
Chapter 2
Recent Advances of Intelligent
Optimization Algorithm in Manufacturing

Due to its good versatility and independence, intelligent optimization algorithm
has largely shortened the time of decision-making in large-scale optimization
problems of manufacture. However, lower searching time often conflicts with the
searching accuracy in most cases. To improve the problem solving capability,
research in intelligent optimization algorithm based on different domain charac-
teristics never stopped. From the view of manufacturing, this chapter classified and
comprehensively analyzed all kinds of manufacturing optimization problems and
their general methods, illustrated the application features and challenges of
intelligent optimization algorithm in manufacturing, and summarized the devel-
opment needs and trends of intelligent optimization algorithm in the field of
manufacturing system.

2.1 Introduction

First of all, the application process of intelligent optimization algorithm in man-
ufacturing engineering consists of five main parts, as shown in Fig. 2.1, problem
modeling, variable encoding, operator design, simulation and algorithm imple-
mentation. Differs from pure algorithm design, the most critical part of algorithm
application is problem modeling and variable encoding. Then the design of
operators in algorithm depends largely on the specific environment and coding
ways.

Problem modeling: The core of modeling is using variables and formulas to
concisely and comprehensively express the three main elements of problem—
variables, objectives and constraints—according to the environment and require-
ment. Moreover, the priori knowledge, environmental parameters and the rela-
tionship between variables should be given in concise mathematical expression.
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Variable encoding: Encoding scheme is the link between problem and intelli-
gent optimization algorithm. It is the basis for operators in algorithm to search in
the solution space of problem. Different encoding schemes have different levels of
randomness and then make the algorithms searching with different capability.

Operator design: With population-based iteration, operators, such as crossover,
mutation and so on, need to be selected and designed according to the above
encoding scheme. It decides the evolutionary direction of population and the
whole searching way of algorithm. Different kinds of operators have different
ability of exploration and exploitation and suitable for different sorts of problems.
Thus in this step, we should especially focus on the balance of the two ability in
the algorithm.

Simulation: Because of the randomness of intelligent optimization algorithm,
simulation is the most effective way to verify the algorithm performance with
theoretical analysis. Moreover, parameters need to be tuned based on several
experiments. If the expected performance is reached, the algorithm can be adopted
and applied; if not, we should return and reanalyze the encoding scheme or the
operators for adjusting the specific problem.

Algorithm implementation: After the design and simulation, the algorithm can
then be developed in practical systems for application.

Based on such a unified process, intelligent optimization algorithm is applied
almost in everywhere. It can be seen that there are mainly three types of appli-
cation objects in manufacturing field: management of manufacturing process,
control/simulation for manufacturing system and product/element design and
analysis, as shown in Fig. 2.2.

• Management of manufacturing process: It covers the continuous process
modeling and discrete workflow management of design, machining and
transportation in production line. It is central line for the whole life cycle of
manufacturing. Thus it can be called as process optimization.

• Control/Simulation for manufacturing system: It includes the design of man-
ufacturing control system, manufacturing simulation and supervision of pro-
duction line. Only high efficient control and simulation will guarantee the
efficient operation of the whole manufacturing system. It is a kind of system
optimization.
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Fig. 2.1 The application process of intelligent optimization algorithm
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• Product/element design and analysis: It contains the structure design and
modeling and finite element analysis of product. It is the core object of man-
ufacturing. Optimization in this category is known as structure optimization as
well.

Problems in these three objects have their own particular characteristics and are all
along with high complexity. Though a plenty of intelligent optimization algo-
rithms are designed for them, there are still various degrees of difficulties and
challenges in the optimization for these three types of objects. On determining how
to choose the most beneficial algorithms for different application objects in
accordance with problem characteristics, and how to apply and incorporate those
algorithms with general optimization methods in practical systems, further dis-
cussion is presented next.

2.2 Classification of Optimization Problems
in Manufacturing

Problems in manufacturing include single-objective and multi-objective ones. In
the light of the attributes of decision variable, problems can be simply divided into
continuous numerical optimization and discrete combinatorial optimization as
well. From the perspectives of both optimization targets and decision variables, we
primarily divide the problems into five categories: numerical function optimiza-
tion, parameter optimization, detection and classification, combinatorial schedul-
ing, and multi-disciplinary optimization.
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Fig. 2.2 Three main optimization objects in manufacturing
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2.2.1 Numerical Function Optimization

Numerical function optimization refers to searching for optimal solutions of
nonlinear multivariate complex equations. Typical problems in this category
include function optimizations in modeling of manufacturing process and complex
finite element analysis for product structure design. The variables are usually
continuous and the objectives are multi-modal numerical functions.

Generally, numerical function optimization problems often appear in manu-
facturing process optimization and product structure optimization. The solutions
are primarily the suitable values of global characteristics such as cutting or milling
speed, and feed rate, process loads and structure length of product. Complex
environment always bring about multiple relative parameters and constraints in the
problem model. Thus it has the characteristics of large solution space, dispersive
and narrow feasible solution regions, complex objective functions and high
dimension of variables. Take the structure design of manufacturing part as an
example, the decision variables are generally structure sizes, and the objectives are
maximizing the key loads and minimizing resource consumption. With nonlinear
relationship among stress and strain of the part, material consumptions and the
structure sizes, differentiation and integration are both involved in the objective
functions, which make the multimodal functions difficult to solve.

In continuous space, when most of the multivariate functions are linear,
mathematical programming is commonly used in solving equations. When func-
tions are complex but have small solution space, software such as ANSYS and
CAD are often used to simulate. We may find the peak value by means of
mathematical modeling and programming. However, with large-scale solution
space and nonlinear multivariate functions, when most classical method requires
much longer solution time, intelligent optimization algorithm can come in handy.
Additionally, because of the uncertainties in the model parameters selection and
the machining index tuning, intelligent optimization algorithm with invariance and
independence can better adapt to solve these problems. Thus, in recent years,
genetic algorithm and particle swarm algorithm, which are suitable for continuous
numerical optimization, are applied in many kinds of structure optimization and
manufacturing process optimization. And these intelligent optimization algorithms
are usually combined with classical deterministic algorithms to optimize the model
in two steps or optimize the model under the guidance of classical deterministic
algorithms to improve the solutions. Reference related to numerical function
optimization in manufacturing can be found in [1–9].

2.2.2 Parameter Optimization

Parameter optimization generally refers to the selection of optimal empirical
parameters in complex manufacturing system or process control optimization. In
manufacturing system, most parameters such as material and machining properties
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have big influence on the manufacturing process and systems. With large uncer-
tainty and complexity, it is hard to build theoretical model to calculating the
optimum value of these parameters for different situations. Thus they are mostly
extracted and solved independently with nondeterministic algorithms.

Parameter optimization often exists in manufacturing process optimization and
system optimization. Differs from numerical function optimization, parameter
optimization is the optimization of one specific part or local key point, though the
global environmental factors of system or process are considered. The parameters
involved are highly dynamic and context-relative. For example, in the process of
manufacturing such as casting or milling, the variables to be solved are machining
force indexes, control time interval, load variance (upper bound and lower bound),
etc. And the aim is the lowest loss, the highest manufacturing speed and the
highest machining quality. In the process of optimization, objective functions are
usually not able to be set out, and the real-time demand of system control is high,
which makes the problem more difficult.

To solve this, parameter optimization has two solutions. If the objective
functions can be formulated, parameter optimization is often solved by classical
function optimization algorithm, or intelligent optimization algorithm when the
solution space is huge. Otherwise, we can only simulate the system or related
processes, and take the output as the target value. The parameters can be solved by
simple feedback when the solution space is small, or by intelligent optimization
algorithm when the solution space is huge or highly dynamic. Most of the recent
studies of parameter optimization are developed in the two aspects above, and the
main research and development solution is dividing and reducing the feasible
empirical region of parameters, and then taking the method of integrating the
simulation and tools to find suitable values of them. As a new and convenient
decision-maker, the intelligent optimization algorithm is widely used in studies.
For recent studies, refer to [10–19].

2.2.3 Detection and Classification

Detection generally refers to determine whether the condition and variation of an
entity or event are beyond normal by features. Classification refers to define the
category of the entity or event by features as well. Both of them contain the
process of feature-extracting, pre-training and state-judgment. Therefore, they can
be classified into one group and all follow the training process according to
quantities of samples.

Detection is usually reflected in the fault diagnosis of manufacturing control/
simulation system and supervision of manufacturing process and so on. Classifi-
cation is often embodied in signal analysis of electrical system and model state of
machining part, etc. Those problems have the characteristics of scattered samples
distribution and uncertain features influence. They are widely exist in manufac-
turing process, system and structure optimization, but have less research than
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parameter optimization in manufacturing field. Take the fault diagnosis of
machining process as an example, optimization variables are generally the influ-
ence weight of several relative features, and the aim is to identify whether a fault
exist in the specific case and which kind of fault it is as accurately as possible.
Specifically, it is a determining process in which the influence weights of several
relative features are trained with samples, and the status of process or objects are
detected according to these weights. In a similar way, the classifications are trying
to identify the states of objects with feature weights trained from large-scale
samples. Problems in this category are slightly similar to parameter optimization
mentioned above. In many cases the target function can not be obtained, and we
can only make decision according to the output of system or process simulation.

No matter for training or recognition, detection and classification problems are
generally solved by some approximate iterative algorithms when the target func-
tion can be obtained, or by intelligent optimization algorithm when the solution
space is huge, which is quite similar to the parameter optimization as well. If the
target function is difficult to obtain, we may simulate the system or related pro-
cesses in iterations, and take the output as the evaluation criteria. In recent years,
most of the studies in detection and classification focus on solving the problems by
support vector machine, decision tree and neural network and so on, among which
neural network is the most typical one. While there is increasing number of studies
in neural network, the application of them in manufacturing field is quite limited.
Currently, because of the empirical limitations and complexity of classifier such as
neural network, the research is developing mainly in the integration of classifier
and other optimization algorithms and their collaborative application in detection
and classification. For related studies, refer to [20–30].

2.2.4 Combinatorial Scheduling

Combinatorial scheduling is the most typical combinatorial optimization problem
in manufacturing system. It is a reasonable distribution and management of mis-
sions, resources and processes. Combinatorial scheduling here includes process
planning, job shop scheduling, task scheduling and resource allocation, which
schedules the manufacturing process, assembly line, manufacturing services and
machines respectively. It is a kind of discrete management and optimization in
manufacturing.

Therefore, the variables of combinatorial scheduling are generally integer. The
targets are minimizing the task execution time and energy consumption in global
or local workflow, and maximizing the quality (such as maintenance and reli-
ability) and the efficiency of production or calculation. The constraints usually are
the limits of resource capability, task size and other QoS indexes. The model is
simple, while the solution space is typically huge. In addition, the variances and
restrictions of variables are complex, which make the feasible solution space more
narrow, so as to make the optimization harder. For example, in job shop
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scheduling problem, most of the studies aim at shortest completion time of part
machining. The steps of machining, the number of machine tools in each step, and
their machining capability are known, and the distribution strategy of each
machine tool in each step of machining is to be solved. The process is complicated,
but the target function is simple. When comprehensively considering multi-QoS
and multi-objectives, optimal solutions are always hard to get.

For such problems, when the solution space is not huge, integer programming
and dynamic programming are often used in solving. When the solution space gets
bigger, the use of deterministic algorithms will always lead to the combinatorial
explosion. In most cases, sub-optimal solutions are acceptable in combinatorial
scheduling, and short decision time is required. Hence, most researchers pay more
efforts on the application of intelligent optimization algorithm in combinatorial
scheduling problems. And in manufacturing field, intelligent optimization algo-
rithm has become the most applied method in combinatorial scheduling. Due to its
typicality, some of the combinatorial scheduling problems such as job shop
scheduling and task scheduling have been used as benchmarks of combinatorial
optimization for different researchers to test and analyze the optimization algo-
rithms they designed. The improvements and application of intelligent optimiza-
tion algorithm in combinatorial scheduling by existing researchers are mostly
concentrating on two kinds: algorithm hybridation and encoding scheme design.
For related studies, refer to [31–40].

2.2.5 Multi-disciplinary Optimization

Multi-disciplinary optimization refers to the combining modeling and analysis of
problems with multi-objectives and constraints in different disciplines such as
control/mechanical collaborative design, and realizing multi-disciplinary collab-
orative decision making. At present, networked and collaborative manufacturing
system has being greatly developed. Therefore, the whole life cycle of manufac-
turing can be connected in network, so as to realize control and mechanical col-
laborative design, machine and monitoring synchronize execution. Multi-
disciplinary optimization then becomes more and more important for collaborative
work. With the widely research in integrated manufacturing and service-oriented
manufacturing, it gradually develop into one of the typical types of problems in
industry.

The variables of multi-disciplinary optimization problems mostly include both
discrete and continuous ones. Currently the studies related to this kind of problems
are very few, and most of them are based on multi-disciplinary collaborative
simulation and solved by multi-step decisions. With more and more complex
manufacturing system, it can be embodied in all aspects of process, system and
structure optimizations. Because many constraints and objectives come from
different fields and the relationships among these factors are complex, transfor-
mation and simplification are indispensable. On the other hand, simplification is
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obtained based on the loss of modeling accuracy. The complexity of such prob-
lems is obviously huge. For example, in the control/mechanical collaborative
optimization, not only the stability and the efficiency of the control system need to
be guaranteed, but also the applicability and the portability of the mechanical
model need to be improved. Therefore, the variables to be solved usually include
the parameters of control system and the critical sizes of part mechanical models.
The objective functions are multiple efficiency indicators of the collaborative
works, such as material cost, energy consumption and control efficiency, etc. It can
be seen that the multi-disciplinary optimization problems are the combination of
the above four kinds.

Multi-disciplinary optimization is the least studied one in the problems above.
Solution methods for it are mostly based on empirical adjustment and experi-
mental simulation. Although most of the existing studies focus on the objects in
manufacturing process, there are also some multi-disciplinary problems in the
design and simulation of product structure, and system management and control.
Now the methods of onside decision or multi-step optimization in collaborative
manufacturing are inevitably not thorough enough. Therefore multi-disciplinary
optimization becomes a big challenge and developing trend with the development
of advanced manufacturing system. For more information, refer to [41–44] for
references in recent years.

2.2.6 Summary of the Five Types of Optimization Problems
in Manufacturing

With large literature review, the above five types of optimization problems can be
mapped into the three typical objects in manufacturing as shown in Fig. 2.3. Most
common scenarios are contained in the classifications. Among them, manufac-
turing process optimization covers all five kinds of problems, manufacturing
system optimization includes three kinds of problems (parameter optimization,
detection and classification, combinatorial scheduling), and product structure
optimization contains three kinds, numerical function optimization, detection and
classification and multi-disciplinary optimization, as well.

According to random selection of the most related 100 literatures in the last
3 years, it can be found out that combinatorial scheduling is studied the most in
manufacturing optimization. It accounts for nearly half of optimization research.
There are designs and applications for various kinds of certain and uncertain
algorithms targeted to combinatorial scheduling, which covers every steps of
manufacturing process and the management of manufacturing system. Then, in the
next place, the numerical function optimization and the parameter optimization
have a close number of studies. In numerical function optimization, the finite
element analysis and structure optimization is the majority, and mainly target to
the analysis of various kinds of product designs. In parameter optimization,
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because of the similar adjustment schemes, the studies on parameter tuning in
process and parameter alternation in system control are evenly distributed. The
three kinds of problems account for nearly 90 % of the studies of manufacturing
optimization. On the other hand, there are not many studies on detection and
classification in manufacturing field. In this kind of problems, the studies are more
on diagnosis and detection, and less on system training and evaluation. The
application of feature-based classification in structural optimization is lesser. It is
clear that the classification is not highly concerned in manufacturing field yet.
Finally, although multi-disciplinary optimization appears more and more in the
design of manufacturing process and structure, its complexity makes it the least
studies in all these kinds of optimization problems. It is not highly concerned, and
the most of the existing studies separate these problems in to several steps and
optimize them individually. However, in the above five kinds of optimization
problems, the multi-disciplinary optimization problem is one of the most urgent
problems. Because of the one-side independent decisions with multi-steps, the
decisions are usually inaccurate and the efficiency is not high. A lot of research is
required in the modeling of associated features in different disciplines and com-
prehensive optimization among several disciplines in manufacturing process,
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Fig. 2.3 The mapping relationship between typical problems and manufacturing objects
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structure and product design. The sample research results on the problems above
are shown in Fig. 2.4.

2.3 Challenges for Addressing Optimization Problems
in Manufacturing

After the above analysis, we can see that optimization problems in manufacturing
are countless and various. Researchers conducted plenty of works on solving them
with different point of view. Nevertheless, those problems with the characteristics
of large-scale, multimodal functions and NP-hard are still hard to solve. With
widely applied nondeterministic methods, researchers and engineers are taking
many attempts to improve the solution quality and reduce optimization time. In
this section, we mainly classify the challenges faced in the problems into different
categories and analyze them with some existing solution schemes.

The challenges of optimization problems in manufacturing can be divided into
seven kinds: Balance of multi-objectives, Handling of multi-constraints, Extrac-
tion of priori knowledge, Modeling of uncertainty and dynamics, Transformation
of qualitative and quantitative features, Simplification of large-scale solution
space, Jumping out of local convergence.

2.3.1 Balance of Multi-objectives

We care the objectives the most in optimization, including the main objectives and
the secondary objectives. Most of the problems have more than one objective. It is

Fig. 2.4 The sample
research results on the five
types of problems in
manufacturing
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unavoidable that several objectives are conflicted with each other. In the case that
all objectives are unreachable at the same time, balance of multi-objectives gen-
erally refers to the average consideration of multi-objectives according to their
weights during optimization process.

To normal multi-objective problems, some typical solutions are listed as
follows:

(1) Transformation to single-objective problem: It means to combine the
objectives into a single function according to their weights, and solve the
problem with only one target function. The weights of different objectives in
the unique function are set in experience with specific environment. It is a
traditional way with low efficiency.

(2) Transformation to constraints: This method considers the main objectives
only and tries to transform the secondary objectives to constraints. It mainly
takes some main objectives as optimization goals, and takes the minimum
requirements of the other objectives as constraints to solve the problems.

(3) Pareto optimization: It considers all objectives at the same time by Pareto
non-dominate sorting scheme. The solution is non-dominate only if all of its
objective values are better than others. With a Pareto convex set used to
collect those non-dominate solutions, both the main and the secondary
objectives are evenly considered. Though the optimization of the main
objectives is often restricted by the secondary ones, it is the mostly applied
method in recent years.

Currently, engineers mostly use the first two methods according to the actual
situation, and the researchers are mostly exploring and studying the third method.
Among those methods, the first one is the simplest, and it is the earliest method for
multi-objective problems. Because the weight of each method is decided by actual
condition, the model is usually empirical and has a narrow application scope. It
ignores many optimal solutions after weighting. The second method is more
flexible than the first one, but it also requires the experience and environmental
factors to decide the strength of constraints, which is the weight of secondary
objectives, either. It is more adaptive to general decisions with different algo-
rithms, but the transformation of the objectives to constraints brings us a multi-
constraint problem, which is more complex. The third method uses the concept of
equilibrium in the game theory, improves the other two methods by avoiding the
influence of experience. It can give a series of equilibrium optimal solutions taking
advantages of non-dominate sorting and the Pareto convex set. However, because
of the complexity of its algorithm design, and the uncertainties brought by
selecting the solutions in the Pareto convex set according to actual environment, it
is rarely applied in engineering, and the studies and comparisons of the algorithms
based on this method are not very clear.

It is thus clear that balance of multi-objectives is one of the big challenges in
optimization. Now more and more engineers are trying to apply the Pareto thought
to practice. How to implement low complexity determination of Pareto optimal
solutions and how to select better solutions in the Pareto convex set are both key
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bottlenecks in manufacturing. For balance of multi-objectives in manufacturing
problems, refer to references [45–56].

2.3.2 Handling of Multi-constraints

Besides the variables and objectives in decision-making, the constraints produced
by the relationships between variables and parameters are one of the direct reasons
to complicate problem. In problem modeling, most of the constraints exist in
practice are abandoned for simplification. When applying to real production sys-
tem or process, that may cause low accuracy or even mistakes in decision making.
Thus how to suitably handle multi-constraints in accordance with system envi-
ronment is one of the most important problems in manufacturing optimization.

Following the previous section, the objectives in the problem can be trans-
formed to constraints. When the number of constraints increases, the constraints
can be transformed into the objective functions as well. For handling of multi-
constraints, there are several specific ways:

(1) Constraints as penalty function: It means to transform the constraints as a
penalty function and multiply or add it with the objective functions. If the
constraints are not exceeded, the value of the penalty function is 1 or 0, or it
becomes a huge value to make the value of objective functions unacceptable,
so as to make the solution abandoned.

(2) Bounds checking: In this method, constraints are independently stored as
searching rules. Each solution generated in searching process is checked
whether there are out of the restrictions or not, if yes, it will be discarded and
replaced by a new one.

(3) Branch-and-bound: It is a classical method which narrows the domains of
variables, and divides the solution space into several branches and then
reduces the searching range. It is also a preprocessing procedure for
searching. The only drawback of it is its high complexity and high depen-
dence in the preprocessing for specific problem.

In addition, there are many other strategies like transforming the constraints
into heuristic information or objective functions. Traditional engineering mostly
uses the first two methods listed above to deal with the problems. After extensive
development of algorithmic search, branch and bound, at present, is gradually used
in engineering, which brought many benefits. In general, the first method is simple
in design, and has got strong versatility. It can quickly filter out the solutions
which do not meet the conditions in the space. But it could easily lead to a loss of
feasible solutions and inevitable useless search in large solution space. The second
method avoids the influence of deciding by experience, but item-by-item checking
in optimization process will lead to greater algorithm time complexity. The third
one, which narrows the solution space by branch and bound, is one of the mostly
popular methods at present. It can greatly decrease the searching complexity, but
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brings preprocessing consumption on the other hand. It needs in-depth analysis of
actual problems, and with complex problems, it is hard to define the best bounds of
solutions with constraints, which leads to a complex design process and low
versatility.

Now with the development of intelligent manufacturing system, the handling of
multi-constraints in manufacturing problems tends chiefly to design versatile and
automatic processing scheme and simplification way for multi-constraints to
minimize the searching complexity. For the handling of multi-constraints in
manufacturing problems, refer to recent literature [10, 34, 57, 58, 59, 60, 61, 62,
63, 64].

2.3.3 Extraction of Priori Knowledge

For solving a variety of complex problems in manufacturing system and process,
research and application also tend to extract the priori knowledge of problem aims
at instruct the algorithm to faster searching. Typical examples are the use of
prioritization according to priori status of tasks which enables the algorithm find
suitable solutions faster, and the selection of nearest neighbor according to priori
information in path optimization. It can be down as a kind of greedy strategy. The
extraction of priori knowledge has become an important way of solving the
problems. When facing various changing problems, the extraction of priori
knowledge needs to be conducted in line with the actual environment and features
of problems. The versatility of extraction method is low, and improperly designed
method will directly cause wrong search direction and then get poor or even wrong
solutions.

Currently, on the one hand, the extraction of priori knowledge usually applied
in artificial immune systems, artificial neural network systems and intelligent
systems based on Agent. By designing the priori knowledge of specific problems,
it may perform the rule-based reasoning and prediction to achieve a fast or efficient
optimization. On the other hand, it may coordinate with approximation algorithms
or intelligent optimization algorithms for complex problems solving, which
enhances the searching direction of the algorithms. The extraction of priori
knowledge is usually achieved by obtaining the local interactions between vari-
ables and objectives. The common factors considered for the extraction can be
classified as follows:

(1) Influence of single variable to single objective: Considering only one variable
with one critical objective, the interaction between them is calculated as
priori knowledge for searching.

(2) Influence of single variable to multi objectives: Considering one key variable
with part of objectives, the relationship between the variable and multi
objectives are weighed and connect together as priori knowledge.
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(3) Influence of multi variables to single objective: Considering multi variable
with one key objective, the correlation between multi variables and the
objective are weighed and merge together as priori knowledge.

(4) Influence of multi variables to multi objectives: Comprehensively consider-
ing part or all of the variables and objectives simultaneously, the priori
knowledge is the relationships of the variables and objectives or a reasoning
rules for them.

For the calculating of different kinds of influence relations and change of status,
we may design an evaluation function as the measurement of priori knowledge, or
blur the relations and status and design the mapping between fuzzy priori
knowledge and variables. In addition, we can predict the priori knowledge by
intelligent training and reasoning according to the existing features and data of
simulation systems or models. Now because the lack of research and theoretical
analysis in the extraction of priori knowledge especially in nondeterministic
optimization, the applications of priori knowledge in manufacturing engineering
are much less. An important and difficult point is the way of simplifying and
universalizing the priori knowledge extraction and applying them in the widely in
actual systems. For the optimization based on priori knowledge, refer to recent
literature [65–75].

2.3.4 Modeling of Uncertainty and Dynamics

Problems in manufacturing are all highly uncertain and dynamic. The uncertainty
mainly refers to the randomness of characteristics and constraints in the problems,
which means that only the range of them can be determined as most time, but the
specific values in a period can’t be determined. The dynamics refers to the
property that the characteristics and constraints of problems are changing with
time. The values can be determined only in a period, but they will change grad-
ually. In most manufacturing systems, researchers and engineers always simplify
the uncertainties and dynamics of problem to certain values, which will make the
design and application of algorithms more convenient. But the simplification will
bring inaccuracy and instability. To improve the stability and solving efficiency,
the uncertainties and dynamics are accepted as key considerations.

In general, there are several methods to deal with the uncertainty and dynamic
nature of the problems in manufacturing:

(1) Replicated simulation: This method is mainly for the modeling of uncer-
tainty. It takes repeated measurements to obtain the mean value and variance
of uncertain parameters. Then conduct a number of decisions in a small range
around the value to get a set of good solutions. It can be applied in all
algorithms but is quite time consumption. Because few tests can not cover all
situations, solutions obtained are often inaccurate.
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(2) Description with fitting function: This method can be either for the solving of
uncertainty or dynamics. From mathematical point of view, it obtains the
fitting functions of uncertainty or dynamic by capturing the relation between
the actual environment and the variation rules of uncertain or dynamic
parameters.

(3) Cyclical forecasting: It is primarily for the modeling of dynamics. It refers to
predicting the variation characteristics of the problems at regular intervals.
Predicting rules is also conducted according to some test or fuzzy relation
among problem features and the environment.

(4) Feedback control: This method can be applied to deal with both uncertainty
and dynamics. It does not need to analyze the characteristics of problem and
its environment in advance. It refers to design an adaptive feedback control
strategy in optimization algorithm to automatically adjust the decision
making parameters with variant problem characteristics during the optimi-
zation process. It can be seen that this scheme is generally carried out with
multi-period problem simulation.

Engineers commonly use the first method according to actual situation, while
researchers mostly focus on the design and application with the last three methods,
in which the second method and the fourth one are the most typical. In the four
methods, the first one is a kind of brute-force methods. It is the earliest processing
method of uncertainties and dynamics without mathematical analysis. The second
one requires a theoretical basis and practical understanding of the actual problem,
and it is more flexible than the first method. However, the design of the second
method is harder. The third method conducts regular testing and estimation to the
problem by typical predictor and corrector, which solve the design difficulties of
the second method. But the prediction time during optimization directly increase
the time complexity of algorithm in most cases. The fourth method borrows the
idea in control theory and uses the problem states supervised in each period as
feedback to design an adaptive strategy which can control the algorithm param-
eters so as to adapt different situation and obtain good solutions. The design of
feedback regulation is simpler than the fitting function, and it is more versatile, but
it has the same problems in the design of adaptive control rules as the second
method.

Now the accurate modeling of uncertainty and dynamics is still a difficult
problem, which is a direct reason of the inefficiency in the decision-making of
manufacturing system engineering. Among those methods, cyclical forecasting is
quite appropriate for the modeling of dynamics according to the change of time,
and has great potential. Feedback control is more fit to the modeling of uncer-
tainty. On the whole, the development of algorithm with the consideration of
uncertainty and dynamics which can adaptively adjust the variances in problem is
a major trend. For the modeling of uncertainty and dynamics, refer to the refer-
ences [76–87].
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2.3.5 Transformation of Qualitative and Quantitative
Features

No matter in manufacturing system simulation or process modeling, qualitative
analysis needs to be done at the beginning. Then how to transform the qualitative
parameters and variables to quantitative values for decision is also a big challenge.
The accuracy and reliability are the main targets in the transformation. Therefore
we define the conversion between the qualitative and quantitative characteristics as
a quantitative description process for the complex properties and characteristics in
problems. Only when the quantitative description possesses certain precision and
credibility, the solving will be meaningful. Similar to the simplification of
uncertainty and dynamics in manufacturing system, in this aspect we measure the
problem attributes mathematically. To improve the exactness of problem modeling
and solving efficiency, the transformation of qualitative and quantitative features is
an important issue to be considered in manufacturing optimization.

In general, there are several ways to deal with the transformation. A few typical
ones are introduced as follows.

(1) Fuzzy quantification: It means to represent different problem qualitative
attributes as fuzzy value according to their levels and intensions.

(2) Functional quantification: This method defines a fitting function in a certain
range to describe the attribute variations with time or environment.

(3) Discrete quantification: It refers to describe qualitative features with a set of
discrete values in a certain domain. It is not only for discrete attributes, but
also for continuous ones as a compromise between fuzzy quantification and
functional quantification.

(4) Stochastic quantification: It is especially for uncertain features in problem.
The quantitative values can usually obtained by a series of Monte-Carlo or
other stochastic tests. It is inaccuracy but can better describe the uncertainty
of qualitative features.

The above four methods are provided for different kinds of problems as methods
of transformation between qualitative and quantitative attributes. The first three
methods can be well applied in engineering, while the fourth one is less applied
because its accuracy and reliability are hard to verify. The fourth method is only
suitable for a few problems which have extremely uncertain attributes.

In existing studies, the studies targeted on the transformation of qualitative and
quantitative attributes are quite few in manufacturing. Most of them do quanti-
tative conversion and problem modeling based on the above methods without
consideration of the accuracy and reliability verification of the model. Neverthe-
less, the accuracy and reliability are usually the deciding thresholds of the quan-
tification. If transformation method is not verified, the model will bring
unconvincing decision in engineering applications, or even lead to large deviation
to the solutions and cause big loss. Therefore, the verification step in this issue is a
more important factor in problem modeling and it is more challenging. In the
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studies of optimal decisions related to manufacturing, the transformation of
qualitative and quantitative attributes exists widely, such as [88–95].

2.3.6 Simplification of Large-Scale Solution Space

With the complication of manufacturing system and the whole life cycle of pro-
duction, manufacturing resources and processes are getting to be abundant, and the
solution space of the optimization problems is getting bigger. With the increasing
of the solution space, the accuracy and the time efficiency of existing algorithms
are decreased a lot. Hence, simplification of large-scale solution space is also one
of a big challenge to better adapt the optimal searching. Specifically, the simpli-
fication of large-scale solution space is a process to divide or simplify the problem
and solve it in multi-steps with lower complexity.

Facing with large-scale complex problems, the common methods for the sim-
plification of large-scale solution space are:

(1) Divide and conquer: It means to separate a problem into several sub-problems
and narrow the size of sub solution space in each optimization step.

(2) Decrease and conquer: This method tries to find a mapping relation between
the original problem and another problem with small solution space. Getting
rid of unfeasible solution regions according to the constraints can be also
fully applied in this method.

(3) Transform and conquer: By instance simplification, representation change
and problem reduction, this method aims to transform the original problem to
another representation and reduce the solution space during the process.

The three kinds of methods are originally used as deterministic algorithms for
different sorts of optimization. They are also effective in dealing with large-scale
solution space. The simplification is generally done by conducting a mapping
scheme between the solution spaces of the original problem and the simplified one.
In intelligent optimization algorithm, the way to simplify the large-scale solution
space is usually the encoding scheme. Now many studies on the simplification of
large-scale solution space have shown up. The most prominent and effective
studies are divide and conquer and its improvements.

However, from the perspective of engineering solving, the complexity of
existing problems is gradually increasing, and there are endless kinds of problems.
The simplification analysis of problem solution space requires a lot of time, and
the exponential exploration in deterministic optimization is still not well solved. In
the solving process of large-scale complex problem, finding a general method to
simplify large-scale solution space for various kinds of special complex problems
is still a big challenge. For the existing studies in simplification of large-scale
solution space, refer to references [96–102].

2.3 Challenges for Addressing Optimization Problems in Manufacturing 51



2.3.7 Jumping Out of Local Convergence

According to the above discussion, many deterministic algorithms can not find
optimal solution in polynomial time owing to the growing complexity and scale of
problems in complex manufacturing system or process. Therefore, various kinds of
nondeterministic algorithms such as intelligent optimization algorithms are pre-
sented. These algorithms aim at giving feasible sub-optimal solutions of problem
in a short time, and conduct stochastic and heuristic search in the solution space.
The core issue in nondeterministic algorithm is how to jump out of local con-
vergence and find better sub-optimal solutions.

Jumping out of local convergence refers to design strategies in algorithm which
can promote the stochastic evolutionary process to find better solutions in the
situation of local convergence. When an algorithm is trapped into local conver-
gence, it will search repetitively in a small region until terminal conditions are
reached. Early convergence will definitely lead to low efficiency and high time
consuming in problem-solving. In over 30 years of theoretical study, researchers
performed in-depth analysis about the convergence of many iterative-based
algorithms. However, only a few are verified theoretically so far. From the per-
spective of practice, researchers made efforts on the design of algorithm
improvements to escape from early convergence in solving different problems,
such as the increasing of search step, the eliminating of similar solutions, the
importing of chaos and the adaptive parameter tuning. Many of them have been
applied in various kinds of engineering problems. They have high reusability and
have their own focus in specific problem.

However, the strategies for jumping out of local convergence have not been
effectively improved. Due to the huge scale solution space, high stochastics,
unsuitable heuristics and so on, it is harder and harder to improve the efficiency of
problem-solving. There is no free lunch. Facing with expansive complex problems,
handling the balance between exploration and exploitation with iterative-based
local optimization are discussed a lot. Jumping out of local convergence is still one
of the huge challenges in today algorithm design and problem solving. For more
instances, refer to the references [103–110].

2.4 An Overview of Optimization Methods
in Manufacturing

Facing so many challenges, researchers and engineers keep looking for high
efficient optimization method to solve those complex problems in manufacturing
system and process. On the whole, we may divide the optimization methods into
six categories according to their design and solving process, i.e. Empirical-based
method, Tool-based method, Prediction-based method, Simulation-based method,
model-based method and Advanced-computing-technology-based method. All
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those methods require the support of intelligent optimization algorithm in solving
most problems. Therefore, we briefly describe the six kinds of methods in man-
ufacturing and then show the key elements in design with typical examples.

2.4.1 Empirical-Based Method

Empirical-based method generally refers to the optimization according to the
reasoning and analysis based on experience information in problem modeling. It is
mainly applied in the situation that some properties of the problems, such as the
variable domain and range, can not be defined, or problems with stochastic and
large solution scale that can not be traversed. Typical instances are in the process
control of complex system, and the parameter selection in product design and so
forth. Some classical schemes applied in empirical-based methods are as follows.

(1) Empirical local search: It is defined as empirical selecting and narrowing the
domain of variables to be solved in the problems according to environmental
information, and searching locally in a small solution region. This process is
actually an empirical selection of searching domain.

(2) Empirical stochastic search: By dividing the solution-space, it tries to set the
search probability and success rate of different solution area according to the
experience and information, and obtains the feasible sub-solutions by random
searching. This process is an empirical selection of search probability.

These methods mostly use empirical environment data to define the properties of
problem and divide and check the searching area so as to simplify the optimization
process. There are many studies on the modeling of empirical data or features in
complex problems. In empirical-based methods, the key point is that the verifi-
cation and selection of reliable empirical data and priori knowledge. It is mainly
used to deal with the challenges like the modeling of uncertainty and dynamics,
and the simplification of large-scale solution space for different manufacturing
environments. In the problems which require empirical information, accuracy
requirements in optimization are usually low, while the requirements of feasibility
and efficiency are high. Therefore, the empirical-based solving is mostly indis-
pensably combined within intelligent optimization algorithms and other uncer-
tainty algorithms like approximation algorithms to design. It is largely problem
independent with manual regulation. Besides the cases given in the literature in
last section, refer to references [111–117] for the studies in empirical-based
solving.
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2.4.2 Prediction-Based Method

Prediction-based method generally refers to the optimization in which some
problem or algorithm attributes are trained and predicted based on environmental
information during the process. The solving process is guided by the changing
predicted parameters. It is mainly applied in the situations that the accuracy
requirement of decision is high, but the problems are real-time, dynamic and
uncertain and the dynamic and uncertain parameters can be modeled with time-
stepping iteration. These problems usually appear in dynamic time-based sched-
uling, and real-time control for manufacturing process and so forth. Thus in
manufacturing, prediction-based strategies are used in problems like parameter
optimization, combinatorial scheduling, and detection and classification the most.
The most applied prediction schemes are listed as follows:

(1) Prediction with fitting function: Based on the change rules of the prior tested
data and attributes along with the time and environment advance, this strategy
tends to carry out prediction with the fitting function of these rules. In each
step of prediction, the problem attributes in the next period are calculated
according to the fitting function.

(2) Fuzzy prediction: In this strategy, the attribute values are generally divided
into several levels, and the prior tested data are clustered with fuzzy pro-
cessing. After that, the mapping relation between attribute levels and the
changing environment needs to be conducted to guide the prediction.

(3) Prediction with classification: Combining with classification algorithms, this
strategy establishes a training model according to the problem priori dataset.
On the basis of the training model, the key states of problem in the next
period can be predicted for next step decision.

In addition, there are many prediction strategies applied for dynamic optimization.
Most of them firstly model and analyze the mapping relation between problem
features and environmental dynamics according to priori data, then guide the
optimization by predicted model to improve the solving accuracy. They can be
widely applied in dealing with challenges like the modeling of uncertainty and
dynamics, transformation of qualitative and quantitative features, balance of multi-
objectives and handling of multi-constraints. In this method, the key point is the
accuracy of the predicted model. Due to the prediction training or mapping and the
real-time optimization can be performed in parallel, the requirement on time
consumption of prediction are lower. With the increase of the manufacturing and
system complexity, the prediction-based method gradually requires the short-time
and dynamic invoking of intelligent optimization algorithm to better serve dif-
ferent situation with iterative searching. For the prediction-based method in
manufacturing field, refer to references [118–125].

54 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing



2.4.3 Simulation-Based Method

Simulation-based method generally defines as the optimization which obtains
problem states by real-time simulation, and solves the problem by state monitoring
with feedback compensation. This method is mainly applied in the situation that
the problems are dynamic and have the feature of strong real-time, or the problem
attributes and environmental parameters can not be modeled exactly. Furthermore,
when the predicted data is hard to obtain or not able to obtain as the time is
insufficient, this method is more useful and accurate than the prediction-based
method. But sometimes the simulation is hard to implement and its application
scope is narrow. It is a mainly applied optimization method in manufacturing for
complex product modeling and designing. Thus it often appears in finite element
analysis and multi-disciplinary optimization. Here are several simulation-based
methods:

(1) Real-time monitoring: It is conducted based on several simulation tests. The
outputs of real-time monitor are directly applied as the input of optimization.
Then dynamic optimization in real-time can be established.

(2) Multi-run simulation: In this method, the problem parameters are obtained by
the record of multi-run simulation. The optimization can be carried out based
on either the average value or one stochastic value of the output.

(3) Feedback simulation: It refers to simulate the problem with input and output
monitoring, regulate the output status according to the real-time system
monitoring, and guide the optimization by both the regulating rules and the
simulation output.

In manufacturing systems, the first and the second methods are the most com-
monly used ones. The methods above all take multiple sets of input and output in
the simulation as reference variables or objective values. The key point is not the
accuracy of simulation, but the dynamic processing ability of algorithm based on
simulation. This method can be widely applied in various manufacturing problems
with high real-time and dynamics. However, due to the difficulties in simulation
construction, research in simulation-based method in recent years is relatively less.
It is more used in the modeling of real-time process or product design and can be
combined with intelligent optimization algorithms to construct an adaptive evo-
lution and dynamic feedback to solve complex problems. For simulation-based
method, refer to references [126–132].

2.4.4 Model-Based Method

The model-based method is the simplest and most commonly used method, which
solve the problem according to the mathematical description of its variables,
objectives and constructions. Although most of the application and research in
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manufacturing simplify the problems with quantitative mathematical description,
owing to the simplification of some key dynamic factors, the decision result of this
method is somewhat inaccurate. It is mainly applied in the situation that the
properties and features of problems are clear without uncertainty and dynamics,
such as in balance of multi-objectives and handling of multi-constraints. The key
point of this method is the accuracy and reliability of the mathematical description
of the problem. Due to its universal application, we will not repeat it here.

2.4.5 Tool-Based Method

The tool-based method mainly refers to the optimization that dynamically extracts
problem features and solves the problem with the assistance or guidance of system
or process management tools. In a broad sense, the tool-based method can be
defined as a kind of simulation-based method. But narrowly speaking, the tool-
based method focuses on the use of assistant tools to obtain features and its
guidance on optimization in practical, while the simulation-based method focuses
on the modeling of problem features in virtual simulation. Like simulation-based
method, the tool-based method is mainly applied in the situation that the problem
is dynamic and uncertain with time and its properties are hard to extract quanti-
tatively. Compared to the building process of simulation-based system, because of
the tool functions, the tool-based extraction of assistant features with monitoring
has a lower difficulty to achieve. Its application scope is also wider. It is mainly
applied in manufacturing problems such as finite element analysis, parameter
optimization and multi-disciplinary optimization.

To the extraction of problem attributes and environmental characteristics, there
are various kinds of existing assistant tools. There are also many studies focus on
the algorithm design based on the tool assistance, and trying to integrate those
tools to improve the reliability and efficiency of algorithms applied in specific
environment. The key point is the collaboration process of inputs and outputs of
the tools and the designed algorithms, which is similar to the methods mentioned
above. For the tool-based method, refer to references [8, 81, 133, 134, 135, 136].

2.4.6 Advanced-Computing-Technology-Based Method

Advanced-computing-technology-based method refers to conduct optimization by
ways of parallel, distributed multi-steps and collaborative computing with the help
of existing advanced computing resources. This method is different from previous
design of solving methods. It is combined with ideas of problem and algorithm
partitioning, designed to use existing advanced technology to allocate sub-prob-
lems or sub-optimization tasks in distributed resources and solve them in parallel.
This method is mainly applied in large-scale problems and multi-disciplinary
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optimization. It has the characteristics of high scalability and efficiency. Because
of the high requirements of professional technology, the solving process of specific
problems based on this method is quite complex in design, and hard to realize.
From the perspective of algorithm design based on existing advanced computing
technology, there are several typical ways:

(1) Design based on distributed computing: Perform multi-step decision-making
by dividing the problem into several steps and design or call different
resource service for the module design of each step.

(2) Design based on parallel computing: Divide the problem into several parallel
execution modules that the data or control dependencies among them are the
fewest. Then divide the modules into different resources and perform parallel
computing.

(3) Design on collaborative computing: Divide the problem into several execu-
tion modules which have the hybrid relations of series or parallel. Then solve
these modules by different resources and algorithms.

The basic ideas of these solving methods based on advanced computing tech-
nology are all dividing the problems and using distributed resources efficiently. In
this method, because of the dependencies among the modules in the divided
problems or algorithms, we have to consider the time-consuming of task com-
munication. Thus the dividing scheme should be customized according to the
environment and complexity of the problem. No matter which technology is used
to divide the problems and package the modules, the key is always the partitioning
and allocation of the whole optimization. In recently, the problem scales in
existing manufacturing systems and processes are increasing gradually, and these
problems involve several kinds of multi-disciplinary optimization. Therefore, the
studies based on advanced computing technology gained prominence gradually.
The solving efficiency brought by those methods can’t be ignored. The collabo-
ration and hybridation of various kinds of algorithms for solving different sub-
problems make the analysis and decision of complex problems easier and the
application of distributed computing resources make the whole optimization more
efficient. But facing the bottlenecks of the communication costs and the imple-
mentation of related technologies, general module partition schemes with less
communication becomes another challenge. For advanced-computing-technology-
based method, refer to references [137–144].

2.4.7 Summary of Studies on Solving Methods

We found that the algorithms designed for complex manufacturing optimizations
are hybrid with different kinds of strategies. Therefore there are no clear bound-
aries among these methods of algorithm design, like the empirical-based method
uses prediction at the same time, and the simulation-based method uses assistant
tools in many situations, etc.
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From the perspective of the application of different methods, it can be seen that
the model-based method is mostly used. No matter in dynamic optimization,
black-box-based optimization or monitor-based optimization, objectives functions
(or evaluation functions), the abstract variables and parameters and their relations
are presented as mathematical models. In actual projects, the empirical-based
method is right after the model-based method in the number of application times,
and it mostly get the assistance of simulation and tools to optimize. In recent years,
there are more studies on the prediction-based method and advanced-computing-
technology-based method because the prediction of major cases will make the
optimization process more intelligent, and the advanced computing technology can
always take the advantages of distributed resources to make the solving faster. In
addition, because of the complexity and particularity of manufacturing process,
there are few studies on simulation-based method and tool-based method appeared
in recent years. On the whole, after sampling of recent literatures, we roughly get
the mapping of solving methods and the optimization problems, as shown in
Fig. 2.5. The numerical orders we get from the research literatures on dif-
ferent methods are: model-based method > advanced-computing-technology-
based method > prediction-based method > empirical-based method > simu-
lation-based method > tool-based method. And the application numbers of
them in actual projects are: empirical-based method > tool-based
method > simulation-based method > prediction-based method > advanced-
computing-technology-based method. From the difference between the solving
methods used in actual projects and in research, we can find out that we have to
consider the integration of tools, simulation, and the existing advanced intelligent
technology further to narrow the gap between optimization design in projects and
in research.

2.5 Intelligent Optimization Algorithms for Optimization
Problems in Manufacturing

In summary, there are varieties of complex problems in manufacturing. Decision
and optimization face multiple large challenges simultaneously. To deal with these
challenges, a series of solving methods including several problem modeling and
algorithm design methods have already been proposed. Throughout the studies on
the optimizations in manufacturing field, the improvement and application of
intelligent optimization algorithms are one of the major parts. No matter modeling
the problems by experience, prediction or tools, or designing algorithms based on
simulation, heuristics, or advanced computing technology, intelligent optimization
algorithm are widely applied in the optimization process because of its indepen-
dence, versatility and efficiency. At the same time, with multiple challenges in
manufacturing problems, there are a series of studies and improvements carried out
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in encoding schemes, operator designs and evolutionary strategies of intelligent
optimization algorithms. These achievements are fully reflected in the six sorts of
optimization methods

Specifically speaking, in the empirical-based and prediction-based method,
intelligent optimization algorithms are required for the selection of empirical or
prediction factors and data. In simulation-based and tool-based method, it is
needed for adaptive control the modeling and simulation. In advanced-computing-
technology-based method, intelligent optimization algorithms are also used to
partition the optimization tasks and modules to some extent. On the contrary, all
these methods are used and studied as assistant strategies for intelligent optimi-
zation algorithms to solve these complex problems with higher efficiency. Facing
with the combinatorial explosion generated by complex problems, we can only
take advantage of the support of intelligent optimization algorithms with inde-
pendent iterations and the characteristics of high versatility and scalability to avoid
the combinatorial explosion in the problems, and get the satisfying solutions in a
short time.

The application review of common intelligent optimization algorithms in
manufacturing field can be listed as shown in Table 2.1. It can be clearly seen the
research emphasis on different kinds of problems corresponding to different
optimization methods in recent years.

Typical cases of each kind of problem in manufacturing field are listed in the
table. Each case faces all the seven challenges described before. However, due to
the different characteristics of problems, they have different emphasis in dealing
with those challenges. In this table, the main challenges to be overcome in these
typical cases are shown by check marks. Furthermore, the solving methods mainly
taken for different kinds of problems are listed in the next paragraph.

Based on the literature review, it can be found that 60–70 % of the research and
applications in solving complex manufacturing problems use different styles of
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Fig. 2.5 The mapping of the solving methods and the optimization problems in manufacturing
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intelligent optimization algorithms, in which genetic algorithms, artificial neural
network algorithms, simulated annealing algorithms, particle swarm algorithms
and ant colony algorithms are the most typical and applied. The approximate
application distribution of common intelligent optimization algorithms is shown in
Fig. 2.6. The most applied one in different kinds of problems is genetic algorithm.
Because it is proposed the earliest, and its operators are simple and independent,
which means the algorithm is appropriate both for continuous and discrete opti-
mization. However, with the characteristic of premature convergence, different
kinds of improvements and combination to the genetic algorithms are designed
based on various benchmarks and practical problems. Except genetic algorithm,
ant colony algorithm and particle swarm algorithm are applied a lot. The self-
learning mechanism of particle swarm algorithm is designed for continuous
numerical optimizations. In discrete combinatorial optimization, the updating
mechanism of individuals needs to be changed and improved. Most of the
improvements transform the original change to the crossover between individual.
In this situation, the original particle swarm optimization is transformed as a kind
of hybrid genetic particle swarm algorithm to some extent. Overall, particle swarm
algorithm is mostly applied in numerical function optimization, parameter opti-
mization and multi-disciplinary optimization. On the contrary, ant colony algo-
rithm is designed for path finding related combinatorial optimization, such as route
optimization of robots, task scheduling and so on. In continuous numerical opti-
mization, the searching step size needs to be set beforehand. If the step size is
large, the accuracy cannot be guaranteed, if the step size is small, a large-scale
pheromone vector is required, which slow down the search. Moreover, ant colony
algorithm generally needs the extraction of priori knowledge, which makes the
algorithm not very versatile in application. In addition, because typical simulated
annealing algorithm and tabu search have strong randomness, and they are carried

Fig. 2.6 The approximate
application distribution of
common intelligent
algorithms
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out with single individual-based iterations, the probability of getting better solu-
tions in a short time is low. Currently, the hybrid of intelligent optimization
algorithms and other algorithms is mostly applied in application, which offers
great assistance to improve the searching diversity and guidance.

In addition, there are several typical intelligent optimization algorithms applied
in the continuous numerical optimization like simulated-annealing algorithm and
differential evolution algorithm, and in the discrete combinatorial optimization like
memetic algorithm, ant colony optimization and so on. Other algorithms like
immune algorithm, DNA computing algorithm, culture algorithm and newly
appeared bee colony algorithm are not mature in development and application.
Most of the engineers are not familiar with these new algorithms. As a result, few
studies are applied on the problems in manufacturing field. It also reflects an
important thing in the study of optimization, that the new better research results are
not effectively used in actual projects.

2.6 Challenges of Applying Intelligent Optimization
Algorithms in Manufacturing

Currently, intelligent optimization algorithm has become an integral expertise in
manufacturing system and process optimization. It helped to breakthrough a lot of
difficulties in optimization, like the decision of job shop scheduling and finite
element analysis, etc. However, the problem will change with the environment.
Therefore, in complex manufacturing systems, to improve the efficiency of
problem optimization and decision, the design and development of intelligent
optimization algorithm becomes a research hotspot. Although thousands kinds of
improvement, hybridation of intelligent optimization algorithms have been pro-
posed, their solving effects on different kinds of specific problems are still
unknown. In algorithm design process, different challenges still exist in all of the
steps, i.e. problem modeling, algorithm selection, encoding scheming and operator
designing. According to the characteristics and requirements of different designing
parts, we will analyze the main challenges separately.

2.6.1 Problem Modeling

From the perspective of problem modeling, the three basic elements are variables,
objectives and constraints. Modeling of the three elements directly influences the
quality of decision. Thus it is the basis of the designing of intelligent optimization
algorithm.

Firstly, there is one-to-one relationship between the problem variables and the
individuals in algorithm. If the variables are continuous, the factors as domain,
search step, accuracy requirements should be explicitly given. If the variables are
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discrete, besides the domain, we have to clarify the direct relationships between
variables, which will make the following encoding easier.

Secondly, no matter for single-objective or multi-objective problem, the
objective functions as evaluation criteria in the algorithm are the essential foun-
dation of search. For the problems can be mathematically modeled, clear objective
functions need to be given. For the problems that objective function can not be
given, like parameter optimization in process control and detection, we have to test
the solution with simulation or monitoring of actual systems to get the result. Then
the outputs of the system are taken as the objective values to evaluate the popu-
lation in algorithm iteration in real-time. It is important to note that too simplified
evaluation functions will result in low accurate optimization, while too complex
assessment model will lead to large time loss.

Finally, in dealing with constraints, no matter put them in the objective func-
tions as penalty functions or define them as population check during iteration, they
will greatly influence the algorithm optimization. Inappropriate handling of the
constraints will easily lead to invalid iteration search in unfeasible solution space,
which will seriously reduce the efficiency of algorithm.

It is thus clear that in the establishing process of optimization model, the main
difficulties are:

(1) The precisely clarification of the properties of problem variables;
(2) The appropriate construction of objective functions (or assessment methods);
(3) The suitable handling way of constraints.

2.6.2 Algorithm Selection

Based on the establishment of problem model, full research and comparison of
hundreds of hybrid and improved intelligent optimization algorithms and selection
of suitable one for the specific problem is almost impossible. To most engineers, it
is even not easy to choose in a set of basic intelligent optimization algorithms.
Because almost all of the existing intelligent optimization algorithms have not
been verified theoretically, large experiments are mostly required for compare
their efficiency to specific problem. Hence, it is quite hard to figure out which
algorithm is suitable and which improvement or hybrid strategies can bring about
enhancement for specific problems.

Currently, people usually select the most commonly used algorithm according
to different application extents of the algorithms and the recommendations from
existing research when facing complex problems in manufacturing field. Most of
them select the most classic genetic algorithm, and ignore many new intelligent
optimization algorithms. Based on the selected algorithm, according to the former
procedure, the algorithm is implemented and improved again, which extends the
algorithm design cycle and produce a lot of repetitive work. In addition, if the
selected algorithm is inappropriate for the problem, such as using a highly
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evaluated intelligent optimization algorithm specializing in discrete combinatorial
problems to solve specific continuous problem, the algorithm requires to be
transformed a lot, and the result of the optimization is still possible to be
substandard.

It is thus clear that algorithm selection is the core to decide the optimization
efficiency in solving a problem. Currently, there are many integrated libraries
which can provide some typical intelligent optimization algorithms. But with
different kinds of problems, the merits and demerits of various algorithms can not
be compared directly. And also, there are still less study and emphasis on the
construction of related algorithm libraries. People are more willing to select
mature and convenient method to solve the problem.

Generally speaking, in the process of algorithm selection, the main questions
need to be note are as follows:

(1) Less analysis, verification and classification on existing typical intelligent
optimization algorithms in solving different problems;

(2) Lacking of unified evaluation methods for various algorithms in solving
different problems;

(3) Lacking of a standard integrated algorithm library for algorithm design,
comparison and application.

2.6.3 Encoding Scheming

Encoding scheming for problem refers to the process of transforming the key
variables into individual genes. It is the band between intelligent optimization
algorithm and specific problem combined with fitness function. Population
updating in each generation performed by combined operators is also based on
encoding scheme.

Normally, binary-coding, real-number-coding and vector-coding are the most
commonly used. In some encoding schemes, individuals and variables have one-
to-one mapping relationship. However, in most coding form for particular prob-
lems, individuals and variables are not one-to-one mapping. When they are having
one-to-many relationship, i.e. one individual corresponds to several solutions, the
decoding can not be well implemented. When they are having many-to-one
relationship, i.e. several individuals correspond to one solution just like the situ-
ation of real-number-coding in task scheduling, then invalid searching with
repeated iteration and local convergence can easily occur, which is detrimental to
the whole evolutionary optimization. Moreover, in combinatorial optimizations
like job shop scheduling and traveling salesman problem, the targets are finding
the best permutations of variables, which means that the values of different vari-
ables can not equal to each other, then the requirement to the coding in such
situations is very high. Not only so, operators like crossover in genetic algorithm
and self-studying in particle swarm optimization are designed and varied with
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different coding scheme. Therefore, coding scheming is crucial in the application
of intelligent optimization algorithms.

Currently, the main study aspects and difficulties in encoding scheming for
specific complex problems are:

(1) Coping with ‘‘many-to-one mapping situation’’ to avoid repetitive searching.
(2) The avoiding of inflexible solutions with encoding scheming.
(3) The adjustment of encoding scheme for specific operators.

2.6.4 Operator Designing

Based on these three steps of design, people have to improve the algorithm after
the selection to adjust the problem and achieve a higher efficiency of optimization.
But there are too many operators and improvement strategies. Thus users and
designers have to perform further research and analysis on the existing operators
and improving strategies based on the encoding scheme and improve the algorithm
again. Based on the requirements of the problem and the selected algorithm, the
design of improvement strategies for the operators can be seen as a matching
combination process. Different type of operators and improvement strategies can
form several hybrid and improved algorithms after different permutations and
combinations.

In the existing research and application, people usually adjust and combine the
operators according to the existing experience, or perform single-step fine tuning
in operators and try improved strategies one-by-one to specific problem. The
interactions among the operators and the balance between exploration and
exploitation in iterations are less considered and analyzed, which leads to great
limitations in the performance of existing operators and improvement strategies.

Therefore, in the improvement design process of operators, the main difficulties
are:

(1) Lack of analysis in features and combination effect of the operators for
different problems.

(2) Lack of balance between exploration and exploitation in algorithm design.
(3) Many good improvement strategies have not been well extended and applied

to different types of problems.

2.7 Future Approaches for Manufacturing Optimization

Challenges are not only existed in the above mentioned four steps. With the gradual
complication of manufacturing process and system and the proposal of advanced
manufacturing model such as networked and service-oriented manufacturing,
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the problems in manufacturing field are more evolving into multi-disciplinary
large-scale ones. Thus, single deterministic algorithm or intelligent optimization
algorithm is far from sufficient to meet the requirement of solving.

From the algorithm designing perspective, it requires the assistances of more
than one of the six kinds of solving methods. For the optimization process, dif-
ferent adaptive, exploitation and exploration strategies are needed in different
solving stage. For solving the problem in real-time, we need to handle the
dynamics and uncertainties with the adaptation and combination of various
operators. In a word, the whole solving process for multi-disciplinary complex
problems needs multi-level or multi-stage operators combined with multiple
decision methods and technologies.

It can be concluded that for the optimization problems in manufacturing field,
the requirements are diverse, and the corresponding solving methods have to meet
not only the requirements of the system dynamics and uncertainty, but also the
ability of efficient collaborative optimization and management. The trend of
development can be briefly summarized into several points:

(1) Hybridation of diversified methods.
(2) Multi-stage processing of uncertainties and dynamics.
(3) Technologies for rapid real-time responding and decision-making.

2.8 Future Requirements and Trends of Intelligent
Optimization Algorithm in Manufacturing

With such a general trend, intelligent optimization algorithms need further digging
to enhance its efficiency, flexibility and scalability according to the requirements
of the three main users in manufacturing, i.e. algorithm beginner, algorithm
employer and senior researcher, to adapt practical complex decision in manufac-
turing engineering. Although the theoretical analysis of operators on the intelligent
optimization algorithms is of great importance, yet from the aspect of engineering
application, implementations of integrated, configurable, parallel and service-ori-
ented intelligent optimization algorithms are becoming the key development
trends in solving complex manufacturing problems.

2.8.1 Integration

During the digital industrial producing process, every step in the whole life cycle
of manufacturing contains simulation and tool-aided analysis with varieties of
professional software. As for every single optimization module in manufacturing,
engineers need to implement and encapsulate different kinds of intelligent
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optimization algorithms according to I/O interfaces of the module to realize
automatic and systematic decision. With the collaboration of diversified tools,
integration of intelligent optimization algorithms and other technologies as mod-
ules are necessary for implementing high efficient comprehensive decision.

Specifically, on one hand, based on a rich mixture of assistant tools, many
environmental parameters and problem attributes can be obtained easier. The
support of multiple technologies can be seen as a combination of simulation-based,
tool-based and advanced-technology-based methods. Integrating the intelligent
optimization algorithms with these assistant tools and technologies can makes
them easier to adapt in specific systems and perform better function. On the other
hand, integration and encapsulation of multiple intelligent optimization algorithms
can make multi-methods’ decision possible. For specific problems, engineers can
compare different algorithms in practical environment and apply more than one to
do optimization in different stages.

On the contrary, if we design and implement the intelligent optimization
algorithm in each different environment, the design process of optimization will be
more complicated and time consuming. Therefore, in order to achieve simplified
and high efficient collaborative optimization, the most convenient way is to
integrate diversified intelligent optimization algorithms and multiple technologies
together in the form of tools, and provide uniform standard interfaces to connect
with different kinds of systems.

In recent years, some research has turned to the integration of basic intelligent
algorithms based on the uniform search of population-based iteration. However,
most of the existing integrated algorithm platforms or libraries are inapplicable to
complex optimization in collaborative manufacturing. They are generally con-
structed according to traditional continuous numerical benchmarks. The universal
connections with different tools or systems are out of consideration. Most of them
require the users to familiar with the optimization process of intelligent optimi-
zation algorithms and make improvement based on complex program code. The
whole design and comparison process are still quite time consumption.

2.8.2 Configuration

On the other hand, though some existing libraries integrate multiple typical
intelligent optimization algorithms, they still have difficulty to adapt to the fre-
quent changing manufacturing problems with efficient research ability. Likewise,
as for the whole digital manufacturing process, optimization problems exist in
every module. But they are quite different with diverse stages and environments.
The dynamic adaptation of intelligent optimization algorithms is needed during the
procedure. Thus we do not only need the collaborative decision of several algo-
rithms, but also need that the algorithms to be configured dynamically in the
process of optimization in manufacturing systems. Not only the parameters should
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be configured, but also the operators, improving strategies and the whole algorithm
should be adjusted dynamically.

The existing studies consider rarely about the flexible configuration of intelli-
gent optimization algorithm. To the adaptive processing, the studies of recent
years focus more on specific problems and design adaptive processing mechanisms
or improving strategies in a single algorithm structure. These mechanisms and
structures are mostly unchangeable during optimization. When apply such algo-
rithm in dynamic optimization, comprehensive high efficient searching in all
stages can not be realized. For changing environments or properties in problem,
engineers have to stop the decision process, store the middle data and redesign the
algorithm again. It results in not only a loss of time, but also a repeated waste of
program code.

Therefore, though intelligent optimization algorithm has the versatility in
structure, with specific problems, it still has weaknesses in adaptability and sca-
lability. The existing intelligent optimization algorithm library only code and store
various algorithms independently and it is hard to achieve dynamic configuration.
To break through the limitations in the collaborative multi-stage optimizations in
manufacturing systems, the studies on the dynamic adjustment and configuration
of intelligent optimization algorithms and the scalable combination of the algo-
rithms for complex problems are quite important.

2.8.3 Parallelization

With the development of large-scale cluster systems and distributed computing
technology, the design of parallelization mode of intelligent optimization algo-
rithm and its application in large-scale projects are extended gradually, and have
achieved some effect. From the perspective of algorithm structure, intelligent
optimization algorithm generally can performs collaborative search with popula-
tion provision, thus it has natural parallelism. From the perspective of parallel
computing environment, not only the problems can be separated and solve parallel,
but also various solution spaces can be searched in parallel. The combination of
intelligent optimization algorithm and the parallelized technologies can save much
time for the optimization of various complex projects.

Now more and more design and application studies in the parallelization of
intelligent optimization algorithm have shown up. Most of them carry out the
research from three key elements: parallel topology, individual migration time and
number of individuals to be migrated. And the parallelization in intelligent opti-
mization algorithm design is primarily based on population provision, in which the
topology is the main consideration. However, different types of parallel intelligent
optimization algorithms show different performance in different problems and
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environments with the influences of the three key elements. Currently, although
there are many parallel intelligent optimization algorithms for specific problems,
the scalability and effectiveness are still to be improved and verified.

Therefore, driven by high performance computing technologies, to further
improve the solving efficiency of intelligent optimization algorithms in manu-
facturing, their parallelization design with the consideration of topology and
individual migration elements and the extend application of parallel optimization
are urgent.

2.8.4 Executing as Service

Similarly, with the spread of service-oriented manufacturing and computing
modes, in distributed manufacturing process, the users mostly get the support from
invoking the remote services with different functions through network. Thus
multiple services invoked by multi-users can realize resource sharing and high
efficient collaborative design and production in manufacturing. Now, as the gen-
eralization of the concept of service, some simple algorithms have been encap-
sulated as services and provided in service center. When users are invoking these
services, they only need to concern about the inputs and outputs. At the same time,
the users expect the transparency of service computing to achieve real-time
monitoring, intelligent interruption and dynamically adjustment. From the per-
spective of the application of intelligent optimization algorithm in manufacturing,
the idea of encapsulating these algorithms as services for different users is already
realizable. Currently there are some algorithm libraries which provide typical
intelligent optimization algorithms in the form of services on the internet for the
users to invoke. However, flexibly and efficiently solving complex optimization
problems in the manufacturing systems by intelligent optimization algorithms in
form of services has not been implemented and there still exist many challenges in
improving the performances of algorithm services in wide area network.

Firstly, from the perspective of application, to different complex manufacturing
problems, the users not only have to know the characteristics of the encapsulated
intelligent optimization algorithms, but also need to combine them flexibly. It also
requires the encapsulated algorithms to be highly configurable. Secondly, from the
perspective of process, because of the requirements to the transparent service
computing, the intelligent optimization algorithms have to be split into operators
and encapsulated as fine-grained modules. Moreover, the clear display and control
of the population-based iterative evolutionary process are also needed. These key
elements rarely studied but crucial to actual projects. Therefore, the adaptability
and flexibility design and implementation of service-oriented intelligent optimi-
zation algorithms is very imperative.
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2.9 Summary

In this chapter, we mainly talked about the development of the application of
intelligent optimization algorithms in manufacturing. From the optimization of
manufacturing system and process, the problems are divided into numerical
function optimization, parameter optimization, detection and classification, com-
binatorial scheduling and multi-disciplinary optimization according to the char-
acteristics and objectives of the variables. And we summarized the main
challenges faced in solving different kinds of problems. From the perspective of
optimization ways, we elaborated the six common optimization design methods,
namely, model-based method, empirical-based method, prediction-based method,
simulation-based method, tool-based method and advanced-computing-technol-
ogy-based method, and draw the importance of intelligent optimization algorithm
in the large-scale complex optimization problems of manufacturing systems.
Developed so far, many intelligent optimization algorithms and improved strate-
gies are proposed for specific problems. However, there are still many challenges
in the wide application and targeted design of the intelligent optimization algo-
rithms. Thus, we analyzed those challenges one by one, and gave the major trend
of studies and development of intelligent optimization algorithms in manufactur-
ing system and process.

After the above analysis, in the studies and development of intelligent opti-
mization algorithms, though the studies of improvement and design from different
perspectives produce a large number of intelligent operators and improving
strategies, the requirements of the three kinds of users are far from being fully
satisfied. Its main problems are:

(1) Lack of uniformly platform for collection and comparison. Though living in a
world with abounds of numerous intelligent algorithms, we still have no idea
which one is the best for a particular set of problems due to the lack of
integrated centers which are capable of performing standard testing and
comparing.

(2) Long design and implementing process. Owning to the sophisticated inves-
tigating and programming process of searching and implementing new
operators, engineers may limit the usage into several basic algorithms. Such
inertia is likely to carry some risks since the generally-used algorithms may
not fit well to the given problem, and at the same time, those valuable
findings may lose the chance of being used.

(3) Lack of extension and much repetition. Though more and more innovative
practices have been designed to enhance algorithms’ performance for
application-specific demands and general benchmarks, most of them still lack
effective testing and extended using. Meanwhile, due to universal unaware-
ness of existing resources, repetitive works have been done in the process of
developing same or similar algorithm for different problems in different areas,
leading to huge resource wastes and time consuming.
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(4) Lack of theoretical foundation. As the scale of the problem (i.e. the solution
space) increases, the solving accuracy of the problem drops significantly.
Because of the inherent randomness of the algorithm and the searching
direction far from completely developed, the balance between the algorithm
in exploration and exploitation is still hard to handle. And also, there are not
many studies on the theory, convergence and time complexity of intelligent
optimization algorithms. The efficiency of the algorithm is obtained by a
large number of tests, and lack theoretical foundation.

Moreover, as the high performance computing and service-oriented technologies
developing fast, and the scale of combinatorial optimization problems in existing
industrial application growing rapidly, the improvement and the application of
intelligent optimization algorithms still have long way to go. Maximizing the
application of the existing intelligent optimization algorithms and the improve-
ments of them in engineering practices is a difficulty to be solved.

Thus the biggest difficulty turned into: How to effectively employ huge amounts
of existing intelligent algorithms and their improvements for various types of uses.

To fully exploit the existing intelligent algorithms and quickly obtain flexible
synergies and improvements, new dynamic configuration methods for intelligent
optimization algorithms (DC-IOA) is proposed in our work. Based on separated
operator modules, three-level configurations, i.e. parameter-based configuration,
operator-based configuration and algorithm-based configuration are exploited.
Various types of algorithms can be collected and well re-produced by not only
arbitrarily combining different operator modules, but also arbitrarily splicing
multiple algorithms according to the operational generation separation. Specifi-
cally, it can solve the above questions mainly from the following two aspects.

(1) In the view of algorithm employment. Informative workflow with operator
modules referring to basic and typical algorithms is provided to algorithm
beginners. A friendly interface, where parameter setting, customized operator
selecting, and dynamic algorithm combining are involved and provided to
senior researchers. In the meantime, various existing algorithms and their
improving strategies with only configurable parameters are prepared to for
algorithm employers with direct use.

(2) In the view of algorithm development. Comparisons among different strate-
gies are given based on some general benchmarks for algorithm beginner.
The encapsulated operator modules and customized interfaces to allow
imports of the operators or algorithms and then to support further tests are
available for senior researchers. Also recommended algorithms with typical
portfolios of operators are given according to the type and feature of sub-
mitted problem for algorithm employers.

Starting from the second part of this book, we are going to introduce the theory,
design process and application of the configuration method for intelligent opti-
mization algorithm in detail.
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