
Chapter 9
A Hybrid RCO for Dual Scheduling
of Cloud Service and Computing Resource
in Private Cloud

In this chapter, the idea of combining SCOS and OACR into one-time decision in
one console is presented, named Dual Scheduling of Cloud Services and Com-
puting Resources (DS-CSCR) [1]. For addressing large-scale DS-CSCR problem,
Ranking Chaos Optimization (RCO) is configured. With the consideration of
large-scale irregular solution spaces, new adaptive chaos operator is designed to
traverse wider spaces within a short time. Besides, dynamic heuristic and ranking
selection are hybrid to control the chaos evolution in the proposed algorithm.

9.1 Introduction

Newly developing cloud computing [2, 3] has brought about great benefits to both
enterprises and individuals. With advanced technologies of virtualization and
service, it incorporates various resources for user on-demand with open interfaces
and transparent remote operations. While IBM, Google and Amazon are taking the
lead in building general public cloud [4–6] under the modes of SaaS (Software as a
Services), IaaS (Infrastructure as a Service) and PaaS (Platform as a Service) [7],
many conglomerates have also obtained cost reduction and higher flexibility of
resource sharing with the establishment of their own private cloud.

Private cloud of conglomerate usually consists of a set of virtualized distributed
infrastructures and application services which are provided by couples of sub-
enterprises and partner-enterprises [8, 9], as shown in Fig. 9.1. For outside, such
conglomerate could be a large SaaS provider. For inside, it turns to a shared
resource pool. In a fairly secure environment, all resources are under the owner-
ship and control of a single administrative domain. On one hand, the virtualization
of multiple distributed infrastructures can greatly improve the computing capa-
bility for the whole organization with lower-cost. On the other hand, upper layer
application services, no matter provided to outside Internet or inside members,
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need no longer to be deployed on a fixed computing resource with specific
maintenance. Services with central control become more flexible with dynamic
allocation. Thus, private cloud in conglomerate also contains two aspects of
significance, one is the integration and sharing of underlying distributed infra-
structure, another is the flexible deployment and usage of upper layer application
services.

Besides, with the development of cloud, the concept of ‘‘service’’ in traditional
Service-Oriented Architecture (SOA) is extended from software application to
generalized ‘‘cloud service’’ with the inclusion of both software applications and
hardware equipments with good interoperability, self-organization and scalability.
The properties of cloud services have become more complex and most of them
need higher computing ability to drive.

In such environment, when a composite project (which contains a set of tasks)
is submitted, the console of conglomerate needs not only to aggregate suitable
cloud services with different functionalities and generate service portfolio for user
on-demand, but also choose available computing resources to support the running
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of cloud services. How to achieve high-quality and low-cost services composition
optimal selection (SCOS) and optimal allocation of computing resources (OACR)
simultaneously are critical for efficient project execution, green resource sharing
and flexible service management.

At present, service composition and computing resource allocation in cloud
have been studied preliminarily. Most researches are carried out according to the
methodology of cluster computing, grid computing and high performance com-
puting and consider the two problems independently. For one thing, computing
availability and communication route of computing resources are analyzed.
For another, QoS (Quality of Service) indexes and description languages are also
discussed. In general public cloud, SCOS and OACR are performed in two steps
and in the charge of different actors. Service providers are not infrastructure
providers [3]. However, in private cloud of conglomerates with typical SaaS mode,
they would provide suitable service portfolio and deploy corresponding services
on their own infrastructure for customers on demand. The actors of SCOS and
OACR turn out to be the same one.

With such two-step decision by a single administrator, the properties of upper
layer selected cloud services in SCOS will limit the range of the underlying
available computing resources for each service in OACR. Better portfolios of
cloud services and computing resources are easily overlooked. Furthermore, as all
knows, both SCOS and OACR are proved to be NP combinatorial optimization
problem. Under the condition of large-scale cloud services and computing
resources and complex relationship between them, addressing SCOS and OACR
step by step with two different algorithms independently becomes very cumber-
some and inefficient.

Therefore, we propose the idea of combining two stages decision-making
into one and put forward the concept, Dual Scheduling of Cloud Service and
Computing Resource (DS-CSCR), in private cloud of conglomerate. In the
guidance of this idea, we analyze the complex features of hardware/software
cloud service and computing resource in cloud computing in two levels and
explore their mutual relations in-depth. Aiming at green efficient decision, the
formulation of DS-CSCR with multi-objectives and multi-constraints is pre-
sented in this chapter. Additionally, in order to achieve high efficient one-time
decision in DS-CSCR, a new Ranking Chaos Optimization (RCO) is designed
in this chapter. Take the advantage of chaotic random ergodicity, this algorithm
combines new adaptive chaos optimal strategy with ranking selection and
dynamic heuristic mechanism to balance the exploration and exploitation in
optimization. With adaptive control of chaotic sequence length, it’s especially
good at searching in large-scaled irregular solution space and shows remarkable
performance for addressing DS-CSCR compared with other general intelligent
algorithms.
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9.2 Related Works

Nowadays, the most commonly used and analyzed cloud computing platforms are
‘‘Google cloud computing’’ platform, Amazon ‘‘elastic cloud’’ platform and IBM
‘‘blue cloud’’ platform. Private cloud with closed sharing are researched less and
attracted criticism owing to the less hands-on management [4]. But it can notably
reduce the cost of resources and improve the quality of services in large con-
glomerate. After years of development, large enterprises, academic institutions and
new emerging internet service providers are building their own cloud platform,
too, such as Eucalyptus, Red Hat’s cloud, OpenNebula and so on. Though various
platforms differ on their usage mode and openness, most of them share the same
key technologies and target of resource sharing.

In cloud computing, two crucial optimization factors in determining resource
sharing efficiency and platform application performance are SCOS and OACR
exactly.

In recent years, researches on service composition are generally based on the
environment of grid computing and other SOA mode [10]. These researches spread
from service description language, service QoS indexes [11], reliability and trust
evaluation [12], and optimal selection of services [13] and so on. Since cloud
computing mode has been proposed, the concept and content of cloud service are
broadened. According to the characteristics of cloud computing, semantic prop-
erties of cloud service are studied [14]. The classification, management, provision,
storage and evaluation of cloud services are investigated widely. Pre-decision and
online-decision of SCOS are also deliberated in different ways, such as [15].
Among these, QoS indexes of cloud services are discussed most widely. From the
perspective of non-functional properties of cloud services, the existing indexes
consider no more than cost, time and reliability factors. It’s hard to describe
various cloud services with different classification and attributes in a unified form.
Thus the existing QoS indexes can’t satisfy all types of cloud services.

For computing resource allocation, traditional researches mostly focus on the
modeling and evaluation of computing resources based on homogeneous/hetero-
geneous cluster systems or distributed grid computing systems [16]. User’s
demand for resources, resources’ costs and computation and communication
capabilities of resources are the major considerations among these studies. In
cloud computing mode, virtualization is the main support of flexible resource
sharing [17]. In this context, Endo et al. introduced the concept, classification of
resource allocation in distributed cloud [18]. Ma et al. [19] and Xiong et al. [20]
investigated the management of cloud computing resources based on ontology and
virtualization respectively. Zhang et al. [21] proposed a method for the deploy-
ment of upper layer software cloud services from virtual machines. Ghanbari et al.
[22] have studied the feedback-based optimization problem including the alloca-
tion of resources especially in private cloud. Besides, considering the virtual
division of computing resources and its influences on the quality of cloud services,
researchers also built new models for computing resources from the rules,
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reliability and dynamic partition point of view, and so on, and presented various
methods to solve OACR problem in cloud computing [23, 24]. Most of these
studies concentrated on the expansion of characteristics of computing resources
based on traditional models and the algorithm designing for OACR in cloud
computing. However, the mutual relations between cloud services and the
underlying computing resources and the influence of virtualization on quality of
cloud services, as two of the key factors in cloud computing, have not been
studied.

In addition, SCOS and OACR are both combinatorial optimization problems.
For this kind of problems, the most widely used algorithms are intelligent algo-
rithms due to its NP complexity. It includes Genetic Algorithm (GA) [25], Particle
Swarm Optimization (PSO) [26] and so on and has the virtues of brachylogy,
universality and rapidity. According to different specific problems, abundant
researches mainly focus on the balance of exploration and exploitation in
searching process based on evolutionary iteration of population and presented
many kinds of improved hybrid intelligent algorithms such as [27]. Nevertheless,
these improved hybrid intelligent algorithms are mostly problem-dependent with
local convergence more or less. For addressing large-scaled DS-CSCR problem in
private cloud of large conglomerate with irregular solution space efficiently, the
design of high performance intelligent algorithm is imperative.

9.3 Motivation Example

Currently, the concept of cloud is studied and applied in almost every field. Based
on the technology of cloud computing, manufacturing equipments and simulation
software as cloud services can be realized [28, 29]. Various software and hardware
can by dynamically shared for product customization of both inside or outside
organizations without repeat-purchase. Under this background, we use ‘‘the design
and NC (Numerical Control) machining of a complex surface part in conglomerate
cloud’’ as a case to describe the whole process from tasks’ submission to tasks’
execution. As shown in Fig. 9.2, it can be divided into five sub-tasks: (1) technical
and mathematical analysis, (2) CAD modeling and NC programming, (3) verifi-
cation simulation and post-processing, (4) first NC machining and measuring, and
(5) batch production.

During this process, task (1), (2) and (3) can be implemented directly by
manufacturing software cloud services, such as CATIA, MasterCAM or Pro/E,
etc., and task 4 and task 5 can be executed by manufacturing hardware cloud
service with users’ supervision and control, such as 3-axis, 4-axis or 5-axis linkage
CNC (Computer Numerical Control) machines, etc. When user submitted the tasks
of designing and machining a customized part, four steps are needed to be done
by centre console: (1) Requirement analysis of tasks, (2) Services composition
optimal selection, (3) Optimal allocation of computing resources, (4) Execution.
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The scheduling of computing resources totally depends on the corresponding
upper layer selected cloud services. With the distributed characteristics of services
and infrastructures, the available computing resources are reduced and the OACR
are constrained by the upper layer decision. For example, for task (4), assume the
suitable CNC hardware service No. 1 and No. 2 are provided in Location A and
Location B respectively. CNC service No. 1 is with higher QoS than CNC service
No. 2. But the idle computing resources in Location A are less than Location B.
If CNC service No. 1 is selected for task 4 in step 3, the low computing ability of
computing resource in Location A and the remote communication overhead of
computing resource in Location B would both cause the low execution efficiency
of CNC service No. 1. If we select CNC service No. 2, the better available adjacent
computing resource would then improve the overall execution efficiency of task 4.
However, the decision of SCOS in step 2 usually disregards the influence of the
underlying support computing resources due to the traditional binding mode of
service and infrastructure. The latter strategy of choosing MasterCAM service

Fig. 9.2 The design and NC machining of a customized part in conglomerate cloud
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No. 2 is then overlooked. At this time, you might say, if SCOS and OACR are
performed at the same time, then bad decision won’t be happened.

Therefore, in order to reduce the time and improve the quality of decision, we
merge SCOS and OACR into one dual-scheduling decision. With the purpose of
efficient DS-CSCR decision, the following three issues are needed to be studied.

(1) QoS indexes of software/hardware cloud services and computing resources
respectively and the mutual relation between them;

(2) The problem formulation of DS-CSCR with multi-objectives and multi-
constraints in private cloud;

(3) The efficient scheduling algorithm for addressing large-scale DS-CSCR
problem.

This chapter will directly focus on these three issues.

9.4 Problem Description

9.4.1 The Modeling of DS-CSCR in Private Cloud

In conglomerate, services and the support infrastructures are provided by distrib-
uted sub-enterprises and controlled by central head. Traditionally, service provider
usually deploy the service to a fixed computer, put service and computing resource
together to ensure the quality of service. The support computing resources are
always occupied by fixed service and needed specific maintenance. With new
cloud mode, services can be encapsulated and registered to cloud and deployed to
virtual machines dynamically. Through the collaborative development of upper
layer applications and underlying resources, all of the resources can be shared
flexibly on-demand with more energy-saving, higher redundancy and reliability.

Moreover, based on such a flexible environment, cloud services with the sup-
port of VMs contain not only software cloud services, but also hardware services
with further expansion. For hardware cloud services, the computing resources are
no longer support carriers, but controlling and monitoring facilities for these
manufacturing equipments.

(1) The characteristics and QoS indexes of cloud services
From the perspective of QoS evaluation, only simplified quantitative cost, time and
reliability cannot comprehensively summarize the characteristics of software/
hardware cloud services and their requirement for VMs’ performance. With the
consideration of the difference between software and hardware cloud services and
their demands for VM configuration, this section gives new evaluation indexes for
software/hardware cloud service and virtual resources respectively.
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(a) The characteristics and QoS indexes of software cloud services
Software applications in cloud computing are running with the support of VMs.

Each software service is deployed to a single VM and mapped to a corresponding
computing resource. Thus the minimum requirements of VM which represents the
required volume of services should be defined to facilitate the allocation of
computing resources. Based on the functional description of services, we consider
mainly the following non-functional factors of software cloud services in this
chapter.

• s—service execution efficiency under the minimum required configuration of
VM;

• c—the rent cost of service;
• r—trustiness of service, which is the ratio of the success execution time and the

total execution time;
• v—the minimum required speed of VM.

Remarks The performance of the required VM is determined by many factors,
such as the CPU and memory of the corresponding computing resources. In a
computer, the speed of CPU is in proportion to the power supply voltage [30]. It’s
a constant value. The speed of VM can mainly be calculated by the number and
speed of occupied CPUs. So that the minimum required speed of VM is adopted
here for evaluation. The higher the speed of VM is, the faster the service runs.

(b) The characteristics and QoS indexes of hardware cloud services
Unlike the software service, hardware service is energy-consuming and needs

supervision or control during execution. Real-time supervision or control will
produce large amount of communication and increase service execution time
(i.e. the time-consumption of data transmission). Different hardware service needs
different amount of supervision and control. For this reason, based on the above
four factors of software service, two more factors need to be considered.

• s—service execution efficiency under the minimum required configuration of
VM;

• c—the rent cost of service;
• r—trustiness of service, which is the ratio of the success execution time and the

total execution time;
• v—the minimum required speed of VM;
• e—the average energy-consumption of hardware service;
• f—the average control rate, which is the ratio of the amount of control com-

mands and the amount of tasks;
• g—the transmission rate between VM (computing resources) and hardware

service.

Remarks For hardware services, there are two conditions of control. One is
inputting all control commands beforehand, and then executing tasks without
interaction. Another is controlling during execution. Owning to the large amount
of task in hardware service, f in the first condition can usually be ignored
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(i.e. f = 0). We mainly focus on the second condition. Besides, if the hardware
service needs no control or supervision any more, then f = 0, too.

Usually, the transmission path of the control commands of software service is
‘‘user—VM’’, while which of hardware service is ‘‘user—VM—hardware ser-
vice’’. Without the consideration of task interactions and energy-consumption of
VMs, if the amount of submitted task is W, the total execution time T, the total cost
C and the total energy-consumption E of the software and hardware service can be
calculated as follows respectively.

For software services,

T ¼ W

s
ð9:1Þ

C ¼ Tc ¼ cW

s
ð9:2Þ

For hardware services,

T ¼ W

s
þWf

g
¼ W

gþ sf
sg

ð9:3Þ

C ¼ Tc ¼ cW
gþ sf

sg
ð9:4Þ

E ¼ Te ¼ eW
gþ sf

sg
ð9:5Þ

(2) The characteristics and QoS indexes of VMs
VMs are the virtual division of the underlying computing resources. The perfor-
mance of VM are mainly embodied in the running speed, transmission rate and
energy consumption of the corresponding computing resources. It’s still hard to
locate one VM into multiple computers by existing technologies of virtualization.
Hence, we assume each VM maps into only one physical node. In accordance with
the characteristics of cloud services, we primarily concentrate on four factors
below.

• p—the running speed of VM, which depends on the occupancy rate and the
speed of CPUs;

• q—the transmission rate of VM;
• g—the average energy-consumption of VM;
• f—the failure probability of VM;
• u—the recovery time of VM when fails.

Remarks q reflects the transmission rate between the occupied physical com-
puting resources and the objects. If the transport object and the VM are in the same
local network, then evaluate the transmission rate by local bandwidth. Else, the
transmission rate is evaluated with the synthetic consideration of the transport
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object, the central console and the VM itself. Besides, the energy function of CPU
per unit time can be represented as [29]: P0 ¼ AV2f þ Z. Where A and Z are
constant, V is the power supply voltage and f is the dominant frequency. Thus g is
in proportion to p, too. In cloud platform, the way to handle the failures of physical
nodes is usually dynamic migration of VMs. So, u is no longer the recovery time of
the corresponding computing resource but the dynamic migration time. Computing
resources with low reliability can easily cause dramatically increase of task exe-
cution time, cost and energy consumption.

Let the task execution time in the corresponding VM without failure be t, the
average task execution time of VM can be evaluated as:

~t ¼ tð1� f Þ þ ðt þ uÞf ¼ t þ fu ð9:6Þ

Assume the set of the predecessor nodes of the task i to be Li, and the input
communication amount from the predecessor node j is Uij, then the total com-
munication time between the task and its predecessor nodes are:

U ¼ max
j2Li

Uij

qj
ð9:7Þ

If the performance of VM can satisfy the minimum requirement of service, then
the total execution time T, the total cost C and the total energy consumption E of
the task can be calculated as follows.

(a) If the selected service is software cloud service, then

T ¼ vW

ps
þ U þ fu ð9:8Þ

C ¼ Tc ¼ vW

ps
þ U þ fu

� �
c ð9:9Þ

E ¼ Te ¼ vW

ps
þ U þ fu

� �
e ð9:10Þ

(b) If the selected service is hardware cloud service, then

T ¼ vWðgþ sfÞ
psf

þ U þ fu ð9:11Þ

C ¼ Tc ¼ vWðgþ sfÞ
psf

þ U þ fu

� �
c ð9:12Þ

E ¼ Tðgþ eÞ ¼ vWðgþ sfÞ
psf

þ U þ fu

� �
ðgþ eÞ ð9:13Þ
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9.4.2 Problem Formulation of DS-CSCR in Private Cloud

According to the analysis of the characteristics and QoS indexes of cloud services
and virtual resources, the abstract formal description of cloud services, VMs and
computing resources are elaborated in this Section.

Definition 1 The set of tasks in cloud computing environment can be presented
as a directed acyclic gragh (DAG) G ¼ ðN;W ;U;Ht;Hc;He;HrÞ. Where

• The set N ¼ fNiji ¼ 1 : ng represents tasks with serial numbers, where n is the
total number of tasks.

• The set W ¼ fWiji ¼ 1 : ng indicates the size of tasks.
• The set U ¼ fUijji ¼ 1 : n; j ¼ 1 : ng represents the communication relation-

ships among tasks, where Uij reflects the communication from task Ni to task
Nj. We should note that Uij 6¼ Uji. If there’s no communication between the two
tasks, then Uij ¼ 0.

• Ht ¼ fHtðiÞji ¼ 1 : ng, Hc ¼ fHcðiÞji ¼ 1 : ng, He ¼ fHeðiÞji ¼ 1 : ng and
Hr ¼ fHrðiÞji ¼ 1 : ng represent the lowest time, cost, energy and reliability
requirements of tasks respectively.

Besides, let the predecessor tasks set of Ni be Li, and the successor tasks set be
Ri. The node with no predecessor task Li ¼ ; is named source node, and the node
with no successor task Ri ¼ ; is called sink node. All tasks strictly observe the
tasks’ priority rules, that is to say, a node can only be started after all output
communication data of its predecessor tasks are obtained.

According to the QoS indexes analyzed in the previous sections, the general
model of cloud computing can be defined as follow.

Definition 2 The software/hardware cloud services in cloud computing mode
can be presented respectively as

S :
software service : S1 ¼ ðs; c; r; vÞ
hardware service : S2 ¼ ðs; c; r; v; e; fÞ

(

S1 ¼ fs1ðiÞji ¼ 1 : ns1g represents the set of software cloud services, where the
number of services is ns1 ¼ S1j j. S2 ¼ fs2ðiÞji ¼ 1 : ns2g represents the set of
hardware cloud services, where the number of services is ns2 ¼ S2j j. Therefore the
total number of cloud services is ns ¼ ns1 þ ns2 . In the definition, s, c, r, v, e, and f
represents the execution efficiency, rent cost, reliability, the minimum required
speed of VM, energy-consumption and the average control rate of cloud services
respectively. All of these attributes stored according to the type and the serial
number of services.

Because the performance of VM is decided by the corresponding computing
resources, so this chapter just define the formal description of computing resources
as follow.
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Definition 3 The computing resources in cloud computing mode can be pre-
sented as P ¼ ðx;u;/; r; f ; kÞ, where

• P ¼ fPkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg indicates the computing resources
with different groups and different serial number, where k is the group number
of the whole set, l is the number of computing resources in each group and d is
the number of groups.

• x ¼ fxkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg represents the speed of computing
resources. It’s related to the configuration characteristics of these computers.

• W ¼ fukljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg means the bandwidths of computing
resources in local networks, and U ¼ f/kjk ¼ 1; 2; . . .; dg be the bandwidths
between the switches of various sub-infrastructure groups and cloud centre
console.

• r ¼ frkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg represents the average energy-con-
sumption per unit time of these computing resources. According to the analysis
above, rkl is in proportional to xkl.

• f ¼ ffkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg means the failure probability of
each computing resource. This factor is changed after each time of task
execution.

• k ¼ fkkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg represents the number of task loads
in each computing resource at present. It changed during task execution. If
multiple VMs map into one single computing resource, the running speed
of the resource will be dramatically declined. For simplified the evaluation,
we assume the VMs share the same computing resource with average
division.

In the definition of computing resources, the failure recovery time is not
defined. Because of the dynamic migration in cloud computing system, we assume
the average dynamic migration time (i.e. the recovery time) as a constant
u ¼ Const.

For two tasks Ni and Nj, if the support VM are vi and vj, and the allocated
computing resources are Pkl and Pk0l0 , the running speed of vi and vj can be
expressed as pi ¼ xkl=kkl and pj ¼ xk0l0=kk0l0 . If the selected computing resources
are in the same group, i.e. k ¼ k0, the transmission rate is qij ¼ minðukl;uk0l0 Þ.
If the allocated computing resources are distributed, the transmission rate can be
represented as qij ¼ minð/k;/k0 Þ. In addition, the energy-consumption of the two
VMs are gi ¼ rkl=kkl and gj ¼ rk0l0=kk0l0 . And the rent cost, failure probability and
recovery time of VMs are defined the same as the attributes of computing
resources.

Corresponding to Fig. 9.3, the DS-CSCR model can be defined as a quadric-
tuple M ¼ ðG; S;V ;PÞ. Based on the above definitions, the decision of DS-CSCR
can be made and evaluated with multi objectives of the lowest execution time,
energy-consumption and cost and the highest reliability for tasks.

Take the serial tasks as a case, let the number of tasks be n, the type of the
selected cloud service for each task Ni is yi. yi can be 1 or 2 and represents
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software and hardware cloud service respectively. So that the serial number of the
selected service is SyiðiÞ. Assume the allocated computing resource for the support
VM vi of each task is Pkili . Then the overall optimal objectives and constraints can
be calculated as follows.

MAX Objective Function ¼ w1

Yn

i¼1

Ri þ w2=
Xn

i¼1

Ti þ w3=
Xn

i¼1

Ci þ w4=
Xn

i¼1

Ei

ð9:14Þ

The variables in the objective function are calculated according to Table 9.1.

Fig. 9.3 The flowchart of
RCO
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The main constraints of DS-CSCR are shown as following

8i 2 ½1; n� 0\qi\1 ð9:15Þ

8k 2 ½1; g�; l 2 ½1;mk� rkl� 0 ð9:16Þ

8i 2 ½1; n� Ti\HtðiÞ; Ci\HcðiÞ; Ei\HeðiÞ; Ri\HrðiÞ ð9:17Þ

The first constraint means that the occupancy rates of VMs in computing
resources are no less than 0 and no more than 1, that is to say, one VM can only be
allocated in one computing resource with full occupancy at most. The second
constraint indicates that the load of computing resources must be no less than 0.
When rkl ¼ 0, the computing resource is idle. When 0\rkl\1, the computing
resource is not fully occupied, the running speed can be hold. However, when
rkl� 1, the tasks need to be executed in queue, the running speed of computing
resource will be dramatically decreased. The third constraint represents that each
attributes of cloud services and computing resources must satisfy the lowest
requirement of tasks.

9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR
in Private Cloud

From the above analysis it’s clear that the model of DS-CSCR is more complex
than the traditional SCOS and OACR. The upper layer cloud services and the
underlying computing resources interact with each other. Their complex attributes
together directly determine the efficiency of task execution. In large-scale solution
space, it’s hard to find optimal solution of DS-CSCR by a deterministic algorithm.
The general methods for solving these kinds of problems are searching for
sub-optimal solutions by intelligent algorithms, such as GA, PSO and ACO and so
on. ACO is designed particularly for path optimization. PSO is presented for
continuous numerical optimization. GA is more universal but with serious local
convergence. In the condition of complex mutual relations among the attributes of
the problems with large-scaled irregular solution space, these typical algorithms
are quite unsuitable.

Table 9.1 The calculation of elements in the objective function

Variables Software services Hardware services

Ri rs1ðiÞ rs2ðiÞ

Ti Wi
vs1 ðiÞrki li

xki li ss1 ðiÞ
þ max

j2predðiÞ
Uij

qij
þ ufkili Wi

vs2 ðiÞkki li ð/ki
þss2 ðiÞfs2 ðiÞÞ

xki li ss2 ðiÞ/ki
þ max

j2predðiÞ
Uij

qij
þ ufkili

Ci Tics1ðiÞ Tics2ðiÞ

Ei Ti
rki li
kki li

Ti
rki li
kki li
þ es2ðiÞ

� �
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Therefore, a new RCO is presented in this chapter for DS-CSCR. The flowchart
of this algorithm is shown in Fig. 9.3. It contains three main operators: ranking
selection operator, adaptive chaos operator and dynamic heuristic operator. All of
them can be executed independently and hybrid arbitrarily. Their initialization
(coding scheme), operators and evolutionary strategy for solving DS-CSCR are
elaborated as follows.

9.5.1 Initialization

Usually, initialization in intelligent algorithm is very important. It determines the
initial location and the coding scheme of population. The initial location ways of
population include regular generation and random generation, and so on. For
DS-CSCR, the solution space is quite complex, so that the random initialization
scheme is selected in this chapter.

Additionally, different coding style has different contribution to algorithm.
Coding scheme in intelligent algorithm not only directly reflects the characteristics
of the problems, but also affects the performance of the operators. Suitable coding
scheme can even improve the searching capability of algorithms. In this chapter,
the real number coding scheme is adopted because of its characteristics of sim-
plicity and intuitive.

Specifically, for the above mentioned DS-CSCR model, both service-genebit
which represents the selected cloud services and resource-genebit which represents
the allocated computing resources are needed to be set. One task corresponds to
two genebits. Thus the real number coding is the most intuitive and space-saving
scheme for DS-CSCR. When a set of tasks are submitted to cloud system, the
system should choose suitable cloud services and computing resources with spe-
cific serial numbers at the same time. Assume the length of gene code be twice of
the number of tasks, as shown in Fig. 9.4. Each two genebits represent the serial
number of the selected service and the allocated computing resource for the cor-
responding task. It briefly demonstrates the relationship between cloud service and
computing resource and makes the optimal process more convenient.

9.5.2 Ranking Selection Operator

In most chaos-based optimizations, chaotic operator is based on the individuals
regardless of whether they are good or bad. In this case, the algorithm is easy to
trap into bad conditions with large randomly searching range and extremely strong
diversity. To obtain better seeds for chaotic random ergodicity, selection before it
is needed.

The most commonly used selection operator in GA is roulette wheel selection.
With high randomness, bad individuals may be selected more than good ones,
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higher diversity can be achieved in population. But high diversity has been
implemented by chaos and what we need before chaos is just a set of good seeds.
In this condition, roulette wheel selection becomes unsuitable. To make sure the
high quality of good individuals (i.e. seeds), a dynamic ranking selection operator
is designed in this section.

Normally, ranking selection means selection according to the descending sort of
individual fitness values under a constant proportion. That is to say, the numbers of
individuals from best to worst are in arithmetic sequence. Here we adopt quick sort
algorithm with the computation complexity O(nlogn). Let I ¼ fIiji ¼ 1; 2;Ng be
the population with N individuals, and Ii in the population be the ith individual.
Assume the sorted population to be I0 ¼ fI0i ji ¼ 1; 2;Ng with the fitness value
F0N\F0N�1\ � � �\F01. Define Pselection to be the percentage of individuals to be
selected on the whole. If Pselection ¼ 1, then all individuals are selected at least
once, if Pselection ¼ 0:5, then only the first half individuals are selected, the other
half individuals would not be selected any more. It represents the selection range
in the sorted population. Thus the worst individual to be selected is the Kth
individual where K ¼ NPselection. Under the selection range, let the number of
times that the best individual to be selected as h1 and the number of times that the
worst individual to be selected as hK . Then the difference between the numbers of
two adjacent individuals can be calculated as follow.

Dh ¼ hi�1 � hi ¼
h1 � hK

K � 1
ð9:18Þ

hi ¼ h1 � Dhði� 1Þ ¼ h1 � ði� 1Þ hK � h1

K � 1
where 1� i�K ð9:19Þ

It can be seen that
PK
i¼1

hi ¼ N. Therefore, we can deduce that,

h1 þ hK ¼
2N

K
ð9:20Þ

Let hK ¼ 1, then

1 ¼ hK � h1�
2N

K
� 1 ð9:21Þ

Fig. 9.4 The real number coding scheme for DS-CSCR problem
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To make the selection adaptively, a function for calculating h1 in the ranking
selection is defined as follow.

h1 ¼ 1þ 2N

K
� 2

� �
Faverage

Fbest
¼ 1þ 2N

K
� 2

� �
Faverage

F01
ð9:22Þ

Dh ¼ 2N

K
� 2

� �
Faverage

F01

1
ðK � 1Þ ¼

2ðN � 2KÞFaverage

KðK � 1ÞF01
ð9:23Þ

where Faverage represents of the average fitness value of the whole population.
Thus the much closer Faverage and F0 are, the bigger h1 is, the bigger the number of
times the better individuals to be selected. Otherwise, the number of times the
worse individuals would be bigger and the selection of K individuals becomes
more balance. The pseudo-code of this operator is shown below as Algorithm 1.

Algorithm 1: Ranking Selection Operator
Ranking_Selection (I)

Define the selection range according to Pselection

Sort I with quick sort algorithm and stored as ′I
Calculate the number of times of I1 to be selected, ( ) 11 1 2 / 2 /averageN K F Fθ ′= + −
Calculate 12( 2 ) / ( 1)averageN K F K K Fθ ′Δ = − −
Calculate 2 3, , , Kθ θ θ for other 1K − individuals

Select N individuals according to 1 2, , , Kθ θ θ and generate new I

9.5.3 Individual Chaos Operator

Chaos is a universal non-linear phenomenon. It has the characteristics of strong
randomness and internal regularity. With the generation of logistic chaos
sequences, it can traverse almost all states in a certain range without duplication
and cause great changes in output with rich dynamism. Thus it can improve
population diversity in many typical intelligent algorithms and help them to avoid
local optimization. Nevertheless, it is non-directional and hard to control.

In general, the searching process of typical chaos-based optimization can be
divided into two stages. In the first stage, a bunch of chaotic sequences with certain
length are generated by logistic chaos generating function. Then one or more gene-
bits of individuals are changed according to the chaotic sequences and a series of
new individuals are generated. After the selection of good solution among these
new individuals, the second stage will introduce a small disturbance to the local
optimum individuals for further exploitation. The iteration will continue until the
terminate standards are satisfied.

However, two problems come up to restrain the performance of chaos for large-
scale problems with irregular solution spaces. First, small disturbance will not help
to exploit in complex and irregular spaces. Besides, the length of chaotic sequence
directly decides the time consumption and searching ability of the algorithm.
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For higher searching ability, the second problem is that fixed length of chaotic
sequences may bring large time consumption in exploration. Thus, we design a
new individual chaos operator in which the small disturbance is abandoned and
adaptation of chaotic length is introduced for individuals with customization.

Specifically, the length of chaotic sequence for each individual is determined by
its current evolutionary state. Let I ¼ fIiji ¼ 1; 2;Ng be the population with
N individuals, and Ii be the ith individual. It includes its gene-bit values Gi ¼
fGið1Þ;Gið2Þ; . . .;GiðMÞg and fitness value Fi, where M represents the length of
gene code (i.e. twice of the number of tasks). The specific pseudo-code is shown as
Algorithm 2.

Algorithm 2: Individual Chaos Operator
Individual_Chaos (I) 
For ( 1 to i N= ) 

( ) / ( 1)chaos best i best worstL A B F F F F= + − − +
Generate 1 2[ ],  [ ] [0,1]chaos chaosX L X L ∈ by using Logistic chaos function

For ( 1 to chaosj L= ) 

Map 1( )X j as genebit serial number [1, ]k M∈
If ( k corresponds to service-bit)

Map 2 ( )X j as genebit value [1, ]sv n∈
Else

Map 2 ( )X j as genebit value [1, ]pv n∈
End if
Generate j new temporary individuals { (1), (2), , ( )}r r r j by replacing the 

value of ( )iG k with v
Choose the best individual rbest from the temporary individuals
If (

bestr iF F> ) 

i bestI r=
Else

If ( exp(( ) / )
best

o
r iF F t γ− > ) 

Replace Ii with rbest

End if
End if

End for
o ot Dt=

End for

Go in detail, the evolutionary state of the ith individual is defined as Qi:

Qi ¼
Fbest � Fi

Fbest � Fworst
ð9:24Þ

Lchaos ¼ Aþ ðB� AÞQ ð9:25Þ

where A and B is the lower bound and upper bound of Lchaos, respectively. Fbest

and Fworst represent the serial numbers of the individual with the best and the worst
fitness value. To be exact, the closer the average fitness value to the best fitness
value in population, the better the evolutionary state is, and the shorter the length
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of chaotic sequence Lchaos is, so that the smaller the searching range is. Otherwise,
the closer the average fitness value to the worst fitness value in population, the
smaller the searching range is.

With the initialized definition of the length of chaotic sequences Lchaos, the
operator generates two chaotic sequences X1½Lchaos�; X2½Lchaos� for each individual
Iiði ¼ 1; 2; . . .;NÞ by Logistic mapping chaotic function, as shown in Eq. (9.26).

zlþ1 ¼ lzlð1� zlÞ ð9:26Þ

where l ¼ 4 according to general chaotic strategy. Then X1 and X2 are mapped to
the serial number k and the value v of gene-bits respectively. If k 2 ½1;M� cor-
responds to service gene-bit, we should map X2 to relative service number and
store it in v. Or we should map X2 to relative computing resource number and store
it. In the pseudo-code, ns and np represents the number of cloud services and the
number of computing resources respectively. After the chaotic mapping step, new
neighbor solutions frð1Þ; rð2Þ; . . .; rðjÞg can be generated by changing the value of
GiðjÞ into v. Further, choose the individual rbest with the best fitness value and

accept it as new individual with probability Pannealing ¼ expðFrbest�Fi

t0 Þ, where t0 is
the annealing temperature and the initial value is 100. In the algorithm, the rate of
t0 drop D is set to be 0.95 to gradually narrow down the accept probability. On the
whole, in the individual chaos operator, searching is carried out with the adaptive
changing of the length of chaotic sequences for each individual according to its
evolutionary state Qi. Chaos states can finally be controlled by population state.

9.5.4 Dynamic Heuristic Operator

For further improving the searching direction in chaos optimization, dynamic
heuristic is introduced in this algorithm after ranking selection and adaptive
individual chaos. The principle of this operator is dynamically guiding the algo-
rithm for local search with right direction by using some priori knowledge of the
problem.

To be specific, for each individual, the operator randomly chooses a gene-bit,
traverses part of the available values for the single gene-bit and dynamically
calculates the heuristic of each value, then picks the most suitable value with the
highest heuristic and generates new individual. It’s quite like the mechanism of
pheromone in ACO. Compared with the pheromone, dynamic heuristic here does
not contain empirical information. It uses just the priori knowledge which is
dynamically calculated according to the states or the gene-bit values of indi-
viduals in each generation. Define the traverse range for one gene-bit to be hn,
where h 2 ½0; 1�, and n can be ns or np. The specific pseudo-code is shown as
follow.
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Algorithm 3: Dynamic Heuristic Operator
Dynamic_Heuristic (I) 

For ( 1 to i N= ) 
r = Ii
Randomly choose a genebit [1: ]k M∈
If (p corresponds to service-bit)

Randomly choose hns values from 1 to ns

Choose the service si with the highest heuristic max ( ) ( [1, ])s s s
j

Y y j j hn= ∈

( )r iG k s=
Else

Randomly choose hnp values from 1 to ns

Choose the computing resource pi with the highest heuristic 
max ( ) ( [1, ])p p p

j
Y y j j hn= ∈

( )r iG k p=
End if
Accept r with simulation annealing probability

End for

During the process, h can be set as 0.3. And p represents the randomly selected
gene-bit for each individual. If p corresponds to service-genebit, search available
services and calculate dynamic heuristic of each available service ysðjÞðj 2
½1; hns�Þ by service heuristic function. Then choose the service si with the highest
heuristic Ys to replace the original value of kth gene-bit. If k corresponds to
computing resource gene-bit, search available computing resources and calculate
dynamic heuristic of each computing resource ypðjÞðj 2 ½1; hnp�Þ by computing
resource heuristic function. Then choose the computing resource pi with the
highest heuristic Yp to replace the value of kth gene-bit. After these steps, a new
individual r is generated for each individual. Then replace Ii with r in simulation
annealing probability as well as in adaptive chaos operator Pannealing ¼ expðFr�Fi

t0 Þ.
In this process, how to design service heuristic function and computing resource

heuristic function is very important. Unsuitable heuristic function can cause wrong
searching direction in algorithm and easily lead the algorithm to serious premature
convergence. In this chapter, the service and computing resource heuristic function
are simply designed as follow.

ysðjÞ ¼
a1

ssj

vsj

þ a2
1
rsj

þ a3
1
esj

þ a4
1
csj

þ a5rsj ; if sj 2 S1

a1
ssj

vsj

þ a2
1
csj

þ a3rsj ; if sj 2 S2

8>>><
>>>:

ð9:27Þ

ypðjÞ ¼ a1
xðjÞ

kðjÞ þ a2maxðuðjÞ;/ðjÞÞ þ a3
1

rðjÞ þ a4
1

f ðjÞ ð9:28Þ

where a1; a2; a3; a4; a5 represent the weights of services/computing resources
attributes respectively which corresponds to the weights setting in the objective
function. Through the adjustment of weights, small range of local search in a single
gene-bit could be guided in the algorithm according to the dynamic heuristics.
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9.5.5 The Complexity of the Proposed Algorithm

Generally, the time complexity of the intelligent algorithms is dynamically varied
with different problems. Let n be the scale of the population, m be the size of tasks,
s be the number of the available cloud services for each task and p be the total
scale of computing resources. The algorithms’ complexities in each generation are
shown in Table 9.2.

In GA, typical roulette wheel selection needs n times roulette operations to
generating new population. Each roulette operation contains at least 1 and at most
n times comparison according to the relative fitness values of individuals. Thus the
average complexity of selection operator is O(n2). In RCO, the complexity of
ranking individuals in selection is O(nlogn) (with quick sort method) and the
selection step according to selective pressure needs at most n times. Thus the
complexity of ranking selection is O(nlogn).

Besides, crossover and mutation operation in GA are just executed once for
each individual. The complexity are both at least O(n) and at most O(mn). In
RCO, chaotic sequences with constant length are generated for each individual.
From the pseudo-code it can be seen that the complexity of individual chaos
operator is O(nLchaos) = O(n). Because the adaptation of chaotic length is in a
limited area, the complexity of chaos operator is also O(n). It is lower than
crossover operator. In addition, dynamic heuristic randomly chooses a gene-bit for
each individual, traverse part of available value of this gene-bit with heuristics.
If all of the selected gene-bits are service-bit, then the complexity is O(ns), else if
all of the selected gene-bits are computing resource-bit, then the complexity is O(np).
Thus the average complexity of dynamic heuristic operator is O(n(s + p)/2) =
O(nmax(p, s)).

In theory, if s!1 and p!1, the complexity of RCO is a little higher than
GA. But in the condition of n!1 and m!1, the complexity of RCO is lower
than GA.

9.6 Experiments and Discussions

Based on the case ‘‘the design and NC (Numerical Control) machining process of a
complex surface part’’ mentioned before, three typical DAG: two DAGs as shown
in Fig. 9.5 [21] and the ‘‘j30’’ DAG of Resource-Constrained Project Scheduling
Problem (RCPSP) in PSPLIB [31], are used as three task graphs in our experi-
ments. In practical application of private cloud in manufacturing conglomerate or
large-scale manufacturing service providers, a composite project contains multiple
complex surface parts’ machining. Thus a composite project can be divided into
far more than 5 tasks. Those tasks have several functional and non-functional
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requirements for cloud services. Some of them need hardware cloud services,
some need software cloud services. In order to evaluate the performance of dual-
scheduling optimization compared with the traditional two-level decision, we
use basic real-coding GA uniformly to simulate the decision process in theory.
At the OACR step, each gene-bit represents the selected computing resource
number for the above selected service. The lengths of gene-bits at the two steps
are equal. Furthermore, At the SCOS step, we consider only the properties of
cloud services and then set the objective function as following according to
Eq. (9.14) and [32].

At the OACR step, we also use the objective function in Eq. (9.14) with
the fixed properties of cloud services. In Eq. (9.18), let the weight to be
w1 ¼ w2 ¼ w3 ¼ w4 ¼ 100n.

For simplifying the optimization process, we set that each task in a composite
project has the same number of available cloud services. In the three cases, 3
composite scales of DS-CSCR are tested, as shown in Table 9.3. And in each
scales, computing resources are equally divided into 5 distributed groups.

Assume the available number of cloud services for each task is s and the
available number of computing resources is p, then the size of solution space is
snpn. From Scale 1 to Scale 9, it’s range from 109 � 209 to 509 � 1009. Most
deterministic algorithms can’t handle these situations due to composite exposition.

Table 9.2 The complexity of the operators in GA and RCO

Algorithms The time complexities of operators n!1 m!1 s!1 p!1
GA Roulette

wheel
Selection

Crossover Mutation O(n2) O(m) O(1) O(1)

O(n2) O(nm) O(nm)

RCO Ranking
Selection

Individual
Chaos

Dynamic
Heuristic

O
(nlogn)

O(1) O(s) O(p)

O(nlogn) O(n) O(n*(max
(p, s)))

(a) (b)

Fig. 9.5 Two typical DAG with 9 and 15 tasks respectively. a DAG1 b DAG2
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Moreover, because of the restriction of experimental environment, we set the
ranges of properties of cloud services and computing resources as shown in
Table 9.4.

For theoretical analysis, all the values are randomly generated with normali-
zation and idealization and stored in a txt file. In order to distinguish the band-
widths inter-group and intra-group, the range of u is set to be slightly larger than
/. Initially, task load of all computing resources are 0.

Based on DS-CSCR with 9 scales, standard GA, chaos GA (CGA), typical
chaos optimization (CO), chaos optimization with only individual chaos operator
designed in this chapter (RCO-2), chaos optimization with ranking selection and
individual chaos operator (RCO-1) and chaos optimization with the addition of
dynamic heuristics (RCO) are compared together for further testing the perfor-
mance of the above designed algorithm. In the experiments, the classical roulette
wheel selection operator, multiple-point crossover operator and single-point
mutation operator are adopted in GA. And the crossover and mutation probabilities
are set to be the typical values, i.e. 0.8 and 0.15, respectively. In chaos strategy of
CGA and CO, the length of chaotic sequences is set as a constant 10. For a fairer
comparison, in the new RCO, let A = 5 and B = 15 to make sure the same level of
chaotic operation. Besides, the iterations of all experiments are set as 2000 uni-
formly and population sizes are all 20. Due to the randomness of intelligent
algorithms, a total of 100 runs of each experiment are conducted and the average
fitness value of the best solutions throughout the run is recorded.

Table 9.3 The selected 4 composite scales of cloud services and computing resources

Scale
1

Scale
2

Scale
3

Scale
4

Scale
5

Scale
6

Scale
7

Scale
8

Scale
9

Number of
tasks

9 9 9 15 15 15 30 30 30

Number of
available cloud
services

10 20 50 10 20 50 10 20 50

Number of
available
computing
resources

20 50 100 20 50 100 20 50 100

Table 9.4 The property ranges of cloud services and computing resources

s c r v e f

Software service [1, 10] [1, 10] (0, 1) [1, 10]

Hardware service [1, 10] [1, 10] (0, 1) [1, 10] [1, 10] [0, 1]

. x u / r f k

computing resource [1, 10] [1, 10] [1, 5] [1, 10] (0, 1) 0
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9.6.1 Performance of DS-CSCR Compared with Traditional
Two-Level Scheduling

Let TL-S to be the abbreviation of traditional Two-Level Scheduling, we com-
pared it with new DS-CSCR in the above 9 scales of solution space. Figure 9.6
shows the testing results from the perspectives of time consumption and solution
quality respectively.

Firstly, we define the decrease-rate to be sd ¼ TTL�S�TCS=CR�DS

TTL�S
in Fig. 9.6a. As we

have analyzed previously, the time consumption of SCOS and OACR in traditional
TL-S are reduced by about 35–40 % in DS-CSCR. Although the length of indi-
vidual and the size of solution space are only half that of DS-CSCR. Traditional
TL-S takes almost twice the time of DS-CSCR. For each task graph, as the
numbers of cloud services and computing resources are enlarged, the decrease-
rate increases gradually. Thus it can be seen, with the same algorithm (no matter
deterministic algorithm or intelligent algorithm), TL-S is more and more time-
consuming with the increase of solution space while DS-CSCR always maintains a
relatively low level of time consumption. It proved that, with the same algorithm,
no matter using determistic or intelligent, two level decision is cumbersome.

Secondly, from the angle of solution quality in Fig. 9.6b, we define the growth-

rate to be sg ¼
�FCS=CR�DS��FTL�S

�FTL�S
, where �FCS=CR�DS and �FTL�S represent the average

result of the best fitness value in experiments. It increases along with the expansion
of solution spaces in each kinds of task graph. For all of scales, the total level of
quality in TL-S is improved by about 14–19 % in DS-CSCR. In theory, the service
properties are static in the second step of TL-S. With the splitting of SCOS and
OACR under unified console, the mutual relations between cloud service and the
underlying computing resources are ignored. This tells us the conclusion that in
private cloud, the underlying support infrastructure must be considered in the
process of SCOS. With fast development of dynamic network, service with
dynamic deployment are more and more common. SCOS with the consideration of
QoS only are inpractical for many of the advanced system in large SaaS mode.

9.6.2 Searching Capability of RCO for Solving DS-CSCR

For addressing DS-CSCR more efficiently, we designed RCO especially aiming at
the situation of large-scale solution space. Figure 9.7 recorded the average fitness
value of the best solution during 2000 generations in 100 runs for 9 scales of
DS-CSCR (i.e. the average evolutionary trend of the 6 algorithms in 100 runs).
Figure 9.8 shows the fitness value of the best solution, the worst solution and the
average result in 100 runs for 9 scales of DS-CSCR. Note that the fitness value is
the assessment value of each individual according to the objective function. So
from the perspective of searching capability, the sort of the six algorithms from
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bad to good is: GA\CGA\CO\RCO-2\RCO-1\RCO. The step-by-step
improvement from the design of individual chaos operator to the introduction of
ranking selection and dynamic heuristic operators can be clearly observed.

On the basis of GA, the average fitness value of the best solutions of CGA is
about 30 % higher than GA. At this moment, the average best fitness value of
CO with single chaos optimal operator is about 1.5 times higher than GA. From
here we can come to the conclusion that the basic operators of GA constrained
the searching ability of chaos optimal operator in CGA to some degree. Simple
chaos optimization can get much better solution than the traditional GA and
improved CGA. Furthermore, the adaptive strategy adapts chaotic sequences
according to the state of the whole population. When the population is in a good
state, the adaptive strategy will reduce the chaotic sequences, so as to reduce the
complexity of the algorithm. Compared with CO, the average best fitness value

Fig. 9.6 Comparison of DS-CSCR and TL-S based on GA. a The average solution of DS-CSCR
and TL-S based on GA in 9 scales b The average solution of DS-CSCR and TL-S based on GA in
9 scales
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of RCO-2 in the 9 scales of DS-CSCR has been raised by about 3 %. After-
wards, ranking selection was put in the front of RCO-2. With the collaboration
of selection and chaos, the average best fitness value of RCO-1 is improved
again. Hence, it can be learned that the operation and collaboration of individual
chaos operator and the ‘‘the survival of the fittest’’ ranking selection strategy can
not only reduce the complexity of algorithm, but also improve the searching
capability remarkably. Because the effect of mutation is similar to chaos oper-
ator, it may conclude that the crossover operator in GA mainly restrained the
capability of chaos strategy in CGA. Based on the improved RCO-1, for guiding
chaos optimization further, dynamic heuristic operator was introduced at last.
From Figs. 9.7 and 9.8 we can see that the new RCO performs better than
RCO-1 with the guidance of heuristics. On the whole, the average best fitness
value of RCO in 100 runs is about 2 times higher than GA. The overall
improvements are extremely considerable.

Fig. 9.7 The average evolutionary trend of the 6 algorithms in 100 runs for 9 scales of
DS-CSCR. a DAG1 with 9 tasks in the scale 1, 2 and 3 b DAG2 with 15 tasks in the scale 4, 5 and
6 c DAG3 with 30 tasks in the scale 7, 8 and 9
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9.6.3 Time Consumption and Stability of RCO for Solving
DS-CSCR

Next, based on the above mentioned 9 scales with 3 kinds of task graphs
(Table 9.3), the time efficiency and stability of the 6 algorithms are discussed
below. Note that the time consumption are tested in millisecond (ms) and the
stability is measured by the standard deviation of the average fitness values in 100
runs.

Figure 9.9a shows the average time-consumption of the 6 algorithms in 9 scales
with 100 runs. The step-by-step improvement from CO to RCO compared with GA
and CGA, the variation trends of time in all scales are the same. In CGA, there are
four operators (selection, crossover, mutation and chaos), with lower searching
capability, its time-consumption is the highest in these 6 algorithms. After wiping
out the three operators of GA, the times of CO are just lower than CGA. It is clear
that the most time-consuming operator in CGA is chaos operator. Only narrowing
down the chaotic traverse range can reduce the total execution time of algorithm.
Along with the decrease of chaotic sequences, the searching ability of algorithm
will be reduced, too. Therefore, in order to reduce the time complexity of algo-
rithm with the maintaining of the searching ability, individual chaos operator
customized for individuals is designed in this chapter. Experiments in RCO-2

Fig. 9.8 The statistical results of the 6 algorithms in 100 runs for 9 scales of DS-CSCR. a DAG1
with 9 tasks in the scale 1, 2 and 3 b DAG2 with 15 tasks in the scale 4, 5 and 6 c DAG3 with 30
tasks in the scale 7, 8 and 9
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show that the time-consuming is effectively reduced by about 20 % based on CO
with the improvement of searching ability. Especially in scale 7, 8 and 9 with very
large solution spaces, time-consuming of chaotic operations are sharply reduced.

Moreover, the introduction of ranking selection not only improved the
searching capability of RCO-2, but also reduced the time. The reason is that, based
on ranking selection, the difference between the best fitness value and the average
fitness value in the population is shortened, the population can always be adapted
to a better state with ‘‘the survival of the fittest’’ strategy, then the chaotic
sequences are shortened accordingly. With shorter chaotic sequences, the popu-
lation can be guided to better areas based on fitter individuals and then find better
solutions more quickly. In terms of the time measuring, the prominent perfor-
mance of the collaborative operation of ranking selection and individual chaos
operator has been verified again as RCO-1. At the next step, the introduction of
dynamic heuristic operator increase the time slightly based on RCO-1, but the new
complete RCO is much faster than RCO-2, CGA and CO as a whole.

From the perspective of stability, as shown in Fig. 9.9b, the six algorithms
in the 9 problem scales changed irregularly. But from the 9 scales of tests, we
can obtain the sort of stability of the six algorithms from bad to good is:

Fig. 9.9 The average time-consumption and standard deviation of the 6 algorithms in 100 runs.
a Average time consumption of 6 algorithms b Standard deviation of 6 algorithms
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CGA\CO\RCO-2\RCO-1\RCO\GA. Traditional GA is the most stable while
the stability of CGA is the worst. With the adaptive improvement, RCO-2 is more
stable than CO. That is because in large-scale solution space, chaotic sequences
are generated based on no matter good or bad individuals, the population is easy to
be lead to bad areas during searching and the states of population in each gen-
erations are not stable any more. After the introduction of ranking selection, the
stability of the algorithm has greatly improved. Each time of selection in iteration
maintained the population state and reduced the chaotic sequences, so that the
population can always be evolved based on fitter individuals with higher stability.
Besides, the design of dynamic heuristic operator with the priori knowledge of
DS-CSCR can always guide the population into better areas during evolution and
then improve the stability further.

Thus it can be seen that the new designed RCO possesses plenty of advantages
in searching capability, time-consumption and stability for addressing DS-CSCR
no matter with large or small scales solution spaces in private cloud.

9.7 Summary

Service composition optimal selection (SCOS) and optimal allocation of com-
puting resource (OACR) are both very critical in cloud system. Current works
found that the two steps decision of SCOS and OACR in private cloud are quite
cumbersome and the mutual relations between cloud services and underlying
computing resources are always ignored. Thus this chapter deeply analyzed the
characteristics of these two problems and their interactions. Based on this, the idea
of one-time decision of SCOS and OACR was presented accordingly. To sum up,
the primary works of this chapter can be concluded as follows.

(1) New DS-CSCR model was presented in private cloud for high efficient
one-time decision. Properties of software/hardware cloud services, VMs and
computing resources are deeply analyzed. The formulation of DS-CSCR was
clarified according to the aim of high efficient and low cost resource sharing.

(2) For addressing the complex dual scheduling problem (DS-CSCR), a new
intelligent algorithm—RCO was presented. Individual chaos operator was
designed as the backbone operator of the algorithm. Then a new adaptive
ranking selection was introduced for control the state of population in iter-
ation. Moreover, dynamic heuristics were also defined and introduced to
guide the chaos optimization. RCO with these three operators showed
remarkable performances in terms of searching ability, time complexity and
stability in solving the DS-CSCR problem in such private cloud compared
with other algorithms.

9.6 Experiments and Discussions 285
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