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Abstract. Probabilistic fuzzy systems combine a linguistic description
of the system behaviour with statistical properties of data. It was orig-
inally derived based on Zadeh’s concept of probability of a fuzzy event.
Two possible and equivalent additive reasoning schemes were proposed,
that lead to the estimation of the output’s conditional probability den-
sity. In this work we take a complementary approach and derive a prob-
abilistic fuzzy system from an additive fuzzy system. We show that some
fuzzy systems with universal approximation capabilities can compute the
same expected output value as probabilistic fuzzy systems and discuss
some similarities and differences between them. A practical relevance of
this functional equivalence result is that learning algorithms, optimiza-
tion techniques and design issues can, under certain circumstances, be
transferred across different paradigms.

Keywords: Probabilistic Fuzzy Systems, Additive Fuzzy Systems,
Conditional Density Approximation.

1 Introduction

Probabilistic fuzzy systems (PFS) can deal explicitly and simultaneously with
fuzziness or linguistic uncertainty and probabilistic uncertainty. A probabilistic
fuzzy system follows an idea similar to [1–4] where the different concepts [5–8]
of fuzzy sets and probabilities are complementary [6].

As a mathematical notion, a fuzzy set F on a finite universe U is unambigu-
ously defined by a membership function uF : U → [0, 1]. The mathematical
object representing the fuzzy set is the membership function uF (x) indicating
the grade of membership of element of x ∈ U in F . At the mathematical level the
domain of the fuzzy sets is [0, 1]U . On the other hand a probabilistic measure Pr
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of an experiment ε yet to be performed, is a mapping 2U → [0, 1] that assigns a
number Pr(A) of event A to each subset of U , satisfying the Kolmogorov axioms.
Pr(A) is the probability that a generic outcome of ε, an ill-known single-valued
variable x, hits the well-known set A. If the outcome of ε is such that x ∈ A,
then we say that event A has occurred. In this case there is uncertainty about
the occurrence of any particular x and consequently of event A. This uncertainty
is described by Pr(A). At the mathematical level the domain of the mapping Pr
is the Boolean algebra 2U .

Various rule base structures and reasoning mechanisms for fuzzy systems (e.g.
[9–11]), emphasize the modelling of the linguistic uncertainty and interpolation
capability of fuzzy systems, being typically used for approximating deterministic
functions, in which the stochastic uncertainty is ignored. A probabilistic fuzzy
system, as it was formally defined in [12], was based on the concept of proba-
bility of fuzzy events. This type of system estimates a conditional probability
density function for the output variable, given the inputs to the system. Two
equivalent additive reasoning mechanism have been proposed for PFS, one based
on the concept of fuzzy histograms and another based on the stochastic mapping
between fuzzy antecedents and fuzzy consequents.

In this work we follow a different reasoning and derive a probabilistic fuzzy
system starting from a additive fuzzy system. This different analysis provides a
different insight and understanding of probabilistic fuzzy systems, which can be
related to Mamdani fuzzy systems and fuzzy relational models and departs from
the concept of probability of fuzzy events. This allows us to formalize the defi-
nition of probabilistic fuzzy systems while exposing similarities and differences
with different models or concepts. The relation of probabilistic fuzzy system to
well known fuzzy systems helps to explain its success for function approximation.
A practical relevance of the functional equivalence presented in this work is that
learning algorithms, optimization techniques and design issues can be transferred
to probabilistic fuzzy systems. Furthermore, it also allows to interpret models
transversely across different modeling paradigms.

The outline of the paper is as follows. In Section 2, we give an overview of the
original definition of probabilistic fuzzy systems and present the two equivalent
additive reasoning mechanisms of a PFS, as well as the different outputs. In
Section 3 we present the new derivation of a probabilistic fuzzy system starting
from fuzzy additive systems and discuss in Section 4 several issues related to our
findings. Finally we conclude the paper in Section 5.

2 Probabilistic Fuzzy Systems

Probabilistic fuzzy systems combine two different types of uncertainty, namely
fuzziness or linguistic vagueness, andprobabilistic uncertainty. In thisworkwe con-
sider that the probabilistic uncertainty relate to aleatoric variability, while fuzzy
sets are used to represent gradualness, epistemic uncertainty or bipolarity [7, 13].

The PFS consists of a set of rules whose antecedents are fuzzy conditions
and whose consequents are probability distributions. Assuming that the input
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space is a subset of Rn and that the rule consequents are defined on a finite
domain Y ⊆ R, a probabilistic fuzzy system consists of a system of rules Rq,
q = 1, . . . , Q, of the type

Rq : If x is Aq then f(y) is f(y|Aq) , (1)

where x ∈ R
n is an input vector, Aq : X −→ [0, 1] is a fuzzy set defined on X

and f(y|Aq) is the conditional pdf of the stochastic output variable y given the
fuzzy event Aq. The interpretation is as follows: if fuzzy antecedent Aq is fully
valid (x ∈ core(Aq)), then y is a sample value from the probability distribution
with conditional pdf f(y|Aq).

A PFS has been described with two possible and equivalent reasoning mecha-
nisms, namely the fuzzy histogram approach and the probabilistic fuzzy output
approach [12]. In both cases, we suppose that J fuzzy classes Cj form a fuzzy
partition of the compact output space Y .

2.1 Fuzzy Histogram Model

In the fuzzy histogram approach, we replace in each rule of (1) the true pdf

f(y|Aq) by its fuzzy approximation (fuzzy histogram) f̂(y|Aq) yielding the rule

set R̂q, q = 1, . . . , Q defined as

R̂q : If x is Aq then f(y) is f̂(y|Aq) , (2)

where f̂(y|Aq) is a fuzzy histogram conform [14]

f̂(y|Aq) =
J∑

j=1

P̂r(Cj |Aq)uCj(y)∫∞
−∞ uCj (y)dy

. (3)

The numerator in (3) describes a superposition of fuzzy events described by
their membership functions uCj (y), weighted by the probability P̂r(Cj |Aq) of
the fuzzy event. The denominator of (3) is a normalizing factor representing the
fuzzified size of class Cj . Because of overlapping membership functions, fuzzy
histograms have a high level of statistical efficiency, compared to crisp ones
and several classes of fuzzy histograms also have a high level of computational
efficiency [15].

The interpretation of this type of reasoning is as follows. Given the occurrence
of a (multidimensional) antecedent fuzzy event Aq, which is a conjunction of
the fuzzy conditions defined on input variables, an estimate of the conditional
probability density function based on a fuzzy histogram f̂(y|Aq) is calculated.

2.2 Probabilistic Fuzzy Output Model

In the probabilistic fuzzy output approach, sometimes also referred to as Mam-
dani PFS [16–18], we decompose each rule (1) to provide a stochastic mapping
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between its fuzzy antecedents and its fuzzy consequents. The rules are written
in the following form.

Rule R̂q: If x is Aq then y is C1 with P̂r(C1|Aq) and
. . .

y is CJ with P̂r(CJ |Aq).

(4)

These rules specify a probability distribution over a collection of fuzzy sets that
partition the output domain. The rules of a PFS also express linguistic informa-
tion and they can be used to explain the model behaviour by a set of linguistic
rules. This way, the system deals both with linguistic uncertainty as well as
probabilistic uncertainty.

The interpretation for the probabilistic fuzzy output approach is as follows.
Given the occurrence of a (multidimensional) antecedent fuzzy event Aq, which
is a conjunction of the fuzzy conditions defined on input variables, each of the
consequent fuzzy events Cj is likely to occur. The selection of consequent fuzzy

events is done proportionally to the conditional probabilities P̂r(Cj |Aq), (j =
1, 2, . . . , J). This applies for all the rules Rq, q = 1, 2, . . . , Q.

The probabilistic fuzzy system in this form resembles a deterministic Mamdani
fuzzy system with rule base multiplicative implication and additive aggregation.
The difference lies in the fact that in a Mamdani fuzzy system only one of the
outputs is considered in each rule, while in a PFS, each fuzzy output Cq can

happen with a given conditional probability P̂r(Aq |Cj).

2.3 Outputs of Probabilistic Fuzzy Systems

Although the fuzzy rule bases (2) and (4) are different, under certain conditions,
the two corresponding probabilistic fuzzy systems implement the same crisp
input-output mapping [12]. The output of the fuzzy rules (4) is the same as
in the rules (2), if an additive reasoning scheme is used with multiplicative
aggregation of the rule antecedents [19].

Given an input vector x, the output of a probabilistic fuzzy system is a con-
ditional density function which can be computed as

f̂(y|x) =
J∑

j=1

Q∑

q=1

βq(x)P̂r(Cj |Aq)
uCj(y)∫∞

−∞ uCj (y)dy
, (5)

where

βq(x) =
uAq(x)∑Q

q′=1 uAq′ (x)
(6)

is the normalised degree of fulfillment of rule Rq and uAq is the degree of fulfill-
ment of rule Rq. When x is n-dimensional, uAq is determined as a conjunction
of the individual memberships in the antecedents computed by a suitable t-
norm, i.e., uAq (x) = uAq1

(x1) ◦ · · · ◦ uAqn
(xn), where xi, i = 1, . . . , n is the i-th
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component of x and ◦ denotes a t-norm. From the obtained output probability
distribution it is possible to calculate a crisp output using the expected value

μ̂y|x = Ê(y|x) =
∫ ∞

−∞
yf̂(y|x)dy =

Q∑

q=1

J∑

j=1

βq(x)P̂r(Cj |Aq)z1,j , (7)

where z1,j is the centroid of the jth output fuzzy set defined by

z1,j =

∫∞
−∞ yuCj(y)dy∫∞
−∞ uCj(y)dy

. (8)

It can be shown [12] that the conditional density output f̂(y|x) of a PFS is a

proper probability density function i.e.,
∫∞
−∞ f̂(y|x)dy = 1 and that the crisp

outputs, expected value Ê(y|x) and second moment Ê(y2|x), exist if the output
space is well-formed, i.e. the output membership values satisfy

J∑

j=1

uCj(y) = 1, ∀y ∈ Y, y < ∞. (9)

3 Probabilistic Fuzzy Systems as Additive Fuzzy Systems

In this work we depart from the previous definition presented in Section 2.2 and
instead derive a probabilistic fuzzy system from an additive fuzzy system. This
deterministic fuzzy system has rule base multiplicative implication and additive
aggregation, where the crisp model output is obtained using the center of gravity
defuzzification method. In the following section we present the additive fuzzy
system under consideration and how it can be converted in a probabilistic fuzzy
system.

3.1 Additive Fuzzy Systems

Let R = ∪Q
q=1Rq be a rule base for a additive fuzzy system of the type

Rule R̂q: If x is Aq then y is C1 with w(Aq , C1) and
. . .

y is CJ with w(Aq , CJ) ,
(10)

where w(Aq , Cj) ∈ R≥0 are non-negative weights. The system defined by (10) is
similar to the standard additive model [20, 21] but in the former, the consequents
are not directly dependent on x.

Although the fuzzy rule base system defined by (10) can be obtained by replac-
ing the conditional probabilities P̂r(Cj |Aq) by non-negative weights w(Aq , Cj) ∈
R≥0 in the fuzzy rule system (4), the crisp output of both systems is different,
as the following theorem shows.
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Theorem 1. Let R = ∪Q
q=1Rq be a fuzzy rule base as defined by (10) such

that uAq(x) > 0, ∀q and the output space follows (9), and the rule base uses
multiplicative implication and additive aggregation. Then the crisp model output
y∗ obtained using the center of gravity defuzzification method is

y∗ =

∑Q
q=1

∑J
j=1 βq(x)w(Aq , Cj)v1,jz1,j

∑Q
q=1

∑J
j=1 βq(x)w(Aq , Cj)v1,j

, (11)

where z1,j is given by (8) and v1,j is the area of the jth output fuzzy set defined
by

v1,j =

∫ ∞

−∞
uCj(y)dy . (12)

Proof. The center of gravity defuzzification method is given by

y∗ =

∫∞
−∞ yχ(x, y)dy
∫∞
−∞ χ(x, y)dy

, (13)

where χ(x, y) is the output of the fuzzy system under consideration. For the
case of the additive fuzzy system (10) using with multiplicative implication and
additive aggregation the output is

χ(x, y) =

Q∑

q=1

J∑

j=1

βq(x)w(Aq , Cj)uCj(y) . (14)

Substituting (14) into (13) we obtain

y∗ =
∫ ∞
−∞ y

∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)uCj

(y)dy
∫ ∞
−∞

∑Q
q=1

∑
J
j=1 βq(x)w(Aq,Cj)uCj

(y)dy

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ yuCj

(y)dy
∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ uCj

(y)dy

=

∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ uCj

(y)dy

∫∞−∞ yuCj
(y)dy

∫∞−∞ uCj
(y)dy

∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ uCj

(y)dy

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)v1,jz1,j

∑Q
q=1

∑
J
j=1 βq(x)w(Aq,Cj)v1,j

.

(15)

3.2 Equivalence to Probabilistic Fuzzy Systems

Starting from an additive fuzzy system defined in (10), it is possible to obtain
a probabilistic fuzzy system. Before formalizing this result we introduce the
following definition of a probability kernel.

Definition 1. A kernel is a mapping K : X × Y → R≥0 from the measurable
space (X,X ) to the measurable space (Y,Y). The kernel K is a probability kernel
if it is defined as a probability measure on (Y,Y).
Given this definition we can now prove that a probabilistic fuzzy system can be
obtained starting from the fuzzy system defined in (10).
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Theorem 2. If the mapping w(Aq , Cj) is defined as a probability kernel and
each output consequent Cj are functions defined on a random variable space then
the output of the PFS is a conditional probability density for y given x. Under
this definition, the fuzzy rule base in (10) has a functional equivalent to the PFS
in (4) and the crisp output (11) has a functional equivalent to the conditional
output of the PFS in (5).

Proof. The defined non-negative weights w(Aq , Cj) : (X × Y ) → R≥0 form
a kernel on the measurable space (Rn × R). If w(Aq, Cj) is also defined as a

probability measure on (Y,Y), such that
∑J

j=1 w(Aq , Cj) = 1, ∀q = 1, . . . , Q
then according to Definition 1, w(Aq , Cj) is a probability kernel. We recall that

using (6) we obtain
∑Q

q=1 βq(x) = 1. Furthermore, since the output fuzzy sets
Cj are admissible functions for defining random variables then they are limited
to those for which a probability distribution exists. A simple form to ensure this
is to normalize them

uC
′
j
=

uCj(y)∫∞
−∞ uCj(y)dy

. (16)

The output of the fuzzy system χ(x, y) in (13) is then a conditional density
function for Y given X such that:

∫∞
−∞ χ(x, y)dy =

∫∞
−∞

∑Q
q=1

∑J
j=1 βq(x)w(Aq , Cj)uC

′
j
dy

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq , Cj)

∫∞
−∞ uCj

(y)
∫∞
−∞ uCj

(y)dy
= 1 .

(17)

In the case that w(Aq, Cj) is defined as a probability kernel, the additive
fuzzy system defined by the rule base (10) is a probabilistic fuzzy system as
presented in (4). Furthermore, the center of gravity output (11) of the additive
fuzzy system has a functional equivalent to the expectation of the conditional
output of the PFS (5)

y∗ =
∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)v1,jz1,j

∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)v1,j

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq , Cj)z1,j .

(18)

Since w(Aq , Cj) is a probability kernel, (18) is equivalent to (7).

A practical relevance of the functional equivalence result is that learning algo-
rithms, optimization techniques and design issues can be transferred across dif-
ferent paradigms. Furthermore, this result helps to explain the success of fuzzy
systems for function approximation in the presence of probabilistic uncertainty.

4 Discussion

The previous sections have shown that a probabilistic fuzzy system defined by
(4) can be obtained starting from a additive fuzzy system (10). An important
aspect is that since w(Aq, Cj) is defined as a probability kernel then it has a
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functional equivalent to Pr(Cj |Aq) in (4), implying that
∑J

j=1 P̂r(Cj |Aq) = 1 and

P̂r(Cj |Aq) ≥ 0. In this paper we do not assume any particular algebraic structure
for the conditional probability of fuzzy events. There are several examples of
definitions of conditional probabilities of fuzzy events that satisfy the classical
axioms of conditional probabilities as given by [22] and [23] that can be found in
[24–26]. This is an important issue that needs to be studied closely in the future.

It is also interesting to note that the system defined by (10) can be trans-
formed in a fuzzy relational model [11] when w(Aq , Cj) is replaced by the fuzzy
relation u(Aq, Cj). Similarly to a fuzzy relational model, a probabilistic fuzzy sys-

tem can also be fine tuned by modifying the probability parameters P̂r(Cj |Aq),
while maintaining the fuzzy input and fuzzy output space constant. We stress
that a fuzzy relational model and a probabilistic fuzzy system have different
interpretations, based on the nature of the uncertainty of the relation and out-
put being modelled, as described in Section 1. In a fuzzy relational model the
elements of the relation represent the strength of association between the fuzzy
sets, while in the case of a fuzzy probabilistic model they are a stochastic map-
ping between fuzzy sets. Furthermore, the output fuzzy sets of a probabilistic
fuzzy system are defined in the space of a stochastic variable y. These differences
leads to different nature of outputs, albeit under certain circumstances, there is
a functional equivalence between both models crisp output. In the general case
that w(Aq , Cj) are non-negative weights, or in the case of a fuzzy relational
model u(Aq, Cj) are fuzzy relations, the output of such a system is not a proper
probability density function.

As a result of theorem 1 and theorem 2, a Mamdani fuzzy model can be
regarded as a special case of the fuzzy system defined in (10), or equivalently the
system defined by (4). A Mamdani fuzzy model is recovered when the system
is purely deterministic by setting setting for all q = 1, . . . , Q, ∃κ ∈ {1 . . . , J}
such that P̂r(Cκ|Aq) = 1 and P̂r(Cj |Aq) = 0, j �= κ i.e., only one of the possible
consequents is certain for each rule Q.

5 Conclusions

This paper presents a new form to derive a probabilistic fuzzy system start-
ing from an additive fuzzy system. This new reasoning departs from the original
derivation of a PFS which was based on Zadehs’ concept of probability of a fuzzy
event. We show that in certain cases an additive fuzzy system can compute the
same expected output value as a PFS. We discuss some similarities between
Mamdani and fuzzy relation models with probabilistic fuzzy systems. A prac-
tical relevance of the functional equivalence result is that learning algorithms,
optimization techniques and design issues can be transferred across different
paradigms. Furthermore, our results provide insight why additive determinis-
tic fuzzy systems have proven to be so successful for function approximation
purposes.
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