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Abstract. In this paper a characterization of all fuzzy implications with
continuous e-natural negation that satisfy the law of importation with a
given uninorm U is provided. The cases when the considered uninorm U
is representable or a uninorm in Umin are studied separately and detailed
descriptions of those implications with continuous natural negation with
respect to e that satisfy the law of importation with a uninorm in these
classes are done. In the process some important examples are included.
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1 Introduction

Fuzzy implication functions are the generalization of binary implications in clas-
sical logic to the framework of fuzzy logic. Thus, they are used in fuzzy control
and approximate reasoning to perform fuzzy conditionals [15, 20, 26] and also
to perform forward and backward inferences in any fuzzy rules based system
through the inference rules of modus ponens and modus tollens [17, 26, 30].

Moreover, fuzzy implication functions have proved to be useful in many other
fields like fuzzy relational equations [26], fuzzy DI-subsethood measures and
image processing [7, 8], fuzzy morphological operators [13, 14, 21] and data
mining [37], among others. In each one of these fields, there are some additional
properties that the fuzzy implication functions to be used should have to ensure
good results in the mentioned applications.

The analysis of such additional properties of fuzzy implication functions usu-
ally reduces to the solution of specific functional equations. Some of the most
studied properties are:

a) The modus ponens, because it becomes crucial in the inference process
through the compositional rule of inference (CRI). Some works on this prop-
erty are [23, 34–36].

b) The distributivity properties over conjunctions and disjunctions. In this case,
these distributivities allow to avoid the combinatorial rule explosion in fuzzy
systems (see [10]). They have been extensively studied again by many au-
thors, see [1, 2, 4, 6, 31–33].
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c) The law of importation. This property is extremely related to the exchange
principle (see [27]) and it has proved to be useful in simplifying the process
of applying the CRI in many cases, see [3] and [16]. It can be written as

I(T (x, y), z) = I(x, I(y, z)) for all x, y, z ∈ [0, 1],

where T is a t-norm (or a more general conjunction) and I is a fuzzy implica-
tion function. The law of importation has been studied in [3, 16, 24, 25, 27].
Moreover, in this last article the law of importation has also been used in
new characterizations of some classes of implications like (S,N)-implications
and R-implications. Finally, it is a crucial property to characterize Yager’s
implications (see [28]).

Although all these works devoted to the law of importation, there are still
some open problems involving this property. In particular, given any t-norm T
(conjunctive uninorm U), it is an open problem to find all fuzzy implications I
such that they satisfy the law of importation with respect to this fixed t-norm
T (conjunctive uninorm U). Recently, the authors have studied this problem,
for implications with continuous natural negation, in the cases of the minimum
t-norm and any continuous Archimedean t-norm (see [29]).

In this paper we want to deal with this problem but for the case of a conjunc-
tive uninorm U lying in the classes of representable uninorms and uninorms in
Umin. We will give some partial solutions (in the sense that we will find all solu-
tions involving fuzzy implications with an additional property). Specifically, we
will characterize all fuzzy implication functions with continuous natural nega-
tion with respect to e that satisfy the law of importation with any conjunctive
uninorm U in the mentioned classes. Along the process, some illustrative ex-
amples as well as particular cases when the fixed conjunctive uninorm U is an
idempotent uninorm in Umin are presented separately.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms and t-
conorms (all necessary results and notations can be found in [22]) and uninorms
(see [12] and Chapter 5 in [3]). To make this work self-contained, we recall here
some of the concepts and results used in the rest of the paper.

We will only focus on conjunctive uninorms in Umin and representable uni-
norms.

Theorem 1 ([12]). Let U be a conjunctive uninorm with neutral element e ∈
]0, 1[ having functions x �→ U(x, 1) and x �→ U(x, 0) (x ∈ [0, 1]) continuous ex-
cept (perhaps) at the point x = e. Then U is given by

U(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

eT
(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2,

e+ (1− e)S
(

x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2,

min(x, y) otherwise.

(1)
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where T is a t-norm and S is a t-conorm. In this case we will denote the uninorm
by U ≡ 〈T, e, S〉min.

The class of all uninorms with expression (1) will be denoted by Umin. Next,
we give the definition of a conjunctive representable uninorm.

Definition 1 ([12]). A conjunctive uninorm U with neutral element e ∈ (0, 1)
is representable if there exists a continuous and strictly increasing function h :
[0, 1] → [−∞,+∞] (called additive generator of U), with h(0) = −∞, h(e) = 0
and h(1) = +∞ such that U is given by

Uh(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and U(0, 1) = U(1, 0) = 0.

Now, we give some definitions and results concerning fuzzy negations.

Definition 2 ([11, Definition 1.1]). A decreasing function N : [0, 1] → [0, 1]
is called a fuzzy negation, if N(0) = 1, N(1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous,
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].

Next lemma plays an important role in the results presented in this paper.
Essentially, given a fuzzy negation, it defines a new fuzzy negation which in some
sense can perform the role of the inverse of the original negation.

Lemma 1 ([3, Lemma 1.4.10]). If N is a continuous fuzzy negation, then the
function RN : [0, 1] → [0, 1] defined by

RN (x) =

{
N (−1)(x) if x ∈ (0, 1],
1 if x = 0,

where N (−1) stands for the pseudo-inverse of N given by N (−1)(x) = sup{z ∈
[0, 1] | N(z) > x} for all x ∈ [0, 1], is a strictly decreasing fuzzy negation.
Moreover,

(i) R
(−1)
N = N,

(ii) N ◦RN = id[0,1],
(iii) RN ◦N |Ran(RN ) = id|Ran(RN ),

where Ran(RN ) stands for the range of function RN .

Now, we recall the definition of fuzzy implications.

Definition 3 ([11, Definition 1.15]). A binary operator I : [0, 1]2 → [0, 1] is
said to be a fuzzy implication if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.
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Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition. Fuzzy implications can satisfy additional properties coming
from tautologies in crisp logic. In this paper, we are going to deal with the law
of importation, already presented in the introduction.

The natural negation with respect to e of a fuzzy implication will be also
useful in our study.

Definition 4 ([3, Definition 5.2.1]). Let I be a fuzzy implication. If I(1, e) =
0 for some e ∈ [0, 1), then the function Ne

I : [0, 1] → [0, 1] given by Ne
I (x) =

I(x, e) for all x ∈ [0, 1], is called the natural negation of I with respect to e.

Remark 1.
(i) If I is a fuzzy implication, N0

I is always a fuzzy negation.
(ii) Given a binary function F : [0, 1]2 → [0, 1], we will denote by Ne

F (x) =
F (x, e) for all x ∈ [0, 1] its e-horizontal section. In general, Ne

F is not a fuzzy
negation. In fact, it is trivial to check that Ne

F is a fuzzy negation if, and only
if, F (x, e) is a non-increasing function satisfying F (0, e) = 1 and F (1, e) = 0.

3 On the Satisfaction of (LI) with a Given Conjunctive
Uninorm U

In this section, the main goal is the characterization of all fuzzy implications
with a continuous natural negation with respect to e ∈ [0, 1) which satisfy the
Law of Importation (LI) with a fixed conjunctive uninorm U .

First of all, the first question which arises concerns if fixed a concrete conjunc-
tive uninorm U , any fuzzy negation can be the natural negation with respect to
some e ∈ [0, 1) of a fuzzy implication satisfying (LI) with U . The answer is neg-
ative since as the following result shows, there exists some dependence between
the conjunctive uninorm U and the natural negation of the fuzzy implication I
with respect to some e ∈ [0, 1). To characterize which fuzzy negations are com-
patible with a conjunctive uninorm U in this sense, the following property will
be considered:

if N(y) = N(y′) for some y, y′ ∈ [0, 1], then N(U(x, y)) = N(U(x, y′)) ∀x ∈ [0, 1].
(2)

Note that any strict negation obviously satisfies the previous equation. How-
ever, there are many other negations, not necessarily strict, which satisfy this
property as we will see in next sections. Note also that similar conditions on a
negation N as (2) were considered in [9].

On the other hand, the following proposition is straightforward to check.

Proposition 1. Let I : [0, 1]2 → [0, 1] be a binary function such that Ne
I is a

fuzzy negation for some e ∈ [0, 1). If I satisfies (LI) with a conjunctive uninorm
U , then Ne

I and U satisfy Property (2).
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Next result gives the expression of any binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) satisfying (LI) with a conjunctive uninorm U .
Note that the binary function only depends on the uninorm U and its natural
negation with respect to e ∈ [0, 1).

Proposition 2. Let I : [0, 1]2 → [0, 1] be a binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) satisfying (LI) with a conjunctive uninorm U .
Then

I(x, y) = Ne
I (U(x,RNe

I
(y))).

From now on, we will denote these implications generated from a conjunctive
uninorm U and a fuzzy negation N by IN,U (x, y) = N(U(x,RN (y))).

Remark 2. Instead of RNe
I
, we can consider any function N1 such that N

(−1)
1 =

Ne
I andNe

I ◦N1 = id[0,1]. This is a straightforward consequence of the satisfaction
of Property (2) in this case. Since Ne

I (RNe
I
(y)) = Ne

I (N1(y)), then using the
aforementioned property, Ne

I (U(x,RNe
I
(y))) = Ne

I (U(x,N1(y))) and therefore,
INe

I ,U
can be computed using either RNe

I
or N1.

Moreover, this class of implications satisfies (LI) with the same conjunctive
uninorm U from which they are generated.

Proposition 3. Let N be a continuous fuzzy negation and U a conjunctive uni-
norm satisfying Property (2). Then IN,U satisfies (LI) with U .

Now, we are in condition to fully characterize the binary functions I with Ne
I

a continuous fuzzy negation for some e ∈ [0, 1) satisfying (LI) with a conjunctive
uninorm U .

Theorem 2. Let I : [0, 1]2 → [0, 1] be a binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) and U a conjunctive uninorm. Then

I satisfies (LI) with U ⇔ Ne
I and U satisfy Property (2) and I = INe

I ,U
.

Note that it remains to know when Ne
I and U satisfy Property (2). From

now on, we will try given a concrete conjunctive uninorm U , to determine which
fuzzy negations satisfy the property with U .

4 On the Satifaction of Property 2 for Some Uninorms

In the previous section, Proposition 1 shows that the conjunctive uninorm and
the natural fuzzy negation with respect to some e ∈ [0, 1) of the fuzzy implication
must satisfy Property (2). Consequently, given a fixed conjunctive uninorm U ,
in order to characterize all fuzzy implications with a continuous natural nega-
tion with respect to some e ∈ [0, 1) satisfying (LI) with U , we need to know
which fuzzy negations are compatible with the conjunctive uninorm U . In this
section, we will answer this question for some conjunctive uninorms presenting
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for each one, which fuzzy negations can be considered and then finally, using the
characterization given in Theorem 2, the expressions of these fuzzy implications
can be retrieved easily.

First of all, we want to stress again that the goal of this paper is to characterize
all fuzzy implications with a continuous natural negation with respect to some
e ∈ [0, 1) satisfying (LI) with a concrete conjunctive uninorm U . Therefore, there
are other implications satisfying (LI) with a conjunctive uninorm U than those
given in the results of this section. Of course, these implications must have non-
continuous natural negations with respect to any e ∈ [0, 1) such that I(1, e) = 0.
An example of a fuzzy implication having non-continuous natural negations with
respect to any e ∈ [0, 1) such that I(1, e) = 0 is the least fuzzy implication.

Proposition 4. Let ILt be the greatest fuzzy implication given by

ILt(x, y) =

{
1 if x = 0 or y = 1,
0 otherwise.

Then ILt satisfies (LI) with any conjunctive uninorm U .

Consequently, although ILt satisfies (LI) with any conjunctive uninorm U , we
will not obtain this implication in the next results since it has no continuous
natural negation at any level e ∈ [0, 1).

4.1 Representable Uninorms

The first class of uninorms we are going to study is the class of representable
uninorms. The following result shows that the fuzzy negation must be strict in
order to satisfy Property (2) with a uninorm of this class.

Proposition 5. If U is a representable uninorm, then Property (2) holds if, and
only if, N is an strict fuzzy negation.

At this point, we can characterize all fuzzy implications with a continuous nat-
ural negation with respect to some e ∈ [0, 1) satisfying (LI) with a representable
uninorm U .

Theorem 3. Let I : [0, 1]2 → [0, 1] be a binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) and let h : [0, 1] → [−∞,+∞] an additive gen-
erator of a representable uninorm. Then the following statements are equivalent:

(i) I satisfies (LI) with the conjunctive representable uninorm Uh.
(ii) Ne

I is strict and I is given by I(x, y) = Ne
I (U(x, (Ne

I )
−1(y))) =

{
Ne

I (h
−1(h(x) + h((Ne

I )
−1(y)))) if (x, y) /∈ {(0, 0), (1, 1)},

1 otherwise.

Note that the implications obtained in the previous theorem are in fact (U,N)-
implications derived from the negation (Ne

I )
−1 and the uninorm (Ne

I )
−1-dual of

Uh. Moreover, in the case that (Ne
I )

−1 coincides with the negation associated to
the representable uninorm Uh, the implication is also the RU -implication derived
from Uh (see [5]). Similar results with implications derived from t-norms were
also obtained in [29], see also [18, 19].
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4.2 Uninorms in Umin

The second class of uninorms which we want to study is the class of uninorms in
Umin. We will restrict ourselves to the cases where the underlying t-norm and t-
conorm are continuous Archimedean or idempotent. Therefore, we will consider
four different cases.

� U ≡ 〈TM , e, SM〉min. In a first step, we will consider the uninorm U ≡
〈TM , e, SM 〉min where TM (x, y) = min{x, y} and SM (x, y) = max{x, y}, which in
addition to the class of Umin, it belongs also to the class of idempotent uninorms,
those satisfying U(x, x) = x for all x ∈ [0, 1]. In contrast with the representable
uninorms, in this case we will have continuous non-strict negations satisfying
Property (2) with these uninorms.

Proposition 6. If U ≡ 〈TM , e, SM 〉min, then Property (2) holds if, and only if,
N is a continuous fuzzy negation satisfying the following two properties:

1. There exists α ∈ (0, 1] such that N(x) = 0 for all x ≥ α.
2. If N(x) = k for all x ∈ [a, b] for some constant k > 0 then a ≥ e or b ≤ e.

Note that any strict fuzzy negation satisfies the previous properties. In addi-
tion, those non-strict continuous fuzzy negations whose non-zero constant regions
do not cross x = e satisfy also Property (2) with U ≡ 〈TM , e, SM 〉min. From this
result and using Theorem 2, the expressions of the fuzzy implications we are
looking for can be easily obtained.

� U ≡ 〈T, e, SM〉min with a Continuous Archimedean t-norm T . Now
we focus on the case when we consider an underlying continuous Archimedean
t-norm in addition to the maximum t-conorm. In this case, many of the fuzzy
negations which were compatible with the uninorm of the first case are not
compatible now with the uninorm of the current case.

Proposition 7. If U ≡ 〈T, e, SM〉min with T a continuous Archimedean t-norm,
then Property (2) holds if, and only if, N is a continuous fuzzy negation satisfying
that there exists some α ∈ [0, e] such that N(x) = 1 for all x ≤ α and N is strictly
decreasing for all x ∈ (α, e).

Of course, as we already know, strict fuzzy negations are compatible with these
uninorms. Furthermore, when it is continuous but non-strict, the only constant
region allowed in [0, e] is a one region while in [e, 1], the fuzzy negation can have
any constant region. Again, using Theorem 2, we can obtain the expressions of
the fuzzy implications with a continuous natural negation with respect to some
e ∈ [0, 1) satisfying (LI) with some of these uninorms.

� U ≡ 〈TM , e, S〉min with a Continuous Archimedean t-conorm S. In
this third case, we analyse the case when we consider an underlying continuous
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Archimedean t-conorm in addition to the minimum t-norm. In this case, in
contrast to the second case, now the main restrictions on the constant regions
are located in [e, 1].

Proposition 8. If U ≡ 〈TM , e, S〉min with S a continuous Archimedean
t-conorm, then Property (2) holds if, and only if, N is a continuous fuzzy nega-
tion satisfying:

1. There exists α ∈ (0, 1] such that N(x) = 0 for all x ≥ α.
2. If N(x) = k for all x ∈ [a, b] for some constant k > 0 then b ≤ e.

As always strict fuzzy negations are compatible with these uninorms. More-
over, when the fuzzy negation is continuous but non-strict, the only constant
region which could cross x = e is the zero region while in [0, e], the fuzzy nega-
tion can have any constant region. Finally, Theorem 2 can be applied to obtain
the expressions of these implications.

� U ≡ 〈T, e, S〉min with a Continuous Archimedean t-norm T and t-
conorm S. In this last case, we analyse the case when we consider an underlying
continuous Archimedean t-norm T and t-conorm S. This is the case where fewer
fuzzy negations are compatible with the considered uninorm. In fact, only two
special constant regions are allowed.

Proposition 9. If U ≡ 〈T, e, S〉min with T a continuous Archimedean t-norm
and S a continuous Archimedean t-conorm, then Property (2) holds if, and only
if, N is a continuous fuzzy negation satisfying the following two properties:

1. There exist α ∈ [0, e] and β ∈ [e, 1] with α < β such that N(x) = 1 for all
x ≤ α and N(x) = 0 for all x ≥ β.

2. N is strict for all x ∈ (α, β).

Clearly, we retrieve strict fuzzy negations when α = 0 and β = 1. As we can
see, continuous non-strict fuzzy negations are also possible but only two constant
regions (zero and one regions) are allowed. In order to get the expressions of these
implications, Theorem 2 must be used.

5 Conclusions and Future Work

In this paper, we have characterized all fuzzy implications satisfying (LI) with a
conjunctive uninorm U when the natural negation of the implication with respect
to some e ∈ [0, 1) is continuous. Moreover, we have determined in particular the
expression of these implications when the conjunctive uninorm U belongs to
the class of Umin with some underlying continuous Archimedean or idempotent
t-norm and t-conorm and to the class of representable uninorms.

As a future work, we want to study the remaining uninorms of the class of
Umin and some other classes such as idempotent uninorms. In addition, we want
to establish the relation between the new class of implications introduced in this
paper IN,U and (U,N)-implications.
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