
Chapter 4
Improvement and Hybridization
of Intelligent Optimization Algorithm

Algorithm improvement and hybridization are two important branches in the
development of intelligent optimization algorithm. Today there are already hun-
dreds of improvement forms in evolutionary algorithms and neighborhood search
algorithms, more than 20 improvements forms in swarm intelligent algorithms and
various hybridization structures. We cannot exactly count how many repetitions in
these improvement and hybridization for different problems. It’s harder for
researchers to test all of them in different problems with different environments
and compare them one by one. However, with the idea of configuration, we can
extract the operators in different intelligent optimization algorithm and their
improvement and hybridization forms as independent modules, recombine them
and make full use of them in different problems.

In this chapter, from the perspective of algorithm improvement and hybrid-
ization, we introduce the improvements in four aspects of intelligent optimization
algorithm, i.e., initialization, encoding, operator and evolutionary strategy, and
elaborate the hybridizations in three aspects, that are exploration, exploitation and
adaptation, as shown in Fig. 4.1. Further, the application of dynamic configuration
in algorithm improvement and hybridization are detailed and discussed based on
several typical intelligent optimization algorithms commonly used in
manufacturing.

4.1 Introduction

Based on genetic algorithm, particle swarm optimization and ant colony optimi-
zation and so on, a number of new variations on intelligent optimization algorithm
are evolved and developed [1, 2]. Generally, we classify these variations as
improvement and hybridization. Improvement includes changing, increasing or
deleting part of operators based on original algorithm flow, such as the parameter

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_4

107



adaptive adjustment in crossover and mutation and the addition of niche strategy.
Hybridization consists of all kinds of combinations of part of operators in different
algorithms, examples are hybridization of genetic algorithm and particle swarm
optimization in which the crossover and selection are applied and combined with
the learning operators of particle swarm. Taken as a whole, the improvement
places emphasis on the modifications in operators, while the hybridization mainly
focuses on the recombination of different operators.

From the macroscopic angle, both improvement and hybridization are estab-
lished for better efficiency. From the angle of specific goals, the improvement and
hybridization can be further divided in 4 kinds, the reduction of time consumption,
the improvement of solving accuracy, the enhancing of algorithm stability and the
handling of searching convergence.

The reduction of time consumption: Many complex problems have the
requirement of decision timeliness because of their changing states. Dynamic
parameter adjustment in process control and live migration of tasks in production
line are typical instances [3, 4]. To make sure the timeliness of the system states,
people commonly choose operators with low time complexity and high exploration
and simplify the complex variable relationships with fuzzy mapping [5].

The improvement of solving accuracy: As we know, algorithm cannot have the
highest searching ability and the lowest time complexity both. Therefore, contrary
to algorithm design for time reduction, some designers try to improve the
searching ability of algorithm with the sacrifice of searching time for some
problems which require higher solving accuracy. With different requirement,
designers always apply some exploitation strategies and heuristics to do some local
traversal search to improve algorithm searching ability [6, 7].

The enhancing of algorithm stability: For especially large-scale problems,
intelligent optimization algorithm generally has some randomness. The fluctuation
of solution results in several runs can be represented by algorithm stability. With
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different initial population and middle random operators, the solution quality is
hard to ensure. Thus the enhancing of algorithm stability becomes quite important.
Researchers generally attempt to normalize the initialization and fix the searching
direction to narrow the differences of results in various runs [8, 9].

The handling of algorithm convergence: With this target, some of researchers
mainly focus on the avoidance of divergence which caused by operators with high
exploration, low exploitation and behavior without collaboration [10, 11]. Others
generally concentrate on enhancing the searching diversity to avoid the premature
convergence which is responsible for low exploration and unbalanced local
searching [12, 13].

According to the ‘‘no free lunch’’ law [14], no algorithm can obtain compre-
hensive performance improvement in the above four aspects simultaneously. With
numerous improvements and hybridizations, the accuracy, time consumption,
stability and convergence of intelligent optimization algorithms have obtained
large progress in different complex manufacturing problems [15–17]. Based on the
four objectives, the classification of improvement and hybridization in intelligent
optimization algorithm are summarized in the following sections.

4.2 Classification of Improvement

The improvement of intelligent optimization algorithm indicates the modification
of part of operators in algorithm flow. According to the uniform searching process,
the improvement can fall into four sides, improvement in initial scheme,
improvement in coding scheme, improvement in operator and improvement in
evolutionary strategy.

4.2.1 Improvement in Initial Scheme

Initialization contains the population generation and parameter assignment. It
decides the initial positions of individuals in the solution space. Good initial
allocation can help the algorithm obtaining better solutions, while bad initial
allocation may result in premature convergence. Besides, uneven distribution of
individuals can lowering the algorithm stability to some extent, and too intensive
or fixed allocation also can make the whole searching with low diversity. As
described in Sect. 1.5.2, the most commonly used initial schemes include random
initialization, sequential initialization and rule-based initialization.

Random initialization: It means to randomly assign values for different indi-
viduals in the domain. As the most commonly used scheme, it is independent of
the specific problem and easy to implement. In this scheme, uneven allocation is
one of its main drawbacks. With different implement environment and different
methods of generating pseudorandom numbers, it is quite unstable. Moreover, in
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large-scale solution space, a relatively small number of individuals may fall into
bad allocations to a great degree. The main solution for the above situations are
dividing the solution space and applying more even random scheme such as Monte
Carlo or Mersenne Twister in each sub-spaces, or generating more individuals and
filter better ones with good allocations [18–20].

Sequential initialization: This method refers to assign regular sequential
numbers to individuals successively. During the process, sequential numbers are
generated by dividing the variable domain with equal length in each dimension. It
makes sure that the individuals evenly distribute in the whole solution space. Yet
the fixed positions established by sequential initialization bring some drawbacks to
algorithm. Firstly, it may bring about low diversity at the beginning of search.
Many corners in the solution spaces are tend to become blind area. Secondly, if the
distance of these individuals and the global optimal solutions are far, then better
solutions can not be easily found. These may lead to premature convergence in a
large degree.

Rule-based initialization: It refers to initialize the individuals according to
problem property and environment-based rules. For different problems, people
need to design specific rules to guide the initialization. The rules can be defined in
accordance with some state forecasting and problem priori-knowledge. For
instance, we can firstly divide the solution space, define some optimal positions in
the sub-spaces and use these optimal positions as initial allocation. With different
problem-based rules, better searching pace and solution quality can be obtained
compared to the above methods. The main drawback of the rule-based initiali-
zation is that it is problem-dependent with low scalability. Some researchers also
use deterministic algorithm beforehand to generate initial solutions and realize the
hybridization of deterministic algorithm and intelligent optimization algorithm
[21–23].

Beyond that, there are many other initialization schemes in different kinds of
intelligent optimization algorithms [24, 25]. On account of the low efficiency of
sequential initialization, random initialization is the most widely applied because it
is more likely to be implemented. Moreover, although rule-based initialization
scheme is hard to design, it is also broadly used in engineering for better searching
ability. In some cases, the hybridization of random initialization and rule-based
initialization might be a great way to obtain a good initial allocation with high
diversity.

4.2.2 Improvement in Coding Scheme

Encoding are defined as the transformation or mapping between individual genes
and problem variables. Except direct real number coding scheme, almost all other
coding ways need extra time to execute transformation in iteration, which can
straightforwardly increase time complexity. The major influences of encoding
scheme are increasing algorithm diversity and enhancing the searching ability by
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cooperating with operators. Thus efforts on encoding primarily aim at the
improvement of solving accuracy and the handling of algorithm convergence. As
described in Sect. 1.4.1, most typical coding schemes are designed based on
genetic algorithm and gradually generalized to other intelligent optimization
algorithms. At present, many newly-developing encoding schemes are established
for specific manufacturing optimization problems [26, 27]. Yet the most applied
coding scheme in engineering are still real coding, binary coding and matrix
coding and so forth [28, 29]. Here we list some representative ones.

Real coding: As introduced above, no matter in continuous or discrete opti-
mization, the encoding and decoding operations in iteration can be avoided. It is
suitable for big variables and can effectively reduce the time complexity of
algorithm.

Binary coding: In this scheme, variable in each dimension is mapped as a group
of binary (or Boolean) genes. It is the eldest coding scheme in intelligent opti-
mization algorithm. When applying it, the length of genes for each variable must
be defined previously. When the accuracy requirement is higher, we need very
long genes to present big variables. Hence, compared with real coding, it will
largely increase the searching time especially in large-scale problems with big
variables and high accuracy requirement.

Matrix coding: As the same as binary coding, each variable can be represented
by a line of individual genes. The genes can be either Boolean or real number. It is
designed especially for discrete combinatorial optimization. Typical time
sequence, symbol string and multi-dimension position can all be directly repre-
sented by matrix coding. It is more flexible than the above coding scheme, yet will
take more memory space and more complex.

Quantum coding: It is a new coding scheme which is used very frequently in
recent research. Borrow the dimorphism of dual quantum genes and quantum
rotation door, it maps the variables to quantum genes by two steps. This can bring
high diversity to population during the whole searching process. However,
dimorphic quantum genes will also bring two step operations both in encoding and
decoding and take more memory space in the programming, so as to lower the
decision efficiency.

With changing environment in production and manufacturing system,
researchers and engineers have made great efforts on digging new encoding
schemes [30, 31]. No matter in what coding scheme, the main consideration is the
encoding and decoding complexity without the loss of searching accuracy. In
different coding scheme, especially for combinatorial optimization, we may easily
get into a case that multiple individuals mapping as one single solution, such as
real coding scheme in job shop scheduling problem. In such situation, repetitive
searching and uneven pace become inevitable, which further lower the whole
searching quality of algorithm. Therefore, finding solutions for different kinds of
many-to-one cases and designing efficient one-to-one mapping coding scheme are
quite imperative in more and more complex manufacturing optimization.
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4.2.3 Improvement in Operator

Operators are the core of intelligent optimization algorithm, so that improvement
in operators attracts more attentions than other aspects. For exploration, random
regeneration, chaotic changing, niche strategy [32, 33] and so on gives the algo-
rithm more dynamics, but with less regularity, better solutions are hard to find and
the algorithm stability will be very low. For exploitation, heuristics such as priori-
knowledge, local search and greedy strategy [6, 34, 35] and so on brings more
local searching ability which nevertheless makes the algorithm easy to trap into
local convergence and do more repetitive searching. Only if two of them combined
together can they establish a balanced searching pace and good solving efficiency.
Today, many researchers focus on the balanced searching of intelligent optimi-
zation algorithm and design several exploration-oriented, exploitation-oriented and
adaptive operators for solving complex problems. From the improvement ways we
can divide the operator improvements into the adjustment of control parameter, the
modification of operation and the increase of new independent operators.

The adjustment of control parameter: Control parameter in intelligent optimi-
zation algorithm, such as crossover and mutation probability in genetic algorithm,
decides the strength of operations in iteration. Therefore, for dynamic problems,
people are likely to design adaptive parameter control strategy in operators in line
with population searching state to guide the operations. Typical examples are the
weighted particle swarm optimization, the adaptive genetic algorithm and so forth.
In the adaptive genetic algorithm, the crossover and mutate probabilities are
decided by the average fitness value and the best fitness value of the whole
population. If the average fitness value is close to the best fitness value, the two
probabilities will become lower, so as to do more exploitation. If the average
fitness value is far from the best fitness value, or the differences between the
individuals are large, then the two probabilities will be higher in order to
strengthen the crossover and mutation and generate more new diverse individuals.
It can be clearly seen that changing weights and parameters can not only balance
the exploration and exploitation during search, but also adapt the algorithm for
different problem environments. Except the above mentioned parameter-based
improvement, fuzzy adaptive theory and knowledge-based adaptive theory can
both be introduced to different sorts of operators to enhance the adaptive ability of
algorithms for complex problems. Many experiments and applications have veri-
fied that such adjustments in iteration can successfully balance most of intelligent
optimization algorithms during their searching pace without the increase of time
complexity [36, 37]. Thus they are widely applied in engineering.

The modification of operation: It primarily refers to the structure modification in
operators according to different problem requirements and the coding scheme in
earlier stage. The most representative ones are multi-point crossover, chaotic
mutation, discrete particle swarm learning and record list-based path finding and so
on. Some of them are inclined to magnify the operation strength or range to increase
algorithm diversity. Some of them are apt to choose part of individuals and add new
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operations to enhance the algorithm excavating ability. These modifications noted
above are normally independent of specific problem, so that they can be widely used
in different environments. Except that, there are also some problem oriented mod-
ifications, such as the adding of priori information in ant colony optimization and
immune algorithm, which mainly aim at increase the searching accuracy and make
the algorithm more suitable for a specific problem. The difference with the above
general modification is that the problem-oriented modification can only applied in a
particular environment for a particular decision. At the same time, many people
additionally focus on modifying the existing operators to adapt the specially
designed coding scheme, such as the operator improvement of discrete particle
swarm optimization for the particular coding scheme of job shop scheduling and the
new record list improvement in ant colony optimization for solving continuous
problems. In this point, they may basically change the operational mechanism with
some new customized strategies. From all these improvements it can be seen that,
when the problem to be solved and its encoding scheme are certain, the operators can
all be divided into several sub-modules with population inputs and outputs
according to the iterative steps. With the variation of these sub-modules, the
searching direction and ability can both be changed.

The increase of new independent operators: Because the existing operators in
an algorithm may possess weak capability either in exploration, or in exploitation,
researchers generally tend to increase new independent operator to compensate the
algorithm in a certain aspect. It is similar to algorithm hybridization, but unlike
hybridization, the new operators are newly designed in accordance with the
existing ones and do not belong to other algorithms. Characteristic cases are niche
strategy, local search strategy and sorting based strategies and so on. For instance,
niche strategy are designed before individual optimal selection, which use the
hamming distance to get similar individuals and multiple a penalty function to
make the weak ones been weeded out. Besides, local search strategy which tries to
traverse a small range of space and find the best solution can be widely applied in
different algorithms in any step and increase the algorithm exploitation. Most of
these augmentations will increase the time complexity of algorithm to some extent,
thus they can only be used in the problems which have low requirement on
decision timeliness.

In recent times, there are still more and more improved operators springing up
for diverse decision scenes and being cross-utilized in a bunch of manufacturing
problems [38, 39]. But most of them have only been verified in merely one or two
specific problem in theory and tests, not in wider practice.

4.2.4 Improvement in Evolutionary Strategy

Evolutionary strategy are executed after operators in iteration for updating the
population and record the best and worst positions during the whole searching
process. Since the elite evolutionary strategy is widely applied, it is the least
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studied component of intelligent optimization algorithm because its influence on
algorithm is lower than the above parts. However, with filtrating of new indi-
viduals to replace old ones, unbalanced updating will largely slow down the
searching speed and may lower the whole efficiency or even give rise to premature
convergence. Thus it is also very important. Improvement research in evolutionary
strategy is inclined to consider the enhancing of algorithm stability and the han-
dling of algorithm convergence and handle single-objective and multi-objective
problems in different manners.

For single objective optimization, evolutionary strategy is developed from the
direct replace manner to the famous elite strategy. In elite strategy, if the best
individual obtained by several operators are better than the global best record, then
replace the global best one with the new best one, or we should replace the worst
individual in current generation by the new best one. Elite strategy becomes almost
a uniform basic part in classical intelligent optimization algorithm for simple-
objective optimizations. Furthermore, typical improved evolutionary strategies
also include the method that combining the new individuals and the old ones and
doing filtration after the combination by fitness based sorting or hamming distance
based selection. These strategies play an important pre-selection role to prevent
population diverge and premature convergence.

For multi-objective optimizations with Pareto scheme, elite strategy becomes
not that suitable. Instead, the combination of new and old individuals in generation
and screening in frontier Pareto-set is used for population updating. Now the most
widely applied strategy is non dominated sorting. It is similar with the fitness
based sorting in single-objective optimization. The only difference is that it uses
the non-dominating theory to separate the individuals into sorted layers. Addi-
tionally, for improving the population diversity, some probability-based elimina-
tion mechanisms are also used to delete similar individuals in a specific layer
randomly. In this manner, if the randomly generated number is smaller than a
threshold, then accept the corresponding individual goes into the next generation,
or it will be eliminated. It can increase the searching diversity and ensure the
algorithm convergence in actual fact.

In a word, with some certain manners, evolutionary strategy can also be
modified and further enhance the algorithm searching ability. As a key assistant
part in intelligent optimization algorithm, it is quite independent with specific
problem and worth to be researched for improving the efficiency of general
intelligent optimization algorithms.

4.3 Classification of Hybridization

Hybridization refers to recombine or rearrange parts of intelligent optimization
algorithms to generate a new method. Because a large proportion of initialization
and coding schemes can be widely used in intelligent optimization algorithms, the
design of hybridization chiefly focus on the recombination or rearrangement
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among operators in iteration. With different emphasis, hybridization can also be
divided into three kinds, hybridization for exploration, hybridization for exploi-
tation and hybridization for adaptation.

4.3.1 Hybridization for Exploration

Hybridization for exploration mostly designed to search wider solution space in a
limited time. In such category, searching step and range-ability of algorithm is
quite large, which keeps the population with high diversity. Characteristic oper-
ators for exploration are mutation, differential evolution operators and taboo
search and so forth [40–42]. The following are brief reviews on these typical
operators for hybridization.

Mutation, originate from genetic algorithm, is one of the mostly applied operators
in hybridization. It can be independently used in various intelligent optimization
algorithms to avoid premature convergence. For example, in particle swarm opti-
mization, after the global and self learning operations finished, mutation can be
employed to balance the high learning-oriented operators and generate some new
individuals during iteration. Similarly, if we apply the mutation operator to immune
clone algorithm, parts of population can break away from the clone rule and do
search further. It can be said the mutation operator is a universal operator for
improving exploration in intelligent optimization algorithm. Moreover, it should be
noted that when using mutation in hybridization, the probability and range of it
should be concerned with the environment changing. Because too larger mutation
probability and range may bring about searching diverge, while too small operation
may not work for improvement.

The operator of random differential evolution is also a typical one in hybrid-
ization for exploration. With differential computing of three randomly chosen
individuals, it can used to enhance the exploration ability of algorithm. By con-
trolling a differential factor, it can amplify the exploration step to enhance pop-
ulation diversity or shrink the step to realize mutual learning. More flexible than
mutation, it can make the new individual evenly distributed in the solution space
and realize more balanced exploration. For instance, if we combine the differential
evolution operator with the path finding operator of ant colony optimization, after
the path finding, the differential computing with three randomly individuals can
effectively alleviate the premature convergence brought about by unevenly pher-
omone. Except that, we can also replace the mutation in genetic algorithm with
differential computing to obtain an effective hybridization taking the problem
environment into account.

Taboo search are also a most commonly used operator for exploration-oriented
hybridization. Different with the above two independent operators, we need to
additionally design new taboo list for each hybridization scheme in different prob-
lems. If we apply taboo search in genetic algorithm, we need to design the problem-
specific taboo list, do taboo judgment after genetic operators (i.e. selection,
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crossover and mutation) and update the taboo list with new records. The same
principles can apply to other hybridizations such as taboo-based immune algorithm
and taboo-based simulated annealing algorithm. Furthermore, we can not only
design taboo list for individuals, but also for other searching parameters. It makes
sure the diversity during the whole searching process and avoids repetitive iteration
to some extent. The main drawbacks of applying taboo strategy in hybridization are,
(1) taboo judgment during iteration may bring larger time complexity, (2) long taboo
list may increases the space complexity. At present, it is still a good strategy for
doing wider exploration in different intelligent optimization algorithms.

4.3.2 Hybridization for Exploitation

Hybridization for exploitation is designed after exploration to make the algorithm
searching in local scope more efficiently. In hybridization for exploitation, most
heuristics and local search operators are applied for searching in a narrow scope.
Characteristic operators are immune operators, learning operators of particle
swarm optimization and path finding operators of ant colony optimization [43–45].

Immune operators include two kinds, immune clone and immune vaccination.
Immune clone tries to extract features of the global best individuals to guide the
operation, while immune vaccination tend to use priori knowledge of the specific
problem to change parts of individuals locally. Both of them need some rules to
guide and are independent from other operations. Therefore, they can be used in
anywhere with some exploration-oriented operators to form a new algorithm with
good exploitation ability. However, because of the problem-dependent rules, not
only the design of hybridization based on immune operators will become complex,
but also the searching with iterative immune vaccination and extraction will take
much longer time. In other words, they sacrifices time for quality. Many studies
prove that with problem-based guidance, immune operators can truly bring great
searching ability and realize combination of deterministic and non-deterministic
decision with high accuracy.

Learning operators of particle swarm optimization include global learning and
self learning. With the record of self-best and global-best positions, they can only
be applied together to balance the searching pace. With single self-learning,
individuals without cooperation will become chaos and cannot get evolution any
more. In reverse, with single global-learning, the population will converge quickly
into a bad position. Thus, only the integration of them can ensure the stable
searching. Generally, they can be used with other operators as exploitation-
enhanced algorithms to improve the cooperative and stable searching. For
example, they can be introduced to chaotic optimization or genetic algorithm.
After the original action, the learning operators can reduce the randomness and add
some guidance for exploitation. Similar with immune operators, due to the record
of self-best in each generation, both the time complexity and space complexity will
be increased.
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Path finding operator of ant colony optimization tries to generate new popu-
lation according to the pheromone concentration and do pheromone updating after
that. It is also similar to the above learning operators, which attempts to use self
and global record to guide the search. With pheromone updating and recording, it
also has high complexity in hybridization. The most famous hybridization schemes
are the combination of ant colony optimization and genetic algorithm and the
simulated annealing ant colony optimization, and so on. Owing to its high com-
plexity, it generally recombined with some simple exploration-based operators in
design. For example, if we combine path finding operator with crossover and
mutation of genetic algorithm, it can reduce the randomness in individual inter-
action and improve the local exploitation with group cooperation.

At present, these exploitation-based operators are mostly recombined with
crossover, mutation and simulated annealing operators. With lower exploration
and higher exploitation in local scope, these hybridizations have performed good
exploitation ability in different manufacturing problems. However, with high
complexity in both design and execution, how to design a simplified exploitation-
based operator without accuracy loss is also an essential problem.

4.3.3 Hybridization for Adaptation

Hybridization for adaptation is mainly designed for adaptively solving problems
with dynamic or complex solution space. Take the consideration of the balance of
exploration and exploitation, most researchers recombine more than two operators
to get high exploration in earlier stage and turn to exploitation in later stage.
Generally, many intelligent optimization algorithms lack the ability either in
exploitation or in exploration. Thus the above two kinds of hybridizations attempt
to design hybridization to fill the gaps. But those strategies may still have the
unstable or unbalanced problems. For overcoming the weakness, hybridization for
adaptation receive a lot of attentions.

The mostly used operators for adaptation are simulated annealing operator. It
particularly refers to the annealing acceptance judgment used in various hybrid-
izations. In early phases, the annealing acceptance probability is quite large so that
many degraded individuals can be accepted for high diversity and exploration.
With the decreasing temperature, the lowering probability makes lesser and lesser
degraded individuals to be accepted, so as to improve the algorithm convergence
on the other side. With annealing probability, it can control the whole searching
process adaptively with other exploration or exploitation-oriented operators to
perform balanced searching. Moreover, it is easy to implement without bring more
complexity. Thus, simulated annealing based hybrid intelligent optimization
algorithms are more and more designed and used for different problems as well.

Except that, more and more efforts are putting in design adaptive operators for
hybridization or recombine adaptive operators for the balance of exploration and
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exploitation [46–48]. The aim of hybridization for adaptation can be summarized
as getting good ability and balance in exploration and exploitation with less
searching time.

4.4 Improvement and Hybridization Based on DC-IA

We have listed the classification of improvement and hybridization of intelligent
optimization algorithm and their typical examples in the above sections. For dif-
ferent kinds of manufacturing optimizations, although with the same operations,
they perform totally different. People need to do a lot of work to repetitive design
various improvements and hybridizations for specific problems. For reducing these
repetition and make the existing algorithms more efficiently in diverse environ-
ments, we presented a new dynamic configuration strategy mentioned in the
previous chapter. With the new strategy, we can separate the solving process as
four modules, i.e. initialization, encoding, operators and population updating. The
input and output of each module are both population. Moreover, we can also divide
and stored these modules according to their features. With two kinds of classifi-
cations, improvement and hybridization based on DC-IA can be divided into two
styles, (1) module-based improvement and hybridization, (2) process-based
improvement and hybridization.

Module-based improvement and hybridization means to design uniform itera-
tive operations with new or recombined modules. It comes down to operator-based
configuration. In detail, it can be classified as cascade configuration, parallel
configuration and mixed configuration, as shown in Figs. 4.2, 4.3 and 4.4.

Similar with traditional hybridization, cascade configuration means to simply
select multiple modules with different functions and assign operational order for
them. In this scheme, one single hybrid algorithm is generated without generation
division and population division. Based on the method of DC-IOA, this way can
largely improve the reutilization rate of operators and produce new hybridizations
directly.

Different with cascade configuration, parallel configuration refers to divide
population into several sub-populations and select groups of operators for different
sub-populations. In such scheme, more operators can be combined to do diverse
search. Specifically, with uniform initialization and encoding scheme, population
is randomly divided into sub-populations. During iteration, each sub-population is
modified by different group of operators. After all operators finished, the sub-
populations are combined and evolved together with uniform evolutionary strategy
and randomly divided again to sub-populations. Diverse groups of operators
guarantee the diversity of the whole population, while the random division of sub-
populations ensures each individual can be evenly updated by different groups of
operators. The whole process is balanced and more flexible than cascade config-
uration. Moreover, more operators will not increase the whole time complexity of
algorithm as a result of the multi sub-population scheme. The main drawback is
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that, it is hard to select suitable group number and design operators for several
groups with high the coordination.

Further, based on cascade and parallel configuration, we can quickly implement
mixed configuration. That is to say, we can perform cascade configuration with
ordered simple operators and divide population into several sub-populations for
parallel groups of operators. Sometimes, single cascade configuration is simple,
stable but with low flexibility and diversity, while single parallel configuration
ensures high diversity but inversely with low stability and interoperability. In such
cases, we can combine cascade and parallel configuration, use cascade operators to
enhance the interoperation and stability among sub-populations and perform parallel
groups of operators to improve searching flexibility and diversity. However, it is
harder to design than parallel configuration and the complexity is much higher.

Except that, we can perform dynamic configuration from the perspective of
algorithm process, i.e. process-based improvement and hybridization. Different with
the above module-based configuration, we can divide the generation process into
several parts. Each part, containing multiple generations, performs different group of
operators. It can be boiled down to algorithm-based configuration. Based on this
frame, the process-based improvement and hybridization can be further divided as
(1) process-based design with homogeneous coding and (2) process-based design
with heterogeneous coding, as shown in Figs. 4.5 and 4.6.

In the first kind, the coding way in the whole process is unchanged. With
uniform coding style, the process can be separated to two or more phrases. Each
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phrase applies different group of operators. For example, with uniform binary
coding scheme, we can apply genetic algorithm in generation 1–100, employ
particle swarm optimization in generation 101–200 and perform ant colony opti-
mization in generation 201–500, just as we described in Chap. 3. This configu-
ration way is more flexible and simple than the module-based way, because users
can easily obtain exploration in early stage, balance searching in middle stage and
exploitation in later stage by using operators with corresponding functions, so as to
make the process easier to control. In addition, with partition of searching process,
the total time complexity will not be increased as well. For users with existing
operators, this configuration way is much easier to design an efficient improved or
hybrid algorithm than others.

Based on the process-based strategy, we can also use heterogeneous coding
schemes in different parts of process. The only different is that it needs several
trans-coding steps among different phrases. This allows us to applied more types of
operators to further enhance diversity of operations. However, this will also largely
increase the time complexity and decrease the searching efficiency.

Initialization

Encoding

Operator 21

Operator 2m2

Decoding

Evaluation

Criteria
Satisfied?

Output

Yes

No

P
ar

al
le

l c
on

fig
ur

at
io

n

Operator 11

Operator 1m1

Operator n1

Operator nmn

Sub-pop 1 Sub-pop 2 Sub-pop n
... ... ......

Fig. 4.3 Parallel configuration in module-based improvement and hybridization

120 4 Improvement and Hybridization of Intelligent Optimization Algorithm

http://dx.doi.org/10.1007/978-3-319-08840-2_3


It is worth noting that, for large-scale complex manufacturing optimization, we
can combine both module-based configuration and process-based configuration to
design improvement and hybridization. The design and test process in this case
will become much harder. But with population and process divisions, the time
complexity will not be increased much.

It can be seen, based on the concept of DC-IOA, with module-based and
process-based improvement and hybridization, limited operators with uniform
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input and output can form hundreds of intelligent optimization algorithms with
various types of structures. Not only the reutilization of existing operators is
increased, but also a bunch of new dynamic improvement and hybridization
schemes can be effectively applied for different kinds of problems.
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4.5 Summary

Improvement and hybridization of intelligent optimization algorithm are always a
focal point in the optimization of the whole life-cycle manufacturing. More than half
of researches employs different sorts of improved or hybrid intelligent optimization
algorithms in manufacturing optimizations, such as [49–53] and so on. This chapter
introduced the improvement and hybridization of intelligent optimization algorithm,
classified the improvement into four categories, i.e. improvement in initialization,
improvement in coding scheme, improvement in operators and improvement in
evolutionary strategy, and divided the hybridization into three kinds, i.e. hybrid-
ization for exploration, hybridization for exploitation and hybridization for adap-
tation. Then the detailed characteristics of the above categories are given with
typical examples respectively.

Based on the existing manners and the new DC-IOA concept, we further
present two kinds of new strategies for improvement and hybridization, (1)
module-based improvement and hybridization and (2) process-based improvement
and hybridization. The design process and features of the two kinds are elaborated.
They are very practical and flexible and can play a guiding role in design and
optimization in manufacturing. With the new design strategies, the flexibility and
reusability of existing operators for different sorts of complex problems can be
fundamentally enhanced.
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