
Springer Series in Advanced Manufacturing

Fei Tao
Lin Zhang
Yuanjun Laili

Configurable
Intelligent
Optimization
Algorithm
Design and Practice in Manufacturing

Springer Series in Advanced Manufacturing

Series editor

Duc Truong Pham, Birmingham, UK

More information about this series at http://www.springer.com/series/7113

http://www.springer.com/series/7113

Fei Tao • Lin Zhang • Yuanjun Laili

Configurable Intelligent
Optimization Algorithm
Design and Practice in Manufacturing

123

Fei Tao
Lin Zhang
Yuanjun Laili
School of Automation Science

and Electrical Engineering
Beihang University (BUAA)
Beijing
China

ISSN 1860-5168 ISSN 2196-1735 (electronic)
ISBN 978-3-319-08839-6 ISBN 978-3-319-08840-2 (eBook)
DOI 10.1007/978-3-319-08840-2

Library of Congress Control Number: 2014943502

Springer Cham Heidelberg New York Dordrecht London

� Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Acknowledgments

This book is a summary of Dr. Fei Tao’s research in the field of intelligent
optimization algorithm and its application from 2009 to 2014 in Beihang Uni-
versity (BUAA). Dr. Tao would like to acknowledge the invaluable cooperation
and suggestions, and many collaborators form both China and other countries who
have involved his research works on intelligent optimization algorithm.

Especially, thanks for the invaluable contributions from Prof. A. Y. C. Nee, Kan
Qiao, and Yue Zhang to the Chap. 6. Thanks for the contributions from Prof. W. T.
Liao to the Chap. 7, and Ying Feng’s contribution to the Chaps. 7 and 8. Thanks
for Prof. Bhaba R. Sarker’s contribution to the Chaps. 9 and 10, and Yilong Liu’s
contribution to the Chaps. 3, 5 and 11.

Some of the contents are published in IEEE Systems Journal, Applied Soft
Computing, IEEE Transactions on Industrial Informatics (TII), International
Journal of Production Research (IJPR), Computer in Industry, International
Journal of Advanced Manufacturing Technology (IJAMT), etc. Thanks all the
anonymous reviewers from these journals who have given many valuable and
constructive comments to the related researches.

Some contents of this book were financially supported by the following
research projects: the Fundamental Research Funds for the Central Universities in
China, the Beijing Youth Talent Plan under Grant 29201411, the Nature Science
Foundation of China (No.61374199), the National Key Technology Research and
Development Program (No.2011BAK16B03), and the Innovation Foundation of
BUAA for PhD Graduates (YWF-14-YJSY-011).

Thanks for the help from Prof. Duc Truong Pham, the series editor of Springer
Series in Advanced Manufacturing, as well as the reviewers of this book proposal.
Thanks for the hard and efficient work by the other peoples in the publisher of
Springer.

Of course, our most profound thanks go to our families for their continuous love
and encouragements.

v

http://dx.doi.org/10.1007/978-3-319-08840-2_6
http://dx.doi.org/10.1007/978-3-319-08840-2_7
http://dx.doi.org/10.1007/978-3-319-08840-2_7
http://dx.doi.org/10.1007/978-3-319-08840-2_8
http://dx.doi.org/10.1007/978-3-319-08840-2_9
http://dx.doi.org/10.1007/978-3-319-08840-2_10
http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_5
http://dx.doi.org/10.1007/978-3-319-08840-2_11

Contents

Part I Introduction and Overview

1 Brief History and Overview of Intelligent Optimization
Algorithms . 3
1.1 Introduction . 3
1.2 Brief History of Intelligent Optimization Algorithms 5
1.3 Classification of Intelligent Algorithms 8
1.4 Brief Review of Typical Intelligent

Optimization Algorithms . 12
1.4.1 Review of Evolutionary Learning Algorithms 12
1.4.2 Review of Neighborhood Search Algorithms 16
1.4.3 Review of Swarm Intelligence Algorithm 20

1.5 The Classification of Current Studies on Intelligent
Optimization Algorithm. 23
1.5.1 Algorithm Innovation . 23
1.5.2 Algorithm Improvement . 24
1.5.3 Algorithm Hybridization . 25
1.5.4 Algorithm Parallelization. 26
1.5.5 Algorithm Application . 26

1.6 Development Trends . 28
1.6.1 Intellectualization . 28
1.6.2 Service-Orientation . 29
1.6.3 Application-Oriented. 29
1.6.4 User-Centric . 29

1.7 Summary . 30
References . 31

vii

http://dx.doi.org/10.1007/978-3-319-08840-2_1
http://dx.doi.org/10.1007/978-3-319-08840-2_1
http://dx.doi.org/10.1007/978-3-319-08840-2_1
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec20
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec20
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec21
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec21
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec22
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec22
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec23
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec23
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec24
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec24
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec25
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Sec25
http://dx.doi.org/10.1007/978-3-319-08840-2_1#Bib1

2 Recent Advances of Intelligent Optimization Algorithm
in Manufacturing . 35
2.1 Introduction . 35
2.2 Classification of Optimization Problems in Manufacturing . . . 37

2.2.1 Numerical Function Optimization 38
2.2.2 Parameter Optimization . 38
2.2.3 Detection and Classification. 39
2.2.4 Combinatorial Scheduling . 40
2.2.5 Multi-disciplinary Optimization 41
2.2.6 Summary of the Five Types of Optimization

Problems in Manufacturing 42
2.3 Challenges for Addressing Optimization Problems

in Manufacturing . 44
2.3.1 Balance of Multi-objectives 44
2.3.2 Handling of Multi-constraints. 46
2.3.3 Extraction of Priori Knowledge 47
2.3.4 Modeling of Uncertainty and Dynamics 48
2.3.5 Transformation of Qualitative and Quantitative

Features. 50
2.3.6 Simplification of Large-Scale Solution Space. 51
2.3.7 Jumping Out of Local Convergence 52

2.4 An Overview of Optimization Methods in Manufacturing 52
2.4.1 Empirical-Based Method . 53
2.4.2 Prediction-Based Method. 54
2.4.3 Simulation-Based Method . 55
2.4.4 Model-Based Method . 55
2.4.5 Tool-Based Method . 56
2.4.6 Advanced-Computing-Technology-Based Method. . . . 56
2.4.7 Summary of Studies on Solving Methods 57

2.5 Intelligent Optimization Algorithms for Optimization
Problems in Manufacturing . 58

2.6 Challenges of Applying Intelligent Optimization
Algorithms in Manufacturing . 64
2.6.1 Problem Modeling . 64
2.6.2 Algorithm Selection . 65
2.6.3 Encoding Scheming . 66
2.6.4 Operator Designing. 67

2.7 Future Approaches for Manufacturing Optimization 67
2.8 Future Requirements and Trends of Intelligent

Optimization Algorithm in Manufacturing 68
2.8.1 Integration . 68
2.8.2 Configuration . 69
2.8.3 Parallelization . 70
2.8.4 Executing as Service. 71

viii Contents

http://dx.doi.org/10.1007/978-3-319-08840-2_2
http://dx.doi.org/10.1007/978-3-319-08840-2_2
http://dx.doi.org/10.1007/978-3-319-08840-2_2
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec20
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec20
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec21
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec21
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec22
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec22
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec23
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec23
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec24
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec24
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec25
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec25
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec25
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec26
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec26
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec26
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec27
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec27
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec28
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec28
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec29
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec29
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec30
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec30
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec31
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec31
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec32
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec32
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec32
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec33
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec33
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec34
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec34
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec35
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec35
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec36
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec36

2.9 Summary . 72
References . 74

Part II Design and Implementation

3 Dynamic Configuration of Intelligent
Optimization Algorithms . 83
3.1 Concept and Mainframe of DC-IOA 83

3.1.1 Mainframe of DC-IOA . 84
3.1.2 Problem Specification and Construction

of Algorithm Library in DC-IOA 85
3.2 Case Study . 90

3.2.1 Configuration System for DC-IOA 90
3.2.2 Case Study of DC-IOA . 93
3.2.3 Performance Analysis . 95
3.2.4 Comparison with Traditional Optimal Process 102

3.3 Summary . 103
References . 104

4 Improvement and Hybridization of Intelligent
Optimization Algorithm . 107
4.1 Introduction . 107
4.2 Classification of Improvement . 109

4.2.1 Improvement in Initial Scheme 109
4.2.2 Improvement in Coding Scheme. 110
4.2.3 Improvement in Operator . 112
4.2.4 Improvement in Evolutionary Strategy 113

4.3 Classification of Hybridization . 114
4.3.1 Hybridization for Exploration. 115
4.3.2 Hybridization for Exploitation 116
4.3.3 Hybridization for Adaptation 117

4.4 Improvement and Hybridization Based on DC-IA. 118
4.5 Summary . 124
References . 124

5 Parallelization of Intelligent Optimization Algorithm 127
5.1 Introduction . 127
5.2 Parallel Implementation Ways for Intelligent

Optimization Algorithm. 131
5.2.1 Parallel Implementation Based

on Multi-core Processor . 131
5.2.2 Parallel Implementation Based

on Computer Cluster . 132

Contents ix

http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec37
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Sec37
http://dx.doi.org/10.1007/978-3-319-08840-2_2#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_3#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_4
http://dx.doi.org/10.1007/978-3-319-08840-2_4
http://dx.doi.org/10.1007/978-3-319-08840-2_4
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_4#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_5
http://dx.doi.org/10.1007/978-3-319-08840-2_5
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec4

5.2.3 Parallel Implementation Based on GPU. 132
5.2.4 Parallel Implementation Based on FPGA. 133

5.3 Implementation of Typical Parallel Topologies
for Intelligent Optimization Algorithm 134
5.3.1 Master-Slave Topology . 134
5.3.2 Ring Topology . 136
5.3.3 Mesh Topology . 138
5.3.4 Full Mesh Topology . 140
5.3.5 Random Topology . 140

5.4 New Configuration in Parallel Intelligent Optimization
Algorithm . 142
5.4.1 Topology Configuration in Parallelization

Based on MPI . 144
5.4.2 Operation Configuration in Parallelization

Based on MPI . 146
5.4.3 Module Configuration in Parallelization

Based on FPGA . 147
5.5 Summary . 152
References . 152

Part III Application of Improved Intelligent
Optimization Algorithms

6 GA-BHTR for Partner Selection Problem 157
6.1 Introduction . 157
6.2 Description of Partner Selection Problem

in Virtual Enterprise . 160
6.2.1 Description and Motivation 160
6.2.2 Formulation of the Partner Selection

Problem (PSP) . 163
6.3 GA-BHTR for PSP . 165

6.3.1 Review of Standard GA . 165
6.3.2 Framewrok of GA-BHTR . 166
6.3.3 Graph Generation for Representing

the Precedence Relationship Among PSP 168
6.3.4 Distribute Individuals into Multiple Communities. . . . 172
6.3.5 Intersection and Mutation in GA-BHTR 175
6.3.6 Maintain Data Using the Binary Heap. 177
6.3.7 The Catastrophe Operation 179

6.4 Simulation and Experiment . 180
6.4.1 Effectiveness of the Proposed Transitive

Reduction Algorithm. 181
6.4.2 Effectiveness of Multiple Communities 182

x Contents

http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_5#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_6
http://dx.doi.org/10.1007/978-3-319-08840-2_6
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec15

6.4.3 Effectiveness of Multiple Communities
While Considering the DISMC Problem 183

6.4.4 Effectiveness of the Catastrophe Operation 184
6.4.5 Efficiency of Using the Binary Heap 184

6.5 Summary . 187
References . 187

7 CLPS-GA for Energy-Aware Cloud Service Scheduling 191
7.1 Introduction . 191
7.2 Related Works . 193
7.3 Modeling of Energy-Aware Cloud Service Scheduling

in Cloud Manufacturing . 195
7.3.1 General Definition . 196
7.3.2 Objective Functions and Optimization Model. 198
7.3.3 Multi-Objective Optimization Model

for the Resource Scheduling Problem 200
7.4 Cloud Service Scheduling with CLPS-GA 202

7.4.1 Pareto Solutions for MOO Problems 202
7.4.2 Traditional Genetic Algorithms

for MOO Problems . 204
7.4.3 CLPS-GA for Addressing MOO Problems. 207

7.5 Experimental Evaluation . 211
7.5.1 Data and Implementation. 211
7.5.2 Experiments and Results . 213
7.5.3 Comparison Between TPCO and MPCO 214
7.5.4 Improvements Due to the Case Library 217
7.5.5 Comparison Between CLPS-GA and Other

Enhanced GAs . 218
7.6 Summary . 221
References . 222

Part IV Application of Hybrid Intelligent Optimization Algorithms

8 SFB-ACO for Submicron VLSI Routing Optimization
with Timing Constraints . 227
8.1 Introduction . 227
8.2 Preliminary . 231

8.2.1 Terminology in Steiner Tree 231
8.2.2 Elmore Delay. 232
8.2.3 Problem Formulation . 233

8.3 SFB-ACO for Addressing MSTRO Problem 237
8.3.1 ACO for Path Planning with Two Endpoints 237

Contents xi

http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_6#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_7
http://dx.doi.org/10.1007/978-3-319-08840-2_7
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec18
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Sec19
http://dx.doi.org/10.1007/978-3-319-08840-2_7#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_8
http://dx.doi.org/10.1007/978-3-319-08840-2_8
http://dx.doi.org/10.1007/978-3-319-08840-2_8
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec7

8.3.2 Procedure for Constructing Steiner Tree
Using SFB-ACO . 239

8.3.3 Constraint-Oriented Feedback in SFB-ACO 241
8.4 Implementation and Results . 243

8.4.1 Parameters Selection . 243
8.4.2 Improvement of Synergy . 244
8.4.3 Effectiveness of Constraint-Oriented Feedback. 249

8.5 Summary . 254
References . 254

9 A Hybrid RCO for Dual Scheduling of Cloud Service
and Computing Resource in Private Cloud 257
9.1 Introduction . 257
9.2 Related Works . 260
9.3 Motivation Example . 261
9.4 Problem Description . 263

9.4.1 The Modeling of DS-CSCR in Private Cloud. 263
9.4.2 Problem Formulation of DS-CSCR

in Private Cloud . 267
9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR

in Private Cloud . 270
9.5.1 Initialization. 271
9.5.2 Ranking Selection Operator 271
9.5.3 Individual Chaos Operator . 273
9.5.4 Dynamic Heuristic Operator 275
9.5.5 The Complexity of the Proposed Algorithm. 277

9.6 Experiments and Discussions . 277
9.6.1 Performance of DS-CSCR Compared

with Traditional Two-Level Scheduling. 280
9.6.2 Searching Capability of RCO for Solving

DS-CSCR . 280
9.6.3 Time Consumption and Stability of RCO

for Solving DS-CSCR . 283
9.7 Summary . 285
References . 286

Part V Application of Parallel Intelligent Optimization Algorithms

10 Computing Resource Allocation with PEADGA 291
10.1 Introduction . 291
10.2 Related Works . 294
10.3 Motivation Example of OACR. 296
10.4 Description and Formulation of OACR 297

xii Contents

http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_8#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_9
http://dx.doi.org/10.1007/978-3-319-08840-2_9
http://dx.doi.org/10.1007/978-3-319-08840-2_9
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_9#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_10
http://dx.doi.org/10.1007/978-3-319-08840-2_10
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec4

10.4.1 The Structure of OACR . 298
10.4.2 The Characteristics of CRs in CMfg 300
10.4.3 The Formulation of the OACR Problem 301

10.5 NIA for Addressing OACR . 308
10.5.1 Review of GA, ACO and IA 308
10.5.2 The Configuration OfNIA for the OACR Problem . . . 311
10.5.3 The Time Complexity of the Proposed Algorithms . . . 314

10.6 Configuration and Parallelization of NIA. 316
10.7 Experiments and Discussions . 318

10.7.1 The Design of the Heuristic Information
in the Intelligent Algorithms 320

10.7.2 The Comparison of GA, ACO, IA and NDIA
for Addressing OACR. 322

10.7.3 The Performance of PNIA . 326
10.8 Summary . 328
References . 329

11 Job Shop Scheduling with FPGA-Based F4SA 333
11.1 Introduction . 333
11.2 Problem Description of Job Shop Scheduling. 335
11.3 Design and Configuration of SA-Based on FPGA 335

11.3.1 FPGA-Based F4SA Design for JSSP. 335
11.3.2 FPGA-Based Operators of F4SA 339
11.3.3 Operator Configuration Based on FPGA 344

11.4 Experiments and Discussions . 344
11.5 Summary . 346
References . 346

Part VI Future Works of Configurable Intelligent
Optimization Algorithm

12 Future Trends and Challenges . 351
12.1 Related Works for Configuration of Intelligent

Optimization Algorithm. 351
12.2 Dynamic Configuration for Other Algorithms 353
12.3 Dynamic Configuration on FPGA. 356
12.4 The Challenges on the Development of Dynamic

Configuration . 358
12.5 Summary . 359
References . 360

Contents xiii

http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec9
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec10
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec11
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec12
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec13
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec14
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec15
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec16
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Sec17
http://dx.doi.org/10.1007/978-3-319-08840-2_10#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_11
http://dx.doi.org/10.1007/978-3-319-08840-2_11
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec2
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec3
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Sec8
http://dx.doi.org/10.1007/978-3-319-08840-2_11#Bib1
http://dx.doi.org/10.1007/978-3-319-08840-2_12
http://dx.doi.org/10.1007/978-3-319-08840-2_12
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec1
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec4
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec5
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec6
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Sec7
http://dx.doi.org/10.1007/978-3-319-08840-2_12#Bib1

Part I
Introduction and Overview

Intelligent optimization algorithm, which is also called meta-heuristic, is a kind of
optimization algorithm that simulates natural phenomena and behaviors with
population-based iterations. Its appearance had found a way out for NP-hard
problems that are difficult to be solved by many classical deterministic algorithms,
and it is able to find feasible suboptimal solutions for complex problems in a
relatively short period of time.

The strong versatility, high speed and robustness of intelligent optimization
algorithm provide a variety of decision-making solutions for multi-constraint
complex numerical and combinatorial optimization problems such as multi-
objective service composition, workflow scheduling, manufacturing resource
allocation and product quality evaluation and controlling and so on in networked
service-oriented manufacturing system. Moreover, it takes advantages of intelli-
gent learning to avoid a large solution space traversal so that the problems can be
easily solved. Today, most feasible solutions of these complex manufacturing
problems are given by different types of intelligent optimization algorithm. Classic
intelligent optimization algorithms, such as genetic algorithm (GA), particle
swarm optimization (PSO) and ant colony optimization (ACO) and so on, are also
widely reconstructed with various improved and hybrid strategies to adapt
different production environments and applications. With highly distributed
resources, productions and logistics, more and more improvements or hybridiza-
tions are designed to achieve efficient decision-making in every link of product.
Intelligent optimization algorithm becomes indispensible in manufacturing.

Therefore, in the Part I of this book, a preliminary introduction of intelligent
optimization algorithm and the main optimization problem in manufacturing is
presented. This part contains Chaps. 1 and 2. The Chap. 1 presents an overview of
the principles, development history and classification of the algorithm. It sum-
marizes the classification of current research emphasis and major trends. The
Chap. 2 is a brief overview of complex manufacturing optimization problems,
their solution methods and the development of intelligent optimization algorithm
in them. From the classification of optimization problems in manufacturing sys-

http://dx.doi.org/10.1007/978-3-319-08840-2_1
http://dx.doi.org/10.1007/978-3-319-08840-2_2
http://dx.doi.org/10.1007/978-3-319-08840-2_1
http://dx.doi.org/10.1007/978-3-319-08840-2_2

tem, this chapter lists the major challenges in solving different sorts of the opti-
mization problems. In view of these challenges, typical problem-solving methods
are given and the importance of intelligent optimization technology is pointed out.
Based on this, we outline the general design patterns and process of intelligent
optimization algorithm, and discuss the application challenges, needs and trends of
intelligent optimization algorithm in manufacturing systems.

2 Part I: Introduction and Overview

Chapter 1
Brief History and Overview of Intelligent
Optimization Algorithms

Up to now, intelligent optimization algorithm has been developed for nearly
40 years. It is one of the main research directions in the field of algorithm and
artificial intelligence. No matter for complex continuous problems or discrete NP-
hard combinatorial optimizations, people nowadays is more likely to find a fea-
sible solution by using such randomized iterative algorithm within a short period
of time instead of traditional deterministic algorithms. In this chapter, the basic
principle of algorithms, research classifications, and the development trends of
intelligent optimization algorithm are elaborated.

1.1 Introduction

Intelligent optimization algorithm is developed and integrated from a number of
relatively independent sub-fields, including the technology of artificial neural
networks, genetic algorithms, immune algorithms, simulated annealing, and tabu
search and swarm intelligence techniques. As we all know, the current main
intelligent optimization algorithms are based on the mode of population based
iteration. They operate a population, which represents a group of individuals (or
solutions), in each generation to maintain good information in the solution space
and find better positions step by step. It is a common method that is independent
from specific problems so that it can handle complex optimization problems that
are difficult for traditional optimization methods. Their common characteristics
are: (1) all operations act on current individuals in each generation; (2) the
searching is based on iterative evolution; (3) the optimization can be easily par-
allelized by multi-population scheme; (4) most of them can give a satisfactory
non-inferior solutions close to the optimal solutions, instead of certainly finding
the optimal solution; (4) the algorithm is rather random and cannot guarantee the

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_1

3

efficiency of finding non-inferior solutions. Therefore we simplify the basic pro-
cess of intelligent optimization algorithms in Fig. 1.1.

Specifically, the first step in problem solving is the encoding design according
to the problem environment, character and constraints. Coding is a mapping of
problem variables, and it also directly determines the evolution speed of the
algorithm. When an appropriate coding scheme is selected, the algorithm will
initialize and generate a certain number of individuals to form a population
according to the definition of problem variables. Each variable of an individual is
randomly generated in the definition domain, and the fitness value of individual in
each generation is calculated according to problem’s objective function, i.e. fitness
function. Then, according to the coding scheme, the variables are mapped to form
a chromosome. After initialization and encoding, the algorithm iteration will be
started. In iteration, the combination of operators plays a major role, such as
selection, crossover, and mutation operator in genetic algorithm, and path finding
and pheromone update in ant colony algorithm. Different operators have different
effects in the algorithm, so different composition of operators can usually produce
different results in solving problem. Through a few operations, some or the entire
individuals in the population are changed. By decoding of the new individuals, a
new group of solutions can be obtained. Through the evaluation of population
according to fitness function (objective function), the best and the worst individual
in the population can be picked out. Then we could update the whole population in
generation by using random alternative strategy, elitist replacement strategy or
merge-based individual optimal selection. After that, the next iteration will be
triggered. When the number of iterations reaches a certain ceiling or the satis-
factory feasible or optimal solution has already been reached, we can jump out the
iteration loop, and output the global best solutions.

In this evolution mode, problem variables and objectives are reflected by coding
and fitness functions, while constraints are embodied in fitness function as penalty
function or in coding as a bound. The operators are independent to the problems
and can be easily implemented. The unified iterative process can make the design,
improvement and hybrid research of intelligent algorithms simpler, more intuitive,
and more flexible. With iteration-based sub-optimal searching, intelligent opti-
mization algorithm can effectively avoid the combinatorial explosion when solving
NP-hard problem. However, not all operators can be arbitrarily combined to form
an effective algorithm. Since the evolutionary process is quite random, and
operators have different characteristics and limitations in exploration and exploi-
tation respectively, many intelligent optimization algorithms still have some
defects such as premature convergence and large result deviation and so on.
Therefore, researchers in various fields still keep looking for bran-new coding
schemes, operators, good improvements and hybrid forms of intelligent optimi-
zation algorithms. All these works are trying to search better feasible solution with
limit iterations and limit size of population.

4 1 Brief History and Overview of Intelligent Optimization Algorithms

1.2 Brief History of Intelligent Optimization Algorithms

With the rapid development of new technology, manufacturing with multi-disci-
plinary distributed collaboration becomes more and more prevalent in many
enterprises. The scale of resources in distribution grows rapidly, and the whole life
cycle of manufacturing, including product design, simulation, production, logistics
and maintenance, are becoming increasingly complicated. In order to further
shorten industry cycle, enhance operation efficiency and improve the utilization of
resources and information, many complex problems in macro- and micro-processes
should be solved and optimized. From a mathematical standpoint, these problems
can also be divided into continuous numerical optimization problems [1, 2] and
discrete combinatorial optimization problems [3, 4] according to their variables or
the characteristics of the main factors (i.e. the continuity of the solution space), as

Initialization

Begin

operators

Decoding and
Evaluation

Global updating

Iteration <= MAXITER or
solution satisfied ?

Return the
best strategy

No

Yes

Encoding

Fig. 1.1 the basic process of
intelligent optimization
algorithms

1.2 Brief History of Intelligent Optimization Algorithms 5

well as general optimization problems. For example, the optimization of complex
functions, multi linear and non-linear equations in controlling and simulation field,
and complex nonlinear programming can be categorized as continuous numerical
optimization problems. Typical workflow/task scheduling, service composition
optimal selection, collaborative partner selection and resource allocation problems
in manufacturing process and system management can be classified as discrete
combinatorial optimization problems. Since the quality of these computing and
decision-making methods directly determines the efficiency of the whole manu-
facturing system, experts in all kinds of fields have carried out research to model
complex problems under specific conditions and to design of various deterministic
algorithm or approximate algorithm for them [5]. In the case of small-scale solution
space decisions, various deterministic algorithms can effectively give the optimal
solution, and approximation algorithms can also give approximate solution in a
shorter time period. However, in reality, most optimization problems are proved to
be NP-hard [6–8]. That means no algorithm can find optimal solution in polynomial
time. Actually, with the gradually increasing scale of problem, the searching time of
traditional deterministic algorithm will grow exponentially, which is quite prone to
trigger combinatorial explosion [9]. Likewise, most approximation algorithms have
the problem of low approximation ratio, bad versatility and difficulty to meet the
requirements of the feasible solutions in the case of solving such large scale
problems [10]. Faced with large solution space, both deterministic and approximate
algorithms appear to be inadequate.

At this time, the emergence of the intelligent optimization algorithm [11]
provides new ideas for this type of large-scale NP-hard optimization problems.
Represented by genetic algorithm (GA), simulated annealing algorithm (SAA), ant
colony optimization (ACO) and particle swarm optimization (PSO) and so on, this
type of algorithm is also known as meta-heuristic. It is formed by simulating
biological natural computing skills and the process of evolution. It is also a type of
global optimization probabilistic searching algorithm based on the population
iterative evolution model. On the other hand, intelligent optimization algorithm
can uniformly abstracts problem variables by coding and uses fitness function to
represent the objectives. It modifies the population in the solution space by each
step iterative operation and evolution with the combination of randomness and
guidance to do search. As we have mentioned, it is independent from certain
problems and can handle complex optimization problems that are difficult to solve.
When solving large-scale NP-hard problem, intelligent optimization algorithm can
quickly obtain a set of feasible solutions under the given constrains within a
limited time. Instead of finding optimal solution, it uses heuristics to obtain sub-
optimal feasible solution and shorten the whole searching process and then
improving the efficiency of decision-making. With limited iterations and inde-
pendent operations, algorithm timeliness would not decrease as the solution space
increases and it has good robustness. Therefore, intelligent optimization algo-
rithms have received widespread concern in various fields [12, 13].

Start from the development of early classical optimization algorithms, through
careful observation and summary, people have proposed a variety of new

6 1 Brief History and Overview of Intelligent Optimization Algorithms

intelligent optimization algorithms which are designed to simulate different kinds
of nature biological behavior, as is shown in Fig. 1.2. Due to the space limitation,
we only list some typical ones, such as Memetic Algorithm (MA) [14], Difference
Evolution Algorithm (DEA) and so on [15]. It can be seen that the creation of new
intelligent optimization algorithm has not yet stopped and still shows vigorous
development trend.

From the results of the application of the very basic intelligent optimization
algorithms to many complex numerical problems and standard combinatorial
optimization problems (such as the traveling salesman problem and the knapsack
problem), a group of researchers have made many improvements from the aspects
of algorithm initialization, encoding, operators and evolutionary strategy and
produced a series of typical improvement strategy for intelligent optimization
algorithm, such as quantum coding improvement [16], adaptive improvement [17],
niche strategy improvement [18], prior knowledge-based improvement [19], Pa-
reto search improvement and so on [20]. Considering the problem features, people
usually make adjustments on the original basic algorithm in the aspects of
exploration, exploitation and the adaptive balance in process respectively and
achieved good performance. In addition, after years of study, experts in many
fields have found that the hybrid application of many different operators or search
mechanisms in different algorithms can greatly enhance the efficiency of problem
solving. So hitherto much emphasis has been place on the design and application
of hybrid intelligent optimization algorithm. Compared with the design of new
operators and improvement schemes, algorithm hybridisation is much simpler,
since limited operators stripped from the different algorithms can form a variety of
combined intelligent optimization algorithm. After the characteristic analysis of
different operators and several tests, a good hybrid intelligent optimization algo-
rithm can be chosen to solve the specific problem.

With a variety of improvements and hybridizations in 40 years’ development,
the group of intelligent optimization algorithm has been greatly expanded.
Therefore, many of the algorithms are applied to engineering practice activities,
which have been proved to have good performances in different kinds of bench-
mark problems. Due to the uniform structure and versatility of intelligent opti-
mization algorithm, users in practice also do some modification and design
improvements or hybrid schemes to enhance its performance on specific problem
according to particular application environment.

Fig. 1.2 The development of intelligent optimization algorithms [47, 48, 50, 66–76]

1.2 Brief History of Intelligent Optimization Algorithms 7

Through the retrieval of intelligent optimization algorithms with several typical
keywords during 2001–2012 in ‘‘Web of Knowledge’’ database, we get the number
of general literature over the past decade on the intelligent optimization algo-
rithms. According to the following statistical results, a curve with year as abscissa
and the annual number of relevant research literatures as ordinate is drawn and
shown in Fig. 1.3.

As can be seen from Fig. 1.3, the number of literatures on intelligent optimi-
zation algorithm generally has an upward trend in this decade. While in 2009 it
reached a peak and had a stable development in the following years, especially in
the past 3 years. Actually this research topic is quite popular and abounds great
research value, meaning and application prospects because thousands of
improvements or hybridizations of intelligent optimization algorithm have been
proposed and applied in different fields. However, among the large amount of
design and implementation works, whether there exist a large number of duplicate
or similar works is still remain unsolved. What’s more, with a large number of
improved, hybrid and newly proposed algorithm, how to select an appropriate
intelligent optimization algorithm to solve the specific problem? These are prob-
lems worth studying in depth in the field of intelligent manufacturing.

1.3 Classification of Intelligent Algorithms

As has been explained in the previous section, the number of intelligent optimi-
zation algorithms with different evolution mechanisms today has reached to an
unparalleled level. Researchers have carried out numerous works on algorithm
design for specific problems with different backgrounds and objectives. With
different categorizing perspectives, intelligent optimization algorithms can be
divided into varying groups. According to the research focuses, the mainstream
works on intelligent optimization algorithm can be broadly divided into four
categories: (1) algorithm innovation; (2) algorithm improvement; (3) algorithm
hybridation; (4) algorithm application. On the basis of literature review in the
previous section, we selected 200 of them to conduct research, and draw the
approximate percentage of the four categories of institute as Fig. 1.4 shows.

Moreover, according to different algorithm search mechanism, we divide the
basic intelligent optimization algorithms into three categories: Evolutionary
learning algorithm, neighborhood search algorithm and swarm intelligence algo-
rithm, as is shown in Fig. 1.5.

Evolutionary learning algorithm: Including genetic algorithms, evolutionary
programming, artificial immune algorithms, DNA computing and so on, they are
formed in accordance with the mechanism of natural learning evolution. Indi-
viduals in population are updated by learning from each other in generation
according to different heuristics. The most widely ones in this category are genetic
algorithm and artificial immune algorithm.

8 1 Brief History and Overview of Intelligent Optimization Algorithms

Neighborhood search algorithm: The most typical ones are simulated annealing
algorithm, iterative local search and variable neighbor search. They also belong to
local search strategies. Neighborhood search in them are generally implemented
by a random or regular changing step and local search step. In searching process,

Fig. 1.3 intelligent
optimization algorithm
research trends in recent
years

1.3 Classification of Intelligent Algorithms 9

Fig. 1.4 The percentages of the studies on algorithm innovation, improvement, hybridation and
application respectively

Intelligent
Optimization
Algorithms

E
vo

lu
tio

na
ry

Le
ar

ni
ng

N
ei

gh
bo

rh
oo

d
S

ea
rc

h
S

w
ar

m
 I

nt
el

lig
en

ce

Genetic
Algorithm

Immune
Algorithm

DNA Computing

Simulated
Annealing

Taboo Search

……

Ant Colony
Optimization

Particle Swarm
Optimization

Predatory
Search

Artificial Fish
Algorithm

Culture
Algorithm

……

……

A
daptation

E
xploitation

E
xploration

Parameter
Adaptation

……

Fuzzy
Adaptation

Objective
Adaptation

Local Search

Prior
Knowledge

……

Taboo
Strategy

Chaotic
Strategy

Niche
Strategy

……

Global
Mutation

Im
provem

ents and
H

ybridations

Fig. 5 The classification of intelligent optimization algorithm

10 1 Brief History and Overview of Intelligent Optimization Algorithms

additional control parameters or individual acceptance rules in these algorithms
are gradually changed to achieve convergence. Thus the main characteristic of this
category is the independent local searching of individual. Now most of them are
commonly used as an improvement strategy for other algorithms.

Swarm intelligence algorithm: Including ant colony algorithm, particle swarm
optimization and artificial fish algorithm and so on, they are designed by simulating
self-organizing behavior of social animals (ant colony, bees, flocks of birds, etc.).
Normally, they use the broadcasting or transmission of social information extracted
by individuals to achieve organizational optimization. At present, the most popular
studied algorithms are ant colony algorithm and particle swarm algorithm.

Additionally, with the proposed algorithm shown in Fig. 1.5, a number of
improved strategies with different characteristics have been proposed. Researchers
conduct their studies from the perspectives of algorithm convergence, exploration,
exploitation and stability, aiming to guide the algorithm searching for better near-
optimal solutions. From the strategy efficacy [21], we divide these strategies also
into three categories: adaptive improvement, exploitation improvement, and
exploration improvement.

• Adaptive improvement: Adaptive improvement aims at balancing the search
breadth at the prophase and the excavation depth at the late stage. Parameter
adaptive improvement, fuzzy adaptive improvement and objective-based
adaptive improvement are typical ones.

• Exploitation improvement: Exploitation improvement is primarily to improve
the excavation performance of algorithms, mostly manifested by enhancing
searching orientation and small-scale traversing.

• Exploration improvement: Global search improvement is designed mainly to
enhance the diversity of the population in the algorithmic search, preventing the
algorithm from falling into local optimum. Niche strategy, chaos strategy and
various mutations are typical ones.

Apart from the above two study branches, there is one more important research
focus, i.e. algorithm application. No matter for communication, electronic engi-
neering and mechanical analysis in manufacturing system, or for control and
management in manufacturing process, different application object have different
requirements on algorithm. In terms of the purpose, the algorithm application object
falls into three areas: pedagogical, application and research, as shown in Fig. 1.6.

• Pedagogical: For this purpose, what users want is to quickly understand the
basic classification and characteristics of different algorithms. After that, they
might move on to their respective principles, mainframes, and performances.

• Application: For application, users care more about selecting appropriate
algorithms for addressing the given problem. Theoretical study might be
unimportant for them.

• Research: For senior researchers, merely providing a few fixed algorithms is not
enough. Beyond that, they need to test and compare more different algorithms
under some standard circumstances.

1.3 Classification of Intelligent Algorithms 11

For different users, the focus is different, and there will be different require-
ments for algorithm design and application. So how to fully develop the potential
and efficiency of the existing intelligent optimization algorithms in different kinds
of applications is a problem worth studying.

1.4 Brief Review of Typical Intelligent Optimization
Algorithms

Based on different categorizations of intelligent optimization algorithms, this
section hence gives brief introduction for several typical algorithms from the
perspective of the searching mechanism classification.

1.4.1 Review of Evolutionary Learning Algorithms

The most typical evolutionary learning algorithms include genetic algorithm and
immune algorithm and so on. Genetic algorithm simulates biological evolution
rules, and uses ‘‘survival of the fittest’’ rules to retain good search information,
applies crossover operator to implement information transmission during indi-
viduals and employs mutation operator to preserve the diversity of the population.
The immune algorithm simulates human body’s immune mechanism, using prior
knowledge as antigen to guide the whole population search with heuristic direc-
tions. Combining with immune selection, individuals with excellent antibody can
be obtained and evolution can then be kept. Both of them have shown good
performances in representative numerical and combinatorial optimization
problems.

Learn
algorithm
structure,
theory and
process

Algorithm
improvement
and creation

Use
algorithm
for specific
problems

Research

Pedagogical Appliation

Intelligent optimization
algorithm

Fig. 1.6 Different design purpose in intelligent optimization algorithm

12 1 Brief History and Overview of Intelligent Optimization Algorithms

1.4.1.1 Genetic Algorithm

Genetic algorithm (GA) is one of the earliest intelligent optimization algorithms,
which is relatively mature. The pseudo-code of the most commonly used genetic
algorithm can be shown in the following

Begin

t := 0;

P(t) := InitPopulation();

Evaluate(P(t));

While (stop criteria unsatisfied)

P’(t) = Select(P(t));

P’(t) = Crossover(P’(t));

P’(t) = Mutate(P’(t));

Evaluate(P’(t));

P(t + 1) = UpdateNewPop(P(t), P’(t));

t = t + 1;

End

End
where t represents the iteration number, P(t) represents the population in gener-
ation t, and P0(t) represents the population after one time algorithm operations.
Normally, genetic algorithm consists of three basic operators, i.e. selection,
crossover and mutation. Since 1975 Holland proposed its complete structure and
theory, the improvement of operators for exploration and exploitation and the
avoidance of premature convergence are also hot topics in this field.

In terms of encoding, the original method used by Holland is binary coding. But
for many applications of genetic algorithms, especially in industrial engineering,
this simple coding way is difficult to describe some key properties of problem
directly. Thus in recent years, many typical encoding methods are proposed
intended to some special or benchmark problems. For instance:

Real number coding [22]: The method is most commonly used coding way in
addition to binary coding. It can intuitively express a large amount of continuous
and discrete variables, especially suitable to represent variables with large range in
genetic algorithm and avoid the process of encoding/decoding. As a result, it can

1.4 Brief Review of Typical Intelligent Optimization Algorithms 13

improve the efficiency and accuracy of genetic algorithm to some extent and
reduce the algorithm complexity.

Matrix coding [23]: Matrix coding, in which every variable is represented by
multiple gene-bits, is mainly applied to combinatorial optimization problems. It can
be used to represent time scheduling sequences, symbol strings, positions in multi-
dimensional space and so on clearly and intuitively. In some cases, it can also
enhance the searching performance with proper information exchange and diversity
keeping. The disadvantage is mainly that it occupies larger memory space and needs
encoding/decoding steps which will increase the algorithm complexity.

Quantum coding [24]: This coding method is not only preferred by genetic
algorithm, but also widely used in other algorithms. Due to its double-bit coding
style, individuals have the characteristics of dimorphism which can largely enhance
the diversity of the population in the process of encoding and decoding. It makes
individuals randomly cover a wider range of solution space, and obtain improvement
of algorithm search performance at the expense of the increase of time complexity.

More than we mentioned, more coding methods are designed and presented as
the development of intelligent optimization algorithms, such as dynamic coding,
symbol coding, and structure coding and so on.

In the prospect of operators, selection operator plays an evolution guiding role
with the rule ‘‘survival of the fittest’’. A variety of improved operators are pro-
posed during research and development, for instance:

• roulette selection strategy
• tournament selection strategy
• sort selection strategy
• random selection strategy.

Crossover operator, as the core operator, is used to recombine gene information,
generate offspring, and spread good information. So far, except the single or multi-
points crossover, the commonly used methods also include:

• uniform crossover
• shuffle crossover
• crossover with reduced surrogate.

Besides, mutation operator allows a few individuals to jump out of the current
states and explore the new area. It plays a role to avoid the premature convergence
and enhance the exploration ability of algorithm. In addition to single/multi-point
mutation, commonly used methods are:

• uniform mutation
• chaotic mutation
• Gaussian mutation.

By and large, GA has a deep theoretical foundation in both theory and appli-
cation aspects [25–27]. Other than these improvements, there are also many
artificial intelligence strategy-based hybrid genetic algorithms with different
forms. Currently, most classic coding methods, typical operators, improvements

14 1 Brief History and Overview of Intelligent Optimization Algorithms

and evolution strategies are researched and obtained based on genetic algorithm,
and gradually applied to other typical intelligent optimization algorithms. Of
course, for different problems, the searching performances of these algorithms are
all different and more or less have some drawbacks on searching ability or process
time. Hence the researches on genetic algorithm and its improvements for different
specific problems are never stopped.

1.4.1.2 Immune Algorithm

The diversity of identification of the immune system has brought a lot of inspi-
ration in the researches of intelligent optimization algorithm. According to
immune system and its learning mechanism of diversity recognition, various
immune algorithms are designed. The pseudo-code of the typical immune algo-
rithm [28] is as follows:

Begin

t := 0;

P(t) := InitPopulation();

Evaluate(P(t));

While (stop criteria unsatisfied)

P’(t) = Crossover/Mutate(P(t));

P’(t) = Vaccination(P’(t));

P’(t) = ImmuneSelection(P’(t));

Evaluate(P’(t));

P(t + 1) = UpdateNewPop(P(t), P’(t));

t = t + 1;

End

End
where t represents the iteration number, P(t) represents the population of generation
t, P’(t) represents the population after one time operations. The immune algorithm
contains three basic operators: vaccination, crossover/mutation and immune selec-
tion. Priori knowledge of problem is generally extracted as antigen to guide the
individual changing. The priori knowledge-based individual changing is vaccina-
tion. After that, typical or special designed crossover or mutation operators are
employed to make further variation. Finally the immune selection operator tries to

1.4 Brief Review of Typical Intelligent Optimization Algorithms 15

select good individuals with high fitness to realize population updating. The whole
process simulates the adaptive production of antibodies in human body’s immune
system to make the algorithm searching with adaptive convergence and breadth-
searching ability. Its main drawback is that the selection of vaccines and vaccination
requires deep analysis of the properties and priori information of specific problems,
which largely increases the design process and decreases the versatility of algorithm.

In addition, inspired by artificial immune system, there are several other
immune algorithms:

• Immune programming (IP) [29].
• Clonal selection algorithm [30].
• Negative selection algorithm [31].

In which immune programming is similar to the immune algorithm, using the
diversity and maintaining mechanism of immune system to maintain the diversity
of population. In addition, clonal selection algorithm uses the characteristics of
adaptive immune response to construct evolutionary selection based on the cloning
reaction affinity maturation process, which gets a lot of attention researches. Other
than clonal selection algorithm, negative selection algorithm conducts changing
and monitoring of the individual alternating probability based on the principle of
self and non-self recognition in immune system to realize evolution and optimal
selection. The three important principles in negative selection algorithm are: [1]
each monitoring algorithm is unique, [2] the monitoring process is probabilistic
and [3] the system with robustness should be able to randomly monitor external
events rather than search for a known mode. Of course, since the artificial immune
systems and its applications still have a long way to go, the design of different sorts
of immune algorithms concerning parameter selection and theoretical discussion
still has much to be improved.

1.4.2 Review of Neighborhood Search Algorithms

The most typical examples of neighborhood search algorithm are Simulated
Annealing (SA) algorithm and Iterative Local Search (ILS) and Variable Neigh-
borhood Search (VNS). We only introduce the first two methods in this chapter.
Simulated annealing imitates the annealing process in thermodynamic, achieving
optimal selection and convergence process based on random neighborhood search
technique. Iterative local search is a combination of local search or hill climbing
strategy and general random operation. The evolutionary process of these two
methods can be either based on single-individual or on population, and the search
strategy can be flexibly altered. Therefore, now they usually play a significant role
in the hybridization with other algorithms to improve the overall performance of
problem solving.

16 1 Brief History and Overview of Intelligent Optimization Algorithms

1.4.2.1 Simulated Annealing Algorithm

In the year of 1982, Kirkpatrick et al. brought the annealing theory into the field of
combinatorial optimization, proposing simulated annealing algorithm to solve
large-scale combinatorial optimization problems. The essence of this algorithm
lies in the simulation of liquid freezing and crystallization process or metal
solution cooling and annealing process. If the simulating process is sufficient
enough, the algorithm can converge to the global optimal solution with the
probability of 1. To maximum problems, the pseudo code is as follows

Begin

t := 0;

P(t) := InitPopulation();

Evaluate(P(t));

While (stop criteria unsatisfied OR T > Tmin)

P’ (t) = NeighborSearch(P(t));

For i = 1 to N

e := Ii’(t) –Ii(t);

If (e > 0)

Ii(t + 1) = Ii’(t);

Else if (exp(e / T) > random(0, 1))

Ii(t + 1) = Ii’(t);

Else

Ii(t + 1) = Ii(t);

End

End

T = r * T;

t = t + 1;

End

End

1.4 Brief Review of Typical Intelligent Optimization Algorithms 17

where t is the number of iterations, and N represents the population size. P(t) is
the tth generation, and P’(t) means the new population generated by the neigh-
borhood search operators. Ii(t) and Ii

0(t) are two individuals of P(t) and P’(t),
respectively. T is annealing temperature, 0 \ r \ 1 is the cooling rate, Tmin is the
lowest temperature. As can be seen, simulated annealing contains two fundamental
operators, neighborhood search and annealing acceptance judgment. It can not
only accept optimized solutions, but also accept limited deteriorated solutions with
Metropolis principle.

Even though the convergence of the original form of simulated annealing can
be proved from a probability perspective, its convergence speed is quite slow. So
that many improvements have appeared to improve its performance, including
modified cooling schedule [32], heating and annealing with memory [33], two-
stage simulated annealing [34], etc. Moreover, due to the randomness and flexi-
bility of the neighborhood search, the annealing acceptance rule is often stripped
out to be the improvement of other algorithms, and hence getting a better suit-
ability and search diversity to different problems. Actually, different acceptance
functions will bring different influences to intelligent optimization algorithm.

1.4.2.2 Iterative Local Search

Iterative local search [35] is a representative neighborhood search algorithm which
was firstly proposed by Lourenco in 2003. It is an extension of local or neigh-
borhood search. In each generation, each individual tries to do local search within
a small scope and update itself with better position. Through introducing a per-
turbation operator, the history information of the previous iteration can be used for
guiding and the whole process local traverse scope can be fully enlarged. It is more
flexible than the traditional local search. For different problems, the implemen-
tation of perturbation and local search operators needed to be redesigned. Its
pseudo code is shown below:

18 1 Brief History and Overview of Intelligent Optimization Algorithms

Begin

t := 0;

P(t) := InitPopulation();

Evaluate(P(t));

P(t) := LocalSearch(P(t));

Best := P(t);

While (stop criteria unsatisfied)

P’ (t) = Pertubation(P(t));

P*’ (t) = LocalSearch(P’(t));

P(t + 1) = AcceptanceCriterion(P*’(t), P’(t));

t = t + 1;

End

End
where t is the number of iterations, and P(t) represents the individuals in the tth
generation. P’(t) is the new population generated by perturbation and P*’(t) is the
new population found by local search. Similar to simulated annealing, Iterative
local search also contains acceptance criterion and local search operator. More
than that, the perturbation based on current population P(t) is introduced to
increase the diversity and guide the whole population do neighborhood search in
different position.

The standalone use of iterative local search [36] has gotten great success in the
fields of combinatorial optimization, such as travelling salesman problem and job-
shop scheduling problems. Following that, many hybrid version of iterative local
search are presented for scheduling in different environments, such as the
hybridization with greedy strategy for unrelated parallel machine scheduling [37]
and the hybridization with genetic algorithm for location-routing problem [38] and
so on.

Though these neighborhood search methods were proposed relatively early,
their ability for solving complex optimization problems is still strong. With the
above neighborhood search structures, many deterministic searching algorithms
can be partly introduced into the iterative process to enhance the exploitation and
find better solutions. It can also be designed as a bridge between traditional
deterministic algorithms and the new advanced intelligent algorithms.

1.4 Brief Review of Typical Intelligent Optimization Algorithms 19

1.4.3 Review of Swarm Intelligence Algorithm

Swarm intelligence algorithms search for optimal solution to the problem by
individual collaboration and competition in population. The most representative
ones are ant colony optimization and particle swarm optimization. Anty colony
optimization simulates the pheromone secretion in ants foraging behavior, posi-
tioning population with pheromone and taking advantage of pheromone dissipa-
tion to avoid population premature convergence. Particle swarm optimization
imitates birds’ global and individual optimal learning mechanisms, integrating
excellent global and individual information and hence implement directed coop-
eration. To sum up, ant colony optimization is suitable for combinatorial opti-
mization problems such as path finding and scheduling, while particle swarm
optimization is more applicable to complex continuous numerical problems.

1.4.3.1 Ant Colony Optimization

In 1990s, Dorigo proposed the first ant colony algorithm—ant system, and
meanwhile applied them to the unsolved travelling salesman problem (TSP). From
then on, basic ant colony optimization gets continuous development and
improvement. Today, these different versions share a same characteristic, i.e., the
improved ant detection ability in searching process. The pseudo code of commonly
used ant colony optimization is:

Begin

t := 0;

P(t) := InitPopulation();

Evaluate(P(t));

Pheromone(t) := InitPheromone(P(t));

Prior := InitPriorKnowledge();

While (stop criteria unsatisfied)

P(t + 1) = FindPath(P(t), Pheromone(t), Prior);

Evaluate(P(t + 1));

Pheromone(t + 1) = UpdatePheromone(P(t + 1), Pheromone(t), Prior);

t = t + 1;

End

End

20 1 Brief History and Overview of Intelligent Optimization Algorithms

where t is the number of iterations, and P(t) represents the tth generation.
Pheromone(t) and Prior are the pheromone matrix of the tth generation and priori
knowledge information matrix, respectively. They are used to guide ants’ path
finding behavior. Therefore, it contains two fundamental operators, path finding
and pheromone updating, which aim at guiding the population searching by the
integration of static priori knowledge and dynamic pheromones which are formed
by every individuals’ step.

As is shown, ant colony optimization is specifically designed to solve combi-
natorial optimization problems, and it has concurrency, robustness and positive
feedback characteristics. Current mainstream improvements to ant colony opti-
mization include:

• Improvements on foraging behavior (path-finding method)
• Improvements on pheromone updating
• Parameter self-adjustment.

An early representative example of improved method is elitist strategy [39].
Through elite screening, better paths are more likely to be chosen. But if there are
too many elites, the algorithm will fall into a local optimum, resulting in the search
premature stagnation. In order to overcome these exposed drawbacks, literature
[40] proposed an ant colony system, which improved algorithm behavior selection
rules and enhanced path pheromone of the global optimum. In the direct
improvement on ant colony optimization, MAX-MIN ant system is a typical
representative, who modified the way of pheromone updating, and helped to
increase the search capabilities of algorithm in the initial stage [41]. Besides,
researchers further analyzed and interpreted the invariance and classification of the
algorithm in different point of views [42, 43]. Its applications ranged from TSP to
quadratic assignment problem (QAP), vehicle routing problem (VRP) and robot
path planning. However, although the applications and improvements are rela-
tively diverse, its parameter setting, convergence, effectiveness all come from a
large number of experimental results, which not only lack theoretical research like
genetic algorithm, but also lack mature methods to guide the process analysis.

1.4.3.2 Particle Swarm Optimization

Kennedy et al. firstly designed particle swarm optimization in 1995. This algo-
rithm conducts searching according to the pursuit of particles to the best individual
in solution space, whose process is simple and easy to implement. PSO has simple
parameters without complex adjustments, and its implementation is shown in the
following pseudo code:

1.4 Brief Review of Typical Intelligent Optimization Algorithms 21

Begin

t := 0;

P(t) := InitPopulation();

P(t));

pbest := the best solution founded by each individual

gbest := the best solution founded by the whole population

V(t) := InitVelocity();

While (stop criteria unsatisfied)

V(t + 1) = UpdateVelocity(V(t), pbest, gbest);

 = UpdateLocation(P(t), V(t + 1));

P(t + 1));

pbest, gbest according to P(t + 1);

t = t + 1;

Evaluate(

P(t + 1)

Evaluate(

Update

End

End
where t denotes the number of iterations, P(t) is the tth-generation population,
pbest and gbest represent the individuals’ current best solution matrix and the global
best solution, respectively. V(t) is called as velocity matrix which stores the
updated incremental positions for all dimensions in each generation. Even if
particle swarm optimization is divided into two coupled steps, the updating of
particles’ velocity and the changing of particles’ position, it can still be considered
as two procedures, which are self learning and global learning according to
functions. Updating rate and position according to self optimization and global
optimization share the same effects.

From its emergence to the present, particle swarm optimization is rapidly used
in function optimization, neural networks, fuzzy systems control and other fields.
Most researchers have focused mainly on the aspects of the algorithm structure and
performance improvement, which can be classified as:

• Parameter setting
• Algorithm convergence
• Topology architecture
• Particle diversity.

22 1 Brief History and Overview of Intelligent Optimization Algorithms

In addition, there are also researches emphasize on population structure and
hybridation with other algorithms. In parameter setting, typical examples are the
introduction of inertia weight and nonlinear variation of inertia weight proposed
[44], etc. From algorithm convergence, M Clerc introduced compression factor to
maintain the convergence of algorithms [45]. Besides, J Kennedy’s classical
research about topology structure significantly affected the system performance
[46]. As a new evolutionary algorithm, it is easy to implement and suitable to
continuous problems. Yet most of the current researches focus on the applications.
The study on algorithm internal mechanism is relatively rare. The immature model
parameter settings, the position and velocity structure design rely too much on the
experience, whose own structure is overlooked and yet to be perfected.

1.5 The Classification of Current Studies on Intelligent
Optimization Algorithm

A variety of intelligent optimization algorithm has appeared one after another, and
according to the research focus, existing research can be divided into: algorithm
innovation, algorithm improvement, algorithm hybridization, algorithm parallel-
ization and algorithm application. Here’s a brief summary of these five aspects.

1.5.1 Algorithm Innovation

The algorithms mentioned above still have a poor diversity and limited searching
ability, despite they have brought different improvements to the solution of many
complex optimization problems. Inspired by different problems, many researchers
are discovering brand new intelligent optimization algorithms to bring new
operators to this field.

As is shown in Fig. 1.2, eye-catching algorithms include:

• Memetic Algorithm [14]: from the operators point of view, it is similar to a kind
of genetic algorithm with local search, including selection, crossover and
mutation, and local search operators;

• Harmony Search [47]: It simulates the timbre reconciliation of musicians,
transforming and accepting individual gene-bits with a certain probability. The
operating mechanism approximates simulated annealing.

• Artificial bee Colony Algorithm [48]: It selects multiple investigation bees to
conduct local search combined with a number of preferred sites, and meanwhile
to use the remaining individual to carry on cooperative random search. Bee
colony algorithm is a rising star in the field of intelligent optimization
algorithm;

1.4 Brief Review of Typical Intelligent Optimization Algorithms 23

• Quantum Evolutionary algorithm [49]: Using quantum coding and quantum-bit
operations to achieve a probabilistic search, the coding method of this algo-
rithm is wide used while the operators’ application is relatively rare;

• Chemical Reaction Algorithm [50]: Chemical Reactions algorithm takes use of
molecular collisions, combinations, split and cross to implement evolutionary
change. Although the process of cross and molecular collisions are similar to
that in genetic algorithm, this algorithm adds combination and split operators,
expressing great potential in some combinatorial optimization problems;

• Plant Growth Algorithm [51]: Similar to Taboo search, it bases on single-
individual to select growth point, generating a series of new individuals and
selecting the best one to be the substitute of the original one. With a high
complexity, it is only proper to continuous optimization problems;

• Group Leadership Algorithm [52]: Similar to bee colony algorithm, it selects
leaders according to fitness values, and makes use of cross to achieve in-group
local search and inter-group interaction.

What’s more, there are also new heuristic evolutionary methods such as
Invasive Weed Algorithm [53] and Firefly Algorithm [54], but we would not
repeat here. To sum up, it can be found by the algorithms above that most of the
operators in new optimization algorithm design are similar or even the same as that
in classical genetic algorithm, ant colony algorithm and simulated annealing
operators. Actually, only a few of them are brand new operators, and the effec-
tiveness is yet to be further tested by experimental and theoretical proof. The
performance of these new algorithms cannot and has never been compared in a
standard platform, but only the rule pattern of them has gotten an innovative
progress. Therefore, it is well worth of investigating that how to further find out the
characteristics and potentials of these new algorithms to achieve higher level
efficient search rather than just comparing them with conventional methods.

1.5.2 Algorithm Improvement

Another development branch of new intelligent optimization algorithms is the
algorithm improvement. Based on fundamental principles, algorithm initialization,
encoding method, operators and evolution strategy have different effects on the
process of solution search in most problems. Thus, many researchers draw on the
above four aspects to improve existing algorithms.

Algorithm Initialization: The method and application of algorithm initialization
can be summarized as random initialization, sequential initialization, initialization
with same starting point and priori information-based initialization. The most
common used is random initialization, which has relatively less research currently.

Encoding Method: Encoding method had been illuminated in Sect. 1.4.1.1, i.e.,
the improvement of genetic algorithm. Existing researches concerning new

24 1 Brief History and Overview of Intelligent Optimization Algorithms

encoding method are increasingly less, and most mainly focus on typical encoding
way according to specific problems.

Operators: The typical ways to improve an algorithm are parameter adjustment
and operator adjustment. Since operators usually need different parameters in
different problems or in different searching period of one problem, many resear-
ches concentrate on the design of population-state based parameter adaptive
modification method. In addition, due to the blindness of search, most studies tend
to balance the exploration and exploitation of algorithms according to their overall
characteristics. Niche strategy, orthogonal strategy and priori knowledge-based
strategy are examples in this case. By this mean, many improved operators come
into being and can be widely used in different algorithms. By and large, operators
are the core of algorithm, thus researches in this field are the most flourished point
and have brought many improvements in intelligent optimization.

Evolutionary Strategy: Evolutionary strategy contains Elitist Strategy (i.e.
optimal instead of the worst), the Sort Preferred strategy, Competition Strategy,
etc. Elite Strategy is the most commonly used one. Although there is not much
research regarding evolutionary strategies, the screening of new and old individ-
uals is also an important part, which needs to be further studied.

1.5.3 Algorithm Hybridization

The iterative evolution modes of intelligent optimization algorithms are compar-
atively unified. Differences only lie in operators, which provide great space for
development. Hitherto, according to the overall efficacy of different operators,
people can arbitrarily amalgamate the algorithms to make improvements for
solving different problems. Consequently, to algorithms that emphasize exploita-
tion, we can introduce operators with more diversity from other algorithms, while
to those focus on exploration, we can also add operators with more local mining
ability. Moreover, self-adaptive search strategies can be added to improve the
performance of hybrid algorithms as well. Given that operators are mainly
implemented based on population, when comparing with the improvement of
algorithms, the arbitrary combinations of operators in different algorithms are
relatively easy and convenient. Therefore, both algorithm beginners and engi-
neering employers can freely select different operators to design various hybrid
algorithms and test their efficacy after simply understanding of algorithm iterative
modes. Furthermore, how to select suitable algorithms from so many valuable
improvements and hybridizations and to practically apply them is a problem that
needs insightful discussion.

1.5 The Classification of Current Studies on Intelligent Optimization Algorithm 25

1.5.4 Algorithm Parallelization

Parallel intelligent optimization algorithms combine the high performance of super
computers and the natural parallelism of the algorithms. It can greatly enhance
algorithms’ processing speed and expansion space. The only parallel strategy of
optimization algorithm is population-based parallelism, which means dividing
population into sub-group to implement concurrent searching. The earliest studies
of parallelization are mainly based on genetic algorithm. From then on, people
have proposed many schemes for it. All these works can be classified into three
main frameworks, i.e., master-slave parallel model, coarse-grained parallel model
and fine-grained parallel model [55]. These three frameworks made possible a
variety of parallel intelligent optimization algorithms in recent decades, and the
most typical examples are parallel genetic algorithms, parallel particle swarm
optimizations and parallel ant colony optimizations.

At present, studies on the parallelism of algorithms mainly focus on three
aspects that can largely influence the parallel performance: parallel topology,
communicational migration cycle, and the number of communicational migration.
Especially in topology structures, there exist single and bi-directional ring topol-
ogy [56], grid topology [57] and hypercube topology [58] and so on. Presently,
even though some research have compared different topology structures and
concluded that single bi-directional ring topology was better [59], the role played
by different topologies in parallelization is also different. According to the specific
circumstances and problems, the performances of different topologies are still to
be analyzed with migration cycle and migration number. Overview, there are two
issues in parallel studies, which are:

Whether it is possible to design a new parallel mode, expect for population-
based parallelism;

Densely connected parallel topology has a large information exchange, strong
collaborations, but slow speed, while loosely connected one has smaller infor-
mation exchange and collaboration, but faster speed.

So the problem of how to embody integrated topology structure to get best
search performance urges researchers to conduct deeper analysis and discussion in
different application background.

1.5.5 Algorithm Application

Except for the two research branches above, another important point is the
application of algorithms. No matter in communication [12], project construction
management [13], electronic engineering [60] or manufacturing related fields [61–
64], intelligent optimization algorithms have brought varying degrees of efficiency
to problem solving. From the standpoint of problem type, algorithm application
can be divided into two aspects:

26 1 Brief History and Overview of Intelligent Optimization Algorithms

Functions optimization application: The optimization of some typical complex
functions is often regarded as the algorithm performance evaluation criteria.
Researchers construct many static and dynamic multimodal function such as
concave/convex functions and high/low-dimensional functions and consider them
as Benchmark to provide comparison for algorithms. And a variety of optimization
algorithms aiming at functions optimization are applied to automatic control and
power calculation area. In terms of automatic control, intelligent optimization
algorithms are commonly used for continuous optimization problems like con-
troller parameter adjustment, simulated control system and control rules learning
and control system simulation. It makes possible further out-of-hand regulation
and achieves systematic automation and intelligence with higher control accuracy.
As to power calculation, intelligent optimization algorithms usually play important
roles in the optimization of large-scale multidimensional energy consumption
calculation function and circuit loss. It can improve decision-making qualities
within a short time, largely lowering electricity power waste.

Combinational optimization application: With the more and more complex
multi-domain system, the sizes of a variety of combinatorial optimization prob-
lems increase sharply. Thus, many NP-hard problems appear in real situations. The
emergences of intelligent optimization algorithms give a way to these problems.
For typical combinatorial optimization problems such as the traveling salesman
problem, knapsack problem and packing problem,researchers have proposed many
different algorithms to try to achieve decision-making efficiency and improvement.
Moreover, in real engineering projects, intelligent optimization algorithm is
applied to machinery manufacturing, image processing, machine learning and data
mining. Among them, the most typical one is resource scheduling in manufac-
turing management. In fact, the proposal and development of intelligent optimi-
zation algorithms can effectively solve the problem of job shop scheduling,
production planning and task allocation; In image processing area, intelligent
optimization algorithms are often used for pattern recognition and image feature
extraction to achieve precise identification and display of the image. While in
machine learning, intelligent optimization algorithms often appear in the fuzzy
control rule learning, classifier dynamic tuning and the screening and combination
of learning rules to improve the intelligence of machine learning. When it comes
to data mining, intelligent optimization algorithms can achieve the evolution of
search rules and direct search in order to improve the accuracy.

Besides, in their respective fields, researchers have successfully developed
various forms of decision-making system based on typical intelligent optimization
algorithms such as the genetic algorithm and ant colony algorithm, and have
brought much efficiency to field decision-making. From the perspective of opti-
mization algorithm development and application, in studies based on most specific
problems, most researchers tend to re-design algorithms or directly use one or
several traditional algorithms and improvement strategies according to problem
features. In experiments, they usually compare their methods with conventional
certain algorithms and the early non-improved algorithms rather than with existing
improved studies on intelligent optimization algorithms. As can be seen, there are

1.5 The Classification of Current Studies on Intelligent Optimization Algorithm 27

fewer relationships between the research focus on algorithm mechanisms and on
applications. Therefore, it seems an urgent problem that how to combine the two
together to accelerate algorithm development and make it more efficient in engi-
neering area.

1.6 Development Trends

Intelligent optimization algorithms now remain a research focus in the field of
artificial intelligence, whose main development direction is towards high effi-
ciency and high intellectualization. However, despite this, when dealing with more
and more large-scale complex optimization problems, they are still faced with
challenges such as how to take care of multi-users and multi-applications at the
same time. Therefore, throughout the development needs of the networked inte-
grated manufacturing system for complex productions, we can summarize the
development trend of intelligent optimization algorithms as follows: intelligent,
service-oriented, application-oriented and user-centric.

1.6.1 Intellectualization

Intellectualization can be embodied from two aspects. One is that algorithms
should have certain functions like parameter self-adjustment and dynamic self-
adaptive operations when solving different problems. This kind of quality, which
can be defined as function intellectualization, makes possible good performances
for different types of problems. The other is that algorithms must have excellent
recognition performance during the process of designing, implementing and
applying. This quality is defined as application intellectualization.

Currently, many researchers have devoted to the function intellectualization of
intelligent optimization algorithms, while the application intellectualization is
rarely studied. For application, they tend to simply mix multiple operators, with
the help of parameter adjustment and parallelism to adapt varying problems.
However, ‘‘there is no free lunch’’ [65]. D.H Wolpert’s theory had proven that
enforcement of any algorithm to specific area in one aspect always needs addi-
tional cost in other aspects, not mention to a multi-suitable algorithm. In summary,
great development potential lies in the application intellectualization field, and the
problem of how to intelligently integrate different algorithms or operators to cater
varying problems is a field that deserves deep investigation.

28 1 Brief History and Overview of Intelligent Optimization Algorithms

1.6.2 Service-Orientation

The same as services in networked manufacturing, service-orientation is designed
to encapsulate intelligent optimization algorithms in the form of services and
provide to clients in different areas. This requires universal interface design for
different algorithms and simplified problem interfaces. However, complex issues
abound, and their respective attributes are ever changing. So it is difficult to offer
universal, service-oriented and efficient algorithms.

Of course, there are very few researches about the servitization of intelligent
optimization algorithms, and most researchers only envisaged framework on it, but
did not actually begin. Nevertheless, seeing from the rich concepts of networking
and cloud and the convenience of service-oriented software and hardware, we
could safely draw the conclusion that the service-oriented optimization algorithms
are well worthy of studying in future.

1.6.3 Application-Oriented

In the development of intelligent optimization algorithm, application-oriented area
can be said is the most important and attractive one in the direction trends. Many
researchers have focused on the designing of algorithm based on Benchmark
without tests and applications on specific practical problems. Moreover, there are
many large-scale problems in reality, and most domain experts are not equipped
with optimization algorithm-related knowledge. Among the existing algorithm
improvements, only the selecting of suitable intelligent optimization algorithms
has made many practitioners overwhelmed. Most applications are more likely to
select common algorithms to improve and amalgamate, and only few can devote to
design new algorithms to solve certain problems. Therefore, the repetition of many
works and the waste of many excellent research studies on intelligent optimization
algorithms are unavoidable.

Due to this situation, many researchers are considering to build a uniform
platform so that many high-efficient algorithms and their improvements can be
categorized and collected to provide reference to users in different industry. But
how to build such a flexible, convenient and application-oriented platform is
exactly both a research focus and a research difficulty.

1.6.4 User-Centric

We have mentioned in the analysis of algorithm classification that intelligent
optimization algorithms have three kinds of users: algorithm beginners, algorithm

1.6 Development Trends 29

researchers and algorithm users. From the initial goal of algorithm design,
algorithms should be user-centric, and different users’ demands vary.

To algorithm beginners, they hope to understand the classification and features
of many basic algorithms, and to learn their principles, structures and processes.

To algorithm researchers, they not only need to study existing algorithms and
their improvements, but also be able to conduct tests and theoretic analysis in a
standard platform according to different problems.

To algorithm users, they may have no deep understanding to algorithms, and in
real applications, they just need to find out corresponding optimization algorithms
and one or two improvements to encode and design. The study and improvement
of algorithms are too complicated to them.

Intelligent optimization algorithms’ research are rarely concerned about user-
centric problem. But to the expansion of intelligent optimization algorithms, this
problem can never be underestimated. Therefore, user-centric algorithm design
and improvement is another potential mainstream trend in future.

1.7 Summary

Intelligent optimization algorithms are beneficial to the following problems.
Large-scale optimization problems, which are difficult to get solution with

deterministic algorithm on limited computing resources.
Real time decision problems, which require the algorithm with high time effi-

ciency. Suboptimal solutions are generally acceptable in such problems. When
dealing with such problems, intelligent optimization algorithms could bring very
high solving efficiency.

In this chapter, referring their functions and features, we divided intelligent
optimization algorithms into evolutionary study, neighborhood Search and popu-
lation intelligence and also respectively elaborated their research outlines and
basic principles. This classification is preliminarily achieved based on main
functions, and although operation differences lie between different kinds of
algorithms, their mechanisms are probably the same. Moreover, many improve-
ments are actually the hybridization of different algorithms, so there is no sig-
nificant boundary between them. The research of algorithms has been abundant,
but the pace of development has not stopped. We briefly summarized the devel-
opment trend of algorithms in this chapter. In prospect, the theories, features and
applications of intelligent optimization algorithms are still the research focus in
many fields of human endeavor, which belong to a key technology in interdisci-
plinary decision optimization.

30 1 Brief History and Overview of Intelligent Optimization Algorithms

References

1. Nocedal J, Wright SJ (2006) Numerical optimization. Springer, Berlin
2. Bonnans JF, Gilbert JC, Lemarechal C, Sagastizabal CA (2006) Numerical optimization:

theoretical and practical aspects. Springer, Berlin
3. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and

complexity. Dover Publications, Mineola
4. Schrijver A (2003) Combinatorial optimization. Springer, Berlin
5. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and

conceptual comparison. J ACM Comput Surv (CSUR) 35(3)68–308
6. Garey MR, Johnson DS (1990) Computers and intractability: a guide to the theory of NP-

completeness. W. H Freeman and Co, San Francisco
7. Ullman JD (1975) NP-complete scheduling problems. J Comput Syst Sci 10(3):384–393
8. Gawiejnowics S (2008) Time-dependent scheduling. Springer, Berlin
9. Karp RM (1986) Combinatorics, complexity, and randomness. Commun ACM 29(2):98–109

10. Kann V (1992) On the approximability of NP-complete optimization problems. Royal
Institute of Technology, Sweden

11. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, New york
12. Ribeiro CC, Martins SL, Rosseti I (2007) Metaheuristics for optimization problems in

computer communications. Comput Commun 30(4):656–669
13. Liao TW, Egbelu PJ, Sarker BR, Leu SS (2011) Metaheuristics for project and construction

management—a state-of-the-art review. Autom Constr 20(5):491–505
14. Moscato P (1989) On evolution, Search, optimization, genetic algorithms and martial arts:

towards memetic algorithms. Caltech Concurrent Computation Program
15. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global

optimization over continuous spaces. J Global Optim 11(4):341–359
16. Tao F, Zhang L, Zhang ZH, Nee AYC (2010) A quantum multi-agent evolutionary algorithm

for selection of partners in a virtual enterprise. CIRP Ann Manufact Technol 59(1):485–488
17. Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization. In: Proceedings of

the 2001 congress on evolutionary computation, vol 1, pp 101–106
18. Horn J, Nafpliotis N, Goldberg DE (1994) A niched pareto genetic algorithm for

multiobjective optimization. In: Proceedings of the 1st IEEE congress on evolutionary
computation, vol 1, pp 82–87

19. Wang DW, Yung KL, Lp WH (2001) A heuristic genetic algorithm for subcontractor
selection in a global manufacturing environment. IEEE Trans Syst Man Cybern Part C
31(2):189–198

20. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

21. March JG (1991) Exploration and exploitation in organizational learning. Organ Sci
v2(1):71–87

22. Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl
Math Comput 203(2):598–607

23. Zhang G, Gao L, Shi Y (2011) An effective genetic algorithm for the flexible job-shop
scheduling problem. Expert Syst Appl 38(4):3563–3573

24. Zhang G (2011) Quantum-inspired evolutionary algorithms: a survey and empirical study.
J Heuristics 17(3):303–351

25. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning.
Kluwer Academic Publishers, Boston

26. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85
27. Schmitt LM (2001) Theory of genetic algorithms. Theoret Comput Sci 259(1–2):1–61
28. Wang L, Pan J, Jiao LC (2000) The immune algorithm. ACTA Electronica Sinica

28(7):74–78
29. Wang L, Pan J, Jiao LC (2000) The immune programming. Chin J Comput 23(8):806–812

References 31

30. de Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection
principle. IEEE Trans Evol Comput 6(3):239–251

31. Hofmeyr SA, Forrest S (2000) Architecture for an artificial immune system. Evol Comput
8(4):443–473

32. Noutani Y, Andresen B (1998) A comparison of simulated annealing cooling strategies.
J Phys A: Math Gen 41(31):8373–8385

33. Ali MM, Torn A, Viitanen S (2002) A direct search variant of the simulated annealing
algorithm for optimization involving continuous variables. Comput Oper Res 29(1):87–102

34. Varanelli JM (1996) On the acceleration of simulated annealing. University of Virginia, USA
35. Lourenco HR, Martin O, Stutzle T (2003) Iterated local search. Int Ser Oper Res Manag Sci

57:321–353 (Handbook of Metaheuristics. Kluwer Academic Publishers)
36. Lourenco HR, Martin O, Stutzle T (2010) Iterated local search: framework and applications.

Int Ser Oper Res Manag Sci 146:363–397 (Handbook of Metaheuristics, 2nd edn. Kluwer
Academic Publishers)

37. Fanjul-Peyro L, Ruiz R (2010) Iterated greedy local search methods for unrelated parallel
machine scheduling. Eur J Oper Res 207(1):55–69

38. Derbel H, Jarboui B, Hanafi S, Chabchoub H (2012) Genetic algorithm with iterated local
search for solving a location-routing problem. Expert Syst Appl 39(3):2865–2871

39. Dorigo M, Maniezzo V, Colorn A (1996) The ant system: optimization by a colony of
cooperating agents. IEEE Trans Syst Man Cybern 26(1):29–42

40. Dorigo M, Gambardella M (1997) Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

41. Stutzle T, Hoos HH (2000) MAX-MIN ant system. Future Gener Comput Syst 16(8):889–914
42. Birattari M, Pellegrini P, Dorigo M (2007) On the invariance of ant colony optimization.

IEEE Trans Evol Comput 11(6):732–742
43. Martens D, De Backer M, Haesen R, Vanthienen J, Snoeck M, Baesens B (2007)

Classification with ant colony optimization. IEEE Trans Evol Comput 11(5):651–665
44. Chatterjee A, Siarry P (2006) Nonlinear inertia weight variation for dynamic adaptation in

particle swarm optimization. Comput Oper Res 33(3):859–871
45. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability and convergence in a

multidimensional complex space. IEEE Trans Evol Comput 6(2):58–73
46. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: IEEE

2th proceedings of evolutionary computation, pp 1671–1676
47. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm:

harmony search. Simulation
48. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471
49. Platel MD, Schliebs S, Kasabov N (2009) Quantum-inspired evolutionary algorithm: a

multimodel EDA. IEEE Trans Evol Comput 13(6):1218–1232
50. Lam AYS, Li VOK (2010) Chemical-reaction-inspired metaheuristic for optimization. IEEE

Trans Evol Comput 14(3):381–399
51. Wang C, Cheng HZ (2008) Optimization of network configuration in large distribution

systems using plant growth simulation algorithm. IEEE Trans Power Syst 23(1):119–126
52. Daskin A, Kais S (2011) Group leaders optimization algorithm. Mol Pheys 109(5):761–772
53. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from

weed colonization. Ecol Inform 1(4):355–366
54. Yang XS(2008) Nature-inspired metaheuristic algorithms. Luniver Press
55. Muhlenbein H, Schomisch M, Born J (1991) The parallel genetic algorithm as function

optimizer[J]. Parallel Comput 17(6–7):619–632
56. Yang HT, Yang PC, Huang CL (1997) A parallel genetic algorithm approach to solving the

unit commitment problem: implementation on the transputer networks. IEEE Trans Power
Syst 12(2):661–668

57. Fukuyama Y, Chiang HD (1996) A parallel genetic algorithm for generation expansion
planning. IEEE Trans Power Syst 11(2):955–961

32 1 Brief History and Overview of Intelligent Optimization Algorithms

58. Xu DJ, Daley ML (1995) Design of optimal digital-filter using a parallel genetic algorithm.
IEEE Trans Circ Syst 42(10):673–675

59. Matsumura T, Nakamura M, Okech J, Onaga K (1998) A parallel and distributed genetic
algorithm on loosely-coupled multiprocessor system. IEICE Trans Fundam Elect Commun
Comput Sci 81(4):540–546

60. Yeung SH, Chan WS, Ng KT, Man KF (2012) Computational optimization algorithms for
antennas and RF/microwave circuit designs: an overview. IEEE Trans Industr Inf
8(2):216–227

61. Tao F, Zhao DM, Hu YF, Zhou ZD (2008) Resource service composition and its optimal-
selection based on particle swarm optimization in manufacturing grid system. IEEE Trans
Industr Inf 4(4):315–327

62. Tang KS, Yin RJ, Kwong S, Ng KT, Man KF (2011) A theoretical development and analysis
of jumping gene genetic algorithm. IEEE Trans Industr Inf 7(3):408–418

63. Lo CH, Fung EHK, Wong YK (2009) Intelligent automatic fault detection for actuator
failures in aircraft. IEEE Trans Industr Inf 5(1):50–55

64. Hur SH, Katebi R, Taylor A (2011) Modeling and control of a plastic film manufacturing web
process. IEEE Trans Industr Inf 7(2):171–178

65. Wolpert DH (1997) W G Macready (1997) No free lunch theorems for optimization. IEEE
Trans Evol Comput 1(1):67–82

66. Holland J (1975) Adaptation in natural and artificial systems. The University of Michigan
Press

67. Glover F (1989) Tabu search. ORSA J Comput 1(3):190–206
68. Kirkpatrick S, Gelatt CD, Vechi MP (1983) Optimization by simulated annealing. Science

220(4598):671–680
69. Farmer JD, Packard NH, Perelson AS (1986) The immune system, adaptation, and machine

learning. Physica D 22(1–3):187–204
70. Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di

Milanno
71. Adleman LM (1994) Molecular computation of solutions to combinatorial problem. Science

266(5187):1021–1024
72. Reynolds RG (1994) An introduction to cultural algorithms. In: The 3rd annual conference on

evolution programming
73. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: IEEE international

conference on neural networks
74. Linhares A (1998) State-space search strategies gleaned from animal behavior: a traveling

salesman experiment. Biol Cybern 87(3):167–173
75. Li XL (2003) A new intelligent optimization algorithm—artificial fish school algorithm.

Ph.D. Thesis, Zhejiang University, China
76. Yang XS (2010) A new metaheuristic bat-inspired algorithm. Nature inspired cooperative

strategies for optimization (NICSO 2010), Springer, Berlin, p 65–74

References 33

Chapter 2
Recent Advances of Intelligent
Optimization Algorithm in Manufacturing

Due to its good versatility and independence, intelligent optimization algorithm
has largely shortened the time of decision-making in large-scale optimization
problems of manufacture. However, lower searching time often conflicts with the
searching accuracy in most cases. To improve the problem solving capability,
research in intelligent optimization algorithm based on different domain charac-
teristics never stopped. From the view of manufacturing, this chapter classified and
comprehensively analyzed all kinds of manufacturing optimization problems and
their general methods, illustrated the application features and challenges of
intelligent optimization algorithm in manufacturing, and summarized the devel-
opment needs and trends of intelligent optimization algorithm in the field of
manufacturing system.

2.1 Introduction

First of all, the application process of intelligent optimization algorithm in man-
ufacturing engineering consists of five main parts, as shown in Fig. 2.1, problem
modeling, variable encoding, operator design, simulation and algorithm imple-
mentation. Differs from pure algorithm design, the most critical part of algorithm
application is problem modeling and variable encoding. Then the design of
operators in algorithm depends largely on the specific environment and coding
ways.

Problem modeling: The core of modeling is using variables and formulas to
concisely and comprehensively express the three main elements of problem—
variables, objectives and constraints—according to the environment and require-
ment. Moreover, the priori knowledge, environmental parameters and the rela-
tionship between variables should be given in concise mathematical expression.

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_2

35

Variable encoding: Encoding scheme is the link between problem and intelli-
gent optimization algorithm. It is the basis for operators in algorithm to search in
the solution space of problem. Different encoding schemes have different levels of
randomness and then make the algorithms searching with different capability.

Operator design: With population-based iteration, operators, such as crossover,
mutation and so on, need to be selected and designed according to the above
encoding scheme. It decides the evolutionary direction of population and the
whole searching way of algorithm. Different kinds of operators have different
ability of exploration and exploitation and suitable for different sorts of problems.
Thus in this step, we should especially focus on the balance of the two ability in
the algorithm.

Simulation: Because of the randomness of intelligent optimization algorithm,
simulation is the most effective way to verify the algorithm performance with
theoretical analysis. Moreover, parameters need to be tuned based on several
experiments. If the expected performance is reached, the algorithm can be adopted
and applied; if not, we should return and reanalyze the encoding scheme or the
operators for adjusting the specific problem.

Algorithm implementation: After the design and simulation, the algorithm can
then be developed in practical systems for application.

Based on such a unified process, intelligent optimization algorithm is applied
almost in everywhere. It can be seen that there are mainly three types of appli-
cation objects in manufacturing field: management of manufacturing process,
control/simulation for manufacturing system and product/element design and
analysis, as shown in Fig. 2.2.

• Management of manufacturing process: It covers the continuous process
modeling and discrete workflow management of design, machining and
transportation in production line. It is central line for the whole life cycle of
manufacturing. Thus it can be called as process optimization.

• Control/Simulation for manufacturing system: It includes the design of man-
ufacturing control system, manufacturing simulation and supervision of pro-
duction line. Only high efficient control and simulation will guarantee the
efficient operation of the whole manufacturing system. It is a kind of system
optimization.

Problem
modeling

Variable
encoding

Operator
design

Simulation

feasible

Algorithm
implementation

yes

no

Fig. 2.1 The application process of intelligent optimization algorithm

36 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

• Product/element design and analysis: It contains the structure design and
modeling and finite element analysis of product. It is the core object of man-
ufacturing. Optimization in this category is known as structure optimization as
well.

Problems in these three objects have their own particular characteristics and are all
along with high complexity. Though a plenty of intelligent optimization algo-
rithms are designed for them, there are still various degrees of difficulties and
challenges in the optimization for these three types of objects. On determining how
to choose the most beneficial algorithms for different application objects in
accordance with problem characteristics, and how to apply and incorporate those
algorithms with general optimization methods in practical systems, further dis-
cussion is presented next.

2.2 Classification of Optimization Problems
in Manufacturing

Problems in manufacturing include single-objective and multi-objective ones. In
the light of the attributes of decision variable, problems can be simply divided into
continuous numerical optimization and discrete combinatorial optimization as
well. From the perspectives of both optimization targets and decision variables, we
primarily divide the problems into five categories: numerical function optimiza-
tion, parameter optimization, detection and classification, combinatorial schedul-
ing, and multi-disciplinary optimization.

Planning Design Production Marketing Logistics Maintainance

Recycle

Requirement

Control/Simulation Support
System

System Optimization

Product Structure
Optimization

Process Optimization

The whole life cycle of
manufacturing

Fig. 2.2 Three main optimization objects in manufacturing

2.1 Introduction 37

2.2.1 Numerical Function Optimization

Numerical function optimization refers to searching for optimal solutions of
nonlinear multivariate complex equations. Typical problems in this category
include function optimizations in modeling of manufacturing process and complex
finite element analysis for product structure design. The variables are usually
continuous and the objectives are multi-modal numerical functions.

Generally, numerical function optimization problems often appear in manu-
facturing process optimization and product structure optimization. The solutions
are primarily the suitable values of global characteristics such as cutting or milling
speed, and feed rate, process loads and structure length of product. Complex
environment always bring about multiple relative parameters and constraints in the
problem model. Thus it has the characteristics of large solution space, dispersive
and narrow feasible solution regions, complex objective functions and high
dimension of variables. Take the structure design of manufacturing part as an
example, the decision variables are generally structure sizes, and the objectives are
maximizing the key loads and minimizing resource consumption. With nonlinear
relationship among stress and strain of the part, material consumptions and the
structure sizes, differentiation and integration are both involved in the objective
functions, which make the multimodal functions difficult to solve.

In continuous space, when most of the multivariate functions are linear,
mathematical programming is commonly used in solving equations. When func-
tions are complex but have small solution space, software such as ANSYS and
CAD are often used to simulate. We may find the peak value by means of
mathematical modeling and programming. However, with large-scale solution
space and nonlinear multivariate functions, when most classical method requires
much longer solution time, intelligent optimization algorithm can come in handy.
Additionally, because of the uncertainties in the model parameters selection and
the machining index tuning, intelligent optimization algorithm with invariance and
independence can better adapt to solve these problems. Thus, in recent years,
genetic algorithm and particle swarm algorithm, which are suitable for continuous
numerical optimization, are applied in many kinds of structure optimization and
manufacturing process optimization. And these intelligent optimization algorithms
are usually combined with classical deterministic algorithms to optimize the model
in two steps or optimize the model under the guidance of classical deterministic
algorithms to improve the solutions. Reference related to numerical function
optimization in manufacturing can be found in [1–9].

2.2.2 Parameter Optimization

Parameter optimization generally refers to the selection of optimal empirical
parameters in complex manufacturing system or process control optimization. In
manufacturing system, most parameters such as material and machining properties

38 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

have big influence on the manufacturing process and systems. With large uncer-
tainty and complexity, it is hard to build theoretical model to calculating the
optimum value of these parameters for different situations. Thus they are mostly
extracted and solved independently with nondeterministic algorithms.

Parameter optimization often exists in manufacturing process optimization and
system optimization. Differs from numerical function optimization, parameter
optimization is the optimization of one specific part or local key point, though the
global environmental factors of system or process are considered. The parameters
involved are highly dynamic and context-relative. For example, in the process of
manufacturing such as casting or milling, the variables to be solved are machining
force indexes, control time interval, load variance (upper bound and lower bound),
etc. And the aim is the lowest loss, the highest manufacturing speed and the
highest machining quality. In the process of optimization, objective functions are
usually not able to be set out, and the real-time demand of system control is high,
which makes the problem more difficult.

To solve this, parameter optimization has two solutions. If the objective
functions can be formulated, parameter optimization is often solved by classical
function optimization algorithm, or intelligent optimization algorithm when the
solution space is huge. Otherwise, we can only simulate the system or related
processes, and take the output as the target value. The parameters can be solved by
simple feedback when the solution space is small, or by intelligent optimization
algorithm when the solution space is huge or highly dynamic. Most of the recent
studies of parameter optimization are developed in the two aspects above, and the
main research and development solution is dividing and reducing the feasible
empirical region of parameters, and then taking the method of integrating the
simulation and tools to find suitable values of them. As a new and convenient
decision-maker, the intelligent optimization algorithm is widely used in studies.
For recent studies, refer to [10–19].

2.2.3 Detection and Classification

Detection generally refers to determine whether the condition and variation of an
entity or event are beyond normal by features. Classification refers to define the
category of the entity or event by features as well. Both of them contain the
process of feature-extracting, pre-training and state-judgment. Therefore, they can
be classified into one group and all follow the training process according to
quantities of samples.

Detection is usually reflected in the fault diagnosis of manufacturing control/
simulation system and supervision of manufacturing process and so on. Classifi-
cation is often embodied in signal analysis of electrical system and model state of
machining part, etc. Those problems have the characteristics of scattered samples
distribution and uncertain features influence. They are widely exist in manufac-
turing process, system and structure optimization, but have less research than

2.2 Classification of Optimization Problems in Manufacturing 39

parameter optimization in manufacturing field. Take the fault diagnosis of
machining process as an example, optimization variables are generally the influ-
ence weight of several relative features, and the aim is to identify whether a fault
exist in the specific case and which kind of fault it is as accurately as possible.
Specifically, it is a determining process in which the influence weights of several
relative features are trained with samples, and the status of process or objects are
detected according to these weights. In a similar way, the classifications are trying
to identify the states of objects with feature weights trained from large-scale
samples. Problems in this category are slightly similar to parameter optimization
mentioned above. In many cases the target function can not be obtained, and we
can only make decision according to the output of system or process simulation.

No matter for training or recognition, detection and classification problems are
generally solved by some approximate iterative algorithms when the target func-
tion can be obtained, or by intelligent optimization algorithm when the solution
space is huge, which is quite similar to the parameter optimization as well. If the
target function is difficult to obtain, we may simulate the system or related pro-
cesses in iterations, and take the output as the evaluation criteria. In recent years,
most of the studies in detection and classification focus on solving the problems by
support vector machine, decision tree and neural network and so on, among which
neural network is the most typical one. While there is increasing number of studies
in neural network, the application of them in manufacturing field is quite limited.
Currently, because of the empirical limitations and complexity of classifier such as
neural network, the research is developing mainly in the integration of classifier
and other optimization algorithms and their collaborative application in detection
and classification. For related studies, refer to [20–30].

2.2.4 Combinatorial Scheduling

Combinatorial scheduling is the most typical combinatorial optimization problem
in manufacturing system. It is a reasonable distribution and management of mis-
sions, resources and processes. Combinatorial scheduling here includes process
planning, job shop scheduling, task scheduling and resource allocation, which
schedules the manufacturing process, assembly line, manufacturing services and
machines respectively. It is a kind of discrete management and optimization in
manufacturing.

Therefore, the variables of combinatorial scheduling are generally integer. The
targets are minimizing the task execution time and energy consumption in global
or local workflow, and maximizing the quality (such as maintenance and reli-
ability) and the efficiency of production or calculation. The constraints usually are
the limits of resource capability, task size and other QoS indexes. The model is
simple, while the solution space is typically huge. In addition, the variances and
restrictions of variables are complex, which make the feasible solution space more
narrow, so as to make the optimization harder. For example, in job shop

40 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

scheduling problem, most of the studies aim at shortest completion time of part
machining. The steps of machining, the number of machine tools in each step, and
their machining capability are known, and the distribution strategy of each
machine tool in each step of machining is to be solved. The process is complicated,
but the target function is simple. When comprehensively considering multi-QoS
and multi-objectives, optimal solutions are always hard to get.

For such problems, when the solution space is not huge, integer programming
and dynamic programming are often used in solving. When the solution space gets
bigger, the use of deterministic algorithms will always lead to the combinatorial
explosion. In most cases, sub-optimal solutions are acceptable in combinatorial
scheduling, and short decision time is required. Hence, most researchers pay more
efforts on the application of intelligent optimization algorithm in combinatorial
scheduling problems. And in manufacturing field, intelligent optimization algo-
rithm has become the most applied method in combinatorial scheduling. Due to its
typicality, some of the combinatorial scheduling problems such as job shop
scheduling and task scheduling have been used as benchmarks of combinatorial
optimization for different researchers to test and analyze the optimization algo-
rithms they designed. The improvements and application of intelligent optimiza-
tion algorithm in combinatorial scheduling by existing researchers are mostly
concentrating on two kinds: algorithm hybridation and encoding scheme design.
For related studies, refer to [31–40].

2.2.5 Multi-disciplinary Optimization

Multi-disciplinary optimization refers to the combining modeling and analysis of
problems with multi-objectives and constraints in different disciplines such as
control/mechanical collaborative design, and realizing multi-disciplinary collab-
orative decision making. At present, networked and collaborative manufacturing
system has being greatly developed. Therefore, the whole life cycle of manufac-
turing can be connected in network, so as to realize control and mechanical col-
laborative design, machine and monitoring synchronize execution. Multi-
disciplinary optimization then becomes more and more important for collaborative
work. With the widely research in integrated manufacturing and service-oriented
manufacturing, it gradually develop into one of the typical types of problems in
industry.

The variables of multi-disciplinary optimization problems mostly include both
discrete and continuous ones. Currently the studies related to this kind of problems
are very few, and most of them are based on multi-disciplinary collaborative
simulation and solved by multi-step decisions. With more and more complex
manufacturing system, it can be embodied in all aspects of process, system and
structure optimizations. Because many constraints and objectives come from
different fields and the relationships among these factors are complex, transfor-
mation and simplification are indispensable. On the other hand, simplification is

2.2 Classification of Optimization Problems in Manufacturing 41

obtained based on the loss of modeling accuracy. The complexity of such prob-
lems is obviously huge. For example, in the control/mechanical collaborative
optimization, not only the stability and the efficiency of the control system need to
be guaranteed, but also the applicability and the portability of the mechanical
model need to be improved. Therefore, the variables to be solved usually include
the parameters of control system and the critical sizes of part mechanical models.
The objective functions are multiple efficiency indicators of the collaborative
works, such as material cost, energy consumption and control efficiency, etc. It can
be seen that the multi-disciplinary optimization problems are the combination of
the above four kinds.

Multi-disciplinary optimization is the least studied one in the problems above.
Solution methods for it are mostly based on empirical adjustment and experi-
mental simulation. Although most of the existing studies focus on the objects in
manufacturing process, there are also some multi-disciplinary problems in the
design and simulation of product structure, and system management and control.
Now the methods of onside decision or multi-step optimization in collaborative
manufacturing are inevitably not thorough enough. Therefore multi-disciplinary
optimization becomes a big challenge and developing trend with the development
of advanced manufacturing system. For more information, refer to [41–44] for
references in recent years.

2.2.6 Summary of the Five Types of Optimization Problems
in Manufacturing

With large literature review, the above five types of optimization problems can be
mapped into the three typical objects in manufacturing as shown in Fig. 2.3. Most
common scenarios are contained in the classifications. Among them, manufac-
turing process optimization covers all five kinds of problems, manufacturing
system optimization includes three kinds of problems (parameter optimization,
detection and classification, combinatorial scheduling), and product structure
optimization contains three kinds, numerical function optimization, detection and
classification and multi-disciplinary optimization, as well.

According to random selection of the most related 100 literatures in the last
3 years, it can be found out that combinatorial scheduling is studied the most in
manufacturing optimization. It accounts for nearly half of optimization research.
There are designs and applications for various kinds of certain and uncertain
algorithms targeted to combinatorial scheduling, which covers every steps of
manufacturing process and the management of manufacturing system. Then, in the
next place, the numerical function optimization and the parameter optimization
have a close number of studies. In numerical function optimization, the finite
element analysis and structure optimization is the majority, and mainly target to
the analysis of various kinds of product designs. In parameter optimization,

42 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

because of the similar adjustment schemes, the studies on parameter tuning in
process and parameter alternation in system control are evenly distributed. The
three kinds of problems account for nearly 90 % of the studies of manufacturing
optimization. On the other hand, there are not many studies on detection and
classification in manufacturing field. In this kind of problems, the studies are more
on diagnosis and detection, and less on system training and evaluation. The
application of feature-based classification in structural optimization is lesser. It is
clear that the classification is not highly concerned in manufacturing field yet.
Finally, although multi-disciplinary optimization appears more and more in the
design of manufacturing process and structure, its complexity makes it the least
studies in all these kinds of optimization problems. It is not highly concerned, and
the most of the existing studies separate these problems in to several steps and
optimize them individually. However, in the above five kinds of optimization
problems, the multi-disciplinary optimization problem is one of the most urgent
problems. Because of the one-side independent decisions with multi-steps, the
decisions are usually inaccurate and the efficiency is not high. A lot of research is
required in the modeling of associated features in different disciplines and com-
prehensive optimization among several disciplines in manufacturing process,

Numerical
Function

Optimization

Numerical Optimization in
Process Modeling

Finite Element Analysis and
Structure Optimization

Parameter
Optimization

Parameter Optimization in
Manufacturing Process

Parameter Selection for
Manufacturing System

Control Parameter Optimization

Detection,
Classification
and Training

Fault Detection

System Training and Evaluation

Feature Classification

Combinatorial
Scheduling

Process Planning and
Resource Allocation

Flow shop and Job shop
Scheduling

Partner Selection

Multi-
disciplinary

Optimization

Multi-Step Process Collaborative
Optimization

Manufacturing
Process

Optimization

Manufacturing
System

Optimization

Manufacturing
Structure

Optimization

Fig. 2.3 The mapping relationship between typical problems and manufacturing objects

2.2 Classification of Optimization Problems in Manufacturing 43

structure and product design. The sample research results on the problems above
are shown in Fig. 2.4.

2.3 Challenges for Addressing Optimization Problems
in Manufacturing

After the above analysis, we can see that optimization problems in manufacturing
are countless and various. Researchers conducted plenty of works on solving them
with different point of view. Nevertheless, those problems with the characteristics
of large-scale, multimodal functions and NP-hard are still hard to solve. With
widely applied nondeterministic methods, researchers and engineers are taking
many attempts to improve the solution quality and reduce optimization time. In
this section, we mainly classify the challenges faced in the problems into different
categories and analyze them with some existing solution schemes.

The challenges of optimization problems in manufacturing can be divided into
seven kinds: Balance of multi-objectives, Handling of multi-constraints, Extrac-
tion of priori knowledge, Modeling of uncertainty and dynamics, Transformation
of qualitative and quantitative features, Simplification of large-scale solution
space, Jumping out of local convergence.

2.3.1 Balance of Multi-objectives

We care the objectives the most in optimization, including the main objectives and
the secondary objectives. Most of the problems have more than one objective. It is

Fig. 2.4 The sample
research results on the five
types of problems in
manufacturing

44 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

unavoidable that several objectives are conflicted with each other. In the case that
all objectives are unreachable at the same time, balance of multi-objectives gen-
erally refers to the average consideration of multi-objectives according to their
weights during optimization process.

To normal multi-objective problems, some typical solutions are listed as
follows:

(1) Transformation to single-objective problem: It means to combine the
objectives into a single function according to their weights, and solve the
problem with only one target function. The weights of different objectives in
the unique function are set in experience with specific environment. It is a
traditional way with low efficiency.

(2) Transformation to constraints: This method considers the main objectives
only and tries to transform the secondary objectives to constraints. It mainly
takes some main objectives as optimization goals, and takes the minimum
requirements of the other objectives as constraints to solve the problems.

(3) Pareto optimization: It considers all objectives at the same time by Pareto
non-dominate sorting scheme. The solution is non-dominate only if all of its
objective values are better than others. With a Pareto convex set used to
collect those non-dominate solutions, both the main and the secondary
objectives are evenly considered. Though the optimization of the main
objectives is often restricted by the secondary ones, it is the mostly applied
method in recent years.

Currently, engineers mostly use the first two methods according to the actual
situation, and the researchers are mostly exploring and studying the third method.
Among those methods, the first one is the simplest, and it is the earliest method for
multi-objective problems. Because the weight of each method is decided by actual
condition, the model is usually empirical and has a narrow application scope. It
ignores many optimal solutions after weighting. The second method is more
flexible than the first one, but it also requires the experience and environmental
factors to decide the strength of constraints, which is the weight of secondary
objectives, either. It is more adaptive to general decisions with different algo-
rithms, but the transformation of the objectives to constraints brings us a multi-
constraint problem, which is more complex. The third method uses the concept of
equilibrium in the game theory, improves the other two methods by avoiding the
influence of experience. It can give a series of equilibrium optimal solutions taking
advantages of non-dominate sorting and the Pareto convex set. However, because
of the complexity of its algorithm design, and the uncertainties brought by
selecting the solutions in the Pareto convex set according to actual environment, it
is rarely applied in engineering, and the studies and comparisons of the algorithms
based on this method are not very clear.

It is thus clear that balance of multi-objectives is one of the big challenges in
optimization. Now more and more engineers are trying to apply the Pareto thought
to practice. How to implement low complexity determination of Pareto optimal
solutions and how to select better solutions in the Pareto convex set are both key

2.3 Challenges for Addressing Optimization Problems in Manufacturing 45

bottlenecks in manufacturing. For balance of multi-objectives in manufacturing
problems, refer to references [45–56].

2.3.2 Handling of Multi-constraints

Besides the variables and objectives in decision-making, the constraints produced
by the relationships between variables and parameters are one of the direct reasons
to complicate problem. In problem modeling, most of the constraints exist in
practice are abandoned for simplification. When applying to real production sys-
tem or process, that may cause low accuracy or even mistakes in decision making.
Thus how to suitably handle multi-constraints in accordance with system envi-
ronment is one of the most important problems in manufacturing optimization.

Following the previous section, the objectives in the problem can be trans-
formed to constraints. When the number of constraints increases, the constraints
can be transformed into the objective functions as well. For handling of multi-
constraints, there are several specific ways:

(1) Constraints as penalty function: It means to transform the constraints as a
penalty function and multiply or add it with the objective functions. If the
constraints are not exceeded, the value of the penalty function is 1 or 0, or it
becomes a huge value to make the value of objective functions unacceptable,
so as to make the solution abandoned.

(2) Bounds checking: In this method, constraints are independently stored as
searching rules. Each solution generated in searching process is checked
whether there are out of the restrictions or not, if yes, it will be discarded and
replaced by a new one.

(3) Branch-and-bound: It is a classical method which narrows the domains of
variables, and divides the solution space into several branches and then
reduces the searching range. It is also a preprocessing procedure for
searching. The only drawback of it is its high complexity and high depen-
dence in the preprocessing for specific problem.

In addition, there are many other strategies like transforming the constraints
into heuristic information or objective functions. Traditional engineering mostly
uses the first two methods listed above to deal with the problems. After extensive
development of algorithmic search, branch and bound, at present, is gradually used
in engineering, which brought many benefits. In general, the first method is simple
in design, and has got strong versatility. It can quickly filter out the solutions
which do not meet the conditions in the space. But it could easily lead to a loss of
feasible solutions and inevitable useless search in large solution space. The second
method avoids the influence of deciding by experience, but item-by-item checking
in optimization process will lead to greater algorithm time complexity. The third
one, which narrows the solution space by branch and bound, is one of the mostly
popular methods at present. It can greatly decrease the searching complexity, but

46 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

brings preprocessing consumption on the other hand. It needs in-depth analysis of
actual problems, and with complex problems, it is hard to define the best bounds of
solutions with constraints, which leads to a complex design process and low
versatility.

Now with the development of intelligent manufacturing system, the handling of
multi-constraints in manufacturing problems tends chiefly to design versatile and
automatic processing scheme and simplification way for multi-constraints to
minimize the searching complexity. For the handling of multi-constraints in
manufacturing problems, refer to recent literature [10, 34, 57, 58, 59, 60, 61, 62,
63, 64].

2.3.3 Extraction of Priori Knowledge

For solving a variety of complex problems in manufacturing system and process,
research and application also tend to extract the priori knowledge of problem aims
at instruct the algorithm to faster searching. Typical examples are the use of
prioritization according to priori status of tasks which enables the algorithm find
suitable solutions faster, and the selection of nearest neighbor according to priori
information in path optimization. It can be down as a kind of greedy strategy. The
extraction of priori knowledge has become an important way of solving the
problems. When facing various changing problems, the extraction of priori
knowledge needs to be conducted in line with the actual environment and features
of problems. The versatility of extraction method is low, and improperly designed
method will directly cause wrong search direction and then get poor or even wrong
solutions.

Currently, on the one hand, the extraction of priori knowledge usually applied
in artificial immune systems, artificial neural network systems and intelligent
systems based on Agent. By designing the priori knowledge of specific problems,
it may perform the rule-based reasoning and prediction to achieve a fast or efficient
optimization. On the other hand, it may coordinate with approximation algorithms
or intelligent optimization algorithms for complex problems solving, which
enhances the searching direction of the algorithms. The extraction of priori
knowledge is usually achieved by obtaining the local interactions between vari-
ables and objectives. The common factors considered for the extraction can be
classified as follows:

(1) Influence of single variable to single objective: Considering only one variable
with one critical objective, the interaction between them is calculated as
priori knowledge for searching.

(2) Influence of single variable to multi objectives: Considering one key variable
with part of objectives, the relationship between the variable and multi
objectives are weighed and connect together as priori knowledge.

2.3 Challenges for Addressing Optimization Problems in Manufacturing 47

(3) Influence of multi variables to single objective: Considering multi variable
with one key objective, the correlation between multi variables and the
objective are weighed and merge together as priori knowledge.

(4) Influence of multi variables to multi objectives: Comprehensively consider-
ing part or all of the variables and objectives simultaneously, the priori
knowledge is the relationships of the variables and objectives or a reasoning
rules for them.

For the calculating of different kinds of influence relations and change of status,
we may design an evaluation function as the measurement of priori knowledge, or
blur the relations and status and design the mapping between fuzzy priori
knowledge and variables. In addition, we can predict the priori knowledge by
intelligent training and reasoning according to the existing features and data of
simulation systems or models. Now because the lack of research and theoretical
analysis in the extraction of priori knowledge especially in nondeterministic
optimization, the applications of priori knowledge in manufacturing engineering
are much less. An important and difficult point is the way of simplifying and
universalizing the priori knowledge extraction and applying them in the widely in
actual systems. For the optimization based on priori knowledge, refer to recent
literature [65–75].

2.3.4 Modeling of Uncertainty and Dynamics

Problems in manufacturing are all highly uncertain and dynamic. The uncertainty
mainly refers to the randomness of characteristics and constraints in the problems,
which means that only the range of them can be determined as most time, but the
specific values in a period can’t be determined. The dynamics refers to the
property that the characteristics and constraints of problems are changing with
time. The values can be determined only in a period, but they will change grad-
ually. In most manufacturing systems, researchers and engineers always simplify
the uncertainties and dynamics of problem to certain values, which will make the
design and application of algorithms more convenient. But the simplification will
bring inaccuracy and instability. To improve the stability and solving efficiency,
the uncertainties and dynamics are accepted as key considerations.

In general, there are several methods to deal with the uncertainty and dynamic
nature of the problems in manufacturing:

(1) Replicated simulation: This method is mainly for the modeling of uncer-
tainty. It takes repeated measurements to obtain the mean value and variance
of uncertain parameters. Then conduct a number of decisions in a small range
around the value to get a set of good solutions. It can be applied in all
algorithms but is quite time consumption. Because few tests can not cover all
situations, solutions obtained are often inaccurate.

48 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

(2) Description with fitting function: This method can be either for the solving of
uncertainty or dynamics. From mathematical point of view, it obtains the
fitting functions of uncertainty or dynamic by capturing the relation between
the actual environment and the variation rules of uncertain or dynamic
parameters.

(3) Cyclical forecasting: It is primarily for the modeling of dynamics. It refers to
predicting the variation characteristics of the problems at regular intervals.
Predicting rules is also conducted according to some test or fuzzy relation
among problem features and the environment.

(4) Feedback control: This method can be applied to deal with both uncertainty
and dynamics. It does not need to analyze the characteristics of problem and
its environment in advance. It refers to design an adaptive feedback control
strategy in optimization algorithm to automatically adjust the decision
making parameters with variant problem characteristics during the optimi-
zation process. It can be seen that this scheme is generally carried out with
multi-period problem simulation.

Engineers commonly use the first method according to actual situation, while
researchers mostly focus on the design and application with the last three methods,
in which the second method and the fourth one are the most typical. In the four
methods, the first one is a kind of brute-force methods. It is the earliest processing
method of uncertainties and dynamics without mathematical analysis. The second
one requires a theoretical basis and practical understanding of the actual problem,
and it is more flexible than the first method. However, the design of the second
method is harder. The third method conducts regular testing and estimation to the
problem by typical predictor and corrector, which solve the design difficulties of
the second method. But the prediction time during optimization directly increase
the time complexity of algorithm in most cases. The fourth method borrows the
idea in control theory and uses the problem states supervised in each period as
feedback to design an adaptive strategy which can control the algorithm param-
eters so as to adapt different situation and obtain good solutions. The design of
feedback regulation is simpler than the fitting function, and it is more versatile, but
it has the same problems in the design of adaptive control rules as the second
method.

Now the accurate modeling of uncertainty and dynamics is still a difficult
problem, which is a direct reason of the inefficiency in the decision-making of
manufacturing system engineering. Among those methods, cyclical forecasting is
quite appropriate for the modeling of dynamics according to the change of time,
and has great potential. Feedback control is more fit to the modeling of uncer-
tainty. On the whole, the development of algorithm with the consideration of
uncertainty and dynamics which can adaptively adjust the variances in problem is
a major trend. For the modeling of uncertainty and dynamics, refer to the refer-
ences [76–87].

2.3 Challenges for Addressing Optimization Problems in Manufacturing 49

2.3.5 Transformation of Qualitative and Quantitative
Features

No matter in manufacturing system simulation or process modeling, qualitative
analysis needs to be done at the beginning. Then how to transform the qualitative
parameters and variables to quantitative values for decision is also a big challenge.
The accuracy and reliability are the main targets in the transformation. Therefore
we define the conversion between the qualitative and quantitative characteristics as
a quantitative description process for the complex properties and characteristics in
problems. Only when the quantitative description possesses certain precision and
credibility, the solving will be meaningful. Similar to the simplification of
uncertainty and dynamics in manufacturing system, in this aspect we measure the
problem attributes mathematically. To improve the exactness of problem modeling
and solving efficiency, the transformation of qualitative and quantitative features is
an important issue to be considered in manufacturing optimization.

In general, there are several ways to deal with the transformation. A few typical
ones are introduced as follows.

(1) Fuzzy quantification: It means to represent different problem qualitative
attributes as fuzzy value according to their levels and intensions.

(2) Functional quantification: This method defines a fitting function in a certain
range to describe the attribute variations with time or environment.

(3) Discrete quantification: It refers to describe qualitative features with a set of
discrete values in a certain domain. It is not only for discrete attributes, but
also for continuous ones as a compromise between fuzzy quantification and
functional quantification.

(4) Stochastic quantification: It is especially for uncertain features in problem.
The quantitative values can usually obtained by a series of Monte-Carlo or
other stochastic tests. It is inaccuracy but can better describe the uncertainty
of qualitative features.

The above four methods are provided for different kinds of problems as methods
of transformation between qualitative and quantitative attributes. The first three
methods can be well applied in engineering, while the fourth one is less applied
because its accuracy and reliability are hard to verify. The fourth method is only
suitable for a few problems which have extremely uncertain attributes.

In existing studies, the studies targeted on the transformation of qualitative and
quantitative attributes are quite few in manufacturing. Most of them do quanti-
tative conversion and problem modeling based on the above methods without
consideration of the accuracy and reliability verification of the model. Neverthe-
less, the accuracy and reliability are usually the deciding thresholds of the quan-
tification. If transformation method is not verified, the model will bring
unconvincing decision in engineering applications, or even lead to large deviation
to the solutions and cause big loss. Therefore, the verification step in this issue is a
more important factor in problem modeling and it is more challenging. In the

50 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

studies of optimal decisions related to manufacturing, the transformation of
qualitative and quantitative attributes exists widely, such as [88–95].

2.3.6 Simplification of Large-Scale Solution Space

With the complication of manufacturing system and the whole life cycle of pro-
duction, manufacturing resources and processes are getting to be abundant, and the
solution space of the optimization problems is getting bigger. With the increasing
of the solution space, the accuracy and the time efficiency of existing algorithms
are decreased a lot. Hence, simplification of large-scale solution space is also one
of a big challenge to better adapt the optimal searching. Specifically, the simpli-
fication of large-scale solution space is a process to divide or simplify the problem
and solve it in multi-steps with lower complexity.

Facing with large-scale complex problems, the common methods for the sim-
plification of large-scale solution space are:

(1) Divide and conquer: It means to separate a problem into several sub-problems
and narrow the size of sub solution space in each optimization step.

(2) Decrease and conquer: This method tries to find a mapping relation between
the original problem and another problem with small solution space. Getting
rid of unfeasible solution regions according to the constraints can be also
fully applied in this method.

(3) Transform and conquer: By instance simplification, representation change
and problem reduction, this method aims to transform the original problem to
another representation and reduce the solution space during the process.

The three kinds of methods are originally used as deterministic algorithms for
different sorts of optimization. They are also effective in dealing with large-scale
solution space. The simplification is generally done by conducting a mapping
scheme between the solution spaces of the original problem and the simplified one.
In intelligent optimization algorithm, the way to simplify the large-scale solution
space is usually the encoding scheme. Now many studies on the simplification of
large-scale solution space have shown up. The most prominent and effective
studies are divide and conquer and its improvements.

However, from the perspective of engineering solving, the complexity of
existing problems is gradually increasing, and there are endless kinds of problems.
The simplification analysis of problem solution space requires a lot of time, and
the exponential exploration in deterministic optimization is still not well solved. In
the solving process of large-scale complex problem, finding a general method to
simplify large-scale solution space for various kinds of special complex problems
is still a big challenge. For the existing studies in simplification of large-scale
solution space, refer to references [96–102].

2.3 Challenges for Addressing Optimization Problems in Manufacturing 51

2.3.7 Jumping Out of Local Convergence

According to the above discussion, many deterministic algorithms can not find
optimal solution in polynomial time owing to the growing complexity and scale of
problems in complex manufacturing system or process. Therefore, various kinds of
nondeterministic algorithms such as intelligent optimization algorithms are pre-
sented. These algorithms aim at giving feasible sub-optimal solutions of problem
in a short time, and conduct stochastic and heuristic search in the solution space.
The core issue in nondeterministic algorithm is how to jump out of local con-
vergence and find better sub-optimal solutions.

Jumping out of local convergence refers to design strategies in algorithm which
can promote the stochastic evolutionary process to find better solutions in the
situation of local convergence. When an algorithm is trapped into local conver-
gence, it will search repetitively in a small region until terminal conditions are
reached. Early convergence will definitely lead to low efficiency and high time
consuming in problem-solving. In over 30 years of theoretical study, researchers
performed in-depth analysis about the convergence of many iterative-based
algorithms. However, only a few are verified theoretically so far. From the per-
spective of practice, researchers made efforts on the design of algorithm
improvements to escape from early convergence in solving different problems,
such as the increasing of search step, the eliminating of similar solutions, the
importing of chaos and the adaptive parameter tuning. Many of them have been
applied in various kinds of engineering problems. They have high reusability and
have their own focus in specific problem.

However, the strategies for jumping out of local convergence have not been
effectively improved. Due to the huge scale solution space, high stochastics,
unsuitable heuristics and so on, it is harder and harder to improve the efficiency of
problem-solving. There is no free lunch. Facing with expansive complex problems,
handling the balance between exploration and exploitation with iterative-based
local optimization are discussed a lot. Jumping out of local convergence is still one
of the huge challenges in today algorithm design and problem solving. For more
instances, refer to the references [103–110].

2.4 An Overview of Optimization Methods
in Manufacturing

Facing so many challenges, researchers and engineers keep looking for high
efficient optimization method to solve those complex problems in manufacturing
system and process. On the whole, we may divide the optimization methods into
six categories according to their design and solving process, i.e. Empirical-based
method, Tool-based method, Prediction-based method, Simulation-based method,
model-based method and Advanced-computing-technology-based method. All

52 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

those methods require the support of intelligent optimization algorithm in solving
most problems. Therefore, we briefly describe the six kinds of methods in man-
ufacturing and then show the key elements in design with typical examples.

2.4.1 Empirical-Based Method

Empirical-based method generally refers to the optimization according to the
reasoning and analysis based on experience information in problem modeling. It is
mainly applied in the situation that some properties of the problems, such as the
variable domain and range, can not be defined, or problems with stochastic and
large solution scale that can not be traversed. Typical instances are in the process
control of complex system, and the parameter selection in product design and so
forth. Some classical schemes applied in empirical-based methods are as follows.

(1) Empirical local search: It is defined as empirical selecting and narrowing the
domain of variables to be solved in the problems according to environmental
information, and searching locally in a small solution region. This process is
actually an empirical selection of searching domain.

(2) Empirical stochastic search: By dividing the solution-space, it tries to set the
search probability and success rate of different solution area according to the
experience and information, and obtains the feasible sub-solutions by random
searching. This process is an empirical selection of search probability.

These methods mostly use empirical environment data to define the properties of
problem and divide and check the searching area so as to simplify the optimization
process. There are many studies on the modeling of empirical data or features in
complex problems. In empirical-based methods, the key point is that the verifi-
cation and selection of reliable empirical data and priori knowledge. It is mainly
used to deal with the challenges like the modeling of uncertainty and dynamics,
and the simplification of large-scale solution space for different manufacturing
environments. In the problems which require empirical information, accuracy
requirements in optimization are usually low, while the requirements of feasibility
and efficiency are high. Therefore, the empirical-based solving is mostly indis-
pensably combined within intelligent optimization algorithms and other uncer-
tainty algorithms like approximation algorithms to design. It is largely problem
independent with manual regulation. Besides the cases given in the literature in
last section, refer to references [111–117] for the studies in empirical-based
solving.

2.4 An Overview of Optimization Methods in Manufacturing 53

2.4.2 Prediction-Based Method

Prediction-based method generally refers to the optimization in which some
problem or algorithm attributes are trained and predicted based on environmental
information during the process. The solving process is guided by the changing
predicted parameters. It is mainly applied in the situations that the accuracy
requirement of decision is high, but the problems are real-time, dynamic and
uncertain and the dynamic and uncertain parameters can be modeled with time-
stepping iteration. These problems usually appear in dynamic time-based sched-
uling, and real-time control for manufacturing process and so forth. Thus in
manufacturing, prediction-based strategies are used in problems like parameter
optimization, combinatorial scheduling, and detection and classification the most.
The most applied prediction schemes are listed as follows:

(1) Prediction with fitting function: Based on the change rules of the prior tested
data and attributes along with the time and environment advance, this strategy
tends to carry out prediction with the fitting function of these rules. In each
step of prediction, the problem attributes in the next period are calculated
according to the fitting function.

(2) Fuzzy prediction: In this strategy, the attribute values are generally divided
into several levels, and the prior tested data are clustered with fuzzy pro-
cessing. After that, the mapping relation between attribute levels and the
changing environment needs to be conducted to guide the prediction.

(3) Prediction with classification: Combining with classification algorithms, this
strategy establishes a training model according to the problem priori dataset.
On the basis of the training model, the key states of problem in the next
period can be predicted for next step decision.

In addition, there are many prediction strategies applied for dynamic optimization.
Most of them firstly model and analyze the mapping relation between problem
features and environmental dynamics according to priori data, then guide the
optimization by predicted model to improve the solving accuracy. They can be
widely applied in dealing with challenges like the modeling of uncertainty and
dynamics, transformation of qualitative and quantitative features, balance of multi-
objectives and handling of multi-constraints. In this method, the key point is the
accuracy of the predicted model. Due to the prediction training or mapping and the
real-time optimization can be performed in parallel, the requirement on time
consumption of prediction are lower. With the increase of the manufacturing and
system complexity, the prediction-based method gradually requires the short-time
and dynamic invoking of intelligent optimization algorithm to better serve dif-
ferent situation with iterative searching. For the prediction-based method in
manufacturing field, refer to references [118–125].

54 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

2.4.3 Simulation-Based Method

Simulation-based method generally defines as the optimization which obtains
problem states by real-time simulation, and solves the problem by state monitoring
with feedback compensation. This method is mainly applied in the situation that
the problems are dynamic and have the feature of strong real-time, or the problem
attributes and environmental parameters can not be modeled exactly. Furthermore,
when the predicted data is hard to obtain or not able to obtain as the time is
insufficient, this method is more useful and accurate than the prediction-based
method. But sometimes the simulation is hard to implement and its application
scope is narrow. It is a mainly applied optimization method in manufacturing for
complex product modeling and designing. Thus it often appears in finite element
analysis and multi-disciplinary optimization. Here are several simulation-based
methods:

(1) Real-time monitoring: It is conducted based on several simulation tests. The
outputs of real-time monitor are directly applied as the input of optimization.
Then dynamic optimization in real-time can be established.

(2) Multi-run simulation: In this method, the problem parameters are obtained by
the record of multi-run simulation. The optimization can be carried out based
on either the average value or one stochastic value of the output.

(3) Feedback simulation: It refers to simulate the problem with input and output
monitoring, regulate the output status according to the real-time system
monitoring, and guide the optimization by both the regulating rules and the
simulation output.

In manufacturing systems, the first and the second methods are the most com-
monly used ones. The methods above all take multiple sets of input and output in
the simulation as reference variables or objective values. The key point is not the
accuracy of simulation, but the dynamic processing ability of algorithm based on
simulation. This method can be widely applied in various manufacturing problems
with high real-time and dynamics. However, due to the difficulties in simulation
construction, research in simulation-based method in recent years is relatively less.
It is more used in the modeling of real-time process or product design and can be
combined with intelligent optimization algorithms to construct an adaptive evo-
lution and dynamic feedback to solve complex problems. For simulation-based
method, refer to references [126–132].

2.4.4 Model-Based Method

The model-based method is the simplest and most commonly used method, which
solve the problem according to the mathematical description of its variables,
objectives and constructions. Although most of the application and research in

2.4 An Overview of Optimization Methods in Manufacturing 55

manufacturing simplify the problems with quantitative mathematical description,
owing to the simplification of some key dynamic factors, the decision result of this
method is somewhat inaccurate. It is mainly applied in the situation that the
properties and features of problems are clear without uncertainty and dynamics,
such as in balance of multi-objectives and handling of multi-constraints. The key
point of this method is the accuracy and reliability of the mathematical description
of the problem. Due to its universal application, we will not repeat it here.

2.4.5 Tool-Based Method

The tool-based method mainly refers to the optimization that dynamically extracts
problem features and solves the problem with the assistance or guidance of system
or process management tools. In a broad sense, the tool-based method can be
defined as a kind of simulation-based method. But narrowly speaking, the tool-
based method focuses on the use of assistant tools to obtain features and its
guidance on optimization in practical, while the simulation-based method focuses
on the modeling of problem features in virtual simulation. Like simulation-based
method, the tool-based method is mainly applied in the situation that the problem
is dynamic and uncertain with time and its properties are hard to extract quanti-
tatively. Compared to the building process of simulation-based system, because of
the tool functions, the tool-based extraction of assistant features with monitoring
has a lower difficulty to achieve. Its application scope is also wider. It is mainly
applied in manufacturing problems such as finite element analysis, parameter
optimization and multi-disciplinary optimization.

To the extraction of problem attributes and environmental characteristics, there
are various kinds of existing assistant tools. There are also many studies focus on
the algorithm design based on the tool assistance, and trying to integrate those
tools to improve the reliability and efficiency of algorithms applied in specific
environment. The key point is the collaboration process of inputs and outputs of
the tools and the designed algorithms, which is similar to the methods mentioned
above. For the tool-based method, refer to references [8, 81, 133, 134, 135, 136].

2.4.6 Advanced-Computing-Technology-Based Method

Advanced-computing-technology-based method refers to conduct optimization by
ways of parallel, distributed multi-steps and collaborative computing with the help
of existing advanced computing resources. This method is different from previous
design of solving methods. It is combined with ideas of problem and algorithm
partitioning, designed to use existing advanced technology to allocate sub-prob-
lems or sub-optimization tasks in distributed resources and solve them in parallel.
This method is mainly applied in large-scale problems and multi-disciplinary

56 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

optimization. It has the characteristics of high scalability and efficiency. Because
of the high requirements of professional technology, the solving process of specific
problems based on this method is quite complex in design, and hard to realize.
From the perspective of algorithm design based on existing advanced computing
technology, there are several typical ways:

(1) Design based on distributed computing: Perform multi-step decision-making
by dividing the problem into several steps and design or call different
resource service for the module design of each step.

(2) Design based on parallel computing: Divide the problem into several parallel
execution modules that the data or control dependencies among them are the
fewest. Then divide the modules into different resources and perform parallel
computing.

(3) Design on collaborative computing: Divide the problem into several execu-
tion modules which have the hybrid relations of series or parallel. Then solve
these modules by different resources and algorithms.

The basic ideas of these solving methods based on advanced computing tech-
nology are all dividing the problems and using distributed resources efficiently. In
this method, because of the dependencies among the modules in the divided
problems or algorithms, we have to consider the time-consuming of task com-
munication. Thus the dividing scheme should be customized according to the
environment and complexity of the problem. No matter which technology is used
to divide the problems and package the modules, the key is always the partitioning
and allocation of the whole optimization. In recently, the problem scales in
existing manufacturing systems and processes are increasing gradually, and these
problems involve several kinds of multi-disciplinary optimization. Therefore, the
studies based on advanced computing technology gained prominence gradually.
The solving efficiency brought by those methods can’t be ignored. The collabo-
ration and hybridation of various kinds of algorithms for solving different sub-
problems make the analysis and decision of complex problems easier and the
application of distributed computing resources make the whole optimization more
efficient. But facing the bottlenecks of the communication costs and the imple-
mentation of related technologies, general module partition schemes with less
communication becomes another challenge. For advanced-computing-technology-
based method, refer to references [137–144].

2.4.7 Summary of Studies on Solving Methods

We found that the algorithms designed for complex manufacturing optimizations
are hybrid with different kinds of strategies. Therefore there are no clear bound-
aries among these methods of algorithm design, like the empirical-based method
uses prediction at the same time, and the simulation-based method uses assistant
tools in many situations, etc.

2.4 An Overview of Optimization Methods in Manufacturing 57

From the perspective of the application of different methods, it can be seen that
the model-based method is mostly used. No matter in dynamic optimization,
black-box-based optimization or monitor-based optimization, objectives functions
(or evaluation functions), the abstract variables and parameters and their relations
are presented as mathematical models. In actual projects, the empirical-based
method is right after the model-based method in the number of application times,
and it mostly get the assistance of simulation and tools to optimize. In recent years,
there are more studies on the prediction-based method and advanced-computing-
technology-based method because the prediction of major cases will make the
optimization process more intelligent, and the advanced computing technology can
always take the advantages of distributed resources to make the solving faster. In
addition, because of the complexity and particularity of manufacturing process,
there are few studies on simulation-based method and tool-based method appeared
in recent years. On the whole, after sampling of recent literatures, we roughly get
the mapping of solving methods and the optimization problems, as shown in
Fig. 2.5. The numerical orders we get from the research literatures on dif-
ferent methods are: model-based method > advanced-computing-technology-
based method > prediction-based method > empirical-based method > simu-
lation-based method > tool-based method. And the application numbers of
them in actual projects are: empirical-based method > tool-based
method > simulation-based method > prediction-based method > advanced-
computing-technology-based method. From the difference between the solving
methods used in actual projects and in research, we can find out that we have to
consider the integration of tools, simulation, and the existing advanced intelligent
technology further to narrow the gap between optimization design in projects and
in research.

2.5 Intelligent Optimization Algorithms for Optimization
Problems in Manufacturing

In summary, there are varieties of complex problems in manufacturing. Decision
and optimization face multiple large challenges simultaneously. To deal with these
challenges, a series of solving methods including several problem modeling and
algorithm design methods have already been proposed. Throughout the studies on
the optimizations in manufacturing field, the improvement and application of
intelligent optimization algorithms are one of the major parts. No matter modeling
the problems by experience, prediction or tools, or designing algorithms based on
simulation, heuristics, or advanced computing technology, intelligent optimization
algorithm are widely applied in the optimization process because of its indepen-
dence, versatility and efficiency. At the same time, with multiple challenges in
manufacturing problems, there are a series of studies and improvements carried out

58 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

in encoding schemes, operator designs and evolutionary strategies of intelligent
optimization algorithms. These achievements are fully reflected in the six sorts of
optimization methods

Specifically speaking, in the empirical-based and prediction-based method,
intelligent optimization algorithms are required for the selection of empirical or
prediction factors and data. In simulation-based and tool-based method, it is
needed for adaptive control the modeling and simulation. In advanced-computing-
technology-based method, intelligent optimization algorithms are also used to
partition the optimization tasks and modules to some extent. On the contrary, all
these methods are used and studied as assistant strategies for intelligent optimi-
zation algorithms to solve these complex problems with higher efficiency. Facing
with the combinatorial explosion generated by complex problems, we can only
take advantage of the support of intelligent optimization algorithms with inde-
pendent iterations and the characteristics of high versatility and scalability to avoid
the combinatorial explosion in the problems, and get the satisfying solutions in a
short time.

The application review of common intelligent optimization algorithms in
manufacturing field can be listed as shown in Table 2.1. It can be clearly seen the
research emphasis on different kinds of problems corresponding to different
optimization methods in recent years.

Typical cases of each kind of problem in manufacturing field are listed in the
table. Each case faces all the seven challenges described before. However, due to
the different characteristics of problems, they have different emphasis in dealing
with those challenges. In this table, the main challenges to be overcome in these
typical cases are shown by check marks. Furthermore, the solving methods mainly
taken for different kinds of problems are listed in the next paragraph.

Based on the literature review, it can be found that 60–70 % of the research and
applications in solving complex manufacturing problems use different styles of

Numerical
Function

Optimization

Parameter
Optimization

Detection,
Classification
and Training

Combinatorial
Scheduling

Multi-
disciplinary

Optimization

Model-
based

Method

Prediction-
based

Method

Advanced
Computing
Technology

-based
Method

Empirical-
based

Method

Simulation-
based

Method

Tool-based
Method

Commonly-used Methods in Research Commonly-used Methods in Practice

Fig. 2.5 The mapping of the solving methods and the optimization problems in manufacturing

2.5 Intelligent Optimization Algorithms for Optimization Problems… 59

T
ab

le
2.

1
S

um
m

ar
y

of
th

e
ch

ar
ac

te
ri

st
ic

s,
re

se
ar

ch
em

ph
as

iz
es

an
d

m
aj

or
m

et
ho

ds
of

co
m

pl
ex

pr
ob

le
m

s
in

m
an

uf
ac

tu
ri

ng
fi

el
d

P
ro

bl
em

s
T

yp
ic

al
ca

se
s

in
m

an
uf

ac
tu

ri
ng

M
ul

ti
-

ob
je

ct
iv

es
M

ul
ti

-
co

ns
tr

ai
nt

s
P

ri
or

i
kn

ow
le

dg
e

U
nc

er
ta

in
ty

an
d

dy
na

m
ic

s

Q
ua

li
fi

ca
ti

on
an

d
qu

an
ti

fi
ca

ti
on

L
ar

ge
-

sc
al

e
so

lu
ti

on
sp

ac
e

L
oc

al
co

nv
er

ge
nc

e
M

aj
or

m
et

ho
ds

N
um

er
ic

al
fu

nc
ti

on
op

ti
m

iz
at

io
n

F
un

ct
io

ns
in

pr
oc

es
s

m
od

el
in

g
[2

,
9]

4
4

4
M

od
el

-
ba

se
d

m
et

ho
d

A
dv

an
ce

d-
co

m
pu

ti
ng

-
te

ch
no

lo
gy

-
ba

se
d

m
et

ho
d

T
oo

l-
ba

se
d

m
et

ho
d

F
in

it
e

el
em

en
t

an
al

ys
is

[1
,

4]
4

4
4

P
ar

am
et

er
op

ti
m

iz
at

io
n

P
ar

am
et

er
s

in
co

nt
ro

l
[1

4,
15

]
4

4
4

4
E

m
pi

ri
ca

l-
ba

se
d

m
et

ho
d

P
re

di
ct

io
n-

ba
se

d
m

et
ho

d
S

im
ul

at
io

n-
ba

se
d

m
et

ho
d

P
ar

am
et

er
s

in
m

ac
hi

ni
ng

(W
u

et
al

.
[1

0,
11

]

4
4

4

P
ar

am
et

er
s

in
sy

st
em

[1
2,

17
]

4
4

4

(c
o
n
ti
n
u
ed
)

60 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

T
ab

le
2.

1
(c

on
ti

nu
ed

)

P
ro

bl
em

s
T

yp
ic

al
ca

se
s

in
m

an
uf

ac
tu

ri
ng

M
ul

ti
-

ob
je

ct
iv

es
M

ul
ti

-
co

ns
tr

ai
nt

s
P

ri
or

i
kn

ow
le

dg
e

U
nc

er
ta

in
ty

an
d

dy
na

m
ic

s

Q
ua

li
fi

ca
ti

on
an

d
qu

an
ti

fi
ca

ti
on

L
ar

ge
-

sc
al

e
so

lu
ti

on
sp

ac
e

L
oc

al
co

nv
er

ge
nc

e
M

aj
or

m
et

ho
ds

D
et

ec
ti

on
an

d
cl

as
si

fi
ca

ti
on

D
et

ec
ti

on
in

m
ac

hi
ni

ng
[2

8,
29

]

4
4

4
4

E
m

pi
ri

ca
l-

ba
se

d
m

et
ho

d
P

re
di

ct
io

n-
ba

se
d

m
et

ho
d

S
im

ul
at

io
n-

ba
se

d
m

et
ho

d

S
ys

te
m

tr
ai

ni
ng

an
d

as
se

ss
m

en
t

[2
3,

24
]

4
4

4
4

C
la

ss
ifi

ca
ti

on
of

m
od

el
fe

at
ur

es
[2

1,
27

]

4
4

4
4

C
om

bi
na

to
ri

al
sc

he
du

li
ng

W
or

kfl
ow

m
an

ag
em

en
t

[3
1,

35
]

4
4

4
4

M
od

el
-

ba
se

d
m

et
ho

d
P

re
di

ct
io

n-
ba

se
d

m
et

ho
d

E
m

pi
ri

ca
l-

ba
se

d
m

et
ho

d
A

dv
an

ce
d-

co
m

pu
ti

ng
-

te
ch

no
lo

gy
-

ba
se

d
m

et
ho

d

Jo
b

sh
op

sc
he

du
li

ng
[3

8,
40

]

4
4

4
4

P
ro

du
ct

io
n

pa
rt

ne
r

se
le

ct
io

n
[3

3,
39

]

4
4

4
4

(c
o
n
ti
n
u
ed
)

2.5 Intelligent Optimization Algorithms for Optimization Problems… 61

T
ab

le
2.

1
(c

on
ti

nu
ed

)

P
ro

bl
em

s
T

yp
ic

al
ca

se
s

in
m

an
uf

ac
tu

ri
ng

M
ul

ti
-

ob
je

ct
iv

es
M

ul
ti

-
co

ns
tr

ai
nt

s
P

ri
or

i
kn

ow
le

dg
e

U
nc

er
ta

in
ty

an
d

dy
na

m
ic

s

Q
ua

li
fi

ca
ti

on
an

d
qu

an
ti

fi
ca

ti
on

L
ar

ge
-

sc
al

e
so

lu
ti

on
sp

ac
e

L
oc

al
co

nv
er

ge
nc

e
M

aj
or

m
et

ho
ds

M
ul

ti
-

di
sc

ip
li

na
ry

op
ti

m
iz

at
io

n

C
ol

la
bo

ra
ti

ve
pr

oc
es

s
op

ti
m

iz
at

io
n

in
m

an
uf

ac
tu

ri
ng

[4
1,

43
]

4
4

4
4

4
4

4
E

m
pi

ri
ca

l-
ba

se
d

m
et

ho
d

P
re

di
ct

io
n-

ba
se

d
m

et
ho

d
S

im
ul

at
io

n-
ba

se
d

m
et

ho
d

T
oo

l-
ba

se
d

m
et

ho
d

A
dv

an
ce

d-
co

m
pu

ti
ng

-
te

ch
no

lo
gy

-
ba

se
d

m
et

ho
d

62 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

intelligent optimization algorithms, in which genetic algorithms, artificial neural
network algorithms, simulated annealing algorithms, particle swarm algorithms
and ant colony algorithms are the most typical and applied. The approximate
application distribution of common intelligent optimization algorithms is shown in
Fig. 2.6. The most applied one in different kinds of problems is genetic algorithm.
Because it is proposed the earliest, and its operators are simple and independent,
which means the algorithm is appropriate both for continuous and discrete opti-
mization. However, with the characteristic of premature convergence, different
kinds of improvements and combination to the genetic algorithms are designed
based on various benchmarks and practical problems. Except genetic algorithm,
ant colony algorithm and particle swarm algorithm are applied a lot. The self-
learning mechanism of particle swarm algorithm is designed for continuous
numerical optimizations. In discrete combinatorial optimization, the updating
mechanism of individuals needs to be changed and improved. Most of the
improvements transform the original change to the crossover between individual.
In this situation, the original particle swarm optimization is transformed as a kind
of hybrid genetic particle swarm algorithm to some extent. Overall, particle swarm
algorithm is mostly applied in numerical function optimization, parameter opti-
mization and multi-disciplinary optimization. On the contrary, ant colony algo-
rithm is designed for path finding related combinatorial optimization, such as route
optimization of robots, task scheduling and so on. In continuous numerical opti-
mization, the searching step size needs to be set beforehand. If the step size is
large, the accuracy cannot be guaranteed, if the step size is small, a large-scale
pheromone vector is required, which slow down the search. Moreover, ant colony
algorithm generally needs the extraction of priori knowledge, which makes the
algorithm not very versatile in application. In addition, because typical simulated
annealing algorithm and tabu search have strong randomness, and they are carried

Fig. 2.6 The approximate
application distribution of
common intelligent
algorithms

2.5 Intelligent Optimization Algorithms for Optimization Problems… 63

out with single individual-based iterations, the probability of getting better solu-
tions in a short time is low. Currently, the hybrid of intelligent optimization
algorithms and other algorithms is mostly applied in application, which offers
great assistance to improve the searching diversity and guidance.

In addition, there are several typical intelligent optimization algorithms applied
in the continuous numerical optimization like simulated-annealing algorithm and
differential evolution algorithm, and in the discrete combinatorial optimization like
memetic algorithm, ant colony optimization and so on. Other algorithms like
immune algorithm, DNA computing algorithm, culture algorithm and newly
appeared bee colony algorithm are not mature in development and application.
Most of the engineers are not familiar with these new algorithms. As a result, few
studies are applied on the problems in manufacturing field. It also reflects an
important thing in the study of optimization, that the new better research results are
not effectively used in actual projects.

2.6 Challenges of Applying Intelligent Optimization
Algorithms in Manufacturing

Currently, intelligent optimization algorithm has become an integral expertise in
manufacturing system and process optimization. It helped to breakthrough a lot of
difficulties in optimization, like the decision of job shop scheduling and finite
element analysis, etc. However, the problem will change with the environment.
Therefore, in complex manufacturing systems, to improve the efficiency of
problem optimization and decision, the design and development of intelligent
optimization algorithm becomes a research hotspot. Although thousands kinds of
improvement, hybridation of intelligent optimization algorithms have been pro-
posed, their solving effects on different kinds of specific problems are still
unknown. In algorithm design process, different challenges still exist in all of the
steps, i.e. problem modeling, algorithm selection, encoding scheming and operator
designing. According to the characteristics and requirements of different designing
parts, we will analyze the main challenges separately.

2.6.1 Problem Modeling

From the perspective of problem modeling, the three basic elements are variables,
objectives and constraints. Modeling of the three elements directly influences the
quality of decision. Thus it is the basis of the designing of intelligent optimization
algorithm.

Firstly, there is one-to-one relationship between the problem variables and the
individuals in algorithm. If the variables are continuous, the factors as domain,
search step, accuracy requirements should be explicitly given. If the variables are

64 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

discrete, besides the domain, we have to clarify the direct relationships between
variables, which will make the following encoding easier.

Secondly, no matter for single-objective or multi-objective problem, the
objective functions as evaluation criteria in the algorithm are the essential foun-
dation of search. For the problems can be mathematically modeled, clear objective
functions need to be given. For the problems that objective function can not be
given, like parameter optimization in process control and detection, we have to test
the solution with simulation or monitoring of actual systems to get the result. Then
the outputs of the system are taken as the objective values to evaluate the popu-
lation in algorithm iteration in real-time. It is important to note that too simplified
evaluation functions will result in low accurate optimization, while too complex
assessment model will lead to large time loss.

Finally, in dealing with constraints, no matter put them in the objective func-
tions as penalty functions or define them as population check during iteration, they
will greatly influence the algorithm optimization. Inappropriate handling of the
constraints will easily lead to invalid iteration search in unfeasible solution space,
which will seriously reduce the efficiency of algorithm.

It is thus clear that in the establishing process of optimization model, the main
difficulties are:

(1) The precisely clarification of the properties of problem variables;
(2) The appropriate construction of objective functions (or assessment methods);
(3) The suitable handling way of constraints.

2.6.2 Algorithm Selection

Based on the establishment of problem model, full research and comparison of
hundreds of hybrid and improved intelligent optimization algorithms and selection
of suitable one for the specific problem is almost impossible. To most engineers, it
is even not easy to choose in a set of basic intelligent optimization algorithms.
Because almost all of the existing intelligent optimization algorithms have not
been verified theoretically, large experiments are mostly required for compare
their efficiency to specific problem. Hence, it is quite hard to figure out which
algorithm is suitable and which improvement or hybrid strategies can bring about
enhancement for specific problems.

Currently, people usually select the most commonly used algorithm according
to different application extents of the algorithms and the recommendations from
existing research when facing complex problems in manufacturing field. Most of
them select the most classic genetic algorithm, and ignore many new intelligent
optimization algorithms. Based on the selected algorithm, according to the former
procedure, the algorithm is implemented and improved again, which extends the
algorithm design cycle and produce a lot of repetitive work. In addition, if the
selected algorithm is inappropriate for the problem, such as using a highly

2.6 Challenges of Applying Intelligent Optimization Algorithms … 65

evaluated intelligent optimization algorithm specializing in discrete combinatorial
problems to solve specific continuous problem, the algorithm requires to be
transformed a lot, and the result of the optimization is still possible to be
substandard.

It is thus clear that algorithm selection is the core to decide the optimization
efficiency in solving a problem. Currently, there are many integrated libraries
which can provide some typical intelligent optimization algorithms. But with
different kinds of problems, the merits and demerits of various algorithms can not
be compared directly. And also, there are still less study and emphasis on the
construction of related algorithm libraries. People are more willing to select
mature and convenient method to solve the problem.

Generally speaking, in the process of algorithm selection, the main questions
need to be note are as follows:

(1) Less analysis, verification and classification on existing typical intelligent
optimization algorithms in solving different problems;

(2) Lacking of unified evaluation methods for various algorithms in solving
different problems;

(3) Lacking of a standard integrated algorithm library for algorithm design,
comparison and application.

2.6.3 Encoding Scheming

Encoding scheming for problem refers to the process of transforming the key
variables into individual genes. It is the band between intelligent optimization
algorithm and specific problem combined with fitness function. Population
updating in each generation performed by combined operators is also based on
encoding scheme.

Normally, binary-coding, real-number-coding and vector-coding are the most
commonly used. In some encoding schemes, individuals and variables have one-
to-one mapping relationship. However, in most coding form for particular prob-
lems, individuals and variables are not one-to-one mapping. When they are having
one-to-many relationship, i.e. one individual corresponds to several solutions, the
decoding can not be well implemented. When they are having many-to-one
relationship, i.e. several individuals correspond to one solution just like the situ-
ation of real-number-coding in task scheduling, then invalid searching with
repeated iteration and local convergence can easily occur, which is detrimental to
the whole evolutionary optimization. Moreover, in combinatorial optimizations
like job shop scheduling and traveling salesman problem, the targets are finding
the best permutations of variables, which means that the values of different vari-
ables can not equal to each other, then the requirement to the coding in such
situations is very high. Not only so, operators like crossover in genetic algorithm
and self-studying in particle swarm optimization are designed and varied with

66 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

different coding scheme. Therefore, coding scheming is crucial in the application
of intelligent optimization algorithms.

Currently, the main study aspects and difficulties in encoding scheming for
specific complex problems are:

(1) Coping with ‘‘many-to-one mapping situation’’ to avoid repetitive searching.
(2) The avoiding of inflexible solutions with encoding scheming.
(3) The adjustment of encoding scheme for specific operators.

2.6.4 Operator Designing

Based on these three steps of design, people have to improve the algorithm after
the selection to adjust the problem and achieve a higher efficiency of optimization.
But there are too many operators and improvement strategies. Thus users and
designers have to perform further research and analysis on the existing operators
and improving strategies based on the encoding scheme and improve the algorithm
again. Based on the requirements of the problem and the selected algorithm, the
design of improvement strategies for the operators can be seen as a matching
combination process. Different type of operators and improvement strategies can
form several hybrid and improved algorithms after different permutations and
combinations.

In the existing research and application, people usually adjust and combine the
operators according to the existing experience, or perform single-step fine tuning
in operators and try improved strategies one-by-one to specific problem. The
interactions among the operators and the balance between exploration and
exploitation in iterations are less considered and analyzed, which leads to great
limitations in the performance of existing operators and improvement strategies.

Therefore, in the improvement design process of operators, the main difficulties
are:

(1) Lack of analysis in features and combination effect of the operators for
different problems.

(2) Lack of balance between exploration and exploitation in algorithm design.
(3) Many good improvement strategies have not been well extended and applied

to different types of problems.

2.7 Future Approaches for Manufacturing Optimization

Challenges are not only existed in the above mentioned four steps. With the gradual
complication of manufacturing process and system and the proposal of advanced
manufacturing model such as networked and service-oriented manufacturing,

2.6 Challenges of Applying Intelligent Optimization Algorithms … 67

the problems in manufacturing field are more evolving into multi-disciplinary
large-scale ones. Thus, single deterministic algorithm or intelligent optimization
algorithm is far from sufficient to meet the requirement of solving.

From the algorithm designing perspective, it requires the assistances of more
than one of the six kinds of solving methods. For the optimization process, dif-
ferent adaptive, exploitation and exploration strategies are needed in different
solving stage. For solving the problem in real-time, we need to handle the
dynamics and uncertainties with the adaptation and combination of various
operators. In a word, the whole solving process for multi-disciplinary complex
problems needs multi-level or multi-stage operators combined with multiple
decision methods and technologies.

It can be concluded that for the optimization problems in manufacturing field,
the requirements are diverse, and the corresponding solving methods have to meet
not only the requirements of the system dynamics and uncertainty, but also the
ability of efficient collaborative optimization and management. The trend of
development can be briefly summarized into several points:

(1) Hybridation of diversified methods.
(2) Multi-stage processing of uncertainties and dynamics.
(3) Technologies for rapid real-time responding and decision-making.

2.8 Future Requirements and Trends of Intelligent
Optimization Algorithm in Manufacturing

With such a general trend, intelligent optimization algorithms need further digging
to enhance its efficiency, flexibility and scalability according to the requirements
of the three main users in manufacturing, i.e. algorithm beginner, algorithm
employer and senior researcher, to adapt practical complex decision in manufac-
turing engineering. Although the theoretical analysis of operators on the intelligent
optimization algorithms is of great importance, yet from the aspect of engineering
application, implementations of integrated, configurable, parallel and service-ori-
ented intelligent optimization algorithms are becoming the key development
trends in solving complex manufacturing problems.

2.8.1 Integration

During the digital industrial producing process, every step in the whole life cycle
of manufacturing contains simulation and tool-aided analysis with varieties of
professional software. As for every single optimization module in manufacturing,
engineers need to implement and encapsulate different kinds of intelligent

68 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

optimization algorithms according to I/O interfaces of the module to realize
automatic and systematic decision. With the collaboration of diversified tools,
integration of intelligent optimization algorithms and other technologies as mod-
ules are necessary for implementing high efficient comprehensive decision.

Specifically, on one hand, based on a rich mixture of assistant tools, many
environmental parameters and problem attributes can be obtained easier. The
support of multiple technologies can be seen as a combination of simulation-based,
tool-based and advanced-technology-based methods. Integrating the intelligent
optimization algorithms with these assistant tools and technologies can makes
them easier to adapt in specific systems and perform better function. On the other
hand, integration and encapsulation of multiple intelligent optimization algorithms
can make multi-methods’ decision possible. For specific problems, engineers can
compare different algorithms in practical environment and apply more than one to
do optimization in different stages.

On the contrary, if we design and implement the intelligent optimization
algorithm in each different environment, the design process of optimization will be
more complicated and time consuming. Therefore, in order to achieve simplified
and high efficient collaborative optimization, the most convenient way is to
integrate diversified intelligent optimization algorithms and multiple technologies
together in the form of tools, and provide uniform standard interfaces to connect
with different kinds of systems.

In recent years, some research has turned to the integration of basic intelligent
algorithms based on the uniform search of population-based iteration. However,
most of the existing integrated algorithm platforms or libraries are inapplicable to
complex optimization in collaborative manufacturing. They are generally con-
structed according to traditional continuous numerical benchmarks. The universal
connections with different tools or systems are out of consideration. Most of them
require the users to familiar with the optimization process of intelligent optimi-
zation algorithms and make improvement based on complex program code. The
whole design and comparison process are still quite time consumption.

2.8.2 Configuration

On the other hand, though some existing libraries integrate multiple typical
intelligent optimization algorithms, they still have difficulty to adapt to the fre-
quent changing manufacturing problems with efficient research ability. Likewise,
as for the whole digital manufacturing process, optimization problems exist in
every module. But they are quite different with diverse stages and environments.
The dynamic adaptation of intelligent optimization algorithms is needed during the
procedure. Thus we do not only need the collaborative decision of several algo-
rithms, but also need that the algorithms to be configured dynamically in the
process of optimization in manufacturing systems. Not only the parameters should

2.8 Future Requirements and Trends of Intelligent… 69

be configured, but also the operators, improving strategies and the whole algorithm
should be adjusted dynamically.

The existing studies consider rarely about the flexible configuration of intelli-
gent optimization algorithm. To the adaptive processing, the studies of recent
years focus more on specific problems and design adaptive processing mechanisms
or improving strategies in a single algorithm structure. These mechanisms and
structures are mostly unchangeable during optimization. When apply such algo-
rithm in dynamic optimization, comprehensive high efficient searching in all
stages can not be realized. For changing environments or properties in problem,
engineers have to stop the decision process, store the middle data and redesign the
algorithm again. It results in not only a loss of time, but also a repeated waste of
program code.

Therefore, though intelligent optimization algorithm has the versatility in
structure, with specific problems, it still has weaknesses in adaptability and sca-
lability. The existing intelligent optimization algorithm library only code and store
various algorithms independently and it is hard to achieve dynamic configuration.
To break through the limitations in the collaborative multi-stage optimizations in
manufacturing systems, the studies on the dynamic adjustment and configuration
of intelligent optimization algorithms and the scalable combination of the algo-
rithms for complex problems are quite important.

2.8.3 Parallelization

With the development of large-scale cluster systems and distributed computing
technology, the design of parallelization mode of intelligent optimization algo-
rithm and its application in large-scale projects are extended gradually, and have
achieved some effect. From the perspective of algorithm structure, intelligent
optimization algorithm generally can performs collaborative search with popula-
tion provision, thus it has natural parallelism. From the perspective of parallel
computing environment, not only the problems can be separated and solve parallel,
but also various solution spaces can be searched in parallel. The combination of
intelligent optimization algorithm and the parallelized technologies can save much
time for the optimization of various complex projects.

Now more and more design and application studies in the parallelization of
intelligent optimization algorithm have shown up. Most of them carry out the
research from three key elements: parallel topology, individual migration time and
number of individuals to be migrated. And the parallelization in intelligent opti-
mization algorithm design is primarily based on population provision, in which the
topology is the main consideration. However, different types of parallel intelligent
optimization algorithms show different performance in different problems and

70 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

environments with the influences of the three key elements. Currently, although
there are many parallel intelligent optimization algorithms for specific problems,
the scalability and effectiveness are still to be improved and verified.

Therefore, driven by high performance computing technologies, to further
improve the solving efficiency of intelligent optimization algorithms in manu-
facturing, their parallelization design with the consideration of topology and
individual migration elements and the extend application of parallel optimization
are urgent.

2.8.4 Executing as Service

Similarly, with the spread of service-oriented manufacturing and computing
modes, in distributed manufacturing process, the users mostly get the support from
invoking the remote services with different functions through network. Thus
multiple services invoked by multi-users can realize resource sharing and high
efficient collaborative design and production in manufacturing. Now, as the gen-
eralization of the concept of service, some simple algorithms have been encap-
sulated as services and provided in service center. When users are invoking these
services, they only need to concern about the inputs and outputs. At the same time,
the users expect the transparency of service computing to achieve real-time
monitoring, intelligent interruption and dynamically adjustment. From the per-
spective of the application of intelligent optimization algorithm in manufacturing,
the idea of encapsulating these algorithms as services for different users is already
realizable. Currently there are some algorithm libraries which provide typical
intelligent optimization algorithms in the form of services on the internet for the
users to invoke. However, flexibly and efficiently solving complex optimization
problems in the manufacturing systems by intelligent optimization algorithms in
form of services has not been implemented and there still exist many challenges in
improving the performances of algorithm services in wide area network.

Firstly, from the perspective of application, to different complex manufacturing
problems, the users not only have to know the characteristics of the encapsulated
intelligent optimization algorithms, but also need to combine them flexibly. It also
requires the encapsulated algorithms to be highly configurable. Secondly, from the
perspective of process, because of the requirements to the transparent service
computing, the intelligent optimization algorithms have to be split into operators
and encapsulated as fine-grained modules. Moreover, the clear display and control
of the population-based iterative evolutionary process are also needed. These key
elements rarely studied but crucial to actual projects. Therefore, the adaptability
and flexibility design and implementation of service-oriented intelligent optimi-
zation algorithms is very imperative.

2.8 Future Requirements and Trends of Intelligent… 71

2.9 Summary

In this chapter, we mainly talked about the development of the application of
intelligent optimization algorithms in manufacturing. From the optimization of
manufacturing system and process, the problems are divided into numerical
function optimization, parameter optimization, detection and classification, com-
binatorial scheduling and multi-disciplinary optimization according to the char-
acteristics and objectives of the variables. And we summarized the main
challenges faced in solving different kinds of problems. From the perspective of
optimization ways, we elaborated the six common optimization design methods,
namely, model-based method, empirical-based method, prediction-based method,
simulation-based method, tool-based method and advanced-computing-technol-
ogy-based method, and draw the importance of intelligent optimization algorithm
in the large-scale complex optimization problems of manufacturing systems.
Developed so far, many intelligent optimization algorithms and improved strate-
gies are proposed for specific problems. However, there are still many challenges
in the wide application and targeted design of the intelligent optimization algo-
rithms. Thus, we analyzed those challenges one by one, and gave the major trend
of studies and development of intelligent optimization algorithms in manufactur-
ing system and process.

After the above analysis, in the studies and development of intelligent opti-
mization algorithms, though the studies of improvement and design from different
perspectives produce a large number of intelligent operators and improving
strategies, the requirements of the three kinds of users are far from being fully
satisfied. Its main problems are:

(1) Lack of uniformly platform for collection and comparison. Though living in a
world with abounds of numerous intelligent algorithms, we still have no idea
which one is the best for a particular set of problems due to the lack of
integrated centers which are capable of performing standard testing and
comparing.

(2) Long design and implementing process. Owning to the sophisticated inves-
tigating and programming process of searching and implementing new
operators, engineers may limit the usage into several basic algorithms. Such
inertia is likely to carry some risks since the generally-used algorithms may
not fit well to the given problem, and at the same time, those valuable
findings may lose the chance of being used.

(3) Lack of extension and much repetition. Though more and more innovative
practices have been designed to enhance algorithms’ performance for
application-specific demands and general benchmarks, most of them still lack
effective testing and extended using. Meanwhile, due to universal unaware-
ness of existing resources, repetitive works have been done in the process of
developing same or similar algorithm for different problems in different areas,
leading to huge resource wastes and time consuming.

72 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

(4) Lack of theoretical foundation. As the scale of the problem (i.e. the solution
space) increases, the solving accuracy of the problem drops significantly.
Because of the inherent randomness of the algorithm and the searching
direction far from completely developed, the balance between the algorithm
in exploration and exploitation is still hard to handle. And also, there are not
many studies on the theory, convergence and time complexity of intelligent
optimization algorithms. The efficiency of the algorithm is obtained by a
large number of tests, and lack theoretical foundation.

Moreover, as the high performance computing and service-oriented technologies
developing fast, and the scale of combinatorial optimization problems in existing
industrial application growing rapidly, the improvement and the application of
intelligent optimization algorithms still have long way to go. Maximizing the
application of the existing intelligent optimization algorithms and the improve-
ments of them in engineering practices is a difficulty to be solved.

Thus the biggest difficulty turned into: How to effectively employ huge amounts
of existing intelligent algorithms and their improvements for various types of uses.

To fully exploit the existing intelligent algorithms and quickly obtain flexible
synergies and improvements, new dynamic configuration methods for intelligent
optimization algorithms (DC-IOA) is proposed in our work. Based on separated
operator modules, three-level configurations, i.e. parameter-based configuration,
operator-based configuration and algorithm-based configuration are exploited.
Various types of algorithms can be collected and well re-produced by not only
arbitrarily combining different operator modules, but also arbitrarily splicing
multiple algorithms according to the operational generation separation. Specifi-
cally, it can solve the above questions mainly from the following two aspects.

(1) In the view of algorithm employment. Informative workflow with operator
modules referring to basic and typical algorithms is provided to algorithm
beginners. A friendly interface, where parameter setting, customized operator
selecting, and dynamic algorithm combining are involved and provided to
senior researchers. In the meantime, various existing algorithms and their
improving strategies with only configurable parameters are prepared to for
algorithm employers with direct use.

(2) In the view of algorithm development. Comparisons among different strate-
gies are given based on some general benchmarks for algorithm beginner.
The encapsulated operator modules and customized interfaces to allow
imports of the operators or algorithms and then to support further tests are
available for senior researchers. Also recommended algorithms with typical
portfolios of operators are given according to the type and feature of sub-
mitted problem for algorithm employers.

Starting from the second part of this book, we are going to introduce the theory,
design process and application of the configuration method for intelligent opti-
mization algorithm in detail.

2.9 Summary 73

References

1. Jung DS, Kim CY (2013) Finite element model updating on small-scale bridge model using
the hybrid genetic algorithm. Struct Infrastruct Eng 9(5):481–495

2. Keshavarz S, Khoei AR, Molaeinia Z (2013) Genetic algorithm-based numerical
optimization of powder compaction process with temperature-dependent cap plasticity
model. Int J Adv Manuf Technol 64:1057–1072

3. Miguel LFF, Lopez RH, Miguel LFF (2013) Multimodal size, shape, and topology
optimization of truss structures using the firefly algorithm. Adv Eng Softw 56:23–37

4. Herencia JE, Haftka RT, Balabanov V (2013) Structural optimization of composite
structures with limited number of element properties. Struct Multi Optim 47(2):233–245

5. Debout P, Chanal H, Duc E (2011) Tool path smoothing of a redundant machine:
application to automated fiber placement. Comput Aided Des 43(2):122–132

6. Hur SH (2011) Modeling and control of a plastic film manufacturing web process. IEEE
Trans Industr Inf 7(2):171–178

7. Okaeme NA (2013) Hybrid bacterial foraging optimization strategy for automated
experimental control design in electrical drives. IEEE Trans Industr Inf 9(2):668–678

8. Kumar KS, Paulraj G (2011) Genetic algorithm based deformation control and clamping
force optimization of workpiece fixture system. Int J Prod Res 49(7):1903–1935

9. Chan KY, Kwong CK, Tsim YC (2010) A genetic programming based fuzzy regression
approach to modeling manufacturing processes. Int J Prod Res 48(7):1967–1982

10. Wu Q, Gao L, Li X, Zhang C, Rong Y (2013) Applying an electromagnetism-like
mechanism algorithm on parameter optimization of a multi-pass milling process. Int J Prod
Res 51(6):1777–1788

11. Yin F, Mao H, Hua L (2011) A hybrid of back propagation neural network and genetic
algorithm for optimization of injection molding process parameters. Mater Des
32(6):3457–3464

12. Abd-Elazim SM, Ali ES (2013) A hybrid particle swarm optimization and bacterial foraging
for optimal power system stabilizers design. Electr Power Energ Syst 46:334–341

13. Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining
parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61

14. Hassan LH, Moghavvemi M, Almurib HAF, Steinmayer O (2013) Application of genetic
algorithm in optimization of unified power flow controller parameters and its location in the
power system network. Electr Power Energ Syst 46:89–97

15. Chung IY, Liu WX, Cartes DA, Moon SI (2011) Control parameter optimization for
multiple distributed generators in a microgrid using particle swarm optimization. Eur Trans
Electr Power 21(2):1200–1216

16. Rai JK, Brand D, Slama M, Xirouchakis P (2013) Optimal selection of cutting parameters in
multi-tool milling operations using a genetic algorithm. Int J Prod Res 49(10):3045–3068

17. Juang CF, Chang PH (2010) Designing fuzzy-rule-based systems using continuous ant
colony optimization. IEEE Trans Fuzzy Syst 18(1):138–149

18. Rao RV, Kalyankar VD (2013) Parameter optimization of modern machining processes
using teaching-learning-based optimization algorithm. Eng Appl Artif Intell 26:524–531

19. Mukherjee R, Chakraborty S (2013) Selection of the optimal electrochemical machining
process parameters using biogeography-based optimization algorithm. Int J Adv Manuf
Technol 64(5–8):781–791

20. Mehrjoo M, Khaji N, Ghafory-Ashtiany M (2013) Application of genetic algorithm in crack
detection of beam-like structures using a new cracked euler-bernoulli beam element. Appl
Soft Comput 13(2):867–886

21. Pastrana S, Mitrokotsa A, Orfila A, Peris-Lopez P (2012) Evaluation of classification
algorithms for intrusion detection in MANETs. Knowl Based Syst 36:217–225

74 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

22. Ak R, Li Y, Vitelli V, Zio E, Droguett EL, Jacinto CMC (2013) NSGA-II-trained neural
network approach to the estimation of prediction intervals of scale deposition rate in oil &
gas equipment. Expert Syst Appl 40(4):1205–1212

23. Kuo RJ, Tseng WL, Tien FC, Liao TW (2012) Application of an artificial immune system-
based fuzzy neural network to a RFID-based positioning system. Comput Ind Eng
63(4):943–956

24. Yang CC (2011) Constructing a hybrid kansei engineering system based on multiple
affective responses: application to product form design. Comput Ind Eng 60(4):760–768

25. del Castillo-Gomariz R, Garcia-Pedrajas N (2012) Evolutionary response surfaces for
classification: an interpretable model. Appl Intell 37(4):463–474

26. Lin HY (2013) Feature selection based on cluster and variability analyses for ordinal multi-
class classification problems. Knowl Based Syst 37:94–104

27. Kaufmann P, Glette K, Gruber T, Platzner M, Torresen J, Sick B (2013) Classification of
electromyograpic signals: comparing evolvable hardware to conventional classifiers. IEEE
Trans Evol Comput 17(1):46–63

28. dos Santos Fonseca WA, Bezerra UH, Nunes MVA, Barros FGN, Moutinho JAP (2013)
Simultaneous fault section estimation and protective device failure detection using
percentage values of the protective devices alarms. IEEE Trans Power Syst 28(1):170–180

29. Li R, Seckiner SU, He D, Bechhoefer E, Menon P (2012) Gear fault location detection for
split torque gearbox using AE sensors. IEEE Tans Syst Man Cybern Part C Appl Rev
42(6):1308–1317

30. Behdad M, Barone LC, Bennamoun M, French T (2012) Nature-inspired techniques in the
context of fraud detection. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):1273–1290

31. Wu J, Zhang WY, Zhang S, Liu YN, Meng XH (2013) A matrix-based Bayesian approach
for manufacturing resource allocation planning in supply chain management. Int J Prod Res
51(5):1451–1463

32. Stadtler H, Sahling F (2013) A lot-sizing and scheduling model for multi-stage flow lines
with zero lead times. Eur J Oper Res 225(3):404–419

33. Niu SH, Ong SK, Nee AYC (2012) An enhanced ant colony optimizer for multi-attribute
partner selection in virtual enterprises. Int J Prod Res 50(8):2286–2303

34. Chen L, Langevin A, Lu Z (2013) Integrated scheduling of crane handling and truck
transportation in a maritime container terminal. Eur J Oper Res 225(1):142–152

35. Rafiei H, Rabbani M, Alimardani M (2013) Novel bi-level hierarchical production planning
in hybrid MTS/MTO production context. Int J Prod Res 51(5):1331–1346

36. Bortfeldt A, Homberger J (2013) Packing first, routing second—a heuristic for the vehicle
routing and loading problem. Comput Oper Res 40:873–885

37. Xing KYY, Han LB, Zhou MC, Wang F (2012) Deadlock-free genetic scheduling algorithm
for automated manufacturing systems based on deadlock control policy. IEEE Trans Syst
Man Cybern Part B Cybern 42(3):603–615

38. Xu Y, Wang L (2011) Differential evolution algorithm for hybrid flow-shop scheduling
problems. J Syst Eng Electron 22(5):794–798

39. Wu C, Barnes D (2010) Formulating partner selection criteria for agile supply chains: a
dempster-shafer belief acceptability optimization approach. Int J Prod Econ 125(2):284–293

40. Li X, Zhang Y (2012) Adaptive hybrid algorithms for the sequence-dependent setup time
permutation flow shop scheduling problem. IEEE Trans Autom Sci Eng 9(3):578–595

41. Campana EF, Fasano G, Peri D (2012) Penalty function approaches for ship
multidisciplinary design optimization (MDO). Eur J Ind Eng 6(6):765–784

42. Farmani MR, Roshanian J, Babaie M, Zadeh PM (2012) Multi-objective collaborative
multidisciplinary design optimization using particle swarm techniques and fuzzy decision
making. Proc Inst Mech Eng Part C J Mech Eng Sci 226(9):2281–2295

43. Remouchamps A, Bruyneel M, Fleury C, Grihon S (2011) Application of a bi-level scheme
including topology optimization to the design of an aircraft pylon. Struct Multi Optim
44(6):739–750

References 75

44. Rafique AF, He LS, Zeeshan Q, Kamran A, Nisar K (2011) Multidisciplinary design and
optimization of an air launched satellite launch vehicle using a hybrid heuristic search
algorithm. Eng Optim 43(3):305–328

45. Wu DD, Zhang YD, Wu DX, Olson DL (2010) Fuzzy multi-objective programming for
supplier selection and risk modeling: a possibility approach. Eur J Oper Res 3(1):774–787

46. Ciavotta M, Minella G, Ruiz R (2013) Multi-objective sequence dependent setup times
permutation flows hop: a new algorithm and a comprehensive study. Eur J Oper Res
227(2):301–313

47. Li X, Du G (2013) BSTBGA: a hybrid genetic algorithm for constrained multi-objective
optimization problems. Comput Oper Res 40(1):282–302

48. Nourmohammadi A, Zandieh M (2011) Assembly line balancing by a new multi-objective
differential evolution algorithm based on TOPSIS. Int J Prod Res 49(10):2833–2855

49. Omkar SN, Senthilnath J, Khandelwal R, Narayana Naik GN, Gopalakrishnan S (2011)
Artificial bee colony (ABC) for multi-objective design optimization of composite structures.
Appl Soft Comput 11(1):489–499

50. Manupati VK, Deo S, Cheikhrouhou N, Tiwari MK (2013) Optimal process plan selection
in networked based manufacturing using game-theoretic approach. Int J Prod Res
50(18):5239–5258

51. Arikat J, Farahandi MH, Ahmadizar F (2012) Multi-objective genetic algorithm for cell
formation problem considering cellular layout and operations scheduling. Int J Comput
Integr Manuf 25(7):625–635

52. Naderi B, Aminnayeri M, Piri M, Hairi Yazdi MH (2012) Multi-objective no-wait flow shop
scheduling problems: models and algorithms. Int J Prod Res 50(10):2592–2608

53. Santana-Quintero LV, Hernandez-Diaz AG, Molina J, Coello CAC, Caballero R (2010)
DEMORS: a hybrid multi-objective optimization algorithm using differential evolution and
rough set theory for constrained problems. Comput Oper Res 37(3):470–480

54. Minella G, Ruiz R, Ciavotta M (2011) Restarted iterated pareto greedy algorithm for multi-
objective flow shop scheduling problems. Comput Oper Res 38(11):1521–1533

55. Pishvaee MS, Farahani RZ, Dullaert W (2010) A memetic algorithm for bi-objective
integrated forward/reverse logistics network design. Comput Oper Res 37(6):1100–1112

56. Xu G, Yang ZT, Long GD (2012) Multi-objective optimization of MIMO plastic injection
molding process conditions based on particle swarm optimization. Int J Manuf Technol
58(5–8):521–531

57. Puisa R, Streckwall H (2011) Prudent constraint-handling technique for multi objective
propeller optimization. Optim Eng 12(4):657–680

58. Nguyen TT, Yao X (2012) Continuous dynamic constrained optimization—the challenges.
IEEE Trans Evol Comput 16(6):769–786

59. Qu BY, Suganthan PN (2013) Constrained multi-objective optimization algorithm with an
ensemble of constraint handling methods. Eng Optim 43(4):403–416

60. Jiang H, Ren ZL, Xuan JF, Wu XD (2013) Extracting elite pairwise constraints for
clustering. Neurocomputing 99(1):124–133

61. Kellegoz T, Toklu B (2012) An efficient branch and bound algorithm for assembly line
balancing problems with parallel multi-manned workstations. Comput Oper Res
39(12):3344–3360

62. Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling techniques. IEEE
Trans Evol Comput 14(4):561–579

63. da Silva EK, Barbosa HJC, Lemonge ACC (2011) An adaptive constraint handling
technique for differential evolution with dynamic use of variants in engineering
optimization. Oper Eng 12(1–2):31–54

64. Wu CY, Ku CC, Pai HY (2011) Injection molding optimization with weld line design
constraint using distributed multi-population genetic algorithm. Int J Adv Manuf Technol
52(1–4):131–141

65. Pan QK, Ruiz R (2013) A comprehensive review and evaluation of permutation flow shop
heuristics to minimize flow time. Comput Oper Res 40(1):117–128

76 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

66. Prakash A, Chan FTS, Deshmukh SG (2011) FMS scheduling with knowledge based
genetic algorithm approach. Expert Syst Appl 38(4):3161–3171

67. Xin B, Chen J, Peng ZH, Dou LH, Zhang J (2011) An efficient rule-based constructive
heuristic to solve dynamic weapon target assignment problem. IEEE Trans Syst Man
Cybern Part A Syst Humans 41(3):598–606

68. Prakash A, Chan FTS, Deshmukh SG (2012) Application of knowledge-based artificial
immune system (KBAIS) for computer aided process planning in CIM context. Int J Prod
Res 50(18):4937–4954

69. Xing LN, Chen YW, Wang P, Zhao QS, Xiong J (2010) Knowledge-based ant colony
optimization for flexible job shop scheduling problems. Appl Soft Comput 10(3):888–896

70. Hsu YY, Tai PH, Wang MW, Chen WC (2011) A knowledge-based engineering system for
assembly sequence planning. Int J Adv Manuf Technol 55(5–8):763–782

71. Li BM, Xie SQ, Xu X (2011) Recent development of knowledge-based systems, methods
and tools for one-of-a-kind production. Knowl Based Syst 24(7):1108–1119

72. Yu ZW, Wong HS, Wang DW (2011) Neighborhood knowledge-based evolutionary
algorithm for multi objective optimization problems. IEEE Trans Evol Comput
15(6):812–831

73. Karimi H, Rahmati SHA, Zandieh M (2012) An efficient knowledge-based algorithm for the
flexible job shop scheduling problem. Knowl Based Syst 36:236–244

74. Weiss D (2010) Feature-based spline optimization in CAD. Struct Multi Optim
42(4):619–631

75. Sandberg M, Tyapin L, Kokkolaras M, Isaksson O, Aidanpaa JO, Larsson T (2011) A
knowledge-based master-model approach with application to rotating machinery design.
Concurrent Eng Res Appl 19(4):295–305

76. Bui LT, Michalewicz Z, Parkinson E, Abello MB (2012) Adaptation in dynamic
environments: a case study in mission planning. IEEE Trans Evol Comput 16(2):190–209

77. Zhang XM, Zhu LM, Zhang D, Ding H, Xiong YL (2012) Numerical robust optimization of
spindle speed for milling process with uncertainties. Int J Mach Tools Manuf 61:9–19

78. Bekker J, Aldrich C (2011) The cross-entropy method in multi-objective optimization: an
assessment. Eur J Oper Res 211(1):112–121

79. Van Hentenryck P, Bent R, Upfal E (2010) Online stochastic optimization under time
constraints. Ann Oper Res 177(1):151–183

80. Shnits B (2012) Multi-criteria optimization-based dynamic scheduling for controlling FMS.
Int J Prod Res 50(21):6111–6121

81. Dou JP, Wang XS, Wang L (2012) Machining fixture layout optimization under dynamic
conditions based on evolutionary techniques. Int J Prod Res 50(15):4294–4315

82. Lee DK, Starossek U, Shin SM (2010) Topological optimized design considering dynamic
problem with non-stochastic structural uncertainty. Struct Eng Mech 36(1):79–94

83. Pillac V, Gendreau M, Gueret C, Medaglia AL (2013) A review of dynamic vehicle routing
problems. Eur J Oper Res 225(1):1–11

84. Siddiqui S, Azarm S, Gabriel S (2011) A modified benders decomposition method for
efficient robust optimization under interval uncertainty. Struct Multi Optim 44(2):259–275

85. Zhang Y, Gong DW, Zhang JH (2013) Robot path planning in uncertain environment using
multi objective particle swarm optimization. Neurocomputing 103:172–185

86. Pan F, Nagi R (2010) Robust supply chain design under uncertain demand in agile
manufacturing. Comput Oper Res 37(4):668–683

87. Aghezzaf EH, Sitompul C, Najid NM (2010) Models for robust tactical planning in multi-
stage production systems with uncertain demands. Comput Oper Res 37(5):880–889

88. Sivakumar K, Balaurugan C, Ramabalan S (2012) Evolutionary multi-objective concurrent
maximization of process tolerances. Int J Prod Res 50(12):3172–3191

89. Zhao P, Zhou HM, Li Y, Li DQ (2010) Process parameters optimization of injection
modeling using a fast strip analysis as a surrogate model. Int J Adv Manuf Technol
49(9–12):949–959

References 77

90. Duffuaa SO, El-Ga’aly A (2013) A multi-objective optimization model for process targeting
process sampling plans. Comput Ind Eng 64(1):309–317

91. Lau HCW, Jiang ZZ, Ip WH, Wang DW (2010) A credibility-based fuzzy location model
with hurwicz criteria for the design of distribution systems in B2C e-commerce. Comput Ind
Eng 59(4):873–886

92. Laili YJ, Tao F, Zhang L, Sarker BR (2012) A study of optimal allocation of computing
resources in cloud manufacturing systems. Int J Adv Manuf Technol 63(5–8):671–690

93. Hwang R, Katayama H (2010) Integrated procedure of balancing and sequencing for mixed-
model assembly lines: a multi-objective evolutionary approach 48(21):6417–6441

94. Jenab K, Ahi P (2010) Fuzzy quality feature monitoring model. Int J Prod Res
48(17):5021–5030

95. Luo GH, Noble JS (2012) An integrated model for cross dock operations including staging.
Int J Prod Res 50(9):2451–2464

96. Kang M, Yoon K (2011) An improved best-first branch-and-bound algorithm for
unconstrained two-dimensional cutting problems. Int J Prod Res 49(15):4437–4455

97. Almoustafa S, Hanafi S, Mladenovic N (2013) New exact method for large asymmetric
distance-constrained vehicle routing problem. Eur J Oper Res 226(3):386–394

98. Letchford AM, Miller SJ (2012) Fast bounding procedures for large instances of the simple
plant location problem. Comput Oper Res 39(5):985–990

99. Sabouni MTY, Logendran R (2013) A single machine carryover sequence-dependent group
scheduling in PCB manufacturing. Comput Oper Res 40(1):236–247

100. Karsu O, Azizoglu M (2012) The multi-resource agent bottleneck generalized assignment
problem. Int J Prod Res 50(2):309–324

101. Liu Q, Yang XD, Jing L, Li J, Li J (2012) A parallel scheduling algorithm for reinforcement
learning in large state space. Front Comput Sci 6(6):631–646

102. Zhu J, Li XP, Shen WM (2012) A divide and conquer-based greedy search for two-machine
no-wait job shop problems with makespan minimization. Int J Prod Res 50(10):2692–2704

103. Zhang HF, Zhou JZ, Fang N, Zhang R, Zhang YC (2013) An efficient multi-objective
adaptive differential evolution with chaotic neuron network and its application on long-term
hydropower operation with considering ecological environment problem. Int J Electr Power
Energ 45(1):60–70

104. Alam MS, Islam MM, Yao X, Murase K (2012) Diversity guided evolutionary
programming: a novel approach for continuous optimization. Appl Soft Comput
12(6):1693–1707

105. Perez E, Posada M, Herrera F (2012) Analysis of new niching genetic algorithms for finding
multiple solutions in the job shop scheduling. J Intell Manuf 22(3):341–356

106. Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a
hybridized CSS-BBBC algorithm with trap recognition capability. Comput Struct
102:14–27

107. Boussaid I, Chatterjee A, Siarry P, Ahmed-Nacer M (2011) Two-stage update
biogeography-based optimization using differential evolution algorithm (DBBO). Comput
Oper Res 38(8):1188–1198

108. Chang PC, Huang WH, Ting CJ (2010) Dynamic diversity control in genetic algorithm for
mining unsearched solution space in TSP problems. Expert Syst Appl 37(3):1863–1878

109. Chowdhury S, Tong WY, Messac A, Zhang J (2013) A mixed-discrete particle swarm
optimization algorithm with explicit diversity-preservation. Struct Multi Optim
47(3):367–388

110. Tao F, Zhao DM, Hu YF, Zhou ZD (2010) Correlation-aware resource service composition
and optimal-selection in manufacturing grid. Eur J Oper Res 201(1):129–143

111. Soulier B, Boucard PA (2013) A multiparametric strategy for the two step optimization of
structural assemblies. Struct Multi Optim 47(4):539–553

112. Sakata S, Ashida F, Tanaka H (2010) Stabilization of parameter estimation for kriging-
based approximation with empirical semivariogram. Comput Methods Appl Mech Eng
199(25–28):1710–1721

78 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

113. Bozca M, Fietkau P (2010) Empirical model based optimization of gearbox geometric
design parameters to reduce rattle noise in an automotive transmission. Mech Mach Theory
45(11):1599–1612

114. Kondayya D, Krishna AG (2013) An integrated evolutionary approach for modeling and
optimization of laser beam cutting process. Int J Adv Manuf Technol 65(1–4):259–274

115. Paralikas J, Salonitis K, Chryssolouris G (2010) Optimization of roll forming process
parameters—a semi-empirical approach. Int J Adv Manuf Technol 47(9–12):1041–1052

116. Raja SB, Baskar N (2011) Particle swarm optimization technique for determining optimal
machining parameters of different work piece materials in turning operation. Int J Adv
Manuf Technol 54(5–8):445–463

117. Ding TC, Zhang S, Wang YW, Zhu XL (2010) Empirical models and optimal cutting
parameters for cutting forces and surface roughness in hard milling of AISI H13 steel. Int J
Adv Manuf Technol 51(1–4):45–55

118. Chou CJ, Chen LF (2012) Combining neural networks and genetic algorithms for
optimizing the parameter design of the inter-metal dielectric process. Int J Prod Res
50(7):1905–1916

119. Sedighi M, Afshari D (2010) Creep feed grinding optimization by an integrated GA-NN
system. J Intell Manuf 21(6):657–663

120. Lou P, Liu Q, Zhou ZD, Wang HQ, Sun SX (2012) Multi-agent-based proactive-reactive
scheduling for a job shop. Int J Adv Manuf Technol 59(1–4):311–324

121. Hsieh L, Chen WS, Liu CH (2011) Motion estimation using two-stage predictive search
algorithms based on joint spatio-temporal correlation information. Expert Syst Appl
38(9):11608–11623

122. Norouzi A, Hamedi M, Adineh VR (2012) Strength modeling and optimizing ultrasonic
welded parts of ABS-PMMA using artificial intelligence methods. Int J Adv Manuf Technol
61(1–4):135–147

123. Zhu HP, Liu FM, Shao XY, Zhang GJ (2010) Integration of rough set and neural network
ensemble to predict the configuration performance of a modular product family. Int J Prod
Res 48(24):7371–7393

124. Jeung HS, Choi HG (2012) Particle swarm optimization in multi-stage operations for
operation sequence and DT allocation. Comput Ind Eng 62(2):442–450

125. Chan KY, Kwong CK, Tsim YC (2010) Modelling and optimization of fluid dispensing for
electronic packaging using neural fuzzy networks and genetic algorithms. Eng Appl Artif
Intell 23(1):18–26

126. Guan YJ, Yuan GP, Sun S, Zhao GQ (2013) Process simulation and optimization of laser
tube bending. Int J Adv Manuf Technol 65(1–4):333–342

127. Pirard F, Iassinovski S, Riane F (2011) A simulation based approach for supply network
control. Int J Prod Res 49(24):7205–7226

128. Azadeh A, Negahban A, Moghaddam M (2012) A hybrid computer simulation-artificial
neural network algorithm for optimization of dispatching rule selection in stochastic job
shop scheduling problems. Int J Prod Res 50(2):551–566

129. Varthanan P, Murugan N, Kumar G, Parameswaran S (2012) Development of simulation-
based AHP-DPSO algorithm for generating multi-criteria production-distribution plan. Int J
Adv Manuf Technol 60(1–4):373–396

130. Varthanan PA, Murugan N, Kumar GM (2012) A simulation based heuristic discrete
particle swarm algorithm for generating integrated production-distribution plan. Appl Soft
Comput 12(9):3034–3050

131. Azadeh A, Moghaddam M, Geranmayeh P, Naghavi A (2010) A flexible artificial neural
network—fuzzy simulation algorithm for scheduling a flow shop with multiple processors.
Int J Adv Manuf Technol 50(5–8):699–715

132. Zhang Y, Agogino AM (2012) Hybrid evolutionary optimal MEMS design. Int J Adv
Manuf Technol 63(1–4):305–317

133. Kafashi S (2011) Integrated setup planning and operation sequencing (ISOS) using genetic
algorithm. Int J Adv Manuf Technol 56(5–8):589–600

References 79

134. Vishnupriyan S, Majumder MC, Ramachandran KP (2011) Optimal fixture parameters
considering locator errors. Int J Prod Res 49(21):6343–6361

135. Kumar KS, Paulraj G (2012) Geometric error control of workpiece during drilling through
optimization of fixture parameter using a genetic algorithm. Int J Prod Res
50(12):3450–3469

136. Huang X, Xie YM, Jia B, Li Q, Zhou SW (2012) Evolutionary topology optimization of
periodic composites for extremal magnetic permeability and electrical permittivity. Struct
Multi Optim 46(3):385–398

137. Tsai CC, Huang HC, Chan CK (2011a) Parallel elite genetic algorithm and its application to
global path planning for autonomous robot navigation. IEEE Trans Industr Electron
58(10):4813–4821

138. Tsai CC, Huang HC, Lin SC (2011b) FPGA-based parallel DNA algorithm for optimal
configurations of an omnidirectional mobile service robot performing fire extinguishment.
IEEE Trans Industr Electron 58(3):1016–1026

139. Bozejko W, Uchronski W, Wodecki M (2010) Parallel hybrid metaheuristics for the flexible
job shop problem. Comput Ind Eng 59(2):323–333

140. Goncalves JF, Resende MGC (2012) A parallel multi-population biased random-key genetic
algorithm for a container loading problem. Comput Oper Res 39(2):179–190

141. Jin JY, Crainic TG, Lokketangen A (2012) A parallel multi-neighborhood cooperative tabu
search for capacitated vehicle routing problems. Eur J Oper Res 222(3):441–451

142. Boyer V, El Baz D, Elkihel M (2012) Solving knapsack problems on GPU. Comput Oper
Res 39(1):42–47

143. Ostrosi E, Fougeres AJ, Ferney M, Klein D (2012) A fuzzy configuration multi-agent
approach for product family modeling in conceptual design. J Intell Manuf
23(6):2565–2586

144. Misra R, Mandal C (2010) Minimum connected dominating set using a collaborative cover
heuristic for ad hoc sensor networks. IEEE Trans Parallel Distrib Syst 21(3):292–302

80 2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing

Part II
Design and Implementation

Dynamic configuration of intelligent optimization algorithm (DC-IOA) mainly
aims to combine existing algorithms and their parts for different complex
problems. With the requirement of integration, intelligence and service-orientation
in large-scale optimization, we broadly define the configuration of intelligent
optimization algorithm as an design process and adaptable idea, in which
engineers and algorithm users can on demand change various parameters, select
and improve operators belong to different algorithms and hybrid any of them not
only before optimization, but also in the running process. Considering the general
population-based iterative process in intelligent optimization algorithm, the
configuration is divided into three layers, parameter-based configuration, opera-
tor-based configuration and algorithm-based configuration. Through parameter-
based configuration, the potential of one operator for various problems is dig. In
operator-based configuration, operators can be changed in different optimization
stages and combined together for extensive use. As a result, more hybrid
algorithms with existing operators can be generated. With algorithm-based
configuration, the iterative process can be divided into several parts and multiple
algorithms can be applied simultaneously or in different steps. Sharing the same
population, the balance of exploration and exploitation in iterative optimization is
easily obtained. Such idea can not only be used to generate improved and hybrid
intelligent optimization algorithms, but also be adopted to design parallel
algorithms in some specific parallel architecture.

Therefore, in the Part II of this book, the detail of dynamic configurable
intelligent optimization is introduced. This part contains Chaps. 3–5. Chapter 3
presents the basic concept, principle and framework of dynamic configuration
method. According to the basic idea, Chap. 4 gives the details of the method for
improvement and hybridization of intelligent optimization algorithms. The clas-
sifications of improvement and hybridization of intelligent optimization algorithm
are involved. More specific implementation ways of dynamic configuration are

http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_5
http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_4

established. Further, considering the miniaturization and lighting demand of
optimization, we elaborate different kinds of parallel implementation methods of
intelligent optimization algorithm and extensively design some new parallelization
ways for algorithm with dynamic configuration.

82 Part II: Design and Implementation

Chapter 3
Dynamic Configuration of Intelligent
Optimization Algorithms

Since genetic algorithm (GA) presented decades ago, large amount of intelligent
optimization algorithms and their improvements and mixtures have been putting
forward one after another. However, little works have been done to extend their
applications and verify their competence in different problems. For each specific
complex problem, people always take a long time to find appropriate intelligent
optimization algorithm and develop improvements. To overcome these short-
comings, new dynamic configuration methods for intelligent optimization algo-
rithms (DC-IOA) [1] is presented in this paper on the basis of the requirements of
three kinds of algorithm users. It separates the optimization problems and intel-
ligent optimization algorithms, modularizes each step of algorithms and extracts
their core operators. Based on the coarse-grained operator modules, three-layer
dynamical configurations, i.e. parameter-based configuration, operator-based
configuration and algorithm-based configuration, are fully exploited and imple-
mented. Under these methods, dozens of hybrid and improved intelligent opti-
mization algorithms can be easily produced in a few minutes just based on several
configurable operator modules. Also, problem-oriented customizations in config-
urations can further extend the application range and advance the efficiency of the
existing operators enormously. Experiments based on the established configuration
platform verify the new configuration ways of applying and improving intelligent
optimization algorithm for both numerical and combinatorial optimization prob-
lems in industries on aspects of flexibility, robustness, and reusability.

3.1 Concept and Mainframe of DC-IOA

In this section, we propose the mainframe, process and implementation of DC-IOA [1].
As we know, researchers have already developed many algorithm libraries for

different use. HeuristicLab is an integrated platform for evolutionary algorithm,
and EvA2 is a lib for general optimal algorithms.

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_3

83

DC-IOA is not only an algorithm library, but also a kind method for algorithm
design. Firstly, HeuristicLab and EvA2 packed the algorithms as a whole. How-
ever in DC-IOA, algorithms are split into operators and packed as different
operator modules. It is a kind of fine-grained algorithm encapsulation. Secondly,
DC-IOA allows multi algorithms used in one problem with time sharing. Thirdly,
parameters, operators and algorithms in problem solving process can be dynami-
cally configured in DC-IOA. These are the main differences between DC-IOA and
other algorithm library.

Hence, the primary goals are concisely clarified as below:

• To make full use of various in-stock algorithms and strategies and realize
multi-level of configuration agility;

• To shorten designing and implementing process for mass complicated
optimizations;

• To serve as an integrated platform of intelligent optimization algorithms for
learning and standard testing purpose.

3.1.1 Mainframe of DC-IOA

The mainframe of DC-IOA can be depicted in Fig. 3.1, each module is connected
with each other based on evolutionary population.

Firstly, problem specification mainly addresses the issue of what to optimize.
The depiction of problem should include objectives, variables and their upper and
lower bounds. The restriction of the problem can be involved either in the fitness
functions or in the bounds of the variables. By selecting specific encoding scheme,
the population can be generated with different gene values corresponding to the

Encoding

Fitness function

Oper
ator
1

Oper
ator
 2

…
…Init

Evolution &
Updating

Output
Oper
ator
 1

… …

Parameter 1 Parameter 1… …

Variables

Objectives

restrictions

Problem specification

… …

Algorithms (operators) library

Mapping rules

Generation
1 to x1

Generation
x1 to x2

Generation
x2 to N

…
…

Fig. 3.1 Mainframe of DC-IOA

84 3 Dynamic Configuration of Intelligent Optimization Algorithms

variables. Then, in accordance with the encoding method and fitness function, we
could adopt an initial way to locate the individuals in different positions. After
that, problem definition step is finished.

Secondly, we can divide N generations into several segments. On the basis of
the operator pool in library, multiple algorithms or hybrid operators can be adopted
in different segment with start generation and end generation. Moreover, by
dividing population into multiple groups, the algorithms can also be applied
simultaneously in different groups to realize algorithm-based configuration. Dur-
ing the process, if the population is trapped into local convergence, then we can
replace the operators in the next segment with large mutation operator or other
exploration operators to reallocate most of the individuals and simultaneously keep
some good information obtained from the last segment.

In each segment, we can either adopt several operators or their modifications
stored in the library to formulate an intelligent optimization algorithm, or adopt
only one for only exploration or exploitation. In the previous case, complete
algorithms need to be designed based on existing operators. The time complexity
will be large but good solution can generally be found in earlier stages. Besides,
we can also adopt the operators with high exploration in the first stages and apply
the ones with high exploitation in the last stages. It is easy to implement and the
time complexity in this case will be small. However, good solutions in the earlier
stages are relatively hard to find.

Moreover, in each operator, the relative parameters can be encapsulated as
different interfaces to implement parameter-based configuration in different
searching stages. According to the generation division, we can also apply same
algorithm in all these segments and tune the control parameters in different stages.

With the separation of generation and operator collaboration in such frame-
work, the balance of exploration and exploitation is easier to be controlled espe-
cially in large scale solution space. We can dynamically generate various
intelligent optimization algorithms with existing operators in algorithm library for
adapting various kinds of problems.

In addition, for different users, some mapping rules can also be introduced for
recording the performance of different algorithms and operator portfolios for
different class of problems and recommending suitable operators, algorithms and
portfolios to different types of problems by some learning schemes.

Through these modules, the entire optimization process can be dynamically
configured.

3.1.2 Problem Specification and Construction of Algorithm
Library in DC-IOA

As we introduced in the above section, a problem can be depicted by three elements:
variables, variable bounds and objectives. Variables can be transferred into genes
according to some encoding scheme while objectives can be converted as fitness

3.1 Concept and Mainframe of DC-IOA 85

functions. If only one fitness function with weighted objectives is provided, then
general population updating step can be directly adopted. If multiple fitness func-
tions which represent different objectives are given, the population updating step will
be replaced by Pareto strategy which sort the current population and the new pop-
ulation into multi-level front-sets and select better individuals to the next generation.

What’s more, in some complex cases, we may need special encoding scheme to
represent different variables. If existing encoding scheme cannot fulfill the opti-
mization requirement, we must design a new one with both encoding and decoding
modules. These two modules are then invoked in not only the initial stage, but also
during the whole generation together with the operators from the library.

As for the algorithms library, it is actually a central information desk, where
various algorithms or improved strategies proposed by different scholars are
expected to be found. Each basic algorithm is formed by a number of key operators
which is represented as blue node in Fig. 3.1. Because the operators are inde-
pendent based on population, either single operator in algorithm or the entire
algorithm can be invoked for problem. If the problem is extracted as coding
function and objective functions, operators selected from the algorithms library
can be quickly merged into an algorithm for addressing it. One should be noticed
that although these operators are act on population and can be freely put in dif-
ferent algorithm segments, they should be invoked according to specific encoding
scheme. For example, if general one-point crossover operator is applied for per-
mutation coding, then illegal individuals will always be generated and the whole
searching process will be failure. In this case, only exchange sequence-based
crossover or other permutation-based operators can be adopted.

In the three-layer configuration structure, we can perform any layer first
according to the demand either in the design stage or during the searching process.

(1) Algorithm-based configuration
We already know that different algorithms may possess different capability. Some
may focus on exploration while others are expert in exploitation. If we design
hybrid algorithms with the whole generation traditionally, it is hard to get better
solutions with the balance of capabilities. Thus we presented a new way, i.e.,
algorithm-based configuration, to do hybridization with full use of existing algo-
rithms. Break through the traditional hybrid way, we separate N generation to
X segments with arbitrary lengths. Segments in the top can adopt algorithms with
strong exploration capability and less exploitation, segments in the middle should
adopt algorithms with balanced capability between exploration and exploitation,
and segments in the rear can adopt either algorithms with strong exploitation or
still algorithms with balanced capability. It makes the searching process of
intelligent optimization algorithm more dynamic and easier to control.

Moreover, with this new configuration way, when the population is evolving
toward a local optimal point or is suffering from a low convergent rate or even
divergence, the evolving status observed allows us to suspend the process at any
time, during which we can change algorithms in the latter segments to avoid
undesirable outcomes. By enclosing the whole algorithm as a unit, several different

86 3 Dynamic Configuration of Intelligent Optimization Algorithms

algorithm units can be employed to make full use of their respect advantages for
different problems. In the case that an inefficient algorithm is configured in some
segment, other algorithms with suitable operators can still hold the performance
and find better solution.

In addition, generation division and population division can be applied at the
same time. In this scenario, more algorithms or single operators can be put in
different sub-populations and different segments. For a wide range of problems,
there are always one or more configured algorithms or operators performs good,
then the robustness and the searching capability of the whole searching process for
different problems and for some dynamic problems with changing characteristics
can be enhanced.

(2) Operator-based configuration
The operator-based configuration in each algorithm segment or each sub-popu-
lation mentioned above is another important one in our configuration system.
Since most improved or hybrid algorithms have their own operators borrowed or
newly designed, the mainframe of the algorithm may remain unchanged. If we
uniform the input and output of all operators to be population, then the operator-
based configuration can be easily implemented.

For example, when selecting the learning operator in particle swarm optimization
and the crossover operator in genetic algorithm, a new algorithm, defined as PSO-GA,
can be quickly shaped on the condition of the invariance of initialization, encoding
and updating. Sometimes, single operators like chaotic operators can also be applied
independently to randomly traverse the whole solution spaces at the first stages. It
makes the structure of each single algorithm more dynamic and flexible. And with
limited existing operators, more hybrid algorithms can be directly generated by
operator composition. Even users who do not understand intelligent optimization
algorithm well can design hybrid algorithms for their problem after multiple trials.

But what if we wish to add a new operator or strategy, even a whole algorithm
into the existing platform? To make the whole configuration process more
expandable, there are two ways to obtain newly designed operators or algorithms:
one is to import the newly encapsulated modules in the way of dynamic link
library, and the other is to run corresponding code through external compilers
based on a general operator module template. The former one, though with a high
simplicity, is not conductive for synthesis and storage of operators, whereas the
latter one is just the reverse. Therefore, a better solution might be a marriage of the
two techniques, so that operators designed by users can be embedded either for
once or for permanent usage without causing too much effort.

In a word, from the perspective of basement design, only one-time coding for
an operator will facilitate multiple deployments within different algorithm archi-
tectures. Also, in the application viewpoint, no complex manipulations are
required other than checking or dragging modules, which means even those
without much professional knowledge might become potential users. What is
more, the expandable feature of the platform makes it more convenient for senior
researchers to update libraries and perform more flexible and up-to-date testing.

3.1 Concept and Mainframe of DC-IOA 87

(3) Parameter-based configuration
The parameter-based module in this paper surpasses the traditional parameter
setting, which can only alter the value of some factors in a static manner.
Parameter-based configuration defines a more extensive concept for parameter
configuration, involving dynamically adding parameters, self-adapting strategies,
and modifying parameters during iterations.

Since most intelligent optimization algorithms are still lack of systematic and
methodical theory support, some researchers commit themselves to experimental
testing to obtain the optimal parameters, and others are engaged on developing
self-adaption rules. Parameter interfaces of operator modules allowing multiple
setting and modifying of parameters facilitate the first type of study. Yet because
of its fixed pattern, it becomes futile when we need to add or delete a particular
parameter, or change its attributes. To overcome the above limitations and realize
dynamic configurations, we could create new modules with different parameter
patterns according to function templates and import them through dynamic link
library. It enables users to create their own costumed interface functions based on
the available analogues in the library, and upon it, the attributes and boundaries of
parameters can be altered in simplified manner, parameter control can be easier.

Additionally, being aware of evolutionary status during iterations is needed.
This allows a timely fault detection and modification to get a more efficient and
reliable optimization.

(4) Mapping rules legislation
The mapping rules are used to recommend modules for addressing submitted
optimization problems, to bring convenience especially for those who possess rare
professional knowledge about intelligent optimization algorithms in the library. It
is defined based on two points of view, classification and performance (i.e. Quality
of services).

First of all, operators in algorithm library are generally classified into three
categories when they are encapsulated and loaded in library, i.e.:

• better-in-local-searching,
• better-in-global-searching,
• better-in-self-adaptive- searching.

According to the number of divided generation segments, operators which are
better in global searching are tend to be recommended in the former segments,
operators which are better in local searching are apt to be recommended in the
latter segments and operators which are better in self adaptation are inclined to be
put in the middle position. The classification can be modeled by general fuzzy
logic as shown in Fig. 3.2.

Except that, recommendation should be given largely in accordance with oper-
ators’ performance either in cooperation works or in combination works. Cooper-
ation work means operators in the same generation segments while combination
work prefers as in different generation segments. In both kinds of works, the mainly

88 3 Dynamic Configuration of Intelligent Optimization Algorithms

considered performance properties when an operator portfolio is executed for a
specific problem are:

• BF: the best fitness fbest,
• AF: the average fitness �f ,
• WF: the worst fitness fworst,
• VN: the varience of fitness values, i.e. ðfmax � �f Þ=ðfmax � fminÞ,
• T: the average execution time,
• D: the deviation of the average fitness.

The above properties are generally obtained from multi runs and all of them can
be normalized in the range [0, 1] along with changing problems.

For two operators A and B, let the self-performances of them to be QðAÞ ¼
fsa1; sa2; � � � ; sang and QðBÞ ¼ fsb1; sb2; � � � ; sbng respectively. Let their coopera-
tion performance to be QcooðA;BÞ ¼ fq1; q2; � � � ; qng and the combination per-
formance to be QcomðA;BÞ ¼ fp1; p2; � � � ; png, then the probabilities of
recommending A and B in cooperation or in combination can be defined as:

Pself ðAÞ ¼
X

n
risai; Pself ðBÞ ¼

X
n

risbi ð3:1Þ

Pcoo ¼
X

n
wiqi ð3:2Þ

Pcom ¼
X

n
vipi ð3:3Þ

where ri, wi and vi are the weights of different properties in cooperation and
combination respectively, and all these weights satisfy the equation

P
n ri ¼ 1,P

n wi ¼ 1 and
P

n vi ¼ 1.
Therefore, when a problem submitted to the library, operators within different

classification with higher Pself are firstly selected for different generation segments.
Based on the selected operators, new operators which have the highest probabil-
ities in cooperation and combination with the selected ones are then recommended
for different segments to produce a portfolio. Note that in each segment, no more

Self-adaptiveGlobal Local

0 105

1

Classification factors

D
eg

re
e

Fig. 3.2 Means of the
linguistic classifications
associated with fuzzy logic

3.1 Concept and Mainframe of DC-IOA 89

than 4 operators are selected and recommended with the consideration of time
efficiency. For each problem categories, these historical experiences and perfor-
mances for three-layer configurations can be either automatically updated after
each application, or modified manually. In light of historical experiences as well as
the mapping degree, an optimal algorithm portfolio will be prepared so that users
may have options either to accept the recommendation or configure the algorithms
themselves, thus greatly simplifying the configuration and enhancing the quality of
optimization.

Overview, the concept of DC-IOA is quite similar with hyperheuristic, which is
a heuristic search method that seeks to automatically incorporate several simpler
heuristics (or components of such heuristics) to efficiently solve computational
search problems. But DC-IOA is different with hyperheuristic not only in com-
bination form but also in combination characteristics. The three-level DC-IOA
combines different operators in iteration-based form with both online and offline.
Moreover, DC-IOA has its own characteristics which make it much flexible in the
area of intelligent optimization algorithm:

• With parameter-based configuration, parameters in combined operators can
dynamically changed to adapt the searching process;

• With operator-based configuration, operators can not only be combined and
hybrid through the whole searching process, but also be alternatively used in
only parts of the iterations, which means space combination and time
combination.

• With algorithm-based configuration, algorithm can also be alternatively used
through the iterations and realize algorithm-based time combination.

3.2 Case Study

The above elaborations well shed light on the detailed implementation process of
DC-IOA. Based on that, a configuration platform of intelligent optimization algo-
rithm has been established in our research. The main instruction steps in the plat-
form will be explained as follows. In the instruction steps, the mapping rules are run
out of scope of our preliminarily work temporarily because the configurable plat-
form is just under constructing.

3.2.1 Configuration System for DC-IOA

On the basis of MFC architecture, three basic steps as shown in Figs. 3.3, 3.4, and
3.5, are given from the engineering and application perspective, in an effort to
show the specific instruction of DC-IOA.

90 3 Dynamic Configuration of Intelligent Optimization Algorithms

Problem specification: Some standard optimal problems are nested in the
classification tree as shown in Fig. 3.3. With the radio buttons, users can choose
the corresponding problem module and set their properties such as variable
number, range domain and objective functions, and then choose the coding way
which is internally-installed. For some large-scale complex problems, we can also
derive the fitness functions according to the customized input of the objectives and
restrictions and get coding along with the variable domain.

Three level configurations: As shown in Fig. 3.3, the internally-installed
operators are built in classification tree just as in problem configuration view. Just a
few operators can generate a huge algorithm library because any of them can
combined together arbitrarily in any order. Each operator corresponds to a param-
eter setting view. For a single classical algorithm, only the relevant operators are
needed to be selected in order with uniformly iterations. For improved or hybrid
algorithm, the corresponding operators classified in different categories should be
checked as needed. Through the column of order and generation setting, operator-
based and algorithm-based configuration can be easily accomplished. Parameter-
based configuration is carried out for each operation after the selection of operators.
For higher level configuration, Customizations are constructed in the right column.

During the configurations, if new operators or new algorithms are needed, we
could input it through two kinds of load methods, i.e., dynamic link library (dll)
load and source load with external compilation. Only by the steps of exporting the
template, programming the new algorithm and loading the code sources can help
users to import a new algorithm and compare with other existing algorithms. The
new algorithm can also be configured with other algorithms through the assign-
ment of its order and generations.

Optimization execution: Fig. 3.5 shows the simulation view of the platform. In
this step, the comprehensive settings, i.e. population number and evolution strat-
egy, should be done. Then the optimal iteration process can be switched on.

Numerical
Optimization

Sphere

… …

Ackley

Combinatorial
Optimization

TSP

… …

Resource
Scheduling

Variable Number
Definition Domain

…
Range Domain

Variable Number
Definition Domain

…

Constraints
Range Domain

Objective Function

Customize Load

Real Code

Binary Code

Matrix Code

Variable Number
Range

Variable Number
Genebits Number

Range

Variable Number
Line Number
Row Number

…

…

…

Next

Fig. 3.3 Problem configuration view of the configurable platform

3.2 Case Study 91

During the process, we can see the graphical display and the numerical results such
as best solution and time consumption. And with status records in process, we can
suspend it when some irregularity happens and reset the unexecuted configuration
process.

GA

Selecte

Mutate
Crossover

ACO

PathFind
Pheromone Update

PSO

Self Learning
Global Learning

Type selection

Type1

…

Type2

Properties

Parameters

Order

IA

Vaccination
ImmuneSelect

… …

…

2
3

4
5

…

Improvement Strategies

Local Search
Niched Strategy 1
Chaotic Mutate

Operator
setting

…

properties1
properties2

…

Para1

Para3
…

Template

Source Reload

Dll Load

Customization

Operator
Modification

New operator

Source Load

1 200

Generations

1 200
1 200

200 500
200 500

1 200
1 200

1 200
1 200

1 200
1 200
1 200

2

New
Algorithm

2Order

Process

Generations 200 500

Template Load

2Order

200 500

Para2

Next

Process

Generations

Fig. 3.4 Algorithm configuration view of the configurable platform

Population Parameter

20
Population

Number

Evolution Strategy

Standard Elitist

Results

Best Result:
Time:

Worst Result:

Best Solution:

Graphical Display

Start Pause Reset

Fig. 3.5 Simulation view of the configurable platform

92 3 Dynamic Configuration of Intelligent Optimization Algorithms

According to the above three steps, most complex optimal problems can be
solved within a few minutes with dynamical portfolio of various loosely-coupled
operators.

3.2.2 Case Study of DC-IOA

Further, to verify the three-level configurations in the system, some typical
benchmark problems are adopted in this paper for experiments. For numerical
optimization, the 5 selected static benchmark functions shown in Table 3.1 and the
dynamic rotation peak benchmark generator with 6 kinds of dynamic changes in
[2, 3] are adopted.

In dynamic rotation peak benchmarks, we set the change frequency to be 1,000,
the number of changes to be 10, the peak number to be 10. Other parameters
except the above ones are the same with [3]. Moreover, in the experiments of static
benchmarks, the population size is set as 50, the max generation is set as 500,
while in the experiments of dynamic benchmarks, the population size and the max
generation is set as 50 and 10,000 respectively. For numerical problem, the real
coding method is adopted in all experiments.

Moreover, the objectives in static benchmark functions are finding the mini-
mum optima, while the objectives (fitness function) are to minimize the offline
error of dynamic rotation peak benchmarks.

For combinatorial optimization, we adopt the typical independent tasks
scheduling problem which can be simplified as:

Let D ¼ fd1; d2; � � � ; dng be a set of design tasks, and n be the number of tasks.
Let U ¼ fu1; u2; � � � ; umg be a set of design unit services, and m be the number of
services. Then let P(i) be the predecessor task set of task di, and S(i) be its
successor task set. Tasks are non-preemptive and each task can only be started
after all its predecessor tasks are finished. Considering the high-priority tasks in

Table 3.1 The 5 selected test functions

Function name Formulation

Sphere
f1 Xð Þ ¼

Pn

i¼1
x2

i ; xij j � 100

Rastrigin
f2 Xð Þ ¼

Pn

i¼1
x2

i � 10 cos 2pxið Þ þ 10
� �

; xij j � 5:12

Griewank
f3 Xð Þ ¼ 1

4000

Pn

i¼1
x2

i �
Qn

i¼1
cos xiffi

i
p
� �

þ 1; xij j � 600

Schwefel
f5 1 Xð Þ ¼

Pn

i¼1
xi sin

ffiffiffiffiffiffi
xij j

p
þ 418:9829 � n; xij j � 500

Rosenbrock
f6 Xð Þ ¼

Pn�1

i¼1
100 � xiþ1 � x2

i

� �2þ 1� xið Þ2
h i

; xij j � 2:048

3.2 Case Study 93

the same design units, if uj was selected for di, let Oj(i) be these high-priority task
set. Then

TstartðdiÞ ¼ max
x2OjðiÞ

ðTendðxÞÞ ð3:4Þ

To simplify this problem, it is assumed that the ‘‘units—tasks’’ execution time
vector as follow:

Texecutionðm�nÞ ¼ ftijj1� i�m; 1� j� ng ð3:5Þ

Then the objective function can be represented as:

f ¼ minTexecutionðDÞ ¼ minTendðdnÞ ð3:6Þ

In the scheduling problem, serial connected tasks set with 30 tasks and 200
resources are selected. For getting max function, here we set the fitness function
for independent scheduling to be 100/f. The execution time vector is generated in
random way and stored in ‘‘.txt’’ files for uniformly testing. The reason for
choosing this kind of scheduling problem is that, it is directly equivalent to
resource service composition optimal selection problems in some specific envi-
ronments [4–8], and both of them exist in various kinds of areas and are widely
researched.

The cases we chosen are internally-installed in the platform and need not load
new module. Owing to limited space, standard GA, standard ACO and 6
improvement strategies (i.e. self-adaptation operator [9] represented by A, niched
operator [10] represented by N, local search operator [11] represented by L,
energy-adaptation operator [12] represented by E, potential detection operator [12]
represented by PD, chaotic operator [13] represented by C in algorithms) are
chosen for operator-based and algorithm-based combinations. Then three experi-
ments are carried for three-layer configurations accordingly:

(a) Based on the 5 static numerical functions, standard PSO, the improved PSO
with inertia weight (WPSO) and the improved PSO with constriction factor
(CPSO) are selected for parameter-based configuration. The population and
iteration number are uniformly set to be 50 and 100, respectively.
Based on the 5 static numerical functions, 9 operator-based configuration
portfolios and 6 algorithm-based configuration portfolios are chosen for
operator and algorithm-based configuration. In algorithm-based configuration
portfolios, generations are divided into 3 segments for different algorithms.
On the basis of the 6 dynamic rotation peak benchmarks, 12 operator port-
folios are chosen for dynamic operator-based configuration.

(b) Based on independent tasks scheduling problem, 25 operator-based config-
uration portfolios and 10 algorithm-based configuration portfolios with fixed
order are tested. In algorithm-based configuration portfolios, generations are

94 3 Dynamic Configuration of Intelligent Optimization Algorithms

divided into 2 segments which are different with experiments in numerical
optimizations.
A total of 100 runs of each experiment are conducted and the average results
of the three experiments are shown in Tables 3.2, 3.3, 3.4, 3.5, and 3.6
respectively.

3.2.3 Performance Analysis

In Table 3.2 it can be seen that different parameter values in the same algorithm
have different performances on different problems. Within a few minutes and
simple steps, we could figure out the most suitable values of c1 and c2 for different
problem in the three algorithms, such as (c1, c2) = (2.2, 2.2) for Sphere and
(c1, c2) = (1.8, 1.8) for Rastrigin in PSO; (c1, c2, w) = (1.5, 2.5, 0.7) for Rastrigin
and Griewank and (c1, c2, w) = (2.1, 2.1, 0.7) for Schwefel and Rosenbrock in
WPSO. Different parameters in different algorithms or operators can be set
simultaneously. Users without any experiences can also find the most suitable

Table 3.2 The results of parameter-based configuration test

PSO—Parameter (c1, c2)—Value (Fitness value, Time)

Parameter (2, 2) (2.2, 2.2) (1.8, 1.8)

Sphere (3.74e210, 16.63 ms) (6.243e-3, 17.26 ms) (3.200e-3, 7.763 ms)

Rastrigin (0.7153, 5.589 ms) (0.9644, 12.11 ms) (0.5621, 7.233 ms)

Griewank (2.114e-3, 6.871 ms) (3.757e-3, 13.82 ms) (1.138e23, 7.903 ms)

Schaffer (-0.9945, 15.85 ms) (-0.9943, 14.83 ms) (20.9902, 9.191 ms)

Rosenbrock (4.575e22, 6.826 ms) (0.12502, 10.97 ms) (1.331e-2, 15.42 ms)

The improved PSO with inertia Weight (WPSO)—Parameter (c1, c2, w)—Value (Fitness value,
Time)

Parameter (2.1, 2.1, 0.7) (2.1, 2.1, 0.85) (1.5, 2.5, 0.7)

Sphere (6.286e210, 3.972 ms) (3.092e-5, 9.930 ms) (1.829e-9, 4.091 ms)

Rastrigin (0.4974, 8.110 ms) (0.6454, 13.00 ms) (0.4974, 5.486 ms)

Griewank (2.213e-10, 12.21 ms) (5.944e-5, 13.81 ms) (1.987e210, 6.987 ms)

Schwefel (20.9935, 8.918 ms) (-0.9902, 13.68 ms) (-0.9999, 13.14 ms)

Rosenbrock (1.689e24, 6.247 ms) (1.698e-2, 11.81 ms) (2.574e-4, 8.788 ms)

The improved PSO with constriction factor (CPSO)—Parameter (c1, c2)—Value (Fitness value,
Time)

Parameter (2, 2, 50, 100) (2.2, 2.2, 50, 100) (1.8, 1.8)

Sphere (3.277e-3, 8.899 ms) (1.256e226, 10.07 ms) (3.874e-2, 20.32 ms)

Rastrigin (0.7019, 5.672 ms) (0.4974, 10.81 ms) (1.594, 24.13 ms)

Griewank (3.703e23, 6.253 ms) (0, 15.69 ms) (7.479e-3, 24.34 ms)

Schwefel (-0.9902, 7.798 ms) (21, 15.17 ms) (-0.9822, 26.29 ms)

Rosenbrock (5.414e22, 5.836 ms) (1.641e-10, 13.48 ms) (0.2321, 22.18 ms)

3.2 Case Study 95

parameter values for the specific problems. Just with parameter-based configura-
tion, an algorithm can be widely used in many problems without duplication and
tedious modification in source code. Both algorithm beginner and employer with
little professional knowledge can understand the effect of these parameters. Fine
tuning of parameters becomes easier.

From the operator-based and algorithm based viewpoint, experiments in static
numerical problems are taken and the results are shown in Table 3.3. The results
show that the more operators we chosen, the longer the optimal process takes. On
account of the different emphasis of operators, the algorithms show different
performances on the same problem. If two operators which both focus on
exploitation are selected, such like the portfolio of ‘‘LACO’’, the algorithm might
easily trap into premature convergence, vice versa. Besides, it can also be seen that
portfolios with more than two improvement strategies can always find better
solutions, such as ‘‘NGA-AGA-L’’ and ‘‘C-PDE-GA’’, etc. On the whole, in 15
portfolios, 6 of them, i.e., LGA, PDE, PGA, PDE-LGA, NGA-AGA-L and C-
PDE-GA, perform good capability in solving the 5 static benchmarks while only 3
of them, i.e., NACO, LACO and CACO, perform bad capability. From these we
can see that the portfolios with operator P, DE, L and GA are quite suitable for
typical static numerical functions while ACO is not suitable. Additionally, the
results of 12 portfolios for dynamic rotation peak benchmarks are shown in
Table 3.4. Because of the dynamic environments, heuristics are hard to define,
thus ACO with heuristics is not used at all in dynamic optimization. With GA and
6 improved strategies, the whole performances of these portfolios are not better
than the specific designed algorithms such as [14, 15]. But it can be seen that, with
only a few old typical operators, we can get more than 12 different types of
algorithms. And in the 12 tested algorithms, there are 6 have good performances
relatively. We still could see from the results that adaptation strategies and local
searching strategies are quite suitable for dynamic optimization while chaotic and
niche strategies with high diversity are unsuitable.

Thus the selection of operators is the most important step in the configurable
platform. It can not only make beginners to understand the operator clearly and
help the employer to form an efficient improved intelligent optimization algorithm
quickly, but also assist researchers do more comparisons for different problems
and extend the application range of operators.

Likewise, Tables 3.5 and 3.6 show the operator-based and algorithm-based
configuration in solving typical independent scheduling problem. The searching
results of simple GA and ACO are worse than any of these compositions. In 25
kinds of operator-based portfolios, there are 7 have good performances. Although
portfolios like AGA, NGA and EGA got lower fitness values, their running times
are quite considerable. In 10 kinds of algorithm-based portfolios, 3 of them, i.e.,
ACO-GA, GA-LGA, CGA-ACO, perform good efficiency and are much better
than traditional GA and ACO. That is because the former algorithms mainly focus
on exploration at the previous stage, and the latter one primarily strengthen after
that. Then the exploration and exploitation can be easily balanced by regulating
the execution iterations of the former and latter algorithms. This new idea of

96 3 Dynamic Configuration of Intelligent Optimization Algorithms

T
ab

le
3.

3
T

he
re

su
lt

s
of

op
er

at
or

-b
as

ed
co

nfi
gu

ra
ti

on
an

d
al

go
ri

th
m

ba
se

d
co

nfi
gu

ra
ti

on
te

st
s

fo
r

st
at

ic
nu

m
er

ic
al

pr
ob

le
m

N
G

A
A

G
A

L
G

A

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
ph

er
e

0.
50

83
0

0.
04

0.
01

36
0.

02
05

0.
1

0.
9

0.
14

8
0.

07
31

0
0

0

G
ri

ew
an

k
1.

55
27

0
7.

95
94

3.
26

01
0.

08
37

0
2.

5
2.

65
26

0.
26

49
0

2.
5

2.
56

37

R
as

tr
ig

in
1.

02
73

0
7.

95
94

3.
13

23
0.

04
76

0.
1

2.
5

2.
64

8
0.

15
95

0
2.

5
2.

5

R
os

en
br

oc
k

0.
54

42
1.

82
23

7.
97

84
6.

36
17

0.
03

75
6.

69
4

4.
70

47
3.

92
66

0.
11

15
3.

72
8

7.
98

93
6.

22
19

S
ch

w
ef

el
0.

46
9

0.
80

82
8.

23
61

6.
01

55
0.

04
43

2.
96

01
6.

70
53

4.
48

86
0.

29
69

00
80

7
1.

13
76

0.
32

48

C
G

A
N

A
C

O
L

A
C

O

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
ph

er
e

0.
06

43
0

0.
01

0.
00

34
3.

46
68

10
51

.9
4

35
.5

72
2

3.
10

04
10

44
.9

8
28

.8
04

2

G
ri

ew
an

k
0.

25
01

0
2.

5
2.

56
93

4.
81

97
0.

75
6

17
.9

15
.0

28
9

9.
40

51
0.

69
2

13
.2

65
11

.9
80

2

R
as

tr
ig

in
0.

14
78

0
2.

5
2.

50
34

6.
10

51
3.

91
17

.9
14

.9
33

7
6.

33
38

5.
37

04
13

.2
65

12
.8

89
1

R
os

en
br

oc
k

0.
11

71
6.

20
5

7.
98

92
7.

19
88

3.
44

89
2

8.
85

19
.4

85
12

.1
96

2
3.

07
76

6.
58

96
18

.7
91

2
9.

63
81

S
ch

w
ef

el
0.

13
02

0.
33

98
1.

76
44

0.
73

49
4.

91
71

6.
75

6
24

.1
77

16
.2

19
3

5.
45

69
5.

69
2

22
.4

75
5

14
.2

97
8

C
A

C
O

P
D

E
P

G
A

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
ph

er
e

3.
52

67
3.

95
22

.0
9

13
.7

60
4

0.
04

51
0

0
0

0.
05

35
0

0.
02

0.
00

72

G
ri

ew
an

k
10

.1
01

5
6.

37
84

12
.1

69
3

8.
13

73
0.

16
38

0
2.

5
2.

51
1

0.
18

23
0

2.
5

2.
64

39

R
as

tr
ig

in
6.

77
56

6.
95

17
.1

69
3

8.
43

98
0.

09
85

0
2.

5
2.

5
0.

11
74

0
2.

5
2.

50
72

R
os

en
br

oc
k

3.
02

81
4.

56
25

15
.4

14
4

10
.6

39
3

0.
04

77
4.

67
09

7.
01

78
5.

74
85

0.
07

38
3.

17
13

7.
57

57
6.

64
25

S
ch

w
ef

el
5.

31
98

6.
37

84
20

.6
37

5
15

.9
90

8
0.

05
75

0.
60

85
1.

61
63

0.
93

66
0.

81
12

1.
11

28
3.

85
4

2.
42

01
(c
o
n
ti
n
u
ed
)

3.2 Case Study 97

T
ab

le
3.

3
(c

on
ti

nu
ed

)

N
G

A
A

G
A

L
G

A

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

P
D

E
-L

G
A

N
G

A
-A

C
O

C
G

A
-A

C
O

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
ph

er
e

0.
04

85
0

0
0

1.
17

03
0

0.
08

0.
03

22
0.

90
98

0
0.

06
0.

01
4

G
ri

ew
an

k
0.

19
79

0
2.

5
2.

54
44

3.
48

63
0

11
.9

79
3

5.
54

90
2.

78
44

0
6.

13
96

3.
18

67

R
as

tr
ig

in
0.

11
87

0
2.

5
2.

5
2.

31
85

0
11

.9
79

3
5.

35
31

1.
84

69
0

6.
13

96
3.

05
99

R
os

en
br

oc
k

0.
09

04
1.

91
15

7.
72

28
6.

04
77

1.
37

85
0.

90
66

9.
04

51
6.

31
98

1.
14

43
0.

54
88

8.
87

11
6.

18
25

S
ch

w
ef

el
0.

11
34

0.
99

45
2.

72
76

1.
65

74
3.

41
27

1.
01

1
12

.8
08

4.
03

13
3.

74
48

0.
60

84
8.

23
35

4.
56

81

N
G

A
-A

G
A

-L
N

G
A

-E
G

A
-A

C
O

C
-P

D
E

-G
A

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
ph

er
e

0.
19

22
0

0.
07

0.
00

7
1.

04
53

0
0.

04
0.

01
22

0.
03

63
2

0
0.

03
0.

02
06

G
ri

ew
an

k
0.

62
04

0
2.

5
2.

53
04

3.
14

09
0

4.
31

98
2.

77
39

0.
13

91
2

0
2.

5
2.

63
91

5

R
as

tr
ig

in
0.

39
87

0
2.

5
2.

50
7

2.
10

11
0

4.
31

98
2.

65
77

0.
08

36
4

0
2.

5
2.

52
06

R
os

en
br

oc
k

0.
21

11
1.

57
27

8.
63

91
6.

05
78

1.
21

0.
79

61
8.

77
12

6.
14

68
0.

06
07

2.
07

54
4.

61
24

2.
81

95

S
ch

w
ef

el
0.

23
4

0.
00

14
7.

94
92

4.
18

17
6.

20
74

2.
87

88
9.

87
28

7.
55

39
0.

07
24

0.
58

04
6.

51
47

2.
26

87

98 3 Dynamic Configuration of Intelligent Optimization Algorithms

T
ab

le
3.

4
T

he
re

su
lt

s
of

op
er

at
or

-b
as

ed
co

nfi
gu

ra
ti

on
an

d
al

go
ri

th
m

ba
se

d
co

nfi
gu

ra
ti

on
te

st
s

fo
r

dy
na

m
ic

nu
m

er
ic

al
pr

ob
le

m

L
G

A
A

G
A

C
G

A

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
m

al
ls

te
p

3.
16

19
3.

36
86

16
.8

92
3

6.
19

97
3.

12
4

3.
55

01
16

.1
90

5
6.

94
82

3.
20

37
3.

83
66

13
.0

73
1

7.
81

22

L
ar

ge
st

ep
3.

15
54

3.
19

27
15

.6
4

6.
85

74
3.

11
15

2.
49

72
14

.4
15

7
5.

40
6

3.
25

43
1.

99
14

.9
30

2
7.

30
02

R
an

do
m

3.
15

79
4.

75
53

17
.5

53
7.

04
39

3.
11

63
2.

86
25

16
.9

62
7

6.
53

71
3.

24
69

5.
16

38
13

.1
53

4
6.

95
53

C
ha

ot
ic

3.
17

84
4.

95
07

18
.8

84
8.

90
15

3.
12

69
3.

91
5

16
.4

94
2

7.
26

29
3.

09
05

6.
83

64
16

.5
46

3
8.

44
45

R
ec

ur
re

nt
3.

15
24

3.
59

81
18

.4
09

7
6.

52
91

3.
10

03
4.

38
88

14
.8

04
8

7.
84

27
3.

15
52

5.
59

67
15

.3
69

5
8.

32
23

R
ec

u_
no

is
3.

14
58

5.
72

17
.2

73
7

8.
92

15
3.

06
43

4.
62

62
14

.0
84

5
6.

22
97

3.
12

81
4.

21
86

16
.3

20
1

8.
13

33

L
G

A
A

G
A

C
G

A

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
m

al
ls

te
p

3.
16

19
3.

36
86

16
.8

92
3

6.
19

97
3.

12
4

3.
55

01
16

.1
90

5
6.

94
82

3.
20

37
3.

83
66

13
.0

73
1

7.
81

22

L
ar

ge
st

ep
3.

15
54

3.
19

27
15

.6
4

6.
85

74
3.

11
15

2.
49

72
14

.4
15

7
5.

40
6

3.
25

43
1.

99
14

.9
30

2
7.

30
02

R
an

do
m

3.
15

79
4.

75
53

17
.5

53
7.

04
39

3.
11

63
2.

86
25

16
.9

62
7

6.
53

71
3.

24
69

5.
16

38
13

.1
53

4
6.

95
53

C
ha

ot
ic

3.
17

84
4.

95
07

18
.8

84
8.

90
15

3.
12

69
3.

91
5

16
.4

94
2

7.
26

29
3.

09
05

6.
83

64
16

.5
46

3
8.

44
45

R
ec

ur
re

nt
3.

15
24

3.
59

81
18

.4
09

7
6.

52
91

3.
10

03
4.

38
88

14
.8

04
8

7.
84

27
3.

15
52

5.
59

67
15

.3
69

5
8.

32
23

R
ec

u_
no

is
3.

14
58

5.
72

17
.2

73
7

8.
92

15
3.

06
43

4.
62

62
14

.0
84

5
6.

22
97

3.
12

81
4.

21
86

16
.3

20
1

8.
13

33

N
G

A
P

G
A

P
D

E

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
m

al
ls

te
p

3.
55

64
4.

83
75

17
.7

02
1

8.
42

01
1.

15
88

2.
41

55
14

.2
70

6
6.

50
04

1.
35

04
0.

68
4

12
.0

53
6

4.
48

78

L
ar

ge
st

ep
3.

55
25

2.
89

43
17

.0
69

3
7.

30
31

1.
15

43
2.

86
87

18
.6

28
2

7.
90

14
1.

33
8

0.
65

26
13

.4
89

8
3.

40
69

R
an

do
m

3.
55

28
4.

78
77

15
.8

09
6

6.
40

17
1.

15
26

3.
90

96
16

.4
56

3
6.

27
29

1.
36

39
0.

89
18

12
.4

38
9

4.
43

98

C
ha

ot
ic

5.
45

71
6.

37
04

18
.6

90
8

8.
89

28
1.

15
99

3.
1

16
.4

82
5

6.
56

17
1.

38
58

1.
42

74
14

.5
92

5.
40

05

R
ec

ur
re

nt
5.

43
7

5.
10

12
18

.1
46

2
8.

10
62

1.
15

79
3.

54
12

15
.3

80
5

5.
99

87
1.

37
17

1.
12

43
13

.7
09

5
4.

97
37

R
ec

u_
no

is
3.

59
40

6.
25

43
18

.7
03

8
8.

07
57

1.
15

63
4.

06
18

16
.2

2
6.

00
3

1.
36

75
1.

44
99

14
.8

57
1

4.
82

29
(c
o
n
ti
n
u
ed
)

3.2 Case Study 99

T
ab

le
3.

4
(c

on
ti

nu
ed

)

C
A

G
A

C
P

G
A

L
P

G
A

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
m

al
ls

te
p

3.
07

14
2.

43
46

16
.6

30
9

5.
84

6
3.

05
78

3.
67

9
17

.2
64

6
7.

32
07

3.
03

23
3.

12
35

14
.3

53
2

6.
76

66

L
ar

ge
st

ep
3.

07
3

3.
07

75
16

.1
48

8
6.

21
96

3.
00

96
2.

68
16

.6
25

4
7.

58
62

3.
08

66
2.

98
48

15
.7

23
1

7.
10

76

R
an

do
m

3.
09

11
4.

22
91

15
.0

68
5

6.
30

11
3.

01
06

5.
13

39
14

.3
55

4
8.

57
94

3.
10

36
3.

65
3

15
.0

51
7

7.
23

13

C
ha

ot
ic

3.
12

69
5.

69
86

16
.4

94
2

7.
26

29
3.

00
44

6.
10

03
16

.7
79

3
8.

57
02

3.
08

46
4.

59
32

16
.1

37
8

8.
47

98

R
ec

ur
re

nt
3.

10
03

6.
37

37
15

.8
04

8
6.

84
27

3.
00

48
5.

44
94

16
.3

66
1

8.
91

17
3.

07
77

5.
39

27
15

.9
99

3
7.

90
21

R
ec

u_
no

is
5.

32
86

6.
99

01
16

.5
90

6
7.

72
82

3.
00

27
4.

78
2

18
.1

31
7

7.
19

73
3.

10
86

5.
45

69
16

.2
10

9
8.

57
55

C
P

D
E

L
P

D
E

N
P

D
E

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

T
im

e
B

es
tfi

t
W

or
st

fi
t

A
ve

fi
t

S
m

al
ls

te
p

3.
26

4
2.

76
87

13
.0

11
1

6.
37

54
3.

26
28

3.
02

12
15

.6
25

1
6.

83
53

3.
43

29
2.

89
42

14
.9

96
2

6.
26

12

L
ar

ge
st

ep
3.

24
2

2.
44

86
15

.4
94

4
7.

01
71

3.
21

36
2.

12
64

15
.0

57
8

6.
54

55
3.

47
87

2.
54

99
15

.5
09

7.
39

83

R
an

do
m

3.
26

03
4.

57
92

15
.6

20
6

6.
84

71
3.

26
14

4.
32

34
14

.6
31

7
7.

91
72

3.
44

23
4.

35
03

14
.0

94
5

6.
46

81

C
ha

ot
ic

3.
30

60
4.

17
89

16
.1

92
9

7.
17

14
3.

28
89

4.
91

5
15

.6
58

7
6.

45
18

3.
43

86
4.

27
15

.9
81

3
6.

67
7

R
ec

ur
re

nt
3.

21
66

3.
90

07
16

.8
22

5
7.

39
47

3.
32

85
3.

69
8

15
.3

38
8

6.
92

87
3.

50
38

3.
89

05
17

.2
05

4
7.

34
02

R
ec

u_
no

is
3.

22
22

4.
26

43
15

.8
08

8
6.

61
07

3.
29

84
3.

98
33

16
.4

31
4

6.
80

12
3.

44
23

4.
00

26
16

.1
76

6
7.

04
24

100 3 Dynamic Configuration of Intelligent Optimization Algorithms

T
ab

le
3.

5
T

he
re

su
lt

of
op

er
at

or
-b

as
ed

co
nfi

gu
ra

ti
on

te
st

s
fo

r
in

de
pe

nd
en

t
sc

he
du

li
ng

pr
ob

le
m

O
pe

ra
to

rs
po

rt
fo

li
o

A
G

A
N

G
A

L
G

A
E

G
A

C
G

A
N

A
G

A
L

A
G

A
E

A
G

A
C

A
G

A

F
it

ne
ss

11
.6

47
7

11
.7

15
5

12
.0

69
4

12
.1

92
8

11
.9

9
11

.8
81

9
13

.0
42

11
.4

64
6

13
.0

80
9

T
im

e/
m

s
0.

37
5

0.
70

3
1.

53
1

0.
59

4
1.

01
6

0.
53

2
1.

48
4

0.
62

5
0.

98
4

O
pe

ra
to

rs
po

rt
fo

li
o

L
N

G
A

N
E

G
A

C
N

G
A

L
E

G
A

L
C

G
A

C
E

G
A

N
L

A
G

A
N

E
A

G
A

N
C

A
G

A

F
it

ne
ss

13
.0

74
1

11
.6

63
12

.0
32

4
11

.1
6

12
.4

98
12

.2
00

4
13

.5
84

1
12

.7
66

9
13

.2
69

5

T
im

e/
m

s
2.

20
3

0.
67

2
1.

15
7

1.
98

5
2.

23
5

1.
18

7
1.

70
3

0.
62

5
1.

12
5

O
pe

ra
to

rs
po

rt
fo

li
o

L
E

A
G

A
C

E
G

A
L

C
A

G
A

C
E

A
G

A
L

N
E

A
G

A
L

C
N

A
G

A
N

C
E

A
G

A

F
it

ne
ss

13
.2

55
6

12
.2

00
4

13
.4

82
1

12
.3

66
5

13
.0

64
9

14
.0

39
2

13
.5

51
7

T
im

e/
m

s
1.

32
8

1.
18

7
2.

15
6

1.
14

1.
71

9
2.

34
4

1.
32

8

3.2 Case Study 101

combination of two or more algorithms breaks the traditional one algorithm
evolution theories to fully extend the potentials of algorithm. No matter for
employers or researchers, it is a very efficient way to improve the searching
capability of intelligent optimization algorithms quickly and simply.

3.2.4 Comparison with Traditional Optimal Process

According to the above experiments, the advantage of our configurable platform to
deal with optimization problems over traditional ways on shortening developing
cycle is manifest, as shown in Fig. 3.6.

Under both two circumstances, efforts must be put on how to abstract a practical
problem into mathematical formulations and what encoding manners would be
matched, which normally takes a few hours. However, sequent processes may

Table 3.6 The results of algorithm-based configuration tests for independent scheduling
problem

Algorithms
portfolio

GA ACO GA-ACO ACO-GA GA-AGA AGA-GA

Fitness 10.9768 9.703 11.6683 12.1472 11.4031 11.08

Time/ms 0.36 0.8297 0.659 0.7125 0.375 0.438

Algorithms
portfolio

GA-
LGA

LGA-
GA

ACO-
IGA

IGA-
ACO

ACO-
CGA

CGA-
ACO

Fitness 13.4237 12.2913 12.0976 11.9006 12.1452 13.882

Time/ms 1.3454 1.2397 1.7981 1.5219 1.8043 1.6283

Problem
description

Suvey of
algorithms

Design of
algorithms

programming

Output result

Problem
description

Problem
configuration

Algorithm
configuration

Output result

Traditional design process Configurable design process

Few
Hours

Few
Weeks

Few
Days

Few
Weeks

Few
Minites

Few
Minites

Few
Minites

Few
Minites

Few
Hours

Fig. 3.6 developing cycle of
traditional and configurable
design of intelligent
optimization algorithms

102 3 Dynamic Configuration of Intelligent Optimization Algorithms

develop differently. Much energy will be invested on algorithm investigating,
designing, and programming in early times, each might last for a few weeks or at
least a couple of days, and ultimately add up to several months.

Yet on average, it requires much less if adopting the configuration ways with
less operators. From the three experiments above we could see that dozens of
improved algorithms under three-layer configurations can be generated by only 6
improved operators and 2 basic algorithms in minutes. Better solutions can not
only get from parameter setting and operators selecting, but also come out from
various algorithm portfolios through dividing generation process into multiple
segments. Fresh algorithms will be configured dynamically by deploying different
operators in the library whether you are a domain-expert or not. Keep changing the
portfolios and their parameters, there is always one package right for your prob-
lem. Thus problems are expected to be resolved within at most few hours. Even if
no appropriate modules are available currently, new operators or algorithms could
be created via simple modifications on built-in templates or separate codes
imported from outside. After that, new modules can be stored and our system will
be expanded and updated, making the whole configurations and optimization
process easy-adapting and time-conserving.

3.3 Summary

Improvements in metaheuristics emerge in endlessly. How to fully use them and
verify their efficiency for all kinds of optimal problems are very critical. This paper
summarized the current research situation and development of metaheuristics and
then presented the concept of DC-IOA. To sum up, the primary works and con-
tribution of this paper can be concluded as follows.

(1) Three-level dynamic configuration for intelligent optimization algorithms
was presented. Existing operators with uniformly I/O can be arbitrarily
combined to produce different types of algorithms. More importantly, the
separation of generation process into several segments and employing dif-
ferent algorithms in different segments is a new way to produce and design
intelligent optimization algorithms.

(2) Based on the new configuration ways, the mainframe and construction of DC-
IOA was elaborated. And a basic configuration platform for intelligent
optimization algorithms was established. The instruction steps were elabo-
rated for further understanding. Experiments based on the platform were
taken and verified the high flexibility and efficiency of it.

However, DC-IOA also has its limitations. Firstly, based on typical intelligent
optimization algorithms, only parts of them are divided into operators and inte-
grated in our DC-IOA platform. Configurations of intelligent optimization algo-
rithms are limit. Secondly, DC-IOA has been successfully applied in static and
dynamic numerical optimizations. But with less operators integrated, the

3.2 Case Study 103

application of DC-IOA in multi-objectives are limit. The effectiveness of DC-IOA
in complex problems is to be proved. Thirdly, the application of DC-IOA has not
been extended in distributed environments such as grid and cloud.

Thus, future work includes firstly the construction of mapping rules and the
extension of algorithms library in the platform. Without mapping rules, users can
only find the best portfolio of operators by trial-and-error method. Besides, the fine-
classification of optimal problems according to their variables, constraints and
objectives are required for intelligent mapping. Thus efforts should be devoted both
to the deeply analysis of the general optimal problems and the introduction of
mapping rules. Further, for overcoming the limitations, more valuable operators
should be integrated and applied in complex real-world problems. Also, the design
of DC-IOA in distributed and uncertain environments such as grid (e.g., manu-
facturing grid system [2, 3, 6] and cloud (e.g., cloud manufacturing system [16–20]
is also one of the important future works.

References

1. Tao F, Laili YJ, Liu Y, Feng Y, Wang Q, Zhang L, Xu L (2014) Concept, principle and
application of dynamic configuration for intelligent algorithms. IEEE Syst J 8(1):28–42

2. Li C, Yang S (2008) A generalized approach to construct benchmark problems for dynamic
optimization. Lect Notes Comput Sci 5361:391–400

3. Li C, Yang S, Nguyen TT, Yu EL, Yao X, Jin Y, Beyer HG, Suganthan PN (2009)
Benchmark generator for CEC 2009 competition on dynamic optimization. Technical report,
University of Leicester and University of Birmingham

4. Tao F, Zhao DM, Hu YF, Zhou ZD (2008) Resource service composition and its optimal-
selection based on particle swarm optimization in manufacturing grid system. IEEE Trans
Industr Inf 4(4):315–327

5. Tao F, Zhao D, Hu YF, Zhou ZD (2010) Correlation-aware resource service composition and
optimal-selection in manufacturing grid. Eur J Oper Res 201(1):129–143

6. Tao F, Hu YF, Zhou ZD (2008) Study on manufacturing grid & its resource service optimal-
selection system. Int J Adv Manuf Technol 37(9-10):1022–1041

7. Tao F, Zhao D, Zhang L (2010) Resource service optimal-selection based on intuitionistic
fuzzy set and non-functionality QoS in manufacturing grid system. Knowl Inf Syst
25(1):185–208

8. Tao F, Zhang L, Nee AYC (2010) A review of the application of grid technology in
manufacturing. Int J Prod Res 49(13):4119–4155

9. Srinias M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic
algorithms. IEEE Trans Syst Man Cybern 24(4):656–667

10. Horn J, Nafpliotis N, Goldberg DE (1994) A niched pareto genetic algorithm for
multiobjective optimization. In: Proceedings of the 1st IEEE World Congress on
Computational intelligence

11. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its
application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C Appl Rev
28(3):392–403

12. Laili YJ, Zhang L, Tao F (2011) Energy adaptive immune genetic algorithm for collaborative
design task scheduling in cloud manufacturing system. In: IEEE international Conference on
industrial engineering and engineering management, pp 1912–1916

104 3 Dynamic Configuration of Intelligent Optimization Algorithms

13. Han F, Lu QS (2008) An improved chaos optimization algorithm and its application in the
economic load dispatch problem. Int J Comput Math 85(6):962–982

14. Li C, Yang S (2012) A general framework of multi-population methods with clustering in
undetectable dynamic environments. IEEE Trans Evol Comput 16(4):556–557

15. Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple
optima in dynamic environments. IEEE Trans Evol Comput 14(6):959–974

16. Tao F, Zhang L, Lu K, Zhao D (2012) Study on manufacturing grid resource service optimal-
selection and composition framework. Enterp Inf Syst 6(2):237–264

17. Tao F, Zhang L, Venkatesh VC, Luo YL, Cheng Y (2011) Cloud manufacturing: a computing
and service-oriented manufacturing model. Proc Inst Mech Eng Part B J Eng Manuf
225(10):1969–1976

18. Tao F, Cheng Y, Zhang L, Zhao D (2012) Utility modeling, equilibrium and collaboration of
resource service transaction in service-oriented manufacturing. Proc Inst Mech Eng Part B J
Eng Manuf 226(6):1099–1117

19. Tao F, Guo H, Zhang L, Cheng Y (2012) Modelling of combinable relationship-based
composition service network and theoretical proof of its scale-free characteristics. Enterp Inf
Syst 6(4):373–404

20. Tao F, Hu YF, Zhou ZD (2009) Application and modeling of resource service trust-QoS
evaluation in manufacturing grid system. Int J Prod Res 47(6):1521–1550

References 105

Chapter 4
Improvement and Hybridization
of Intelligent Optimization Algorithm

Algorithm improvement and hybridization are two important branches in the
development of intelligent optimization algorithm. Today there are already hun-
dreds of improvement forms in evolutionary algorithms and neighborhood search
algorithms, more than 20 improvements forms in swarm intelligent algorithms and
various hybridization structures. We cannot exactly count how many repetitions in
these improvement and hybridization for different problems. It’s harder for
researchers to test all of them in different problems with different environments
and compare them one by one. However, with the idea of configuration, we can
extract the operators in different intelligent optimization algorithm and their
improvement and hybridization forms as independent modules, recombine them
and make full use of them in different problems.

In this chapter, from the perspective of algorithm improvement and hybrid-
ization, we introduce the improvements in four aspects of intelligent optimization
algorithm, i.e., initialization, encoding, operator and evolutionary strategy, and
elaborate the hybridizations in three aspects, that are exploration, exploitation and
adaptation, as shown in Fig. 4.1. Further, the application of dynamic configuration
in algorithm improvement and hybridization are detailed and discussed based on
several typical intelligent optimization algorithms commonly used in
manufacturing.

4.1 Introduction

Based on genetic algorithm, particle swarm optimization and ant colony optimi-
zation and so on, a number of new variations on intelligent optimization algorithm
are evolved and developed [1, 2]. Generally, we classify these variations as
improvement and hybridization. Improvement includes changing, increasing or
deleting part of operators based on original algorithm flow, such as the parameter

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_4

107

adaptive adjustment in crossover and mutation and the addition of niche strategy.
Hybridization consists of all kinds of combinations of part of operators in different
algorithms, examples are hybridization of genetic algorithm and particle swarm
optimization in which the crossover and selection are applied and combined with
the learning operators of particle swarm. Taken as a whole, the improvement
places emphasis on the modifications in operators, while the hybridization mainly
focuses on the recombination of different operators.

From the macroscopic angle, both improvement and hybridization are estab-
lished for better efficiency. From the angle of specific goals, the improvement and
hybridization can be further divided in 4 kinds, the reduction of time consumption,
the improvement of solving accuracy, the enhancing of algorithm stability and the
handling of searching convergence.

The reduction of time consumption: Many complex problems have the
requirement of decision timeliness because of their changing states. Dynamic
parameter adjustment in process control and live migration of tasks in production
line are typical instances [3, 4]. To make sure the timeliness of the system states,
people commonly choose operators with low time complexity and high exploration
and simplify the complex variable relationships with fuzzy mapping [5].

The improvement of solving accuracy: As we know, algorithm cannot have the
highest searching ability and the lowest time complexity both. Therefore, contrary
to algorithm design for time reduction, some designers try to improve the
searching ability of algorithm with the sacrifice of searching time for some
problems which require higher solving accuracy. With different requirement,
designers always apply some exploitation strategies and heuristics to do some local
traversal search to improve algorithm searching ability [6, 7].

The enhancing of algorithm stability: For especially large-scale problems,
intelligent optimization algorithm generally has some randomness. The fluctuation
of solution results in several runs can be represented by algorithm stability. With

Improvements

Hybridations

Improvement in
 Initial Scheme

Improvement in
Coding Scheme

Improvement in
Operators

Improvement in
Evolutionary Strategy

Hybridation for
adaptation

Hybridation for
exploration

Hybridation for
exploitation

Initial operators
Decode and
Evaluation

Global updating
Criteria

satisfied?
OutputEncode

Basic Intelligent
Optimization Algorithm

Fig. 4.1 The classification of algorithm improvement and hybridization

108 4 Improvement and Hybridization of Intelligent Optimization Algorithm

different initial population and middle random operators, the solution quality is
hard to ensure. Thus the enhancing of algorithm stability becomes quite important.
Researchers generally attempt to normalize the initialization and fix the searching
direction to narrow the differences of results in various runs [8, 9].

The handling of algorithm convergence: With this target, some of researchers
mainly focus on the avoidance of divergence which caused by operators with high
exploration, low exploitation and behavior without collaboration [10, 11]. Others
generally concentrate on enhancing the searching diversity to avoid the premature
convergence which is responsible for low exploration and unbalanced local
searching [12, 13].

According to the ‘‘no free lunch’’ law [14], no algorithm can obtain compre-
hensive performance improvement in the above four aspects simultaneously. With
numerous improvements and hybridizations, the accuracy, time consumption,
stability and convergence of intelligent optimization algorithms have obtained
large progress in different complex manufacturing problems [15–17]. Based on the
four objectives, the classification of improvement and hybridization in intelligent
optimization algorithm are summarized in the following sections.

4.2 Classification of Improvement

The improvement of intelligent optimization algorithm indicates the modification
of part of operators in algorithm flow. According to the uniform searching process,
the improvement can fall into four sides, improvement in initial scheme,
improvement in coding scheme, improvement in operator and improvement in
evolutionary strategy.

4.2.1 Improvement in Initial Scheme

Initialization contains the population generation and parameter assignment. It
decides the initial positions of individuals in the solution space. Good initial
allocation can help the algorithm obtaining better solutions, while bad initial
allocation may result in premature convergence. Besides, uneven distribution of
individuals can lowering the algorithm stability to some extent, and too intensive
or fixed allocation also can make the whole searching with low diversity. As
described in Sect. 1.5.2, the most commonly used initial schemes include random
initialization, sequential initialization and rule-based initialization.

Random initialization: It means to randomly assign values for different indi-
viduals in the domain. As the most commonly used scheme, it is independent of
the specific problem and easy to implement. In this scheme, uneven allocation is
one of its main drawbacks. With different implement environment and different
methods of generating pseudorandom numbers, it is quite unstable. Moreover, in

4.1 Introduction 109

http://dx.doi.org/10.1007/978-3-319-08840-2_1

large-scale solution space, a relatively small number of individuals may fall into
bad allocations to a great degree. The main solution for the above situations are
dividing the solution space and applying more even random scheme such as Monte
Carlo or Mersenne Twister in each sub-spaces, or generating more individuals and
filter better ones with good allocations [18–20].

Sequential initialization: This method refers to assign regular sequential
numbers to individuals successively. During the process, sequential numbers are
generated by dividing the variable domain with equal length in each dimension. It
makes sure that the individuals evenly distribute in the whole solution space. Yet
the fixed positions established by sequential initialization bring some drawbacks to
algorithm. Firstly, it may bring about low diversity at the beginning of search.
Many corners in the solution spaces are tend to become blind area. Secondly, if the
distance of these individuals and the global optimal solutions are far, then better
solutions can not be easily found. These may lead to premature convergence in a
large degree.

Rule-based initialization: It refers to initialize the individuals according to
problem property and environment-based rules. For different problems, people
need to design specific rules to guide the initialization. The rules can be defined in
accordance with some state forecasting and problem priori-knowledge. For
instance, we can firstly divide the solution space, define some optimal positions in
the sub-spaces and use these optimal positions as initial allocation. With different
problem-based rules, better searching pace and solution quality can be obtained
compared to the above methods. The main drawback of the rule-based initiali-
zation is that it is problem-dependent with low scalability. Some researchers also
use deterministic algorithm beforehand to generate initial solutions and realize the
hybridization of deterministic algorithm and intelligent optimization algorithm
[21–23].

Beyond that, there are many other initialization schemes in different kinds of
intelligent optimization algorithms [24, 25]. On account of the low efficiency of
sequential initialization, random initialization is the most widely applied because it
is more likely to be implemented. Moreover, although rule-based initialization
scheme is hard to design, it is also broadly used in engineering for better searching
ability. In some cases, the hybridization of random initialization and rule-based
initialization might be a great way to obtain a good initial allocation with high
diversity.

4.2.2 Improvement in Coding Scheme

Encoding are defined as the transformation or mapping between individual genes
and problem variables. Except direct real number coding scheme, almost all other
coding ways need extra time to execute transformation in iteration, which can
straightforwardly increase time complexity. The major influences of encoding
scheme are increasing algorithm diversity and enhancing the searching ability by

110 4 Improvement and Hybridization of Intelligent Optimization Algorithm

cooperating with operators. Thus efforts on encoding primarily aim at the
improvement of solving accuracy and the handling of algorithm convergence. As
described in Sect. 1.4.1, most typical coding schemes are designed based on
genetic algorithm and gradually generalized to other intelligent optimization
algorithms. At present, many newly-developing encoding schemes are established
for specific manufacturing optimization problems [26, 27]. Yet the most applied
coding scheme in engineering are still real coding, binary coding and matrix
coding and so forth [28, 29]. Here we list some representative ones.

Real coding: As introduced above, no matter in continuous or discrete opti-
mization, the encoding and decoding operations in iteration can be avoided. It is
suitable for big variables and can effectively reduce the time complexity of
algorithm.

Binary coding: In this scheme, variable in each dimension is mapped as a group
of binary (or Boolean) genes. It is the eldest coding scheme in intelligent opti-
mization algorithm. When applying it, the length of genes for each variable must
be defined previously. When the accuracy requirement is higher, we need very
long genes to present big variables. Hence, compared with real coding, it will
largely increase the searching time especially in large-scale problems with big
variables and high accuracy requirement.

Matrix coding: As the same as binary coding, each variable can be represented
by a line of individual genes. The genes can be either Boolean or real number. It is
designed especially for discrete combinatorial optimization. Typical time
sequence, symbol string and multi-dimension position can all be directly repre-
sented by matrix coding. It is more flexible than the above coding scheme, yet will
take more memory space and more complex.

Quantum coding: It is a new coding scheme which is used very frequently in
recent research. Borrow the dimorphism of dual quantum genes and quantum
rotation door, it maps the variables to quantum genes by two steps. This can bring
high diversity to population during the whole searching process. However,
dimorphic quantum genes will also bring two step operations both in encoding and
decoding and take more memory space in the programming, so as to lower the
decision efficiency.

With changing environment in production and manufacturing system,
researchers and engineers have made great efforts on digging new encoding
schemes [30, 31]. No matter in what coding scheme, the main consideration is the
encoding and decoding complexity without the loss of searching accuracy. In
different coding scheme, especially for combinatorial optimization, we may easily
get into a case that multiple individuals mapping as one single solution, such as
real coding scheme in job shop scheduling problem. In such situation, repetitive
searching and uneven pace become inevitable, which further lower the whole
searching quality of algorithm. Therefore, finding solutions for different kinds of
many-to-one cases and designing efficient one-to-one mapping coding scheme are
quite imperative in more and more complex manufacturing optimization.

4.2 Classification of Improvement 111

http://dx.doi.org/10.1007/978-3-319-08840-2_1

4.2.3 Improvement in Operator

Operators are the core of intelligent optimization algorithm, so that improvement
in operators attracts more attentions than other aspects. For exploration, random
regeneration, chaotic changing, niche strategy [32, 33] and so on gives the algo-
rithm more dynamics, but with less regularity, better solutions are hard to find and
the algorithm stability will be very low. For exploitation, heuristics such as priori-
knowledge, local search and greedy strategy [6, 34, 35] and so on brings more
local searching ability which nevertheless makes the algorithm easy to trap into
local convergence and do more repetitive searching. Only if two of them combined
together can they establish a balanced searching pace and good solving efficiency.
Today, many researchers focus on the balanced searching of intelligent optimi-
zation algorithm and design several exploration-oriented, exploitation-oriented and
adaptive operators for solving complex problems. From the improvement ways we
can divide the operator improvements into the adjustment of control parameter, the
modification of operation and the increase of new independent operators.

The adjustment of control parameter: Control parameter in intelligent optimi-
zation algorithm, such as crossover and mutation probability in genetic algorithm,
decides the strength of operations in iteration. Therefore, for dynamic problems,
people are likely to design adaptive parameter control strategy in operators in line
with population searching state to guide the operations. Typical examples are the
weighted particle swarm optimization, the adaptive genetic algorithm and so forth.
In the adaptive genetic algorithm, the crossover and mutate probabilities are
decided by the average fitness value and the best fitness value of the whole
population. If the average fitness value is close to the best fitness value, the two
probabilities will become lower, so as to do more exploitation. If the average
fitness value is far from the best fitness value, or the differences between the
individuals are large, then the two probabilities will be higher in order to
strengthen the crossover and mutation and generate more new diverse individuals.
It can be clearly seen that changing weights and parameters can not only balance
the exploration and exploitation during search, but also adapt the algorithm for
different problem environments. Except the above mentioned parameter-based
improvement, fuzzy adaptive theory and knowledge-based adaptive theory can
both be introduced to different sorts of operators to enhance the adaptive ability of
algorithms for complex problems. Many experiments and applications have veri-
fied that such adjustments in iteration can successfully balance most of intelligent
optimization algorithms during their searching pace without the increase of time
complexity [36, 37]. Thus they are widely applied in engineering.

The modification of operation: It primarily refers to the structure modification in
operators according to different problem requirements and the coding scheme in
earlier stage. The most representative ones are multi-point crossover, chaotic
mutation, discrete particle swarm learning and record list-based path finding and so
on. Some of them are inclined to magnify the operation strength or range to increase
algorithm diversity. Some of them are apt to choose part of individuals and add new

112 4 Improvement and Hybridization of Intelligent Optimization Algorithm

operations to enhance the algorithm excavating ability. These modifications noted
above are normally independent of specific problem, so that they can be widely used
in different environments. Except that, there are also some problem oriented mod-
ifications, such as the adding of priori information in ant colony optimization and
immune algorithm, which mainly aim at increase the searching accuracy and make
the algorithm more suitable for a specific problem. The difference with the above
general modification is that the problem-oriented modification can only applied in a
particular environment for a particular decision. At the same time, many people
additionally focus on modifying the existing operators to adapt the specially
designed coding scheme, such as the operator improvement of discrete particle
swarm optimization for the particular coding scheme of job shop scheduling and the
new record list improvement in ant colony optimization for solving continuous
problems. In this point, they may basically change the operational mechanism with
some new customized strategies. From all these improvements it can be seen that,
when the problem to be solved and its encoding scheme are certain, the operators can
all be divided into several sub-modules with population inputs and outputs
according to the iterative steps. With the variation of these sub-modules, the
searching direction and ability can both be changed.

The increase of new independent operators: Because the existing operators in
an algorithm may possess weak capability either in exploration, or in exploitation,
researchers generally tend to increase new independent operator to compensate the
algorithm in a certain aspect. It is similar to algorithm hybridization, but unlike
hybridization, the new operators are newly designed in accordance with the
existing ones and do not belong to other algorithms. Characteristic cases are niche
strategy, local search strategy and sorting based strategies and so on. For instance,
niche strategy are designed before individual optimal selection, which use the
hamming distance to get similar individuals and multiple a penalty function to
make the weak ones been weeded out. Besides, local search strategy which tries to
traverse a small range of space and find the best solution can be widely applied in
different algorithms in any step and increase the algorithm exploitation. Most of
these augmentations will increase the time complexity of algorithm to some extent,
thus they can only be used in the problems which have low requirement on
decision timeliness.

In recent times, there are still more and more improved operators springing up
for diverse decision scenes and being cross-utilized in a bunch of manufacturing
problems [38, 39]. But most of them have only been verified in merely one or two
specific problem in theory and tests, not in wider practice.

4.2.4 Improvement in Evolutionary Strategy

Evolutionary strategy are executed after operators in iteration for updating the
population and record the best and worst positions during the whole searching
process. Since the elite evolutionary strategy is widely applied, it is the least

4.2 Classification of Improvement 113

studied component of intelligent optimization algorithm because its influence on
algorithm is lower than the above parts. However, with filtrating of new indi-
viduals to replace old ones, unbalanced updating will largely slow down the
searching speed and may lower the whole efficiency or even give rise to premature
convergence. Thus it is also very important. Improvement research in evolutionary
strategy is inclined to consider the enhancing of algorithm stability and the han-
dling of algorithm convergence and handle single-objective and multi-objective
problems in different manners.

For single objective optimization, evolutionary strategy is developed from the
direct replace manner to the famous elite strategy. In elite strategy, if the best
individual obtained by several operators are better than the global best record, then
replace the global best one with the new best one, or we should replace the worst
individual in current generation by the new best one. Elite strategy becomes almost
a uniform basic part in classical intelligent optimization algorithm for simple-
objective optimizations. Furthermore, typical improved evolutionary strategies
also include the method that combining the new individuals and the old ones and
doing filtration after the combination by fitness based sorting or hamming distance
based selection. These strategies play an important pre-selection role to prevent
population diverge and premature convergence.

For multi-objective optimizations with Pareto scheme, elite strategy becomes
not that suitable. Instead, the combination of new and old individuals in generation
and screening in frontier Pareto-set is used for population updating. Now the most
widely applied strategy is non dominated sorting. It is similar with the fitness
based sorting in single-objective optimization. The only difference is that it uses
the non-dominating theory to separate the individuals into sorted layers. Addi-
tionally, for improving the population diversity, some probability-based elimina-
tion mechanisms are also used to delete similar individuals in a specific layer
randomly. In this manner, if the randomly generated number is smaller than a
threshold, then accept the corresponding individual goes into the next generation,
or it will be eliminated. It can increase the searching diversity and ensure the
algorithm convergence in actual fact.

In a word, with some certain manners, evolutionary strategy can also be
modified and further enhance the algorithm searching ability. As a key assistant
part in intelligent optimization algorithm, it is quite independent with specific
problem and worth to be researched for improving the efficiency of general
intelligent optimization algorithms.

4.3 Classification of Hybridization

Hybridization refers to recombine or rearrange parts of intelligent optimization
algorithms to generate a new method. Because a large proportion of initialization
and coding schemes can be widely used in intelligent optimization algorithms, the
design of hybridization chiefly focus on the recombination or rearrangement

114 4 Improvement and Hybridization of Intelligent Optimization Algorithm

among operators in iteration. With different emphasis, hybridization can also be
divided into three kinds, hybridization for exploration, hybridization for exploi-
tation and hybridization for adaptation.

4.3.1 Hybridization for Exploration

Hybridization for exploration mostly designed to search wider solution space in a
limited time. In such category, searching step and range-ability of algorithm is
quite large, which keeps the population with high diversity. Characteristic oper-
ators for exploration are mutation, differential evolution operators and taboo
search and so forth [40–42]. The following are brief reviews on these typical
operators for hybridization.

Mutation, originate from genetic algorithm, is one of the mostly applied operators
in hybridization. It can be independently used in various intelligent optimization
algorithms to avoid premature convergence. For example, in particle swarm opti-
mization, after the global and self learning operations finished, mutation can be
employed to balance the high learning-oriented operators and generate some new
individuals during iteration. Similarly, if we apply the mutation operator to immune
clone algorithm, parts of population can break away from the clone rule and do
search further. It can be said the mutation operator is a universal operator for
improving exploration in intelligent optimization algorithm. Moreover, it should be
noted that when using mutation in hybridization, the probability and range of it
should be concerned with the environment changing. Because too larger mutation
probability and range may bring about searching diverge, while too small operation
may not work for improvement.

The operator of random differential evolution is also a typical one in hybrid-
ization for exploration. With differential computing of three randomly chosen
individuals, it can used to enhance the exploration ability of algorithm. By con-
trolling a differential factor, it can amplify the exploration step to enhance pop-
ulation diversity or shrink the step to realize mutual learning. More flexible than
mutation, it can make the new individual evenly distributed in the solution space
and realize more balanced exploration. For instance, if we combine the differential
evolution operator with the path finding operator of ant colony optimization, after
the path finding, the differential computing with three randomly individuals can
effectively alleviate the premature convergence brought about by unevenly pher-
omone. Except that, we can also replace the mutation in genetic algorithm with
differential computing to obtain an effective hybridization taking the problem
environment into account.

Taboo search are also a most commonly used operator for exploration-oriented
hybridization. Different with the above two independent operators, we need to
additionally design new taboo list for each hybridization scheme in different prob-
lems. If we apply taboo search in genetic algorithm, we need to design the problem-
specific taboo list, do taboo judgment after genetic operators (i.e. selection,

4.3 Classification of Hybridization 115

crossover and mutation) and update the taboo list with new records. The same
principles can apply to other hybridizations such as taboo-based immune algorithm
and taboo-based simulated annealing algorithm. Furthermore, we can not only
design taboo list for individuals, but also for other searching parameters. It makes
sure the diversity during the whole searching process and avoids repetitive iteration
to some extent. The main drawbacks of applying taboo strategy in hybridization are,
(1) taboo judgment during iteration may bring larger time complexity, (2) long taboo
list may increases the space complexity. At present, it is still a good strategy for
doing wider exploration in different intelligent optimization algorithms.

4.3.2 Hybridization for Exploitation

Hybridization for exploitation is designed after exploration to make the algorithm
searching in local scope more efficiently. In hybridization for exploitation, most
heuristics and local search operators are applied for searching in a narrow scope.
Characteristic operators are immune operators, learning operators of particle
swarm optimization and path finding operators of ant colony optimization [43–45].

Immune operators include two kinds, immune clone and immune vaccination.
Immune clone tries to extract features of the global best individuals to guide the
operation, while immune vaccination tend to use priori knowledge of the specific
problem to change parts of individuals locally. Both of them need some rules to
guide and are independent from other operations. Therefore, they can be used in
anywhere with some exploration-oriented operators to form a new algorithm with
good exploitation ability. However, because of the problem-dependent rules, not
only the design of hybridization based on immune operators will become complex,
but also the searching with iterative immune vaccination and extraction will take
much longer time. In other words, they sacrifices time for quality. Many studies
prove that with problem-based guidance, immune operators can truly bring great
searching ability and realize combination of deterministic and non-deterministic
decision with high accuracy.

Learning operators of particle swarm optimization include global learning and
self learning. With the record of self-best and global-best positions, they can only
be applied together to balance the searching pace. With single self-learning,
individuals without cooperation will become chaos and cannot get evolution any
more. In reverse, with single global-learning, the population will converge quickly
into a bad position. Thus, only the integration of them can ensure the stable
searching. Generally, they can be used with other operators as exploitation-
enhanced algorithms to improve the cooperative and stable searching. For
example, they can be introduced to chaotic optimization or genetic algorithm.
After the original action, the learning operators can reduce the randomness and add
some guidance for exploitation. Similar with immune operators, due to the record
of self-best in each generation, both the time complexity and space complexity will
be increased.

116 4 Improvement and Hybridization of Intelligent Optimization Algorithm

Path finding operator of ant colony optimization tries to generate new popu-
lation according to the pheromone concentration and do pheromone updating after
that. It is also similar to the above learning operators, which attempts to use self
and global record to guide the search. With pheromone updating and recording, it
also has high complexity in hybridization. The most famous hybridization schemes
are the combination of ant colony optimization and genetic algorithm and the
simulated annealing ant colony optimization, and so on. Owing to its high com-
plexity, it generally recombined with some simple exploration-based operators in
design. For example, if we combine path finding operator with crossover and
mutation of genetic algorithm, it can reduce the randomness in individual inter-
action and improve the local exploitation with group cooperation.

At present, these exploitation-based operators are mostly recombined with
crossover, mutation and simulated annealing operators. With lower exploration
and higher exploitation in local scope, these hybridizations have performed good
exploitation ability in different manufacturing problems. However, with high
complexity in both design and execution, how to design a simplified exploitation-
based operator without accuracy loss is also an essential problem.

4.3.3 Hybridization for Adaptation

Hybridization for adaptation is mainly designed for adaptively solving problems
with dynamic or complex solution space. Take the consideration of the balance of
exploration and exploitation, most researchers recombine more than two operators
to get high exploration in earlier stage and turn to exploitation in later stage.
Generally, many intelligent optimization algorithms lack the ability either in
exploitation or in exploration. Thus the above two kinds of hybridizations attempt
to design hybridization to fill the gaps. But those strategies may still have the
unstable or unbalanced problems. For overcoming the weakness, hybridization for
adaptation receive a lot of attentions.

The mostly used operators for adaptation are simulated annealing operator. It
particularly refers to the annealing acceptance judgment used in various hybrid-
izations. In early phases, the annealing acceptance probability is quite large so that
many degraded individuals can be accepted for high diversity and exploration.
With the decreasing temperature, the lowering probability makes lesser and lesser
degraded individuals to be accepted, so as to improve the algorithm convergence
on the other side. With annealing probability, it can control the whole searching
process adaptively with other exploration or exploitation-oriented operators to
perform balanced searching. Moreover, it is easy to implement without bring more
complexity. Thus, simulated annealing based hybrid intelligent optimization
algorithms are more and more designed and used for different problems as well.

Except that, more and more efforts are putting in design adaptive operators for
hybridization or recombine adaptive operators for the balance of exploration and

4.3 Classification of Hybridization 117

exploitation [46–48]. The aim of hybridization for adaptation can be summarized
as getting good ability and balance in exploration and exploitation with less
searching time.

4.4 Improvement and Hybridization Based on DC-IA

We have listed the classification of improvement and hybridization of intelligent
optimization algorithm and their typical examples in the above sections. For dif-
ferent kinds of manufacturing optimizations, although with the same operations,
they perform totally different. People need to do a lot of work to repetitive design
various improvements and hybridizations for specific problems. For reducing these
repetition and make the existing algorithms more efficiently in diverse environ-
ments, we presented a new dynamic configuration strategy mentioned in the
previous chapter. With the new strategy, we can separate the solving process as
four modules, i.e. initialization, encoding, operators and population updating. The
input and output of each module are both population. Moreover, we can also divide
and stored these modules according to their features. With two kinds of classifi-
cations, improvement and hybridization based on DC-IA can be divided into two
styles, (1) module-based improvement and hybridization, (2) process-based
improvement and hybridization.

Module-based improvement and hybridization means to design uniform itera-
tive operations with new or recombined modules. It comes down to operator-based
configuration. In detail, it can be classified as cascade configuration, parallel
configuration and mixed configuration, as shown in Figs. 4.2, 4.3 and 4.4.

Similar with traditional hybridization, cascade configuration means to simply
select multiple modules with different functions and assign operational order for
them. In this scheme, one single hybrid algorithm is generated without generation
division and population division. Based on the method of DC-IOA, this way can
largely improve the reutilization rate of operators and produce new hybridizations
directly.

Different with cascade configuration, parallel configuration refers to divide
population into several sub-populations and select groups of operators for different
sub-populations. In such scheme, more operators can be combined to do diverse
search. Specifically, with uniform initialization and encoding scheme, population
is randomly divided into sub-populations. During iteration, each sub-population is
modified by different group of operators. After all operators finished, the sub-
populations are combined and evolved together with uniform evolutionary strategy
and randomly divided again to sub-populations. Diverse groups of operators
guarantee the diversity of the whole population, while the random division of sub-
populations ensures each individual can be evenly updated by different groups of
operators. The whole process is balanced and more flexible than cascade config-
uration. Moreover, more operators will not increase the whole time complexity of
algorithm as a result of the multi sub-population scheme. The main drawback is

118 4 Improvement and Hybridization of Intelligent Optimization Algorithm

that, it is hard to select suitable group number and design operators for several
groups with high the coordination.

Further, based on cascade and parallel configuration, we can quickly implement
mixed configuration. That is to say, we can perform cascade configuration with
ordered simple operators and divide population into several sub-populations for
parallel groups of operators. Sometimes, single cascade configuration is simple,
stable but with low flexibility and diversity, while single parallel configuration
ensures high diversity but inversely with low stability and interoperability. In such
cases, we can combine cascade and parallel configuration, use cascade operators to
enhance the interoperation and stability among sub-populations and perform parallel
groups of operators to improve searching flexibility and diversity. However, it is
harder to design than parallel configuration and the complexity is much higher.

Except that, we can perform dynamic configuration from the perspective of
algorithm process, i.e. process-based improvement and hybridization. Different with
the above module-based configuration, we can divide the generation process into
several parts. Each part, containing multiple generations, performs different group of
operators. It can be boiled down to algorithm-based configuration. Based on this
frame, the process-based improvement and hybridization can be further divided as
(1) process-based design with homogeneous coding and (2) process-based design
with heterogeneous coding, as shown in Figs. 4.5 and 4.6.

In the first kind, the coding way in the whole process is unchanged. With
uniform coding style, the process can be separated to two or more phrases. Each

Initialization

Encoding

Operator 1

Operator n

Decoding

Evaluation

Criteria
Satisfied?

Output

Yes

No
C

as
ca

de
 c

on
fig

ur
at

io
n

...

Fig. 4.2 Cascade
configuration in module-
based improvement and
hybridization

4.4 Improvement and Hybridization Based on DC-IA 119

phrase applies different group of operators. For example, with uniform binary
coding scheme, we can apply genetic algorithm in generation 1–100, employ
particle swarm optimization in generation 101–200 and perform ant colony opti-
mization in generation 201–500, just as we described in Chap. 3. This configu-
ration way is more flexible and simple than the module-based way, because users
can easily obtain exploration in early stage, balance searching in middle stage and
exploitation in later stage by using operators with corresponding functions, so as to
make the process easier to control. In addition, with partition of searching process,
the total time complexity will not be increased as well. For users with existing
operators, this configuration way is much easier to design an efficient improved or
hybrid algorithm than others.

Based on the process-based strategy, we can also use heterogeneous coding
schemes in different parts of process. The only different is that it needs several
trans-coding steps among different phrases. This allows us to applied more types of
operators to further enhance diversity of operations. However, this will also largely
increase the time complexity and decrease the searching efficiency.

Initialization

Encoding

Operator 21

Operator 2m2

Decoding

Evaluation

Criteria
Satisfied?

Output

Yes

No

P
ar

al
le

l c
on

fig
ur

at
io

n

Operator 11

Operator 1m1

Operator n1

Operator nmn

Sub-pop 1 Sub-pop 2 Sub-pop n
...

Fig. 4.3 Parallel configuration in module-based improvement and hybridization

120 4 Improvement and Hybridization of Intelligent Optimization Algorithm

http://dx.doi.org/10.1007/978-3-319-08840-2_3

It is worth noting that, for large-scale complex manufacturing optimization, we
can combine both module-based configuration and process-based configuration to
design improvement and hybridization. The design and test process in this case
will become much harder. But with population and process divisions, the time
complexity will not be increased much.

It can be seen, based on the concept of DC-IOA, with module-based and
process-based improvement and hybridization, limited operators with uniform

Initialization

Encoding

Operator 21

Operator 2m2

Decoding

Evaluation

Criteria
Satisfied?

Output

Yes

No

P
ar

al
le

l c
on

fig
ur

at
io

n

Operator 11

Operator 1m1

Operator n1

Operator nmn

Sub-pop 1 Sub-pop 2 Sub-pop n

Operator c1

Operator cmc

C
as

ca
de

 c
on

fig
ur

at
io

n

...

......

Fig. 4.4 Mixed configuration in module-based improvement and hybridization

4.4 Improvement and Hybridization Based on DC-IA 121

input and output can form hundreds of intelligent optimization algorithms with
various types of structures. Not only the reutilization of existing operators is
increased, but also a bunch of new dynamic improvement and hybridization
schemes can be effectively applied for different kinds of problems.

Initialization

Encoding

Decoding

Output

Yes

No

Operators1

Evaluation

Generation Criteria
Satisfied?

Operators n

Evaluation

Generation Criteria
Satisfied?

Yes

No

G
en

er
at

io
n

1
G

1

Step1

Step m

G
en

er
at

io
n

G
m

-1
G

m

...

Fig. 4.5 Process-based
improvement and
hybridization with
homogeneous coding

122 4 Improvement and Hybridization of Intelligent Optimization Algorithm

Initialization

Encoding

Output

Yes

No

Operators 1

Evaluation

Generation Criteria
Satisfied?

1
G

1

Step1

G
en

er
at

io
n

G
m

-1
G

m
Decoding

Encoding

Yes

No

Operators 1

Evaluation

Generation Criteria
Satisfied?

Step m

Decoding

G
en

er
at

io
n

...

Fig. 4.6 Process-based
improvement and
hybridization with
heterogeneous coding

4.4 Improvement and Hybridization Based on DC-IA 123

4.5 Summary

Improvement and hybridization of intelligent optimization algorithm are always a
focal point in the optimization of the whole life-cycle manufacturing. More than half
of researches employs different sorts of improved or hybrid intelligent optimization
algorithms in manufacturing optimizations, such as [49–53] and so on. This chapter
introduced the improvement and hybridization of intelligent optimization algorithm,
classified the improvement into four categories, i.e. improvement in initialization,
improvement in coding scheme, improvement in operators and improvement in
evolutionary strategy, and divided the hybridization into three kinds, i.e. hybrid-
ization for exploration, hybridization for exploitation and hybridization for adap-
tation. Then the detailed characteristics of the above categories are given with
typical examples respectively.

Based on the existing manners and the new DC-IOA concept, we further
present two kinds of new strategies for improvement and hybridization, (1)
module-based improvement and hybridization and (2) process-based improvement
and hybridization. The design process and features of the two kinds are elaborated.
They are very practical and flexible and can play a guiding role in design and
optimization in manufacturing. With the new design strategies, the flexibility and
reusability of existing operators for different sorts of complex problems can be
fundamentally enhanced.

References

1. Raidl GR (2006) A unified view on hybrid metaheuristics, hybrid metaheuristics. Lect Notes
Comput Sci 4030:1–12

2. Parejo JA, Ruiz-Cortes A, Lozano S, Fernandez P (2012) Metaheuristic optimization
frameworks: a survey and benchmarking. Soft Comput 16(3):527–561

3. Trappey AJC, Trappey CV, Wu CR (2010) Genetic algorithm dynamic performance
evaluation for RFID reverse logistic management. Expert Syst Appl 37(11):7329–7335

4. Rao RV, Pawar PJ (2010) Parameter optimization of a multi-pass milling process using non-
traditional optimization algorithms. Appl Soft Comput 10(2):445–456

5. Shen C, Wang L, Li Q (2007) Optimization of injection molding process parameters using
combination of artificial neural network and genetic algorithm method. J Mater Process
Technol 183(2–3):412–418

6. Moslehi G, Mahnam M (2011) A pareto approach to multi-objective flexible job-shop
scheduling problem using particle swarm optimization and local search. Int J Prod Econ
129(1):14–22

7. Yildiz AR (2013) Hybrid taguchi-differential evolution algorithm for optimization of multi-
pass turning operations. Appl Soft Comput 13(3):1433–1439

8. Burnwal S, Deb S (2013) Scheduling optimization of flexible manufacturing system using
cuckoo search-based approach. Int J Adv Manuf Technol 64:951–959

9. Yildiz AR (2009) An effective hybrid immune-hill climbing optimization approach for
solving design and manufacturing optimization in industry. J Mater Process Technol
209(6):2773–2780

10. Duran N Rodriguez, Consalter LA (2010) Collaborative particle swarm optimization with a
data mining technique for manufacturing cell design. Expert Syst Appl 37(2):1563–1567

124 4 Improvement and Hybridization of Intelligent Optimization Algorithm

11. Wang JQ, Sun SD, Si SB, Yang HA (2009) Theory of constraints product mix optimization
based on immune algorithm. Int J Prod Res 47(16):4521–4543

12. Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic
algorithm for online and offline control design of PMSM drives. IEEE Trans Sys Man Cybern
B Cybern 37(1):28–41

13. Yang WA, Guo Y, Liao WH (2011) Multi-objective optimization of multi-pass face milling
using particle swarm intelligence. Int J Adv Manuf Technol 56(5–8):429–443

14. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans
Evol Comput 1(1):67–82

15. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010) Application of soft
computing techniques in machining performance prediction and optimization: a literature
review. Int J Adv Manuf Technol 46(5–8):445–464

16. Tiwari MK, Raghavendra N, Agrawal S, Goyal SK (2010) A hybrid taguchi-immune
approach to optimize an integrated supply chain design problem with multiple shipping. Eur J
Oper Res 201(1):95–106

17. Chan KY, Dillon TS, Kwong CK (2011) Modeling of a liquid epoxy molding process using a
particle swarm optimization-based fuzzy reguression approach. IEEE Trans Industr Inf
7(1):148–158

18. Goicoechea HC, Olivieri AC (2002) Wavelength selection for multivariate calibration using a
genetic algorithm: a novel initialization strategy. J Chem Inf Model 42(5):1146–1153

19. Zainuddin N, Yassin IM, Zabidi A, Hassan HA (2010) Optimizing filter parameters using
particle swarm optimization. In: The 6th international colloquium on signal processing and its
applications (CSPA) pp 21–23, May 1–6

20. Wang CM, Huang YF (2010) Self-adaptive harmony search algorithm for optimization.
Expert Syst Appl 37(4):2826–2837

21. Zhang Y, Li X, Wang Q (2009) Hybrid genetic algorithm for permutation flowshop
scheduling problems with total flowtime minimization. Eur J Oper Res 196(3):869–876

22. Hong SS, Yun J, Choi B, Kong J, Han MM (2012) Improved WTA problem solving method
using a parallel genetic algorithm which applied the RMI initialization method. In: The 6th
international conference on soft computing and intelligent systems, vol 20–24, pp 2189–2193

23. Yao HM, Cai MD, Wang JK, Hu RK, Liang Y (2013) A novel evolutionary algorithm with
improved genetic operator and crossover strategy. Appl Mech Mater 411–414:1956–1965

24. Kazimipour B, Li X, Qin AK (2013) Initialization methods for large scale global
optimization. IEEE Congr Evol Comput 20–23:2750–2757

25. Dimopoulos C, Zalzala AMS (2000) Recent developments in evolutionary computation for
manufacturing optimization: problems, solutions, and comparisons. IEEE Trans Evol Comput
4(2):93–113

26. Fumi A, Scarabotti L, Schiraldi MM (2013) The effect of slot-code optimization in
warehouse order picking. Int J Eng Bus Manag 5(20):1–10

27. Tao F, Zhang L, Zhang ZH, Nee AYC (2010) A quantum multi-agent evolutionary algorithm
for selection of partners in a virtual enterprise, CIRP Ann Manuf Technol 59(1):485–488

28. Oysu C, Bingul Z (2009) Application of heuristic and hybrid-GASA algorithms to tool-path
optimization problem for minimizing airtime during machining. Eng Appl Artif Intell
22(3):389–396

29. Lv HG, Lu C (2010) An assembly sequence planning approach with a discrete particle swarm
optimization algorithm. Int J Adv Manuf Technol 50(5–8):761–770

30. Kuo CC (2008) A novel coding scheme for practical economic dispatch by modified particle
swarm approach. IEEE Trans Power Syst 23(4):1825–1835

31. Bhattacharya A, Kumar P (2010) Biogeography-based optimization for different economic
load dispatch problems. IEEE Trans Power Syst 25(2):1064–1077

32. Laili YJ, Tao F, Zhang L, Cheng Y, Luo YL, Sarker BR (2013) A ranking chaos algorithm
for dual scheduling of cloud service and computing resource in private cloud. Comput Ind
64(4):448–463

References 125

33. Perez E, Posada M, Herrera F (2012) Analysis of new niching genetic algorithms for finding
multiple solutions in the job shop scheduling. J Intell Manuf 23(3):341–356

34. Prakash A, Chan FTS, Deshmukh SG (2011) FMS scheduling with knowledge based genetic
algorithm approach. Expert Syst Appl 38(4):3161–3171

35. Tasgetiren MF, Pan QK, Suganthan PN, Buyukdagli Q (2013) A variable iterated greedy
algorithm with differential evolution for the no-idle permutation flow shop scheduling
problem. Comput Oper Res 40(7):1729–1743

36. Valente A, Carpanzano E (2011) Development of multi-level adaptive control and scheduling
solutions for shop-floor automation in reconfigurable manufacturing systems. CIRP Ann
Manuf Technol 60(1):449–452

37. Ye A, Li Z, Xie M (2010) Some improvements on adaptive genetic algorithms for reliability-
related applications. Reliab Eng Syst Saf 95(2):120–126

38. Tao F, Qiao K, Zhang L, Li Z, Nee AYC (2012) GA-BHTR: an improved genetic algorithm
for partner selection in virtual manufacturing. Int J Prod Res 50(8):2079–2100

39. Azadeh A, Miri-Nargesi SS, Goldansaz SM, Zoraghi N (2012) Design and implementation of
an integrated taguchi method for continuous assessment and improvement of manufacturing
systems. Int J Adv Manuf Technol 59(9–12):1073–1089

40. Wu TH, Chang CC, Yeh JY (2009) A hybrid heuristic algorithm adopting both boltzmann
function and mufation operator for manufacturing cell formation problems. Int J Prod Econ
120(2):669–688

41. Wang L, Pan QK, Suganthan PN, Wang WH, Wang YM (2010) A novel hybrid discrete
differential evolution a algorithm for blocking flow shop scheduling problems. Comput Oper
Res 37(3):509–520

42. Li JQ, Pan QK, Liang YC (2010) An effective hybrid tabu search algorithm for multi-
objective flexible job-shop scheduling problems. Comput Ind Eng 59(4):647–662

43. Wang XJ, Gao L, Zhang CY, Shao XY (2010) A multi-objective genetic algorithm based on
immune and entropy principle for flexible job-shop scheduling problem. Int J Adv Manuf
Technol 51(5–8):757–767

44. Zhao F, Hong Y, Yu D, Yang Y (2013) A hybrid particle swarm optimization algorithm and
fuzzy logic for processing planning and production scheduling integration in holonic
manufacturing systems. Int J Comput Integr Manuf 23(1):20–39

45. Akpinar S, Bayhan GM, Baykasoglu A (2013) Hybridizing ant colony optimization via
genetic algorithm for mixed-model assembly line balancing problem with sequence
dependent setup times between tasks. Appl Soft Comput 13(1):574–589

46. Muller LF, Spoorendonk S, Pisinger D (2012) A hybrid adaptive large neighborhood search
heuristic for lot-sizing with setup times. Eur J Oper Res 218(3):614–623

47. Moradinasab N, Shafaei R, Rabiee M, Ramezani P (2013) No-wait two stage hybrid flow
shop scheduling with genetic and adaptive imperialist competitive algorithms. J Exp Theor
Artif Intell 25(2):207–225

48. Yun YS, Moon C, Kim D (2009) Hybrid genetic algorithm with adaptive local search scheme
for solving multistage-based supply chain problems. Comput Ind Eng 56(3):821–838

49. Yildiz AR (2009) Hybrid immune-simulated annealing algorithm for optimal design and
manufacturing. Int J Mater Prod Technol 34(3):217–226

50. Noktehdan A, Karimi B, Kashan AH (2010) A differential evolution algorithm for the
manufacturing cell formation problem using group based operators. Expert Syst Appl
37(7):4822–4829

51. Ho WH, Tsai JT, Lin BT, Chou JH (2009) Adaptive network-based fuzzy inference system
for prediction of surface roughness in end milling process using hybrid taguchi-genetic
learning algorithm. Expert Syst Appl 36(2):3216–3222

52. Zhang H, Zhu Y, Zou W, Yan X (2012) A hybrid multi-objective artificial bee colony
algorithm for burdening optimization of copper strip production. Appl Math Model
36(6):2578–2591

53. Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee
colony-based approach. Inf Sci 220(20):399–407

126 4 Improvement and Hybridization of Intelligent Optimization Algorithm

Chapter 5
Parallelization of Intelligent Optimization
Algorithm

Today, different kinds of hardware for computing are more and more powerful, in
accordance with large scaled complex computing tasks. From multi-core computer
to clusters, various parallel architectures are developed for computing acceleration.
In terms of the long time iteration and population based mechanism of intelligent
optimization algorithm, parallelization is attainable and imperative in many
complex optimization. Among the existing parallel methods developed for intel-
ligent optimization algorithm, almost all of them are established upon population
division with periodical communication. In several cases, the performances of
different topologies and different communication mechanisms are varied. Thus in
acceleration of intelligent optimization algorithm, the selection and design of
topology and communication mechanism are two crucial parts and can also be
configured flexibly.

That is to say, the implementation of different topology and communication
mechanism can be encapsulated into modules according to different hardware
architectures. These modules are independent with the operators applied in dif-
ferent sub-populations, thus can be reused like operators.

According to such idea, in this chapter, we firstly introduce the parallel
implementation ways of intelligent optimization algorithm on different hardware
architectures. Then we elaborate the typical parallel topologies based on general
population division. After that, two configurable parallel ways are presented in
different hardware both with module based configuration idea.

5.1 Introduction

As parallel technology continues to evolve, peta-flops parallel computers, large-
scaled distributed clusters are emerging in several areas. From the perspective of
computing hardware, the pure computing capabilities are largely improved.

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_5

127

However, the development is gradually out of Moore’s law. That means, the
computing speed is no longer grown with the increased computing cores. No
matter in manufacturing or industrial engineering, high performance hardware not
only did not bring about enough acceleration, but also induced several problems,
such as load imbalance, communication blocking, etc., with large energy wasting.
Therefore, the performance of parallel technology depends not only on its hard-
ware, but also on the computing and communication assignments and the algo-
rithm design.

In manufacturing, facing with mass productive resources and large-scaled tasks,
the optimal problems such as resource scheduling, workflow arrangement and part
design in diverse networked manufacturing modes are becoming more and more
complex. Its evaluation indexes are generally non-linear functions, and the pro-
duction steps are increased. For accelerating the whole process, the attention is
gradually switching from accuracy improvement to parallelization digging. In such
heterogeneous manufacturing system, the parallelization of optimization algo-
rithms is the most important part. That is because both coarse grained and fine
grained manufacturing tasks are directly scheduled and parallelized in distributed
resources through different kinds of algorithms. The efficiency of task execution is
decided by optimization algorithms. If we have an efficient optimization algorithm
with high decision accuracy and high speed, then the whole system can be
effectively accelerated.

Hence, the parallelization of intelligent optimization algorithms for diverse
manufacturing optimization problems is of the essence. Back to its basic operators,
according to the theory of ‘‘no free lunch’’ pointed out by [1], any performance
improvement in algorithm needs some sacrifice from other sides. For large scaled
problems, high quality solutions are obtained either by increasing iteration number
and population number, or by adding other improved and hybrid operators. All of
these modifications increase the time consumption in decision. Population-based
parallelization can largely reduce the time consumed by the operators with high
computing complexity. Its mainframe can be shown in Fig. 5.1. In such frame-
work, more operators can be applied with lesser individuals in each sub-popula-
tion. But in each sub-population, if without communication, the independent
iteration will be much less efficient. That is to say, the accuracy preservation is
realized by periodical individual exchange among sub-populations.

Based on the framework, parallel intelligent optimization algorithm can be
designed and implemented in any multi-processor hardware with uniform com-
munication topology and individual exchange mechanism. The whole design
architecture can be represented in Fig. 5.2. With the characteristic of natural
concurrency of intelligent algorithms, since the early 90th, a series of parallel
intelligent optimization algorithms are proposed. Most of these algorithms are
under three typical modes [2]: master-slave mode, coarse-grained mode and fine-
grained mode.

128 5 Parallelization of Intelligent Optimization Algorithm

(1) Fine-grained mode [3].
In fine grained mode, each sub-population contains only one or two indi-
viduals, and operators are executed between different parallel nodes. There
are no periodic exchanges but huge communications. In this mode, neighbor
structure which decide the scope of learning, cross and exchange between
individuals are the main consideration. It defines the information propagation
path in the whole population. Generally, for small sized population, large
scope structure is suitable, while for large sized population, box structure
with four to eight groups are more adaptable. Shapiro et al. [4] have taken

Initialization

Operator1

Operator2

Exchange?

Exchange excellent individuals

Operator1

Operator2

Exchange?

…

…
…No

Yes Yes

Satisfied?

Output

No

Yes

Operator1

Operator2

Exchange?
NoNo

Fig. 5.1 The general framework of parallel intelligent optimization algorithm

Parallel Intelligent Optimization Algorithm

Fine grained
mode

Master-slave
mode

Coarse grained
mode

Topology Migration mechanism

Multi-core
processor

Cluster GPU FPGA

Hardware

Parallel mode

Influence factors

Fig. 5.2 The design architecture of parallel intelligent optimization algorithm

5.1 Introduction 129

experiments and discussions based on different neighbor structure and con-
cluded that neighbor structure with four groups is quite adaptable.
However, fine-grained mode can only be implemented in shared memory
architecture because of its huge communication load during iteration. Now-
adays, it is less used.

(2) Master-slave mode [5].
Master-slave mode refers to use one master node to manage other slave nodes
with sub-populations. Operators are executed in slave nodes and individual
exchange is realized through individual reduce and broadcast by master node.
Generally, in each period, slave nodes send their best individuals to master
node. Master node then screen the global best one and send it again back to
slave nodes as a member for next evolution. Communication mainly happens
in the collection and broadcasting process and is much less than which in
fine-grained mode.
This mode is still widely used for different problems, it is easy to implement
and diverse population number and operators can be executed in different
slave node. Uneven loads among master and slaves is the main shortcoming.
In each period, the simultaneously individual sending from slave nodes can
lead to data surging, and all of the slave nodes have to wait for master to
calculating the best one and broadcasting it.

(3) Coarse-grained mode [6].
It’s the most adaptable parallelization mode. Sub-populations are evenly
divided and evolve independently and exchange in specific frequency.
Without supervision of master node, sub-populations exchange excellent
individuals in a specific topology. Communication and computation in each
period are more even than master-slave mode.
In this mode, communication topology and individual migration mechanism
are two main influence factors for the performance. Communication topology
represents the information propagation path of each sub-group. There are
already many typical topologies are presented, such as ring) [7], grid [8] and
full connection and so on. In the case of sparse connection, the information
transforming speed is low, and the whole population has high diversity and
low collaboration. On the contrary, with dense connection, the individuals
can be largely shared with low diversity and high collaboration. Premature is
easily caused in such case. Therefore, the selection of topology is vital.

Besides, migration mechanism can also influence the optimal searching process.
It includes the design of individual number to be shared, the period and the
replacing scheme. The individual number to be shared refers to the number of
individuals sending by each sub-population. The period means the generation
number between two exchanges. The replacing scheme decides which local
individuals are to be replaced by the newly introduced ones from other sub-groups.
This three migration factors, together with topology determine the whole parallel
searching performance. Matsumura et al. [9] had compared different topologies in
some cases, but different migration mechanisms are still to be discussed.

130 5 Parallelization of Intelligent Optimization Algorithm

Clearly, different topologies and migration mechanisms can be reused in dif-
ferent problems. With the idea of dynamic configuration, they can be dynamically
configured in different generation or different node with different hardware.
Therefore, in the sections below, we will follow Fig. 5.2 and briefly talk about
different implementation ways of intelligent optimization algorithm in different
hardware, and then give some typical parallel topologies commonly used in
industrial optimizations. Based on that, the configuration design of parallel intel-
ligent optimization algorithm is elaborated in this chapter.

5.2 Parallel Implementation Ways for Intelligent
Optimization Algorithm

5.2.1 Parallel Implementation Based on Multi-core
Processor

Multi-core processor is a processor that integrates two or more complete cores. To
traditional single-core processor, the way to increase the processing speed is to
improve its work frequency. However, the frequency improvement means the
improvement of manufacturing process, which is not unlimited. Quantum effect
largely restricts the work frequency and the size of transistor. Thus, the method to
boost CPU performance by increasing processor frequency encounters an
unprecedented predicament.

The emergence of multi-core processors brings new hope to the improvement
of processing speed. Large companies such as INTEL and AMD in turn modify the
architectures of CPU, integrate multiple cores in one chip and hence launch dual-
core, three-core and four-core CPU products. Figure 5.3 shows the architecture of
a multi-core processor.

Currently, based on multi-core processor, many researches [10] focus on the
design of parallel programs and parallel technology (e.g. OpenMP). Among the
many parallel optimization algorithms based on multi-core processor, some are
implemented with the help of OpenMP techniques. In fact, as long as the pro-
grammers encode the optimization algorithms in parallel programs and run them
on parallel multi-core processor computers, these parallel algorithms can be well
implemented. Accordingly, Mahinthakumar and Saied [11] successfully completed
the parallel Genetic Algorithm (GA) on multi-core processor while Wang et al.
[12] made the parallel Particle Swarm Optimization Algorithm possible and took
advantage of it to solving facility location problems. Rajendran and Ziegler [13]
well introduced parallel Ant Colony Algorithm based on multi-core processor and
solved permutation flowshop scheduling problem.

To sum up, many research and studies have already been conducted on the topic
of multi-core processor parallel optimization algorithms, and their successful
research achievements involve Genetic Algorithm, Particle Swarm Algorithm and
Ant Colony Algorithm, etc.

5.1 Introduction 131

5.2.2 Parallel Implementation Based on Computer Cluster

Computer cluster is a special computer system with a set of loosely integrated
computer software and hardware, which closely collaborates to complete the
computational works efficiently. To some extent, a computer cluster can be
regarded as a single host computer. Moreover, a single computer in the cluster
system is often referred to as a node, usually connected via a LAN, but there are
other possible connections. Computer cluster is usually used to improve the
computing speed and reliability of single computer.

In a computer cluster, the multiple processors usually work in parallel, and
every processor has more than one computational core. Therefore, the level of
parallelism of a computer cluster is far higher than that of a multi-core processor.
Usually, the design of parallel algorithms on computer clusters depends on MPI
and OpenMP programming [14, 15].

In recent years, people have carried on some research about the design of parallel
optimization algorithms based on computer clusters. E.g., Kalivarapu [16] thor-
oughly analyzed and discussed the parallel implementation method of Particle
Swarm Algorithm, including the implementation on computer clusters. Also,
Borovska [17] and Sena et al. [18] programmed optimization Ant Colony Algorithm
on computer clusters and tested it through solving the problem of TSP. However,
other types of cluster optimization algorithms are relatively less.

In short, through designing parallel optimization algorithms on computer
cluster, we can acquire higher level of parallelism than on multi-core processor.
Currently, the relatively mature parallel algorithms are computer cluster-based
Particle Swarm Algorithm and Ant Colony Algorithm.

5.2.3 Parallel Implementation Based on GPU

Computer graphics processor (Graphics Processing Unit, GPU) is defined as
‘a single-chip processor, integrated geometric transformation, illumination, trian-
gular configuration, clipping and drawing engine and other functions, and having

Core 1

cache

Core 2

cache

Core n

cache

Share cache

Multi - core Processor

Fig. 5.3 Multi-core
Processor

132 5 Parallelization of Intelligent Optimization Algorithm

per second at least 10 million polygons handling capacity.’ GPU greatly enhanced
the processing speed of the computer graphics and the graphics quality, and
meanwhile promoted the rapid development of computer graphics applications.
Unlike the serial design pattern of the central processor (Central Processing Unit,
CPU), GPU is initially designed for the graphics processing, thus, has a natural
parallel character. However, the parallelizable instructions in computation are less,
and increasing instruction-level parallelism through superscalar, deep water, long
instruction word cannot achieve good results.

Because the graphics processor is equipped with parallel hardware structure,
thus the calculation performed in the graphics processor has a natural parallelism.
These years many research about the design of GPU-based optimization algo-
rithms emerged. The research in [19, 20] studied how to implement optimization
algorithms on GPU, while Kalivarapu [16] not only achieved the implementation
of Particle Swarm Algorithm on computer clusters, but also on GPU. In addition,
relied on GPU, Zhu and Curry [21] gave a detailed study of Ant Colony Algorithm
and its parallel application, and Chitty [22], Li et al. [23] carried on a specifically
concrete work on the implementation of Genetic Algorithm. There are many other
literatures focused on this field of study, which have done a lot of concrete works.

In summary, nowadays, parallel GPU-based optimization algorithm design has
been extensively studied and has accomplished a variety of intelligent optimiza-
tion algorithms and comparatively good results.

5.2.4 Parallel Implementation Based on FPGA

Field-programmable gate array (FPGA) is a further developed product on the basis
of many programmable devices such as the PAL, GAL, and CPLD. It is a semi-
custom circuits,which is different from the Application Specific Integrated Circuit
(ASIC).

In general, both multi-core processor and graphics processor have fixed hard-
ware circuit structures, on which the design of algorithms fails to have a high level
of parallelism. Moreover, although general-purpose microprocessors are flexible to
design and easy to upgrade, their processing speed and efficiency are relatively
low. On the other hand, ASIC can complete the computation tasks by a specific
operation and processing unit, thus the execution of instructions is in parallel. To
specific integrated circuits, the processing speed and efficiency are higher, but the
development cycle is longer and the design flexibility is less. Therefore, in some
occasions with higher requirements of real-time performance and flexibility,
general-purpose microprocessor or ASIC is not able to solve the problem very
well. FPGA, with a natural parallel hardware structure, is not only flexible to
design and easy to upgrade as general-purpose microprocessor, but also faster and
more efficient as ASIC. Therefore, it provides a new way for the parallel design of
optimization algorithms.

5.2 Parallel Implementation Ways for Intelligent Optimization Algorithm 133

So far, FPGA-based optimization algorithm parallel design is not that much,
and existing research mainly concentrate on the FPGA implementation of Genetic
Algorithm [24, 25] and Ant Colony Algorithm [26]. The studies on other FPGA-
based optimization algorithms, such as Particle Swarm Algorithm, are far less and
need to be further investigated.

Currently, people have carried out series of research about the design of parallel
optimization algorithms, including Genetic Algorithm, Particle Swarm Algorithm
and Ant Colony Algorithm. The common method of design is to program with the
use of OpenMP. Through programming parallel optimization algorithms on
computer clusters, we can obtain a higher level of parallelism than multi-core
processor-based design. What’s more, after the successful implementation of
parallel Genetic algorithm and Particle Swarm Algorithm on computer clusters,
they reap a quite extensive application, and the general pattern is to design pro-
grams by OpenMP and MPI. Until now, the most widely used parallel technology
is the parallel program design based on GPU. Many intelligent optimization
algorithms have been well implemented on GPU, and the results seem bright and
promising. This method mainly takes advantages of the special hardware structure
of GPU. Finally, studies about the algorithm design based on FPGA are chiefly
focused on Genetic Algorithm. As to others types of algorithms, there is no
common parallel method.

5.3 Implementation of Typical Parallel Topologies
for Intelligent Optimization Algorithm

As introduced before, parallel topology represents the connection way among sub-
populations. It controls the transform ways and speeds of excellent individuals, so
as to make the parallel searching process exerting different influences in varied
cases. During existing methods, master-slave topology and ring topology, mesh
topology and full-mesh topology in coarse grained mode are the most typical ones.
In this section, based on MPI architecture, we will introduce them and give brief
MPI implementation of them respectively, from sparse connection to dense con-
nection. Each of the implementation can be encapsulated as modules and reused
with configuration methods.

5.3.1 Master-Slave Topology

As shown in Fig. 5.4a, the operation in slave node contains intelligent optimiza-
tion operators, general evolutionary update steps and individual sending actions,

134 5 Parallelization of Intelligent Optimization Algorithm

(a) (b)

(d)

(e) (f)

(c)

Fig. 5.4 Typical parallel topologies for intelligent optimization algorithm. a Master Slave;
b Single Ring; c Single Mesh; d Double Ring; e Double Mesh; f Full Mesh.

5.3 Implementation of Typical Parallel Topologies 135

while the operation in master node contains only receiving the individuals, cal-
culating the best ones and broadcasting them to slave nodes.

Specifically, the implementation pseudo-code can be represented as follows.

For (each sub-population I)
Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
MPI_Gather(best_individual, 1, gene_struct, root_population, 1, gene_struct,
ROOT, MPI_COMM_WORLD);
If (processor_id == ROOT)

choose n individuals from root_population to obest[n];
End if
MPI_Barrier(MPI_COMM_WORLD);
MPI_Bcast(obest, n, gene_struct, ROOT, MPI_COMM_WORLD);
Insert obest[n] to each sub-population;
If (processor_id != ROOT)

Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End if
End while

End for

In the implementation, best_individual represents the best individual array in
each sub-population to be sent in each period. gene_struct represent the class type
of each individual, it is generated by MPI_Type_struct and contains gene-bits,
individual states and its fitness values. root_population represent the received
individuals in master node (i.e. root node), so that the size of this array are decided
by the number of slave nodes and the size of best_individual. obest[n] then rep-
resents the screened best individuals to be broadcasted in master node. If n = 1,
then only one individual will be selected and broadcasted to other slave nodes. So
the communication load is in part decided by n.

5.3.2 Ring Topology

Ring topology consists of two kinds, single-ring and double-ring topology, as
shown in Fig. 5.4b and c. Among them, single-ring topology can also be named as
the least communication topology. Ring topology is easy to implement and
occupies less bandwidth during communication. Information in this topology are
spread slowly. In MPI programming, only point to point communication mode can

136 5 Parallelization of Intelligent Optimization Algorithm

efficiently implement it. Here takes non-blocking communication as example, the
specific pseudo-codes of single-ring and double-ring topology can be shown as
follows.

(a) Single-Ring Topology

Forward propagation
For (each sub-population I)

Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

MPI_Irecv(obest, scnt, gene_struct, processor_id+1, 123,
MPI_COMM_WORLD, &req);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 123,
MPI_COMM_WORLD, &req2);
Insert obest to each sub-population;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

Back propagation
For (each sub-population I)

Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

MPI_Irecv(obest, scnt, gene_struct, processor_id-1, 123,
MPI_COMM_WORLD, &req);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 123,
MPI_COMM_WORLD, &req2);
Insert obest to each sub-population;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

5.3 Implementation of Typical Parallel Topologies 137

(b) Double-Ring Topology

For each sub-population I
Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

MPI_Irecv(obest_1, scnt, gene_struct, processor_id-1, 123,
MPI_COMM_WORLD, &req1_1);
MPI_Irecv(obest_2, scnt, gene_struct, processor_id+1, 321,
MPI_COMM_WORLD, &req2_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+1, 123,
MPI_COMM_WORLD, &req1_2);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 321,
MPI_COMM_WORLD, &req2_2);
Insert obest_1 and obest_2 to each subpopulation;

End if
Apply algorithm’s operators;
Evaluate solutions in the subpopulation;

End while
End for

In the above codes, obest, obest_1, obest_2 represents temporary arrays for
receiving neighbor individuals, scnt represents the number of individuals to be
migrated and req1_1, req1_2, req2_1 and req2_2 are MPI_Request parameters. It
can be seen that forward propagation and back propagation ring communication
can be separated as two modules and implemented as the above pseudo-code (a).
Then (b) is the fusion of the two single-track communications as double-ring
topology.

5.3.3 Mesh Topology

Mesh topology is similar with ring topology. It contains both left-right and up-
down neighbor communication, while ring topology contains only left-right
neighbor communication. If the process node is less than 9, the communication
will be uneven and cause large exchange load. Also, mesh topology can be
implemented as single-side topology and double-side mesh topology. The key MPI
implementation can be shown as follows.

138 5 Parallelization of Intelligent Optimization Algorithm

(a) Single-side mesh topology

For (each sub-population I)
Initialize sub-population
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

//left-right
MPI_Irecv(obest_1, scnt, gene_struct, processor_id-1, 123,
MPI_COMM_WORLD, &req1_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+1, 123,
MPI_COMM_WORLD, &req1_2);
//up-down
MPI_Irecv(obest_2, scnt, gene_struct, processor_id-m, 321,
MPI_COMM_WORLD, &req1_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+m, 321,
MPI_COMM_WORLD, &req1_2);
Insert obest_1 and obest_2 to each subpopulation;

End if
Apply algorithm’s operators;
Evaluate solutions in the subpopulation;

End while
End for

(b) Double-side mesh topology

For (each sub-population I)
Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

//left-right
MPI_Irecv(obest_1, scnt, gene_struct, processor_id-1, 123,
MPI_COMM_WORLD, &req1_1);
MPI_Irecv(obest_2, scnt, gene_struct, processor_id+1, 321,
MPI_COMM_WORLD, &req2_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+1, 123,
MPI_COMM_WORLD, &req1_2);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 321,
MPI_COMM_WORLD, &req2_2);
//up-down
MPI_Irecv(obest_3, scnt, gene_struct, processor_id-m, 123,
MPI_COMM_WORLD, &req1_1);
MPI_Irecv(obest_4, scnt, gene_struct, processor_id+m, 321,
MPI_COMM_WORLD, &req2_1);
MPI_Isend(best_individual, scnt, gene_struct, processor_id+m, 123,
MPI_COMM_WORLD, &req1_2);
MPI_Isend(best_individual, scnt, gene_struct, processor_id-m, 321,
MPI_COMM_WORLD, &req2_2);
Insert obest_1, obest_2, obest_3, obest_4 to each sub-population;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

5.3 Implementation of Typical Parallel Topologies 139

In such topology, the serial numbers of the neighbors at the up-down side can
be calculated as the integral upper bound of the square root of the whole processor
number.

m ¼
ffi
processor number

p
ð5:1Þ

5.3.4 Full Mesh Topology

In this topology, each sub-population broadcast its best individuals to be migrated.
After that, each sub-population receives multiple individuals and accepts part or all
of them to replace some bad local ones. It is the most communication topology and
have high communication load. Compared with master-slave topology, it is more
likely to cause data surging. In large-scaled distributed parallel architecture, it is
not suitable. In the MPI programming, full mesh topology is easy to implement
with MPI_Allgather. The pseudo-code can be represented as follows.

For (each sub-population I)
Initialize subpopulation;
generation = 0;
While (generation <= MAX_generation OR convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

MPI_Allgather(best_individual, scnt, gene_struct, obest, scnt,
MPI_COMM_WORLD);
Insert obest[n] to each subpopulation;

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

In the implementation, the size of obest n is decided by the migration number
and the whole processor number.

n ¼ scnt � processor number ð5:2Þ

5.3.5 Random Topology

During the above topologies, no matter with dense or sparse connections, have
advantages and disadvantages. For balance the two kinds, Defersha and Chen [27,
28] presented a new random topology for parallelization of intelligent optimization
algorithm in solving manufacturing optimization. In such topology, the exchanges
among sub-populations are decided by a binary matrix. It is generated by a single
node and then broadcast to others to make sure the correct exchange. The
dimension of the matrix is equal to the number of processor nodes. Let A repre-
sents the matrix. If the element aij = 1, then node i will send some excellent
individuals to node j. The value of aij can be calculated as follow [27].

140 5 Parallelization of Intelligent Optimization Algorithm

aij ¼ 1; randðÞ\q and i6¼j
0; otherwise

n
ð5:3Þ

where ‘rand()’ represents random generalized number and q 2 ½0; 1� refers to the
control parameter of communication density. If q is low, the communication is
becoming sparse, vice versa. At the same time, Defersha also concludes that
q ¼ 0:5 is generally suitable for individual exchanges.

In MPI implementation, only point to point mode can be applied. With such
method, we found that the matrix generation and broadcasting still takes extra time
consuming which can not be ignored. Therefore, its performance in different cases
is still to be discussed. The pseudo-code of random topology can be shown as
follows.

For (each sub-population I)
Initialize sub-population;
generation = 0;
obest[n] = 0;
While (generation <= MAX_generation or convergence criterion satisfied)

generation ++;
If (generation % MT == 0)

Generate random_matrix[processor_number][processor_number]; //1 or 0
For (processor_id_i = 1 to processor_number)

For (processor_id_j = 1 to processor_number)
If (i != j && random_matrix[i][j] == 1)

MPI_Irecv(obest[i], scnt, gene_struct, j, 123,
MPI_COMM_WORLD, &req);
MPI_Isend(best_individual, scnt, gene_struct, i, 123,
MPI_COMM_WORLD, &req2);

End if
End for

End for
For (k = 1 to n)

If (obest[k] != 0)
Insert obest[k] to each sub-population;

End if
End for

End if
Apply algorithm’s operators;
Evaluate solutions in the sub-population;

End while
End for

In the above code, random_matrix represents the random matrix A. In each
period, a new random_matrix is generated by root node and broadcast to others.
obest stores the individuals received from other nodes decided by the random
matrix. If obest½i� 6¼ 0, then insert it into the local population and replace a bad
one.

Besides, more information about MPI programming can be found in [29].

5.3 Implementation of Typical Parallel Topologies 141

5.4 New Configuration in Parallel Intelligent Optimization
Algorithm

Generally speaking, in parallel searching, communication is independent with
operators. As with configuration in algorithm improvement and hybridation, par-
allelized algorithms can also be dynamically configured in different hardware
architecture. But with different communication prototypes, parallel configurations
in different hardware are totally different. Therefore, this section mainly focuses on
the parallelization and algorithm configuration on general multi-processors and
FPGA respectively.

In large sized multi-processors, take general cluster with MPI as an example,
configuration can be classified into two kinds, (1) topology configuration, and (2)
operation configuration. Topology configuration refers to invoke different com-
munication topology in different period, while operation configuration here con-
sists of algorithm-based, operator-based and parameter-based configuration
introduced in Chaps. 3 and 4. In small sized hardware, i.e. FPGA, topology
configuration cannot be implemented in most time. Parallelization based on FPGA
is totally different with which in other hardware. Without population division, it
parallelizes operators, encapsulated them as modules and tries to flexibly connect
different parts together. That is to say, the inner part of the module cannot be
changed but only reloaded. Therefore, in FPGA, we could only connect different
kinds of algorithm modules or operator modules in divided generations to realize
flexible configuration, here we call it module-based configuration. The configu-
ration types on the above two hardware architecture can be summarized as shown
in Fig. 5.5.

Regardless of which kinds of hardware we are based, the general design process
of parallel intelligent optimization algorithm can be shown in Fig. 5.6. The steps
contain (1) algorithm design, (2) scale of sub-populations, (3) topology selection,
(4) migration mechanism decision, and (5) algorithm implementation. If we want
to design and implement a parallel intelligent optimization algorithm, we need first
to design a serial algorithm with improved or hybrid operators which can solve the
specific problem with high accuracy. Next, according to the existing environment,
the scale of sub-populations needs to be specified before topology design, for the
reason that the exchange performance of topology depends on the number of sub-
groups. Based on particular topology and algorithm, we could then set the
migration mechanism, i.e. how many individuals to be migrated and which of the
local ones to be replaced. Based on these decisive factors, the parallel algorithm
can finally be implemented. Likely, general design process is quite cumbersome.

If we encapsulate these topologies with various mechanisms, combined with the
above-mentioned serial algorithm parts, the design of parallel intelligent optimiza-
tion algorithm can be easier. Figure 5.7 shows the new configuration process for it. In
this mode, the topology module can be invoked as a function which only imple-
menting data transform and individual replacement. Take ring topology as an
example, the corresponding module mainly contains the following part. That is to

142 5 Parallelization of Intelligent Optimization Algorithm

http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_4

Topology
configuration

Operation
configuration

Multi-core
Computers / Cluster

FPGA
Module-based

configuration

General large sized
architecture

Programmable small
sized architecture

Fig. 5.5 parallel configuration types in different hardware

Serial algorithm design

Decide the number of sub-population
(n)

Design of parallel topology

Decide migration mechanism

Implementation

Oper_1 Oper_1 Oper_1

Oper_2 Oper_2 Oper_2

Oper_m Oper_m Oper_m

Communication

Output

…

…

…

Fig. 5.6 The general design process of parallel intelligent optimization algorithm

Topology configuration
(with migration mechanism)

Decide the number of
sub-population (n)

Algorithm configuration
for each sub-population

Module combination
Oper_11 Oper_12 Oper_1n

Oper_21 Oper_22 Oper_2n

Oper_a1 Oper_b2 Oper_mn

Communication

Output

…

…

…

Fig. 5.7 Configuration process of parallel intelligent optimization algorithm

5.4 New Configuration in Parallel Intelligent Optimization Algorithm 143

say, we just put data sending, receiving and the individual replacement sentences into
the topology module. The parameters of it include sending array, receiving array and
number of individuals to be migrated. In each sub-population, basic operators are
invoked in every generation, while topology module is called at a certain period.

//Topology module
Basic_ring_topology(best_individual, obest, scnt)
{

MPI_Irecv(obest, scnt, gene_struct, processor_id+1, 123, MPI_COMM_WORLD,
 &req);

MPI_Isend(best_individual, scnt, gene_struct, processor_id-1, 123,
MPI_COMM_WORLD, &req2);
Insert obest to each sub-population;

}

//Module Invoking
If (generation % MT == 0)

Basic_ring_topology(best_individual, obest, scnt);
End if

It is clear that in traditional design ways, the selection of topology is dependent
with both the design of serial operators in each sub-group and the hardware
environment. If any of them performs not well, then we need to redesign it again.
Different with the traditional process, we could select the topology firstly only
according to the specific hardware environment. Then in each sub-group, different
operators with uniform population input and output can be tested and applied
respectively. In such case, topology is independent with operators. The only thing
we need to do is module combination. With different operators, the sub-group who
performs better could help other bad performed ones to break out from local
optimal through individual exchange. Then better optimal searching capability can
be preserved with low time consumption for wider complex problems.

In the following sections, we will elaborate different configuration types both in
multi-processor computers and FPGA.

5.4.1 Topology Configuration in Parallelization Based
on MPI

As mentioned previously, topology configuration means to apply multiple topol-
ogies in a parallel algorithm. It also contains two styles, (1) single-domain
topology configuration and (2) multi-domain topology configuration.

Firstly, single-domain topology configuration is to allocate multiple topologies
into different generations with one operation domain, as shown in Fig. 5.8. In such
scheme, although operators in different sub-population are different, they will not
change along with iteration. All sub-populations belong to one domain. After
dividing the generations into several parts, we could change topology module to

144 5 Parallelization of Intelligent Optimization Algorithm

make sub-populations communicating with different ones, as well as in random
topology. Moreover, extra communication is needless. The information propaga-
tion can be easily controlled according to the whole population state. If the pop-
ulation has high diversity, then the topology with dense connection can be applied.
On the contrary, if the population has low diversity, then the topology with sparse
connection is more suitable. Operators in different sub-groups are responsible for
digging solution with lesser members and less time, topology then tries to balance
the searching state and preserve high quality. Following the general searching
rules, topology with sparse connection should be adopted at the beginning for
dynamic exploration. Then topology with dense connection can be used in the end
for population convergence accordingly.

Multi-domain topology configuration, as shown in Fig. 5.9, refers to divide sub-
populations into several domains and apply different topology to each domain. In
each period, sub-population with different algorithms only communicates with the
ones in the same local area through corresponding connection topology. Groups in
different domains will not do exchange any more. For wider information exchange,
we could also divide generations into several parts and regroup the sub-populations
to different topology domains. It is clear that the information propagation is nar-
rower and slower than which in single-domain scheme. It can keep better diversity
state and is more suitable for heterogeneous clusters, in which we could allocate
sparse topology to the nodes with low communication bandwidth and dense

Output

Communication with topology 2

…Alg_1 Alg_2 Alg_nAlg_3

Communication with topology m

…Alg_1 Alg_2 Alg_nAlg_3

Communication with topology 1

…Alg_1 Alg_2 Alg_nAlg_3

…

Generation 1 G

Generation G2

1

G3

Generation Gm-1 Gm

Fig. 5.8 Single-domain topology configuration in parallel intelligent optimization algorithm

5.4 New Configuration in Parallel Intelligent Optimization Algorithm 145

topology to the nodes with high communication speed. In this scheme, one of the
most important steps is regrouping. We could generate a group of random numbers
which refer to the topology numbers in a root node and then broadcast them for
allocating sub-populations uniformly. So, the main drawback of this method turns
out to be the restructuring step which may take many extra times so as to slow down
the whole process. For simplifying the process, people can also configure the same
algorithm for each sub-population with only topology hybridization.

It can be seen that topology configuration is suitable especially for large scale
parallelization with a large number of computing nodes. When sub-populations are
less, multi-topologies are then becoming useless. For example, in a parallel
intelligent optimization algorithm, if there are only four nodes (processors), then
mesh topology has no much difference with full-mesh topology. The control of
changing topology in single-domain scheme and the regrouping step in multi-
domain scheme are both time consuming with low-efficiency.

5.4.2 Operation Configuration in Parallelization Based
on MPI

Correspondingly, in small scale parallelization, operation configuration is more
suitable. As mentioned before, operation configuration means to do three-layer
configurations in each sub-population without topology changing. It is the same
with the parallel configuration in module-based improvement and hybridization
mentioned in Chap. 4. The only difference is that different operators are simul-
taneously executed in multiple processors. It is much easier to design than the
above topology configuration ways. With fixed individual exchanging scheme, the
evolutionary process is more stable.

With limited computing resources, operation configuration in parallel intelli-
gent optimization algorithm can be very adaptable especially for dynamic complex
problems, such as parameter adjustment in part design and dynamic job-shop
scheduling. For instance, for a continuous parameter setting problem in part
design, we could divide the whole population into four groups and applied

Output

Communication topology 1

…Alg_1 Alg_2 Alg_4Alg_3 Alg_5 Alg_6 Alg_7 Alg_8 Alg_n

Communication topology 2 Communication topology 3

Fig. 5.9 Multi-domain topology configuration in parallel intelligent optimization algorithm

146 5 Parallelization of Intelligent Optimization Algorithm

http://dx.doi.org/10.1007/978-3-319-08840-2_4

continuous genetic algorithm (GA), particle swarm optimization (PSO), differen-
tial evolution (DE) and cuckoo search (CS) in sub-populations respectively.
According to ‘no free lunch theory’, these four algorithms are suitable for different
cases. In simultaneously execution with exchanges, the most suitable one in a
specific case will offer its current best solution to others and guide them to better
positions. It the constraints are changed or a new part is needed to be designed,
another algorithm might be a new leader to preserve the whole searching quality.
We need not to design new algorithms, only one scheme with several configured
algorithms can applied to different kinds of problems with good quality. For
achieving such performance, we should note that the algorithms configured in
different sub-populations need to be very different with diverse emphasis on
exploration and exploitation, as well as in the design of serial intelligent optimi-
zation algorithm, for balance searching.

Moreover, it should be note that even in large-scaled parallelization design, we
need not to configure topology and operators both. That is because too much
dynamics will totally break the searching paces and obtain a chaos situation as a
result. Therefore, although configuration is easy to implement, the collaboration
between operators and topologies need to be considered seriously.

5.4.3 Module Configuration in Parallelization Based
on FPGA

In this section, we presented a new parallelization way of intelligent optimization
algorithm on FPGA. With several blank logical resources in FPGA, we could
implement the original operators as multiple arithmetic units. For connecting
them, some state machine is also designed for connecting these units to form a
specific intelligent optimization algorithm. Based on these design structure, we
will implement some typical intelligent optimization algorithm on FPGA and do
some configuration design further in the following chapters.

All of the designs are established based on VHDL (Very-high-speed Hardware
Description Language). It is used to describe a digital system, including its
structure, behaviors, functions and interfaces. The style and grammar of VHDL is
much similar to advanced computer programming languages, except that it stands
for hardware describing. In VHDL, a digital system is called an entity which can
be defined as inner processors and external interfaces separately. After external
interfaces are set up, inner processes can be developed in detail. And then, the
developed entity can be called as a subsystem in order entities. In other to help
readers to learn about the design and validation of intelligent optimization algo-
rithm on FPGA, we will introduce the Virtex-5 family FPGA chips and floating-
point format of IEEE 754 in following.

Firstly, the algorithms designed in this book are implemented and validated
withVirtex-5 family FPGA chips. Figure 5.10 shows their structure. It can be seen

5.4 New Configuration in Parallel Intelligent Optimization Algorithm 147

that there are mainly CLB (Configurable Logic Blocks), PI (Programmable
Interconnection) and PI/OB (Programmable I/O Blocks) inside an FPGA chip.
Except these three components, there are also some other abundant resources, such
as DSP48E for computing, Block RAM for data storage and CMT (Clock Man-
agement Tiles) for clock managing and so on.

A CLB contains several logical resources inside, which are used to implement
combinational circuit and sequential circuit. Each CLB in Virtex-5 includes 2
slices, 8 LUT (Look Up Table), 8 triggers, 2 arithmetic and carry chains, 256-bits
distributed RAM and 128-bits shifting register. DSP48E Slice module in it can
handle 25 9 18 complement multiplication and can also configured as multiplier,
subtracter or accumulator. In the design process of parallel intelligent optimization
algorithm, large amount of computing tasks can be assigned to this module to
execute.

PI
(Programmable Interconnect)

PI/OB
(Programmable Input/Output Blocks)

CLB
(Configurable Logic Blocks)

Fig. 5.10 The inner structure of FPGA

148 5 Parallelization of Intelligent Optimization Algorithm

For different types of chips, the inner resources are different. In Virtex-5 family,
there are five platforms, i.e. LX, LXT, SXT, FXT and TXT. LX and LXT are
mainly used for high-speed logical design, while SXT is primarily applied for
complex digital signal processing. The embedded PowerPC processor of FPGA in
FXT is chiefly designed for the development of embedded system. And the FPGA
of TXT is especially for customized and complete high-performance system. On
account of the abundant logistical resources in FPGA, we mainly considered to use
the FPGA of LX/LXT to design parallel intelligent optimization algorithms
especially for the complex problems with high requirements on real-time decision
efficiency. Here we list the properties of the FPGA chip of Xilinx Virtex-5 LX
platform [30].

From Table 5.1 we can see that XC5VLX50T type FPGA includes
120 9 30 = 3600 CLBs. In the device, there are 48 DSP48E slice modules which
can realize high speed floating point arithmetic together with abundant logistical
resources. The block RAM which is 120 9 18 Kb can store plenty of intermediate
data during algorithm execution. And the CMT which contains 6 time manage-
ment modules is fully enough for counting the optimization time. Therefore,
XC5VLX50T can fully satisfy the design requirements of intelligent optimization
algorithms.

Secondly, the data format adopted by the research is floating-point data format
specified by IEEE 754 standard. The standard divides floating-point data into three
types: single float, double and extended. It includes three sections in the memory:
sign, exponent and mantissa. For different types of floating-point data, the word
lengths of the three sections are different, as shown in Table 5.2.

According to variable symbols shown in Table 5.2, a floating-point data can be
calculated by the following equation.

x ¼ �1ð ÞS � 1:M � 2E�B ð5:4Þ

In the following section, for simplicity, only single-precision floating-point data
format is adopted in our design of FPGA-based intelligent optimization algorithm.
One must notice that the design is not limited in single float precision.

(1) Traditional design process of parallel intelligent optimization algorithms
Multi-core processors, as well as GPU, have their own computing architec-
ture. The processing element has its specific arithmetic unit and controller.
With these units, general design process of parallel intelligent optimization
algorithm can be abstracted and summarized as follows.

Step 1 Analysis of algorithm parallelization: In this step, we need to
extract the parts which can be parallel implemented. Unlike the
parallelization in coarse-grained hardware architecture, in such a fine
grained chip, the cyclic parts in operators of intelligent optimization
algorithm in which the data is processed independently can always
be parallelized directly.

5.4 New Configuration in Parallel Intelligent Optimization Algorithm 149

T
ab

le
5.

1
S

om
e

pr
op

er
ti

es
of

th
e

F
P

G
A

in
V

ir
te

x-
5

L
X

pl
at

fo
rm

D
ev

ic
e

C
L

B
D

S
P

48
E

S
li

ce
B

lo
ck

R
A

M
C

M
T

A
rr

ay
(R

9
C

)
V

ir
te

x-
5

S
li

ce
D

is
tr

ib
ut

ed
R

A
M

(K
b)

18
K

b
36

K
b

M
ax

(K
b)

X
C

5V
L

X
30

80
9

30
4,

80
0

32
0

32
64

32
1,

52
2

2

X
C

5V
L

X
50

12
0

9
30

7,
20

0
48

0
48

96
48

1,
72

8
6

X
C

5V
L

X
85

12
0

9
54

12
,9

60
84

0
48

19
2

96
3,

45
6

6

X
C

5V
L

X
11

0
16

0
9

54
17

,2
80

1,
12

0
64

25
6

12
8

4,
60

8
6

X
C

5V
L

X
15

5
16

0
9

76
24

,3
20

1,
64

0
12

8
38

4
19

2
6,

91
2

6

X
C

5V
L

X
22

0
16

0
9

10
8

34
,5

60
2,

28
0

12
8

38
4

19
2

6,
91

2
6

X
C

5V
L

X
20

T
60

9
26

3,
12

0
21

0
24

52
26

93
6

1

X
C

5V
L

X
30

T
80

9
30

4,
80

0
32

0
32

72
36

1,
29

6
2

X
C

5V
L

X
50

T
12

0
3

30
7,

20
0

48
0

48
12

0
60

2,
16

0
6

X
C

5V
L

X
85

T
12

0
9

54
12

,9
60

84
0

48
21

6
10

8
3,

88
8

6

X
C

5V
L

X
11

0T
16

0
9

54
17

,2
80

1,
12

0
64

29
6

14
8

5,
32

8
6

150 5 Parallelization of Intelligent Optimization Algorithm

Step 2 Parallel programming: It refers to rewrite the algorithms into the
corresponding parallel programming language. This step is quite related
to specific processor type and the whole execution environment.

Step 3 Debugging and improvement: The performance of the same par-
allel program in different multi-core processors is varied. So the
parallel codes need to be modified and improved and generate dif-
ferent version for users to apply.

(2) New design process of parallel intelligent optimization algorithms on
FPGA
As we introduced before, FPGA is a kind of blank processor. It has no fixed
computing architecture, no specific arithmetic unit and controller. Only a group
of programmable logistical resources and other assistant resources are pro-
vided. However, general algorithm is composed by some basic calculations and
process control statements. Therefore, the design of parallel intelligent opti-
mization algorithm in FPGA is different from the above process. Extra design
of relative operational unit and state machine for specific algorithm is quite
essential. Then, the FPGA-based design of parallel intelligent optimization
algorithm can be drawn as the following four steps.

Step 1 Analysis of algorithm parallelization: Firstly, all key basic cal-
culation parts need to be listed and the parts which can be parall-
elized should also be extracted.

Step 2 Design of arithmetic units: According to the key calculation parts
extracted from step 1, we need to design arithmetic units with dif-
ferent functions. Such arithmetic units can either be float-pointing
calculation, or be binary-sequence processor. In this step, the parts
which can be parallelized are implemented in the chip with multiple
logistical resources. The design of calculation units combined with
these resources will execute the corresponding operation in parallel.
So the parallel design of arithmetic units can largely decide the
whole execution performance of the algorithm.

Step 3 Design of state machine: In accordance with the execution process
of the algorithm, we could introduce a state machine to connect and
control these units for iterative searching. Each state can be seen as
an executor of different calculation process. The states can be trig-
gered in parallel.

Table 5.2 IEEE 754 standard floating-point format

Data type Memory bits Word length (bits) Offset (B)

Sign (S) Exponent (E) Mantissa (M)

Single float 1(Highest) 8(23–30) 23(0–22) 32 127

Double 1(Highest) 11(52–62) 52(0–51) 64 1023

Extended 1(Highest) 15(65–79) 65(0–64) 80 16383

5.4 New Configuration in Parallel Intelligent Optimization Algorithm 151

Step 4 Debugging and improvement: No matter the arithmetic units or the
state machine designed in FPGA for a specific intelligent optimi-
zation algorithm require some modifications in different implemen-
tation environments. And for further configuration in solving
different problems, several improved versions for both the arithmetic
units and the state machine are also required.

5.5 Summary

This chapter systematically introduces almost all kinds of parallel ways of intel-
ligent optimization algorithms. Firstly, the implementation of several kinds of
topologies can be applied in many areas for solving complex problem by multi-
core computing resources. With these topologies, a lot of parallel intelligent
optimization algorithms can also be generated quickly. And through generation
division and population division, configuration can also be flexibly implemented in
parallel intelligent optimization algorithm. This chapter presented two kinds of
configuration ways for fully using existing algorithms and solving wider problems
with complex properties. Moreover, the parallelization way of intelligent optimi-
zation algorithms based on FPGA is also introduced.

Of cause all of these configurations are not only based on the establishment of a
group of typical operators and algorithms but also rely on the implementation of
typical topologies in coarse-grained hardware architecture and the design of
arithmetic units and state machines in fined-grained FPGA platform. But in diverse
parallel platform we must know that not the design of operator but the design of
parallel structure and the flexible configuration in different structure worth more in
solving large-scaled optimization algorithms. As a group of new design schemes,
the parallelization of intelligent optimization algorithm based on the concept of
DC-IOA can be applied to reconnect existing operators or algorithms to solve
wider problem more conveniently and more easily.

References

1. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans
Evol Comput 1(1):67–82

2. Crainic TG, Toulouse M (2010) Parallel meta-heuristics. Gendreau M, Potvin J-Y (eds)
Handbook of metaheuristics, vol 146, pp 497–541

3. Collins RJ, Jefferson DR (1991) Selection in massively parallel genetic algorithms. In: The
international conference on genetic algorithms

4. Shapiro BA, Wu JC, Bengali D, Potts MJ (2001) The massively parallel genetic algorithm for
RNA folding: MIMD implementation and population variation. Oxford University Press,
Oxford

5. Sun D, Sung WP, Chen R (2011) Master-slave parallel genetic algorithm based on
MapReduce using cloud computing. Appl Mech Mater 121–126:4023–4027

152 5 Parallelization of Intelligent Optimization Algorithm

6. Lin SC (1994) Coarse-grain parallel genetic algorithms: categorization and new approach. In:
The 6th IEEE symposium on parallel and distributed processing, pp 28–37

7. Beckers MLM, Derks EPPA, Melssen WJ, Buydens LMC (1996) Using genetic algorithms
for conformational analysis of biomacromolecules. Comput Chem 20(4):449–457

8. Fukuyama Y, Chiang HD (1996) A parallel genetic algorithm for generation expansion
planning. IEEE Trans Power Syst 11(2):955–961

9. Matsumura T, Nakamura M, Okech J, Onaga K (1998) A parallel and distributed genetic
algorithm on loosely-coupled multiprocessor system. IEICE Trans Fundam Electron
Commun Comput Sci 81(4):540–546

10. Akhter S, Roberts J (2006) Multi-core programming. Intel Press, Hillsboro
11. Mahinthakumar G, Saied F (2002) A hybrid MPI-OpenMP implementation of an implicit

finite-element code on parallel architectures. Int J High Perform Comput Appl 16(4):371–393
12. Wang D, Wu CH, Ip A, Wang Q, Yan Y (2008) Parallel multi-population particle swarm

optimization algorithm for the uncapacitated facility location problem using openMP. IEEE
Congress Evol Comput 1214–1218

13. Rajendran C, Ziegler H (2004) Ant-colony algorithms for permutation flowshop scheduling
to minimize makespan/total flowtime of jobs. Eur J Oper Res 155(2):426–438

14. Dolbeau R, Bihan S, Bodin F (2007) HMPP: a hybrid multi-core parallel programming
environment. In: Workshop on General purpose processing on graphics processing units
(GPGPU)

15. Rabenseifner R, Hager G, Jost G (2009) Hybrid MPI/OpenMP parallel programming on
clusters of multi-core SMP nodes. In: The 17th Euromicro International conference on
parallel, distributed and network-based processing, pp 427–436

16. Kalivarapu VK (2008) Improving solution characteristics of particle swarm optimization
through the use of digital pheromones, parallelization, and graphical processing units (GPUs).
Iowa State University, Iowa

17. Borovska P (2006) Solving the travelling salesman problem in parallel by genetic algorithm
on multicomputer cluster. In: International Conference on computer systems and
technologies, pp 1–6

18. Sena GA, Megherbi D, Isern G (2001) Implementation of a parallel genetic algorithm on a
cluster of workstations: traveling salesman problem, a case study. Future Gener Comput Syst
17(4):477–488

19. Zhou Y, Tan Y (2009) GPU-based parallel particle swarm optimization. In: IEEE Congress
on Evolutionary computation, pp 1493–1500

20. Mussi L, Nashed YSG, Cagnoni S (2011) GPU-based asynchronous particle swarm
optimization. In: Proceedings of the 13th ACM annual conference on Genetic and
evolutionary computation, pp 1555–1562

21. Zhu W, Curry J (2009) Parallel ant colony for nonlinear function optimization with graphics
hardware acceleration. In: The IEEE International conference on systems, man and
cybernetics, SMC, pp 1803–1808

22. Chitty DM (2007) A data parallel approach to genetic programming using programmable
graphics hardware. In: Proceedings of the 9th ACM annual conference on Genetic and
evolutionary computation, pp 1566–1573

23. Li JM, Wang XJ, He RS, Chi ZX (2007) An efficient fine-grained parallel genetic algorithm
based on gpu-accelerated. In: 2007 NPC workshops IFIP International conference on network
and parallel computing, IEEE, pp 855–862

24. Graham P, Nelson B (1996) Genetic algorithms in software and in hardware-a performance
analysis of workstation and custom computing machine implementations. In: IEEE
symposium on FPGAs for Custom computing machines, pp 216–225

25. Shackleford B, Snider G, Carter RJ, Okushi E, Yasuda M, Seo K, Yasuura H (2001) A high-
performance, pipelined, FPGA-based genetic algorithm machine. Genet Program Evolvable
Mach 2(1):33–60

26. Juang CF, Lu CM, Lo C, Wang CY (2008) Ant colony optimization algorithm for fuzzy
controller design and its FPGA implementation. IEEE Trans Industr Electron 55(3):1453–1462

References 153

27. Defersha FM, Chen M (2008) A parallel genetic algorithm for dynamic cell formation in
cellular manufacturing systems. Int J Prod Res 46(22):6389–6413

28. Defersha FM, Chen M (2009) A parallel genetic algorithm for a flexible job-shop scheduling
problem with sequence dependent setups. Int J Adv Manuf Technol 49(1–4):263–279

29. Pacheco PS (1997) Parallel programming with MPI. Morgan Kaufmann, San Francisco
30. Jose S (2006) http://www.xilinx.com/prs_rls/2006/silicon-vir/0658lxship.htm

154 5 Parallelization of Intelligent Optimization Algorithm

http://www.xilinx.com/prs_rls/2006/silicon-vir/0658lxship.htm

Part III
Application of Improved Intelligent

Optimization Algorithms

Dynamic configuration is designed to provide some new ways to generate more
flexible and robust intelligent optimization algorithm. With different structure of
configuration, most of intelligent optimization algorithms can be extended and
regenerated for high efficient decision in wider range of complex problems. In the
previous chapters, we have elaborated its principle and implementation ways.
Some preliminary tests and the extension frameworks of DC-IOA in the
improvement, hybridization and parallelization of intelligent optimization algo-
rithm are introduced.

Except for the establishment of a general intelligent optimization algorithm
library and the combinations of existing algorithms, the concept of dynamic
configuration and its structures can also be used in design a single algorithm for
specific problem. Therefore, in this part, we will take some typical manufacturing
related problems as examples and design some new improved algorithms for them
from the perspectives of algorithm improvement, hybridization and parallelization
respectively.

This part includes six chapters, Chaps. 6–11. In Chaps. 6 and 7, two improved
algorithms based on the idea of DC-IOA are designed and encapsulated for partner
selection problem and cloud service scheduling problem in cloud manufacturing
respectively. In Chaps. 8 and 9, two hybrid algorithms based on DC-IOA are also
implemented for computing resource allocation problem and service dual sched-
uling problem in distributed integrated manufacturing system respectively. In
Chaps. 10 and 11, the new FPGA-based configurable algorithms are applied for
complex numerical benchmarks and the typical traveling salesman problem. The
performances of the above algorithms are shown in different cases in these
chapters.

http://dx.doi.org/10.1007/978-3-319-08840-2_6
http://dx.doi.org/10.1007/978-3-319-08840-2_11
http://dx.doi.org/10.1007/978-3-319-08840-2_6
http://dx.doi.org/10.1007/978-3-319-08840-2_7
http://dx.doi.org/10.1007/978-3-319-08840-2_8
http://dx.doi.org/10.1007/978-3-319-08840-2_9
http://dx.doi.org/10.1007/978-3-319-08840-2_10
http://dx.doi.org/10.1007/978-3-319-08840-2_11

Chapter 6
GA-BHTR for Partner Selection Problem

In this chapter, GA-BHTR (genetic algorithm maintained by using binary heap and
transitive reduction) [1] for addressing partner selection problem (PSP) in a virtual
enterprise [2] is introduced. Based on ordinary initialization, an improved binary
heap strategy is configured before it with uniform population input and output to
realize initialization improvement. It is designed to simplify the directed acrylic
graph that represents the precedence relationship among the subprojects in PSP
and enhance the searching diversity of the algorithm. Then, in order to avoid
solutions from converging to a constant value early during evolution, multiple
communities are used instead of a single community in GA-BHTR. Operators are
configured in different communities independently. Communication among
communities is executed by periodic interchange.

6.1 Introduction

With economic and market globalization and rapid development and application of
Internet and information technologies, the product upgrading becomes faster and
faster, and the market requirements become more and more uncertain and per-
sonalized. Under this condition, the development of new product becomes a key
element for enterprise to keep core competitive advantage [3–5], especially in the
electronic product market. It is impossible for a single enterprise to meet the
rapidly changing marketing requirement by only integrating the resources inside.
An enterprise survives by having good contacts with other enterprises or compa-
nies who hold complementary assets or products [6].

Virtual enterprise (VE) has been viewed as an effective organizational mode to
solve the above problems. A VE is a temporary enterprise alliance which can meet
the market requirements with low cost, high quality, quick responsiveness and more
customer satisfaction and adapt to the rapidly changing environment [7–9].

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_6

157

The core idea of VE is to organize different enterprises into a logical alliance, in
which members can collaborate with each other to implement full sharing of their
manufacturing resources and capabilities (including skills, technologies, resources,
data, information, and knowledge). More importantly, effective resource sharing
can not only deal with the specific fast changing requirements, but also exploit
market opportunities as well [10, 11].

Specifically, the life cycle of a VE has the following four stages [12–14]:

(1) Creation: When an enterprise wins a contract for a large project and it is
unable to complete it with its own finite capacity, it searches for potential
partners and negotiates with them through the information infrastructure, and
then a VE is created.

(2) Operation: After the contracts signing among partners, the VE manages the
manufacturing process or the implementation of the project.

(3) Evolution: The VE in this stage can be reconfigured or adjusted to meet the
resource requirements when the project has changed.

(4) Dissolution: When the project is fulfilled, the VE is finally dissolved.

The first stage, i.e., the selection of the appropriate partners when a VE is to be
established, is known as the Partner selection problem (PSP). It is a fundamental
and crucial issue for the success of VE.

In order to highlight the innovation works and significance of this chapter, the
related works on PSP are investigated from the aspects of (a) research filed or
content of PSP, (b) the criteria or attributes considered in PSP, and (c) the
approaches or algorithms for addressing PSP.

In terms of research fields or content, the existing studies on partner selection
primarily focus on the following aspects: (a) partner selection for virtual enter-
prises [9, 13, 15, 16, 17, 18], (b) partner selection for dynamic alliances [3, 19] or
strategic alliances [8, 20, 21, 22], (c) partner selection for cooperative wireless
networks [23] and innovation networks [24], (d) partner selection for international
joint ventures [14, 25], (e) partner selection for production networks [26, 27], and
(f) supplier selection in supply chains [22, 28].

Furthermore, there are many attributes or criteria which have been considered
in partner selection in different studies, these attributes are primarily classified into
the following six categories:

(1) Risk-related attributes, including political stability, regional economy status,
financial health, market fluctuations, competency, due date and performance,
etc.

(2) Cost-related attributes, including material cost, financial cost, transportation
(or logistics, delivery) cost, operational cost, and so on.

(3) Time-related attributes, including reaction time, processing time, completion
time, due date, efficiency, delivery (or transportation) time, time sequence,
project (or task) duration, etc.

(4) Quality-related attributes, including technology level, service level, man-
agement level, performance, and so forth.

158 6 GA-BHTR for Partner Selection Problem

(5) Reliability-related attributes, including past performance, financial status,
enterprise image, cooperation history, trust, credit, reputation, etc.

(6) Other attributes, such as capacity resources, enterprise size, organization
structure, etc.

On the other hand, many algorithms and approaches have been proposed for
addressing PSP, the existing methods can be classified into the following four
categories based on the works of [3, 11, 29].

(1) Mathematical programming and modeling approaches [18, 25, 28, 30],
including integer programming [13] and their enhanced types [18].

(2) Rating/linear weighting approaches [14, 15, 19, 20, 31].
(3) Fuzzy decision and multiple attribute decision-making (MADM) approaches

[3], including technique for order preference by similarity to ideal solution
(TOPSIS) method [9, 17], analytic network process (ANP) [8, 21], analytical
hierarchy process (AHP) [32, 33], fuzzy preference programming [15], and
fuzzy set theory.

(4) Optimization approaches and artificial intelligence techniques, including (a)
deterministic algorithms, such as the Branch and Bound algorithm [16, 34];
(b) heuristic and meta-heuristic algorithms, such as genetic algorithm (GA)
[34, 35], particle swarm optimization (PSO) [6, 15, 36], Tabu Search [30, 37],
ant colony optimizer (ACO) [11], quantum multi-agent evolutionary algo-
rithm (QMAEA) [38, 39], artificial intelligence techniques [27] and intelli-
gent optimization algorithms [40].

However, when using approximate algorithms such as genetic algorithm (GA)
to solve PSP, the following problems are often encountered:

(1) The first problem is that the algorithms usually converge quickly to a local
best solution. The reason is that during the evolution, the algorithms would
make all the solutions converge to a relatively better solution which is not the
best global solution. As a result, the algorithms would seldom or never reach
the final best solution.

(2) The second problem is that the operations are time-consuming. To keep the
volume of the community at a constant value, many inferior individuals
should be ‘‘killed’’ according to their fitness value. Killing individuals is a
very time-consuming job. It is therefore difficult to select the best individuals
from a large number of candidates.

(3) The third problem is that the precedence relationship among the subtasks or
the subprojects in a PSP is too complex, and few attempts have been made to
simplify the topology of the established directed acrylic graph according to
the precedence relationship. Much computational effort is usually wasted on
some unnecessary relationships.

In order to address the above problems, a genetic algorithm maintained using
the binary heap and transitive reduction (denoted as GA-BHTR for simplification)

6.1 Introduction 159

is designed in this chapter for addressing some specific PSP issues. The main idea
of this chapter is as follows.

• In the proposed GA-BHTR, the directed acrylic graph of the specific PSP is
simplified using transitive reduction in order to reduce the complexity and the
computational load of the algorithms.

• In order to avoid solutions from converging to a constant value early during
evolution, operators are configured in multiple communities instead of a single
community. The method and algorithms for distributing the individuals to the
multiple communities, and maximizing the differences among different com-
munities are proposed in detail.

• Catastrophe operator is introduced in the proposed GA-BHTR in order to avoid
the solutions from converging to a local best solution too early after many
generations of evolution.

• In order to maintain the capacity of the community, i.e., the number of indi-
viduals existing in a community, in a constant value while enhancing the
diversity of the proposed GA-BHTR, an algorithm using the binary heap to
maintain the data is designed.

6.2 Description of Partner Selection Problem in Virtual
Enterprise

6.2.1 Description and Motivation

In this chapter, the popular product iPhone4 is taken as an example to demonstrate
PSP in VE. The main parts of iPhone4 are shown in the first and third column of
Table 6.1. And the suppliers of these parts are listed in the second and forth
column. The ones with ‘‘H’’ are the suppliers chosen by Apple Company. Fig-
ure 6.1 shows the parts of iPhone4 and its suppliers.

From Fig. 6.1, it can be concluded that most parts of iPhone4 are provided by
other companies located in different countries. The whole production process of
iPhone4 is completed by its business partners. Apple Company is only responsible
for the researches of key technology and design of its products. During the pro-
duction process, Apple Company does not need to hire workers and buy pro-
duction line to produce the products or parts. What does Apple Company do is just
selecting corresponding part suppliers and subcontracting production tasks selec-
ted companies. It makes the process more flexible. Therefore, Apple Company can
focus on the development of new products. The manufacturing of iPhone4 is a
typical application of VE model.

Apparently, in the process, the selection of part suppliers becomes an important
problem for Apply Company, the lead enterprise in the VE. Take DRAM memory
and flash memory chip as an example, many companies like LG, Samsung, Intel,

160 6 GA-BHTR for Partner Selection Problem

Broadcom, Texas instruments, TOSHIBA, Motorola and Infineon can provide
these two parts for Apple Company. Apple Company decides to choose Samsung
to supply the DRAM memory and flash memory chip according to its own criteria.
Bad decision in partner selection will lead to low-quality products, lower profits

Table 6.1 Main parts and the supplier partners of iPhone4

Parts Supplier Parts Supplier

LCD display LG H Flash memory chip LG

Samsung Samsung H
Intel Intel

Broadcom Broadcom

Texas
instruments

Texas instruments

TOSHIBA TOSHIBA

Motorola Motorola

Infineon Infineon

Application processor LG DRAM memory LG

Samsung H Samsung H
Intel Intel

Broadcom Broadcom

Texas
instruments

Texas instruments

TOSHIBA TOSHIBA

Motorola Motorola

Infineon Infineon

WIFI, Bluetooth, GPS
chips

LG Touch-screen
control

LG

Samsung Samsung

Intel Intel

Broadcom H Broadcom

Texas
instruments

Texas instruments
H

TOSHIBA TOSHIBA

Motorola Motorola

Infineon Infineon

Radio frequency memory LG Receiver/transceiver LG

Samsung Samsung

Intel H Intel

Broadcom Broadcom

Texas
instruments

Texas instruments

TOSHIBA TOSHIBA

Motorola Motorola

Infineon Infineon H

6.2 Description of Partner Selection Problem in Virtual Enterprise 161

and bad market reputation. For example, in 2010, the iPhone4 was out of stock for
a period of time. It was hard for people to buy an iPhone4, and the customers had
to wait for a long time to get one after ordering it from the online apple store. Why
did that happen? Because there was something wrong with the parts’ supplier
partner selected by Apple Company and the supply of the LCD can’t meet the
requirements. Obviously, this problem had caused significant loss to Apple
Company. If Apple Company selected the suppliers with more suitable capabili-
ties, the out-of-stock of iPhone4 can be avoided. After the launch of iPhone4, there
is often news that the production of iPhone4 parts severely pollutes the environ-
ment, which causes a certain degree of image damage to Apple Company. This
suggests that during the partner selection of iPhone4, Apple Company should take
consideration of ‘‘green criteria’’ such as carbon emission, and choose environ-
mental-friendly partners.

Figure 6.1 illustrates the model of PSP in iPhone4, the ovals denoted the parts
in iPhone4, the box denoted the suppliers, and each supplier can provide one or
several parts for the iPhone4. The problem is to choose the best supplier for each
part to maximize the benefit and quality and minimize the risk and production
time.

Figure 6.2 shows the PSP in general. A product consists of N parts. And there
are M suppliers. Each supplier can provide one or several parts for the product.
The PSP is to select suitable supplier for each part in the products. The selection of
part supplier is decided by several criteria like cost, time, and carbon emission and
so on. Some of these criteria are to be minimized, and the others are to be
maximized.

In order to solve this problem, a model of the problem needs to be established.

iPhone 4

LCD
display

LG

WIFI,
Bluetooth,
GPS chips

DRAM
memory

Application
processor

Flash
memory

chip

Touch-
screen
control

Receiver/
transceiver

InfineonToshibaBroadcom
Texas

instrument
IntelSamsung

Radio
frequency
memory

Motorola

Fig. 6.1 PSP in iPhone4

162 6 GA-BHTR for Partner Selection Problem

6.2.2 Formulation of the Partner Selection Problem (PSP)

It is assumed that a virtual enterprise has a project, p, to be completed, and p can be
decomposed into M (M ¼ 1; 2; . . .) subprojects, i.e., p ¼ fpj

��j ¼ ð1; 2; 3; . . .;MÞg,
and the corresponding set of candidate partners for pj is xj ¼ fxji

��i
¼ ð1; 2; 3; . . .;MjÞg, where Mj� 1 is the total number of candidate partners for pj.
Set fjit ¼ 1, if subproject pj is contracted (or selected) to candidate partner xji for
period t (t ¼ 1; 2; . . .; T); Otherwise fjit ¼ 0. Let fjit denote the capacity (or available
quantity of resources) of candidate partner xji provided for subproject pj in period t.

Let the evaluation criteria of each partner be Aj ¼ fanjn ¼ ð1; 2; 3; . . .;NÞg, and
N is the number of criteria. In this chapter, four criteria such as completion cost,
risk, quality, and flexibility represented by cost; risk; quality; flexibility are considered.
Let costðxjitÞ denote the cost for pj executed on xji, and riskðxjiÞ; qualityðxjiÞ;
flexibilityðxjiÞ are the evaluation scores of criteria risk, quality, and flexibility,
respectively. Therefore, one has A ¼ fa1; a2; a3; a4g ¼ fcostðxjiÞ; riskðxjiÞ;
qualityðxjiÞ; flexibilityðxjiÞg and N ¼ 4 in this article.

Let the beginning and completion times of pj be tbj and tcj, respectively. Let the
transporting cost between pj (it is assumed that pj is constructed to partner xji) and
pjþ1 (it is assumed that pjþ1 is contracted to partner xðjþ1Þk) be tcostðxji; xðjþ1ÞkÞ.
According to [37], a directed acrylic graph is set up to represent the precedence
relationship among these subprojects. If pj can only begin after the completion of
pk, and arc ðk; jÞ 2 E is added to the graph, where k; j ¼ 1; 2; . . .;M and E is the
edge set representing the precedence relationship.

In this chapter, the aim of PSP is to select an optimal partner for each subproject
and organize a dynamic alliance to completing project p while minimizing the total

product

Part 1

Supplier 1

Part 5Part 4Part 3Part 2 Part 6 Part N

Supplier MSupplier 6Supplier 4 Supplier 5Supplier 3Supplier 2

Fig. 6.2 Partner selection in VE

6.2 Description of Partner Selection Problem in Virtual Enterprise 163

cost and risk, and maximizing the quality and flexibility with the budget and
deadline constraints. The partner selection problem can be formulated as follows:

Objective functions

Min CostðpÞ ¼
XT

t

XM

j¼1

XMj

i¼1

fjitcostðxjiÞ þ
XT

t

XM

j¼1

XMj

i¼1

XMjþ1

k¼1

fjitfðjþ1Þkttcostðxji; xðjþ1ÞkÞ

ð6:1Þ

Min RiskðpÞ ¼
XT

t

XM

j¼1

XMj

i¼1

fjitriskðxjitÞ ð6:2Þ

Max QualityðpÞ ¼
XT

t

XM

j¼1

XMj

i¼1

fjitqualityðxjitÞ ð6:3Þ

Max FlexibilityðpÞ ¼
XT

t

XM

j¼1

XMj

i¼1

fjitflexibilityðxjitÞ ð6:4Þ

Subject to

Maxðtc1; tc2; . . .; tcj; . . .; tcmÞ� TDue ð6:5Þ

where tcj ¼ tbj þ txji and tbj ¼ maxðtck; 8k : ðk; jÞ 2 EÞ ð6:6Þ

XT

t

XM

j¼1

XMj

i¼1

fjitcostðxjiÞ þ
XT

t

XM

j¼1

XMj

i¼1

XMjþ1

k¼1

fjitfðjþ1Þkttcostðxji; xðjþ1ÞkÞ�Budget ð6:7Þ

Xtcxji

t

XM

j¼1

fjitfjit�Qi ð6:8Þ

Xtcxji

t

XM

j¼1

fjit ¼ 1 ð6:9Þ

Equation (6.5) states that the project must be completed no later than the
project deadline TDue. Equation (6.6) describes that the total cost (including the
financial cost and transport cost) cannot be larger than the global budget Budget for
project p. Equation (6.7) imposes that, for any candidate partner i, can provide up
to capability of Qi in that period, and Constraint (8) states that for any period for a
given subproject, only one candidate partner can be selected.

In the following section, the fitness function for the solutions to PSP is as
follow:

164 6 GA-BHTR for Partner Selection Problem

Min fitnessðpÞ ¼ ObjectiveðpÞ þ ConstraintðpÞ ð6:10Þ

where

ObjectiveðpÞ ¼ a1CostðpÞ þ a2RiskðpÞ þ a3=QualityðpÞ þ a4=FlexibilityðpÞ ð6:11Þ

ConstraintðpÞ ¼

b1 �max 0;Maxðtc1; tc2; . . .; tcj. . .; tcmÞ � TDue

� �

þ b2 �maxð0;CostðpÞ � BudegetÞ

þ b3 �
PM

j¼1

PMj

i¼1
maxð0;

Ptcxji

t

PM

j¼1
fjitfjit � QiÞ

0
BBB@

1
CCCA ð6:12Þ

In Eq. (6.10), ObjectiveðpÞ is the original minimization objective function of the
partner selection problem. It combines the four optimization objective (cost mini-
mization, risk minimization, quality maximization, and flexibility maximization)
into a single function by four scaling factors, a1; a2; a3; a4. The factors a1; a2; a3; a4

are used as the corresponding weighted parameters to control the relative signifi-
cance of each objective functions. They normalize the values of CostðÞ, RiskðÞ,
QualityðÞ, and FlexibilityðÞ to comparable ranges such that ObjectiveðpÞ will not be
dominated by a single objective. ConstraintðpÞ is the penalty function to estimate the
infeasibility of a solution. It is the quantified amount of mismatch if a solution is
infeasible, otherwise ConstraintðpÞ is set to 0. In Eq. (6.11), the parameters b1; b2; b3

are the weights controlling the relative significance constraints, respectively.

6.3 GA-BHTR for PSP

6.3.1 Review of Standard GA

The flowchart of a regular GA is shown in Fig. 6.3, and the brief workflows when
using a regular GA to address an optimization problem are as follow [41]:
Step 1 A proper representation and fitness evaluation method is selected or

designed.
Step 2 An initial population consisting of a number of individuals (or candidate

solutions) is randomly generated.
Step 3 The quality or the fitness value of the specific optimization problem of

each individual in the population is evaluated using the selected
evaluation method.

Step 4 If the termination criterion is met, the best solution found thus far is
returned.

Step 5 Some individuals are selected from the current population according to
their fitness values. A new population is generated by applying the
genetic operations such as reproduction, crossover, and mutation.

Step 6 Repeating Steps 3–5 until the stop criterion is satisfied.

6.2 Description of Partner Selection Problem in Virtual Enterprise 165

During the implementation of a regular GA, an iteration (i.e., repeating Steps
3–5) is called a generation. When using GA to address some complex engineering
optimization problems, the key issues are individual representation, fitness eval-
uation, and the crossover and mutation operations.

6.3.2 Framewrok of GA-BHTR

In order to overcome the shortcomings of the standard GA mentioned in the
introduction for addressing PSP, some new configurable components need to be
added in the above framework. By means of the binary head and transitive
reduction, the framework of GA-BHTR for PSP is proposed as shown in Fig. 6.4.

Compared to a regular GA, the red boxes are the new added improvement
strategies and the blue boxes are the reconstruction of existing operators. With the
red boxes, the original algorithm can be improved by configurable component.
With the blue boxes, the structure of searching can also be adjusted flexibly. For
solving specific PSP, the following problems need to be considered.

• How to establish the function of fitness for PSP in GA-BHTR?
• How to simplify the graph that represents the precedence relationship among

the subprojects in PSP?
• How to distribute initial solutions to the different communities while maxi-

mizing the differences among these communities in order to enhance the
diversity of GA-BHTR?

• How to avoid GA-BHTR from converging to a local best solution by using
catastrophe?

Random initial individuals
(population)

Stop criterion
satisfied ?

Generating new population by
selection, crossover, and mutation

NO

YES
Output the

result

Evaluate each individual in
the population

Fig. 6.3 Flowchart of a
regular genetic algorithm

166 6 GA-BHTR for Partner Selection Problem

Generate the graph of PSP

Distribute population into
multiple communities

Satisfy the criteria ?

Intersection
in same

community

Intersection in different
community

NO

Mutation

Evaluation

Maintain data by Binary heap

Satisfy the requirement
of catastrophe ?

Catastrophe

YES

YES

YES Output the result

NO

Initialization

Transitive Reduction

Evaluation

Intersection
in same

community

Intersection
in same

community

NO NO

Fig. 6.4 The framework of the GA-BHTR for PSP

6.3 GA-BHTR for PSP 167

• How to maintain the solutions using the binary heap under the requirements of
enhancing the diversity and reducing the computational time of GA-BHTR
when implementing specific operations of intersection and mutation?

The following sections will describe the way the proposed GA-BHTR addresses
the above problems in detail.

6.3.3 Graph Generation for Representing the Precedence
Relationship Among PSP

When a specific PSP is given, the fist problem to be addressed is to establish the
graph which represents the precedence relationship among the subtasks or sub-
projects of a specific PSP. In this study, the topology of the graph is randomly
generated. The related algorithms for generating the graph are as follows.

class tProjectSet{
private:

bool inset[ProjectCount];
public:

tProjectSet(){
memset(inSet, false, sizeof(inSet));

};
void operator += (int x){

inSet[x] = true;
};
void operator |= (const tProjectSet &x){

For (int i = 0; i < ProjectCount; i ++) if (x.inSet[i]) inSet[i] = true;
};
Bool have(const int pro) const {return inSet[pro];};
tProjectSet prevSet[ProjectCount];
tProjectSet nextSet[ProjectCount];
bool linkExisted[ProjectCount][ProjectCount];
for (int i = 0; i < ProjectCount; i ++){

prevSet[i] += i;
nextSet[i] += i;

}
memset(linkExisted, false, sizeof(linkExisted));
for (int i = 0; I < RelationCount; i ++){

int p, n;
do { p = randPro_1, n = randPro_2;} while (linkExisted[p][n] ||

nextSet[n].have(p));
printf(“%d %d\n”, p, n);
linkExisted[p][n] = true;
for (int pp = 0; pp < ProjectCount; pp ++) if (prevSet[p].have(pp) {

nextSet[pp] |= nextSet[n];
}
for (int nn = 0; nn < ProjectCount; nn ++) if (nextSet[n].have(nn)) {

prevSet[nn] |= prevSet[p];
}

}
}

168 6 GA-BHTR for Partner Selection Problem

Note:

• P and N denote two random points (i.e., subtasks or subprojects);
• LinkExisted[p][n] is designed to check whether there is an edge between p and

n;
• NextSet[n].have(p) is designed to check whether the point p is included in the

subsequence point set of n;
• PrevSet[p].have(pp) is designed to check whether pp is included in the pre-

projects set of p.

The fitness function is used to evaluate the quality of each candidate solution.
When a solution is selected, the fitness value is the total cost of all the selected
partners in the solution while Maxftcjg� TDue. The fitness of a solution is obtained
using the following two steps in this study.

First, the new order of the projects needed is established according to their
topology order. The topology order can be obtained by repeatedly finding projects
without any pre-projects, and the corresponding algorithms are as follows:

void dfs(int p){
vist[p] = true;
for (int i = 1; i <= project_relation[p][0]; i ++){

int next = project_relation[p][i];
if (!vist[next]) dfs(next);

}
Toplist[--listp] = p;

}

void topsort(){
listp = project_num;
memset(vist, false, sizeof(vist));
for (int i = 0; i < project_num; i ++)

if (in_degree[i] == 0) dfs(i);
}

Note:

• The array vist is a sign to demonstrate whether the project has been selected;
• The array toplist is used to store the final topology order of the graph;
• The array project_relation stores the relation among projects.

Second, a simple dynamic programming is used to obtain the value of
Maxftcjg, which is the critical path of the graph. Since the topology order of the
problem has Markov property, hence if Maxftcjg� TDue, the solution is valid.
Meanwhile, the value of fitness is also calculated by f ðxÞ ¼

Pm
j¼1 cxjk . The cor-

responding algorithms of the dynamic programming for obtaining the value of
Maxftcjg are as follows.

6.3 GA-BHTR for PSP 169

memset(startTime, 0, sizeof(startTime));
for (int i = 0; i < prog->projectCount; i ++){

int s = prog->topologyOrder[i];
endTime[s] = startTime[s] + pro_par(s).time;
if (endTime[s] > maxEndTime){

maxEndTime = endTime[s];
if (maxEndTime > prog->timeLimit) break;

 }
for (int I = prog->nextCount[s] – 1; i >= 0; i --){

int t = prog->next[s][i];
if (endTime[s] > startTime[t]) startTime[t] = endTime[s];

 }
}
if (maxEndTime > prog->timeLimit)

fitness = TOO_MUCH_COST;
else{

fitness = 0;
for (int i = prog->projectount – 1; i >= 0; i --) totalCost += pro_par(i).cost;

}

Note:

• topologyOrder[] is used to save the sorted topology order;
• endTime[s] denotes the earliest end time of s;
• startTime[s] denotes the earliest beginning time of s while its pre-objects are all

finished;
• pro_par(s).time is the implementing time for the selected partner to execute task s;
• pro_par(s).cost is the cost for the selected partner to execute task s;
• fitness is the fitness value of a solution.

The time complexity for obtaining the topology order is OðEÞ, where E is the
number of relation, and the time complexity of the dynamic programming is also
OðEÞ. Therefore, the time complexity for calculating the fitness of the solutions is
OðEÞ.

Although the fitness value can be calculated using the OðEÞ algorithm, which is
a relatively fast method, there is also much unnecessary calculation. The graph for
the precedence relationship of PSP is a directed acyclic graph. In this graph, some
of the topological relation is unnecessary because such relations can be totally
replaced by some other edges. Moreover, these edges will never be used as the
critical path. For example, in Fig. 6.5, the relationship between pi and pj is
unnecessary when the critical path is pi ! pk ! pj. The reasons are follows.

Let the earliest time for completing task i, j, and k be endTime½i�, endTime½j�,
and endTime½k�, and the processing time of task i, j, and k be TimeCost½i�,
TimeCost½j�, and TimeCost½k�, respectively. Then the maximal executing time for
selecting the path pi ! pk ! pj, denoted as Timei!k!j, is as follow.

Timei!k!j ¼ endTime½j� ¼ maxðendTime½i�; endTime½k�Þ þ TimeCost½j� ð6:13Þ

And the maximal executing time for selecting the path pi ! pj, denoted as
Timei!j, is as follow:

170 6 GA-BHTR for Partner Selection Problem

Timei!j ¼ endTime½j� ¼ endTime½i� þ TimeCost½j� ð6:14Þ

Because endTime½k� ¼ endTime½i� þ TimeCost½k�, and endTime½i�[0,
MaxðendTime½i�; endTime½k�Þ ¼ endTime½k�[endTime½i�. Therefore Timei!k!j [
Timei!j, i.e. the executing time for path pi ! pk ! pj is larger than the path
pi ! pj. It means that when obtaining the value of Maxftcig, the relationship
pi ! pj is unnecessary and can be reduced in this example.

Therefore the edge between pi and pj can be reduced so as to reduce the time
complexity for addressing PSP. For projects pi, pj and pk, if there are existing
direct or indirect relationship between pi and pk, and pk and pj, while pi and pj have
direct relationship, then the direct relationship between pi and pj can be reduced.
The related reducing algorithms are as follows.

for (int k = 0; k < projectCount; k ++) //enumerate projects
for (int i = 0; i < projectCount; i ++)

if (inderectLink[p][i] || link[i][k]) //exist relation
for (int j = 0; j < projectCount; j ++)

if (indirectLink[k][j] || link[k][j]) //exist relation
indirectLink[i][j] = true; //calculate indirect relation

for (int i = 0; i < projectCount; i ++) //enumerate projects

for (int j = 0; j < projectCount; j ++)
if (indirectLink[i][j] && link[i][j])

Link[i][j] = false; //delete the unnecessary relation

Note:

• The array Link represents the direct relations in the graph;
• The array indirectLink represents the indirect relations in the graph;
• The operation that setting Link[i][j] to value of false means deleting the edge

between them.

After the operation of the above transitive reduction, the graph can be sim-
plified greatly and the time complexity for calculating the fitness is reduced
significantly.

Pi
Pj

Pk

Fig. 6.5 Precedence relationship between pi, pj and pk

6.3 GA-BHTR for PSP 171

6.3.4 Distribute Individuals into Multiple Communities

In the traditional GA, there is usually only one community (or populations) during
evolution, which results in most of solutions converge to a constant value after a
number of generations. One of the reasons is that, during the evolution, the
solutions (or individuals) of the next generations are created towards the best
solutions produced in the last generation. It keeps in view the solutions similar to
the best solution in the community in the next generation after a number of
generations. It results in the early convergence of a solution to a local best
solution.

Therefore, some researchers have used multiple communities to avoid the
solutions converge to a constant value too early during the evolution [42–44].
Since the individuals in different communities are independent and different, some
mechanisms have been designed for the intersection operation between the indi-
viduals among different communities, therefore the diversity of solutions is
enhanced, and the probability that the algorithms may converge too early during
evolution can be reduced significantly. For example, if there are two individual G1

in community C1 and individual G2 in community C2, where G1 has a good
segment S1 and G2 has a good segment S2. S1 and S2 may overlap in position. If an
intersection operation is conducted between these two individuals in C1 and C2,
then they can ‘‘learn’’ from each other and generate a better segment. However, if
there is only one community, all the individuals may evolve to a similar solution.
The processes using multiple communities during the evolution are shown in
Fig. 6.6.

In Fig. 6.6, the ith community and jth community reproduce in every contin-
uous generation. After a certain number of generations, they are selected randomly
for intersection. When using multiple communities in GA, the distribution of
initial solutions to the different communities is very important. If the difference of
the solutions in different communities is too small, then there is no distinct
advantage for using multiple communities compared to using a single community.
In order to release the biggest advantage using multiple communities, the

Community_i Community_ j

Community_ i Community_ j

Reproducing
independently

Reproducing
independently

Intersection

Fig. 6.6 Illustration of
intersection between multiple
communities

172 6 GA-BHTR for Partner Selection Problem

difference among different communities should be maximized when distributing
the initial solutions to the different communities.

However, the initial solutions are generated randomly when using multi com-
munities in most related works. The distribution of initial solutions into multiple
communities (DISMC), while maximizing the difference among different com-
munities, can be considered as an NPC problem. In the following sections, a
regular GA is employed to solve the DISMC problem.

It is assumed that there are nðn ¼ 1; 2; 3. . .Þ initial individuals marked with
G1;G2; . . .;Gn, then the DISMC problem is to distribute the n initial individuals
into NcðNc ¼ 1; 2; 3. . .Þ communities while maximizing the difference among each
two pairs of communities.

Let dij be the value of the difference between two individuals Gi ¼
fx1i1 ; x2i2 ; . . .; xkik ; . . .; xmimg and Gj ¼ fx1j1 ; x2j2 ; . . .; xkjk ; . . .; xmjmg, then dij is
calculated as follows:

dij ¼
0 ði ¼ jÞ
Pm

k¼1
Sijk ði 6¼ j; and if xk;ki ¼ xk;ki ; then Sijk ¼ 0; else Sijk ¼ 1Þ

8
<

: ð6:15Þ

The difference information matrix Diff of all the individuals can be represented
as follows.

Diff ¼

d11 � � � d1j � � � d1n

..

. . .
. ..

. . .
. ..

.

di1 � � � dij � � � din

..

. . .
. ..

. . .
. ..

.

dn1 � � � dnj � � � dnn

2
6666664

3
7777775

ð6:16Þ

Let numaðnuma ¼ 1; 2; 3 � � �Þ and numbðnumb ¼ 1; 2; 3; � � �Þ be the numbers of
the individuals in the ath and bth communities, then the difference, Dab, between
the ath community and bth community is defined as follows:

Dab ¼
Xnuma

i¼1

Xnumb

j¼1

dij ð6:17Þ

Therefore, the best solution to the DISMC problem is to make the sum of the
differences among each two pairs of communities, SumDiff , have the biggest
value, i.e., maximize Eq. (6.18).

SumDiff ¼
XNc

a¼1

XNc

b¼aþ1

Dab ð6:18Þ

6.3 GA-BHTR for PSP 173

The DISMC problem cannot be addressed using a simple Polynomial-level
algorithm. In this chapter, a regular GA is employed for addressing the DISCM
problem, and the corresponding steps are as follows:

Step 1 Randomly generate m� n (n;m ¼ 1; 2; 3. . .) individuals, denoted as
G1;G2; . . .;Gn. . .;G2n; . . .;Gmn, as the initial community to be distrib-
uted, and divide them into mgroups evenly and store them in m arrays,
i.e., Arr1;Arr2; . . .;Arri; . . .;Arrm, and Arri ¼ ½Gði�1ÞnGði�1Þn. . .Gin�.

Step 2 Divide the n individuals in each array, e.g., Arri, into NcðNc ¼ 1; 2; 3. . .Þ
communities orderly, i.e., assign the first NUM1 individuals into the first
community, and the following NUM2 individuals into the second
community, the following NUMj individuals into the jth
(j ¼ 1; 2; 3. . .Nc) community. Obviously, after this execution, a simple
solution for the DISMC problem can be generated.

Step 3 Using the following three operations to generate new offsprings for the
specific DISMC problem while keeping some of the characteristics of the
former solution.

(a) Reverse one segment in the individual. For example, randomly take
two numbers i and j, reverse the segment from Gi to Gj, as shown in
Fig. 6.7.

(b) Exchange two random segments of Arri. For example, if one ran-
domly obtains 3 numbers k, l1 and l2 (k, l1 and l2 are all positive
integers, and k � l1� 1 and k þ l2� n), then exchange the related
segments as shown in Fig. 6.8.

(c) Use the mutation operation to keep the diversity of the community.
For each individual, randomly choose two positions i and j, then
exchange the value of them, as shown in Fig. 6.9.

Step 4 In order to keep the volume of community at a constant value and
enhance the efficiency, some individuals would need to be deleted
according to their fitness value. The larger fitness value is, the higher the
survival probability of the individual will be.

Step 5 Evaluate the SumDiff of the new solutions for a specific DISMC
problem.

Step 6 Repeat Steps 3–5 until a relatively satisfactory solution has been found.

G1 Gn..Gj..Gi+1Gi..G2

G1 Gn..Gi..Gj-1Gj..G2

Fig. 6.7 Illustration of the
reverse operation

174 6 GA-BHTR for Partner Selection Problem

6.3.5 Intersection and Mutation in GA-BHTR

Similar to the regular GA, the operations of intersection and mutation are also used
in GA-BHTR. For a specific PSP, the sequence for a candidate solution is not
permutation, therefore an individual in GA-BHTR cannot be reproduced by simply
exchanging its two segments, and as such an exchange is meaningless because it
does not keep any information of the former individuals. Therefore, some specific
intersection and mutation operations are used in GA-BHTR. In the implementation
of GA-BHTR, the method of Russian roulette is used to select candidate solutions
for intersection and mutation.

(a) Intersection in the same community
In GA-BHTR, the capacity of each community is maintained at a constant
integer value N. Two candidate individuals, e.g., Gi ¼ fx1i1 ; x2i2 ; . . .;
xkik ; . . .; xmimg and Gj ¼ fx1j1 ; x2j2 ; . . .; xkjk ; . . .; xmjmg, are selected using the
turntable method and a position k is selected randomly. Then the two indi-
viduals are cut at position k, and their information after the position k is
exchanged. It means that the two individuals change from x1i1

x2i2
. . .xkik

. . .xnin

and x1j1
x2j2

. . .xkjk
. . .xnjn

to x1i1
x2i2

. . .xkjk
. . .xnjn

and x1j1
x2j2

. . .xkik
. . .xnin

.The
corresponding process is illustrated in Fig. 6.10. For obtaining additional
characteristics of the individuals, the intersections are conducted several

G1 ..Gk+l2....Gk..Gk-l1..

G1 ..Gk..Gk-l1Gk+l2..Gk+1..

Gn

Gn

Fig. 6.8 Illustration of the
exchange operation

G1 ..Gj..Gi..

G1 ..Gi..Gj..

Gn

Gn

Fig. 6.9 Illustration of the
mutation operation

6.3 GA-BHTR for PSP 175

times. As a result, V (V ¼ 1; 2; 3 � � � and it is much bigger than N which is the
constant capacity of community) candidates for each community are
generated.
For convenience, x11, x12, x21 and x22 are used to represent the segment
divided from the kth position.

(b) Intersection between different communities
After an amount of generations during the evolution of the algorithm, some
good individuals are generated in the different communities, and the infor-
mation from the different communities can be exchanged in order to enhance
the performance of the algorithm. First, two communities are selected, and
two individuals are selected from the two respective communities. The
probability of the individuals being chosen was calculated using the same
method as described above, while the communities are selected based on
equal probability. The detailed algorithms for the intersection are the same
with that in the same community.

(c) Mutation
Sometimes, in order to move out from the current local optimal or to enhance
the exploration ability of the algorithm and search in an even larger searching
space, the mutation operation is usually used. In GA-BHTR, the flow of
mutation is realized as follows: first an integer number k (k ¼ 1; 2; 3. . . and
k\m) is selected from an individual, then the number in the kth position is
changed into a random x, where x is less than the maximal number of its
partner as shown in Fig. 6.11.

X11 X12

X21 X22

X21 X12

X11 X22

Position K Fig. 6.10 Illustration of an
intersection in the same
community

176 6 GA-BHTR for Partner Selection Problem

6.3.6 Maintain Data Using the Binary Heap

When some generations have completed reproducing, there will be a total of V new
individuals in each community as mentioned before. Obviously, a larger V can
enhance the diversity of the algorithm. However, V is much larger than N which is
the capacity of community, and a larger V will make the algorithm more time-
consuming. Therefore, some solutions with poorer quality will have little chance to
reach the best solution and will need to be killed due to capacity limitation and the
consideration for better efficiency.

Some researchers have used the naïve method to kill the redundant solutions.
First they save the value of the probability of the elements in V to be deleted in an
array, then obtain a random number between 0 and totalRate� 1 (totalRate is the
sum of the probabilities of all elements in V to be killed), and use the sequential
search method to find the elements to be deleted. The time complexity for the
above operation is OðNkill

�VÞ, and Nkill (Nkill ¼ 1; 2; 3. . .) is the number of the
individuals to be killed. The detailed corresponding algorithms are as follows:

int rate[TURNTABLE_SIZE], totalRate;
void int (const int *rateList, const int size){

totalRate = 0;
for (int i = size – 1; i >= 0; i --)

totalRate += (rate[i] = max(rateList[i], 0))

}
int choose(){

if (totalRate == 0) return -1;
int rp = rand() % totalRate, r = 0;
while (rp >= rate[r]) rp -= rate[r++];
totalRate -= rate[r];
rate[r] = 0;
return r;

}

;

Note: The array rate stores the probability of every element being killed.
However, when V is very large, the above naïve algorithm becomes very time-

consuming. Therefore, in this chapter, the authors have designed a binary heap to
maintain the data, and use the turntable maintained by the binary heap to kill the
redundant solutions in V , which will reduce the time complexity to OðNkill

� log VÞ.
The simple algorithms for constructing the binary heap are as follows.

for (int i = size; i > 0; i ++)
totalRate[i] = max(rateList[i - 1], 0) + totalRate[i * 2] + totalRate[i * 2 + 1];

XnXkX1

XnXkX1

Fig. 6.11 Illustration of mutation

6.3 GA-BHTR for PSP 177

Note:
Variable I denotes the uniquely ID of each node (i.e. an element in V);
rateList is used to store the probability of each element to be killed, and its

value is calculated according to its fitness value;
totalRate is the sum of the probabilities of the element and its total sub-ele-

ments to be killed.
In the binary heap, each node manages a section of data and has two sub-nodes.

The graphical display of the binary heap is shown in Fig. 6.12.
In Fig. 6.12, ‘ID’ is the uniquely identification of an element, i.e., the solution,

in V; the ‘Rate’ is the probability of an element to be killed, and its value is
calculated according to its fitness value; the ‘TotalRate’ is the sum of the proba-
bilities of the element and its total sub-elements to be killed.

Moreover, in Fig. 6.12, one can see every node in the binary heap represents an
element in the turntable. When searching a node in the binary heap, one can first
check whether the node is located at the left section of the current node. If the
answer is yes, then look for the node in the left section. Otherwise, one should
check whether the node is located at the right section of the current node. If the
answer is yes, then one should look for the node in the right section. If both the
answers are no, then the current node is the node one is looking for. For example,
if one wishes to search and delete the solution with a random number 12 in the
binary heap as shown in Fig. 6.12, the process of searching is as follows:

ID: 1
TotalRate: 24

Rate: 6

ID: 6
TotalRate: 3

Rate: 3

ID: 4
TotalRate: 4

Rate: 4

ID: 3
TotalRate: 4

Rate: 1

ID: 2
TotalRate: 14

Rate: 3

ID: 5
TotalRate: 7

Rate: 7

Fig. 6.12 The graphical
display of a binary heap

178 6 GA-BHTR for Partner Selection Problem

Step 1 Check the totalRate value of the left sub-tree (node 2) of node 1. Its
totalRate(14) is bigger than the number(12), then continue to search in its
left sub-tree.

Step 2 Check the totalRate value of the left sub-tree (node 4) of node 2. Its
totalRate(4) is smaller than the number(12), so let the number(12) minus
the totalRate(4) of node 4. Then its current value is 8.

Step 3 Check the rate value of node 2. One can see its rate(3) is smaller than the
number (8), so minus the value by the rate of node 2(3) and continue to
search in its right sub-tree. This time its current value is 5.

Step 4 Check the value of the left sub-tree of node 5 and find that it does not
have a left sub-tree. Then one finds the rate(7) of this node 5 is bigger
than the number(5), so the number belongs to this node.

Step 5 For avoiding the numbers from appearing on the same node, after finding
one node, one would need to make its value of rate to zero and modify
the totalRate of its father node recursively.

One can see the time complexity of the above process is from the depth of the
binary heap. Moreover, the structure of the binary heap will never be changed by
the operation. The corresponding algorithms are as follows.

int totalRate[TURNTABLE_SIZE * 2 + 2];
void init(const int *rateList, const int size){

memset(totalRate, 0, sizeof(totalRate));
for (int i = size; i > 0; i --)

totalRate[i] = max(rateList[i – 1], 0) + totalRate[i * 2] + totalRate[i * 2 + 1];
}
int choose(){

if (totalRate[1] == 0) return -1;
int rp = mrand(0, totalRate[1] – 1), r = 1;
while (rp < totalRate[r * 2] || rp >= totalRate[r] – totalRate[r * 2 + 1])

r = (rp < totalRate[r * 2] ? r * 2: (rp -= totalRate[r] – totalRate[r * 2 + 1], r * 2 + 1));
int clearRate = totalRate[r] – totalRate[r * 2] – totalRate[r * 2 + 1];
for (int p = r; p > 0; p /= 2) totalRate[p] -= clearRate;
return r – 1;

}

Note: The function mrand(0, totalRate[1]-1) is generate a random number
between 0 and totalRate[1]-1.

This method allows the enlargement of the capacity of the community because
one can maintain the data quickly by using the binary heap. Obviously, the larger
the volume of data, the greater the advantage of the algorithm is.

6.3.7 The Catastrophe Operation

The solutions may still converge to a local optimal even after some mutation
operations in the traditional GA. Under this condition, the algorithm should move
out from the current local optimal, and search in an even larger searching space.

6.3 GA-BHTR for PSP 179

A lager mutation operator will be needed so as to enhance the exploration and find
new search fields. In the proposed GA-BHTR, a giant mutation called the
‘‘catastrophe’’ is used to overcome this problem.

In the proposed GA-BHTR, T0(T0 ¼ 1; 2; 3 � � �) is defined as the starting
countdown number of the catastrophe at the beginning. If the fitness value of the
best solution in the current generation does not increase, the countdown number
will be minus one in a single generation. If the countdown number reaches zero,
then the catastrophe happens. In this process of catastrophe, every individual in the
community will mutate consecutively for many times. On the opposite, if the fitness
value of the best solution in a generation increases, the starting value of the
countdown number, T , for the next generation will be recalculated dynamically as
follows [45]:

T ¼ max ðTcata � T
0

cataÞ � u; Tcata

� �
ð6:19Þ

where Tcata (Tcata ¼ 1; 2; 3 � � � and Tcata� T0) is the last starting countdown value,
T
0
cata (T

0
cata ¼ 1; 2; 3 � � � and T

0
cata� T0) is the countdown value in the current

generation, and u is a constant coefficient, in the proposed GA-BHTR algorithm.
The related algorithms for the catastrophe operation are as follows:

void catastrophe_reset(){
catastropheCountDown = (catastropheInit = max((int)((catastropheInit –
catastropheCountDown * NEW_CATASTROPHE_COUNT_DOWN_RATE),
catastropheInit));

}
void check_evolution(){

if (check_best()){
evolutionTimes ++;
catastrophe_reset();

 }
else{

catastropheCountDown --;
if (catastropheCountDown <= 0){

init(indi[0], RENASCENCE_VARY_TIMES);
catastropheTimes ++;

 }
 }
}

6.4 Simulation and Experiment

In order to test the effectiveness and efficiency of the proposed operations and
algorithms in GA-BHTR for addressing the different sizes of the partner selection
problems in a virtual enterprise, a group of experiments are conduced. All the
codes of GA-BHTR are programmed using C++, and the algorithms are imple-
mented on an Intel 1.83 MHz PC with 1 GB of RAM under Linux, Ubuntu 9.10.

180 6 GA-BHTR for Partner Selection Problem

The structure of the GA-BHTR is shown in Fig. 6.13. The related key parameters
of GA-BHTR are follows:

• The number of individuals is 100.
• The number of communities is 5.
• The volume of individuals generated in a single round is 1,900.
• The probability for mutation is 80 %.
• The probability for intersection between different communities is 10 %.
• The initial countdown value for applying the catastrophe operation is 800, i.e.,

T0¼ 800 in Eq. (6.19).
• u¼ 2:6 in Eq. (6.19).

Each result is an average of ten test cases. The summary of the results for each
operation in GA-BHTR is discussed in the following sections.

6.4.1 Effectiveness of the Proposed Transitive Reduction
Algorithm

In this section, the time complexity for fitness evaluation is selected as the index to
test the effectiveness of the proposed transitive reduction algorithm in GA-BHTR
for addressing PSPs. The results are shown in Table 6.2.

In Table 6.2, for the number ‘20 ^ 20’ in the column of ‘solution space’, the
first two numbers ‘20’ denote the number of the subprojects of the tested PSPs,
while the next two numbers ‘20’ denote the number of the candidate partners for
each subproject. For example, 20 ^ 20 means there are 20 subprojects of the tested

PSP.CPP

Datamaker.cppGA.h Project.h Heap.h

Func Fitness()Class global

Class community

Class Individual Func Transitive Reduction()

Fig. 6.13 Structure of the GA-BHTR

6.4 Simulation and Experiment 181

PSP and each subproject has 20 candidate partners for selection. The numbers in
the second and the fourth columns in Table 6.2 are the number of relationships
needs to be calculated before and after using transitive reduction algorithm,
respectively, while the third and fifth columns are the corresponding time com-
plexity for fitness evaluation.

It can be seen from Table 6.2 that, when using the proposed transitive reduc-
tion, the time complexity for fitness evaluation can be reduced greatly. The
effectiveness of the proposed transitive reduction algorithm in GA-BHTR for
addressing PSPs is quite apparent.

As many engineering optimization problems can be modeled and represented
using a directed acrylic graph, therefore, the proposed transitive reduction algo-
rithm can be used for reducing the computing complexity for other engineering
optimization problems in addition to PSP.

6.4.2 Effectiveness of Multiple Communities

The aim of this group of experiments is to test the effectiveness for applying the
strategy of multiple communities in GA-BHTR to address the different scales of
the PSPs. The experimental results are shown in Table 6.3.

In Table 6.3, the meaning of the numbers in the solution space is the same with
that in Table 6.2. The numbers in the second column denote the total evolution
generations times for the corresponding algorithms in the experiments. The
numbers in the third and fourth columns are the average minimal fitness value of
the best solutions obtained from the algorithms for the PSPs tested under different
solution space, and the values are the average of ten test cases.

It can be concluded from Table 6.3 that the effectiveness of multiple commu-
nities (here there are five communities) is not visible when the generation and
solution space are relatively small, and some slight advantages can be achieved

Table 6.2 Efficiency of using transitive reduction operation in GA-BHTR

Solution
space

Before using transitive reduction
operation

After using transitive reduction
operation

The number of
relationship for the
PSP (E)

Time
complexity for
fitness
evaluation

The number of
relationship for the
PSP (E)

Time
complexity for
fitness
evaluation

10 ^ 10 30 O(30) 10 O(10)

20 ^ 20 50 O(50) 20 O(20)

30 ^ 30 100 O(100) 38 O(38)

40 ^ 40 200 O(200) 45 O(45)

50 ^ 50 250 O(250) 64 O(64)

182 6 GA-BHTR for Partner Selection Problem

when the generation and solution spaces become larger. But a better result can be
obtained by applying some specific operations or algorithms to keep the diversity
of the communities as discussed before.

6.4.3 Effectiveness of Multiple Communities While
Considering the DISMC Problem

When using multiple communities in GA, the distribution of initial solutions to the
different communities is very important. If the difference of the solutions in the
different communities is too small, then there is no visible advantage for using
multiple communities than using only one community, as shown in Table 6.3. In
order to unleash the major advantages by using multiple communities and achieve
better results and, in the second group experiments, the DISMC problems are
considered, i.e., the difference among the different communities is maximized
when distributing the initial individuals to the multiple communities using the
method mentioned before.

The experimental results are shown in Table 6.4. It can be seen from Table 6.4
that the effectiveness of multiple communities while considering the DISMC
problem is visible this time.

Table 6.3 Performance comparisons between single community and multiple communities

Solution
space

Number of
generations

Average minimal fitness value
using single community

Average minimal fitness value
using five Communities

10 ^ 10 100 90.45 89.34

20 ^ 20 500 125.69 124.44

30 ^ 30 1,000 136.39 133.62

40 ^ 40 10,000 156.49 151.83

50 ^ 50 50,000 214.44 208.86

Table 6.4 Performance comparisons between with and without the consideration of DISMC
problem

Solution
space

Number of
generations

Average minimal fitness value
when considering the DISMC
problem

Average minimal fitness value
without consideration of the
DISMC problem

10 ^ 10 100 87.53 89.34

20 ^ 20 500 120.74 124.44

30 ^ 30 1,000 129.53 133.62

40 ^ 40 10,000 146.72 151.83

50 ^ 50 50,000 203.60 208.86

6.4 Simulation and Experiment 183

Therefore, the idea of maximizing the difference among different communities
when using multi-communities or multi-populations in an evolutionary algorithm
is very effective, especially for solving large scale and large solution space
engineering optimization problems. Furthermore, it is of good reference value
when designing parallel optimization algorithms running on high performance
computers and multi-core CPUs in future.

6.4.4 Effectiveness of the Catastrophe Operation

The third group of experiments is designed to test the effectiveness for applying
the catastrophe in GA-BHTR to address the different scales of the PSPs. The
experimental results are shown in Table 6.5. It can be concluded from Table 6.5
that there is almost no advantage using the catastrophe when the generation is
equal or less than 1,000. The reason is that the initial countdown value (i.e., the
generation) for applying the catastrophe operation is 800. When the generation is
equal to or less than 1,000, the catastrophe operation was not used or only used one
or two times, hence the effectiveness of the catastrophe operation is negligible.
However, when the generations and solutions space become larger, some visible
advantages can be achieved as shown in Table 6.5.

6.4.5 Efficiency of Using the Binary Heap

The aim of the fourth group of experiments is to compare the efficiency, i.e., the
total executing time, of the two methods, i.e., using binary head to maintain the
individuals (i.e., the solutions) and without binary heap maintenance in GA-
BHTR. The experimental results are shown in Fig. 6.14. The horizontal coordinate
in Fig. 6.14 denotes the numbers of evolution generations and the size of the
solution space of the tested PSPs, while the values in the vertical coordinate are the
total executing time for the two methods under different conditions.

Table 6.5 Performance comparisons between with and without the catastrophe operation

Solution
space

Number of
generations

Average minimal fitness value
with the catastrophe operation

Average minimal fitness
value without the catastrophe
operation

10 ^ 10 100 86.34 87.53

20 ^ 20 500 118.51 120.74

30 ^ 30 1,000 126.91 129.53

40 ^ 40 10,000 143.92 146.72

50 ^ 50 50,000 200.13 203.60

184 6 GA-BHTR for Partner Selection Problem

It can be seen from Fig. 6.14 that, by using the proposed binary heap method to
maintain the solutions, the total executing time for GA-BHTR to address some
PSPs is shorter than the method without binary heap maintenance as shown in
Fig. 6.14a. The comparative advantage, however, is not significant. One of the
reasons is due to the small number of the executed generations, and the overall
time required for the experiments in Fig. 6.14a is comparatively lower. As a result,
although using the binary heap to maintain the data can save some executing time,
the saving is quite limited. The other reason is due to the small value of the first
point in the curve in Fig. 6.14a which is 0.31 from the proposed algorithm, which
is much smaller than the value of the last point (539.11) due to the incensement of
the solution space and the generation number. Therefore, the efficiency of the
proposed method is not outstanding compared with traditional method as shown in
Fig. 6.14a.

With the increase of the solution space and the number of generations of the
tested PSPs, the efficiency using the binary heap method to maintain data in GA-
BHTR is higher, as shown in Fig. 6.14b. Hence, the proposed method is more
suitable for addressing complex engineering optimization problems with large
scale solution space.

In Fig. 6.14, the symbol ‘Num_Gen’ denotes the number of generations and
‘SP’ denotes the solution space, respectively.

Although the method using the binary heap to maintain the data can enhance the
efficiency of GA-BHTR, the effect is not very distinct as demonstrated in
Fig. 6.14a. In order to test how much the executing time can be saved using the
proposed algorithm when killing the redundant solutions with poorer quality from
V, an additional group experiments are conducted to compare the efficiency
between the binary heap method and naïve algorithm. The experimental results are
shown in Table 6.6 and Fig. 6.15. The numbers of the first column in Table 6.6 are
the size of the turntable used both in the two methods. The values in the second
and third columns are the implementing time for the two methods to kill the
redundant solutions with poorer quality from V. Each result is an average of ten
test cases, and in each case the points are selected in the turntable maintained using
binary heap for 10,000 times.

From the results shown in Table 6.6 and Fig. 6.15, one can conclude that by
using the binary heap to maintain the data, the time for killing redundant solutions
with poorer quality from V is less than using naïve algorithm. The efficiency using
the binary heap to maintain the data is more distinct under this group experiments.

As the proposed method using the binary heap to maintain the redundant
solutions is used as an independent configurable component to maintain the data
during evolution in the proposed GA-BHTR, it can also be used in other opti-
mization algorithms, such as particle swarm optimization (PSO) and ant colony
optimization (ACO), for enhancing their efficiency.

6.4 Simulation and Experiment 185

Fig. 6.14 Efficiency of using binary heap to maintain data in GA-BHTR. a solutions without
binary heap maintenance; b solutions with binary heap maintenance.

Table 6.6 Efficiency comparisons between the method using binary heap and Naïve algorithm

Size of turntable The method using binary heap (s) Naïve algorithm (s)

100 0.02 0.04

500 0.03 0.18

1,000 0.04 0.36

2,000 0.06 0.74

10,000 0.19 3.66

186 6 GA-BHTR for Partner Selection Problem

6.5 Summary

In order to address the partner selection problem (PSP) in a virtual enterprise, an
improved algorithm named GA-BHTR has been proposed. Several improved
strategies, including the transitive reduction, the catastrophe operator and the
binary heap operator are implemented and configured as components for algorithm
improvements. Combined with the existing operators, i.e., intersection and
mutation, the structure with multiple communities is established. Hybridation
among traditional and new operators can be easily generated. The simulation and
experimental results demonstrated that the structure of multiple communities while
maximizing the differences among these communities, and the catastrophe oper-
ators have good effectiveness for addressing PSPs, and the efficiency of using the
binary heap in GA-BHTR is quite apparent.

References

1. Tao F, Qiao K, Zhang L, Li Z, Nee AYC (2012) GA-BHTR: an improved genetic algorithm
for partner selection in virtual manufacturing. Int J Prod Res 50(8):2079–2100

2. Zhang Y, Tao F, Laili YJ, Hou B, Lv L, Zhang L (2012) Green partner supplier selection in
virtual enterprise based on pareto genetic algorithms. Int J Adv Manuf Technol
67(9–12):2109–2125

3. Feng B, Fan ZP, Ma J (2010) A method for partner selection of co-development alliances
using individual and collaborative utilities. Int J Prod Econ 124:159–170

4. Emden Z, Calantone RJ, Droge C (2006) Collaborating for new product development:
selecting the partner with maximum potential to create value. J Prod Innov Manage
23(4):330–341

5. Afonso P, Nunes M, Paisana A, Braga A (2008) The influence of time-to-market and target
costing in the new product development success. Int J Prod Econ 115(2):559–568

6. Cowan R, Jonard N, Zimmermann JB (2007) Bilateral collaboration and the emergence of
innovation networks. Manage Sci 53(7):1051–1067

0

0.5

1

1.5

2

2.5

3

3.5

4

100 500 1000 2000 10000

T
he

 a
ve

ra
ge

 ti
m

e
fo

r
ki

lli
ng

 th
e

re
du

nd
an

t s
ol

ut
io

ns
 (

s)

Maintained using binary heap

Without binary heap maintenance

Size of turntable

Fig. 6.15 Efficiency comparisons between the method using binary heap and Naïve algorithm

6.5 Summary 187

7. Bremer CF, Eversheim W (2000) From an opportunity identification to its manufacturing: a
references model for virtual manufacturing. CIRP Ann Manuf Technol 49(1):325–329

8. Chen SH, Lee HT, Wu YF (2008) Applying ANP approach to partner selection for strategic
alliance. Manag Decis 46(3):449–465

9. Ye F (2010) An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers
for virtual enterprise partner selection. Expert Syst Appl 75:7050–7055

10. Drissen-Silva MV, Rabelo RJ (2009) A collaborative decision support framework for
managing the evolution of virtual enterprises. Int J Prod Res 47(17):4833–4854

11. Niu SH, Ony SK, Nee AYC (2011) An enhanced ant colony optimiser for multi-attribute
partner selection in virtual enterprises. Int J Prod Res 50(8):2286–2303

12. Rocha AP, Oliveira E (1999) An electronic market architecture for the formation of virtual
enterprises. In: Proceedings of the IFIP TC5 WG5.3/PRODNET working conference on
infrastructures for virtual enterprises: networking industrial enterprises, Porto, Portugal
27–28 Oct, pp 421–432

13. Wu N, Su P (2005) Selection of partners in virtual enterprise paradigm. Robot Comput Integr
Manuf 21(2):119–131

14. Chang SL, Wang RC, Wang SY (2006) Applying fuzzy linguistic quantifier to select supply
chain partners at different phases of product life cycle. Int J Prod Econ 100(2):348–359

15. Wang TC, Chen YH (2007) Applying consistent fuzzy preference relations to partnership
selection. Omega 35(4):384–388

16. Zeng ZB, Li Y, Zhu WX (2006) Partner selection with a due date constraint in virtual
enterprises. Appl Math Comput 175(2):1353–1365

17. Ye F, Li YN (2009) Group multi-attribute decision model to partner selection in the
formation of virtual enterprise under incomplete information. Expert Syst Appl
36(5):9350–9357

18. Jarimo T, Salo A (2009) Multicriteria partner selection in virtual organizations with
transportation costs and other network interdependencies. IEEE Trans Syst Man Cybern Part
C Appl Rev 39(1):124–129

19. Ding JF, Liang GS (2005) Using fuzzy MCDM to select partners of strategic alliances for
liner shipping. Inf Sci 173(1–3):197–225

20. Huang JJ, Chen CY, Liu HH, Tzeng GH (2010) A multiobjective programming model for
partner selection-perspectives of objective synergies and resource allocations. Expert Syst
Appl 37:3530–3536

21. Liou JJH, Tzeng GH, Tsai CY, Hsu CC (2011) A hybrid ANP model in fuzzy environments
for strategic alliance partner selection in the airline industry. Appl Soft Comput
11(4):3515–3524

22. Famuyiwa O, Monplaisir L, Nepal B (2008) An integrated fuzzy-goal-programming-based
framework for selecting suppliers in strategic alliance formation. Int J Prod Econ
113(2):862–875

23. Mukherjee A, Kwon HM (2010) General auction-theoretic strategies for distributed partner
selection in cooperative wireless networks. IEEE Trans Commun 58(10):2903–2915

24. Baum JAC, Cowan R, Jonard N (2010) Network-independent partner selection and the
evolution of innovation networks. Manage Sci 56(11):2094–2110

25. Hajidimitriou YA, Georgiou AC (2002) A goal programming model for partner selection
decisions in international joint ventures. Eur J Oper Res 138(3):649–662

26. Huang XG, Wong YS, Wang JG (2004) A two-stage manufacturing partner selection
framework for virtual enterprises. Int J Comput Integr Manuf 17(4):294–304

27. Fischer M, Jahn H, Teich T (2004) Optimizing the selection of partners in production
networks. Robot Comput Integr Manuf 20(6):593–601

28. Amid A, Ghodsypour SH, Brien CO (2006) Fuzzy multiobjective linear model for supplier
selection in a supply chain. Int J Prod Econ 104(2):394–407

29. Deans I (1999) An approach to the environment management of purchasing in the utilities
sector. Eco-Manage 6(1):11–17

188 6 GA-BHTR for Partner Selection Problem

30. Crispima JA, de Sousab JP (2010) Partner selection in virtual enterprises. Int J Prod Res
48(3):683–707

31. Saen RF (2007) Suppliers selection in the presence of both cardinal and ordinal data. Eur J
Oper Res 183(2):741–747

32. Sari B, Sen T, Kilic SE (2008) AHP model for the selection of partner companies in virtual
enterprises. Int J Adv Manuf Technol 38(3–4):367–376

33. Chan FTS, Kumar N, Tiwari MK, Lau HCW, Choy KL (2008) Global supplier selection: a
fuzzy-AHP approach. Int J Prod Res 46(14):3825–3857

34. Ip WH, Yung KL, Dingwei W (2004) A branch and bound algorithm for sub-contractor
selection in agile manufacturing environment. Int J Prod Econ 87(2):195–205

35. Wang ZJ, Xu XF, Zhan DC (2009) Genetic algorithm for collaboration cost optimization-oriented
partner selection in virtual enterprises. Int J Prod Res 47(4):859–881

36. Bu Y, Zhou W, Yu J (2008) A discrete pso algorithm for partner selection of virtual
enterprise. In: Proceedings of the 2nd IEEE international symposium on intelligent
information technology application. Shanghai, China, pp 814–817

37. Crispim JA, de Sousa JP (2009) Partner selection in virtual enterprises: a multi-criteria
decision support approach. Int J Prod Res 47(17):4791–4812

38. Tao F, Zhao D, Hu Y, Zhou Z (2010) Correlation-aware resource service composition and
optimal-selection in manufacturing grid. Eur J Oper Res 201(1):129–143

39. Tao F, Zhang L, Zhang ZH, Nee AYC (2010) A quantum multi-agent evolutionary algorithm
for selection of partners in a virtual enterprise. CIRP Ann Manuf Technol 59(1):485–488

40. Yeh WC, Chuang MC (2011) Using multi-objective genetic algorithm for partner selection in
green supply chain problems. Expert Syst Appl 38:4244–4253

41. Renner G, Ekart A (2003) Genetic algorithms in computer aided design. Comput Aided Des
35(8):709–726

42. Toledo CFM, França PM, Morabito R, Kimms A (2009) Multi-population genetic algorithm
to solve the synchronized and integrated two-level lot sizing and scheduling problem. Int J
Prod Res 47(11):3097–3119

43. Li Y, Zhang S, Zheng X (2009) Research of multi-population agent genetic algorithm for
feature selection. Expert Syst Appl 36(9):11570–11581

44. Kapanoglu M, Koc IO (2006) A multi-population parallel genetic algorithm for highly
constrained continuous galvanizing line scheduling. Lect Notes Comput Sci 4030:28–41

45. Simplesource (2007) Genetic algorithm for addressing TSP. http://simplesource.blog.163.
com/blog/static/1034140620076104130312/2007.7. Accessed 25 Mar 2010

References 189

http://simplesource.blog.163.com/blog/static/1034140620076104130312/2007.7
http://simplesource.blog.163.com/blog/static/1034140620076104130312/2007.7

Chapter 7
CLPS-GA for Energy-Aware Cloud
Service Scheduling

In this chapter, CLPS-GA (A Case Library and Pareto Solution-based improved
Genetic Algorithm) [1] for addressing Energy-aware Cloud Service Scheduling
(ECSS) in cloud manufacturing is introduced. With the modeling of cloud service
scheduling in distributed integrated manufacturing system, a multi-parent cross-
over operator and a case library for searching is designed. Both of them are based
on the general configurable population-based I/O. In terms of the Pareto searching
procedure, multi-parent crossover operator is programmed based on the original
single-point crossover operator and encapsulated as a new component. For
improving searching diversity, a case library can be constructed based on the
existing GA class with a new storage array and a new case handling operator.
Moreover, based on existing operators of genetic algorithm, a two stage algorithm
structure is established.

7.1 Introduction

Cloud computing is a new technique based on distributed computing, parallel
computing and grid computing. Numerous implementation plans from various
major software enterprises have been proposed, including the Amazon Web Ser-
vices (AWS, Amazon Web services), Google’s App Engine cloud computing
platform, IBM’s blue cloud plan, and Microsoft’s software service (SS) [2]. With
the introduction of virtualization, the processors are no longer dedicated to a single
task, but can be shared by multiple users while creating the illusion that each
separate execution environment is running its own private computer. This has
definitely improved the overall system throughput as well as its infrastructure
resource utilization. Yet it has also resulted in a more massive, diverse and het-
erogeneous resource environment. Now the issue of resource scheduling and
management has become more complex and difficult than ever.

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_7

191

For cloud computing services management centers, as shown in Fig. 7.1, the
concern is not only providing the best quality of service (QoS), usually measured
by task completion time, implementation reliability, etc., but also reducing the
total cost, among which the energy consumption has gradually become a signifi-
cant component. According to a recent report published by the European Union, a
15–30 % decrease in carbon emission is required to keep the increase in global
temperature under 2 centigrade by the year 2020. Gartner, in April 2007, estimated
that the information and communication technology (ICT) generated about 2 % of
the total global dioxide carbon emissions, which is tantamount to the aviation
industry [3]. Bianchini and Rajamony [4] also confirmed that the operation of
cloud management center require high energy usage. Today, a typical management
center with 1,000 racks needs 10 MW of power to operate [3]. This would inev-
itably induce high electricity charges. Therefore, to reduce the carbon emission in
addition to the operation cost, more and more scholars tend to consider energy
consumption as one of optimization indexes during the resource management.
Therefore, the resource scheduling problem in cloud computing is better to be
formulated as a multi-objective optimization (MOO) problem.

Resource scheduling has been proved as a NP-complete problem [5]. Tradi-
tional deterministic optimization algorithms demonstrate limited capability in
dealing with NP-complete problems because of the combinatorial explosion
encountered when the data size is large. In recent years, researchers show much
interest on artificial intelligence methods such as evolutionary computation,
especially genetic algorithm (GA). Owing to its implicit parallelism and intelli-
gence, GA has been applied to solve some large-scale, nonlinear resource
scheduling in clusters or grid systems [6], and has achieved good results. However,
in a world with combination of cloud computing and virtualization, traditional GA
inevitably meets its own limitations when it is employed for scheduling ultra-
large-scale virtual resources: low search speed, risk of falling into a local optimum
and far-from-best use of its parallel mechanism.

In addition, the traditional method of solving a MOO problem is to weight the
relative degree of importance of each target and then transform it into a single
objective optimization (SOO) problem. For resource scheduling models in cloud
computing, this method specifically has two major drawbacks. First, users are
charged on a pay-per-use basis [7, 8] and they often want to choose from several
solutions; while this method can only provide one. Secondly, the scheduling result
is highly sensitive to the values of weighted parameters so that the decision-makers
must acquire a full and comprehensive knowledge of the problem. However, it is
impossible to obtain a generalized set of parameters because different users may
have different needs. Finding out all the possible non-inferior (or non-dominated)
solutions for the decision-makers to select would make more sense. Taking
advantage of the strong global search ability of GA, the solution set distributed in
the Pareto front could be identified. In the meantime, extra efforts should be made
to maintain the diversity of the population.

In a nutshell, this article studies the scheduling of cloud computing resources
with the objectives to minimize both the makespan and energy consumption and

192 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

solves the resource scheduling problem by proposing a hybrid approach to find the
set of Pareto front solutions. The primary contributions of this paper include:

(1) Establishing a model of resource scheduling in a highly heterogeneous cloud
environment with uncertain load information in each processor.

(2) Proposing a new hybrid genetic algorithm approach composed of a case
library (CL) and a multi-objective genetic algorithm (GA) to find the set of
Pareto-front solutions, hence called CLPS-GA. The major components of
CLPS-GA include a multi-parent crossover operator (MPCO), a two-stage
algorithm structure, and a case library.

(3) Verifying the effectiveness of CLPS-GA, specifically the role of MPCO on
solutions’ diversity and quality, and that of case library on algorithm’s
convergence and stability and comparing with other strategies in GA through
experimental simulations.

7.2 Related Works

The operation of a cloud computing system can be divided into five stages: user
request, resource exploration, resource scheduling, service and process monitoring
and returning feedback, in which the third one is the most important part because it
directly influences the final quality of services and the total cost during the process.
The users’ requests in cloud service are commonly represented as a directed acyclic
graph (DAG). Deelman et al. [9] have done considerable work on the planning,

Task 1 Task 3Task 2

User Request

Cloud Management Center

Green Solution

Energy Cost
and Carbon Emission

Revenue(Make Span, Utility,
Reliability,etc.)

Cost (Expense, Energy
Consumption, etc.)

Fig. 7.1 Energy-aware cloud scheduling

7.1 Introduction 193

mapping and data-reuse in the area of DAG scheduling. The Pegasus, proposed by
him, has become a widely used framework that maps complex scientific workflows
onto distributed resources such as the Grid. Other well-known projects in DAG
mapping include GridFlow [10], ICENI [11], GridAnt [12], Triana [13] and Kepler
[14], most of which are based on earliest finish time, earliest starting time or the high
processing capabilities. So basically, the resource is selected according to its
performance.

Recently, as discussed before, from both economic and ecological perspectives,
energy consumption by Cloud infrastructures has become a key concern for cloud
management center. Mayo and Parthasarathy [15] observed that even simple tasks
such as listening to music can consume significant different amount of energy on a
variety of heterogeneous devices, and suggested the service providers to pay
attention to deploy software on right kind of infrastructure which can execute the
software most efficiently. One of the first works that dealt with performance and
energy trade-off was by Chase et al. [16], in which a bidding system to deliver the
required performance level and switching off unused servers was proposed.
Kephart et al. [17] addressed the power-performance tradeoffs using a utility
function approach in a non-virtualized environment. Beloglazov [18] redefined the
architectural principles of power management in virtualized heterogeneous envi-
ronments and proposed a more holistic approach on machine status switching.
Other popular techniques that help reducing power consumption in virtual
machines (VM) include VM consolidation [19] and VM migration [20]. However,
data deployment of each virtual machine within a Cloud management center can
be really hard to maintain. Thus, various indirect load estimation techniques must
be used before most energy-aware schemes are implemented.

As far as algorithm is concerned, the mapping of tasks to computing resources
is an NP-complete problem in the general form. Traditional deterministic sched-
uling methods cannot achieve good results in cloud scheduling problems due to the
potential combinatorial explosion. Meanwhile, more and more artificial intelligent
algorithms have been employed to solve the scheduling problems. Lei and Xiong
[21] proposed an effective GA to minimize the expected makespan and the
expected total tardiness, and confirmed that it outperformed the traditional dis-
patching rules. Jin et al. [22] studied two metaheuristic algorithms with the
objective to minimize the makespan based on shop partitioning and simulated
annealing for multistage hybrid flow shop scheduling problems, and the proposed
approaches had been implemented in a real-life printed circuit board assembly
line. Tang et al. [23] proposed a neural network model and algorithm for dynamic
hybrid flow shop scheduling problem with the objective to minimize average flow
time, or average tardy time, or percentage of tardy jobs. Other attempts on
scheduling problems include tabu search by Ishibuchi et al. [24], particle swarm
optimization by Pandey et al. [25], ant colony optimization by Niu et al. [26], etc.;
most of which study the standard single-objective optimization. Li and Li [27]
considered three QoS criteria for scheduling on the grid, namely payment, deadline
and reliability, and formulated them as utility function, yet still a variation of
single-objective optimization.

194 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

In the past decade, scholars have been working on finding the Pareto front for
MOO problems, of whom the vast majority have been dedicated to multi-objective
evolutionary algorithms (MOEA). Knowles and Corne [28] proposed the Pareto
Archived Evolution Strategy (PAES) algorithm, and proved it to be a nontrivial
algorithm capable of generating diverse solutions in the Pareto optimal set. Coello
Coello and Pulido [29] addressed the MOO by Micro-Genetic Algorithm
(MOGA), where the population memory and external memory are in corporate to
both diversify the search space and archive the non-dominated Pareto solutions.
Furthermore, the Multi-objective particle swarm optimization (MOPSO) is another
class of MOEAs that has been addressed by Coello Coello et al. [30] and Mo-
staghim and Teich [31]. There are other MOO algorithms, which include multi-
objective simulated annealing (MOSA) by Nam and Park [32], multi-objective ant
colony optimization (MOACO) by Garcia-Martinez et al. [33], multi-objective
memetic algorithm (MOMA) by Chi-Keong et al. [34], etc. So far, MOGA and
MOPSO have been proven to have more efficient searching ability and thus are
more likely to obtain Pareto solutions in MOO. Using discrete numbers on
encoding to correlate chromosome’s gene to task-resource mappings, MOGA is
more suitable in cloud scheduling compared to MOPSO.

However, classic GA sometimes encounters problems of low convergence rate,
premature convergence or other issues especially when dealing with high-
dimensional and large-size data. For this reason, many hybridizations have been
proposed, including adaptive genetic algorithm (AGA) [35, 36], chaos genetic
algorithm (CGA) [37, 38], and local genetic algorithm (LGA) [39, 40]. All of the
above-mentioned hybrid algorithms have more or less improved adaptability, local
search ability or global search ability of the algorithm. For the fine-tuning of GA
parameters, fuzzy logic controller (FLC) has been suggested by Gen and Cheng
[41] to regulate crossover ratio, mutation ratio. And Orhan Engin [42] examined
the performances of various reproduction, crossover and mutation operators and
rates and explored the best values using full factorial experimental design. Based
on their work, a new hybrid approach called CLPS-GA, which include a multi-
parent crossover operator, a two-step algorithm structure and concept of case
library and similarity, is proposed and tested in this paper.

7.3 Modeling of Energy-Aware Cloud Service Scheduling
in Cloud Manufacturing

In this paper, the cloud scheduling environment is considered to be highly het-
erogeneous and includes various processors of uncertain production load infor-
mation. The scheduling objectives are multiple. Specifically, the focus is on two
objectives, minimizing the makespan of tasks and energy consumption. The aim is
to find the Pareto set of such MOO problem under the considered environment.

7.2 Related Works 195

7.3.1 General Definition

The resource scheduling center is considered to have two pieces of information: a
collection of user requests and processor information. Each user request is represented
by a DAG, which captures a number of task units involved, each unit’s own properties,
and the relationships among task units. One important property of each task unit that we
must take into account for assignment is the task type. For example, a CPU-bounded
task will spend most of its time on computing. Thus it will be better assigned to
processors with multiple cores or large RAM size. On the other hand, an I/O bounded
task mainly deals with peripheral devices; so it might require processor having a large
buffer and sufficient external frequency, or bandwidth. Other properties of task unit
might include input and output data size, also called the scale of task unit, indicating
how much resources it will need from the processor. Besides, there might be depen-
dencies among task units, meaning that the execution of one task unit might depend on
the completion of a certain set of task units. Figure 7.2 gives an example of DAGs, in
which each node represents a task unit, the color of the node represents its task type,
each directed line between two nodes represents their dependency relationship, and we
can add weight to the edges to depict the flow size. To give a mathematical formulation
of DAG (or user request), it can be roughly denoted as G ¼ ðV; T; E; DIN;DOUTÞ.
The semantics of each parameter are explained as follows.

User Request:

• V ¼ fViji ¼ 1 : ng represents the decomposed task units of each user request,
where n is the total number of task units.

• T ¼ fTiji ¼ 1 : ng denotes the task type of each unit in V, where Ti 2
f1; . . .; Tmaxg with Tmax indicating the total number of task types.

• Eðn� nÞ denotes dependencies between task units in V. Let Eij ¼ 1, if data
obtained from Vi is used by Vj. Otherwise, Eij ¼ 0.

• DINð1� nÞ represents each task unit’s input data size.
• DOUTð1� nÞ represents each task unit’s output data size.

As mentioned before, the virtual resource pool is highly heterogeneous: the
processors in it can be a server, a work station, or even a remote PC. Even for
processors of the same type, saying two servers, their configurations can be quite
different. The immediate result can be a substantial variation in performance even
when they are handling the same task. But in general, we can use the processor
capacity and channel capacity to characterize such heterogeneity in resources.
Processor capacity defines how fast a task can be processed by a certain processor,
which is directly related to the CPU power and random access memory (RAM)
size. It also defines the corresponding cost for processing; in our study, this cost
refers to the energy consumption. Similarly, channel capacity defines the rate and
cost of communication between two processors. Apparently, channel capacity does
not differentiate the task type, since it only deals with data flow. The resource
information, M, can be represented by a set of parameters as M ¼
ðP;TP; S;EP;DC;ECÞ with each parameter explained below.

196 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

Resource Information:

• P ¼ fPiji ¼ 1 : pg: represents a collection of processors, where p is the total
number of processors.

• TPðTmax � pÞ: denotes the computing power of the processor, where TPik

represents time cost for processor Pk to execute the task unit of type i. TPk

denotes the average power of processor k, whose value can be obtained by
calculating the mean of elements in column k of matrix TP.

• S: denotes the memory size of each processor.
• EPðTmax � pÞ: denotes the computing energy consumption rate, where EPik

represents the energy consumed on processor Pk by executing task unit of type
i per unit time per unit data.

• DC: denotes the bandwidth between processors, where DCkl represents the
transferring rate of data from processor Pk to processor Pl.

• EC: denotes the communication energy consumption rate, where ECkl repre-
sents the energy consumed by transferring data from processor Pk to processor
Pl per unit time per unit data.

Mapping Variables:

• X: denotes the mapping between task units and processors. XðiÞ ¼ k means that
task unit Vi has been assigned to processor Pk to be executed. For
8i 2 f1; 2; . . .; ng; XðiÞ 2 f1; 2; . . .; pg.

1

2 3 4

5

1

2 3 4

5 6

7 8 9

10

1

2 3 4

5 6

7 8 9

10 11

12 13 14

15

Task Size=5 Task Size=10 Task Size=15

Represent Task Type 1

Represent Task Type 2

Represent Task Type 3

Fig. 7.2 DAGs of user requests

7.3 Modeling of Energy-Aware Cloud Service Scheduling in Cloud Manufacturing 197

7.3.2 Objective Functions and Optimization Model

As mentioned before, minimizing both the makespan and energy consumption are
selected as the two objectives in this study of resource scheduling in cloud
manufacturing. The two objectives are contradictory in nature, which mainly come
from two aspects:

• Heterogeneity in resources: the fastest resource is not necessarily the cheapest.
• Mechanism of parallelism: makespan is reduced at the cost of more frequent

inter-processor communication, which in turn increases the total energy
consumption.

The two objective functions are first formulated mathematically below.

(1) Makespan

The makespan is defined as the duration from the moment a user submits his
request to the completion of the last task unit. It usually involves waiting time and
processing time. We will first calculate the processing time of the user request.

For the decomposed task units of each request, we need to perform a topo-
logical sorting to make sure that every task unit can only be dependent on those
with smaller indexes. In this way, the total processing time is tantamount to the
completion time of task unit Vn. For each task unit Vi, its completion time
TCompleteðiÞ can be calculated by adding the latest time for all the needed data to
arrive at the current processor and the execution time for the current task unit.
Take the first DAG in Fig. 7.1 as an example, if the completion times of task units
V2, V3 and V4 are known, we will be able to determine when all the input data for
task unit V5 will arrive. Adding the processing time of V5, we can obtain the
completion time of it. Mathematically, the completion time for task unit Vi can be
expressed as

TCompleteðiÞ ¼ max
j¼1:i�1

fEji � TCompleteðjÞ þ Eji � DOUTj

DCXðjÞXðiÞ
g þ TPTiXðiÞDINi

ð7:1Þ

The values of elements in vector TComplete can be obtained recursively. If the
waiting time is ignored, we can claim the value of TCompleteðnÞ to be the
makespan of the user request, where n is the last task unit of the user request of
concern.

However, Eq. (7.1) holds only when the processor is dedicated to the task unit
by which it is assigned. But with virtualization, the fundamental idea is to abstract
the hardware of a single computer into several different execution environments,
creating an illusion that each separate execution environment is running its own
private computer. Therefore, you think you own the CPU, but the ownership is
actually switching back and forth among different users. Similarly, you think you
have the whole memory, yet in fact it is just a virtual memory and you still need to

198 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

swap in and out to get the necessary codes and data into the actual physical
memory. The above two points imply that the degree of multi-threading cannot be
too high, otherwise the CPU would spend quite an amount of time on context
switch and page fault, and worse still, thrashing might happen. Since the degree of
multi-threading cannot be too high, if too much work have been assigned to a
certain processor, some of them need to queue up awaiting the CPU, which adds
up the waiting time. Therefore, the balance of load distribution among processors
is particularly important. However, the major difficulty in achieving the absolute
load balance lies on the lack of current load information of each processor. Though
such information can be measured, the resource providers will not make it public
to management center, and they tend to understate it so as to assume more tasks.
This situation forces us to find another way to get around this problem. Though we
cannot master the information on user requests that have already been assigned, we
can control the load distribution of the user request to be assigned. It is restrictive,
but effective. In this paper, it is believed that the ideal ratio of load distribution
should depend on the memory size and the average computing power of each
processor according to Netto and Buyya [43]. Thus, the load balance is defined as:

LoadBalance ¼
Xp

k¼1

ðLoadPortionðkÞ � BestPortionðkÞÞ2 ð7:2Þ

where,

LoadPortionðkÞ ¼
Pn

i¼1 DINijXðiÞ ¼ kPn
i¼1 DINi

ð7:3Þ

BestPortionðkÞ ¼ Sk=TPkPp
k¼1 Sk=TPk

ð7:4Þ

It is assumed that the initial load distribution on processors satisfies the ideal
ratio, and any deviation from this ratio caused by the current assignment will run a
risk that some processors might become busy, forcing some tasks to be placed into
the waiting queue, in turn leading to a prolonged makespan. Therefore, Load-
Balance can be considered as a risk parameter that could influence the makespan.
Accordingly, the final makespan is defined as:

FinalTComplete ¼ TCompleteðnÞ � ea�LoadBalance ð7:5Þ

In Eq. (7.5), a is a parameter used to indicate the importance of load balance.
When the access requests are high and data traffic flow is heavy, a large a is set to
represent the possible delay on makespan caused by imbalance in load distribution.
While the network is idle, a takes a value of zero, which means that the impact of
LoadBalance on makespan can be ignored.

7.3 Modeling of Energy-Aware Cloud Service Scheduling in Cloud Manufacturing 199

(2) Energy consumption

The energy consumption is defined as all the power used by every pieces of
hardware during the period of fulfilling a user request. The analysis on energy
consumption carried out by Beloglazov [18] reveals that CPU consumes the main
part of energy compared with memory, disk storage and other I/O interfaces.
Specifically for CPU, energy consumption ratio mainly depends on its voltage and
frequency, which means, as long as the working state of CPU is fixed, the energy
consumption ratio will remain unchanged, as expressed in matrices EP and EC.

Equation (7.6) gives the mathematical formula of the total energy consumption,
which comprises of two parts: computing energy consumption and communication
energy consumption. Each part can be further computed as the product of energy
consumption ratio, time span and data size, as shown in Eqs. (7.7) and (7.8),
respectively.

EnergyConsumed ¼ EnergyCompþ EnergyComm ð7:6Þ

EnergyComp ¼
Xn

i¼1

EPTiXðiÞTPTiXðiÞDINi ð7:7Þ

EnergyComm ¼
Xn

i¼1

Xi�1

j¼1

EjiDOUTj

DCXðjÞXðiÞ=ECXðjÞXðiÞ
ð7:8Þ

7.3.3 Multi-Objective Optimization Model for the Resource
Scheduling Problem

Based on the above descriptions, the objective functions and constraints of the
problem can be represented as follows.

(1) Objective functions:

Objective functions can be written as MinðFinalTCompleteÞ and
MinðEnergyConsumedÞ, and based on equations given in Eqs. (7.1)–(7.8), the
formulas of these two objectives can be rewritten as:

Min TCompleteðnÞ � e
a�
Pp

k¼1

Pn

i¼1
DINi jXðiÞ¼kPn

i¼1
DINi

� Sk=TPkPp

k¼1
Sk=TPk

� �2
0

BB@

1

CCA ð7:9Þ

Min
Xn

i¼1

EPTiXðiÞTPTiXðiÞDINi þ
Xn

i¼1

Xi�1

j¼1

EjiDOUTj

DCXðjÞXðiÞ=ECXðjÞXðiÞ

 !
ð7:10Þ

200 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

(2) Constraints:

The mapping variable X defined in Sect. 3.1 can already ensure that the number of
selected services is equal to the number of decomposed task units in the user
request and only one processor is selected for each task unit. Apart from this, there
are other factors to consider.

• Maximum processing time MaxTProcessing for each task unit.
• Maximum communication time MaxTCommunication for each task unit.

For sake of fairness, there should be an upper bound for how long a single task
unit can be allowed to hold a processor or channel. If such a maximum time is
reached, it may suggest that the task is inappropriately assigned and should
probably be re-assigned. Or it is deemed as a ‘‘giant’’ task.

• Maximum processing energy consumption MaxEProcessing for each task unit;
• Maximum communication energy consumption MaxECommunication for each

task unit;

Similarly, there should be an upper bound for how much energy a single task
unit can be allowed to consume. Neither an inappropriate assignment nor a ‘‘giant’’
task is acceptable.

• Acceptable range for load portion [0, UpperLPortion(k)] for processor.

To balance the load distribution, the management center sometimes set a range
on how large the portion of a user request can be assigned to a certain processor.
The lower bound is usually 0, and the upper bound on different processors can be
varied, mainly depending on the processor capacity.

Accordingly, the following constraints can be obtained:

XðiÞ 2 f1; 2; . . .; pg; 8i 2 f1; 2; . . .; ng ð7:11Þ

TPTiXðiÞDINi�MaxTProcessing ð7:12Þ

max
j¼0:i�1

Eji � DOUTj

DCXðjÞXðiÞ

� �
�MaxTCommunication ð7:13Þ

EPTiXðiÞTPTiXðiÞDINi�MaxTProcessing ð7:14Þ

Xi�1

j¼0

EjiDOUTj

DCXðjÞXðiÞ=ECXðjÞXðiÞ
�MaxECommunication ð7:15Þ

Pn
i¼1 DINijXðiÞ ¼ kPn

i¼1 DINi
�UpperLPortionðkÞ ð7:16Þ

Equation (7.11) ensures that each task unit can only select one processor from the
virtual resource pool, and Eqs. (7.12)–(7.16) give constraints from the aspects of

7.3 Modeling of Energy-Aware Cloud Service Scheduling in Cloud Manufacturing 201

http://dx.doi.org/10.1007/978-3-319-08840-2_3

MaxTProcessing, MaxTCommunication, MaxEProcessing, MaxECommunication
and UpperLPortion(k), respectively.

In summary, the resource scheduling problem in cloud computing has been
formulated as a MOO problem subject to various constraints. In the next section,
the proposed CLPS-GA algorithm aimed at finding Pareto solutions for MOO
problems will be described.

7.4 Cloud Service Scheduling with CLPS-GA

This section starts with a brief review on multi-objective combinatorial optimi-
zation and genetic algorithms. Then, a new case library and Pareto solution-based
improved Genetic Algorithm (CLPS-GA) is established.

7.4.1 Pareto Solutions for MOO Problems

The objectives in a MOO problem are normally contradicted. When achieving one
optimal objective, the other objectives may be affected and get worse. Unlike
SOO, which has a unique optimal solution, many new concepts have been intro-
duced in solving MOO problems.

7.4.1.1 Domination and Non-Inferiority

In MOO problems, if individual p has at least one objective better than individual
q, and all of p’s other objectives are no poorer than those of q’s. It is said that
individual p dominates individual q, otherwise individual p is non-inferior to
individual q.

7.4.1.2 Rank, Front and Pareto Solutions

If p dominates q, a lower rank is assigned to p than q. If p and q are non-inferior to
each other, they have the same rank value. Individuals with rank 1 belong to the
first front, individuals with rank 2 belong to the second front, and the rest can be
deduced by analogy. By sorting with rank, individuals can be identified to different
fronts. Normally, individuals in the first front are called the Pareto solutions set
while individuals not in the first front are dominated solutions. Figure 7.3
graphically shows examples of Pareto solutions (closed circles) and dominated
solutions (open triangles) in a bi-objective optimization problem, in which both
objective functions are assumed to be minimized.

202 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

Crowding Distance:
Crowding distance denoted as Distance measures the distance between a particular
individual with others in the same front. The formulas are given as follows.

DistanceðiÞ ¼
XNObj

j¼1

Disði; jÞ; 8i ¼ 1 : NInd ð7:17Þ

DisðindexðiÞ; jÞ ¼ min inf; dataðindexjðiþ 1Þ; jÞ � dataðindexjði� 1Þ; jÞ
� �

; 8i ¼ 2 : NInd � 1
inf; i ¼ 1 or i ¼ NInd

�

ð7:18Þ

Scoreði; jÞ ¼ scoreði; jÞ
1þmaxk¼1:NInd; scoreðk;jÞ6¼infð scoreðk; jÞj jÞ ; 8i ¼ 1 : NInd; j ¼ 1 : NObj

ð7:19Þ

where, NInd represents the number of individuals, and NObj represents the number
of objectives. Equation (7.17) indicates that Distance(i) is the sum of crowding
distance of individual i for each objective j denoted as Dis(i, j) whose value can be
obtained by Eq. (7.18). While data in Eq. (7.18) is the sorted matrix for each
column in matrix Score, where indexj is the returned index for Column j in Score
after sorting, and Score can be calculated by mapping value of objective j of
individual i, denoted as score(i, j), into region (-1, 1), as expressed by Eq. (7.19).

Apparently, the longer the crowding distance, the more difference of objective
function values of two neighboring individuals in the front is; thereby the more
diverse the population is. Note that only individuals in the same front are needed to
calculate the crowding distance; distances between individuals of different fronts
are of no significance.
ParetoFraction:

Pareto Solution
Dominated Solution

Objective 1
O

bj
ec

tiv
e

2

Fig. 7.3 Example of
solutions in MOO problem

7.4 Cloud Service Scheduling with CLPS-GA 203

ParetoFraction is defined as a parameter valued between 0 and 1, representing the
proportion of the number in the Pareto front out of the whole population. Based on
it, the number of individuals in the best front is equal to
minfParetoFration� PopulationSize; Numbers Existed in the Pareto Frontg.

7.4.2 Traditional Genetic Algorithms for MOO Problems

Figure 7.4 shows the framework of GA in solving a MOO problem. Overall, the
GA for solving MOO problems appears similar to that for solving SOO problems.
Except that some adaptations are required, mainly in the evolution process and in
the determination of terminating conditions.

(1) Evolution process

Figure 7.5 shows the structure of evolution operator of GA in addressing MOO
problems. By selection, crossover and mutation, a new generation of individuals is
generated and evaluated. The fitness values of all individuals can be used to evaluate
the rank of each individual and the crowding distance. Then through the trimming
operation, the population size maintains stable throughout the evolution process.

a. Selection:

The selection process is often carried out by the tournament selection operator
that is based on individual’s rank and crowding distance. It not only allows the
convergence of the evolution process to the best Pareto front but also maintains
some diversity of the potential solutions. To be more specific, individuals with
lower ranks have higher chances to be selected regardless of its crowding distance;
and between those who have the same rank, the one with larger crowding distance
would be more likely to be selected because of its contribution to higher diversity.

b. Trimming population

The number of individuals allowed in the first front can be calculated according
to the ParetoFraction coefficient and likely, the numbers on other fronts can also
be obtained based on certain formulas. By using the tournament selection operator,
the trimming process can be effectively done.

c. Termination criteria

The execution of an metaheuristic algorithm is often terminated based on the
two conditions given below: (i). The number of iterations exceeds the set maxi-
mum; (ii). the cumulative change of function value (SpreadChange) of the front
individuals is less than a pre-specified tolerance (set as FunEval in Table 7.1), and
at the same time, Spread(gen)is no larger than MeanSpread(gen), which means the
change of the Pareto front is slow enough so the algorithm has converged.Related
values can be obtained as follows.

204 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

Random initial individuals
(population)

Stop criterion
satisfied ?

Generating new population by
selection, crossover, and mutation

NO

YES
Output the

result

Evaluate individuals with
multi-objectives

Obtain Pareto sets

Fig. 7.4 Framework of GA in MOO

1

2

3
…

1

2

3

…

…
3

2

1

Selection

Crossover &
Mutation

Recombine Two
Generations

Trim
Population

NonDominated
Ranking

Distance
MeasureC

hildren

C
hildren

Parents

Fig. 7.5 Evolution process of GA in MOO

7.4 Cloud Service Scheduling with CLPS-GA 205

SpreadChangeðgenÞ ¼
PStallGen

i¼1
WeightStallGenþ1�i � jSpreadðiþ1Þ�SpreadðiÞj

1þSpreadðiÞ

� 	
; gen [StallGen

inf; otherwise

8
<

:

ð7:20Þ

Spread ¼ extremeParetoDistanceþ avgDistance

extremeParetoDistanceþ NObj� avgdistance
ð7:21Þ

extremeParetoDistance ¼
XNObj

i¼1

extremeParetoSOldðiÞ � extremeParetoSNewðiÞk k

ð7:22Þ

avgdistance ¼
PNInd

i¼1 DistanceðiÞ
NInd

ð7:23Þ

avgdistance ¼ Distance� avgDistancek kffiffiffiffiffiffiffiffiffiffi
NInd
p ð7:24Þ

MeanSpreadðgenÞ ¼
Pgen

i¼gen�StallGen SpreadðiÞ
StallGenþ 1

; gen [StallGen ð7:25Þ

Table 7.1 Information related to processors and algorithms

Parameters related to the resources
TP½3� 4� ¼

0:67 0:83 0:71 0:78
0:79 0:74 0:67 0:69
0:72 0:80 0:69 0:67

2

4

3

5

S ¼ 1024 2048 1024 2048½ �

EP½3� 4� ¼
1:08 1:01 1:05 1:03
1:03 0:97 1:08 1:06
1:07 1:04 1:03 1:09

2

4

3

5

DC½4� 4� ¼

inf 5 10 5
5 inf 5 3
10 5 inf 10
5 3 10 inf

2
664

3
775

EC½4� 4� ¼

0 0:12 0:10 0:13
0:12 0 0:11 0:15
0:10 0:11 0 0:10
0:13 0:15 0:10 0

2
664

3
775

Parameters related to the algorithm Population size: 100

Crossing rate: 0.6

Mutation rate: 0.3

ParetoFraction: 0.25

Maximum generation: 200

FunEval: 1e-3

206 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

In Eq. (7.20), StallGen is a positive integer, and the algorithm stops if there is no
improvement in the objective functions for StallGen consecutive generations.
Weight is a parameter to indicate the impact of StallGen, and its value is usually set
to be 0.5. The value of Spread in each generation can be obtained from Eqs. (7.21) to
(7.24), where gen represents the number of generations, NObj represents the number
of objectives, NInd represents the number of individuals, Distance represents the
crowding distance of each individual as defined in Eq. (7.17), extremePareto-
SOld(i) represents the individual who has the smallest value of objective i in matrix
score in the last generation, and extremeParetoSNew(i) represents the corresponding
individual in the current generation. And the value of MeanSpread can be calculated
according to Eq. (7.25), to be compared with value of Spread.

7.4.3 CLPS-GA for Addressing MOO Problems

The classical GA cannot achieve good results in MOO problemsby merely relying
on selecting and trimming based on individuals’ rank and crowding distance. To
better improve the diversity of solutions, the convergence rate, and stability of the
algorithm, the CLPS-GA algorithm is proposed with some new improved compo-
nents. The CLPS-GA is composed of a multi-parent crossover operator (MPCO), a
two-stage algorithm, and the concept of case library and case similarity.

(1) Multi-parent crossover operator

Traditional GA usually uses two-parent crossover operator (TPCO). The new
MPCO is designed to search in a wider range, thereby increasing the diversity of
the population.

The real-coded MPCO typically operates as follows: randomly choose M indi-
viduals from the current generation and a new individual X* is formed by

X� ¼
PM

i¼1 aiXi, where ai meet the constraint:
PM

i¼1 ai ¼ 1 and �0:5� ai� 0:5.
Our new operator, designed by following the basic idea of real-coded MPCO, is to
randomize a group of weighted coefficients and then let the value in corresponding
position of individual’s chromosome be as close as possible to that of the parent
who has the largest coefficient. First, M parents are selected from the population.
Then let the new individual be: X�ðjÞ ¼ arg maxfaði; jÞji 2 fi; 2; 3; . . .;Mgg,
where a is matrix with size M � L, M is the number of parents participating in the
crossover operation, L represents the length of chromosome. Each a(i,j) takes on a
value between 0 and 1 and can be regarded as the odds for the jth gene in parent Xi

to be inherited to the next generation. Accordingly, the corresponding gene in each
new individual’s chromosome is determined to be the same as that of the parent
who has the largest oddsa(i,j).

The mechanism of the MPCO operator is illustrated with an example given
below. Let the number of parents M ¼ 4, and the length of chromosome L ¼ 8.
Randomize the matrix

7.4 Cloud Service Scheduling with CLPS-GA 207

a ¼

0:1783 0:3784 0:6372 0:9883 0:4839 0:7782 0:6782 0:0883
0:7382 0:7289 0:6228 0:8372 0:8672 0:5772 0:3784 0:6839
0:7432 0:3648 0:1283 0:2838 0:4836 0:1739 0:8628 0:3784
0:2738 0:9228 0:4837 0:5738 0:7289 0:3893 0:0384 0:5783

2

664

3

775

Then locate the element with the maximum value in each column of a and
return its index, which is [3 4 1 1 2 1 3 2]. Following the index, the gene from the
corresponding parent can be found. Figure 7.6 illustrates the multi-parent cross-
over process, where a new child is generated from Parent One, Parent Two, Parent
Three and Parent Four according to the matrix a.

(2) Two-step algorithm structure based on case library

In order to accelerate the convergence speed of GA, a two-stage algorithm
structure that makes use of a case library is proposed. The framework of our
proposed two-step algorithm is depicted in Fig. 7.7. The two stages refer to, (i)
searching for similar cases in the library to help with initialization, (ii) go through
evolution as stated previously. Here we first need to make it clear about the
definition of similar case.

Similar case: A case in the case library is declared similar to the user request
only if the following two conditions are satisfied:

(1) The case must have the same number of task units as the user request.
(2) The similarity function S between the two should be no less than d, i.e. S� d,

where d represents the threshold. The value of S is related to the type of task
unit, the dependency matrix of tasks, and the input and output size of tasks. In
our study the impact of data size is ignored and S is defined as:

S ¼ kt

n
� ke

m
ð7:26Þ

where kt represents the number of identical values in the task type vectors (T) of
the case and the user request, ke represents the number of same positions of entries
with value of 1 in the two dependency matrixes (E), n represents the number of
task units, and m represents the number of elements with value of 1 in E of the user
request, namely the number of dependency relationships. For example, the simi-
larity between a user request and one case in the library, with T, E and Tcase,
Ecase given below, is computed as follows:

T ¼ ½1 2 2�; Tcase ¼ ½1 3 2�; E ¼
0 1 1
0 0 0
0 0 0

2

4

3

5; ECase ¼
0 1 0
0 0 1
0 0 0

2

4

3

5:

208 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

According to the above description, it can be determined that kt ¼ 2 and ke ¼ 1,
thus the similarity function between them is computed as S ¼ 2

3� 1
2 ¼ 0:333.

Therefore, to calculate the similarity function S between the submitted user request
and the cases of the same size, we need to store the task type vector and the dependency
matrix for each case in the library. Their corresponding Pareto solutions must also

Parent One

Parent Two

Parent Three

Parent Four

New Child

Index Vector: [3 4 1 1 2 1 3 2]
+

1

3

3 2

4

1

4

2

1 3 3 2 4 1 4 2

4 4 1 2 2

1 4 3 3 2 1

3 2 2 4 1 1

3 1 4 2 2 3 4

Fig. 7.6 Instance of MPCO

Random initial individuals
(population)

Stop criterion
satisfied ?

Generating new population by
selection, crossover, and mutation

NO

YES
Pareto

Solutions

Obtain Pareto sets

Updating
Library

Searching Library

User Request Submitted
Fig. 7.7 Two-step algorithm
structure

7.4 Cloud Service Scheduling with CLPS-GA 209

reside in the library to facilitate with population initialization, if desired. Accordingly,
each case in the library can be represented as case ¼ fTCase;ECase; Solutionsg.

But how can we find the similar cases efficiently? A possible data structure for
the case library is suggested below. Knowing that a case with a different size to the
user request cannot be a similar case, the cases in the library can be organized into
several rows (sequences) according to their sizes. Each sequence is a linked list
corresponding to a particular size. The head node stores the number of cases in the
sequence, which by the way is not necessarily the same for all sequences. It next
points to the first case in the sequence, where the information about case 1 ¼
fTCase;ECase; Solutionsg is stored. Then case_1 will point to the second case
labeled as case 2 ¼ fTCase;ECase; Solutionsg, and continue on until the last
case in the sequence is linked. Additionally, an index table will be set up to
indicate the address of the head node for each sequence.

To prevent spending too much time on exploring similar cases, an upper bound
Max_Num for the number of cases in each sequence is set. Consequently, we need
to come up with an updating strategy as to which cases should be kept or replaced,
given that there are already Max_Num cases for one particular sequence while new
user requests keep coming in. This issue is dealt with by introducing the concept of
concentration function C for each case, which is computed as:

CðiÞ ¼ 1
N

X

j2N

Similarði; jÞ ð7:27Þ

Similarði; jÞ ¼
1; Sði; jÞ[c

0; Otherwise

(
ð7:28Þ

where, N is the total number of cases in one sequence in the library. S represents
the similarity function value between case_i and case_j according to Eq. (7.26).
c represents the threshold.

If adding new cases will cause violation to the Max_Num limitation, then only
Max_Num cases in these sequence (including the new cases) with lower concen-
tration values are kept. Otherwise, just attach the new cases to the end of the
sequence without the need to calculate the concentration.

To better understand the 2-step mechanism, consider the following example.
Suppose at most 6 cases is allowed in each sequence, i.e., Max_Num = 6. When a
user request comes with task size of 5, it will first visit the index table to obtain the
address of the head node corresponding to the 5th sequence. Assume that there are
already 5 cases stored in the 5th sequence. The similarity between the user request
and each of the 5 existing cases is computed, assuming to be 0.42, 0.77, 0.79, 0.55
and 0.39, respectively. If the threshold d is set to be 0.8, then no similar cases exist,
and hence the initial population shall be randomly generated. But if d equals to 0.75,
both the second and third cases in these sequence are similar to the user request. The
Pareto solutions of the third case are retrieved because of its higher similarity.
Because coefficient ParetoFraction represents the proportion of solutions in the

210 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

Pareto front out of the whole population, if it is 0.25, then conducting MPCO three
times based on the retrieved solutions in generating the entire initial population.
After servicing the request, it can be added to the 5th sequence as a new case,
making a total of 6 cases. Now suppose another user request is submitted, and its
task size is also 5. This new request will be serviced similarly. Because there are
already 6 cases in the 5th sequence, the library will be updated as follows. To
maintain the column size of the library, either the new case should be discarded, or
an existing case must be selected for replacement. By calculating the concentration
values of the 7 cases, supposedly say, 0.50, 0.67, 0.50, 0.33, 0.67, 0.83, and 0.50,
respectively, the 6th case is identified to have the highest concentration value and
thus should be replaced by the new case. In this way, we can supply the users with
more diverse cases while keeping the library size under control.

In detail, the pseudo-code of our proposed algorithm is summarized as follows.
Step 1 Search the case library based on the task size;
Step 2 Does any similar case exist? Yes (go to Step 3)/No (go to Step 4);
Step 3 Retrieve the similar cases with the highest value of similarity to

generate the initial population, and go to Step 5;
Step 4 Randomly create the initial population;
Step 5 Evaluate each individual according to the objective functions;
Step 6 Calculate the rank and crowding distance for each individual;
Step 7 Apply the tournament selection;
Step 8 Apply the multi-parent crossover operator (MPCO);
Step 9 Combine the original population and the offspring to create a new

population;
Step 10 Apply the trimming operator to maintain the population size;
Step 11 Is the stopping criterion met? Yes (go to Step 12)/No (go to Step 5);
Step 12 Output the Pareto Solutions and update the case library

7.5 Experimental Evaluation

This section describes a series of simulations carried out with the aim to test the
performance of CLPS-GA proposed in the last section in solving MOO problems
and to verify its effectiveness in comparison other existing algorithms.

7.5.1 Data and Implementation

Experiments were conducted using the Matlab R2009a software platform. First,
let’s just assume the cloud management center oversees 4 processors. The machine
condition can be roughly summarized as follows: processor 1 and processor 2 are
old machines, and the remaining two are relatively new. For some reason,

7.4 Cloud Service Scheduling with CLPS-GA 211

Processor 1 has been set over clocked, so in general, it can process tasks faster than
Processor 2, but it consumes more energy. Processor 2 is in good maintenance for
years, and its RAM size has recently been extended to 2G. Processor 3 and
Processor 4 have employed more advanced hardware chips and more efficient
operating systems compared to old machines. Between the two, processor 3 seems
to outperform Processor 4, except that it has a smaller RAM size. The energy
consumption rate of Processors 3 and 4 seem to be higher than that of Processor 2,
but since they are faster, no one knows which processor costs most energy
eventually? The above analysis on performance is meaningless if the task type the
processor is undertaking is not clearly specified. This example assumes the number
of task types to be 3. Strictly speaking, each task type should be defined by explicit
numeric values accounting for the percentages of time spent on computing and
data transmission. But in this study we simply call them CPU-bounded, I/O
bounded, and inter-mediate. Then we need to provide numerical values on pro-
cessor capacity based on the processor condition and the task type, in the form of
matrices TP, S, and EP in Table 7.1. Moreover, it is assumed that the four pro-
cessors are under full connections, either wireline or wireless, within the same
communication subnet. The numeric measurements on channel capacity, i.e., the
matrices DC and EC in Table 7.1, depends on the channel condition, such as the
mediums, the power of the base station, interference strength, etc. We really do not
plan to go into these details in this study.

Choosing appropriate parameter values is known to have effect in the perfor-
mance of a metaheuristic algorithm. The best values of basic GA parameters such
as Population Size, Crossing Rate, Mutation Rate, and Maximum Generation
found by Orhan Engin using full factorial experimental design [43] are used. The
values of two additional algorithmic parameters related to CLPS-GA, i.e.,
ParetoFraction and FunEval, are determined to be those that achieve the best
result for our proposed problems in a preliminary experimental study. All algo-
rithmic parameter values used are given in Table 7.1 as well. After that, the
proposed CLPS-GA is applied to schedule resources for user requests with
increasing number of task units, which are 5, 10, 15, 20, and 30, respectively.
Some of their DAGs are depicted in Fig. 7.2. (The task type and dependencies are
marked in the DAG; and as far as the input and output data sizes are concerned, it
is assumed that each edge in the DAG carries a flow of 10 units).

Our testing experiments and results are organized as follows. First, the per-
formances of TPCO and MPCO are compared and the impact of task size on the
convergence, stability and solution diversity of the algorithm is also discussed.
Secondly, using the user request with task size of 15 units as an example, cases
with different similarity function values are introduced into the initialization
process to discuss their performances, to verify the correctness of the expression of
similarity function and to determine the similarity threshold. Thirdly, our proposed
CLPS-GA is compared with a number of existing enhanced GAs with an example
of user request of task size of 15 units and a case with 75 % similarity, and the
superiority of CLPS-GA is proved. All results obtained are based on experiments
repeated 50 times or more.

212 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

7.5.2 Experiments and Results

As mentioned before, the aim of optimization is to provide a set of Pareto solutions
for decision-makers to select from. For the bi-objective optimization problem, a
two-dimensional plot can be prepared with its two axes representing the two
objectives. For example, we can use the vertical axis to denote the makespan,
while the horizontal one being energy consumption. The output solutions will be a
set of points distributed on the Pareto front (marked in red). Each point actually
corresponds to an assignment, and users can visualize which assignment is more
suitable according to its position in the plot, or they can just click on a point to
obtain the numeric values corresponding to the two objectives, and then make the
decision. Matters such as how their request is decomposed, or which task unit has
been assigned to which processor are of concern to the cloud management center,
but of no much interest to users.

Consider a user request whose DAG is shown as the first one in Fig. 7.2. Even
though the task size is only 5, the mapping between the tasks and processors can be
very complicated. Assuming that the job is pretty urgent and the user is willing to
pay at any cost. One possible solution is simply assigning each task unit to the
‘‘fastest’’ processor according to the task type T and matrix TP, which means
X = [1 3 4 1 3] in this case. But is it the best answer? Employing the classic
MOGA produced the results as shown in Fig. 7.8, in which the red curve indicates
the final output of Pareto front, while the blue points are some dominated solutions
which have been degenerated during the search. The set of Pareto front solutions
are given in Table 7.2 with repeated solutions been removed. From the table, one
can clearly see that the assignment with the smallest makespan is X = [2 2 3 1 4],
and its objective value is (42.111, 54.402). Note that Solution 2has the second
lowest value of makespan (42.215 versus 42.111), but consumes less energy. If
desirable, one may also consider Solution 3, Solution 4, and so on. In the case that
one does not want to consume too much energy because of a very tight budget,
Solution 10 is probably the best. However, comparing it with Solution 9, you will
find 0.119 more in energy consumption could cut down the makespan by nearly a
half. So what would one choose? It really depends on the decision maker!

The above results indicate that the classical MOGA can produce acceptable
solutions for the problem. But is there any chance that MOGA can do better? In
Fig. 7.8, the blue points do not cross the red curve, which indicate that good
solutions get preserved and the bad ones get discarded. But it also implies a
possibility of premature convergence. In addition, the solution distribution on the
Pareto front needs to be improved. For example, we might wish to obtain more
points between Solution 4 and Solution 5. Furthermore, it takes more than 30
iterations for MOGA to finally converge. Several improvements made in this study
are presented in the following sections.

7.5 Experimental Evaluation 213

7.5.3 Comparison Between TPCO and MPCO

Table 7.3 records the mean and variance of average crowding distances and itera-
tions under the two crossover operators with different task sizes based on 50 repeated
experimental runs. As can be seen in the table, when the task size is small, 5 or 10 for
instance, there is not much difference between the two operators in the mean of
average crowding distances. Though MPCO makes it more likely for individuals to
inherit genes from a larger range of parents, it does not necessarily mean significant
improvements on population diversity. This result is due to the smaller solution
space of smaller task size. Under this circumstance, difference between individuals
is little, and even less between individuals in the Pareto front. When the parameter
ParetoFraction is large, the probability in selecting individuals from the Pareto front
is higher after trimming the population, which can cause a severe repetition of
individuals in the next generation. When the population diversity is low, even car-
rying genes from multiple parents, the improvement on diversity may not be
obvious.

51 52 53 54 55

40

60

80

100

120

140

160

180

objective one energy consume

ob
je

ct
iv

e
tw

o
m

ak
es

pa
n

Fig. 7.8 Instance of output
pareto plot

Table 7.2 Pareto front of the example

Solution Mapping variable Objective value: (Makespan, energy-consumption)

1 [2 2 3 1 4] (42.111, 54.402)

2 [2 2 1 3 4] (42.215, 53.982)

3 [1 2 2 3 4] (42.776, 53.811)

4 [3 4 4 1 2] (44.262, 52.382)

5 [3 3 4 1 2] (56.380, 52.032)

6 [1 3 4 1 2] (57.104, 51.973)

7 [3 2 4 1 2] (68.883, 51.866)

8 [1 3 4 1 4] (82.851, 51.781)

9 [1 2 4 1 2] (85.562, 51.727)

10 [1 2 1 1 2] (153.831, 51.608)

214 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

However, when the task size is large, 30 for example, the mean and variance of
average crowding distances under MPCO are larger than those of TPCO, specif-
ically 0.0036 and 1:43� 10�6 for MPCO versus 0.0029 and 4:38� 10�7 for
TPCO. In this case, the influence of our newly designed operator is obvious. A
larger average crowding distance means more even distribution of individuals on
the Pareto front in the last generation. On the other hand, a small variance means
that the improvement on population diversity is stable. The above results, thus,
indicate that when the task size is large, MPCO can lead to more diverse indi-
viduals on the Pareto front. However, in terms of iteration numbers, it increases
with task size and the proposed MPCO does not seem to accelerate the conver-
gence process in all cases when compared to TPCO.

Figure 7.9 shows a typical instance of one experimental result. Five graphs on
the left side represent the Pareto front in the last generation under two operators
with different task sizes (small to large from top to bottom). Those on the right side
represent SpreadChange of individuals in the Pareto front throughout the evolution
process. The purpose for plotting SpreadChange is to check the convergence status
of the algorithm. Only when SpreadChange is less than the value of FunEval in
Table 7.1 and Spread(gen) is no larger than MeanSpread(gen) according to
Eqs. (7.21) and (7.25), one can be certain that the optimal Pareto front has been
found. When the task size is small, the two Pareto fronts are very close. For
example, when the task size is 5, there is only one different individual in the two
curves. But when the task size is large, significant difference between the two
curves can be found. One can also clearly see from the graph that curve of MPCO
is more close to the axis when task size is large, which reflects a better quality of
solutions as the population diversity improves.

Table 7.3 Experimental data related to TPCO and MPCO

Mean of
average
distance

Variance of
average distance

Mean of
iterations

Variance of
iterations

Task
number = 5

TPCO 0.0011 8:16� 10�8 32.1 876.8

MPCO 0.0012 4:8� 10�8 30.7 652.4

Task
number = 10

TPCO 0.0014 2:92� 10�7 33.9 467.6

MPCO 0.0014 2:48� 10�7 35.3 448.9

Task
number = 15

TPCO 0.0023 1:13� 10�7 41.4 528.4

MPCO 0.0026 2:32� 10�7 42.8 456.7

Task
number = 20

TPCO 0.0026 7:27� 10�7 57.7 572.7

MPCO 0.0033 4:14� 10�6 56.5 648.9

Task
Number = 30

TPCO 0.0029 4:38� 10�7 83.4 1217.6

MPCO 0.0036 1:43� 10�6 80.8 1012.9

7.5 Experimental Evaluation 215

Fig. 7.9 Comparison of TPCO and MPCO as task size increases from 5 (top) to 30 (bottom)

216 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

7.5.4 Improvements Due to the Case Library

From the previous analysis, it has been learned that MPCO cannot obviously
improve the convergence speed and stability of the algorithm. Being aware that the
instability of GA mainly comes from the randomness of initial population, a two-
stage framework which makes use of a case library is proposed. By initializing the
population with a similar case with close-to-optimal solutions if it exists, it is
expected to speed up the convergence process and improve the stability of the
algorithm. The similarity threshold is selected based on the performance when
cases with different similarities are introduced to the initialization stage of the
algorithm. In the experiments, cases with similarity of 100, 75, 50, 25 %
(approximately) are chosen to be compared with the baseline of not using the case

Fig. 7.9 continued

7.5 Experimental Evaluation 217

library (or equivalently using no similar case). In addition, to better evaluate the
effect of case library, the value of FunEval is set as 0.0008.

The test results are shown in Table 7.4. The SpreadChange in the last gener-
ation is used to determine the convergence status of the algorithm. As indicated in
the table, when the similarity is equal or greater than 75 %, the iteration number
begins to reduce and the reducing amount increases as the similarity increases. The
relatively small variance of iteration number also shows that this acceleration on
convergence process is stable. This in turn verifies that the expression of the
similarity function is correct and useful. However, when the similarity is below
75 %, average iteration numbers do not decrease but instead increase compared to
that of the baseline. In other words, introducing cases with low similarity value is
not helpful but harmful; it worsens the ability of the algorithm to converge. This
result is because the optimal solution set of the current user request is greatly
different from that of the cases with low similarity. If initializing with its solutions
arbitrarily, it may need to follow a longer route to reach its own Pareto front than
random initialization. Therefore, the similarity threshold can be roughly set to be
75 %. It can also be seen from the variances of iteration numbers and Spread-
Change that, using cases with high similarity to initialize the population improves
the stability of the algorithm compared to random initialization.

Figure 7.10 shows the differences in the Pareto front and SpreadChange
between using cases with 75 % similarity for initialization and using no similar
cases at all (the baseline). It can be seen from the Pareto front curves that adopting
solutions of similar cases into the initializing stage does not affect the final quality
of the individuals. In both scenarios, the individuals are evenly distributed in the
Pareto front. The SpreadChange curves on the right side clearly indicate the lower
variation during the evolution process when case with 75 % similarity is intro-
duced, in sharp contrast to the substantial up-and-downs in early generations with
no-case introduced. This difference demonstrates that the evolution process is
more stable with the use of similar cases in initialization.

In summary, the practice of introducing cases of high similarity to help with
initialization can effectively speed up the convergence rate and improve the
evolution stability of the algorithm. The appropriate similarity threshold can be set
as 75 %. It should also be noted that the evolution and convergence process could
somehow be delayed to some degree if cases with similarity value below the
threshold are introduced.

7.5.5 Comparison Between CLPS-GA and Other Enhanced
GAs

In this section, the attention is turned to compare the proposed CLPS-GA with
some other enhanced GAs such as AGA [35, 36], CGA [37, 38], and LGA [39, 40]
in terms of convergence rate, stability and solutions’ diversity.

218 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

According to the ‘‘no free lunch’’ scientific theory proposed by Wolpert and
Macready [44], no algorithm is able to dominate another in all problems in all
aspects. Therefore, any performance improvement on any algorithm might be paid
at the cost of time inefficiency or compensated from other aspects. If one considers
the convergence rate, stability, solution’s quality and diversity as four optimization
objectives, then each one of the four algorithms included in the experiment are
non-inferior to or non-dominated by others. Table 7.5 records the results of iter-
ations, average distance, and SpeadChange to indicate the algorithms’ perfor-
mance on convergence, diversity and stability after at least 50-time experimental
repetitions by using AGA, CGA, LGA, and our proposed CLPS-GA, respectively.
Figure 7.11 shows one typical instance of Pareto front and SpreadChange values
as a function of iterations.

After deeper analysis, it can be found that our proposed CLPS-GA does best in
algorithm’s convergence and stability. By introducing cases with similarity of

Fig. 7.10 Pareto front curves and SpreadChange with and without case library

Table 7.4 Experimental data related to case library

No Similar
Case

25 %
Similarity

50 %
Similarity

75 %
Similarity

100 %
Similarity

Mean of iterations 48.9 98.3 70.7 36.4 30.5

Variance of iterations 573.5 722.3 582.0 355.5 342.7

Mean of SpreadChange
in last generation

7:29� 10�4 6:97� 10�4 7:42� 10�4 7:38� 10�4 7:05� 10�4

Mean of SpreadChange
variance

4:82� 10�5 5:13� 10�5 3:09� 10�5 2:61� 10�5 1:88� 10�5

7.5 Experimental Evaluation 219

75 % or higher, CLPS-GA requires the fewest iterations to reach its convergence
criteria, and the average number of iterations taken to converge is only 36.4, much
fewer than those in other algorithms. As indicated by its lowest variance of iter-
ation numbers and mean of SpreadChange variance at 355.5 and 2:61� 10�5,
respectively, CLPS-GA achieves the best stability among these algorithms.
However, this happens only when cases of high similarity exist, and if no case is
introduced, then CLPS-GA just degenerates into regular GA with MPCO. Careful
scrutiny on data in Tables 7.4 and 7.5 reveals that under this circumstance of no
similar cases, the CLPS-GA algorithm’s convergence rate is lower than that of
LGA and its stability is poorer than AGA. The effectiveness of CLPS-GA thus
depends on the availability of highly similar cases.

LGA, by strengthening its local search in neighboring areas of optimal individuals,
achieves slightly inferior performance in convergence rate compared to CLPS-GA,
which can be observed from its average iterations 43.7 in Table 7.5, but has to
compromise its stability due to its large variances either on iterations or SpreadChange
through generations. CGA, by generating a Logistic sequence to help search in a larger
range, obtains better result than CLPS-GA in the diversity of solutions with average
distance 0.0022 versus 0.0020, but it has the worst performance in terms of stability
and convergence rate, i.e., it has an exceptionally large value on mean and variance of
iterations, 102.5 and 1879.9, respectively. Lastly AGA, by adjusting the crossover rate
and mutation rate according to the fitness of individuals involved, neither stands out
nor falls behind with its medium performance almost in every aspect.

As shown in Fig. 7.11, none of the Pareto fronts drawn is evidently close to the
axis, which indicates the negligible difference in the quality of solutions obtained
by each algorithm. Nevertheless, it can be easily seen from the left figure that
solutions are distributed more evenly in CLPS-GA and CGA, and slightly
unbalanced and concentrated in AGA. In examining the curves on the right figure,
it can be easily distinguished that CLPS-GA and LGA take relatively fewer iter-
ations than AGA and CGA to converge. Note that CGA has the highest diversity.
Therefore, it’s safe to say that diversity and efficiency go against each other and no
algorithms can have it both ways.

In summary, each algorithm has their strengths and weaknesses, and CLPS-GA
does best in terms of convergence rate and stability, and ranks only second to CGA

Table 7.5 experimental data related to CLPS-GA and other enhanced GAs

Algorithm Mean of
iterations

Variance
of
iterations

Mean of
average
distance

Variance of
average
distance

Mean of
SpreadChange
in last
generation

Mean of
SpreadChange
variance

AGA 77.6 501.5 0.0018 3:82� 10�7 6:41� 10�4 3:56� 10�5

CGA 102.5 1879.9 0.0022 1:96� 10�7 5:25� 10�4 7:44� 10�5

LGA 43.7 1035.7 0.0016 2:08� 10�7 6:78� 10�4 6:31� 10�5

CLPS-GA 36.4 355.5 0.0020 4:94� 10�8 7:38� 10�4 2:61� 10�5

220 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

in the diversity of solutions. Since the idea of introducing a multi-parent crossover
operator and a case library is not contradictory to the strategies employed in other
algorithms, there is still room for exploring other combinations of various strat-
egies in order to improve further.

7.6 Summary

Service scheduling has always been a core component in cloud manufacturing
system. However, previous studies on its model building and scheduling algo-
rithms are either insufficient or far from satisfactory. Taken the advantage of
population based configuration, we presented a new improved genetic algorithm
comprised of Pareto searching operators and case library mechanisms. In sum-
mary, this chapter mainly includes the following contents.

(1) For addressing the OSCR problem, energy consumption and makespan are
chosen as two objectives. The energy consumption model is formulated and
simplified to adapt to network whose load information is unavailable.
Meanwhile, imbalanced load distribution is considered to represent risk on
the makespan and used as an effective strategy both to shorten the makespan
and to realize load balance.

(2) Different from past works, which often convert a MOO into a SOO, diverse
solutions distributed on the Pareto front are provided for decision-makers to
select from. This helps meet various kinds of user’s needs and make the
service more considerate and universal.

(3) The proposed improved approach for Pareto solutions (CLPS-GA) is inno-
vative and composed of a multi-parent crossover operator newly redesigned,

Fig. 7.11 Comparison of CLPS-GA and other enhanced GAs

7.5 Experimental Evaluation 221

a two-stage algorithm structure, a case library, and a new concept of case
similarity. Experimental results have shown its high performances in terms of
convergence, stability and solutions’ diversity in solving the subject MOO
problem.

References

1. Tao F, Feng Y, Zhang L, Liao TW (2014) CLPS-GA: A case library and Pareto solution-
based hybrid genetic algorithm for energy-aware cloud service scheduling. Applied Soft
Computing 19:264–279

2. Wang J, Varman P, Xie C (2011) Optimizing storage performance in public cloud platforms.
J Zhejiang Univ Sci C (Comput Electron) 12(12):951–964

3. Rivoire S, Shah MA, Ranganathan P, Kozyrakis C (2007) Joulesort: a balanced energy-
efficiency benchmark. In: Proceedings of the ACM SIGMOD, international conference on
management of data, NY, USA pp. 365–376

4. Bianchini R, Rajamony R (2004) Power and energy management for server systems.
Computer 37(11):68–74

5. Ullman JD (1975) NP-complete scheduling problems. J Comput Syst Sci 10(3):384–393
6. Yu J, Buyya R, Ramamohanarao K (2008) Workflow scheduling algorithms for grid

computing. Metaheuristics for scheduling in distributed computing environments, Springer,
Heidelberg, pp 173–214

7. Armbrust M, Fox A, Grifth R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I, Zaharia M (2009) Above the clouds: a berkeley view of cloud computing.
Technical report, University of California at Berkeley

8. Buyya R, Pandey S, Vecchiola C (2009) Cloudbus toolkit for market-oriented cloud
computing. In: Proceedings of the 1st international conference on cloud computing, Beiing,
China, pp 24–44

9. Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB,
Good J, Laity A, Jacob JC, Katz DS (2005) Pegasus: a framework for mapping complex
scientific workflows onto distributed systems. Sci Program J 13(3):219–237

10. Cao J, Jarvis SA, Saini S, Nudd GR (2003) Gridflow: workflow management for grid
computing. In: Proceedings of the 3rd international symposium on cluster computing and the
grid, Washington, DC, USA, pp 198–205

11. Furmento N, Lee W, Mayer A, Newhouse S, Darlington J (2002) Iceni: an open grid service
architecture implemented with jinni. In: Proceedings of the ACM/IEEE conference on
supercomputing

12. Amin K, von Laszewski G, Hategan M, Zaluzec NJ, Hampton S, Rossi A (2004) Gridant: a
client-controllable grid workflow system. In: Proceedings of the 37th annual Hawaii
international conference on system sciences, Big Island, HI, USA, pp 3293–3301

13. Taylor I, Wang I, Shields M, Majithia S (2005) Distributed computing with Triana on the
grid. Concurrency and Comput Pract Experience 17(9):1197–1214

14. Ludascher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao J, Zhao Y
(2006) Scientific workflow management and the kepler system. Concurrency Comput Pract
Experience 18(10):1039–1065

15. Mayo RNP, Parthasarathy R (2005) Energy consumption in mobile devices: why future
systems need requirements-aware energy scale-down. In: Proceedings of 3rd international
workshop on power-aware computer systems, San Diego, CA, USA pp 26–40

16. Chase JS, Anderson DC, Thakar PN, Vahdat AM, Doyle RP (2001) Managing energy and
server resources in hosting centers. Operating Syst Rev 35(5):103–116

222 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

17. Kephart JO, Chan H, Das R, Levine DW, Tesauro G, Rawson F, Lefurgy C (2007)
Coordinating multiple autonomic managers to achieve specified power-performance
tradeoffs. In: Proceedings of 4th international conference on autonomic computing,
Florida, USA, pp 1–10

18. Beloglazov A (2012) Energy-aware resource allocation heuristics for efficient management of
data centers for cloud computing. Future Gener Comput Syst 28(5):755–768

19. Srikantaiah S, Kansal A, Zhao F (2008) Energy aware consolidation for cloud computing. In:
Proceedings of hotpower workshop on power aware computing and systems, San Diego, CA,
USA

20. Beloglazov A, Buyya R, Lee YC, Zomaya A (2011) A taxonomy and survey of energy-
efficient data centers and cloud computing systems. In: Advances in computers. Elsevier,
Amsterdam, The Netherlands

21. Lei DM, Xiong HJ (2007) An efficient evolutionary algorithm for multi-objective stochastic
job shop scheduling. In: Proceedings of international conference on machine learning and
cybernetics, Hong Kong, China, pp 867–872

22. Jin Z, Yang Z, Ito T (2006) Metaheuristic algorithms for the multistage hybrid flow shop
scheduling problem. Int J Prod Econ 100:322–334

23. Tang L, Liu W, Liu J (2005) A neural network model and algorithm for the hybrid flow shop
scheduling problem in a dynamic environment. J Intell Manuf 16:361–370

24. Ishibuchi H, Yamamoto N, Misaki S, Tanaka H (1994) Local search algorithms for flow shop
scheduling with fuzzy due-dates. Int J Prod Econ 33:53–66

25. Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarm optimization-based heuristic
for scheduling workflow applications in cloud computing environments. Proceedings of the
24th IEEE international conference on advanced information networking and applications.
Perth, WA, Austialia, pp 400–407

26. Niu SH, Ong SK, Nee AYC (2012) An enhanced ant colony optimiser for multi-attribute
partner selection in virtual enterprises. Int J Prod Res 50(8):2286–2303

27. Li C, Li L (2007) Utility-based QoS optimization strategy for multi-criteria scheduling on the
grid. J Parallel Distrib Comput 67:142–153

28. Knowles JD, Corne DW (2000) Approximating the non-dominated front using the pareto
archived evolution strategy. Evol Comput 8(2):149–172

29. Coello Coello CA, Pulido GT (2001) A micro-genetic algorithm for multi objective
optimization. In: Proceeding of the 1st international conference on evolutionary multi-
criterion optimization, Zurich, Switzerland, pp 126–140

30. Coello Coello CA, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle
swarm optimization. IEEE Trans Evol Comput 8(3):256–279

31. Mostaghim S, Teich J (2004) Covering Pareto-optimal fronts by sub-swarms in multi
objective particle swarm optimization. Evol Comput 2:1404–1411

32. Nam D, Park CH (2000) Multi-objective simulated annealing: a comparative study to
evolutionary algorithms. Int J Fuzzy Syst 2(2):87–97

33. Garcia-Martinez C, Cordon O, Herrera F (2007) A taxonomy and an empirical analysis of
multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur J Oper Res
180(1):116–148

34. Chi-Keong G, Yew-Soon O, Chen TK (2009) In: Multi-objective memetic algorithms.
Springer-Verlag, Berlin

35. Bingul Z (2007) Adaptive genetic algorithms applied to dynamic multiobjective problems.
Appl Soft Comput 7(3):791–799

36. Vafaee F, Nelson PC (2009) Self-adaptation of genetic operator probabilities using
differential evolution. In: Proceedings of the 3rd IEEE international conference on self-
adaptive and self-organizing systems, San Francisco, US, pp 274–275

37. Qi RB, Qian F, Li SJ, Wang ZL (2006) Chaos genetic algorithm for multi objective
optimization. In: Proceedings of the 6th congress on intelligent control and automation,
pp 1563–1566

References 223

38. Gao MJ, Xu J, Tian JW, Wu H (2008) Path planning for mobile robot based on chaos genetic
algorithm. In: Proceedings of the international conference on natural computation,
pp 409–413

39. Ishibuchi H, Murata T (1998) A multi objective genetic local search algorithm and its
application to flowshop scheduling. IEEE Trans Syst Man Cybern 28(3):392–403

40. Martinez CG, Lozano M, Molina D (2006) A local genetic algorithm for binary-coded
problems. Parallel Probl Solving Nat 4193:192–201

41. Gen M, Cheng R (2000) Genetic algorithm and engineering optimization. Wily, New York
42. Engin O, Ceran G, Yilmaz MK (2010) An efficient genetic algorithm for hybrid flow shop

scheduling with multiprocessor task problems. Appl Soft Comput 11(3):3056–3065
43. Netto MAS, Buyya R (2009) Offer-based scheduling of deadline-constrained bag-of-tasks

applications for utility computing systems. In: Proceedings of IEEE international symposium
on parallel and distributed, pp 1–11

44. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans
Evol Comput 1(1):67–82

224 7 CLPS-GA for Energy-Aware Cloud Service Scheduling

Part IV
Application of Hybrid Intelligent

Optimization Algorithms

Chapter 8
SFB-ACO for Submicron VLSI Routing
Optimization with Timing Constraints

The arrival of submicron era has created a huge difference on VLSI (very large
scale integration): delay on interconnects has far exceeded that on gates so the total
delay for a sink can no longer be simply assessed by the length of weighted edges
which makes its routing more complicated than ever. Traditional methods for
VLSI routing are either infeasible or with a low precision. In this chapter multiple
objectives are comprehensively reflected as a cost the optimization problem has
been abstracted as constructing a minimal rectilinear Steiner tree with rectangular
obstacles (MRSTRO) under timing constraints. Then the relationship between cost
sink delay is cautiously discussed partially proved to be contradictory using El-
more delay model which is of high fidelity. To effectively address the MRSTRO
problem a synergy feedback based ant colony algorithm (SFB-ACO) is config-
uredimplemented. In SFB-ACO a synergy function is designed to lead each branch
to join others thus reducing the total tree length. Additionally according to the
intrinsic contradiction between objective constraint a constraint-oriented feedback
module is introduced with the purpose of preventing over-constrain while regu-
lating the formation of solutions. With configuration principle two modules are
uniformly connected with existing ACO operators to form a hybridization of
deterministic strategies evolutionary process. The experimental results have ver-
ified the advantage of SFB-ACO compared to other algorithms or practices on
VLSI global routing.

8.1 Introduction

Global routing [1–4] is to arrange each part of the net into different wiring
channels and determine the connection of nodes and their initial wiring courses
while satisfying certain design requirements. Its result could have a significant
impact on the success of follow-up detailed routing and the overall performance of

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_8

227

the chip [5, 6]. Therefore, it is a core link in very large scale integration (VLSI)
physical design. Wires in VLSI can be divided into several types: signal line,
power line, ground line, clock line, etc., with various optimization objectives of
each type. Generally speaking, the total length of interconnect, and the area of
wiring district are required to be as small as possible, and time delay for signal
lines, clock skew for clock lines are also needed to be considered. Other extra
objectives include: power dissipation and heat loss should be reduced; noise and
crosstalk between lines should be avoided, etc. These objectives can be compre-
hensively reflected by weighing each edge in the net; then the optimization
problem is narrowed down on minimizing the weighted length of wires, which is
usually called a cost. The procedure for constructing interconnects for VLSI global
routing has been abstracted as a minimal rectilinear Steiner tree with rectangular
obstacles (MRSTRO) problem.

Studies on Steiner tree in Graph theory can be traced to 1941, when Courant
and Robbins [7] pointed out that for a net consisting of n endpoints, at most n-2
points are needed to be introduced, and together with the original points, the cost
of Steiner tree established on them can be reduced to the lowest. These introduced
points are called Steiner points. (Note that not all yielding points are Steiner
points, as illustrated in Fig. 8.1) Apparently, how to pick them correctly is a key
issue of Minimal Steiner tree (MST) problem [4, 8–10], which has been proved to
be a NP-hard problem [4, 9, 11]. The computational amount of some exact
algorithms [9, 10, 12, 13] for Steiner tree increases exponentially as the number of
nodes increases. Particularly, wires in VLSI must follow Manhattan routing
architecture [14, 15], in which only two perpendicular wiring directions are
allowed. The optimal tree spanned under such architecture is formatted as a
minimal Rectilinear Steiner tree (MRST). Algorithms to perform MRST con-
struction are usually computational-expensive in space, since it requires divisions
between each pair of nodes and separated considerations on weighted cost of
divided sections, thus a memory usage of prohibitively huge size.

To overcome these shortcomings, Hanan [16] defined Hanan points and gave
out a well-known theorem that for any endpoints collection P, there exists a
minimum Steiner tree solution, whose Steiner points set S is a subset of its Hanan
points set U. Later Snyder [13] demonstrated that the above theorem can be
extended to Manhattan space with higher dimensions. Such endeavors greatly
make MRST a less overwhelming task. In addition, attentive scholars found that

S1 S2 S3 S4 S5

Steiner Point: S2, S4
Non-Steiner Point: S1, S3, S5

Fig. 8.1 Steiner points and
non-Steiner points

228 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

MST can serve as a good estimation to MRST, and tried to get an approximated
solution by using MST as a starting point in efforts to either decompose nets into
several two-pin subnets to ease maze routing [3, 17, 18], or simply adopt a pattern
technique to restrict the connecting to be L-shape or Z-shape [3, 19, 20]. Hwang
[21], in 1976, stated and proved the formula that cost MSTð Þ=cost MRSTð Þ� 3=2,
and this number cannot be improved, which means the approximation cost of MST
and MRST will reach 3/2 in the worst cases. Such a poor precision cannot be
accepted in VLSI routing design. Meanwhile, the existence of obstacles, which is
created by various macro modules, IP modules and some others on the chip, results
in not only a more complicated process for deriving MRST from MST, but also a
larger discrepancy between their costs. All above have led to an increasing pop-
ularity in finding MRST in a more straight and accurate way.

Thus far, numerous mature algorithms directed at MRST have been put for-
ward, such as Geo Steiner package [12, 22], edge based heuristic algorithm [23], 1-
Steiner heuristic [24–26] etc. Recently, FLUTE [27, 28] propositioned with
improved performance for it is optimal for nets up to degree 9 and is still very
accurate for nets up to degree 100. It has been well appreciated and its direct
applications are BoxRouter [3, 29] and FastRouter [3, 30, 31]. For tackling
MRSTRO problems [32–36] constructed an obstacle-avoiding Steiner tree for an
arbitrary k-geometry by Delaunay triangulation, and demonstrated that it outper-
formed the conventional construction-by-correction approach [35]. Most algo-
rithms mentioned above are heuristic, which facilitate the finding of a near-optimal
solution within a relatively short period of time, thereby has been widely used in
multicast network optimization [4]. However, most nets in VLSI circuits have a
low degree [28], so rather than having a low runtime complexity, the quality of
solution is a more important factor. Discouragingly, up till now, none of the
heuristic algorithms can attain twice better performance in the best cases than in
the worst ones. Rita and Bryant successfully applied genetic algorithm (GA) in
MRSTRO based on MST [36], and Consoli [37] proposed a Jumping Particle
Swarm Optimization methodology for addressing the minimum labelling Steiner
tree problem, both of which imply a bright and prospective application of intel-
ligent algorithms in VLSI routing [38].

Among intelligent algorithms, ant colony optimization (ACO) [39–41] is a kind
of bionic algorithm suggested and quickly developed by Dorigo. Using pheromone
to transmit messages between ants, its biggest characteristic is to subtly integrate
information of historical experience, excellent solutions and their interactions in a
distributed way through weighted edges in the searching space. By receiving
positive feedback of pheromone as well as heuristic guidance, the searching and
message exchanging efficiency and its quality can be guaranteed, thus gradually
becoming a very promising algorithm. At present, ACO is still at the very outset of
its development, and is mainly used in path planning and has received better
results than genetic algorithm (GA) and simulated annealing algorithm (SA).
MRSTRO belongs to path planning, whose optimal route can be excavated relying
on distributed information of edges. However, it distinguishes itself from general

8.1 Introduction 229

path planning for it usually contains multiple endpoints. Researches on how to
apply ACO on multi-terminal connection is still rare.

On the other hand, integrated circuit develops towards a high-speed and high-
integration-level trend. With the coming of deep submicron times, interconnect on
VLSI has become thinner and longer, leading to a substantial increase on its
resistance and capacitance. Consequently, the delay on interconnect is no longer
negligible, while that on gate decreases as its feature size shrinks. For instance, for
100 nm, the intrinsic switching delay of a MOSFET is 5 ps, whereas the RC
response time for 1 mm of interconnect is 30 ps. At 35 nm, this 6-to-1 differential
turns into a 100-to-1 difference [42]. These changes have made interconnect
routing on VLSI very different from before [43]. Previous Linear delay estimator
being the Manhattan distance between nodes, which is more commonsense-based,
pales in fidelity compared to Elmore delay [42, 44–47], in which a routing tree
with shortest length, though possessing a comparative small wiring area, and
sometimes a relatively better synchronicity in critical sinks, pays at other prices.
By maximizing sharing of tree’s branches, it adds extra nodes to the mainstream
from source to sinks and this could severely lengthen the delay. As a result, the
delay constraints at some sinks may be violated, which adversely affects the
performance of circuits or even leaving it malfunctioning. Since the calculation of
each sink’s delay depends on the structure of Steiner tree and is highly coupled
with other branches, such information is rather difficult to be incorporated into
distributed edges and hence cannot be appraised by tree’s cost. Therefore, tradi-
tional approach, to empirically identify delay as connecting length, and then focus
objectives of global routing on reducing the total cost, is not applicable in today’s
deep submicron regime.

Based on the above analysis, the delay on each sink is intrinsically contradicted
to the total wiring length. In other words, to ensure the least delay on a particular
sink, what we need to do is just to link it directly with the source, which may lead
to a star-like topology of Steiner tree. Obviously, its total cost is relatively high
and thus unwanted. When the delay calculated from the resulting tree is less than
the given constraint, it usually means that there is still possibility for merging
branches to reduce cost. Therefore, the ideal situation is that delay on each sink
should be less than but as close as possible to their respective constraints. Normal
methods to deal with optimization problems with constraints can be roughly
summarized as follows: one is to accept or abandon a solution (AAS) directly in
relation to its eligibility to meet the constraints, and the other one is to bring in a
penalty function to turn the questions into non-constraint ones. The former one
fails to make full use of solutions with good target values but cannot satisfy the
constraints, and in the latter one, likewise, such solutions suffer from punishment
and then degrade. In this context, we hope to take advantage of delay information
in the last iteration as guidance for generating solutions in the next. Inspired by the
positive feedback in ACO, and considering the contradictory relationship between
objectives and constraints in VLSI global routing, a negative feedback is intro-
duced to reconcile merging of branches according to the degree how a constraint is
satisfied. Specifically, if the delay constraint on a sink is severely violated, its

230 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

synergy coefficient decreases so as to restrain meeting with others, and otherwise
increases to encourage so.

The primary works of this chapter are as follows:
Optimization on global routing in VLSI is abstracted as a MRSTRO problem.

For addressing this problem, the MST constructing process is skipped, and an
enhanced ACO, which contains a synergy function other than the pheromone and
heuristic factors, is proposed and applied in multi-terminal path planning
problems.

Differences on VLSI routing between today’s deep submicron era and before
are carefully investigated. A more accurate Elmore delay is employed and a
constraint-oriented feedback is introduced to adjust branch’s merging with others
to prevent the case of over-constrain.

Through experimental tests, the effectiveness of synergy function and con-
straint-oriented feedback in our proposed SFB-ACO is verified by comparisons
with other algorithms or practices.

8.2 Preliminary

8.2.1 Terminology in Steiner Tree

The model for VLSI global routing in this chapter is based on MRSTRO, where
Steiner tree consists of a collection of given points, additional introduced Steiner
points and their connecting relationships. For any two points in Steiner tree, one
and only one path can be found. Other requirements in VLSI routing include:
either horizontal or vertical wiring lines, no transverses across functional area on
the chip. Here, some interpretations related to Steiner tree [8, 10] need to be given
as follows.

• Root, Node, Leaf and Edge
Any point consisting of a Steiner tree is called a node, whose set, denoted as T,
is a union of P and S. Connection between two nodes is called an edge, which
defines a parent-child relationship. Within the structural hierarchy in the tree,
there is a node with special status, usually called as a root. The closer to the
root, the higher rank of the node is. Leaf is defined as a node whose degree is 1,
namely the point that only has one connection.

• Steiner Points and Hanan Points
Any additionally introduced points that can help reduce the length of the
spanning tree are called as Steiner Points. By drawing horizontal and vertical
lines through points in P, we can obtain a Hanan grid. The intersections of the
grid are called Hanan points, and its collection is indicated as U.

• Mainstream, Segment and Subtree
For any element in P, the path from it to the root is called its mainstream, and
the connection between two adjacent nodes in the mainstream is called a

8.1 Introduction 231

segment. A partial tree rooted in node Ti, and consisting of Ti and all its child
nodes are called a subtree of Ti, denoted as Sub(i).

• Connectivity
In the wiring diagram, the existence of obstacles may prevent some Hanan
points to be selected as Steiner points. In the cases where exists a pair of nodes
P1 and P2, and their Hanan points U1 and U2, their connection cannot be
completed by simply choosing U1 or U2 to be the yielding point, but requires
two or more, such situation is called non-connectable; otherwise, we call it
connectable, illustrated in Fig. 8.2.

8.2.2 Elmore Delay

Elmore delay is a relatively accurate and commonly used model when calculating
signal delay over the network. In today’s deep submicron era, delay on the VLSI
interconnect can no longer be ignored. For a wire with length L, it can be divided
into N segments and each is measured as DL; then it can be described by a RC
network model illustrated in Fig. 8.3.

Assuming that the wire itself is homogeneous, that is, the resistance and
capacitance per unit length is a constant, denoted as Rrate and Crate, respectively,
then the total delay along this wire can be expressed in Eq. (8.1) [45].

sL¼ Rrate �DLð Þ Crate �DLð Þþ2 Rrate �DLð Þ Crate �DLð Þþ���þN Rrate �DLð Þ Crate �DLð Þ

¼Rrate �Crate � ðDLÞ2 �
XN

i¼1

i¼1
2

RL �CL ð8:1Þ

where, RL and CL represent the wire’s total resistance and capacitance.
For a node Ti in Steiner tree, the signal delay from the root T0 to Ti can be

formulated as Eq. (8.2) [46].

sðTiÞ ¼ RT0 � CT0 þ
X

all segments along mainstreamðiÞ
sej ð8:2Þ

Fig. 8.2 Instances of connectivity a connectable b non-connectable

232 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

sej ¼ RTj � CTj þ Rej

Cej

2
þ CsubðjÞ

� �
ð8:3Þ

CsubðjÞ ¼
X

all nodes in subtreeðjÞ
CTk þ

X

all edges along subtreeðjÞ
Cel ð8:4Þ

In Eq. (8.2), RTiði ¼ 0; 1; 2; . . .Þ represents the resistance to drive node Ti,
CTiði ¼ 0; 1; 2; . . .Þ represents capacitance of node Ti, and ej represents the edge
from Tj to its next nearest node along Ti’s mainstream. Correspondingly, delay
along this edge is denoted as sej , and computed by Eq. (8.3), where Rej and Cej

respectively represent the total resistance and capacitance of the edge, and CsubðjÞ is
defined as the equivalent capacitance of subtree rooted in Tj’s nearest child node
along the mainstream, which is the sum of capacitance of all nodes and edges in
the subtree. If the child node of Tj is a leaf, then the value of CsubðjÞ is identical to
the capacitance of this leaf.

Up till now, for each node in the Steiner tree, its delay from the root along its
mainstream can be calculated iteratively according to Eqs. (8.2)–(8.4).

8.2.3 Problem Formulation

This section discusses MRETRO problem with timing constraints for VLSI global
routing in a deep submicron era. In this section, the relationship between the sink
delay and tree length is scrutinized, and appropriate candidate pool for Steiner
points is determined on account of solution precision and space complexity.

Given a point set P ¼ fPiji ¼ 1 : ng corresponding to the sinks on the VLSI
chip to be optimized, where n is the number of sinks, and root T0 corresponds to
the source on chip. For each sink and source, it can be located by its coordinate
ðxi; yiÞ on board. Besides, there is a collection of modules, viewed as obstacles, the
actual shape of which does not affect the area for wiring because of the Manhattan
rule in VLSI, and thus can be formulated or divided into a number of rectangles.
These rectangular obstacles are denoted as R ¼ fRiji ¼ 1 : rg, where r is the
number of obstacles, and its position and size are expressed by its bottom-left and
upper-right vertex coordinates. Upon the basis of sinks and source, some other
special points, known as Steiner Points, are needed to be introduced. How to

In OutΔR

ΔC

ΔL

Fig. 8.3 RC model for a wire

8.2 Preliminary 233

construct a MRST using these points, and at the same time, not violate the delay
constraint of each sink? This is an issue which needs to be addressed here.

As mentioned before, the wiring length, chip area, power consumption, heat loss,
and clock synchronicity can be accessed by the total cost of weighted edges in the
spanning tree. Here all the wires in the chip are assumed to be homogeneous, which
means that all edges are of uniform weight (which is set to 1), so that minimizing the
total cost of Steiner tree is equivalent to minimizing its total length. Also, the delay
constraint of each sink is set to be Tlimit ¼ fTlimitðiÞji ¼ 1 : ng, then the optimization
problem can be formulated as follows.

Min
X

all segments

Le

 !
ð8:5Þ

subject to sðTiÞ� TlimitðiÞ; 8i ¼ 1 : n ð8:6Þ

In Eqs. (8.5) and (8.6), Le represents the length of each segment in the spanning
tree, and s and Tlimit respectively represent the actual Elmore delay of the sink and
its delay constraint.

Apparently, the selection of Steiner points is the key to solve above problem.
Note that if rendering the candidate pool to be infinite or with little limitation, it
will unavoidably increase the space complexity of the problem.

Theorem 1 (Hanan [16]) For any MRST, all of its Steiner points are Hanan points.
Corollary 1 If a MRSTRO problem is solvable, its optimal solution can be

obtained by selecting Steiner points from Hanan points set or from points located
in the rim of obstacles.

Corollary 2 For two points Ti and Tj to be connected, the shortest path between
them is equal to the Manhattan distance between them, as defined in Eq. (8.7),
when they are connectable; otherwise it should at least contain one portion of
obstacle’s edge.

DðTi; TjÞ ¼ xi � xj

�� ��þ yi � yj

�� �� ð8:7Þ

Theorem 2 For a partial tree T and an unconnected point Pk outside the tree,
the best location in segment for a Steiner point to connect Pk to T to control the
tradeoff between tree length and sink delay, should lie between SP and CUC, as
shown in Fig. 8.4, where SP is the shadow point of Pk to the segment, and CUC is
the closest upstream connection to Pk.

Proof Let Ti denote the closer-to-root endpoint of the segment to be connected,
which is CUC, and its coordinate to be (0, 0). Let the other endpoint, i.e., closest
downstream connection (CDC), to be indicated by Tj, with its coordinate being (xj

,0). Let the coordinate of Pk to be ðxk; yÞ, and its shadow point in segment to be
ðxk; 0Þ. Let RTi and CTi denote the resistance and capacitance of node Ti, respec-
tively. Let Rs and Cs respectively represent the Steiner point’s resistance and
capacitance if it does not lie on CUC or CDC. Denote the resistance and

234 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

capacitance per unit length on segment by Rrate and Crate, respectively, and the
equivalent capacitance of subtree rooted in Tj to be CsubðjÞ, and assume that the
coordinate for selected Steiner point on segment is (x, 0). Then according to
Elmore model, delay from source to node Pk along its mainstream can be
expressed as follows.

sðPkÞ ¼ sðpredecessorÞ þ sei þ seS ð8:8Þ

In Eq. (8.8), sðpredecessorÞ represents the signal delay from source to node Ti,
sei represents delay from node Ti to the selected Steiner point, and ses represents
delay from the Steiner point to node Pk.

Additionally, we can easily infer from Eqs. (8.2)–(8.4) that the connecting of Pk

only affects the value of Csub, and for each CsubðiÞ in the upstream route, it can be
expressed as in Eq. (8.9).

CsubðlÞ ¼ Cpredecessor þ CsubðiÞ; 8Tl 2 Predecessor Tið Þ ð8:9Þ

So that we can rewrite Elmore delay to be a linear function of CsubðiÞ, expressed
as follows.

sðpredecessorÞ ¼ ConAþ ConB � CsubðiÞ ð8:10Þ

Where ConA and ConB are both constant, which are only related to the resis-
tance and capacitance of Ti’s upstream route, respectively. The change of CsubðiÞ
has nothing to do with the value of ConA or ConB.

Hence the influence of Steiner point’s location on CsubðiÞ can be calculated
according to Eq. (8.11).

CsubðiÞ ¼ CTi þ CS þ CPk þ CsubðjÞ þ Crate � xj þ xk � xj j þ y
� �

ð8:11Þ

Also, its influence on sei and ses can be expressed as in Eqs. (8.12) and (8.13),
respectively.

T/Sub (i) Sub (j)

Pk (xk,y)

Ti (0,0) Tj (xj,0)

Closest Upstream

Connection

(CUC)

Closest

Downstream

Connection

(CDC)

(xk,0)

Shadow

Point (SP)

Fig. 8.4 Diagram of CUC,
SP and CDC

8.2 Preliminary 235

sei ¼ RTi � CTi þ Rrate � x
� Crate �

x

2
þ CS þ CsubðjÞ þ CPk þ Crate ðxj � xÞ þ xk � xj j þ y

� �n o
ð8:12Þ

seS ¼ RS � CS þ Rrate � xk � xj j þ yð Þ � Crate �
xk � xj j þ y

2
þ CPk

� �
ð8:13Þ

According to Eqs. (8.8)–(8.13), we can easily find that s Pkð Þ is a piecewise
quadratic function of x, expressed as follows.

s Pkð Þ ¼ Aþ Bxþ Cx2 ð8:14Þ

where

A ¼

ConAþ ConB CTi þ CS þ CPk þ CsubðjÞ þ Crate xj þ xk þ y
� �� �

þ RTi CTi

þRSCS þ Rrate yþ xkð Þ Crate �
yþ xk

2
þ CPk

	

; 0� x� xk

ConAþ ConB CTi þ CS þ CPk þ CsubðjÞ þ Crate xj � xk þ y
� �� �

þ RTi CTi

þRSCS þ Rrate y� xkð Þ Crate �
y� xk

2
þ CPk

	

; xk\x\xj

8
>>>>>><

>>>>>>:

ð8:15Þ

B ¼ �ConB � Crate þ Rrate CS þ CsubðjÞ þ Crate � xj

� �
; 0� x� xk

ConB � Crate þ Rrate CS þ CsubðjÞ þ Crate � xj

� �
; xk\x\xj

�
ð8:16Þ

C ¼ �Rrate � Crate; 0� x� xk

Rrate � Crate; xk\x\xj

�
ð8:17Þ

Other nodes, apart from those which directly connect to the source without any
other nodes within the mainstream, their signal delay will also be affected due to
the newly connected point Pk. Among them, nodes located on T=SubðiÞ mainly
suffer from the change of CsubðiÞ, and the major cause for delay variation of those
on SubðjÞ will be the increase of segment number and their corresponding delay
change along the mainstream. Delay on these nodes is also a piecewise quadratic
function of x, which can be get as above.

Qualitatively drawing curves to depict signal delay of Pk and nodes distributed
in other positions, as shown in Fig. 8.5, we can easily tell that delay on all sinks
increase when the Steiner point is inserted after SP. And apparently, the tree length
is longer compared to the situation when the Steiner point lies before SP.
Therefore, an appropriate location for the new Steiner point should be between
CUC and SP. In this region, the length of spanning tree gradually decreases when
slowly shifting Steiner point backwards, and reaches its lowest point when at SP.
Another conclusion drawn from Fig. 8.5 is that, delay on each sink continuously
changes as the Steiner point moves between CUC and SP, and some of them

236 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

change in the opposite direction, which implies, that the timing conditions at
different sinks are sometimes contradictory when adjusting position of one Steiner
point. This makes it possible for us to artificially regulating the synergy function of
branches in order to meet their respective timing constraints.

From above, we also see that limiting the candidate Steiner points to the Hanan
pool is actually not conductive to the adjustment of sink’s delay. And according to
Corollary 1 and 2, the Hanan points are not enough if the design model is non-
connectable itself. Taking the space complexity into account, S ¼ Urefined [RIM [
PEAK can serve as an appropriate candidate pool for Steiner points, where Urefined

is a collection consisting of Hanan points that lies off the obstacle region, RIM is
comprised of intersections created by drawing horizontal and vertical lines from
sinks to the obstacles’ rims, and PEAK represents the collection of all rectangular
obstacles’ vertices, as illustrated in the right panel of Fig. 8.8. h

8.3 SFB-ACO for Addressing MSTRO Problem

This section starts with a brief overview of ACO on two-endpoint path planning,
and based on it, a SFB-ACO algorithm encompassing a synergy function and
constraint-oriented feedback is proposed and then applied on multi-terminal
routing optimization presented before.

8.3.1 ACO for Path Planning with Two Endpoints

The basic idea for traditional ACO can be summarized as below. Using ants’ paths
to represent feasible solutions, all paths searched can constitute the whole solution
space for the given optimization problem. Let ants release more pheromone on the
path whose total length is relatively shorter, and as time goes by, more and more
pheromone can be accumulated on such paths, and thus they are more likely to be
selected by other ants. Influenced by such an intense positive feedback, ants will

0 xk xj
x

Node Pk

Node Tu

Node Tv

Node Tw

Node Tz

Fig. 8.5 Change of signal
delay on different nodes

8.2 Preliminary 237

ultimately converge into an optimal path with shortest length, and this path is also
called as the optimal solution.

The main framework for standard ACO on path planning with two-endpoints is
depicted in Fig. 8.6.

At first, pheromone concentration on all edges is the same, denoted as
fijð0Þ ¼ s0. Ant k (k = 1,2,…,m) will choose the next node to visit according to
the amount of pheromone deposited on edge as well as heuristic information, and
the corresponding transferring rate for ant k to move from node i to node j can be
denoted as Pk

ijðtÞ, and calculated in Eq. (8.18).

Pk
ij ¼

fij

� �a� gij

� �b
P

S2allowk

fij

� �a� gij

� �b ; S 2 allowk

0; S 62 allowk

8
>>><

>>>:
ð8:18Þ

where fij represents the pheromone concentration on edge between i and j, gij

represents heuristic function to signify expectation for ants to move from i to j,
allowk represents the node collection that are allowed for ant k to visit, a is a
pheromone factor, whose value represents the importance degree of pheromone
concentration in ant’s transferring and value of b, referred to as heuristic factor,
represents that degree of heuristic information.

At the same time, the pheromone concentration on each edge will be updated
with its formulation expressed as below.

fijðt þ 1Þ ¼ ð1� qÞ � fijðtÞ þ Dfij ð8:19Þ

Dfij ¼
Xn

k¼1

Dfk
ij ð8:20Þ

where q represents the degree of pheromone evaporation, and its value lies on
region [0,1], Dfk

ij represents pheromone released by ant k on edge connected from
i to j, and Dfij represents the total pheromone released by all ants on this edge.

Begin Initializing
Solution space

constructed
Pheromon
e updated

Maximum
iteration?

iter=iter+1
Clear routing table

End
Optimal solution

output

Y

N

Fig. 8.6 Framework of standard ACO

238 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

As for the updating mechanism, Dorigo has given three different models, which
are ant cycle system, ant quantity system, and ant density system. Among them,
the first one employs the global information on ants’ routing, thus being most
commonly used. Its updating mechanism is introduced as follows.

Dfk
ij ¼

Q
Lk
; if antðkÞ visit nodeðjÞ from nodeðiÞ

0; otherwise

�
ð8:21Þ

where Q is a constant representing the total amount of pheromone released in one
cycle, and Lk is identical to the length of ant k’s route.

Standard ACO is perfectly suitable for shortest path planning with a sole source
and destination. However, in a VLSI circuit board, there are multiple sinks and one
source; what requires to be optimized is not the separate path from each sink to the
source as in standard ACO, but the whole spanning tree created by all these points.
In other words, no branch is completely independent, and only by merging
branches in the maximum degree can we expect the shortest length of the tree.
That’s the reason that a synergy function is introduced in our proposed SFB-ACO.

8.3.2 Procedure for Constructing Steiner Tree
Using SFB-ACO

Here we incorporate a synergy matrix c with size n� n, where cði; jÞ represents the
function for branch i to join in branch j. The procedure for constructing a Steiner tree
is described as in Fig. 8.7. For n sinks to be connected in VLSI, let the number of ants
in one group to be n, and that of ant groups to be m. Let the initial positions for n ants
in one group to be the places where sink 1, sink 2, …, sink n lie. S is the candidate pool
for Steiner points, and in combination with the source and sinks, they make up a point
collection for ants to visit. Similar to standard ACO, each ant chooses its next node
according to the transferring rate, and creates its own routing table. If any ant in the
group transfers to the source or to nodes that have previously been visited by the other
ants in its group, it succeeds in finishing its task and its travelling ends. Upon all ants
in the group finish their tasks, we check the route to see whether it is a Steiner tree and
record its length if yes. Otherwise, if any ant encounters a dead corner, i.e., there are
not any allowed nodes to choose, we label a failure on the group and cancel all
movements of its ants. Hereto, we call it one cycle. The pheromone concentration is
updated once in a cycle, and only the group who successfully finishes the task can
release pheromone on its path. As the pheromone accumulates through several
cycles, the optimal Steiner tree can be found.

8.3 SFB-ACO for Addressing MSTRO Problem 239

The pseudo code for function FindRoute in Fig. 8.7 is as follows.
In line 9, the transferring rate is calculated as follows.

Function taboo = FindRoute(source, sinks, obstacles, candidate Steiner points)
Step1 Initialization taboo, allowedmember
Step2 While (allowedmember ~= NULL)
Step3 Find nodes nearest to the taboo (end) from four directions
Step4 If (edge between node i and taboo(end) goes across any obstacle)
Step5 Let node = node / i
Step6 End if
Step7 Let node = node / taboo
Step8 If (node ~= NULL)
Step9 Calculate transferring rate
Step10 Select node and update taboo
Step11 Calculate transferring rate
Step12 If (node == root || node is a member of other ant’s taboo)
Step13 Let current member be erased from allowedmember
Step14 End if
Step15 Else
Step16 Record failure on this round and break
Step17 End if
Step18 End while
Step19 Output the routing table of n ants

Pk
ij ¼

1ij

� �a� gij

� �b�funk
cijP

s2allowk

1ij

� �a� gij

� �b�funk
cij

; S 2 allowk

0; S 2 allowk

8
>>><

>>>:
ð8:22Þ

Input: A VLSI net with source, sinks, obstacles,
and candidate pool for Steiner points

Optimal Steiner Tree Construction

Initializing

iter<=iter_max?

Finding Routing Path
for n Ants

Checking (taboo)

Calculating Length (Delay, and
Breach)

Updating Pheromone (and Synergy)

R
epeating

m
T

im
es

Output Resulting
Tree, Length (and

Delay)

iter=iter+1

Fig. 8.7 Framework of SFB-ACO

240 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

where

gij ¼ 1=D T0; Tj

� �
ð8:23Þ

funk
cij
¼

Yn

r¼1;r 6¼k

PNr
node

l¼1

1
D Tj;Ttabur ðlÞð Þ
Nr

node

2
6664

3
7775

ckr

ð8:24Þ

In Eq. (8.22), gij is identical to the Manhattan distance from source to node j,
expressed as in Eq. (8.23). funk

cij
represents the synergy function for ant k to

transfer from node i to node j, whose value can be obtained by Eq. (8.24), where
TtabusðlÞ represents the node in the route table, Nr

node represents the number of nodes
that have been visited by ant r, and ckr represents the importance of synergy for
branch k to join in branch r.

The pseudo code for function Checking in Fig. 8.7 is as follows.

Step1 Initialize flag to be 1
Step2 If (root is not a member of taboo)
Step3 Let flag = 0
Step4 Else
Step5 For i = 1 to n
Step6 Let path(i) record the path sink i which can go as far as it can toward the root
Step7 If (root is not the end of path(i))
Step8 Let flag = 0 and break
Step9 Else
Step10 If path(i) contains repeating nodes
Step11 Let flag = 0 and break
Step12 End if
Step13 End if
Step14 End for
Step15 End if
Step16 Output checking result indicated as flag

Function flag = Checking(taboo)

Another innovative practice referring to the dealing with constraints will be
presented in the next subsection.

8.3.3 Constraint-Oriented Feedback in SFB-ACO

Directed by the above analysis, Elmore delay on each sink is closely related to the
number of Steiner points, their positions along the mainstream, and the connecting
topology of other branches. To put it simple, the more meeting with others, the

8.3 SFB-ACO for Addressing MSTRO Problem 241

more reduction it may cause on the length of spanning tree, whereas adding delay
on relevant sinks. Therefore, the value in the synergy matrix will have direct
impact on its corresponding sink’s delay. Different from early methods dealing
with solutions that break the constraints, which is either abandoning them or
punishing them, this chapter presents a constraint-oriented feedback on elements
in c with the purpose to prevent the case of over-constrain.

First, the definition of constraint breach should be clarified.

Breach Tið Þ ¼ s Tið Þ � TlimitðiÞ ð8:25Þ

Obviously, any positive value in vector Breach reveals a violation to the
constraint. Otherwise, it may indicate a situation of over-constrain, which means
that there is still space for further reducing the tree’s length. Therefore, the ideal
value in vector Breach should be equal to zero. However, this may be rather
difficult, since the candidate pool for Steiner points we select is far from infinite.
For that reason, the value in Breach should be lesser and as close as possible to
zero.

The mechanism to regulate c based on Breach is shown in Fig. 8.7 with red
marks, in which the procedure of finding route path for n ants is the same as in
Sect. 8.3.2, and the calculation of sink delay is based on Elmore model given in
Sect. 8.2.

In addition, the pseudo code for pheromone updating function UpdatePh is as
follows.

Function zera = UpdatePh(zeta)
Step1 Initialize Delta_zeta, rho
Step2 For i = 1 to m
Step3 If (vector { 1.5i limitdelay T } contains no positive numbers)
Step4 Calculate decay_zeta
Step5 For each edge in the routing path
Step6 Let corresponding element in Delta_zeta increase by Q/Length(i)decay_zeta
Step7 End for
Step8 End if
Step9 End for
Step10 Let zeta = (1 - rho) zeta + Delta_zeta
Step11 Output resulting matrix zeta

Coefficient decay_zeta in above pseudo code is calculated as in Eq. (8.26).

decay zeta ¼ e

�k�
P

l¼1:n; and BreachiðlÞ[0

BreachiðlÞj j

 !

ð8:26Þ

where k is a constant to be determined, and decay_zeta represents the decaying
degree of pheromone accumulated because of violation of constraints.

The pseudo code for synergy regulation function RegulateSy is as follows.

242 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

Function gama = RegulateSy(gama)
Step1 Initialize p1, p2, p3, p4
Step2 For i = 1 to m
Step3 For j = 1 to n
Step4 If ()iBreach j > 0

Step5 Multiply the j th row of gama by 1 ()ip Breach je

Step6 Multiply the j th column of gama by 2 ()ip Breach je

Step7 Else
Step8 If (the average length increases in this iteration

and iBreach contains no positive numbers)

Step9 Multiply the j th row of gama by 3 ()ip Breach je

Step10 Multiply the j th column of gama by 4 ()ip Breach je

Step11 End if
Step12 End if
Step13 End for
Step14 End for
Step15 Output resulting matrix gama

The negative feedback introduced above can effectively direct and regulate the
synergy function among branches, thus controlling tradeoff between length and
delay. On the other hand, receiving positive feedback from pheromone, paths with
desired objective value and can satisfy the constraints will be repeatedly strength-
ened and strengthened. At last, under the role of double feedback, an optimal solution
with its Breach value all negative and closest-to-zero can be found.

8.4 Implementation and Results

Experiments have been conducted to evaluate the performance of our proposed SFB-
ACO algorithm, and two groups of experiments are designed and carried out. In the
first one, based on the same chip consisting of a certain number of sinks and obstacles,
two different scale candidate pools for Steiner points are selected; renewed Prim [48],
standard ACO, and SFB-ACO are then applied to optimize the routing using the
above two pools, assessments with respect to each are made and roles of synergy
function and pool size are carefully discussed. In the second experiment, stringent
timing constraints are given according to the Elmore delay tested in the first
experiment, and a constraint-oriented feedback is introduced in case of over-con-
strain, and its effectiveness has been validated through comparisons with AAS.

8.4.1 Parameters Selection

In order to apply relevant algorithms on VLSI routing, several parameters have to
be determined. Arguments input related to the chip to be optimized, including
source, sinks, obstacles and their positions can be graphically obtained from
Fig. 8.8, where the above objects are indicated by red star, red circles, and cyan

8.3 SFB-ACO for Addressing MSTRO Problem 243

rectangular. Figure 8.8 also shows two selected candidate pools of different sizes
for Steiner points, denoted as pool I and pool II from left to right.

Parameters used in our proposed SFB-ACO are shown in Table 8.1, and those
related to the calculation of Elmore delay are summarized in Table 8.2.

8.4.2 Improvement of Synergy

In the first experiment, timing constraints for each sink are set quite loose such that
the problem is degraded as a MRSTRO without constraint. Adopting two candi-
date pools of different sizes for Steiner points, Table 8.3 records the respective
results of renewed Prim, standard ACO, and our proposed SFB-ACO, and their
optimal routing diagram are given in Figs. 8.9, 8.10, 8.11, 8.12 and 8.13 from top
to bottom under two pools. Pool I is a simplified point set of Pool II, in which the
points that are not easily accessible, namely, behind obstacles are removed to
achieve a lower space complexity. We can see from the data, there is no much
difference in the solution quality and convergence rate under two candidate pools.
This indeed implies a possibility to reduce algorithm’s space complexity while not
at the cost of its precision or efficiency. However, this is only valid when leaving
the timing constraints aside. If these constraints are stringent, the points behind
obstacles may be needed as additional choices for leading a constraint-meet
topology of spanning tree. This is the reason that we adopt Pool II in our second
experiment.

In Table 8.3, renewed Prim is a kind of greedy algorithm similar to Prim
algorithm but with several adjustments mainly considering the Manhattan

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 0

 1

 2

 3

 4

 5

Fig. 8.8 Instance of chip to be optimized and two candidate pools for Steiner points

Table 8.1 Parameters related to algorithms

Parameter a b rho Q m Iter_max P1 P2 P3 P4

Value 5 20 0.1 2 35 50 0.0000 0.0018 0.0010 0.0000

244 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

T
ab

le
8.

2
P

ar
am

et
er

s
re

la
te

d
to

E
lm

or
e

de
la

y

P
ar

am
et

er
R

es
is

ta
nc

e
of

C
ap

ac
it

an
ce

of

S
ou

rc
e

R
T

0
ð
Þ

S
in

k
R

T
i
;

i
¼

1
:

n
ð

Þ
N

od
e

R
T

i
;

i
[

n
ð

Þ
E

dg
e

R
ra

te
ð

Þ
S

ou
rc

e
C

T
0

ð
Þ

S
in

k
C

T
i
;

i
¼

1
:

n
ð

Þ
N

od
e

C
T

i
;

i
[

n
ð

Þ
E

dg
e

C
ra

te
ð

Þ
V

al
ue

0.
4

0.
2

0.
1

0.
1

0.
2

0.
1

0.
05

0.
05

8.4 Implementation and Results 245

T
ab

le
8.

3
C

om
pa

ri
so

ns
of

di
ff

er
en

t
al

go
ri

th
m

s
un

de
r

di
ff

er
en

t
po

ol
s

A
lg

or
it

hm
M

in
im

um
le

ng
th

A
ve

ra
ge

le
ng

th
It

er
at

io
ns

E
lm

or
e

de
la

y
on

ea
ch

si
nk

S
in

k
1

S
in

k
2

S
in

k
3

S
in

k
4

S
in

k
5

S
in

k
6

R
en

ew
ed

P
ri

m
42

–
–

2.
19

1.
83

1.
65

0.
16

2.
05

0.
32

A
do

pt
in

g
po

ol
I

fo
r

ca
nd

id
at

e
S

te
in

er
po

in
ts

(X
X

el
em

en
ts

)

S
ta

nd
ar

d
A

C
O

43
48

30
1.

42
1.

44
1.

14
0.

60
1.

44
0.

32

S
F

B
-A

C
O

41
42

12
1.

90
1.

75
1.

53
0.

65
1.

75
1.

03

A
do

pt
in

g
po

ol
II

fo
r

ca
nd

id
at

e
S

te
in

er
po

in
ts

(X
X

el
em

en
ts

)

S
ta

nd
ar

d
A

C
O

42
48

34
1.

75
1.

66
1.

42
0.

59
1.

45
0.

32

S
F

B
-A

C
O

41
42

18
1.

93
1.

75
1.

51
0.

57
1.

52
0.

32

246 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

architecture and obstacles and its primary mechanism can be described as below.
Firstly, starting with a partial tree containing the source, each time we select the
sink which has the shortest attainable Manhattan distance to the existing tree. With
the selection of sink, the Steiner point can be determined, and therefore an edge
between them can be established. The iteration procedure goes on until all sinks
have been added to the tree. From above, we know renewed Prim is a relatively
deterministic algorithm with quite high efficiency, and that explains why data
related to average length and iterations are not recorded in the table. However, in
the process of building tree, it is only guided by information given by the added
nodes, but without any consideration about the effects it may have on sequential
sinks. Its minimum length, 42, though good, is still not the optimal one, compared

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

x-coordinate

y-
co

or
di

na
te

Best routing with shortest length : 42Fig. 8.9 Routing diagram
given by renewed Prim

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 6

x-coordinate

y-
co

or
di

na
te

Best routing with shortest length : 43.0003Fig. 8.10 Routing diagram
given by standard ACO using
pool

8.4 Implementation and Results 247

to 41 in SFB-ACO. Besides, because of its relative determinacy, it can only obtain
solutions with a set of fixed delay on sinks, comparatively, which is absolutely not
feasible with stringent timing constraint.

The last two lines in Table 8.3 strongly convince us the advantage of synergy
function we introduce in SFB-ACO. Under either pool, SFB-ACO can result in a
higher quality of solution and better efficiency of algorithm than standard ACO, 41
versus 43, 41 versus 42, 12 versus 30, and 18 versus 34, respectively. This is
because under the function of synergy, branches are no longer independent: they
try their best to find ways to join in the tree instead of to reach to the source. Once
they merge into another, they just quit travelling and the total length can be

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 6

x-coordinate

y-
co

or
di

na
te

Best routing with shortest length : 42.0002Fig. 8.11 Routing diagram
given by standard ACO using
pool II

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 6

x-coordinate

y-
co

or
di

na
te

Best routing with shortest length : 41.0002Fig. 8.12 Routing diagram
given by SFB-ACO using
pool I

248 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

reduced. Since the length obtained in their early iterations is already near-to-
optimal, the algorithm can converge at a faster rate. Comparing the average length
of standard ACO and SFB-ACO, 42 and 48, we also learn that the convergence
status in SFB-ACO is better than that in standard ACO. As the iterations goes by,
not all solutions can converge into the best one in standard ACO and this is
because the pheromone released by the best solution do not have noticeable
function on guiding the formatting of its sequential solutions. It, on the other side,
implies that merely accounting for pheromone and heuristic information is not
enough. Other force, such as our proposed synergy function, is indeed needed.

By comparison of data in Table 8.3 and routing scheme in Figs. 8.9, 8.10, 8.11,
8.12 and 8.13, we also see that same length of two schemes does not necessarily
suggest the same topology of spanning tree, not to speak the same delay on each
sink. Another purpose for recording Elmore delay in the last couple of columns is
for later use as references to giving constraints.

8.4.3 Effectiveness of Constraint-Oriented Feedback

This part will use Pool II for candidate Steiner points, and based on the Elmore
delay tested before, a more stringent timing constraint is given. Then through
check experiments between conventional AAS and our constraint-oriented feed-
back, the effectiveness of the proposed practice on preventing over-constrain will
be tested.

Table 8.3 illustrates the sink delay of routing solutions with the shortest length
under different algorithms. Due to the relatively contradiction between sink delay and
tree length, as well as the contrasting relationship between delays on different sinks, we
can safely say that delays on some of sinks can be further reduced by increasing the

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 6

x-coordinate

y-
co

or
di

na
te

Best routing with shortest length : 41.0002Fig. 8.13 Routing diagram
given by SFB-ACO using
pool II

8.4 Implementation and Results 249

total length or changing the topology of the final tree. Above analysis leads us to
consider setting the timing constraint to be Tlimit ¼ ½1:5; 1:5; 1:4; 0:4; 1:5; 0:5�.

Figures 8.14 and 8.15 depict the change of tree lengths during iterations, where
BestF represents the length of best solutions, regardless of its violation to con-
straints, BestC represents length of best solutions that can meet the constraints, and
AveC represents average length of solutions that can meet the constraints. If
adopting AAS, only solutions under timing constraints will be reserved, and then
release pheromone on corresponding paths; this procedure often requires a longer
time for curves of AveC and BestC to meet, and the resulting length is not quite
good. Instead, constraint-oriented feedback can take advantage of solutions that have
better target value but slightly violate the constraints, by regulating little by little,

5 10 15 20 25 30 35 40 45 50
35

40

45

50

55

60

iterations

le
ng

th

Change of tree length during iterations

BestC
AveC

Fig. 8.14 Change of length
under AAS

5 10 15 20 25 30 35 40 45 50
35

40

45

50

55

60

iterations

le
ng

th

Change of tree length during iterations

BestF
BestC
AveC

Fig. 8.15 Change of length
under constraint-oriented
feedback

250 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

also requiring quite a long process, can obtain a better solution, 44 compared to 46 in
AAS. And finally, three curves in Fig. 8.15 merge together, implying that most of
solutions reserved in the last iteration can satisfy the constraints so that the feedback
regulation itself is converged. Figure 8.16, which depicts the change of Elmore
delay of each sink during iterations, where color cyan, blue, green and, red
respectively represent timing constraint, BestF, BestC, and AveC, also explains that
points. In the early searching, the blue curves in most figures lie upon the cyan one,
indicating that best solution among all feasible ones is somehow against constraints
on some of its sinks. In the meanwhile, some of the green curves fall far below the
cyan ones, leaving quite an allowance for improving the quality of solutions. As
time goes on, the blue curve declines, so is the trend of the red one, while the green
curve go through accommodations with others so as to make the overall breach

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

iterations

E
lm

or
e

de
la

y
Change of delay of sink 1

0 10 20 30 40 50
0.8

1

1.2

1.4

1.6

1.8

iterations

E
lm

or
e

de
la

y

Change of delay of sink 2

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

iterations

E
lm

or
e

de
la

y

Change of delay of sink 3

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

iterations

E
lm

or
e

de
la

y

Change of delay of sink 4

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

1.8

2

iterations

E
lm

or
e

de
la

y

Change of delay of sink 5

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

iterations

E
lm

or
e

de
la

y

Change of delay of sink 6

Fig. 8.16 Change of delay on each sinks under constraint-oriented feedback

8.4 Implementation and Results 251

smaller than before. Some sinks, like sink 4, have to larger their breaches, leaving
chances for others to minish theirs. This change occurs in iterations around 5, 20,
and 40, which corresponds to a step-down in BestC curve in Fig. 8.15.

Figures 8.17 and 8.18 give out the final routing diagram under AAS and our
constraint-oriented feedback. Table 8.4 records their respective shortest lengths
and their corresponding Elmore delays and breaches on each sinks. The one with
the shorter length does not necessarily possess the smallest delay on every sinks,
but roughly speaking, the breach of it is comparatively closer to zero. Also,
shortest length is not automatically equivalent to a near-to-zero value of all ele-
ments in its vector Breach. Instead, an accommodation between sinks must be
considered, and that’s the reason why breaches under constraint-oriented feedback

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 6

x-coordinate

y-
co

or
di

na
te

Best routing with shortest length : 46.0002Fig. 8.17 Resulting routing
diagram under AAS

0 5 10 15
0

2

4

6

8

10

12

14

 0

 1

 2

 3

 4

 5

 6

x-coordinate

y-
co

or
di

na
te

Best routing with shortest length : 44.0003Fig. 8.18 Routing diagram
under constraint-oriented
feedback

252 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

T
ab

le
8.

4
C

om
pa

ri
so

ns
be

tw
ee

n
A

A
S

an
d

co
ns

tr
ai

nt
-o

ri
en

te
d

fe
ed

ba
ck

M
et

ho
d/

m
od

ul
e

L
en

gt
h

E
lm

or
e

de
la

y
B

re
ac

h

S
in

k
1

S
in

k
2

S
in

k
3

S
in

k
4

S
in

k
5

S
in

k
6

S
in

k
1

S
in

k
2

S
in

k
3

S
in

k
4

S
in

k
5

S
in

k
6

A
A

S
46

1.
42

0
1.

43
0

1.
10

0
0.

39
5

1.
43

0
0.

32
0

0.
08

0
0.

07
0

0.
30

0
0.

00
5

0.
07

0
0.

18
0

F
ee

db
ac

k
44

1.
47

0
1.

46
0

1.
19

0
0.

21
5

1.
46

0
0.

35
5

0.
03

0
0.

04
0

0.
21

0
0.

18
5

0.
04

0
0.

04
5

8.4 Implementation and Results 253

are not always smaller than in AAS. Therefore the contradictory relationship
discussed before has been once again evidenced, and the effectiveness of our
constraint-oriented feedback on preventing over-constrain is convincingly
demonstrated.

8.5 Summary

The global routing in VLSI belongs to the multi-terminal path planning, and can be
abstracted as a MRSTRO problem. With the coming of submicron age, delay on
interconnect can no longer be ignored, which makes the optimization model much
different from before. Previous algorithms of constructing Steiner tree are either
inapplicable or far from satisfactory. This chapter presented a novel SFB-ACO
algorithm, which can serve as a useful tool for net connection with multiple endpoints
under constraints. In detail, the main contributions are concluded as follows.

References

1. Chen WK (2004) The electrical engineering handbook. Academic, Burlington, MA
2. Vannelli A (1991) An adaptation of an interior point method for solving the global routing

problem. IEEE Trans CAD/ICAS 10(2):193–203
3. Roy JA, Markov IL (2007) High-performance routing at the nanometer scale. In: Proceedings of

the International Conference on Computer-Aided Design (ICCAD), San Jose, CA pp 496–502
4. Terlaky T, Vannelli A, Zhang H (2008) On routing in VLSI design and communication

networks. Discrete Appl Math 156(11):2178–2194
5. Meindl J (2004) Tyranny of interconnects. In: Proceedings of the International Symposium

on Physical Design, pp 18–21
6. Hu J, Sapatnekar S (2002) A survey on multi-net global routing for integrated circuits. Integr

VLSI J 31(1):1–49
7. Courant R, Robbins H (1941) What is mathematics? Oxford University Press, New York
8. Hwang FK, Richards DS, Winter P (1992) The Steiner tree problem. Elsevier, Amsterdam
9. Winter P (1985) An algorithm for the Steiner problem in the Euclidean plane. Networks

15:323–345
10. Weng JF, Brazil M, Thomas DA, Zachariasen M (2002) Canonical forms and algorithms for

Steiner trees in uniform orientation metrics. Algorithmica, Technical Report: pp 2–22
11. Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW

(eds) Complexity of computer computations. Plenum, New York
12. Wame DM, Winter P, Zachariasen M (1999) Exact solutions to the large scale plane Steiner

tree problems. In: Proceedings of the 10th annual ACM-SIAM Symposium on Discrete
Algorithms, pp 979–980

13. Snyder TL (1992) On the exact location of Steiner points in general dimension. SIAM J
Comput 21(1):163–180

14. Kahng AB, Liu B (2003) Q-tree: a new iterative improvement approach for buffered
interconnect optimization. In Proceedings of the IEEE Computer Society Annual Symposium
on VLSI, pp 183–188

254 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

15. Boese KD, Kahng AB, McCoy BA, Robins G (1995) Near optimal critical sink routing tree
constructions. IEEE Trans Comput Aided Des Integr Circ Syst 14(12):1417–1436

16. Hanan M (1966) On Steiner’s problem with rectilinear distance. SIAM J Appl Math
14:255–265

17. Kastner R, Bozogzadeh E, Sarrafzadeh M (2000) Predictable routing. In: Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pp 110–113

18. Moffett BC (1970) Personal communication. University of Washington
19. Kastner R, Bozorgzadeh E, Sarrafzadeh M (2002) Pattern routing: use and theory for

increasing predictability and avoiding coupling. IEEE Trans Comput Aided Des Integr Circ
Syst 21(7):777–790

20. Westra J, Bartels C, Groeneveld P (2004) Probabilistic congestion prediction. In: Proceedings
of the ACM International Symposium on Physical Design, pp 204–209

21. Hwang FK (1976) On Steiner minimal trees with rectilinear distance. SIAM J Appl Math
30:104–114

22. Nielsen BK, Winter P, Zachariasen M (2002) An exact algorithm for the uniformly-oriented
Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms.
Lecture Notes in Computer Science, vol 2461. Springer, Berlin, pp 760–772

23. Borah M, Owens RM, Irwin MJ (1994) An edge based heuristic for Steiner routing. IEEE
Trans Comput Aided Des Integr Circ Syst 13(12):1563–1568

24. Kahng A, Robins G (1992) A new class of iterative Steiner tree heuristics with good
performance. IEEE Trans Comput-Aided Des 11:893–902

25. Kahng A, Robins G (1995) On optimal interconnects for VLSI. Kluwer Academic, Boston,
MA

26. Griffith J, Robins G, Salowe JS, Zhang T (1994) Closing the gap: near-optimal Steiner trees
in polynomial time. IEEE Trans Comput-Aided Des 13(11):1351–1365

27. Chu C (2004) FLUTE: fast lookup table based wire length estimation technique. In:
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design:
696–701

28. C Chu, Y C Wong (2005) Fast and accurate rectilinear Steiner minimal tree algorithm for
VLSI design. In Proceedings of the 2005 ACM International Symposium on Physical Design,
pp 28–35

29. Cho M, Pan DZ (2007) BoxRouter: a new global router based on box expansion and
progressive ILP. IEEE Trans Comput-Aided Des Integr Circ Syst 26:2130–2134

30. Pan M, Chu C (2006) FastRoute: a step to integrate global routing into placement. In:
Proceedings IEEE/ACM International Conference on Computer-Aided Design, pp 464–471

31. Pan m, Chu C (2007) FastRoute 2.0: a high-quality and efficient global router. In:
Proceedings of the 2007 Asia and South Pacific Design Automation Conference, IEEE
Computer Society, pp 250–255

32. Lin CW, Chen SY, Li CF, Chang YW, Yang CL (2008) Obstacle-avoiding rectilinear Steiner
tree construction based on spanning graphs. IEEE Trans Comput Aided Des Integr Circ Syst
27(4):643–653

33. Feng Z, Hu Y, Jing T, Hong X, Hu X, Yan G (2006) An O(nlogn) algorithm for obstacle-
avoiding routing tree construction in the lambda-geometry plane. In: Proceedings of the 46th
ACM Annual Design Automation Conference, pp 48–55

34. Shi Y, Mesa P, Yu H, He L (2006) Circuit simulation based obstacle-aware Steiner routing.
Proceedings of the 43rd annual conference on Design automation, San Francisco, CA,
pp 385–388

35. Shen ZC, Chu CCN, Li YM (2005) Efficient rectilinear Steiner tree construction with
rectilinear blockages. In: Proceedings of the 2005 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, pp 38–44

36. Hare RM, Julstrom BA (2003) A spanning-tree-based genetic algorithm for some instances of
the rectilinear Steiner problem with obstacles. In: Proceedings of the 2003 ACM symposium
on Applied Computing, pp 725–729

References 255

37. Consoli S, Moreno-Pérez JA, Darby-Dowman K (2010) Discrete particle swarm optimization
for the minimum labelling Steiner tree problem. Nat Comput 9(1): 29–46

38. Joobbani R (1985) An artificial intelligence approach to VLSI routing. PhD thesis, Carnegie-
Mellon University

39. Lee JW, Choi BS, Lee JJ (2011) Energy-efficient coverage of wireless sensor networks using
ant colony optimization with three types of pheromones. IEEE Trans Industr Inform
7(3):419–427

40. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization: artificial ants as
computational intelligence technique. IEEE Comput Intell Mag 1(4):28–39

41. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of
cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

42. Samanta T, Ghosal P, Dasgupta P, Rahaman H (2008) Revisiting fidelity: a case of Elmore-
based y-routing tree. In: Proceedings of the 2008 ACM International Workshop on System
Level Interconnect Prediction, pp 27–34

43. Dasgupta P (2005) Revisiting VLSI interconnects in deep sub-micron: some open questions.
Proceedings of the IEEE 18th International Conference on VLSI Design, pp 81–86

44. McCoy BA, Boese KD, Kahng AB, Robins Gabriel (1995) Near-optimal critical sink routing
tree constructions. IEEE Trans Comput-Aided Des Integr Circ Syst 14(12):1417–1436

45. Rubinstein J, Penfield P, Horowitz MA (1983) Signal delay in RC tree networks. IEEE Trans
Comput-Aided Des 2:202–211

46. Hou H, Hu J, Sapatnekar SS (1999) Non-Hanan routing. IEEE Trans Comput-Aided Des
Integr Circ Syst 18(4):436–444

47. McCoy BA, Boese KD, Kahng AB, Robins G (1993) Fidelity and near-optimality of Elmore-
based routing constructions. Proceedings of the IEEE International Conference on Computer
Design, pp 81–84

48. Prim RC (1957) Shortest connection networks and some generations. Bell Syst Tech J
36:1389–1401

256 8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints

Chapter 9
A Hybrid RCO for Dual Scheduling
of Cloud Service and Computing Resource
in Private Cloud

In this chapter, the idea of combining SCOS and OACR into one-time decision in
one console is presented, named Dual Scheduling of Cloud Services and Com-
puting Resources (DS-CSCR) [1]. For addressing large-scale DS-CSCR problem,
Ranking Chaos Optimization (RCO) is configured. With the consideration of
large-scale irregular solution spaces, new adaptive chaos operator is designed to
traverse wider spaces within a short time. Besides, dynamic heuristic and ranking
selection are hybrid to control the chaos evolution in the proposed algorithm.

9.1 Introduction

Newly developing cloud computing [2, 3] has brought about great benefits to both
enterprises and individuals. With advanced technologies of virtualization and
service, it incorporates various resources for user on-demand with open interfaces
and transparent remote operations. While IBM, Google and Amazon are taking the
lead in building general public cloud [4–6] under the modes of SaaS (Software as a
Services), IaaS (Infrastructure as a Service) and PaaS (Platform as a Service) [7],
many conglomerates have also obtained cost reduction and higher flexibility of
resource sharing with the establishment of their own private cloud.

Private cloud of conglomerate usually consists of a set of virtualized distributed
infrastructures and application services which are provided by couples of sub-
enterprises and partner-enterprises [8, 9], as shown in Fig. 9.1. For outside, such
conglomerate could be a large SaaS provider. For inside, it turns to a shared
resource pool. In a fairly secure environment, all resources are under the owner-
ship and control of a single administrative domain. On one hand, the virtualization
of multiple distributed infrastructures can greatly improve the computing capa-
bility for the whole organization with lower-cost. On the other hand, upper layer
application services, no matter provided to outside Internet or inside members,

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_9

257

need no longer to be deployed on a fixed computing resource with specific
maintenance. Services with central control become more flexible with dynamic
allocation. Thus, private cloud in conglomerate also contains two aspects of
significance, one is the integration and sharing of underlying distributed infra-
structure, another is the flexible deployment and usage of upper layer application
services.

Besides, with the development of cloud, the concept of ‘‘service’’ in traditional
Service-Oriented Architecture (SOA) is extended from software application to
generalized ‘‘cloud service’’ with the inclusion of both software applications and
hardware equipments with good interoperability, self-organization and scalability.
The properties of cloud services have become more complex and most of them
need higher computing ability to drive.

In such environment, when a composite project (which contains a set of tasks)
is submitted, the console of conglomerate needs not only to aggregate suitable
cloud services with different functionalities and generate service portfolio for user
on-demand, but also choose available computing resources to support the running

Virtualized Infrastructure Central Management

Software
Service

Software
Service

Hardware
Service

Hardware
Service

Hardware
Service

Hardware
Service

…

…

Conglomerate

…

Service Users

Software
Service

Software
Service

Fig. 9.1 Structure of private cloud and actors in conglomerate

258 9 A Hybrid RCO for Dual Scheduling of Cloud Service

of cloud services. How to achieve high-quality and low-cost services composition
optimal selection (SCOS) and optimal allocation of computing resources (OACR)
simultaneously are critical for efficient project execution, green resource sharing
and flexible service management.

At present, service composition and computing resource allocation in cloud
have been studied preliminarily. Most researches are carried out according to the
methodology of cluster computing, grid computing and high performance com-
puting and consider the two problems independently. For one thing, computing
availability and communication route of computing resources are analyzed.
For another, QoS (Quality of Service) indexes and description languages are also
discussed. In general public cloud, SCOS and OACR are performed in two steps
and in the charge of different actors. Service providers are not infrastructure
providers [3]. However, in private cloud of conglomerates with typical SaaS mode,
they would provide suitable service portfolio and deploy corresponding services
on their own infrastructure for customers on demand. The actors of SCOS and
OACR turn out to be the same one.

With such two-step decision by a single administrator, the properties of upper
layer selected cloud services in SCOS will limit the range of the underlying
available computing resources for each service in OACR. Better portfolios of
cloud services and computing resources are easily overlooked. Furthermore, as all
knows, both SCOS and OACR are proved to be NP combinatorial optimization
problem. Under the condition of large-scale cloud services and computing
resources and complex relationship between them, addressing SCOS and OACR
step by step with two different algorithms independently becomes very cumber-
some and inefficient.

Therefore, we propose the idea of combining two stages decision-making
into one and put forward the concept, Dual Scheduling of Cloud Service and
Computing Resource (DS-CSCR), in private cloud of conglomerate. In the
guidance of this idea, we analyze the complex features of hardware/software
cloud service and computing resource in cloud computing in two levels and
explore their mutual relations in-depth. Aiming at green efficient decision, the
formulation of DS-CSCR with multi-objectives and multi-constraints is pre-
sented in this chapter. Additionally, in order to achieve high efficient one-time
decision in DS-CSCR, a new Ranking Chaos Optimization (RCO) is designed
in this chapter. Take the advantage of chaotic random ergodicity, this algorithm
combines new adaptive chaos optimal strategy with ranking selection and
dynamic heuristic mechanism to balance the exploration and exploitation in
optimization. With adaptive control of chaotic sequence length, it’s especially
good at searching in large-scaled irregular solution space and shows remarkable
performance for addressing DS-CSCR compared with other general intelligent
algorithms.

9.1 Introduction 259

9.2 Related Works

Nowadays, the most commonly used and analyzed cloud computing platforms are
‘‘Google cloud computing’’ platform, Amazon ‘‘elastic cloud’’ platform and IBM
‘‘blue cloud’’ platform. Private cloud with closed sharing are researched less and
attracted criticism owing to the less hands-on management [4]. But it can notably
reduce the cost of resources and improve the quality of services in large con-
glomerate. After years of development, large enterprises, academic institutions and
new emerging internet service providers are building their own cloud platform,
too, such as Eucalyptus, Red Hat’s cloud, OpenNebula and so on. Though various
platforms differ on their usage mode and openness, most of them share the same
key technologies and target of resource sharing.

In cloud computing, two crucial optimization factors in determining resource
sharing efficiency and platform application performance are SCOS and OACR
exactly.

In recent years, researches on service composition are generally based on the
environment of grid computing and other SOA mode [10]. These researches spread
from service description language, service QoS indexes [11], reliability and trust
evaluation [12], and optimal selection of services [13] and so on. Since cloud
computing mode has been proposed, the concept and content of cloud service are
broadened. According to the characteristics of cloud computing, semantic prop-
erties of cloud service are studied [14]. The classification, management, provision,
storage and evaluation of cloud services are investigated widely. Pre-decision and
online-decision of SCOS are also deliberated in different ways, such as [15].
Among these, QoS indexes of cloud services are discussed most widely. From the
perspective of non-functional properties of cloud services, the existing indexes
consider no more than cost, time and reliability factors. It’s hard to describe
various cloud services with different classification and attributes in a unified form.
Thus the existing QoS indexes can’t satisfy all types of cloud services.

For computing resource allocation, traditional researches mostly focus on the
modeling and evaluation of computing resources based on homogeneous/hetero-
geneous cluster systems or distributed grid computing systems [16]. User’s
demand for resources, resources’ costs and computation and communication
capabilities of resources are the major considerations among these studies. In
cloud computing mode, virtualization is the main support of flexible resource
sharing [17]. In this context, Endo et al. introduced the concept, classification of
resource allocation in distributed cloud [18]. Ma et al. [19] and Xiong et al. [20]
investigated the management of cloud computing resources based on ontology and
virtualization respectively. Zhang et al. [21] proposed a method for the deploy-
ment of upper layer software cloud services from virtual machines. Ghanbari et al.
[22] have studied the feedback-based optimization problem including the alloca-
tion of resources especially in private cloud. Besides, considering the virtual
division of computing resources and its influences on the quality of cloud services,
researchers also built new models for computing resources from the rules,

260 9 A Hybrid RCO for Dual Scheduling of Cloud Service

reliability and dynamic partition point of view, and so on, and presented various
methods to solve OACR problem in cloud computing [23, 24]. Most of these
studies concentrated on the expansion of characteristics of computing resources
based on traditional models and the algorithm designing for OACR in cloud
computing. However, the mutual relations between cloud services and the
underlying computing resources and the influence of virtualization on quality of
cloud services, as two of the key factors in cloud computing, have not been
studied.

In addition, SCOS and OACR are both combinatorial optimization problems.
For this kind of problems, the most widely used algorithms are intelligent algo-
rithms due to its NP complexity. It includes Genetic Algorithm (GA) [25], Particle
Swarm Optimization (PSO) [26] and so on and has the virtues of brachylogy,
universality and rapidity. According to different specific problems, abundant
researches mainly focus on the balance of exploration and exploitation in
searching process based on evolutionary iteration of population and presented
many kinds of improved hybrid intelligent algorithms such as [27]. Nevertheless,
these improved hybrid intelligent algorithms are mostly problem-dependent with
local convergence more or less. For addressing large-scaled DS-CSCR problem in
private cloud of large conglomerate with irregular solution space efficiently, the
design of high performance intelligent algorithm is imperative.

9.3 Motivation Example

Currently, the concept of cloud is studied and applied in almost every field. Based
on the technology of cloud computing, manufacturing equipments and simulation
software as cloud services can be realized [28, 29]. Various software and hardware
can by dynamically shared for product customization of both inside or outside
organizations without repeat-purchase. Under this background, we use ‘‘the design
and NC (Numerical Control) machining of a complex surface part in conglomerate
cloud’’ as a case to describe the whole process from tasks’ submission to tasks’
execution. As shown in Fig. 9.2, it can be divided into five sub-tasks: (1) technical
and mathematical analysis, (2) CAD modeling and NC programming, (3) verifi-
cation simulation and post-processing, (4) first NC machining and measuring, and
(5) batch production.

During this process, task (1), (2) and (3) can be implemented directly by
manufacturing software cloud services, such as CATIA, MasterCAM or Pro/E,
etc., and task 4 and task 5 can be executed by manufacturing hardware cloud
service with users’ supervision and control, such as 3-axis, 4-axis or 5-axis linkage
CNC (Computer Numerical Control) machines, etc. When user submitted the tasks
of designing and machining a customized part, four steps are needed to be done
by centre console: (1) Requirement analysis of tasks, (2) Services composition
optimal selection, (3) Optimal allocation of computing resources, (4) Execution.

9.2 Related Works 261

The scheduling of computing resources totally depends on the corresponding
upper layer selected cloud services. With the distributed characteristics of services
and infrastructures, the available computing resources are reduced and the OACR
are constrained by the upper layer decision. For example, for task (4), assume the
suitable CNC hardware service No. 1 and No. 2 are provided in Location A and
Location B respectively. CNC service No. 1 is with higher QoS than CNC service
No. 2. But the idle computing resources in Location A are less than Location B.
If CNC service No. 1 is selected for task 4 in step 3, the low computing ability of
computing resource in Location A and the remote communication overhead of
computing resource in Location B would both cause the low execution efficiency
of CNC service No. 1. If we select CNC service No. 2, the better available adjacent
computing resource would then improve the overall execution efficiency of task 4.
However, the decision of SCOS in step 2 usually disregards the influence of the
underlying support computing resources due to the traditional binding mode of
service and infrastructure. The latter strategy of choosing MasterCAM service

Fig. 9.2 The design and NC machining of a customized part in conglomerate cloud

262 9 A Hybrid RCO for Dual Scheduling of Cloud Service

No. 2 is then overlooked. At this time, you might say, if SCOS and OACR are
performed at the same time, then bad decision won’t be happened.

Therefore, in order to reduce the time and improve the quality of decision, we
merge SCOS and OACR into one dual-scheduling decision. With the purpose of
efficient DS-CSCR decision, the following three issues are needed to be studied.

(1) QoS indexes of software/hardware cloud services and computing resources
respectively and the mutual relation between them;

(2) The problem formulation of DS-CSCR with multi-objectives and multi-
constraints in private cloud;

(3) The efficient scheduling algorithm for addressing large-scale DS-CSCR
problem.

This chapter will directly focus on these three issues.

9.4 Problem Description

9.4.1 The Modeling of DS-CSCR in Private Cloud

In conglomerate, services and the support infrastructures are provided by distrib-
uted sub-enterprises and controlled by central head. Traditionally, service provider
usually deploy the service to a fixed computer, put service and computing resource
together to ensure the quality of service. The support computing resources are
always occupied by fixed service and needed specific maintenance. With new
cloud mode, services can be encapsulated and registered to cloud and deployed to
virtual machines dynamically. Through the collaborative development of upper
layer applications and underlying resources, all of the resources can be shared
flexibly on-demand with more energy-saving, higher redundancy and reliability.

Moreover, based on such a flexible environment, cloud services with the sup-
port of VMs contain not only software cloud services, but also hardware services
with further expansion. For hardware cloud services, the computing resources are
no longer support carriers, but controlling and monitoring facilities for these
manufacturing equipments.

(1) The characteristics and QoS indexes of cloud services
From the perspective of QoS evaluation, only simplified quantitative cost, time and
reliability cannot comprehensively summarize the characteristics of software/
hardware cloud services and their requirement for VMs’ performance. With the
consideration of the difference between software and hardware cloud services and
their demands for VM configuration, this section gives new evaluation indexes for
software/hardware cloud service and virtual resources respectively.

9.3 Motivation Example 263

(a) The characteristics and QoS indexes of software cloud services
Software applications in cloud computing are running with the support of VMs.

Each software service is deployed to a single VM and mapped to a corresponding
computing resource. Thus the minimum requirements of VM which represents the
required volume of services should be defined to facilitate the allocation of
computing resources. Based on the functional description of services, we consider
mainly the following non-functional factors of software cloud services in this
chapter.

• s—service execution efficiency under the minimum required configuration of
VM;

• c—the rent cost of service;
• r—trustiness of service, which is the ratio of the success execution time and the

total execution time;
• v—the minimum required speed of VM.

Remarks The performance of the required VM is determined by many factors,
such as the CPU and memory of the corresponding computing resources. In a
computer, the speed of CPU is in proportion to the power supply voltage [30]. It’s
a constant value. The speed of VM can mainly be calculated by the number and
speed of occupied CPUs. So that the minimum required speed of VM is adopted
here for evaluation. The higher the speed of VM is, the faster the service runs.

(b) The characteristics and QoS indexes of hardware cloud services
Unlike the software service, hardware service is energy-consuming and needs

supervision or control during execution. Real-time supervision or control will
produce large amount of communication and increase service execution time
(i.e. the time-consumption of data transmission). Different hardware service needs
different amount of supervision and control. For this reason, based on the above
four factors of software service, two more factors need to be considered.

• s—service execution efficiency under the minimum required configuration of
VM;

• c—the rent cost of service;
• r—trustiness of service, which is the ratio of the success execution time and the

total execution time;
• v—the minimum required speed of VM;
• e—the average energy-consumption of hardware service;
• f—the average control rate, which is the ratio of the amount of control com-

mands and the amount of tasks;
• g—the transmission rate between VM (computing resources) and hardware

service.

Remarks For hardware services, there are two conditions of control. One is
inputting all control commands beforehand, and then executing tasks without
interaction. Another is controlling during execution. Owning to the large amount
of task in hardware service, f in the first condition can usually be ignored

264 9 A Hybrid RCO for Dual Scheduling of Cloud Service

(i.e. f = 0). We mainly focus on the second condition. Besides, if the hardware
service needs no control or supervision any more, then f = 0, too.

Usually, the transmission path of the control commands of software service is
‘‘user—VM’’, while which of hardware service is ‘‘user—VM—hardware ser-
vice’’. Without the consideration of task interactions and energy-consumption of
VMs, if the amount of submitted task is W, the total execution time T, the total cost
C and the total energy-consumption E of the software and hardware service can be
calculated as follows respectively.

For software services,

T ¼ W

s
ð9:1Þ

C ¼ Tc ¼ cW

s
ð9:2Þ

For hardware services,

T ¼ W

s
þWf

g
¼ W

gþ sf
sg

ð9:3Þ

C ¼ Tc ¼ cW
gþ sf

sg
ð9:4Þ

E ¼ Te ¼ eW
gþ sf

sg
ð9:5Þ

(2) The characteristics and QoS indexes of VMs
VMs are the virtual division of the underlying computing resources. The perfor-
mance of VM are mainly embodied in the running speed, transmission rate and
energy consumption of the corresponding computing resources. It’s still hard to
locate one VM into multiple computers by existing technologies of virtualization.
Hence, we assume each VM maps into only one physical node. In accordance with
the characteristics of cloud services, we primarily concentrate on four factors
below.

• p—the running speed of VM, which depends on the occupancy rate and the
speed of CPUs;

• q—the transmission rate of VM;
• g—the average energy-consumption of VM;
• f—the failure probability of VM;
• u—the recovery time of VM when fails.

Remarks q reflects the transmission rate between the occupied physical com-
puting resources and the objects. If the transport object and the VM are in the same
local network, then evaluate the transmission rate by local bandwidth. Else, the
transmission rate is evaluated with the synthetic consideration of the transport

9.4 Problem Description 265

object, the central console and the VM itself. Besides, the energy function of CPU
per unit time can be represented as [29]: P0 ¼ AV2f þ Z. Where A and Z are
constant, V is the power supply voltage and f is the dominant frequency. Thus g is
in proportion to p, too. In cloud platform, the way to handle the failures of physical
nodes is usually dynamic migration of VMs. So, u is no longer the recovery time of
the corresponding computing resource but the dynamic migration time. Computing
resources with low reliability can easily cause dramatically increase of task exe-
cution time, cost and energy consumption.

Let the task execution time in the corresponding VM without failure be t, the
average task execution time of VM can be evaluated as:

~t ¼ tð1� f Þ þ ðt þ uÞf ¼ t þ fu ð9:6Þ

Assume the set of the predecessor nodes of the task i to be Li, and the input
communication amount from the predecessor node j is Uij, then the total com-
munication time between the task and its predecessor nodes are:

U ¼ max
j2Li

Uij

qj
ð9:7Þ

If the performance of VM can satisfy the minimum requirement of service, then
the total execution time T, the total cost C and the total energy consumption E of
the task can be calculated as follows.

(a) If the selected service is software cloud service, then

T ¼ vW

ps
þ U þ fu ð9:8Þ

C ¼ Tc ¼ vW

ps
þ U þ fu

� �
c ð9:9Þ

E ¼ Te ¼ vW

ps
þ U þ fu

� �
e ð9:10Þ

(b) If the selected service is hardware cloud service, then

T ¼ vWðgþ sfÞ
psf

þ U þ fu ð9:11Þ

C ¼ Tc ¼ vWðgþ sfÞ
psf

þ U þ fu

� �
c ð9:12Þ

E ¼ Tðgþ eÞ ¼ vWðgþ sfÞ
psf

þ U þ fu

� �
ðgþ eÞ ð9:13Þ

266 9 A Hybrid RCO for Dual Scheduling of Cloud Service

9.4.2 Problem Formulation of DS-CSCR in Private Cloud

According to the analysis of the characteristics and QoS indexes of cloud services
and virtual resources, the abstract formal description of cloud services, VMs and
computing resources are elaborated in this Section.

Definition 1 The set of tasks in cloud computing environment can be presented
as a directed acyclic gragh (DAG) G ¼ ðN;W ;U;Ht;Hc;He;HrÞ. Where

• The set N ¼ fNiji ¼ 1 : ng represents tasks with serial numbers, where n is the
total number of tasks.

• The set W ¼ fWiji ¼ 1 : ng indicates the size of tasks.
• The set U ¼ fUijji ¼ 1 : n; j ¼ 1 : ng represents the communication relation-

ships among tasks, where Uij reflects the communication from task Ni to task
Nj. We should note that Uij 6¼ Uji. If there’s no communication between the two
tasks, then Uij ¼ 0.

• Ht ¼ fHtðiÞji ¼ 1 : ng, Hc ¼ fHcðiÞji ¼ 1 : ng, He ¼ fHeðiÞji ¼ 1 : ng and
Hr ¼ fHrðiÞji ¼ 1 : ng represent the lowest time, cost, energy and reliability
requirements of tasks respectively.

Besides, let the predecessor tasks set of Ni be Li, and the successor tasks set be
Ri. The node with no predecessor task Li ¼ ; is named source node, and the node
with no successor task Ri ¼ ; is called sink node. All tasks strictly observe the
tasks’ priority rules, that is to say, a node can only be started after all output
communication data of its predecessor tasks are obtained.

According to the QoS indexes analyzed in the previous sections, the general
model of cloud computing can be defined as follow.

Definition 2 The software/hardware cloud services in cloud computing mode
can be presented respectively as

S :
software service : S1 ¼ ðs; c; r; vÞ
hardware service : S2 ¼ ðs; c; r; v; e; fÞ

(

S1 ¼ fs1ðiÞji ¼ 1 : ns1g represents the set of software cloud services, where the
number of services is ns1 ¼ S1j j. S2 ¼ fs2ðiÞji ¼ 1 : ns2g represents the set of
hardware cloud services, where the number of services is ns2 ¼ S2j j. Therefore the
total number of cloud services is ns ¼ ns1 þ ns2 . In the definition, s, c, r, v, e, and f
represents the execution efficiency, rent cost, reliability, the minimum required
speed of VM, energy-consumption and the average control rate of cloud services
respectively. All of these attributes stored according to the type and the serial
number of services.

Because the performance of VM is decided by the corresponding computing
resources, so this chapter just define the formal description of computing resources
as follow.

9.4 Problem Description 267

Definition 3 The computing resources in cloud computing mode can be pre-
sented as P ¼ ðx;u;/; r; f ; kÞ, where

• P ¼ fPkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg indicates the computing resources
with different groups and different serial number, where k is the group number
of the whole set, l is the number of computing resources in each group and d is
the number of groups.

• x ¼ fxkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg represents the speed of computing
resources. It’s related to the configuration characteristics of these computers.

• W ¼ fukljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg means the bandwidths of computing
resources in local networks, and U ¼ f/kjk ¼ 1; 2; . . .; dg be the bandwidths
between the switches of various sub-infrastructure groups and cloud centre
console.

• r ¼ frkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg represents the average energy-con-
sumption per unit time of these computing resources. According to the analysis
above, rkl is in proportional to xkl.

• f ¼ ffkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg means the failure probability of
each computing resource. This factor is changed after each time of task
execution.

• k ¼ fkkljk ¼ 1; 2; . . .; d; l ¼ 1; 2; . . .;mkg represents the number of task loads
in each computing resource at present. It changed during task execution. If
multiple VMs map into one single computing resource, the running speed
of the resource will be dramatically declined. For simplified the evaluation,
we assume the VMs share the same computing resource with average
division.

In the definition of computing resources, the failure recovery time is not
defined. Because of the dynamic migration in cloud computing system, we assume
the average dynamic migration time (i.e. the recovery time) as a constant
u ¼ Const.

For two tasks Ni and Nj, if the support VM are vi and vj, and the allocated
computing resources are Pkl and Pk0l0 , the running speed of vi and vj can be
expressed as pi ¼ xkl=kkl and pj ¼ xk0l0=kk0l0 . If the selected computing resources
are in the same group, i.e. k ¼ k0, the transmission rate is qij ¼ minðukl;uk0l0 Þ.
If the allocated computing resources are distributed, the transmission rate can be
represented as qij ¼ minð/k;/k0 Þ. In addition, the energy-consumption of the two
VMs are gi ¼ rkl=kkl and gj ¼ rk0l0=kk0l0 . And the rent cost, failure probability and
recovery time of VMs are defined the same as the attributes of computing
resources.

Corresponding to Fig. 9.3, the DS-CSCR model can be defined as a quadric-
tuple M ¼ ðG; S;V ;PÞ. Based on the above definitions, the decision of DS-CSCR
can be made and evaluated with multi objectives of the lowest execution time,
energy-consumption and cost and the highest reliability for tasks.

Take the serial tasks as a case, let the number of tasks be n, the type of the
selected cloud service for each task Ni is yi. yi can be 1 or 2 and represents

268 9 A Hybrid RCO for Dual Scheduling of Cloud Service

software and hardware cloud service respectively. So that the serial number of the
selected service is SyiðiÞ. Assume the allocated computing resource for the support
VM vi of each task is Pkili . Then the overall optimal objectives and constraints can
be calculated as follows.

MAX Objective Function ¼ w1

Yn

i¼1

Ri þ w2=
Xn

i¼1

Ti þ w3=
Xn

i¼1

Ci þ w4=
Xn

i¼1

Ei

ð9:14Þ

The variables in the objective function are calculated according to Table 9.1.

Fig. 9.3 The flowchart of
RCO

9.4 Problem Description 269

The main constraints of DS-CSCR are shown as following

8i 2 ½1; n� 0\qi\1 ð9:15Þ

8k 2 ½1; g�; l 2 ½1;mk� rkl� 0 ð9:16Þ

8i 2 ½1; n� Ti\HtðiÞ; Ci\HcðiÞ; Ei\HeðiÞ; Ri\HrðiÞ ð9:17Þ

The first constraint means that the occupancy rates of VMs in computing
resources are no less than 0 and no more than 1, that is to say, one VM can only be
allocated in one computing resource with full occupancy at most. The second
constraint indicates that the load of computing resources must be no less than 0.
When rkl ¼ 0, the computing resource is idle. When 0\rkl\1, the computing
resource is not fully occupied, the running speed can be hold. However, when
rkl� 1, the tasks need to be executed in queue, the running speed of computing
resource will be dramatically decreased. The third constraint represents that each
attributes of cloud services and computing resources must satisfy the lowest
requirement of tasks.

9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR
in Private Cloud

From the above analysis it’s clear that the model of DS-CSCR is more complex
than the traditional SCOS and OACR. The upper layer cloud services and the
underlying computing resources interact with each other. Their complex attributes
together directly determine the efficiency of task execution. In large-scale solution
space, it’s hard to find optimal solution of DS-CSCR by a deterministic algorithm.
The general methods for solving these kinds of problems are searching for
sub-optimal solutions by intelligent algorithms, such as GA, PSO and ACO and so
on. ACO is designed particularly for path optimization. PSO is presented for
continuous numerical optimization. GA is more universal but with serious local
convergence. In the condition of complex mutual relations among the attributes of
the problems with large-scaled irregular solution space, these typical algorithms
are quite unsuitable.

Table 9.1 The calculation of elements in the objective function

Variables Software services Hardware services

Ri rs1ðiÞ rs2ðiÞ

Ti Wi
vs1 ðiÞrki li

xki li ss1 ðiÞ
þ max

j2predðiÞ
Uij

qij
þ ufkili Wi

vs2 ðiÞkki li ð/ki
þss2 ðiÞfs2 ðiÞÞ

xki li ss2 ðiÞ/ki
þ max

j2predðiÞ
Uij

qij
þ ufkili

Ci Tics1ðiÞ Tics2ðiÞ

Ei Ti
rki li
kki li

Ti
rki li
kki li
þ es2ðiÞ

� �

270 9 A Hybrid RCO for Dual Scheduling of Cloud Service

Therefore, a new RCO is presented in this chapter for DS-CSCR. The flowchart
of this algorithm is shown in Fig. 9.3. It contains three main operators: ranking
selection operator, adaptive chaos operator and dynamic heuristic operator. All of
them can be executed independently and hybrid arbitrarily. Their initialization
(coding scheme), operators and evolutionary strategy for solving DS-CSCR are
elaborated as follows.

9.5.1 Initialization

Usually, initialization in intelligent algorithm is very important. It determines the
initial location and the coding scheme of population. The initial location ways of
population include regular generation and random generation, and so on. For
DS-CSCR, the solution space is quite complex, so that the random initialization
scheme is selected in this chapter.

Additionally, different coding style has different contribution to algorithm.
Coding scheme in intelligent algorithm not only directly reflects the characteristics
of the problems, but also affects the performance of the operators. Suitable coding
scheme can even improve the searching capability of algorithms. In this chapter,
the real number coding scheme is adopted because of its characteristics of sim-
plicity and intuitive.

Specifically, for the above mentioned DS-CSCR model, both service-genebit
which represents the selected cloud services and resource-genebit which represents
the allocated computing resources are needed to be set. One task corresponds to
two genebits. Thus the real number coding is the most intuitive and space-saving
scheme for DS-CSCR. When a set of tasks are submitted to cloud system, the
system should choose suitable cloud services and computing resources with spe-
cific serial numbers at the same time. Assume the length of gene code be twice of
the number of tasks, as shown in Fig. 9.4. Each two genebits represent the serial
number of the selected service and the allocated computing resource for the cor-
responding task. It briefly demonstrates the relationship between cloud service and
computing resource and makes the optimal process more convenient.

9.5.2 Ranking Selection Operator

In most chaos-based optimizations, chaotic operator is based on the individuals
regardless of whether they are good or bad. In this case, the algorithm is easy to
trap into bad conditions with large randomly searching range and extremely strong
diversity. To obtain better seeds for chaotic random ergodicity, selection before it
is needed.

The most commonly used selection operator in GA is roulette wheel selection.
With high randomness, bad individuals may be selected more than good ones,

9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR in Private Cloud 271

higher diversity can be achieved in population. But high diversity has been
implemented by chaos and what we need before chaos is just a set of good seeds.
In this condition, roulette wheel selection becomes unsuitable. To make sure the
high quality of good individuals (i.e. seeds), a dynamic ranking selection operator
is designed in this section.

Normally, ranking selection means selection according to the descending sort of
individual fitness values under a constant proportion. That is to say, the numbers of
individuals from best to worst are in arithmetic sequence. Here we adopt quick sort
algorithm with the computation complexity O(nlogn). Let I ¼ fIiji ¼ 1; 2;Ng be
the population with N individuals, and Ii in the population be the ith individual.
Assume the sorted population to be I0 ¼ fI0i ji ¼ 1; 2;Ng with the fitness value
F0N\F0N�1\ � � �\F01. Define Pselection to be the percentage of individuals to be
selected on the whole. If Pselection ¼ 1, then all individuals are selected at least
once, if Pselection ¼ 0:5, then only the first half individuals are selected, the other
half individuals would not be selected any more. It represents the selection range
in the sorted population. Thus the worst individual to be selected is the Kth
individual where K ¼ NPselection. Under the selection range, let the number of
times that the best individual to be selected as h1 and the number of times that the
worst individual to be selected as hK . Then the difference between the numbers of
two adjacent individuals can be calculated as follow.

Dh ¼ hi�1 � hi ¼
h1 � hK

K � 1
ð9:18Þ

hi ¼ h1 � Dhði� 1Þ ¼ h1 � ði� 1Þ hK � h1

K � 1
where 1� i�K ð9:19Þ

It can be seen that
PK

i¼1
hi ¼ N. Therefore, we can deduce that,

h1 þ hK ¼
2N

K
ð9:20Þ

Let hK ¼ 1, then

1 ¼ hK � h1�
2N

K
� 1 ð9:21Þ

Fig. 9.4 The real number coding scheme for DS-CSCR problem

272 9 A Hybrid RCO for Dual Scheduling of Cloud Service

To make the selection adaptively, a function for calculating h1 in the ranking
selection is defined as follow.

h1 ¼ 1þ 2N

K
� 2

� �
Faverage

Fbest
¼ 1þ 2N

K
� 2

� �
Faverage

F01
ð9:22Þ

Dh ¼ 2N

K
� 2

� �
Faverage

F01

1
ðK � 1Þ ¼

2ðN � 2KÞFaverage

KðK � 1ÞF01
ð9:23Þ

where Faverage represents of the average fitness value of the whole population.
Thus the much closer Faverage and F0 are, the bigger h1 is, the bigger the number of
times the better individuals to be selected. Otherwise, the number of times the
worse individuals would be bigger and the selection of K individuals becomes
more balance. The pseudo-code of this operator is shown below as Algorithm 1.

Algorithm 1: Ranking Selection Operator
Ranking_Selection (I)

Define the selection range according to Pselection

Sort I with quick sort algorithm and stored as ′I
Calculate the number of times of I1 to be selected, () 11 1 2 / 2 /averageN K F Fθ ′= + −
Calculate 12(2) / (1)averageN K F K K Fθ ′Δ = − −
Calculate 2 3, , , Kθ θ θ for other 1K − individuals

Select N individuals according to 1 2, , , Kθ θ θ and generate new I

9.5.3 Individual Chaos Operator

Chaos is a universal non-linear phenomenon. It has the characteristics of strong
randomness and internal regularity. With the generation of logistic chaos
sequences, it can traverse almost all states in a certain range without duplication
and cause great changes in output with rich dynamism. Thus it can improve
population diversity in many typical intelligent algorithms and help them to avoid
local optimization. Nevertheless, it is non-directional and hard to control.

In general, the searching process of typical chaos-based optimization can be
divided into two stages. In the first stage, a bunch of chaotic sequences with certain
length are generated by logistic chaos generating function. Then one or more gene-
bits of individuals are changed according to the chaotic sequences and a series of
new individuals are generated. After the selection of good solution among these
new individuals, the second stage will introduce a small disturbance to the local
optimum individuals for further exploitation. The iteration will continue until the
terminate standards are satisfied.

However, two problems come up to restrain the performance of chaos for large-
scale problems with irregular solution spaces. First, small disturbance will not help
to exploit in complex and irregular spaces. Besides, the length of chaotic sequence
directly decides the time consumption and searching ability of the algorithm.

9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR in Private Cloud 273

For higher searching ability, the second problem is that fixed length of chaotic
sequences may bring large time consumption in exploration. Thus, we design a
new individual chaos operator in which the small disturbance is abandoned and
adaptation of chaotic length is introduced for individuals with customization.

Specifically, the length of chaotic sequence for each individual is determined by
its current evolutionary state. Let I ¼ fIiji ¼ 1; 2;Ng be the population with
N individuals, and Ii be the ith individual. It includes its gene-bit values Gi ¼
fGið1Þ;Gið2Þ; . . .;GiðMÞg and fitness value Fi, where M represents the length of
gene code (i.e. twice of the number of tasks). The specific pseudo-code is shown as
Algorithm 2.

Algorithm 2: Individual Chaos Operator
Individual_Chaos (I)
For (1 to i N=)

() / (1)chaos best i best worstL A B F F F F= + − − +
Generate 1 2[], [] [0,1]chaos chaosX L X L ∈ by using Logistic chaos function

For (1 to chaosj L=)

Map 1()X j as genebit serial number [1,]k M∈
If (k corresponds to service-bit)

Map 2 ()X j as genebit value [1,]sv n∈
Else

Map 2 ()X j as genebit value [1,]pv n∈
End if
Generate j new temporary individuals { (1), (2), , ()}r r r j by replacing the

value of ()iG k with v
Choose the best individual rbest from the temporary individuals
If (

bestr iF F>)

i bestI r=
Else

If (exp(() /)
best

o
r iF F t γ− >)

Replace Ii with rbest

End if
End if

End for
o ot Dt=

End for

Go in detail, the evolutionary state of the ith individual is defined as Qi:

Qi ¼
Fbest � Fi

Fbest � Fworst
ð9:24Þ

Lchaos ¼ Aþ ðB� AÞQ ð9:25Þ

where A and B is the lower bound and upper bound of Lchaos, respectively. Fbest

and Fworst represent the serial numbers of the individual with the best and the worst
fitness value. To be exact, the closer the average fitness value to the best fitness
value in population, the better the evolutionary state is, and the shorter the length

274 9 A Hybrid RCO for Dual Scheduling of Cloud Service

of chaotic sequence Lchaos is, so that the smaller the searching range is. Otherwise,
the closer the average fitness value to the worst fitness value in population, the
smaller the searching range is.

With the initialized definition of the length of chaotic sequences Lchaos, the
operator generates two chaotic sequences X1½Lchaos�; X2½Lchaos� for each individual
Iiði ¼ 1; 2; . . .;NÞ by Logistic mapping chaotic function, as shown in Eq. (9.26).

zlþ1 ¼ lzlð1� zlÞ ð9:26Þ

where l ¼ 4 according to general chaotic strategy. Then X1 and X2 are mapped to
the serial number k and the value v of gene-bits respectively. If k 2 ½1;M� cor-
responds to service gene-bit, we should map X2 to relative service number and
store it in v. Or we should map X2 to relative computing resource number and store
it. In the pseudo-code, ns and np represents the number of cloud services and the
number of computing resources respectively. After the chaotic mapping step, new
neighbor solutions frð1Þ; rð2Þ; . . .; rðjÞg can be generated by changing the value of
GiðjÞ into v. Further, choose the individual rbest with the best fitness value and

accept it as new individual with probability Pannealing ¼ expðFrbest�Fi

t0 Þ, where t0 is
the annealing temperature and the initial value is 100. In the algorithm, the rate of
t0 drop D is set to be 0.95 to gradually narrow down the accept probability. On the
whole, in the individual chaos operator, searching is carried out with the adaptive
changing of the length of chaotic sequences for each individual according to its
evolutionary state Qi. Chaos states can finally be controlled by population state.

9.5.4 Dynamic Heuristic Operator

For further improving the searching direction in chaos optimization, dynamic
heuristic is introduced in this algorithm after ranking selection and adaptive
individual chaos. The principle of this operator is dynamically guiding the algo-
rithm for local search with right direction by using some priori knowledge of the
problem.

To be specific, for each individual, the operator randomly chooses a gene-bit,
traverses part of the available values for the single gene-bit and dynamically
calculates the heuristic of each value, then picks the most suitable value with the
highest heuristic and generates new individual. It’s quite like the mechanism of
pheromone in ACO. Compared with the pheromone, dynamic heuristic here does
not contain empirical information. It uses just the priori knowledge which is
dynamically calculated according to the states or the gene-bit values of indi-
viduals in each generation. Define the traverse range for one gene-bit to be hn,
where h 2 ½0; 1�, and n can be ns or np. The specific pseudo-code is shown as
follow.

9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR in Private Cloud 275

Algorithm 3: Dynamic Heuristic Operator
Dynamic_Heuristic (I)

For (1 to i N=)
r = Ii
Randomly choose a genebit [1:]k M∈
If (p corresponds to service-bit)

Randomly choose hns values from 1 to ns

Choose the service si with the highest heuristic max () ([1,])s s s
j

Y y j j hn= ∈

()r iG k s=
Else

Randomly choose hnp values from 1 to ns

Choose the computing resource pi with the highest heuristic
max () ([1,])p p p

j
Y y j j hn= ∈

()r iG k p=
End if
Accept r with simulation annealing probability

End for

During the process, h can be set as 0.3. And p represents the randomly selected
gene-bit for each individual. If p corresponds to service-genebit, search available
services and calculate dynamic heuristic of each available service ysðjÞðj 2
½1; hns�Þ by service heuristic function. Then choose the service si with the highest
heuristic Ys to replace the original value of kth gene-bit. If k corresponds to
computing resource gene-bit, search available computing resources and calculate
dynamic heuristic of each computing resource ypðjÞðj 2 ½1; hnp�Þ by computing
resource heuristic function. Then choose the computing resource pi with the
highest heuristic Yp to replace the value of kth gene-bit. After these steps, a new
individual r is generated for each individual. Then replace Ii with r in simulation
annealing probability as well as in adaptive chaos operator Pannealing ¼ expðFr�Fi

t0 Þ.
In this process, how to design service heuristic function and computing resource

heuristic function is very important. Unsuitable heuristic function can cause wrong
searching direction in algorithm and easily lead the algorithm to serious premature
convergence. In this chapter, the service and computing resource heuristic function
are simply designed as follow.

ysðjÞ ¼
a1

ssj

vsj

þ a2
1
rsj

þ a3
1
esj

þ a4
1
csj

þ a5rsj ; if sj 2 S1

a1
ssj

vsj

þ a2
1
csj

þ a3rsj ; if sj 2 S2

8
>>><

>>>:
ð9:27Þ

ypðjÞ ¼ a1
xðjÞ

kðjÞ þ a2maxðuðjÞ;/ðjÞÞ þ a3
1

rðjÞ þ a4
1

f ðjÞ ð9:28Þ

where a1; a2; a3; a4; a5 represent the weights of services/computing resources
attributes respectively which corresponds to the weights setting in the objective
function. Through the adjustment of weights, small range of local search in a single
gene-bit could be guided in the algorithm according to the dynamic heuristics.

276 9 A Hybrid RCO for Dual Scheduling of Cloud Service

9.5.5 The Complexity of the Proposed Algorithm

Generally, the time complexity of the intelligent algorithms is dynamically varied
with different problems. Let n be the scale of the population, m be the size of tasks,
s be the number of the available cloud services for each task and p be the total
scale of computing resources. The algorithms’ complexities in each generation are
shown in Table 9.2.

In GA, typical roulette wheel selection needs n times roulette operations to
generating new population. Each roulette operation contains at least 1 and at most
n times comparison according to the relative fitness values of individuals. Thus the
average complexity of selection operator is O(n2). In RCO, the complexity of
ranking individuals in selection is O(nlogn) (with quick sort method) and the
selection step according to selective pressure needs at most n times. Thus the
complexity of ranking selection is O(nlogn).

Besides, crossover and mutation operation in GA are just executed once for
each individual. The complexity are both at least O(n) and at most O(mn). In
RCO, chaotic sequences with constant length are generated for each individual.
From the pseudo-code it can be seen that the complexity of individual chaos
operator is O(nLchaos) = O(n). Because the adaptation of chaotic length is in a
limited area, the complexity of chaos operator is also O(n). It is lower than
crossover operator. In addition, dynamic heuristic randomly chooses a gene-bit for
each individual, traverse part of available value of this gene-bit with heuristics.
If all of the selected gene-bits are service-bit, then the complexity is O(ns), else if
all of the selected gene-bits are computing resource-bit, then the complexity is O(np).
Thus the average complexity of dynamic heuristic operator is O(n(s + p)/2) =
O(nmax(p, s)).

In theory, if s!1 and p!1, the complexity of RCO is a little higher than
GA. But in the condition of n!1 and m!1, the complexity of RCO is lower
than GA.

9.6 Experiments and Discussions

Based on the case ‘‘the design and NC (Numerical Control) machining process of a
complex surface part’’ mentioned before, three typical DAG: two DAGs as shown
in Fig. 9.5 [21] and the ‘‘j30’’ DAG of Resource-Constrained Project Scheduling
Problem (RCPSP) in PSPLIB [31], are used as three task graphs in our experi-
ments. In practical application of private cloud in manufacturing conglomerate or
large-scale manufacturing service providers, a composite project contains multiple
complex surface parts’ machining. Thus a composite project can be divided into
far more than 5 tasks. Those tasks have several functional and non-functional

9.5 Ranking Chaos Algorithm (RCO) for DS-CSCR in Private Cloud 277

requirements for cloud services. Some of them need hardware cloud services,
some need software cloud services. In order to evaluate the performance of dual-
scheduling optimization compared with the traditional two-level decision, we
use basic real-coding GA uniformly to simulate the decision process in theory.
At the OACR step, each gene-bit represents the selected computing resource
number for the above selected service. The lengths of gene-bits at the two steps
are equal. Furthermore, At the SCOS step, we consider only the properties of
cloud services and then set the objective function as following according to
Eq. (9.14) and [32].

At the OACR step, we also use the objective function in Eq. (9.14) with
the fixed properties of cloud services. In Eq. (9.18), let the weight to be
w1 ¼ w2 ¼ w3 ¼ w4 ¼ 100n.

For simplifying the optimization process, we set that each task in a composite
project has the same number of available cloud services. In the three cases, 3
composite scales of DS-CSCR are tested, as shown in Table 9.3. And in each
scales, computing resources are equally divided into 5 distributed groups.

Assume the available number of cloud services for each task is s and the
available number of computing resources is p, then the size of solution space is
snpn. From Scale 1 to Scale 9, it’s range from 109 � 209 to 509 � 1009. Most
deterministic algorithms can’t handle these situations due to composite exposition.

Table 9.2 The complexity of the operators in GA and RCO

Algorithms The time complexities of operators n!1 m!1 s!1 p!1
GA Roulette

wheel
Selection

Crossover Mutation O(n2) O(m) O(1) O(1)

O(n2) O(nm) O(nm)

RCO Ranking
Selection

Individual
Chaos

Dynamic
Heuristic

O
(nlogn)

O(1) O(s) O(p)

O(nlogn) O(n) O(n*(max
(p, s)))

(a) (b)

Fig. 9.5 Two typical DAG with 9 and 15 tasks respectively. a DAG1 b DAG2

278 9 A Hybrid RCO for Dual Scheduling of Cloud Service

Moreover, because of the restriction of experimental environment, we set the
ranges of properties of cloud services and computing resources as shown in
Table 9.4.

For theoretical analysis, all the values are randomly generated with normali-
zation and idealization and stored in a txt file. In order to distinguish the band-
widths inter-group and intra-group, the range of u is set to be slightly larger than
/. Initially, task load of all computing resources are 0.

Based on DS-CSCR with 9 scales, standard GA, chaos GA (CGA), typical
chaos optimization (CO), chaos optimization with only individual chaos operator
designed in this chapter (RCO-2), chaos optimization with ranking selection and
individual chaos operator (RCO-1) and chaos optimization with the addition of
dynamic heuristics (RCO) are compared together for further testing the perfor-
mance of the above designed algorithm. In the experiments, the classical roulette
wheel selection operator, multiple-point crossover operator and single-point
mutation operator are adopted in GA. And the crossover and mutation probabilities
are set to be the typical values, i.e. 0.8 and 0.15, respectively. In chaos strategy of
CGA and CO, the length of chaotic sequences is set as a constant 10. For a fairer
comparison, in the new RCO, let A = 5 and B = 15 to make sure the same level of
chaotic operation. Besides, the iterations of all experiments are set as 2000 uni-
formly and population sizes are all 20. Due to the randomness of intelligent
algorithms, a total of 100 runs of each experiment are conducted and the average
fitness value of the best solutions throughout the run is recorded.

Table 9.3 The selected 4 composite scales of cloud services and computing resources

Scale
1

Scale
2

Scale
3

Scale
4

Scale
5

Scale
6

Scale
7

Scale
8

Scale
9

Number of
tasks

9 9 9 15 15 15 30 30 30

Number of
available cloud
services

10 20 50 10 20 50 10 20 50

Number of
available
computing
resources

20 50 100 20 50 100 20 50 100

Table 9.4 The property ranges of cloud services and computing resources

s c r v e f

Software service [1, 10] [1, 10] (0, 1) [1, 10]

Hardware service [1, 10] [1, 10] (0, 1) [1, 10] [1, 10] [0, 1]

. x u / r f k

computing resource [1, 10] [1, 10] [1, 5] [1, 10] (0, 1) 0

9.6 Experiments and Discussions 279

9.6.1 Performance of DS-CSCR Compared with Traditional
Two-Level Scheduling

Let TL-S to be the abbreviation of traditional Two-Level Scheduling, we com-
pared it with new DS-CSCR in the above 9 scales of solution space. Figure 9.6
shows the testing results from the perspectives of time consumption and solution
quality respectively.

Firstly, we define the decrease-rate to be sd ¼ TTL�S�TCS=CR�DS

TTL�S
in Fig. 9.6a. As we

have analyzed previously, the time consumption of SCOS and OACR in traditional
TL-S are reduced by about 35–40 % in DS-CSCR. Although the length of indi-
vidual and the size of solution space are only half that of DS-CSCR. Traditional
TL-S takes almost twice the time of DS-CSCR. For each task graph, as the
numbers of cloud services and computing resources are enlarged, the decrease-
rate increases gradually. Thus it can be seen, with the same algorithm (no matter
deterministic algorithm or intelligent algorithm), TL-S is more and more time-
consuming with the increase of solution space while DS-CSCR always maintains a
relatively low level of time consumption. It proved that, with the same algorithm,
no matter using determistic or intelligent, two level decision is cumbersome.

Secondly, from the angle of solution quality in Fig. 9.6b, we define the growth-

rate to be sg ¼
�FCS=CR�DS��FTL�S

�FTL�S
, where �FCS=CR�DS and �FTL�S represent the average

result of the best fitness value in experiments. It increases along with the expansion
of solution spaces in each kinds of task graph. For all of scales, the total level of
quality in TL-S is improved by about 14–19 % in DS-CSCR. In theory, the service
properties are static in the second step of TL-S. With the splitting of SCOS and
OACR under unified console, the mutual relations between cloud service and the
underlying computing resources are ignored. This tells us the conclusion that in
private cloud, the underlying support infrastructure must be considered in the
process of SCOS. With fast development of dynamic network, service with
dynamic deployment are more and more common. SCOS with the consideration of
QoS only are inpractical for many of the advanced system in large SaaS mode.

9.6.2 Searching Capability of RCO for Solving DS-CSCR

For addressing DS-CSCR more efficiently, we designed RCO especially aiming at
the situation of large-scale solution space. Figure 9.7 recorded the average fitness
value of the best solution during 2000 generations in 100 runs for 9 scales of
DS-CSCR (i.e. the average evolutionary trend of the 6 algorithms in 100 runs).
Figure 9.8 shows the fitness value of the best solution, the worst solution and the
average result in 100 runs for 9 scales of DS-CSCR. Note that the fitness value is
the assessment value of each individual according to the objective function. So
from the perspective of searching capability, the sort of the six algorithms from

280 9 A Hybrid RCO for Dual Scheduling of Cloud Service

bad to good is: GA\CGA\CO\RCO-2\RCO-1\RCO. The step-by-step
improvement from the design of individual chaos operator to the introduction of
ranking selection and dynamic heuristic operators can be clearly observed.

On the basis of GA, the average fitness value of the best solutions of CGA is
about 30 % higher than GA. At this moment, the average best fitness value of
CO with single chaos optimal operator is about 1.5 times higher than GA. From
here we can come to the conclusion that the basic operators of GA constrained
the searching ability of chaos optimal operator in CGA to some degree. Simple
chaos optimization can get much better solution than the traditional GA and
improved CGA. Furthermore, the adaptive strategy adapts chaotic sequences
according to the state of the whole population. When the population is in a good
state, the adaptive strategy will reduce the chaotic sequences, so as to reduce the
complexity of the algorithm. Compared with CO, the average best fitness value

Fig. 9.6 Comparison of DS-CSCR and TL-S based on GA. a The average solution of DS-CSCR
and TL-S based on GA in 9 scales b The average solution of DS-CSCR and TL-S based on GA in
9 scales

9.6 Experiments and Discussions 281

of RCO-2 in the 9 scales of DS-CSCR has been raised by about 3 %. After-
wards, ranking selection was put in the front of RCO-2. With the collaboration
of selection and chaos, the average best fitness value of RCO-1 is improved
again. Hence, it can be learned that the operation and collaboration of individual
chaos operator and the ‘‘the survival of the fittest’’ ranking selection strategy can
not only reduce the complexity of algorithm, but also improve the searching
capability remarkably. Because the effect of mutation is similar to chaos oper-
ator, it may conclude that the crossover operator in GA mainly restrained the
capability of chaos strategy in CGA. Based on the improved RCO-1, for guiding
chaos optimization further, dynamic heuristic operator was introduced at last.
From Figs. 9.7 and 9.8 we can see that the new RCO performs better than
RCO-1 with the guidance of heuristics. On the whole, the average best fitness
value of RCO in 100 runs is about 2 times higher than GA. The overall
improvements are extremely considerable.

Fig. 9.7 The average evolutionary trend of the 6 algorithms in 100 runs for 9 scales of
DS-CSCR. a DAG1 with 9 tasks in the scale 1, 2 and 3 b DAG2 with 15 tasks in the scale 4, 5 and
6 c DAG3 with 30 tasks in the scale 7, 8 and 9

282 9 A Hybrid RCO for Dual Scheduling of Cloud Service

9.6.3 Time Consumption and Stability of RCO for Solving
DS-CSCR

Next, based on the above mentioned 9 scales with 3 kinds of task graphs
(Table 9.3), the time efficiency and stability of the 6 algorithms are discussed
below. Note that the time consumption are tested in millisecond (ms) and the
stability is measured by the standard deviation of the average fitness values in 100
runs.

Figure 9.9a shows the average time-consumption of the 6 algorithms in 9 scales
with 100 runs. The step-by-step improvement from CO to RCO compared with GA
and CGA, the variation trends of time in all scales are the same. In CGA, there are
four operators (selection, crossover, mutation and chaos), with lower searching
capability, its time-consumption is the highest in these 6 algorithms. After wiping
out the three operators of GA, the times of CO are just lower than CGA. It is clear
that the most time-consuming operator in CGA is chaos operator. Only narrowing
down the chaotic traverse range can reduce the total execution time of algorithm.
Along with the decrease of chaotic sequences, the searching ability of algorithm
will be reduced, too. Therefore, in order to reduce the time complexity of algo-
rithm with the maintaining of the searching ability, individual chaos operator
customized for individuals is designed in this chapter. Experiments in RCO-2

Fig. 9.8 The statistical results of the 6 algorithms in 100 runs for 9 scales of DS-CSCR. a DAG1
with 9 tasks in the scale 1, 2 and 3 b DAG2 with 15 tasks in the scale 4, 5 and 6 c DAG3 with 30
tasks in the scale 7, 8 and 9

9.6 Experiments and Discussions 283

show that the time-consuming is effectively reduced by about 20 % based on CO
with the improvement of searching ability. Especially in scale 7, 8 and 9 with very
large solution spaces, time-consuming of chaotic operations are sharply reduced.

Moreover, the introduction of ranking selection not only improved the
searching capability of RCO-2, but also reduced the time. The reason is that, based
on ranking selection, the difference between the best fitness value and the average
fitness value in the population is shortened, the population can always be adapted
to a better state with ‘‘the survival of the fittest’’ strategy, then the chaotic
sequences are shortened accordingly. With shorter chaotic sequences, the popu-
lation can be guided to better areas based on fitter individuals and then find better
solutions more quickly. In terms of the time measuring, the prominent perfor-
mance of the collaborative operation of ranking selection and individual chaos
operator has been verified again as RCO-1. At the next step, the introduction of
dynamic heuristic operator increase the time slightly based on RCO-1, but the new
complete RCO is much faster than RCO-2, CGA and CO as a whole.

From the perspective of stability, as shown in Fig. 9.9b, the six algorithms
in the 9 problem scales changed irregularly. But from the 9 scales of tests, we
can obtain the sort of stability of the six algorithms from bad to good is:

Fig. 9.9 The average time-consumption and standard deviation of the 6 algorithms in 100 runs.
a Average time consumption of 6 algorithms b Standard deviation of 6 algorithms

284 9 A Hybrid RCO for Dual Scheduling of Cloud Service

CGA\CO\RCO-2\RCO-1\RCO\GA. Traditional GA is the most stable while
the stability of CGA is the worst. With the adaptive improvement, RCO-2 is more
stable than CO. That is because in large-scale solution space, chaotic sequences
are generated based on no matter good or bad individuals, the population is easy to
be lead to bad areas during searching and the states of population in each gen-
erations are not stable any more. After the introduction of ranking selection, the
stability of the algorithm has greatly improved. Each time of selection in iteration
maintained the population state and reduced the chaotic sequences, so that the
population can always be evolved based on fitter individuals with higher stability.
Besides, the design of dynamic heuristic operator with the priori knowledge of
DS-CSCR can always guide the population into better areas during evolution and
then improve the stability further.

Thus it can be seen that the new designed RCO possesses plenty of advantages
in searching capability, time-consumption and stability for addressing DS-CSCR
no matter with large or small scales solution spaces in private cloud.

9.7 Summary

Service composition optimal selection (SCOS) and optimal allocation of com-
puting resource (OACR) are both very critical in cloud system. Current works
found that the two steps decision of SCOS and OACR in private cloud are quite
cumbersome and the mutual relations between cloud services and underlying
computing resources are always ignored. Thus this chapter deeply analyzed the
characteristics of these two problems and their interactions. Based on this, the idea
of one-time decision of SCOS and OACR was presented accordingly. To sum up,
the primary works of this chapter can be concluded as follows.

(1) New DS-CSCR model was presented in private cloud for high efficient
one-time decision. Properties of software/hardware cloud services, VMs and
computing resources are deeply analyzed. The formulation of DS-CSCR was
clarified according to the aim of high efficient and low cost resource sharing.

(2) For addressing the complex dual scheduling problem (DS-CSCR), a new
intelligent algorithm—RCO was presented. Individual chaos operator was
designed as the backbone operator of the algorithm. Then a new adaptive
ranking selection was introduced for control the state of population in iter-
ation. Moreover, dynamic heuristics were also defined and introduced to
guide the chaos optimization. RCO with these three operators showed
remarkable performances in terms of searching ability, time complexity and
stability in solving the DS-CSCR problem in such private cloud compared
with other algorithms.

9.6 Experiments and Discussions 285

References

1. Laili YJ, Tao F, Zhang L, Cheng Y, Luo Y, Sarker BR (2013) A ranking chaos algorithm for
dual scheduling of cloud service and computing resource in private cloud. Comput Ind
64(4):448–463

2. Boss G, Malladi P, Quan D, Legregni L, Hall H (2007) Cloud computing. IBM White Paper,
2007. http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_
final_8Oct.pdf

3. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson D,
Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a berkeley view of cloud computing.
University of California, Berkeley

4. Xia TZ, Li Z, Yu NH (2009) Research on cloud computing based on deep analysis to typical
platforms. Lect Notes Comput Sci 5931:601–608

5. Xu X (2012) From cloud computing to cloud manufacturing. Robot Comput Integr Manuf
28(1):75–86

6. Wu D, Thames L, Rosen D, Schaefer D (2012) Towards a cloud-based design and
manufacturing paradigm: looking backward, looking forward. In: Proceedings of the ASME
2012 international design engineering technical conference and computers and information in
engineering conference, Chicago

7. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the clouds: towards
a cloud definition. ACM SIGCOMM Comput Commun Rev 39(1):50–55

8. Li BH, Zhang L, Wang SL, Tao F, Cao JW, Jiang XD, Song X, Chai D (2010) Cloud
manufacturing: a new service-oriented networked manufacturing model. Comput Integr
Manuf Syst 16(1):1–16

9. Nick JM, Cohen D, Kaliski BS (2010) Key enabling technologies for virtual private clouds.
Handb Cloud Comput 1:47–63

10. Tan W, Fan YS, Zhou MC (2010) Data-driven service composition in enterprise SOA
solution: a petri net approach. IEEE Trans Autom Sci Eng 7(3):686–694

11. Tao F, Hu YF, Zhao D, Zhou ZD, Zhang HJ, Lei ZZ (2009a) Study on manufacturing grid
resource service QoS modeling and evaluation. Int J Adv Manuf Technol 41 (9-10):1034–1042

12. Tao F, Hu YF, Zhou ZD (2009b) Application and modeling of resource service trust-QoS
evaluation in manufacturing grid system. Int J Prod Res 47(6):1521–1550

13. Tao F, Zhao D, Hu YF, Zhou ZD (2010) Correlation-aware resource service composition and
optimal-selection in manufacturing grid. Eur J Oper Res 201(1):129–143

14. Fujii K, Suda T (2005) Semantics-based dynamic service composition. IEEE J Sel Areas
Commun 23(12):2361–2372

15. Ferrer AJ, Hernandez F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C, Sirvent R, Guitart J,
Djemame RM, Ziegler W, Dimitrakos T, Nair SK, Kousiouris G, Konstanteli K, Varvarigou
T, Hudzia B, Kipp A, Wesner S, Corrales M, Forgo N, Sharif T, Sheridan C (2012)
OPTIMIS: a holistic approach to cloud service provisioning. Future Gener Comput Syst
28(1):66–77

16. Mika M, Waligora G, Weglarz J (2011) Modeling and solving grid resource allocation
problem with network resources for workflow applications. J Sched 14(3):291–306

17. Tordsson J, Montero RS, Moreno-Vozmediano R, Liorente IM (2012) Cloud brokering
mechanisms for optimized placement of virtual machines across multiple providers. Future
Gener Comput Syst 28(2):358–367

18. Endo PT, Palhares AVD, Pereira NN, Goncalves GE (2011) Resource allocation for
distributed cloud: concepts and research challenges. IEEE Netw 25(4):42–46

19. Ma YB, Jang SH, Lee JS (2011) QoS and ontology-based resource management in cloud
computing environment. Inf Int Interdisc J 14(11):3707–3715

20. Xiong PC, Chi Y, Zhu SH, Moon HJ, Pu C, Hacigumus H (2011) Intelligent management of
virtualized resources for database systems in cloud environment. In: Proceedings of the 27th
IEEE international conference on data engineering

286 9 A Hybrid RCO for Dual Scheduling of Cloud Service

http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf

21. Zhang YH, Li YH, Zheng WM (2011) Automatic software deployment using user-level
virtualization for cloud-computing. Future Gener Comput Syst 29(1):323–329

22. Ghanbari H, Simmons B, Litoiu M, Iszlai G (2012) Feedback-based optimization of a private
cloud. Future Gener Comput Syst 28(1):104–111

23. Laili YJ, Tao F, Zhang L, Sarker BR (2012) A study of optimal allocation of computing
resources in cloud manufacturing systems. Int J Adv Manuf Technol 63(5–8):671–690

24. Nathani A, Chaudhary S, Somani G (2012) Policy based resource allocation in IaaS cloud.
Future Gener Comput Syst 28(1):94–103

25. Ma Y, Zhang CW (2008) Quick convergence of genetic algorithm for QoS-driven web
service selection. Comput Netw 52(5):1093–1104

26. Yin PY, Wang JY (2008) Optimal multiple-objective resource allocation using hybrid
particle swarm optimization and adaptive resource bounds technique. J Comput Appl Math
216(1):73–86

27. Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for
service-oriented clouds. Softw Pract Exp 41(5):469–493

28. Tao F, Zhang L, Venkatesh VC, Luo YL, Cheng Y (2011) Cloud manufacturing: a computing
and service-oriented manufacturing model. Proc Inst Mech Eng Part B J Eng Manuf 225(10):
1969–1976

29. Schaefer D, Thames L, Wellman RD, Wu D (2012) Distributed collaborative design and
manufacture in the cloud–motivation, infrastructure and education. In: Proceedings of the
annual conference and exposition (ASEE), Texas

30. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Gener Comput Syst
28(5):755–768

31. Kolisch R, Sprecher A (1997) PSPLIB-a project scheduling problem library: OR software-
ORSEP operations research software exchange program. Eur J Oper Res 96(1):205–216

32. Tao F, Zhao DM, Hu YF, Zhou ZD (2008) Resource service composition and its optimal-
selection based on swarm optimization in manufacturing grid system. IEEE Trans Ind Inf
4(4):315–327

References 287

Part V
Application of Parallel Intelligent

Optimization Algorithms

Chapter 10
Computing Resource Allocation
with PEADGA

In this chapter, for solving optimal allocation of computing resources (OACR)
problem in cloud manufacturing (CMfg) [1], serial three-layer operation config-
uration and parallel configuration are both applied. Firstly, A new comprehensive
model for OACR is proposed in CMfg system. In this model, all main computa-
tion, communication and reliability constraints in the special circumstances are
considered. Secondly, niche strategy, immune heuristics, genetic operators and
pheromone strategy are configured together to generate a hybrid niche immune
algorithm (NIA) [2]. Based on NIA, we introduce an adaptive full mesh exchange
scheme with population supervision and get a new parallel NIA (PNIA) for
addressing the specific problem. From the perspective of algorithm parallelization,
the supervision of population state is encapsulated as a module used before
topology-based communication as an execution condition. Then the new module is
configured together with full mesh topology in different generation.

10.1 Introduction

Nowadays, in the development of manufacturing, informatization is important. It
connects enterprises to work together, share resources and improve the product
efficiency. To fulfill the target of agility, high performance and low cost among
enterprises all over the world, many manufacturing informatization modes, for
example, agile manufacturing (AM) [3], application service provider (ASP) [4]
and manufacturing grid (MGrid) [5] and so on, are proposed and used widely.
Most of them are emphasis just on how to connect distributed resources by net-
work with less considering of resource management and generalized dynamic
sharing. At the same time, cloud computing as a new network application mode is
springing up. It constructs computing service center and hire the computing power
and storage by using virtualization technology. It combines multiple computing

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_10

291

resources and information as a strong ‘‘cloud’’ and divides computing power and
storage quickly and freely from cloud to user on-demand through network. Cloud
is just like a huge repository (and management) of resources which reflects the
generalized dynamic sharing and cooperative management of resources.

Inspired by this, Cloud Manufacturing (CMfg) was presented by Li et al. [1] to
expand the service mode in manufacturing informatization and improve its
dynamic. It is a new networked manufacturing mode which aims at achieving low
cost resource sharing and effective coordination. It transforms all kinds of man-
ufacturing, simulation and computing resources and abilities into manufacturing
services to form a huge ‘‘manufacturing cloud’’ and distributes them to user
on-demand. In CMfg, there’s a platform which combines core technologies of
cloud computing, internet of things (IoT) and high performance computing (HPC)
and so on to implement the intelligent management, efficient collaboration and
dynamic arbitrary service composition and division. All these resources and
abilities are intelligently sensed and interconnected into ‘‘cloud’’ and automati-
cally managed via Internet to execute various manufacturing tasks [6, 12, 13]. That
is to say, in manufacturing process, CMfg platform can analyze and divide users’
requests and automatically search suitable information, available manufacturing
devices and computing resources and intelligently integrate and provide them to
users. Users here can hire remote large equipments and computing resources
without buying, get more specific information about design, simulation, produc-
tion, delivery and recycle and monitor the whole task execution process. Thus, the
whole life cycle manufacturing process in CMfg can be simplified in Fig. 10.1.
With high intelligence and information, it is a high level extension of service-
oriented manufacturing and cloud computing.

Based on this idea, people would ask, how to transform large devices as
services for hiring, how to implement efficient resources allocation and integra-
tion? Actually, they are all supported by computing resources, as shown in
Fig. 10.1. Computing Resources, including CPU, processor, I/O, at the physical
layer [1] is the core infrastructure of CMfg platform. They not only provide
computing power as in cloud computing, but also control a variety of other
manufacturing resources and abilities directly for collaboration and sharing. They
locate in different places and form a big resource pool in CMfg platform through
virtualization. Information sharing needs them, manufacturing devices invoking
needs them and computing/simulation work needs them, too.

In other word, under the centralized management, various heterogeneous
computing resources are integrated and re-divided as virtual machines by virtu-
alization and assigned to user on-demand for computing and simulation. Mean-
while, when manufacturing equipments access in CMfg platform through
transducers, computing resources then become a kind of control and management
media. They encapsulate and map these manufacturing equipments as virtual
resources with virtualization technology to support the effective interoperation,
collaboration and monitoring of manufacturing tasks [7, 55]. High virtualization of
all kinds of manufacturing hardware/software resources and high heterogeneity

292 10 Computing resource allocation with PEADGA

and distribution of computing resources are two key characteristics of CMfg
compared with cloud computing. Therefore, the optimal allocation of computing
resources (OACR) which means efficient dividing and scheduling computing
resources in manufacturing process for full utilization and high efficient operation
is one of the most primary problems in CMfg.

Besides, oriented to the whole manufacturing life cycle, manufacturing tasks
are very complex. They usually include multi-disciplinary collaborative tasks such
as mechanical, electronic or control simulation and manufacturing. The demands
of tasks for communication and computation power of manufacturing resources
are high and different. Unlike the previous scheduling problems [8, 9] in parallel
computing systems, in CMfg, computing resources are divided into virtual
machines and allocated to different tasks according users’ requirements. It has the
characteristics of large scale, high heterogeneity, dynamic interconnection and
group collaboration, which has imposed a new challenge on the construction of
CMfg platform.

So, focusing on OACR problem in CMfg, we proposed a systematic model for
it from the point of packet communication and partition of computing power. The
detailed running process of the allocation of computing resources for manufac-
turing tasks is shown. Classical intelligent algorithms are introduced and compared
in solving the problem, and a new improved hybrid intelligent algorithm, NIA, is
configured to solve OACR. Further, a new topology with pre-handling module is
configured and applied in NIA. Simulation results on standard tests show that this
new algorithm is pretty efficient to solve this kind of high dimensional complex
problems.

DAG tasks
collaboration

Extract equipments and
material information

Product design

Simulation and
experiments

Production

Qualified ?

Delivery

Submit project

Inspection/Management

Yes

No

CMfg platform

Manufacturing/Simulation
equipments

VMs
management

system
perception

system

Computing Resources
(PC,Cluster,PDA)

Fig. 10.1 The simplified manufacturing process in CMfg

10.1 Introduction 293

10.2 Related Works

To perform larger-scale collaborative manufacturing, CMfg was firstly presented
by Li et al. [1]. They specifically defined it and introduced the architecture of
CMfg. Based on this, many studies about CMfg are started. Zhang et al. [7, 55]
further described the key technologies for the construction of CMfg. He defined
the dynamic cloud services center in CMfg as manufacturing cloud and classified it
as public cloud and private cloud. Then, from the perspective of the structure of
manufacturing cloud, he elaborated the types of manufacturing resources, the
dynamic sensing and accessing of hardware/software and the method of infor-
mation exchange in CMfg. And for further understanding and the research of
CMfg, Zhang [10] then analyzed the differences and connections among CMfg and
other related advanced manufacturing modes and then presented the target of
CMfg, i.e., agility, servicesation, greening and intelligent in the whole manufac-
turing. Based on these researches, Li et al. [11, 49] specified the characteristics of
CMfg and presented argument as a service (AaaS), design as a service (DaaS),
fabrication as a service (FaaS), experiment as a service (EaaS), simulation as a
service (SimaaS), management as a service (MaaS) and integration as a service
(InaaS). These concepts is inspired by cloud computing but clearly distinguished
CMfg from cloud computing. At the same time, Tao et al. [6, 12, 13] elaborated
the operational process of cloud manufacturing, the relation among resources,
cloud service and cloud platform and the importance of optimal allocation of
whole manufacturing resources and tasks in CMfg. All of these studies are macro-
researches with less micro-analysis in each key part. However, in detail, how to
implement intelligent and agility in optimal allocation of computing resources for
supporting these advanced manufacturing process, as one of the most important
thing of constructing CMfg platform, still hasn’t been studied.

In manufacturing system, job-shop scheduling and workflow scheduling are
much popular [61, 62] while the allocation of computing resources considered little.
But from the global perspective, OACR is one of the most basic and important
problem. OACR is a kind of pre-scheduling problem. It’s more complex than
several kinds of traditional job-scheduling or task scheduling problems [14–16]. In
the existing task scheduling models, tasks can usually be expressed in four types:
DAG (Directed Acyclic Graph) [17], HTG (Hierarchical Task Graph) [18], TIG
(Task Interaction Graph) [19, 20] and Petri net [21]. The most commonly used is
DAG, in which the nodes represent individual tasks and the directed arcs stand for
communication overhead between tasks [22, 23]. Early DAG models were sim-
plified as: the execution time of tasks are all the same, communication between
tasks are excluding, the intercommunication interfaces between processors are
enough and multiple communications can be performed simultaneously [17], and so
on. The traditional DAG task scheduling problems have been proven to be
NP-Complete [9]. It’s far more complex in many kinds of manufacturing systems
[1, 52, 63–65]. About the attributes of tasks, the concept of similarity is often

294 10 Computing resource allocation with PEADGA

expressed as Granularity [24, 25], which indicates the ratio of communication
overhead in a parallel program. The amount of communication edges is usually
expressed as DAG density [26]. Besides, a variety of QoS (Quality of Service)
indexes were also introduced in DAG, particularly in manufacturing task sched-
uling. Based on these QoS (Quality of Service) indexes, existing researches pri-
marily focus on homogeneous cluster systems [27–29] scheduling more thread
level tasks to less processors. The most frequently used topologies of the parallel
systems are full interconnected network, hypercube network, grid network, public
bus network, and so on [30]. The studies about heterogeneous systems are seldom.
Typically, end-point and network communication contention in heterogeneous
systems are analyzed by O Sinnen [31]. The communication preparation, overhead
and involvement of processors and communication mode of task scheduling are
elaborated by Sinnen et al. [32] and Benoit et al. [33], and so on.

On the scheduling algorithms side, typical deterministic algorithms are list
scheduling [34–36], clustering scheduling [24, 37, 38], linear programming [39],
stochastic mapping [40], and several others. Yu-Kwong and Ishfaq compared and
summarized 15 types of scheduling algorithms in [17], which is widely cited. After
that, a few efficient approximate algorithms [41, 42], were presented for solving
these problems in acceptable times. With the increase of tasks and processors
scale, traditional deterministic algorithms and original approximate algorithms can
no longer meet the demand. Thus intelligent algorithms, such as genetic algo-
rithms (GA) [43–46], ant colony optimization (ACO) [11, 47–49], immune
algorithms (IA) [50, 51] and so on and other new heuristic approaches [52–54, 64]
have been paid attention and widely applied to this kind of scheduling problems
for finding the Pareto optimal solutions especially in manufacturing application
field [66, 67].

However, the above-mentioned models are not practicable to CMfg. First,
unlike the previous thread level tasks, manufacturing tasks (MTs) are usually
carried by virtual machines (VMs) [1]. Virtual machines not only execute high
performance computing tasks, but also supervise and control manufacturing
hardware resources such as simulation equipment and machine tools. Users have
different demands on them. Multi VMs can run in same processor. The more VMs
carried at one processor, the slower their run. More importantly, there are frequent
interactions between users and VMs during tasks’ execution. In the other word,
VMs generally execute coarse grain manufacturing tasks. Second, computing
resources (CRs) with high heterogeneity are composed of different kinds of cluster,
PC, PDA, and so on. They are scattered around the world with dynamic access, so
the system topology is dynamic and uncertain. Hence different areas have different
access bandwidths, links and communication buffers [7, 55]. Third, on CMfg
platform, CRs have larger scale while MTs have relatively smaller scale with
higher and complex demands. Based on such a complex system, therefore, OACR
is different from the original scheduling problems and a detailed analysis of its new
model and algorithms are presented in this chapter.

10.2 Related Works 295

10.3 Motivation Example of OACR

A CMfg system consists of manufacturing resources, manufacturing cloud (CMfg
platform) and the whole lifecycle manufacturing applications. Like the traditional
service-oriented manufacturing modes, three user types – resource providers,
cloud operators and resource users are included in the platform, as shown in
Fig. 10.2 [7, 55]. Manufacturing cloud senses and manages the manufacturing
resources (hardware/software) from resource providers all over the world. When
users submit a manufacturing mission to manufacturing cloud, the platform
analyzes the mission and intelligently divides it into sub-tasks in accordance with
the requirement number of VMs and devices and then forms them as a DAG. That
means each sub-task in DAG can be executed by only one VM or one device
without separation. After the task partition, manufacturing cloud need to find
available resources for each sub-task and provide them as services for users. In
fact, as introduced in Sect. 10.1, all of the interactive and run processes among
them are not only supported by knowledge, but also by computing resources.

In order to show the importance of OACR among the triple process, we specific
the abstract workflow of task execution in CMfg as shown in Fig. 10.3 and con-
sider the multi-disciplinary physical collaborative simulation for example.

Normally, for an accurate design and modeling in industrial manufacturing
(such as airplane and automobile), physical collaborative simulation is important.
On one hand, it needs collaborative simulation of Matlab and Adams and so on. On
the other hand, it also needs driving simulator, multi-axis table and visual
equipment to work together along with software. So it is a complex process in
manufacturing. Assume there is a physical simulation task submitted to manu-
facturing cloud. After a series of intelligent divisions of task, the following steps
are done in the CMfg platform.

(1) Requirement analysis of task DAG: According to the users’ requirement of
DAG, analyze the communication and computation costs and the QoS
(Quality of Services) constraints of tasks. Then check the accessed resour-
ces(include computing resources and manufacturing devices). If there’s no
available resource or the resources are not enough, then reject the tasks. Or
the system will send a confirmation message to users and then take the next
step.

(2) Optimal allocation and strategy sending: In terms of the QoS and costs of
tasks, manufacturing cloud determines which tasks need remote simulation
physical devices. If the task needs physical device, then calculates the attri-
bute values of device and maps it to the requirement attributes of controlling
VM. Else the platform only needs to calculate the requirement attributes of
computing VM for task. As soon as the platform establishes these VMs’
requirement, it executes a scheduling algorithm for mapping these VMs to
available computing resources, then gets the optimal allocation of computing
resources strategy and sends it to users.

296 10 Computing resource allocation with PEADGA

(3) Execution: After the users’ confirmation, manufacturing cloud then invokes
these VMs and simulation hardware to execute. The simulation runtime
process could be controlled and monitored by users through controlling VMs
on Internet. If unexpected error occurs during execution, the platform will
call the fault-tolerant migration strategy automatically and try to execute
tasks again.

(4) Result receiving and resources release: At the end of the workflow, manu-
facturing cloud receives the simulation results and sends them to users. Then
the devices and VMs (computing resources) are released accordingly.

10.4 Description and Formulation of OACR

According to the simplified manufacturing process shown in Sect. 10.3, to build a
practical model of optimal allocation of computing resources, the core allocation
structure and its characteristics should be emphasized firstly. The structure of
OACR gives the detailed allocation process of VM management and the

Manufacturing
 resources

Im
po

rt

Resource users

The application of
manufacturing life

cycle

Export

Resource providers

Cloud operators

knowledge

Manufacturing
 capacity

Manufacturing
cloud

Fig. 10.2 The abstract operation principle of CMfg

10.3 Motivation Example of OACR 297

distribution characteristic of CRs. Based on that, the communication and topology
characteristics of CRs in CMfg are elaborated for further study of the model of
OACR.

10.4.1 The Structure of OACR

The OACR of CMfg is composed of three levels: manufacturing task level, virtual
resource level and computing resource level, as shown in Fig. 10.4.

On manufacturing task level, assume the tasks of a given MTs set are meta-
tasks. Meta-task means that the task is inseparable for executing in VMs/CRs, as
discussed in Sect. 10.3. For instance, in a multidisciplinary collaborative simula-
tion, each module runs on one VM with user’s control and interaction. Each VM is
inseparably running on only one CR. So MTs and VMs have the one-to-one
mapping relationship.

When MTs’ demands are abstracted as virtual resources’ demands, the virtual
machine manager receive the demand information and allocate available VMs for

Optimal Allocation

Requirement
analysis of task DAG

Resources enough ?

Confirmation

Reject the
mission

Strategy sending

Running and monitoring VMs
and devices

Receiving the results and
releasing VMs and devices

Execution error ?
Fault-tolerant

migration

Fig. 10.3 The specific
workflow of task execution

298 10 Computing resource allocation with PEADGA

physical manufacturing resources. The physical manufacturing resources can be
not only manufacturing/simulation equipments, but also computing resources.
Each of manufacturing/simulation equipment needs a CR to control and monitor.
Thus, all VMs are supported by CRs. They form the virtual resource level and
support the running of MTs. Because the customized MTs are applied by user, the
constraints of VMs (e.g., the demand of memory size, computing speed, com-
munication link and bandwidth, etc.) could be obtained at the same time.

As shown in Fig. 10.4, the mapping of manufacturing task level and virtual
resource level is the foundation of OACR, and the mapping of virtual resource
level and physical resource level is central to the optimization. In this chapter, the
manufacturing task level and virtual resource level are merged, and the optimal
allocation of MTs (or VMs) and CRs under the concrete computation and
communication constraints are emphasized.

VM1

VM3

VM2

VM4

VM5

VM6

Virtual Machine Manager

……

Manufacturing

Task Level

Virtual

Resource Level

Computing

Resource Level

T 1

T 3

T 2

T 4

T 5

T 6

P P

P P

P P

P

P

P

P P

Fig. 10.4 The process framework of OACR

10.4 Description and Formulation of OACR 299

10.4.2 The Characteristics of CRs in CMfg

In actual operation of VM management, the topology and communication prop-
erties of CRs are very important. These factors determine which CRs are most
suitable for MTs and which allocation scheme is the most efficient one, and almost
all constraints of OACR come from the characteristics of CRs.

(1) Communication network
The CMfg network is different from other enterprise network or public network and
compromised by many distributed manufacturing resource around the world. For the
sake of facilitate management and extension, master-slave (manager-service) mode
is adopted in the platform. As the shoring of foundation, computing resources can
dynamically access the platform via Internet. They are managed and controlled by
high stable VMs management system. According to their locations, CRs can be
divided into multiple subsets. This topology is similar to the classical tree network.
Each subset belongs to different provider who has full authority and obligation to
operate and maintain it. The subsets could be mesh/star topology cluster or inde-
pendent PCs. Due to the different topologies of CRs’ subsets, the transmission in
group can be half-duplex, full-duplex or busses. With the development of the high
speed Ethernet switch, transmission among groups are all full-duplex.
(2) Communication ports
Generally, the port communication of master-slave system can be classified as
single-port mode [56] and multi-port mode [57]. Single-port mode means that the
network central node can only send or receive limited-byte message to/from one
slave node in a given period of time. On the contrary, in multi-port mode the
network central node can send or receive limited-byte message to/from one or
more slave nodes in a given period of time. In CMfg, multi-port communication
mode is adopted in CRs and the platform.

However, in this multi-port mode, owing to the complex and frequent inter-
communication among CRs for a large number of MTs, the amount of transmit
data from multi-port to the central node must be huge, which is called periodic
burst or data surge. Periodic burst can cause packet loss and network congestion.
In order to avoid this, the general port transmit mechanism of cloud computing is
adopted in CMfg, that is, large caches are allocated in the receive direction of
switches while small caches are allocated in the send direction to control the flow
burst. In this case, the critical cache in the receive direction for preventing data
surge and the relationship with the communication time between CRs should be
particularly considered.
(3) Communication bandwidth
Associating with multi-resources around the world, the core network protocol of
CMfg is still TCP/IP mode (with two-sided communication type [32]. In TCP/IP
protocol, Data are usually divided into small packets and transmitted one by one. If
one of the packets is not arriving, the packet will be resent or the congestion
control strategy will be loaded in the network. Then the data transfer rate will be
slower. Though TCP/IP protocol is efficient in short distance transmission, it may

300 10 Computing resource allocation with PEADGA

cause delay or packet loss in the large-scaled remote communication in CMfg.
Thus, in gigabit network, long-distance communication between CRs will lead to
delay at hundred milliseconds scale and small probability packets loss. This makes
the actual transfer rate be only about one-tenth of the original bandwidth or even
smaller. Therefore, with existing communication technologies, the transfer rates of
remote communication among CRs can only reach ten to hundreds Mbps.

10.4.3 The Formulation of the OACR Problem

The above-mentioned structure and main characteristics clearly reflect the high
heterogeneity and dynamics of optimal allocation of computing resources. It
comes from the traditional models of task scheduling but is more complex than the
traditional ones. For describing the model of OACR in formalization, the formal
descriptions of tasks and computing resources in traditional task scheduling are
shown as follows. And based on the traditional definitions, the new model of
OACR is presented then.

(1) Traditional models of tasks and CRs
In general task scheduling problem, the tasks and the multiprocessor system are
defined as follows.

Definition 1 The tasks set in multiprocessor system can be presented as a
weighted directed acyclic graph (DAG), G ¼ ðV;E; c;wÞ. The set
V ¼ fviji ¼ 1 : v; v ¼ Vj jg, where vi represents the task of the set V, and v is the
cardinality of nodes. The set E ¼ V � V , e ¼ Ej jis the number of edges, and
eðijÞ 2 E represents the communication between vi and vj. w(i) represents the
computation cost of vi. cðijÞ 2 c represents the communication cost of the directed
edge e(ij). If there is no communication between vi and vj, then eðijÞ ¼ cðijÞ ¼ 0.

Let the predecessor tasks set of vi be pred(vi), and the successor tasks set be
succ(vi). The node with no predecessor task predðviÞ ¼ ; is named source node,
and the node with no successor task succðviÞ ¼ ; is called sink node. They all
strictly observe the tasks’ priority rules. It means a node can only be started after
all its parent (preceding) nodes are finished.

Definition 2 The multiprocessor system, M ¼ ðP; s; bwÞ, consists of a finite set
of processors P ¼ fpkjk ¼ 1 : p; p ¼ Pj jg which are connected by a communica-
tion network. The notation s ¼ fsðkÞjk ¼ 1 : p; p ¼ Pj jgrepresents the computing
power of processors, bw ¼ P� P represents the bandwidth between processors,
and bwðklÞ 2 bw is the bandwidth between pk and pl. If the system is homoge-
neous, the processor’s computing power and their bandwidths are all equal, that is
8k; l 2 ½1; p�; k 6¼ l) sðkÞ ¼ sðlÞ, bwðkÞ ¼ bwðlÞ. Heterogeneous systems are
then contrary.

In these models, processors are usually all directly connected, and the tasks are
non-preemptive. If two tasks are carried by the same processor, their communi-
cation cost is 0, and it assumed that the transmission rate of computing resources
equal to the bandwidth (the ideal value).

10.4 Description and Formulation of OACR 301

(2) The new models of OACR in CMfg
According to the characteristic of CRs, the uncertain topology can be simplified as
shown in Fig. 10.5. The above-mentioned CRs subsets are simplified as different
groups. Different topologies in groups can be reflected by the communication links
among CRs. That is to say, with different topologies, CRs in the same group
connected with each other through different communication links by local con-
nection, and CRs in different groups are connected by switches via Internet. Stand-
alone PCs can be classified as a special group. They are connected with each other
directly via Internet.

In theory, the biggest difference between general computing tasks and MTs are
whether they are controlled by and interacted with users during execution time.
Control and supervision are generally implemented by multi-thread in CRs. The
MTs’ computation costs vary according with users’ interactions. Because of the
frequent control and supervision in MTs, the execution times might be much
longer. How long it will be depends on how many interactions and supervisions
during MTs’ execution. For considering this, the new MTs model is defined as:

Definition 3 The MTs set in CMfg can be presented as a weighted directed
acyclic graph (DAG), G ¼ ðV ;E; c;w; oper p; su pÞ. The definition of
V ¼ fviji ¼ 1 : v; v ¼ Vj jg, E ¼ V � V , w and c are the same as the traditional
task model (Definition 1). The set oper p ¼ foper piji ¼ 1 : v; v ¼ Vj jg and
su p ¼ foper piji ¼ 1 : v; v ¼ Vj jg represent relative interoperation-to-comput-
ing ratio and relative supervision-to-computing ratio separately. That is to say, the
estimated cost of interoperation oper ¼ c� oper p and the estimated cost of
supervision su ¼ c� su p.

Then the total cost of each node in G can be calculated as
WðiÞ ¼ wðiÞ � ð1þ oper pðiÞ þ su pðiÞÞ. If there’s no interaction or supervision
in vi, then oper pðiÞ ¼ 0or su pðiÞ ¼ 0. These two factors can clearly reflect the
users demands for interaction in MTs and the new model can then be more practical.

With the users’ interaction and large-scaled computation and communication
costs, the installments and involvements of VMs can be ignored from both com-
munication and computation perspective. On the basis of the topology and the
characteristics of CRs, the new CRs model can be defined as follow.

Definition 4 The CRs system model of CMfg is given by
M ¼ ðP; s; rou; bw;mem; buf ; relÞ, where

• P ¼ fpkljk ¼ 0 : m; l ¼ 1 : nkg represents the CRs set, in which m is the number
of CRs groups, and nk is the resources number in group k. Let k = 0 represent
the stand-alone PCs, and n0 represent the number of these stand-alone PCs.

Therefore, the total quantity of CRs is Pj j ¼
Pm

k¼0
nk.

• s ¼ fsðklÞjk ¼ 0 : m; l ¼ 1 : nkg represents the computing power (the comput-
ing speed) of the CRs set.

• mem ¼ fmemðklÞjk ¼ 0 : m; l ¼ 1 : nkg represents the available memory vol-
ume of CRs, in whichmem(kl) varies dynamically with the task running. Its
memory volume is reduced accordingly, when a task (VM) is assigned to the CR.

302 10 Computing resource allocation with PEADGA

• bw ¼ fbwðklÞjk ¼ 1 : m; l ¼ 1 : nkg represents the bandwidth between CRs and
switch in each group. Considered the simplified topology (Fig. 10.2), the access
bandwidths of switches to Internet are defined as BW ¼ fBWiji ¼ 1 : mg. Due to
the stand-alone PCs are connected via Internet directly, let bw0 ¼ fbw0ðklÞjk ¼
1; l ¼ 1 : n0g be their bandwidth to Internet. Owing to the bandwidths in groups
are generally gigabit, 8k 2 ½1;m�; l 2 ½1; nk�)BWk � bw klð Þ.

• rou ¼ frouiðklÞji ¼ 1 : m; k 6¼ l; k; l 2 ½1; ni�g represents the communication
route between pik and pil in local connection. Because the subsets of CRs are
dynamic and complex, the route and bandwidths of the communication between
two CRs needs to be calculated by a specific way when the subset is accessed.
So the concrete topologies in groups are not considered in this model. It is
assumed that the communication routes and bandwidths among CRs are
previously figured out by some kinds of routing algorithms. The simplified
communication route rouiðklÞ ¼ flink1; � � � ; linkrg[32] varies with different
topologies, and the bandwidth of rouiðklÞ is defined as bwðrouiðklÞÞ ¼
minfbwðlink1Þ; � � � ; bwðlinkrÞg.

• buf ¼ fbuf ðklÞjk ¼ 1 : m; l ¼ 1 : nkg represents the buffer size of the switch
communication ports in each group. According to Davidovi et al. [30], it
assumed that the highest tolerable abrupt data of each port to be:

DðklÞ ¼ buf ðklÞ þ buf ðklÞ BWk

bwðklÞ � BWk
¼ buf ðklÞ bwðklÞ

bwðklÞ � BWk
ð10:1Þ

• rel ¼ frelðklÞ ¼ ðrel pðklÞ; rep tðklÞÞjk ¼ 0 : m; l ¼ 1 : nkg represents the
reliability of the CRs set. The reliability of CR means the probability that the
computing resource fails to connected in the consequence of the communica-
tion link or occurrence of another MTs set which leads to pause computation for
some times. So rel_p(kl) represents the probability and rep_t(kl) represents

CMfg platform

P …

Switch …

P P …

Switch

P P … P P …

Switch

P

Fig. 10.5 The simplified
topology of CRs

10.4 Description and Formulation of OACR 303

the predicted failure duration time of CRs. Then 8k 2 ½0;m�; l 2
½1; nk�) rel pðklÞ 2 ½0; 1�.

In this model, rou and bw are used to represent the local connections and the
remote connections separately. Therefore, the OACR model can be described as
S ¼ ðG;MÞ, where G ¼ ðV ;E; c;w; oper p; su pÞ represents the MTs and M ¼
ðP; s; rou; bw;mem; buf ; relÞ represents the CRs.
(3) The constraints and objective function of OACR
Based on the structure described before, four issues of CRs are considered in this
chapter.

(1) The minimum acceptable memory size MEMminðiÞ for task vi;
(2) The minimum acceptable reliability RELminðiÞ for task vi;
(3) The minimum acceptable computing speed EXE SPEEDminðiÞ for task vi;
(4) The longest acceptable communication time COM TIMEmaxðijÞ for task vi,

usually it is much looser than the above three constraints.

When a MTs set G ¼ ðV ;E; c;w; oper p; su pÞ is applied to CMfg platform,
the system M ¼ ðP; s; rou; bw;mem; buf ; relÞ will provide right CRs for it. Let k(i)
and l(i) be the group number and the position of the selected CR for task vi, and let
p_load(k(i)l(i)) be the load of the selected CR for task vi, which is measured by
MTs per CR. Then the constraints of each selected CR can be described as:

• When multi MTs v1 � � � vn; n\v ¼ Vj jf g select the same CR Ps, if

memðsÞ�
Pn

i¼1
MEMminðiÞ then p loadðsÞ ¼ 1, else, MTs are needed to queue for

execution, that is, p loadðsÞ ¼ n;
• 8i 2 ½1; v�, the computation speed of the selected CR for task vi satisfied:

s kðiÞlðiÞð Þ=p load kðiÞlðiÞð Þ�EXE SPEEDminðiÞ, and then the execution
time of task vi can be expressed as EXE TIMEðiÞ ¼ WðiÞ�
p load kðiÞlðiÞð Þ=s kðiÞlðiÞð Þ;

• 8i 2 ½1; v�, the reliability of the selected CR for task vi satisfied:
rel pðkðiÞlðiÞÞ�RELminðiÞ,

The constraints of the communication ability of the selected CRs can be rep-
resented as COM TIMEðijÞ�COM TIMEmaxðijÞ. It can be divided into two
cases. 8i; j 2 ½1; v�; i\j (vi is the predecessor task of vj), let COM TIME sðijÞ be
the data sending time between the two tasks, and COM TIME rðijÞ be the data
receiving time between two tasks.

Case 1 when vi and vj are in the same CRs group, kðiÞ ¼ kðjÞ ¼ k 6¼ 0. Without
considering the reliability factors, the sending time of vi is equal to the receiving
time of vj, that is:

COM TIME sðijÞ ¼ COM TIME rðijÞ ¼ COM TIMEðijÞ ¼ cðijÞ=roukðlðiÞlðjÞÞ
ð10:2Þ

304 10 Computing resource allocation with PEADGA

With the addition of the rel factor, let t(x) be the average communication time
between vi and vj which originally needs x seconds of processing. If the CR pk(j)l(j)

doesn’t fail halfway, then the communication time needs 1 + t(x-1) seconds, but if
it fails at midway (with the probability rel_p(k(j)l(j)), then it needs to wait
rep_t(k(j))(l(j)) seconds and also need another t(x) seconds to complete the com-
munication. Therefore it has:

tðxÞ ¼ ð1� rel pðkðjÞlðjÞÞ 	 ð1þ tðx� 1ÞÞ þ rel pðkðjÞlðjÞÞ 	 ðtðxÞ
þ rep tðkðjÞlðjÞÞÞ ð10:3Þ

tðxÞ ¼ 1þ tðx� 1Þ þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ ð10:4Þ

Since t(0) = 0, it can be written as:

tðxÞ ¼ xð1þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ Þ ð10:5Þ

According to Eq. 10.5, the communication time between vi and vj can be
expressed as:

COM TIMEðijÞ ¼ ð1þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ Þ 	 cðijÞ

roukðlðiÞlðjÞÞ
ð10:6Þ

Case 2 when vi and vj are in different CRs groups,

• If cðijÞ\D kðiÞlðiÞð Þ, without considering the reliability, the sending time of
task vi is equal to:

COM TIME sðijÞ ¼ cðijÞ=bw kðiÞlðiÞð Þ ð10:7Þ

and the receiving time of task vi is equal to:

COM TIME rðijÞ ¼

cðijÞ
minfBWkðiÞ;BWkðjÞg

; kðiÞ 6¼ kðjÞ 6¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BWkðjÞg
; kðiÞ ¼ 0

cðijÞ
minfBWkðiÞ;BW0ðlðjÞÞg

; kðjÞ ¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BW0ðlðjÞÞg
; kðiÞ ¼ kðjÞ ¼ 0

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼COM TIMEðijÞ

ð10:8:Þ

10.4 Description and Formulation of OACR 305

After adding the reliability factors, according to Eq. 10.5, the sending time of
task is unchanged, but the receiving time is changed as:

COM TIME rðijÞ ¼ ð1þ rel pðkðjÞlðjÞÞ 	 rep tðkðjÞlðjÞÞ
1� rel pðkðjÞlðjÞÞ Þ

	

cðijÞ
minfBWkðiÞ;BWkðjÞg

; kðiÞ 6¼ kðjÞ 6¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BWkðjÞg
; kðiÞ ¼ 0

cðijÞ
minfBWkðiÞ;BW0ðlðjÞÞg

; kðjÞ ¼ 0
cðijÞ

minfBW0ðlðiÞÞ;BW0ðlðjÞÞg
; kðiÞ ¼ kðjÞ ¼ 0

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼ COM TIMEðijÞ ð10:9Þ

• If cðijÞ[D kðiÞlðiÞð Þ, the sending rate of task vi must be reduced. According to
Eq. 10.1, the sending rate ssendðiÞ ¼ cðijÞ 	 BWkðiÞ= cðijÞ � buf kðiÞlðiÞð Þð Þ. So
the sending time of vi is changed as COM TIME sðijÞ ¼ cðijÞ�ð
buf kðiÞlðiÞð ÞÞ=BWkðiÞ. Yet the receiving time of vj would remain as Eq. 10.9,
and COM TIME rðijÞ\COM TIME sðijÞ.

Based on these constraints, let the start time of task vi be START_TIME(i),
the execution time of vi be EXE_TIME(i), and the finish time of vi be
FINISH_TIME(i), then:

START TIMEðjÞ ¼ max
i2predðvjÞ

fCOM TIME rðijÞg ð10:10Þ

FINISH TIMEðjÞ ¼ START TIMEðjÞ þ EXE TIMEðjÞ
þ max

i2succðvjÞ
COM TIME sðijÞf g ð10:11Þ

Therefore the temporal relation between two adjacent tasks is as shown in
Fig. 10.6. Note that the source node v1 do not need to receive data, so
START TIMEð1Þ ¼ 0, and the sink node’s sending time is also the MTs sub-
mission time, that is:

COM TIMEðvÞ ¼ TASK SUBMISSION TIMEðVÞ

¼
cðvÞ�buf kðvÞlðvÞð Þ

BWkðvÞ
; if cðvÞ[D kðvÞlðvÞð Þ

cðvÞ
BWkðvÞ

; if cðvÞ\D kðvÞlðvÞð Þ

8
<

: ð10:12Þ

where c(v) represents the submission data of MTs.
In conclusion, the execution time of the whole MTs set is:

TOTAL TIMEðVÞ ¼ FINISH TIMEðvÞ � START TIMEð1Þ ¼ FINISH TIMEðvÞ
ð10:13Þ

306 10 Computing resource allocation with PEADGA

As the constraint of memory size of CRs is embodied in the constraint of
computing speed and the reliability factors is embodied in the constraints of
communication in CRs, the optimal object function and the constraints of OACR
S ¼ ðG;MÞ can be summed up as:

MINIMIZE TOTAL TIMEðVÞ SUBJECT TO

8i 2 ½1; v�; s kðiÞlðiÞð Þ
p load kðiÞlðiÞð Þ �EXE SPEEDminðiÞ

8i; j 2 ½1; v�; COM TIMEðijÞ�COM TIMEmaxðijÞ

8
<

: ð10:14Þ

(4) Problem complexity
Traditional task scheduling problems are proved to be NP-complete problems. To
prove the complexity of OACR, two definitions are introduced in this section
according to Gawiejnowics [58].

Definition 5 [58] (A polynomial-time transformation): A polynomial-time
transformation of a decision problem P0 into a decision problem P (P0 / P) is a
function f : DP0 ! DP satisfying the following two conditions:

(a) the function can be computed in polynomial time;
(b) for all instances I 2 DP0 , there exists a solution to I if and only if there exists a

solution to f Ið Þ 2 DP.

Definition 6 [58] (An NP-complete problem): A decision problem P is said to
be NP-complete, if P 2 NP and P0 / P for any P0 2 NP.

Theorem 1 the OACR problem is NP-complete problem.
Proof In the OACR problem, the task quantity of a MTs set v ¼ Vj jis less than

the processors number of a CRs set p ¼ Pj j. One processor can carry multi tasks.

(1) When 1\Np\v, choosing Np suitable processors from p resources has C
Np
p

solutions. After choosing these Np processors, the mapping of v meta-tasks
and Np resources turn into the traditional scheduling problem. In this situation
the OACR problem can be reduced to the traditional scheduling problem.
According to definition 6, the traditional scheduling problem is NP-complete,
so the OACR problem is NP-complete.

Data Receiving
Time

Task Execution
Time

Data Sending
Time

Start Time Finish Time

vi

Data Receiving
Time

Task Execution
Time

Data Sending
Time

Start Time Finish Time

vj

Fig. 10.6 The temporal relation between two MTs

10.4 Description and Formulation of OACR 307

(2) when Np ¼ v, choosing v suitable processors from p resources has Cv
p solu-

tions. Afterwards, the mapping between v meta-tasks and v computing
resources can be converted to TSP (Traveling Salesman Problem), which is
the full permutation problem. In this situation, the OACR problem is reduced
to TSP problem. From Definition 6, TSP problem is NP-complete, thus the
OACR problem is NP-complete, too.

The above discussions contain all cases of the OACR problem, so Theorem 1 is
true. Q.E D.

From the point of the solutions, let n be the total amount of CRs in the CMfg
platform. and let v be the task number of an applied MTs set. For the case of no
time constraints, each task has n choices. So the size of the solution space is nv. If
some one want to find the best solution one by one in the entire solution space,
then they need O(nv) steps to complete. It is a huge calculation. For example, if
there’re 100 CRs and 5 MTs, the solution space is 5100. It’s a very huge number for
calculation. At present, no deterministic algorithms can solve it in polynomial
time. So, intelligent algorithms are introduced in this chapter.

10.5 NIA for Addressing OACR

The most frequently used intelligent algorithms for the traditional task scheduling
are genetic algorithm (GA) [43, 44] and ant colony optimization algorithm (ACO)
[47, 48]. Besides, immune algorithm (IA) has shown great potential in combina-
torial optimization problems [59, 60]. They are widely used in various kinds of
scheduling problems and their basic processes are shown in Fig. 10.7. Based on
these three classical intelligent algorithms and with the consideration of the
complex of OACR, a new improved niche dynamic IA (NDIA) is proposed in this
chapter for better solutions. These four algorithms will then be used and generally
analyzed for addressing the OACR problem in detail.

10.5.1 Review of GA, ACO and IA

GA is an adaptive global optimization stochastic search algorithm which is
inspired by the principle of evolution and natural genetics. With a set of structured
populations which represented the candidate solutions of the problems, it combines
the survival of the fittest among populations (selection), the structured yet ran-
domized information exchange (crossover) and the random bit mutation.

Firstly, roulette wheel selection is used commonly in the standard GA. It is
performed by randomly picking a certain amount of populations according to their
fitness values to form a new group of populations. The one with higher fitness
value occupied higher probability of selected. Secondly, each two of the selected

308 10 Computing resource allocation with PEADGA

populations exchange parts of their gene-bits in the crossover operation. So two
new genetic chromosomes are generated and the better gene bits go into the next
generation. Thirdly, the mutation operation randomly changes some gene bits of
populations with a certain probability for increasing the diversity. After the above
three steps, if the new best population is better than the old one, then it would
evaluated by the new one, or the best population record will remain unchanged.
This process will repeat and then terminate when the maximize generations are
reached or the optimal solution is found.

ACO is a kind of swarm intelligence algorithms which takes inspiration from
the social behaviors of ant colony. It combines ants’ routing and pheromone
update. The original intention of ACO is to solve the complicated path optimi-
zation problems, such as TSP, and edge scheduling.

In the process of routing and finding foods, ants deposit pheromone on the path
they have walked in order to mark some favorable path and broadcast the infor-
mation. The longer the path, the lower the density of pheromone is. Other ants can

Initialization

Begin

Selection

Crossover

Mutation

Evaluation

Global updating

Iteration<=MAXITER?

Return the
best strategy

No

Yes

GA

Initialization

Begin

Ants
routing

Pheromone
updating

Evaluation

Global updating

Iteration<=MAXITER?

Return the
best strategy

No

Yes

Initialization

Begin

Genetic
evolution

vaccication

Immune
selection

Evaluation

Global updating

Iteration<=MAXITER?

Return the
best strategy

No

Yes

ACO IA

Fig. 10.7 The process of GA, ACO and IA

10.5 NIA for Addressing OACR 309

perceive this pheromone and recognize its density. They have a large probability to
select the path which has the greater pheromone density. Then a kind of infor-
mation positive feedback is formed. The pheromone density on the optimal path
will become higher, while the pheromone density on other paths will reduce as the
time goes by. Finally the whole colony will find the optimal path.

With this inspiration, the priori knowledge is introduced and formed the stan-
dard ACO. That is to say, ants are finding path not only in the light of the
pheromone, but also according to the priori rules (knowledge) of the problems. As
the same with GA, the whole process continues many evolution times until the ants
find the optimal path (solution) or the number of evaluation steps reach a prede-
fined value.

IA is a kind of evolutionary programming which based on the immune system
in biotic science. With the introduction of the concepts and the characteristics of
antigen recognition, immunological memory and immune regulation, diversified
immune algorithms are presented. The immune algorithm proposed by Lei Wang
[59, 60] is a typical and efficient one. In this chapter, it will be applied in OACR
and IA here just indicates the algorithm in [59, 60].

More specifically, IA is a convergence of immune theory and genetic algorithm.
It contains genetic evolution, immune vaccination and immune selection, but first
of all, antigen extract and vaccine selection according to the feature information of
problem is the most important part of this algorithm. It is a core rule to lead the
population evolution in the right direction. Then, the population initialization and
the genetic evolution are all the same as the standard genetic algorithm. After
selection, crossover and mutation, new populations are vaccinated by antibodies.
That is injecting priori knowledge into the new populations in some degree for
improving their fitness values. (The priori knowledge in IA is the same as in
ACO.) Then, new populations are selected by immune selection operation
according to the choosing rules of simulated annealing. Three steps will repeat
until the ending conditions are meeting.

All of the above-mentioned intelligent algorithms are evolved with a number of
cycles by their own mechanism. As shown in Table 10.1, only GA does not need
the priori knowledge with less control parameters. Without other improvement
strategies, its global convergence is weak, but its robustness is quite good. ACO
and IA are both need the direction of priori knowledge with good global con-
vergence. Yet the control parameters of ACO are more than IA’s.

Table 10.1 The characteristics of GA, ACO and IA

Algorithm Year Mechanism Priori
knowledge

Global
convergence

Control
parameters

GA 1975 Biological
evolution

Needless Weak Less

ACO 1992 Ants behavior Need Strong More

IA 2000 Immune system Need Strong Medium

310 10 Computing resource allocation with PEADGA

10.5.2 The Configuration OfNIA for the OACR Problem

Inspired by the above three algorithms, the improved niche IA takes the techniques
of pheromone guide from ACO and the ecological niche strategy. Its framework is
shown in Fig. 10.8.

Compared with IA (as shown in Fig. 10.7), the niche strategy, dynamic vacci-
nation and pheromone updating strategy are added in NDIA. Niche strategy is used
for improving exploration during searching, dynamic vaccination and pheromone
updating strategy is taked for further improving the exploitation and searching
direction with the dynamical consideration of both computation and communica-
tion in OACR. The genetic evolution just adopts the standard roulette wheel
strategy, single-point crossover and mutation. The improvement of initialization,

Initialization

Begin

Genetic evolution

Dynamic vaccination

Immune selection

Evaluation

Global updating

Iteration<=MAXITER?

Return the best strategy

No

Yes

Pheromone updating

Niched strategy

Fig. 10.8 The framework of
NDIA for addressing OACR

10.5 NIA for Addressing OACR 311

the object function and new improved strategies in NDIA for solving OACR are
elaborated as follows.

(1) Initialization
For solving OACR problem, real number coding is used in the experiments. Real
number coding can avoid the encoding/decoding process, improve the accuracy
and reduce the complexity of the algorithm. As shown in Fig. 10.9, the sequence
number of gene bits is denoted as the serial number of MTs, the numbers in the
gene bits represent the index of CRs and their subscripts represent the group
indexes of CRs. In other word, each gene bit occupies two integer bits. This kind
of coding method takes less space and is more intuitive and simple.
(2) Object function in Evolution
Because the standard GA with the roulette wheel strategy is commonly used to find
the individual with the maximize fitness value. The fitness evaluation function of
OACR in all intelligent algorithms is set as:

max f ¼ Const

TOTAL TIMEðVÞ ð10:15Þ

Const is a constant which makes the object fitness value in the algorithms
neither too large nor too small.
(3) Niche strategy
For improve the diversity and balance the exploration and exploitation of the
algorithms, the technology of ecological niche is introduced in it. In NIA, the
hamming distances Dij between two individuals should be calculated before the
implementation of genetic evolution, as shown in Eq. 10.16.

Dij ¼ Xi � Xj

�� �� ¼

ffi
XN

k¼1

ðxk;i � xk;jÞ2
vuut ð10:16Þ

where Xi and Xj represent individual i and individual j, and xk,i and xk,j represent
the gene bits of each individuals separately. If Dij (between individual i and j) is
less than a pre-set parameter L, then the individual with lower fitness value will
multiple a penalty function to make it more lower. This action could wipe off the
similar individuals and protect the diversity of the population to improve the
search ability.

31 52 14 61 23… …
MT1 MT2 MT3 MTn

The index of CRs
Coding

Fig. 10.9 The real number coding for OACR

312 10 Computing resource allocation with PEADGA

Because of the definition of the maximum object function, here the penalty
function is set as f ¼ 10�5 and let the parameter L to be v which is the size of the
individual in algorithms (MTs’ number).
(4) Dynamic vaccination and pheromone updating
As is known to all, antigen extraction and vaccine selection is the core factor of IA
and it usually comes only from the priori knowledge (i.e. heuristic information) of
the problems. If the priori knowledge is extracted inappropriately, the algorithm
will evolve in the wrong direction and no feasible solution can be found. However,
the priori knowledge in the complex problem is usually complex and varying with
different situations. For example, both the computation and communication (node
and edge factors) should be considered in OACR especially when the computation
rate of MTs is equal to its communication rate. The incidence relations among
tasks are very complex and the computation and communication power of CRs are
varying dynamically. The extracting and the rate selection of the two factors are
therefore hard. This directly influences the efficiency of IA in solving the global
optimal solutions.

To avoid this problem, and considering the dynamic change of the memory
size, communication bandwidth and reliability constraints of CRs, we present the
new dynamic vaccination strategy. That is, extraction and calculating the heuristic
information (gij) of allocating the CR pj to the MT vi needs real time in each
evolutionary cycle. It is time consuming but can obtain higher accuracy result in
the scheme, and for simplification, the heuristic information function is set as:

gij ¼
s kðiÞlðiÞð Þ

p load kðiÞlðiÞð Þ

� �a
	 bwðk(i)lðiÞÞð Þb

1þ rel pðkðjÞlðjÞ	rep tðkðjÞlðjÞ
1�rel pðkðjÞlðjÞ

� �c ð10:17Þ

where a, b and c represent the importance of the execution speed, communication
bandwidth and reliability of CR in the heuristic information and they satisfied
a; b; k 2 ½0; 1�. In experiments, the value of these parameters will be tested and
discussed for better solution.

Besides, for further improving the searching direction, the pheromone of ACO
is brought in NDIA in this chapter. That is to say, the improved NDIA extracts
antigen and vaccine not only by the priori knowledge, but also by the pheromone
which is released by the previous best individual of the whole populations. As a
supplement, the pheromone increased the experiential guidance and made a
positive feedback in IA. To put it more specifically, let sij be the density of
pheromone of mapping MT vi to CR pj and gij be the priori knowledge (i.e. the
heuristic factor) of the problem. The vaccine can then be expressed as:

vaccine ¼ ðsijÞuðgijÞ
/ ð10:18Þ

where sij is updating as the same as in ACO, and u;/ 2 ð0; 1Þ represent the
strength factors of sij and gij separately. If u is too larger than /, then vaccine will

10.5 NIA for Addressing OACR 313

be directed by the experience of populations and result in low searching ability and
low convergence. But on the contrary, too larger / will also changed vaccine to
static and lead to premature. So, according to ACO, the rates of pheromone and
heuristic information in Eq.10.17 in this chapter are set the same as ACO (i.e.
u ¼ 1; / ¼ 5).

Then at the vaccination step, the one or more gene-bits of the selected popu-
lations will be changed as the one with the highest vaccine at a certain rate. This
strategy can improve the convergence, increase the robustness and simplify the
previous vaccine extraction and calculating in algorithms.

10.5.3 The Time Complexity of the Proposed Algorithms

The time complexity of the intelligent algorithms is dynamically varied with
different problems. Let n be the scale of the population, m be the scale of CRs in
CMfg platform and v be the scale of the MTs set applied by user. The algorithms’
complexities in each cycle (or generation) are shown in Table 10.2.

GA does not need the heuristic information to direct its evolution. In selection,
the complexity of the roulette wheel strategy in the best situation is O(n), and its
worst complexity is O(n2). Due to the worst case complexity of the algorithm is the
upper bound of run time. The complexities in Table 10.2 just mean the worst case
complexities.

In ACO, because ants’ routing needs to calculate the priori knowledge in each
cycle, finding a suitable CR for each task then needs m step to get all of the
heuristic information of CRs. With n populations and v tasks, its complexity is
O(nmv).

The same as the ACO, IA needs to find a certain number of population and
vaccinates them. In vaccination, the load and memory of each CR should be
calculated according to the mapping of MTs, so the complexity of this operator is
O(n(m + v)). Then the immune selection will decide if the new populations can be
kept in the next generation according to the choosing rules of simulated annealing.
For n new populations (at most) and v tasks, the complexity is O(nv).

Based on IA, the complexities of additional strategies in NDIA are also shown
in Table 10.2. Owing to the calculation of hamming distance among populations,
the niche strategy’s complexity is O(n2). The dynamic vaccination in each evo-
lutionary cycle is O(m), and the pheromone updating strategy is O(mv). So in
theory, the additional operators in NDIA did not increase the complexity of the
algorithm.

The complexities of above-mentioned four algorithms when n!1 and m!
1 and v!1 are also proposed as Table 10.2 shows. If the population size of the
algorithms is large, the complexity of ACO (O(n)) is the lowest. When the scale of
CRs m!1, then the lowest complexity is O [1] in GA. However, when the scale
of MTs v!1, then the complexities of the four algorithms are all the same
(i.e. O(v)).

314 10 Computing resource allocation with PEADGA

T
ab

le
10

.2
T

he
ti

m
e

co
m

pl
ex

it
ie

s
of

th
e

th
re

e
al

go
ri

th
m

s

A
lg

or
it

hm
s

T
he

ti
m

e
co

m
pl

ex
it

ie
s

of
op

er
at

or
s

n
!
1

m
!
1

v
!
1

G
A

S
el

ec
ti

on
C

ro
ss

ov
er

M
ut

at
io

n
O

(n
2
)

O
(1

)
O

(v
)

O
(n

2
)

O
(n

)
O

(n
v)

A
C

O
A

nt
s’

ro
ut

in
g

P
he

ro
m

on
e

up
da

ti
ng

O
(n

)
O

(m
)

O
(v

)

O
(n

m
v)

O
(m

v)

IA
G

en
et

ic
ev

ol
ut

io
n

V
ac

ci
na

ti
on

Im
m

un
e

se
le

ct
io

n
O

(n
2
)

O
(m

)
O

(v
)

(p
en

di
ng

)
O

(n
(m

+
v)

)
O

(n
v)

N
D

IA
IA

ev
ol

ut
io

n
D

yn
am

ic
va

cc
in

at
io

n
an

d
P

he
ro

m
on

e
up

da
ti

ng
N

ic
he

d
st

ra
te

gy
O

(n
2
)

O
(m

)
O

(v
)

(p
en

di
ng

)
O

(m
v)

O
(n

2
)

10.5 NIA for Addressing OACR 315

10.6 Configuration and Parallelization of NIA

As mentioned in Chap. 5, there are many topologies for the parallelization of
intelligent optimization algorithm. No matter with large-scaled or small-scaled
computing resources, communication on one hand is a critical issue for preserving
the overall performance of parallel algorithm, on the other hand is also a decisive
factor the total time consumption of searching process. Therefore, the control of
individual exchange is the most important thing in the parallelization
configuration.

As is known, during the evolutionary process, if the sub-populations in different
nodes are consistent and distributed in a small solution space, the communication
is needless. Too frequent exchange in this situation is very likely to get premature
convergence. On the contrary, if the sub-populations in different nodes are
dynamic and distributed in a large solution space, then the communication is
required. In this case, foreign excellent individuals will always bring good
information and push the whole population evolving in a good direction. Other-
wise, sub-population will do evolution on their own with a lot of repetitions and no
convergence at all. Inspired by the use of prior knowledge in many adaptation
strategies, we present a new adaptive ways for control the communication step and
make exchange only when the whole population is high diversity.

Firstly we need to select a suitable connected topology.

1. Connected topology
The common used topologies include ring, grid and full-mesh and so on. Nor-
mally, with fixed number of individuals in the whole population, dense connection
topologies such as full-mesh and grid can obtain higher collaborationamong sub-
groups but with higher communication overhead,vice versa. However, based on
general parallel tools - MPI (Message Passing Interface), we found that-
MPI_Allgather (the full-connected interaction way) is more efficient than the use
of MPI_Send/MPI_Recv or MPI_Isend/MPI_Irecvto implement full communica-
tions duringn nodes due to the inside optimization by the tools itself. In this
situation, full-mesh is quite advantageous.

Thus, full-mesh module is selected to generate the new PNIA. Nonetheless,
full-mesh cannot make sure low time consumption during iterations. Considering
the time cost of MPI_Allgather, the design of efficient migration mechanism is
imperative.
2. New adaptive strategy
In each period, whether to exchange individuals is decided by the overall evolu-
tionary state of the sub-populations. Specifically, migration is not always needed in
iterations. If the sub-populations execute many times of iterations but with low
evolution and diversity, then migration is needed to introduce outside excellent
genes to improve the quality and diversity of sub-populations. Otherwise,
migration is needless at all because good evolutionary direction of sub-populations

316 10 Computing resource allocation with PEADGA

http://dx.doi.org/10.1007/978-3-319-08840-2_5

could easily be disturbed. Not only is the redundant migration wasting time, but
also it does not bring good benefits.

Thus, from the whole population point of view, we set one computing node to
take in charge of supervising and gathering the state parameter of all sub-popu-
lations, as well as master-slave mode, and broadcasting the overall state to all
others with Map/Reduce operations in MPI. Whether to do interaction depends
directly on the overall state parameter.

As we know, one of the key factors to reflect the evolutionary state is the total
number of progression-free generations. It implies that, since the last generation of
the improvement of historical best solutions, the generations have been executed
without the change of the historical best record. Let the progression-free genera-
tion of each sub-population i be G_invai. If better solution has been searched in the
current generation, then G_invai = 0. Otherwise in each generation, execute
G_invai = G_invai + 1. To avoid extra large value of G_invai, we could set
G invai 2 ½0;Gmax� in which Gmax represents the upper bound of G_invai.

According to such variable, the evolutionary state of each sub-population can
be easily obtained. With fixed topology modules in configuration, here we only
need the overall evolutionary state to control the exchange process. For balance
among different sub-population, set the total progression-free generations
G inva total to be calculated as follows.

G inva total ¼
Xn

i¼0
G invai ð10:19Þ

where n is the total number of sub-groups. If the total progression-free generation
parameter becomes large,then carry out the migration with full mesh topology and
specific migration mechanism. Otherwise, stop the migration and keep self-evolution
going.

Population state
supervision

Reach
migration
criteria

Communication with
full_mesh topology

Operations of NIA Operations of NIA Operations of NIA…

Yes

No

Fig. 10.10 The configuration of population supervision module with full_mesh topology

10.6 Configuration and Parallelization of NIA 317

Moreover, set the migration condition (migration frequency) to be MT, then the
migration with full-mesh topology is allowed with the probability Ec.

Ec ¼ expð�G inva total

n� Gmax

Þ ð10:20Þ

It can be seen that if G_inva_total is smaller, Ecwill be increased, the time of
migrations will be decreased, vice versa.

From the perspective of parallelization, the specific pseudo-code of the adaptive
stragey with full mesh topology can be represented as follows.

For (each sub-population i in parallelization)
 Initialize subpopulation

generation = 0
While(generation<= MAX_generation or convergence criterion satisfied)

generation ++
Apply algorithm’s operators

 Evaluate solutions in the subpopulation
If (generation % MT == 0)

If (i == supervision_node)
 Reduce _ _ _ i

i

G inva total G inva

 Broadcast _ _G inva total

End if
If (rand()>exp(-1*G_inva_total / (n*Gmax)))

 Migration with full_mesh_topology
End if

End if
 End while

= Σ

From this, the total parallel efficiency can be improved under the mode of
MPI_Allgather (full-connection topology) by means of supervision and adaptive
communication.The module of population supervision can be shown in Fig. 10.10.

10.7 Experiments and Discussions

For testing the OACR models, the DAG in Fig. 10.4 and other two kinds of DAGs
(the e-Economic DAG and the e-Protein DAG) introduced from [48] are selected,
as shown in Fig. 10.11.

Based on the above mentioned four algorithms and the new OACR models, the
CCR [31] is introduced as the testing factor in this chapter. It is defined as the
communication to computation ratio.

CCR ¼

P
e2E

cðeÞ
P
n2V

wðnÞ ð10:21Þ

318 10 Computing resource allocation with PEADGA

In the experiments, all of the communication costs and the computation costs
are randomly generated. Due to the looser communication time constraints, the
experiments focus mainly on the effect of the computing speed, memory and
reliability constraints of CRs, as Eq.10.17. Other information of CRs (e.g., the
bandwidths of communication routes in group among CRs and the bandwidths
among groups) are generated before allocation and they are all constant value
during the solution process. The extraction of the priori knowledge and the effect
of constraints would be tested in three cases: CCR = 1/10, CCR = 1 and
CCR = 10 in different MTs’ DAGs.

More specifically, it assumed that there are 20 available CRs in 4 groups
separately, and group. 1 represents the stand-alone CRs group. The quantities of
CRs per group are {7, 6, 4, 3}. According to Eq.10.15, the best fitness values in
tests are the inverse of the minimum make spans of MTs. So the optimal objection
is finding the maximum fitness value. Because the make spans of MTs (in seconds)
are usually big, the parameter Const in Eq.10.15 is set as 1000 to make the object
function results not too small. Then the units of best fitness value in the experi-
ments arems-1. In the algorithm, the maximum time of iteration is set to be 1000,
and the population size is set to be 50. A total of 100 runs of each experimental
setting are conducted and the average fitness of the best solutions throughout the
run is recorded.

T1

T2

T3

T5

T4

T6 T1

T2

T6

T7

T8

T9

T3

T5

T4

T1

T2

T3

T4

T5

T6

T7

T9

T8

T10

T13

T11 T12

T14 T15

DAG1 DAG2

DAG3

Fig. 10.11 DAGs of the selected MTs

10.7 Experiments and Discussions 319

10.7.1 The Design of the Heuristic Information
in the Intelligent Algorithms

Owing to GA does not need the heuristic information, in this section, experiments
just be carried out on ACO, IA and NDIA. According to Eq. 10.17, choosing a set
of suitable parameters a, b and c is critical in these three algorithms which need
the direction of the heuristic information, and in the parameter sets ða; b; cÞ, low
value indicated the low effect in heuristic. Different heuristics may lead different
results. With multiple constraints, how to extract suitable heuristic information for
better solutions in different situation is very important.

In this experiment, the initial pheromone value of ACO is 1 and its evaporation
factor is 0.5. The rates of pheromone and heuristic information in ACO are 1 and 5
separately, and in IA, the crossover and mutation rates are 0.8 and 0.15 separately.
Then the initial annealing temperature and its decay factor are 100 and 0.95
separately. Based on the preferences in IA, the rates of pheromone and heuristic
information in Eq.10.18 are the same as ACO (i.e. u ¼ 1; / ¼ 5).

Table 10.3 and Fig. 10.12 visualize the effect of different heuristic information
on the average minimum make span of MTs figured by the three algorithms. In these
experiments, DAG1 is adopted and tests are carried in three situations of CCR.

First, in low communication situation (CCR = 1/10), the set (1, 0.5, 1) can get the
best results while the set (0.5, 1, 1) can get the worst, that means, low bandwidth
information with high speed and reliability information can guide the algorithms to a
better solution, and with low computing speed information, the algorithms are leaded
to worse solutions. This is quite reasonable that computing speed is the most important
information and bandwidth is the least important one. Because in this situation,
computation accounted for larger proportion and then the effect of bandwidth is minor.

Table 10.3 Experiment results with different heuristic parameters

ða; b; cÞ Average minimum make span of MTs (when CCR = 1) (units: ms-1)

ð0:5; 1; 1Þ ð1; 0:5; 1Þ ð1; 1; 0:5Þ ð1; 1; 1Þ
ACO 8.4378 8.6126 8.7284 8.5469

IA 8.7347 8.7962 8.8082 8.7593

NDIA 8.8455 8.8863 9.0034 8.8773

ða; b; cÞ Average minimum make span of MTs (when CCR = 1/10) (units: ms-1)

ð0:5; 1; 1Þ ð1; 0:5; 1Þ ð1; 1; 0:5Þ ð1; 1; 1Þ
ACO 1.8891 2.0065 1.9658 1.9422

IA 2.0678 2.1012 2.0913 2.0787

NDIA 2.1006 2.1277 2.1201 2.1139

ða; b; cÞ Average minimum make span of MTs (when CCR = 10) (units: ms-1)

ð0:5; 1; 1Þ ð1; 0:5; 1Þ ð1; 1; 0:5Þ ð1; 1; 1Þ
ACO 1.456 1.4163 1.4371 1.4299

IA 1.5961 1.5294 1.5481 1.572

NDIA 1.6914 1.6286 1.6392 1.6469

320 10 Computing resource allocation with PEADGA

Second, in medium communication situation (CCR = 1), it is can be seen that
the heuristic with low reliability can get the best results. By now, both computation
and communication in MTs are important. Bandwidth and computing speed as
their direct influencing factors separately are equally important. So reducing the

Fig. 10.12 The effect of
different heuristic
information in OACR

10.7 Experiments and Discussions 321

rate of the indirect acting factor (the reliability information) and emphasize the
other two can promote searching efficiency in algorithms. However, with the same
proportion of these three kind of information, worse results would be gotten as the
result of the interference of unimportant factor.

Third, in high communication situation (CCR = 10), bandwidth information
seems to be the most important information with the high proportion of commu-
nication in MTs. At this time, low computing speed information can lead a better
evolution, and when bandwidth heuristic is lower, the solution is lower, too. Hence
the reliability heuristic is also an important factor in this situation. According to
the constraints description in Sect. 10.5.3, the reliability factor only effects the
communication time when allocating CRs for MTs. So it has large influence in
high communication situation and has small influence in low communication
situation, just as shown in Fig. 10.12.

Therefore, we can draw a conclusion that the computation speed influences
much in low communication situation while the bandwidth and reliability have
large effect in high communication situation, but in all of the three situations, equal
proportions of three factors could not obtain good solutions.

With CCR = 1 and its best parameter set ða; b; cÞ ¼ ð1; 1; 0:5Þ, the comparison
of the four algorithms (i.e. GA, ACO, IA, NDIA) is carried in the next section.

10.7.2 The Comparison of GA, ACO, IA and NDIA
for Addressing OACR

In this experiment, algorithms are tested in three DAGs, and the preferences of GA
are the same as IA and NIA, that is pc ¼ 0:8; pm ¼ 0:15.

Figure 10.13 and Table 10.4 show the performance results of the four intelli-
gent algorithms for addressing the OACR problems. The run time, standard
deviation, average best fitness, the best solution results and the worst solution
results in 100 runs are listed.

(1) Search capability
As shown by results, in precision, NDIA get the best solutions compared with the
other three algorithms while IA takes the second place, and the standard GA is the
worst. In the aspect of the worst fitness, ACO is the best, and NDIA is the next. In
ACO, ants find route from the initiation so their initiate population wouldn’t be so
bad. The pheromone provides the posterior information to ants to achieve coop-
eration searching, but it is also easy to make the algorithms trapped into local
optimum. So the best solution of ACO is not really good. In NDIA, the niche
strategy after the initiation and before the selection increases the diversity of the
population. Its good climbing ability makes the algorithm’s worst solution in 100
runs better than others. With the incorporation of genetic evolution and niche
strategy, the pheromone and dynamic vaccination in NDIA can not only increase
the robustness of the heuristics searching, but also avoid the local optimum. So it
can always find the best solution compared with other three algorithms.

322 10 Computing resource allocation with PEADGA

From the climbing ability point of view, GA is the best, NDIA is the next.
However, due to the basic stochastic crossover and mutation, GAis easy to trap into
local optimum and finally couldn’t find the best solutions. On the contrary, NDIA
can keep a better evolutionary trend because of its dynamic vaccination strategy.
ACO is the worst just because the simple pheromone and heuristic direction cause

Fig. 10.13 Evolutionary
trend of the four intelligent
algorithms for addressing
OACR

10.7 Experiments and Discussions 323

the ants gathered quickly into a local optimal solution.And based on dynamic IA’s
evolution, the niche strategy eliminates the similar individuals and keeps the pop-
ulation searching new area. Thus the climbing ability of NDIA is quite good.
(2) Stability
From Table 10.4 it can be seen that, GA’s convergence speed is slow and its stability
is the worst of all. Based on the genetic strategy, IA is the next. The initiation in
genetic is totally stochastic without heuristic. The evolutions in certain generations
are not very stable. ACO’s convergence rate is quite good. Because of the phero-
mone and heuristic, ants can always gather quickly to some extent. With the constant
initial pheromone and heuristic, the initial paths founded by ants are fairly stable.
Thus the fast convergence and stable initiation makes ACO the most stable algo-
rithm in solving OACR. In NDIA, with the injection of pheromone, dynamic vac-
cination in IA could be more stable like ACO, and the ability of skipping the local
optimum from the niche strategy makes it less stable than ACO Table 10.5.
(3) Time consuming
From the testing results it is clear that ACO is the most time consuming algorithm.
According to the analysis in Sect. 10.5.3, ACO needs to compute the heuristic
values for all of CRs in every iteration, the complexity of ants’ routing is O(mnv).
With limited MTs, CRs and populations, ACO is the most complex one compared
with the other three, and with the addition of pheromone updating and niche
strategy, NDIA is more time consuming than IA and GA. However, the complexity
of NDIA does not increase significantly in theory, just as shown in Table 10.2.

From the global perspective, NDIA showed high performance in all scales of
MTs in OACR. Niched strategy improved the algorithm’s exploration and the
introduction of experiential pheromone and dynamic heuristics improved the

Table 10.4 Performance of the four intelligent algorithms for addressing OACR

Graph
Number

Algorithms The worst
fitness

The best
fitness

Average
fitness

Standard
deviation

Time

DAG1
(100 runs)

GA 7.5653 9.3467 8.4485 0.4262 163.13

ACO 8.1071 9.1214 8.716 0.218 3250.44

IA 7.987 9.5617 8.8352 0.403 226.86

NDIA 8.0657 9.5617 8.9529 0.3074 811.55

DAG2
(100 runs)

GA 4.6547 5.7213 5.1237 0.2958 255.3

ACO 5.0828 5.5556 5.2184 0.1313 6731.88

IA 4.7512 5.8265 5.2483 0.2574 326.61

NDIA 4.7775 5.9687 5.3008 0.2086 1324.07

DAG3
(100 runs)

GA 1.7043 2.6405 2.3064 0.1688 419.71

ACO 2.2205 2.6516 2.3367 0.1407 9512.52

IA 2.046 2.7276 2.41 0.1538 538.28

NDIA 2.1535 2.7791 2.4533 0.1371 2019.99

324 10 Computing resource allocation with PEADGA

T
ab

le
10

.5
T

es
ti

ng
re

su
lt

s
of

di
ff

er
en

t
pa

ra
ll

el
m

et
ho

ds
in

so
lv

in
g

O
A

C
R

M
od

e\
P

ro
c_

nu
m

A
ve

ra
ge

_fi
tn

es
s(

10
00

s-
1
)

1
2

3
6

9
12

15
18

21

In
de

pe
nd

en
t

7.
69

68
7.

46
51

7.
29

09
6.

57
34

6.
98

08
6.

37
16

6.
36

22
5.

81
55

5.
62

82

R
in

g
7.

69
68

7.
39

82
7.

38
49

7.
45

01
7.

36
61

7.
36

93
7.

40
34

7.
36

37
7.

30
31

N
ei

gh
bo

r
7.

69
68

7.
37

24
7.

40
5

7.
49

85
7.

37
82

7.
40

81
7.

36
25

7.
45

06
7.

31
54

G
ri

ds
in

gl
e

7.
69

68
7.

39
51

7.
47

04
7.

51
14

7.
40

66
7.

42
28

7.
37

05
7.

39
58

7.
32

65

G
ri

dd
ou

bl
e

7.
69

68
7.

51
06

7.
44

36
7.

52
39

7.
47

35
7.

48
59

7.
39

92
7.

42
93

7.
39

17

T
ot

al
7.

69
68

7.
48

14
7.

50
39

7.
42

41
7.

54
68

7.
42

85
7.

43
39

7.
46

26
7.

35
21

R
an

do
m

7.
69

68
7.

42
87

7.
54

28
7.

46
39

7.
52

13
7.

50
36

7.
47

61
7.

37
8

7.
42

67

M
as

te
r

7.
69

68
7.

27
23

7.
33

67
7.

35
23

7.
42

25
7.

28
96

7.
31

9
7.

26
39

7.
25

78

N
ew

7.
69

68
7.

43
84

7.
47

61
7.

50
32

7.
48

62
7.

53
02

7.
44

97
7.

52
16

7.
45

39

M
od

e\
P

ro
c_

nu
m

A
ve

ra
ge

_t
im

e(
s)

1
2

3
6

9
12

15
18

21

In
de

pe
nd

en
t

23
.5

94
6.

49
76

3.
79

91
2.

02
84

1.
66

29
1.

43
05

1.
09

65
1.

00
04

0.
95

19

R
in

g
23

.5
94

10
.5

47
7.

62
01

5.
32

07
4.

40
47

3.
85

11
3.

65
47

3.
65

73
3.

30
41

N
ei

gh
bo

r
23

.5
94

10
.7

94
7.

89
72

5.
55

03
4.

74
51

4.
11

31
3.

71
88

3.
61

04
3.

37
48

G
ri

ds
in

gl
e

23
.5

94
10

.7
70

3
7.

45
68

5.
08

95
4.

25
16

3.
69

61
3.

41
02

3.
59

91
3.

28
51

G
ri

dd
ou

bl
e

23
.5

94
10

.1
28

6
7.

68
4

5.
18

71
4.

34
61

3.
97

87
3.

33
44

3.
63

79
3.

26
32

T
ot

al
23

.5
94

10
.3

11
4

7.
00

71
4.

48
32

4.
27

34
4.

13
16

3.
35

44
3.

24
54

3.
02

84

R
an

do
m

23
.5

94
11

.0
54

2
9.

35
98

5.
60

21
4.

64
48

4.
19

99
4.

75
77

5.
18

86
5.

79
58

M
as

te
r

23
.5

94
12

.1
28

6
7.

93
2

8.
86

28
8.

72
32

8.
70

56
8.

81
72

9.
56

44
9.

56
23

N
ew

23
.5

94
10

.7
35

8
6.

95
79

5.
10

83
4.

14
06

3.
66

68
3.

28
32

3.
23

39
2.

85
66

10.7 Experiments and Discussions 325

algorithm’s exploitation. NDIA got a better balance between exploration and
exploitation by these two strategies for addressing OACR in CMfg. From the
perspective of solution quality and stability, NDIA has big potential in solving this
kind of allocation problem without the increase of time complexity.

10.7.3 The Performance of PNIA

In this section, we mainly apply master-slave, independent, single-ring, double-
ring, single-mesh, double-mesh, full-mesh and random topologies mentioned in
Chap. 5 based on the configured NIA for addressing OACR problem in CMfg. In
the experiments, only DAG3 in Fig. 10.11 is used. For uniformity, all of the above
topologies are implemented with ‘The best-replace-the worst’ migration mecha-
nism and in each period only one individual is migrated. Also, in this test, the total
generation number is set to be 2000, MT is set to be 20. Other parameters still
follow the settings in above section. The parallel environments are one computer
with 4-cores and three computing resources with 16-cores in each.
(1) Time consumption
According to the tests, the time consumption of independent parallel algorithm
(i.e., there is no individual exchange between any computing nodes, the results are
received after iteration) is exponentially reduced along with the increase number
of sub-processors (i.e. the number of sub-populations). When the number of sub-
populations is below to 6, we can get linear speedup directly. When the number is
increased further, the time reduction becomes less. The most consumption scheme
is master-slave mode. Compared with independent scheme, the time consumption
from low to high is: single-ring \ double-ring \ single-mesh \ double-mesh,
correspondingly. The difference between them is still small. With MPI_Allgather,
full-mesh topology in the experiments performs a little better than the above four
topologies.

As the increase of sub-processors, random topology performs well when the
processors below 6 and bounce back again when the processors continue to
increase. The large time consumption of random topology in the case of large
processors mainly ascribes to the production and broadcasting of random control
matrix in each period. The point-to-point communication mechanism is also partly
responsible for the large time consumption when the processors are continue to
increase.

To see the performance of the new configured adaptive full-mesh mechanism,
we could find that before the processors come to 9, the time consumption is near to
the general full-mesh topology. When the number of processors is larger than 9,
the time consumption of it is significantly reduced. In the case with 21 processors,
its time consumption becomes the minimum. Therefore, compared with the gen-
eral full-mesh topology, the adaptive mechanism, just as analyzed above, can
effectively reduce the communication load.

326 10 Computing resource allocation with PEADGA

http://dx.doi.org/10.1007/978-3-319-08840-2_5

(2) Solution quality
From the perspective of solution quality, the independent one without any col-
laboration gets the worst solution result. For the reason that in each sub-popula-
tion, less individuals is much powerless without the communication with others.
Among ring topology and mesh topology, their solution quality from good to bad
can be listed as: single-ring \ double-ring \ single-mesh \ double-mesh. During
the whole test, single-ring topology shows obviously low searching capability in
the specific problem. With the increase of individual exchange in the whole
population, we can see that the searching capability of mesh-topology mechanisms
is better than that of ring-topology mechanisms. Likely, double-side exchange
scheme performs always better than single-side exchange for solving OACR
problem. Moreover, from the solution stability point of view, single-ring topology
with lower communication and high diversity is the most unstable one of the four
schemes. In contrast, double-mesh with the most collaboration is quite stable than
the others.

Compared with the four schemes, full-mesh topology performs slightly better.
But its stability is worse than double-grid topology. High communication espe-
cially when more processors are adopted makes the whole population have low
diversity and is partly responsible for its low stability. As we analyzed before, too
frequent communication is apt to disrupt the searching direction of each sub-
population.

Different with the full-mesh one, random topology performs quite well in solving
OACR. The overall solution quality keeps a high level near to the full-mesh one. It
has high stability along with the increase of processor number. The random col-
laboration in each period not only makes high diversity in each sub-population, but
also avoids disrupting the whole searching pace and preserves good solution quality.
Combined with its time performance, it can be seen that random-topology tradesits
searching time for solution quality and stability to some extent.

Further, inspired by the general adaptive mechanisms in improved intelligent
optimization algorithm, the new adaptive full-mesh topology has better solution
capability than the random one. With population supervision, the amount of data
connected and broadcasted in each period is much less than which in random-
topology. And the population state can better reflect the evolutionary process and
guide the individual exchange. Moreover, with MPI_Allgather, which performs
more efficient than the other MPI point-to-point schemes, the searching capability
of the whole algorithm is improved without the increase of time consumption.

On the whole, the newly presented PNIA with adaptive full-mesh topology
shows high performance in solving OACR problem. Its time consumption with 21
processors is 2.1923 s, which is 10 times lower than the searching with single
machine. The speed up ratio of it keeps linear when the processor number is below
to 4. The solution accuracy is also largely improved to a high level compared with
the other traditional topology. And with the full use of the collective communi-
cation of MPI, the new configured topology is also easy to implement.

However, we should notice that in different problems and different computing
environments, the solution capability of each topology is changing and quite

10.7 Experiments and Discussions 327

unstable. The tests above are only focus on solving the OACR problem in CMfg.
With changing environment, it does not always work well to other problems.In this
case, we can configure other topology module and adopt multiple algorithms if
required. That is the advantage of configuration ways. It is also suggested that in
such small cluster environment, the improved configuration based on a single
scheme performs better than the topology configuration mentioned in Chap. 5. For
adjusting changing environments, multiple configured serial intelligent optimiza-
tion algorithm can also adopted to improve the whole searching efficiency.

10.8 Summary

Optimal allocation of computing resources is one of the most important and basic
problem in CMfg. Current works related to the allocation (scheduling) model and
algorithms are either unsuitable or inefficient. This chapter presented a new model
with considering the characteristics of CMfg thoroughly and then designed a high
efficient intelligent algorithm for OACR in CMfg. In detail, the primary works and
contribution of this chapter can be concluded as follows.

(1) In the new OACR model, user’s interaction (control and supervision) in
manufacturing tasks were fully considered. From the computing aspect,
dynamic computing speed was presented associated with processor memory.
This technique can clearly reflect the characteristics of resource partitioning
in virtualization. Then, from the communication aspect, new cache technique
for avoiding data surge, local and remote communication and the commu-
nication reliability (rate and recovery time) are introducedin the OACR
model. With the full consideration of dynamic computation and communi-
cation, the process of OACR in CMfg can be more flexible and practical.

(2) For solving the new complex model, an intelligent optimization algorithm
(NIA) is configured with the introduction of niche strategy, immune heuris-
tics, genetic operators and pheromone strategy. Experiments demonstrated
the design of heuristic information in NIA for OACR and the suitable heu-
ristics in different situations.

(3) For improve the searching efficiency further, a new adaptive population
supervision mechanism is designed and configured with full-mesh topology
based on coarse-grained parallelization and MPI collective communication.
By using the population degradation state, the individual exchange in each
period is controlled to preserve the solution quality with less time con-
sumption. Compared with traditional serial intelligent algorithms and clas-
sical parallel intelligent algorithms respectively, the searching capability and
time efficiency of the new PNIA was fairly remarkable in the experiments for
OACR in CMfg.

328 10 Computing resource allocation with PEADGA

http://dx.doi.org/10.1007/978-3-319-08840-2_5

References

1. Li BH, Zhang L, Wang SL, Tao F, Cao JW, Jiang XD, Song X, Chai XD (2010) Cloud
manufacturing: a new service-oriented networked manufacturing model. Comput Integr
Manuf Syst 16(1):1–16

2. Laili YJ, Tao F, Zhang L, Sarker BR (2012) A study of optimal allocation of computing
resources in cloud manufacturing systems. Int J Adv Manuf Technol 63(5–8):671–690

3. Yusuf YY, Sarhadi M, Gunasekaran A (1999) Agile manufacturing: The drivers, concepts
and attributed. Int J Prod Econ 62(1–2):33–43

4. Flammia G (2001) Application service providers: challenges and opportunities. IEEE Intell
Syst Appl 16(1):22–23

5. Tao F, Hu YF, Zhou ZD (2008) Study on manufacturing grid & its resource service optimal-
selection system. Int J Adv Manuf Technol 37(9–10):1022–1041

6. Tao F, Zhang L, Venkatesh VC, Luo YL, Cheng Y (2011) Cloud manufacturing: a computing
and service-oriented manufacturing model. Proc Inst Mech Eng, Part B, J Eng Manuf (2011,
March 10, Accepted)

7. Zhang L, Luo LY, Tao F, Ren L, Guo H (2010) Key technologies for the construction of
manufacturing cloud. Comput Integr Manuf Syst 16(11):2510–2520

8. He K, Zhao Y (2005) Research of grid resource management and scheduling. J WuHan Univ
Technol (Information and Management Engineering) 27(4): 1–5

9. Ullman JD (1975) NP-complete scheduling problems. J Comput Syst Sci 10(3):384–393
10. Zhang L, Luo YL, Fan WH, Tao F, Ren L (2011) Analysis of cloud manufacturing and

related advanced manufacturing models. Comput Integr Manuf Syst 17(3):458–468
11. Li BH, Zhang L, Chai XD, Tao F, Luo YL, Wang YZ, Yin C, Huang G, Zhao XP (2011)

Further discussion on cloud manufacturing. Comput Integr Manuf Syst 27(3):449–457
12. Tao F, Cheng Y, Zhang L, Luo YL, Ren L (2011) Cloud manufacturing. The 2nd

international conference on manufacturing service and engineering (ICMSE)
13. Tao F, Zhang L, Luo YL, Ren L (2011) Typical characteristic of cloud manufacturing and

several key issues of cloud service composition. Comput Integr Manuf Syst 17(3):477–486
14. Liang JJ, Pan QK, Chen TJ, Wang L (2011) Solving the blocking flow shop scheduling

problem by a dynamic multi-swarm particle swarm optimizer. Int J Adv Manuf Technol
55(5–8):755–762

15. Zou ZM, Li CX (2006) Integrated and events-oriented job shop scheduling. Int J Adv Manuf
Technol 29(5–6):551–556

16. Hu PC (2005) Minimizing total flow time for the worker assignment scheduling problem in
the identical parallel-machine models. Int J Adv Manuf Technol 25(9–10):1046–1052

17. Kwok YK (1999) Benchmarking and comparison of the task graph scheduling algorithms.
J Parallel Distrib Comput 59(3):381–422

18. Polychronopoulos CD (1991) The hierarchical task graph and its use in auto-scheduling. In:
Proceedings of the 5th international conference on supercomputing (ICS’ 91)

19. Bokhari SH (1979) Dual processor scheduling with dynamic reassignment. IEEE Trans
Software Eng 5(4):341–349

20. Stone HS (1977) Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Trans Software Eng 3(1):85–93

21. Madhukar M, Leuze V, Dowdy V (1995) Petri net model of a dynamically partitioned
multiprocessors system. In: Proceedings of the 6th international workshop on petri nets and
performance models (PNPM’ 95)

22. Buyya R, Abramson D, Venugopal S (2005) The grid economy. Proc IEEE 93(3):698–714
23. Cardoso J, Sheth A, Miller J, Arnold J, Kochut K (2004) Quality of service for workflows and

web service processes. Web Semant: Sci Serv Agents WWW 1(3):281–308
24. Yang T, Gerasoulis A (1993) DSC: Scheduling parallel tasks on an unbounded number of

processors. IEEE Trans Parallel Distrib Syst 5(9):951–967

References 329

25. Gerasoulis A, Yang T (1993) On the granularity and clustering of directed acyclic task
graphs. IEEE Trans Parallel Distrib Syst 4(6):686–701

26. Gerasoulis A, Yang T (1994) Performance bounds for parallelizing Gaussian-Elimination and
Gauss-Jordan on message-passing machines. Applied Numerical Mathematics Journal
16:283–297

27. Jones WM, Pang LW, Ligon WB, Stanzione D (2005) Characterization of bandwidth-aware
meta-schedulers for co-allocating jobs across multiple clusters. J Supercomput
34(2):135–163

28. Hamscher V, Schwiegelshohn U, Streit A, Yahyapour V (2004) Evaluation of job-scheduling
strategies for grid computing. Grid Computing at the 7th International Conference on High
Performance Computing 191–202

29. Ememann C, Hamscher V, Yahyapou V (2002) On effects of machine configurations on
parallel job scheduling in computational grids. In: Proceedings of the international
conference on architecture of computing systems (ARCS 2002), 169–179

30. Davidovi T, Hansen P, Mladenovi N (2005) Permutation based genetic, tabu and variable
neighborhood search heuristics for multiprocessor scheduling with communication delays.
Asia-Pac J Oper Res 22(3):297–326

31. Sinnen O, Sousa LA (2005) Communication contention in task scheduling. IEEE Trans
Parallel Distrib Syst 16(6):503–515

32. Sinnen O, Sousa LA, Sandnes FE (2006) Toward a realistic task scheduling model. IEEE
Trans Parallel Distrib Syst 17(3):263–275

33. Benoit A, Marchal L, Pineau JF (2010) Scheduling concurrent bag-of-tasks applications on
heterogeneous platforms. IEEE Trans Comput 59(2):202–217

34. Adam TL, Chandy KM, Dickson JR (1974) A comparison of list schedules for parallel
processing systems. Commun ACM 17(12):685–690

35. Sinnen O, Sousa LA (2004) List scheduling: Extension for contention awareness and
evaluation of node priorites for heterogeneous cluster architectures. Parallel Comput
30(1):81–101

36. Wu MY, Gajski DD (1990) Hypertool: a programming aid for message-passing systems.
IEEE Trans Parallel Distrib Syst 1(3):330–343

37. Sarkar V (1989) Partitioning and scheduling of parallel programs for multiprocessors.
Research Monographs in Parallel Computing, MIT Press

38. Chen S, Eshaghia MM, Wu Y (1995) Mapping arbitrary non-uniform task graphs onto
arbitrary non-uniform system graphs. In: Proceedings of the international conference on
parallel processing

39. Yang L, Gohad T, Ghosh P, Sinha D, Sen D, Richa A (2005) Resource mapping and
scheduling for heterogeneous network processor systems. In: Proceedings of the 2005 ACM
Symposium on Architecture for Networking and Communications Systems (ANCS’ 05),
19–28

40. Weng N, Wolf T (2005) Profiling and mapping of parallel workloads on network processors.
In: proceedings of the 20th annual ACM symposium on applied computing (sac) 890–896

41. Huang JG, Chen JE, Chen SQ (2004) Parallel-job scheduling on cluster computing system.
Chin J Comput 27(6):765–771

42. Huang JG (2008) Approximation algorithm on multi-processor job scheduling. Comput Eng
Appl 44(32):26–28

43. Yin GF, Luo Y, Long HN, Cheng EJ (2004) Genetic algorithms for subtask scheduling in
concurrent design. J Comput aided Des Comput Graph 16(8): 1122–1126

44. Correa RC, Ferreira A, Rebreyend P (1999) Scheduling multiprocessor tasks with genetic
algorithms. IEEE Trans Parallel Distrib Syst 10(8):825–837

45. Tsai JT, Liu TK, Ho WH, Chou JH (2008) An improved genetic algorithm for job-shop
scheduling problems using taguchi-based crossover. Int J Adv Manuf Technol
38(9–10):987–994

330 10 Computing resource allocation with PEADGA

46. Chen YW, Lu YZ, Yang GK (2008) Hybrid evolutionary algorithm with marriage of genetic
algorithm and extremal optimization for production scheduling. Int J Adv Manuf Technol
36(9–10):959–968

47. Wang G, Gong WR, DeRenzi B, Kastner R (2007) Ant colony optimizations for resource and
timing constrained operation scheduling. IEEE Trans Comput Aided Des Integr Circuits Syst
26(6):1010–1029

48. Chen WN, Zhang J (2009) An ant colony optimization approach to a grid workflow
scheduling problem with various QoS requirements. IEEE Trans Syst Man Cyber
39(1):29–43

49. Li JQ, Pan QK, Gao KZ (2011) Pareto-based discrete artificial bee colony algorithm for
multi-objective flexible job shop scheduling problems. Int J Adv Manuf Technol
55(9–12):1159–1169

50. Xu XD, Li CX (2007) Research on immune genetic algorithm for solving the job-shop
scheduling problem. Int J Adv Manuf Technol 34(7–8):783–789

51. Agarwal R, Tiwari MK, Mukherjee SK (2007) Artificial immune system based approach for
solving resource constraint project scheduling problem. Int J Adv Manuf Technol
34(5–6):584–593

52. Saravanan M, Haq AN (2008) Evaluation of scatter-search approach for scheduling
optimization of flexible manufacturing systems. Int J Adv Manuf Technol 38(9–10):978–986

53. Laha D, Chakraborty UK (2008) An efficient heuristic approach to total flowtime
minimization in permutation flow shop scheduling. Int J Adv Manuf Technol
38(9–10):1018–1025

54. Maheswaran R, Ponnambalam SG, Aravindan C (2005) A meta-heuristic approach to single
machine scheduling problems. Int J Adv Manuf Technol 25(7–8):772–776

55. Zhang JX, Gu ZM, Zheng C (2010) Survey of research progress on cloud computing. Appl
Research Comput 27(2): 429–433

56. Hong B, Prasanna VK (2004) Distributed adaptive task allocation in heterogeneous
computing environments to maximize throughput. In: Proceedings of the 18th international
parallel and distributed processing symposium (IPDPS’ 04)

57. Bhat PB, Raghavendra CS, Prasanna VK (2003) Efficient collective communication in
distributed heterogeneous systems. J Parallel Distrib Comput 63(3):251–263

58. Gawiejnowics S (2008) Time-dependent scheduling. Springer, Berlin
59. Wang L, Pan J, Jiao LC (2000) The immune programming. Chin J Comput 23(8): 806–812
60. Wang L, Pan J, Jiao LC (2000). The immune algorithm. Acta Electronica Sinica, 28(7):

74–77
61. Park J, Kang M, Lee K (1996) An intelligent operations scheduling system in a job shop. Int J

Adv Manuf Technol 11(2):111–119
62. Jiao LM, Khoo LP, Chen CH (2004) An intelligent concurrent design task planner for

manufacturing system. Int J Adv Manuf Technol 23(9–10):672–681
63. Chaudhry IA, Drake PR (2009) Minimizing total tardiness for the machine scheduling and

worker assignment problems in identical parallel machines using genetic algorithms. Int J
Adv Manuf Technol 42(5–6):581–594

64. Saravanan M, Haq AN (2008) Evaluation of scatter-search approach for scheduling
optimization of flexible manufacturing systems. Int J Adv Manuf Technol 38(9–10):978–986

65. Wang LY, Wang JB, Gao WJ, Huang X, Feng EM (2010) Two single-machine scheduling
problems with the effects of deterioration and learning. Int J Adv Manuf Technol
46(5–8):715–720

66. Jerald J, Asokan P, Saravanan R, Delphin R, Rani C (2006) Simultaneous scheduling of parts
and automated guided vehicles in an FMS environment using adaptive genetic algorithm. Int
J Adv Manuf Technol 29(5–6):584–589

67. Shukla SK, Son YJ, Tiwari MK (2008) Fuzzy-based adaptive sample-sort simulated
annealing for resource-constrained project scheduling. Int J Adv Manuf Technol
36(9–10):982–995

References 331

Chapter 11
Job Shop Scheduling with FPGA-Based
F4SA

In this chapter, a new configured permutation-based feasible solution space
searching simulated annealing algorithm (F4SA) is designed for solving job shop
scheduling problem (JSSP). Firstly, a permutation-based encoding scheme is
presented, which can make the solution always feasible in iteration. After that,
simulated annealing operator, mutation operator and a new reverse order operator
are implemented on FPGA and configured for updating solutions in parallel way.
Each operator is encapsulated in a module and can be connected with fixed input,
output and parameters. The searching time of intelligent optimization algorithm in
FPGA is far shorter than which in general computer. The design and implemen-
tation of F4SA for JSSP presented in this chapter is just an example to demonstrate
how to implement an intelligent optimization algorithm and dynamically configure
multiple operators in FPGA. The searching accuracy of this algorithm is to be
improved further.

11.1 Introduction

Job shop scheduling problem (JSSP) is an important practical problem in manu-
facturing system which directly decides the efficiency of manufacturing process. It
is also a very important theoretical problem due to its complexity. Thus it has been
widely studied for more than half a century.

The literatures on JSSP are quite a lot. Many exact methods have been proposed
to find the optimal solutions for JSSP, such as typical branch and bound algorithm
presented by Carlier and Pinson [1] which solved FT10 benchmark problem and
dynamic algorithm brought up by Lawler [2]. Because JSSP is an NP-hard
problem [3], the problem solution space will expand explosively with the growth
of the problem scale. Therefore, the exact methods are not guaranteed to solve
large size JSSPs in a certain limited time. In this situation, some approximate

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_11

333

methods are proposed to find suboptimal solutions instead of optimal ones. These
methods include dispatching priority rules [4], shifting bottleneck approach pro-
posed [5], Lagrangian relaxation [6], and tree searching algorithm in [7]. These
methods have made remarkable achievements. In recent years, intelligent opti-
mization algorithm have been widely studied and applied to solve the problem and
genetic algorithm (GA) is the most popular algorithm among them. For instance,
Gonçalves et al. [8] brought up a hybrid genetic algorithm to minimize the
makespan of JSSP and has achieved good results. Zhou et al. [9] proposed a hybrid
genetic algorithm to minimize weighted tardiness of JSSP, and Giovanni and
Pezzella [10] improved the GA for the flexible job shop scheduling problem. There
are also several other intelligent optimization algorithms applied to solve JSSP
except GA, such as particle swarm optimization algorithm (PSO) [11], Kasemset
et al. [12], simulated annealing (SA) [13, 14] and differential evolution (DE) [15,
16]. Most of them try to find good solutions among the problem’s whole search
space, while some of the found solutions are not feasible, which reduces the
efficiency of the algorithms. This is due to the JSSP representation model and the
encoding scheme.

JSSP can be represented by a disjunctive graph model [17] and permutation
model [18]. Each solution, feasible or not, is covered in the search space in the
disjunctive graph model. The solution will be rebuilt when it is not feasible, and
GT algorithm [19] proposed by Giffler, and Thompson is a common used builder.
After rebuilding, the new solution will meet the problem’s constraints. It should be
pointed that the rebuilding procedure will take a certain amount of time, which
slows down the decision process of algorithm.

In the permutation model, the processing sequence of jobs on each machine is
encoded as a permutation of numbers. If the solutions are encoded in random
permutations, they will also cover the problem’s whole search space. Several kinds
of intelligent optimization algorithms are applied to the model with different
encoding scheme. For example, differential evolution proposed by Ponsich et al.
[20] with permutation model in two different encoding schemes is applied to solve
the problem. But it gives no better results. Artificial immune algorithm (AIA)
brought up by Golmakani and Namazi [21] with a dedicated encoding scheme of
permutation which only generates feasible solution has achieved very good results.

Clearly, the handling of solution space and generation of feasible solutions are
very critical in solving JSSP. Therefore, this chapter focuses on the generation and
handling of feasible solutions in JSSP, presents a new permutation-based feasible
solution space searching simulated annealing (F4SA) algorithm for it. With the
hybridization of simulation annealing rules and multiple transform operators, a
novel permutation-based feasible set searching strategy is designed. Compared to
previous work, the new feasible set encoding scheme presented in this chapter
ensures feasible solutions and the multiple transform operators accelerates evo-
lutions during searching process.

334 11 Job Shop Scheduling with FPGA-Based F4SA

11.2 Problem Description of Job Shop Scheduling

The job shop scheduling problem can be described as follows: a set of n jobs
{Ji|1 B i B n} which is to be processed on a set of m machines {Mj|1 B j B m},
and each job has a technological sequence of machines to be processed. The
processing of job Ji on machine Mj is called operation Oij. Operation Oij requires
the exclusive use of Mj for an uninterrupted duration pij, i.e. its processing time. A
schedule is a complete set of operations Sm9n = {Oij |1 B i B n, 1 B j B m}, to
be processed on different machines, in a given order.

With the notations defined in the Table 11.1, The conceptual model can be
described as following:

Objective:

minimize CmaxðSÞ ð11:1Þ

Subject to:

tiþ1; jþ1� ti; jþ1 þ pi; jþ1; i ¼ 1; 2; � � � ; n; j ¼ 1; 2; � � � ;m ð11:2Þ

tiþ1; jþ1� tiþ1; j þ piþ1; j; i ¼ 1; 2; � � � ; n; j ¼ 1; 2; � � � ;m ð11:3Þ

Note: t1,j and ti,1 are determined by the schedule S, and i = 1, 2, ���, n,
j = 1, 2, ���, m. We will take 3 9 3 JSSP to explain the model further.

Table 11.2 shows the technological sequence and the processing time of each
operation of a 3 9 3 JSSP. The objective is to find a schedule of minimal time to
complete all jobs. Table 11.3 shows a schedule corresponding to Table 11.2. And
Fig. 11.1 shows the Gantt chart of the schedule in Table 11.3.

11.3 Design and Configuration of SA-Based on FPGA

11.3.1 FPGA-Based F4SA Design for JSSP

(1) Encoding scheme
For generating feasible solutions of JSSP directly in both the initialization and

the evolutionary process, a new encoding scheme is presented in this chapter.
Specifically, a solution can be represented by a m 9 n coding sequence, which
contains n subsequences with m elements in each. It is also a permutation of 1 to
m 9 n. Take 3 9 3 JSSP with 3 machines and 3 jobs as an example, the specific
decoding way of the permutation sequence is described as follows.

Let the constraints matrix and processing time matrix be

11.2 Problem Description of Job Shop Scheduling 335

Bound ¼
2 3 1
1 3 2
3 1 2

2

4

3

5; Time ¼
3 7 5
6 9 8
4 3 9

2

4

3

5 ð11:4Þ

And let the initial sequence be Per_ori, for instance, Per_ori = 163528947.
Then we need three steps to transform such sequence to a feasible solution of
JSSP.

Table 11.1 Conceptual model of JSSP

n Number of jobs

m Number of machines

Oij Operation of number i job on number j machine

tij Start time of operation Oij

pij Processing time of operation Oij

S A schedule of complete set of operations

Cmax Makespan of schedule S

Table 11.2 Technological constraints and processing time table

Jobs Number of machines, processing time

J1 2, 3 3, 7 1, 5

J2 1, 6 3, 9 2, 8

J3 3, 4 1, 3 2, 9

Table 11.3 Schedule table

Machines Number of jobs

M1 2 1 3

M2 1 2 3

M3 2 1 3

5 10 15 20 25 30 35 40 t

Machines

M1
O2,1

M2
O1,2

M3
O2,3

O1,1

O2,2

O1,3

O3,1

O3,2

O3,3

Fig. 11.1 Gantt chart of the schedule shown in Table 11.3

336 11 Job Shop Scheduling with FPGA-Based F4SA

Step 1: Ranking in group
According to the above encoding way, Per_ori can be divided into 3 subse-

quences with 3 elements in each, i.e., Per_ori = 163 | 528 | 947. Ranking in group
means to sort the elements in each group with ascending order. After the ranking,
the sequence can be represented as Per_sort = 136 | 258 | 479.

Step 2: Expansion of constraints matrix
In this step, we need a n 9 mn middle matrix to expand Bound matrix. Let the

middle matrix to be BoundSpread. Then the value of BoundSpread can be cal-
culated according to the following equation.

BoundSpan
i
n

� �
þ1;Per sort ið Þ

� �
¼Bound

i
n

� �
þ1; i�1ð Þ% nþ1

� �
; i¼1;2; � � � ;mn

ð11:5Þ

Therefore the new generated middle matrix of the above case is:

BoundSpreadn�mn ¼
2 0 3 0 0 1 0 0 0
0 1 0 0 3 0 0 2 0
0 0 0 3 0 0 1 0 2

2
4

3
5 ð11:6Þ

Step 3: Generating schedule
According to the BoundSpread matrix, we could see that each machine number

from 1 to 3 appears three times. If we check each column and record the row of
machine i in the order of appearance, we could get the processing order of each
machine. For example, for machine 1, the row number of it in turn are 2, 1 and 3 in
column 2, 6 and 7, respectively. Then the schedule order of machine 1 is [2 1 3].
Hence, the corresponding schedule calculated according to the above Bound-
Spread matrix is:

Schedule ¼
2 1 3
1 2 3
1 3 2

2
4

3
5 ð11:7Þ

Because the schedule is generated in accordance with the original Bound
matrix, it must be a feasible solution.

Based on the new encoding scheme, we will design a FPGA-based Decoder for
addressing 6 9 6 JSSP. The external interface of such FPGA module can be
shown in Fig. 11.2.

In the decoder module, there are three input port, i.e., clock signal clk, enable
signal en and encoding signal code(0:215), and one output port, schedule(0:143).
The encoding signal is set as 216 bits for solving 6 9 6 JSSP. Specifically, the
coding length of 6 9 6 JSSP is 36. The maximum value 36 is between 32 and 64.
If we adopt unsigned binary number to present the coding, we need at least 6 bits.
Therefore, we need 6 bits 9 6 9 6 = 216 bits. In a similar way, the schedule

11.3 Design and Configuration of SA-Based on FPGA 337

signal is set to be 144 bits. That is because each element in schedule is between 1
and 6. We need at least 4 bits to represent it. For the whole schedule, we need
4 bits 9 6 9 6 = 144 bits. Moreover, en signal is active-low. When the input is
high, the code input is sampled.

Considering the decoding process, there are three main steps needed to be
implemented in serial. In each step, the operations can be all accelerated by some
parallelization way. For instance, ranking of 6 subsequences in step 1 can be
directly executed in parallel. In step 2, the calculation of each element in Boud-
Spread can be parallelized as well. Besides, the column checking in step 3 can also
be divided into three independent parallel parts. However, parallelization of all
these steps will occupy more logistical resources. Therefore, only step 3 is par-
allelized here. In this step, we decide the current processing jobs for all 6 machines
simultaneously at the rising edge of the clock. The consumption of schedule
generation can then be reduced 1/6 of its original time.

In simulation process, the initial value of the encoding signal input code is
represented by a hexadecimal coding. For instance, if we have the input code =
‘‘3020C41461C824A2C134E3D04524D45565D865A6DC75E7E08628E4’’. After
decoding, we can get the schedule sequence schedule = Ox‘‘123456213456123
456123456213456123456’’. The loading time of code is 300 ns, output time of
schedule is 9095 ns and the whole processing time of decoding is 9095
- 300 ns = 8795 ns. The simulation clock is 100 MHz, so that it needs 879 clock
periods to finish a decoding process.

As we know, the scale of the solution space of JSSP is ðn!Þm. In such encoding

scheme, the solution space will be expanded to ðmnÞ!
ðm!Þn [ðn!Þm. It means that

although we can always get a feasible solution from a permutation, this encoding
scheme is a many-to-one scheme. m 9 n JSSP in such scheme can be transformed
as m 9 n TSP (Travelling Salesman Problem) with less solution space than that of
a real TSP, i.e., ðmnÞ!

From the analysis, we can directly apply the permutation operations used in
TSP to handle JSSP. The only difference between them are the encoding and
decoding process and the evaluation way. For efficiently obtain optimal solution in
such many-to-one encoding scheme, a new problem solving scheme is presented
based on FPGA implementation framework.

Fig. 11.2 FPGA decoder
module for JSSP

338 11 Job Shop Scheduling with FPGA-Based F4SA

(2) FPGA-based new problem solving scheme
In general, the total processing time of jobs is decided by a feasible schedule

Schedule, a constraints matrix Bound and a processing time matrix Time. The
calculation process is carried by a FPGA module. In this module, there are three
input signals, encoding signal code(0:215), clock signal clk and enable signal en,
as well as the decoding module. There is also only one output signal, that is
processing time signal makespan(7:0). A decoder is imbedded in this module and
connect with its three input signals. The output signal makespan is a 8 bits
unsigned binary std_logic_vector, which can represent the integers from 0 to 255.
Then the calculation of job processing time in FPGA can be implemented by some
state machines as shown in Fig. 11.3.

The above state machines can be directly implemented by VHDL programming.
Set code = 0x‘‘3020C41461C824A2C134E3D04524D45565D865A6DC75E7E08
628E4’’. We could get the output result of CalcMakespan module 098C = 140. In
simulation, the loading time of code signal is 200 ns, the output time of makespan is
16505 ns. Therefore the calculation time is 16505 - 200 ns = 16305 ns. The
simulation clock is still 100 Mhz, so that it has taken 1630 clock periods to finish the
evaluation of a feasible solution. With a decoder module imbedded in CalcMake-
span, the execution of the whole state machines spent 1630 - 879 = 751 clock
periods, which is slightly shorter than the decoding time.

11.3.2 FPGA-Based Operators of F4SA

The main operator of SA is its acceptance rule. By accepting some bad solutions in
probability, the diversity of the population can be improved and wider range of
space can be searched as well. With SA acceptance scheme, the searching process
of JSSP in FPGA can be demonstrated as Fig. 11.4.

In Fig. 11.4, tf represents the terminated temperature, t0 refers to the initial
temperature, t is set as the current temperature, alpha stands for the cooling
coefficient, L is the number of coding update between two cooling steps and i is the
iterative variable.

After the initialization step, a new solution is generated from the original one.
According to the evaluation module described above, we could get its processing
time as the new fitness value makespan_new. If the value makespan_new is smaller
than that of the original solution, i.e. makespan_old, or
exp � makespan new�makespan old

t

� �
is larger than a temporarily generated uniform

random number, then the old solution will be replaced by the new one. If the
solution is changed, then i = i + 1. When i C L, set t = alpha 9 t and i = 0. The
iteration then continue until t \ tf.

For generating new solution, we need to design some operators during the
process and implement them as modules on FPGA. In this chapter, the simulated
annealing operator, mutation operator and reverse operator are designed and
hybrid on FPGA with a new encapsulation way.

11.3 Design and Configuration of SA-Based on FPGA 339

(1) Simulated annealing operator based on FPGA
In solution acceptance rule, we need to calculate the value of exp(x). In FPGA, we
adopt the traditional Taylor series expansion for the calculation of acceptance
probability.

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � þ xn

n!
þ � � � ð11:8Þ

If machine i
finished its

jobs

Whether all of the
machines finished

processing

No

Output the processing time
Makespan = the maximum

value in T_machine
Yes

If the assigned
machine for the
current job is i

i=(i+1)%6+1

Yes
No

Whether this is
the first job

of machine i

No

Yes

Initialize T_machine
as a null array with

6 elements

Yes

No

Whether this is the
first time this job
to be processed

t=0

Yes

t = the finish time
of the job in the
previous process

No

t = max (the finish time
 of the previous job

processed in machine I,
the maximum finish time
of the waiting job in the

 previous process)

T_machine(i)=T_machine(i)+t

No

Fig. 11.3 The calculation of job processing time in FPGA

340 11 Job Shop Scheduling with FPGA-Based F4SA

Initialize the parameters:
tf,t0,t,alpha,L,i=0

Update the original code with
operators

Calculate the updated processing time
of the new solution makespan_new and

compared with the original one
makespan_old,

i=i+1

Start

makespan_new <
makespan_old

Replace the original solution code
by the new one

exp(-(makespan_new-
makespan_old) / t) >Rand

i < L

Yes

No

Yes

No

Yes

t=alpha*t

t<tf

End

No

Yes

Fig. 11.4 The searching
process of FPGA-based SA

11.3 Design and Configuration of SA-Based on FPGA 341

In the above equation, x \ 0, so that ex \ 1. If we calculate all of the top ten
items, the value of ex can be accurate to 7 decimal places. The calculation module
of ex can then be shown in Fig. 11.5.

The inputs of this module contains the variable x(31:0), clock signal clk and
enable signal en. The output value is represented as y(31:0). x and y are both single
precision floating point numbers with IEEE754 standard. The length of both x and
y is 32 bits. When the input signal x is 0.9 = 0X3f666666, the simulation result is
0X401D6A22. Compared with the result 0X401D6A23 calculated in Matlab, the
accuracy of the calculation module of ex can be fully assured.

(2) Mutation operator based on FPGA
Mutation operator in the searching workflow is the simplest module in FPGA. It
only needs to randomly exchange the value between two bits in the solution code.
Specifically, we could randomly generate two integer numbers which indicates the
switch points, and then exchange them to generate a new solution. In the step of
random number generation, we use Matlab to generate a group of uniform random
integer number, transfer them into single precision floating point binary number
and stored them in the ROM of FPGA. During the iteration, these numbers are then
adopted for determining the mutation points.

(3) Reverse order operator based on FPGA
Reverse order operation refers to choose two points in the solution code, and
reverse the whole subsequence between the two points to generate a new solution.
Specifically, let the two randomly chosen points as p1 and p2, and set ps_old and
ps_new be the original solution and the new solution respectively, the value of
ps_new between p1 and p2 can be calculated as follow.

ps new½i� ¼ ps old½p2 þ p1 � i�; i ¼ p1; p1 þ 1; . . .; p2 ð11:10Þ

For 6 9 6 JSSP, the length of ps is 36. For simplicity, assuming the length of ps
to be 10, as shown in Fig. 11.6. If the input sequence ps_old = ‘‘0123456789’’,

Fig. 11.5 The calculation
module of ex

342 11 Job Shop Scheduling with FPGA-Based F4SA

and p1 = 3, p2 = 6, after the reverse operation, the new sequence
ps_new = ‘‘0126453789’’.

The design module of reverse order operator in FPGA can be shown in Fig. 11.7.
Except the clock signal, all the inputs are designed corresponding to the variable
described above. With binary format, the input values in FPGA can be represented as:
ps_in(x ‘‘0123456789’’) = b‘‘00000001 0010 0011 0100 0101 0110 0111 1000
1001’’, p1(x‘‘3’’) = b‘‘0011’’, p2(x‘‘6’’) = b‘‘0110’’, ps_out(x‘‘0126543789’’) =
b‘‘00000001 0010 0110 0101 0100 0011 0111 1000 1001’’.

Different with mutation operator, the random number p1 and p2 are generated
by an M sequence generator. For increasing the cycle time of M sequence and
enhancing the randomness, in this chapter we set the length of M sequence to be
32. Therefore its cycle time in theory can be 232 = 42.9 9 109 clock periods. The
specific logistic structure of M sequence generator can be shown in Fig. 11.8.

In the logistical structure, the XOR of m1 and m0 is fed back as the input of m31.
The value b‘‘m3m2m1m0’’ is then bounded as the output. Before the output, if
b‘‘m3m2m1m0’’ C b‘‘1010’’, then bounded the value by adding b‘‘0110’’. In this
way, the output value can also be bounded in the interval [b‘‘0000’’, b‘‘1001’’] .
Hence, the external interface of M sequence generator can be shown in Fig. 11.9.

In this sub-module, init(31:0) get the input b‘‘m31m30m29��m1m0’’ as the initial
value. If reset = 0, the initial value is loaded into the module asynchronously.
After module execution, Mdata(3:0) will output the bounded value of
b‘‘m3m2m1m0’’ for reverse order operator module.

1 2 3 4 5 6 7 8 9

Reverse

1 2 6 5 4 3 7 8 9

0

0

Fig. 11.6 The execution of reverse order operator for a sequence

Fig. 11.7 The design
module of reverse order
operator in FPGA

11.3 Design and Configuration of SA-Based on FPGA 343

11.3.3 Operator Configuration Based on FPGA

The general configuration process of the above algorithm in FPGA can be shown
in Fig. 11.10. In the process, we could not only use the module composition with
both reverse operator and simulated annealing operator connected by red full line,
but also use the module of only reverse operator with blue dash line, or the module
composition with mutation and reverse operators further. Different scheme can be
generated for different cases. In each scheme, the candidate solution is input to
CalcMakespan for evaluation and updating. With experiments, we found that the
scheme with both reverse operator and simulated annealing operator performed
better than the one with only reverse operator in solving general JSSP. The testing
results will be discussed in the following section.

11.4 Experiments and Discussions

In the experiments, the terminal temperature tf is set as 0.01, the initial temperature
t is 500 and the cooling coefficient alpha and L are set as 0.8 and 360 respectively.
Because the uniform random number for simulated annealing operator is pre-
generated in FPGA, it does not change in each run. For solving this problem, we

m30 m29 m1 m0m31 … …

clk

Fig. 11.8 The logistic structure of 32 bits M sequence generator for reverse order operator

Fig. 11.9 The external
interface of M sequence
generator

344 11 Job Shop Scheduling with FPGA-Based F4SA

could load different initial numbers for M sequence generator to control the ran-
dom number generation and make the searching process more dynamic in different
runs. In reverse order operator, two random points are needed to be generated in
code, so that two M sequence generators are required as well. In the experiments,
two of them are both 32 bits. For example, if we load the initial numbers
0 9 12345678 and 0 9 87654321 for two of the M sequence generators respec-
tively, we can then increase them by 1 after each cooling process is finished and
start a new process again. The simulation results can be shown in Fig. 11.11.

It can be seen that with 6 times cooling process, the processing times obtained
are 0 9 41, 0 9 3C, 0 9 3D, 0 9 3F, 0 9 3D and 0 9 3C, i.e. 65, 60, 61, 63, 61
and 60, respectively. The processing time of the initial solution in the test is
0 9 8C, i.e. 140. Clearly, the processing time is largely reduced. But considering
the minimal processing time of this problem, i.e. 55, has not been founded, more
slower cooling process may be required.

From the perspective of the searching time in FPGA, we could find that a single
cooling process spends only 0.45 s. With the same parameter setting, the process
executed by Matlab requires at least 2.07 s. Note that the computer for running
Matlab is Lenovo G460 with 32 bits Windows 7 operation system, Intel� CoreTM i3,
2 GB memory and 2.53 GHz dominant frequency. In FPGA, the dominant fre-
quency is only 100 MHz. With much lower dominant frequency, FPGA-based
intelligent optimization algorithm is much more efficient than the general CPU-
based ones. This is in part because the internal operations are parallelized in FPGA-
modules. Moreover, the execution process in FPGA contains only the related
operators with clock period, while the execution process in CPU consists of not only
the operators but also the handling of processors and threads in system. On the

Reverse
operator

In
iti

al
iz

at
io

n

C
lk

M
ak

es
pa

n

FPGA

R
es

et

Simulated
Annealing
operator

CalcMakespan

r1

r2

exponent

random

Decoder

In
di

vi
du

al

up
da

te

Fig. 11.10 The general configuration process of the improved SA in FPGA

11.4 Experiments and Discussions 345

whole, the design of intelligent optimization algorithm based on FPGA is light-
weight with high efficiency, which can fully satisfy the demand of many dynamic
light systems.

11.5 Summary

In this chapter, we elaborated the design of F4SA in FPGA. For solving JSSP,
simulated annealing operator, mutation operator and reverse order operator are
combined and implemented in FPGA. Through these independent modules, an
hybrid intelligent optimization algorithm can be dynamically configured on FPGA
for solving different kinds of problems. The efficiency of FPGA-based algorithms
are higher than these CPU-based ones according to the experiments and simulation
results.

Clearly, other intelligent optimization algorithms and operators can also be
implemented in FPGA board to form a library as well as in general computer. The
design and implementation of the configured SA based on FPGA described above
is just a case for providing a reference. Its searching capacity and accuracy are to
be improved further.

References

1. Carlier J, Pinson E (1989) An algorithm for solving the job-shop problem. Manage Sci
35(2):164–176

2. Lawler EL (1990) A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Ann Oper Res 26(1):125–133

3. Lenstra JK, Kan AHGR, Brucker P (1977) Complexity of machine scheduling problems. Ann
Discret Math 1:343–362

4. Blackstone JH, Phillips DT, Gary L (1982) A state-of-the-art survey of dispatching rules for
manufacturing job shop operations. Int J Prod Res 20(1):27–45

5. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop
scheduling. Manage Sci 34(3):391–401

6. Hoitomt DJ, Luh PB, Pattipati KR (1993) A practical approach to job-shop scheduling
problems. IEEE Trans Robot Autom 9(1):1–13

7. Rego C, Duarte R (2009) A filter-and-fan approach to the job shop scheduling problem. Eur J
Oper Res 194(3):650–662

8. Gonçalves JF, de Magalhães Mendes JJ, Resende MCG (2005) A hybrid genetic algorithm
for the job shop scheduling problem. Eur J Oper Res 167(1):77–95

Fig. 11.11 Simulation results of the new improved SA in FPGA for solving JSSP

346 11 Job Shop Scheduling with FPGA-Based F4SA

9. Zhou H, Cheung W, Leung LC (2009) Minimizing weighted tardiness of job-shop scheduling
using a hybrid genetic algorithm. Eur J Oper Res 194(3):637–649

10. De Giovanni L, Pezzella F (2010) An improved genetic algorithm for the distributed and
flexible job-shop scheduling problem. Eur J Oper Res 200(2):395–408

11. Lin TL, Horng SJ, Kao TW, Chen YH, Run RS, Chen RJ, Kuo I (2010) An efficient job-shop
scheduling algorithm based on particle swarm optimization. Expert Syst Appl
37(3):2629–2636

12. Kasemset C, Kachitvichyanukul V (2012) A PSO–based procedure for a bi–level multi–
objective TOC–based job–shop scheduling problem. Int J Oper Res 14(1):50–69

13. Zhang R, Wu C (2010) A hybrid immune simulated annealing algorithm for the job shop
scheduling problem. Appl Soft Comput 10(1):79–89

14. Song SZ, Ren JJ, Fan JX (2012) Improved simulated annealing algorithm used for job shop
scheduling problems. Advances in electrical engineering and automation. Springer, Berlin,
pp 17–25

15. Yuan Y, Xu H (2013) Flexible job shop scheduling using hybrid differential evolution
algorithms. Comput Ind Eng 65(2):246–260

16. Wisittipanich W, Kachitvichyanukul V (2012) Two enhanced differential evolution
algorithms for job shop scheduling problems. Int J Prod Res 50(10):2757–2773

17. Burdett RL, Kozan E (2010) A disjunctive graph model and framework for constructing new
train schedules. Eur J Oper Res 200(1):85–98

18. Bierwirth C, Mattfeld DC, Kopfer H (1996) On permutation representations for scheduling
problems. Parallel problem solving from nature—PPSN IV, Springer, Berlin, pp 310–318

19. Giffler B, Thompson GL (1960) Algorithms for solving production-scheduling problems.
Oper Res 8(4):487–503

20. Ponsich A, Tapia MGC, Coello CAC (2009) Solving permutation problems with differential
evolution: an application to the jobshop scheduling problem. In: Proceedings of the 9th IEEE
international conference on intelligent systems design and applications, pp 25–30

21. Golmakani HR, Namazi A (2012) An artificial immune algorithm for multiple-route job shop
scheduling problem. Int J Adv Manuf Technol 63(1–4):77–86

References 347

Part VI
Future Works of Configurable Intelligent

Optimization Algorithm

Chapter 12
Future Trends and Challenges

In this chapter, we give some future trends and challenges of dynamic configuration
not only for intelligent optimization algorithm, but also for other algorithms used in
the whole life cycle of manufacturing. Firstly, some works related to configuration
of intelligent optimization algorithm are introduced. They have similar idea and can
be further developed with different kinds of configuration ways. From the per-
spective of software improvement, we introduce the way of dynamic configuration
for other algorithms in manufacturing. From the perspective of hardware
improvement, the further development of dynamic configuration on FPGA for
lightweight optimization in design, production and maintenance of manufacturing is
given. Based on these trends, some challenges in developing dynamic configuration
from different angles are listed in this chapter.

12.1 Related Works for Configuration of Intelligent
Optimization Algorithm

Intelligent optimization algorithm, also named as meta-heuristic, has been
developed for years. Hundreds of evolutionary schemes are presented with pop-
ulation-based iteration and operators. For improving its problem solving capability
and make full use of the existing operators, many hybrid mechanisms are emerged.
Two of the most famous mechanisms are hyper-heuristic and multi-method search.
Hyper-heuristic [1, 2] mainly refers to a heuristic which tries to obtain right
methods from a bunch of heuristics for solving a specific problem efficiently. The
selection scheme itself, in hyper-heuristic, can be a kind of machine learning
techniques or an adapting or turning process. Multi-method search [3, 4] then
means to run multiple optimization algorithms simultaneously with population
division and combination. The searching process is similar with the parallel
configuration of algorithm hybridization mentioned in Chap. 4.

� Springer International Publishing Switzerland 2015
F. Tao et al., Configurable Intelligent Optimization Algorithm,
Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-3-319-08840-2_12

351

http://dx.doi.org/10.1007/978-3-319-08840-2_4

(1) Hyper-heuristic
In hyper-heuristic, the goal is to select right algorithms for a specific problem. It

is the main difference between hyper-heuristic and meta-heuristic. The selection is
based on a bunch of existing algorithms and their performance to some degree.
The method for selection is called high-level heuristic, while the algorithms
solving the problem in different steps are called low-level heuristics. From the
selecting process point of view, it is similar with our dynamic configuration way.
More general than dynamic configuration in intelligent optimization algorithm, it
tries to choose or combine several kinds of heuristics and machine learning
techniques to solve a problem with specific framework [5] step by step. That is to
say, it manages a number of heuristics and applies them to different stages of
problem-solving. But its basic premise is that the framework or the process for
solving a problem is clearly known. It is quite problem-dependent.

Hyper-heuristic is widely studied and applied in different area. With its
development, Burke et al. [6, 16] have summarized its main classifications from
structure to function. It consists of heuristic selection and heuristic generation,
which are similar with our configuration methods in hybridation and in
improvement respectively. The main focuses are the design of high-level heuristic
based on a known framework, such as [7–9]. In manufacturing, it just applied for
combinatorial optimizations such as production scheduling [10, 11], assembly line
sequencing [12] and so on. For numerical optimization, parameter optimization
and detection problems in manufacturing, few researches have been carried out.
Also, the construction of hyper-heuristics largely depends on existing intelligent
optimization algorithms [13, 14], as well as our configuration ways.

Broadly, the dynamic configuration ways in intelligent optimization algorithm
which encapsulates operators as modules can be seen as a kind of hyper heuristics.
That is because it also combines some low level operators (as heuristics) to solve
different problems in iteration with some rules. But with generation division
especially in intelligent optimization algorithm, dynamic configuration contains
not only low level combination of operators, but also high level combination of
algorithms. More than that, configuration has different types of schemes for
algorithm improvement, hybridation and parallelization. It is independent from
problems. Therefore, dynamic configuration is different with hyper-heuristics. It is
an extension of component design in intelligent optimization algorithm. All
‘disposable’ and ‘reusable’ [15, 16] operators and algorithms can be reused
according to dynamic configuration ways. To some extent, it can also be seen as an
extension of hyper-heuristics.

352 12 Future Trends and Challenges

(2) Multi-method Search
Multi-method search is presented by Vrugt et al. [3] who try to overcome the

‘no free lunch’ theory by applying several algorithms simultaneously to a class
of problems. The idea is as well as our configuration method in improvement
and hybridation of intelligent optimization algorithm with a simpler style. It is
also established based on the population-based iteration rule and some existing
algorithms. Different with hyper-heuristics, it sees the operators of an algorithm
as an entity and invokes different entities in different sub-population serially. Just
as mentioned in the above chapters, if there’s one algorithm suitable for the
specific problem, it can lead others to searching with a right direction. Now it
has been applied for solving both combinatorial and numerical optimization
[4, 17].

Nowadays, multi-method search, also known as A Multialgorithm Genetically
Adaptive Method (AMALGAM), has been used for optimization in soil and
water assessment [18], stochastic inversion in aquifer structure identification [19]
and inverse parameter estimation in coupled simulation of surface runoff and soil
water flow [20] and so on. But it has not been applied in manufacturing.
Moreover, no work has been carried out especially for the design and selection
of algorithms during iteration. Therefore, the multi-method search also has long
way to go.

In the area of intelligent optimization algorithm, it can be seen that the dynamic
configuration contains more ways to reuse existing algorithms fully and widely
than the above two mechanisms. Furthermore, just like hyper-heuristic, the idea of
configuration can be extensively applied for other algorithms and implemented in
other hardware. Here we will take some typical numerical algorithm as an example
to show the dynamic configuration ways for other algorithms in manufacturing.
Moreover, further dynamic configuration on FPGA will be elaborated as our future
work. As a whole, some challenges on the further development of dynamic con-
figuration in the area of manufacturing are given in this chapter.

12.2 Dynamic Configuration for Other Algorithms

Besides optimization, there are a lot of large-scaled complex numerical computing
requirements existing not only in manufacturing part design, but also in system
and process evaluation, such as large-scaled matrix operations, linear or nonlinear
functions and ordinary or partial differential equations. All these calculation
process can be completed by a bunch of basic numerical algorithms according to
the specific precision demands. Different with intelligent optimization algorithm,
these numerical algorithms have different structure and heavily rely on the specific
problem. Therefore, the previously mentioned configuration in a uniform iterative
process is not adaptable for other numerical algorithms.

12.1 Related Works for Configuration of Intelligent Optimization Algorithm 353

However, many complex numerical computing modules can be divided into
several simple parts with some basic operation. And most numerical problems can
be represented as a uniform form with complex variables and constraints. In such
standardized form, these classical numerical algorithms can be directly invoked to
solve the problem in different stages. Hence the numerical process is generally
divisible and can be flexibly configured as well as intelligent optimization
algorithm.

Considering three kinds of numerical computing, i.e. matrix operations, com-
plex linear/nonlinear equations and ordinary/partial differential equations, existed
generally in design, control and simulation of industrial manufacturing, the con-
figuration framework can be drawn as Fig. 12.1. In this framework, we try to
encapsulate basic numerical algorithms as modules and make two level configu-
ration for different kinds of problems, i.e., (1) internal configuration and (2)
external configuration.

As mentioned before, complex numerical computing can be divided into several
steps. Each step that contains one or more standard numerical computing can also
be represented by variables, domains, objectives and constraints. For example, if
the numerical computing is linear equations, then it can be represented by a matrix
A and a vector b (i.e. Ax = b). If the step needs to solve a partial differential
equation, then it can be represented by a partial differential coefficient matrix from
which a standard finite difference can be done based on that. In this case, the
boundary conditions can be seen as constraints. With such standard representations
in each computing stage, basic numerical algorithms which have been encapsu-
lated as module can be configured and connected together.

In configuration, the internal configuration means to change the inner parameter
of the module or to invoke other modules internally. For instance, there are many
kinds of difference schemes for a specific partial differential equation. With a

Basic numerical algorithms

Matrix
operations

Differential
euqiations

Complex
functions

Internal
configuration

External configuration

Complex numerical computing

Variables Objectives

Module
improvement

Module
parallelization

Domains Constraints

Users
Solution
results

Fig. 12.1 The configuration framework for numerical computing

354 12 Future Trends and Challenges

difference scheme, partial differential equation can be transformed into a group of
sparse linear equations. Then Jacobi or Gauss-Seidel method can be used to solve
the linear equations. In this case, Jacobi method which is encapsulated into module
can be configured with a suitable difference scheme to solve the numerical
problem, as shown in Fig. 12.2. Making the transformation of difference scheme
also as a module, the configuration above is called internal configuration. By
means of multiple basic numerical modules, we could use some heuristic to
intelligently select one or more of them connected together for solving a specific
numerical problem. Overall, internal configuration in different kinds of numerical
computing requires fine grained division of calculating modules. Moreover, all
parameters should be adjustable with a standard form to make sure the modules
can be correctly invoked.

External configuration, different with the internal one, refers to configure dif-
ferent algorithms in different solving stages for a complex problem. The config-
ured module mainly refers to coarse-grained numerical algorithms. These
algorithms can be either a single basic module such like matrix operation, or a
combined module configured by the internal configuration as mentioned before.
Take the design of aircraft wing for example, the process consists not only the key
size design but also the verification of its aerodynamic characteristics. With a
bunch of datum, matrix operation may be the first step, the solving of partial
differential equations and size decision may be the next. On this occasion, we
could configure matrix operation module, Gauss-Seidel and a kind of difference
scheme and an intelligent optimization algorithm step by step for solving the
whole problem. The outputs of the previous steps are the inputs of the latter ones.
Together with internal configuration and external configuration, an integrated
numerical algorithm can be generated by a specific heuristic (or algorithm selec-
tion rule) and a mass of basic numerical modules.

Moreover, as shown in Fig. 12.1, we could also do module improvement and
parallelization during the whole process. Improvement can be easily obtained
through flexible parameter interface as mentioned before. Parallelization here
consists of both internal and external parallelization.

Internal parallelization means to directly encapsulate basic parallel numerical
algorithms as modules. By way of configuring the parallel modules, some new
parallel algorithms can be easily produced. As the same as in intelligent optimi-
zation algorithm, external parallelization refers to execute different modules
simultaneously in different computing nodes. External parallelization is highly
dependent on the computing process of a specific problem. For example, we could

Fig. 12.2 Internal configuration for solving partial differential equations

12.2 Dynamic Configuration for Other Algorithms 355

separate irrelevant computing module manually to parallel nodes for high time
efficiency. We also could apply different numerical algorithms for a single com-
puting stage simultaneously in different computing nodes for high accuracy and
stability.

As we know, the establishment of basic numerical modules has been carried out
for years. There are already many serial and parallel tools for basic numerical
computing, such as matrix operations and solver of linear equations. Basic linear
algebra subprograms (BLAS) [21] and Parallel BLAS (PBLAS) [22], LINPACK
[23] and PETSc [24] and so on are all famous and have been widely used in
different areas. These tools based on different platform and programming language
can not be integrated together. If we need to invoke these basic modules, we have
to program our problem with the specific programming language and do more
changes. With different formation, different numerical modules can not be con-
nected and configured directly. Moreover, there has no recommendation to decide
which is the most suitable one for a specific problem.

Therefore, for establishing a configurable platform for wider numerical com-
puting, the uniform encapsulation of existing numerical algorithms is required. In
other words, the interface of each module to be configured should be uniformed
and full information should be provided for flexible configuration. After that, the
most important thing of numerical configuration is the construction of rule base
which can be used for algorithm selection according to the problem characteristics
and the calculating environments.

12.3 Dynamic Configuration on FPGA

As elaborated in Chaps. 5 and 11, the dynamic configuration of not only intelligent
optimization algorithm but also other numerical algorithm can be implemented on
FPGA. Focus on the configuration of intelligent optimization algorithm, there are
two implementing schemes on FPGA, as shown in Figs. 12.3 and 12.4, (1)
operator-based configuration and (2) algorithm-based configuration. It should be
noted that an FPGA board can only store limited operators for just one class of
problems.

In the first scheme, we could firstly extract initialization part and population
updating part into two modules. Operators in iteration can be implemented inde-
pendently with uniform population-based interfaces. As shown in Fig. 12.3, the
connection of these modules can generate a complete intelligent optimization
algorithm. Op1, Op2, Opx, Opy, Opz and Opn represent different kinds of oper-
ators, such as single-point crossover and mutation in genetic algorithm. The red
solid line and the blue chain dotted line represent two kinds of connection ways
respectively. With only one connection path between initialization and population
updating, a hybrid intelligent optimization algorithm can be generated in which all
population is concurrently operated by the corresponding operators on FPGA. In
contrast, if there are two or more connection paths, then the population will be

356 12 Future Trends and Challenges

http://dx.doi.org/10.1007/978-3-319-08840-2_5
http://dx.doi.org/10.1007/978-3-319-08840-2_11

evenly separated as multiple groups. Each sub-population is executed following
the relevant path. A parallel intelligent optimization algorithm with several groups
of hybrid operators can be produced. It is the same as the configuration in general
cluster environment.

In the second scheme, we could implement the whole operators of a specific
algorithm together as one module. For example, if Alg1 is the classical GA, then
the operations in it consist of population selection, crossover and mutation. As
shown in Fig. 12.4, we could arbitrarily select different algorithm in parallel with
multiple connection paths to form hybrid parallel intelligent optimization algo-
rithm on FPGA. And we could also connect algorithms in serial to generate a
single hybrid one. No matter which kinds of connection ways, parallel execution of
individuals is ensured on FPGA with high time efficiency.

The implementation of intelligent optimization algorithm on FPGA mainly
aims at lightweight and high speed decision in a special environments or devices.
One implementation with fixed architecture is just for one specific problem and

Op1 Op2 Opx

Opy OpzIn
iti

al
iz

at
io

n
Opn

…

…

P
op

ul
at

io
n

up
da

te

In
pu

t

O
ut

pu
t

FPGA

Fig. 12.3 Operator-based configuration on FPGA

FPGA

In
iti

al
iz

at
io

n

Alg1

Algx

Alg2

Algy

Algz

Algn

… …

P
op

ul
at

io
n

 u
pd

at
e

In
pu

t

O
ut

pu
t

Fig. 12.4 Algorithm-based configuration on FPGA

12.3 Dynamic Configuration on FPGA 357

can not be reused to others. With the above dynamic configuration, an FPGA board
with several operators can then be widely applied to a large amount of problems
without reconstruction. Although the implementation is under construction, we
believe it will be practical and valuable for many problems ranging from pro-
duction evaluation to maintenance to realize lightweight high efficiency decision
and optimization.

12.4 The Challenges on the Development of Dynamic
Configuration

In this book, we elaborated all kinds of dynamic configuration ways for
improvement, hybridation and parallelization of intelligent optimization algorithm
and their application in manufacturing field. On the basis of various modules,
much more efficient algorithms can be generated for different complex problems
ranging from part design to system management. A bran-new design conception is
introduced for intelligent optimization algorithm. However, the new design
method has shifted the difficulty from ‘algorithm design’ to ‘algorithm selection’.
Currently, the most important things to establish such dynamic configuration are
the construction of algorithm module library and the establishment of recommend
rules. The former task has been carried out, as mentioned in Chap. 3, while the
latter one as a core part to realize intelligent dynamic configuration is still a big
challenge.

Specifically, during the configuration process, designer or engineer have to
know the existing operators well enough to select suitable ones for a specific
problem. Balance between exploration and exploitation is highly required in
configuration. However, to most engineers, it is still not easy to make decision.
With less knowledge on different kinds of intelligent optimization algorithms, they
have to do large amount of experiments to traverse all these operators and select
one or two of them according to the results. It is time consuming. Hence, a rule
base is required to provide recommendation in deciding which configuration way
is suitable, which operators to select and how to set the parameters in the specific
algorithms.

For establishing a rule base, we need to classify the existing problem into dif-
ferent kinds firstly. As introduced in Chap. 2, in the whole life cycle, large amount
of numerical function optimization, parameter optimization, detection and classi-
fication, combinatorial scheduling and multi-disciplinary optimization exist in not
only product design, but also process and system management. However, such
classification is far from enough. Each category can further be divided into two
kinds in accordance with whether the variables are continuous or discrete. Different
variables are represented with different encoding scheme. So that one operator in
different encoding scheme is totally different. According to its variables, the
problem can be classified as continuous problem, non-sequencing discrete problem

358 12 Future Trends and Challenges

http://dx.doi.org/10.1007/978-3-319-08840-2_3
http://dx.doi.org/10.1007/978-3-319-08840-2_2

and sequencing discrete problem. For example, traveling salesman problem belongs
to sequencing discrete problem, in which its variables are a serial integral number
and are different from each other, while traditional task scheduling problem is a kind
of non-sequencing discrete problem. Of course in many situations the variables are a
blend of continuous and discrete ones. With such classification, when a problem is
modeled and submitted, a rule must identify which category it belongs to.

Based on the classification, the second step is to classify the existing operators
according to the variable characteristics. For example, the operator of classical ant
colony algorithm is suitable especially for sequencing discrete problem, while the
operator of traditional particle swarm optimization belongs to continuous opera-
tion. With clear operations, this step is easy to implement.

After that, a bunch of heuristics or some learning algorithms, as well as hyper-
heuristics, are required for further determining how to select a group of operators
and configure them for a specific problem. This is crucial and hard to implement.

On one hand, theoretical verifications of intelligent optimization algorithms are
quite less. For a class of problems, we need to take large number of experiments to
see whether an operator is suitable. That is very time consuming. If the problem is
changed, more tests have to taken to adjust the variation. It can be seen that, the
relation between an operator and a class of problems is hard to figure out.

On the other hand, if we have obtained a group of operators, the problems of
which configuration approach to use and how to configure them together are also
two difficulties for us. From a learning point of view, the construction of recom-
mendation rule also requires large amount of experimental and practical data from
a real system.

For overcoming these challenges and establishing a certain level of automatic
configuration, a lot of data obtained from a number of experiments based on
different sorts of problems and the design of high level machine learning algo-
rithms are both imperative.

In spite of this, dynamic configuration of intelligent optimization algorithm can
still be applied with manual control in various kinds of problems not only in
manufacturing but also in other fields. Especially by means of parameter-based
configuration, operator-based configuration and algorithm-based configuration in
both serial and parallel algorithm design, limit operators can produce hundreds of
algorithms in different platforms. As a new design mechanism, it can solve wider
dynamic problems with uncertainties and complex components through diverse
configurations and a bunch of tests.

12.5 Summary

In this chapter, we mainly talked about some related works similar with the
dynamic configuration of intelligent optimization algorithm. The similarities and
differences between the dynamic configuration and hyper-heuristics and multi-
method search are given. Moreover, we showed that the idea of dynamic

12.4 The Challenges on the Development of Dynamic Configuration 359

configuration can be further developed for other algorithms and on different kinds
of hardware platforms. Some future design framework of dynamic configuration
for numerical algorithms in manufacturing is drawn. And two kinds of flexible
implementations of dynamic configurable intelligent optimization algorithms on
FPGA are elaborated.

Currently, all these works are under construction. Each of them can be applied
in different area for fast and efficient design and optimization. Further, for realizing
automatic configuration, as well as in hyper-heuristics, we summarized some
challenges on the development of rule base for dynamic configuration. It is one of
the most crucial components which is imperative for engineers and designers, who
do not have the comprehensive knowledge of intelligent optimization algorithm, to
apply such configuration schemes based on a configurable intelligent optimization
algorithm library.

References

1. Burke EK, Hart E, Kendall G, Newall J, Ross P, Schulenburg S (2003) Hyper-heuristics: an
emerging direction in modern search technology. In: Glover F, Kochenberger G (eds)
Handbook of metaheuristics. Kluwer Academic Publishers, Boston

2. Ross P (2005) Hyper-heuristics, search methodologies. Springer, Berlin
3. Vrugt JA, Robinson BA (2007) Improved evolutionary optimization from genetically

adaptive multimethod search. Proc Natl Acad Sci 104(3):708–711
4. Vrugt JA, Robinson BA, Hyman JM (2009) Self-adaptive multimethod search for global

optimization in real-parameter spaces. IEEE Trans Evol Comput 13(2):243–259
5. Qu R, Burke EK (2009) Hybridisations within a graph based hyper-heuristic framework for

university timetabling problems. J Oper Res Soc 60:1273–1285
6. Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR (2010) A classification of

hyper-heuristic approaches. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics.
Springer, New York, pp 449–468

7. Hart E, Ross P, Nelson JAD (1998) Solving a real-world problem using an evolving
heuristically driven schedule builder. Evol Comput 6(1):61–80

8. Ochoa G, Qu R, Burke EK (2009) Analyzing the landscape of a graph based hyper-heuristic
for timetabling problems. In: Proceedings of the ACM genetic and evolutionary computation
conference (GECCO), pp 341–348

9. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-heuristic
for educational timetabling problems. Eur J Oper Res 176:177–192

10. Vazquez-Rodriguez JA, Petrovic S, Salhi A (2007) A combined meta-heuristic with hyper-
heuristic approach to the scheduling of the hybrid flow shop with sequence dependent setup
times and uniform machines. In: Proceedings of the 3rd multidisciplinary international
scheduling conference: theory and applications (MISTA)

11. Rodríguez JAV, Salhi A (2007) A Robust meta-hyper-heuristic approach to hybrid flow-shop
scheduling. In: Evolutionary scheduling. Springer, Berlin, pp 125–142

12. Cano-Belmán J, Ríos-Mercado RZ, Bautista J (2010) A scatter search based hyper-heuristic
for sequencing a mixed-model assembly line. J Heuristics 16(6):749–770

13. Bai R, Burke EK, Kendall G (2007) Heuristic, meta-heuristic and hyper-heuristic approaches
for fresh produce inventory control and shelf space allocation. J Oper Res Soc
59(10):1387–1397

360 12 Future Trends and Challenges

14. Burke EK, Kendall G, Soubeiga E (2003) A tabu-search hyperheuristic for timetabling and
rostering. J Heuristics 9(6):451–470

15. Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward J (2009) Exploring hyper-
heuristic methodologies with genetic programming. In: Mumford C, Jain L (eds)
Collaborative computational intelligence. Springer, Berlin, pp 177–201

16. Burke EK, Hyde M, Kendall G, Woodward J (2010) A genetic programming hyper-heuristic
approach for evolving 2-D strip packing heuristics. IEEE Trans Evol Comput 14(6):942–958

17. Vrugt JA, Robinson BA, Hyman J (2008) A universal multimethod search strategy for
computationally efficient global optimization. Geological Society of America (GSA), New
York, pp 28–31

18. Zhang X, Srinivasan R, Liew MV (2010) On the use of multi-algorithm, genetically adaptive
multi-objective method for multi-site calibration of the SWAT model. Hydrol Process
24(8):955–969

19. Harp DR, Dai Z, Wolfsberg AV, Vrugt JA, Robinson BA, Vesselinov VV (2008) Aquifer
structure identification using stochastic inversion. Geophys Res Lett 35(8):L08404

20. Köhne JM, Wöhling T, Pot V, Benoit P, Leguédois S, Bissonnais YL, Šimůnek J (2011)
Coupled simulation of surface runoff and soil water flow using multi-objective parameter
estimation. J Hydrol 403(1):141–156

21. Lawson CL, Hanson RJ, Kincaid D, Krogh FT (1979) Basic linear algebra subprograms for
FORTRAN usage. ACM Trans Math Softw 5:308–323 (Algorithm 539)

22. Choi J, Dongarra J, Ostrouchov S, Petitet A, Walker D, Whaley RC (1996) A proposal for a
set of parallel basic linear algebra subprograms. In: Applied parallel computing computations
in physics, chemistry and engineering science. Springer, Berlin, pp 107–114

23. Dongarra JJ (ed) (1979) LINPACK users’ guide, vol 8. Siam, Philadelphia
24. Balay S, Gropp WD, McInnes LC, Smith BF (1996) PETSc 2.0 users manual. Mathematics

and computer science division (UC-405), Argonne National Laboratory

References 361

	Acknowledgements
	Contents
	Part IIntroduction and Overview
	1 Brief History and Overview of Intelligent Optimization Algorithms
	1.1…Introduction
	1.2…Brief History of Intelligent Optimization Algorithms
	1.3…Classification of Intelligent Algorithms
	1.4…Brief Review of Typical Intelligent Optimization Algorithms
	1.4.1 Review of Evolutionary Learning Algorithms
	1.4.1.1 Genetic Algorithm
	1.4.1.2 Immune Algorithm

	1.4.2 Review of Neighborhood Search Algorithms
	1.4.2.1 Simulated Annealing Algorithm
	1.4.2.2 Iterative Local Search

	1.4.3 Review of Swarm Intelligence Algorithm
	1.4.3.1 Ant Colony Optimization
	1.4.3.2 Particle Swarm Optimization

	1.5…The Classification of Current Studies on Intelligent Optimization Algorithm
	1.5.1 Algorithm Innovation
	1.5.2 Algorithm Improvement
	1.5.3 Algorithm Hybridization
	1.5.4 Algorithm Parallelization
	1.5.5 Algorithm Application

	1.6…Development Trends
	1.6.1 Intellectualization
	1.6.2 Service-Orientation
	1.6.3 Application-Oriented
	1.6.4 User-Centric

	1.7…Summary
	References

	2 Recent Advances of Intelligent Optimization Algorithm in Manufacturing
	2.1…Introduction
	2.2…Classification of Optimization Problems in Manufacturing
	2.2.1 Numerical Function Optimization
	2.2.2 Parameter Optimization
	2.2.3 Detection and Classification
	2.2.4 Combinatorial Scheduling
	2.2.5 Multi-disciplinary Optimization
	2.2.6 Summary of the Five Types of Optimization Problems in Manufacturing

	2.3…Challenges for Addressing Optimization Problems in Manufacturing
	2.3.1 Balance of Multi-objectives
	2.3.2 Handling of Multi-constraints
	2.3.3 Extraction of Priori Knowledge
	2.3.4 Modeling of Uncertainty and Dynamics
	2.3.5 Transformation of Qualitative and Quantitative Features
	2.3.6 Simplification of Large-Scale Solution Space
	2.3.7 Jumping Out of Local Convergence

	2.4…An Overview of Optimization Methods in Manufacturing
	2.4.1 Empirical-Based Method
	2.4.2 Prediction-Based Method
	2.4.3 Simulation-Based Method
	2.4.4 Model-Based Method
	2.4.5 Tool-Based Method
	2.4.6 Advanced-Computing-Technology-Based Method
	2.4.7 Summary of Studies on Solving Methods

	2.5…Intelligent Optimization Algorithms for Optimization Problems in Manufacturing
	2.6…Challenges of Applying Intelligent Optimization Algorithms in Manufacturing
	2.6.1 Problem Modeling
	2.6.2 Algorithm Selection
	2.6.3 Encoding Scheming
	2.6.4 Operator Designing

	2.7…Future Approaches for Manufacturing Optimization
	2.8…Future Requirements and Trends of Intelligent Optimization Algorithm in Manufacturing
	2.8.1 Integration
	2.8.2 Configuration
	2.8.3 Parallelization
	2.8.4 Executing as Service

	2.9…Summary
	References

	Part IIDesign and Implementation
	3 Dynamic Configuration of Intelligent Optimization Algorithms
	3.1…Concept and Mainframe of DC-IOA
	3.1.1 Mainframe of DC-IOA
	3.1.2 Problem Specification and Construction of Algorithm Library in DC-IOA

	3.2…Case Study
	3.2.1 Configuration System for DC-IOA
	3.2.2 Case Study of DC-IOA
	3.2.3 Performance Analysis
	3.2.4 Comparison with Traditional Optimal Process

	3.3…Summary
	References

	4 Improvement and Hybridization of Intelligent Optimization Algorithm
	4.1…Introduction
	4.2…Classification of Improvement
	4.2.1 Improvement in Initial Scheme
	4.2.2 Improvement in Coding Scheme
	4.2.3 Improvement in Operator
	4.2.4 Improvement in Evolutionary Strategy

	4.3…Classification of Hybridization
	4.3.1 Hybridization for Exploration
	4.3.2 Hybridization for Exploitation
	4.3.3 Hybridization for Adaptation

	4.4…Improvement and Hybridization Based on DC-IA
	4.5…Summary
	References

	5 Parallelization of Intelligent Optimization Algorithm
	5.1…Introduction
	5.2…Parallel Implementation Ways for Intelligent Optimization Algorithm
	5.2.1 Parallel Implementation Based on Multi-core Processor
	5.2.2 Parallel Implementation Based on Computer Cluster
	5.2.3 Parallel Implementation Based on GPU
	5.2.4 Parallel Implementation Based on FPGA

	5.3…Implementation of Typical Parallel Topologies for Intelligent Optimization Algorithm
	5.3.1 Master-Slave Topology
	5.3.2 Ring Topology
	5.3.3 Mesh Topology
	5.3.4 Full Mesh Topology
	5.3.5 Random Topology

	5.4…New Configuration in Parallel Intelligent Optimization Algorithm
	5.4.1 Topology Configuration in Parallelization Based on MPI
	5.4.2 Operation Configuration in Parallelization Based on MPI
	5.4.3 Module Configuration in Parallelization Based on FPGA

	5.5…Summary
	References

	Part IIIApplication of Improved IntelligentOptimization Algorithms
	6 GA-BHTR for Partner Selection Problem
	6.1…Introduction
	6.2…Description of Partner Selection Problem in Virtual Enterprise
	6.2.1 Description and Motivation
	6.2.2 Formulation of the Partner Selection Problem (PSP)

	6.3…GA-BHTR for PSP
	6.3.1 Review of Standard GA
	6.3.2 Framewrok of GA-BHTR
	6.3.3 Graph Generation for Representing the Precedence Relationship Among PSP
	6.3.4 Distribute Individuals into Multiple Communities
	6.3.5 Intersection and Mutation in GA-BHTR
	6.3.6 Maintain Data Using the Binary Heap
	6.3.7 The Catastrophe Operation

	6.4…Simulation and Experiment
	6.4.1 Effectiveness of the Proposed Transitive Reduction Algorithm
	6.4.2 Effectiveness of Multiple Communities
	6.4.3 Effectiveness of Multiple Communities While Considering the DISMC Problem
	6.4.4 Effectiveness of the Catastrophe Operation
	6.4.5 Efficiency of Using the Binary Heap

	6.5…Summary
	References

	7 CLPS-GA for Energy-Aware Cloud Service Scheduling
	7.1…Introduction
	7.2…Related Works
	7.3…Modeling of Energy-Aware Cloud Service Scheduling in Cloud Manufacturing
	7.3.1 General Definition
	7.3.2 Objective Functions and Optimization Model
	7.3.3 Multi-Objective Optimization Model for the Resource Scheduling Problem

	7.4…Cloud Service Scheduling with CLPS-GA
	7.4.1 Pareto Solutions for MOO Problems
	7.4.1.1 Domination and Non-Inferiority
	7.4.1.2 Rank, Front and Pareto Solutions

	7.4.2 Traditional Genetic Algorithms for MOO Problems
	7.4.3 CLPS-GA for Addressing MOO Problems

	7.5…Experimental Evaluation
	7.5.1 Data and Implementation
	7.5.2 Experiments and Results
	7.5.3 Comparison Between TPCO and MPCO
	7.5.4 Improvements Due to the Case Library
	7.5.5 Comparison Between CLPS-GA and Other Enhanced GAs

	7.6…Summary
	References

	Part IVApplication of Hybrid IntelligentOptimization Algorithms
	8 SFB-ACO for Submicron VLSI Routing Optimization with Timing Constraints
	8.1…Introduction
	8.2…Preliminary
	8.2.1 Terminology in Steiner Tree
	8.2.2 Elmore Delay
	8.2.3 Problem Formulation

	8.3…SFB-ACO for Addressing MSTRO Problem
	8.3.1 ACO for Path Planning with Two Endpoints
	8.3.2 Procedure for Constructing Steiner Tree Using SFB-ACO
	8.3.3 Constraint-Oriented Feedback in SFB-ACO

	8.4…Implementation and Results
	8.4.1 Parameters Selection
	8.4.2 Improvement of Synergy
	8.4.3 Effectiveness of Constraint-Oriented Feedback

	8.5…Summary
	References

	9 A Hybrid RCO for Dual Scheduling of Cloud Service and Computing Resource in Private Cloud
	9.1…Introduction
	9.2…Related Works
	9.3…Motivation Example
	9.4…Problem Description
	9.4.1 The Modeling of DS-CSCR in Private Cloud
	9.4.2 Problem Formulation of DS-CSCR in Private Cloud

	9.5…Ranking Chaos Algorithm (RCO) for DS-CSCR in Private Cloud
	9.5.1 Initialization
	9.5.2 Ranking Selection Operator
	9.5.3 Individual Chaos Operator
	9.5.4 Dynamic Heuristic Operator
	9.5.5 The Complexity of the Proposed Algorithm

	9.6…Experiments and Discussions
	9.6.1 Performance of DS-CSCR Compared with Traditional Two-Level Scheduling
	9.6.2 Searching Capability of RCO for Solving DS-CSCR
	9.6.3 Time Consumption and Stability of RCO for Solving DS-CSCR

	9.7…Summary
	References

	Part VApplication of Parallel IntelligentOptimization Algorithms
	10 Computing Resource Allocation with PEADGA
	10.1…Introduction
	10.2…Related Works
	10.3…Motivation Example of OACR
	10.4…Description and Formulation of OACR
	10.4.1 The Structure of OACR
	10.4.2 The Characteristics of CRs in CMfg
	10.4.3 The Formulation of the OACR Problem

	10.5…NIA for Addressing OACR
	10.5.1 Review of GA, ACO and IA
	10.5.2 The Configuration OfNIA for the OACR Problem
	10.5.3 The Time Complexity of the Proposed Algorithms

	10.6…Configuration and Parallelization of NIA
	10.7…Experiments and Discussions
	10.7.1 The Design of the Heuristic Information in the Intelligent Algorithms
	10.7.2 The Comparison of GA, ACO, IA and NDIA for Addressing OACR
	10.7.3 The Performance of PNIA

	10.8…Summary
	References

	11 Job Shop Scheduling with FPGA-Based F4SA
	11.1…Introduction
	11.2…Problem Description of Job Shop Scheduling
	11.3…Design and Configuration of SA-Based on FPGA
	11.3.1 FPGA-Based F4SA Design for JSSP
	11.3.2 FPGA-Based Operators of F4SA
	11.3.3 Operator Configuration Based on FPGA

	11.4…Experiments and Discussions
	11.5…Summary
	References

	Part VIFuture Works of Configurable IntelligentOptimization Algorithm
	12 Future Trends and Challenges
	12.1…Related Works for Configuration of Intelligent Optimization Algorithm
	12.2…Dynamic Configuration for Other Algorithms
	12.3…Dynamic Configuration on FPGA
	12.4…The Challenges on the Development of Dynamic Configuration
	12.5…Summary
	References

