
Chapter 5
Parallelization of Intelligent Optimization
Algorithm

Today, different kinds of hardware for computing are more and more powerful, in
accordance with large scaled complex computing tasks. From multi-core computer
to clusters, various parallel architectures are developed for computing acceleration.
In terms of the long time iteration and population based mechanism of intelligent
optimization algorithm, parallelization is attainable and imperative in many
complex optimization. Among the existing parallel methods developed for intel-
ligent optimization algorithm, almost all of them are established upon population
division with periodical communication. In several cases, the performances of
different topologies and different communication mechanisms are varied. Thus in
acceleration of intelligent optimization algorithm, the selection and design of
topology and communication mechanism are two crucial parts and can also be
configured flexibly.

That is to say, the implementation of different topology and communication
mechanism can be encapsulated into modules according to different hardware
architectures. These modules are independent with the operators applied in dif-
ferent sub-populations, thus can be reused like operators.

According to such idea, in this chapter, we firstly introduce the parallel
implementation ways of intelligent optimization algorithm on different hardware
architectures. Then we elaborate the typical parallel topologies based on general
population division. After that, two configurable parallel ways are presented in
different hardware both with module based configuration idea.

5.1 Introduction

As parallel technology continues to evolve, peta-flops parallel computers, large-
scaled distributed clusters are emerging in several areas. From the perspective of
computing hardware, the pure computing capabilities are largely improved.
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However, the development is gradually out of Moore’s law. That means, the
computing speed is no longer grown with the increased computing cores. No
matter in manufacturing or industrial engineering, high performance hardware not
only did not bring about enough acceleration, but also induced several problems,
such as load imbalance, communication blocking, etc., with large energy wasting.
Therefore, the performance of parallel technology depends not only on its hard-
ware, but also on the computing and communication assignments and the algo-
rithm design.

In manufacturing, facing with mass productive resources and large-scaled tasks,
the optimal problems such as resource scheduling, workflow arrangement and part
design in diverse networked manufacturing modes are becoming more and more
complex. Its evaluation indexes are generally non-linear functions, and the pro-
duction steps are increased. For accelerating the whole process, the attention is
gradually switching from accuracy improvement to parallelization digging. In such
heterogeneous manufacturing system, the parallelization of optimization algo-
rithms is the most important part. That is because both coarse grained and fine
grained manufacturing tasks are directly scheduled and parallelized in distributed
resources through different kinds of algorithms. The efficiency of task execution is
decided by optimization algorithms. If we have an efficient optimization algorithm
with high decision accuracy and high speed, then the whole system can be
effectively accelerated.

Hence, the parallelization of intelligent optimization algorithms for diverse
manufacturing optimization problems is of the essence. Back to its basic operators,
according to the theory of ‘‘no free lunch’’ pointed out by [1], any performance
improvement in algorithm needs some sacrifice from other sides. For large scaled
problems, high quality solutions are obtained either by increasing iteration number
and population number, or by adding other improved and hybrid operators. All of
these modifications increase the time consumption in decision. Population-based
parallelization can largely reduce the time consumed by the operators with high
computing complexity. Its mainframe can be shown in Fig. 5.1. In such frame-
work, more operators can be applied with lesser individuals in each sub-popula-
tion. But in each sub-population, if without communication, the independent
iteration will be much less efficient. That is to say, the accuracy preservation is
realized by periodical individual exchange among sub-populations.

Based on the framework, parallel intelligent optimization algorithm can be
designed and implemented in any multi-processor hardware with uniform com-
munication topology and individual exchange mechanism. The whole design
architecture can be represented in Fig. 5.2. With the characteristic of natural
concurrency of intelligent algorithms, since the early 90th, a series of parallel
intelligent optimization algorithms are proposed. Most of these algorithms are
under three typical modes [2]: master-slave mode, coarse-grained mode and fine-
grained mode.
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(1) Fine-grained mode [3].
In fine grained mode, each sub-population contains only one or two indi-
viduals, and operators are executed between different parallel nodes. There
are no periodic exchanges but huge communications. In this mode, neighbor
structure which decide the scope of learning, cross and exchange between
individuals are the main consideration. It defines the information propagation
path in the whole population. Generally, for small sized population, large
scope structure is suitable, while for large sized population, box structure
with four to eight groups are more adaptable. Shapiro et al. [4] have taken
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experiments and discussions based on different neighbor structure and con-
cluded that neighbor structure with four groups is quite adaptable.
However, fine-grained mode can only be implemented in shared memory
architecture because of its huge communication load during iteration. Now-
adays, it is less used.

(2) Master-slave mode [5].
Master-slave mode refers to use one master node to manage other slave nodes
with sub-populations. Operators are executed in slave nodes and individual
exchange is realized through individual reduce and broadcast by master node.
Generally, in each period, slave nodes send their best individuals to master
node. Master node then screen the global best one and send it again back to
slave nodes as a member for next evolution. Communication mainly happens
in the collection and broadcasting process and is much less than which in
fine-grained mode.
This mode is still widely used for different problems, it is easy to implement
and diverse population number and operators can be executed in different
slave node. Uneven loads among master and slaves is the main shortcoming.
In each period, the simultaneously individual sending from slave nodes can
lead to data surging, and all of the slave nodes have to wait for master to
calculating the best one and broadcasting it.

(3) Coarse-grained mode [6].
It’s the most adaptable parallelization mode. Sub-populations are evenly
divided and evolve independently and exchange in specific frequency.
Without supervision of master node, sub-populations exchange excellent
individuals in a specific topology. Communication and computation in each
period are more even than master-slave mode.
In this mode, communication topology and individual migration mechanism
are two main influence factors for the performance. Communication topology
represents the information propagation path of each sub-group. There are
already many typical topologies are presented, such as ring) [7], grid [8] and
full connection and so on. In the case of sparse connection, the information
transforming speed is low, and the whole population has high diversity and
low collaboration. On the contrary, with dense connection, the individuals
can be largely shared with low diversity and high collaboration. Premature is
easily caused in such case. Therefore, the selection of topology is vital.

Besides, migration mechanism can also influence the optimal searching process.
It includes the design of individual number to be shared, the period and the
replacing scheme. The individual number to be shared refers to the number of
individuals sending by each sub-population. The period means the generation
number between two exchanges. The replacing scheme decides which local
individuals are to be replaced by the newly introduced ones from other sub-groups.
This three migration factors, together with topology determine the whole parallel
searching performance. Matsumura et al. [9] had compared different topologies in
some cases, but different migration mechanisms are still to be discussed.
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Clearly, different topologies and migration mechanisms can be reused in dif-
ferent problems. With the idea of dynamic configuration, they can be dynamically
configured in different generation or different node with different hardware.
Therefore, in the sections below, we will follow Fig. 5.2 and briefly talk about
different implementation ways of intelligent optimization algorithm in different
hardware, and then give some typical parallel topologies commonly used in
industrial optimizations. Based on that, the configuration design of parallel intel-
ligent optimization algorithm is elaborated in this chapter.

5.2 Parallel Implementation Ways for Intelligent
Optimization Algorithm

5.2.1 Parallel Implementation Based on Multi-core
Processor

Multi-core processor is a processor that integrates two or more complete cores. To
traditional single-core processor, the way to increase the processing speed is to
improve its work frequency. However, the frequency improvement means the
improvement of manufacturing process, which is not unlimited. Quantum effect
largely restricts the work frequency and the size of transistor. Thus, the method to
boost CPU performance by increasing processor frequency encounters an
unprecedented predicament.

The emergence of multi-core processors brings new hope to the improvement
of processing speed. Large companies such as INTEL and AMD in turn modify the
architectures of CPU, integrate multiple cores in one chip and hence launch dual-
core, three-core and four-core CPU products. Figure 5.3 shows the architecture of
a multi-core processor.

Currently, based on multi-core processor, many researches [10] focus on the
design of parallel programs and parallel technology (e.g. OpenMP). Among the
many parallel optimization algorithms based on multi-core processor, some are
implemented with the help of OpenMP techniques. In fact, as long as the pro-
grammers encode the optimization algorithms in parallel programs and run them
on parallel multi-core processor computers, these parallel algorithms can be well
implemented. Accordingly, Mahinthakumar and Saied [11] successfully completed
the parallel Genetic Algorithm (GA) on multi-core processor while Wang et al.
[12] made the parallel Particle Swarm Optimization Algorithm possible and took
advantage of it to solving facility location problems. Rajendran and Ziegler [13]
well introduced parallel Ant Colony Algorithm based on multi-core processor and
solved permutation flowshop scheduling problem.

To sum up, many research and studies have already been conducted on the topic
of multi-core processor parallel optimization algorithms, and their successful
research achievements involve Genetic Algorithm, Particle Swarm Algorithm and
Ant Colony Algorithm, etc.
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5.2.2 Parallel Implementation Based on Computer Cluster

Computer cluster is a special computer system with a set of loosely integrated
computer software and hardware, which closely collaborates to complete the
computational works efficiently. To some extent, a computer cluster can be
regarded as a single host computer. Moreover, a single computer in the cluster
system is often referred to as a node, usually connected via a LAN, but there are
other possible connections. Computer cluster is usually used to improve the
computing speed and reliability of single computer.

In a computer cluster, the multiple processors usually work in parallel, and
every processor has more than one computational core. Therefore, the level of
parallelism of a computer cluster is far higher than that of a multi-core processor.
Usually, the design of parallel algorithms on computer clusters depends on MPI
and OpenMP programming [14, 15].

In recent years, people have carried on some research about the design of parallel
optimization algorithms based on computer clusters. E.g., Kalivarapu [16] thor-
oughly analyzed and discussed the parallel implementation method of Particle
Swarm Algorithm, including the implementation on computer clusters. Also,
Borovska [17] and Sena et al. [18] programmed optimization Ant Colony Algorithm
on computer clusters and tested it through solving the problem of TSP. However,
other types of cluster optimization algorithms are relatively less.

In short, through designing parallel optimization algorithms on computer
cluster, we can acquire higher level of parallelism than on multi-core processor.
Currently, the relatively mature parallel algorithms are computer cluster-based
Particle Swarm Algorithm and Ant Colony Algorithm.

5.2.3 Parallel Implementation Based on GPU

Computer graphics processor (Graphics Processing Unit, GPU) is defined as
‘a single-chip processor, integrated geometric transformation, illumination, trian-
gular configuration, clipping and drawing engine and other functions, and having
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per second at least 10 million polygons handling capacity.’ GPU greatly enhanced
the processing speed of the computer graphics and the graphics quality, and
meanwhile promoted the rapid development of computer graphics applications.
Unlike the serial design pattern of the central processor (Central Processing Unit,
CPU), GPU is initially designed for the graphics processing, thus, has a natural
parallel character. However, the parallelizable instructions in computation are less,
and increasing instruction-level parallelism through superscalar, deep water, long
instruction word cannot achieve good results.

Because the graphics processor is equipped with parallel hardware structure,
thus the calculation performed in the graphics processor has a natural parallelism.
These years many research about the design of GPU-based optimization algo-
rithms emerged. The research in [19, 20] studied how to implement optimization
algorithms on GPU, while Kalivarapu [16] not only achieved the implementation
of Particle Swarm Algorithm on computer clusters, but also on GPU. In addition,
relied on GPU, Zhu and Curry [21] gave a detailed study of Ant Colony Algorithm
and its parallel application, and Chitty [22], Li et al. [23] carried on a specifically
concrete work on the implementation of Genetic Algorithm. There are many other
literatures focused on this field of study, which have done a lot of concrete works.

In summary, nowadays, parallel GPU-based optimization algorithm design has
been extensively studied and has accomplished a variety of intelligent optimiza-
tion algorithms and comparatively good results.

5.2.4 Parallel Implementation Based on FPGA

Field-programmable gate array (FPGA) is a further developed product on the basis
of many programmable devices such as the PAL, GAL, and CPLD. It is a semi-
custom circuits,which is different from the Application Specific Integrated Circuit
(ASIC).

In general, both multi-core processor and graphics processor have fixed hard-
ware circuit structures, on which the design of algorithms fails to have a high level
of parallelism. Moreover, although general-purpose microprocessors are flexible to
design and easy to upgrade, their processing speed and efficiency are relatively
low. On the other hand, ASIC can complete the computation tasks by a specific
operation and processing unit, thus the execution of instructions is in parallel. To
specific integrated circuits, the processing speed and efficiency are higher, but the
development cycle is longer and the design flexibility is less. Therefore, in some
occasions with higher requirements of real-time performance and flexibility,
general-purpose microprocessor or ASIC is not able to solve the problem very
well. FPGA, with a natural parallel hardware structure, is not only flexible to
design and easy to upgrade as general-purpose microprocessor, but also faster and
more efficient as ASIC. Therefore, it provides a new way for the parallel design of
optimization algorithms.
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So far, FPGA-based optimization algorithm parallel design is not that much,
and existing research mainly concentrate on the FPGA implementation of Genetic
Algorithm [24, 25] and Ant Colony Algorithm [26]. The studies on other FPGA-
based optimization algorithms, such as Particle Swarm Algorithm, are far less and
need to be further investigated.

Currently, people have carried out series of research about the design of parallel
optimization algorithms, including Genetic Algorithm, Particle Swarm Algorithm
and Ant Colony Algorithm. The common method of design is to program with the
use of OpenMP. Through programming parallel optimization algorithms on
computer clusters, we can obtain a higher level of parallelism than multi-core
processor-based design. What’s more, after the successful implementation of
parallel Genetic algorithm and Particle Swarm Algorithm on computer clusters,
they reap a quite extensive application, and the general pattern is to design pro-
grams by OpenMP and MPI. Until now, the most widely used parallel technology
is the parallel program design based on GPU. Many intelligent optimization
algorithms have been well implemented on GPU, and the results seem bright and
promising. This method mainly takes advantages of the special hardware structure
of GPU. Finally, studies about the algorithm design based on FPGA are chiefly
focused on Genetic Algorithm. As to others types of algorithms, there is no
common parallel method.

5.3 Implementation of Typical Parallel Topologies
for Intelligent Optimization Algorithm

As introduced before, parallel topology represents the connection way among sub-
populations. It controls the transform ways and speeds of excellent individuals, so
as to make the parallel searching process exerting different influences in varied
cases. During existing methods, master-slave topology and ring topology, mesh
topology and full-mesh topology in coarse grained mode are the most typical ones.
In this section, based on MPI architecture, we will introduce them and give brief
MPI implementation of them respectively, from sparse connection to dense con-
nection. Each of the implementation can be encapsulated as modules and reused
with configuration methods.

5.3.1 Master-Slave Topology

As shown in Fig. 5.4a, the operation in slave node contains intelligent optimiza-
tion operators, general evolutionary update steps and individual sending actions,
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Fig. 5.4 Typical parallel topologies for intelligent optimization algorithm. a Master Slave;
b Single Ring; c Single Mesh; d Double Ring; e Double Mesh; f Full Mesh.
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while the operation in master node contains only receiving the individuals, cal-
culating the best ones and broadcasting them to slave nodes.

Specifically, the implementation pseudo-code can be represented as follows.

For (each sub-population I)
Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied) 

generation ++;
MPI_Gather(best_individual, 1, gene_struct, root_population, 1, gene_struct, 
ROOT, MPI_COMM_WORLD);
If (processor_id == ROOT) 

choose n individuals from root_population to obest[n];
End if
MPI_Barrier(MPI_COMM_WORLD);
MPI_Bcast(obest, n, gene_struct, ROOT, MPI_COMM_WORLD);
Insert obest[n] to each sub-population;
If (processor_id != ROOT) 

Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End if
End while

End for

In the implementation, best_individual represents the best individual array in
each sub-population to be sent in each period. gene_struct represent the class type
of each individual, it is generated by MPI_Type_struct and contains gene-bits,
individual states and its fitness values. root_population represent the received
individuals in master node (i.e. root node), so that the size of this array are decided
by the number of slave nodes and the size of best_individual. obest[n] then rep-
resents the screened best individuals to be broadcasted in master node. If n = 1,
then only one individual will be selected and broadcasted to other slave nodes. So
the communication load is in part decided by n.

5.3.2 Ring Topology

Ring topology consists of two kinds, single-ring and double-ring topology, as
shown in Fig. 5.4b and c. Among them, single-ring topology can also be named as
the least communication topology. Ring topology is easy to implement and
occupies less bandwidth during communication. Information in this topology are
spread slowly. In MPI programming, only point to point communication mode can
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efficiently implement it. Here takes non-blocking communication as example, the
specific pseudo-codes of single-ring and double-ring topology can be shown as
follows.

(a) Single-Ring Topology

Forward propagation
For (each sub-population I) 

Initialize subpopulation; 
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied) 

generation ++;
If (generation % MT == 0)

MPI_Irecv(obest, scnt, gene_struct, processor_id+1, 123, 
MPI_COMM_WORLD,  &req);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 123, 
MPI_COMM_WORLD, &req2);
Insert obest to each sub-population;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

Back propagation
For (each sub-population I) 

Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

MPI_Irecv(obest, scnt, gene_struct, processor_id-1, 123, 
MPI_COMM_WORLD, &req);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 123, 
MPI_COMM_WORLD, &req2);
Insert obest to each sub-population;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for
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(b) Double-Ring Topology

For each sub-population I
Initialize subpopulation; 
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied) 

generation ++;
If (generation % MT == 0)

MPI_Irecv(obest_1, scnt, gene_struct, processor_id-1, 123, 
MPI_COMM_WORLD, &req1_1);
MPI_Irecv(obest_2, scnt, gene_struct, processor_id+1, 321, 
MPI_COMM_WORLD, &req2_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+1, 123, 
MPI_COMM_WORLD, &req1_2);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 321, 
MPI_COMM_WORLD, &req2_2);
Insert obest_1 and obest_2 to each subpopulation;

End if
Apply algorithm’s operators;
Evaluate solutions in the subpopulation;

End while
End for

In the above codes, obest, obest_1, obest_2 represents temporary arrays for
receiving neighbor individuals, scnt represents the number of individuals to be
migrated and req1_1, req1_2, req2_1 and req2_2 are MPI_Request parameters. It
can be seen that forward propagation and back propagation ring communication
can be separated as two modules and implemented as the above pseudo-code (a).
Then (b) is the fusion of the two single-track communications as double-ring
topology.

5.3.3 Mesh Topology

Mesh topology is similar with ring topology. It contains both left-right and up-
down neighbor communication, while ring topology contains only left-right
neighbor communication. If the process node is less than 9, the communication
will be uneven and cause large exchange load. Also, mesh topology can be
implemented as single-side topology and double-side mesh topology. The key MPI
implementation can be shown as follows.
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(a) Single-side mesh topology

For (each sub-population I) 
Initialize sub-population
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied) 

generation ++;
If (generation % MT == 0)

//left-right
MPI_Irecv(obest_1, scnt, gene_struct, processor_id-1, 123, 
MPI_COMM_WORLD, &req1_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+1, 123, 
MPI_COMM_WORLD, &req1_2);
//up-down
MPI_Irecv(obest_2, scnt, gene_struct, processor_id-m, 321, 
MPI_COMM_WORLD, &req1_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+m, 321, 
MPI_COMM_WORLD, &req1_2);
Insert obest_1 and obest_2 to each subpopulation;

End if
Apply algorithm’s operators;
Evaluate solutions in the subpopulation;

End while
End for

(b) Double-side mesh topology

For (each sub-population I) 
Initialize subpopulation; 
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied) 

generation ++;
If (generation % MT == 0)

//left-right
MPI_Irecv(obest_1, scnt, gene_struct, processor_id-1, 123, 
MPI_COMM_WORLD, &req1_1);
MPI_Irecv(obest_2, scnt, gene_struct, processor_id+1, 321, 
MPI_COMM_WORLD, &req2_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+1, 123, 
MPI_COMM_WORLD, &req1_2);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 321, 
MPI_COMM_WORLD, &req2_2);
//up-down
MPI_Irecv(obest_3, scnt, gene_struct, processor_id-m, 123, 
MPI_COMM_WORLD, &req1_1);
MPI_Irecv(obest_4, scnt, gene_struct, processor_id+m, 321, 
MPI_COMM_WORLD, &req2_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+m, 123, 
MPI_COMM_WORLD, &req1_2);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-m, 321, 
MPI_COMM_WORLD, &req2_2);
Insert obest_1, obest_2, obest_3, obest_4 to each sub-population;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for
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In such topology, the serial numbers of the neighbors at the up-down side can
be calculated as the integral upper bound of the square root of the whole processor
number.

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

processor number
p

ð5:1Þ

5.3.4 Full Mesh Topology

In this topology, each sub-population broadcast its best individuals to be migrated.
After that, each sub-population receives multiple individuals and accepts part or all
of them to replace some bad local ones. It is the most communication topology and
have high communication load. Compared with master-slave topology, it is more
likely to cause data surging. In large-scaled distributed parallel architecture, it is
not suitable. In the MPI programming, full mesh topology is easy to implement
with MPI_Allgather. The pseudo-code can be represented as follows.

For (each sub-population I) 
Initialize subpopulation; 
generation = 0;
While (generation <= MAX_generation OR convergence criterion satisfied) 

generation ++;
If (generation % MT == 0)

MPI_Allgather(best_individual, scnt, gene_struct, obest, scnt, 
MPI_COMM_WORLD);
Insert obest[n] to each subpopulation;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

In the implementation, the size of obest n is decided by the migration number
and the whole processor number.

n ¼ scnt � processor number ð5:2Þ

5.3.5 Random Topology

During the above topologies, no matter with dense or sparse connections, have
advantages and disadvantages. For balance the two kinds, Defersha and Chen [27,
28] presented a new random topology for parallelization of intelligent optimization
algorithm in solving manufacturing optimization. In such topology, the exchanges
among sub-populations are decided by a binary matrix. It is generated by a single
node and then broadcast to others to make sure the correct exchange. The
dimension of the matrix is equal to the number of processor nodes. Let A repre-
sents the matrix. If the element aij = 1, then node i will send some excellent
individuals to node j. The value of aij can be calculated as follow [27].
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aij ¼ 1; randðÞ\q and i6¼j
0; otherwise

n

ð5:3Þ

where ‘rand()’ represents random generalized number and q 2 ½0; 1� refers to the
control parameter of communication density. If q is low, the communication is
becoming sparse, vice versa. At the same time, Defersha also concludes that
q ¼ 0:5 is generally suitable for individual exchanges.

In MPI implementation, only point to point mode can be applied. With such
method, we found that the matrix generation and broadcasting still takes extra time
consuming which can not be ignored. Therefore, its performance in different cases
is still to be discussed. The pseudo-code of random topology can be shown as
follows.

For (each sub-population I) 
Initialize sub-population; 
generation = 0;
obest[n] = 0; 
While (generation <= MAX_generation or convergence criterion satisfied) 

generation ++;
If (generation % MT == 0)

Generate random_matrix[processor_number][processor_number]; //1 or 0
For (processor_id_i = 1 to processor_number) 

For (processor_id_j = 1 to processor_number) 
If (i != j && random_matrix[i][j] == 1)

MPI_Irecv(obest[i], scnt, gene_struct, j, 123, 
MPI_COMM_WORLD, &req);
MPI_Isend(best_individual, scnt, gene_struct, i, 123, 
MPI_COMM_WORLD, &req2);

End if
End for

End for
For (k = 1 to n) 

If (obest[k] != 0)
Insert obest[k] to each sub-population;

End if
End for

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

In the above code, random_matrix represents the random matrix A. In each
period, a new random_matrix is generated by root node and broadcast to others.
obest stores the individuals received from other nodes decided by the random
matrix. If obest½i� 6¼ 0, then insert it into the local population and replace a bad
one.

Besides, more information about MPI programming can be found in [29].
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5.4 New Configuration in Parallel Intelligent Optimization
Algorithm

Generally speaking, in parallel searching, communication is independent with
operators. As with configuration in algorithm improvement and hybridation, par-
allelized algorithms can also be dynamically configured in different hardware
architecture. But with different communication prototypes, parallel configurations
in different hardware are totally different. Therefore, this section mainly focuses on
the parallelization and algorithm configuration on general multi-processors and
FPGA respectively.

In large sized multi-processors, take general cluster with MPI as an example,
configuration can be classified into two kinds, (1) topology configuration, and (2)
operation configuration. Topology configuration refers to invoke different com-
munication topology in different period, while operation configuration here con-
sists of algorithm-based, operator-based and parameter-based configuration
introduced in Chaps. 3 and 4. In small sized hardware, i.e. FPGA, topology
configuration cannot be implemented in most time. Parallelization based on FPGA
is totally different with which in other hardware. Without population division, it
parallelizes operators, encapsulated them as modules and tries to flexibly connect
different parts together. That is to say, the inner part of the module cannot be
changed but only reloaded. Therefore, in FPGA, we could only connect different
kinds of algorithm modules or operator modules in divided generations to realize
flexible configuration, here we call it module-based configuration. The configu-
ration types on the above two hardware architecture can be summarized as shown
in Fig. 5.5.

Regardless of which kinds of hardware we are based, the general design process
of parallel intelligent optimization algorithm can be shown in Fig. 5.6. The steps
contain (1) algorithm design, (2) scale of sub-populations, (3) topology selection,
(4) migration mechanism decision, and (5) algorithm implementation. If we want
to design and implement a parallel intelligent optimization algorithm, we need first
to design a serial algorithm with improved or hybrid operators which can solve the
specific problem with high accuracy. Next, according to the existing environment,
the scale of sub-populations needs to be specified before topology design, for the
reason that the exchange performance of topology depends on the number of sub-
groups. Based on particular topology and algorithm, we could then set the
migration mechanism, i.e. how many individuals to be migrated and which of the
local ones to be replaced. Based on these decisive factors, the parallel algorithm
can finally be implemented. Likely, general design process is quite cumbersome.

If we encapsulate these topologies with various mechanisms, combined with the
above-mentioned serial algorithm parts, the design of parallel intelligent optimiza-
tion algorithm can be easier. Figure 5.7 shows the new configuration process for it. In
this mode, the topology module can be invoked as a function which only imple-
menting data transform and individual replacement. Take ring topology as an
example, the corresponding module mainly contains the following part. That is to
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say, we just put data sending, receiving and the individual replacement sentences into
the topology module. The parameters of it include sending array, receiving array and
number of individuals to be migrated. In each sub-population, basic operators are
invoked in every generation, while topology module is called at a certain period.

//Topology module
Basic_ring_topology(best_individual, obest, scnt) 
{ 

MPI_Irecv(obest, scnt, gene_struct, processor_id+1, 123, MPI_COMM_WORLD, 
  &req);

MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 123, 
MPI_COMM_WORLD, &req2);
Insert obest to each sub-population;

} 

//Module Invoking
If (generation % MT == 0)

Basic_ring_topology(best_individual, obest, scnt); 
End if

It is clear that in traditional design ways, the selection of topology is dependent
with both the design of serial operators in each sub-group and the hardware
environment. If any of them performs not well, then we need to redesign it again.
Different with the traditional process, we could select the topology firstly only
according to the specific hardware environment. Then in each sub-group, different
operators with uniform population input and output can be tested and applied
respectively. In such case, topology is independent with operators. The only thing
we need to do is module combination. With different operators, the sub-group who
performs better could help other bad performed ones to break out from local
optimal through individual exchange. Then better optimal searching capability can
be preserved with low time consumption for wider complex problems.

In the following sections, we will elaborate different configuration types both in
multi-processor computers and FPGA.

5.4.1 Topology Configuration in Parallelization Based
on MPI

As mentioned previously, topology configuration means to apply multiple topol-
ogies in a parallel algorithm. It also contains two styles, (1) single-domain
topology configuration and (2) multi-domain topology configuration.

Firstly, single-domain topology configuration is to allocate multiple topologies
into different generations with one operation domain, as shown in Fig. 5.8. In such
scheme, although operators in different sub-population are different, they will not
change along with iteration. All sub-populations belong to one domain. After
dividing the generations into several parts, we could change topology module to
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make sub-populations communicating with different ones, as well as in random
topology. Moreover, extra communication is needless. The information propaga-
tion can be easily controlled according to the whole population state. If the pop-
ulation has high diversity, then the topology with dense connection can be applied.
On the contrary, if the population has low diversity, then the topology with sparse
connection is more suitable. Operators in different sub-groups are responsible for
digging solution with lesser members and less time, topology then tries to balance
the searching state and preserve high quality. Following the general searching
rules, topology with sparse connection should be adopted at the beginning for
dynamic exploration. Then topology with dense connection can be used in the end
for population convergence accordingly.

Multi-domain topology configuration, as shown in Fig. 5.9, refers to divide sub-
populations into several domains and apply different topology to each domain. In
each period, sub-population with different algorithms only communicates with the
ones in the same local area through corresponding connection topology. Groups in
different domains will not do exchange any more. For wider information exchange,
we could also divide generations into several parts and regroup the sub-populations
to different topology domains. It is clear that the information propagation is nar-
rower and slower than which in single-domain scheme. It can keep better diversity
state and is more suitable for heterogeneous clusters, in which we could allocate
sparse topology to the nodes with low communication bandwidth and dense
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Communication with topology 1

…Alg_1 Alg_2 Alg_nAlg_3

…

Generation 1 G

Generation G2

1

G3

Generation Gm-1 Gm

Fig. 5.8 Single-domain topology configuration in parallel intelligent optimization algorithm
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topology to the nodes with high communication speed. In this scheme, one of the
most important steps is regrouping. We could generate a group of random numbers
which refer to the topology numbers in a root node and then broadcast them for
allocating sub-populations uniformly. So, the main drawback of this method turns
out to be the restructuring step which may take many extra times so as to slow down
the whole process. For simplifying the process, people can also configure the same
algorithm for each sub-population with only topology hybridization.

It can be seen that topology configuration is suitable especially for large scale
parallelization with a large number of computing nodes. When sub-populations are
less, multi-topologies are then becoming useless. For example, in a parallel
intelligent optimization algorithm, if there are only four nodes (processors), then
mesh topology has no much difference with full-mesh topology. The control of
changing topology in single-domain scheme and the regrouping step in multi-
domain scheme are both time consuming with low-efficiency.

5.4.2 Operation Configuration in Parallelization Based
on MPI

Correspondingly, in small scale parallelization, operation configuration is more
suitable. As mentioned before, operation configuration means to do three-layer
configurations in each sub-population without topology changing. It is the same
with the parallel configuration in module-based improvement and hybridization
mentioned in Chap. 4. The only difference is that different operators are simul-
taneously executed in multiple processors. It is much easier to design than the
above topology configuration ways. With fixed individual exchanging scheme, the
evolutionary process is more stable.

With limited computing resources, operation configuration in parallel intelli-
gent optimization algorithm can be very adaptable especially for dynamic complex
problems, such as parameter adjustment in part design and dynamic job-shop
scheduling. For instance, for a continuous parameter setting problem in part
design, we could divide the whole population into four groups and applied
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continuous genetic algorithm (GA), particle swarm optimization (PSO), differen-
tial evolution (DE) and cuckoo search (CS) in sub-populations respectively.
According to ‘no free lunch theory’, these four algorithms are suitable for different
cases. In simultaneously execution with exchanges, the most suitable one in a
specific case will offer its current best solution to others and guide them to better
positions. It the constraints are changed or a new part is needed to be designed,
another algorithm might be a new leader to preserve the whole searching quality.
We need not to design new algorithms, only one scheme with several configured
algorithms can applied to different kinds of problems with good quality. For
achieving such performance, we should note that the algorithms configured in
different sub-populations need to be very different with diverse emphasis on
exploration and exploitation, as well as in the design of serial intelligent optimi-
zation algorithm, for balance searching.

Moreover, it should be note that even in large-scaled parallelization design, we
need not to configure topology and operators both. That is because too much
dynamics will totally break the searching paces and obtain a chaos situation as a
result. Therefore, although configuration is easy to implement, the collaboration
between operators and topologies need to be considered seriously.

5.4.3 Module Configuration in Parallelization Based
on FPGA

In this section, we presented a new parallelization way of intelligent optimization
algorithm on FPGA. With several blank logical resources in FPGA, we could
implement the original operators as multiple arithmetic units. For connecting
them, some state machine is also designed for connecting these units to form a
specific intelligent optimization algorithm. Based on these design structure, we
will implement some typical intelligent optimization algorithm on FPGA and do
some configuration design further in the following chapters.

All of the designs are established based on VHDL (Very-high-speed Hardware
Description Language). It is used to describe a digital system, including its
structure, behaviors, functions and interfaces. The style and grammar of VHDL is
much similar to advanced computer programming languages, except that it stands
for hardware describing. In VHDL, a digital system is called an entity which can
be defined as inner processors and external interfaces separately. After external
interfaces are set up, inner processes can be developed in detail. And then, the
developed entity can be called as a subsystem in order entities. In other to help
readers to learn about the design and validation of intelligent optimization algo-
rithm on FPGA, we will introduce the Virtex-5 family FPGA chips and floating-
point format of IEEE 754 in following.

Firstly, the algorithms designed in this book are implemented and validated
withVirtex-5 family FPGA chips. Figure 5.10 shows their structure. It can be seen
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that there are mainly CLB (Configurable Logic Blocks), PI (Programmable
Interconnection) and PI/OB (Programmable I/O Blocks) inside an FPGA chip.
Except these three components, there are also some other abundant resources, such
as DSP48E for computing, Block RAM for data storage and CMT (Clock Man-
agement Tiles) for clock managing and so on.

A CLB contains several logical resources inside, which are used to implement
combinational circuit and sequential circuit. Each CLB in Virtex-5 includes 2
slices, 8 LUT (Look Up Table), 8 triggers, 2 arithmetic and carry chains, 256-bits
distributed RAM and 128-bits shifting register. DSP48E Slice module in it can
handle 25 9 18 complement multiplication and can also configured as multiplier,
subtracter or accumulator. In the design process of parallel intelligent optimization
algorithm, large amount of computing tasks can be assigned to this module to
execute.

PI
(Programmable Interconnect)

PI/OB
(Programmable Input/Output Blocks)

CLB
(Configurable Logic Blocks)

Fig. 5.10 The inner structure of FPGA
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For different types of chips, the inner resources are different. In Virtex-5 family,
there are five platforms, i.e. LX, LXT, SXT, FXT and TXT. LX and LXT are
mainly used for high-speed logical design, while SXT is primarily applied for
complex digital signal processing. The embedded PowerPC processor of FPGA in
FXT is chiefly designed for the development of embedded system. And the FPGA
of TXT is especially for customized and complete high-performance system. On
account of the abundant logistical resources in FPGA, we mainly considered to use
the FPGA of LX/LXT to design parallel intelligent optimization algorithms
especially for the complex problems with high requirements on real-time decision
efficiency. Here we list the properties of the FPGA chip of Xilinx Virtex-5 LX
platform [30].

From Table 5.1 we can see that XC5VLX50T type FPGA includes
120 9 30 = 3600 CLBs. In the device, there are 48 DSP48E slice modules which
can realize high speed floating point arithmetic together with abundant logistical
resources. The block RAM which is 120 9 18 Kb can store plenty of intermediate
data during algorithm execution. And the CMT which contains 6 time manage-
ment modules is fully enough for counting the optimization time. Therefore,
XC5VLX50T can fully satisfy the design requirements of intelligent optimization
algorithms.

Secondly, the data format adopted by the research is floating-point data format
specified by IEEE 754 standard. The standard divides floating-point data into three
types: single float, double and extended. It includes three sections in the memory:
sign, exponent and mantissa. For different types of floating-point data, the word
lengths of the three sections are different, as shown in Table 5.2.

According to variable symbols shown in Table 5.2, a floating-point data can be
calculated by the following equation.

x ¼ �1ð ÞS � 1:M � 2E�B ð5:4Þ

In the following section, for simplicity, only single-precision floating-point data
format is adopted in our design of FPGA-based intelligent optimization algorithm.
One must notice that the design is not limited in single float precision.

(1) Traditional design process of parallel intelligent optimization algorithms
Multi-core processors, as well as GPU, have their own computing architec-
ture. The processing element has its specific arithmetic unit and controller.
With these units, general design process of parallel intelligent optimization
algorithm can be abstracted and summarized as follows.

Step 1 Analysis of algorithm parallelization: In this step, we need to
extract the parts which can be parallel implemented. Unlike the
parallelization in coarse-grained hardware architecture, in such a fine
grained chip, the cyclic parts in operators of intelligent optimization
algorithm in which the data is processed independently can always
be parallelized directly.

5.4 New Configuration in Parallel Intelligent Optimization Algorithm 149



T
ab

le
5.

1
S

om
e

pr
op

er
ti

es
of

th
e

F
P

G
A

in
V

ir
te

x-
5

L
X

pl
at

fo
rm

D
ev

ic
e

C
L

B
D

S
P

48
E

S
li

ce
B

lo
ck

R
A

M
C

M
T

A
rr

ay
(R

9
C

)
V

ir
te

x-
5

S
li

ce
D

is
tr

ib
ut

ed
R

A
M

(K
b)

18
K

b
36

K
b

M
ax

(K
b)

X
C

5V
L

X
30

80
9

30
4,

80
0

32
0

32
64

32
1,

52
2

2

X
C

5V
L

X
50

12
0

9
30

7,
20

0
48

0
48

96
48

1,
72

8
6

X
C

5V
L

X
85

12
0

9
54

12
,9

60
84

0
48

19
2

96
3,

45
6

6

X
C

5V
L

X
11

0
16

0
9

54
17

,2
80

1,
12

0
64

25
6

12
8

4,
60

8
6

X
C

5V
L

X
15

5
16

0
9

76
24

,3
20

1,
64

0
12

8
38

4
19

2
6,

91
2

6

X
C

5V
L

X
22

0
16

0
9

10
8

34
,5

60
2,

28
0

12
8

38
4

19
2

6,
91

2
6

X
C

5V
L

X
20

T
60

9
26

3,
12

0
21

0
24

52
26

93
6

1

X
C

5V
L

X
30

T
80

9
30

4,
80

0
32

0
32

72
36

1,
29

6
2

X
C

5V
L

X
50

T
12

0
3

30
7,

20
0

48
0

48
12

0
60

2,
16

0
6

X
C

5V
L

X
85

T
12

0
9

54
12

,9
60

84
0

48
21

6
10

8
3,

88
8

6

X
C

5V
L

X
11

0T
16

0
9

54
17

,2
80

1,
12

0
64

29
6

14
8

5,
32

8
6

150 5 Parallelization of Intelligent Optimization Algorithm



Step 2 Parallel programming: It refers to rewrite the algorithms into the
corresponding parallel programming language. This step is quite related
to specific processor type and the whole execution environment.

Step 3 Debugging and improvement: The performance of the same par-
allel program in different multi-core processors is varied. So the
parallel codes need to be modified and improved and generate dif-
ferent version for users to apply.

(2) New design process of parallel intelligent optimization algorithms on
FPGA
As we introduced before, FPGA is a kind of blank processor. It has no fixed
computing architecture, no specific arithmetic unit and controller. Only a group
of programmable logistical resources and other assistant resources are pro-
vided. However, general algorithm is composed by some basic calculations and
process control statements. Therefore, the design of parallel intelligent opti-
mization algorithm in FPGA is different from the above process. Extra design
of relative operational unit and state machine for specific algorithm is quite
essential. Then, the FPGA-based design of parallel intelligent optimization
algorithm can be drawn as the following four steps.

Step 1 Analysis of algorithm parallelization: Firstly, all key basic cal-
culation parts need to be listed and the parts which can be parall-
elized should also be extracted.

Step 2 Design of arithmetic units: According to the key calculation parts
extracted from step 1, we need to design arithmetic units with dif-
ferent functions. Such arithmetic units can either be float-pointing
calculation, or be binary-sequence processor. In this step, the parts
which can be parallelized are implemented in the chip with multiple
logistical resources. The design of calculation units combined with
these resources will execute the corresponding operation in parallel.
So the parallel design of arithmetic units can largely decide the
whole execution performance of the algorithm.

Step 3 Design of state machine: In accordance with the execution process
of the algorithm, we could introduce a state machine to connect and
control these units for iterative searching. Each state can be seen as
an executor of different calculation process. The states can be trig-
gered in parallel.

Table 5.2 IEEE 754 standard floating-point format

Data type Memory bits Word length (bits) Offset (B)

Sign (S) Exponent (E) Mantissa (M)

Single float 1(Highest) 8(23–30) 23(0–22) 32 127

Double 1(Highest) 11(52–62) 52(0–51) 64 1023

Extended 1(Highest) 15(65–79) 65(0–64) 80 16383
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Step 4 Debugging and improvement: No matter the arithmetic units or the
state machine designed in FPGA for a specific intelligent optimi-
zation algorithm require some modifications in different implemen-
tation environments. And for further configuration in solving
different problems, several improved versions for both the arithmetic
units and the state machine are also required.

5.5 Summary

This chapter systematically introduces almost all kinds of parallel ways of intel-
ligent optimization algorithms. Firstly, the implementation of several kinds of
topologies can be applied in many areas for solving complex problem by multi-
core computing resources. With these topologies, a lot of parallel intelligent
optimization algorithms can also be generated quickly. And through generation
division and population division, configuration can also be flexibly implemented in
parallel intelligent optimization algorithm. This chapter presented two kinds of
configuration ways for fully using existing algorithms and solving wider problems
with complex properties. Moreover, the parallelization way of intelligent optimi-
zation algorithms based on FPGA is also introduced.

Of cause all of these configurations are not only based on the establishment of a
group of typical operators and algorithms but also rely on the implementation of
typical topologies in coarse-grained hardware architecture and the design of
arithmetic units and state machines in fined-grained FPGA platform. But in diverse
parallel platform we must know that not the design of operator but the design of
parallel structure and the flexible configuration in different structure worth more in
solving large-scaled optimization algorithms. As a group of new design schemes,
the parallelization of intelligent optimization algorithm based on the concept of
DC-IOA can be applied to reconnect existing operators or algorithms to solve
wider problem more conveniently and more easily.
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