Chapter 12
Future Trends and Challenges

In this chapter, we give some future trends and challenges of dynamic configuration
not only for intelligent optimization algorithm, but also for other algorithms used in
the whole life cycle of manufacturing. Firstly, some works related to configuration
of intelligent optimization algorithm are introduced. They have similar idea and can
be further developed with different kinds of configuration ways. From the per-
spective of software improvement, we introduce the way of dynamic configuration
for other algorithms in manufacturing. From the perspective of hardware
improvement, the further development of dynamic configuration on FPGA for
lightweight optimization in design, production and maintenance of manufacturing is
given. Based on these trends, some challenges in developing dynamic configuration
from different angles are listed in this chapter.

12.1 Related Works for Configuration of Intelligent
Optimization Algorithm

Intelligent optimization algorithm, also named as meta-heuristic, has been
developed for years. Hundreds of evolutionary schemes are presented with pop-
ulation-based iteration and operators. For improving its problem solving capability
and make full use of the existing operators, many hybrid mechanisms are emerged.
Two of the most famous mechanisms are hyper-heuristic and multi-method search.
Hyper-heuristic [1, 2] mainly refers to a heuristic which tries to obtain right
methods from a bunch of heuristics for solving a specific problem efficiently. The
selection scheme itself, in hyper-heuristic, can be a kind of machine learning
techniques or an adapting or turning process. Multi-method search [3, 4] then
means to run multiple optimization algorithms simultaneously with population
division and combination. The searching process is similar with the parallel
configuration of algorithm hybridization mentioned in Chap. 4.

© Springer International Publishing Switzerland 2015 351
F. Tao et al., Configurable Intelligent Optimization Algorithm,

Springer Series in Advanced Manufacturing,

DOI: 10.1007/978-3-319-08840-2_12


http://dx.doi.org/10.1007/978-3-319-08840-2_4

352 12 Future Trends and Challenges

(1) Hyper-heuristic

In hyper-heuristic, the goal is to select right algorithms for a specific problem. It
is the main difference between hyper-heuristic and meta-heuristic. The selection is
based on a bunch of existing algorithms and their performance to some degree.
The method for selection is called high-level heuristic, while the algorithms
solving the problem in different steps are called low-level heuristics. From the
selecting process point of view, it is similar with our dynamic configuration way.
More general than dynamic configuration in intelligent optimization algorithm, it
tries to choose or combine several kinds of heuristics and machine learning
techniques to solve a problem with specific framework [5] step by step. That is to
say, it manages a number of heuristics and applies them to different stages of
problem-solving. But its basic premise is that the framework or the process for
solving a problem is clearly known. It is quite problem-dependent.

Hyper-heuristic is widely studied and applied in different area. With its
development, Burke et al. [6, 16] have summarized its main classifications from
structure to function. It consists of heuristic selection and heuristic generation,
which are similar with our configuration methods in hybridation and in
improvement respectively. The main focuses are the design of high-level heuristic
based on a known framework, such as [7-9]. In manufacturing, it just applied for
combinatorial optimizations such as production scheduling [10, 11], assembly line
sequencing [12] and so on. For numerical optimization, parameter optimization
and detection problems in manufacturing, few researches have been carried out.
Also, the construction of hyper-heuristics largely depends on existing intelligent
optimization algorithms [13, 14], as well as our configuration ways.

Broadly, the dynamic configuration ways in intelligent optimization algorithm
which encapsulates operators as modules can be seen as a kind of hyper heuristics.
That is because it also combines some low level operators (as heuristics) to solve
different problems in iteration with some rules. But with generation division
especially in intelligent optimization algorithm, dynamic configuration contains
not only low level combination of operators, but also high level combination of
algorithms. More than that, configuration has different types of schemes for
algorithm improvement, hybridation and parallelization. It is independent from
problems. Therefore, dynamic configuration is different with hyper-heuristics. It is
an extension of component design in intelligent optimization algorithm. All
‘disposable’ and ‘reusable’ [15, 16] operators and algorithms can be reused
according to dynamic configuration ways. To some extent, it can also be seen as an
extension of hyper-heuristics.
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(2) Multi-method Search

Multi-method search is presented by Vrugt et al. [3] who try to overcome the
‘no free lunch’ theory by applying several algorithms simultaneously to a class
of problems. The idea is as well as our configuration method in improvement
and hybridation of intelligent optimization algorithm with a simpler style. It is
also established based on the population-based iteration rule and some existing
algorithms. Different with hyper-heuristics, it sees the operators of an algorithm
as an entity and invokes different entities in different sub-population serially. Just
as mentioned in the above chapters, if there’s one algorithm suitable for the
specific problem, it can lead others to searching with a right direction. Now it
has been applied for solving both combinatorial and numerical optimization
[4, 17].

Nowadays, multi-method search, also known as A Multialgorithm Genetically
Adaptive Method (AMALGAM), has been used for optimization in soil and
water assessment [18], stochastic inversion in aquifer structure identification [19]
and inverse parameter estimation in coupled simulation of surface runoff and soil
water flow [20] and so on. But it has not been applied in manufacturing.
Moreover, no work has been carried out especially for the design and selection
of algorithms during iteration. Therefore, the multi-method search also has long
way to go.

In the area of intelligent optimization algorithm, it can be seen that the dynamic
configuration contains more ways to reuse existing algorithms fully and widely
than the above two mechanisms. Furthermore, just like hyper-heuristic, the idea of
configuration can be extensively applied for other algorithms and implemented in
other hardware. Here we will take some typical numerical algorithm as an example
to show the dynamic configuration ways for other algorithms in manufacturing.
Moreover, further dynamic configuration on FPGA will be elaborated as our future
work. As a whole, some challenges on the further development of dynamic con-
figuration in the area of manufacturing are given in this chapter.

12.2 Dynamic Configuration for Other Algorithms

Besides optimization, there are a lot of large-scaled complex numerical computing
requirements existing not only in manufacturing part design, but also in system
and process evaluation, such as large-scaled matrix operations, linear or nonlinear
functions and ordinary or partial differential equations. All these calculation
process can be completed by a bunch of basic numerical algorithms according to
the specific precision demands. Different with intelligent optimization algorithm,
these numerical algorithms have different structure and heavily rely on the specific
problem. Therefore, the previously mentioned configuration in a uniform iterative
process is not adaptable for other numerical algorithms.
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Fig. 12.1 The configuration framework for numerical computing

However, many complex numerical computing modules can be divided into
several simple parts with some basic operation. And most numerical problems can
be represented as a uniform form with complex variables and constraints. In such
standardized form, these classical numerical algorithms can be directly invoked to
solve the problem in different stages. Hence the numerical process is generally
divisible and can be flexibly configured as well as intelligent optimization
algorithm.

Considering three kinds of numerical computing, i.e. matrix operations, com-
plex linear/nonlinear equations and ordinary/partial differential equations, existed
generally in design, control and simulation of industrial manufacturing, the con-
figuration framework can be drawn as Fig. 12.1. In this framework, we try to
encapsulate basic numerical algorithms as modules and make two level configu-
ration for different kinds of problems, i.e., (1) internal configuration and (2)
external configuration.

As mentioned before, complex numerical computing can be divided into several
steps. Each step that contains one or more standard numerical computing can also
be represented by variables, domains, objectives and constraints. For example, if
the numerical computing is linear equations, then it can be represented by a matrix
A and a vector b (i.e. Ax = b). If the step needs to solve a partial differential
equation, then it can be represented by a partial differential coefficient matrix from
which a standard finite difference can be done based on that. In this case, the
boundary conditions can be seen as constraints. With such standard representations
in each computing stage, basic numerical algorithms which have been encapsu-
lated as module can be configured and connected together.

In configuration, the internal configuration means to change the inner parameter
of the module or to invoke other modules internally. For instance, there are many
kinds of difference schemes for a specific partial differential equation. With a
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difference scheme, partial differential equation can be transformed into a group of
sparse linear equations. Then Jacobi or Gauss-Seidel method can be used to solve
the linear equations. In this case, Jacobi method which is encapsulated into module
can be configured with a suitable difference scheme to solve the numerical
problem, as shown in Fig. 12.2. Making the transformation of difference scheme
also as a module, the configuration above is called internal configuration. By
means of multiple basic numerical modules, we could use some heuristic to
intelligently select one or more of them connected together for solving a specific
numerical problem. Overall, internal configuration in different kinds of numerical
computing requires fine grained division of calculating modules. Moreover, all
parameters should be adjustable with a standard form to make sure the modules
can be correctly invoked.

External configuration, different with the internal one, refers to configure dif-
ferent algorithms in different solving stages for a complex problem. The config-
ured module mainly refers to coarse-grained numerical algorithms. These
algorithms can be either a single basic module such like matrix operation, or a
combined module configured by the internal configuration as mentioned before.
Take the design of aircraft wing for example, the process consists not only the key
size design but also the verification of its aerodynamic characteristics. With a
bunch of datum, matrix operation may be the first step, the solving of partial
differential equations and size decision may be the next. On this occasion, we
could configure matrix operation module, Gauss-Seidel and a kind of difference
scheme and an intelligent optimization algorithm step by step for solving the
whole problem. The outputs of the previous steps are the inputs of the latter ones.
Together with internal configuration and external configuration, an integrated
numerical algorithm can be generated by a specific heuristic (or algorithm selec-
tion rule) and a mass of basic numerical modules.

Moreover, as shown in Fig. 12.1, we could also do module improvement and
parallelization during the whole process. Improvement can be easily obtained
through flexible parameter interface as mentioned before. Parallelization here
consists of both internal and external parallelization.

Internal parallelization means to directly encapsulate basic parallel numerical
algorithms as modules. By way of configuring the parallel modules, some new
parallel algorithms can be easily produced. As the same as in intelligent optimi-
zation algorithm, external parallelization refers to execute different modules
simultaneously in different computing nodes. External parallelization is highly
dependent on the computing process of a specific problem. For example, we could
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separate irrelevant computing module manually to parallel nodes for high time
efficiency. We also could apply different numerical algorithms for a single com-
puting stage simultaneously in different computing nodes for high accuracy and
stability.

As we know, the establishment of basic numerical modules has been carried out
for years. There are already many serial and parallel tools for basic numerical
computing, such as matrix operations and solver of linear equations. Basic linear
algebra subprograms (BLAS) [21] and Parallel BLAS (PBLAS) [22], LINPACK
[23] and PETSc [24] and so on are all famous and have been widely used in
different areas. These tools based on different platform and programming language
can not be integrated together. If we need to invoke these basic modules, we have
to program our problem with the specific programming language and do more
changes. With different formation, different numerical modules can not be con-
nected and configured directly. Moreover, there has no recommendation to decide
which is the most suitable one for a specific problem.

Therefore, for establishing a configurable platform for wider numerical com-
puting, the uniform encapsulation of existing numerical algorithms is required. In
other words, the interface of each module to be configured should be uniformed
and full information should be provided for flexible configuration. After that, the
most important thing of numerical configuration is the construction of rule base
which can be used for algorithm selection according to the problem characteristics
and the calculating environments.

12.3 Dynamic Configuration on FPGA

As elaborated in Chaps. 5 and 11, the dynamic configuration of not only intelligent
optimization algorithm but also other numerical algorithm can be implemented on
FPGA. Focus on the configuration of intelligent optimization algorithm, there are
two implementing schemes on FPGA, as shown in Figs. 12.3 and 12.4, (1)
operator-based configuration and (2) algorithm-based configuration. It should be
noted that an FPGA board can only store limited operators for just one class of
problems.

In the first scheme, we could firstly extract initialization part and population
updating part into two modules. Operators in iteration can be implemented inde-
pendently with uniform population-based interfaces. As shown in Fig. 12.3, the
connection of these modules can generate a complete intelligent optimization
algorithm. Opl, Op2, Opx, Opy, Opz and Opn represent different kinds of oper-
ators, such as single-point crossover and mutation in genetic algorithm. The red
solid line and the blue chain dotted line represent two kinds of connection ways
respectively. With only one connection path between initialization and population
updating, a hybrid intelligent optimization algorithm can be generated in which all
population is concurrently operated by the corresponding operators on FPGA. In
contrast, if there are two or more connection paths, then the population will be
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Fig. 12.4 Algorithm-based configuration on FPGA

evenly separated as multiple groups. Each sub-population is executed following
the relevant path. A parallel intelligent optimization algorithm with several groups
of hybrid operators can be produced. It is the same as the configuration in general
cluster environment.

In the second scheme, we could implement the whole operators of a specific
algorithm together as one module. For example, if Algl is the classical GA, then
the operations in it consist of population selection, crossover and mutation. As
shown in Fig. 12.4, we could arbitrarily select different algorithm in parallel with
multiple connection paths to form hybrid parallel intelligent optimization algo-
rithm on FPGA. And we could also connect algorithms in serial to generate a
single hybrid one. No matter which kinds of connection ways, parallel execution of
individuals is ensured on FPGA with high time efficiency.

The implementation of intelligent optimization algorithm on FPGA mainly
aims at lightweight and high speed decision in a special environments or devices.
One implementation with fixed architecture is just for one specific problem and
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can not be reused to others. With the above dynamic configuration, an FPGA board
with several operators can then be widely applied to a large amount of problems
without reconstruction. Although the implementation is under construction, we
believe it will be practical and valuable for many problems ranging from pro-
duction evaluation to maintenance to realize lightweight high efficiency decision
and optimization.

12.4 The Challenges on the Development of Dynamic
Configuration

In this book, we elaborated all kinds of dynamic configuration ways for
improvement, hybridation and parallelization of intelligent optimization algorithm
and their application in manufacturing field. On the basis of various modules,
much more efficient algorithms can be generated for different complex problems
ranging from part design to system management. A bran-new design conception is
introduced for intelligent optimization algorithm. However, the new design
method has shifted the difficulty from ‘algorithm design’ to ‘algorithm selection’.
Currently, the most important things to establish such dynamic configuration are
the construction of algorithm module library and the establishment of recommend
rules. The former task has been carried out, as mentioned in Chap. 3, while the
latter one as a core part to realize intelligent dynamic configuration is still a big
challenge.

Specifically, during the configuration process, designer or engineer have to
know the existing operators well enough to select suitable ones for a specific
problem. Balance between exploration and exploitation is highly required in
configuration. However, to most engineers, it is still not easy to make decision.
With less knowledge on different kinds of intelligent optimization algorithms, they
have to do large amount of experiments to traverse all these operators and select
one or two of them according to the results. It is time consuming. Hence, a rule
base is required to provide recommendation in deciding which configuration way
is suitable, which operators to select and how to set the parameters in the specific
algorithms.

For establishing a rule base, we need to classify the existing problem into dif-
ferent kinds firstly. As introduced in Chap. 2, in the whole life cycle, large amount
of numerical function optimization, parameter optimization, detection and classi-
fication, combinatorial scheduling and multi-disciplinary optimization exist in not
only product design, but also process and system management. However, such
classification is far from enough. Each category can further be divided into two
kinds in accordance with whether the variables are continuous or discrete. Different
variables are represented with different encoding scheme. So that one operator in
different encoding scheme is totally different. According to its variables, the
problem can be classified as continuous problem, non-sequencing discrete problem
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and sequencing discrete problem. For example, traveling salesman problem belongs
to sequencing discrete problem, in which its variables are a serial integral number
and are different from each other, while traditional task scheduling problem is a kind
of non-sequencing discrete problem. Of course in many situations the variables are a
blend of continuous and discrete ones. With such classification, when a problem is
modeled and submitted, a rule must identify which category it belongs to.

Based on the classification, the second step is to classify the existing operators
according to the variable characteristics. For example, the operator of classical ant
colony algorithm is suitable especially for sequencing discrete problem, while the
operator of traditional particle swarm optimization belongs to continuous opera-
tion. With clear operations, this step is easy to implement.

After that, a bunch of heuristics or some learning algorithms, as well as hyper-
heuristics, are required for further determining how to select a group of operators
and configure them for a specific problem. This is crucial and hard to implement.

On one hand, theoretical verifications of intelligent optimization algorithms are
quite less. For a class of problems, we need to take large number of experiments to
see whether an operator is suitable. That is very time consuming. If the problem is
changed, more tests have to taken to adjust the variation. It can be seen that, the
relation between an operator and a class of problems is hard to figure out.

On the other hand, if we have obtained a group of operators, the problems of
which configuration approach to use and how to configure them together are also
two difficulties for us. From a learning point of view, the construction of recom-
mendation rule also requires large amount of experimental and practical data from
a real system.

For overcoming these challenges and establishing a certain level of automatic
configuration, a lot of data obtained from a number of experiments based on
different sorts of problems and the design of high level machine learning algo-
rithms are both imperative.

In spite of this, dynamic configuration of intelligent optimization algorithm can
still be applied with manual control in various kinds of problems not only in
manufacturing but also in other fields. Especially by means of parameter-based
configuration, operator-based configuration and algorithm-based configuration in
both serial and parallel algorithm design, limit operators can produce hundreds of
algorithms in different platforms. As a new design mechanism, it can solve wider
dynamic problems with uncertainties and complex components through diverse
configurations and a bunch of tests.

12.5 Summary

In this chapter, we mainly talked about some related works similar with the
dynamic configuration of intelligent optimization algorithm. The similarities and
differences between the dynamic configuration and hyper-heuristics and multi-
method search are given. Moreover, we showed that the idea of dynamic
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configuration can be further developed for other algorithms and on different kinds
of hardware platforms. Some future design framework of dynamic configuration
for numerical algorithms in manufacturing is drawn. And two kinds of flexible
implementations of dynamic configurable intelligent optimization algorithms on
FPGA are elaborated.

Currently, all these works are under construction. Each of them can be applied
in different area for fast and efficient design and optimization. Further, for realizing
automatic configuration, as well as in hyper-heuristics, we summarized some
challenges on the development of rule base for dynamic configuration. It is one of
the most crucial components which is imperative for engineers and designers, who
do not have the comprehensive knowledge of intelligent optimization algorithm, to
apply such configuration schemes based on a configurable intelligent optimization
algorithm library.
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