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Abstract. We illustrate a preliminary proposal of weighted fuzzy aver-
ages between two membership functions. Conflicts, as well as agreements,
between the different sources of information in the two new operators are
endogenously embedded inside the average weights. The proposal is moti-
vated by the practical problem of assessing the fuzzy volatility parameter
in the Black and Scholes environment via alternative estimators.
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1 Introduction and Motivation

In [2] we introduced a methodology for membership elicitation on parameters.
The goal was to estimate the hidden volatility parameter σ of a risky asset
through both the historical volatility estimator σ̂, based on a sample of log-
returns of the asset itself, and the estimator ν = VIX/100, based on VIX which is
a volatility index obtained through a set of prices for options written on the asset.
Thanks to the interpretation of membership functions as coherent conditional
probability assessments (see [3,4]) integrated with observational data and expert
evaluations, we were able in some cases to elicit proper membership functions for
the volatility parameter based on each single estimator, while in another case two
memberships were considered possible. Moreover, results were obtained through
probability-possibility transformation of specific simulation distributions. Thus,
the peculiarity of the proposal was to deal with implicit and alternative sources of
information, while one of the open problem was to find proper fusion operators.

In literature it is known that the choice of a fusion operator, given the variety
of information items, is not unique and heavily context-dependent. Classes of
aggregation functions covered include triangular norms and conorms, copulas,
means and averages, and those based on nonadditive integrals [11]. A main char-
acteristic of the aggregation functions is that they are used in a large number
of areas and disciplines, leading to a strong demand for a wide variety of aggre-
gation functions with predictable and tailored properties [12], [13]. Authors in
[15] affirm that there are more than 90 different fuzzy operators proposed in the
literature for fuzzy set operations. The role of fuzzy sets in merging information
can be understood in two ways: either as a tool for extending estimation tech-
niques to fuzzy data (this is done applying the extension principle to classical
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estimators, and methods of fuzzy arithmetics - see [5] for a survey); or as a tool
for combining possibility distributions that represent imprecise pieces of infor-
mation (then fuzzy set-theoretic operations are instrumental for this purpose -
see [9] for a survey).

In view of this dichotomy, the role of standard aggregation operations like
arithmetic mean is twofold. It is a basic operation for estimation and also a
fuzzy set-theoretic connective. A bridge between the “estimation” and the “fu-
sion” views of merging information is ensured using the concept of constrained
merging [8, §6.6.2]. We borrow from it the motivation of including a “smart”
component in the averaging process to address conflicts in the data to be fused,
but, contrarily to the original “intelligent” proposal, without the introduction
of an exogenous “combinability function”. We need two different kinds of fusion
operators: one for merging conjointly the values stemming from the different
estimators; and another that disjointly considers different possibilities or dis-
tribution models. Our operators are weighted averages where conflicts, as well
as agreements, are endogenously embedded on the average weights; for the rea-
sons mentioned above the choices for the weights we suggest here are deeply
motivated by the practical problem at hand. The difference between the two
proposals is in which direction there is a deformation of the arithmetic mean:
for merging of joint information distortion is toward canonical conjunction, i.e.
min, while for merging of alternative information distortion is toward canonical
disjunction, i.e. max.

The rest of the paper is organized as follows: next section briefly refreshes
main fuzzy membership notions and introduces basic notations for our purposes,
while subsequent Section 3 defines our weighted averages proposals. Section 4
illustrates the numerical applications to the original practical problem of elicita-
tion of a single membership function for the fuzzy volatility parameter σ̃ and its
consequences on the option pricing. A similarity comparison with crisp bid-ask
prices is also performed. Section 5 briefly concludes the contribution.

2 Notation

Given our goal of parameter estimation, for the sequel we will consider real val-
ued quantities. We recall that a membership function μ : R → [0, 1] of the fuzzy
set of possible values of a random variableX can be viewed as a possibility distri-
bution (see e.g. [17]). In particular, the subset μS = {x ∈ R : μ(x) > 0} is named
the “support” of the membership while the subset μ1 = {x ∈ R : μ(x) = 1} is
its “core”. Membership functions are fully characterized by their (dual) repre-
sentation through α-cuts μα = {x ∈ R : μ(x) ≥ α} , α ∈ [0, 1]. The α value
can be conveniently interpreted as 1 minus the lower bound of the probability
that quantity X hits μα. Then the possibility distribution is viewed as the fam-
ily of probability measures ([6]): P = {prob. distr. P : P (X ∈ μα) ≥ 1− α} . In
[2] we were able to elicit membership functions through probability-possibility
transformations ([7]) induced by confidence intervals around the median of spe-
cific simulating distributions; we got so called “fuzzy numbers”, i.e. unimodal
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membership functions with nested α-cuts. Hence, each μ we consider has an in-
creasing left branch μl and a decreasing right one μr and each α-cut is identified
by an interval [μα

l , μ
α
r ] in the extended reals ˜R.

Aggregations are performed between α-cuts, so we always deal with two inter-
vals, possibly degenerate, [μ1αl , μ1

α
r ] and [μ2αl , μ2

α
r ]. From these it is immediate

to define their four characteristic values

μα
lO = min{μ1αl , μ2αl } μα

lI = max{μ1αl , μ2αl }; (1)

μα
rI = min{μ1αr , μ2αr } μα

rO = max{μ1αr , μ2αr }, (2)

and their lengths

Δα
1 = μ1αr − μ1αl Δα

2 = μ2αr − μ2αl Δα = μα
rO − μα

lO; (3)

where the subscript O refers to the “outer” values, while the subscript I to the
“inner” ones (see e.g. Fig.1).

μ μ
2

ΔΔ α Δ
2

α

δα

Δα

Fig. 1. Characteristic values for the merging of two α-cuts

A crucial value for our proposal is the “height” h of the intersection between
μ1 and μ2, i.e.

h = max{α : [μ1αl , μ1
α
r ] ∩ [μ2αl , μ2

α
r ] �= ∅} (4)

whenever the two memberships overlaps, while h = 0 if μ1 and μ2 are incom-
patible. Other involved quantities are

δα = |μα
rI − μα

lI | (5)

that measures the width of the intersection if the two α-cuts overlaps or, other-
wise, the minimal distance between them; and

πα = Δα − δα (6)

that measure the length of the parts outside the (possible) intersection.
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With such quantities, for the levels α ≤ h we can define the relative contri-
butions εαl and εαr of the inner memberships μlI , μrI to the intersection as:

εαl =

δα

Δα
lI

δα

Δα
lI
+ δα

Δα
lO

=
Δα

lO

Δα
1 +Δα

2

; (7)

εαr =

δα

Δα
rI

δα

Δα
rI

+ δα

Δα
rO

=
Δα

rO

Δα
1 +Δα

2

; (8)

with

Δα
lI =

{

Δα
1 if μα

lI = μ1αl
Δα

2 if μα
lI = μ2αl

Δα
lO =

{

Δα
1 if μα

lO = μ1αl
Δα

2 if μα
lO = μ2αl

(9)

and, similarly,

Δα
rI =

{

Δα
1 if μα

rI = μ1αr
Δα

2 if μα
rI = μ2αr

Δα
rO =

{

Δα
1 if μα

rO = μ1αr
Δα

2 if μα
rO = μ2αr

. (10)

3 A Proposal of Two Smart Weighted Averages

We propose two new binary operations � and � to average in a conjunctive or in a
disjunctive way, respectively, different information μ1 and μ2. Both generalize, by
deformation, the usual arithmetic mean between two fuzzy numbers: � deforms
the arithmetic mean toward the min conjunction operator, while � toward the
max disjunction operator.

Hence we define our generalized conjunction level-wise by setting as α-cut
(μ1 � μ2)α the interval

[(μ1 � μ2)αl , (μ1 � μ2)αr ] = [wlαμα
lI + (1− wlα)μα

lO , wrαμα
rI + (1− wrα)μα

rO]
(11)

with weights:
for α ≤ h

wlα =
1

2
+

εαl
2

, wrα =
1

2
+

εαr
2
, (12)

for α > h,

wlα =
(μ1 � μ2)hl − μα

lO + k(Mα
l −Mh

l ) + θl(α)

(μα
lI − μα

lO)
(13)

wrα =
(μ1 � μ2)hr − μα

rI + k(Mα
r −Mh

r )− θr(α)

(μα
rO − μα

rI)
(14)

with [Mα
l ,M

α
r ] the α-cut of the arithmetic fuzzy mean; θl and θr specific

quadratic functions used to emphasize the deformation, and k=
(μ1�μ2)hr−(μ1�μ2)hl

Mh
r −Mh

l

a scale factor. It is important to remark that, since the intersections between
the α-cuts are empty for α > h, the choice of the weights in that case just
resumes our operator to the arithmetic mean, but shifted and deformed to be
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“glued” with the lower levels and to emphasize the contradiction between the
two sources.

Similarly, our generalized disjunction α-cuts (μ1 � μ2)α is defined as

[Wαμα
lO + (1−Wα)μα

lI , W
αμα

rO + (1−Wα)μα
rI ] (15)

with weights

Wα =
1 + (1−α) πα

Δα

2
. (16)

We have already underlined that the main goal of the averaging operators � and
� is to deform usual fuzzy arithmetic mean toward min and max connectives,
respectively. This realizes by the inter-change in equations (11) and (15) among
the extremes. In fact in (11) weights wlα and wrα deform the results toward
the “inner” part, through (12), until there is an overlap between the α-cuts,
and abroad from it, through (13,14), otherwise. On the contrary in (15) weights
Wα always deform the average towards the “outer” part, as much as there is
“contradiction” between the two memberships. Other properties of � and � are
the closure (both averages of two fuzzy numbers produce a fuzzy number), the
idempotence and the symmetry. It is easy to find examples of non-associativity of
� and �, but virtually no averaging operation is associative because it is known
[10] that the only associative averaging operations are of the form median.

4 Applied Example

As already stressed in the Introduction, the proposed weighted averages � and
� were motivated by the need left unresolved in [2] of an implicit assessment
of fuzzy volatility in the Black and Scholes environment based on two different
estimators σ̂ and ν, and on different simulating models for searched parameter
σ. In particular, for each estimator, different scenarios are considered on the
base of historical data and experts evaluations. For each scenario it was pos-
sible to build a pseudo-membership for the considered estimator by coherent
extension of a-priori information and likelihood values stemming from specific
simulation distribution of the unknown parameter. At the end, observed values
of the estimators permitted to select most plausible scenarios, that could be a
single one if there were sure dominance of one scenario over the others, or more
than one if dominance was partial. For each scenario a probability-possibility
transformation of the associated simulating distributions gave as results differ-
ent membership functions. The adopted simulating distributions for σ were the
uniform, the log-normal and the gamma densities, with parameters determined
by the different scenarios characteristics. Hence, we have to face several merg-
ing requirements: among memberships associated to different selected scenarios,
among memberships stemming from different simulating functions and between
memberships associated to the two different estimators σ̂ and ν.
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4.1 Elicitation of Fuzzy Volatility

As preliminary illustrative results let us show a prototypical situation (corre-
sponding to “Case 2” in [2]) where for at least one estimator there is more
than one plausible scenario and different simulating models produce quite dif-
ferent outputs, though at the end the two sources give quite agreeing results. In
particular, for such “Case 2”, associated to σ̂obs = 0.16 the Log-Normal simu-
lating model furnished two alternative scenarios (the “medium” or the “high”)
among the five considered, while the other two models agreed in selecting only
the “medium” one. Here, by transforming the three simulating distributions we
obtain the memberships reported in Fig.2 (a) where for the Log-Normal the
two alternative memberships has been already merged through (15). About the

Fig. 2.Membership functions for Case 2 representing scenarios stemming from different
simulating distributions, as selected by σ̂obs = 0.16 (a) or by νobs = 0.19 (b)

other estimator ν, its observed value νobs = 0.19 always led to the selection of
the “medium” scenario, obtaining the three memberships plotted in Fig.2 (b).

Since the simulating models are alternative, for both groups we can apply
level-wise the weighted average (15) just between the two most contradictory
memberships, since the third remains fully covered by the others. At this point we
have two fuzzy numbers representative of the two sources μσ̂obs

and μνobs which
can be merged in a conjunctive way obtaining the final result μσ = μσ̂obs

� μνobs

reported in Fig.3.

4.2 From Elicitation of the Fuzzy Volatility to Fuzzy Option Pricing

It is well known that under the assumptions in Black and Scholes ([1]), a closed
formula is available for the price of European Call Options, given by

C(t, S, r, σ,K, T ) = SN(d1)− e−r(T−t)KN(d2), (17)

with

d1 =
log(S/K) + (r + σ2

2 )(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t, (18)
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Fig. 3. Final membership function (solid) for σ in Case 2 obtained as μσ = μσ̂obs
�μνobs

of the information coming from σ̂ (dotted) and ν (dashed-dotted). Arithmetic mean
(grey dashed) has been also reported for comparison.

where K,T are the strike price and the maturity of the Option, respectively, S is
the price in t of the underlying asset and r, σ are model parameters representing
the constant risk free continuously compounded rate and the volatility of the
asset, and N(·) is the standard Normal cumulative function. Let us consider
function C as a function of the volatility parameter only, assuming the other
inputs as constant values i.e. c = C(t, S, r, σ,K, T ) = C(σ). Assuming that
parameter σ is modeled as a a fuzzy number σ̃, it is possible to detect the
propagation of uncertainty from the volatility parameter to the option price by
defining the fuzzy extension c̃ = C(σ̃) of c = C(σ); if the volatility σ is a fuzzy
number σ̃ described through its α-cuts [σ̃α

l , σ̃
α
r ], for each level α, then the option

price c is still a fuzzy number c̃, also described by its α-cuts [c̃αl , c̃
α
r ]. To obtain the

fuzzy extension of C to normal upper semi-continuous fuzzy intervals one may
apply the methodology as in [14], based on the solution of the box-constrained
optimization problems

{

c̃αl = min {C(σ)|σ ∈ [σ̃α
l , σ̃

α
r ]}

c̃αr = max {C(σ)|σ ∈ [σ̃α
l , σ̃

α
r ]} . (19)

Since C is a strictly increasing function in σ we easily obtain
{

c̃αl = C(σ̃α
l )

c̃αr = C(σ̃α
r ).

(20)

4.3 Empirical Application

According to the fuzzy number obtained by suitably merging information on
volatility as in Subsection 4.1, we compute the corresponding fuzzy option prices
for SPX options written on the S&P500 Index. We considered options traded on
October 21st, 2010: a maximum of 50 strike prices were available (for the one-
month to maturity options) as well as 11 different expiration dates for a total
of 168 options. The underlying price on October, 21st 2010 was S=1180.26. In
order to asses the empirical significance of fuzzy option prices computed via our
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approach we need a proper comparison with the market bid and ask prices for
the corresponding options. Besides, a selection criteria is needed to identify a set
of more representative options on which to base our empirical exercise; it is well
known that the more an option is traded the more its price may be interpreted
as as an equilibrium price between supply and demand. For this reason, we
compute, for each expiration date available, the mean trading volume obtained
as the ratio of the total trading volume on options with that maturity and the
total number of options with that maturity. We select, this way, 37 options.

To the end of comparing fuzzy option prices to market prices, we compute a
suitably defined measure of fuzzy distances between the Black and Scholes fuzzy
prices and the market bid-ask prices thought as crisp intervals, where the prices
can be located with a step membership function with value 1 in the bid-ask
interval and value 0 otherwise. For such purpose we consider two different fuzzy
distance measures:

(a) the well known modified Bhattacharyya distance (see e.g. [18]) and
(b) the usual fuzzy similarity defined through min as t-norm and max as t-

conorm (obtained also in [16] as special case of general similarities based on
coherent conditional probabilities).

Further, to evaluate the added value of our merging approach with respect to
usual fuzzy merging, we compute the distance/similarity measures also for the
fuzzy option prices obtained applying the extension principle in the case when
the fuzzy volatility parameter is modeled as the fuzzy arithmetic mean between
memberships of σ̂ and ν (see a comparison of the two pricing techniques in
Fig. 4). In 24 cases out of 37 the distance (a) is smaller for the fuzzy option
prices obtained by our proper merging rather than by fuzzy arithmetic mean
(see Fig. 5 (a)). Consistent results are obtained through the computation of the
fuzzy similarity (b) which is larger for our fuzzy merging in 23 out of 24 cases
above (see Fig. 5 (b)).

Fig. 4. Memberships of the SPX option price consequent of fuzzy volatility obtained
by our merging (a) or by fuzzy arithmetic mean (b) of σ̂ and ν; both for T=30 days
and K=1150 and compared to the Bid-Ask crisp interval
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Fig. 5. Bhattacharyya distances (a) and fuzzy similarities (b) between the Bid Ask
crisp intervals and Fuzzy Option Prices obtained by our merging (black) or through
the fuzzy arithmetic mean (grey)

5 Conclusion

We have illustrated a preliminary study of two weighted averages between mem-
bership functions that try to encompass in the usual fuzzy arithmetic mean the
agreement or the contradiction of two heterogeneous sources of information. For-
mal properties of the two proposed operators � and � must be fully investigated
and practical consequences fully analyzed. Anyhow the first empirical results we
have shown here seem to be promising, in particular with respect to the applica-
bility in very different situations and the capability of conciliating quite different
information.
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