
A New Approach to Economic Production

Quantity Problems with Fuzzy Parameters
and Inventory Constraint
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Abstract. In this paper, we will develop a new multi-item economic
production quantity model with limited storage space. This new model
will then be extended to allow for fuzzy demand and solved numerically
with a non-linear programming solver for two cases: in the first case the
optimization problem will be defuzzified with the signed distance mea-
sure and in the second case, the storage constraint needs to be fulfilled,
only to a certain degree of possibility. Both cases are solved and illus-
trated with an example.
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1 Introduction

Even with more than 100 years of EOQ (Economic Order Quantity) develop-
ment, current stream of new findings and results do not tend to decrease. Even
if the first model by Harris [8] was very simple, it has been very popular in in-
dustry and also an inspiration to many researchers. In this basic model the order
size needed to be determined given holding costs, order setup costs and annual
demand. This model has been altered in many ways to capture more complex
and realistic situations in the industry. For instance, the EPQ (Economic Pro-
duction Quantity) solved a problem where the product is produced to stock,
also multi item, storage capacity limitation and so on is further extensions of
the basic model.

These additions may be very crucial, even to the extent of only having stor-
age capacity for one weeks production (this was the case in a Nordic plywood
production facility that we have collaborated with). It is obvious that we will
produce to stock in the process industry environment. In these settings we need
the EOQ-models with some proper extensions. The uncertainties in the process
industry can sometimes be measured probabilistically, but sometimes data is
not enough and therefore fuzzy measures may be needed, c.f [3,5]. There have
also been a lot of research contributions in this line of research. For instance
[3] solved an EOQ model with backorders and infinite replenishment lead time
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with fuzzy lead times. However, sometimes the environment may be more sta-
ble, and only a few things may be uncertain. These fuzzy uncertainties may
come from the fact that the demand may be uncertain, but still reliable data
is not found to make justified probabilistic statements. This case is tackled in
our paper for a special case of inventory constraints. Often is desirable to try
to solve the EOQ-models with their extensions analytically through the solu-
tion of the derivatives (as also done originally by Harris, [8]). There are also
other optimization approaches used in the EOQ literature. If the uncertainties
in the EOQ-models can be modeled stochastically (as done in [9]), the track
of probabilistic models should be conducted, but this is not always possible in
the process industry. For the uncertainties relevant to this paper it is better to
use fuzzy numbers instead of probabilistic approaches ([17,18]). In the line of
research of fuzzy EOQ-models, there are contributions for instance like Chang
[6], who worked out fuzzy modifications of the model of [13], which took the de-
fective rate of the goods into account. Ouyang and Wu and [11] Ouyang and Yao
[12] solved an EOQ-model with the lead times as decision variables as well as
the order quantities. Taleizadeh and Nematollahi [15] presented again an EOQ-
model with a final time horizon, with perishable items, backordering and delayed
payments. Sanni and Chukwu [14] did a EOQ-model with deteriorating items,
ramp-type demand as well as shortages. This paper has a track of research de-
velopment behind. Already Björk and Carlsson [3] solved analytically an EOQ
problem with backorders, with a signed distance defuzzification method. Björk
[1] solved again a problem with a finite production rate and fuzzy cycle time,
which was extended in [2] to a more general fuzzy case. The approach used in
this paper is novel since there are no papers (to our knowledge) that focus on
the realistic modeling of inventory constraints. Our solution methodology is to
one part similar also to Björk and Carlsson [4] and Björk [1], , where the fuzzy
model is defuzzified using the signed distance method [16], however, the solu-
tion is here not found through the derivatives, but numerically, since our fuzzy
problem is more difficult to solve. This paper extends the results in the recent
publication by Björk [2] with the limited storage capacity restriction with a more
complex, but much more realistic inventory space constraint model. In addition,
we consider not only the crisp case, but also the case of chance constrained for-
mulation (in the fuzzy sense) of the storage limitations. The rest of the paper
is structured as follows. First we will explain some preliminaries, then we will
present the crisp case, after which we allow the demand to be fuzzy. Finally we
solve the model both with defuzzification method as well as introducing fuzzy
necessity constraints. Finally we will show this with an example as well as make
some concluding remarks.

2 Preliminaries

In this section we introduce the necessary definitions and notations that are
necessary for developing and solving our new model. We focus on fuzzy numbers
and possibilistic chance constrained programming.
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2.1 Fuzzy Numbers

Fuzzy sets have been introduced by Zadeh [17] to represent uncertainty different
from randomness. In this paper, we employ fuzzy sets to model incomplete infor-
mation inherent in many real world applications of inventory management. The
most used special case of fuzzy sets is the family of triangular fuzzy numbers.

Definition 1 Consider the fuzzy set Ã = (a, b, c) where a < b < c and defined
on R, which is called a triangular fuzzy number, if the membership function of
Ã is given by

μÃ(x) =

⎧
⎪⎨

⎪⎩

x−a
b−a if a ≤ x ≤ b

c−x
x−b if b ≤ x ≤ c

0 otherwise

In order to find non-fuzzy values for the model, we need to use some distance
measures, and we will use the signed distance [16]. Before the definition of this
distance, we need to introduce the concept of α-cut of a fuzzy set.

Definition 2 Let B̃ a fuzzy set on R and 0 ≤ α ≤ 1. The α-cut of B̃ is the set
of all the points x such that μB̃(x) ≥ α, i.e. B̃(α) = {x|μB̃(x) ≥ α} .

Let Ω be the family of all fuzzy sets B̃ defined on R for which the α-cut
B̃(α) = [B̃l(α), B̃u(α)] exists for every 0 ≤ α ≤ 1, and both B̃l(α) and B̃u(α)
are continuous functions on α ∈ [0, 1].

Definition 3 For B̃ ∈ Ω define the signed distance of B̃ to 0̃ as

d(B̃, 0̃) =
1

2

∫ 1

0

(B̃l(α) + B̃u(α))dα

2.2 Chance Constrained Programming

Chance constrained programming, originally introduced in probabilitic environ-
ment by Charnes and Cooper [7], is a widely-used method to handle uncertain
parameters in optimization problems. The original approach was later modified
to incorporate fuzzy parameters and possibility and necessity measures [10]. Ac-
cording to this approach, it is not necessary to use any defuzzification method,
the extent to which the constraints of the models are satisfied in terms of pos-
sibility or necessity are calculated.

Possibility measure [19] is a maxitive normalized monotone measure, i.e.

Pos

(
⋃

i

Bi

)

= sup
i

Pos(Bi).

where {Bi} is any family of sets in the universe of discourse. The dual measure
of possibility, termed as necessity, is defined as:

Nec(B) = 1− Pos(BC).
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We can consider fuzzy numbers as possibility distributions on the real line
using the formula

Pos(C ⊂ R) = sup
x∈C

μB(x),

where μB(x) is the membership function of the fuzzy number B. In this paper
we will calculate the possibility of the fulfilment of constraint with the left-hand
side being a fuzzy expression and the right-hand side as a crisp number (size of
available storage). As crisp numbers are special cases of fuzzy numbers we can
use the following formula for A ∈ R:

Pos(B ≤ A) = sup {μB(x) | x ≤ A} .

3 EPQ Model with Fuzzy Parameters and Storage
Constraint

In this section, we are first going to present the crisp and fuzzy models, and two
approaches for solving the fuzzy formulation. The parameters and variables (can
be assumed strictly greater than zero) in the classical multi-item EPQ model
with shared cycle time and storage space limitation are the following (where the
index i ∈ I = {1, 2, . . . , n} denotes the products):

– Qi is the production batch size (variable)
– Ki is the fixed cost per production batch (parameter)
– Di is the annual demand of the product (parameter)
– hi is the unit holding cost per year (parameter)
– T is the cycle time (variable)
– Pi is the annual production rate (parameter)
– ai is the storage area requirement per inventory unit (parameter)
– A is the maximum available storage area (parameter)

The total cost function (TCU), including production setup costs, the inventory
holding costs, and the constraint concerning the limitation on the storage area
for all products are given by

min TCU(Q1, . . . , Qn) =

n∑

i=1

KiDi

Qi
+

n∑

i=1

hiQiρi
2

s. t. aiQiρi +
∑

j>i

aj

⎛

⎝Qjρj − IDj −
⎛

⎝
∑

k>j

QkDj

Pk

⎞

⎠−
⎛

⎝
∑

k≤i

QkDj

Pk

⎞

⎠

⎞

⎠

+
∑

j<i

aj

⎛

⎝Qjρj −
⎛

⎝
i∑

k=j+1

QkDj

Pk

⎞

⎠

⎞

⎠ ≤ A, i = 1, ..., n

(1)

where I = T−∑n
i=1

Qi

Pi
(the idle time of the machine, we suppose it takes place in

the end of a cycle, between the production of item n is finished and production
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of item 1 starts) and ρi = 1 − Di

Pi
. Here we assume that

∑n
i=1

Di

Pi
≤ 1.The

production batch size Qi can also be described with the cycle time T according
the formula Qi = TDi.

The storage constraint can be justified in the following way. First, we have
to notice that the maximum storage requirement occurs at one of the n time
points (ti, i = 1, , n) when the production of one of the n items is finished. This

follows from the observation that for any i ≤ n, if aiρiQi ≥
∑

k �=i

akQiDk

Pi
(the

required storage place for item i during production is bigger than the storage
that becomes available because of all the other product units sold based on the
predicted demand), then we need more storage place at time point t(i+1) than
ti (and the storage requirement continuously increases between the two time
points); otherwise we need more storage place at time point ti than t(i + 1)
(with continuous decrease between the two points).

After using the ρi = 1 − Di

Pi
substitution and replacing the cycle time in the

constraint, we obtain the following form of the objective function:

TCU(Q1, . . . , Qn) =

n∑

i=1

KiDi

Qi
+

n∑

i=1

hiQi

2
−

n∑

i=1

hiQiDi

2Pi
(2)

and the constraint

aiQi − aiQiDi

2Pi
+
∑

j>i

ajDj

(
j−1∑

k=i+1

Qk

Pk

)

+
∑

j<i

aj

⎛

⎝Qj −
⎛

⎝
i∑

k=j

QkDj

Pk

⎞

⎠

⎞

⎠ ≤ A, i = 1, ..., n

(3)

To incorporate the uncertainty related to the estimation of demand as an
input parameter for this model, we assume that the demand is uncertain but
it is possible to describe it with a triangular fuzzy number (asymmetric). The
fuzzy demand (D̃i ) will then be represented as an asymmetrical triangular fuzzy
number:

D̃i = (Di − δi, Di, Di + ηi)

The Total Annual Cost in the fuzzy sense will be

˜TCU(Q1, . . . , Qn) =

n∑

i=1

KiD̃i

Qi
+

n∑

i=1

hiQi

2
−

n∑

i=1

hiQiD̃i

2Pi
(4)
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and the storage limitation with fuzzy demand can be written as

aiQi − aiQiD̃i

2Pi
+
∑

j>i

ajD̃j

(
j−1∑

k=i+1

Qk

Pk

)

+
∑

j<i

aj

⎛

⎝Qj −
⎛

⎝
i∑

k=j

QkD̃j

Pk

⎞

⎠

⎞

⎠ ≤ A, i = 1, ..., n

(5)

We will employ two different approaches to find the optimal solution to this
problem:

1. We calculate the signed distance for the total cost function and the constraint
to obtain the defuzzified version of the model and then solve it as a crisp
problem.

2. We use necessity measure to specify the required degree of fulfilment for the
storage constraint and solve the problem based on this new constraint.

For the first approach, we need to calculate first the signed distance of an
asymmetric triangular fuzzy number (representing the demand) from 0 as

d(D̃I , 0̃) =
1

2

∫ 1

0

((D̃i)l(α) + (D̃i)u(α))dα

=
1

2

∫ 1

0

[(Di − δi + δiα) + (Di + ηi − ηiα)]dα = Di +
δi + ηi

4
(6)

The defuzzified total cost function can be obtained as

TCU(Q1, . . . , Qn) =

n∑

i=1

KiDi

Qi
+

n∑

i=1

Ki(ηi − δi)

4Qi
+

n∑

i=1

hiQi

2

−
n∑

i=1

hiQiDi

2Pi
−

n∑

i=1

hiQi(ηi − δi)

8Pi

(7)

and the defuzzified storage constraint can be written as

aiQi − aiQiDi

2Pi
− aiQi(ηi − δi)

8Pi
+
∑

j>i

ajDj

(
j−1∑

k=i+1

Qk

Pk

)

+
∑

j>i

aj(ηi − δi)

4

(
j−1∑

k=i+1

Qk

Pk

)

+
∑

j<i

aj

⎛

⎝Qj −
(

Dj +
ηi − δi

4

)
⎛

⎝
i∑

k=j

Qk

Pk

⎞

⎠

⎞

⎠ ≤ A, i = 1, ..., n

(8)

As for the second approach, we need to notice that the left hand side of the
fuzzy constraint for every i is a linear combination of triangular fuzzy numbers
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and as a result of this, the whole expression also represents an asymmetric tri-
angular fuzzy number for every i. According to this, we can define a triangular
fuzzy number for every i with the center

Ci =aiQi − aiQiDi

2Pi
+
∑

j>i

ajDj

(
j−1∑

k=i+1

Qk

Pk

)

+
∑

j<i

aj

⎛

⎝Qj −Dj

⎛

⎝
i∑

k=j

Qk

Pk

⎞

⎠

⎞

⎠

(9)

with left end-point of the support as

ϑi =aiQi − aiQi(Di + ηi)

2Pi
+
∑

j>i

aj(Dj − δj)

(
j−1∑

k=i+1

Qk

Pk

)

+
∑

j<i

aj

⎛

⎝Qj − (Dj + ηj)

⎛

⎝
i∑

k=j

Qk

Pk

⎞

⎠

⎞

⎠

(10)

and right end-point of the support as

νi =aiQi − aiQi(Di − δi)

2Pi
+
∑

j>i

aj(Dj + ηj)

(
j−1∑

k=i+1

Qk

Pk

)

+
∑

j<i

aj

⎛

⎝Qj − (Dj − δj)

⎛

⎝
i∑

k=j

Qk

Pk

⎞

⎠

⎞

⎠

(11)

To use the possibility measure for evaluating the storage constraint, we have
to define first to which extent we require the constraint to be satisfied (what
should be the possibility), as 0 ≤ ω ≤ 1, and we require that for every i, the
fuzzy number C̃i = (ϑi, Ci, νi) satisfies that C1 − (1− ω)(Ci − ϑi) ≤ A.

4 Example

In this section we will present a numerical example to compare three different
approaches to solve the problem defined in (1). We will calculate the optimal
solutions for the:

– crisp model
– fuzzy model through signed distance-based defuzzification
– chance constrained formulation.

This problem is a fictive one, even if the numbers are in the likely range of a real
Finnish paper producer. The parameters of the model are described in Table 1.

The optimal solutions for the crisp and fuzzy case are given in Table 2. As we
can observe, the approach using signed distance as the defuzzification approach
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Table 1. Parameters for the example

Product Ki Di hi ai Pi ηi δi
1 1500 900 3 10 5500 135 225

2 1000 400 3 15 5500 60 100

3 1200 700 3 8 5600 105 175

4 1300 700 3 12 5500 105 175

5 1400 500 3 9 5500 75 125

6 900 800 3 11 5800 120 200

7 1300 800 3 13 6200 120 200

8 1100 900 3 14 6000 135 225

results in a slightly lower total cost value. The optimal batch size is lower for
every type of product. The possible explanation is that, since we accounted for
the uncertainty and the membership functions are specified in a way that the
right width is larger than the left (there is more uncertainty concerning the upper
bound for demand), we need to produce less units at a time and have shorter
cycle times in order to be able to react changes in the demand according to the
uncertainty.

As for the chance constrained formulation, we used ω = 0.8, i.i. a 80 % assur-
ance that the available storage is enough at any given point. According to this,
the total cost value decreases significantly: by accepting a specific amount of risk
of running out of storage space, we can decrease the overall cost of the company.
The main change in the cost is the consequence of the higher production batches
and as a result the lover setup costs. As we are accept the risk related to the
storage space availability, we allow for larger number of units to be produced.

Table 2. Optimal solutions for the example with the different approaches

Product Crisp model Signed-distance approach Chance constrained

TCU 7969.37 7923.99 7373.93

Q1 1082.81 1063.67 1172.33

Q2 640.52 627.48 701.52

Q3 1005.00 981.82 1104.13

Q4 1134.30 1106.32 1176.15

Q5 1158.12 1124.61 1228.94

Q6 1184.33 1192.60 1224.46

Q7 1162.32 1132.67 1298.00

Q8 1068.35 1018.69 1314.65

To perform a simple sensitivity analysis, we considered a parameter that plays
an important role in the final decision, the available storage space A. The results
of the optimal TCU values for the three considered models are listed in Table 3.
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The results show that the total cost value increases for all methods as we decrease
the total available storage space. Additionally, we can observe that the difference
between the crisp solution and the signed-distance solution increases with the
storage space, while the difference with respect to the chance constrained solution
decreases.

Table 3. The results for different values of A

A Crisp Signed distance Chance constrained

3000 9792.47 9752.93 9611.49

3500 8725.48 8683.22 8567.16

4000 7969.37 7923.99 7827.64

4500 7420.31 7371.56 7291.09

5 Conclusions

Inventory optimization can have a positive impact for a company both on respon-
siveness and cost as well as the environment. The model introduced in this paper
is a variation of the EPQ model with many items, one manufacturing machine
and limited storage space, with the demand represented as a triangular fuzzy
number to incorporate uncertainty in the model. This allows for taking expert
opinion into account when modeling uncertainties, especially when new suppliers
and/or products are introduced. The model provides an optimal solution that
takes these uncertainties into account.

The first main contribution of the model presented in the paper is the for-
mulation of the storage constraint. Although there exists previous models in-
corporating storage capacity in EPQ models, they are usually to restrictive as
they use in many cases simply the sum of the batch sizes which is clearly an
overestimation of the required storage. We provided a formula that specifies the
exact storage requirement that can occur. As a second contribution, we used this
formula to extend the traditional and fuzzy EPQ model with uncertain demand.
We solved the fuzzy model using two different approaches: defuzzification using
the signed distance measure and chance constrained programming.

Our model is particularly suitable for solving optimization problems in a pro-
cess industry context. An example resembling Finnish paper industry was used to
illustrate the effect of limited storage space on the different solution approaches.
Future research tracks will include increasing the presented model to several
machines with shared inventory space. Different defuzzification methods will be
needed to be used. Finally a complete sensitivity analysis of the different mod-
els would need to be done within specific problem domains (such as the Nordic
paper industry).
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