On SPI for Evaluating Influence Diagrams

Rafael Cabafias!, Anders L. Madsen?, Andrés Cano!, and Manuel Gémez-Olmedo!

' Department of Computer Science and Artificial Intelligence CITIC,
University of Granada, Spain
{rcabanas,mgomez, acu}@decsai.ugr.es
2 HUGIN EXPERT A/S and Department of Computer Science,
Aalborg University Aalborg, Denmark
anders@hugin.com

Abstract. An Influence Diagram is a probabilistic graphical model used to repre-
sent and solve decision problems under uncertainty. Its evaluation requires to per-
form a series of combinations and marginalizations with the potentials attached
to the Influence Diagram. Finding an optimal order for these operations, which
is NP-hard, is an element of crucial importance for the efficiency of the evalua-
tion. The SPI algorithm considers the evaluation as a combinatorial factorization
problem. In this paper, we describe how the principles of SPI can be used to solve
Influence Diagrams. We also include an evaluation of different combination se-
lection heuristics and a comparison with the variable elimination algorithm.

Keywords: Influence Diagrams, Combinatorial Factorization Problem,
Exact Evaluation, Heuristic Algorithm.

1 Introduction

Influence Diagrams (IDs) [1,2] provide a framework to model decision problems with
uncertainty for a single decision maker. The goal of evaluating an ID is to obtain the
best option for the decision maker (optimal policy) and its utility.

Most of the evaluation algorithms proposed in the literature [3,4,5,6] require to per-
form a series of combinations and marginalizations with the probability and utility func-
tions (potentials). Finding an optimal order for these operations, which is NP-hard [7],
is an element of crucial importance for the efficiency of the evaluation. Thus the eval-
uation of an ID can be seen as a combinatorial factorization problem. This idea was
already used to make inference in Bayesian Networks (BNs) with the first version of
Symbolic Probabilistic Inference algorithm (SPI) [8] and with an improved algorithm
in the SPI family called set-factoring [9]. In a related work [10] some experiments with
SPI were performed to evaluate decision networks, however it was not given any detail
of the algorithm. In this paper we describe the SPI algorithm for evaluating IDs taking
into account the differences of an ID: two kind of potentials, the temporal order between
decisions, etc. The experimental work shows how SPI can improve the efficiency of the
evaluation on some IDs and different combination selection heuristics are compared.

The paper is organized as follows: Section 2 introduces some basic concepts about
IDs and the motivation of this work; Section 3 describes how SPI can be used for evalu-
ating IDs; Section 4 includes the experimental work and results; finally Section 5 details
our conclusions and lines for future work.
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2 Preliminaries

2.1 Influence Diagrams

An ID [1,2] is a probabilistic graphical model for decision analysis under uncertainty
with three kinds of nodes: chance nodes (circles) that represent random variables; de-
cision nodes (squares) that correspond with the actions which the decision maker can

control; and utility nodes (hexagons) that represent decision maker preferences.
We denote by % the set of chance nodes, by %) the set of decision nodes, and by

Zy the set of utility nodes. The decision nodes have a temporal order, Dy,...,D,, and
the chance nodes are partitioned into a collection of disjoint sets according to when
they are observed: .# is the set of chance nodes observed before Dy, and .%; is the set
of chance nodes observed after decision D; is taken and before decision D, | is taken.
Finally, .#, is the set of chance nodes observed after D,,. That is, there is a partial order:
Sy <Dy < F <--- <D, <%, Fig. 1 shows an example of an ID.

Fig.1. An ID for a decision problem with one decision D1. The set of chance variables is par-
titioned into the sets: %) = {A} and .#] = {B,C,E,F,G}. The utility function is a sum of two
local utilities, one associated to D1, G, and F and the other associated to D1, C, and E.

In the description of an ID, it is more convenient to think in terms of predecessors: the
parents of a chance node X;, denoted pa(X;), are also called conditional predecessors.
The parents of a utility node V;, denoted pa(V;), are also called conditional predecessors.
Similarly, the parents of a decision D; are called informational predecessors and are
denoted pa(D;). Informational predecessors of each decision D;, must include previous
decisions and their informational predecessors (no-forgetting assumption).

The universe of the ID is % = U % = {Xi,...,Xm}. Let us suppose that each
variable X; takes values on a finite set Qx, = {x,... X QXi‘}. Each chance node X; has
a conditional probability distribution P(X;|pa(X;)) associated. In the same way, each
utility node V; has a utility function U (pa(V;)) associated. In general, we will talk about
potentials (not necessarily normalized). The set of all variables involved in a potential
¢ is denoted dom(¢), defined on Qg 9) = x{Qx|X; € dom(¢)}. The elements of
Q4om(¢) are called configurations of ¢. Therefore, a probability potential denoted by
¢ is a mapping ¢ : Qy4() — [0,1]. A utility potential denoted by v is a mapping
Y Q4om(y) — R. The set of probability potentials is denoted by @ while the set of
utility potentials is denoted by V.
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2.2 Motivation

The goal of evaluating an ID is to obtain an optimal policy J; for each decision D, that is
a function of a subset of its informational predecessors. The optimal policy maximizes
the expected utility for the decision.

Optimal policy: Let ID be an influence diagram over the universe % = Uc\J %p and
let %y be the set of utility nodes. Let the temporal order of the variables be described
as 9y <Dy < F < - < D, < ., Then, an optimal policy for D; is

6Di(ﬂo,D1,...,Ji,1)fargmaXZmax maxz H (X|pa(X)) ( 2 U(pa(V))) (1
7 Disy Dy I XU Vewy
For example consider the ID shown in Fig. 1. The optimal policy for D; can be
calculated directly from Eq.1:

op, (A )—argrrll)ax 2 P(G)P(F)P(E)P(C)P(B|C,E,F,G)P(A|B)U 2)
! GFECB

where U = (U, (G, F,Dy) + Uy(E,C,Dy)) is the sum of the local utilities. The table
representing the joint probability of all chance variables might be too large. For that
reason, some evaluation algorithms such as Variable Elimination (VE) for IDs [11] re-
order the marginalizations of the variables as follows:

3p,(A) = argr%a}x%P(G) ;P(F) %P(E) ;P(C) EB:P(B\C,E,F, G)P(AIBU (3)

Assuming that all the variables are binary and considering only the computations be-
tween probability potentials, the calculation of Op, (A) requires 124 multiplications and
64 additions to marginalize out the variables in .%,. Independently of the elimination
ordering used to solve this ID, VE will always have to combine the marginal poten-
tials with a large potential such as P(B|C,E,F,G) or P(A|C,E,F,G). However, with a
re-order of the operations this situation can be avoided:

3p, (4) = argmax > ( (A|B) (P(E)P(C))) (%P(BIC,E,F,G)(P(F)P(G))U>>
F,

' BCE

“)
Using Eq.4 the calculation of the optimal policy requires 72 multiplications and 32
additions. In some cases it could be better to combine small potentials even if they do
not share any variable (e.g., P(E) and P(C)). This combination will never be performed
using VE since it is guided by the elimination ordering. Thus the efficiency of the evalu-
ation can be improved if an optimization in the order of both operations, marginalization

and combination, is performed [9].

3 Symbolic Probabilistic Inference

3.1 Overview

As VE does, SPI removes all variables in the decision problem in reverse order of the
partial ordering imposed by the information constraints. That is, it first sum-marginalizes
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#,, then max-marginalizes D,, sum-marginalizes .#;_;, etc. This type of elimination
order is called a strong elimination order [12]. The general scheme of SPI algorithm as
presented in this paper is shown in Definition 1.

Definition 1 (SPI Algorithm)

Let ID be an influence diagram. Let @ and W be the set of all probability and util-
ity potentials respectively. Let the temporal order of the variables be described as
Sy <Dy < I < --- <D, < . Then, the procedure for evaluating the ID using SPI
algorithm is:

1. for (k:=n;k>0;k:=k—1)
(a) Remove chance variables in %, (Definition 2)
(b) Remove decision Dy (Definition 4)

2. Remove chance variables in %y (Definition 2)

VE considers the evaluation as a problem of finding the optimal elimination ordering
whereas SPI considers it as a combinatorial factorization problem. That is, VE chooses
at each step the best variable to remove while SPI chooses the best pair of potentials
to combine and eliminate the variables when possible. In this sense SPI is finer grained
than VE.

3.2 Removal of Chance Variables

In order to remove a subset of chance variables .%, our version of SPI considers proba-
bility and utility potentials separately: first, SPI tries to find the best order for combining
all the relevant probability potentials in @ (potentials containing any of the variables
in .#;). For that purpose, all possible pairwise combinations between probability poten-
tials are stored in the set B. At each iteration, a pair of probability potentials is selected
to be combined. The procedure stops when all variables has been removed. A variable
can be removed in the moment it only appears in a single probability potential. This
procedure is shown in Definition 2.

Definition 2 (Removal of a Subset of Chance Variables). Let .7 be the set of vari-
ables to remove, let @ and W be the set of all current probability and utility potentials
respectively in an ID. Then, the procedure for removing .9y is:

1. Set the relevant potentials:
O .= {¢ € ®|.F Ndom(¢) #0} Wr:={yec¥|FNdom(y)+#0}

2. Update @ := @\ ®F and ¥ := ¥\ P*
3. Initialize the combination candidate set B := (.
4. Repeat:
(a) if |®F| > 1, then
i. Add all pairwise combinations of elements of ®* to B which are not al-
ready in B.
ii. Select a pair p := {¢;,¢;} of B according to some criteria and combine
both potentials: Set ¢;j := ¢; @ §;
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iti. Determine the set W of variables that can be sum-marginalized:
W := {X € dom(¢;;) N I;|V$ € @ \p: X & dom(¢)}

iv. Update B by deleting all pairs p where ¢; € p or ¢; € p.
v. Delete ¢; and §; from Dk,
else
i. Let ¢;j be the single potential in Dk,
ii. Determine the set W of variables that can be sum-marginalized:

W= {X € dom(¢;;) N I}

iii. Delete ¢;j from Dk,
(b) Select the utility potentials relevant for removing W:

W= {y e YA Wndom(y) # 0}

(c) Sum-marginalize variables in W from ¢;; and wW._ A probability potential ¢$-W
and a set of utility potentials ¥*W are obtained as a result (Definition 3).

(d) Update the set of variables to remove: .9 := S \W

(e) Update the set of relevant potentials:

oF=aku{pNy W=\ V) uEW

Until %, =0
5. Update @ := ® U D" and ¥ := ¥ U WPk

In Definition 2 only probability potentials are combined while utility potentials are
not. Let us suppose that we aim to remove a variable X from a set of probability po-
tentials {¢1,..., ¢, ¢;;} and from a set of utility potentials {y1,..., ¥, Yin,... + Y}
Let ¢;j and { W, ..., y,} be the potentials containing X. Then, the removal of X can be
made using Eq.5.

D01 i (Wi Y YY) =

X
=1 O Z‘Pij <wl+m+%+2x (‘Pij(l//m+-~‘..+ll1n))> (5)
X 2X¢l]

The utility potentials must be combined with ¢;; which is the resulting potential of
combining all potentials containing X. For that reason, the utilities can only be com-
bined when a variable can be removed. That is the moment when ¢;; has been calcu-
lated. The procedure for sum-marginalizing a set of variables (Definition 3) involves
finding good order for summing the utility potentials. The procedure for that is quite
similar to the procedure for combining probabilities, however the combination candi-
date set B can contain singletons as well. The reason for that is that in some cases it
could be better to apply the distributive law [5,11].
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Definition 3 (Sum-Marginalization). Let ¢ be a probability potential and ¥V a
set of utility potentials relevant for removing the chance variables in W. Then, the
procedure for sum-marginalizating W from ¢ and ¥V is:

1. Initialize the combination candidate set B := (.
2. Repeat:
(a) Add all pairwise combinations of elements of ¥V to B which are not already
in B.
(b) Add to B all potentials in YW that contains any variable of W which is not
present in any other potential of ¥V, that is a variable that can be removed.
(c) Select a pair q == {yi, y;} or a singleton q := {y;} from B according to some
criteria.
(d) If q is a pair, then y;; := y; + ;. Otherwise, ;= ;
(e) Determine the set V of variables that can be sum-marginalized:

V= {X € dom(y;;) "\WVy € ¥W\q: X ¢ dom(y)}

(f) Sum-marginalize V, giving as a result:

oVi=%0 Y=o/ ¢"
v v

(g) If q is a pair, remove y; and y; from YW and any element in B containing

them. Otherwise, only remove y; from ¥V and any element in B containing it.
(h) Update ¢ := ¢*Y and ¥V := ¥V U {y'V}
(i) Update the set of variables to remove: W := W\V
UntilW =10

3. Return ¢ and ¥V

3.3 Removal of Decision Variables

Once all variables in . are removed using algorithm in Definition 2, a similar proce-
dure must be performed to remove a decision variable Dy, (see Definition 4). However,
this removal does not imply the combination of any probability potential since any deci-
sion is d-separated from its predecessors [11]. Thus, any probability potential ¢ (Dy,X)
must be directly transform into ¢ (X) if Dy is a decision and X is a set of chance vari-
ables that belong to .#; with i < k. This property is used at step 2 of Definition 4.

Definition 4 (Removal of a Decision Variable). Let Dy, be the decision variable to re-
move, let @ and ¥ be the set of all current probability and utility potentials respectively.
Then, the procedure for removing Dy, is:

1. Set the relevant potentials:
O = {9 € ®|D; € dom(¢)}  W':={y e ¥|D € dom(y)}

2. Foreach ¢ € @, remove Dy, by restricting ¢ to any of the values of Dy. The set of
potentials DLk is given as a result.



512 R. Cabaiias et al.

3. Max-marginalize variable Dy from ¥* and record the policy for Dy. A new potential
q/wk is obtained as a result (Definition 5).
4. Update the set of potentials in the ID:

= (P\P YU W= (P\PHU{yPH)

Definition 5 (Max-Marginalization). Let ¥ be a set of utility potentials and D a de-
cision variable. Then, the procedure for max-marginalizating D from ‘¥ is:

1. Initialize the combination candidate set B := 0.
2. While || > 1:
(a) Add all pairwise combinations of elements of ¥ to B which are not already in
B.
(b) Select a pair q := {y;, y;} according to some criteria and sum both potentials
giving as a result ;.
(c) Update B by deleting all pairs p where y; € p or y; € p.
(d) Update ¥ :="¥\{y;, y;} U{yi;}
3. Let yP be the single potential in V.
4. Max-marginalize D, giving as a result: y*P := maxp y?
5. Return y*P

3.4 Heuristics

During the removal of the chance variables, at each iteration a pair of probability po-
tentials is selected to be combined (Definition 2, step 4.a.ii). For that, some heuristics
used with VE can be adapted for selecting a pair. Let p := {¢;;¢;} be a candidate pair
to be combined, let ¢;; = ¢; ® ¢; be the resulting potential of the combination and let
W be the set of variables that can be removed. Then, the heuristics minimum size [13],
minimum weight [12] and Cano and Moral [14] are defined as:

min size(p) = |dom(¢;) Udom(¢;)| = |dom(¢;;)| (6)
min weight(p) = H | Qx| @)
Xedom((ﬁi_]‘)
HXEdom((IJ-') ‘QX‘
Cano Moral(p) = N (3
D)= yewlon

Li and D’ Ambrosio [9] also proposed an heuristic that selects a pair that minimises
the score 51 and maximises the score s;:

s1(p) = |dom(¢ij)| — [W| ©

s2(p) = |[dom(@:)| + |dom(¢;)] (10)

Any of the heuristics previously mentioned can also be used for selecting a pair of
utility potentials at steps 2.c and 2.b of Definitions 3 and 5 respectively. These heuristics
will be considered in the experimental analysis.
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3.5 Example

Let us consider the ID in Fig. 1 to illustrate the behaviour of the SPI algorithm as
described in this paper. In order to simplify the notation, ¢ (Xj,...,X,) will be denoted
0x,.... x,- First, SPI proceeds to remove variables in the chance set #; = {B,C,E,F,G}

using the algorithm in Definition 2. The initial combination candidate set is:

{0c:0e} . {0c:0r},{0c; 06}, {0c; Opcerc ) {0c: Pan}t {Oe: 0F } . {9E: 0}, {OE; PBCEFG S
{0£: 048}, {0F: 06}, {0 OBcEFG ), {OF: Oan} {963 OBcEFG ) {9G: PaB}, {9BCEFG: an}

If the minimum size heuristic is used for selecting the next pair of potentials, there
are 6 pairs minimizing this score. Let us suppose that the pair {@c; ¢¢} is chosen, then
the resulting potential is @cg. There is not any variable that can be removed, since C
and E appear in other potentials (e.g., ¢pcer)- Then, the set B is updated by removing
pairs containing @¢ or ¢¢ and by adding new pairwise combinations with @cg:

{0ce;0r },{0cE; 06}, {OcE; O8cEFG}, {OcE; OaB}, {OF; 0},
{0r:08cerc} {0r; PaB}, {96; PscEFG}, {96 0aB}, {PBCEFG: PaB}

The process will continue by choosing a pair to combine until all variables have been
removed. The whole process is shown in Fig. 2 in a factor graph [7]. Nodes without any
parent correspond to initial potentials while child nodes correspond to the resulting po-
tentials of a combination. The numbers above each potentials indicate the combination
ordering and arcs labels indicate the variables that are sum-marginalized.

OBCEFG

o6 " T ol P

3o BOEFG — WBCE}
or o) T 4

- ABCE A

or $ap — o 3

— ¢(1) _——> YABCE
oc — 7 'CE

Fig.2. Combination order of the probability potentials obtained using SPI for removing the
chance set .#] = {B,C,E,F,G} during the evaluation of the ID shown in Fig.1

In the 4'" jteration, after generating the potential ¢pcgrg, variables F and G can be
removed. Then, the algorithm in Definition 3 is executed in order to combine utility
potentials and max-marginalize these variables: the combination candidate set of utility
potentials is B := {{yp,rc}} and the resulting potentials are ¢pcg and Yp,pce. Simi-
larly, in the 5 jteration, variables B,C and E can be removed. Now, the combination
candidate set contains a pair and a singleton, thatis B := {{yp,ce: ¥p,sce }, {Wp,8cE}}-
The element selected from B is the pair { Wp,cr; Vb, pck }- The variables B,C and E can
be removed after adding both utility potentials in the pair, thus it is not needed to per-
form any additional iteration. The resulting potentials are ¢4 and yp, 4 which are also,
in this case, the resulting potentials of algorithm in Definition 2. SPI will now proceed
to remove decision D; using Definition 4 and chance variable A using Definition 2.



514 R. Cabaiias et al.

4 Experimental Work

For testing the SPI algorithm, a set of 10 IDs found in the literature are used: NHL and
IctNeo are two real world IDs used for medical purposes [15,16]; the oil wildcatter’s
problem with one and two utilities [17,18]; the Chest Clinic ID [19] obtained from the
Asia BN; an ID representing the decision problem in the poker game [11]; an ID used
at agriculture for treating the mildew [11]; finally, three synthetic IDs are used: the mo-
tivation example shown in Fig.1 with binary and not binary variables and the ID used
by Jensen et al. in [6]. Each ID is evaluated using the SPI and the VE algorithms with
the heuristics shown in Section 3.4. The Li and D’Ambrosio heuristic is not used with
the VE algorithm because it is a specific heuristic for the SPI algorithm. An efficiency
improvement used in both algorithms consists on discarding any unity probability po-

tential generated.
Table 1 shows the total number of operations needed for each evaluation, that is the

number of multiplications, divisions, additions and maximum comparisons. The ratio
of the number of operations using SPI to the number of operations using VE is also
shown. It can be observed that SPI requires a lower number of operations than VE in
7 out of 10 IDs when using the minimum size and the Cano and Moral heuristic. By
contrast, if the minimum weight heuristic is used instead, SPI offers better results in 6
out of 10 IDs. Comparing Li and D’Ambrosio heuristics with the rest, it can be seen that
this criteria only offers better results in 2 out 10 IDs.

Table 1. Number of operations needed for evaluating each ID using SPI and VE algorithms and
different heuristics

min size min weight cano moral li dambrosio
ID SPI VE ratio SPI VE ratio SPI  VE ratio SPI
NHL 2.74-10° 5.04-10° 0.54 6.96-10° 4.95-10° 1.41 6.96-10° 8.80-10° 0.79 2.05-107
IctNeo 2.42.10° 4.34-10° 5.57 2.36-10° 3.90-10° 6.04 2.36-10° 4.36:10° 5.4 1.07-10°
Oil Wildcatter 125 150 0.83 125 150 0.83 125 157 0.8 125
Oil Split Costs 137 162 085 137 162 085 137 169 0.8l 137
Chest Clinic (Asia) 598 657 091 598 625 096 598 645  0.93 682
Poker 4499 1775 253 4499 1831 246 4499 1582 2.84 6.12:10*
Mildew 2.63-10* 3.31-10* 0.8 2.36-10* 3.31-10* 0.72 2.36-10* 2.60-10* 0.91 5.02:10*
motivation binary 324 511 0.63 324 511 063 324 513 0.63 356
motivation not binary 1753 6559 027 1753 2273 0.77 1753 1919 091 4597
Jensen et al. 922 533 173 922 533 173 922 545  1.69 746

5 Conclusions and Future Work

In this work we have described how the SPI algorithm can be used for evaluating IDs,
which considers the evaluation as combinatorial factorization problem. That is, SPI tries
to find an optimal order for the operations of marginalization and combination. Thus,
SPI is finer grained than VE. Moreover, we also propose adapting some of the heuristics
that VE uses for selecting the next pair of potentials to combine.
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The experimental work shows that, in many cases, the SPI algorithm can reduce the
number of operations needed to evaluate an ID compared to VE. However, SPI does
not strictly dominates VE. For that reason, a line of future research could be determin-
ing which features of an ID make that SPI offers better results. The efficiency of SPI
for evaluating some IDs also depends on the heuristic used, thus another line of future
research could be looking for alternative heuristics. One method that improves the effi-
ciency of the evaluation is Lazy Evaluation (LE) [6], [20], which is based on message
passing in a strong junction tree. The SPI algorithm was already proposed as method
for computing the messages in the LE of Bayesian networks [21]. Thus similar ideas
could be applied for computing the messages in the LE of IDs.
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