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Abstract. Nowadays, a huge amount of high resolution satellite images
are freely available. Such images allow researchers in environmental sci-
ences to study the different natural habitats and farming practices in a
remote way. However, satellite images content strongly depends on the
season of the acquisition. Due to the periodicity of natural and agricul-
tural dynamics throughout seasons, sequential patterns arise as a new
opportunity to model the behaviour of these environments. In this paper,
we describe some preliminary results obtained with a new framework for
studying spatiotemporal evolutions over natural and agricultural areas
using k-partite graphs and sequential patterns extracted from segmented
Landsat images.
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1 Introduction

Several regions over the earth are composed of complex landscapes with regard
to land cover and land use. Outside urban areas, we commonly observe mo-
saics of natural, semi-natural and agricultural areas. In Europe, mapping and
monitoring those areas became a major issue and several procedures have been
established for guiding and controlling such tasks. With regard to natural areas
we can cite the Habitats Directive (92/43/EEC) and the associated Natura 2000
network of protected sites. In this context, member states must report the con-
servation status of the habitats within their territory every six years [5]. Con-
cerning agriculture, Land Parcel Identification Systems (LPIS) emerged since
1992 (Council Reg. No 3508/1992). LPIS is used as a reference for annual decla-
ration by farmers, for administrative and cross-checks, and on the spot controls
(including control with remote sensing) [13].
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The detection of natural and agricultural areas from remote sensing data is a
key point for land cover mapping. Image classification is a widespread method
for mapping land cover. The overall objective is to categorize all pixels in an
image into land cover classes [9]. Usually, image classification is based on the
differential spectral response of land surfaces (radiance values recorded at pixel
level). However, most of classifications are based on single image and present
lot of bias in their results, or require extensive ground truth data in order to
attempt a high accuracy.

Temporal pattern recognition can furnish complementary information to fea-
ture identification. Actually, natural vegetation and agricultural crop present
distinct evolutions during phenological cycles and growing seasons. In that light,
multi-date imagery can enhance the pertinence and the accuracy of land cover de-
tection. Time series analysis comprises methods for analysing temporal data [12],
several images in our case, in order to extract meaningful statistics and other
characteristics of the data. Temporal data allows researchers to create a data
model for analysing past values and forecasting future ones [11]. Specifically, this
work is focus on natural and agricultural areas modelling over time. Sequential
pattern mining is the part of time series analysis concerned with finding statis-
tically relevant patterns between data examples where the values are delivered
in a different time moments [10].

Optical remote sensing, such as Landsat images are commonly used in envi-
ronmental researches. Image processing techniques are usually grouped in Pixel
based analysis or Object based image analysis (OBIA). Several time series pixel-
based approaches have been proposed, but OBIA studies rarely uses multi-
temporal data [12].

In this paper we combine OBIA with sequential pattern mining to create a
k-partite graph to represent natural and agricultural areas. Our approach starts
segmenting multi-date satellite images over a same area. From these segmen-
tations, a k-partite graph is built considering objects as nodes and represent-
ing object image overlap as edges. Later, in order to determine the optimum
bounding box of each object and study its dynamics, we propose the creation of
k-partite subgraphs. Finally, subgraphs are supplied to an expert in order to be
categorized.

1.1 Paper Organisation

This paper is organised as follows: Firstly, we introduce some concepts about
optical remote sensing in Section 2. Section 3 describes k-partite graphs and
sequential pattern representation. Our technique to maximise image coverage is
introduced in Section 4. Experimental findings about agricultural and natural
areas are depicted in Section 5. Section 6 concludes and draws future works.

2 Remote Sensing Satellite Images

In general we talk about remote sensing when the acquisition of data is done
without making any physical contact. This is the case of Earth observation plat-
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forms such as Landsat. The optical sensors onboard Landsat acquires multispec-
tral images (composed by multiple bands), each band representing a portion of
the electro-magnetic spectrum. For this study, we used Landsat Thematic Map-
per (TM) images without the thermal band. Remote sensing images are usually
characterized by different resolutions and other technical characteristics, in our
case they are as follows:

– Spatial Resolution. The size of a pixel in a raster image is 30x30 meters.
– Spectral Resolution. The spectral bands are six: blue, green, red, near

infrared (NIR) and two parts of short wavelength infrared (SWIR-1 and 2).
– Radiometric Resolution. The sensor is able to distinguish is 256 intensi-

ties of radiation (8 bits).
– Swath Width. The scene size is a ground square of about 185 x 185 km.

Apart from these parameters another important issue in time-series studies is
the frequency of revisits by the satellite. The revisit time of Landsat is of 16 days,
but in practice the number of useful images is lower, mostly due to unsuitable
whether conditions during satellite acquisition. For this study, we selected six
images covering of the same geographic area (the Natura 2000 Lower Aude Valley
site, located in south of France) between February and September 2009.

To avoid errors and misplacement over time, all images were already georef-
erenced, as well as radiometrically and atmospherically corrected by CESBIO-
CNES [6]. Additional fine spatial positioning corrections were applied in order
to keep the spatial shift between all the time stamps less than one pixel.

2.1 Segmentation

Image segmentation is a fundamental step in OBIA and its consists in merging
pixels into objects clusters [3]. Objects (or segments) are regions generated by
one or more criteria of homogeneity in one or more dimensions of a feature
space [4]. The aim of segmentation is to create a new representation of the
image more meaningful and easier to analyse. This approach is similar to human
visual interpretation of digital images, which works at multiple scales and uses
colour, shape, size, texture, pattern and context information [9].

Image segmentation results in a set of objects that collectively cover the entire
image without any overlapping. With respect to the homogeneity criteria, adja-
cent objects are expected to be significantly different between them. In this work
we use the software eCognition Developer 8.8.1 for image segmentation (multires-
olution segmentation algorithm). Only the pixels within the boundaries of the
Lower Aude Valley Natura 2000 site (4,842 ha) were used for segmentation and
further processing steps. Nine raster layers (radiometric or ’colour’ information)
were used simultaneously for image segmentation. Six of them correspond to
the Landsat spectral bands and the other are spectral indices. Spectral indices
are commonly used in remote sensing as they can be helpful for detecting and
characterizing some specific features, like vegetation, soil, water, etc. We used
the Normalized Difference Vegetation Index (NDVI) [8], the Normalized Differ-
ence Water Index (NDWI) [7] and the Visible and Shortwave Infrared Drought
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Fig. 1. Segmentation example representing the time stamp of 10 July 2009

Index (VSDI) [14]. In order to obtain objects of interest related to natural and
agricultural areas, we conceived a segmentation rule-set composed of 3 main
steps:

1. Medium-coarse segmentation to delineate general zones (colour and shape
components combined but “color > shape”): about 170-200 objects

2. Very fine segmentation focused on colour component: about 6,000 objects
3. Medium-fine segmentation with balanced weights for colour and shape com-

ponents: about 500-600 objects

This process was independently applied for each Landsat image. The last
segmentation level (3) was then exported from each time-stamp and used as
input for the subsequent processing steps. Figure 1 illustrates the segmentation
layer obtained for the time stamp of 10 July 2009.

3 Sequential Patterns and k-partite Graphs

This section describes the traditional sequential pattern mining problem and
high-lights the need for a specific way to handle remote sensing temporal infor-
mation by using k-partite graphs.

3.1 k-partite Graphs

A k-partite graph is a graph G = (V,E) with vertex set V and edge set E,
whose graph vertices V can be partitioned into k disjoint sets Vk so that no two
vertices within the same set are adjacent. In this work, we assume that any edge
eij has a weigh equal to wij where i and j correspond to two vertexes vi ∈ Vi

and vj ∈ Vj in two consecutive sets (layers).
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3.2 Sequential Patterns

Sequential patterns were introduced in [2] and in general, they are considered as
an extension of the concept of frequent itemset [1] having timestamps associated
to items. Sequential pattern mining aims at extracting sets of items commonly
associated over time.

The problem of generating and mining sequential patterns as a n-bipartite
graph is defined as follows.

Let X be a set of distinct items. An itemset is a subset of items, denoted
by I = (i1, i2, . . . , in), for 1 ≤ j ≤ n, ij ∈ X . A k-partite graph is built as an
ordered list of itemsets, denoted by 〈I1, I2, . . . , Ik〉, where Ii ∈ X for 1 ≤ i ≤ n
and correspond with each Vi nodes set.

Once graph nodes are defined, it is required to define the edges and their corre-
sponding weights. To do that, a function f(Ii, Ij) = wij is defined, if f(Ii, Ij) < 0
it means that there is one edge between a pair of nodes vi and Vj with weight
equal to wij .

3.3 Representation of Natural and Agricultural Areas

In order to represent natural and agricultural area evolutions over time, it is
proposed to create a sequential pattern by using a k-partite graph representation
in the following way:

1. Segmented images are the different itemsets 〈I1, I2, . . . , Ik〉, note that, the
image timestamp provide us the temporal information for creating the dif-
ferent nodes sets and therefore the k-partite graph.

2. Objects extracted from the segmented images allow us to generate the items
il of each itemset Ij .

3. To create the edges, the function f(Ii, Ij) = |pil ∩ pil+1
|/|pil ∪ pil+1

| is cal-
culated, where pil stands for the list of pixels of the item il.

Within this global k-partite graph, it is possible to extract a concrete area
of interest evolution creating a sub-graph chosen one or more items. All this
process is illustrated in Figure 2.

4 Coverage Algorithm

In this paper we have implemented the following algorithm to (completely) cover
one region of interest with sequential patterns: firstly, we detect the previously
unprocessed areas of the image where frequent changes in the pixel values are
produced. After that, we select from the first image the objects included in
the previously selected image area. Later, we generate a sequential pattern and
mark this part of the image as processed and recompute object variability. The
algorithm stops when the region of interest has been completely processed.

Specifically, we implemented the above coverage algorithm as it is described
in Algorithm 1. Firstly, we create a bounding box list containing all the objects
of all the images (lines 2-5), at the same time, we compute the variability of
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Fig. 2. Overall Sequential Patterns Extraction Process

Algorithm 1. BoundingBox Selection
Data: g: main graph
Result: p: patterns list

1 begin
2 bbList = new BBList;
3 foreach layer l ∈ g do
4 foreach node n ∈ l do
5 bb = new bb(n, l, importance(n));
6 bbList = bbList ∪ bb;

7 while !empty(bbList) do
/* 1. Find the corresponding objects in Layer 0 for the most important bounding box */

8 box = bbList.MostImportant();
9 n0 = g.getNodesByBB(0, box);

/* 2. Create the pattern for the selected object with the selected bounding box computing the overlap always

with the selected nodes in Layer 0 */

10 p = p ∪ newPattern(n0, box);
/* 3. Remove all the objects contained in the patterns from the importance of the BB */

11 bbList.updateImportance(p);

each bounding box (object). Bounding box importance is the amount of other
objects overlapping with at least one pixel with the current bounding box, this
computation is described in Algorithm 2.

Once the bounding box list is created, all objects are ranked with regards their
importance. The importance of a bounding box corresponds with the number of
objects in any layer overlapping with at least one pixel with the bounding box.
After that, the most important bounding box is selected (line 7) and recover the
objects overlapping with such bounding box in the first image (line 8). Then, a
new pattern is generated as it is described in Section 3.2 (line 9). After that, we
update bounding boxes importance, subtracting the processed objects from the
importance of each bounding box, if bounding box importance is equal to 0, it
is removed from the list (Algorithm 3). This loop is repeated until the bounding
box list is empty.
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Algorithm 2. Importance
Data: g: main graph, b:bounding box
Result: i: importance

1 begin
2 i = 0;
3 foreach layer l ∈ g do
4 foreach node n ∈ l do

/* if one pixel of node n overlaps

with g */

5 if n.overlap(b) then
6 i + +;

Algorithm 3. Updateimportance
Data: p: pattern
Result: bb:bounding box list

1 begin
2 foreach boundingBox b ∈ bb do
3 foreach layer l ∈ p do
4 foreach node n ∈ l do

/* if one pixel of node n

overlaps with b */

5 if n.overlap(b) then
6 b.i − −;

7 if b.i == 0) then
8 bb.remove(b);

Figure 3 shows the obtained coverage within the perimeter of our study area.
Each polygon represents the spatial extent of a specific bounding box, what
means that the associated pattern has a bigger spatial coverage taking into
account all temporal layers. Polygon color indicates from which time stamp the
bounding box was extracted (as assigned on the legend). In total 331 bounding
box were selected (about 50 - 60 per timestamp), it corresponds to an overall
coverage of 93.56% of the study area.

0 5 km 
Mediterranean Sea

0 5 km
Mediterranean Sea

Selected bounding box  
Colour represents time 
stamp as follows: 

 T0 

 T1 

 T2 

 T3 

 T4 

 T5 

Fig. 3. Obtained spatial coverage

5 Experiments

In order to evaluate the pertinence of our approach, graphical results were an-
alyzed by a remote sensing expert with field knowledge of the study area. For
this analysis, all subgraphs (331 in total) were plotted with an associated unique
ID allowing to locate each bounding box in an Geographic Information System
(GIS). The expert preselected (without taking into account subgraph results)
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about 20 regions of interest (ROI) containing both natural and agricultural ar-
eas. Then, the subgraphs corresponding to this set of ROI were identified and an-
alyzed. The following subsection details the main differences between the graphs
representing spatio-temporal evolutions of agricultural and natural areas within
our study area.

5.1 Pattern Analysis Examples

Agricultural Area. In general, agricultural areas present less complex sub-
graphs as the fields are usually rectangular and the boundaries of the objects
remain very similar from one time stamp to the next one. Even if subgraph
structure is quite simple (i.e. Figure 4 - subgraph 1), radiometric information
varies sharply throughout the time series. Subgraph 1 (Figure 4) illustrates the
temporal pattern of a winter culture (cereal crop in this example). The parcel
presents an important augmentation of the NDVI from late winter up to spring,
which corresponds to the growing season. The crop is harvest in late spring
or early summer, generating a brutal change in the spectral response (between
T2 and T3). Afterwards, the field is characterized by bare soil, which remains
globally stable until the end of the time series.

T0

T1

T2

T3

T4

T5

183

212

264

264 269

248 266

190 227245 229

87 53 62 50 71

68

41 5071 7687 94 100

62 100 9894 103 11572 89

75 91 98107

74 8789 10153

subgraph 1 subgraph 2

Fig. 4. Temporal Pattern examples: Agricultural area (subgraph 1) and Natural area
(subgraph 2)
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Natural Area. In natural areas the boundaries are usually much smoother
than in agricultural fields and the objects rarely have rectangular shapes. As a
consequence, graph structure tends to be more complex and can englobe several
objects per layer. Such kind of graph can also show some drastic radiometric
changes, but in general it concerns only a small portion of the area covered by
the bounding box. In other words, natural habitats are characterized by more
gradual and smoothed evolutions. Subgraph 2 of figure 4 illustrates the temporal
pattern of a temporary lake. Usually flooded during winter and spring, this lake
becomes progressively dry starting from early summer. Aquatic natural habitat
is gradually replaced by some pioneer terrestrial communities, dominated by
annual Salicornia sp. or Suaeda sp. Depending mainly on the local variations of
soil salinity, the vegetation will cover the former flooded area in different ways.
First developments of such particular habitats can be detected since T2 and they
should subsist up to the next flood event (usually during late autumn or winter).

5.2 Discussion

Throughout one year, spatio-temporal evolutions of agricultural and natural ar-
eas are enough dissimilar and it is possible to an expert to separate them by
analysing the time series of satellite images. In a more automatic way, the sub-
graphs generated by our approach synthesizes complex spatio-temporal evolu-
tions and can be useful for this kind of time-consuming task. Actually, subgraph
structure associated to temporal behaviour of object’s radiometry provides com-
plementary and pertinent information allowing detailed analysis.

At this stage, our coverage algorithm is not able to cover 100% of the study
area throughout the time series. Most of times, small objects are not included
in the subgraphs. However, this issue should be improved as the spatial gaps
concerns sometimes also medium-size objects representing interesting natural or
agricultural areas. Another point to improve is spatial redundancy. We verified
that some subgraphs presents high rates of similar objects, what means that the
same area is covered by more than one subgraph. Improving the bounding box
selection should reduce such spatial redundancy.

6 Conclusions

In this paper we have described a complete framework for studying evolving
natural and agricultural areas using satellite images information and k-partite
graph sequential patterns. We have shown that using our approach is possible to
cover a great part of the study area (93.56%) and to analyze in detail a concrete
region of interest. We have also verified with one domain expert that the obtained
sequential patterns are meaningful. As a future work, we would like to develop
some clustering algorithms for k-partite graphs to help the expert to post-process
the results providing some groups of patterns with similar behaviour, instead of
individuals patterns without relation among them.
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