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Abstract. We propose a method that combines terminological decision trees and
the Dempster-Shafer Theory, to support tasks like ontology completion. The goal
is to build a predictive model that can cope with the epistemological uncertainty
due to the Open World Assumption when reasoning with Web ontologies. With
such models not only one can predict new (non derivable) assertions for complet-
ing the ontology but by assessing the quality of the induced axioms.

1 Introduction

In the context of machine learning applied to Web ontologies, various methods have
been proposed in order to predict new assertions. It has turned out that the models
resulting from these methods can often provide effective reasoning services which are
comparable to those offered by reasoners [1].

Focusing on the instance-checking problem [2], i.e. the task of assessing the class-
membership for individual resources, it is well known that a reasoner may be unable to
prove the membership of an individual to a given concept (or to its complement). This
is often caused by flaws introduced in the ontology construction phase owing to lacking
disjointness axioms. The same problem may appear also with logic-based predictive
classification models produced by machine learning algorithms, such as the Termino-
logical Decision Trees [3] (TDTs), a specialization of first-order decision trees [4]. In
this work we extend the scope of TDTs by employing the Dempster-Shafer Theory [5]
(DST) because, differently from the instance-based approach proposed in [6], logic-
based classification models generally do not provide an epistemic uncertainty measure.
This may be very important as a quality measure for predicted assertions in related prob-
lems such as data integration in the context of Linked Data1, where it could contribute
as a measure of provenance [7]. Purely logical models cannot handle properly cases of
tests resulting in an unknown membership. The uncertainty is not explicitly considered
when an individual is classified w.r.t. a given test class. The situation is similar to the
case of missing values in prediction with (propositional) decision trees. The underlying
idea of the proposed extension is to exploit standard algorithms to cope with missing
values for a test by partitioning the observation w.r.t. all possible values of the test
and then following all branches. Once the leaves are reached, the results are combined.
Thanks to the combination rules used to pool evidences [5], the DST is a more suitable
framework than the Bayesian theory of probability to cope with epistemic uncertainty
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and ignorance related to the Open World Assumption (OWA) that characterizes Web
ontologies.

The DST has been integrated in various algorithms [8,9] with results that are compet-
itive with the classical version. So, we want to investigate if this model can be used also
in machine learning algorithm for the Semantic Web in order to obtain better results of
classifiers in terms of predicted assertions.

The paper is organized as follows: Section 2 introduces basics concerning the con-
cept learning task in Description Logic knowledge bases and describes the original ver-
sion of TDTs; in Section 3 the algorithm for inducing a TDT based on the DST is
proposed while in Section 4 an early-stage empirical evaluation is described; finally,
further extensions of this work are described.

2 Background

Knowledge Bases. In Description Logics (DLs) [2], a domain is modeled through
primitive concepts (classes) and roles (relations), which can be used to build complex
descriptions regarding individuals (instances, objects), by using specific operators that
depend on the adopted language. A knowledge base is a couple K = (T ,A) where
the TBox T contains axioms concerning concepts and roles (typically inclusion axioms
such as C � D) and the ABox A contains assertions, i.e. axioms regarding the individ-
uals (C(a), resp. R(a, b)). The set of individuals occurring in A is denoted by Ind(A).

The semantics of concepts/roles/individuals is defined through interpretations. An
interpretation is a couple I = (ΔI , ·I) where ΔI is the domain of the interpretation
and ·I is a mapping such that, for each individual a, aI ∈ ΔI , for each concept C,
CI ⊆ ΔI and for each role R, RI ⊆ ΔI×ΔI . The semantics of complex descriptions
descends from the interpretation of the primitive concepts/roles and of the operators
employed, depending on the adopted language. I satisfies an axiom C � D (C is
subsumed by D) when CI ⊆ DI and an assertion C(a) (resp. R(a, b)) when aI ∈ CI

(resp. (aI , bI) ∈ RI). I is a model for K iff it satisfies each axiom/assertion α in K,
denoted with I |= α. When α is satisfied w.r.t. these models, we write K |= α.

We will be interested in the instance-checking inference service: given an individual
a and a concept description C determine if K |= C(a). Due to the Open World Assump-
tion (OWA), answering to a class-membership query is more difficult w.r.t. Inductive
Logic Programming (ILP) settings where the closed-world reasoning is the standard.
Indeed, one may not be able to prove the truth of either K |= C(a) or K |= ¬C(a), as
there may be possible to find different interpretations that satisfy either cases.

Learning Concepts in DL. The concept learning task in DL can be defined as follows.
Given:

– a knowledge base K = (T ,A)
– a target concept C,
– the sets of positive and negative examples for C:
Ps = {a ∈ Ind(A) | K |= C(a)} and Ns = {a ∈ Ind(A) | K |= ¬C(a)}

the goal is to obtain a concept description D for C (C � D), such that:
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– K |= D(a) ∀a ∈ Ps
– K |= ¬D(a) ∀a ∈ Ns

In order to investigate about the learning of multiple disjoint concepts, the formula-
tion of the problem is more restrictive than the one proposed in [3], where the negative
examples were the individuals a for which K �|= D(a) . The resulting concept descrip-
tions can be used to solve an instance-checking problem for new individuals. Similarly
to a First Order Logic Decision Tree, a binary tree where each node contains a conjunc-
tion of literals and each variable that is introduced in a node cannot appear in the right
branch of that node, a Terminological Decision Tree can be defined as follows:

Definition 1 (Terminological Decision Tree). Let K = (T ,A), a Terminological De-
cision Tree is a binary tree where:

– each node contains a conjunctive concept description D;
– each departing edge is the result of a class-membership test w.r.t. D, i.e., given an

individual a, K |= D(a)?
– if a node with E is the father of the node with D then D is obtained by using a

refinement operator and one of the following conditions should be verified:
• D introduces a new concept name,
• D is an existential restriction,
• D is an universal restriction of any its ancestor.

However, a set of concept descriptions is generated by means of the refinement operator
and the best one is chosen to be installed as a child node. The best description is the one
that maximizes a purity measure respect to the previous level [3]. The measure may be
defined as accuracy in a binary classification problem, purity = p/(p+ n), where p is
the number of positive examples and n the number of negative ones reaching a node.

3 Induction of the Terminological Trees

The method for inducing TDTs based on the DST uses a divide-and-conquer strategy. It
requires the target concept C, a training set Ps∪Ns∪Us made up of individuals with
positive (Ps), negative(Ns) and uncertain (Us) membership w.r.t. C and a basic belief
assignment (BBA) m associated with C (with Ω = {+1,−1} as frame of discernment).

The main learning function (see Alg. 1) refines the input test concept using one of
the available operators. After candidates are generated, a BBA is computed for each of
them. The BBAs for the node concepts are simply estimated based on the number of
positive, negative and uncertain instances in the training set:

– m({+1}) ← |Ps|/|Ps ∪Ns ∪ Us|;
– m({−1}) ← |Ns|/|Ps ∪Ns ∪ Us|;
– m(Ω) ← |Us|/|Ps ∪Ns ∪ Us|;

Example 2 (Computation of a BBA). Let K = (T ,A), consider the concepts Man, and
its complement Woman ≡ ¬Man in T and the following assertions:
{Man(BOB), Man(JOHN), Woman(ANN), Woman(MARY)} ⊂ A, with MARK occurring else-
where in A and whose membership w.r.t. Man is unknown. A BBA for Man is produced
(the frame of discernment ΩMan = {+1,−1} corresponds to {Man, Woman}):
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Algorithm 1. Induction of DST-based TDT
1 input: Ps, Ns, Us: set of training instances {positive, negative, uncertain membership}
2 C: concept description,
3 m: BBA
4 output: T : TDT
5 const θ, ν ∈ [0, 1] {thresholds}
6 function INDUCEDSTTDTREE (Ps, Ns, Us:individuals; C:concept; m: BBA)
7 begin
8 if |Ps| = 0 and |Ns| = 0 then
9 begin

10 if Pr+ ≥ Pr− then {pre−defined constants wrt the whole training set}
11 Troot ← 〈C,m〉
12 else
13 Troot ← 〈¬C,m〉
14 return T
15 end
16 if m({−1} = 0 and m({+1}) > θ then
17 begin
18 Troot ← 〈C,m〉
19 return T
20 end
21 if m({+1} = 0 and m({−1}) > θ then
22 begin
23 Troot ← 〈¬C,m〉
24 return T
25 end
26 if NONSPECIFITY(C) ≥ ν then
27 begin
28 if m({+1}) ≥ m({−1}) then
29 Troot ← 〈C,m〉
30 else
31 Troot ← 〈¬C,m〉;
32 return T
33 end
34 S ← GENERATECANDIDATES(Ps, Ns, Us)
35 D ← SELECTBESTCONCEPT(m,S)
36 〈〈Pl,Nl, Ul〉, 〈Pr,Nr, Ur〉〉 ← SPLIT(D,Ps, Ns, Us)
37 Troot ← 〈D,mD〉
38 Tleft ← INDUCEDSTTDTREE(Pl, Nl, Ul, D,mD)
39 Tright ← INDUCEDSTTDTREE(Pr,Nr, Ur, D,mD)
40 return T
41 end

– m({+1}) = |{BOB, JOHN}|/|{BOB, JOHN, ANN, MARY, MARK}| = 2
5 = 0.4

– m({−1}) = |{ANN, MARY}|/|{BOB, JOHN, ANN, MARY, MARK}| = 2
5 = 0.4

– m(ΩMan) = |{MARK}|/|{BOB, JOHN, ANN, MARY, MARK}| = 1
5 = 0.2 ��

The set of candidates S, is made up of pairs 〈D,mD〉 where D is a concept descrip-
tion and mD is the BBA computed for it. After S has been generated, the algorithm
selects the best test concept and the corresponding BBA according to measure com-
puted from the BBA and the best pair 〈D,mD〉 is installed as a child node of 〈C,m〉.

This strategy is repeated recursively, splitting the examples according to the test con-
cept in each node. Recursion stops when only positive (resp. negative) instances are
rooted to a node which becomes a leaf (see the conditions checked in lines 16 and 21
in Alg. 1). The first condition (line 8) refers to the case when no positive and nega-
tive instances reach the node. In this case the algorithm uses priors, Pr+ and Pr−,
precomputed for the whole training set. The fourth case expresses a situation in which
the child nodes added to the tree are characterized by a high non-specificity measure.
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Algorithm 2. Candidate test concepts generation
1 input: Ps, Ns, Us: set of training instances
2 C: concept description
3 output: S: set of 〈D,mD〉 {D is a concept and m is a BBA}
4 function GENERATECANDIDATES(Ps, Ns, Us, C): S
5 begin
6 S ← ∅
7 L ← GENERATEREFINEMENTS (C,Ps,Ns) {based on the refinement operator}
8 for each D ∈ L
9 begin

10 m ← GETBBA(PsD , NsD , UsD)
11 S ← S ∪ {〈D,m〉}
12 end
13 return S
14 end

Algorithm 3. Selection of the best candidate
1 input: mC : BBA,
2 S: set of 〈D,mD〉
3 output: C′: concept {best according to non−specificity measure}
4 const Ω,ΩD (∀D ∈ S): frame of discernment
5 function SELECTBESTCANDIDATE(mC , S): concept
6 begin
7 Ns ← ∑

A⊆Ω mC(A) log |A|
8 C′ ← argmaxD∈S

(
Ns − ∑

A′⊆ΩD
mD(A′) log |A′|

)

9 return C′

10 end

For a given concept description D, NONSPECIFICITY(D) is the value computed from
its BBA

∑
A∈2Ω m(A) log(|A|) as a measure of imprecision [9]. The algorithm con-

trols the growth by means of the threshold ν. If the condition is verified, the algorithm
compares m({+1}) and m({−1}) to install the proper test concept in the node.

Alg. 2 illustrates how a set S of candidate concepts is generated by GENERATECAN-
DIDATES. This function calls GENERATEREFINEMENTS to generate refinements that
can be used as tests. S is updated with pairs 〈D,mD〉 where D is a refinement and
mD is the related BBA. Once concepts have been generated, SELECTBESTCANDI-
DATE (see Alg. 3) selects the best candidate description according to the non-specificity
measure. The advantage of this method is the explicit representation of the OWA using
the maximal ignorance hypothesis (i.e. the one corresponding to Ω).

BBA Creation. As previously mentioned, the proposed approach associates a BBA
to each node of a TDT for representing the epistemic uncertainty about the class-
membership. The BBA of the child node is created from a subset of the training ex-
amples routed to the parent node.

When a branch is created together with the related concept description, the member-
ship of the individuals w.r.t. this concept is computed in order to obtain a BBA whose
frame of discernment represents the hypothesis of membership w.r.t. that concept.

Moreover, when a new node is added as left or right child, the algorithm knows about
the tests performed on the parent node concept for each instance. Hence, similarly to
the Bayesian framework, an implicit kind of conditioning results that allows to relate
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the membership w.r.t. a concept description in a parent node to the membership w.r.t.
the refinements contained in its children.

Stop Criterion. We can apply the DST to TDTs to decide when to stop the growth.
As described above, we add a new child node minimizing the degree of imprecision
represented by the non-specificity measure. However, if the number of instances with
unknown-membership is very high for the new refinement, the imprecision increases
and the node should not be further refined. Thus, the algorithm uses two stop criteria:

purity m({−1}) = 0 ∧m({+1}) > θ or m({+1}) = 0 ∧m({−1}) > θ
non-specificity: given a description D, NONSPECIFICITY(D) > ν

The former condition derives from decision tree induction, where a leaf is formed when
only instances that belong to a single class remain. In terms of DST, this idea can be
represented by a BBA where:

∀A ∈ 2Ω m(A) =

{
1 if A = {+1} (resp. A = {−1})
0 otherwise

(1)

Thus, the first condition distinguishes two kinds of individuals: those with a certain
membership (positive, negative) and those with an uncertain membership. The latter
condition moves from the idea that once the best candidate concept description has been
chosen, it can be very imprecise (i.e. the measure of non-specificity is very high). Thus,
the resulting BBA has the maximum value assigned to a the case of total ignorance w.r.t.
the BBA of the parent concept. The threshold ν is used to control this condition.

Prediction. After the TDT has been produced, it can be used to predict the class-
membership in the usual way. Given an individual a ∈ Ind(A), a path is followed down
the tree according to the results of the test w.r.t. the concept D at each node.

Alg. 4 describes the recursive strategy. The base case is when a leaf is reached. In
this case, the algorithm updates a list with the BBA associated with the leaf node. The
recursive step follows a branch rather than another according to the result of instance-
checking w.r.t. the concept description D. If K |= D(a) the algorithm follows the left
branch of the tree. If K |= ¬D(a) the right branch is followed. A more interesting case
occurs when the result of instance check is unknown, i.e. K �|= D(a) or K �|= ¬D(a).
In this case, both the left and the right branch are followed until the leaves are reached.
In this way the algorithm can cope with the OWA. The underlying idea is to collect all
the possible classifications when the result of a test on an internal node is unknown. In
these cases the DST seems to be a good framework in order to combine all such results
and make a decision on the membership to be assigned.

After the tree exploration, we may have various BBAs in the list (one per reached
leaf). Then, these functions are to be pooled according to a combination rule (see
Alg. 5). The resulting BBA can be used to compute belief, plausibility or confirma-
tion [5] on the membership hypothesis and the algorithm returns the hypothesis that
maximize one of them. Similarly to our previous works [6], we considered the compu-
tation of the confirmation in order to balance belief and plausibility in the final decision.
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Algorithm 4. Determining the class-membership of an individual
1 input: a: test individual,
2 T : TDT,
3 K: knowledge base
4 output: L: list of BBA {related to the leave nodes}
5 function FINDLEAVES(a, T,K) : L
6 begin
7 N ← ROOT(T )
8 if ¬LEAF(N, T ) then
9 begin

10 〈D,Tleft, Tright〉 ← INODE(N);
11 if K |= D(a) then
12 L ← FINDLEAVES(a, Tleft,K)
13 else if K |= ¬D(a) then
14 L ← FINDLEAVES(a, Tright,K)
15 else
16 begin
17 L ← FINDLEAVES(a, Tleft,K)
18 L ← FINDLEAVES(a, Tright,K)
19 end
20 end
21 else
22 begin
23 m ← GETBBA(N)
24 L ← L ∪ {m}
25 end
26 return L
27 end

4 Preliminary Experiments

4.1 Setup

The goal of the experimentation is to evaluate the TDTs induced by the proposed
method in the class-membership prediction task. We considered various Web ontolo-
gies (see Tab. 1). For each of them, 30 query concepts have been randomly generated
by combining (using the conjunction and disjunction operators or universal and exis-
tential restriction) 2 through 8 concepts of the ontology. A 0.632 bootstrap procedure
was employed for the design of the experiments.

The experiments were repeated under three different conditions. First we ran the
original method for learning TDTs. Then, we ran them with the DST-based version

Algorithm 5. Pooling evidence for classification
1 input: a: individual,
2 T : TDT,
3 K: knowledge base
4 output: v ⊆ {−1,+1}
5 function CLASSIFY(a, T,K): v
6 begin
7 L ← FINDLEAVES(a, T,K) {list of BBA}
8 m̄ ← ⊕

m∈L

9 for v ∈ Ω do
10 compute Belv and Plv

11 Confv ← CONFIRMATION(Belv, P lv)

12 return argmaxv⊆ΩConfv

13 end
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Table 1. Ontologies employed in the experiments

Ontology Expressiivity Concepts Roles Individuals

FSM SF(D) 20 10 37
LEO ALCHIF(D) 32 26 62

LUBM ALEHIF(D) 43 25 1555
BIOPAX ALCIF(D) 74 70 323

NTN SHIF(D) 47 27 676

with no tree growth control. Finally, we also considered a threshold (ν = 0.1) for non-
specificity measure. Higher values would allow for larger trees than those obtained with
smaller thresholds.

Due to the disjunctive nature of the concepts represented by the inferred model 2,
we have chosen to employ the Dubois-Prade combination rule [10] in order to pool
BBAs. To compare inductive vs. deductive classification, the following metrics were
computed:

– match: rate of the test cases (individuals) for which the inductive model and a rea-
soner predict the same membership (i.e. +1 | +1, −1 | −1, 0 | 0);

– commission: rate of the cases for which predictions are opposite (i.e. +1 | −1,
−1 | +1);

– omission: rate of test cases for which the inductive method cannot determine a
definite membership (−1,+1) while the reasoner is able to do it;

– induction: rate of cases where the inductive method can predict a membership while
it is not logically derivable.

4.2 Results

Tab. 2 shows the results of the experiments. A low commission rate is noticed for most
of the ontologies, except BIOPAX. This rate is higher than the one observed with the
standard algorithm. Besides, a low induction rate resulted but in the case of NTN.

In general, the proposed method returns more imprecise results than the results ob-
tained with the TDTs [3], i.e. many times unknown-membership is assigned to test
individuals. This is likely due to the combination rule employed. Indeed, the Dubois-
Prade combination rule does not take into account the conflict [5]. The pooled BBA is
obtained by combining other BBAs considering union of subset of the frame of discern-
ment. Thus, the conflict does not exist and more imprecise results can be obtained. For
example,this can occur, when we have two BBAs: the first one has {+1} as the only
focal element while the other one has {−1} as the only focal element. The resulting
BBA will have {−1,+1} as focal element and an unknown case is returned.

With LUBM this phenomenon is very evident: there are not more induction cases,
but the match and the omission rate are very high. In the case of NTN, when the DST-
based method is employed, the match rate is lower than with the standard version and

2 A concept can be obtained easily by visiting the tree and returning the conjunction of the
concept descriptions encountered on a path.
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Table 2. Results of the experiments using the original terminological trees (DLTree), the DST-
TDTs induced with no growth control (DSTTree), and with a growth threshold (DSTG)

Ontology Index DLTree DSTTree DSTG

FSM

match 95.34±04.94 93.22±07.33 86.16±10.48

commiss. 01.81±02.18 01.67±03.05 02.07±03.19

omission 00.74±02.15 02.57±04.09 04.98±05.99

induction 02.11±04.42 02.54±01.89 01.16±01.26

LEO

match 95.53±10.07 97.07±04.55 94.61±06.75

commiss. 00.48±00.57 00.41±00.86 00.41±01.00

omission 03.42±09.84 01.94±04.38 00.58±00.51

induction 00.57±03.13 00.58±00.51 00.00±00.00

LUBM

match 20.78±00.11 79.23±00.11 79.22±00.12

commiss. 00.00±00.00 00.00±00.00 00.00±00.00

omission 00.00±00.00 20.77±00.11 20.78±00.12

induction 79.22±00.11 00.00±00.00 00.00±00.00

BioPax

match 96.87±07.35 85.76±21.60 82.15±21.10

commiss. 01.63±06.44 11.81±19.96 12.32±19.90

omission 00.30±00.98 01.54±03.02 04.88±03.03

induction 01.21±00.56 00.89±00.53 00.26±00.27

NTN

match 27.02±01.91 18.97±19.01 87.63±00.19

commiss. 00.00±00.00 00.39±01.08 00.00±00.00

omission 00.22±00.26 02.09±03.00 12.37±00.19

induction 72.77±01.51 78.54±17.34 00.00±00.00

commission, omission and induction rate are higher. However, adding a tree-growth
control threshold the method shows a more conservative behavior w.r.t. the first exper-
imental condition. In the case of NTN, we observe a lower induction rate and higher
match and omission rates. Instead, the commission error rate is lower. The increase of
the induction rate and the decrease of the match rate for the DST-based method (with-
out the tree-growth control threshold) are likely due to uncertain membership cases for
which the algorithm can determine the class.

A final remark regards the stability for the proposed method: the outcomes show a
higher standard deviation w.r.t. the original version, hence it seems less stable so far.

5 Conclusions and Extensions

In this work a novel type of terminological decision trees and the related learning al-
gorithms have been proposed, in order to integrate forms of epistemic uncertainty in
such an inductive classification model. We have shown how the DST can be employed
together with machine learning methods for the Semantic Web representations as an
alternative framework to cope with the inherent uncertainty and incompleteness. The
proposed algorithm can discover potentially new (non logically derivable) assertions
that can be used to complete the extensional part of a Web ontology (or a Linked Data
dataset) whose expressiveness allows to represent concepts by means of disjunction and
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complement operators. However, experimental results show that the current version of
the method may have sometimes a worse performance, especially in terms of match rate
and stability.

The proposed method can be extended along various directions. It is possible to use a
total uncertainty measure that integrates conflicting evidence [9]. In the current version,
we control the growth of the tree. A further extension may concern the definition of a
pruning method based on the DST.
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