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Abstract. We consider incomplete data sets using two interpretations
of missing attribute values: lost values and “do not care” conditions.
Additionally, in our data mining experiments we use global probabilistic
approximations (singleton, subset and concept). The results of validation
of such data, using global probabilistic approximations, were published
recently. A novelty of this paper is research on the complexity of corre-
sponding rule sets, in terms of the number of rules and number of rule
conditions. Our main result is that the simplest rule sets are induced
from data sets in which missing attribute values are interpreted as “do
not care” conditions where rule sets are induced using subset probabilis-
tic approximations.

1 Introduction

Probabilistic approximations, for complete data sets and based on an equiva-
lence relation, were studied for many years [14–19]. Incomplete data sets may
be analyzed using global approximations such as singleton, subset and concept
[5–7]. Probabilistic approximations, for incomplete data sets and based on ar-
bitrary binary relations, were introduced in [8], while first experimental results
using probabilistic approximations were published in [1].

In this paper incomplete data sets are characterized bymissing attribute values.
We will use two interpretations of a missing attribute value: lost values and “do
not care” conditions. Lost values indicate the original value was erased or never
obtained, and as a result we should use only existing, specified attribute values
for rule induction. “Do not care” conditions identify data that may be replaced
by any specified attribute value, typically someone refused to answer a question.

A probabilistic approximation is defined using a probability α. If α is equal
to one, the probabilistic approximation is equal to the lower approximation;
if α is a sufficiently small, positive number, the probabilistic approximation is
equal to the upper approximation. Both lower and upper approximations are
fundamental ideas of rough set theory.
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The main objective of this paper is research on the complexity of rule sets, in
terms of the number of rules and number of rule conditions, induced from data
sets with lost values and “do not care” conditions, while rule sets are induced
using three global approximations: singleton, subset and concept. These approx-
imations and their relationship to probabilistic approximations are defined in
section 3. Our main result is that the simplest rule sets are induced from data
sets in which missing attribute values are interpreted as “do not care” conditions
where rule sets are induced using subset probabilistic approximations.

2 Attribute-Value Pair Blocks

We assume that the input data sets are presented in the form of a decision table.
Example of decision tables are shown in Tables 1 and 2. Rows of the decision
table represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Tables 1 and 2, U = {1, 2, 3, 4, 5, 6, 7, 8}. Some
variables are called attributes while one selected variable is called a decision and
is denoted by d. The set of all attributes will be denoted by A. In Tables 1 and
2, A = {Wind, Humidity, Temperature} and d = Trip.

An important tool to analyze data sets is a block of an attribute-value pair.
Let (a, v) be an attribute-value pair. For complete decision tables, i.e., decision
tables in which every attribute value is specified, a block of (a, v), denoted by
[(a, v)], is the set of all cases x for which a(x) = v, where a(x) denotes the value
of the attribute a for the case x. For incomplete decision tables the definition of
a block of an attribute-value pair is modified [5–7].

– If for an attribute a there exists a case x such that a(x) = ?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks [(a, v)] for all values v of attribute a,

Table 1. An incomplete decision table with lost values

Attributes Decision

Case Wind Humidity Temperature Trip

1 low ? high yes

2 ? ? high yes

3 high high ? yes

4 ? low low yes

5 ? high low no

6 low ? low no

7 high high high no

8 high high ? no
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– If for an attribute a there exists a case x such that the corresponding value is
a “do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

Table 2. An incomplete decision table with “do not care” conditions

Attributes Decision

Case Wind Humidity Temperature Trip

1 low ∗ high yes

2 ∗ ∗ high yes

3 high high ∗ yes

4 ∗ low low yes

5 ∗ high low no

6 low ∗ low no

7 high high high no

8 high high ∗ no

Table 3. Blocks [(a, v)] of attribute value pairs (a, v)

Lost values “Do not care” conditions

[(Wind, low)] {1, 6} {1, 2, 4, 5, 6}
[(Wind, high)] {3, 7, 8} {2, 3, 4, 5, 7, 8}
[(Humidity, low)] {4} {1, 2, 4, 6}
[(Humidity, high)] {3, 5, 7, 8} {1, 2, 3, 5, 6, 7, 8}
[(Temperature, low)] {4, 5, 6} {3, 4, 5, 6, 8}
[(Temperature, high)] {1, 2, 7} {1, 2, 3, 7, 8}

A block of a decision-value pair is called a concept. In Tables 1 and 2, the
concepts are [(Trip, yes)] = {1, 2, 3, 4} and [(Trip, no)] = {5, 6, 7, 8}. Table 3
presents the attribute-value blocks computed for Table 1 (lost values) and Table 2
(“do not care” conditions).

Let B be a subset of the set A of all attributes. For a case x ∈ U the charac-
teristic set KB(x) is defined as the intersection of the sets K(x, a), for all a ∈ B,
where the set K(x, a) is defined in the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) =? or a(x) = ∗ then the set K(x, a) = U.
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Table 4. Characteristic sets for the entire attribute set A

Characteristic sets

Case Lost values “Do not care” conditions

1 {1} {1, 2}
2 {1, 2, 7} {1, 2, 3, 7, 8}
3 {3, 7, 8} {2, 3, 5, 7, 8}
4 {4} {4, 6}
5 {5} {3, 5, 6, 8}
6 {6} {4, 5, 6}
7 {7} {2, 3, 7, 8}
8 {3, 7, 8} {2, 3, 5, 7, 8}

For example, the characteristic set for case 1 from Table 1 is

KA(1) = [(Wind, low)] ∩ U ∩ [(Temperature, high)]

= {1, 6} ∩ {1, 2, 3, 4, 5, 6, 7, 8} ∩ {1, 2, 7} = {1}
and the characteristic set for case 1 from Table 2 is

KA(1) = [(Wind, low)] ∩ U ∩ [(Temperature, high)]

= {1, 2, 4, 5, 6} ∩ {1, 2, 3, 4, 5, 6, 7, 8} ∩ {1, 2, 3, 7, 8} = {1, 2}.
All characteristic sets for Tables 1 and 2 are presented in Table 4. For a complete
data set the characteristic set KB(x), where x ∈ U , is an equivalence class of
the indiscernibility relation [12, 13].

3 Probabilistic Approximations

In our work we define probabilistic approximations based on the conditional

probability of X given KB(x), Pr(X | KB(x)) =
|X ∩ KB(x)|

|KB(x)| with |Y | denoting
the cardinality of set Y . Let B be a subset of the attribute set A and X be a
subset of U .

We further define three kinds of global probablistic approximations: singleton,
subset and concept. A B-singleton probabilistic approximation of X with the
threshold α, 0 < α ≤ 1, denoted by apprsingletonα,B (X), is defined as follows

{x | x ∈ U, Pr(X | KB(x)) ≥ α}.
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A B-subset probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprsubsetα,B (X), is defined as follows

∪{KB(x) | x ∈ U, Pr(X | KB(x)) ≥ α}.
A B-concept probabilistic approximation of the set X with the threshold α,

0 < α ≤ 1, denoted by apprconceptα,B (X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X | KB(x)) ≥ α}.
Global probabilistic approximations for the concept [(Trip, no)] from Table 1

are presented in Table 5.

Table 5. Global approximations for [(Trip, no)], Table 1

Probabilistic approximations

α singleton subset concept

1/3 {2, 3, 5, 6, 7, 8} {1, 2, 3, 5, 6, 7, 8} {3, 5, 6, 7, 8}
2/3 {3, 5, 6, 7, 8} {3, 5, 6, 7, 8} {3, 5, 6, 7, 8}
1 {5, 6, 7} {5, 6, 7} {5, 6, 7}

4 Experiments

In our experiments we used eight real-life data sets taken from the University of
California at Irvine Machine Learning Repository. These data sets were modified
by replacing 35% of existing attribute values by symbols of lost values, i.e.,
question marks. All data sets with lost values were edited, symbols of lost values
were replaced by symbols of “do not care” conditions, i.e., by stars. Thus, for
each data set, two data sets were created for experiments, one with missing
attribute values interpreted as lost values and the other one as “do not care”
conditions.

In our experiments we used the MLEM2 (Modified Learning from Examples
Module, version 2) rule induction algorithm of the LERS (Learning from Exam-
ples using Rough Sets) data mining system [1, 3, 4].

Probabilistic rules were induced from modified data sets. For each concept
X and the set Y equal to a probabilistic approximation of X of a given type
(singleton, subset or concept) a modified data set was created, see [9–11]. In this
data set all cases from Y had the same decision values as in the original data
set, all remaining cases were labeled with a special, additional value. The LERS
system, using the MLEM2 algorithm, was used to induce a rule set. Blocks of
attribute-value pairs in the MLEM2 algorithm were modified, taking into account
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Fig. 1. Rule set size for the bankruptcy
data set
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Fig. 2. Rule set size for the breast cancer
data set
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Fig. 3. Rule set size for the echocardio-
gram data set
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Fig. 5. Rule set size for the image seg-
mentation data set
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Fig. 7. Rule set size for the lymphography
data set
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Fig. 8. Rule set size for the wine recogni-
tion data set
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Fig. 9. Condition counts for the
bankruptcy data set
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cancer data set
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Fig. 11. Condition counts for the
echocardiogram data set
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tis data set
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data set
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Fig. 14. Condition counts for the iris
data set

missing attribute values. For the modified data set, only rules describing the
concept X survived, remaining rules were deleted. The aggregate rule set was
combined from rule sets induced from all modified data sets.

For any data set we tested six methods of handling missing attribute values:

– singleton probabilistic approximation combined with lost values, denoted as
Singleton, ?,

– singleton probabilistic approximation combined with “do not care” condi-
tions, denoted as Singleton, ∗,

– subset probabilistic approximation combined with lost values, denoted as
Subset, ?,

– subset probabilistic approximation combined with “do not care” conditions,
denoted as Subset, ∗,

– concept probabilistic approximation combined with lost values, denoted as
Concept, ?, and

– concept probabilistic approximation combined with “do not care” conditions,
denoted as Concept, ∗.

As follows from [2], all six methods do not differ significantly (Friedman’s test
(5% significance level) in terms of the error rate.

Our main objective was to compare all six methods in terms of the complexity
of rule sets. It is clear that for our data sets the method (Subset, ∗) provides
smaller size of rule sets than all three methods associated with lost values: (Sin-
gleton, ?), (Subset, ?) and (Concept, ?). Additionally, the same method produces
rule sets with smaller total number of conditions than all three methods associ-
ated with lost values.

Results of our experiments on the size of rule sets are presented in Figures 1–
8. Six selected results on the total number of conditions (because of the space
limit) are presented in Figures 9–14.

The method (Subset, ∗) provides smaller size of rule sets than (Singleton, ∗)
and (Concept, ∗) for five out of eight data sets: Breast cancer, Echocardiogram,
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Iris, Lymphography and Wine recognition and smaller total number of condi-
tions for the same data sets (Wilcoxon test, 5% significance level was used for
Echocardiogram).

Note that on some occasions the difference in performance is quite spectacular,
for example, for the Breast cancer data set, (Subset ∗) method provides 5–7 rules
(with α between 0.001 and 1) and with 5–8 conditions, while (Singleton, ?),
(Subset, ?) and (Concept, ?) methods provide rule sets with 118–124 rules and
330–349 conditions. The error rate for (Subset, ∗) is between 28.52% and 29.90%,
for all three methods associated with lost values, the error rate is between 27.44%
and 29.90%.

Rule sets induced from data sets with “do not care” conditions are simpler, in
general, than rule sets induced from data sets with lost values since for any data
set, an attribute-value block for the data set with “do not care” conditions is a
superset of the corresponding block (the same attribute-value pair) for the data
set with lost values. The MLEM2 rule induction algorithm induces rules using
these attribute-value blocks, so a rule induced from the data set with “do not
care” conditions covers more cases than a rule induced from the data set with
lost values.

5 Conclusions

For a given data set, all six methods of handling missing attribute values (using
three kinds of global probabilistic approximations and two interpretations of
missing attribute values) do not differ significantly with respect to the error rate
[2]. However, as follows from our research presented in this paper, these methods
differ significantly with respect to the complexity of rule sets; the simplest rule
sets are induced using subset probabilistic approximations and missing attribute
values interpreted as “do not care” conditions. Therefore, if we have a choice
how to interpret missing attribute values, the best rule set would be induced by
subset probabilistic approximations with missing attribute values interpreted as
“do not care” conditions.

The focus of this work was a study of rule set complexity using different
missing attribute interpretations and approximation methods while applying
the same rule induction algorithm, MLEM2. Further investigation with other
rule induction algorithms would be need in order to determine if the results are
algorithm dependent.
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