata theory [36].

1.1 Promise Problems

We denote input alphabet by Σ, which does not include ¢ (the left end-marker)
and $ (the right end-marker), and Σ̃ = Σ ∪ {¢, $}. A promise problem is a pair
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P = (Pyes, Pno), where Pyes, Pno ⊆ Σ∗ and Pyes∩Pno = ∅ [35]. P is said to be solved
by a machine M with error bound ε ∈ (0, 1

2 ) if any member of Pyes is accepted
with a probability at least 1 − ε and any member of Pno is rejected by M with
a probability at least 1− ε. P is said to be solved by M with bounded-error if it
is solved by M with an error bound. If ε = 0, then it is said that the problem is
solved by M exactly. A special case of bounded-error is one-sided bounded-error
where either all members of Pyes are accepted with probability 1 or all members
of Pno are rejected with probability 1. M is said to be Las Vegas with a success
probability p ∈ (0, 1] [22] if

– M has the ability of giving three answers (instead of two): “accept”, “reject”,
or “don’t know”;

– for a member of Pyes,M gives the decision of “acceptance” with a probability
at least p and gives the decision of “don’t know” with the remaining
probability; and,

– for a member of Pno,M gives the decision of “rejection” with a probability at
least p and gives the decision of “don’t know” with the remaining probability.

If P satisfies Pyes∪Pno = Σ∗ and it is solvable by M, then it is conventional said
that Pyes is recognized by M.

1.2 Quantum Automata

A two-way finite automaton with quantum and classical states (2QCFA) [3] is
a two-way deterministic finite automaton augmented with a fixed-size quantum
register. All automata models in this paper have a single-head read-only tape
on which the given input string is placed between left and right end-markers.
The head never moves beyond the end-markers. The input head can move to the
left, move to the right, or stay on the same square. This property is denoted as
“two-way”. If the input head is not allowed to move to left, then it is called “one-
way”. As a further restriction, if the input head is allowed to stay on the same
square only for a fixed-number of steps, then it is called “realtime”. Formally, a
2QCFA1 is

M = (S,Q,Σ, δ, s1, q1, sa, sr),

where S and Q are the set of classical and quantum states, respectively; s1 ∈ S
and q1 ∈ Q are the initial classical and quantum states, respectively; sa ∈ S and
sr ∈ S (sa �= sr) are the accepting and rejecting states, respectively; and δ is
the transition function composed by two sub-elements δq and δc that govern the
quantum part and classical part of the machine, respectively. Suppose that M
is in state s ∈ S and the symbol under the input head is σ ∈ Σ̃. In each step,
first the quantum part and then the classical part is processed in the following
manner:

1 Here, we define a slightly different model than the original one, but, they can
simulate each other exactly.
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– δq(s, σ) determines either a unitary operator, say Us,σ, or a projective
operator, say Ps,σ = {Ps,σ,1, . . . ,Ps,σ,k} for some k > 0, and then it is
applied to the quantum register. Formally, in the former case,

δq(s, σ, |ψ〉) → (i = 1,Us,σ|ψ〉),

where we fix i = “1” if a unitary operator is applied and Us,σ|ψ〉 is the
evolved state. In the latter case,

δq(s, σ, |ψ〉) →
{(

i,
|ψi〉√〈ψi|ψi〉

)∣∣∣∣∣ |ψi〉 = Ps,σ,i|ψ〉, 〈ψi|ψi〉 �= 0, and 1 ≤ i ≤ k.

}
,

where i is the measurement result and |ψi〉√
〈ψi|ψi〉

is the post-measurement

state. Note that only a single outcome (i ∈ {1, . . . , k}) can be observed in
the case of a projective measurement.

– After the quantum phase, the machine evolves classically. Formally,

δ(s, σ, i) → (s′, d),

where i is the measurement outcome of quantum phase, s′ is the new classical
state, and d ∈ {←, ↓,→} represents the update of the input head.

Note that, for Las Vegas algorithms, we need to define another halting state
called sd corresponding to answer “don’t know”.

The computation of M on a given input string w starts in the initial
configuration, where the head is on the first symbol of w̃ = ¢w$, the classical
state is s1, and the quantum state is |q1〉. The computation is terminated and
the input is accepted (resp., rejected) if M enters to state sa (resp., sr).

A two-way automaton is called sweeping if the input head is allowed to
change its direction only on the end-markers [34,23]. A very restricted version
of sweeping automaton called restarting realtime automaton runs a realtime
algorithm in an infinite loop, [37], i.e. if the computation is not terminated
on the right end-marker, the same realtime algorithm is executed again. A
2QCFA restricted to a realtime head (no restarting) is denoted by rtQCFA.
Formally defined in [39], on each tape square a rtQCFA applies an unitary
operator followed by a projective measurement, and then evolves its classical
part.2 The most known restricted realtime QFA model is the Moore-Cruthcfield
quantum finite automaton (MCQFA) [29]. It consists of only quantum states and
a single unitary operator determined by the scanned symbol is applied on each
tape square. A projective measurement is applied at the end of computation.
A probabilistic or quantum automaton is called rational or algebraic if all the
probabilities or amplitudes associated with transitions are restricted to rational
or algebraic numbers, respectively.

2 This definition is sufficient to obtain the most general realtime quantum finite
automaton [21,38]. Moreover, allowing more than one quantum or classical transition
on the same tape square does not increase the computational power of rtQCFAs. Note
that, realtime head must be classical.
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2 Quantum Automata for Promise Problems

In this section, we present some promise problems solvable by QFAs without
error but not solvable by their bounded-error probabilistic counterparts. At the
end, we will also show that the family of promise problem, which was shown to
be solvable by a family of exact rtQFAs (MCQFAs) having only two states [4],
cannot be solvable by a family of bounded-error probabilistic finite automata
(PFAs) having a fixed number of states.

2.1 Exact Rational (Sweeping) 2QCFA Algorithm

2QCFAs can recognize the language palindromes, i.e., PAL = {w | w ∈
{a, b}∗ and w = wr}, where wr is the string w reversed and EQ = {anbn | n > 0}
for any one-sided error bound [3,37]. In the case of one-sided error, one decision
is always reliable. We use this fact to develop quantum automata for solving
promise problems inherited from PAL and EQ. We know that PAL cannot be
recognized by bounded-error PTMs using sublogarithmic space [15,17] and EQ

can be recognized by bounded-error o(log logn)-space PTMs only in super-
polynomial expected time [19,14]. We take into consideration these facts when
formulating our promise problems so that the impossibility results for bounded-
error probabilistic algorithms are still applicable for our constructions. (We refer
the reader to the full paper [32] for the results based on EQ.)

Our first promise problem is as follows:

PromisePAL = (PromisePALyes, PromisePALno), where

– PromisePALyes = {ucv |u, v ∈ {a, b}∗, |u| = |v|, u ∈ PAL, and v /∈ PAL} and
– PromisePALno = {ucv |u, v ∈ {a, b}∗, |u| = |v|, u /∈ PAL, and v ∈ PAL}.

Each of the two 2QCFA algorithms given for PAL in [3] and [37] have zero-error
when they reject. That is, for a given ε ∈ (0, 1

2 ), there exists a 2QCFA Mε

which always accepts every string w ∈ PAL and every w /∈ PAL is accepted with
probability at most ε and it is rejected with probability at least 1− ε. So, if Mε

rejects an input, we can be certain that the input is not contained in PAL.
We can design an exact 2QCFA, say EXACTPAL, for PromisePAL based on

Mε as follows: Let string w ∈ PromisePAL, i.e., w = ucv such that u, v ∈ {a, b}∗
and |u| = |v|. On input string w, EXACTPAL proceeds in an infinite loop as
follows,

– the computation splits into two branches on the left end-marker with
probabilities 16

25 and 9
25 , respectively, by applying one of the rational unitary

operators Ua and Ub [3], given by

Ua =
1

5

⎛⎝ 4 3 0
−3 4 0
0 0 5

⎞⎠ and Ub =
1

5

⎛⎝ 4 0 3
0 5 0

−3 0 4

⎞⎠ ,
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to a qubit, i.e. if the quantum state is (1 0 0)T and Ua is applied,
then the first and the second states are observed with probability 16

25 and
9
25 , respectively, after a measurement on the computational basis. This is
followed by a measurement in the computational basis;

– in the 1st branch, EXACTPAL executes Mε on v and accepts w if Mε rejects
v;

– in the 2nd branch, EXACTPAL executes Mε on u and rejects w if Mε rejects
u; and,

– the computation continues, otherwise.

Note that only a single decision is given in each branch: In the 1st branch, the
members of PromisePALyes are accepted with a probability at least 1− ε and no
decision is given on the members of PromisePALno. In the 2nd branch, no decision
is given on the members of PromisePALyes and the members of PromisePALno are
rejected with a probability at least 1− ε. Thus, in a single round, the members
of PromisePALyes are accepted with a probability at least 16

25 (1 − ε) and the
members of PromisePALno are rejected with a probability at least 9

25 (1−ε). Thus,
EXACTPAL separates PromisePALyes and PromisePALno exactly by making an
expected linear number of calls to Mε. This establishes Theorem 1 while the
fact that sublogarithmic space PTMs cannot solve PromisePAL is established in
Theorem 2.

Theorem 1. PromisePAL can be solved by an exact rational sweeping 2QCFA
in exponential expected time.

Theorem 2. Bounded-error sublogarithmic space 2PTMs cannot solve
PromisePAL.

The scheme given above can be easily generalized to many other cases.
The size of the quantum register, the type of the head, and the type of the
transitions are determined byMε. Specifically, (i) ifMε is restarting (sweeping),
then EXACTPAL is restarting (sweeping), too, or (ii) if Mε has only rational
(algebraic) amplitudes, then EXACTPAL has rational (algebraic) amplitudes.

The 2QCFA algorithm for PAL given by Ambainis and Watrous [3] is rational
and sweeping. The one given by Yakaryılmaz and Say in [37] is restarting but
uses algebraic numbers. Both of them run in expected exponential time. In the
next section we present a new promise problem that uses the former algorithm
to obtain an exact rational restarting rtQCFA. Currently, we do not know
how to obtain a similar result based on the latter model except by utilizing
superoperators.

2.2 Exact Rational Restarting rtQCFA Algorithm

In this section, we define a promise problem (a modified version of PromisePAL)
solvable by an exact rational restarting rtQCFA but not by any sublogarithmic
space PTMs: PromiseTWINPAL = (PromiseTWINPALyes , PromiseTWINPALno), where

– PromiseTWINPALyes = {ucucvcv|u, v ∈ {a, b}+, |u| = |v|, u ∈ PAL, and v /∈ PAL},
and

– PromiseTWINPALno = {ucucvcv|u, v ∈ {a, b}+, |u| = |v|, u /∈ PAL, and v ∈ PAL}.
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Theorem 3. There is an exact rational restarting rtQCFA that solves
PromiseTWINPAL in exponential expected time.

Theorem 4. PromiseTWINPAL cannot be solved by any bounded-error o(log n)-
space PTM.

2.3 Las Vegas Rational rtQCFA Algorithm

In this section, we present another promise problem solvable by Las Vegas
rtQCFAs or linear-time exact 2QCFAs but not by any bounded-error realtime
PFA (rtPFA). Since an exact 2PFA can be simulated by a realtime deterministic
finite automaton (rtDFA) [18], exact two-way PFAs (2PFAs) also cannot
solve the new promise problem. The new promise problem is given by:
EXPPromiseTWINPAL= (EXPPromiseTWINPALyes, EXPPromiseTWINPALno), where

– EXPPromiseTWINPALyes = {(ucucvcvc)t|u, v ∈ {a, b}+, |u| = |v|, u ∈ PAL, v /∈
PAL, and t ≥ 25|u|}, and

– EXPPromiseTWINPALno = {(ucucvcvc)t|u, v ∈ {a, b}+, |u| = |v|, u /∈ PAL, v ∈
PAL, and t ≥ 25|u|}.

Theorem 5. EXPPromiseTWINPAL is solved by a Las Vegas rational rtQCFA or
by an exact rational restarting rtQCFA in linear expected time.

Theorem 6. There is no bounded-error rtPFA that solves EXPPromiseTWINPAL.

2.4 Succinctness of Realtime QFAs

For a given positive integer k, EVENODDk = (EVENODDkyes, EVENODD
k
no) is a promise

problem [4] such that

– EVENODDkyes = {ai2k | i is a nonnegative even integer}, and
– EVENODDkno = {ai2k | i is a nonnegative odd integer}.

Ambainis and Yakaryılmaz [4] showed that EVENODDk can be solved by a 2-state
MCQFA exactly, but, the corresponding probabilistic automaton needs at least
2k+1 states.3 We show in Theorem 7 that allowing errors in the output does not
help in decreasing the space requirement.

Theorem 7. Bounded-error rtPFAs need at least 2k+1 states to solve EVENODDk.

3 Noncontextual Inequalities from Automata

We begin by reformulating the Peres-Mermin game in terms of inequalities. Let
〈AiAjAk〉 be the expected parity of the corresponding entries of the square.
We associate with each strategy, a value of the game 〈χ〉, which is given by

〈 χ 〉 = 〈 A1A2A3 〉 + 〈 A4A5A6 〉 + 〈 A7A8A9 〉
+ 〈 A1A4A7 〉 + 〈 A2A5A8 〉 − 〈 A3A6A9 〉.

(1)

3 Some new classical results on EVENODDk were given in [18] and [1].
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The classical bound is 〈χ〉 � 4, while the quantum bound is given by 〈χ〉 � 6,
since there exists a perfect quantum strategy which assigns ‘+1’ to the first
five terms and ‘−1’ to the last term in Equation 1. We can construct similar
inequalities for the promise problems defined in this paper. The general idea
behind the inequalities is to construct a game based on quantum and classical
automata separations. Assume Bob is restricted to either N bits of classical
memory or N quantum bits and Alice has the task of verifying what type of
memory is available to Bob. She can query Bob multiple times on a pre-selected
problem that is known to both of them. Conditioned on the classical memory
requirement for the problem the idea then is for Alice to iteratively query Bob on
input strings of increasing length. Eventually Bob’s classical memory becomes
insufficient to correctly answer the query and his best response is a random
guess.

The problems PAL and PromisePAL can be solved in log space. As a
consequence, Alice requires an exponential number of queries in N before
Bob’s memory is exhausted. The classical exponential memory requirement
for EVENODDk means that number of queries need only be logarithmic before
a violation is observed. On the other hand, EVENODDk is not a single problem
but a family of promise problems and the classical memory requirement is for
rtPFAs. For PromisePAL we obtain zero error for the quantum strategy while
for the classical strategy bounded-error is not possible for 2PFAs.

We base the inequality we present on EVENODDk. The arguments carry over to
PAL and PromisePAL as well. On a given query Bob receives as input an integer k
and a unary string w = al that is promised to be from either EVENODDkyes or

EVENODDkno, i.e., l = i2k. The task for Bob is to determine the membership of
string w, i.e., whether i is even or odd. So, he outputs “+1” if i is even and “−1”
otherwise. The identification can be made for any k if Bob has unbounded
memory. If Bob is restricted to have memory 2n+1 then the identification can
still be made perfectly for all integer inputs to Bob with k � n. It becomes
impossible to perform this identification perfectly when k > n. In this case the
amount of memory available to Bob is not sufficient to determine classically the
membership of the input string w.

In the quantum case, a perfect strategy exists for all k, if Bob is allowed
access to a single qubit |ψ〉. The state is initialized to |0〉 and for each “a” in

the string w Bob applies the rotation Ua =

(
cos θ − sin θ
sin θ cos θ

)
, with θ = π

2k+1 . Bob

measures in the computational basis once the input is processed and realizes
that i is odd if he obtains |1〉 or −|1〉 and i is even if the result is |0〉 or −|0〉.
This procedure guarantees that Bob will always correctly identify the string w.

Assume that the amount of memory available to Bob is N but we do not
know N . Let 〈Ak

y〉 be the expected value of Bob’s output when the input is k

and i is even. Similarly, 〈Ak
n〉 represents the expected value for input k and i

odd. One way to verify whether Bob is quantum or classically memory bound
is to initially query for a choice of k and then sequentially query for increasing
size of k. For each choice of k we choose i to be odd or even with a uniform
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random distribution. We define V to measure how successful Bob is in correctly
identifying the string w. Performing the procedure Q times gives us a value

V =

Q∑
j=1

(
〈Ak=4j

y 〉 − 〈Ak=4j
n 〉

)
, (2)

where we have chosen to increase the input k by multiples of 4 at each iteration.
If k � logN − 1, then for both the classical and quantum case Bob can achieve
V = Q. For k > logN−1, since there is no perfect strategy in the classical case we
have V < Q, while the quantum strategy still achieve V = Q. The classical value
can be made much tighter since the optimal classical strategy for k > logN−1 is
just a random guess. We have shown in Section 2.4 that allowing error classically
does not help in terms of reducing the memory requirement, i.e. bounded-error
rtPFAs need at least 2k+1 states to solve EVENODDk. This implies that the classical
value is bounded by logN−1

4 . Similar inequalities may be derived for PAL and
PromisePAL and they are summarized in Tables 1 and 2.

Table 1. For both PAL and PromisePAL no 2PFA exists that solves the problem with
bounded error. For the family of {EVENODDk | k > 0}, there is no bound on the number
of states for rtPFAs that solve the members of this family with bounded error. Given an
input string of size n and classical memory N , the table gives the memory requirement
for solving the specific instance and the value attained for the non-contextual inequality.

Problem Type Classical Memory Inequality Value

PAL language recognition log n 2N

4

EVENODDk family of promise problems 2k+1 logN−1
4

PromisePAL promise problem log n 2N

4

Table 2. The weakest known quantum models that solve the given problems and the
associated error in the solution. The value attained for the inequality is related to the
number of runs Q of the game.

Problem Quantum Model Quantum Memory Quantum Value

PAL 2QCFA qubit Q− δ

EVENODDk Real-time qubit Q

PromisePAL 2QCFA qubit Q

It may be possible to improve these inequalities by finding other problems for
which we obtain a similar separation as PromisePAL but with an exponential
classical memory requirement and a polynomial time quantum automata.
There is a key distinction between the inequalities obtained from quantum
contextuality, such as Equation 1 for the Peres–Mermin game and Equation 2
for quantum automata. While the terms in quantum contextuality inequality
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depend on multiple combinations of compatible measurements, the automata
inequalities only have a single measurement in each term. In this sense, the
automata inequalities do no represent true quantum contextuality. As noted by
Terry Rudolph [33], the quantum automata discussed here can be thought of
as a classical computation with a vector rotating in a sphere. The catch is that
such classical computation could not be done in a fault tolerant method while
the quantum schemes admit fault tolerance.

Another possibility is to consider defining the notion of Quantum Contextual
Promise Problems (QCPP), where rather than having a single output corresponding
to each term in Equation 2, the automaton for the problem outputs multiple
bits similar to each term in Equation 1. This would allow for the classification
of quantum contextuality within the language hierarchy.

4 Discussion

Perhaps the most alluring charm of quantum automata separations is the
possibility they offer of constructing a computational device that could solve
a problem which no classic device with finite memory could. Rather than
just ruling out hidden variables with an exponential size increase, these
computational devices could be used in principle to rule out arbitrary size hidden
variables by increasing the problem input size. The thorny issue though is a
trade-off between the memory utilized and the amount of precision required in
the interactions with the quantum memory. This precision requirement appears
either in the form of the matrix entries for the unitaries, as in the case of
EVENODDk, or in the form of the ability to resolve two states that may be
arbitrarily close to each other, as in PAL.

Any experimental setup is always restricted by some level of precision, if
not by technological limitations then by more fundamental restrictions such as
the uncertainty principle. The question that we are inevitably led to consider
following this line of reasoning is whether it is possible to retain the quantum
advantage in the automata model while still requiring finite precision in our
interactions with memory.

The intersection of ideas from classical simulation of contextuality and
automata theory leads us to the notion of Finite Precision Quantum Automata
(FPQA). In addition to the usual automata requirements, a FPQA satisfies the
additional constraints that for any two unique unitaries Ui and Uj applied during
the computation we have |Ui − Uj | > ε and for any two different states |ψ〉 and
|φ〉 obtained during the computation we have |〈ψ|φ〉|2 > δ.

It is not clear whether we can construct a FPQA that still manages to
provide a computational advantage over classical automata. Meyer [27] has
argued that the Kochen-Specker theorem [25] does not hold when only finite
precision measurements are available. Clifton and Kent [13] have generalized the
arguments of Meyer for POVM’s. On ther other hand, Mermin and Cabello [12]
have indepedently argued that such nullification theorems do not hold. Recently
Cabello and Cunha [9] have proposed a two-qutrit contextuality test, claiming
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it to be free of the finite precision loophole. These tests though do admit a finite
memory simulation model. Constructing a FPQA that yields a separation over
the classical models would not admit a finite memory simulation model and
consequently does provide a stronger separation.

Even if the FPQA model does turn out to be equivalent to the classical
model in terms of the class of problems it solves, it does not take away from
the succinctness advantage of the quantum model. In the previous section we
argued that quantum automata separations serve as witnesses for distingishing
between genuinely quantum and space bounded classical players. We can flip
the reasoning around and observe that simulating quantum contextuality is
an inherently classical memory intensive task. This difficulty can be used to
construct classical Proofs of Space as identified by Dziembowski et al. [16]. The
idea is to establish that Bob has access to a certain amount of memory. Bob is
asked to simulate an appropriately chosen quantum contextuality scenario. This
would require exponential memory on Bob’s side while the verifier could directly
check that Bob’s output satisfies the required quantum correlations. Note also
that by definition, pre-computation does not allow Bob to simulate quantum
contextuality.

Acknowledgements. We thank anonymous referees for their very helpful
comments.
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Abstract. Pairwise Rational Kernels (PRKs) are the combination of
pairwise kernels, which handle similarities between two pairs of entities,
and rational kernels, which are based on finite-state transducer for ma-
nipulating sequence data. PRKs have been already used in bioinformatics
problems, such as metabolic network prediction, to reduce computational
costs in terms of storage and processing.

In this paper, we propose new Pairwise Rational Kernels based on
automaton and transducer operations. In this case, we define new opera-
tions over pairs of automata to obtain new rational kernels. We develop
experiments using these new PRKs to predict metabolic networks. As a
result, we obtain better accuracy and execution times when we compare
them with previous kernels.

Keywords: Automata Operations, Rational Kernels, Pairwise Rational
Kernels, Metabolic Networks.

1 Introduction

Pairwise kernels are measures of similarities between two pairs of entities ob-
tained by converting relations between single entities into a relation between
pairs of entities [1]. Pairwise kernel methods have been applied to bioinformat-
ics problems such as prediction of Protein-Protein Interaction (PPI) networks
[1, 2], metabolic networks [3] and drug-target interaction networks [4]. Other
contexts, such as social networks [5] and semantic relationships [6], have also
been benefited for using pairwise kernels.

In our context, we aim to use pairwise kernels to measure similarities be-
tween sequence data. Sequence data can also be represented by automata and
transducers. Automata and transducers have been used in applications regarding
natural language [7, 8], image processing [9] and bioinformatics [10–12]. Finite-
state transducers are the theoretical fundamentals for rational kernels which
represent similarity measures between sequences or automata [13].

Pairwise rational kernels (PRKs) have already been defined as the combination
of pairwise kernels and rational kernels tomanipulate sequence data [14]. First, the
sequence data are represented as automata, later the rational kernels are obtained
from each automaton and, finally, the pairwise operations are computed.

M. Holzer and M. Kutrib (Eds.): CIAA 2014, LNCS 8587, pp. 332–345, 2014.
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In this paper, we propose a new family of pairwise rational kernels, but chang-
ing the order of the operations. Firstly, we also represent the sequences as au-
tomata, later we make pairwise combination using automata operations, and
finally, the rational kernels are obtained based on the resulting automata. Some
of the used operations are sum, product and compisition. We define three new
PRKs based on the pairwise kernel combinations. Furthermore, we propose a
general algorithm to use with the new kernels to be combined with Support
Vector Machines (SVMs) methods. We ran experiments using these kernels to
predict metabolic networks. As a result, performance and accuracy values were
improved in comparison with previous PRKs [14].

2 Related Works

In bioinformatics, transducers provide a bridge through biological analysis of
indel processes represented as graphs and finite-state machine design [12]. They
contribute as a framework for studying mutation rates [15], phylogenetic and
multiple alignments [11] and protein classification and essentiality problems [16,
17].

Several kernel methods have been developed to be applied to bioinformat-
ics problems, such as locality-improved kernels [18], remote homology detection
[19], mismatch kernels [20], convolution kernels [21] and path kernels [22]. These
sequence kernels can be conveniently represented by weighted finite-state trans-
ducers, called rational kernels [23].

Other bioinformatics applications have involved rational kernels, for example
to determine essentiality in protein sequences [17]. Allauzen et al. [17] designed
two sequence kernels (called general domain-based kernels) which are instances of
rational kernels (based on finite-state transducers) to predict protein essentiality.
In this research, we define new kernels by extending the theory of measuring sim-
ilarities between sets of sequences represented by automata applied to metabolic
network prediction.

Pairwise rational kernels have been recently used in combination with SVM
algorithms to manipulate large amount of sequence data [14]. The main goal is to
decrease the computational costs in terms of processing and storage by taken ad-
vantage of the transducer representations and algorithms. Previous PRKs firstly
obtain the rational kernels and later compute the pairwise operations. In this
research, we propose a new family of PRKs that compute the pairwise operations
first and then the rational kernels.

3 Background

Before to introduce the new PRKs family, several terms and notations are defined
in this section based on Cortes et al. [13] .
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3.1 Automata, Finite-State Transducers

An automaton M is a 5-tuple (Σ,Q, I, F, δ) [24] where Σ is the input alphabet
set, Q is the state set, I ⊆ Q is the subset of initial states, F ⊆ Q is the subset
of final states, and δ ⊆ Q × (Σ ∪ {ε}) × Q is the transition set, where ε is the
empty sequence.

Similarly, a finite-state transducer is an automaton where an output label is
included in each transition in addition to the input label. Based on the above
definition, a finite-state transducer is a 6-tuple (Σ,Δ,Q, I, F, δ) [23], where the
new term Δ is the output alphabet set and the transition set δ is now δ ⊆
Q× (Σ ∪ {ε})× (Δ ∪ {ε})×Q.

In addition, automata and finite-state transducers can be weighted, where
each transition is labelled with a weight. Thus, a Weighted Automaton (WA) is
a 7-tuple (Σ,Q, I, F, δ, λ, ρ) and a Weighted Finite-State Transducer (WFST) is
a 8-tuple (Σ,Δ,Q, I, F, δ, λ, ρ) [23], where the new terms λ : I → R is the initial
weight function and ρ : F → R is the final weight function.

Given the Weighted Finite-State Transducer T and (x, y) ∈ Σ∗×Δ∗, T (x, y) is
computed by adding the weights of all the paths with x and y as input and output
labels, respectively. There are several operations defined onWFST and WA, such
as sum + (union) and product · (concatenation) [25]. Given two WFST T1 and
T2, the sum is defined as (T1 + T2)(x, y) = T1(x, y) + T2(x, y) and the product
is (T1 · T2)(x, y) =

∑
x1x2=x,y1y2=y T1(x1, y1) · T2(x2, y2), ∀(x, y) ∈ Σ∗ ×Δ∗.

3.2 Kernels and Rational Kernels

Kernel Methods are used in supervised learning approaches to find and study
general types of relations in general types of data, e.g., SVM and kernel combi-
nations [26]. In SVM methods a non-linear function Φ maps each point of the
input space X to a high-dimensional feature space F . A function k : X×X → R,
called a kernel, is defined and for two values x and y, k(x, y) coincides with
the dot product of their images Φ(x) and Φ(y) in a feature space [27], i.e.,
k(x, y) = Φ(x) · Φ(y).

In order to manipulate sequence kernels, FSTs provide a simple representation
and efficient algorithms such as composition and shortest-distance [23]. Kernels
based on Finite-State Transducers are called Rational Kernels and are effective
for analyzing sequences with variable lengths [13].

As a formal definition, given X ⊆ Σ∗ and Σ∗ the set of all finite sequences
over Σ, a kernel function k : X ×X → R is rational if there exists a weighted
transducer U such that k(x, y) = U(x, y) for all sequences x and y. In other
words, given two strings x and y and a rational kernel defined by U , U(x, y) is
the similarity measure between x and y [13].

3.3 n-gram Kernel as a Rational Kernel

Similarity measures between two biological sequences can be usually defined
as a function of the number of subsequences of some type that they share
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(e.g., mismatch [20], gappy n-gram kernels [28] and n-gram [23]). A sequence
kernel can be the sum of the product of the counts of these common subse-
quences. In this work, we use the n-gram kernel as a rational kernel. It is defined
as:

kn(x, y) =
∑
|z|=n

cx(z)cy(z) (1)

In this expression, cx(z) represents how many times z occurs in x.
In [17], new rational kernels have been developed based on Formula (1) to

obtain domain-based kernels, which measure similarities between sequences rep-
resented by automata. They construct kn using the weighted transducer U =
Tn ◦ T−1

n , where Tn(x, z) = cx(z), for all x, z ∈ X with |z| = n, then:

kn(Mx,My) =
∑

x,y∈X

(Mx ◦ Tn ◦ T−1
n ◦My)(x, y) =

∑
|z|=n

cMx(z)cMy (z) (2)

where Mx, My are the weighted automata for x, y, respectively. Mx and My are
obtained using the linear finite automata representing x and y augmenting each
transition with the input label and by setting all transitions and final weights to
one.

3.4 Pairwise Rational Kernels

In previous research, four different pairwise rational kernels were defined, i.e.,
Direct-Sum Pairwise Rational Kernel, Tensor-Product Pairwise Rational Ker-
nel, Metric Learning Pairwise Rational Kernel and Cartesian Pairwise Rational
Kernel [14]. They were obtained based on the state-of-the-art pairwise kernel
combinations [29, 30]. Direct-Sum Pairwise Kernels and Tensor Product Pair-
wise are defined respectively as:

KPRKDS((x1, y1), (x2, y2)) = U(x1, x2) +U(y1, y2) +U(y1, x2) +U(x1, y2) (3)

KPRKT ((x1, y1), (x2, y2)) = U(x1, x2) ∗ U(y1, y2) + U(x1, y2) ∗ U(y1, x2) (4)

where K is a function K : (X × X) × (X × X) → R, X ⊆ Σ∗ and U is a
transducer.

As we mentioned, each xi is converted into automata Axi , the U transducers
are obtained using the automata [17], and later the pairwise combinations are
computed [29]. In this paper, we focus on these two types of PRKs, because
we aim to obtain similar pairwise combinations. In this case, we use operations
over the automata Axi to obtain final automata that represent the pairwise
combinations (i.e., sum operator for Direct Sum kernel and product operator for
Tensor Product kernel). Later, we obtain the rational kernels U over the final
automata.
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4 New Pairwise Rational Kernels as Automaton
Operations

4.1 General Definitions

We begin by defining some notations, their algorithms and implementations in
order to develop the new PRKs. Firstly, we define VΣ alphabet as:

Definition 1. Given the alphabet Σ, the new alphabet VΣ is defined as
VΣ = {

(
a
b

)
: a, b ∈ Σ} ∪ {

(
a
ε

)
,
(
ε
b

)
: a, b ∈ Σ}, where ε is the empty character.

Example 1. Given the alphabet Σ = {A,G,C, T } and the nucleotide sequences
x = AGGCCCGTA, y = CCCGTA, then(

x
y

)
=

(
A
C

)(
G
C

)(
G
C

)(
C
G

)(
C
T

)(
C
A

)(
G
ε

)(
T
ε

)(
A
ε

)
.

In this example, a new sequence on the alphabet VΣ is created. Each symbol
from the nucleotide sequence x goes to the top and each symbol from y goes to
the bottom. When the nucleotide sequences have different lengths, the ε symbol
is used. E.g., the first symbol from x is the base A and the first symbol from
y is the base C, the new symbol of the alphabet VΣ is

(
A
C

)
. The lengths of x

and y are different, x is longer than y. Then, the last few symbols in VΣ have
the corresponding symbols from x and the empty symbol (ε) in the bottom (i.e.,(
G
ε

)(
T
ε

)(
A
ε

)
).

The following operations over the alphabet VΣ are stated:

Definition 2. Given
(
x1

y1

)
,
(
x2

y2

)
∈ V ∗

Σ, then

– [	] is the Top-Top Operator where
(
x1

y1

)
[	]

(
x2

y2

)
=

(
x1

x2

)
– [
] is the Bottom-Bottom Operator where

(
x1

y1

)
[
]

(
x2

y2

)
=

(
y1

y2

)
– [↑↓] is the Top-Bottom Operator where

(
x1

y1

)
[↑↓]

(
x2

y2

)
=

(
x1

y2

)
– [↓↑] is the Bottom-Top Operator where

(
x1

y1

)
[↓↑]

(
x2

y2

)
=

(
y1

x2

)
for all operations & ∈ [	], [
], [↑↓], [↓↑] and all languages L1, L2 ⊆ V ∗

Σ we have
L1 & L2 =

⋃
x∈L1,y∈L2

x & y, based on [31].

Example 2. Given the nucleotide sequences x1 = ACCTG, y1 = AGCT , x2 =
TGAC, y2 = CTAG and their respective sequences in V ∗

Σ(
x1

y1

)
=

(
A
A

)(
C
G

)(
C
C

)(
T
T

)(
G
ε

)
and

(
x2

y2

)
=

(
T
C

)(
G
T

)(
A
A

)(
C
G

)
,

the Top-Top operation is(
x1

y1

)
[	]

(
x2

y2

)
=

(
x1

x2

)
, where

(
x1

x2

)
=

(
A
T

)(
C
G

)(
C
A

)(
T
C

)(
G
ε

)
.

The Top-Top operation takes the two sequences in the top and creates a new
sequence in the alphabet V ∗

Σ . In this example, the two top sequences are x1 and
x2, then the new sequence

(
x1

x2

)
∈ V ∗

Σ is created. Equivalently, the results for
Bottom-Bottom operation is(
x1

y1

)
[
]

(
x2

y2

)
=

(
y1

y2

)
=

(
A
C

)(
G
T

)(
C
A

)(
T
G

)
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Fig. 1 shows automata as a result of some of the operations described above.
At the beginning, the nucleotide sequences are represented as automata. Part (a)
and part (b) show the automata for the Top-Top and Bottom-Bottom operations,
respectively.

Fig. 1. Example of automata as a result of Top-Top and Bottom-Bottom operations.
First, the given nucleotide sequences from Example 2 are represented as automata. (a)
Automaton as a result of Top-Top operation. (b) Automaton as a result of Bottom-
Bottom operation.

4.2 Automata Operations

Now, we define a set of automata operators used to create the new family of
Pairwise Rational Kernels.

Definition 3. Let M(xy)
represent the trivial automaton of

(
x
y

)
, for all

(
x
y

)
∈ V ∗

Σ.

The following pairwise automata operators are defined:

– Direct-Sum-Left Pairwise Automata Operator ([⇔]) where
M(x1

y1
)[⇔]M(x2

y2
) = M(

(x1
y1
)[�](x2

y2
)
) ⊕M(

(x1
y1
)[�](x2

y2
)
)

– Direct-Sum-Right Pairwise Automata Operator ([⇒]) where
M(x1

y1
)[⇒]M(x2

y2
) = M(

(x1
y1
)[↓↑](x2

y2
)
) ⊕M(

(x1
y1
)[↓↑](x2

y2
)
)

– Tensor-Product-Left Pairwise Automata Operator ([⇐]) where
M(x1

y1
)[⇐]M(x2

y2
) = M(

(x1
y1
)[�](x2

y2
)
) ⊗M(

(x1
y1
)[�](x2

y2
)
)

– Tensor-Product-Right Pairwise Automata Operator ([⇒]) where
M(x1

y1
)[⇒]M(x2

y2
) = M(

(x1
y1
)[↑↓](x2

y2
)
) ⊗M(

(x1
y1
)[↓↑](x2

y2
)
)
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In this context, we have used operations over automata (i.e., ⊕ and ⊗) that
we defined in Section 3.1 (i.e., sum + union and product · concatenation). We
have changed the symbols just to make a difference over automata as graphical
representation, but basically there are the same operations.

Example 3. Given the sequences in V ∗
Σ(

x1

y1

)
=

(
A
A

)(
C
G

)(
C
C

)(
T
T

)(
G
ε

)
and

(
x2

y2

)
=

(
T
C

)(
G
T

)(
A
A

)(
C
G

)
,

from Example 2, the Direct-Sum-Left Pairwise Automata Operator produces the
automaton shows in Fig. 2, as a result of the sum operation over the automata
obtained in Fig. 1 (a) and (b).
Similarly, Fig. 3 shows the automaton as a result of the product operation over
the same automata in Fig. 1 (a) and (b), which represent the Tensor-Product-Left
Pairwise Automata Operator.

Fig. 2. Example of an Automaton as a result of the Direct-Sum-Left Pairwise Au-
tomata Operation (i.e., M(x1

y1
)[⇔]M(x2

y2
) = M(

(x1
y1
)[�](x2

y2
)
) ⊕M(

(x1
y1
)[�](x2

y2
)
))

Fig. 3. Example of an Automaton as a result of the Tensor-Product-Left Pairwise
Automata Operation (i.e., M(x1

y1
)[⇐]M(x2

y2
) = M(

(x1
y1
)[�](x2

y2
)
) ⊗M(

(x1
y1
)[�](x2

y2
)
)).

In this section, we define operations over automata that equivalently make
pairwise relations over data (i.e., sequence data). For example, the Direct Sum
Learning Pairwise Kernel, described in Section 3.4 Formula 3, is obtained by
the sum operation of simple rational kernel represented by the transducer U ,
computed for a pairs of data. Similarly, the Tensor Learning Pairwise Kernel,
Section 3.4 Formula 4, is the combination of product and sum operations over
the simple rational kernel, represented by U .

In this research, we are using sequence data. We have represented them in
a new alphabet, VΣ , as pairs of sequences. We converted these pairs of data in
automata, over the new alphabet. Then, pairwise operations over automata can
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be made first, yielding final automata as a result. Then, rational kernels can
be obtained from these final automata. Based on this concept, we define a new
family of kernels in the next section.

4.3 New Pairwise Rational Kernels

We introduce then the new Pairwise Rational Kernels using automata
operations.

Definition 4. Given X ⊆ Σ∗ and a transducer U , then a function
K : (X ×X)× (X ×X)→ R is defined as

– Direct-Way Pairwise Rational Kernel on Automaton Operations
(KPRKDW−AO):
K((x1, y1), (x2, y2)) = U(I1, I2), where I1 = M(x1

y1
) and I2 = M(x2

y2
).

– Direct-Sum Pairwise Rational Kernel on Automaton Operations
(KPRKDS−AO):
K((x1, y1), (x2, y2)) = U(I3, I4), where I3 = M(x1

y1
)[⇔]M(x2

y2
) and

I4 = M(x1
y1
)[⇒]M(x2

y2
).

– Tensor Pairwise Rational Kernel on Automaton Operations
(KPRKTP−AO)):
K((x1, y1), (x2, y2)) = U(I5, I6), where I5 = M(x1

y1
)[⇐]M(x2

y2
) and

I6 = M(x1
y1
)[⇒]M(x2

y2
).

The first PRK, i.e., KPRKDW−AO, is obtained directly from the automata
that represent the pairs (x1, y1) and (x2, y2) in the new alphabet V ∗

Σ (i.e.,
(
x1

y1

)
and

(
x2

y2

)
). The other two PRKs represent the Direct-Sum (KPRKDS−AO) and

Tensor Product (KPRKTP−AO)) pairwise rational kernels. These new PRKs dif-
fer from previous PRK definitions in Section 3.4 in the way the data are repre-
sented and kernels are computed. Our motivations to develop these new kernels
are based on using automata operations to optimize the performance of kernel
computations.

4.4 Algorithms

We use a general algorithm, Algorithm 1, to compute the Pairwise Rational
Kernels defined above. This algorithm is based on the basic idea of the Algo-
rithm described by Cortes et al. [13]. The input of the algorithm is the pairs
(x1, y1), (x2, y2). In the first step, the Ii automata are computed using Defini-
tion 3, then the transducer composition and shortest-distance algorithm is used
to finally obtain the Pairwise Rational Kernel values.
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Algorithm 1. Pairwise Rational Kernel Computation based on Automaton Op-
eration
INPUT: pairs (x1, y1), (x2, y2) and WFST U
(i) Compute the operations in definition (4.4):

I1 = M(x1
y1
) I2 = M(x2

y2
),

I3 = M(x1
y1
)[⇔]M(x2

y2
) I4 = M(x1

y1
)[⇒]M(x2

y2
),

I5 = M(x1
y1
)[⇐]M(x2

y2
) I6 = M(x1

y1
)[⇒]M(x2

y2
).

(ii) use transducer composition to compute:
N1 = I1 ◦ U ◦ I2
N2 = I3 ◦ U ◦ I4
N3 = I5 ◦ U ◦ I6

(iii) use a shortest-distance algorithm algorithm to compute the sum of the weights of
all paths of N1, N2, N3, and finally

KPRKDW ((x1, y1), (x2, y2)) = N1

KPRKDS((x1, y1), (x2, y2)) = N2

KPRKT ((x1, y1), (x2, y2)) = N3

RESULTS: values of K((x1, y1), (x2, y2))

5 Methods

In this section we describe experiments to predict metabolic networks using
SVM-based algorithms in the training process, based on Pairwise Rational
Kernels Automata Operations.

5.1 Dataset and Kernels

We used the data set of metabolic pathways of the yeast Saccharomyces cere-
visiae [1, 17]. The data were taken from the KEGG pathway database [32].
The metabolic pathways were converted to a graph where enzymes are nodes
and enzyme-enzyme relations are edges. In this dataset, enzymes are considered
globular proteins produce by specific gene that have been previously identified.
Enzyme-enzyme relations mean that two genes produce enzymes that catalyse
successive reactions [3]. We used as data the nucleotide sequences of the genes.

We implemented the algorithm described in Section 4.4 using Open Finite-
State Transducer (OpenFST) [33] and OpenKernels [34] libraries. We use the
n-gram kernel described in Section 3.3. In this case, U was defined using a 3-
gram (n = 3), where U = T3 ◦ T−1

3 . For example, the Direct-Sum Pairwise
Rational Kernel Automata Operation was computed as KPRKDS = U(I3, I4) =∑

|z|=3 cI3(z)cI4(z), where I3 and I4 were obtained using Definition 4.

Yu et al. [35] have verified that sequence kernels are not good enough to pre-
dict interactions, however they are computationally inexpensive [14]. As recom-
mended by [14, 35], we combine n-gram kernels with other kernels (i.e., PFAM [1]
and Phylogenetic [3] kernels) that include evolutionary information to improve
accuracy, as well we balance the positive and negative samples.
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The Phylogenetic (PHY) kernel was obtained based on a Gaussian RBF kernel
that associated each gene to 145 organisms, describing if the gene is present or
not present in each organism [36]. The PFAM [3] kernel was computed based on
a set of statistics E-values of the Hidden Markov Model (HMM) associated to
PFAM database [37]. In bothe cases, we used available data from Ben-Hur et
al., [1] and Allauzen et al., [17].

The experiments were separated in three different groups: Exp I included
the new Pairwise Rational Kernels (KPRKDW , KPRKDS and KPRKTP ), Exp
II considered the combination of the new PRKs with the Phylogenetic ker-
nel (KPRKDW+PHY , KPRKDS+PHY and KPRKTP+PHY ), Exp III included
the new PRKs with the PFAM kernel (KPRKDW+PFAM , KPRKDS+PFAM and
KPRKTP+PFAM ).

5.2 Learning Procedure

We used Support Vector Machines with the new family of Pairwise Rational Ker-
nels to predict the enzyme-enzyme reactions in the metabolic network. To bal-
ance our dataset, the program BRS-noint was executed to select non-interacting
pairs [35]. We measured the accuracy using the Area Under Curve of Receiver
Operating Characteristic (AUC ROC) [38], which defines a function of the rates
of true-positives (predicted enzyme pairs are present in the dataset) and false-
positives (predicted enzyme pairs are absent in the dataset). We denoted the
accuracy as AUC values.

As supervised network inference methods require the knowledge of part of
the network in the training process, we used a stratified cross-validation proce-
dure with 10-fold cross-validation. In addition, execution times during the fold
cross-validation process were also collected. The execution times included the au-
tomaton operations. All the experiments were executed on a PC intel i7CORE,
8MB RAM. We ran them ten times and calculated the average of AUC and
processing time values.

We applied the McNemar’s non-parametric test to compare the performance
of the SVM classification method using the new PRKs with the previous PRKs
obtained by [14]. McNemar’s tests [39] have been recently used by [40] to prove
significant statistical differences between classification methods. We used this
test to determine statistical improvement during the prediction of metabolic
networks, when the different Pairwise Rational Kernels were used with SVM-
based algorithms.

McNemar’s test defines the parameters Nfs and Nsf of two algorithms (Algo-
rithm A and Algorithm B). Nfs is the number of times Algorithm A failed and
Algorithm B succeeded, and Nsf is the number of times Algorithm A succeeded
and Algorithm B failed. Then, a z score is calculated as:

z =
(|Nsf −Nfs| − 1)√

(Nsf +Nfs)
(5)

When z is equal to 0, the two algorithms have similar performance. On the con-
trary, when z is greater than zero, the algorithm performance differ significantly,
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based on the confidence levels described by [40]. Additionally, if Nfs is larger
than Nsf then Algorithm B performs better than Algorithm A. During our ex-
periments, we collected data to compute the z score for all kernel combinations.

6 Results

Table 1 shows the SVM performance and execution times grouped by the pair-
wise rational kernels automata operations mentioned above (Exp I) and their
combinations with Phylogenetic (Exp II) and PFAM (Exp III) kernels.

Table 1. Average AUC values, processing times and z score (McNemar’s test) for
Pairwise Rational Kernels using automaton operations

Exp Kernel AUC Time
(sec)

z-
score

PRK-Direct-Way (KPRKDW−3gram) 0.532 9.60 —
I PRK-Direct-Sum (KPRKDS−3gram) 0.526 11.4 4.51

PRK-Tensor-Product (KPRKTP−3gram) 0.648 12.0 6.23

PRK-Direct-Way + PHY kernel (KPRKDW−3gram+PHY ) 0.674 129.8 —
II PRK-Direct-Sum + PHY kernel (KPRKDS−3gram+PHY ) 0.533 133.6 7.51

PRK-Tensor-Product + PHY kernel (KPRKTP−3gram+PHY ) 0.789 131.8 6.25

PRK-Direct-Way + PFAM kernel(KPRKDW−3gram+PFAM) 0.771 129.9 —
III PRK-Direct-Sum + PFAM kernel (KPRKDS−3gram+PFAM) 0.538 133.4 5.81

PRK-Tensor-Product + PFAM kernel (KPRKTP−3gram+PFAM ) 0.877 132.0 6.22

When only n-gram kernels were used (Exp I), the best accuracy value was
obtained with the Tensor-Product Pairwise Rational Kernel (KPRKTP−3gram),
as has also occurred in other proposals, such as [14]. However, the fastest exe-
cution time was obtained with the PRK-Direct-Way (KPRKDW−3gram), which
has been defined and used in this research for first time. Unfortunately, using
only n-gram kernels yield low accuracy values (AUC). These results coincided
with Yu et al. [35] and Roche-Lima et al. [14], which recommended using other
kernels with evolutionary information (i.e., PHY and PFAM kernels) to improve
the predictor accuracy. Thus, we also obtained the results in Exp II and Exp
III with Phylogenetic and PFAM kernels, respectively. The accuracy values were
improved in all cases, while maintaining adequate processing times. The best ac-
curacy value was AUC=0.877, corresponding to PRK-Tensor-Product + PFAM
(KPRKTP−3gram+PFAM ) kernel (Exp III). Furthermore, this was the highest
accuracy and best processing time obtained with all the PRKs included in this
research and reported by [14]. We noted that the increase in processing time in
Exp II and Exp III was due to using kernels which were not automata-based.
This indicated the efficiency of using auotmaton operations to obtain the kernels
in this application.

To compare the results using the PRKs based on Automata Operations with
the performance of PRKs described by [14], we used McNemar’s test to de-
termine statistical significance. Since the PRK-Direct-Way kernels were defined
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for first time in this research, we did not include them in this analysis. Thus,
we compared the SVM methods using the n-gram Direct-Sum Pairwise Ra-
tional Kernels obtained here (i.e., KPRKDS−3gram, KPRKDS−3gram+PHY and
KPRKDS−3gram+PFAM kernels) with the similar kernels used by [14]. Based on
the Nfs and Nsf values, the z-scores were computed, given in Table 1. In all
cases, the new Direct-Sum Pairwise Rational Kernels, described in this paper,
performed better. These z-score also proved that the difference was statisti-
cally significant with a confidence level of 99% (based on One-Tailed Prediction
Confidence Level described by [40]). Likewise, we compared the Tensor-Product
Rational Kernels from both papers (i.e., KPRKTP−3gram, KPRKTP−3gram+PHY

and KPRKTP−3gram+PFAM ). In this case, all the collected values also yielded
statistical significant differences of the performances in favour of the new ker-
nels obtained in this research with confidentiality levels of 99% (see z-scores in
Table 1).

7 Conclusion

We introduced new pairwise rational kernels based on automata operations.
Using these new kernels, we improved the performance of SVM-based methods
to predict metabolic network, decreasing the computational costs in term of
processing time.

The new PRKs measured similarities between two pairs of sequences using
language and automaton representations. Initially, we defined new notations
and operations, and later we described the new kernels based on transducers
combined with automata. We ran several experiments using the new Pairwise
Rational Kernels for metabolic network prediction methods. As a result, we
obtained better accuracy and execution times than other previous works [14].
We have also proved that the performance improvements, using these new PRKs,
are statistically significant with high level of confidentiality.

As future work, new pairwise rational kernels may be developed based on
other previous pairwise kernel such as metric learning and Cartesian kernels
[29, 30], as well as other automaton operations.
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(eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007)

34. Allauzen, C., Mohri, M.: Openkernel library (2012)
35. Yu, J., Guo, M., Needham, C.J., Huang, Y., Cai, L., Westhead, D.R.: Simple

sequence-based kernels do not predict protein–protein interactions. Bioinformat-
ics 26(20), 2610–2614 (2010)

36. Yamanishi, Y., Vert, J.P., Kanehisa, M.: Supervised enzyme network inference
from the integration of genomic data and chemical information. Bioinformat-
ics 21(suppl. 1), i468–i477 (2005)

37. Gomez, S.M., Noble, W.S., Rzhetsky, A.: Learning to predict protein–protein
interactions from protein sequences. Bioinformatics 19(15), 1875–1881 (2003)

38. Gribskov, M., Robinson, N.L.: Use of receiver operating characteristic (ROC)
analysis to evaluate sequence matching. Computers & Chemistry 20(1), 25–33
(1996)

39. McNemar, Q.: Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika 12(2), 153–157 (1947)

40. Bostanci, B., Bostanci, E.: An evaluation of classification algorithms using Mc-
Nemar’s test. In: Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K.
(eds.) Proceedings of Seventh International Conference on Bio-Inspired Com-
puting: Theories and Applications (BIC-TA 2012). AISC, vol. 201, pp. 15–26.
Springer, Heidelberg (2013)



Author Index

Amorim, Ivone 70

Bianchi, Maria Paola 84
Biegler, Franziska 98
Blanchet-Sadri, Francine 110
Brzozowski, Janusz 124
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