
On Fuzzy Polynomial Implications

Sebastia Massanet, Juan Vicente Riera, and Daniel Ruiz-Aguilera

University of the Balearic Islands
Crta. Valldemossa km 7.5, E-07122 Palma, Spain

{s.massanet,jvicente.riera,daniel.ruiz}@uib.es

Abstract. In this work, the class of fuzzy polynomial implications is
introduced as those fuzzy implications whose expression is given by a
polynomial of two variables. Some properties related to the values of
the coefficients of the polynomial are studied in order to obtain a fuzzy
implication. The polynomial implications with degree less or equal to
3 are fully characterized. Among the implications obtained in these re-
sults, there are some well-known implications such as the Reichenbach
implication.
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1 Introduction

Fuzzy implications have become one of the most important operations in fuzzy
logic. Their importance lies on the fact that they perform an analogous function
to the classical implication in binary logic. Fuzzy implications generalize the
classical ones in the sense that restricted to {0, 1}2 both coincide. Nowadays,
these operations are modelled by means of monotonic functions I : [0, 1]2 → [0, 1]
satisfying the aforementioned border conditions. In the last years, a great number
of researchers have devoted their efforts to the study of these logical connectives.
Thus, we can highlight the survey [8] and the books [2] and [3], entirely devoted
to fuzzy implications. This peak of interest in fuzzy implications is induced by
the wide range of applications where these operations are useful. They play
an essential role in approximate reasoning, fuzzy control, fuzzy mathematical
morphology and other fields where these theories are applied.

All these applications trigger the need of having a large bunch of different
classes of implications. In [11] the relevance of having many different classes of
implications is pointed out. The main reason is that any “If-Then” rule can be
modelled by a fuzzy implication and therefore, depending on the context and
the proper behaviour of the rule, different implications can be suitable in each
case. In addition, fuzzy implications are used to perform backward and forward
inferences and so the choice of the implication can not be independent from the
inference rule it is going to model.

In order to answer adequately to this necessity, several classes of fuzzy implica-
tions have been introduced. There exist two main strategies to obtain new classes.
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The first one is based on the use of aggregation functions (t-norms, t-conorms,
uninorms or aggregation functions in general) and other logical connectives, such
as fuzzy negations. Some examples of this strategy are R and (S,N)-implications,
QL and D-operations, among many others (see [3]). The second one is based on
the use of univalued generators, obtaining the well-known Yager’s implications
or the h-implications. An exhaustive compilation of the different classes of fuzzy
implications can be found in [10].

The implications obtained by means of these strategies can have very different
expressions that will depend on the expressions of the aggregation functions or
the generators used in their construction. However, the final expression of the
fuzzy implication is important for its use in any application. It is well-known that
some expressions of functions are tougher in order to compute their values and
more propitious to spread possible errors caused by numerical approximations
of the inputs. Consequently, operations with polynomial or rational expressions
are more friendly than those which have a more complex expression from the
computational point of view. Thus, in [1] and [7], all the rational Archimedean
continuous t-norms are characterized. This family of t-norms is the well-known
Hamacher class which contains the t-norms given by the following expression

Tα(x, y) =
xy

α+ (1− α)(x + y − xy)
, x, y ∈ [0, 1]

with α ≥ 0. Note that the only polynomial t-norm is the product t-norm
TP (x, y) = xy. Moreover, in [5], Fodor characterizes all the rational uninorms as
those whose expression is given by

Ue(x, y) =
(1− e)xy

(1− e)xy + e(1− x)(1− y)

if (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)} and, U(1, 0) = U(0, 1) = 0 or U(0, 1) = U(1, 0) =
1. In this case, there not exist any polynomial uninorm since they are never
continuous.

So after recalling some definitions and results which will be used in this work,
the main target is the introduction of fuzzy polynomial implications, those im-
plications which have a polynomial of two variables as their expression. Some
necessary conditions on the coefficients of a polynomial in order to be suitable to
obtain a fuzzy implication are determined. After that, we will fully characterize
all fuzzy polynomial implications of degree less or equal to 3 and we will study
which additional properties they fulfil. From the derived results, the relation-
ship of the obtained fuzzy polynomial implications with (S,N) and f -generated
Yager’s implications will be established. The paper ends with some conclusions
and future work we want to develop.

2 Preliminaries

Let us recall some concepts and results that will be used throughout this paper.
First, we give the definition of fuzzy negation.
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Definition 1 ([6, Definition 1.1]). A non-increasing function N : [0, 1] →
[0, 1] is a fuzzy negation, if N(0) = 1 and N(1) = 0. A fuzzy negation N is

(i) strict, if it is continuous and strictly decreasing.
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].

Next, we recall the definition of fuzzy implication.

Definition 2 ([6, Definition 1.15]). A binary operator I : [0, 1]2 → [0, 1] is
called a fuzzy implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

From the definition, we can deduce that I(0, x) = 1 and I(x, 1) = 1 for all
x ∈ [0, 1] while the symmetrical values I(x, 0) and I(1, x) are not determined.
Some additional properties of fuzzy implications which will be used in this work
are:

• The left neutrality principle,

I(1, y) = y, y ∈ [0, 1]. (NP)

• The exchange principle,

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]. (EP)

• The law of importation with a t-norm T ,

I(T (x, y), z) = I(x, I(y, z)), x, y, z ∈ [0, 1]. (LI)

• The ordering property,

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

Finally, we recall the definitions of (S,N)-implications and Yager’s f-generated
implications.

Definition 3 ([3, Definition 2.4.1]). A function I : [0, 1]2 → [0, 1] is called
an (S,N)-implication if there exist a t-conorm S and a fuzzy negation N such
that

IS,N(x, y) = S(N(x), y), x, y ∈ [0, 1].

Definition 4 ([3, Definition 3.1.1]). Let f : [0, 1] → [0,∞] be a continuous
and strictly decreasing function with f(1) = 0. The function If : [0, 1]2 → [0, 1]
defined by

If (x, y) = f−1(x · f(y)), x, y ∈ [0, 1],

understanding 0 · ∞ = 0, is called an f -generated implication. The function f
is an f -generator of the implication If .
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3 Polynomial Implications

In this section, we will introduce the concept of fuzzy polynomial implication and
we will determine some necessary conditions on the coefficients of the polynomial
in order to obtain a fuzzy implication from this expression.

Remark 1. Although in the introduction, the characterizations of rational Archi-
medean continuous t-norms and rational uninorms have been recalled (under-
standing a rational function as a quotient of two polynomials), in this work we
will only focus on the fuzzy polynomial implications. This limitation is a direct
consequence of the definition of a fuzzy implication. While uninorms and t-norms
are associative functions and therefore, there exists a quite restrictive property
in their definitions, fuzzy implications have a more flexible definition. This flex-
ibility allows the existence of a great number of fuzzy polynomial implications
and therefore, their study is worthy in itself.

Definition 5. Let n ∈ N. A binary operator I : [0, 1]2 → [0, 1] is called a fuzzy
polynomial implication of degree n if it is a fuzzy implication and its expression
is given by

I(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj

for all x, y ∈ [0, 1] where aij ∈ R and there exist some 0 ≤ i, j ≤ n with i+ j = n
such that aij 	= 0.

The following example shows the existence of fuzzy polynomial implications
of any degree n ∈ N with n ≥ 2.

Example 1. Let us consider the parametrized family of fuzzy negations given by
Nn(x) = 1−xn for all x ∈ [0, 1] and n ∈ Z

+, and the probabilistic sum t-conorm,
whose expression is SP (x, y) = x+y−xy for all x, y ∈ [0, 1]. It is straightforward
to check that the probabilistic sum belongs to the family of Hamacher t-conorms
(the dual t-conorms of the Hamacher t-norms) and moreover, it is the unique
polynomial t-conorm. Then, if we consider these two operators, we can construct
the following parametrized family of (S,N)-implications

ISP ,Nn−1(x, y) = SP (Nn−1(x), y) = 1− xn−1 + xn−1y

for all x, y ∈ [0, 1] and n ≥ 2. As it can be observed, they are polynomial
implications of degree n. In addition, they satisfy (LI) with TP (x, y) = xy and
therefore, they are also Yager’s f -generated implications with f(x) = n−1

√
1− x

(see [9]).

A first property which can be derived form the definition is the continuity of
these implications.

Proposition 1. All fuzzy polynomial implications are continuous implications.
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Remark 2. It is worthy to note that some usual implications whose expression
is piecewise polynomial will not be considered as polynomial functions. Thus,
for instance, among many others, the following implications are not polynomial
since they do not satisfy the requirements of the Definition 5:

IGD(x, y) =

{
1 if x ≤ y,
y if x > y,

ILK(x, y) =

{
1 if x ≤ y,
1− x+ y if x > y.

Note that both implications of the previous remark have a non-trivial one
region. This fact is not a coincidence as the following result proves.

Proposition 2. All fuzzy polynomial implications I have a trivial one region,
i.e., I(x, y) = 1 if, and only if, x = 0 or y = 1.

This property is studied in detail in [4] where it is proved that this property
is essential to generate strong equality indices. Furthermore, in particular, the
polynomial implications never satisfy (OP). On the other hand, they can satisfy
(EP) and in that case, they are (S,N)-implications.

Proposition 3. Let I(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj be a polynomial implication of degree

n. If I satisfies (EP), then I is an (S,N)-implication generated by the strict fuzzy

negation N(x) =

n∑

i=0

ai0x
i and the t-conorm S(x, y) =

∑

0≤i,j≤n
i+j≤n

aij(N
−1(x))iyj.

However, the question of which polynomials can be fuzzy polynomial impli-
cations remains still unanswered. The problem relies on to characterize which
coefficients aij ∈ R have to be chosen in order to generate a polynomial p(x, y)
satisfying the conditions of the Definition 2. We will partially answer this ques-
tion in general for polynomials of degree n. First of all, the next result determines
the necessary and sufficient conditions a polynomial must satisfy in order to be
the expression of a fuzzy polynomial implication.

Theorem 1. A polynomial p(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj of degree n is a fuzzy poly-

nomial implication if, and only if, the following properties hold:

(i) p(0, y) = p(x, 1) = 1 for all x, y ∈ [0, 1].
(ii) p(1, 0) = 0.

(iii) ∂p(x,y)
∂x ≤ 0 for all x, y ∈ [0, 1].

(iv) ∂p(x,y)
∂y ≥ 0 for all x, y ∈ [0, 1].

(v) 0 ≤ p(1, y), p(x, 0) ≤ 1.

The two first properties of the previous theorem provide some conditions on
the coefficients aij of the polynomial p(x, y) in a direct way.
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Proposition 4. Let p(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj be a polynomial of degree n. Then

we have the following equivalences:

(i) p(0, y) = 1 if, and only if, a00 = 1 and a0j = 0 for all 0 < j ≤ n.

(ii) p(x, 1) = 1 if, and only if,

n∑

j=0

a0j = 1 and

n−i∑

j=0

aij = 0 for all 0 < i ≤ n.

(iii) p(1, 0) = 0 if, and only if,

n∑

i=0

ai0 = 0.

Thus, the next result gives some necessary conditions on the coefficients of
the fuzzy polynomial implications.

Corollary 1. Let I(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj be a polynomial implication of degree

n. Then the following properties hold:

(i) a00 = 1.
(ii) a0j = 0 for all 0 < j ≤ n.

(iii)

n∑

j=0

a0j = 1 and

n−i∑

j=0

aij = 0 for all 0 < i ≤ n.

(iv)

n∑

i=1

ai0 = −1.

However, the transfer of the properties (iii)-(v) of Theorem 1 to properties on
the coefficients of the polynomial is harder for polynomials of degree n. Conse-
quently, and with the aim of characterizing some polynomial implications, from
now on we will restrict the study to polynomial implications of degree less or
equal to 3.

3.1 Degree Less or Equal to One

First, we are going to study the existence of polynomial implications of degree
less or equal to 2, i.e., fuzzy implications given by the following expression

I(x, y) = a00, with a00 ∈ R,
I(x, y) = a00 + a10x+ a01y, with a10 	= 0 or a01 	= 0.

It is easy to check that by Corollary 1 in the first case, it must hold that a00 = 0
and a00 = 1. Therefore, there not exist fuzzy polynomial implications of degree
less or equal to 1. Let us recall again that there exist constant piecewise fuzzy
implications. Two well-known examples of these implications are the least ILt

and the greatest IGt fuzzy implications defined as follows

ILt(x, y) =

{
1 if x = 0 or y = 1,
0 otherwise,

IGt(x, y) =

{
0 if x = 1 and y = 0,
1 otherwise.
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Furthermore, there are also no fuzzy polynomial implications of degree 1. In
this case, Corollary 1 states that the coefficients must satisfy a00 = 1, a01 = 0,
a10 = 0 and also a10 = −1. Therefore, there is no feasible solution. However,
there exist again fuzzy implications which are polynomial of degree less or equal
to 1 piecewise. For instance, among many others, we have the fuzzy implications
presented in Remark 2. To sum up, from the previous discussion, the following
result is immediate.

Proposition 5. There are no fuzzy polynomial implications of degree less or
equal to 1.

3.2 Degree 2

Now we deal with the characterization of all polynomial implications of degree
2, i.e., those whose expression is given by

I(x, y) = a00 + a10x+ a01y + a11xy + a20x
2 + a02y

2

with a211 + a220 + a202 	= 0. First of all, using Corollary 1, we obtain that there
exists only a value for each coefficient, namely a00 = 1, a10 = −1, a11 = 1
and a01 = a20 = a02 = 0. Replacing these values into the expression of the
polynomial, we get

p(x, y) = 1− x+ xy = IRC(x, y),

i.e., we obtain the Reichenbach implication. Since it is a well-known fuzzy im-
plication, it satisfies the remaining conditions of Theorem 1. Therefore, there
exists only one fuzzy polynomial implication of degree 2.

Proposition 6. There exists only one fuzzy polynomial implication of degree 2,
the Reichenbach implication I(x, y) = 1− x+ xy.

Note that the implication IRC is an (S,N)-implication obtained using the
method introduced in Example 1 as ISP ,N1 . It is well-known that this implication
is also a Yager’s f -generated implication with f(x) = 1 − x and so, it satisfies
(LI) with TP .

3.3 Degree 3

Finally, in this section, we will analyse the fuzzy polynomial implications of
degree 3. These implications have the following expression

I(x, y) =
∑

0≤i,j≤3
i+j≤3

aijx
iyj

where aij ∈ R and there exist 0 ≤ i, j ≤ 3 with i + j = 3 such that aij 	= 0.
Corollary 1 in this case provides some relations between the different coefficients.
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Corollary 2. Let I(x, y) =
∑

0≤i,j≤3
i+j≤3

aijx
iyj be a fuzzy polynomial implication of

degree 3. Then the following properties hold:

• a00 = 1 and a01 = a02 = a03 = a30 = 0.
• a12 = −a10 − a11.
• a20 = −1− a10.
• a21 = 1 + a10.
• a10 	= −1 or a10 	= −a11.

The previous result reduces the candidate polynomials to be the expression
of a polynomial implication to

p(x, y) = 1+ a10x+(−1− a10)x
2 + a11xy+(1+ a10)x

2y+(−a10− a11)xy
2 (1)

where a10 	= −1 or a10 	= −a11. However, not all these polynomials satisfy the
properties (iii)-(v) of Theorem 1 and therefore, not all are fuzzy implications.
The next result fully characterizes all fuzzy polynomial implications of degree 3.

Theorem 2. Let I : [0, 1]2 → [0, 1] be a binary operator. Then I is a fuzzy
polynomial implication of degree 3 if, and only if, I is given by

I(x, y) = 1 + αx+ (−1− α)x2 + βxy + (1 + α)x2y + (−α− β)xy2 (2)

with α, β ∈ R, α 	= −1, α 	= −β, and one of these cases hold:

• −2 ≤ α ≤ −1 and −1− α ≤ β ≤ 2.
• −1 < α < 0 and 0 ≤ β ≤ −2α.
• α = β = 0.

At this stage, let us study some properties of these implications in order
to determine after that, the class of fuzzy implications which these operations
belong to.

Proposition 7. Let I be a fuzzy polynomial implication of degree 3 given by
Expression (2). Then the following statements are equivalent:

• I satisfies (EP).
• I satisfies (NP).
• α = −β with −2 ≤ α ≤ 0.

In this case, the implication I is given by

I(x, y) = 1 + αx + (−1− α)x2 − αxy + (1 + α)x2y. (3)

Since the most usual fuzzy implications satisfy (NP), there exist fuzzy polyno-
mial implications of degree 3 which are neither (S,N), R, QL nor D-implications.
For example, the following fuzzy polynomial implications do not satisfy (NP)

I1(x, y) = 1− 2x+ x2 + xy− x2y+ xy2, I2(x, y) =
1

2
(2− x− x2 + x2y+ xy2).

On the other hand, using Proposition 3, the fuzzy polynomial implications
of degree 3 satisfying (EP) are (S,N)-implications obtained from the unique
polynomial t-conorm SP .
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Theorem 3. Let I : [0, 1]2 → [0, 1] be a binary operator, S a t-conorm and N
a fuzzy negation. Then the following assertions are equivalent:

(i) I is a fuzzy polynomial implication of degree 3 and an (S,N)-implication
obtained from S and N .

(ii) S = SP and N(x) = 1 + αx + (−1− α)x2 with −2 ≤ α ≤ 0.

Finally, and using the recent characterization of Yager’s f -generated implica-
tions in [9], the next result determines which fuzzy polynomial implications of
degree 3 are Yager’s implications.

Theorem 4. Let I : [0, 1]2 → [0, 1] be a binary operator. Then the following
assertions are equivalent:

(i) I is a fuzzy polynomial implication of degree 3 and a Yager’s f -generated
implication.

(ii) I is a fuzzy polynomial implication of degree 3 satisfying (LI) with TP (x, y) =
xy.

(iii) I(x, y) = 1− x2 + x2y, the f -generated implication with f(x) =
√
1− x.

As one might expect, the obtained implication belongs to the family con-
structed in Example 1 taking ISP ,N2 .

4 Conclusions and Future Work

In this paper, we have started the study of fuzzy implications according to their
final expression instead of the usual study on the construction methods of these
operators using aggregation functions or generators. As a first step, we have
studied the fuzzy polynomial implications, presenting some general results for
polynomial implications of any degree and characterizing all fuzzy polynomial
implications of degree less or equal to 3. The family of polynomial implications
has a non-empty intersection with (S,N)-implications and f -generated implica-
tions, although there are also implications of this family which do not belong to
any of the most usual families of implications. From the obtained results, some
questions remain unanswered and must be tackled as future work. First,

Problem 1. Characterize all fuzzy polynomial implications of any degree.

For this purpose, it will be a vital requirement to determine which condi-
tions on the coefficients of the polynomial imply the properties 3-5 of Theorem
1. Finally, from the results obtained in Proposition 6 and Theorem 3, we can
conclude that all fuzzy polynomial implications of degree 2 or 3 which are also
(S,N)-implications satisfy S = SP . From this previous discussion, the next ques-
tion emerges:

Problem 2. Is there any fuzzy polynomial implication which is also an (S,N)-
implication obtained from a t-conorm S 	= SP ?

Finally, it would be interesting to check the advantages of using polynomial
fuzzy implications instead of other implications in a concrete application in terms
of computational cost saving and the reduction of the spreading of possible errors
caused by numerical approximations of the inputs.
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