
Chapter 7
CLPS-GA for Energy-Aware Cloud
Service Scheduling

In this chapter, CLPS-GA (A Case Library and Pareto Solution-based improved
Genetic Algorithm) [1] for addressing Energy-aware Cloud Service Scheduling
(ECSS) in cloud manufacturing is introduced. With the modeling of cloud service
scheduling in distributed integrated manufacturing system, a multi-parent cross-
over operator and a case library for searching is designed. Both of them are based
on the general configurable population-based I/O. In terms of the Pareto searching
procedure, multi-parent crossover operator is programmed based on the original
single-point crossover operator and encapsulated as a new component. For
improving searching diversity, a case library can be constructed based on the
existing GA class with a new storage array and a new case handling operator.
Moreover, based on existing operators of genetic algorithm, a two stage algorithm
structure is established.

7.1 Introduction

Cloud computing is a new technique based on distributed computing, parallel
computing and grid computing. Numerous implementation plans from various
major software enterprises have been proposed, including the Amazon Web Ser-
vices (AWS, Amazon Web services), Google’s App Engine cloud computing
platform, IBM’s blue cloud plan, and Microsoft’s software service (SS) [2]. With
the introduction of virtualization, the processors are no longer dedicated to a single
task, but can be shared by multiple users while creating the illusion that each
separate execution environment is running its own private computer. This has
definitely improved the overall system throughput as well as its infrastructure
resource utilization. Yet it has also resulted in a more massive, diverse and het-
erogeneous resource environment. Now the issue of resource scheduling and
management has become more complex and difficult than ever.
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For cloud computing services management centers, as shown in Fig. 7.1, the
concern is not only providing the best quality of service (QoS), usually measured
by task completion time, implementation reliability, etc., but also reducing the
total cost, among which the energy consumption has gradually become a signifi-
cant component. According to a recent report published by the European Union, a
15–30 % decrease in carbon emission is required to keep the increase in global
temperature under 2 centigrade by the year 2020. Gartner, in April 2007, estimated
that the information and communication technology (ICT) generated about 2 % of
the total global dioxide carbon emissions, which is tantamount to the aviation
industry [3]. Bianchini and Rajamony [4] also confirmed that the operation of
cloud management center require high energy usage. Today, a typical management
center with 1,000 racks needs 10 MW of power to operate [3]. This would inev-
itably induce high electricity charges. Therefore, to reduce the carbon emission in
addition to the operation cost, more and more scholars tend to consider energy
consumption as one of optimization indexes during the resource management.
Therefore, the resource scheduling problem in cloud computing is better to be
formulated as a multi-objective optimization (MOO) problem.

Resource scheduling has been proved as a NP-complete problem [5]. Tradi-
tional deterministic optimization algorithms demonstrate limited capability in
dealing with NP-complete problems because of the combinatorial explosion
encountered when the data size is large. In recent years, researchers show much
interest on artificial intelligence methods such as evolutionary computation,
especially genetic algorithm (GA). Owing to its implicit parallelism and intelli-
gence, GA has been applied to solve some large-scale, nonlinear resource
scheduling in clusters or grid systems [6], and has achieved good results. However,
in a world with combination of cloud computing and virtualization, traditional GA
inevitably meets its own limitations when it is employed for scheduling ultra-
large-scale virtual resources: low search speed, risk of falling into a local optimum
and far-from-best use of its parallel mechanism.

In addition, the traditional method of solving a MOO problem is to weight the
relative degree of importance of each target and then transform it into a single
objective optimization (SOO) problem. For resource scheduling models in cloud
computing, this method specifically has two major drawbacks. First, users are
charged on a pay-per-use basis [7, 8] and they often want to choose from several
solutions; while this method can only provide one. Secondly, the scheduling result
is highly sensitive to the values of weighted parameters so that the decision-makers
must acquire a full and comprehensive knowledge of the problem. However, it is
impossible to obtain a generalized set of parameters because different users may
have different needs. Finding out all the possible non-inferior (or non-dominated)
solutions for the decision-makers to select would make more sense. Taking
advantage of the strong global search ability of GA, the solution set distributed in
the Pareto front could be identified. In the meantime, extra efforts should be made
to maintain the diversity of the population.

In a nutshell, this article studies the scheduling of cloud computing resources
with the objectives to minimize both the makespan and energy consumption and
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solves the resource scheduling problem by proposing a hybrid approach to find the
set of Pareto front solutions. The primary contributions of this paper include:

(1) Establishing a model of resource scheduling in a highly heterogeneous cloud
environment with uncertain load information in each processor.

(2) Proposing a new hybrid genetic algorithm approach composed of a case
library (CL) and a multi-objective genetic algorithm (GA) to find the set of
Pareto-front solutions, hence called CLPS-GA. The major components of
CLPS-GA include a multi-parent crossover operator (MPCO), a two-stage
algorithm structure, and a case library.

(3) Verifying the effectiveness of CLPS-GA, specifically the role of MPCO on
solutions’ diversity and quality, and that of case library on algorithm’s
convergence and stability and comparing with other strategies in GA through
experimental simulations.

7.2 Related Works

The operation of a cloud computing system can be divided into five stages: user
request, resource exploration, resource scheduling, service and process monitoring
and returning feedback, in which the third one is the most important part because it
directly influences the final quality of services and the total cost during the process.
The users’ requests in cloud service are commonly represented as a directed acyclic
graph (DAG). Deelman et al. [9] have done considerable work on the planning,
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mapping and data-reuse in the area of DAG scheduling. The Pegasus, proposed by
him, has become a widely used framework that maps complex scientific workflows
onto distributed resources such as the Grid. Other well-known projects in DAG
mapping include GridFlow [10], ICENI [11], GridAnt [12], Triana [13] and Kepler
[14], most of which are based on earliest finish time, earliest starting time or the high
processing capabilities. So basically, the resource is selected according to its
performance.

Recently, as discussed before, from both economic and ecological perspectives,
energy consumption by Cloud infrastructures has become a key concern for cloud
management center. Mayo and Parthasarathy [15] observed that even simple tasks
such as listening to music can consume significant different amount of energy on a
variety of heterogeneous devices, and suggested the service providers to pay
attention to deploy software on right kind of infrastructure which can execute the
software most efficiently. One of the first works that dealt with performance and
energy trade-off was by Chase et al. [16], in which a bidding system to deliver the
required performance level and switching off unused servers was proposed.
Kephart et al. [17] addressed the power-performance tradeoffs using a utility
function approach in a non-virtualized environment. Beloglazov [18] redefined the
architectural principles of power management in virtualized heterogeneous envi-
ronments and proposed a more holistic approach on machine status switching.
Other popular techniques that help reducing power consumption in virtual
machines (VM) include VM consolidation [19] and VM migration [20]. However,
data deployment of each virtual machine within a Cloud management center can
be really hard to maintain. Thus, various indirect load estimation techniques must
be used before most energy-aware schemes are implemented.

As far as algorithm is concerned, the mapping of tasks to computing resources
is an NP-complete problem in the general form. Traditional deterministic sched-
uling methods cannot achieve good results in cloud scheduling problems due to the
potential combinatorial explosion. Meanwhile, more and more artificial intelligent
algorithms have been employed to solve the scheduling problems. Lei and Xiong
[21] proposed an effective GA to minimize the expected makespan and the
expected total tardiness, and confirmed that it outperformed the traditional dis-
patching rules. Jin et al. [22] studied two metaheuristic algorithms with the
objective to minimize the makespan based on shop partitioning and simulated
annealing for multistage hybrid flow shop scheduling problems, and the proposed
approaches had been implemented in a real-life printed circuit board assembly
line. Tang et al. [23] proposed a neural network model and algorithm for dynamic
hybrid flow shop scheduling problem with the objective to minimize average flow
time, or average tardy time, or percentage of tardy jobs. Other attempts on
scheduling problems include tabu search by Ishibuchi et al. [24], particle swarm
optimization by Pandey et al. [25], ant colony optimization by Niu et al. [26], etc.;
most of which study the standard single-objective optimization. Li and Li [27]
considered three QoS criteria for scheduling on the grid, namely payment, deadline
and reliability, and formulated them as utility function, yet still a variation of
single-objective optimization.
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In the past decade, scholars have been working on finding the Pareto front for
MOO problems, of whom the vast majority have been dedicated to multi-objective
evolutionary algorithms (MOEA). Knowles and Corne [28] proposed the Pareto
Archived Evolution Strategy (PAES) algorithm, and proved it to be a nontrivial
algorithm capable of generating diverse solutions in the Pareto optimal set. Coello
Coello and Pulido [29] addressed the MOO by Micro-Genetic Algorithm
(MOGA), where the population memory and external memory are in corporate to
both diversify the search space and archive the non-dominated Pareto solutions.
Furthermore, the Multi-objective particle swarm optimization (MOPSO) is another
class of MOEAs that has been addressed by Coello Coello et al. [30] and Mo-
staghim and Teich [31]. There are other MOO algorithms, which include multi-
objective simulated annealing (MOSA) by Nam and Park [32], multi-objective ant
colony optimization (MOACO) by Garcia-Martinez et al. [33], multi-objective
memetic algorithm (MOMA) by Chi-Keong et al. [34], etc. So far, MOGA and
MOPSO have been proven to have more efficient searching ability and thus are
more likely to obtain Pareto solutions in MOO. Using discrete numbers on
encoding to correlate chromosome’s gene to task-resource mappings, MOGA is
more suitable in cloud scheduling compared to MOPSO.

However, classic GA sometimes encounters problems of low convergence rate,
premature convergence or other issues especially when dealing with high-
dimensional and large-size data. For this reason, many hybridizations have been
proposed, including adaptive genetic algorithm (AGA) [35, 36], chaos genetic
algorithm (CGA) [37, 38], and local genetic algorithm (LGA) [39, 40]. All of the
above-mentioned hybrid algorithms have more or less improved adaptability, local
search ability or global search ability of the algorithm. For the fine-tuning of GA
parameters, fuzzy logic controller (FLC) has been suggested by Gen and Cheng
[41] to regulate crossover ratio, mutation ratio. And Orhan Engin [42] examined
the performances of various reproduction, crossover and mutation operators and
rates and explored the best values using full factorial experimental design. Based
on their work, a new hybrid approach called CLPS-GA, which include a multi-
parent crossover operator, a two-step algorithm structure and concept of case
library and similarity, is proposed and tested in this paper.

7.3 Modeling of Energy-Aware Cloud Service Scheduling
in Cloud Manufacturing

In this paper, the cloud scheduling environment is considered to be highly het-
erogeneous and includes various processors of uncertain production load infor-
mation. The scheduling objectives are multiple. Specifically, the focus is on two
objectives, minimizing the makespan of tasks and energy consumption. The aim is
to find the Pareto set of such MOO problem under the considered environment.
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7.3.1 General Definition

The resource scheduling center is considered to have two pieces of information: a
collection of user requests and processor information. Each user request is represented
by a DAG, which captures a number of task units involved, each unit’s own properties,
and the relationships among task units. One important property of each task unit that we
must take into account for assignment is the task type. For example, a CPU-bounded
task will spend most of its time on computing. Thus it will be better assigned to
processors with multiple cores or large RAM size. On the other hand, an I/O bounded
task mainly deals with peripheral devices; so it might require processor having a large
buffer and sufficient external frequency, or bandwidth. Other properties of task unit
might include input and output data size, also called the scale of task unit, indicating
how much resources it will need from the processor. Besides, there might be depen-
dencies among task units, meaning that the execution of one task unit might depend on
the completion of a certain set of task units. Figure 7.2 gives an example of DAGs, in
which each node represents a task unit, the color of the node represents its task type,
each directed line between two nodes represents their dependency relationship, and we
can add weight to the edges to depict the flow size. To give a mathematical formulation
of DAG (or user request), it can be roughly denoted as G ¼ ðV; T; E; DIN;DOUTÞ.
The semantics of each parameter are explained as follows.

User Request:

• V ¼ fViji ¼ 1 : ng represents the decomposed task units of each user request,
where n is the total number of task units.

• T ¼ fTiji ¼ 1 : ng denotes the task type of each unit in V, where Ti 2
f1; . . .; Tmaxg with Tmax indicating the total number of task types.

• Eðn� nÞ denotes dependencies between task units in V. Let Eij ¼ 1, if data
obtained from Vi is used by Vj. Otherwise, Eij ¼ 0.

• DINð1� nÞ represents each task unit’s input data size.
• DOUTð1� nÞ represents each task unit’s output data size.

As mentioned before, the virtual resource pool is highly heterogeneous: the
processors in it can be a server, a work station, or even a remote PC. Even for
processors of the same type, saying two servers, their configurations can be quite
different. The immediate result can be a substantial variation in performance even
when they are handling the same task. But in general, we can use the processor
capacity and channel capacity to characterize such heterogeneity in resources.
Processor capacity defines how fast a task can be processed by a certain processor,
which is directly related to the CPU power and random access memory (RAM)
size. It also defines the corresponding cost for processing; in our study, this cost
refers to the energy consumption. Similarly, channel capacity defines the rate and
cost of communication between two processors. Apparently, channel capacity does
not differentiate the task type, since it only deals with data flow. The resource
information, M, can be represented by a set of parameters as M ¼
ðP;TP; S;EP;DC;ECÞ with each parameter explained below.
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Resource Information:

• P ¼ fPiji ¼ 1 : pg: represents a collection of processors, where p is the total
number of processors.

• TPðTmax � pÞ: denotes the computing power of the processor, where TPik

represents time cost for processor Pk to execute the task unit of type i. TPk

denotes the average power of processor k, whose value can be obtained by
calculating the mean of elements in column k of matrix TP.

• S: denotes the memory size of each processor.
• EPðTmax � pÞ: denotes the computing energy consumption rate, where EPik

represents the energy consumed on processor Pk by executing task unit of type
i per unit time per unit data.

• DC: denotes the bandwidth between processors, where DCkl represents the
transferring rate of data from processor Pk to processor Pl.

• EC: denotes the communication energy consumption rate, where ECkl repre-
sents the energy consumed by transferring data from processor Pk to processor
Pl per unit time per unit data.

Mapping Variables:

• X: denotes the mapping between task units and processors. XðiÞ ¼ k means that
task unit Vi has been assigned to processor Pk to be executed. For
8i 2 f1; 2; . . .; ng; XðiÞ 2 f1; 2; . . .; pg.
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7.3.2 Objective Functions and Optimization Model

As mentioned before, minimizing both the makespan and energy consumption are
selected as the two objectives in this study of resource scheduling in cloud
manufacturing. The two objectives are contradictory in nature, which mainly come
from two aspects:

• Heterogeneity in resources: the fastest resource is not necessarily the cheapest.
• Mechanism of parallelism: makespan is reduced at the cost of more frequent

inter-processor communication, which in turn increases the total energy
consumption.

The two objective functions are first formulated mathematically below.

(1) Makespan

The makespan is defined as the duration from the moment a user submits his
request to the completion of the last task unit. It usually involves waiting time and
processing time. We will first calculate the processing time of the user request.

For the decomposed task units of each request, we need to perform a topo-
logical sorting to make sure that every task unit can only be dependent on those
with smaller indexes. In this way, the total processing time is tantamount to the
completion time of task unit Vn. For each task unit Vi, its completion time
TCompleteðiÞ can be calculated by adding the latest time for all the needed data to
arrive at the current processor and the execution time for the current task unit.
Take the first DAG in Fig. 7.1 as an example, if the completion times of task units
V2, V3 and V4 are known, we will be able to determine when all the input data for
task unit V5 will arrive. Adding the processing time of V5, we can obtain the
completion time of it. Mathematically, the completion time for task unit Vi can be
expressed as

TCompleteðiÞ ¼ max
j¼1:i�1

fEji � TCompleteðjÞ þ Eji � DOUTj

DCXðjÞXðiÞ
g þ TPTiXðiÞDINi

ð7:1Þ

The values of elements in vector TComplete can be obtained recursively. If the
waiting time is ignored, we can claim the value of TCompleteðnÞ to be the
makespan of the user request, where n is the last task unit of the user request of
concern.

However, Eq. (7.1) holds only when the processor is dedicated to the task unit
by which it is assigned. But with virtualization, the fundamental idea is to abstract
the hardware of a single computer into several different execution environments,
creating an illusion that each separate execution environment is running its own
private computer. Therefore, you think you own the CPU, but the ownership is
actually switching back and forth among different users. Similarly, you think you
have the whole memory, yet in fact it is just a virtual memory and you still need to
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swap in and out to get the necessary codes and data into the actual physical
memory. The above two points imply that the degree of multi-threading cannot be
too high, otherwise the CPU would spend quite an amount of time on context
switch and page fault, and worse still, thrashing might happen. Since the degree of
multi-threading cannot be too high, if too much work have been assigned to a
certain processor, some of them need to queue up awaiting the CPU, which adds
up the waiting time. Therefore, the balance of load distribution among processors
is particularly important. However, the major difficulty in achieving the absolute
load balance lies on the lack of current load information of each processor. Though
such information can be measured, the resource providers will not make it public
to management center, and they tend to understate it so as to assume more tasks.
This situation forces us to find another way to get around this problem. Though we
cannot master the information on user requests that have already been assigned, we
can control the load distribution of the user request to be assigned. It is restrictive,
but effective. In this paper, it is believed that the ideal ratio of load distribution
should depend on the memory size and the average computing power of each
processor according to Netto and Buyya [43]. Thus, the load balance is defined as:

LoadBalance ¼
Xp

k¼1

ðLoadPortionðkÞ � BestPortionðkÞÞ2 ð7:2Þ

where,

LoadPortionðkÞ ¼
Pn

i¼1 DINijXðiÞ ¼ kPn
i¼1 DINi

ð7:3Þ

BestPortionðkÞ ¼ Sk=TPkPp
k¼1 Sk=TPk

ð7:4Þ

It is assumed that the initial load distribution on processors satisfies the ideal
ratio, and any deviation from this ratio caused by the current assignment will run a
risk that some processors might become busy, forcing some tasks to be placed into
the waiting queue, in turn leading to a prolonged makespan. Therefore, Load-
Balance can be considered as a risk parameter that could influence the makespan.
Accordingly, the final makespan is defined as:

FinalTComplete ¼ TCompleteðnÞ � ea�LoadBalance ð7:5Þ

In Eq. (7.5), a is a parameter used to indicate the importance of load balance.
When the access requests are high and data traffic flow is heavy, a large a is set to
represent the possible delay on makespan caused by imbalance in load distribution.
While the network is idle, a takes a value of zero, which means that the impact of
LoadBalance on makespan can be ignored.
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(2) Energy consumption

The energy consumption is defined as all the power used by every pieces of
hardware during the period of fulfilling a user request. The analysis on energy
consumption carried out by Beloglazov [18] reveals that CPU consumes the main
part of energy compared with memory, disk storage and other I/O interfaces.
Specifically for CPU, energy consumption ratio mainly depends on its voltage and
frequency, which means, as long as the working state of CPU is fixed, the energy
consumption ratio will remain unchanged, as expressed in matrices EP and EC.

Equation (7.6) gives the mathematical formula of the total energy consumption,
which comprises of two parts: computing energy consumption and communication
energy consumption. Each part can be further computed as the product of energy
consumption ratio, time span and data size, as shown in Eqs. (7.7) and (7.8),
respectively.

EnergyConsumed ¼ EnergyCompþ EnergyComm ð7:6Þ

EnergyComp ¼
Xn

i¼1

EPTiXðiÞTPTiXðiÞDINi ð7:7Þ

EnergyComm ¼
Xn

i¼1

Xi�1

j¼1

EjiDOUTj

DCXðjÞXðiÞ=ECXðjÞXðiÞ
ð7:8Þ

7.3.3 Multi-Objective Optimization Model for the Resource
Scheduling Problem

Based on the above descriptions, the objective functions and constraints of the
problem can be represented as follows.

(1) Objective functions:

Objective functions can be written as MinðFinalTCompleteÞ and
MinðEnergyConsumedÞ, and based on equations given in Eqs. (7.1)–(7.8), the
formulas of these two objectives can be rewritten as:

Min TCompleteðnÞ � e
a�
Pp

k¼1

Pn

i¼1
DINi jXðiÞ¼kPn

i¼1
DINi

� Sk=TPkPp

k¼1
Sk=TPk

� �2
0

BB@

1

CCA ð7:9Þ

Min
Xn

i¼1

EPTiXðiÞTPTiXðiÞDINi þ
Xn

i¼1

Xi�1

j¼1

EjiDOUTj

DCXðjÞXðiÞ=ECXðjÞXðiÞ

 !
ð7:10Þ

200 7 CLPS-GA for Energy-Aware Cloud Service Scheduling



(2) Constraints:

The mapping variable X defined in Sect. 3.1 can already ensure that the number of
selected services is equal to the number of decomposed task units in the user
request and only one processor is selected for each task unit. Apart from this, there
are other factors to consider.

• Maximum processing time MaxTProcessing for each task unit.
• Maximum communication time MaxTCommunication for each task unit.

For sake of fairness, there should be an upper bound for how long a single task
unit can be allowed to hold a processor or channel. If such a maximum time is
reached, it may suggest that the task is inappropriately assigned and should
probably be re-assigned. Or it is deemed as a ‘‘giant’’ task.

• Maximum processing energy consumption MaxEProcessing for each task unit;
• Maximum communication energy consumption MaxECommunication for each

task unit;

Similarly, there should be an upper bound for how much energy a single task
unit can be allowed to consume. Neither an inappropriate assignment nor a ‘‘giant’’
task is acceptable.

• Acceptable range for load portion [0, UpperLPortion(k)] for processor.

To balance the load distribution, the management center sometimes set a range
on how large the portion of a user request can be assigned to a certain processor.
The lower bound is usually 0, and the upper bound on different processors can be
varied, mainly depending on the processor capacity.

Accordingly, the following constraints can be obtained:

XðiÞ 2 f1; 2; . . .; pg; 8i 2 f1; 2; . . .; ng ð7:11Þ

TPTiXðiÞDINi�MaxTProcessing ð7:12Þ

max
j¼0:i�1

Eji � DOUTj

DCXðjÞXðiÞ

� �
�MaxTCommunication ð7:13Þ

EPTiXðiÞTPTiXðiÞDINi�MaxTProcessing ð7:14Þ

Xi�1

j¼0

EjiDOUTj

DCXðjÞXðiÞ=ECXðjÞXðiÞ
�MaxECommunication ð7:15Þ

Pn
i¼1 DINijXðiÞ ¼ kPn

i¼1 DINi
�UpperLPortionðkÞ ð7:16Þ

Equation (7.11) ensures that each task unit can only select one processor from the
virtual resource pool, and Eqs. (7.12)–(7.16) give constraints from the aspects of
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MaxTProcessing, MaxTCommunication, MaxEProcessing, MaxECommunication
and UpperLPortion(k), respectively.

In summary, the resource scheduling problem in cloud computing has been
formulated as a MOO problem subject to various constraints. In the next section,
the proposed CLPS-GA algorithm aimed at finding Pareto solutions for MOO
problems will be described.

7.4 Cloud Service Scheduling with CLPS-GA

This section starts with a brief review on multi-objective combinatorial optimi-
zation and genetic algorithms. Then, a new case library and Pareto solution-based
improved Genetic Algorithm (CLPS-GA) is established.

7.4.1 Pareto Solutions for MOO Problems

The objectives in a MOO problem are normally contradicted. When achieving one
optimal objective, the other objectives may be affected and get worse. Unlike
SOO, which has a unique optimal solution, many new concepts have been intro-
duced in solving MOO problems.

7.4.1.1 Domination and Non-Inferiority

In MOO problems, if individual p has at least one objective better than individual
q, and all of p’s other objectives are no poorer than those of q’s. It is said that
individual p dominates individual q, otherwise individual p is non-inferior to
individual q.

7.4.1.2 Rank, Front and Pareto Solutions

If p dominates q, a lower rank is assigned to p than q. If p and q are non-inferior to
each other, they have the same rank value. Individuals with rank 1 belong to the
first front, individuals with rank 2 belong to the second front, and the rest can be
deduced by analogy. By sorting with rank, individuals can be identified to different
fronts. Normally, individuals in the first front are called the Pareto solutions set
while individuals not in the first front are dominated solutions. Figure 7.3
graphically shows examples of Pareto solutions (closed circles) and dominated
solutions (open triangles) in a bi-objective optimization problem, in which both
objective functions are assumed to be minimized.

202 7 CLPS-GA for Energy-Aware Cloud Service Scheduling



Crowding Distance:
Crowding distance denoted as Distance measures the distance between a particular
individual with others in the same front. The formulas are given as follows.

DistanceðiÞ ¼
XNObj

j¼1

Disði; jÞ; 8i ¼ 1 : NInd ð7:17Þ

DisðindexðiÞ; jÞ ¼ min inf; dataðindexjðiþ 1Þ; jÞ � dataðindexjði� 1Þ; jÞ
� �

; 8i ¼ 2 : NInd � 1
inf; i ¼ 1 or i ¼ NInd

�

ð7:18Þ

Scoreði; jÞ ¼ scoreði; jÞ
1þmaxk¼1:NInd; scoreðk;jÞ6¼infð scoreðk; jÞj jÞ ; 8i ¼ 1 : NInd; j ¼ 1 : NObj

ð7:19Þ

where, NInd represents the number of individuals, and NObj represents the number
of objectives. Equation (7.17) indicates that Distance(i) is the sum of crowding
distance of individual i for each objective j denoted as Dis(i, j) whose value can be
obtained by Eq. (7.18). While data in Eq. (7.18) is the sorted matrix for each
column in matrix Score, where indexj is the returned index for Column j in Score
after sorting, and Score can be calculated by mapping value of objective j of
individual i, denoted as score(i, j), into region (-1, 1), as expressed by Eq. (7.19).

Apparently, the longer the crowding distance, the more difference of objective
function values of two neighboring individuals in the front is; thereby the more
diverse the population is. Note that only individuals in the same front are needed to
calculate the crowding distance; distances between individuals of different fronts
are of no significance.
ParetoFraction:

Pareto Solution
Dominated Solution

Objective 1
O
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Fig. 7.3 Example of
solutions in MOO problem
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ParetoFraction is defined as a parameter valued between 0 and 1, representing the
proportion of the number in the Pareto front out of the whole population. Based on
it, the number of individuals in the best front is equal to
minfParetoFration� PopulationSize; Numbers Existed in the Pareto Frontg.

7.4.2 Traditional Genetic Algorithms for MOO Problems

Figure 7.4 shows the framework of GA in solving a MOO problem. Overall, the
GA for solving MOO problems appears similar to that for solving SOO problems.
Except that some adaptations are required, mainly in the evolution process and in
the determination of terminating conditions.

(1) Evolution process

Figure 7.5 shows the structure of evolution operator of GA in addressing MOO
problems. By selection, crossover and mutation, a new generation of individuals is
generated and evaluated. The fitness values of all individuals can be used to evaluate
the rank of each individual and the crowding distance. Then through the trimming
operation, the population size maintains stable throughout the evolution process.

a. Selection:

The selection process is often carried out by the tournament selection operator
that is based on individual’s rank and crowding distance. It not only allows the
convergence of the evolution process to the best Pareto front but also maintains
some diversity of the potential solutions. To be more specific, individuals with
lower ranks have higher chances to be selected regardless of its crowding distance;
and between those who have the same rank, the one with larger crowding distance
would be more likely to be selected because of its contribution to higher diversity.

b. Trimming population

The number of individuals allowed in the first front can be calculated according
to the ParetoFraction coefficient and likely, the numbers on other fronts can also
be obtained based on certain formulas. By using the tournament selection operator,
the trimming process can be effectively done.

c. Termination criteria

The execution of an metaheuristic algorithm is often terminated based on the
two conditions given below: (i). The number of iterations exceeds the set maxi-
mum; (ii). the cumulative change of function value (SpreadChange) of the front
individuals is less than a pre-specified tolerance (set as FunEval in Table 7.1), and
at the same time, Spread(gen)is no larger than MeanSpread(gen), which means the
change of the Pareto front is slow enough so the algorithm has converged.Related
values can be obtained as follows.
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SpreadChangeðgenÞ ¼
PStallGen

i¼1
WeightStallGenþ1�i � jSpreadðiþ1Þ�SpreadðiÞj

1þSpreadðiÞ

� 	
; gen [ StallGen

inf; otherwise

8
<

:

ð7:20Þ

Spread ¼ extremeParetoDistanceþ avgDistance

extremeParetoDistanceþ NObj� avgdistance
ð7:21Þ

extremeParetoDistance ¼
XNObj

i¼1

extremeParetoSOldðiÞ � extremeParetoSNewðiÞk k

ð7:22Þ

avgdistance ¼
PNInd

i¼1 DistanceðiÞ
NInd

ð7:23Þ

avgdistance ¼ Distance� avgDistancek kffiffiffiffiffiffiffiffiffiffi
NInd
p ð7:24Þ

MeanSpreadðgenÞ ¼
Pgen

i¼gen�StallGen SpreadðiÞ
StallGenþ 1

; gen [ StallGen ð7:25Þ

Table 7.1 Information related to processors and algorithms

Parameters related to the resources
TP½3� 4� ¼

0:67 0:83 0:71 0:78
0:79 0:74 0:67 0:69
0:72 0:80 0:69 0:67

2

4

3

5

S ¼ 1024 2048 1024 2048½ �

EP½3� 4� ¼
1:08 1:01 1:05 1:03
1:03 0:97 1:08 1:06
1:07 1:04 1:03 1:09

2

4

3

5

DC½4� 4� ¼

inf 5 10 5
5 inf 5 3
10 5 inf 10
5 3 10 inf

2
664

3
775

EC½4� 4� ¼

0 0:12 0:10 0:13
0:12 0 0:11 0:15
0:10 0:11 0 0:10
0:13 0:15 0:10 0

2
664

3
775

Parameters related to the algorithm Population size: 100

Crossing rate: 0.6

Mutation rate: 0.3

ParetoFraction: 0.25

Maximum generation: 200

FunEval: 1e-3
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In Eq. (7.20), StallGen is a positive integer, and the algorithm stops if there is no
improvement in the objective functions for StallGen consecutive generations.
Weight is a parameter to indicate the impact of StallGen, and its value is usually set
to be 0.5. The value of Spread in each generation can be obtained from Eqs. (7.21) to
(7.24), where gen represents the number of generations, NObj represents the number
of objectives, NInd represents the number of individuals, Distance represents the
crowding distance of each individual as defined in Eq. (7.17), extremePareto-
SOld(i) represents the individual who has the smallest value of objective i in matrix
score in the last generation, and extremeParetoSNew(i) represents the corresponding
individual in the current generation. And the value of MeanSpread can be calculated
according to Eq. (7.25), to be compared with value of Spread.

7.4.3 CLPS-GA for Addressing MOO Problems

The classical GA cannot achieve good results in MOO problemsby merely relying
on selecting and trimming based on individuals’ rank and crowding distance. To
better improve the diversity of solutions, the convergence rate, and stability of the
algorithm, the CLPS-GA algorithm is proposed with some new improved compo-
nents. The CLPS-GA is composed of a multi-parent crossover operator (MPCO), a
two-stage algorithm, and the concept of case library and case similarity.

(1) Multi-parent crossover operator

Traditional GA usually uses two-parent crossover operator (TPCO). The new
MPCO is designed to search in a wider range, thereby increasing the diversity of
the population.

The real-coded MPCO typically operates as follows: randomly choose M indi-
viduals from the current generation and a new individual X* is formed by

X� ¼
PM

i¼1 aiXi, where ai meet the constraint:
PM

i¼1 ai ¼ 1 and �0:5� ai� 0:5.
Our new operator, designed by following the basic idea of real-coded MPCO, is to
randomize a group of weighted coefficients and then let the value in corresponding
position of individual’s chromosome be as close as possible to that of the parent
who has the largest coefficient. First, M parents are selected from the population.
Then let the new individual be: X�ðjÞ ¼ arg maxfaði; jÞji 2 fi; 2; 3; . . .;Mgg,
where a is matrix with size M � L, M is the number of parents participating in the
crossover operation, L represents the length of chromosome. Each a(i,j) takes on a
value between 0 and 1 and can be regarded as the odds for the jth gene in parent Xi

to be inherited to the next generation. Accordingly, the corresponding gene in each
new individual’s chromosome is determined to be the same as that of the parent
who has the largest oddsa(i,j).

The mechanism of the MPCO operator is illustrated with an example given
below. Let the number of parents M ¼ 4, and the length of chromosome L ¼ 8.
Randomize the matrix
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a ¼

0:1783 0:3784 0:6372 0:9883 0:4839 0:7782 0:6782 0:0883
0:7382 0:7289 0:6228 0:8372 0:8672 0:5772 0:3784 0:6839
0:7432 0:3648 0:1283 0:2838 0:4836 0:1739 0:8628 0:3784
0:2738 0:9228 0:4837 0:5738 0:7289 0:3893 0:0384 0:5783

2

664

3

775

Then locate the element with the maximum value in each column of a and
return its index, which is [3 4 1 1 2 1 3 2]. Following the index, the gene from the
corresponding parent can be found. Figure 7.6 illustrates the multi-parent cross-
over process, where a new child is generated from Parent One, Parent Two, Parent
Three and Parent Four according to the matrix a.

(2) Two-step algorithm structure based on case library

In order to accelerate the convergence speed of GA, a two-stage algorithm
structure that makes use of a case library is proposed. The framework of our
proposed two-step algorithm is depicted in Fig. 7.7. The two stages refer to, (i)
searching for similar cases in the library to help with initialization, (ii) go through
evolution as stated previously. Here we first need to make it clear about the
definition of similar case.

Similar case: A case in the case library is declared similar to the user request
only if the following two conditions are satisfied:

(1) The case must have the same number of task units as the user request.
(2) The similarity function S between the two should be no less than d, i.e. S� d,

where d represents the threshold. The value of S is related to the type of task
unit, the dependency matrix of tasks, and the input and output size of tasks. In
our study the impact of data size is ignored and S is defined as:

S ¼ kt

n
� ke

m
ð7:26Þ

where kt represents the number of identical values in the task type vectors (T) of
the case and the user request, ke represents the number of same positions of entries
with value of 1 in the two dependency matrixes (E), n represents the number of
task units, and m represents the number of elements with value of 1 in E of the user
request, namely the number of dependency relationships. For example, the simi-
larity between a user request and one case in the library, with T, E and Tcase,
Ecase given below, is computed as follows:

T ¼ ½1 2 2�; Tcase ¼ ½1 3 2�; E ¼
0 1 1
0 0 0
0 0 0

2

4

3

5; ECase ¼
0 1 0
0 0 1
0 0 0

2

4

3

5:
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According to the above description, it can be determined that kt ¼ 2 and ke ¼ 1,
thus the similarity function between them is computed as S ¼ 2

3� 1
2 ¼ 0:333.

Therefore, to calculate the similarity function S between the submitted user request
and the cases of the same size, we need to store the task type vector and the dependency
matrix for each case in the library. Their corresponding Pareto solutions must also

Parent One

Parent Two

Parent Three

Parent Four

New Child

Index Vector: [ 3 4 1 1 2 1 3 2]
+

1

3

3 2

4

1

4

2
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reside in the library to facilitate with population initialization, if desired. Accordingly,
each case in the library can be represented as case ¼ fTCase;ECase; Solutionsg.

But how can we find the similar cases efficiently? A possible data structure for
the case library is suggested below. Knowing that a case with a different size to the
user request cannot be a similar case, the cases in the library can be organized into
several rows (sequences) according to their sizes. Each sequence is a linked list
corresponding to a particular size. The head node stores the number of cases in the
sequence, which by the way is not necessarily the same for all sequences. It next
points to the first case in the sequence, where the information about case 1 ¼
fTCase;ECase; Solutionsg is stored. Then case_1 will point to the second case
labeled as case 2 ¼ fTCase;ECase; Solutionsg, and continue on until the last
case in the sequence is linked. Additionally, an index table will be set up to
indicate the address of the head node for each sequence.

To prevent spending too much time on exploring similar cases, an upper bound
Max_Num for the number of cases in each sequence is set. Consequently, we need
to come up with an updating strategy as to which cases should be kept or replaced,
given that there are already Max_Num cases for one particular sequence while new
user requests keep coming in. This issue is dealt with by introducing the concept of
concentration function C for each case, which is computed as:

CðiÞ ¼ 1
N

X

j2N

Similarði; jÞ ð7:27Þ

Similarði; jÞ ¼
1; Sði; jÞ[ c

0; Otherwise

(
ð7:28Þ

where, N is the total number of cases in one sequence in the library. S represents
the similarity function value between case_i and case_j according to Eq. (7.26).
c represents the threshold.

If adding new cases will cause violation to the Max_Num limitation, then only
Max_Num cases in these sequence (including the new cases) with lower concen-
tration values are kept. Otherwise, just attach the new cases to the end of the
sequence without the need to calculate the concentration.

To better understand the 2-step mechanism, consider the following example.
Suppose at most 6 cases is allowed in each sequence, i.e., Max_Num = 6. When a
user request comes with task size of 5, it will first visit the index table to obtain the
address of the head node corresponding to the 5th sequence. Assume that there are
already 5 cases stored in the 5th sequence. The similarity between the user request
and each of the 5 existing cases is computed, assuming to be 0.42, 0.77, 0.79, 0.55
and 0.39, respectively. If the threshold d is set to be 0.8, then no similar cases exist,
and hence the initial population shall be randomly generated. But if d equals to 0.75,
both the second and third cases in these sequence are similar to the user request. The
Pareto solutions of the third case are retrieved because of its higher similarity.
Because coefficient ParetoFraction represents the proportion of solutions in the
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Pareto front out of the whole population, if it is 0.25, then conducting MPCO three
times based on the retrieved solutions in generating the entire initial population.
After servicing the request, it can be added to the 5th sequence as a new case,
making a total of 6 cases. Now suppose another user request is submitted, and its
task size is also 5. This new request will be serviced similarly. Because there are
already 6 cases in the 5th sequence, the library will be updated as follows. To
maintain the column size of the library, either the new case should be discarded, or
an existing case must be selected for replacement. By calculating the concentration
values of the 7 cases, supposedly say, 0.50, 0.67, 0.50, 0.33, 0.67, 0.83, and 0.50,
respectively, the 6th case is identified to have the highest concentration value and
thus should be replaced by the new case. In this way, we can supply the users with
more diverse cases while keeping the library size under control.

In detail, the pseudo-code of our proposed algorithm is summarized as follows.
Step 1 Search the case library based on the task size;
Step 2 Does any similar case exist? Yes (go to Step 3)/No (go to Step 4);
Step 3 Retrieve the similar cases with the highest value of similarity to

generate the initial population, and go to Step 5;
Step 4 Randomly create the initial population;
Step 5 Evaluate each individual according to the objective functions;
Step 6 Calculate the rank and crowding distance for each individual;
Step 7 Apply the tournament selection;
Step 8 Apply the multi-parent crossover operator (MPCO);
Step 9 Combine the original population and the offspring to create a new

population;
Step 10 Apply the trimming operator to maintain the population size;
Step 11 Is the stopping criterion met? Yes (go to Step 12)/No (go to Step 5);
Step 12 Output the Pareto Solutions and update the case library

7.5 Experimental Evaluation

This section describes a series of simulations carried out with the aim to test the
performance of CLPS-GA proposed in the last section in solving MOO problems
and to verify its effectiveness in comparison other existing algorithms.

7.5.1 Data and Implementation

Experiments were conducted using the Matlab R2009a software platform. First,
let’s just assume the cloud management center oversees 4 processors. The machine
condition can be roughly summarized as follows: processor 1 and processor 2 are
old machines, and the remaining two are relatively new. For some reason,
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Processor 1 has been set over clocked, so in general, it can process tasks faster than
Processor 2, but it consumes more energy. Processor 2 is in good maintenance for
years, and its RAM size has recently been extended to 2G. Processor 3 and
Processor 4 have employed more advanced hardware chips and more efficient
operating systems compared to old machines. Between the two, processor 3 seems
to outperform Processor 4, except that it has a smaller RAM size. The energy
consumption rate of Processors 3 and 4 seem to be higher than that of Processor 2,
but since they are faster, no one knows which processor costs most energy
eventually? The above analysis on performance is meaningless if the task type the
processor is undertaking is not clearly specified. This example assumes the number
of task types to be 3. Strictly speaking, each task type should be defined by explicit
numeric values accounting for the percentages of time spent on computing and
data transmission. But in this study we simply call them CPU-bounded, I/O
bounded, and inter-mediate. Then we need to provide numerical values on pro-
cessor capacity based on the processor condition and the task type, in the form of
matrices TP, S, and EP in Table 7.1. Moreover, it is assumed that the four pro-
cessors are under full connections, either wireline or wireless, within the same
communication subnet. The numeric measurements on channel capacity, i.e., the
matrices DC and EC in Table 7.1, depends on the channel condition, such as the
mediums, the power of the base station, interference strength, etc. We really do not
plan to go into these details in this study.

Choosing appropriate parameter values is known to have effect in the perfor-
mance of a metaheuristic algorithm. The best values of basic GA parameters such
as Population Size, Crossing Rate, Mutation Rate, and Maximum Generation
found by Orhan Engin using full factorial experimental design [43] are used. The
values of two additional algorithmic parameters related to CLPS-GA, i.e.,
ParetoFraction and FunEval, are determined to be those that achieve the best
result for our proposed problems in a preliminary experimental study. All algo-
rithmic parameter values used are given in Table 7.1 as well. After that, the
proposed CLPS-GA is applied to schedule resources for user requests with
increasing number of task units, which are 5, 10, 15, 20, and 30, respectively.
Some of their DAGs are depicted in Fig. 7.2. (The task type and dependencies are
marked in the DAG; and as far as the input and output data sizes are concerned, it
is assumed that each edge in the DAG carries a flow of 10 units).

Our testing experiments and results are organized as follows. First, the per-
formances of TPCO and MPCO are compared and the impact of task size on the
convergence, stability and solution diversity of the algorithm is also discussed.
Secondly, using the user request with task size of 15 units as an example, cases
with different similarity function values are introduced into the initialization
process to discuss their performances, to verify the correctness of the expression of
similarity function and to determine the similarity threshold. Thirdly, our proposed
CLPS-GA is compared with a number of existing enhanced GAs with an example
of user request of task size of 15 units and a case with 75 % similarity, and the
superiority of CLPS-GA is proved. All results obtained are based on experiments
repeated 50 times or more.
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7.5.2 Experiments and Results

As mentioned before, the aim of optimization is to provide a set of Pareto solutions
for decision-makers to select from. For the bi-objective optimization problem, a
two-dimensional plot can be prepared with its two axes representing the two
objectives. For example, we can use the vertical axis to denote the makespan,
while the horizontal one being energy consumption. The output solutions will be a
set of points distributed on the Pareto front (marked in red). Each point actually
corresponds to an assignment, and users can visualize which assignment is more
suitable according to its position in the plot, or they can just click on a point to
obtain the numeric values corresponding to the two objectives, and then make the
decision. Matters such as how their request is decomposed, or which task unit has
been assigned to which processor are of concern to the cloud management center,
but of no much interest to users.

Consider a user request whose DAG is shown as the first one in Fig. 7.2. Even
though the task size is only 5, the mapping between the tasks and processors can be
very complicated. Assuming that the job is pretty urgent and the user is willing to
pay at any cost. One possible solution is simply assigning each task unit to the
‘‘fastest’’ processor according to the task type T and matrix TP, which means
X = [1 3 4 1 3] in this case. But is it the best answer? Employing the classic
MOGA produced the results as shown in Fig. 7.8, in which the red curve indicates
the final output of Pareto front, while the blue points are some dominated solutions
which have been degenerated during the search. The set of Pareto front solutions
are given in Table 7.2 with repeated solutions been removed. From the table, one
can clearly see that the assignment with the smallest makespan is X = [2 2 3 1 4],
and its objective value is (42.111, 54.402). Note that Solution 2has the second
lowest value of makespan (42.215 versus 42.111), but consumes less energy. If
desirable, one may also consider Solution 3, Solution 4, and so on. In the case that
one does not want to consume too much energy because of a very tight budget,
Solution 10 is probably the best. However, comparing it with Solution 9, you will
find 0.119 more in energy consumption could cut down the makespan by nearly a
half. So what would one choose? It really depends on the decision maker!

The above results indicate that the classical MOGA can produce acceptable
solutions for the problem. But is there any chance that MOGA can do better? In
Fig. 7.8, the blue points do not cross the red curve, which indicate that good
solutions get preserved and the bad ones get discarded. But it also implies a
possibility of premature convergence. In addition, the solution distribution on the
Pareto front needs to be improved. For example, we might wish to obtain more
points between Solution 4 and Solution 5. Furthermore, it takes more than 30
iterations for MOGA to finally converge. Several improvements made in this study
are presented in the following sections.
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7.5.3 Comparison Between TPCO and MPCO

Table 7.3 records the mean and variance of average crowding distances and itera-
tions under the two crossover operators with different task sizes based on 50 repeated
experimental runs. As can be seen in the table, when the task size is small, 5 or 10 for
instance, there is not much difference between the two operators in the mean of
average crowding distances. Though MPCO makes it more likely for individuals to
inherit genes from a larger range of parents, it does not necessarily mean significant
improvements on population diversity. This result is due to the smaller solution
space of smaller task size. Under this circumstance, difference between individuals
is little, and even less between individuals in the Pareto front. When the parameter
ParetoFraction is large, the probability in selecting individuals from the Pareto front
is higher after trimming the population, which can cause a severe repetition of
individuals in the next generation. When the population diversity is low, even car-
rying genes from multiple parents, the improvement on diversity may not be
obvious.
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Table 7.2 Pareto front of the example

Solution Mapping variable Objective value: (Makespan, energy-consumption)

1 [2 2 3 1 4] (42.111, 54.402)

2 [2 2 1 3 4] (42.215, 53.982)

3 [1 2 2 3 4] (42.776, 53.811)

4 [3 4 4 1 2] (44.262, 52.382)

5 [3 3 4 1 2] (56.380, 52.032)

6 [1 3 4 1 2] (57.104, 51.973)

7 [3 2 4 1 2] (68.883, 51.866)

8 [1 3 4 1 4] (82.851, 51.781)

9 [1 2 4 1 2] (85.562, 51.727)

10 [1 2 1 1 2] (153.831, 51.608)
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However, when the task size is large, 30 for example, the mean and variance of
average crowding distances under MPCO are larger than those of TPCO, specif-
ically 0.0036 and 1:43� 10�6 for MPCO versus 0.0029 and 4:38� 10�7 for
TPCO. In this case, the influence of our newly designed operator is obvious. A
larger average crowding distance means more even distribution of individuals on
the Pareto front in the last generation. On the other hand, a small variance means
that the improvement on population diversity is stable. The above results, thus,
indicate that when the task size is large, MPCO can lead to more diverse indi-
viduals on the Pareto front. However, in terms of iteration numbers, it increases
with task size and the proposed MPCO does not seem to accelerate the conver-
gence process in all cases when compared to TPCO.

Figure 7.9 shows a typical instance of one experimental result. Five graphs on
the left side represent the Pareto front in the last generation under two operators
with different task sizes (small to large from top to bottom). Those on the right side
represent SpreadChange of individuals in the Pareto front throughout the evolution
process. The purpose for plotting SpreadChange is to check the convergence status
of the algorithm. Only when SpreadChange is less than the value of FunEval in
Table 7.1 and Spread(gen) is no larger than MeanSpread(gen) according to
Eqs. (7.21) and (7.25), one can be certain that the optimal Pareto front has been
found. When the task size is small, the two Pareto fronts are very close. For
example, when the task size is 5, there is only one different individual in the two
curves. But when the task size is large, significant difference between the two
curves can be found. One can also clearly see from the graph that curve of MPCO
is more close to the axis when task size is large, which reflects a better quality of
solutions as the population diversity improves.

Table 7.3 Experimental data related to TPCO and MPCO

Mean of
average
distance

Variance of
average distance

Mean of
iterations

Variance of
iterations

Task
number = 5

TPCO 0.0011 8:16� 10�8 32.1 876.8

MPCO 0.0012 4:8� 10�8 30.7 652.4

Task
number = 10

TPCO 0.0014 2:92� 10�7 33.9 467.6

MPCO 0.0014 2:48� 10�7 35.3 448.9

Task
number = 15

TPCO 0.0023 1:13� 10�7 41.4 528.4

MPCO 0.0026 2:32� 10�7 42.8 456.7

Task
number = 20

TPCO 0.0026 7:27� 10�7 57.7 572.7

MPCO 0.0033 4:14� 10�6 56.5 648.9

Task
Number = 30

TPCO 0.0029 4:38� 10�7 83.4 1217.6

MPCO 0.0036 1:43� 10�6 80.8 1012.9
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Fig. 7.9 Comparison of TPCO and MPCO as task size increases from 5 (top) to 30 (bottom)
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7.5.4 Improvements Due to the Case Library

From the previous analysis, it has been learned that MPCO cannot obviously
improve the convergence speed and stability of the algorithm. Being aware that the
instability of GA mainly comes from the randomness of initial population, a two-
stage framework which makes use of a case library is proposed. By initializing the
population with a similar case with close-to-optimal solutions if it exists, it is
expected to speed up the convergence process and improve the stability of the
algorithm. The similarity threshold is selected based on the performance when
cases with different similarities are introduced to the initialization stage of the
algorithm. In the experiments, cases with similarity of 100, 75, 50, 25 %
(approximately) are chosen to be compared with the baseline of not using the case

Fig. 7.9 continued
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library (or equivalently using no similar case). In addition, to better evaluate the
effect of case library, the value of FunEval is set as 0.0008.

The test results are shown in Table 7.4. The SpreadChange in the last gener-
ation is used to determine the convergence status of the algorithm. As indicated in
the table, when the similarity is equal or greater than 75 %, the iteration number
begins to reduce and the reducing amount increases as the similarity increases. The
relatively small variance of iteration number also shows that this acceleration on
convergence process is stable. This in turn verifies that the expression of the
similarity function is correct and useful. However, when the similarity is below
75 %, average iteration numbers do not decrease but instead increase compared to
that of the baseline. In other words, introducing cases with low similarity value is
not helpful but harmful; it worsens the ability of the algorithm to converge. This
result is because the optimal solution set of the current user request is greatly
different from that of the cases with low similarity. If initializing with its solutions
arbitrarily, it may need to follow a longer route to reach its own Pareto front than
random initialization. Therefore, the similarity threshold can be roughly set to be
75 %. It can also be seen from the variances of iteration numbers and Spread-
Change that, using cases with high similarity to initialize the population improves
the stability of the algorithm compared to random initialization.

Figure 7.10 shows the differences in the Pareto front and SpreadChange
between using cases with 75 % similarity for initialization and using no similar
cases at all (the baseline). It can be seen from the Pareto front curves that adopting
solutions of similar cases into the initializing stage does not affect the final quality
of the individuals. In both scenarios, the individuals are evenly distributed in the
Pareto front. The SpreadChange curves on the right side clearly indicate the lower
variation during the evolution process when case with 75 % similarity is intro-
duced, in sharp contrast to the substantial up-and-downs in early generations with
no-case introduced. This difference demonstrates that the evolution process is
more stable with the use of similar cases in initialization.

In summary, the practice of introducing cases of high similarity to help with
initialization can effectively speed up the convergence rate and improve the
evolution stability of the algorithm. The appropriate similarity threshold can be set
as 75 %. It should also be noted that the evolution and convergence process could
somehow be delayed to some degree if cases with similarity value below the
threshold are introduced.

7.5.5 Comparison Between CLPS-GA and Other Enhanced
GAs

In this section, the attention is turned to compare the proposed CLPS-GA with
some other enhanced GAs such as AGA [35, 36], CGA [37, 38], and LGA [39, 40]
in terms of convergence rate, stability and solutions’ diversity.
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According to the ‘‘no free lunch’’ scientific theory proposed by Wolpert and
Macready [44], no algorithm is able to dominate another in all problems in all
aspects. Therefore, any performance improvement on any algorithm might be paid
at the cost of time inefficiency or compensated from other aspects. If one considers
the convergence rate, stability, solution’s quality and diversity as four optimization
objectives, then each one of the four algorithms included in the experiment are
non-inferior to or non-dominated by others. Table 7.5 records the results of iter-
ations, average distance, and SpeadChange to indicate the algorithms’ perfor-
mance on convergence, diversity and stability after at least 50-time experimental
repetitions by using AGA, CGA, LGA, and our proposed CLPS-GA, respectively.
Figure 7.11 shows one typical instance of Pareto front and SpreadChange values
as a function of iterations.

After deeper analysis, it can be found that our proposed CLPS-GA does best in
algorithm’s convergence and stability. By introducing cases with similarity of

Fig. 7.10 Pareto front curves and SpreadChange with and without case library

Table 7.4 Experimental data related to case library

No Similar
Case

25 %
Similarity

50 %
Similarity

75 %
Similarity

100 %
Similarity

Mean of iterations 48.9 98.3 70.7 36.4 30.5

Variance of iterations 573.5 722.3 582.0 355.5 342.7

Mean of SpreadChange
in last generation

7:29� 10�4 6:97� 10�4 7:42� 10�4 7:38� 10�4 7:05� 10�4

Mean of SpreadChange
variance

4:82� 10�5 5:13� 10�5 3:09� 10�5 2:61� 10�5 1:88� 10�5
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75 % or higher, CLPS-GA requires the fewest iterations to reach its convergence
criteria, and the average number of iterations taken to converge is only 36.4, much
fewer than those in other algorithms. As indicated by its lowest variance of iter-
ation numbers and mean of SpreadChange variance at 355.5 and 2:61� 10�5,
respectively, CLPS-GA achieves the best stability among these algorithms.
However, this happens only when cases of high similarity exist, and if no case is
introduced, then CLPS-GA just degenerates into regular GA with MPCO. Careful
scrutiny on data in Tables 7.4 and 7.5 reveals that under this circumstance of no
similar cases, the CLPS-GA algorithm’s convergence rate is lower than that of
LGA and its stability is poorer than AGA. The effectiveness of CLPS-GA thus
depends on the availability of highly similar cases.

LGA, by strengthening its local search in neighboring areas of optimal individuals,
achieves slightly inferior performance in convergence rate compared to CLPS-GA,
which can be observed from its average iterations 43.7 in Table 7.5, but has to
compromise its stability due to its large variances either on iterations or SpreadChange
through generations. CGA, by generating a Logistic sequence to help search in a larger
range, obtains better result than CLPS-GA in the diversity of solutions with average
distance 0.0022 versus 0.0020, but it has the worst performance in terms of stability
and convergence rate, i.e., it has an exceptionally large value on mean and variance of
iterations, 102.5 and 1879.9, respectively. Lastly AGA, by adjusting the crossover rate
and mutation rate according to the fitness of individuals involved, neither stands out
nor falls behind with its medium performance almost in every aspect.

As shown in Fig. 7.11, none of the Pareto fronts drawn is evidently close to the
axis, which indicates the negligible difference in the quality of solutions obtained
by each algorithm. Nevertheless, it can be easily seen from the left figure that
solutions are distributed more evenly in CLPS-GA and CGA, and slightly
unbalanced and concentrated in AGA. In examining the curves on the right figure,
it can be easily distinguished that CLPS-GA and LGA take relatively fewer iter-
ations than AGA and CGA to converge. Note that CGA has the highest diversity.
Therefore, it’s safe to say that diversity and efficiency go against each other and no
algorithms can have it both ways.

In summary, each algorithm has their strengths and weaknesses, and CLPS-GA
does best in terms of convergence rate and stability, and ranks only second to CGA

Table 7.5 experimental data related to CLPS-GA and other enhanced GAs

Algorithm Mean of
iterations

Variance
of
iterations

Mean of
average
distance

Variance of
average
distance

Mean of
SpreadChange
in last
generation

Mean of
SpreadChange
variance

AGA 77.6 501.5 0.0018 3:82� 10�7 6:41� 10�4 3:56� 10�5

CGA 102.5 1879.9 0.0022 1:96� 10�7 5:25� 10�4 7:44� 10�5

LGA 43.7 1035.7 0.0016 2:08� 10�7 6:78� 10�4 6:31� 10�5

CLPS-GA 36.4 355.5 0.0020 4:94� 10�8 7:38� 10�4 2:61� 10�5
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in the diversity of solutions. Since the idea of introducing a multi-parent crossover
operator and a case library is not contradictory to the strategies employed in other
algorithms, there is still room for exploring other combinations of various strat-
egies in order to improve further.

7.6 Summary

Service scheduling has always been a core component in cloud manufacturing
system. However, previous studies on its model building and scheduling algo-
rithms are either insufficient or far from satisfactory. Taken the advantage of
population based configuration, we presented a new improved genetic algorithm
comprised of Pareto searching operators and case library mechanisms. In sum-
mary, this chapter mainly includes the following contents.

(1) For addressing the OSCR problem, energy consumption and makespan are
chosen as two objectives. The energy consumption model is formulated and
simplified to adapt to network whose load information is unavailable.
Meanwhile, imbalanced load distribution is considered to represent risk on
the makespan and used as an effective strategy both to shorten the makespan
and to realize load balance.

(2) Different from past works, which often convert a MOO into a SOO, diverse
solutions distributed on the Pareto front are provided for decision-makers to
select from. This helps meet various kinds of user’s needs and make the
service more considerate and universal.

(3) The proposed improved approach for Pareto solutions (CLPS-GA) is inno-
vative and composed of a multi-parent crossover operator newly redesigned,

Fig. 7.11 Comparison of CLPS-GA and other enhanced GAs
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a two-stage algorithm structure, a case library, and a new concept of case
similarity. Experimental results have shown its high performances in terms of
convergence, stability and solutions’ diversity in solving the subject MOO
problem.
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