
Chapter 10
Computing Resource Allocation
with PEADGA

In this chapter, for solving optimal allocation of computing resources (OACR)
problem in cloud manufacturing (CMfg) [1], serial three-layer operation config-
uration and parallel configuration are both applied. Firstly, A new comprehensive
model for OACR is proposed in CMfg system. In this model, all main computa-
tion, communication and reliability constraints in the special circumstances are
considered. Secondly, niche strategy, immune heuristics, genetic operators and
pheromone strategy are configured together to generate a hybrid niche immune
algorithm (NIA) [2]. Based on NIA, we introduce an adaptive full mesh exchange
scheme with population supervision and get a new parallel NIA (PNIA) for
addressing the specific problem. From the perspective of algorithm parallelization,
the supervision of population state is encapsulated as a module used before
topology-based communication as an execution condition. Then the new module is
configured together with full mesh topology in different generation.

10.1 Introduction

Nowadays, in the development of manufacturing, informatization is important. It
connects enterprises to work together, share resources and improve the product
efficiency. To fulfill the target of agility, high performance and low cost among
enterprises all over the world, many manufacturing informatization modes, for
example, agile manufacturing (AM) [3], application service provider (ASP) [4]
and manufacturing grid (MGrid) [5] and so on, are proposed and used widely.
Most of them are emphasis just on how to connect distributed resources by net-
work with less considering of resource management and generalized dynamic
sharing. At the same time, cloud computing as a new network application mode is
springing up. It constructs computing service center and hire the computing power
and storage by using virtualization technology. It combines multiple computing
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resources and information as a strong ‘‘cloud’’ and divides computing power and
storage quickly and freely from cloud to user on-demand through network. Cloud
is just like a huge repository (and management) of resources which reflects the
generalized dynamic sharing and cooperative management of resources.

Inspired by this, Cloud Manufacturing (CMfg) was presented by Li et al. [1] to
expand the service mode in manufacturing informatization and improve its
dynamic. It is a new networked manufacturing mode which aims at achieving low
cost resource sharing and effective coordination. It transforms all kinds of man-
ufacturing, simulation and computing resources and abilities into manufacturing
services to form a huge ‘‘manufacturing cloud’’ and distributes them to user
on-demand. In CMfg, there’s a platform which combines core technologies of
cloud computing, internet of things (IoT) and high performance computing (HPC)
and so on to implement the intelligent management, efficient collaboration and
dynamic arbitrary service composition and division. All these resources and
abilities are intelligently sensed and interconnected into ‘‘cloud’’ and automati-
cally managed via Internet to execute various manufacturing tasks [6, 12, 13]. That
is to say, in manufacturing process, CMfg platform can analyze and divide users’
requests and automatically search suitable information, available manufacturing
devices and computing resources and intelligently integrate and provide them to
users. Users here can hire remote large equipments and computing resources
without buying, get more specific information about design, simulation, produc-
tion, delivery and recycle and monitor the whole task execution process. Thus, the
whole life cycle manufacturing process in CMfg can be simplified in Fig. 10.1.
With high intelligence and information, it is a high level extension of service-
oriented manufacturing and cloud computing.

Based on this idea, people would ask, how to transform large devices as
services for hiring, how to implement efficient resources allocation and integra-
tion? Actually, they are all supported by computing resources, as shown in
Fig. 10.1. Computing Resources, including CPU, processor, I/O, at the physical
layer [1] is the core infrastructure of CMfg platform. They not only provide
computing power as in cloud computing, but also control a variety of other
manufacturing resources and abilities directly for collaboration and sharing. They
locate in different places and form a big resource pool in CMfg platform through
virtualization. Information sharing needs them, manufacturing devices invoking
needs them and computing/simulation work needs them, too.

In other word, under the centralized management, various heterogeneous
computing resources are integrated and re-divided as virtual machines by virtu-
alization and assigned to user on-demand for computing and simulation. Mean-
while, when manufacturing equipments access in CMfg platform through
transducers, computing resources then become a kind of control and management
media. They encapsulate and map these manufacturing equipments as virtual
resources with virtualization technology to support the effective interoperation,
collaboration and monitoring of manufacturing tasks [7, 55]. High virtualization of
all kinds of manufacturing hardware/software resources and high heterogeneity
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and distribution of computing resources are two key characteristics of CMfg
compared with cloud computing. Therefore, the optimal allocation of computing
resources (OACR) which means efficient dividing and scheduling computing
resources in manufacturing process for full utilization and high efficient operation
is one of the most primary problems in CMfg.

Besides, oriented to the whole manufacturing life cycle, manufacturing tasks
are very complex. They usually include multi-disciplinary collaborative tasks such
as mechanical, electronic or control simulation and manufacturing. The demands
of tasks for communication and computation power of manufacturing resources
are high and different. Unlike the previous scheduling problems [8, 9] in parallel
computing systems, in CMfg, computing resources are divided into virtual
machines and allocated to different tasks according users’ requirements. It has the
characteristics of large scale, high heterogeneity, dynamic interconnection and
group collaboration, which has imposed a new challenge on the construction of
CMfg platform.

So, focusing on OACR problem in CMfg, we proposed a systematic model for
it from the point of packet communication and partition of computing power. The
detailed running process of the allocation of computing resources for manufac-
turing tasks is shown. Classical intelligent algorithms are introduced and compared
in solving the problem, and a new improved hybrid intelligent algorithm, NIA, is
configured to solve OACR. Further, a new topology with pre-handling module is
configured and applied in NIA. Simulation results on standard tests show that this
new algorithm is pretty efficient to solve this kind of high dimensional complex
problems.

DAG tasks
collaboration

Extract equipments and
material information

Product design

Simulation and
experiments

Production

Qualified ?

Delivery

Submit project

Inspection/Management

Yes

No

CMfg platform

Manufacturing/Simulation
equipments

VMs
management

system
perception

system

Computing Resources
( PC,Cluster,PDA)

Fig. 10.1 The simplified manufacturing process in CMfg
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10.2 Related Works

To perform larger-scale collaborative manufacturing, CMfg was firstly presented
by Li et al. [1]. They specifically defined it and introduced the architecture of
CMfg. Based on this, many studies about CMfg are started. Zhang et al. [7, 55]
further described the key technologies for the construction of CMfg. He defined
the dynamic cloud services center in CMfg as manufacturing cloud and classified it
as public cloud and private cloud. Then, from the perspective of the structure of
manufacturing cloud, he elaborated the types of manufacturing resources, the
dynamic sensing and accessing of hardware/software and the method of infor-
mation exchange in CMfg. And for further understanding and the research of
CMfg, Zhang [10] then analyzed the differences and connections among CMfg and
other related advanced manufacturing modes and then presented the target of
CMfg, i.e., agility, servicesation, greening and intelligent in the whole manufac-
turing. Based on these researches, Li et al. [11, 49] specified the characteristics of
CMfg and presented argument as a service (AaaS), design as a service (DaaS),
fabrication as a service (FaaS), experiment as a service (EaaS), simulation as a
service (SimaaS), management as a service (MaaS) and integration as a service
(InaaS). These concepts is inspired by cloud computing but clearly distinguished
CMfg from cloud computing. At the same time, Tao et al. [6, 12, 13] elaborated
the operational process of cloud manufacturing, the relation among resources,
cloud service and cloud platform and the importance of optimal allocation of
whole manufacturing resources and tasks in CMfg. All of these studies are macro-
researches with less micro-analysis in each key part. However, in detail, how to
implement intelligent and agility in optimal allocation of computing resources for
supporting these advanced manufacturing process, as one of the most important
thing of constructing CMfg platform, still hasn’t been studied.

In manufacturing system, job-shop scheduling and workflow scheduling are
much popular [61, 62] while the allocation of computing resources considered little.
But from the global perspective, OACR is one of the most basic and important
problem. OACR is a kind of pre-scheduling problem. It’s more complex than
several kinds of traditional job-scheduling or task scheduling problems [14–16]. In
the existing task scheduling models, tasks can usually be expressed in four types:
DAG (Directed Acyclic Graph) [17], HTG (Hierarchical Task Graph) [18], TIG
(Task Interaction Graph) [19, 20] and Petri net [21]. The most commonly used is
DAG, in which the nodes represent individual tasks and the directed arcs stand for
communication overhead between tasks [22, 23]. Early DAG models were sim-
plified as: the execution time of tasks are all the same, communication between
tasks are excluding, the intercommunication interfaces between processors are
enough and multiple communications can be performed simultaneously [17], and so
on. The traditional DAG task scheduling problems have been proven to be
NP-Complete [9]. It’s far more complex in many kinds of manufacturing systems
[1, 52, 63–65]. About the attributes of tasks, the concept of similarity is often
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expressed as Granularity [24, 25], which indicates the ratio of communication
overhead in a parallel program. The amount of communication edges is usually
expressed as DAG density [26]. Besides, a variety of QoS (Quality of Service)
indexes were also introduced in DAG, particularly in manufacturing task sched-
uling. Based on these QoS (Quality of Service) indexes, existing researches pri-
marily focus on homogeneous cluster systems [27–29] scheduling more thread
level tasks to less processors. The most frequently used topologies of the parallel
systems are full interconnected network, hypercube network, grid network, public
bus network, and so on [30]. The studies about heterogeneous systems are seldom.
Typically, end-point and network communication contention in heterogeneous
systems are analyzed by O Sinnen [31]. The communication preparation, overhead
and involvement of processors and communication mode of task scheduling are
elaborated by Sinnen et al. [32] and Benoit et al. [33], and so on.

On the scheduling algorithms side, typical deterministic algorithms are list
scheduling [34–36], clustering scheduling [24, 37, 38], linear programming [39],
stochastic mapping [40], and several others. Yu-Kwong and Ishfaq compared and
summarized 15 types of scheduling algorithms in [17], which is widely cited. After
that, a few efficient approximate algorithms [41, 42], were presented for solving
these problems in acceptable times. With the increase of tasks and processors
scale, traditional deterministic algorithms and original approximate algorithms can
no longer meet the demand. Thus intelligent algorithms, such as genetic algo-
rithms (GA) [43–46], ant colony optimization (ACO) [11, 47–49], immune
algorithms (IA) [50, 51] and so on and other new heuristic approaches [52–54, 64]
have been paid attention and widely applied to this kind of scheduling problems
for finding the Pareto optimal solutions especially in manufacturing application
field [66, 67].

However, the above-mentioned models are not practicable to CMfg. First,
unlike the previous thread level tasks, manufacturing tasks (MTs) are usually
carried by virtual machines (VMs) [1]. Virtual machines not only execute high
performance computing tasks, but also supervise and control manufacturing
hardware resources such as simulation equipment and machine tools. Users have
different demands on them. Multi VMs can run in same processor. The more VMs
carried at one processor, the slower their run. More importantly, there are frequent
interactions between users and VMs during tasks’ execution. In the other word,
VMs generally execute coarse grain manufacturing tasks. Second, computing
resources (CRs) with high heterogeneity are composed of different kinds of cluster,
PC, PDA, and so on. They are scattered around the world with dynamic access, so
the system topology is dynamic and uncertain. Hence different areas have different
access bandwidths, links and communication buffers [7, 55]. Third, on CMfg
platform, CRs have larger scale while MTs have relatively smaller scale with
higher and complex demands. Based on such a complex system, therefore, OACR
is different from the original scheduling problems and a detailed analysis of its new
model and algorithms are presented in this chapter.
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10.3 Motivation Example of OACR

A CMfg system consists of manufacturing resources, manufacturing cloud (CMfg
platform) and the whole lifecycle manufacturing applications. Like the traditional
service-oriented manufacturing modes, three user types – resource providers,
cloud operators and resource users are included in the platform, as shown in
Fig. 10.2 [7, 55]. Manufacturing cloud senses and manages the manufacturing
resources (hardware/software) from resource providers all over the world. When
users submit a manufacturing mission to manufacturing cloud, the platform
analyzes the mission and intelligently divides it into sub-tasks in accordance with
the requirement number of VMs and devices and then forms them as a DAG. That
means each sub-task in DAG can be executed by only one VM or one device
without separation. After the task partition, manufacturing cloud need to find
available resources for each sub-task and provide them as services for users. In
fact, as introduced in Sect. 10.1, all of the interactive and run processes among
them are not only supported by knowledge, but also by computing resources.

In order to show the importance of OACR among the triple process, we specific
the abstract workflow of task execution in CMfg as shown in Fig. 10.3 and con-
sider the multi-disciplinary physical collaborative simulation for example.

Normally, for an accurate design and modeling in industrial manufacturing
(such as airplane and automobile), physical collaborative simulation is important.
On one hand, it needs collaborative simulation of Matlab and Adams and so on. On
the other hand, it also needs driving simulator, multi-axis table and visual
equipment to work together along with software. So it is a complex process in
manufacturing. Assume there is a physical simulation task submitted to manu-
facturing cloud. After a series of intelligent divisions of task, the following steps
are done in the CMfg platform.

(1) Requirement analysis of task DAG: According to the users’ requirement of
DAG, analyze the communication and computation costs and the QoS
(Quality of Services) constraints of tasks. Then check the accessed resour-
ces(include computing resources and manufacturing devices). If there’s no
available resource or the resources are not enough, then reject the tasks. Or
the system will send a confirmation message to users and then take the next
step.

(2) Optimal allocation and strategy sending: In terms of the QoS and costs of
tasks, manufacturing cloud determines which tasks need remote simulation
physical devices. If the task needs physical device, then calculates the attri-
bute values of device and maps it to the requirement attributes of controlling
VM. Else the platform only needs to calculate the requirement attributes of
computing VM for task. As soon as the platform establishes these VMs’
requirement, it executes a scheduling algorithm for mapping these VMs to
available computing resources, then gets the optimal allocation of computing
resources strategy and sends it to users.
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(3) Execution: After the users’ confirmation, manufacturing cloud then invokes
these VMs and simulation hardware to execute. The simulation runtime
process could be controlled and monitored by users through controlling VMs
on Internet. If unexpected error occurs during execution, the platform will
call the fault-tolerant migration strategy automatically and try to execute
tasks again.

(4) Result receiving and resources release: At the end of the workflow, manu-
facturing cloud receives the simulation results and sends them to users. Then
the devices and VMs (computing resources) are released accordingly.

10.4 Description and Formulation of OACR

According to the simplified manufacturing process shown in Sect. 10.3, to build a
practical model of optimal allocation of computing resources, the core allocation
structure and its characteristics should be emphasized firstly. The structure of
OACR gives the detailed allocation process of VM management and the
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distribution characteristic of CRs. Based on that, the communication and topology
characteristics of CRs in CMfg are elaborated for further study of the model of
OACR.

10.4.1 The Structure of OACR

The OACR of CMfg is composed of three levels: manufacturing task level, virtual
resource level and computing resource level, as shown in Fig. 10.4.

On manufacturing task level, assume the tasks of a given MTs set are meta-
tasks. Meta-task means that the task is inseparable for executing in VMs/CRs, as
discussed in Sect. 10.3. For instance, in a multidisciplinary collaborative simula-
tion, each module runs on one VM with user’s control and interaction. Each VM is
inseparably running on only one CR. So MTs and VMs have the one-to-one
mapping relationship.

When MTs’ demands are abstracted as virtual resources’ demands, the virtual
machine manager receive the demand information and allocate available VMs for
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physical manufacturing resources. The physical manufacturing resources can be
not only manufacturing/simulation equipments, but also computing resources.
Each of manufacturing/simulation equipment needs a CR to control and monitor.
Thus, all VMs are supported by CRs. They form the virtual resource level and
support the running of MTs. Because the customized MTs are applied by user, the
constraints of VMs (e.g., the demand of memory size, computing speed, com-
munication link and bandwidth, etc.) could be obtained at the same time.

As shown in Fig. 10.4, the mapping of manufacturing task level and virtual
resource level is the foundation of OACR, and the mapping of virtual resource
level and physical resource level is central to the optimization. In this chapter, the
manufacturing task level and virtual resource level are merged, and the optimal
allocation of MTs (or VMs) and CRs under the concrete computation and
communication constraints are emphasized.
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10.4.2 The Characteristics of CRs in CMfg

In actual operation of VM management, the topology and communication prop-
erties of CRs are very important. These factors determine which CRs are most
suitable for MTs and which allocation scheme is the most efficient one, and almost
all constraints of OACR come from the characteristics of CRs.

(1) Communication network
The CMfg network is different from other enterprise network or public network and
compromised by many distributed manufacturing resource around the world. For the
sake of facilitate management and extension, master-slave (manager-service) mode
is adopted in the platform. As the shoring of foundation, computing resources can
dynamically access the platform via Internet. They are managed and controlled by
high stable VMs management system. According to their locations, CRs can be
divided into multiple subsets. This topology is similar to the classical tree network.
Each subset belongs to different provider who has full authority and obligation to
operate and maintain it. The subsets could be mesh/star topology cluster or inde-
pendent PCs. Due to the different topologies of CRs’ subsets, the transmission in
group can be half-duplex, full-duplex or busses. With the development of the high
speed Ethernet switch, transmission among groups are all full-duplex.
(2) Communication ports
Generally, the port communication of master-slave system can be classified as
single-port mode [56] and multi-port mode [57]. Single-port mode means that the
network central node can only send or receive limited-byte message to/from one
slave node in a given period of time. On the contrary, in multi-port mode the
network central node can send or receive limited-byte message to/from one or
more slave nodes in a given period of time. In CMfg, multi-port communication
mode is adopted in CRs and the platform.

However, in this multi-port mode, owing to the complex and frequent inter-
communication among CRs for a large number of MTs, the amount of transmit
data from multi-port to the central node must be huge, which is called periodic
burst or data surge. Periodic burst can cause packet loss and network congestion.
In order to avoid this, the general port transmit mechanism of cloud computing is
adopted in CMfg, that is, large caches are allocated in the receive direction of
switches while small caches are allocated in the send direction to control the flow
burst. In this case, the critical cache in the receive direction for preventing data
surge and the relationship with the communication time between CRs should be
particularly considered.
(3) Communication bandwidth
Associating with multi-resources around the world, the core network protocol of
CMfg is still TCP/IP mode (with two-sided communication type [32]. In TCP/IP
protocol, Data are usually divided into small packets and transmitted one by one. If
one of the packets is not arriving, the packet will be resent or the congestion
control strategy will be loaded in the network. Then the data transfer rate will be
slower. Though TCP/IP protocol is efficient in short distance transmission, it may
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cause delay or packet loss in the large-scaled remote communication in CMfg.
Thus, in gigabit network, long-distance communication between CRs will lead to
delay at hundred milliseconds scale and small probability packets loss. This makes
the actual transfer rate be only about one-tenth of the original bandwidth or even
smaller. Therefore, with existing communication technologies, the transfer rates of
remote communication among CRs can only reach ten to hundreds Mbps.

10.4.3 The Formulation of the OACR Problem

The above-mentioned structure and main characteristics clearly reflect the high
heterogeneity and dynamics of optimal allocation of computing resources. It
comes from the traditional models of task scheduling but is more complex than the
traditional ones. For describing the model of OACR in formalization, the formal
descriptions of tasks and computing resources in traditional task scheduling are
shown as follows. And based on the traditional definitions, the new model of
OACR is presented then.

(1) Traditional models of tasks and CRs
In general task scheduling problem, the tasks and the multiprocessor system are
defined as follows.

Definition 1 The tasks set in multiprocessor system can be presented as a
weighted directed acyclic graph (DAG), G ¼ ðV;E; c;wÞ. The set
V ¼ fviji ¼ 1 : v; v ¼ Vj jg, where vi represents the task of the set V, and v is the
cardinality of nodes. The set E ¼ V � V , e ¼ Ej jis the number of edges, and
eðijÞ 2 E represents the communication between vi and vj. w(i) represents the
computation cost of vi. cðijÞ 2 c represents the communication cost of the directed
edge e(ij). If there is no communication between vi and vj, then eðijÞ ¼ cðijÞ ¼ 0.

Let the predecessor tasks set of vi be pred(vi), and the successor tasks set be
succ(vi). The node with no predecessor task predðviÞ ¼ ; is named source node,
and the node with no successor task succðviÞ ¼ ; is called sink node. They all
strictly observe the tasks’ priority rules. It means a node can only be started after
all its parent (preceding) nodes are finished.

Definition 2 The multiprocessor system, M ¼ ðP; s; bwÞ, consists of a finite set
of processors P ¼ fpkjk ¼ 1 : p; p ¼ Pj jg which are connected by a communica-
tion network. The notation s ¼ fsðkÞjk ¼ 1 : p; p ¼ Pj jgrepresents the computing
power of processors, bw ¼ P� P represents the bandwidth between processors,
and bwðklÞ 2 bw is the bandwidth between pk and pl. If the system is homoge-
neous, the processor’s computing power and their bandwidths are all equal, that is
8k; l 2 ½1; p�; k 6¼ l ) sðkÞ ¼ sðlÞ, bwðkÞ ¼ bwðlÞ. Heterogeneous systems are
then contrary.

In these models, processors are usually all directly connected, and the tasks are
non-preemptive. If two tasks are carried by the same processor, their communi-
cation cost is 0, and it assumed that the transmission rate of computing resources
equal to the bandwidth (the ideal value).

10.4 Description and Formulation of OACR 301



(2) The new models of OACR in CMfg
According to the characteristic of CRs, the uncertain topology can be simplified as
shown in Fig. 10.5. The above-mentioned CRs subsets are simplified as different
groups. Different topologies in groups can be reflected by the communication links
among CRs. That is to say, with different topologies, CRs in the same group
connected with each other through different communication links by local con-
nection, and CRs in different groups are connected by switches via Internet. Stand-
alone PCs can be classified as a special group. They are connected with each other
directly via Internet.

In theory, the biggest difference between general computing tasks and MTs are
whether they are controlled by and interacted with users during execution time.
Control and supervision are generally implemented by multi-thread in CRs. The
MTs’ computation costs vary according with users’ interactions. Because of the
frequent control and supervision in MTs, the execution times might be much
longer. How long it will be depends on how many interactions and supervisions
during MTs’ execution. For considering this, the new MTs model is defined as:

Definition 3 The MTs set in CMfg can be presented as a weighted directed
acyclic graph (DAG), G ¼ ðV ;E; c;w; oper p; su pÞ. The definition of
V ¼ fviji ¼ 1 : v; v ¼ Vj jg, E ¼ V � V , w and c are the same as the traditional
task model (Definition 1). The set oper p ¼ foper piji ¼ 1 : v; v ¼ Vj jg and
su p ¼ foper piji ¼ 1 : v; v ¼ Vj jg represent relative interoperation-to-comput-
ing ratio and relative supervision-to-computing ratio separately. That is to say, the
estimated cost of interoperation oper ¼ c� oper p and the estimated cost of
supervision su ¼ c� su p.

Then the total cost of each node in G can be calculated as
WðiÞ ¼ wðiÞ � ð1þ oper pðiÞ þ su pðiÞÞ. If there’s no interaction or supervision
in vi, then oper pðiÞ ¼ 0or su pðiÞ ¼ 0. These two factors can clearly reflect the
users demands for interaction in MTs and the new model can then be more practical.

With the users’ interaction and large-scaled computation and communication
costs, the installments and involvements of VMs can be ignored from both com-
munication and computation perspective. On the basis of the topology and the
characteristics of CRs, the new CRs model can be defined as follow.

Definition 4 The CRs system model of CMfg is given by
M ¼ ðP; s; rou; bw;mem; buf ; relÞ, where

• P ¼ fpkljk ¼ 0 : m; l ¼ 1 : nkg represents the CRs set, in which m is the number
of CRs groups, and nk is the resources number in group k. Let k = 0 represent
the stand-alone PCs, and n0 represent the number of these stand-alone PCs.

Therefore, the total quantity of CRs is Pj j ¼
Pm

k¼0
nk.

• s ¼ fsðklÞjk ¼ 0 : m; l ¼ 1 : nkg represents the computing power (the comput-
ing speed) of the CRs set.

• mem ¼ fmemðklÞjk ¼ 0 : m; l ¼ 1 : nkg represents the available memory vol-
ume of CRs, in whichmem(kl) varies dynamically with the task running. Its
memory volume is reduced accordingly, when a task (VM) is assigned to the CR.
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• bw ¼ fbwðklÞjk ¼ 1 : m; l ¼ 1 : nkg represents the bandwidth between CRs and
switch in each group. Considered the simplified topology (Fig. 10.2), the access
bandwidths of switches to Internet are defined as BW ¼ fBWiji ¼ 1 : mg. Due to
the stand-alone PCs are connected via Internet directly, let bw0 ¼ fbw0ðklÞjk ¼
1; l ¼ 1 : n0g be their bandwidth to Internet. Owing to the bandwidths in groups
are generally gigabit, 8k 2 ½1;m�; l 2 ½1; nk� )BWk � bw klð Þ.

• rou ¼ frouiðklÞji ¼ 1 : m; k 6¼ l; k; l 2 ½1; ni�g represents the communication
route between pik and pil in local connection. Because the subsets of CRs are
dynamic and complex, the route and bandwidths of the communication between
two CRs needs to be calculated by a specific way when the subset is accessed.
So the concrete topologies in groups are not considered in this model. It is
assumed that the communication routes and bandwidths among CRs are
previously figured out by some kinds of routing algorithms. The simplified
communication route rouiðklÞ ¼ flink1; � � � ; linkrg[32] varies with different
topologies, and the bandwidth of rouiðklÞ is defined as bwðrouiðklÞÞ ¼
minfbwðlink1Þ; � � � ; bwðlinkrÞg.

• buf ¼ fbuf ðklÞjk ¼ 1 : m; l ¼ 1 : nkg represents the buffer size of the switch
communication ports in each group. According to Davidovi et al. [30], it
assumed that the highest tolerable abrupt data of each port to be:

DðklÞ ¼ buf ðklÞ þ buf ðklÞ BWk

bwðklÞ � BWk
¼ buf ðklÞ bwðklÞ

bwðklÞ � BWk
ð10:1Þ

• rel ¼ frelðklÞ ¼ ðrel pðklÞ; rep tðklÞÞjk ¼ 0 : m; l ¼ 1 : nkg represents the
reliability of the CRs set. The reliability of CR means the probability that the
computing resource fails to connected in the consequence of the communica-
tion link or occurrence of another MTs set which leads to pause computation for
some times. So rel_p(kl) represents the probability and rep_t(kl) represents
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the predicted failure duration time of CRs. Then 8k 2 ½0;m�; l 2
½1; nk� ) rel pðklÞ 2 ½0; 1�.

In this model, rou and bw are used to represent the local connections and the
remote connections separately. Therefore, the OACR model can be described as
S ¼ ðG;MÞ, where G ¼ ðV ;E; c;w; oper p; su pÞ represents the MTs and M ¼
ðP; s; rou; bw;mem; buf ; relÞ represents the CRs.
(3) The constraints and objective function of OACR
Based on the structure described before, four issues of CRs are considered in this
chapter.

(1) The minimum acceptable memory size MEMminðiÞ for task vi;
(2) The minimum acceptable reliability RELminðiÞ for task vi;
(3) The minimum acceptable computing speed EXE SPEEDminðiÞ for task vi;
(4) The longest acceptable communication time COM TIMEmaxðijÞ for task vi,

usually it is much looser than the above three constraints.

When a MTs set G ¼ ðV ;E; c;w; oper p; su pÞ is applied to CMfg platform,
the system M ¼ ðP; s; rou; bw;mem; buf ; relÞ will provide right CRs for it. Let k(i)
and l(i) be the group number and the position of the selected CR for task vi, and let
p_load(k(i)l(i)) be the load of the selected CR for task vi, which is measured by
MTs per CR. Then the constraints of each selected CR can be described as:

• When multi MTs v1 � � � vn; n\v ¼ Vj jf g select the same CR Ps, if

memðsÞ�
Pn

i¼1
MEMminðiÞ then p loadðsÞ ¼ 1, else, MTs are needed to queue for

execution, that is, p loadðsÞ ¼ n;
• 8i 2 ½1; v�, the computation speed of the selected CR for task vi satisfied:

s kðiÞlðiÞð Þ=p load kðiÞlðiÞð Þ�EXE SPEEDminðiÞ, and then the execution
time of task vi can be expressed as EXE TIMEðiÞ ¼ WðiÞ�
p load kðiÞlðiÞð Þ=s kðiÞlðiÞð Þ;

• 8i 2 ½1; v�, the reliability of the selected CR for task vi satisfied:
rel pðkðiÞlðiÞÞ�RELminðiÞ,

The constraints of the communication ability of the selected CRs can be rep-
resented as COM TIMEðijÞ�COM TIMEmaxðijÞ. It can be divided into two
cases. 8i; j 2 ½1; v�; i\j (vi is the predecessor task of vj), let COM TIME sðijÞ be
the data sending time between the two tasks, and COM TIME rðijÞ be the data
receiving time between two tasks.

Case 1 when vi and vj are in the same CRs group, kðiÞ ¼ kðjÞ ¼ k 6¼ 0. Without
considering the reliability factors, the sending time of vi is equal to the receiving
time of vj, that is:

COM TIME sðijÞ ¼ COM TIME rðijÞ ¼ COM TIMEðijÞ ¼ cðijÞ=roukðlðiÞlðjÞÞ
ð10:2Þ
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With the addition of the rel factor, let t(x) be the average communication time
between vi and vj which originally needs x seconds of processing. If the CR pk(j)l(j)

doesn’t fail halfway, then the communication time needs 1 + t(x-1) seconds, but if
it fails at midway (with the probability rel_p(k(j)l(j)), then it needs to wait
rep_t(k(j))(l(j)) seconds and also need another t(x) seconds to complete the com-
munication. Therefore it has:

tðxÞ ¼ ð1� rel pðkðjÞlðjÞÞ 	 ð1þ tðx� 1ÞÞ þ rel pðkðjÞlðjÞÞ 	 ðtðxÞ
þ rep tðkðjÞlðjÞÞÞ ð10:3Þ

tðxÞ ¼ 1þ tðx� 1Þ þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ ð10:4Þ

Since t(0) = 0, it can be written as:

tðxÞ ¼ xð1þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ Þ ð10:5Þ

According to Eq. 10.5, the communication time between vi and vj can be
expressed as:

COM TIMEðijÞ ¼ ð1þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ Þ 	 cðijÞ

roukðlðiÞlðjÞÞ
ð10:6Þ

Case 2 when vi and vj are in different CRs groups,

• If cðijÞ\D kðiÞlðiÞð Þ, without considering the reliability, the sending time of
task vi is equal to:

COM TIME sðijÞ ¼ cðijÞ=bw kðiÞlðiÞð Þ ð10:7Þ

and the receiving time of task vi is equal to:

COM TIME rðijÞ ¼

cðijÞ
minfBWkðiÞ;BWkðjÞg

; kðiÞ 6¼ kðjÞ 6¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BWkðjÞg
; kðiÞ ¼ 0

cðijÞ
minfBWkðiÞ;BW0ðlðjÞÞg

; kðjÞ ¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BW0ðlðjÞÞg
; kðiÞ ¼ kðjÞ ¼ 0

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼COM TIMEðijÞ

ð10:8:Þ
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After adding the reliability factors, according to Eq. 10.5, the sending time of
task is unchanged, but the receiving time is changed as:

COM TIME rðijÞ ¼ ð1þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ Þ

	

cðijÞ
minfBWkðiÞ;BWkðjÞg

; kðiÞ 6¼ kðjÞ 6¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BWkðjÞg
; kðiÞ ¼ 0

cðijÞ
minfBWkðiÞ;BW0ðlðjÞÞg

; kðjÞ ¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BW0ðlðjÞÞg
; kðiÞ ¼ kðjÞ ¼ 0

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼ COM TIMEðijÞ ð10:9Þ

• If cðijÞ[ D kðiÞlðiÞð Þ, the sending rate of task vi must be reduced. According to
Eq. 10.1, the sending rate ssendðiÞ ¼ cðijÞ 	 BWkðiÞ= cðijÞ � buf kðiÞlðiÞð Þð Þ. So
the sending time of vi is changed as COM TIME sðijÞ ¼ cðijÞ�ð
buf kðiÞlðiÞð ÞÞ=BWkðiÞ. Yet the receiving time of vj would remain as Eq. 10.9,
and COM TIME rðijÞ\COM TIME sðijÞ.

Based on these constraints, let the start time of task vi be START_TIME(i),
the execution time of vi be EXE_TIME(i), and the finish time of vi be
FINISH_TIME(i), then:

START TIMEðjÞ ¼ max
i2predðvjÞ

fCOM TIME rðijÞg ð10:10Þ

FINISH TIMEðjÞ ¼ START TIMEðjÞ þ EXE TIMEðjÞ
þ max

i2succðvjÞ
COM TIME sðijÞf g ð10:11Þ

Therefore the temporal relation between two adjacent tasks is as shown in
Fig. 10.6. Note that the source node v1 do not need to receive data, so
START TIMEð1Þ ¼ 0, and the sink node’s sending time is also the MTs sub-
mission time, that is:

COM TIMEðvÞ ¼ TASK SUBMISSION TIMEðVÞ

¼
cðvÞ�buf kðvÞlðvÞð Þ

BWkðvÞ
; if cðvÞ[ D kðvÞlðvÞð Þ

cðvÞ
BWkðvÞ

; if cðvÞ\D kðvÞlðvÞð Þ

8
<

:
ð10:12Þ

where c(v) represents the submission data of MTs.
In conclusion, the execution time of the whole MTs set is:

TOTAL TIMEðVÞ ¼ FINISH TIMEðvÞ � START TIMEð1Þ ¼ FINISH TIMEðvÞ
ð10:13Þ
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As the constraint of memory size of CRs is embodied in the constraint of
computing speed and the reliability factors is embodied in the constraints of
communication in CRs, the optimal object function and the constraints of OACR
S ¼ ðG;MÞ can be summed up as:

MINIMIZE TOTAL TIMEðVÞ SUBJECT TO

8i 2 ½1; v�; s kðiÞlðiÞð Þ
p load kðiÞlðiÞð Þ �EXE SPEEDminðiÞ

8i; j 2 ½1; v�; COM TIMEðijÞ�COM TIMEmaxðijÞ

8
<

:
ð10:14Þ

(4) Problem complexity
Traditional task scheduling problems are proved to be NP-complete problems. To
prove the complexity of OACR, two definitions are introduced in this section
according to Gawiejnowics [58].

Definition 5 [58] (A polynomial-time transformation): A polynomial-time
transformation of a decision problem P0 into a decision problem P (P0 / P) is a
function f : DP0 ! DP satisfying the following two conditions:

(a) the function can be computed in polynomial time;
(b) for all instances I 2 DP0 , there exists a solution to I if and only if there exists a

solution to f Ið Þ 2 DP.

Definition 6 [58] (An NP-complete problem): A decision problem P is said to
be NP-complete, if P 2 NP and P0 / P for any P0 2 NP.

Theorem 1 the OACR problem is NP-complete problem.
Proof In the OACR problem, the task quantity of a MTs set v ¼ Vj jis less than

the processors number of a CRs set p ¼ Pj j. One processor can carry multi tasks.

(1) When 1\Np\v, choosing Np suitable processors from p resources has C
Np
p

solutions. After choosing these Np processors, the mapping of v meta-tasks
and Np resources turn into the traditional scheduling problem. In this situation
the OACR problem can be reduced to the traditional scheduling problem.
According to definition 6, the traditional scheduling problem is NP-complete,
so the OACR problem is NP-complete.

Data Receiving 
Time

Task Execution 
Time

Data Sending 
Time

Start Time Finish Time

vi

Data Receiving 
Time

Task Execution 
Time

Data Sending 
Time

Start Time Finish Time

vj

Fig. 10.6 The temporal relation between two MTs
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(2) when Np ¼ v, choosing v suitable processors from p resources has Cv
p solu-

tions. Afterwards, the mapping between v meta-tasks and v computing
resources can be converted to TSP (Traveling Salesman Problem), which is
the full permutation problem. In this situation, the OACR problem is reduced
to TSP problem. From Definition 6, TSP problem is NP-complete, thus the
OACR problem is NP-complete, too.

The above discussions contain all cases of the OACR problem, so Theorem 1 is
true. Q.E D.

From the point of the solutions, let n be the total amount of CRs in the CMfg
platform. and let v be the task number of an applied MTs set. For the case of no
time constraints, each task has n choices. So the size of the solution space is nv. If
some one want to find the best solution one by one in the entire solution space,
then they need O(nv) steps to complete. It is a huge calculation. For example, if
there’re 100 CRs and 5 MTs, the solution space is 5100. It’s a very huge number for
calculation. At present, no deterministic algorithms can solve it in polynomial
time. So, intelligent algorithms are introduced in this chapter.

10.5 NIA for Addressing OACR

The most frequently used intelligent algorithms for the traditional task scheduling
are genetic algorithm (GA) [43, 44] and ant colony optimization algorithm (ACO)
[47, 48]. Besides, immune algorithm (IA) has shown great potential in combina-
torial optimization problems [59, 60]. They are widely used in various kinds of
scheduling problems and their basic processes are shown in Fig. 10.7. Based on
these three classical intelligent algorithms and with the consideration of the
complex of OACR, a new improved niche dynamic IA (NDIA) is proposed in this
chapter for better solutions. These four algorithms will then be used and generally
analyzed for addressing the OACR problem in detail.

10.5.1 Review of GA, ACO and IA

GA is an adaptive global optimization stochastic search algorithm which is
inspired by the principle of evolution and natural genetics. With a set of structured
populations which represented the candidate solutions of the problems, it combines
the survival of the fittest among populations (selection), the structured yet ran-
domized information exchange (crossover) and the random bit mutation.

Firstly, roulette wheel selection is used commonly in the standard GA. It is
performed by randomly picking a certain amount of populations according to their
fitness values to form a new group of populations. The one with higher fitness
value occupied higher probability of selected. Secondly, each two of the selected
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populations exchange parts of their gene-bits in the crossover operation. So two
new genetic chromosomes are generated and the better gene bits go into the next
generation. Thirdly, the mutation operation randomly changes some gene bits of
populations with a certain probability for increasing the diversity. After the above
three steps, if the new best population is better than the old one, then it would
evaluated by the new one, or the best population record will remain unchanged.
This process will repeat and then terminate when the maximize generations are
reached or the optimal solution is found.

ACO is a kind of swarm intelligence algorithms which takes inspiration from
the social behaviors of ant colony. It combines ants’ routing and pheromone
update. The original intention of ACO is to solve the complicated path optimi-
zation problems, such as TSP, and edge scheduling.

In the process of routing and finding foods, ants deposit pheromone on the path
they have walked in order to mark some favorable path and broadcast the infor-
mation. The longer the path, the lower the density of pheromone is. Other ants can
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Return the
best strategy
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updating
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Global updating
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best strategy
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Initialization
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Genetic
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Global updating

Iteration<=MAXITER?

Return the
best strategy

No

Yes

ACO IA

Fig. 10.7 The process of GA, ACO and IA
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perceive this pheromone and recognize its density. They have a large probability to
select the path which has the greater pheromone density. Then a kind of infor-
mation positive feedback is formed. The pheromone density on the optimal path
will become higher, while the pheromone density on other paths will reduce as the
time goes by. Finally the whole colony will find the optimal path.

With this inspiration, the priori knowledge is introduced and formed the stan-
dard ACO. That is to say, ants are finding path not only in the light of the
pheromone, but also according to the priori rules (knowledge) of the problems. As
the same with GA, the whole process continues many evolution times until the ants
find the optimal path (solution) or the number of evaluation steps reach a prede-
fined value.

IA is a kind of evolutionary programming which based on the immune system
in biotic science. With the introduction of the concepts and the characteristics of
antigen recognition, immunological memory and immune regulation, diversified
immune algorithms are presented. The immune algorithm proposed by Lei Wang
[59, 60] is a typical and efficient one. In this chapter, it will be applied in OACR
and IA here just indicates the algorithm in [59, 60].

More specifically, IA is a convergence of immune theory and genetic algorithm.
It contains genetic evolution, immune vaccination and immune selection, but first
of all, antigen extract and vaccine selection according to the feature information of
problem is the most important part of this algorithm. It is a core rule to lead the
population evolution in the right direction. Then, the population initialization and
the genetic evolution are all the same as the standard genetic algorithm. After
selection, crossover and mutation, new populations are vaccinated by antibodies.
That is injecting priori knowledge into the new populations in some degree for
improving their fitness values. (The priori knowledge in IA is the same as in
ACO.) Then, new populations are selected by immune selection operation
according to the choosing rules of simulated annealing. Three steps will repeat
until the ending conditions are meeting.

All of the above-mentioned intelligent algorithms are evolved with a number of
cycles by their own mechanism. As shown in Table 10.1, only GA does not need
the priori knowledge with less control parameters. Without other improvement
strategies, its global convergence is weak, but its robustness is quite good. ACO
and IA are both need the direction of priori knowledge with good global con-
vergence. Yet the control parameters of ACO are more than IA’s.

Table 10.1 The characteristics of GA, ACO and IA

Algorithm Year Mechanism Priori
knowledge

Global
convergence

Control
parameters

GA 1975 Biological
evolution

Needless Weak Less

ACO 1992 Ants behavior Need Strong More

IA 2000 Immune system Need Strong Medium

310 10 Computing resource allocation with PEADGA



10.5.2 The Configuration OfNIA for the OACR Problem

Inspired by the above three algorithms, the improved niche IA takes the techniques
of pheromone guide from ACO and the ecological niche strategy. Its framework is
shown in Fig. 10.8.

Compared with IA (as shown in Fig. 10.7), the niche strategy, dynamic vacci-
nation and pheromone updating strategy are added in NDIA. Niche strategy is used
for improving exploration during searching, dynamic vaccination and pheromone
updating strategy is taked for further improving the exploitation and searching
direction with the dynamical consideration of both computation and communica-
tion in OACR. The genetic evolution just adopts the standard roulette wheel
strategy, single-point crossover and mutation. The improvement of initialization,
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Genetic evolution

Dynamic vaccination

Immune selection

Evaluation

Global updating

Iteration<=MAXITER?

Return the best strategy

No

Yes

Pheromone updating

Niched strategy

Fig. 10.8 The framework of
NDIA for addressing OACR
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the object function and new improved strategies in NDIA for solving OACR are
elaborated as follows.

(1) Initialization
For solving OACR problem, real number coding is used in the experiments. Real
number coding can avoid the encoding/decoding process, improve the accuracy
and reduce the complexity of the algorithm. As shown in Fig. 10.9, the sequence
number of gene bits is denoted as the serial number of MTs, the numbers in the
gene bits represent the index of CRs and their subscripts represent the group
indexes of CRs. In other word, each gene bit occupies two integer bits. This kind
of coding method takes less space and is more intuitive and simple.
(2) Object function in Evolution
Because the standard GA with the roulette wheel strategy is commonly used to find
the individual with the maximize fitness value. The fitness evaluation function of
OACR in all intelligent algorithms is set as:

max f ¼ Const

TOTAL TIMEðVÞ ð10:15Þ

Const is a constant which makes the object fitness value in the algorithms
neither too large nor too small.
(3) Niche strategy
For improve the diversity and balance the exploration and exploitation of the
algorithms, the technology of ecological niche is introduced in it. In NIA, the
hamming distances Dij between two individuals should be calculated before the
implementation of genetic evolution, as shown in Eq. 10.16.

Dij ¼ Xi � Xj

�
�

�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

k¼1

ðxk;i � xk;jÞ2
v
u
u
t ð10:16Þ

where Xi and Xj represent individual i and individual j, and xk,i and xk,j represent
the gene bits of each individuals separately. If Dij (between individual i and j) is
less than a pre-set parameter L, then the individual with lower fitness value will
multiple a penalty function to make it more lower. This action could wipe off the
similar individuals and protect the diversity of the population to improve the
search ability.

31 52 14 61 23… …
MT1 MT2 MT3 MTn

The index of CRs
Coding

Fig. 10.9 The real number coding for OACR
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Because of the definition of the maximum object function, here the penalty
function is set as f ¼ 10�5 and let the parameter L to be v which is the size of the
individual in algorithms (MTs’ number).
(4) Dynamic vaccination and pheromone updating
As is known to all, antigen extraction and vaccine selection is the core factor of IA
and it usually comes only from the priori knowledge (i.e. heuristic information) of
the problems. If the priori knowledge is extracted inappropriately, the algorithm
will evolve in the wrong direction and no feasible solution can be found. However,
the priori knowledge in the complex problem is usually complex and varying with
different situations. For example, both the computation and communication (node
and edge factors) should be considered in OACR especially when the computation
rate of MTs is equal to its communication rate. The incidence relations among
tasks are very complex and the computation and communication power of CRs are
varying dynamically. The extracting and the rate selection of the two factors are
therefore hard. This directly influences the efficiency of IA in solving the global
optimal solutions.

To avoid this problem, and considering the dynamic change of the memory
size, communication bandwidth and reliability constraints of CRs, we present the
new dynamic vaccination strategy. That is, extraction and calculating the heuristic
information (gij) of allocating the CR pj to the MT vi needs real time in each
evolutionary cycle. It is time consuming but can obtain higher accuracy result in
the scheme, and for simplification, the heuristic information function is set as:

gij ¼
s kðiÞlðiÞð Þ

p load kðiÞlðiÞð Þ

� �a
	 bwðk(i)lðiÞÞð Þb

1þ rel pðkðjÞlðjÞ	rep tðkðjÞlðjÞ
1�rel pðkðjÞlðjÞ

� �c ð10:17Þ

where a, b and c represent the importance of the execution speed, communication
bandwidth and reliability of CR in the heuristic information and they satisfied
a; b; k 2 ½0; 1�. In experiments, the value of these parameters will be tested and
discussed for better solution.

Besides, for further improving the searching direction, the pheromone of ACO
is brought in NDIA in this chapter. That is to say, the improved NDIA extracts
antigen and vaccine not only by the priori knowledge, but also by the pheromone
which is released by the previous best individual of the whole populations. As a
supplement, the pheromone increased the experiential guidance and made a
positive feedback in IA. To put it more specifically, let sij be the density of
pheromone of mapping MT vi to CR pj and gij be the priori knowledge (i.e. the
heuristic factor) of the problem. The vaccine can then be expressed as:

vaccine ¼ ðsijÞuðgijÞ
/ ð10:18Þ

where sij is updating as the same as in ACO, and u;/ 2 ð0; 1Þ represent the
strength factors of sij and gij separately. If u is too larger than /, then vaccine will
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be directed by the experience of populations and result in low searching ability and
low convergence. But on the contrary, too larger / will also changed vaccine to
static and lead to premature. So, according to ACO, the rates of pheromone and
heuristic information in Eq.10.17 in this chapter are set the same as ACO (i.e.
u ¼ 1; / ¼ 5).

Then at the vaccination step, the one or more gene-bits of the selected popu-
lations will be changed as the one with the highest vaccine at a certain rate. This
strategy can improve the convergence, increase the robustness and simplify the
previous vaccine extraction and calculating in algorithms.

10.5.3 The Time Complexity of the Proposed Algorithms

The time complexity of the intelligent algorithms is dynamically varied with
different problems. Let n be the scale of the population, m be the scale of CRs in
CMfg platform and v be the scale of the MTs set applied by user. The algorithms’
complexities in each cycle (or generation) are shown in Table 10.2.

GA does not need the heuristic information to direct its evolution. In selection,
the complexity of the roulette wheel strategy in the best situation is O(n), and its
worst complexity is O(n2). Due to the worst case complexity of the algorithm is the
upper bound of run time. The complexities in Table 10.2 just mean the worst case
complexities.

In ACO, because ants’ routing needs to calculate the priori knowledge in each
cycle, finding a suitable CR for each task then needs m step to get all of the
heuristic information of CRs. With n populations and v tasks, its complexity is
O(nmv).

The same as the ACO, IA needs to find a certain number of population and
vaccinates them. In vaccination, the load and memory of each CR should be
calculated according to the mapping of MTs, so the complexity of this operator is
O(n(m + v)). Then the immune selection will decide if the new populations can be
kept in the next generation according to the choosing rules of simulated annealing.
For n new populations (at most) and v tasks, the complexity is O(nv).

Based on IA, the complexities of additional strategies in NDIA are also shown
in Table 10.2. Owing to the calculation of hamming distance among populations,
the niche strategy’s complexity is O(n2). The dynamic vaccination in each evo-
lutionary cycle is O(m), and the pheromone updating strategy is O(mv). So in
theory, the additional operators in NDIA did not increase the complexity of the
algorithm.

The complexities of above-mentioned four algorithms when n!1 and m!
1 and v!1 are also proposed as Table 10.2 shows. If the population size of the
algorithms is large, the complexity of ACO (O(n)) is the lowest. When the scale of
CRs m!1, then the lowest complexity is O [1] in GA. However, when the scale
of MTs v!1, then the complexities of the four algorithms are all the same
(i.e. O(v)).
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10.6 Configuration and Parallelization of NIA

As mentioned in Chap. 5, there are many topologies for the parallelization of
intelligent optimization algorithm. No matter with large-scaled or small-scaled
computing resources, communication on one hand is a critical issue for preserving
the overall performance of parallel algorithm, on the other hand is also a decisive
factor the total time consumption of searching process. Therefore, the control of
individual exchange is the most important thing in the parallelization
configuration.

As is known, during the evolutionary process, if the sub-populations in different
nodes are consistent and distributed in a small solution space, the communication
is needless. Too frequent exchange in this situation is very likely to get premature
convergence. On the contrary, if the sub-populations in different nodes are
dynamic and distributed in a large solution space, then the communication is
required. In this case, foreign excellent individuals will always bring good
information and push the whole population evolving in a good direction. Other-
wise, sub-population will do evolution on their own with a lot of repetitions and no
convergence at all. Inspired by the use of prior knowledge in many adaptation
strategies, we present a new adaptive ways for control the communication step and
make exchange only when the whole population is high diversity.

Firstly we need to select a suitable connected topology.

1. Connected topology
The common used topologies include ring, grid and full-mesh and so on. Nor-
mally, with fixed number of individuals in the whole population, dense connection
topologies such as full-mesh and grid can obtain higher collaborationamong sub-
groups but with higher communication overhead,vice versa. However, based on
general parallel tools - MPI (Message Passing Interface), we found that-
MPI_Allgather (the full-connected interaction way) is more efficient than the use
of MPI_Send/MPI_Recv or MPI_Isend/MPI_Irecvto implement full communica-
tions duringn nodes due to the inside optimization by the tools itself. In this
situation, full-mesh is quite advantageous.

Thus, full-mesh module is selected to generate the new PNIA. Nonetheless,
full-mesh cannot make sure low time consumption during iterations. Considering
the time cost of MPI_Allgather, the design of efficient migration mechanism is
imperative.
2. New adaptive strategy
In each period, whether to exchange individuals is decided by the overall evolu-
tionary state of the sub-populations. Specifically, migration is not always needed in
iterations. If the sub-populations execute many times of iterations but with low
evolution and diversity, then migration is needed to introduce outside excellent
genes to improve the quality and diversity of sub-populations. Otherwise,
migration is needless at all because good evolutionary direction of sub-populations
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could easily be disturbed. Not only is the redundant migration wasting time, but
also it does not bring good benefits.

Thus, from the whole population point of view, we set one computing node to
take in charge of supervising and gathering the state parameter of all sub-popu-
lations, as well as master-slave mode, and broadcasting the overall state to all
others with Map/Reduce operations in MPI. Whether to do interaction depends
directly on the overall state parameter.

As we know, one of the key factors to reflect the evolutionary state is the total
number of progression-free generations. It implies that, since the last generation of
the improvement of historical best solutions, the generations have been executed
without the change of the historical best record. Let the progression-free genera-
tion of each sub-population i be G_invai. If better solution has been searched in the
current generation, then G_invai = 0. Otherwise in each generation, execute
G_invai = G_invai + 1. To avoid extra large value of G_invai, we could set
G invai 2 ½0;Gmax� in which Gmax represents the upper bound of G_invai.

According to such variable, the evolutionary state of each sub-population can
be easily obtained. With fixed topology modules in configuration, here we only
need the overall evolutionary state to control the exchange process. For balance
among different sub-population, set the total progression-free generations
G inva total to be calculated as follows.

G inva total ¼
Xn

i¼0
G invai ð10:19Þ

where n is the total number of sub-groups. If the total progression-free generation
parameter becomes large,then carry out the migration with full mesh topology and
specific migration mechanism. Otherwise, stop the migration and keep self-evolution
going.

Population state
supervision

Reach 
migration
criteria

Communication with
full_mesh topology

Operations of NIA Operations of NIA Operations of NIA…

Yes

No

Fig. 10.10 The configuration of population supervision module with full_mesh topology
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Moreover, set the migration condition (migration frequency) to be MT, then the
migration with full-mesh topology is allowed with the probability Ec.

Ec ¼ expð�G inva total

n� Gmax

Þ ð10:20Þ

It can be seen that if G_inva_total is smaller, Ecwill be increased, the time of
migrations will be decreased, vice versa.

From the perspective of parallelization, the specific pseudo-code of the adaptive
stragey with full mesh topology can be represented as follows.

For (each sub-population  i in parallelization) 
 Initialize subpopulation 

generation = 0 
While(generation<= MAX_generation or convergence criterion satisfied) 

generation ++
Apply algorithm’s operators

  Evaluate solutions in the subpopulation 
If (generation % MT == 0) 

If (i == supervision_node) 
    Reduce _ _ _ i

i

G inva total G inva

    Broadcast _ _G inva total

End if 
If (rand()>exp(-1*G_inva_total / (n*Gmax)))

    Migration with full_mesh_topology 
End if 

End if 
 End while 

= Σ

From this, the total parallel efficiency can be improved under the mode of
MPI_Allgather (full-connection topology) by means of supervision and adaptive
communication.The module of population supervision can be shown in Fig. 10.10.

10.7 Experiments and Discussions

For testing the OACR models, the DAG in Fig. 10.4 and other two kinds of DAGs
(the e-Economic DAG and the e-Protein DAG) introduced from [48] are selected,
as shown in Fig. 10.11.

Based on the above mentioned four algorithms and the new OACR models, the
CCR [31] is introduced as the testing factor in this chapter. It is defined as the
communication to computation ratio.

CCR ¼

P

e2E
cðeÞ

P

n2V
wðnÞ ð10:21Þ
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In the experiments, all of the communication costs and the computation costs
are randomly generated. Due to the looser communication time constraints, the
experiments focus mainly on the effect of the computing speed, memory and
reliability constraints of CRs, as Eq.10.17. Other information of CRs (e.g., the
bandwidths of communication routes in group among CRs and the bandwidths
among groups) are generated before allocation and they are all constant value
during the solution process. The extraction of the priori knowledge and the effect
of constraints would be tested in three cases: CCR = 1/10, CCR = 1 and
CCR = 10 in different MTs’ DAGs.

More specifically, it assumed that there are 20 available CRs in 4 groups
separately, and group. 1 represents the stand-alone CRs group. The quantities of
CRs per group are {7, 6, 4, 3}. According to Eq.10.15, the best fitness values in
tests are the inverse of the minimum make spans of MTs. So the optimal objection
is finding the maximum fitness value. Because the make spans of MTs (in seconds)
are usually big, the parameter Const in Eq.10.15 is set as 1000 to make the object
function results not too small. Then the units of best fitness value in the experi-
ments arems-1. In the algorithm, the maximum time of iteration is set to be 1000,
and the population size is set to be 50. A total of 100 runs of each experimental
setting are conducted and the average fitness of the best solutions throughout the
run is recorded.

T1

T2

T3

T5

T4

T6 T1

T2

T6

T7

T8

T9

T3

T5

T4

T1

T2

T3

T4

T5

T6

T7

T9

T8

T10

T13

T11 T12

T14 T15

DAG1 DAG2

DAG3

Fig. 10.11 DAGs of the selected MTs
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10.7.1 The Design of the Heuristic Information
in the Intelligent Algorithms

Owing to GA does not need the heuristic information, in this section, experiments
just be carried out on ACO, IA and NDIA. According to Eq. 10.17, choosing a set
of suitable parameters a, b and c is critical in these three algorithms which need
the direction of the heuristic information, and in the parameter sets ða; b; cÞ, low
value indicated the low effect in heuristic. Different heuristics may lead different
results. With multiple constraints, how to extract suitable heuristic information for
better solutions in different situation is very important.

In this experiment, the initial pheromone value of ACO is 1 and its evaporation
factor is 0.5. The rates of pheromone and heuristic information in ACO are 1 and 5
separately, and in IA, the crossover and mutation rates are 0.8 and 0.15 separately.
Then the initial annealing temperature and its decay factor are 100 and 0.95
separately. Based on the preferences in IA, the rates of pheromone and heuristic
information in Eq.10.18 are the same as ACO (i.e. u ¼ 1; / ¼ 5).

Table 10.3 and Fig. 10.12 visualize the effect of different heuristic information
on the average minimum make span of MTs figured by the three algorithms. In these
experiments, DAG1 is adopted and tests are carried in three situations of CCR.

First, in low communication situation (CCR = 1/10), the set (1, 0.5, 1) can get the
best results while the set (0.5, 1, 1) can get the worst, that means, low bandwidth
information with high speed and reliability information can guide the algorithms to a
better solution, and with low computing speed information, the algorithms are leaded
to worse solutions. This is quite reasonable that computing speed is the most important
information and bandwidth is the least important one. Because in this situation,
computation accounted for larger proportion and then the effect of bandwidth is minor.

Table 10.3 Experiment results with different heuristic parameters

ða; b; cÞ Average minimum make span of MTs (when CCR = 1) (units: ms-1)

ð0:5; 1; 1Þ ð1; 0:5; 1Þ ð1; 1; 0:5Þ ð1; 1; 1Þ
ACO 8.4378 8.6126 8.7284 8.5469

IA 8.7347 8.7962 8.8082 8.7593

NDIA 8.8455 8.8863 9.0034 8.8773

ða; b; cÞ Average minimum make span of MTs (when CCR = 1/10) (units: ms-1)

ð0:5; 1; 1Þ ð1; 0:5; 1Þ ð1; 1; 0:5Þ ð1; 1; 1Þ
ACO 1.8891 2.0065 1.9658 1.9422

IA 2.0678 2.1012 2.0913 2.0787

NDIA 2.1006 2.1277 2.1201 2.1139

ða; b; cÞ Average minimum make span of MTs (when CCR = 10) (units: ms-1)

ð0:5; 1; 1Þ ð1; 0:5; 1Þ ð1; 1; 0:5Þ ð1; 1; 1Þ
ACO 1.456 1.4163 1.4371 1.4299

IA 1.5961 1.5294 1.5481 1.572

NDIA 1.6914 1.6286 1.6392 1.6469
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Second, in medium communication situation (CCR = 1), it is can be seen that
the heuristic with low reliability can get the best results. By now, both computation
and communication in MTs are important. Bandwidth and computing speed as
their direct influencing factors separately are equally important. So reducing the

Fig. 10.12 The effect of
different heuristic
information in OACR
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rate of the indirect acting factor (the reliability information) and emphasize the
other two can promote searching efficiency in algorithms. However, with the same
proportion of these three kind of information, worse results would be gotten as the
result of the interference of unimportant factor.

Third, in high communication situation (CCR = 10), bandwidth information
seems to be the most important information with the high proportion of commu-
nication in MTs. At this time, low computing speed information can lead a better
evolution, and when bandwidth heuristic is lower, the solution is lower, too. Hence
the reliability heuristic is also an important factor in this situation. According to
the constraints description in Sect. 10.5.3, the reliability factor only effects the
communication time when allocating CRs for MTs. So it has large influence in
high communication situation and has small influence in low communication
situation, just as shown in Fig. 10.12.

Therefore, we can draw a conclusion that the computation speed influences
much in low communication situation while the bandwidth and reliability have
large effect in high communication situation, but in all of the three situations, equal
proportions of three factors could not obtain good solutions.

With CCR = 1 and its best parameter set ða; b; cÞ ¼ ð1; 1; 0:5Þ, the comparison
of the four algorithms (i.e. GA, ACO, IA, NDIA) is carried in the next section.

10.7.2 The Comparison of GA, ACO, IA and NDIA
for Addressing OACR

In this experiment, algorithms are tested in three DAGs, and the preferences of GA
are the same as IA and NIA, that is pc ¼ 0:8; pm ¼ 0:15.

Figure 10.13 and Table 10.4 show the performance results of the four intelli-
gent algorithms for addressing the OACR problems. The run time, standard
deviation, average best fitness, the best solution results and the worst solution
results in 100 runs are listed.

(1) Search capability
As shown by results, in precision, NDIA get the best solutions compared with the
other three algorithms while IA takes the second place, and the standard GA is the
worst. In the aspect of the worst fitness, ACO is the best, and NDIA is the next. In
ACO, ants find route from the initiation so their initiate population wouldn’t be so
bad. The pheromone provides the posterior information to ants to achieve coop-
eration searching, but it is also easy to make the algorithms trapped into local
optimum. So the best solution of ACO is not really good. In NDIA, the niche
strategy after the initiation and before the selection increases the diversity of the
population. Its good climbing ability makes the algorithm’s worst solution in 100
runs better than others. With the incorporation of genetic evolution and niche
strategy, the pheromone and dynamic vaccination in NDIA can not only increase
the robustness of the heuristics searching, but also avoid the local optimum. So it
can always find the best solution compared with other three algorithms.
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From the climbing ability point of view, GA is the best, NDIA is the next.
However, due to the basic stochastic crossover and mutation, GAis easy to trap into
local optimum and finally couldn’t find the best solutions. On the contrary, NDIA
can keep a better evolutionary trend because of its dynamic vaccination strategy.
ACO is the worst just because the simple pheromone and heuristic direction cause

Fig. 10.13 Evolutionary
trend of the four intelligent
algorithms for addressing
OACR
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the ants gathered quickly into a local optimal solution.And based on dynamic IA’s
evolution, the niche strategy eliminates the similar individuals and keeps the pop-
ulation searching new area. Thus the climbing ability of NDIA is quite good.
(2) Stability
From Table 10.4 it can be seen that, GA’s convergence speed is slow and its stability
is the worst of all. Based on the genetic strategy, IA is the next. The initiation in
genetic is totally stochastic without heuristic. The evolutions in certain generations
are not very stable. ACO’s convergence rate is quite good. Because of the phero-
mone and heuristic, ants can always gather quickly to some extent. With the constant
initial pheromone and heuristic, the initial paths founded by ants are fairly stable.
Thus the fast convergence and stable initiation makes ACO the most stable algo-
rithm in solving OACR. In NDIA, with the injection of pheromone, dynamic vac-
cination in IA could be more stable like ACO, and the ability of skipping the local
optimum from the niche strategy makes it less stable than ACO Table 10.5.
(3) Time consuming
From the testing results it is clear that ACO is the most time consuming algorithm.
According to the analysis in Sect. 10.5.3, ACO needs to compute the heuristic
values for all of CRs in every iteration, the complexity of ants’ routing is O(mnv).
With limited MTs, CRs and populations, ACO is the most complex one compared
with the other three, and with the addition of pheromone updating and niche
strategy, NDIA is more time consuming than IA and GA. However, the complexity
of NDIA does not increase significantly in theory, just as shown in Table 10.2.

From the global perspective, NDIA showed high performance in all scales of
MTs in OACR. Niched strategy improved the algorithm’s exploration and the
introduction of experiential pheromone and dynamic heuristics improved the

Table 10.4 Performance of the four intelligent algorithms for addressing OACR

Graph
Number

Algorithms The worst
fitness

The best
fitness

Average
fitness

Standard
deviation

Time

DAG1
(100 runs)

GA 7.5653 9.3467 8.4485 0.4262 163.13

ACO 8.1071 9.1214 8.716 0.218 3250.44

IA 7.987 9.5617 8.8352 0.403 226.86

NDIA 8.0657 9.5617 8.9529 0.3074 811.55

DAG2
(100 runs)

GA 4.6547 5.7213 5.1237 0.2958 255.3

ACO 5.0828 5.5556 5.2184 0.1313 6731.88

IA 4.7512 5.8265 5.2483 0.2574 326.61

NDIA 4.7775 5.9687 5.3008 0.2086 1324.07

DAG3
(100 runs)

GA 1.7043 2.6405 2.3064 0.1688 419.71

ACO 2.2205 2.6516 2.3367 0.1407 9512.52

IA 2.046 2.7276 2.41 0.1538 538.28

NDIA 2.1535 2.7791 2.4533 0.1371 2019.99
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algorithm’s exploitation. NDIA got a better balance between exploration and
exploitation by these two strategies for addressing OACR in CMfg. From the
perspective of solution quality and stability, NDIA has big potential in solving this
kind of allocation problem without the increase of time complexity.

10.7.3 The Performance of PNIA

In this section, we mainly apply master-slave, independent, single-ring, double-
ring, single-mesh, double-mesh, full-mesh and random topologies mentioned in
Chap. 5 based on the configured NIA for addressing OACR problem in CMfg. In
the experiments, only DAG3 in Fig. 10.11 is used. For uniformity, all of the above
topologies are implemented with ‘The best-replace-the worst’ migration mecha-
nism and in each period only one individual is migrated. Also, in this test, the total
generation number is set to be 2000, MT is set to be 20. Other parameters still
follow the settings in above section. The parallel environments are one computer
with 4-cores and three computing resources with 16-cores in each.
(1) Time consumption
According to the tests, the time consumption of independent parallel algorithm
(i.e., there is no individual exchange between any computing nodes, the results are
received after iteration) is exponentially reduced along with the increase number
of sub-processors (i.e. the number of sub-populations). When the number of sub-
populations is below to 6, we can get linear speedup directly. When the number is
increased further, the time reduction becomes less. The most consumption scheme
is master-slave mode. Compared with independent scheme, the time consumption
from low to high is: single-ring \ double-ring \ single-mesh \ double-mesh,
correspondingly. The difference between them is still small. With MPI_Allgather,
full-mesh topology in the experiments performs a little better than the above four
topologies.

As the increase of sub-processors, random topology performs well when the
processors below 6 and bounce back again when the processors continue to
increase. The large time consumption of random topology in the case of large
processors mainly ascribes to the production and broadcasting of random control
matrix in each period. The point-to-point communication mechanism is also partly
responsible for the large time consumption when the processors are continue to
increase.

To see the performance of the new configured adaptive full-mesh mechanism,
we could find that before the processors come to 9, the time consumption is near to
the general full-mesh topology. When the number of processors is larger than 9,
the time consumption of it is significantly reduced. In the case with 21 processors,
its time consumption becomes the minimum. Therefore, compared with the gen-
eral full-mesh topology, the adaptive mechanism, just as analyzed above, can
effectively reduce the communication load.
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(2) Solution quality
From the perspective of solution quality, the independent one without any col-
laboration gets the worst solution result. For the reason that in each sub-popula-
tion, less individuals is much powerless without the communication with others.
Among ring topology and mesh topology, their solution quality from good to bad
can be listed as: single-ring \ double-ring \ single-mesh \ double-mesh. During
the whole test, single-ring topology shows obviously low searching capability in
the specific problem. With the increase of individual exchange in the whole
population, we can see that the searching capability of mesh-topology mechanisms
is better than that of ring-topology mechanisms. Likely, double-side exchange
scheme performs always better than single-side exchange for solving OACR
problem. Moreover, from the solution stability point of view, single-ring topology
with lower communication and high diversity is the most unstable one of the four
schemes. In contrast, double-mesh with the most collaboration is quite stable than
the others.

Compared with the four schemes, full-mesh topology performs slightly better.
But its stability is worse than double-grid topology. High communication espe-
cially when more processors are adopted makes the whole population have low
diversity and is partly responsible for its low stability. As we analyzed before, too
frequent communication is apt to disrupt the searching direction of each sub-
population.

Different with the full-mesh one, random topology performs quite well in solving
OACR. The overall solution quality keeps a high level near to the full-mesh one. It
has high stability along with the increase of processor number. The random col-
laboration in each period not only makes high diversity in each sub-population, but
also avoids disrupting the whole searching pace and preserves good solution quality.
Combined with its time performance, it can be seen that random-topology tradesits
searching time for solution quality and stability to some extent.

Further, inspired by the general adaptive mechanisms in improved intelligent
optimization algorithm, the new adaptive full-mesh topology has better solution
capability than the random one. With population supervision, the amount of data
connected and broadcasted in each period is much less than which in random-
topology. And the population state can better reflect the evolutionary process and
guide the individual exchange. Moreover, with MPI_Allgather, which performs
more efficient than the other MPI point-to-point schemes, the searching capability
of the whole algorithm is improved without the increase of time consumption.

On the whole, the newly presented PNIA with adaptive full-mesh topology
shows high performance in solving OACR problem. Its time consumption with 21
processors is 2.1923 s, which is 10 times lower than the searching with single
machine. The speed up ratio of it keeps linear when the processor number is below
to 4. The solution accuracy is also largely improved to a high level compared with
the other traditional topology. And with the full use of the collective communi-
cation of MPI, the new configured topology is also easy to implement.

However, we should notice that in different problems and different computing
environments, the solution capability of each topology is changing and quite
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unstable. The tests above are only focus on solving the OACR problem in CMfg.
With changing environment, it does not always work well to other problems.In this
case, we can configure other topology module and adopt multiple algorithms if
required. That is the advantage of configuration ways. It is also suggested that in
such small cluster environment, the improved configuration based on a single
scheme performs better than the topology configuration mentioned in Chap. 5. For
adjusting changing environments, multiple configured serial intelligent optimiza-
tion algorithm can also adopted to improve the whole searching efficiency.

10.8 Summary

Optimal allocation of computing resources is one of the most important and basic
problem in CMfg. Current works related to the allocation (scheduling) model and
algorithms are either unsuitable or inefficient. This chapter presented a new model
with considering the characteristics of CMfg thoroughly and then designed a high
efficient intelligent algorithm for OACR in CMfg. In detail, the primary works and
contribution of this chapter can be concluded as follows.

(1) In the new OACR model, user’s interaction (control and supervision) in
manufacturing tasks were fully considered. From the computing aspect,
dynamic computing speed was presented associated with processor memory.
This technique can clearly reflect the characteristics of resource partitioning
in virtualization. Then, from the communication aspect, new cache technique
for avoiding data surge, local and remote communication and the commu-
nication reliability (rate and recovery time) are introducedin the OACR
model. With the full consideration of dynamic computation and communi-
cation, the process of OACR in CMfg can be more flexible and practical.

(2) For solving the new complex model, an intelligent optimization algorithm
(NIA) is configured with the introduction of niche strategy, immune heuris-
tics, genetic operators and pheromone strategy. Experiments demonstrated
the design of heuristic information in NIA for OACR and the suitable heu-
ristics in different situations.

(3) For improve the searching efficiency further, a new adaptive population
supervision mechanism is designed and configured with full-mesh topology
based on coarse-grained parallelization and MPI collective communication.
By using the population degradation state, the individual exchange in each
period is controlled to preserve the solution quality with less time con-
sumption. Compared with traditional serial intelligent algorithms and clas-
sical parallel intelligent algorithms respectively, the searching capability and
time efficiency of the new PNIA was fairly remarkable in the experiments for
OACR in CMfg.
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