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Abstract. This paper proposes an extension of the MEL logic to a lan-
guage containing modal formulae of depth 0 or 1 only. MEL is a logic
of incomplete information where an agent can express both beliefs and
explicitly ignored facts, that only uses modal formulae of depth 1, and
no objective ones. The extended logic, called MEL+ has the same axioms
as, and is in some sense equivalent to, S5 with a restricted language, but
with the same expressive power. The semantics is not based on Kripke
models with equivalence relations, but on pairs made of an interpreta-
tion (representing the real state of facts) and a non-empty set of possible
interpretations (representing an epistemic state). Soundness and com-
pleteness are established. We provide a rationale for using our approach
when an agent reasons about what is known of the epistemic state of
another agent and compares it with what is known about the real world.
Our approach can be viewed as an alternative to the basic epistemic
logic not concerned with introspection. We discuss the difference with
S5 used as a logic for rough sets, and the similarity with some previous
non-monotonic logics of knowledge is highlighted.
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1 Introduction

In the recent past [1,2], some efforts have been made to relate possibility theory
and modal logic under the simplest possible syntactic and semantic framework.
The resulting language of this logic called MEL is a fragment of KD where no
objective formula (not preceded by a modality) appears, and where modalities
cannot be nested. Models of MEL are simply non-empty subsets of interpreta-
tions of some standard propositional language. They represent the possible epis-
temic states of some agent. Then the necessity modality represents belief, and
an agent believes a proposition if and only if the latter is true in all propositional
interpretations compatible with the agent’s epistemic state. This logic has ax-
ioms K and D, and another axiom saying that the agent believes all tautologies.
Each epistemic state can be interpreted as a Boolean possibility distribution,
and it can be shown that the necessity modality is a Boolean necessity measure.
This attempt to relate possibility theory and modal logic contrasts with other
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previous connections between these notions, involving more elaborate construc-
tions [8,9,3,10].

The MEL logic has a language which is a fragment of the language of the
logic S5 often used as an epistemic logic. Its semantics does not use accessibility
relations explicitly, and is much simpler. Moreover one cannot express the intro-
spective axioms 4 and 5 in MEL as the nesting of modalities is not possible in
its language. Nevertheless, two issues are worth investigating in connection with
MEL:

– Is it possible to extend the language of MEL to objective non-modal formu-
lae, while preserving the same style of semantics as MEL ?

– Given that standard epistemic logics such as S5 rely on accessibility (equiv-
alence) relations, what is the connection between these two semantics ?

The aim of this paper is to provide an answer to both questions. In the next
section, a brief presentation of the logic MEL is recalled. Then an extension of
the MEL language to objective formulae and the corresponding extension of the
MEL semantics is proposed. Finally we discuss the usual Kripke style semantics
of S5 and compare them to our semantics, which we consider more natural than
the relational semantics based on indiscernible possible worlds according to an
equivalence relation. We claim that the latter semantics is more fit to rough
sets and can account for the idea of forgetting [11]. Moreover, we show that our
approach comes closer to some knowledge logics proposed in the early 1990’s, in
the area of non-monotonic reasoning.

2 MEL, A Simple Epistemic Logic

The usual truth values true (1) and false (0) assigned to propositions are of
ontological nature (which means that they are part of the definition of what
we call proposition), whereas assigning to a proposition a value whose meaning
is expressed by the word unknown sounds like having an epistemic nature: it
reveals a knowledge state according to which the truth value of a proposition (in
the usual Boolean sense) in a given situation is out of reach (for instance one
cannot compute it, either by lack of computing power, or due to a sheer lack of
information). It corresponds to an epistemic state for an agent that can neither
assert the truth of a Boolean proposition nor its falsity.

Admitting that the concept of “unknown” refers to a knowledge state rather
than to an ontic truth value, we may keep the logic Boolean and add to its syntax
the capability of stating that we ignore the truth value (1 or 0) of propositions. The
natural framework to syntactically encode statements about knowledge states of
propositional logic (PL) statements is modal logic, and in particular, the logic KD.
Nevertheless, if one only wants to reason about e.g. the beliefs of another agent, a
very limited fragment of this language is needed. The logic MEL [1,2] was defined
for that purpose.

Let us consider L to be a standard propositional language built up from a
finite set of propositional variables V = {p1, . . . , pk} along with the Boolean
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connectives of conjunction and negation ¬. As usual, a disjunction ϕ∨ψ stands
for ¬(¬ϕ ∧ ¬ψ) and an implication ϕ → ψ stands for ¬ϕ ∨ ψ. Further we use �
to denote ϕ ∨ ¬ϕ, and ⊥ to denote ¬�. Let us consider another propositional
language L� whose set of propositional variables is of the form V� = {�ϕ |
ϕ ∈ L} to which the classical connectives can be applied. It is endowed with
a modality operator expressing certainty, that encapsulates formulae in L. In
other words L� = {�α : α ∈ L} | ¬Φ | Φ ∧ Ψ .

MEL is a logic on the language L� and with the following semantics. Let
Ω be the set of classical interpretations for the propositional language L, i.e.
Ω consists of the set of mappings w : L → {0, 1} conforming to the rules of
classical propositional logic. For a propositional formula ϕ ∈ L we will denote
by Mod(ϕ) the set of w ∈ Ω such that w(ϕ) = 1. Models (or interpretations) for
MEL correspond to epistemic states, which are simply subsets ∅ 	= E ⊆ Ω. The
truth-evaluation rules of formulas of L� in a given epistemic model E is defined
as follows:

– E |= �ϕ if E ⊆ Mod(ϕ)
– E |= ¬Φ if E 	|= Φ
– E |= Φ ∧ Ψ if E |= Φ and E |= Ψ

Note that contrary to what is usual in modal logic, we do not evaluate modal
formulas on particular interpretations of langage L because modal formulas in
MEL do not refer to the actual world.

The notion of logical consequence is defined as usual Γ |= Φ if, for every
epistemic model E, E |= Φ whenever E |= Ψ for all Ψ ∈ Γ .

MEL can be axiomatized in a rather simple way (see [2]). The following are
a possible set of axioms for MEL in the language of L�:

(PL) Axioms of PL for L�-formulas
(K) �(ϕ → ψ) → (�ϕ → �ψ)
(D) �ϕ → �ϕ

(Nec) �ϕ, for each ϕ ∈ L that is a PL tautology, i.e. if Mod(ϕ) = Ω.

The only inference rule is modus ponens. The corresponding notion of proof,
denoted by �, is defined as usual from the above set of axioms and modus
ponens.

This set of axioms provides a sound and complete axiomatization of MEL,
that is, it holds that, for any set of MEL formulas Γ ∪ {ϕ}, Γ |= ϕ iff Γ � ϕ.
This is not surprizing: MEL is just a standard propositional logic with additional
axioms, whose propositional variables are the formulas of another propositional
logic, and whose interpretations are subsets of interpretations of the latter.

Notice that MEL also actually captures the L�-fragment of the normal modal
logics KD, hence of other logics, such as the well-known logics KD45 and S5,
also commonly referred to as the logics of belief and knowledge, respectively.
However, they are obtained from KD with axioms (called 4, 5, T) that cannot
be expressed in the MEL language L�.
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3 Extending MEL to Reason about The Actual World
and Someone’s Beliefs

In this section we extend the language of MEL to allow dealing with not only
subjective formulas that express an agent’s beliefs, but also objective formulas
(i.e. non-modal formulas) that express propositions that hold true in the actual
world (whatever it might be). The extended language will be denoted by L+

� , and
it thus contains both propositional and modal formulas. It exactly corresponds
to the non-nested fragment of the language of usual modal logic.

3.1 Language, Axioms and Semantics

More precisely, the language L+
� of MEL+ extends L� and is defined by the

following formation rules:

– If ϕ ∈ L then ϕ,�ϕ ∈ L+
�

– If Φ, Ψ ∈ L+
� then ¬Φ,Φ ∧ Ψ ∈ L+

�

�ϕ is defined as an abbreviation of ¬�¬ϕ. Note that L ⊆ L+
� and that in L+

�

there are no formulas with nested modalities.
Semantics for MEL+ are given now by “pointed” MEL epistemic models, i.e.

by structures (w,E), where w ∈ Ω and ∅ 	= E ⊆ Ω. The truth-evaluation rules
of formulas of L+

� in a given structure (w,E) is defined as follows:

– (w,E) |= ϕ if w(ϕ) = 1, in case ϕ ∈ L
– (w,E) |= �ϕ if E ⊆ Mod(ϕ)
– usual rules for ¬ and ∧

Logical consequence, as usual: Γ |= Φ if, for every structure (w,E), (w,E) |= Φ
whenever (w,E) |= Ψ for all Ψ ∈ Γ .

The following are the axioms for MEL+ in the language of L+
� :

(PL) Axioms of propositional logic
(K) �(ϕ → ψ) → (�ϕ → �ψ)
(D) �ϕ → �ϕ

(Nec) �ϕ, for each ϕ ∈ L that is a PL tautology, i.e. if Mod(ϕ) = Ω.

The only inference rule is modus ponens.1

3.2 Completeness

In what follows, we will denote by �PL the notion of proof of classical proposi-
tional language on the language L+

� taking all �-formulas as new propositional
variables. We will further let Γ ∪ {Φ} be a set of L+

� -formulas. We need first to
recall the following lemma [2].

1 An equivalent presentation could be to replace (Nec) by the usual Necessitation rule
in modal logics, but restricted to tautologies of propositional logic: if ϕ ∈ L is a
theorem, derive �ϕ.
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Lemma 1. Γ � Φ iff
Γ ∪ {�ϕ | �PL ϕ} ∪ {instances of axioms (K), (D) and (Nec) } �PL Φ

Theorem 1. Γ � Φ iff Γ |= Φ.

Proof. From left to right is easy, as usual. For the converse direction, assume
Γ 	� Φ. By the preceding lemma and the completeness of PL, there exists a
propositional evaluation v on the whole language L+

� (taking �-formulas as gen-
uine propositional variables) such that v(Ψ) = 1 for all Ψ ∈ Γ ∪ {�ϕ | �PL

ϕ}∪{instances of axioms (K) and (D)} but v(Φ) = 0. We have to build a struc-
ture (w,E) that it is a model of Γ but not of Φ. So, we take (w,E) as follows:

– w is defined as the restriction of v to L, i.e. w(ϕ) = v(ϕ) for all ϕ ∈ L.
– E =

⋂{Mod(ϕ) | v(�ϕ) = 1}
Note that, since by assumption v(��) = 1, E 	= ∅. Then the last step is to show
that, for every Ψ ∈ L+

� , v(Ψ) = 1 iff (w,E) |= Ψ.We prove this by induction. The
case Ψ being a non-modal formula from L is clear, since in that case w(Ψ) = v(Ψ).
The interesting case is when Ψ = �ψ. Then we have:

(i) If v(�ψ) = 1 then, by definition of E, E ⊆ Mod(ψ), and hence (w,E) |= �ψ.
(ii) Conversely, if E ⊆ Mod(ψ), then there must exist γ such that v(�γ) = 1

and Mod(γ) ⊆ Mod(ψ). Hence this means that γ → ψ is a PL theorem, and
hence we have first, by the necessitation axiom, that v(�(γ → ψ)) = 1, and
thus v(�γ) ≤ v(�ψ) holds as well by axiom (K), and therefore v(�ψ) = 1
holds as well.

As a consequence, we have that (w,E) |= Ψ for all Ψ ∈ Γ and (w,E) 	|= Φ.

Remark 1. Notice that if the notion of logical consequence |= is reduced to con-
sidering only structures (w,E) such that w ∈ E, then one should add the fol-
lowing well-known axiom (T): �ϕ → ϕ to keep completeness.

4 Relating MEL and MEL+ to KD45 and S5

Recall the normal modal systems KD, KD4, KD45 and S5 (see e.g. [4] for details).

Proposition 1. Let ϕ a formula from L�. Then MEL � ϕ iff KD � ϕ.

Proof. AssumeKD 	� ϕ, then there is a serial Kripke model (W, e,R) and w ∈ W
such that e(w,ϕ) = 0. Since ϕ does not contain nested modal operators, e(w,ϕ)
only depends on the truth-evaluations of subformulas of ϕ at all the worlds from
R(w) = {w′ | wRw′}, which is non-empty since R is serial. We can assume
R(w) ⊆ Ω. Define, for each w′ ∈ R(w), the propositional evaluation vw′(.) :=
e(w′, .), and the epistemic model Ew := {vw′ : w′ ∈ R(w)}. Then Ew |= ϕ, if
and only if e(w,ϕ) = 1. Hence MEL 	� ϕ.

Conversely, assume MEL 	� ϕ, then there is an epistemic model E such that
E 	|= ϕ. Now, consider the Kripke model M = (E, e,R) where R = E × E
with e(v, ·) = v(·) for every v ∈ E. M is clearly a serial model. The fact that
E 	|= ϕ implies that e(w,ϕ) = 0 for some w ∈ E, and hence M 	|= ϕ, and by
completeness, KD 	� ϕ.
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Corollary 1. Let ϕ a formula from L�. Then MEL � ϕ iff L � ϕ for L ∈
{KD4,KD45, S5}.

Now let us consider the case of MEL+. Then we have even stronger relation-
ships to KD45 and S5.

Proposition 2. Let ϕ a formula from L+
� . Then MEL+ � ϕ iff KD � ϕ.

Proof. The proof is very similar to that of Proposition 1.

Corollary 2. Let ϕ a formula from L+
� . Then MEL+ � ϕ iff L � ϕ for L ∈

{KD4,KD45}.
Note that this corollary does not hold for L = S5, indeed, �ϕ → ϕ is an axiom

of S5 that is not provable in MEL+.
Let us call MEL++ the extension of MEL+ with the axiom (T): �ϕ → ϕ.

Then notice that an easy adaptation of the proof of completeness theorem for
MEL+ proves that MEL++ is complete with respect to the class of reflexive
pointed epistemic models (w,E) where w ∈ E.

Proposition 3. Let ϕ a formula from L+
� . Then, MEL++ � ϕ iff S5 � ϕ.

The proof easily follows from that of Proposition 2 by taking into account
that one has to deal with reflexive epistemic models.

Moreover, by recalling the well-known result that any formula of KD45 and
S5 is logically equivalent to another formula without nested modalities, we can
formulate the following stronger relationships.

Proposition 4. The following conditions hold true:

– For any arbitrary modal formula ϕ, there is a formula ϕ′ ∈ L+
� such that

KD45 � ϕ iff MEL+ � ϕ′.
– For any arbitrary modal formula ϕ, there is a formula ϕ′ ∈ L+

� such that
S5 � ϕ iff MEL++ � ϕ′.

Remark 2. Recently, Petruszczak [16] indicated that simplified Kripke frames
could indeed be used for the semantics of systems K45, KB5 and KD45, us-
ing subsets of propositional valuations in place of relations, as we proposed.
He proves it by constructing specific accessibility relations equivalent to such
subsets, as in [1] for MEL, while the completeness proof in [2] and here is direct.

5 MEL+ vs. Other Logics of Incomplete Information

The language MEL is supposed to encode the following situation [1]. There
are two agents, one of which, say A, reasons about some beliefs possessed by
another agent B, the former is aware of, on the basis of the testimony of the
latter. Namely, A partially knows what the other agent believes. A belief base
in MEL typically contains the testimony of agent B, namely propositions agent
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B believes (�α), some that he explicitly does not know (�α∧�¬α), and finally
some other propositions that agent A is aware the agent B knows the truth-
value of, without guessing which (�α ∨ �¬α). The logic MEL enables agent A
to infer more beliefs agent B possesses but did not reveal. Such a (meta-)belief
base for agent A is equivalent to a set of possible epistemic states for agent B.
In MEL+, agent A is allowed to add what is known about the real world in the
form of standard propositions. So α ∧ �¬α means that agent A considers α is
true, while he knows that agent B believes it is false. Under this set-up, a MEL+

model (w,E) is interpreted as the fact that A envisages the real world to be w
and the epistemic state of B to be E. If A considers that B’s beliefs are always
correct, the former can assume axiom T is valid, thus he reasons in MEL++ to
strengthen his own knowledge of the real world. Alternatively, A may mistrust
B and may wish to take advantage of knowing wrong beliefs of A.

5.1 Epistemic Logic and Accessibility Relations: A Critique

In contrast, usual semantics of S5 [7] consider the epistemic state of an agent
is modelled by an equivalence relation R on a set of possible worlds W .2 The
statement wRw′ reads “world w′ is accessible from w”. The world w′ is said
to be an epistemic or doxastic alternative to world w for the agent, depending
on whether knowledge or belief is the considered attitude. There are various
attempts to make sense of this relation, such that the agent cannot distinguish
w from w′, or w′ is a possible state of affairs from the point of view of what the
agent knows in w, etc. The underlying idea seems to be that “the set of worlds
considered possible by an agent depends on his or her informational resources
at that instant” (Stanford Encyc. Philos.).

However this view, which seems to be shared by many scholars, is not so easy
to grasp. Interpreting ”accessible worlds” as worlds compatible with the agent
epistemic state, we can assume that the epistemic state of the agent depends on
his or her informational resources at that instant (in MEL this possibility is not
considered). But it is not clear that the agent is aware of his own informational
resources to the point of articulating them in the same language as the one he
uses to speak about the current states of affairs. If w stands for an objective state
of facts, it may not include the particulars of the agent. The epistemic state of
the agent depends on many hidden internal features of the agent but his current
observations about the actual world w refer to something external, the agent is
focused on. It is not clear that the vocabulary used to describe the actual world
w is rich enough to also account for the inner state (of health or informational
resources) of the agent that holds some beliefs about w. For instance suppose
the agent has incomplete information on the outcome of coin flipping round after
the toss: this epistemic state will generally not depend on the outcome of the
toss (like “if the result is heads then he knows it, otherwise he does not know”).

2 See [6] for an alternative semantics that makes the internal structure of possible
worlds more explicit, encoding both objective facts and agents’ mental states in a
possible world. We thank one reviewer for pointing this out to us.
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In a nutshell, while an equivalence class of R represents context-dependent
knowledge of the agent, it is not clear that this contextual dependence is part
of the agent’s knowledge about himself, let alone about another agent. So in
the epistemic logic approach the accessibility relation seems to be a circular
notion, where possible worlds seem to include the description of the agent mental
circumstances as well as the description of his epistemic state regarding the
problem he considers. This view may make sense when introspection is the main
issue (the agent being partially unaware of his own knowledge), but it seems to
be at odds with the problem of an agent reflecting about other agents knowledge,
as in the set-up for MEL and MEL+. As the set-up for MEL is not introspective,
this relational semantics looks like a questionable artifact for this logic, where
we assume agents are aware of their own knowledge and lack of knowledge. Note
that if R = W ×W one can only distinguish between tautologies (i.e. �φ where
φ is a PL tautology), contradictions and contingent modal propositions.

One may extend the MEL set-up by considering a separate set of possible
mental dispositions S corresponding to “informational resources” (due to specific
situations or circumstances) an agent can access at a particular moment. On the
other hand, W encodes the question the agent is concerned with at that moment;
it pertains to the outside world, so S ∩ W = ∅ The accessibility relation R is
relating S to W , namely E = R(s) ⊆ W is the epistemic state of the agent
when his mental disposition is s. Note that, under this view, there is no point
of R being an equivalence relation. But this extension assumes that the set S of
mental dispositions of the agent is known and observable by another agent.

5.2 Comparison to Logics of Rough Sets

The semantics of S5 in terms of equivalence relations [4] makes it in fact the
natural logical setting for rough sets [14]. Pawlak’s rough sets [15] are based on
the notion of approximation spaces (W,R), where R, called the indiscernibility
relation, is an equivalence relation on the domain W of discourse. The premise
is that due to lack of complete information about the objects in the domain, it
is likely that many of the objects are indistinguishable from each other. This
is patent in information systems I := (W,At, VAt, f), where At is a set of at-
tributes, VAt a set of values for the attributes in At, and f : W × At → VAt a
function assigning values for attributes to objects of the domain. I then induces
an indiscernibility relation R corresponding to every subset B ⊆ At:

xRy, if and only if f(x, b) = f(y, b), for all b ∈ B.

The lower and upper approximations of a subset X of the domain with respect
to R are defined as

X := {x ∈ W : R(x) ⊆ X}; X := {x ∈ W : R(x) ∩X 	= ∅}.
Sets with identical approximations are said to be roughly equal, and for any X ,
the collection of all subsets of the domain roughly equal to X is termed a rough
set by Pawlak in [15].
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Any logic of rough sets thus has an essential modal nature, the necessity and
possibility operators capturing the lower and upper approximations in the rough
set semantics respectively. In fact, for any S5 Kripke model M = (W, e,R), one
may observe that e(�ϕ) = e(ϕ) and e(�ϕ) = e(ϕ), where e(ϕ) := {w ∈ W :

e(w,ϕ) = 1}. However, unlike MEL or MEL+, rough set logics make use of the
full modal language, that is, nested modalities are allowed. For instance one
would use a formula such as �(p ∧ �q) to refer to a set (X ∩ Y ).

This approach can easily be extended to rough set models based on a relation
that is not necessarily an equivalence one [17,18]. These logics remain modal, and
use nested modalities. Indeed, it is well known in modal logic [4] that, once fixed
the basic axioms (PL) and (K), then each additional modal axioms corresponds
a different property of the accessibility relation.

5.3 Comparison to the Logic of Minimal Belief and Negation as
Failure (MBNF)

In [12] Lifschitz defines a simplified version of Lin and Shoham logic [13] of
minimal knowledge and justified assumptions. His (nonmonotonic) logic, in the
propositional version, contains two modal operators, one for minimal belief B
and another for negation as failure not. For positive formulas, i.e. formulas not
containing not, the (monotonic) semantics is very similar to that of MEL+:
semantics are given by structures (I, S), where I is an interpretation of propo-
sitional variables (or equivalently a set of atoms) and S a set of interpretations.
The author writes that,“intuitively, I represents ‘the real world’, and S the set
of ‘possible worlds’ ”. As in MEL+, for a nonmodal formula ϕ, a structure (I, S)
satisfies the formula Bϕ whenever each I ′ ∈ S satisfies ϕ. Therefore MBNF
structures (I, S) exactly correspond to pointed epistemic MEL+ models.

The nonmonotonic semantics of MBNF is defined as to capture the notion of
minimal belief. A model of a theory T (set of positive formulas) is a structure
(I, S) such that it makes true all the formulas of T and it is maximal in the sense
that there is no other structure (I ′, S′) making the formulas of T true and such
that S � S′. For instance, the only model of Bϕ in this semantics is (I,Mod(ϕ)),
while the models of Bϕ∨Bψ are (I,Mod(ϕ)) and (I,Mod(ψ)). Then the corre-
sponding notion of (nonmonotonic) consequence relation is defined accordingly.
For instance one has Bp |= ¬Bq but {Bp,Bq} 	|= ¬Bq.

Actually, MBNF models for formulas of the language of MEL (resp. MEL+)
correspond to the minimum specific epistemic models in MEL (reps. pointed
epistemic models in MEL+) in the sense of possibilistic logic.

6 Conclusion

In this paper, we argue that the usual semantics of epistemic logics based
on accessibility relations is not very natural when the purpose is to reason about
beliefs or incomplete knowledge entertained by an external agent, and introspec-
tion is ruled out. To this end, we have shown that the fragment MEL+ (resp.
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MEL++) of the KD45 (resp. S5) logic, the richest of doxastic (resp. epistemic)
logics, involving modal formulas of depth 0 or 1 can have simplified semantics
that are more intuitive than equivalence relations, while the latter make sense
for capturing rough sets. The connection between MEL+ and MBNF clearly sug-
gests the former has more to do with logic programming than to the mainstream
modal logic tradition, as already noticed with generalized possibilistic logic (a
multimodal extension of MEL), that can encode answer-set programming [5].

Acknowledgments. Godo acknowledges partial support by the Spanish
MINECO project EdeTRI TIN2012-39348-C02-01.
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