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1 Introduction

The problem of finding appropriate rankings to evaluate and/or sort different
alternatives appears in a variety of disciplines such as Economics ([2]), Political
Sciences ([5]) or Artificial Intelligence ([16]), among many others. We can usually
identify four main ingredients in a decision making problem, namely:

1. The set of alternatives (also referred to as “gambles” ([36]), “actions”
([4,32]),“options” ([3,24]) or “candidates” ([5,39]).

2. The “set of states of nature” –also called “criteria” in multi-criteria decision
problems ([4,20,25,32]), “experts” ([13]) or “individuals” in group decision
making ([22]), or “voters” in political decision making ([5,26])–.

3. An evaluation on every alternative and/or a preference ordering between
different alternatives for each state of nature.

4. A merging method in order to combine evaluations or preference relations
for different states of nature, that allows us to select the best (or a set of
non dominated) alternative(s).

Different streams of the literature make different assumptions about the two
last ingredient. With respect to the preference ordering over the set of alter-
natives, for each particular state of the nature, we face at least two different
approaches:
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3a. In the first one, a quantitative [12,10,20,35,36] or a qualitative (see [31], for
instance) assessment is associated to every single alternative. In the case
of quantitative assessments, the usual ordering between numbers can be a
natural choice to sort the set of alternatives, although it is not the only
option ([21]). Recently, (fuzzy) interval-valued assessments instead of crisp
numerical values have been considered in some problems where imprecision
is involved in this assessment process [1,34]), and therefore specific partial
or total pre-orderings between (fuzzy) intervals must be selected in order to
sort the different alternatives, for every particular state of nature.

3b. According to the second approach, preference statements over the set of
alternatives are made, instead of considering value functions providing single
assessments. Those preference statements can be given by means of graphical
representations, for instance, and may lead to a partial ordering over the set
of alternatives, for each state of nature or criterion (see [18,25], for instance.)

Regarding the combination of our preference orderings under the different
states of nature into a single (partial) ordering, we can distinguish at least three
approaches:

4a. The expert initial information is assessed by means of comparative prefer-
ence statements between options. A (family of) probability measures(s) over
the states of nature is derived from it. This is the “behavioral” approach ini-
tiated by Savage in a precise probabilities environment ([11,33]) and followed
afterwards in the general theory of imprecise probabilities (see [8,36]).

4b. A (family of ) probability measure(s) over the class of states of nature is ini-
tially considered. A preference relation on the set of alternatives (“random
variables” or “gambles”) is derived from it. This is the approach consid-
ered for instance in [21,9,12], for the case of precise probabilities and in
[14,29,34,35]. for the case of partially known probabilities or weights. Such
a preference relation, derived from the initial (sometimes partial) informa-
tion about the weights of the different states of nature (or “criteria”, in
multi-criteria decision), is closely related to the notion of “almost prefer-
ence” in Walley’s framework. This approach will be reviewed in Subsection
3.2 (“credal set approach”).

4c. This approach usually appears in multi-criteria decision problems. Tradi-
tionally, a weight function, formally equivalent to a probability measure, is
defined over the (finite) set of criteria, in order to determine the relative
importance of each of them. The global score of an alternative is therefore
calculated according to the weighted mean, that can be seen as a (discrete)
Lebesgue expectation. Lately ([27]) some authors have generalized this ap-
proach in order to include the possibility of interaction between different
criteria. In order to do so, the weights associated to some families of criteria
do not necessarily coincide with the sum of the weights of each of them. This
kind of complex information can be represented by means of a non additive
set-function defined over the set of criteria. According to this approach, the
global score of each alternative may be determined by the Choquet integral of
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the partial scores with respect to such a set function. We will briefly review of
this approach in Subsection 3.3 (“aggregation operators-based approach”).

Once we have described the four usual ingredients in decision making prob-
lems, we need to take into account an additional issue. The decision-maker is
usually interested by two questions: on the one hand, (s)he may wish to know
what decisions are preferred to others; on the other hand, (s)he may be interested
in determining whether single alternatives are “satisfactory” ([28]) or “desirable”
([36]) or not. P. Walley ([36]) established a formal link between both issues.

The goals in this paper are threefold:

– First, we aim to highlight what are the formal connections and commonal-
ities between different combination methods (classical stochastic orderings,
Walley’s preferences, etc.) from the literature.

– Second, we will show Walley’s partial orderings as a generalization of the
expected utility criterion ([33]), and we will explore other possible general-
izations of stochastic orderings within the Imprecise Probabilities setting.

– Finally, we will face the problem of ranking fuzzy intervals from the perspec-
tive of Imprecise Probabilities, assuming that each fuzzy interval character-
izes a possibility distribution, considered as an upper probability.

Sections 2 and 3 deal with the two first goals, and Section 4, with the third
one.

2 Preference Modeling in a Probabilistic Setting:
Stochastic Orderings

Let us first consider a probability space (Ω,F , P ) determining the “weights” of
the different states of the nature. Let us consider a pair of random variables
(alternatives) defined on Ω, X, Y : Ω → R. This section reviews three well
known stochastic orderings in the literature:

SO1. Dominance in the sense of expected utility [33].- Given an increasing func-
tion u : R → R, X dominates Y wrt u if EP (u(X)) ≥ EP (u(Y )). We will
denote it X ≥u Y . A special case is Dominance in Expectation: X dom-
inates Y if EP (X) ≥ EP (Y ). This relation represents the particular case
of the previous one, when the utility function u is the identity function
u(x) = x, ∀x ∈ R.

SO2. Statistical preference [9].- X is statistically preferred to Y if P (X > Y ) +
0.5 · P (X = Y ) ≥ 0.5. We will denote it X ≥SP Y .

SO3. First order stochastic dominance [21].- X dominates Y if P (X > a) ≥
P (Y > a), ∀ a ∈ R. It is well known that X ≥1st Y if and only if X ≥u Y ,
for all increasing utility functions u : R → R. We will denote it X ≥1st Y .
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According to [7], all the above stochastic orderings can be put into a common
formulation. In fact, we can express each of them as follows:

X is preferred to Y if and only if EP [f(X,Y )] ≥ EP [f(Y,X)], (1)

or equivalently, if EP [f(X,Y )− f(Y,X)] ≥ 0, (2)

for a certain function f : R2 → R, increasing in the first component and decreas-
ing in the second one. Below, we provide the specific expression of f(·, ·) for each
of the above orderings:

– Dominance in the sense of expected utility.- Let us consider the function
fu(x, y) = u(x), ∀x ∈ R (which is a constant wrt the second argument). We
can easily check that X ≥u Y if and only if EP [fu(X,Y )] ≥ EP [fu(Y,X)].

– Statistical preference.- Let us consider the mapping f(x, y) = sgn(x − y),
where sgn denotes the “sign” function taking the values 1, 0 or −1, depending
on the sign of the argument. It is checked in [7,8] that X ≥SP Y if and only
if E[f(X,Y )] ≥ E[f(Y,X)].

– First stochastic dominance.- Let us now consider the family of functions
fa(x, y) = 1x>a−1y>a, ∀ a ∈ R. X dominates Y if and only if E[fa(X,Y )] ≥
E[fa(Y,X)], ∀ a ∈ R. Equivalently, and according to the formal existing re-
lation between dominance in the sense of expected utility and first stochastic
dominance, we can say that X dominates Y if and only if E[fu(X,Y )] ≥
E[fu(Y,X)], for every (increasing) utility function u : R → R.

3 Partial Orderings in Imprecise Probabilities

3.1 The Behavioral Approach

Peter Walley [37] establishes a list of axioms of coherence for preference relations
between gambles. A preference relation � defined on a linear space of gambles1

K is said to be coherent when it satisfies the following properties:

P1. Not X � X.
P2. If X(ω) ≥ Y (ω), ∀ω ∈ Ω and X(ω) > Y (ω), for some ω ∈ Ω, then X � Y.
P3. If X � Y and c > 0 then cX � cY.
P4. If X � Y and Y � Z then X � Z.
P5. X � Y if and only if X − Y � 0.

He also establishes a duality between the notions of desirability and preference:
X is desirable if and only if it is preferred to the null gamble (the gamble that
provides no reward, no matter the state of the nature, ω ∈ Ω.) Conversely, X
is preferred to Y when their difference X − Y is a desirable gamble. In such a
case, one is willing to give up Y in return for X . Any coherent preference relation

1 A gamble X : Ω → R is a bounded mapping defined on the space of states of nature.
If you were to accept gamble X and ω turned to be true, then you would gain X(ω).
(This reward can be negative, and then it will represent a loss.)
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determines a lower prevision, P , representing the supremum of acceptable buying
prices for gambles, that is formally defined as follows:

P (X) = sup{c ∈ R : X � c}, ∀X.

The lower prevision P , determines the credal set2, M(P ), formed by the set of
linear previsions that dominate P : M(P ) = {P : P (X) ≥ P (X), ∀X}. Accord-
ing to the last formula, it can be interpreted as the minimum of the expectation
operators associated to a convex family of (finitely additive) probabilities. Fur-
thermore, the following implications hold for any pair of gambles, X , Y :

E(X − Y ) > 0 ⇒ X is preferred to Y ⇒ E(X − Y ) ≥ 0. (3)

According to Equation 3, Walley’s preference clearly generalizes the “dominance
in expectation” criterion reviewed in Section 2.

We have recently explored ([8]) the generalization of statistical preference,
defining the preference of X over Y as the desirability of the sign of their differ-
ence, sgn(X − Y ). Under this criterion, we just take into account whether the
consequent X(ω) is greater than (or preferred to) Y (ω) or not, but not the mag-
nitude of their difference. Thus, it does not require the existence of a numerical
scale, unlike Walley’s criterion. The following equation reminds Eq. 3, where the
lower expectation has been replaced by the median:

Me(X − Y ) > 0 ⇒ X is signed preferred to Y ⇒ Me(X − Y ) ≥ 0.

Taking into account the last section, and some of the ideas suggested in [7], the
notion of first stochastic dominance could be easily generalized to the imprecise
probabilities setting, if we consider that X is preferred to Y whenever the gamble
1X>a is preferred to 1Y>a, for every a ∈ R.

3.2 The Credal Set-Based Approach

Lately, different authors have independently generalized some stochastic order-
ings to the case where our imprecise information about the underlying proba-
bility distribution, P , over the set of states of nature is determined by means of
a set of probability measures P . Taking into account the general formulation of
stochastic orderings proposed in Section 2, many of those new definitions can be
seen from a general perspective, where the values EP [f(X,Y )], EP [f(Y,X)] and
EP [f(X,Y )] − EP [f(Y,X)] are replaced by their respective sets of admissible
values. More specifically, they can be seen as generalizations of Eq. 1 and 2,
where the inequality ≥ is replaced by a particular (sometimes partial) preorder
between intervals (or, more generally, between arbitrary sets of numbers). In this
respect, the criteria considered in [35] generalize the “dominance in expectation”

2 A credal set is a convex and closed family of linear previsions, i.e., of linear functionals
P : L → R satisfying the constraint P (1) = 1. The last concept generalizes the notion
of expectation operator to the case of non necessarily σ−additive probabilities.
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criterion (SO1). On the other hand, the criterion considered in [34] generalizes
the notion of statistical preference (SO2), to the case where the usual ordering
between numbers is replaced by an interval ordering ([19]). As a side remark,
let us notice that there exist a formal connection between this last criterion and
the notion of fuzzy preference ([30]). In fact, it can be easily checked that the
mapping f defined as f(X,Y ) = P (X,Y ) is a connected [3] or complete fuzzy
preference, since it satisfies the general axioms of fuzzy preferences and the in-
equality f(X,Y ) + f(Y,X) ≥ 1. If, in addition, P is a possibility measure, then
the fuzzy preference relation derived from it is strongly connected. Finally, the
four generalizations of “first stochastic dominance” (SO3) proposed in [14] and
the six ones proposed in [29] also follow the general procedure described in this
section. A more detailed explanation about how the criteria reviewed in this
section fit this general formulation is provided in [7].

3.3 The Aggregation Operators-Based Approach

The weighted mean is a very often used aggregation criterion in multicriteria
decision problems, and it is formally equivalent to “dominance in expectation”,
where the probability masses play the role of “weights of importance” of the
different criteria instead of being interpreted in terms of stochastic uncertainty.
During the last decades (see [27] and references therein), generalizations of the
weighted mean operator, like the discrete Choquet integral (that includes OWA
operators [38] as particular cases) have been considered.Within this more general
setting, the degree of importance associated to a particular set of criteria is not
forced to coincide with the sum of the weights assigned to the particular criteria
included in the set, allowing the possibility of modeling the effect of interaction
between different criteria. The discrete Choquet integral wrt the non-additive
monotone set-function, μ, that assigns the weight μ(C) to each particular set of
criteria, C, seems to be the natural generalization of the weighted mean under
this general approach. If the non-additive set function satisfies some additional
properties, like submodularity, for instance, the Choquet integral plays the role of
a lower prevision or a lower expectation. In those cases, the resulting aggregation
method is formally linked to the preference criterion defined by Walley reviewed
in Section 3.1, as well as to the generalizations of the “dominance in expectation”
criteria considered in Section 3.2.

Labreuche et al. [25] also interpret the “weights” as relative degrees of im-
portance of criteria. In their paper, partial preference relations between the op-
tions, instead of single evaluations are considered for each particular criterion
(see 3a). Those preference relations are combined afterwards according to “sta-
tistical preference” (SO2). Weights on sets of criteria are not directly provided.
Instead, preference relations between indicator functions over the set of criteria
are given, and the set of feasible probabilities (weight vectors) is derived from
them. So the approach in this paper is very much connected to the procedure de-
scribed in (4a). It would be interesting to explore the formal connection between
this approach and the preference criterion proposed in [8].
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4 An Imprecise Probabilities’ Approach to the Notion of
Fuzzy Ranking

According to the possibilistic interpretation of fuzzy sets, the problem of ranking
fuzzy numbers can be seen from an Imprecise Probabilities’ perspective ([6,17]. In
fact, a pair of fuzzy sets can be seen as an incomplete description of a joint prob-
ability measure P(X,Y ), and therefore, any of the criteria reviewed in Sections
2 and 3 could be applied. For instance, Detyniecki et al. [15] apply statistical
preference to the joint probability distribution induced by a pair of indepen-
dent random variables whose respective density functions are proportional to
the respective fuzzy sets membership functions, considered as possibility dis-
tributions. Sánchez et al. ([34]) also generalize statistical preference, but this
time, they consider the whole set of probability measures dominated by a joint
upper probability determined by both possibility distributions. The criterion of
dominance of expectation has been also generalized in the recent literature (see
[10] for instance). A deep analysis studying well-known fuzzy rankings from the
perspective of Imprecise Probabilities has been developed in [6].
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