
An Interval Programming Approach for an

Operational Transportation Planning Problem

Valeria Borodin1, Jean Bourtembourg2, Faicel Hnaien1, and Nacima Labadie1

1 Laboratory of Industrial Systems Optimization (LOSI),
Charles Delaunay Institute (ICD), University of Technology of Troyes (UTT),

12 rue Marie Curie - CS 42060, 10004 Troyes, France
{valeria.borodin,faicel.hnaien,nacima.labadie}@utt.fr

2 Agricultural Cooperative Society in the Region of Arcis-sur-Aube,
Industrial Zone of Villette, Villette-sur-Aube 10700, France

j.bourtembourg@scara.fr

Abstract. This paper deals with an interval programming approach for
an operational transportation problem, arising in a typical agricultural
cooperative during the crop harvest time. More specifically, an interval
programming model with uncertain coefficients occurred in the right-
hand side and the objective function is developed for a single-period
multi-trip planning of a heterogeneous fleet of vehicles, while satisfying
the stochastic seed storage requests, represented as interval numbers.
The proposed single-period interval programming model is conceived and
implemented for a real life agricultural cooperative case study.

Keywords: interval linear programming, single-period multi-trip trans-
portation planning problem, OR in agriculture.

1 Introduction

Gathering the harvest is considered one of the most crucial activity in agricul-
tural environment for both cooperatives and individual farmers, in terms of the
high costs involved and the vulnerability to weather conditions. Logistics and
transportation activities constitute an inherent and primordial component of the
agricultural cooperative system [2,5].

In most cases, farmers deliver their harvest to the nearest storage facility. For
the sake of proximity storage availability, the cooperative forwards received cere-
als from buffer silos to expedition ones. Hence, new crop quantities are received
as time progresses, which leads require planning the transfer and transportation
of stored seed products.

Satisfaction of farmers’ grain storage requests and high level reception service
represent the main priority of the agricultural cooperatives during the harvest
season. Quantities to be received at each storage facility are ordinarily unknown.
In this regard, the case study cooperative has only an approximate information
based-on prediction of the daily farmers’ crop delivery quantities, represented as
interval numbers.
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The purpose of this paper is to present a single-period multi-trip transporta-
tion planning application, modelled as a linear programming model with interval
objective function and right-hand side constraints. It was motivated by a real
case study encountered at a typical French agricultural cooperative.

The remainder of this paper is structured as follows: in the next section, a
review of literature related to the interval programming research and applications
is provided. The problem statement and modelling is presented in Section 3.
After that, in Section 4, the solution method is exposed. In Section 5, several
computational experiments are reported and discussed. Finally, in Section 6,
overall remarks are drawn and topics for future research are outlined.

2 Literature Review

The conjecture of many real life problems presupposes miscellaneous types of un-
certainties ([14],[23]). Classical mathematical programming models, nonetheless,
only cope with deterministic values of problem input data. With the requirement
of tackling non-deterministic data, appropriate techniques have been developed
to suit various purposes and for different features of the stochastic data repre-
sentation: probabilistic, possibilistic, and/or interval formats.

For decision-making problems considering uncertainty, the stochastic linear
programming models touch effectively upon various random data with known
probability distributions [12,22]. On this topic, the simple recourse model (a
type of two-stage or multi-stage stochastic programming) consists in optimizing
the expected objective function subject to some expected constraints [20]. Inte-
grated chance-constrained programming is another approach in which solutions
are feasible for a discrete set of probabilistic scenarios and all soft constraints
are satisfied simultaneously with a given confidence level [8,18]. In turn, de-
pendent chance-constrained programming pertains to maximizing some chance
functions of events defined on stochastic sets in a complex uncertain decision
system [16,15]. In fuzzy linear programming, the constraints and the objective
function are regarded as fuzzy sets and their membership functions are assumed
to be known.

Nevertheless, it turns out to be often difficult to specify a relevant membership
function or an appropriate probability distribution in an stochastic environment
[21,11]. In the last two decades, many theoretical studies have been focused
on solving interval linear programming problems, in which the bounds on the
uncertain data variation are required, without insisting on their probability dis-
tributions or membership functions. The interval analysis method was pioneered
by Moore in 1959 as a tool for automatic control of the errors in a computed
results [24].

Interval programming models where only the coefficients of the objective func-
tion are random and represented in interval format, are studied in [10,1,3,13]. Re-
lated to this matter, min-max regret optimization approach is usually employed,
where different criteria that can be optimized, are distinguished: worst-case, best-
case, worst-case relative regret, worst-case absolute regret and maximum regret
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criteria, respectively. In this context two kinds of optimality (i.e. possible/weak
and necessary/strong optimality) are defined.

Another stream of recent literature considers the interval left-hand side lin-
ear programming. In the work designed by [6], the authors have incorporated
stochastic coefficients with multivariate normal distribution within an interval
parameter linear programming context. On the other hand, when randomness,
represented as interval numbers, appears in right-hand side constraints, only few
results have already been obtained. The difficulty resides in the fact that the set
of feasible solutions in not exactly known. In [9] the authors have investigated
the complexity of two optimization versions, which correspond to the worst and
best optimum solutions, when each right-hand side coefficient is defined as an
interval number.

However, to the best of our knowledge and as remarked by [17], there are
only few results on the issue of optimal solutions for a general interval linear
programming, where the vector of the objective function, the coefficient matrix
and the right-hand side are all interval matrices.

On the other hand, interval linear programming seems to be a sound approach
to face uncertainty issues that are met in real life applications. Nonetheless,
it is worth pointing out that a very few number of papers can be found in
which interval linear programming applications are developed, notwithstanding
its possible wide usage for modelling and solving real world problems [6,7].

3 Problem Statement and Modelling

Let us consider an agricultural cooperative specialized in multi-seed production
and commercialization. The cooperative involves several hundred of farmers, for
whom it provides consulting, drying, storage, transportation and many other
customer services.

Once the cereals have reached their physiological maturity, they are harvested
and carefully forwarded towards storage facilities (also named silos), designed
especially for this purpose. Many cooperatives use two types of silos: expedition
silos E, used for a long time period storage, and buffer silos B, which serve
as proximity facilities at the time of harvest. Due to limited storage capacity
of buffer silos, an inventory control level and a daily grain transfer to expedi-
tion silos are organized during whole harvest season. This ensures the buffer
silos availability, which contributes to increase the level of reception and storage
services.

Heterogeneous vehicle fleet K, previously dimensioned, is dedicated to empty
the buffer silos b (b ∈ B), whose cells c (c ∈ Cb) are quickly filling up as harvest
time progresses. In order to maintain buffer silos sufficiently empty, a regular
(single-period) cereal transfer (delivery) is organized from buffer silos to expedi-
tion ones.

More precisely, in each period of time (day) a multi-trip planning is performed
in order to guarantee a sufficient silo capacity for receiving the quantities of
different varieties v expected to be delivered in the following periods of time.
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All of the above transfer activities are realized by seeking to minimize the ex-
ceeded quantities to be received in the next p periods of time, that cannot by
adequately stored with respect to the current buffer silo b stock level of each cell
c, scbv.

Table 1. Modelling notation

Parameters:

v, v ∈ V crop variety index
b, b ∈ B buffer silo index
e, e ∈ E expedition silo index
k, k ∈ K vehicle index
c, c ∈ Cb silo cell index
p, p ∈ P a short time horizon

Deterministic Data:

scbv stock level of variety v in the cell c of buffer silo b at the beginning of
the planning period

ucb capacity of cell c of buffer silo b
hcbv 1, if the cell c is allowed to stock the variety v and 0, otherwise
rv′v′′ 1, if varieties v′ and v′′ are compatible and 0, otherwise
gk capacity of vehicle k
teb travel time between the silos e and b
tl loading time
tu unloading time
T daily working time
M big value, e.g. greater than or equal to ucb

Stochastic Data:

q±bv quantity of variety v expected to be delivered to buffer silo b during the
period of time ahead

q̃±bv quantity of variety v expected to be delivered to buffer silo b in p fol-
lowing periods of time

Variables:

ycb quantity of cell c of buffer silo b to be transferred
zcbv 1, if the cell c of buffer silo b contains the variety v
wcbv available capacity for stocking the variety v of the cell c of buffer silo b
xk
cbe number of round trips between the silos b and e for emptying the cell c

of silo b
fvb exceeded quantity of variety v at silo b, in terms of the q̃±bv against the

current silo stock level

The daily quantities to be received at each storage facility are unknown. In this
sense, the case study cooperative has only an approximate information based-on
statistical analysis and prediction of the daily farmers’ crop delivery quantities,
valued as interval numbers, whilst considering the meteorological repercussion on
the progress and achievement of the gathering activity and the farmers’ delivery
behaviour. Therefore, let us denote by q±bv the quantity of variety v to be delivered
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to the buffer silo b in the next period of time. The uncertain data q̃±bv are defined
to represent the forecasted quantity interval of the variety v to be received by
the buffer silo b in p following periods of time.

Before proceeding to the problem modelling, let us consider moreover the
following problem assumptions:

• Each vehicle can transport per trip goods belonging only to one buffer cell.

• The vehicles start from the first expedition silo (depot point) foreseen in
their respective daily multi-trip planning. Respectively, they return to the
last expedition silo (ending point) due in its daily multi-trip planning.

• Speed of vehicle is given and fixed. No traffic jam is considered.

• The total working time of each vehicle is limited to T per day.

• Non-Euclidean distance is considered between any two transporting points.
Thus, the travel time teb, from silos e to b, is not equal to tbe, from b to e.

• For all buffer and expedition silos, the loading tl and unloading tu times are
given and fixed.

The decision integer variables xk
cbe denote the number of round trips made by

the vehicle k between the buffer silo b and the expedition silo e, for emptying a
quantity ycb from the cell c of buffer silo b. By the same token, the decision vari-
ables wcbv represent the available capacity of silo c of buffer silo b for receiving
the variety v, while respecting their compatibility hcv and the total cell capacity
ucb. The data hcv are defined to take the value 1, if the cell c is allowed to stock
the variety v and 0, otherwise. In this manner, the cereal allotment pursuing
and the variety-cell management are considered. Additionally, an inter-varietal
compatibility rv′v′′ must also be taken into account for a suitable seed nature al-
lotment and traceability. The data rv′v′′ take the value 1, if varieties v′ and v′′ are
compatible and the value 0, otherwise. Two varieties are considered compatible,
if they can be mixed and stored in the same cell.

The decision positive variables fvb express the exceeded quantities of each
variety v, in terms of expected quantity q̃±bv to be delivered in the following p
periods of time to the buffer silo b, with reference to the total available silo
storage capacity of variety v,

∑
c∈Cb

wcbv.
In order to guarantee an appropriate storage service, buffer silos must be emp-

tied in such a way to minimize the exceeded quantities at each buffer silos in the
following p periods of time, in terms of each expected variety to be delivered and
its associated quantity. Subsequently, by considering the defined decision vari-
ables and data parameters introduced above (see Table 1), a linear programming
model with interval right-hand sides and objective function (1)-(15) is formalized
hereafter:

min
∑

v∈V

∑

b∈B

fvb (1)
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subject to:

fvb ≥ q̃±bv −
∑

c∈Cb

wcbv ∀v, ∀b (2)

∑

c∈Cb

wcbv ≥ q±bv ∀v, ∀b (3)

ucb −
∑

v∈V

scbv + ycb =
∑

v∈V

wcbv ∀b, ∀c (4)

wcbv ≤ M · hcbv ∀v, ∀b, ∀c (5)

1 + wcbv > zcbv ∀v, ∀b, ∀c (6)

wcbv ≤ M · zcbv ∀v, ∀b, ∀c (7)

zcbv′ + zcbv′′ ≤ rv′v′′ + 1 ∀v′, v′′(v′ �= v′′), ∀b, ∀c (8)
∑

k∈K

∑

e∈E

xk
cbe · gk ≥ ycb ∀c, ∀b (9)

∑

c∈Cb

∑

b∈B

∑

e∈E

(teb + tbe + tl + tu) · xk
cbe ≤ T ∀k (10)

wcbv ≥ 0 ∀c, ∀b, ∀v (11)

zcbv ∈ {0, 1} ∀c, ∀b, ∀v (12)

ycb ≥ 0 ∀b, ∀c, ∀k (13)

xk
cbe ∈ N ∀e, ∀b, ∀c, ∀k (14)

fvb ≥ 0 ∀v, ∀b (15)

Exceeded quantity of each variety at each buffer silo is calculated by the
constraints (2), in terms of the expected quantity to be received in the following
p periods of time against the current silo stock level. Constraints (3) ensure an
available silo capacity for stocking the quantity for each seed variety foreseen to
be delivered in the following time period. Stock equilibrium constraints for each
silo cell are expressed by (4). Constraints (5) verify if the cells c of buffer silo
b is allowed to stock the varieties v. Constraints (6) and (7) impose the binary
variable zcbv to take the value 1, if the cell c of buffer silos b is reserved to stock
the variety v in the next period of time. This is prescribed for respecting the
inter-varietal compatibility in each cell c of buffer silo b, required by constraints
(8). In order to guarantee a sufficient available capacity of the buffer silo, the
constraints (9) trigger a seed transfer from buffer silos b to expedition ones e,
which is performed by using a heterogeneous vehicle fleet K. Constraints (10)
confine to T the total working time of each vehicle k. The objective function (1)
seeks to minimize the exceeded quantity expected to be received in the following
p periods of time against the current silo stock level.

In the interval programming model (1)-(15), uncertainty, represented by in-
tervals, concerns both the objective function and the right-hand side constraints.
Hence, the set of feasible solutions is not exactly known and any solution may be
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not feasible for all interval right-hand side constraints. Correspondingly, classical
min-max optimization criteria cannot be directly employed [9].

4 Solution Methods

An interval programming model (1)-(15) with interval coefficients, simultane-
ously occurring in the objective function and right-hand side constraints are
considered. In this context, the aim consists of determining the best possible
optimum and the worst one over all possible configurations, which correspond
to an assignment of plausible values for each of the model uncertain parameters.

As far as uncertainty on objective function coefficients is regarded, two criteria
are classically considered: the worst case criterion and the best case one. Let X
be the set of (1)-(15) problem feasible solutions. Given x ∈ X , the configuration
to be considered is the one that corresponds to the worst (best) for this solution.
In this sense, the value of x, noted fworst(x) (fbest(x)) is defined as presented
below:

fworst(x) = maxq̃−≤q̃≤q̃+

∑

v∈V

∑

b∈B

fvb (16)

fbest(x) = minq̃−≤q̃≤q̃+

∑

v∈V

∑

b∈B

fvb (17)

where q̃± = (q̃±bv)b∈B,v∈V .
The problem is to determine the solution xworst(xbest), which minimizes

fworst(x) and fbest(x) respectively, as follows:

fworst(xworst) = minx∈Xfworst(x) (18)

fbest(xbest) = minx∈Xfbest(x) (19)

On the other hand, classical criteria cannot be directly applied when uncer-
tainty concerns right-hand side constraints. Denote by P q the program (1)-(15),
where q varies in the interval q− ≤ q ≤ q+, q± = (q±bv)b∈B,v∈V . In the context of
linear programs with interval right-hand sides, the objective of the best (worst)
optimal solution problem is to determine the minimum (maximum) value ϑ(P q)
of the optimal solution of P q, when q varies in the interval [q−, q+]. Let us for-
malize the best optimal solution problem (BEST) and the worst optimal solution
problem (WORST), hereafter:

BEST :

{
min ϑ(P q)
s.t q− ≤ q ≤ q+

(20)

WORST :

{
max ϑ(P q)
s.t q− ≤ q ≤ q+

(21)

Let XBEST (XWORST) be the set of optimal solutions of BEST (WORST).
In the light of the above mentioned approaches, four cases are studied in this
paper, for handling the interval programming model (1)-(15):
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fWORST
worst = minx∈XWORSTfworst(x) (22)

fBEST
worst = minx∈XBESTfworst(x) (23)

fWORST
best = minx∈XWORSTfbest(x) (24)

fBEST
best = minx∈XBESTfbest(x) (25)

Criteria (22), (23), (24) and (25) allow to provide the best possible optimum
and the worst one over all possible configurations in order to reveal a kind of
robustness information, by handling both uncertainty on objective function and
right-hand sides. As [19] stated, the range of the objective function between the
best and the worst optimum values provides an overview of the risk involved,
which can be reflected by specifying the values of the uncertain coefficients.

5 Computational Results

The model (1)-(15) was conceived to better organize the buffer silos emptying
during the harvest season for an Agricultural Cooperative Society, situated in
the region of Arcis-sur-Aube (France). More precisely, this is a grain and oilseed
agricultural cooperative, for which an appropriate buffer silos emptying policy
and multi-trip transportation planning is necessary to ensure a high level seed
reception and storage services.

The interval programming model (1)-(15) has been implemented by using
the C++ language. Criteria (22), (23), (24) and (25) have been used and the
corresponding models have been solved by using ILOG CPLEX (version 12.6.0)
optimization software, for instances with up to 30 varieties, 3 expedition silos,
11 buffer silos and between 10 and 15 cells per buffer silo (whose capacities vary
between 200 and 800 tonnes per cell). Computational experiments have been
carried out on an Intel(R) Core(TM) i7-2720QM CPU 2.20GHz workstation.

Commonly, the harvest lasts about one month. During this period, the ex-
pected quantities to be received by each case study silo were estimated based-on
cooperative predictive modelling of the farmers’ crop delivery behaviour and cli-
mate forecasting data, derived from nearby weather stations with an acceptable
reliability level. Due to a small gap between varieties’ ripeness dates and to a
high farmers’ gathering yield, the value of p was empirically fixed to 3.

In what follows, let us examine the figures Fig. 1 et Fig. 2, which illustrate
the output results corresponding to the best possible optimum and the worst
optimum over all possible configurations for a time horizon of 7 harvest days.
More specifically, the figure Fig. 1 reports the optimal values for (22) and (23), as
well as, the figure Fig. 2 provides the optimal value of (24) and (25), respectively.

Representative gaps between the objective values of approaches (22)-(23) and
(24)-(25) corresponding to the periods 2, 3 and 6, suggest about eventual consid-
erable buffer storage unavailability. It could be due to the fact that a significant
range of varieties is expected to be delivered. For preventing unsuitable seed
nature allotment or quality degradation, the cooperative should rent supple-
mentary vehicle during the respective periods of time. Contrarily, the multi-trip
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planning solutions provided by (22) could be realised during the periods 1, 4 and
5, since negligible objective values and gaps are recorded for these periods.

As computational results pointed out, approaches (22), (23), (24), (25) help
to handle efficiently the inventory control and multi-trip transportation planning
problem by presenting good alternative solutions. They offer a pertinent decision
support by taking into account weather and farmers’ delivery uncertainties.

6 Conclusions and Topics for Future Research

This paper presents an interval programming model for a single-period multiple
trip transportation planning problem, for purpose of maintaining available coop-
erative buffer silos during the harvest season. Best and worst optimum criteria,
prescribed to deal with uncertainty on objective function, have been considered
for both best and worst optimal solution problems, which address uncertainty
on right-hand side coefficients.

Future research would be dedicated to tackle and study other approaches
of problem robustness (e.g. maximum regret criterion, etc.). Moreover, other
problem formulations would be also tested to deal with the problem considered
in this paper (e.g. composing the rented fleet of vehicles, whilst ensuring the
buffer silos availability, etc.).
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