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Abstract. In order to ensure thermal energy efficiency and follow government’s 
thermal guidance, more flexible and efficient buildings’ thermal controls are re-
quired. This paper focuses on proposing scalable, efficient and simple thermal 
control approach based on imprecise knowledge of buildings’ specificities. Its 
main principle is a weak data-dependency which ensures the scalability and 
simplicity of our thermal enhancement approach. For this, an extended thermal 
qualitative model is proposed. It is based on a qualitative description of influ-
ences that actions’ parameters may have on buildings’ thermal performances. 
Our thermal qualitative model is enriched by collecting and assessing previous 
thermal control performances. Thus, an approximate reasoning for a smart 
thermal control becomes effective based on our extended thermal qualitative 
model.  

Keywords: Qualitative modeling, approximate reasoning, smart thermal con-
trol, online learning, preference based learning. 

1 Introduction 

Since the first oil crisis in 1974, buildings thermal regulation, in France, has become 
stricter and harder to fulfill. Thus, highly developed thermal control techniques be-
came mandatory in order to fulfill the government’s thermal guidance and decrease 
buildings energy consumption. However, in spite of the big advances in thermal tech-
nologies (e.g., thermostat), smart thermal control suffers from deployment issues (i.e., 
deployment costs, significant settings, significant measurement, etc.). In fact, the 
uniqueness of each building complicates the design of sufficiently efficient and wide-
ly applicable thermal controls which leads to additional costs each time that the solu-
tion needs to be deployed in a different building. Therefore, smart thermal control 
related researches remain relevant and focus mainly on efficient and highly reusable 
aspects of thermal control approaches. This paper’s work can be referenced in this 
latter research area and contributes to building’s thermal performance enhancement. 
Zero Learning Data and Zero Setting Parameters challenges are, hence, considered in 
this paper studies. For this, we propose a new approach (THPE: THermal Process 
Enhancement) based on an Extended Qualitative Model (EQM) in order to bypass the 
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complexity of quantitative modeling and the insufficiency of qualitative ones. In fact, 
the EQM is based on a relevant, rather than precise, thermal enhancement modeling 
and an approximate, rather than accurate, reasoning. These features ensure the sim-
plicity, scalability, efficiency and longevity of our THPE. This last implements an 
iterative enhancement process which is described in this paper: first, a review on 
thermal enhancement modeling is summarized and our orientation for an extended 
qualitative modeling is justified. Section 3 explains the THPE’s overall algorithm. 
Important aspects dealing with uncertainty management and decision making are then 
detailed. In the conclusion section, some of the THPE thermal control experimenta-
tion results are displayed, as well as, some theoretical perspectives. 

2 Summarized Review and Related Works 

Efficient thermal control can be seen as a complex system control (i.e., climate, ther-
modynamic materials properties, thermal technologies and regulation, human behavior, 
etc.). In fact, considering most of thermal process’s influence factors may lead to a 
significant thermal control improvement. Therefore, predictive and advanced control 
approaches have been proposed to ensure smart thermal control [1-7]. Applied to the 
thermal context, the predictive control considers socio-economic objectives such as 
minimizing energy consumption and maximizing thermal comfort [1,2]. It is based on 
a mathematical thermal control modeling. Therefore, the more detailed and accurate 
the model parameters are, the more efficient the control would be. However, mathe-
matical model design requires expertise, as well as, detailed and precise quantitative 
knowledge on buildings’ thermal behavior. Advanced control has been applied for 20 
years in smart thermal control [3]. It is mainly based on Artificial Intelligence (AI) 
techniques and aims to provide a simple, efficient and adaptive control without requir-
ing detailed mathematical modeling. Indeed, learning techniques are used for system 
modeling. Two different paradigms can be distinguished: the quantitative one (i.e. 
statistical modeling [4] and AI modeling techniques such as ANNs (Ant Neural Net-
works) [5], SVMs (Support vector Machines) [6], etc.) and the qualitative one (i.e., 
qualitative rules and expert based modeling [7]). Quantitative control modeling re-
quires input training data which is, usually collected through onsite measurements, 
surveys, and available documentations. Data pre-treatment and post-treatments are, 
hence, requested in order to improve the model efficiency. Thermal control quantita-
tive learning is obviously a complicated task which requires important computation 
loads. In fact, mathematical modeling is the hardest one since it requires the biggest 
amount of setting data and measurements. Statistical modeling is much easier than the 
mathematical one however it stills not sufficient and flexible for a refined smart ther-
mal control. Well learned ANN and SVM models are more appropriate to ensure a 
refined smart thermal control. They, however, need significant computation loads, as 
well as, efficient and sufficient training-data. The qualitative formalism allows reduc-
ing the complexity of thermal control modeling. It can be less data dependent com-
pared to the quantitative ones (expert knowledge could be sufficient for the smart con-
trol modeling). Ambiguities and accuracy’s lack may affect negatively the qualitative 
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modeling efficiency and longevity for a continuous enhancement purposes. Neverthe-
less, a qualitative thermal control modeling can be easily adapted for different thermal 
scales such as buildings and smart grids. In order to ensure an efficient, scalable and 
simple smart thermal control, we have applied well-known qualitative enhancement 
techniques [8-11]. These techniques were proposed a long time ago by Williams [9], 
Kuipers [9] and others [10,11] in order to improve qualitative modeling efficiency and 
reduce their ambiguities. A survey is proposed in [11]. Therefore, we propose an Ex-
tended Qualitative Model (EQM) for an efficient, scalable and simple smart thermal 
control. Time-related informations, as well as, available quantitative observations have 
been used in order to improve the EQM reliability and accuracy. Moreover, simplified 
and generalized thermal behaviors have been considered for the thermal control  
qualitative modeling which is, also, denoted as a substantial qualitative enhancement 
technique. Hence, the EQM allows the abstraction of thermal specificities while main-
taining a sufficiently relevant representation for thermal enhancement purposes. The 
approximate reasoning (THPE: THermal Process Enhancement) based on our EQM 
can, thus, be generalized for various thermal scales and specificities. Furthermore, it 
does not require any particular setting data and important computation loads. 

3 THPE’s General Approach 

Our smart thermal control THPE is inspired from human’s increasing abilities when 
manipulating objects. Let us consider an amateur cyclist who is learning how to effi-
ciently ride his new bicycle. When climbing hills, the cyclist is continually trying to 
adapt his riding in order to maximize his speed and minimize his effort. For this, he 
does not know much about his bicycle metal, tires and wheels spoke compositions 
and measurements. He generally does not know precisely the characteristics of his 
climbing paths. However, over the time, the cyclist remains able to improve his 
climbing performances. In fact, the more he climbs, the more his riding performances 
will get better. Actually, his improvement is only based on simple rules and compari-
sons over his previous climbing. For instance, the cyclist may know basic riding rules 
about his bicycle rear wheel cogs: if climbing is hard then use a bigger cog and if you 
want to go faster then use a smaller one. Using these simple cog’s rules and consider-
ing his previous climbing observations, the cyclist displays an approximate reasoning 
that can be illustrated by the following statements: “This new hill looks like a previous 
one that exhausted me by that time. Therefore, to make it less exhausting I should try 
a bigger cog for this new hill”, “I once tried to climb this kind of hills but every time 
my performances were slow. To go faster, I should use a smaller cog this time”. Our 
THPE tries to reproduce the same approximate reasoning. In fact, when we are not 
familiar with buildings’ thermal behavior, thermal control of buildings may seem 
intricate. Uncertainty about how relevant a thermal control is for a given thermal situ-
ation, is then in its highest level. The same reasoning remains true for the control of 
any complex system. However, objective observations (i.e., vaguely identified physi-
cal behavior) and subjective ones (i.e., human preferences) may contribute to reduce 
uncertainty about thermal control. Therefore, we introduce our EQM which is used to 
represent simplified thermal control rules similarly as the cog’s rules in the cyclist 
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example. It, also, defines how these thermal control rules should be applied to ensure 
the control enhancement for different thermal situations. The EQM design is based on 
influence approximations relating thermal control parameters to thermal perfor-
mances. In order to extend thermal qualitative modeling, the EQM’s parameters and 
performances display time-related informations of the thermal general behavior. The 
influences, among parameters and performances, are vaguely identified from thermal 
general behavior models. Their accuracy is constantly improving through online 
thermal quantitative observations. Similarly as the cyclist memories about his old 
climbing experiences, keeping track of predate thermal control, as well as, their per-
formances allows recalling them in similar control situations. A Thermal Control 
Manager (TCM) has been conceived in order to maintain thermal historical data. For 
each thermal control attempt, the thermal situation, controls and performances are, 
then, stored by the TCM. This last is described by the following set TCM =  

{ 1.. ,( , , )}k k kk n S CMD PERF=  where n  is the number of previous thermal controls 

and kS , kCMD  and kPERF  are, respectively, the thk  thermal situation (i.e., out-
door and indoor temperatures, etc.), controls and performances. To support compari-
son over the previous attempts and apply approximate reasoning, AI techniques have 
been deployed. Fig. 1 displays the THEP’s algorithm describing the general approach 
for a smart thermal control based on the EQM and TCM. newS  refers to a new ther-
mal situation for which an efficient thermal control needs to be computed. It, mainly, 
involves indoor and outdoor thermal current situations, as well as, thermal setpoints 
that need to be reached before occupants show up. Setpoints can, also, be efficiently 
identified based on an overall aggregation function (i.e., thermal comfort), as well as, 
thermal indoor and outdoor fluctuations [12,13]. In this paper, we particularly focus 
on THPE’s aspects dealing with reducing uncertainty about buildings’ thermal con-
trol. Thus, we start by explaining our different approaches used for decreasing uncer-
tainty about the EQM influence approximations. In order to ensure an accurate ther-
mal control, quantitative knowledge is, then, used (step 1 and 2 in Fig. 1). Section 5 
deals with uncertainty about the choice of these quantitative information in order to 
ensure an efficient and accurate thermal control. 
 

THEP ( , ) 

if  then   call the energy manager   else 

1. Compute  where, ,  is similar to  (section 5) 

if  then   call the energy manager   else 

2. Find ,  is most favored for  (section 5) 

3. Compute  for  based on the EQM (section 4) and the quantitative information of  

4. Apply  and update the  with the new attempt  

end if 

end if 

end 

 
Fig. 1. THPE general algorithm 

newS TCM

TCM = ∅
*TCM TCM⊆ *( , , )S CMD PERF TCM∀ ∈ S newS

*TCM = ∅
* * *( , , ) |S CMD PERF *( , , )S CMD PERF TCM∀ ∈ *CMD newS

newCMD newS *CMD
newCMD TCM ( ), ,new new newS CMD PERF
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4 Influence Approximations 

In order to ensure the THPE weak dependency w.r.t. each building’s thermal specific-
ities, the EQM applies an event-based representation [14] for the thermal control laws 
description. This last is more relevant than a classical sampled time representation. It 
is, also, considered sufficient for the thermal control laws’ description since steps and 
ramps signals are usually used for the thermal regulations. For instance, the EQM 
considers the thermal control starting time which is useful to improve control delays. 
For each thermal control law tL ( )  we associate a control parameter vector 

( , , )C t p y= Δ Δ Δ . These 3 control events are described by the thermal example showed 

in Fig. 2 and refer, respectively, to tL ( )  delay (time-gap between tL ( )  starting time 

1t  and thermal control starting time 0t ), gradient (characterized by the time-gap be-

tween tL ( )  highest 1y  and lowest 0y  values) and amplitude (height-gap between 

tL ( )  highest and lowest values). CMD  refers to the set of control parameter vectors 

C  applied on all building’s actuators. Rather than building’s thermal profiles, ther-
mal performances are considered in order to ensure the EQM weak dependency w.r.t. 
each building’s thermal specificities. Indeed, the performance vector P =
( , ,cost comfort )flexibility  describing thermal energy consumption, stationary thermal 

comfort and setpoints’ achievement delay, ensures building’s thermal assessment in 
our EQM. PERF  corresponds, then, to the set of all building’s rooms thermal per-
formance vectors P . General thermal behaviors have been studied in order to identify 
how each control parameter influences the considered thermal performance. Tab. 1 
describes, for our EQM, the gradient directions computed over each performance 
w.r.t. each control parameter. Considering gradient directions rather than precise de-
rivative values ensures the EQM’s weak dependency w.r.t. building’s thermal speci-
ficities. Hence, the EQM’s accuracy may be lacking. However combined to thermal 
quantitative measurements ( *CMD  in Fig. 1), the gradient direction based influences 
are considered sufficient for the THPE’s thermal enhancement. For each thermal per-
formance j , where Pj S∈  and PS  is the considered thermal performance set (e.g., 

{ , , }PS cost comfort flexibility= ), and control parameter i , where Ci S∈  and CS  is 

the considered control parameter set (e.g., { , , }CS t p y= Δ Δ Δ ), an influence function 

:ijF C P
i jV V× → { ,0, }− +  is defined, where values of thermal control parameters ic , 

Ci S∀ ∈ , and performances jp , Pj S∀ ∈ , are, respectively, defined in C
iV  and P

jV . 

ijF  indicates whether the performance j  increases (+) or decreases (−) w.r.t. varia-

tions of the control parameter i . A (0) valued ijF  function indicates that the control 

parameter i  has no influence on the performance j . The ijF  qualitative gains can, 

thus, be considered by the EQM for buildings’ thermal control enhancement. Tab. 1 
displays our EQM’s influence functions. Objective and subjective thermal related 
knowledge is introduced in order to identify influence functions: 
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Table 1. Gradient direction based influences (0 means no influence) 

CS  

PS  tΔ  pΔ  yΔ  

cost  ( ),t cost t costF c pΔ Δ −  +  
comfort  0  0  ( ),y comfort y comfortF c pΔ Δ  

flexibility  − − +
 
 
Objective knowledge corresponds, mainly, to interpretable physical phenomena. 
These latter can be easily confirmed by studying sign variations of simplified thermal 
behaviors. For instance, it is commonly known that, in winter time, thermal energy 
consumption ( cost ) increases by increasing the command law height ( yΔ ). This is 

illustrated, in Tab. 1, by a constant influence function describing a gradual rule type 
on C P

y costV VΔ ×  such as the greater the heating step amplitude is, the greater the thermal 

energy consumption would be. Therefore, regardless of buildings thermal specifici-
ties, qualitative thermal influence functions can be deduced from simplified physical 
behaviors (e.g., y costFΔ ). Buildings’ special features can occasionally be responsible of 

ijF ’s sign variations (e.g., t costFΔ ). In this case, simple learning techniques are applied 

over the TCM’s previous attempts in order to specifically identify each building’s 
bending points. For instance, t costFΔ  depends on building ventilation and insulation 

properties: starting the heating process earlier or later impacts differently the thermal 
energy consumption. Fig. 3 shows some possible shapes of the continuous function 
relating tcΔ  to costp  measurements. The shape of this function is obtained from the 

simplified thermal behavior (i.e., in some cases, t costFΔ  displays a maximum. Other-

wise it is decreasing for any tcΔ  value). The maximum remains to be identified. Fig. 

3’s displayed maximums can be explained by the fact that, when outdoor temperature 
is lower than the indoor one, building’s ambient temperature decreases until the con-
trol law is launched at time 1t . The tcΔ ’s interval for which cost  increases refers to 

situations where it is more costly to start heating for a short time from a low tempera-
ture than heating the building for a longer time but starting from a higher temperature. 
The decreasing costp  w.r.t. tcΔ  refers to the opposite behavior. Furthermore, the 

HVAC (Heating Ventilation and Air-Conditioning) system is responsible for the rapid 
decrease of building’s ambient temperature when the heating system is off. In fact, the 
HVAC continuously injects a weak percentage of the outdoor air for ventilation  
purposes. 
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Fig. 2. EQM’s Control laws events Fig. 3.  with regard to  variations 

from different ventilation perspective 

 
Consequently, we propose to use measurements in order to capture, for each building, 

the C
t tc VΔ Δ∈  value that entails sign variation in the continuous function (Fig. 3) and 

finally online learn t costFΔ  function. For this, we consider the membership function 

:t costμΔ
C
tVΔ → [0,1 ] which describes the possibility degree that C

t tc VΔ Δ∈  may corres-

pond to t costFΔ ’s sign variation (i.e., a maximum of the continuous function relating 

Δt to cost ). Initially, when no information is available, ( )t cost tcμΔ Δ , C
t tc VΔ Δ∀ ∈ . This 

case illustrates the complete ignorance regarding t costFΔ  behavior. t costμΔ  is built 

through online thermal quantitative observations. Triplets of ( , )t costc pΔ  are ranked 

according to tcΔ . The qualitative derivative of the continuous function relating tcΔ  to 

costp  is, then, computed. t costFΔ ’s values can, hence, be deduced. Each new relevant 

thermal attempt ( , , )new new newS CMD PERF  recommended by the THPE (section 5) and 

stored by the TCM, provides new triplets of ( , )t costc pΔ  which enables new t costμΔ ’s 

computations. Therefore, the ignorance interval span of t costμΔ  decreases since every 

new qualitative derivative informs about the monotony of the continuous function. 
When uncertainty is not considered in the qualitative derivative computations, t costμΔ

’s values belong to the {0,1}  set instead of the [0,1] interval. Uncertainty about the 

continuous function variations may either come from thermal disturbance or the tech-
nique used for the quantitative observations imprecision management. This kind of 
uncertainty management is out of this paper scope which is dedicated to discuss gen-
eral uncertainty aspects in buildings’ thermal control enhancement. Ideally, the online 
learning process is over when *! C

t tc VΔ Δ∃ ∈  such as *( ) 1t cost tcμΔ Δ = . The membership 

function based online learning can easily be generalized in order to precisely identify 
more complicated buildings’ thermal dependent influence functions. 
 
Subjective knowledge can also be used in order to reduce uncertainty about buildings 
thermal control. This knowledge involves occupants’ expectations w.r.t. building’s 
performances and usages. Preference models have been, then, considered. They con-
tribute, as well, to improve our EQM efficiency. The considered preference models 

costp
tcΔ
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can rather be buildings dependent or independent. For instance, in Tab. 1, y comfortFΔ  

influence function relating ycΔ  to comfortp  measurements, is built from an overall 

thermal performance model that captures the multidimensional concept of thermal 
comfort [12,13]. y comfortFΔ  values can thus be identified considering building’s occu-

pants thermal sensations as well as thermal context variations (i.e., humidity and  
sunshine characteristics). In fact, depending on the thermal context, an increasing 
ambient temperature may either improve or distract the occupant’s thermal sensation. 
Hence, y comfortFΔ  acknowledge sign variations since thermal command law amplitude 

influence building’s ambient temperature. Using thermal comfort standard such as the 
PPD [15] index is useful to ensure the EQM independency toward buildings’ thermal 
properties. As the PPD formalism is complex and inadequate for control purposes, a 
MAUT (Multi Attribute Utility Theory) version called CIPPD has been proposed to 
make it easily interpretable [12,13]. The CIPPD is based on utility functions defined 
for each thermal comfort attribute (i.e., ambient temperature, humidity, radiant  
temperature, air speed, etc.). Attributes’ utilities are then aggregated to compute the 
comfort performance. For more information about the thermal comfort based control 
enhancement, please refer to our previous works [12,13] where you can find an  
extended discussion about the thermal comfort related issues. Considering the 
CIPPD’s analytic form, sgn( ( ( )) )Td u T dT  function, where T  refers to the ambient 

temperature and Tu  to its related utility function, provides y comfortFΔ  values. 

Once the EQM influences are approximated using thermal objective and subjective 
knowledge, thermal enhancement control can then be operated. Contradictory influ-
ences on thermal performances can, simply, be resolved by considering user’s priori-
ties. For instance, building’s occupants may be more demanding about their thermal 
comfort. The EQM will then give priority to the comfort performance optimization, 
then flexibility and last the cost performance. Hence, based on the EQM, it becomes 
possible to recommend control parameters increase/decrease. Step 3 of the THPE 

(Fig. 1) is, then, as follows: the quantitative information * * *( , , )S CMD PERF TCM∈ , 

computed in step 2, provides the most favored prior attempt w.r.t. the current situa-
tion. Then, the EQM’s rules are applied to compute a more likely better command 

law newCMD  from *CMD . The most favored * * *( , , )S CMD PERF TCM∈  used to 

improve the EQM accuracy enhancement is explained in section 5. 

5 Quantitative Knowledge Choice 

The EQM’s approximate reasoning is based on the selection of the quantitative con-

trol statement * * *( , , )S CMD PERF TCM∈  as explained in Fig. 1. From one hand, 
* * *( , , )S CMD PERF  is chosen such as *S  is as similar as possible to newS  (step 1 in 

Fig. 1), and, from the other hand, *PERF  correspond to prior best realized thermal 
performances (step 2 in Fig. 1). Three decision criteria have been considered in order 
to identify the most likely favored previous attempt stored by the TCM: i. The first 
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one is similarity between previous thermal situations S  and the new one newS . It 
allows overcoming non-linearity problems related to thermal controls (step 1 in Fig. 
1) since maximizing the similarity allows linear reasoning around a setting point. 

Similarity between thermal situations is based on a distance ' "( , )dist S S , where 'S  

and "S  are two thermal situations. The smaller ' "( , )dist S S  is, the more similar 'S  

and "S  are. Since thermal situations are only defined by temperature measurements, 

there are no commensurateness problems in ' "( , )dist S S  definition. ii. The second 

criterion considered in TCM’s statement evaluation is thermal performance. Obvious-
ly, the better the resulting thermal performances PERF  are, the more favored the 
control statement would be. For this, Multi-Criteria Decision Analyses techniques 
have been deployed. Thus, a preference model over the considered performances PS  

is identified. Firstly, utility functions ( costu , comfortu  and flexibilityu ) are defined for each 

performance to ensure commensurability. They allow the assessment of each perfor-
mance over the same scale which is the satisfaction degree or utility scale [0,1]. Se-
condly, an aggregation function is required in order to ensure the overall thermal 

evaluation k
rP  for each room r R∈  ( R  corresponds to the building room’s set) and 

prior thermal control attempt k . These steps are related to the energy manager prefe-
rence modeling which depends on his energy policy. The preference model may be 
identified using indirect methods such as Macbeth. We assume that a weighted sum is 
sufficient to capture this preference model. When thermal control is related to a subset 
of rooms 'R R⊆ , overall thermal assessment has to consider all thermal perfor-
mances over 'R . Thus, our EQM proposes to proceed firstly by aggregating all  
performances from the energy consumption ( sum ), thermal comfort ( min ) and flex-
ibility ( max ) points of view; secondly, the preference model defined for one room is 
applied for 'R . We denote by kP  the overall building thermal assessment associated 

to the thk  ( kPERF ) prior thermal attempt stored by the TCM. iii. The last criterion 
considered for TCM’s statement assessment is related to previous enhancement re-
sults. In fact, predate thermal controls which have led to thermal enhancement failures 
are disadvantaged in the future TCM’s element evaluations. Therefore, we associate a 

set kBad  to each ( , , )k k kS CMD PERF TCM∈ . kBad  gathers prior thermal controls 

that were computed from ( , , )k k kS CMD PERF  and led to thermal performance de-

creases. Considering these 3 criteria, an overall score kscore  (1) can be computed for 

each TCM’s stored control in a limited neighborhood of newS  in order to satisfy the 
thermal process linear behavior expected property: 

' '
'

{1,.., }, {1 ( , )} * {1 ( , )}k

k k new k k new k
k Bad

k n score dist S S dist S S
∈

∈ = − −∏P P         (1) 

The favored quantitative information * * *( , , )S CMD PERF TCM∈  used for our EQM 

enrichment (step 3 in Fig. 1) satisfies * kscore score≥ , ( , , )k k kS CMD PERF TCM∀ ∈ . 
*( ,S  * *, )CMD PERF  is, then, used by the EQM in order to compute more accurate 

enhancement thermal control. 
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6 Conclusion and Some Experimental Results 

In our previous work, we have proposed an approach allowing the computation of the 
most relevant target values (i.e., setpoints) to be provided to the energy control system 
in order to improve the thermal sensation and reduce thermal energy consumption 
[12,13] This paper completes our approach by answering the question how to effi-
ciently reach these setpoints without using any quantitative model and important 
computation loads to precisely identify each buildings thermal regulation system. Our 
iterative approach THPE provides thermal control recommendations, as soon as, it is 
deployed without needing any a priori learning or identification. These control rec-
ommendations are then refined thanks to quantitative observations and qualitative 
physical aspects related to thermal processes. Our THPE has been evaluated on a 
simulated building area. It ensures a quite quick and stable convergence to an opti-
mum (based on the considered preference model) thermal control for every new ther-
mal situation. In fact, a few enhancement iterations (less than 10 in most evaluation 
tests) are needed in order to find the optimum thermal control for any new thermal 
situation. For instance, Fig. 4 shows one room thermal enhancement process. Day 0 
matches the TCM initial previous thermal control observation. Day 1 corresponds, in 
the same room, to the thermal profile computed for a new thermal situation based on 
Day 0’s posteriori available quantitative information. The EQM recommendations 
over Day 0’s control ensures 14.5% of thermal energy consumption decrease. Control 
enhancements are iteratively computed for the same thermal situation as Day 1 (from 
Day 2 to Day 5). In Fig. 4, the THPE’s enhancement converges in 5 iterations where 
Day 5 displays the thermal profile that ensures the optimum thermal performances for 
the considered thermal situation. Our experimentations reveal about 7 to 31% for one 
room thermal performance enhancement and 12 to 24% for several rooms thermal 
enhancement. Average enhancement ensured by the THPE is evaluated to 16%. How 
the THPE can bypass frequent thermal control deployment issues such as quantitative 
data availability, it can be considered as an outstanding point compared to the existent 
thermal control solutions. Any comparison becomes, thus, unbalanced because of the 
different application conditions. Trying to operate an MPC in few days on a com-
pletely new building is not conceivable. It goes the same when asking the THPE for 
the same efficiency as an MPC based control. Yet, perspectives remain possible to 
improve our THPE efficiency. Uncertainty management in influence functions can be 
improved by using continuous scales membership functions. Ambiguous measure-
ments coming from thermal disturbances (i.e., windows and door opening) should 
complete this point. Sensors data precision can be studied as well. Qualitative interac-
tions between the control enhancement parameters could also be studied in order to 
compute enhancement recommendations based on subsets of control parameters var-
iations instead of singletons. This will warrantee the THPE’s convergence to a global 
optimum rather than a local one. 
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Fig. 4. One room thermal enhancement 
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