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Preface

Here we provide the proceedings of the 15th International Conference on In-
formation Processing and Management of Uncertainty in Knowledge-based Sys-
tems, IPMU 2014, held in Montpellier, France, during July 15–19, 2014. The
IPMU conference is organized every two years with the focus of bringing to-
gether scientists working on methods for the management of uncertainty and
aggregation of information in intelligent systems.

This conference provides a medium for the exchange of ideas between theo-
reticians and practitioners working on the latest developments in these and other
related areas. This was the 15th edition of the IPMU conference, which started
in 1986 and has been held every two years in the following locations in Eu-
rope: Paris (1986), Urbino (1988), Paris (1990), Palma de Mallorca (1992), Paris
(1994), Granada (1996), Paris (1998), Madrid (2000), Annecy (2002), Perugia
(2004), Malaga (2008), Dortmund (2010) and Catania (2012).

Among the plenary speakers at past IPMU conferences, there have been three
Nobel Prize winners: Kenneth Arrow, Daniel Kahneman, and Ilya Prigogine. An
important feature of the IPMU Conference is the presentation of the Kampé de
Fériet Award for outstanding contributions to the field of uncertainty. This year,
the recipient was Vladimir N. Vapnik. Past winners of this prestigious award were
Lotfi A. Zadeh (1992), Ilya Prigogine (1994), Toshiro Terano (1996), Kenneth
Arrow (1998), Richard Jeffrey (2000), Arthur Dempster (2002), Janos Aczel
(2004), Daniel Kahneman (2006), Enric Trillas (2008), James Bezdek (2010),
Michio Sugeno (2012).

The program of the IPMU 2014 conference consisted of 5 invited academic
talks together with 180 contributed papers, authored by researchers from 46
countries, including the regular track and 19 special sessions. The invited aca-
demic talks were given by the following distinguished researchers: Vladimir
N. Vapnik (NEC Laboratories, USA), Stuart Russell (University of California,
Berkeley, USA and University Pierre et Marie Curie, Paris, France), Inés Couso
(University of Oviedo, Spain), Nadia Berthouze (University College London,
United Kingdom) and Marcin Detyniecki (University Pierre and Marie Curie,
Paris, France).

Industrial talks were given in complement of academic talks and highlighted
the necessary collaboration we all have to foster in order to deal with current
challenges from the real world such as Big Data for dealing with massive and
complex data.

The success of IPMU 2014 was due to the hard work and dedication of a
large number of people, and the collaboration of several institutions. We want to
acknowledge the industrial sponsors, the help of the members of the International
Program Committee, the reviewers of papers, the organizers of special sessions,
the Local Organizing Committee, and the volunteer students. Most of all, we
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appreciate the work and effort of those who contributed papers to the conference.
All of them deserve many thanks for having helped to attain the goal of providing
a high quality conference in a pleasant environment.

May 2014 Bernadette Bouchon-Meunier
Anne Laurent
Olivier Strauss

Ronald R. Yager
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Cécile Coulon-Leroy École Supérieure d’Agriculture d’Angers,
France
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Sebastià Massanet
Brice Mayag
Gaspar Mayor
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Learning with Nontrivial Teacher

Vladimir Vapnik

NEC Laboratories, Princeton, New Jersey
Columbia University, New York City
U.S. National Academy of Engineering

Abstract. In this talk I will discuss a new learning paradigm which
uses an intelligent agent (nontrivial teacher), the so called Learning Using
Privileged Information (LUPI) paradigm. In the LUPI learning paradigm
in order to machine find a good decision rule using small number of train-
ing examples (say in pattern recognition problem) teacher during training
session adds to the training examples some additional information (priv-
ileged information) such as comments, explanations, metaphoric reason-
ing, and so on. This information will not be available for testing. I will
discuss the property of new learning model and the role of nontrivial
teacher it relation to the general problem of inference and construction
intelligent (that use different from brute force methods) machines.



New Challenges in Fuzzy Reasoning:

When Practice and Theory Meet

Marcin Detyniecki

CNRS, UMR 7606, LIP6, Paris, France
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France

Polish Academy of Sciences, IBS PAN, Warsaw, Poland

Abstract. Fuzzy reasoning is a seminal tool for intelligent systems. It
enables handling imprecise information and uncertain knowledge in real-
world applications. Fuzzy reasoning can be seen as a process that finds
a solution for a system of relational assignment equations. Generally, it
is formulated as a compositional rule of inference, based on the modus
ponens as deduction mechanism. This type of approximate reasoning is
typically exploited in fuzzy rule-based systems. This general framework
has played a key role in the success of fuzzy logic in general, and in
particular, in the eyes of the general public with a number of intelligent
applications.

Although approximate inference mechanisms and the underlying logic
have been intensively studied, we observe that theoretical results do not
necessarily address the challenges found in applications. Neither have the
applied researchers integrated formal results in the engineering solution.
This contribution aims at bringing some light to this matter.

In 1994, in a plenary talk titled “Fuzzy Logic and Soft Computing:
Issues, Contentions and Perspectives”, Lotfi Zadeh attributed the criti-
cism towards fuzzy logic to a misunderstanding of what it is. He argued
that fuzzy logic is used in two different senses: the narrow one, in which
it is considered as a logical system which is an extension of multival-
ued logic; the broader sense, in which it is considered from a set-theory
point of view as theory of classes with unsharp boundaries. At that time
Zadeh pointed out that the success in terms of application, measured by
the rapid growth in their number and their variety, is due to the fact
that fuzzy logic in the broad sense has not only an enhanced ability to
model real world problems thanks to its generality and expressive power,
but also a capacity to achieve tractability and robustness with low so-
lution cost. He also pointed out that, although there has been a certain
progress in the understanding of this logic, the foundations needed to
become firmer and its impact within mathematics more substantive.

Twenty years later, we observe that the theoretical foundations of
fuzzy logic have been extremely well addressed, in particular in the logical
strict sense. In parallel, fuzzy reasoning in the broad sense has been able
to address complex issues in control, data analysis, and natural knowl-
edge management in several application domains. Today, in order to take
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fuzzy logic, and in particular fuzzy reasoning, to next level of perfor-
mance, we need a better mutual understanding and interaction between
researchers focusing on abstract theoretical structures and those focusing
on operational intelligent systems. Twenty years ago Zadeh claimed that
we need more foundations for fuzzy logic in the narrow sense. I advocate
that now is time to reinforce the foundations of the broad fuzzy logic.

In this presentation centred on fuzzy reasoning, I will illustrate the
gap that exists between available theoretical explanations, which are de
facto fuzzy logic in the narrow sense, and practitioners expectations,
who exploit fuzzy logic in a broad sense. In particular, I will use some
successful applications in multimedia information management to show
some paradoxical behaviours that may occur, in practice, when using
standard fuzzy inference mechanisms. I will analyse these exemples from
different perspectives by, in the one hand, formalising the underlying
practical abstract motivations, and in the other hand, by providing the-
oretical explanations of the existing limitations. Moreover, I will show
preliminary works - neither purely practical, neither theoretical - that
provide some answers to the observed behaviours. These examples are
intended to open some new tracks between the narrow and the broad
fuzzy logic, around which the applied and the theoretical researcher can
put up to start an exchange and a mutual understanding.

Acknowledgments. Results and reflections presented here are the result of a
long collective work with different researchers from around the world, each having
its own theoretical or applicative perspective. Without forgetting all with whom
I have had enlightening discussions, I would to like to acknowledge my gratitude
in particular to Sabrina Tollari, Marie-Jeanne Lesot, Maria Rifqi, Bernadette
Bouchon-Meunier, Nicolas Labroche, Adrien Revault d’Allonnes, Christophe
Marsala and all, my present and past, doctorate students.



What Does Your Body Tell Me...., Oh, ... and

What Does It Tell You?

Nadia Berthouze

UCLIC, University College London, London, UK

n.berthouze@ucl.ac.uk

Abstract. Recent years have seen the emergence of technology that in-
volves and requires users to be engaged through their body. This has
opened the possibility to better understand and exploit this modality
to capture, respond to and regulate users’ affective experience. Indeed,
various studies in psychology have shown that our posture and body
movement do communicate to others how we feel, and the intensity with
which we feel, to the same extent that facial expressions and tone of
voice do (for a review, see [1]). At the same time, studies have shown
that body expressions are not only a window into one’s emotional ex-
perience but they are also a mean to affect and regulate this experience
(for a review, see [2]): the way we stand and the way we move affect
our emotional state, our cognitive abilities and our attitude towards the
events and environment that surround us and that we evaluate. In my
talk, I will present a set of case studies that aim to show how these two
sides of bodily expression can be used to design better and more effective
technology.

Using applications in computer games [3,4], in physical rehabilitation
[5] and in human-avatar interaction [6], I will show how body expressions
can be used to automatically capture how the person feels. In doing so,
I will also discuss the challenges raised by collecting, labelling and mod-
elling naturalistic body expressions, as well as possible directions to ad-
dress them. I will also bring into light how the availability of new devices
and sensors make it possible to extend the study of body to aspects of it
that are still under-investigated: touch behaviour as an extension of body
behaviour [7] and muscle activity as the engine of body expressions.

Using the above case studies, I will discuss how this information could
be used to adapt technology to better respond to the need of the user or
of the goal to be achieved [8]. In particular, I will discuss how tracking the
emotional states of the person through their body expressions offers new
possibilities for self-directed rehabilitation. Emotional states are often
forgotten when rehabilitation technology is designed with the main focus
being on correcting movement. Unfortunately, correcting movement is
not all what physical rehabilitation is about [9].

Finally, I will conclude by discussing how designers of full body tech-
nology could take advantage of what the body has to offer. I will present
psychology and HCI research that aims to provide a principled approach



What Does Your Body Tell Me XIX

to the design of body movement to steer the user’s emotional states to-
wards what is most appropriate to the accomplishment of the task at
hand [2,10].
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Trinidad Casasús-Estellés and Ronald R. Yager

Generating Events for Dynamic Social Network Simulations . . . . . . . . . . . 46
Pascal Held, Alexander Dockhorn, and Rudolf Kruse

A Model for Preserving Privacy in Recommendation Systems . . . . . . . . . . 56
Luigi Troiano and Irene Dı́az

Classification of Message Spreading in a Heterogeneous Social
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Siwar Jendoubi, Arnaud Martin, Ludovic Liétard, and
Boutheina Ben Yaghlane

Measures of Semantic Similarity of Nodes in a Social Network . . . . . . . . . 76
Ahmad Rawashdeh, Mohammad Rawashdeh, Irene Dı́az, and
Anca Ralescu

From Different to Same, from Imitation to Analogy

Imitation and the Generative Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Jacqueline Nadel



XXVIII Table of Contents – Part II

Conditions for Cognitive Plausibility of Computational Models of
Category Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Daniel Devatman Hromada

3D-Posture Recognition Using Joint Angle Representation . . . . . . . . . . . . 106
Adnan Al Alwani, Youssef Chahir, Djamal E. Goumidi,
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Exploring Infinitesimal Events through MV-algebras and non-
Archimedean States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Denisa Diaconescu, Anna Rita Ferraioli, Tommaso Flaminio, and
Brunella Gerla

Graduality

Accelerating Effect of Attribute Variations: Accelerated Gradual
Itemsets Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Amal Oudni, Marie-Jeanne Lesot, and Maria Rifqi

Gradual Linguistic Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Anna Wilbik and Uzay Kaymak

Mining Epidemiological Dengue Fever Data from Brazil: A Gradual
Pattern Based Geographical Information System . . . . . . . . . . . . . . . . . . . . . 414

Yogi Satrya Aryadinata, Yuan Lin, C. Barcellos, Anne Laurent, and
Therese Libourel

Preferences

A New Model of Efficiency-Oriented Group Decision and Consensus
Reaching Support in a Fuzzy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 424
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Sébastien Destercke and Olivier Strauss

A Continuous Updating Rule for Imprecise Probabilities . . . . . . . . . . . . . . 426
Marco E.G.V. Cattaneo

Stable Non-standard Imprecise Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 436
Hykel Hosni and Franco Montagna

Coherent T -conditional Possibility Envelopes and Nonmonotonic
Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Giulianella Coletti, Davide Petturiti, and Barbara Vantaggi

Decision Making with Hierarchical Credal Sets . . . . . . . . . . . . . . . . . . . . . . . 456
Alessandro Antonucci, Alexander Karlsson, and David Sundgren

A Propositional CONEstrip Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Erik Quaeghebeur

Multinomial Logistic Regression on Markov Chains for Crop Rotation
Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Lewis Paton, Matthias C.M. Troffaes, Nigel Boatman,
Mohamud Hussein, and Andy Hart



Table of Contents – Part III XXXVII

Approximate Inference in Directed Evidential Networks with
Conditional Belief Functions Using the Monte Carlo Algorithm . . . . . . . . 486
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Abstract. The notion of preference is reviewed from different perspec-
tives, including the Imprecise Probabilities’ approach. Formal connec-
tions between different streams of the literature are provided, and new
definitions are proposed.

Keywords: Imprecise probabilities, stochastic orderings, Walley’s de-
sirability, fuzzy rankings, possibility theory.

1 Introduction

The problem of finding appropriate rankings to evaluate and/or sort different
alternatives appears in a variety of disciplines such as Economics ([2]), Political
Sciences ([5]) or Artificial Intelligence ([16]), among many others. We can usually
identify four main ingredients in a decision making problem, namely:

1. The set of alternatives (also referred to as “gambles” ([36]), “actions”
([4,32]),“options” ([3,24]) or “candidates” ([5,39]).

2. The “set of states of nature” –also called “criteria” in multi-criteria decision
problems ([4,20,25,32]), “experts” ([13]) or “individuals” in group decision
making ([22]), or “voters” in political decision making ([5,26])–.

3. An evaluation on every alternative and/or a preference ordering between
different alternatives for each state of nature.

4. A merging method in order to combine evaluations or preference relations
for different states of nature, that allows us to select the best (or a set of
non dominated) alternative(s).

Different streams of the literature make different assumptions about the two
last ingredient. With respect to the preference ordering over the set of alter-
natives, for each particular state of the nature, we face at least two different
approaches:
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2 I. Couso

3a. In the first one, a quantitative [12,10,20,35,36] or a qualitative (see [31], for
instance) assessment is associated to every single alternative. In the case
of quantitative assessments, the usual ordering between numbers can be a
natural choice to sort the set of alternatives, although it is not the only
option ([21]). Recently, (fuzzy) interval-valued assessments instead of crisp
numerical values have been considered in some problems where imprecision
is involved in this assessment process [1,34]), and therefore specific partial
or total pre-orderings between (fuzzy) intervals must be selected in order to
sort the different alternatives, for every particular state of nature.

3b. According to the second approach, preference statements over the set of
alternatives are made, instead of considering value functions providing single
assessments. Those preference statements can be given by means of graphical
representations, for instance, and may lead to a partial ordering over the set
of alternatives, for each state of nature or criterion (see [18,25], for instance.)

Regarding the combination of our preference orderings under the different
states of nature into a single (partial) ordering, we can distinguish at least three
approaches:

4a. The expert initial information is assessed by means of comparative prefer-
ence statements between options. A (family of) probability measures(s) over
the states of nature is derived from it. This is the “behavioral” approach ini-
tiated by Savage in a precise probabilities environment ([11,33]) and followed
afterwards in the general theory of imprecise probabilities (see [8,36]).

4b. A (family of ) probability measure(s) over the class of states of nature is ini-
tially considered. A preference relation on the set of alternatives (“random
variables” or “gambles”) is derived from it. This is the approach consid-
ered for instance in [21,9,12], for the case of precise probabilities and in
[14,29,34,35]. for the case of partially known probabilities or weights. Such
a preference relation, derived from the initial (sometimes partial) informa-
tion about the weights of the different states of nature (or “criteria”, in
multi-criteria decision), is closely related to the notion of “almost prefer-
ence” in Walley’s framework. This approach will be reviewed in Subsection
3.2 (“credal set approach”).

4c. This approach usually appears in multi-criteria decision problems. Tradi-
tionally, a weight function, formally equivalent to a probability measure, is
defined over the (finite) set of criteria, in order to determine the relative
importance of each of them. The global score of an alternative is therefore
calculated according to the weighted mean, that can be seen as a (discrete)
Lebesgue expectation. Lately ([27]) some authors have generalized this ap-
proach in order to include the possibility of interaction between different
criteria. In order to do so, the weights associated to some families of criteria
do not necessarily coincide with the sum of the weights of each of them. This
kind of complex information can be represented by means of a non additive
set-function defined over the set of criteria. According to this approach, the
global score of each alternative may be determined by the Choquet integral of
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the partial scores with respect to such a set function. We will briefly review of
this approach in Subsection 3.3 (“aggregation operators-based approach”).

Once we have described the four usual ingredients in decision making prob-
lems, we need to take into account an additional issue. The decision-maker is
usually interested by two questions: on the one hand, (s)he may wish to know
what decisions are preferred to others; on the other hand, (s)he may be interested
in determining whether single alternatives are “satisfactory” ([28]) or “desirable”
([36]) or not. P. Walley ([36]) established a formal link between both issues.

The goals in this paper are threefold:

– First, we aim to highlight what are the formal connections and commonal-
ities between different combination methods (classical stochastic orderings,
Walley’s preferences, etc.) from the literature.

– Second, we will show Walley’s partial orderings as a generalization of the
expected utility criterion ([33]), and we will explore other possible general-
izations of stochastic orderings within the Imprecise Probabilities setting.

– Finally, we will face the problem of ranking fuzzy intervals from the perspec-
tive of Imprecise Probabilities, assuming that each fuzzy interval character-
izes a possibility distribution, considered as an upper probability.

Sections 2 and 3 deal with the two first goals, and Section 4, with the third
one.

2 Preference Modeling in a Probabilistic Setting:
Stochastic Orderings

Let us first consider a probability space (Ω,F , P ) determining the “weights” of
the different states of the nature. Let us consider a pair of random variables
(alternatives) defined on Ω, X, Y : Ω → R. This section reviews three well
known stochastic orderings in the literature:

SO1. Dominance in the sense of expected utility [33].- Given an increasing func-
tion u : R → R, X dominates Y wrt u if EP (u(X)) ≥ EP (u(Y )). We will
denote it X ≥u Y . A special case is Dominance in Expectation: X dom-
inates Y if EP (X) ≥ EP (Y ). This relation represents the particular case
of the previous one, when the utility function u is the identity function
u(x) = x, ∀x ∈ R.

SO2. Statistical preference [9].- X is statistically preferred to Y if P (X > Y ) +
0.5 · P (X = Y ) ≥ 0.5. We will denote it X ≥SP Y .

SO3. First order stochastic dominance [21].- X dominates Y if P (X > a) ≥
P (Y > a), ∀ a ∈ R. It is well known that X ≥1st Y if and only if X ≥u Y ,
for all increasing utility functions u : R→ R. We will denote it X ≥1st Y .
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According to [7], all the above stochastic orderings can be put into a common
formulation. In fact, we can express each of them as follows:

X is preferred to Y if and only if EP [f(X,Y )] ≥ EP [f(Y,X)], (1)

or equivalently, if EP [f(X,Y )− f(Y,X)] ≥ 0, (2)

for a certain function f : R2 → R, increasing in the first component and decreas-
ing in the second one. Below, we provide the specific expression of f(·, ·) for each
of the above orderings:

– Dominance in the sense of expected utility.- Let us consider the function
fu(x, y) = u(x), ∀x ∈ R (which is a constant wrt the second argument). We
can easily check that X ≥u Y if and only if EP [fu(X,Y )] ≥ EP [fu(Y,X)].

– Statistical preference.- Let us consider the mapping f(x, y) = sgn(x − y),
where sgn denotes the “sign” function taking the values 1, 0 or −1, depending
on the sign of the argument. It is checked in [7,8] that X ≥SP Y if and only
if E[f(X,Y )] ≥ E[f(Y,X)].

– First stochastic dominance.- Let us now consider the family of functions
fa(x, y) = 1x>a−1y>a, ∀ a ∈ R. X dominates Y if and only if E[fa(X,Y )] ≥
E[fa(Y,X)], ∀ a ∈ R. Equivalently, and according to the formal existing re-
lation between dominance in the sense of expected utility and first stochastic
dominance, we can say that X dominates Y if and only if E[fu(X,Y )] ≥
E[fu(Y,X)], for every (increasing) utility function u : R→ R.

3 Partial Orderings in Imprecise Probabilities

3.1 The Behavioral Approach

Peter Walley [37] establishes a list of axioms of coherence for preference relations
between gambles. A preference relation � defined on a linear space of gambles1

K is said to be coherent when it satisfies the following properties:

P1. Not X � X.
P2. If X(ω) ≥ Y (ω), ∀ω ∈ Ω and X(ω) > Y (ω), for some ω ∈ Ω, then X � Y.
P3. If X � Y and c > 0 then cX � cY.
P4. If X � Y and Y � Z then X � Z.
P5. X � Y if and only if X − Y � 0.

He also establishes a duality between the notions of desirability and preference:
X is desirable if and only if it is preferred to the null gamble (the gamble that
provides no reward, no matter the state of the nature, ω ∈ Ω.) Conversely, X
is preferred to Y when their difference X − Y is a desirable gamble. In such a
case, one is willing to give up Y in return for X . Any coherent preference relation

1 A gamble X : Ω → R is a bounded mapping defined on the space of states of nature.
If you were to accept gamble X and ω turned to be true, then you would gain X(ω).
(This reward can be negative, and then it will represent a loss.)
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determines a lower prevision, P , representing the supremum of acceptable buying
prices for gambles, that is formally defined as follows:

P (X) = sup{c ∈ R : X � c}, ∀X.

The lower prevision P , determines the credal set2, M(P ), formed by the set of
linear previsions that dominate P : M(P ) = {P : P (X) ≥ P (X), ∀X}. Accord-
ing to the last formula, it can be interpreted as the minimum of the expectation
operators associated to a convex family of (finitely additive) probabilities. Fur-
thermore, the following implications hold for any pair of gambles, X , Y :

E(X − Y ) > 0⇒ X is preferred to Y ⇒ E(X − Y ) ≥ 0. (3)

According to Equation 3, Walley’s preference clearly generalizes the “dominance
in expectation” criterion reviewed in Section 2.

We have recently explored ([8]) the generalization of statistical preference,
defining the preference of X over Y as the desirability of the sign of their differ-
ence, sgn(X − Y ). Under this criterion, we just take into account whether the
consequent X(ω) is greater than (or preferred to) Y (ω) or not, but not the mag-
nitude of their difference. Thus, it does not require the existence of a numerical
scale, unlike Walley’s criterion. The following equation reminds Eq. 3, where the
lower expectation has been replaced by the median:

Me(X − Y ) > 0⇒ X is signed preferred to Y ⇒ Me(X − Y ) ≥ 0.

Taking into account the last section, and some of the ideas suggested in [7], the
notion of first stochastic dominance could be easily generalized to the imprecise
probabilities setting, if we consider that X is preferred to Y whenever the gamble
1X>a is preferred to 1Y>a, for every a ∈ R.

3.2 The Credal Set-Based Approach

Lately, different authors have independently generalized some stochastic order-
ings to the case where our imprecise information about the underlying proba-
bility distribution, P , over the set of states of nature is determined by means of
a set of probability measures P . Taking into account the general formulation of
stochastic orderings proposed in Section 2, many of those new definitions can be
seen from a general perspective, where the values EP [f(X,Y )], EP [f(Y,X)] and
EP [f(X,Y )] − EP [f(Y,X)] are replaced by their respective sets of admissible
values. More specifically, they can be seen as generalizations of Eq. 1 and 2,
where the inequality ≥ is replaced by a particular (sometimes partial) preorder
between intervals (or, more generally, between arbitrary sets of numbers). In this
respect, the criteria considered in [35] generalize the “dominance in expectation”

2 A credal set is a convex and closed family of linear previsions, i.e., of linear functionals
P : L → R satisfying the constraint P (1) = 1. The last concept generalizes the notion
of expectation operator to the case of non necessarily σ−additive probabilities.
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criterion (SO1). On the other hand, the criterion considered in [34] generalizes
the notion of statistical preference (SO2), to the case where the usual ordering
between numbers is replaced by an interval ordering ([19]). As a side remark,
let us notice that there exist a formal connection between this last criterion and
the notion of fuzzy preference ([30]). In fact, it can be easily checked that the
mapping f defined as f(X,Y ) = P (X,Y ) is a connected [3] or complete fuzzy
preference, since it satisfies the general axioms of fuzzy preferences and the in-
equality f(X,Y ) + f(Y,X) ≥ 1. If, in addition, P is a possibility measure, then
the fuzzy preference relation derived from it is strongly connected. Finally, the
four generalizations of “first stochastic dominance” (SO3) proposed in [14] and
the six ones proposed in [29] also follow the general procedure described in this
section. A more detailed explanation about how the criteria reviewed in this
section fit this general formulation is provided in [7].

3.3 The Aggregation Operators-Based Approach

The weighted mean is a very often used aggregation criterion in multicriteria
decision problems, and it is formally equivalent to “dominance in expectation”,
where the probability masses play the role of “weights of importance” of the
different criteria instead of being interpreted in terms of stochastic uncertainty.
During the last decades (see [27] and references therein), generalizations of the
weighted mean operator, like the discrete Choquet integral (that includes OWA
operators [38] as particular cases) have been considered.Within this more general
setting, the degree of importance associated to a particular set of criteria is not
forced to coincide with the sum of the weights assigned to the particular criteria
included in the set, allowing the possibility of modeling the effect of interaction
between different criteria. The discrete Choquet integral wrt the non-additive
monotone set-function, μ, that assigns the weight μ(C) to each particular set of
criteria, C, seems to be the natural generalization of the weighted mean under
this general approach. If the non-additive set function satisfies some additional
properties, like submodularity, for instance, the Choquet integral plays the role of
a lower prevision or a lower expectation. In those cases, the resulting aggregation
method is formally linked to the preference criterion defined by Walley reviewed
in Section 3.1, as well as to the generalizations of the “dominance in expectation”
criteria considered in Section 3.2.

Labreuche et al. [25] also interpret the “weights” as relative degrees of im-
portance of criteria. In their paper, partial preference relations between the op-
tions, instead of single evaluations are considered for each particular criterion
(see 3a). Those preference relations are combined afterwards according to “sta-
tistical preference” (SO2). Weights on sets of criteria are not directly provided.
Instead, preference relations between indicator functions over the set of criteria
are given, and the set of feasible probabilities (weight vectors) is derived from
them. So the approach in this paper is very much connected to the procedure de-
scribed in (4a). It would be interesting to explore the formal connection between
this approach and the preference criterion proposed in [8].
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4 An Imprecise Probabilities’ Approach to the Notion of
Fuzzy Ranking

According to the possibilistic interpretation of fuzzy sets, the problem of ranking
fuzzy numbers can be seen from an Imprecise Probabilities’ perspective ([6,17]. In
fact, a pair of fuzzy sets can be seen as an incomplete description of a joint prob-
ability measure P(X,Y ), and therefore, any of the criteria reviewed in Sections
2 and 3 could be applied. For instance, Detyniecki et al. [15] apply statistical
preference to the joint probability distribution induced by a pair of indepen-
dent random variables whose respective density functions are proportional to
the respective fuzzy sets membership functions, considered as possibility dis-
tributions. Sánchez et al. ([34]) also generalize statistical preference, but this
time, they consider the whole set of probability measures dominated by a joint
upper probability determined by both possibility distributions. The criterion of
dominance of expectation has been also generalized in the recent literature (see
[10] for instance). A deep analysis studying well-known fuzzy rankings from the
perspective of Imprecise Probabilities has been developed in [6].
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Abstract. Logic and probability theory are two of the most important
branches of mathematics and each has played a significant role in ar-
tificial intelligence (AI) research. Beginning with Leibniz, scholars have
attempted to unify logic and probability. For “classical” AI, based largely
on first-order logic, the purpose of such a unification is to handle uncer-
tainty and facilitate learning from real data; for “modern” AI, based
largely on probability theory, the purpose is to acquire formal languages
with sufficient expressive power to handle complex domains and incor-
porate prior knowledge. This paper provides a brief summary of an in-
vited talk describing efforts in these directions, focusing in particular on
open-universe probability models that allow for uncertainty about the
existence and identity of objects.

Keywords: first-order logic, probability, probabilistic programming,
Bayesian logic, machine learning.

1 Introduction

From its earliest days, AI adopted the idea of declarative system reasoning over
explicitly represented knowledge with a general inference engine. Such systems
require a formal language to express knowledge about the real world; and the
real world has things in it. For this reason, in 1958, McCarthy [16] proposed
first-order logic—the mathematics of objects and relations—as the foundation
for what we now call “classical AI.”

The key benefit of first-order logic is its expressive power, which leads to
concise—and hence easily learnable—models. For example, the rules of chess
occupy 100 pages in first-order logic, 105 pages in propositional logic, and 1038

pages in the language of finite automata. The power comes from separating
predicates from their arguments and quantifying over those arguments: so one
can write rules about On(p, c, x, y, t) (piece p of color c is on square x, y at move
t) without having to fill in each specific value for c, p, x, y, and t.

A second research tradition, sometimes called “modern AI,” developed around
another important property of the real world: pervasive uncertainty about both

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 10–14, 2014.
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its state and its dynamics. Modern AI is based on probability theory, which pro-
vides principled methods for learning and making predictions from observations.
The key advance underlying modern AI was the development of Bayesian net-
works [22] and the related family of undirected graphical models [6]. Bayes nets
provided a formal language for probability models and enabled rapid advances in
machine learning, vision, natural language understanding, and knowledge-based
systems. The expressive power of Bayes nets is, however, limited. They assume
a fixed set of variables, each of which can take on a value from a fixed range;
thus, they are a propositional formalism, like Boolean circuits. The rules of chess
and of many other domains are beyond them.

What happened next, of course, is that classical AI researchers noticed the
pervasive uncertainty, while modern AI researchers noticed, or remembered, that
the world has things in it. Both traditions arrived at the same place: the world
is uncertain and it has things in it. To deal with this, we have to unify logic and
probability.

But how? Even the meaning of such a goal is unclear. Early attempts by
Leibniz, Bernoulli, De Morgan, Boole, Peirce, Keynes, Carnap, and Gaifman
(surveyed in [8,10]) involved attaching probabilities to logical sentences. This
line of work influenced AI research [9,3,14] but has serious shortcomings as a
vehicle for representing knowledge. An alternative approach, arising from both
branches of AI and from statistics, draws on the compositional semantics of
Bayes nets. Some tools use programming constructs to build very large Beys nets
with repeated structure [7,4,15], while others adopt the syntactic and semantic
devices of logic (composable function symbols, logical variables, quantifiers) to
create declarative, first-order probabilistic languages [5,23,25,12,11].

Despite their successes, these approaches miss an important consequence of
uncertainty in a world of things: there will be uncertainty about what things are
in the world. Real objects seldom wear unique identifiers or preannounce their
existence like the cast of a play. In the case of vision, for example, the existence
of objects must be inferred from raw data (pixels) that contain no explicit object
references at all. If, however, one has a probabilistic model of the ways in which
worlds can be composed of objects and of how objects cause pixel values, then
inference can propose the existence of objects given only pixel values as evidence.
Similar arguments apply to areas such as natural language understanding, web
mining, and computer security.

The difference between knowing all the objects in advance and inferring their
existence and identity from observation corresponds to an important but often
overlooked distinction between closed-universe languages such as SQL and logic
programs and open-universe languages such as full first-order logic.

This distinction is best understood in terms of the possible worlds under each
type of semantics. Figure 1(a) shows a simple example with two constants and
one binary predicate. Notice that first-order logic is an open-universe language:
even though there are two constant symbols, the possible worlds allow for 1, 2, or
indeed arbitrarily many objects. A closed-universe language enforces additional
assumptions that restrict the set of possible worlds:
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Fig. 1. (a) Some of the first-order possible worlds for a language with two constant
symbols, A and B, and one binary predicate. Arrows indicate the interpretation of
each constant symbol and the relations between objects. (b) The analogous figure
under closed-universe semantics.

– The unique names assumption requires that distinct terms must refer to dis-
tinct objects.
– The domain closure assumption requires that there are no objects other than
those named by terms.

These two assumptions mean that every possible world contains the same
objects, which are in one-to-one correspondence with the ground terms of the
language (see Figure 1(b)).1

A formal probability model must specify the probability of every possible
world given the vocabulary (predicates, functions, constants) of the model’s syn-
tactic representation. Obviously, the set of worlds under open-universe semantics
is larger and more heterogeneous, which makes the task of defining open-universe
probability models more challenging. The core part of the talk is concerned
with a first-order, open-universe probabilistic language called Bayesian logic or
BLOG [18,19]. BLOG was developed primarily as the PhD thesis research of
Brian Milch [17]. The key results derived for BLOG are the following:

– Every well-formed BLOG model specifies a well-defined probability distribu-
tion over the possible worlds constructed from the vocabulary of the model.

– There exist Monte Carlo algorithms that provably converge (subject to tech-
nical conditions on the conditional distributions of the model) to the correct
posterior probability for any first-order query for any well-formed BLOG
model [20,1].

1 The difference between open and closed universes can also be illustrated
with a common-sense example. Suppose a system knows just two sentences,
Father(William)=Bill and Father(Junior)=Bill. How many children does Bill
have? Under closed-universe semantics—e.g., in a database system—he has exactly
2; under open-universe semantics, between 1 and ∞.



Unifying Logic and Probability 13

The generic algorithms (importance sampling and MCMC applied to a dynam-
ically constructed ground representation) are often too slow for practical use
on large models. Several avenues are being pursued for speeding up inference,
including special-purpose block samplers for variables constrained by determin-
istic relationships [13], static analysis to identify submodels amenable to efficient
inference, lifted inference to avoid grounding by manipulating symbolic distri-
butions over large sets of objects [24,26], and compiler techniques to generate
model-specific inference code.

More than two dozen BLOG models have been developed, covering a wide
variety of standard machine learning models as well as applications including
citation matching [21] and global seismic monitoring for the Comprehensive Nu-
clear Test-Ban Treaty [2].

2 Prospects

These are very early days in the process of unifying logic and probability. We
need much more experience in developing models for a wide range of applica-
tions. Undoubtedly there are new modeling idioms, programming constructs,
and inference algorithms to discover.

The development of Bayes nets in the late 1980s connected machine learning
to statistics and reconnected (modern) AI with vision and language. It is possible
that first-order probabilistic languages, which have both Bayes nets and first-
order logic as special cases, can serve a similar, but more inclusive, unifying
role.
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Abstract. Open Government Data often contain information that, in
more or less detail, regard private citizens. For this reason, before pub-
lishing them, public authorities manipulate data to remove any sensitive
information while trying to preserve their reliability. This paper addresses
the lack of tools aimed at measuring the reliability of these data. We
present two procedures for the assessment of the Open Government Data
reliability, one based on a comparison between open and closed data, and
the other based on analysis of open data only. We evaluate the procedures
over data from the data.police.uk website and from the Hampshire Police
Constabulary in the United Kingdom. The procedures effectively allow
estimating the reliability of open data and, actually, their reliability is
high even though they are aggregated and smoothed.

1 Introduction

Open Government Data are often sensitive and hence need to be properly pro-
cessed in order to reduce the amount of personal information exposed. This
process consists of aggregation and so-called “smoothing” procedures which in-
troduce some imprecision in the data, to avoid the reconstruction of the identity
of a citizen from a piece of data. The value of this data might be affected by such
procedures, as they limit the extent to which we can rely on them. Throughout
the paper, we will refer to the published Open Government Data as “open data”
and to the original data as “closed data”.

Open data are exposed in different modalities by different sources. For in-
stance, Crime Reports [5] and data.police.uk [15] both publish data about
crimes occurring in the UK, but in different format (maps versus CSV files), level
of aggregation, smoothing and timeliness (daily versus monthly update). The
smoothing process unavoidably introduces some error in the data. There might
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be other reasons as well for possible reliability differences among these datasets,
like the fact that a given dataset is not based on timely data (or, in general,
it is generated from questionable data sources) or the fact that an erroneous
aggregation process inadvertently introduced some mistakes. For the police, as
well as for citizens, it is important to understand how different two sources are,
in order to understand how much they can rely on the data they expose. The
police, who can access the original, raw data, is interested in measuring the re-
liability of the open data in order to know how much they can rely on them,
e.g., when establishing projects involving citizens. For citizens, it is important to
understand the reliability of the different datasets, since that represents a reason
why data exposed by authoritative sources may present discrepancies.

Our goal is to cope with the lack of tools and methodologies to actually mea-
sure and compare these data. We address this problem by means of a twofold
contribution: first, we propose a procedure for computing the reliability of an
open dataset, when having at our disposal both the open and the closed data.
We apply this procedure on a set of UK police data. We show that the reliability
of these data is not highly affected by the smoothing and aggregation procedures
applied to them and that this procedure, once properly instantiated, allows guid-
ing the analyzer to the discovery of points of policy changes with regard to open
data creation and reliability variations. Second, we show how it is possible to
estimate variations in the reliability of the open data by comparing them to
each other, when the closed data are not at our disposal. Both procedures aim
to measure and compare these datasets from the reliability point of view, and to
guide a human analyzer to the discovery of possible critical points (e.g., policy
changes, relevant errors) in these datasets. In both cases, the reliability of an
open dataset is measured as the percentage of non-significantly different entries
from the corresponding closed dataset. In the case of the procedure for analyzing
open data only, we can only estimate a reliability variation, but not measure it.

The rest of this paper is structured as follows: Section 2 describes related
work; Section 3 describes a procedure for determining the reliability of open data
given closed data and Section 4 presents a procedure for analyzing open data.
In Section 5 we put forward a case study implementation of both procedures.
Section 6 provides a final discussion.

2 Related Work

This work completes a previous work from the same authors [2], by improving
the open data procedure and extending the validation of both procedures. The
analysis of open data is increasingly being spread, for instance, by the leading
Open Data Institute [14]. Koch-Weser [11] presents a work on the analysis of
the reliability of China’s Economic Data which, although focused on a different
domain, shares with this work the goal to understand the reliability of open
data. Tools for the quality estimation of Open Data are being developed (see for
instance Talend Open Studio for Data Quality [13] and Data Cleaner [7]). These
tools are designed to understand the adherence of data to particular standards,
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similar to our goals, but they aim at constituting a proper middleware component
of the entire business process of data management and curation. These tools are
not limited to monitoring data quality, but they aim also at quantifying the
risk and the financial impact of these data, as well as how to intervene in the
business process in case of any problem discovered. Our goal is less business-
oriented and more targeted, as we aim at developing procedures for measuring
and estimating open data reliability. However, this can be seen as a step towards
the development of a more comprehensive tool.

A paper of Ceolin et al. [3] shares with the work here presented the statistical
approach in modeling categorical Web data and the use of the Wilcoxon signed-
rank test (which is a non-parametric hypothesis test that determines whether two
probability distributions are significantly different [16]) to measure the reliability
of these data. We do not have at our disposal information about the impact of
the different processes on the reliability of the resulting data, but in the future we
plan to adopt an approach similar to the one of Ebden et al. [6] to understand this
a posteriori. Closer to the topic of the case studies analyzed, i.e., the reliability
of Police Open Data, this work can be seen as complementary to the one of
Cornelli [4], who researches on the reasons citizens have to trust police.

3 Procedure for Comparing Closed and Open Data

Closed data are aggregated and smoothed in order to not expose sensitive in-
formation when publishing them. Aggregation, that is to present the data at
a coarser, higher level than available, preserves the data correctness and re-
duces their granularity. It is not intended to introduce imprecisions, but a faulty
aggregation process or the wrong use of heterogeneous data sources might unex-
pectedly affect the data reliability. “Smoothing” is an anonymization procedure
used especially when aggregation is not sufficient to guarantee anonymity (e.g.,
in case of data about low-populated areas). By smoothing, authorities volun-
tarily introduce some small errors in the data so that they remain reliable at a
coarse level, but it is not possible (or at least, hard) to reconstruct the details of
the single items. We describe a procedure to evaluate the reliability gap existing
between open and closed data, if any. The procedure is generic and in Section 5
we propose some possible implementations.
Select the Relevant Data. This selection might involve temporal aspects

(i.e., only data referring to the relevant period are considered), or their geo-
graphical location (select only the data regarding the area of interest). Other
constraints and their combination are possible as well.

Roll Up Categorical Data. The categories used to classify the categorical
data are ordered in hierarchies. Hierarchies are created to define different
categories for different refinement levels when presenting categorical data.
We cannot increase the refinement of the data categorized in a coarser man-
ner, so we decrease the granularity level of the closed data.

Roll Up Smoothed Categorical Data. This step is similar to the previous
one, besides the fact that the expected result is not necessarily coincident
with the original one since smoothing may affect the data precision.
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Compare the Corresponding Counts. by using, for instance, the ratio of
the correct items over the total amount or the Wilcoxon signed-rank test [16].

4 Procedure for Analyzing Open Data

Open data counts may differ from each other with respect to different points
of view (absolute differences, data distribution, etc.). We do not know a priori
what is the best manner to compare the data counts, so we aggregate several
similarity tests performed on pairs of datasets. When analyzing open datasets,
we can compare only data about related facts: for instance, the typology of facts
can be the same (e.g., crimes in a given area), but the time they refer to differs.
The results that we can expect from this kind of analyses are much less detailed
and definite than before: since we do not have at our disposal a gold standard,
we can not test properly our hypotheses. We estimate points of reliability change
using the following procedure, based on the idea that by analyzing the similarity
of the datasets using different similarity measures, these changes can emerge.

Choose One or More Dataset Similarity Scores. We compute the simi-
larity of two dataset d1 and d2 as: sim(d1, d2)=avg(t1(d1, d2), . . . , tn(d1, d2))
where avg computes the average of the results of the similarity scores result-
ing from the tests ti on the items (i.e., values) in d1 and d2. We use the
Wilcoxon signed-rank test to check if the data counts differ significantly.
Other tests are possible as well. The similarity between two dataset is ob-
tained by aggregating these tests using, for instance, a (weighted) arithmetic
average. In subjective logic [8], we can treat the tests as “subjective opin-
ions” about the similarity of the two datasets, and merge them using the
“fusion” [9] operator to obtain a beta probability distribution describing the
probability for each value in [0, 1] to be the correct similarity value.

Compute the Similarity, with One or More Scores. Measure the pairwise
similarity between each dataset and the one of the following month (crime
counts are aggregated on monthly bases).

Identify Change Points in the Similarity Sequence. Change points in the
similarity sequence are likely to indicate policy changes in the data creation
and hence reliability changes resulting from these policy modifications.

Aggregate All the Evidence of Policy Changes. Each change point iden-
tified in the previous step represents evidence of a policy change. We run
more similarity analyses to reduce the risk of error. Since we are dealing
with uncertain observations, we also adopt subjective opinions here and we
compute a binomial opinion for each dataset.

There can be natural reasons that explain a variation in the data (e.g., a new
law) that do not imply a lack of reliability in one of the two datasets. Moreover,
a similarity value taken alone may be difficult to interpret: what does it mean
that the similarity between two datasets is, e.g., 0.8? So, we focus on similarity
trends and not on single values, and we pinpoint variations in such trends, since
such variations have a higher chance to indicate a change in the data reliability.
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5 Case Study - Police Open Data Analyses

We evaluate the procedures that we propose over police data for the Hamp-
shire Constabulary. As open data we adopt the corresponding entries from the
data.police.uk website, in particular in the interval from April 2011 until De-
cember 2012. data.police.ukdata are released monthly, and aggregated in time
within a month and in space to the level of police neighborhoods, that comprise
at least eight postal addresses. We focus on the datasets presenting the counts
aggregated per police neighborhood because this kind of classification, although
not as detailed as the classification per address, allows an easy comparison be-
tween entries and reduces the burden of having to geolocate and disambiguate
addresses. As closed data, we have at our disposal a series of datasets from the
Hampshire Police Constabulary covering the interval from October 2010 until
September 2012 and reporting distinct information for each single crime in that
period. The two datasets do not perfectly overlap, but we focus mainly on the
intersection between the two intervals covered, which still is the largest part of
both datasets. We show that the two procedures allow providing similar findings,
even though the first procedure is clearly less uncertain than the second one.

5.1 Analyzing the Reliability of Police Open Data

We focus on the intersection between the open and the closed data at our disposal
(that is, the period from April 2011 until September 2012).The data at our dis-
posal contain: category, date and geographic Cartesian coordinates of the crime.
Following the procedure described in Section 3, we compare the distribution of
the crime counts among the different categories for each neighborhood using a
statistical test and we aggregate the results in a subjective opinion, because we
consider the outcomes of the tests as pieces of evidence about the reliability of
the open data, and we treat them as error-prone observations.

Data Preprocessing. First, we convert the coordinates from the Cartesian
system to latitude and longitude using the RGDAL library [1]. Then we
look up the postal code that is closest to the point where the crime hap-
pened. This step potentially introduces some error in the analyses, because
of the approximation in the coordinates conversion and because although
looking up the closest postal code to the point that we are analyzing is the
best approximation we can make, but it is not always correct. We manually
checked some sample items to confirm the robustness of this procedure. Our
results show that the impact of these imperfections is limited. It was not
possible to compute the postal code of all the points that we had at our
disposal, because some data entries were incomplete and some incorrect.

Select the Relevant Data. First, we query the MapIt API [12] in order to
retrieve the police constabulary each postal code belongs to and discard
the crime items not belonging to the Hampshire Constabulary in the closed
datasets. Second, we select the open data for the months for which closed
data are available. Lastly, we exclude crime counts of categories not shared

data.police.uk
data.police.uk
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between closed and open data. For instance, the “Anti-social behaviour” cat-
egory is present in the open data but not in the closed data.

Aggregate the Data. Also data aggregation is performed in three steps. Tem-
poral aggregation is made to group together data about crimes occurring
in the same month. Geographical aggregation is made to aggregate the
data at police neighborhood level. To aggregate the data at neighborhood
level, we match zip code and neighborhood by querying the MapIt API [12].
Categorical aggregation is performed by aligning the classifications of the
crimes in the open and closed datasets, that is, by bringing the closed data
at the same, coarse, level as the open data. The categories of open and closed
data belong to the same hierarchy, but closed data are classified using fine
grained categories, open data using coarser ones.

Compare the Aggregated Data. Once the items are brought to the same level
of aggregation, the reliability of the open data is measured. The comparison
is made at neighborhood level. We apply a Wilcoxon signed-rank test
to these counts to check (at 95% confidence level) if the two crime counts
are significantly different (negative observation) or not (positive observation)
and also we measure the differences between the crime counts. The re-
sults of the comparisons are aggregated using binomial subjective opin-
ions, or the equivalent beta distributions. Of these, we use the expected value,
E = p+1

p+n+2 where p and n are the amounts of non-significantly and signifi-
cantly different entries respectively. Alternatively, we make use of arithmetic
average. Given the high number of observations, the difference between the
results obtained with the two methods is negligible.

Results. We analyze the datasets from April 2011 to September 2012, that
is the interval for which we have closed data. We start by comparing the dis-
tribution of crime counts per category on the intersection of neighborhoods in
the closed and open datasets. We want to check if the distribution of the crime
counts in the matching neighborhoods is affected by data manipulation proce-
dures. We present a series of graphs resulting from a series of analyses in R. The
closed data at our disposal are quite complete, but they do not match perfectly
the open data, as we can see from Fig. 1(a). We apply the Wilcoxon-signed rank
test on the crime counts of each matched neighborhood to check if the rank of
the crime categories in terms of crime occurrences is preserved. We can see in
Fig. 1(c) that the open datasets score high, as to confirm their high reliability, in
the overlapping neighborhoods. The error introduced by smoothing may move
the geolocation of one crime item to a wrong neighborhood. We extend the open
and the closed datasets to have them covering the same neighborhoods: when a
neighborhood is not present in one of the two datasets, we assume that it presents
zero crimes there. In this way we take the point of view of laymen people, who
can deal only with the open data without knowing which are the overlapping
neighborhoods. Fig. 1(d) addresses the issue of how the open data are represen-
tative of the actual crime distribution in that area. There are at least two trends
which, we suspect, correspond to policy changes. One change possibly regards



Two Procedures for Analyzing the Reliability of Open Government Data 21

Coverage

Datasets

C
ov

er
ag

e

0%
40

%
80

%
12

0%

1 3 5 7 9 11 13 15 17

(a)

Neighbourhood Coverage

Datasets

C
ov

er
ag

e

0%
40

%
80

%
12

0%

1 3 5 7 9 11 13 15 17

(b)

Percentage of Significantly Similar Datasets

(Wilcoxon signed−rank test)
Datasets (intersection)

R
el

ia
bi

lit
y

0%
40

%
80

%

1 2 3 4 5 6 7 8 9 10 12 14 16 18

subjective opinion
average

(c)

Percentage of Significantly Similar Datasets

(Wilcoxon signed−rank test)
Datasets

R
el

ia
bi

lit
y

0%
40

%
80

%

1 2 3 4 5 6 7 8 9 10 12 14 16 18

subjective opinion
average

(d)

Average absolute difference

Datasets

D
iff

er
en

ce

1 2 3 4 5 6 7 8 9 11 13 15 17

0
1

2
3

4

(e)

Average absolute difference

Datasets

D
iff

er
en

ce

1 2 3 4 5 6 7 8 9 11 13 15 17

0
1

2
3

4

(f)

0.
0

0.
4

0.
8

Similarity of Consecutive Datasets

Wilcoxon Signed−rank test
Consecutive datasets pairs

S
im

ila
rit

y

1 3 5 7 9 11 13 15 17 19

(g)

0.
2

0.
4

0.
6

0.
8

Aggregated Tests

Datasets

P
ro

ba
bi

lit
y

1 3 5 7 9 11 14 17 20

(h)

Fig. 1. Plots of the open data coverage in terms of counts (Fig. 1(a)) and neighborhoods
(Fig. 1(b)). Follow the plots of the closed data analyses using the Wilcoxon signed-rank
test (Fig. 1(c) and 1(d)) and count differences (Fig. 1(e) and 1(f)). Finally, we present a
plot of the similarity of consequent datasets using again the Wilcoxon signed-rank test
(Fig. 1(g)), and plot of the aggregated tests of the similarity of consecutive datasets
(Fig. 1(h)).
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the smoothing technique adopted, which determines the neighborhood a crime
belongs to. Fig. 1(b) shows that initially only about 30% of the neighborhoods
were present in both the open and closed datasets, and then this percentage
suddenly rose to 100%. This is due to a change in the smoothing algorithm that
makes the more recent open data more reliable and explains the “step” shown in
Fig. 1(d). Starting from the sixth dataset, the reliability of the extended datasets
corresponds to the percentage of matching neighborhoods. In Fig. 1(d) there is
also another change point, between the fifth and the sixth dataset. We identify
it by checking the absolute errors in the data, averaged per neighborhood and
per crime category (see Fig. 1(e)). Here also there are two trends. The first one
breaks were approximatively we expected (at the sixth month instead of at the
fifth), and these two trends match the trends shown in Fig. 1(a). So we focused
on the fifth and sixth datasets (August and September 2011), and three facts
emerged.

First, the closed datasets at our disposal do not contain crime counts for the
“Drugs” category for July, August and September 2011. We suppose that the
closed data at our disposal lack counts for that category in that time interval
because that category presents relevant figures in the other months, although
it is possible that no drug crime occurred in that period. Still, the procedure
correctly identifies a possible anomaly in the data.

Second, in the September 2011 open dataset, the entry relative to the neigh-
borhood “2LW02” presents two very high figures for “Drugs” and “Other.theft”,
205 and 319 respectively (the average counts for these categories in the other
neighborhoods are 8.44 and 1.68). A similar pattern recurs only in July and
September 2012. We suspect that those high counts share the same explanation,
and, although we can not verify this with the information at our disposal, the
procedure identifies another possible critical point in the data.

Third, a policy change occurred. From September 2011, the set of crime
categories was extended to include also {Criminal.damage.and.arson, Shoplift-
ing, Other.theft, Drugs, Public.disorder.and.weapons}. Before, the correspond-
ing crimes were generically classified as “Other.crime”. We reclassified the crimes
in the first trend belonging to those categories as “Other.crime”, and we recom-
puted the average differences. The error decreases (on average, of 1.56 counts
per month, see Fig. 1(f)). In this part, the error is still high because the correct
crime classification contains fewer categories than the rest of the datasets, so
here the same error weighs more.

Thanks to the procedure proposed, we: (1) discovered two changes in the
open data policies that affect data reliability (one about crime classification, one
about smoothing); and (2) measured the reliability of these datasets.

5.2 Estimating the Reliability of Police Open Data

We analyze open data by applying the following procedure.

Compute the similarity of the neighborhoods of consecutive datasets. If
more than one similarity measure has been chosen, then aggregate the scores
for each neighborhood.



Two Procedures for Analyzing the Reliability of Open Government Data 23

Aggregate the similarity scores of the neighborhoods to obtain an overall
similarity value. We aggregate using subjective opinions, to take into account
also the uncertainty in the sample, that is quite small.

Look for variations in the series of similarities that may signal a policy
variation, automatically, by means of the changepoint package in R [10].

Aggregate all the evidence per dataset couple telling whether that cou-
ple is a change point or not.

Results. We apply the procedure introduced above using different similarity
tests (Wilcoxon signed-rank test, absolute differences between counts, etc.). From
each test we extrapolate a series of change points, by analyzing the variations in
the mean of the cumulative sums (multiple.mean.cusum function of the change-
point package) and we aggregate them, again by means of an R script and the
results are shown in Fig. 1(h). We start from an analysis which is similar to
one performed before. We compare, on neighborhood basis, the distribution of
the crime counts among the crime categories, and we represent the similarity
between two datasets as the percentage of neighborhoods that are statistically
similar (using a Wilcoxon signed-rank test). The results of the comparison are
reported in Figure 1(g). The datasets are indicated by means of a sequential
number (the first circle corresponds to the similarity between the first and the
second dataset, and so on). The plot highlights that the twelfth comparison con-
stitutes a change point: before that, the files are highly similar to each other,
and likewise after it. But at that point, the similarity trend breaks and starts a
new one: that is likely to be a point where the reliability of the datasets diverges.
We have found one of the discontinuity points we discovered in Section 5.1 (see
Fig. 1(h)). There is also a third peak, less pronounced, but it is not connected to
any policy change we are aware of. Also, despite the previous case, we can not
say whether a change point indicates the start of an increase or decrease in relia-
bility. Still, these results are useful to facilitate a human analyzer to understand
the eventual magnitude of the reliability variation.

6 Conclusions

We present two procedures for the computation of the reliability of open data:
one based on the comparison between open and closed data, the other one based
on the analysis of open data. Both procedures are evaluated using data from
the data.police.uk website and from the Hampshire Police Constabulary in
the United Kingdom. The first procedure effectively allows estimating the re-
liability of open data, showing also that smoothing procedures preserve a high
data reliability, while allowing anonymizing them. Still, we can see an impact
of the procedures adopted to produce these data on their reliability, and the
most recent policies adopted show a higher ability to preserve data reliability.
The second procedure is useful to grasp indications about data reliability and to
identify the same critical points detected using the first procedure. The quality
of the results achieved with this method is lower than the one achieved with
the first method, because it does not allow directly and explicitly estimating the

data.police.uk
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reliability of the data analyzed. However, the results obtained are useful and
retrieved in a semi-automated manner. These two procedures provide additional
value to the open data, as they allow enriching the data with information about
their reliability: even though these data are already provided by authoritative
institutions, these procedures can increase the confidence both of insider spe-
cialists (the first procedure, which relies on closed data) and of common citizens
(the second procedure, which relies only on open data) who deal with them.
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Abstract. Mining database provides valuable information such as fre-
quent patterns and especially associative rules. The associative rules have
various applications and assets mainly data classification. The appear-
ance of new and complex data support such as evidential databases has
led to redefine new methods to extract pertinent rules. In this paper,
we intend to propose a new approach for pertinent rule’s extraction on
the basis of confidence measure redefinition. The confidence measure is
based on conditional probability basis and sustains previous works. We
also propose a classification approach that combines evidential associa-
tive rules within information fusion system. The proposed methods are
thoroughly experimented on several constructed evidential databases and
showed performance improvement.

Keywords: Evidential database, Confidence, Associative classification,
Evidential Apriori.

1 Introduction

Data mining domain allows extracting pertinent information within databases
[1]. The provided information are represented in a set of rules, where each one
is associated with a pertinence measure denoted Confidence. Among their pur-
poses, those associative rules are used for data classification [2,3]. The classifi-
cation process from those associative rules is denoted associative classification.
Associative classification offers one of the best classification rate and measure
membership [3]. Recently, new databases have appeared proposing data suffer-
ing from imperfection. Those types of data fit reality where opinions are no
longer represented with Boolean values. In addition, it has added more complex-
ity in their treatment. The imperfection is handled with several theories such as
fuzzy [4] and evidential theory [5,6]. In [7], the author introduced a new type
of databases that handle both imprecise and uncertain information thanks to
the evidential theory. Those types of databases were denoted as the Evidential
database. The evidential databases were shortly studied from a data mining view
[8] and not so much attention was paid to that issue. In literature, two major
works [8,9] stand by proposing new measures for itemsets’ support. Indeed, in
[8], Hewawasam et al. proposed a methodology to estimate itemsets’ support
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and modelize them in a tree representation: Belief Itemset Tree (BIT). The BIT
representation brings easiness and rapidity for the estimation of the associative
rule’s confidence. In [9], the authors introduced a new approach for itemset sup-
port computing and applied on a Frequent Itemset Maintenance (FIM) problem.
Only [8] paid attention to associative classification where the authors introduced
evidential associative rules. A new measure for rule’s confidence was introduced
based on conditional belief [6]. In this work, evidential data mining problem is
tackled by putting our focus on the associative classification. We highlight prob-
lems existing in current measure of evidential rule’s confidence which are based
on conditional belief. A new confidence measure is proposed based on Bayesian
assumption. We also introduce a new associative classification method that re-
duces the overwhelming number of generated rules. The retained rules are then
used for classification purposes and tested on several benchmarks. This paper is
organized as follows: in section 2, the main principles of the evidential database
are recalled. In section 3, several state of art works on confidence measure are
scrutinized and we highlight their limits. In addition, we introduce an alternative
confidence measure based on probabilistic definitions. In section 4, we introduce
a new method for evidential rule generation. The provided rules are filtrated and
combined through a fusion system. The performance of this algorithm is studied
in section 5. Finally, we conclude and we sketch issues of future work.

2 Evidence Database Concept

An evidential database stores data that could be perfect or imperfect. Uncer-
tainty in such database is expressed via the evidence theory [5,6]. An evidential
database, denoted by EDB, with n columns and d lines where each column i
(1 ≤ i ≤ n) has a domain θi of discrete values. Cell of line j and column i
contains a normalized BBA as follows:

mij : 2
θi → [0, 1] with

⎧⎨⎩mij(∅) = 0∑
A⊆θi

mij(A) = 1. (1)

Table 1. Evidential transaction database EDB

Transaction Attribute A Attribute B

T1 m11(A1) = 0.7 m21(B1) = 0.4
m11(θA) = 0.3 m21(B2) = 0.2

m21(θB) = 0.4
T2 m12(A2) = 0.3 m22(B1) = 1

m12(θA) = 0.7
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In an evidential database, as shown in Table 1, an item corresponds to a
focal element. An itemset corresponds to a conjunction of focal elements having
different domains. Two different itemsets can be related via the inclusion or the
intersection operator. Indeed, the inclusion operator for evidential itemsets [9]
is defined as follows, let X and Y be two evidential itemsets:

X ⊆ Y ⇐⇒ ∀xi ∈ X, xi ⊆ yi.

where xi and yi are the i
th element of X and Y . For the same evidential itemsets

X and Y , the intersection operator is defined as follows:

X ∩ Y = Z ⇐⇒ ∀zi ∈ Z, zi ⊆ xi and zi ⊆ yi.

An Evidential associative rule R is a causal relationship between two itemsets
that can be written in the following form R : X → Y fulfilling X ∩ Y = ∅. In
Table 1, A1 is an item and {θA B1} is an itemset such that A1 ⊂ {θA B1} and
A1 ∩ {θA B1} = A1. A1 → B1 is an evidential associative rule.

Several definitions for the support estimation were defined for the evidential
itemsets such as [8,9]. Those methods assess the support based on the belief
function applied on the evidential database BBA mEDB

1 :

SupportEDB(X) = BelEDB(X) (2)

such that:

Bel : 2θ → [0, 1] (3)

Bel(A) =
∑

∅�=B⊆A

m(B). (4)

In a previous work [10], we introduced a new metric for support estimation
providing more accuracy and overcoming several limits of using the belief func-
tion. The Precise support Pr is defined by:

Pr : 2θi → [0, 1] (5)

Pr(xi) =
∑
x⊆θi

|xi ∩ x|
|x| ×mij(x) ∀xi ∈ 2θi. (6)

The evidential support of an itemset X =
∏

i∈[1...n]
xi in the transaction Tj (i.e.,

PrTj ) is then computed as follows:

PrTj (X) =
∏

xi∈θi,i∈[1...n]
Pr(xi) (7)

1 A BBA constructed from Cartesian product applied on the evidential database.
Interested readers may refer to [8].
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Thus, the evidential support SupportEDB of the itemset X becomes:

SupportEDB(X) =
1

d

d∑
j=1

PrTj (X). (8)

3 Confidence Measure for Evidential Associative Rules

The confidence is the measure assigned to the associative rules and it represents
its relevance [1]. As originally introduced in Boolean databases, the confidence
measure was relying on conditional probability [1]. Indeed for a rule R : Ra → Rc,
such thatRc and Ra are respectively the conclusion and the antecedent (premise)
part of the rule R, the confidence is expressed as follows:

Confidence(R) = P (Rc|Ra) =

d∑
i=1

P (Ra ∩Rc)

d∑
i=1

P (Ra)

(9)

In addition, even in fuzzy data mining, the associative rule’s confidence is built
with conditional fuzzy measures [11]. In this respect, evidential associative rules
were initially introduced in [8]. The authors defined the structure of an evidential
associative rule and estimated its relevance following a confidence metric. The
confidence of a rule R in the set of all rules R, i.e., R ∈ R, is computed as
follows:

Confidence(R) = Bel(Rc|Ra) (10)

where Bel(•|•) is the conditional Belief. The proposed confidence metric is hard
to define where several works have tackled this issue and different interpretations
and formulas were proposed such as those given respectively in [5,12]. In [5], the
conditional belief is defined as follows:

Bel(Rc|Ra) =
Bel(Rc ∪Ra)−Bel(Ra)

1−Bel(Ra)
(11)

In [8], the authors used Fagin et al.’s conditional belief such that:

Bel(Rc|Ra) =
Bel(Ra ∩Rc)

Bel(Ra ∩Rc) + Pl(Ra ∩ R̄c)
. (12)

where Pl() is the plausibility function and is defined as follows:

Pl(A) =
∑

B∩A �=∅
m(B). (13)

Example 1. Through the following example, we highlight the inadequacy of the
conditional belief use. We consider the Transaction 1 of Table 1 from which we
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try to compute the confidence of A2 → B1 (i.e., Bel(B1|A2)). The conditional
belief introduced in [5] gives the following results:

Bel(B1|A2) =
Bel(B1 ∪ A2)−Bel(A2)

1−Bel(A2)
=
Bel(B1)

1
= 0.4

The result of the belief of B1 knowing A2 is true is equal to that of Bel(B1) due
to the independence between A2 and B1. On the other hand, both hypothesis
might be correlated so that the event B1 does not occur knowing already the
happening of A2.

In the following, we propose a new metric for the confidence estimation based
on our Precise support measure [10] and probability assumption:

Confidence(R) =

d∑
j=1

PrTj (Ra)× PrTj (Rc)

d∑
j=1

PrTj (Ra)

(14)

where d is the number of transactions in the evidential database. Thanks to its
probabilistic writing, the proposed metric sustains previous confidence measure
such as that introduced in [1].

Example 2. Let us consider the example of the evidential database in Table 1.
The confidence of the evidential associative rule R1 : A1 → B1 is computed as
follows:

Confidence(R1) =
PrT1(A1)× PrT1(B1) + PrT2(A1)× PrT2(B1)

PrT1 (A1) + PrT2(A1)
= 0.75

The generated rules with their confidence could find several applications. In the
following, we tackle the classification problem case and a based evidential rule
classifier is introduced.

4 Associative Rule Classifier

One of the main characteristics of the evidential database is the great number
of items that it integrates. The number of items depends from the frame of
discernment of each column. This asset makes from the evidential database more
informative but more complex than the usual binary database. In [10], we have
shown the significant number of generated frequent patterns that may be drawn
even from small databases. Indeed, from a frequent itemset, of size k, 2k − 2
potential rules are generated. In order to use the generated evidential rules for a
classification purposes, we first have to reduce their number for a more realistic
one. In the following, we propose two processes for classification rule’s reduction.
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4.1 Classification Rules

From the obtained rules, we retain only the classification ones. From a rule such
that

∏
i∈I

Xi →
∏
j∈J

Yj , we only keep those matching a class hypothesis at the

conclusion part (i.e., Yj ∈ θC and θC is the frame of discernment).

Example 3. Let us consider the following set of the association rules S = {A1 →
C1;A1, B2 → C1;A1 → B1} and the class frame of discernment θC = {C1, C2}.
After classification rule reduction, the set S becomes S = {A1 → C1;A1, B2 →
C1}.

4.2 Generic and Precise Rules

Generic Rules: the rule’s reduction can assimilate the redundant rules. A rule
R1 is considered as a redundant rule if and only if it does not bring any new
information having at hand a rule R2. R2 is considered as more informative as
far as its antecedent part is included in that of R1. The retained rules from the
reduction process constitute the set of Generic rules R extracted from the set of
frequent itemsets FI.

Example 4. Let us consider the previous set of the association rules S = {A1 →
C1;A1, B2 → C1;A1 → B1}. After redundant rule reduction, the set S becomes
S = {A1 → C1;A1 → B1}.

Precise Rules:A rule is considered as precise if the rule’s premise is maximized.
Thus, from the set of all possible rules, we retain only those having the size of
their premise part equal to n (number of columns of EDB).

Algorithm 1 sketches the process of rule’s generation as well as rule reduc-
tion. The algorithm relies on the function Construct Rule(x, θC) (Line 10) that
generates associative rules and filtrates out them by retaining only the classifi-
cation ones. The function Find Confidence(R,Pr Table) (Line 22) computes
the confidence of the rule R following the Pr Table that contains all trans-
actional support of each item (for more details see [10]). Finally, the function
Redundancy(R, R) (Line 42) builds the set of all classification rules R which
are not redundant and having the confidence value greater than or equal to the
fixed threshold minconf .

4.3 Classification

Let us suppose the existence of an instance X to classify represented a set of
BBA belonging to the evidential database EDB such that:

X = {mi|mi ∈ X, xji ∈ θi} (15)

where xji is a focal element of the BBA mi. Each retained associative rule, in the
set of rules R, is considered as a potential piece of information that could be of
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Algorithm 1. Evidential Associative Rule Generation algorithm

Require: Pr Table,minconf,FI, θC
Ensure: R
1: for all x ∈ FI do
2: R ← Construct Rule(x, θC)
3: if R �= ∅ then
4: Conf ← Find Confiden-

ce(R,Pr Table)
5: if Conf > minconf then
6: R ← Redundancy(R,R)
7: end if
8: end if
9: end for
10: function Construct Rule(X , θC)
11: for all x ∈ X do
12: if x /∈ θC then
13: prem ← prem+ {x}
14: else
15: concl ← concl + {x}
16: end if
17: end for
18: R.premise ← prem
19: R.conclusion ← concl
20: return R
21: end function
22: function Find Confidence(R, Pr)
23: numer ← 0
24: denom ← 0
25: for j=1 to d do
26: num ← 1

27: den ← 1
28: for all i ∈ Pr(j).focal element

do
29: if Pr(j).focal element ∈

R.premise then
30: num ← num ×

Pr(j).val
31: den ← den× Pr(j).val
32: else
33: if Pr(j).focal element ∈

R.conclusion then
34: end if
35: end if
36: end for
37: numer ← numer + num
38: denom ← denom+ den
39: end for
40: return numer

denom

41: end function
42: function Redundancy(R,R)
43: for all rule ∈ R do
44: if R.premise ⊂ rule.premise &

R.conclusion = rule.conclusion then
45: R ← R\rule
46: R ← R∪R
47: end if
48: end for
49: return R
50: end function

help for X class determination. In order to select rules that may contribute to
classification, we look for rules having a non null intersection with X such that:

RI = {R ∈ R, ∃xji ∈ θi, x
j
i ∈ Ra} (16)

Each rule found in the set RI constitutes a piece of information concerning
the instance X membership. Since several rules can be found and fulfilling the
intersection condition, it is of importance to benefit from them all. In our work,
we assume that all information is valuable and should be handled within the
information fusion problem. From the set RI, we extract the set of generic
or precise classification rules (see Subsection 4.2). Indeed, each rule from the
computed set Rl ⊂ RI, l ∈ [1 . . . L] and L < |RI|, that brings a new information
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(different Ra) is transformed into a BBA following the frame of discernment θC
(frame of discernment of Rc):{

mθC
Rl ({Rc}) = α× confidence(Rl)

mθC
Rl (θC) = 1− (α× confidence(Rl))

(17)

where Rc is the conclusion part of the rule Rl and α ∈ [0, 1] is a discounting
factor.

The L constructed BBA are then fused following the Dempster rule of com-
bination [5] as follows:

m⊕ = ⊕L
l=1m

θC
Rl . (18)

⊕ is the Dempster’s aggregation function where for two source’s BBA m1 and
m2: {

m⊕(A) =
1

1−K

∑
B∩C=Am1(B) ·m2(C) ∀A ⊆ Θ,A �= ∅

m⊕(∅) = 0
(19)

where K is defined as:

K =
∑

B∩C=∅
m1(B) ·m2(C). (20)

5 Experimentation and Results

In this section, we present how we managed to conduct our experiments and we
discuss comparative results.

5.1 Evidential Database Construction

In order to perform experimental tests, we construct our own evidential databases
from UCI benchmarks [13] based upon ECM [14]. Interested reader may refer to
[10] for more details on evidential database construction. The transformation was
operated on Iris, Vertebral Column, Diabetes and Wine databases. The studied
databases are summarized on Table 2 in terms of number of instances and at-
tributes.

Table 2. Database characteristics

Database #Instances #Attributes #Focal elements

Iris EDB 150 5 40

Vertebral Column EDB 310 7 116

Diabetes EDB 767 9 132

Wine EDB 178 14 196
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5.2 Comparative Results

In the following, we compare the classification result performance between the
Generic and Precise rules. Table 3 shows the difference in classification result
between the generic and the precise associative rules. The precise rules highlight
better results than do the generic ones. Indeed, the larger the rule’s premise
is, the more pertinent the rule is. On the other hand, the generic rule based
approach fuse much more rules than do the precise one. In addition, all generic
rules are considered with the same weight within the fusion process despite
their pertinence difference. These characteristics with Dempster’s combination
behavior mislead the fusion process to errors. Indeed, as shown in Figure 1,
the high number of fused rules depends highly from the minsup value. Unlike
the generic approach, the number of precise rule is defined by number of larger
premise’s rule which is dependent from the treated evidential transaction.

Table 3. Comparative result between Generic and Precise classification rules

Database Iris EDB Vertebral Column EDB Diabetes EDB Wine EDB

Precise rules 80.67% 88.38% 83.20% 100%

Generic rules 78.67% 67.74% 65.10% 51.68%
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Fig. 1. Generic associative rule’s number for different support values
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6 Conclusion

In this paper, we tackled associative rule’s extraction from evidential databases.
Weproposedanewconfidencemeasure for associative rules in evidential databases.
The proposed measure is based on Precise support (i.e., probability measure) pro-
viding coherence and sustains previous work on fuzzy and binary databases. The
rules are then filtrated to retain only classification and non redundant rules. A clas-
sification method based on evidential associative rules is introduced. The classifi-
cation approach is based on a fusion system that represents interesting rules. As
illustrated in the experimentation section, the proposedmethod provides an inter-
esting performance rates. In future work, we plan to study the development of a
new method to estimate the reliability of each combined associative rule. Indeed,
each rule has a precision relatively to the instance to classify. The precision is mea-
sured by the intersection between the premise and the instance itself. A reliability
measure for rule BBA is under study.
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Abstract. We propose a method that combines terminological decision trees and
the Dempster-Shafer Theory, to support tasks like ontology completion. The goal
is to build a predictive model that can cope with the epistemological uncertainty
due to the Open World Assumption when reasoning with Web ontologies. With
such models not only one can predict new (non derivable) assertions for complet-
ing the ontology but by assessing the quality of the induced axioms.

1 Introduction

In the context of machine learning applied to Web ontologies, various methods have
been proposed in order to predict new assertions. It has turned out that the models
resulting from these methods can often provide effective reasoning services which are
comparable to those offered by reasoners [1].

Focusing on the instance-checking problem [2], i.e. the task of assessing the class-
membership for individual resources, it is well known that a reasoner may be unable to
prove the membership of an individual to a given concept (or to its complement). This
is often caused by flaws introduced in the ontology construction phase owing to lacking
disjointness axioms. The same problem may appear also with logic-based predictive
classification models produced by machine learning algorithms, such as the Termino-
logical Decision Trees [3] (TDTs), a specialization of first-order decision trees [4]. In
this work we extend the scope of TDTs by employing the Dempster-Shafer Theory [5]
(DST) because, differently from the instance-based approach proposed in [6], logic-
based classification models generally do not provide an epistemic uncertainty measure.
This may be very important as a quality measure for predicted assertions in related prob-
lems such as data integration in the context of Linked Data1, where it could contribute
as a measure of provenance [7]. Purely logical models cannot handle properly cases of
tests resulting in an unknown membership. The uncertainty is not explicitly considered
when an individual is classified w.r.t. a given test class. The situation is similar to the
case of missing values in prediction with (propositional) decision trees. The underlying
idea of the proposed extension is to exploit standard algorithms to cope with missing
values for a test by partitioning the observation w.r.t. all possible values of the test
and then following all branches. Once the leaves are reached, the results are combined.
Thanks to the combination rules used to pool evidences [5], the DST is a more suitable
framework than the Bayesian theory of probability to cope with epistemic uncertainty

1 http://linkeddata.org

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 36–45, 2014.
c© Springer International Publishing Switzerland 2014

http://linkeddata.org


Towards Evidence-Based Terminological Decision Trees 37

and ignorance related to the Open World Assumption (OWA) that characterizes Web
ontologies.

The DST has been integrated in various algorithms [8,9] with results that are compet-
itive with the classical version. So, we want to investigate if this model can be used also
in machine learning algorithm for the Semantic Web in order to obtain better results of
classifiers in terms of predicted assertions.

The paper is organized as follows: Section 2 introduces basics concerning the con-
cept learning task in Description Logic knowledge bases and describes the original ver-
sion of TDTs; in Section 3 the algorithm for inducing a TDT based on the DST is
proposed while in Section 4 an early-stage empirical evaluation is described; finally,
further extensions of this work are described.

2 Background

Knowledge Bases. In Description Logics (DLs) [2], a domain is modeled through
primitive concepts (classes) and roles (relations), which can be used to build complex
descriptions regarding individuals (instances, objects), by using specific operators that
depend on the adopted language. A knowledge base is a couple K = (T ,A) where
the TBox T contains axioms concerning concepts and roles (typically inclusion axioms
such as C � D) and the ABox A contains assertions, i.e. axioms regarding the individ-
uals (C(a), resp. R(a, b)). The set of individuals occurring in A is denoted by Ind(A).

The semantics of concepts/roles/individuals is defined through interpretations. An
interpretation is a couple I = (ΔI , ·I) where ΔI is the domain of the interpretation
and ·I is a mapping such that, for each individual a, aI ∈ ΔI , for each concept C,
CI ⊆ ΔI and for each roleR,RI ⊆ ΔI×ΔI . The semantics of complex descriptions
descends from the interpretation of the primitive concepts/roles and of the operators
employed, depending on the adopted language. I satisfies an axiom C � D (C is
subsumed byD) when CI ⊆ DI and an assertion C(a) (resp. R(a, b)) when aI ∈ CI
(resp. (aI , bI) ∈ RI). I is a model for K iff it satisfies each axiom/assertion α in K,
denoted with I |= α. When α is satisfied w.r.t. these models, we write K |= α.

We will be interested in the instance-checking inference service: given an individual
a and a concept descriptionC determine ifK |= C(a). Due to the Open World Assump-
tion (OWA), answering to a class-membership query is more difficult w.r.t. Inductive
Logic Programming (ILP) settings where the closed-world reasoning is the standard.
Indeed, one may not be able to prove the truth of either K |= C(a) or K |= ¬C(a), as
there may be possible to find different interpretations that satisfy either cases.

Learning Concepts in DL. The concept learning task in DL can be defined as follows.
Given:

– a knowledge base K = (T ,A)
– a target concept C,
– the sets of positive and negative examples for C:
Ps = {a ∈ Ind(A) | K |= C(a)} andNs = {a ∈ Ind(A) | K |= ¬C(a)}

the goal is to obtain a concept description D for C (C � D), such that:
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– K |= D(a) ∀a ∈ Ps
– K |= ¬D(a) ∀a ∈ Ns
In order to investigate about the learning of multiple disjoint concepts, the formula-

tion of the problem is more restrictive than the one proposed in [3], where the negative
examples were the individuals a for which K �|= D(a) . The resulting concept descrip-
tions can be used to solve an instance-checking problem for new individuals. Similarly
to a First Order Logic Decision Tree, a binary tree where each node contains a conjunc-
tion of literals and each variable that is introduced in a node cannot appear in the right
branch of that node, a Terminological Decision Tree can be defined as follows:

Definition 1 (Terminological Decision Tree). Let K = (T ,A), a Terminological De-
cision Tree is a binary tree where:

– each node contains a conjunctive concept description D;
– each departing edge is the result of a class-membership test w.r.t. D, i.e., given an

individual a, K |= D(a)?
– if a node with E is the father of the node with D then D is obtained by using a

refinement operator and one of the following conditions should be verified:
• D introduces a new concept name,
• D is an existential restriction,
• D is an universal restriction of any its ancestor.

However, a set of concept descriptions is generated by means of the refinement operator
and the best one is chosen to be installed as a child node. The best description is the one
that maximizes a purity measure respect to the previous level [3]. The measure may be
defined as accuracy in a binary classification problem, purity = p/(p+ n), where p is
the number of positive examples and n the number of negative ones reaching a node.

3 Induction of the Terminological Trees

The method for inducing TDTs based on the DST uses a divide-and-conquer strategy. It
requires the target conceptC, a training set Ps∪Ns∪Usmade up of individuals with
positive (Ps), negative(Ns) and uncertain (Us) membership w.r.t. C and a basic belief
assignment (BBA)m associated withC (withΩ = {+1,−1} as frame of discernment).

The main learning function (see Alg. 1) refines the input test concept using one of
the available operators. After candidates are generated, a BBA is computed for each of
them. The BBAs for the node concepts are simply estimated based on the number of
positive, negative and uncertain instances in the training set:

– m({+1})← |Ps|/|Ps ∪Ns ∪ Us|;
– m({−1})← |Ns|/|Ps ∪Ns ∪ Us|;
– m(Ω)← |Us|/|Ps ∪Ns ∪ Us|;

Example 2 (Computation of a BBA). Let K = (T ,A), consider the concepts Man, and
its complement Woman ≡ ¬Man in T and the following assertions:
{Man(BOB), Man(JOHN), Woman(ANN), Woman(MARY)} ⊂ A, with MARK occurring else-
where in A and whose membership w.r.t. Man is unknown. A BBA for Man is produced
(the frame of discernmentΩMan = {+1,−1} corresponds to {Man, Woman}):
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Algorithm 1. Induction of DST-based TDT
1 input: Ps, Ns, Us: set of training instances {positive, negative, uncertain membership}
2 C: concept description,
3 m: BBA
4 output: T : TDT
5 const θ, ν ∈ [0, 1] {thresholds}
6 function INDUCEDSTTDTREE (Ps, Ns, Us:individuals; C:concept; m: BBA)
7 begin
8 if |Ps| = 0 and |Ns| = 0 then
9 begin

10 if Pr+ ≥ Pr− then {pre−defined constants wrt the whole training set}
11 Troot ← 〈C,m〉
12 else
13 Troot ← 〈¬C,m〉
14 return T
15 end
16 if m({−1} = 0 and m({+1}) > θ then
17 begin
18 Troot ← 〈C,m〉
19 return T
20 end
21 if m({+1} = 0 and m({−1}) > θ then
22 begin
23 Troot ← 〈¬C,m〉
24 return T
25 end
26 if NONSPECIFITY(C) ≥ ν then
27 begin
28 if m({+1}) ≥ m({−1}) then
29 Troot ← 〈C,m〉
30 else
31 Troot ← 〈¬C,m〉;
32 return T
33 end
34 S ← GENERATECANDIDATES(Ps, Ns, Us)
35 D ← SELECTBESTCONCEPT(m,S)
36 〈〈Pl,Nl, Ul〉, 〈Pr,Nr, Ur〉〉 ← SPLIT(D,Ps, Ns, Us)
37 Troot ← 〈D,mD〉
38 Tleft ← INDUCEDSTTDTREE(Pl, Nl, Ul, D,mD)
39 Tright ← INDUCEDSTTDTREE(Pr,Nr, Ur, D,mD)
40 return T
41 end

– m({+1}) = |{BOB, JOHN}|/|{BOB, JOHN, ANN, MARY, MARK}| = 2
5 = 0.4

– m({−1}) = |{ANN, MARY}|/|{BOB, JOHN, ANN, MARY, MARK}| = 2
5 = 0.4

– m(ΩMan) = |{MARK}|/|{BOB, JOHN, ANN, MARY, MARK}| = 1
5 = 0.2 ��

The set of candidates S, is made up of pairs 〈D,mD〉 whereD is a concept descrip-
tion and mD is the BBA computed for it. After S has been generated, the algorithm
selects the best test concept and the corresponding BBA according to measure com-
puted from the BBA and the best pair 〈D,mD〉 is installed as a child node of 〈C,m〉.

This strategy is repeated recursively, splitting the examples according to the test con-
cept in each node. Recursion stops when only positive (resp. negative) instances are
rooted to a node which becomes a leaf (see the conditions checked in lines 16 and 21
in Alg. 1). The first condition (line 8) refers to the case when no positive and nega-
tive instances reach the node. In this case the algorithm uses priors, Pr+ and Pr−,
precomputed for the whole training set. The fourth case expresses a situation in which
the child nodes added to the tree are characterized by a high non-specificity measure.
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Algorithm 2. Candidate test concepts generation
1 input: Ps, Ns, Us: set of training instances
2 C: concept description
3 output: S: set of 〈D,mD〉 {D is a concept and m is a BBA}
4 function GENERATECANDIDATES(Ps, Ns, Us, C): S
5 begin
6 S ← ∅
7 L← GENERATEREFINEMENTS (C,Ps,Ns) {based on the refinement operator}
8 for each D ∈ L
9 begin

10 m← GETBBA(PsD , NsD , UsD)
11 S ← S ∪ {〈D,m〉}
12 end
13 return S
14 end

Algorithm 3. Selection of the best candidate
1 input: mC : BBA,
2 S: set of 〈D,mD〉
3 output: C′: concept {best according to non−specificity measure}
4 const Ψ,ΨD (∀D ∈ S): frame of discernment
5 function SELECTBESTCANDIDATE(mC , S): concept
6 begin
7 Ns←

∑
A⊆Ω mC(A) log |A|

8 C′ ← argmaxD∈S

(
Ns −

∑
A′⊆ΩD

mD(A′) log |A′|
)

9 return C′

10 end

For a given concept description D, NONSPECIFICITY(D) is the value computed from
its BBA

∑
A∈2Ω m(A) log(|A|) as a measure of imprecision [9]. The algorithm con-

trols the growth by means of the threshold ν. If the condition is verified, the algorithm
comparesm({+1}) and m({−1}) to install the proper test concept in the node.

Alg. 2 illustrates how a set S of candidate concepts is generated by GENERATECAN-
DIDATES. This function calls GENERATEREFINEMENTS to generate refinements that
can be used as tests. S is updated with pairs 〈D,mD〉 where D is a refinement and
mD is the related BBA. Once concepts have been generated, SELECTBESTCANDI-
DATE (see Alg. 3) selects the best candidate description according to the non-specificity
measure. The advantage of this method is the explicit representation of the OWA using
the maximal ignorance hypothesis (i.e. the one corresponding to Ω).

BBA Creation. As previously mentioned, the proposed approach associates a BBA
to each node of a TDT for representing the epistemic uncertainty about the class-
membership. The BBA of the child node is created from a subset of the training ex-
amples routed to the parent node.

When a branch is created together with the related concept description, the member-
ship of the individuals w.r.t. this concept is computed in order to obtain a BBA whose
frame of discernment represents the hypothesis of membership w.r.t. that concept.

Moreover, when a new node is added as left or right child, the algorithm knows about
the tests performed on the parent node concept for each instance. Hence, similarly to
the Bayesian framework, an implicit kind of conditioning results that allows to relate
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the membership w.r.t. a concept description in a parent node to the membership w.r.t.
the refinements contained in its children.

Stop Criterion. We can apply the DST to TDTs to decide when to stop the growth.
As described above, we add a new child node minimizing the degree of imprecision
represented by the non-specificity measure. However, if the number of instances with
unknown-membership is very high for the new refinement, the imprecision increases
and the node should not be further refined. Thus, the algorithm uses two stop criteria:

purity m({−1}) = 0 ∧m({+1}) > θ or m({+1}) = 0 ∧m({−1}) > θ
non-specificity: given a descriptionD, NONSPECIFICITY(D) > ν

The former condition derives from decision tree induction, where a leaf is formed when
only instances that belong to a single class remain. In terms of DST, this idea can be
represented by a BBA where:

∀A ∈ 2Ψ m(A) =

{
1 if A = {+1} (resp. A = {−1})
0 otherwise

(1)

Thus, the first condition distinguishes two kinds of individuals: those with a certain
membership (positive, negative) and those with an uncertain membership. The latter
condition moves from the idea that once the best candidate concept description has been
chosen, it can be very imprecise (i.e. the measure of non-specificity is very high). Thus,
the resulting BBA has the maximum value assigned to a the case of total ignorance w.r.t.
the BBA of the parent concept. The threshold ν is used to control this condition.

Prediction. After the TDT has been produced, it can be used to predict the class-
membership in the usual way. Given an individual a ∈ Ind(A), a path is followed down
the tree according to the results of the test w.r.t. the conceptD at each node.

Alg. 4 describes the recursive strategy. The base case is when a leaf is reached. In
this case, the algorithm updates a list with the BBA associated with the leaf node. The
recursive step follows a branch rather than another according to the result of instance-
checking w.r.t. the concept description D. If K |= D(a) the algorithm follows the left
branch of the tree. If K |= ¬D(a) the right branch is followed. A more interesting case
occurs when the result of instance check is unknown, i.e. K �|= D(a) or K �|= ¬D(a).
In this case, both the left and the right branch are followed until the leaves are reached.
In this way the algorithm can cope with the OWA. The underlying idea is to collect all
the possible classifications when the result of a test on an internal node is unknown. In
these cases the DST seems to be a good framework in order to combine all such results
and make a decision on the membership to be assigned.

After the tree exploration, we may have various BBAs in the list (one per reached
leaf). Then, these functions are to be pooled according to a combination rule (see
Alg. 5). The resulting BBA can be used to compute belief, plausibility or confirma-
tion [5] on the membership hypothesis and the algorithm returns the hypothesis that
maximize one of them. Similarly to our previous works [6], we considered the compu-
tation of the confirmation in order to balance belief and plausibility in the final decision.
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Algorithm 4. Determining the class-membership of an individual
1 input: a: test individual,
2 T : TDT,
3 K: knowledge base
4 output: L: list of BBA {related to the leave nodes}
5 function FINDLEAVES(a, T,K) : L
6 begin
7 N ← ROOT(T )
8 if ¬LEAF(N, T ) then
9 begin

10 〈D,Tleft, Tright〉 ← INODE(N);
11 if K |= D(a) then
12 L← FINDLEAVES(a, Tleft,K)
13 else if K |= ¬D(a) then
14 L← FINDLEAVES(a, Tright,K)
15 else
16 begin
17 L← FINDLEAVES(a, Tleft,K)
18 L← FINDLEAVES(a, Tright,K)
19 end
20 end
21 else
22 begin
23 m← GETBBA(N)
24 L← L ∪ {m}
25 end
26 return L
27 end

4 Preliminary Experiments

4.1 Setup

The goal of the experimentation is to evaluate the TDTs induced by the proposed
method in the class-membership prediction task. We considered various Web ontolo-
gies (see Tab. 1). For each of them, 30 query concepts have been randomly generated
by combining (using the conjunction and disjunction operators or universal and exis-
tential restriction) 2 through 8 concepts of the ontology. A 0.632 bootstrap procedure
was employed for the design of the experiments.

The experiments were repeated under three different conditions. First we ran the
original method for learning TDTs. Then, we ran them with the DST-based version

Algorithm 5. Pooling evidence for classification
1 input: a: individual,
2 T : TDT,
3 K: knowledge base
4 output: v ⊆ {−1,+1}
5 function CLASSIFY(a, T,K): v
6 begin
7 L← FINDLEAVES(a, T,K) {list of BBA}
8 m̄←

⊕
m∈L

9 for v ∈ Ψ do
10 compute Belv and Plv

11 Confv ← CONFIRMATION(Belv, P lv)

12 return argmaxv⊆ΩConfv

13 end
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Table 1. Ontologies employed in the experiments

Ontology Expressiivity Concepts Roles Individuals

FSM SF(D) 20 10 37
LEO ALCHIF(D) 32 26 62

LUBM ALEHIF(D) 43 25 1555
BIOPAX ALCIF(D) 74 70 323

NTN SHIF(D) 47 27 676

with no tree growth control. Finally, we also considered a threshold (ν = 0.1) for non-
specificity measure. Higher values would allow for larger trees than those obtained with
smaller thresholds.

Due to the disjunctive nature of the concepts represented by the inferred model 2,
we have chosen to employ the Dubois-Prade combination rule [10] in order to pool
BBAs. To compare inductive vs. deductive classification, the following metrics were
computed:

– match: rate of the test cases (individuals) for which the inductive model and a rea-
soner predict the same membership (i.e. +1 | +1,−1 | −1, 0 | 0);

– commission: rate of the cases for which predictions are opposite (i.e. +1 | −1,
−1 | +1);

– omission: rate of test cases for which the inductive method cannot determine a
definite membership (−1,+1) while the reasoner is able to do it;

– induction: rate of cases where the inductive method can predict a membership while
it is not logically derivable.

4.2 Results

Tab. 2 shows the results of the experiments. A low commission rate is noticed for most
of the ontologies, except BIOPAX. This rate is higher than the one observed with the
standard algorithm. Besides, a low induction rate resulted but in the case of NTN.

In general, the proposed method returns more imprecise results than the results ob-
tained with the TDTs [3], i.e. many times unknown-membership is assigned to test
individuals. This is likely due to the combination rule employed. Indeed, the Dubois-
Prade combination rule does not take into account the conflict [5]. The pooled BBA is
obtained by combining other BBAs considering union of subset of the frame of discern-
ment. Thus, the conflict does not exist and more imprecise results can be obtained. For
example,this can occur, when we have two BBAs: the first one has {+1} as the only
focal element while the other one has {−1} as the only focal element. The resulting
BBA will have {−1,+1} as focal element and an unknown case is returned.

With LUBM this phenomenon is very evident: there are not more induction cases,
but the match and the omission rate are very high. In the case of NTN, when the DST-
based method is employed, the match rate is lower than with the standard version and

2 A concept can be obtained easily by visiting the tree and returning the conjunction of the
concept descriptions encountered on a path.
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Table 2. Results of the experiments using the original terminological trees (DLTree), the DST-
TDTs induced with no growth control (DSTTree), and with a growth threshold (DSTG)

Ontology Index DLTree DSTTree DSTG

FSM

match 95.34±04.94 93.22±07.33 86.16±10.48

commiss. 01.81±02.18 01.67±03.05 02.07±03.19

omission 00.74±02.15 02.57±04.09 04.98±05.99

induction 02.11±04.42 02.54±01.89 01.16±01.26

LEO

match 95.53±10.07 97.07±04.55 94.61±06.75

commiss. 00.48±00.57 00.41±00.86 00.41±01.00

omission 03.42±09.84 01.94±04.38 00.58±00.51

induction 00.57±03.13 00.58±00.51 00.00±00.00

LUBM

match 20.78±00.11 79.23±00.11 79.22±00.12

commiss. 00.00±00.00 00.00±00.00 00.00±00.00

omission 00.00±00.00 20.77±00.11 20.78±00.12

induction 79.22±00.11 00.00±00.00 00.00±00.00

BioPax

match 96.87±07.35 85.76±21.60 82.15±21.10

commiss. 01.63±06.44 11.81±19.96 12.32±19.90

omission 00.30±00.98 01.54±03.02 04.88±03.03

induction 01.21±00.56 00.89±00.53 00.26±00.27

NTN

match 27.02±01.91 18.97±19.01 87.63±00.19

commiss. 00.00±00.00 00.39±01.08 00.00±00.00

omission 00.22±00.26 02.09±03.00 12.37±00.19

induction 72.77±01.51 78.54±17.34 00.00±00.00

commission, omission and induction rate are higher. However, adding a tree-growth
control threshold the method shows a more conservative behavior w.r.t. the first exper-
imental condition. In the case of NTN, we observe a lower induction rate and higher
match and omission rates. Instead, the commission error rate is lower. The increase of
the induction rate and the decrease of the match rate for the DST-based method (with-
out the tree-growth control threshold) are likely due to uncertain membership cases for
which the algorithm can determine the class.

A final remark regards the stability for the proposed method: the outcomes show a
higher standard deviation w.r.t. the original version, hence it seems less stable so far.

5 Conclusions and Extensions

In this work a novel type of terminological decision trees and the related learning al-
gorithms have been proposed, in order to integrate forms of epistemic uncertainty in
such an inductive classification model. We have shown how the DST can be employed
together with machine learning methods for the Semantic Web representations as an
alternative framework to cope with the inherent uncertainty and incompleteness. The
proposed algorithm can discover potentially new (non logically derivable) assertions
that can be used to complete the extensional part of a Web ontology (or a Linked Data
dataset) whose expressiveness allows to represent concepts by means of disjunction and
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complement operators. However, experimental results show that the current version of
the method may have sometimes a worse performance, especially in terms of match rate
and stability.

The proposed method can be extended along various directions. It is possible to use a
total uncertainty measure that integrates conflicting evidence [9]. In the current version,
we control the growth of the tree. A further extension may concern the definition of a
pruning method based on the DST.
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Abstract. Considering the high heterogeneity of the ontologies pub-
lished on the web, ontology matching is a crucial issue whose aim is to
establish links between an entity of a source ontology and one or several
entities from a target ontology. Perfectible similarity measures, consid-
ered as sources of information, are combined to establish these links. The
theory of belief functions is a powerful mathematical tool for combining
such uncertain information. In this paper, we introduce a decision pro-
cess based on a distance measure to identify the best possible matching
entities for a given source entity.

Keywords: Theory of belief functions, decision rule, Jousselme dis-
tance, ontology matching.

1 Introduction

This paper proposes a decision rule based on a distance measure. This rule cal-
culates the distance between a combined mass function and a categorical mass
function and keep the hypotheses with the lowest distance. We propose this rule
for its ability to give decision on composite hypotheses as well as its conve-
nience to our domain of application, namely the semantic web and particularly
the ontology matching where decision making is an important step.

Ontology matching is the process of finding for each entity of a source ontology
O1 its corresponding entity in a target ontology O2. This process can focus
on finding simple mappings (1:1) or complex mappings (1:n or n:1). The first
consists in matching only one entity of O1 with only one entity of O2 whereas the
second consists in finding either for one entity of O1 its multiple correspondences
of entities in O2 or matching multiple entities of O1 with only one entity of O2.
We are interested in this paper in finding simple mappings as well as the complex
one of the form (1:n).

The matching process is performed through the application of matching
techniques which are mainly based on the use of similarity measures. Since no
similarity measure applied individually is able to give a perfect alignment, the
exploitation of the complementarity of different similarity measures can yield
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to a better alignment. Combining these similarity measures may raise conflicts
between the different results which should be modeled and resolved.

We suggest to use the theory of belief functions [4,12] as a tool for modeling
the ontology matching and especially for combining the results of the different
similarity measures. Due to the fact that we are working on an uncertain aspect
and we are interested in finding complex matching which can be viewed as finding
composite hypotheses formed from entities of two ontologies, we suggest to apply
our proposed decision rule on the combined information and to choose for each
entity of the source ontology, the entities of the target ontology with the lowest
distance.

The remainder of this paper is organized as follows: we are interested in sec-
tion 2 in defining the ontology matching process. In section 3, we recall the basic
concepts underlying the theory of belief functions. In section 4, we present our
decision rule based on a distance measure. Section 5 is devoted to the description
of the credibilistic decision process for matching ontologies as well as the appli-
cation of our proposed decision rule. Section 6 discusses an overview of some
ontology matching approaches dealing with uncertainty. Finally, we conclude in
section 7 and present future work.

2 Ontology Matching

The open nature of the semantic web [2] tends to encourage the development, for
a domain of interest, of heterogeneous ontologies which differ from each other at
the terminological level and/or the representational one. In order to mitigate the
effect of semantic heterogeneity and to assure interoperability between applica-
tions that make use of these ontologies, a key challenge is to define an efficient
and reliable matching between ontologies [7].

Formally, ontology matching is defined as a function A = f(O1, O2, A’, p, r).
In fact, from a pair of ontologies to match O1 and O2, an input alignment A’, a
set of parameters p, a set of oracles and resources r, the function f returns an
alignment A between these ontologies. We note that parameters and resources
refer to thresholds and external resources respectively.

With the new vision of the web that tends to make applications understand-
able by machines, an automatic and semi automatic discovery of correspondences
between ontologies is required. The reader may refer to [7] for an exhaustive state
of the art of ontology matching techniques.

3 The Theory of Belief Functions

3.1 Definitions

The frame of discernment Θ = {θ1, θ2, . . . , θn} is a finite non empty set of n
elementary and mutually exclusive and exhaustive hypotheses related to a given
problem. The power set of Θ, denoted by 2Θ is defined as the set of singleton
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hypotheses of Θ, all possible disjunctions of these hypotheses as well as the
empty set.

The basic belief assignment (bba) is the mapping from elements of the power
set 2Θ onto [0, 1] that satisfies:

m(∅) = 0,
∑
A⊆Θ

m(A) = 1. (1)

The value m(A) quantifies the part of belief exactly committed to the subset
A of Θ.

A focal element A is an element of 2Θ such that m(A) �= 0.
From a given bba , the corresponding credibility and plausibility functions are

respectively defined as:

bel(A) =
∑

B⊆A,B �=∅
m(B). (2)

and
pl(A) =

∑
A∩B �=∅

m(B). (3)

The value bel(A) expresses the total belief that one allocates to A whereas
the pl(A) quantifies the maximum amount of belief that might support a subset
A of Θ.

Some special bbas are defined in the theory of belief functions. Among them,
the categorical bba which is a bba with a unique focal element different from the
frame of discernmentΘ and the empty set ∅, and which is defined asmX(X) = 1.

3.2 Combination of Belief Functions

Let S1 and S2 be two distinct and independent sources providing two different
bbas m1 and m2 defined on the same frame of discernment Θ. These two bbas
are combined by either the conjunctive rule of combination or the disjunctive
rule.

– The conjunctive rule of combination is used when the two sources are fully
reliable. This rule is defined in [14] as :

m1 ∩©2(A) =
∑

B∩C=A

m1(B)×m2(C). (4)

The conjunctive rule can be seen as an unnormalized Dempster’s rule of
combination [4] which is defined by:

m1⊕2(A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
B∩C=A

m1(B)×m2(C)

1−
∑

B∩C=∅
m1(B)×m2(C)

∀A ⊆ Θ, A �= ∅

0 if A = ∅

(5)
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The Dempster’s rule of combination is normalized through 1−
∑

B∩C=∅
m1(B)×

m2(C) and it works under the closed world assumption where all the possible
hypotheses of the studied problem are supposed to be enumerated on Θ.

– The disjunctive rule is used when at least one of the sources is reliable
without knowing which one of them. It is defined in [14] by:

m1 ∪©2(A) =
∑

B∪C=A

m1(B)×m2(C). (6)

3.3 Decision Making

Combining information provided by the different sources leads to a global one
that has to be analyzed in order to choose the most likely hypothesis. Decision
making can be held in two different ways.

– Decision on singletons: It means that the most likely solution to a given
problem is one of the hypothesis of Θ. To determine this most likely solution,
one may:
• Maximize the credibility: It consists on retaining the most credible hy-
pothesis by giving the minimum of chances to each of the disjunctions.

• Maximize the plausibility: It consists on retaining the most plausible
hypothesis by giving the maximum of chances to each of the singletons.

• Maximize the pignistic probability: It was introduced in [15] and it is
the common used decision function because it represents a compromise
between the maximum of credibility and the maximum of plausibility.
The pignistic probability consists on choosing the most probable sin-
gleton hypothesis by dividing the mass attributed to each hypothesis,
different from the singleton hypothesis, by the hypotheses composing it.
It is given for each A ∈ 2Θ, A �= ∅ by:

betP (X) =
∑

A∈2Θ,X∈A

m(A)

|A|(1−m(∅)) . (7)

where |A| represents the cardinality of A.
– Decision on unions of singletons: Few works were interested in making de-

cision on composite hypotheses ([5], [1], [9]). The approach proposed in [1]
helps to choose a solution of a given problem by considering all the elements
contained in 2Θ. This approach weights the decision functions listed previ-
ously by an utility function depending on the cardinality of the elements.
For each A ∈ 2Θ we have:

A = argmax
X∈2Θ

(md(X)pl(X)) (8)

where md is a mass defined by:

md(X) = KdλX(
1

|X |r ) (9)
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r is a parameter in [0, 1] for choosing a decision. When r is equal to 0 it reflects a
total indecision and when it is equal to 1 it means that we decide on a singleton.
The value λX is used to integrate the lack of knowledge about one of the elements
X of 2Θ. Kd is a normalization factor.

4 Decision Rule Based on a Distance Measure

We aim in this paper to propose a decision rule helping us to choose the most
likely hypothesis for a given problem after combining the information provided
by different sources of information, i.e. bbas. This rule, based on a distance
measure, is inspired from [13] and is defined as:

A = argmin(d(m,mX)) (10)

The proposed rule aims at calculating the distance between m which is a com-
bined bba (obtained after applying a combination rule) andmX is the categorical
bba of X such that X ∈ 2Θ. The most likely hypothesis to choose is the hypoth-
esis whose categorical bba is the nearest to the combined bba.

In order to make a decision:

– First, we have to identify the elements for which we have to construct the
categorical bba. In fact, we choose to work on elements of 2Θ such that the
cardinality of the element is less or equal to 2. This filtering is due to the fact
that we want to limit the number of elements to be considered especially with
a power set 2Θ of large cardinality.

– Then, we construct the categorical bba for each of the selected element.
– Finally, we calculate the distance between the combined bba and each of

the categorical bbas. The minimum distance is kept and our decision corre-
sponds to the categorical bba’s element having the lowest distance with the
combined bba.

For the calculation of the distance between the bbas, we use the Jousselme
distance [8] which is specific to the theory of belief functions because of the
matrix D defined on 2Θ. This distance has the advantage to take into account
the cardinality of the focal elements. This distance is defined for two bbas m1

and m2 as follows:

d(m1,m2) =

√
1

2
(m1 −m2)tD(m1 −m2) (11)

where D is a matrix based on Jaccard distance as a similarity measure between
focal elements. This matrix is defined as:

D(A,B) =

{
1 if A=B=∅
|A∩B|
|A∪B| ∀A,B ∈ 2Θ

(12)
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To illustrate the proposed decision rule, we take the following example. Let’s
consider the frame of discernment Θ = {θ1, θ2, θ3}. The list of elements for which
we have to construct their categorical bba are {θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3}.
Suppose that we have two sources S1 and S2 providing two different bbas m1

and m2 defined on the frame of discernment Θ. The table 1 illustrates these two
bbas as well as their combined bba obtained after applying the Dempster’s rule
of combination.

Table 1. bba1 and bba2 and their combined bba

bba1 bba2 combined bba

m1(θ1) = 0.4 m2(θ2) = 0.2 mcomb(θ1) = 0.3478
m1(θ2 ∪ θ3) = 0.2 m2(Θ) = 0.8 mcomb(θ2) = 0.1304

m1(Θ) = 0.4 mcomb(Θ) = 0.3478
mcomb(θ2 ∪ θ3) = 0.1739

The application of our proposed decision rule gives the results illustrated in
table 2 where it shows for every element the distance obtained between the
categorical bba of this element and the combined bba.

Table 2. Results of the proposed decision rule

Element Distance

θ1 0.537
θ2 0.647
θ3 0.741

θ1 ∪ θ2 0.472
θ1 ∪ θ3 0.536
θ2 ∪ θ3 0.529

Based on the results obtained in table 2, the most likely hypothesis to choose
is the element θ1 ∪ θ2.

5 Credibilistic Decision Process for Ontology Matching

In [6], we proposed a credibilistic decision process for ontology matching. In the
following, we describe this process occurring mainly in three steps, then we will
apply the proposed decision rule in order to find a correspondence for a given
entity of the source ontology.

1- Matching Ontologies: We apply three name-based techniques (Levenshtein
distance, Jaro distance and Hamming distance) for matching two ontologies O1

and O2 related to conference organization1. We have the following results:

1 http ://oaei.ontologymatching.org/2013/conference/index.html
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Table 3. Results of matching the entity ConferenceMember of O1 with entities of O2

method e2 ∈ O2 n

Levenshtein Conference fees 0.687
Jaro Conference 0.516

Hamming Conference 0.625

This table shows that using the levenshtein distance, the entity Conference-
Member matches to Conference fees with a confidence value of 0.687.

2- Modeling the Matching Under the Theory of Belief Functions: We
are interested here in modeling the matching results obtained in the previous
step under the theory of belief functions.

– Frame of discernment : It contains all the entities of the target ontology O2

for which a corresponding entity in the source ontology O1 exists.
– Source of information: Every correspondence established by one of the

matching techniques is considered as an information given by a source.
– Basic Belief Assignments (bba): Once we get all the correspondences, we

keep only those where an entity source e1 ∈ O1 has a correspondence
when applying the three techniques. Then, we construct for each of the
selected correspondence its mass function. The similarity measure obtained
after applying a matching technique is interpreted as a mass. Due to the
fact that for a source of information, the sum of mass functions has to be
equal to 1, a mass will be affected to the total ignorance. Let’s take the
results illustrated in Table 3. In this table, we have information provided
by three different sources respectively denoted by Se1

lev, S
e1
jars and Se1

hamming,
where e1 = ConferenceMember. The bba related to the source Se1

lev is:
mS

e1
lev

(Conference fees) = 0.687 and mS
e1
lev

(Θ) = 1 − 0.687 = 0.313. The
bbas for the other sources are constructed in the same manner.

– Combination: Let’s resume the obtained bbas of the three sources. We have:
• mS

e1
lev

(Conference fees) = 0.687 and mS
e1
lev

(Θ) = 0.313

• mS
e1
jaro

(Conference) = 0.516 and mS
e1
jaro

(Θ) = 0.484

• mS
e1
hamming

(Conference) = 0.625 and mS
e1
hamming

(Θ) = 0.375

Once we apply the Dempster’s rule of combination, we obtain the following
results:
• me1

comb(Conference fees) = 0.2849
• me1

comb(Conference) = 0.5853
• me1

comb(Θ) = 0.1298

3- Decision Making: Based on the combined bba which takes into account
all the information provided by the different sources, we will be able in this
step to choose for each entity of the source ontology its corresponding in the
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target ontology. For example, for the entity ConferenceMember, we will be able
to decide if we have to match it with Conference fees or Conference or simply we
will not have a precise decision but rather an uncertain one where we can match
ConferenceMember to Conference fees∪Conference. We are interested in our
credibilistic process to get an uncertain decision. For this purpose, we apply our
proposed decision rule. First, we construct the categorical bba of elements having
a cardinality equal to 2. For the example illustrated in figure 1 we have:

– m(conference document ∪ conference) = 1
– m(conference ∪ conference fees) = 1
– m(conference volume ∪ committee) = 1
– . . .

Then we calculate the distance between the combined bba obtained previ-
ously and each of the categorical bba. Our best alignment corresponds to the
nearest element to the combined bba in other words the element whose cate-
gorical bba has the minimum distance with the combined bba. For the entity
ConferenceMember of the ontology O1 we find conference fees ∪ conference
with a distance equal to 0.52. This process is repeated for each entity of the
source ontology in order to identify the most significant correspondences in the
target ontology.

6 Related Works

Only few ontology matching methods have considered that dealing with uncer-
tainty in a matching process is a crucial issue. We are interested in this section
to present some of them where the probability theory [11] and the Dempster-
Shafer theory ([3],[10],[16]) are the main mathematical models used. In [11],
the authors proposed an approach for matching ontologies based on bayesian
networks which is an extension of the BayesOWL. The BayesOWL consists in
translating an OWL ontology into a bayesian network (BN) through the appli-
cation of a set of rules and procedures. In order to match two ontologies, first
the source and target ontologies are translated into BN1 and BN2 respectively.
The mapping is processed between the two ontologies as an evidential reason-
ing between BN1 and BN2. The authors assume that the similarity information
between a concept C1 from a source ontology and a concept C2 from a target
ontology is measured by the joint probability distribution P(C1, C2).

In [3], the author viewed ontology matching as a decision making process
that must be handled under uncertainty. He presented a generic framework that
uses Dempster-Shafer theory as a mathematical model for representing uncertain
mappings as well as combining the results of the different matchers. Given two
ontologies O1 and O2, the frame of discernment represents the Cartesian product
e x O2 where each hypothesis is the couple < e, ei > such as e ∈ O1 and
ei ∈ O2. Each matcher is considered as an expert that returns a similarity
measure converted into a basic belief mass. The Dempster rule of combination is
used to combine the results provided by a matcher. The pairs with plausibility
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and belief below a given threshold are discarded. The remaining pairs represent
the best mapping for a given entity.

Although, the authors in [10] handle uncertainty in the matching process, their
proposal differ from that proposed in [3]. In fact, they use the Dempster-Shafer
theory in a specific context of question answering where including uncertainty
may yield to better results. Not like in [3], they did not give in depth how the
frame of discernment is constructed. In addition to that, uncertainty is handled
only once the matching is processed. In fact, the similarity matrix is constructed
for each matcher. Based on this matrix, the results are modeled using the theory
of belief functions and then they are combined.

In [16], the authors focused on integrating uncertainty when matching ontolo-
gies. The proposed method modeled and combined the outputs of three ontology
matchers. For an entity e ∈ O1, the frame of discernment Θ is composed of map-
pings between e and all the concepts in an ontology O2. The different similarity
values obtained through the application of the three matchers are interpreted
as mass values. Then, a combination of the results of the three matchers is
performed.

7 Conclusion and Perspectives

In this paper, we proposed a decision rule based on a distance measure. This
decision rule helps to choose the most likely hypothesis for a given problem.
It is based on the calculation of the distance between a combined bba and a
categorical bba. We apply this rule in our proposed credibilistic decision process
for the ontology matching. First, we match two ontologies. Then, the obtained
correspondences are modeled under the theory of belief functions. Based on
the obtained results, a decision making is performed by applying our proposed
decision rule.

In the future, we aim at applying other matching techniques. We are interested
also in constructing an uncertain ontology based on the obtained results after
a decision making and handling experimentations to qualitatively assess the
relevance of our approach.
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Abstract. Evaluating food quality is a complex process since it relies on
numerous criteria historically grouped into four main types: nutritional,
sensorial, practical and hygienic qualities. They may be completed by
other emerging preoccupations such as the environmental impact, eco-
nomic phenomena, etc. However, all these aspects of quality and their
various components are not always compatible and their simultaneous
improvement is a problem that sometimes has no obvious solution, which
corresponds to a real issue for decision making. This paper proposes a
decision support method guided by the objectives defined for the end
products of an agrifood chain. It is materialized by a backward chaining
approach based on argumentation.

1 Introduction

In agrifood chains, the products traditionally go through the intermediate stages
of processing, storage, transport, packaging and reach the consumer (the de-
mand) from the producer (the supply). More recently, due to an increase in
quality constraints, several parties are involved in the production process, such
as consumers, industrials, health and sanitary authorities, expressing their re-
quirements on the final product as different points of view which could be con-
flicting. The notion of reverse engineering control, in which the demand sets the
specifications of desired products and it is up to the supply to adapt and find
its production requirements to respond, can be considered in this case.

In this article, we discuss two aspects of this problem. First, we accept the
idea that specifications cannot be established and several complementary points
of view - possibly contradictory - can be expressed (nutritional, environmental,
taste, etc.). We then need to assess their compatibility (or incompatibility) and
identify solutions satisfying a maximum set of viewpoints. To this end we pro-
posed a logical framework based on argumentation and introduced a method of
decision making based on backward chaining for the bread industry. This method
detects inconsistencies and proposes several options to solve the problem.

Since a joint argumentation - decision support approach is highly relevant to
the food sector [24], the contribution of the paper is to present a real use
case of an argumentation process in the agrifood domain. For technical
details (such as the way we introduce the notion of viewpoint / goal in this setting
based on the notion of backwards chaining reasoning and show how to use those
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techniques in a concrete application) please check the technical report [11] which
complements this paper in terms of technical results. In this paper we aim at
solely presenting the practical application of argumentation and how
it can benefit the agri-food domain. In Section 2, we introduce the real
scenario considered in the application. In Section 3, we motivate our technical
and modeling choices. In Section 4, the developed approach is introduced. It
relies on an instantiation of a logic based argumentation framework based on a
specific fragment of first order logic. In Section 5, we explain how to ensure the
soundness and completeness of our agronomy application method. In Section 6,
some evaluation results are presented. Finally, Section 7 concludes the paper.

2 Scenario

The case of study considered in this paper relates to the debate around the
change of ash content in flour used for common French bread. Various actors
of the agronomy sector are concerned, in particular the Ministry for Health
through its recommendations within the framework of the PNNS (“National
Program for Nutrition and Health”), the millers, the bakers, the nutritionists
and the consumers. The PNNS recommends to privilege the whole-grain cereal
products and in particular to pass to a common bread of T80 type, i.e made
with flour containing an ash content (mineral matter rate) of 0.8%, instead
of the type T65 (0.65% of mineral matter) currently used. Increasing the ash
content comes down to using a more complete flour, since mineral matter is
concentrated in the peripheral layers of the wheat grain, as well as a good amount
of components of nutritional interest (vitamins, fibres). However, the peripheral
layers of the grain are also exposed to the phytosanitary products, which does
not make them advisable from a health point of view, unless one uses organic
flour. Other arguments (and of various nature) are in favour or discredit whole-
grain bread. From an organoleptic point of view for example, the bread loses out
in its “being crusty”. From a nutritional point of view, the argument according to
which the fibres are beneficial for health is discussed, some fibres could irritate
the digestive system. From an economic point of view, the bakers fear selling less
bread, because whole-grain bread increases satiety – which is beneficial from a
nutritional point of view, for the regulation of the appetite and the fight against
food imbalances and pathologies. However whole-grain bread requires also less
flour and more water for its production, thus reducing the cost. The millers
also fear a decrease in the quality of the technical methods used in the flour
production.

Beyond the polemic on the choice between two alternatives (T65 or T80),
one can take the debate further by distinguishing the various points of view con-
cerned, identifying the desirable target characteristics, estimating the means of
reaching that point. The contribution of this paper is showing how using
argumentation can help towards such practical goals.
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3 Motivation

In this paper we will elicit the points of view and the desirable target char-
acteristics by the means of interviews with agronomy experts. Once the target
characteristics identified, finding the means of reaching them will be done au-
tomatically by a combination of reverse engineering and argumentation. The
reverse engineering will be used in order to find the complete set of actions to
take towards a given characteristic, for all characteristics. In certain cases the
actions to take will be inconsistent. Argumentation will then be employed in order
to identify actions that can be accepted together.

3.1 Reverse Engineering

While reverse engineering has been widely employed in other Computer Science
domains such as multi-agent systems or requirements engineering, it is quite a
novel methodology when applied in agronomy. In agrifood chains, the products
traditionally go through the intermediate stages of processing, storage, transport,
packaging and reach the consumer (the demand) from the producer (the supply).
It is only recently, due to an increase in quality constraints, that the notion of
reverse engineering control has emerged. In this case the demand (and not the
supply) sets the specifications of desired products and it is up to the supply to
adapt and find its ways to respond. In what follows, starting from the desired
target criteria for the final product, the methods allowing one to identify ways to
achieve these criteria (by intervention on the various stages of the supply chain)
are named “reverse engineering”.

Reverse engineering is known to be challenging from a methodological view-
point. This is due to two main aspects. First, the difficulty of defining the
specifications for the expected finished product. The desired quality criteria are
multiple, questionable, and not necessarily compatible. The second difficulty lies
in the fact that the impact of different steps of food processing and their order
is not completely known. Some steps are more studied than others, several suc-
cessive steps can have opposite effects (or unknown effects), the target criteria
may be outside of the characteristics of products. Moreover, reconciling different
viewpoints involved in the food sector still raises unaddressed issues. The prob-
lem does not simply consist in addressing a multi-criteria optimisation problem
[7]: the domain experts would need to be able to justify why a certain decision
(or set of possible decisions) is taken.

3.2 Argumentation

Argumentation theory in general [16] is actively studied in the literature, some
approaches combining argumentation and multi criteria decision making [1].

Logic-Based Argumentation. In this paper we present a methodology com-
bining reverse engineering and logical based argumentation for selecting the ac-
tions to take towards the agronomy application at hand. The logical instantiation
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language is a subset of first order logic denoted in this paper SRC equivalent
to Datalog+- [9], Conceptual Graphs or Description Logics (more precisely the
EL fragment [3] and DL-Lite families [10]). All above mentioned languages are
logically equivalent in terms of representation or reasoning power. The reason
why this application is using SRC is the graph based representation proper to
SRC (and not to the other languages). This graph based representation (im-
plemented in the Cogui tool) makes the language suitable for interacting with
non computing experts [20]. More on the visual appeal of Cogui for knowledge
representation and reasoning can be found in [20]. In the following we use the
instantiation of [12] for defining what an argument and an attack is.

4 Approach

In a nutshell our methodology is as follows. The set of goals, viewpoints as well
as the knowledge associated with the goals / viewpoints is elicited either by the
means of interviews with the domain experts or manually from different scientific
papers. This step of the application is the most time consuming but the most
important. If the elicited knowledge is not complete, sound or precise the out-
come of the system is compromised. Then, based on the knowledge elicited from
the knowledge experts and the goals of the experts, we enrich the knowledge
bases using reverse engineering (implemented using backwards chaining algo-
rithms). Putting together the enriched knowledge bases obtained by backwards
chaining from the different goals will lead to inconsistencies. The argumentation
process is used at this step and the extensions yield by the applications are com-
puted. Based on the extensions and the associated viewpoints we can use voting
functions to determine the application choice of viewpoints.

4.1 Use Case Real Data

Expressing the target characteristics – or goals – according to various points of
view consists of identifying the facets involved in the construction of product
quality: points of view, topics of concern such as nutrition, environment, tech-
nology, etc. In addition, such viewpoints have to be addressed according to their
various components (fibres, minerals, vitamins, etc). Desirable directions need
to be laid down, and we first consider them independent.

The considered sources of information include, from most formal to less formal:
(1) peer reviewed scientific papers; (2) technical reports or information posted
on websites; (3) conferences and scientific meetings around research projects;
(4) expert knowledge obtained through interviews. The scientific articles we have
analysed include: [6,23,15,19]. [6] compares the different types of flour from a nu-
tritional point of view. [23] explores the link between fibre and satiety. [15] deals
with consumer behaviour and willingness to pay. They focus on French baguette
when information concerning the level of fibres is provided, and they base their
results on statistical studies of consumer panels. [19] provides a summary of
the nutritional aspects of consumption of bread and the link with technological
aspects.
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We also reviewed technical reports available on official websites on health
policy: the public PNNS (National Program for Nutrition and Health) [21,22],
the European project Healthgrain (looking at improving nutrition and health
through grains) [13,18], as well as projects and symposia on sanitary measures
regarding the nutritional, technological and organoleptic properties of breads
[14,8,2,17]. Finally, several interviews were conducted to collect domain expert
knowledge, in particular technology specialists in our laboratory.

A summary of the results obtained in the baking industry is synthesised in
Figure 1 regarding the nutritional and organoleptic aspects.

(a) (b)

Fig. 1. Nutritional (a) and organoleptic (b) goals

5 Technical Soundness

In this section we explain the technical results that ensure the soundness and
completeness of our agronomy application method. The section is composed of
three parts. A first subsection explains the logical subset of first order logic
language employed in the paper. The second subsection deals with arguments
and attacks and how to obtain extensions when a knowledge base expressed
under this language is inconsistent. Last, the third section shows how we used
reverse engineering to complete the knowledge base with all possible actions and
how argumentation can be used in order to select consistent subsets of knowledge
which support given actions.

5.1 The Logical Language

In the following, we give the general setting knowledge representation language
used throughout the paper.

A knowledge base is a 3-tuple K = (F ,R,N ) composed of three finite sets of
formulae: a set F of facts, a set R of rules and a set N of constraints. Please
check the technical report [11] for more formal details on the elements of the
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language. For space reasons, in the following we will simply give an intuition of
the expressivity of this language by the means an example. We thus prefer to
explain in detail the application contribution of the paper and keep the technical
details fully accessible in the technical report [11].

Let K = (F ,R,N ) where :

– F = {F1} = {CurrentExtractionRate(T65)}
– R contains the following rules:
− R1 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧

Decrease(y) → Digestible(x))
− R2 = ∀ x,z (Bread(x) ∧ SaltAdjunction(z,x) ∧

Decrease(z) → LowSalt(x))
− R3 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧

Growth(y) → TraceElementRich(x))
− R4 = ∀ x,y (Bread(x) ∧ ExtractionRate(y,x) ∧

Decrease(y) → PesticideFree(x))
– N contains the following negative constraint:
− N = ¬(∃ x (Growth(x) ∧ Decrease(x)))

Reasoning consists of applying rules on the set F and thus inferring new
knowledge. A rule R = (H,C) is applicable to set F if and only if there exists
F ′ ⊆ F such that there is a homomorphism σ from the hypothesis of R to
the conjunction of elements of F ′. The rule application can be done using for-
ward chaining (denoted R(F )) or backwards chaining (denoted R−1(F )). A set
{F1, . . . , Fk} ⊆ F is R-inconsistent if and only if there exists a constraintN ∈ N
such that the closure of facts with the rules entails the negative constraint.

5.2 Arguments and Attacks

This section shows that it is possible to define an instantiation of Dung’s ab-
stract argumentation theory [16] that can be used to reason with an inconsistent
ontological KB. The notion of argument and attack used here follow the one
introduced by [12]. As previously explained we simply show an example of argu-
ment and (asymmetric) attack. Let us introduce some argumentation notions.

Given a knowledge base K = (F ,R,N ), the corresponding argumentation
framework AFK is a pair (A = Arg(F), Att) where Arg(F) is the set of all
arguments that can be constructed from F and Att is the corresponding attack
relation as specified in [12]. Let E ⊆ A and a ∈ A. We say that E is conflict
free iff there exists no arguments a, b ∈ E such that (a, b) ∈ Att. E defends a
iff for every argument b ∈ A, if we have (b, a) ∈ Att then there exists c ∈ E
such that (c, b) ∈ Att. E is admissible iff it is conflict free and defends all its
arguments. E is a complete extension iff E is an admissible set which contains all
the arguments it defends. E is a preferred extension iff it is a maximal admissible
set (with respect to set inclusion). E is a stable extension iff it is conflict-free and
for all a ∈ A \ E , there exists an argument b ∈ E such that (b, a) ∈ Att. E is a
grounded extension iff E is a minimal (for set inclusion) complete extension. An
argument is sceptically accepted if it is in all extensions, credulously accepted if
it is in at least one extension and rejected if it is not in any extension.



62 M. Croitoru, R. Thomopoulos, and N. Tamani

5.3 Formalising the Use Case

In this subsection we illustrate the applicative use of the argumentation notions
in a goal-based inconsistent knowledge base obtained from an agri-food scenario.

Let the knowledge base defined in section 5.1 and the goal set G as:

• G1 = ∃ p (Bread(p) ∧ Digestible(p)),
where κ(G1) = nutrition

• G2 = ∃ p (Bread(p) ∧ LowSalt(p)),
where κ(G2) = nutrition

• G3 = ∃ p (Bread(p) ∧ TraceElementRich(p)),
where κ(G3) = nutrition

• G4 = ∃ p (Bread(p) ∧ PesticideFree(p)),
where κ(G4) = sanitary.

Then:

• K1 = (F1,R,N ) where F1 = F ∪R−1(G1) contains the following facts:
− F1 = CurrentExtractionRate(T65)
− F2 = Bread(p) ∧ ExtractionRate(Ψ ,p) ∧ Decrease(Ψ)

• K2 = (F2,R,N ) where F2 = F ∪R−1(G2) contains the following facts:
− F1 = CurrentExtractionRate(T65)
− F3 = Bread(p) ∧ SaltAdjunction(s,p) ∧ Decrease(s)

• K3 = (F3,R,N ) where F3 = F ∪R−1(G3) contains the following facts:
− F1 = CurrentExtractionRate(T65)
− F4 = Bread(p) ∧ ExtractionRate(Ψ ,p) ∧ Growth(Ψ)

• K4 = (F4,R,N ) where F4 = F ∪R−1(G4) contains the following facts:
− F1 = CurrentExtractionRate(T65)
− F2 = Bread(p) ∧ ExtractionRate(Ψ ,p) ∧ Decrease(Ψ)
Finally Kagg = (F

⋃
i=1,...,nR−1(Gi),R,N ) where

F
⋃

i=1,...,nR−1(Gi) = {F1, F2, F3, F4}.
As observed in the previous example, it may happen that Kagg is inconsistent

(and it does so even for goals belonging to the same viewpoint). We then use
argumentation, which, by the means of extensions will isolate subsets of facts we
can accept together (called extensions). Furthermore, the extensions will allow
us to see which are the viewpoints associated to each maximal consistent subset
of knowledge (by the means of the function κ). Once we obtain this we can
either use simple voting procedures to find out which viewpoint to follow or
other preference based selection.

The argument framework we can construct from the above knowledge base is
(A, Att) where A contains the following:
• a = ({F2}, F2, R1(F2)) where R1(F2) = Bread(p) ∧ ExtractionRate(Ψ ,p) ∧

Decrease(Ψ) ∧ Digestible(p).
• b = ({F4}, F4, R3(F4)) where R3(F4) = Bread(p) ∧

ExtractionRate(Ψ ,p) ∧ Growth(Ψ) ∧ TraceElementRich(p).
• c = ({F2}, F2, R4(F2)) where R4(F2) = Bread(p) ∧

ExtractionRate(Ψ ,p) ∧ Decrease(Ψ) ∧ PesticideFree(p).
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• d = ({F3}, F3, R2(F3)) where R2(F3) = Bread(p) ∧ SaltAdjunction(s,p) ∧
Decrease(s) ∧ LowSalt(p) and
Att = {(a, b), (b, a), (b, c), (c, b)}.

In the defined argumentation system, we can now derive:
• Extstable(A, Att) = Extsemi−stable(A, Att) = Extpreferred(A, Att) =

{{a, c, d}, {b, d}}.
Starting from the extensions Extx(A, Att), the proposed decision support

system functions as follows: for every extension ε ∈ Extx(A, Att) :

– Consider the facts occurring in the arguments of ε ;
– Identify the knowledge bases Ki where these facts occur;
– Obtain the goals Gi which are satisfied by the extension;
– Using the κ function to obtain the viewpoints corresponding to these goals;
– Show domain experts the set of goals, and compatible viewpoints correspond-

ing to the given extension.

This method allows us to obtain a set of options equal to the cardinality of
Extx(A, Att). To make a final decision several possibilities can be considered
and presented to the experts:

– Maximise the number of goals satisfied;
– Maximise the number of viewpoints satisfied;
– Use preference relations of experts on goals and / or viewpoints.

In the previous example (please recall that the goals G1 and G2 are asso-
ciated with the nutritional viewpoint while G4 is associated with the sanitary
viewpoint) we have:

– The first extension {a, c, d} is based on the facts F2 and F3 obtained from
K1, K2 and K4 that satisfy the goals G1, G2 and G4.

– The second extension {b, d} is based on F3 and F4 obtained from K2 and K3

satisfying G2 and G3 both associated with the nutritional viewpoint.

One first possibility (corresponding to the extension {a, c, d}) consists of ac-
complishing F2 and F3 and allows to satisfy the biggest number of goals and
viewpoints.

The second possibility (corresponding to the extension {b, d}) consists of ac-
complishing F3 and F4. It would satisfy two goals and one viewpoint. It could be
considered though if the goal G3 (not satisfied by the first option) is preferred
to the others.

6 Evaluation

The evaluation of the implemented system was done via a series of interviews
with domain experts. The above knowledge and reasoning procedures were im-
plemented using the Cogui knowledge representation tool [20], with an extension
of 2000 lines of supplemental code. Three experts have validated our approach:
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two researchers in food science and cereal technologies of the French national
institute of agronomic research, specialists respectively of the grain-to-flour
transformation process and of the breadmaking process, and one industrial ex-
pert - the president of the French National Institute of Bread and Pastry.

The first meeting dealt with the delimitation of the project objectives and ad-
dressed fundamental questions such as: Is it possible to uniquely define a “good”
bread? Which scenarii of “good bread” should be considered? How could they
be defined from a nutritional, sanitary, sensorial and economic point of view?
Which are the main known ways to achieve them? Then a series of individual
interviews constituted the elicitation phase. Each expert gave more arguments
which were complementing one another.

In the following plenary meeting the real potential of the approach was shown.
The experts were formulating goals and viewpoints they were interested in and
the Cogui system together with the argumentation extension was yielding the
associated possible propositions.

Two interests of the approach were more particularly highlighted. They con-
cern cognitive considerations. Firstly, experts were conscious that the elicitation
procedure was done according to their thought processes, that is, in a forward
way which is more natural and intuitive. The system was thus able to restitute
the knowledge in a different manner than the experts usually do. Secondly, from
a problem that could initially seem simple, the experts realized that it covered a
huge complexity that a human mind could hardly address on its own. The tool
is currently available to them under restricted access.

7 Conclusion

Even if argumentation based decision making methods applied to the food indus-
try were also proposed by [4,5], this paper addresses a key issue in the context
of current techniques used by the food sector and namely addressing reverse
engineering. Moreover, in this approach, an argument is used as a method com-
puting compatible objectives in the sector. This case study represents an original
application and an introspective approach in the agronomy field by providing an
argumentation based decision-support system for the various food sectors. It re-
quires nevertheless the very expensive task of knowledge modeling. Such task,
in its current state cannot be automated. It strongly depends on the quality of
expert opinion and elicitation (exhaustiveness, certainty, etc). The current trend
for decision-making tools includes more and more methods of argumentation
as means of including experts in the task of modeling and the decision-making
processes. Another element to take into account, not discussed in this paper, is
the difficulty of technologically (from an agronomy viewpoint) putting in place
the facts of each option. Modeling this aspect in the formalism has still to be
studied.
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Abstract. In this contribution we analyze the problem of the fusion of time 
series of heterogeneous remote sensing images to serve classification and 
monitoring activities which can aid farming applications such as crop 
classification, change detection and monitoring. We propose several soft fusion 
operators that are based on different assumptions and model distinct desired 
properties. Conducted experiments on various geographic regions have been 
carried out and illustrate the effectiveness of our proposal. 

1 Introduction 

Fusion techniques in remote sensing may be useful for obtaining dense time series of 
high resolution images. Low resolution images use to have high temporal frequency 
while they have limited spatial information. Conversely, even if they have higher 
economical costs, high resolution images may have lower temporal frequency but 
obviously they provide higher spatial resolution. Fusion methods between high and 
low resolution images can be applied for simulating detailed images in dates where 
they are not available. Having a dense temporal series of high resolution images is 
important in numerous studies including classification, monitoring, change detection, 
etc. In this sense, image fusion is the combination of two or more images of the same 
scene, taken by different sensors at either the same or subsequent time instants, into a 
synthesized image that is more informative and more suitable for a given task, such as 
for visual perception, or computer processing [1], i.e., conveying information not 
previously available [2]. 

Image fusion can be performed at distinct representation levels of the information 
in the input images. When performed at pixel level, i.e.,on a pixel-by-pixel basis, as in 
our case, it serves the purpose to generate a fused image in which the information 
associated with a pixel, is determined from the coreferred input pixels in the source 
images to improve the performance of image processing tasks, such as segmentation, 
classification or change detection.  

Fuzzy set theory has been indicated as a suitable framework for modeling image 
soft fusion since it allows representing the vague and often heuristic fusion criteria. 
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For instance, in [3,4] image fusion has been modeled by a fuzzy rule-based approach, 
in which the expert’s vague criteria are represented by fuzzy rules.  

Another fuzzy approach is the one proposed in [5] where soft data fusion is 
regarded as a process in which mean-like soft operators can be applied to combine the 
input data. Specifically, the objective of this contribution is the proposal of soft fusion 
operators at pixel level to combine heterogeneous time series of remote sensing 
images that can aid to improve agricultural and farming tasks such as crop 
classification and monitoring. The approach that we propose in this contribution is 
based on the approach in [5] using soft operators. This choice is motivated by the fact 
that we want to define a feasible and low cost (in terms of time and memory needed to 
process data) fusion of heterogeneous time series. More precisely we state some 
desired properties of the synthetized image to be generated and then define soft fusion 
operators that model these desired behaviors of the fusion. We introduce the fusion 
operators by starting with simpler ones, and adding assumptions so as to satisfy 
distinct increasing properties. Finally, we present some results when applying the soft 
operators to fuse heterogeneous time series of NDVI (Normalized Difference 
Vegetation Index) images relative to two distinct geographic regions (Brazil and Italy) 
characterized by distinct vegetation cover and climate. We compare the synthesized 
images with the real images we pretend to predict at given dates with those obtained 
by the application of a fuzzy rule-based approach [3,4].   

2 Problem Formulation: Soft Fusion of Time Series of Images 

Let us consider two time series of images: the first one <H> consisting of a sparse 
sequence of high resolution images H1, …, Hn and the second dense series <L> of low 
resolution images L1, …, Lm, with n<<m.  

Let us consider that the pixel values h∈H and l∈L are defined for both images in 
[0,1] and represent some vegetation index such as the NDVI. The NDVI represents 
the density of green leaves on the surface and takes values between 0 and 1 for bare 
soil and vegetation and negative values for water.  

Further, for the high resolution images H1, H2, …, Hn we know the exact 
timestamp tH1, tH2, …, tHn, while this is not the case for the second series of low 
resolution images which are often built by a composition of several images taken at 
distinct timestamps within distinct subsequent time intervals [tL1min, tL1max], …[tLm min, 
tLm max]. This is actually a realistic hypothesis when the two series are Landsat images 
and MODIS (MODerate Imaging Spectroradiometer) images respectively.  

It is well known that the objectives of image fusion may be very different: they 
span from image brightness enhancement, to edge enhancement, to objects 
segmentation and change detection. In the case we are tackling, the objectives can be 
to generate a denser image time series to better represent the evolution (changes) of 
some dynamic phenomenon. For instance that could be crop growth or improvement 
in classification results exploiting more images at specific timestamps. Finally, one 
can consider the fusion of multiple heterogeneous images from the two time series or 
just two images, one from the dense and the other from the sparse series.  

In the first step, for sake of clarity, we assume to define a fusion function of two 
input images. 
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2.1 Soft Fusion Considering the Temporal Validity (WA) 

Hereafter, we state the objective of the fusion starting from the simplest assumptions 
and then adding new requirements so as to define step by step fusion functions with 
increasing complexity.   

The objective of the fusion is generating a synthetic high resolution image which is 
lifelike for any desired timestamp t. 

The fusion function is defined as F: [0,1] x [0,1]  [0,1]; such that given a pair of 
unit values l and h it returns h’: h’=F(l,h)   
The first desired property of the F function is the following:  

 The fused image H’ must be generated by considering its temporal validity at the 
desired timestamp t. This means that we must find a method to weigh differently 
the contributions of H and L depending on the temporal distance of their 
timestamps tH and tL from t so that : 

o if  |tH-t| < |tL-t|  then H’ is mainly determined by H and marginally by L  
o else then H’ is mainly determined by L and marginally by H 

 where mainly and marginally are defined as weights that vary smoothly with 
the variations of |tH-t| and |tL-t| . 

A simple fusion function satisfying this property is a weighted average in which the 
weight is based on the temporal information associated with the input images H and L  
and the desired date t of  the image we want to generate H’.  It is reasonable to 
assume that the smaller the interval of time between the desired time instant t and the 
timestamps of the input images, the greater could be their contributions. So the 
contribution can be expressed by a weight that is inversely proportional to |t-tH| and |t-
tL| for H and L respectively. 

To this end, in absence of knowledge on the dynamics of the observed elements in 
the images we can imagine to define a triangular membership function μt of a fuzzy 
set on the temporal domain of the time series, with the central vertex in t and the other 
two vertexes tO and tE placed outside of the temporal domain [tH, tL].  

Another possibility is to choose tO and tE based on the knowledge of the expert: it 
can be a time range in which the dynamics of the contents of the images to select for 
the fusion do not change drastically. For example, in the case of the NDVI one could 
define tO and tE as the time limits of the season to which t belongs to. In fact, fusing 
two NDVI images, one taken in winter and the other in summer time, would be 
meaningless since the characteristics of some vegetation types may be completely 
different in these two seasons. 

The choice of the membership degree μt(tH) and μt(tL) of time stamps tH and tL, 
which are normalized in [0,1], can be taken as the weights defining the temporal 
validities of the signal in H and L at the desired time instant t and thus can define the 
contributions of the corresponding image H and L to the synthetic image H’ that  
we want to compute. The situation is depicted in Figure 1 where at timestamp t we 
generate a fused image by combining the two images L4 and H1 since these are the 
closest in time to t.  
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Fig. 1. Two time series of High and Low resolution images are depicted, with distinct 
timestamps and temporal density. In black the membership degrees defining the time validity of 
the images with respect to timestamp t. 

Once one has set the range of the temporal domain in which it makes sense to 
select the images to fuse: i.e., tO and tE, the validity of a timestamp tH can be computed 
as follows: 

o If t0 ≤ tH < t then  ⁄  
o If t ≤ tH < tE then  ⁄           (1) 

We can also compute the validity degree of a low resolution image L at an instant 
of time t by computing its membership degrees μt(tLmin) and μt(tLmax) by applying 
equation (1) and then taking the greatest validity degree, i.e., we take the best validity 
of the two extremes of the time range of L: 

μt(tL)=max(μt(tLmin), μt(tLmax)),    (2) 

We then select from the two series the H image and the L image with greatest 
validities in their series.  

A fusion function that satisfies the above stated property is the following: 

 Given two time series <H> and <L> and a desired timestamp t we first select the 
input images to fuse H∈<H> and L∈<L> such that: 

H =argMaxH∈<H>(μt(tH1),…, μt(tHm)) and L =argMaxL∈<L>(μt(tL1),…, μt(tLm)) 
Then, for each pixel values l∈ L and h ∈H we compute the Weighted Average:  ,  

 
                                          (3)

where f(.)∈[0,1]. f is a function associated with a linguistic modifier such as very, fair, 
more or less, idem etc, i.e., a concentrator or dilator of its argument. It is generally 
defined as f(.)=(.)x with x>1, in case of concentrator, while x<1 in case of dilator. The 
choice of x must be tuned based on sensitivity analysis exploiting training data, i.e., 
by comparing the correlation obtained between the resulting image H’ and the 
expected image E at timestamp t, a target image that we have for timestamp t. 

In the case the expert knows the dynamics of represented objects; f can be defined 
by a membership function describing the temporal validity of an image taken in a 
given period. 
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Notice that equation (3) can be easily generalized to fuse K input images, provided 
that their temporal validities are computed by applying equation (1) to their 
timestamps and that they are selected from the two time series based on the following: 

 H=argMax_KH∈<H>(μt(tH1),…,μt(tHm)),  L=argMax_KL∈<L>(μt(tL1),…,μt(tLm))  (4) 
where argMax_K selects the H which has the validity degree μt(tH) within the K 
greatest ranked values.  

Notice that, fusing more than two images to generate a simulated image can be 
useful to cope with the very frequent problem of clouds masking the scene in the 
original images of the time series. 

2.2 Soft Fusion Based on Temporal Validity and Preference (WP) 

Let us assume that we know that one of the two time series is better than the other one 
with respect to the signal in the images, either because it is less affected by noise or 
because it has undergone preprocessing steps that have cleansed it.  

 In this case, besides the temporal validity, we want to model in the fusion a 
preference for one of the two series. Assuming that <H> is preferred to <L> we 
can formalize the desired properties with the following rule: 

o if μt(tH) is very high then H’ is determined mostly by  H  and marginally by L, 
else it’s a weighted average of H and L with contributions directly proportional 
to their temporal validities. 

very high can be quantified by a positive integer p, a numeric preference 
indicating how many times H is preferred with respect to L. mostly and 
marginally can be flexibly tuned by modifying the validity degrees of L and H 
depending on p, so that the validity of L is decreased while the validity of H is 
increased.   

We also want not to overestimate the pixel values. 
A fusion function that satisfies the above stated properties is the following:  
given two pixel values l and h for L and H respectively: 

In which WA(h,l) is defined as in equation (3). While WA is symmetric WP is an 
asymmetric function. The asymmetry of WP function depends on both the fact that 
p>1, and the satisfaction of the condition WA(h,l)>mt(tH). We can observe that when 
  = 1, the preferred value h has a greater chance to contribute to h’, and its 

contribution increases with the preference p, unless when p=1 in which case we get 
exactly the Weighted Average based solely on temporal validities of H and L: 
h’=min(1, WA(h,l)) . When WA(h,l)>mt(tH) and p>1 we get the minimum between the 
Weighted Average and the Weighted Preferences.   
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A dual function satisfying the following properties can be defined: 
 Assuming that <H> is preferred to <L>: 
o if μt(tH) is very high then H’ is determined mostly by  H  and marginally by L, else 

it’s a weighted average of H and L with contributions directly proportional to their 
temporal validities. 

 We also want not to underestimate the pixel values 
The corresponding function is the following:  
 , , , 1  ,

 
/

 
/ , 1              (6) 

 

We can observe that when   tends to 1, the preferred value h has a greater 
chance to contribute to h’ and its contribution increases with p. On the contrary we 
obtain the weighted average based solely on the temporal validities of H and L.  

For the application of this method, some conditions have to be defined for choosing 
between equation 5 and equation 6. In our experiments we wanted to identify if the 
input images correspond to a growing or senescent season. In the case of a growing 
season we do not want to underestimate the NDVI values so we can choose equation 6. 
Contrarily, in the senescent season we do not want to overestimate so equation 5 must 
be applied. The identification of the season was made automatically from the 
timestamps of the images and the tendency of the average NDVI in the time interval 
between the input images. The method was applied as follows: 

 Senescent season: If  tH <t < tL  and Σh∈H h/(n*m) > Σl∈L l/(n*m) or  
if tL <t < tH  and Σl∈L l/(n*m) > Σh∈H h/(n*m)  then apply equation WP(h,l) (5) 
 Growing season: If  tH <t < tL  and Σh∈H h/(n*m) < Σl∈L l/(n*m) or  
if  tL <t < tH  and Σl∈L l/(n*m) < Σh∈H h/(n*m) then apply equation WP(l,h) (6) 

where n*m is the total number of pixels . This method could be applied differently by 
changing the conditions for applying equation 5 or 6 and also by selecting a value of p 
lower than 1 if we wanted to give preference to the low resolution image. 

2.3 Soft Fusion Considering the Temporal Validity and the Change (WS) 

The previous soft fusions do not consider the change of the pixel values, i.e., |h-l| while 
this would be desirable when one wants to enhance edges of change. They typically 
correspond to those regions where there is a high increase or decrease of the pixel values.   

The change can be defined by a positive value as follows:  

 s= min [(| h – l | - smin ) / ( smax p% - smin ), smax] 

where smin and smax are the minimum and maximum |h – l| among all pixels in H and L 
and smax %p is the maximum |h – l|  for %p percentile in H and L. 
The desired property is the following: 
• The more s is high and the more H is valid ( µt(tH)  is high) then the more h’ 

should be close to h  
A simple soft fusion function satisfying the above properties is the following:  ,  

 
              (7) 
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3 Application of the Methods to Real Data  

3.1 Data 

A short temporal series of high and low resolution images was available for a zone of 
Brazil for the year 2004. As low resolution images we used the MODIS product 
MOD13Q1 which provides NDVI composite images each 16 days at 250m spatial 
resolution. As high resolution images we had CBERS (China-Brazil Earth Resources 
Satellite) images with 20 m spatial resolution. MODIS images were available at dates 
225, 241, 257 and 273 (starting date of the 16-day period). CBERS images were 
available for dates 228, 254 and 280. The CBERS images were radiometrically 
normalized to the MODIS ones as described in [6]. Also, several images of a zone of 
Italy were available for the year 2012. As low resolution images we had one image 
(date 209) of the MODIS product MOD09Q1 which provides composite images of 8 
days at 250m spatial resolution. As high resolution we had two Landsat images (with 
30m spatial resolution) in the dates 197 and 213.  

3.2 Results and Quality Evaluation 

The soft operators defined in section 2 were applied to different temporal combinations 
of the available images.  

The simulated images with the different methods (Weighted Average: WA, 
Weighted with Preference: WP, and Weighted with Slope: WS) were then compared to 
the ‘target’ (high resolution image in the date we pretend to simulate) and the following 
quality indices were computed: correlation, RMSE (Root Mean Square Error) and the 
accuracy between the simulated and the target image, defined as follows: 1 ∑ | |

 

in which h’i and ti are the pixel values corresponding to the simulated and the target 
images respectively, and n*m is the total number of pixels.  

The different temporal combinations for analyzing the proposed methods are shown in 
Table 1. In Table 2 we show the results obtained with the previous methods in the 
different temporal combinations of the available images. Analyzing the correlations we 
observe that the fuzzy rule-based method using three rules equally distributed leads to 
significantly lower correlations than the different proposed methods using soft operators. 
When analyzing the proposed methods we observe that in the cases where the input and 
target images are far away (cases of Brazil T5 and T6: a difference of 52 days) the 
method leading to the higher correlations is the WA. In the other cases with closer dates 
(Brazil T1, T2 and T3: difference of 26 days) the results are not so clear, low differences 
are observed between the different methods using soft operators. Only in the case of the 
input high resolution date being lower than the target (case T4: -26 days) we observe a 
better correlation when using the method WP with preference p=2. Conversely, in Italy’s 
zones the WA leads to lower correlations than the other soft operators, while the WS and 
WP with p=2 lead to the higher correlations. However we keep observing lower values 
when using the fuzzy rule-based method in Italy Z1. Regarding the RMSE we observe 
generally higher errors when using the fuzzy rule-based method (6 out of the 8 cases). In 
the methods using soft operators we observe that in the further images (cases of Brazil T5 
and T6) we obtain again the lower errors when using the WA. In the other cases the best 
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method is difficult to identify, the WA would be clearly selected in cases Brazil T2 and 
T3. In the other cases there are other methods with similar results to the WA. We observe 
in 5 out of the 6 cases of Brazil that the WP with p=2 leads to the higher errors, while in 
Italy’s zone 1 this method together with the WS lead to the lowest values of RMSE.  
In Italy’s zone 2 there are no significant differences between the soft operators.  
The Italian zone 2 covers a very dense urban area and thus the setting of the time validity 
is probably not very appropriate for this scene. 

Table 1. Temporal combinations used for applying the methods. Timestamps are expressed as 
day of the year. Hr corresponds to the high resolution image used in the fusion algorithm, Lrmin 
and Lrmax are the minimum and maximum timestamps of the composite MODIS image, Target 
is the image to simulate, and Dist(t) is the difference in days between the timestamps of the 
high resolution input image and the Target image.  

 Italy 
Z1 

Italy 
Z2 

Brazil 
T1 

Brazil 
T2 

Brazil 
T3 

Brazil 
T4 

Brazil 
T5 

Brazil 
T6 

Hr 197 197 254 228 228 254 228 280 
Lrmin 209 209 273 241 257 225 273 225 
Lrmax 216 216 288 256 272 240 288 240 

Target 213 213 280 254 254 228 280 228 
Dist(t) 16 16 26 26 26 -26 52 -52 

Table 2. Results of the soft fusion methods obtained in the different temporal combinations. 
High values of both R and Accuracy and low values of RMSE as associated with good quality 
of the simulated image with respect to the target image. The best quality indicators triples  (R, 
RMSE, Accuracy) for each simulated image are reported in bold cases.  

  
Italy 
Z1 

Italy 
Z2 

Brazil 
T1 

Brazil 
T2 

Brazil 
T3 

Brazil 
T4 

Brazil 
T5 

Brazil 
T6 

WA 
 
 

R 0.87 0.83 0.91 0.85 0.90 0.89 0.89 0.86 
RMSE 0.10 0.14 0.06 0.08 0.07 0.11 0.07 0.10 

Accuracy 0.93 0.89 0.95 0.94 0.94 0.90 0.95 0.91 
WS 

 
 

R 0.89 0.83 0.91 0.86 0.90 0.89 0.88 0.84 
RMSE 0.09 0.14 0.06 0.09 0.08 0.11 0.07 0.11 

Accuracy 0.93 0.89 0.95 0.94 0.94 0.90 0.95 0.91 
WP, 

p=1.3
 

R 0.88 0.83 0.91 0.86 0.90 0.89 0.89 0.86 
RMSE 0.10 0.14 0.06 0.09 0.08 0.11 0.07 0.11 

Accuracy 0.93 0.89 0.95 0.94 0.94 0.90 0.95 0.91 
WP, 

p=1.5
 

R 0.88 0.83 0.92 0.86 0.90 0.89 0.88 0.86 
RMSE 0.10 0.14 0.06 0.09 0.08 0.11 0.07 0.11 

Accuracy 0.93 0.89 0.95 0.93 0.94 0.90 0.95 0.91 
WP, 

p=1.7
 

R 0.88 0.83 0.92 0.86 0.90 0.89 0.88 0.86 
RMSE 0.10 0.14 0.06 0.09 0.08 0.11 0.07 0.11 

Accuracy 0.93 0.89 0.95 0.93 0.94 0.90 0.95 0.91 
WP, 
p=2 

 

R 0.88 0.83 0.92 0.86 0.89 0.90 0.87 0.84 
RMSE 0.10 0.14 0.06 0.09 0.08 0.12 0.08 0.11 

Accuracy 0.93 0.89 0.95 0.93 0.93 0.90 0.94 0.90 
Fuzzy

 
 

R 0.87 0.83 0.89 0.83 0.88 0.88 0.85 0.85 
RMSE 0.11 0.14 0.07 0.10 0.09 0.11 0.09 0.10 

Accuracy 0.91 0.88 0.95 0.92 0.93 0.91 0.93 0.92 
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In terms of accuracy, the fuzzy rule-based methods leads to similar results as the 
RMSE, showing the lower accuracies in 6 out of the 8 cases (the same having higher 
RMSE values) and the higher accuracies in the other two cases. The WP with p=2 
leads generally to lower accuracies, and the WA leads to high accuracies in the Brazil 
zone. In Italy’s zones 1 we obtain higher accuracies with the WS and the WP with 
p=2, while in zone 2 all the methods lead to similar results. We can conclude that the 
WA is the one showing the better compromise between correlation, RMSE and 
accuracy in the different temporal combinations of the Brazil’s zone. However if we 
want to use the fused images for edge detection it is not so important having high 
accuracy but it is important having a high correlation, so we could use the method WP 
with p=2 in the case of close images. In Italy’s zone 1 the methods WS and WP with 
p=2 are the best ones in terms of correlation, RMSE and accuracy, while in zone 2 all 
the methods lead to similar results. 

4 Conclusions 

The paper proposes some soft fusion operators to generate synthetized images at 
desired timestamps having two input heterogeneous time series of remote sensing 
data. The proposed operators were applied to different combinations of input and 
target images. A fuzzy rule-based fusion method was also applied to the same 
combinations of images. The validation of the results obtained with the different 
operators as well as the comparison with the fuzzy rule-based fusion method were 
analysed in terms of correlation between the simulated and target images, RMSE and 
accuracy. The proposed fuzzy operators led to higher correlations than the fuzzy rule-
based method applied in all the cases and to higher (lower) values of accuracy 
(RMSE) in most of the cases. These results show how the application of simple soft 
operators taking into account the time validity of input images and in some cases a 
preference for the high resolution input image can be used for simulating images with 
high accuracy and correlation at desired timestamps within the timestamps of the 
input images.  
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Abstract. We introduce in this paper a quantitative preference based
argumentation system relying on ASPIC argumentation framework and
fuzzy set theory. The knowledge base is fuzzified to allow the experts
to express their expertise (premises and rules) attached with grades of
importance in the unit interval. Arguments are attached with a score
aggregating the importance expressed on their premises and rules. Ex-
tensions are then computed and the strength of each of which can also
be obtained based on its strong arguments. The strengths are used to
rank fuzzy extensions from the strongest to the weakest one, upon which
decisions can be made. The approach is finally used for decision making
in a real world application within the EcoBioCap project.

1 Introduction

Logically instantiated argumentation system (such as ASPIC/ASPIC+ frame-
work [1, 2]) can be used to reason with arguments to provide means (i) to express
argument as a combination of premises and inference rules, (ii) to define contra-
dictions, attacks and defeat between arguments and (iii) to extract consistent
subsets of arguments called extensions that also defend themselves against at-
tacks. In practice, the decision-maker has often to deal with several extensions
leading to conflicting decisions. In this context the argumentation process is not
enough, since it cannot say what is the best extension to consider to make a
decision. To address this area, several approaches for defining preference-based
argumentation systems have been proposed during the last years [2–4]. These
approaches extend the Dung abstract argumentation model by introducing a
preorder or a total order on arguments through a preference relation, which
states for each couple (or even for two subsets) of arguments either they are
incomparable or which is the most preferred. In a logically instantiated argu-
mentation framework ([2–4]), this preference order is used, among other, for a
qualitative ranking of extensions. However, in real world application, the user
may be unable to specify all the relative importance of arguments, because in
the worst case complexity of computation of the ranking is exponential.

Contribution. We introduce in this paper a quantitative approach to define
a total order between extensions in logically instantiated argumentation frame-
work. We propose to model the premises and rules as fuzzy sets such that the

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 77–86, 2014.
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grade of membership of a premise (resp. a rule) expresses its importance from
expert standpoints. The notions of strictness and defeasibility are then unified
under the notion of importance. The rules of the system are then more expres-
sive in the sense that the closer to 1 the importance of a premise (resp. a rule)
is, the more strict it is, and conversely the closer to 0 a premise (resp. a rule)
is, the more defeasible it is. Then, arguments are attached with a strength score
based on the degrees of membership of the involved premises and rules, which
can be computed with a t-norm. Based on the argument strengths, we can com-
pute a force of each extension E, by using the decomposition based approach [5],
corresponding to the truth value of the fuzzy quantified proposition “almost all
arguments in E are strong”. We obtain a total order between extensions used
to rank them from the strongest to the weakest one in a polynomial time. The
proposed approach is finally applied within the EcoBioCap project to show its
usefulness in decision making for packaging selection.

In section 2, we recall the principles of argumentation framework. In section
3, the rationale behind the fuzzy ASPIC argumentation system is introduced.
Its application in a real world application is detailed in Section 4. Section 5
summarizes related work in the field and finally Section 6 concludes the paper.

2 Argumentation Framework

2.1 Dung Argumentation Principles

Dung argumentation framework (AF ) [6] is a tuple (A, C), where C ⊆ A ×A is
a binary attack relation on the set of arguments A, having a meaning of defeat.
For each argument X ∈ A, X is acceptable w.r.t. a set of arguments S ⊆ A iff
any argument attacking X , is attacked by an argument of S. A set of arguments
S ⊆ A is conflict free iff ∀X,Y ∈ S, (X,Y ) /∈ C. For any conflict free set of
arguments S, S is an admissible extension iff X ∈ S implies X is acceptable
w.r.t. S; S is a complete extension iff X ∈ S whenever X is acceptable w.r.t. S;
S is a preferred extension iff it is a set inclusion maximal complete extension; S
is the grounded extension iff it is the set inclusion minimal complete extension; S
is a stable extension iff it is preferred and ∀Y /∈ S, ∃X ∈ S such that (X,Y ) ∈ C.

For T ∈ {complete, preferred, grounded, stable}, X is skeptically (resp. cred-
ulously) justified under the T semantics if X belongs to all (resp. at least one)
T extension. Output of an extension E is Output(E) = {Conc(A), A ∈ E},
where Conc(A) is the conclusion of argument A. The skeptical output of AF is
Output(AF ) =

⋂
i=1,...,nOutput(Ei) such that Ei are its T extensions.

2.2 ASPIC Argumentation System (ASPIC AS)

In this paper we consider ASPIC AS as a subset of ASPIC+ [7] and compatible
with the one presented in [8]. An ASPIC AS is a tuple (L, cf,R,≥), where L is
a logical language, cf is a contrariness function which associates to each formula
of L a set of its incompatible formulas (in 2L), R = Rs ∪Rd is the set of strict
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(Rs) and defeasible (Rd) rules of the form ϕ1, ..., ϕm → ϕ and ϕ1, ..., ϕm ⇒ ϕ
respectively, where ϕi,i=1,...,m, ϕ are well-formed formulas in L, andRs∩Rd = ∅,
and ≥ is a preference ordering over defeasible rules.

A knowledge base in AS = (L, cf,R,≥) is K ⊆ L such that K = Ka ∪Kp and
Ka ∩ Kp = ∅, Ka contains axioms and Kp contains ordinary premises.

3 Fuzzy ASPIC Argumentation System (F-ASPIC AS)

3.1 Fuzzy Set Theory

Fuzzy set theory introduced by Zadeh [9] to express the gradual membership
of an element to a set. Formally, a fuzzy set F is defined on a referential U
by a membership function μF : U �→ [0, 1] such that μF (x) denotes the mem-
bership grade of x in F . In particular, μF (x) = 1 denotes the full member-
ship of x in F , μF (x) = 0 expresses the absolute non-membership and when
0 < μF (x) < 1, it reflects a partial membership (the closer to 1 μF (x), the
more x belongs to F ). The core of F is Core(F ) = {x ∈ F : μF (x) = 1}
and its support is Support(F ) = {x ∈ F : μF (x) > 0}. If a fuzzy set is a
discrete set then it is denoted F = {(x1, μF (x1)), ..., (xn, μF (xn))}, otherwise,
it is characterized by its membership function, in practice often a trapezoidal
function. The union ∪ and the intersection ∩ operators are defined by a couple
of a t-norm and a t-conorm, such as (min, max). Let F , G be two fuzzy sets,
μF∪G(x) = max(μF (x), μG(x)), μF∩G(x) = min(μF (x), μG(x)), and the com-
plement of F , denoted F c, is μF c(x) = 1−μF (x). The logical counterparts of ∩,
∪ and the complement are respectively ∧,∨ and ¬. Other operators have also
been defined such as fuzzy implications [10].

3.2 Fuzzy Argumentation System: F-ASPIC

A fuzzy argumentation system FAS is equipped with a fuzzy membership func-
tion imp expressing for each premise and rule its importance. It is worth noticing
that the rules do not model fuzzy implications but regular material implications
attached with a score expressing a preference order between them reflecting the
importance given by the experts.

A fuzzy ASPIC argumentation system is a FAS = (L, cf,R, imp) such that
L is a logical language, cf is a contrariness function (we consider the negation ¬
as its basic form), R is the fuzzy set of important rules of the form (φ1, ..., φm →
φ, s) with φi,i=1,...,m ∈ L are the premises of the rule, φ ∈ L is its conclusion
and s ∈ [0, 1] is its importance, provided by the experts of the domain. For a
given rule r, if μimp(r) = 1 then r is a strict rule, if μimp(r) = 0 then r is an
insignificant rule, discarded by the system. If μimp(r) ∈]0, 1[ then the closer to
1 μimp(r) is, the more important r is, and conversely the closer to 0 μimp(r) is,
the more defeasible r is.

In the same way, a knowledge base K in a FAS is a fuzzy set of important
premises. For a given premise p, if μimp(p) = 1 then it is an axiom, if μimp(p) = 0
then p is insignificant (then discarded by the system), and If μimp(p) ∈]0, 1[ then
the closer to 1 μimp(p) is the more important p is.
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F-ASPIC Arguments. An F-ASPIC argument A can be of the following
forms:

1. ∅ �s c, with c ∈ K, Prem(A) = {c}, Conc(A) = c, Sub(A) = {c},
Rules(A) = ∅, where Prem returns premises of A, Conc returns its conclu-
sion, Sub returns its the sub-arguments, and Rules returns the rules involved
in A, s ∈]0, 1] expresses the strength of A (defined below),

2. A1, ..., Am �s c, such that there exists a rule r ∈ R of the form (Conc(A1), ...,
Conc(Am)→ c, sr), andPrem(A) = Prem(A1)∪...∪Prem(Am),Conc(A) =
c, Sub(A) = Sub(A1) ∪ ... ∪ Sub(Am) ∪ {A}, Rules(A) = Rules(A1) ∪ ... ∪
Rules(Am) ∪ {r}, s ∈]0, 1] expresses the strength of A (defined below).

Remark 1. An ASPIC argument has a nested form. A sub-argument is also an
argument. To improve the readability, by abuse of notation, we associate to
each argument a label made of a capital letter followed by a subscript number.
The labels are then used in an argument to refer to its sub-arguments. In this
notation, a label followed by colon is not a part of the argument. We make use
of the same notation in F-ASPIC.

Example 1. Let AS be an ASPIC argumentation system defining the rules Rs =
{a, b→ c} and the ordinary premises Kp = {a, b}. The following are arguments
in AS: • A1 : ∅ ⇒ a • A2 : ∅ ⇒ b • A3 : A1, A2 → c.

Definition 1 (Strength of an Argument). The strength of argument A, de-
noted str(A) computed efficiently as follows:

str(A) =

{
μimp(c), c ∈ K if A is of the form ∅� c,

Te∈Rules(A)∪Prem(A)(μimp(e)) if A is of the form A1, ..., Am � c,

where T is a triangular norm such as min, ∗, etc.

Definition 2 (Strict/Defeasible Argument). An argument A is said strict
iff str(A) = 1. Otherwise, it is called defeasible.

Definition 3 (Consistency of R). Let A be the set of arguments of an F-
ASPIC AS, the set of rule R is said consistent iff �A,B ∈ A, such that str(A) =
str(B) = 1 and Conc(A) = ¬Conc(B).

3.3 Attacks and Defeat between Arguments

We define the fuzzy rebut and fuzzy undercut attacks, denoted F-rebut and
F-undercut respectively.

Definition 4 (F-Rebut Attack). An argument A rebuts argument B if ∃Ai ∈
Sub(A) and ∃Bj ∈ Sub(B) such that (i) Conc(Ai) = ¬Conc(Bj), (ii) str(Bj) <
1 and (iii) str(Ai) ≥ str(Bj).
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Definition 5 (F-undercut Attack). Argument A undercuts argument B iff
∃B′ ∈ Sub(B) of the form B′1, ..., B

′
m �s ϕ, with s < 1 and ∃A′ ∈ Sub(A) :

Conc(A′) = ¬�Conc(B′1), ..., Conc(B′m) �s ϕ�, with str(A′) ≥ s, and operator
�.� converts a defeasible rule into a literal.

Definition 6 (F-Defeat). Argument A defeats arguments B iff A F-rebuts or
F-undercuts B.

3.4 F-ASPIC AS Extensions and Rationality Postulates

Rationality postulates, defined in [11], ensure the completeness and the consis-
tency of the output of a logical-based argumentation system. We consider here
the following rationality postulates:

1. Closure under sub-arguments : for every argument in an extension, also all
its sub-arguments are in the extension,

2. Closure under strict rules Rs = {r ∈ R|μimp(r) = 1} of the output of an
extension: all possible conclusions from applicable strict rules are derived in
each extension,

3. Direct consistency: the output of each extension is consistent, so it is not
allowed to derive a conclusion and its contradiction in an extension,

4. Indirect consistency: the closure under strict rules of the output of each
extension is consistent.

Proposition 1. F-ASPIC AS is closed under sub-arguments and under strict
rules, direct and indirect consistent, iff the set of strict rules Rs is closed under
transposition [11] and Rs is consistent.

The proof of proposition 1 is detailed in the technical report [12] (pages 5-7).
Proposition 1 shows that extensions can be built upon our defeat relation without
falling in the inconsistency described in [3, 4, 2] when preferences are involved in
the defeat relation and not in the attacks. So, our logical-based argumentation
system is then compatible with Dung abstract model for argumentation.

3.5 Ordering Extensions

Several aggregating operators can be used (min, max, weighted mean, etc.)
to compute the force of an extension combining the strength of its arguments.
Although they are simple to implement they can lead to non-justifiable results,
as in the case of max operator, for instance, an extension containing only strict
arguments gets the same force as an extension having only one strict argument
and numerous very weak arguments. A similar result can be obtained from a
weighted mean operator. So, we need a hybrid operator able to deliver a force
taking into account the strength of arguments and their number. Therefore, we
define a force of an extension based on fuzzy quantified proposition as follows.

Definition 7 (Force of an Extension). The force of an extension E (denoted
force(E)), under one Dung’s semantics, is the truth value of the fuzzy quantified
proposition “P : almost all arguments in E are strong”, denoted δP .
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δP can be computed efficiently in a polynomial time by the decomposition based
approach [5]. So arguments in E are ranked from the most to the least strong:
str(A1) ≥ str(A2) ≥ ... ≥ str(An) with n = |E|, and

δP = maxi=1,...,n(min(str(Ai), μalmost all(
i

n
)) (1)

Definition 8 (Ordering Relation between Extensions). Let E1, ..., E2 be
extensions, under one Dung semantics, of a F-ASPIC AS. The extension Ei is
preferred than the extension Ej, denoted Ei �e Ej iff force(Ei) ≥ force(Ej).
Its strict counterpart  e is: Ei  e Ej iff force(Ei) > force(Ej).

4 Application to Packaging Selection

4.1 Selection of Packaging According the Aspect End of Life

The following text arguments about the end of life of packagings have been
collected during an interview with experts in the domain of waste management:

1. Packaging materials, which are biodegradable, compostable, or recyclable
having a low environmental impact are preferred,

2. Life Cycle Analysis (LCA) results are not in favor of biodegradable and
compostable materials,

3. Consumers are in favor of biodegradable material because they help to pro-
tect the environment,

4. Biodegradable materials could encourage people to throw their packaging in
nature, causing visual pollution.

We model these arguments by a simple propositional language as follows:

– BP , CP and RP are symbols referring respectively to biodegradable, com-
postable and recyclable packagings,

– PEV , V P ,HIP , LIP are symbols referring to packagings which respectively
protect the environment, can cause visual pollution problem, have a high or
low environmental impact (according to LCA),

– ACC, REJ are symbols referring to the decisions (accepted, rejected).

The fuzzy set of important rules contains the following weighted implications
(membership degrees are provided by the domain experts):
R = {(BP → HIP, 0.9), (CP → HIP, 0.9), (RP → LIP, 0.9),

(BP → PEV, 0.4), (BP → V P, 0.8), (CP → V P, 0.8), (HIP → REJ, 0.9),
(HIP → ACC, 0.1), (LIP → ACC, 0.9), (LIP → REJ, 0.1),

(V P → REJ, 0.8), (V P→ACC, 0.2), (PEV → ACC, 0.8), (PEV → REJ, 0.2)}.
The premises of the system are defined by the fuzzy set corresponding to the

important packaging choices Kp = {(BP, 0.9), (CP, 0.9), (RP, 0.9)}, having the
equal importance 0.9. The arguments derived from Kp and R are the following
(the strength of arguments are computed by the t-norm min):
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Fig. 1. Example of definition of the quantifier almost all

A0 : ∅�0.9 BP
B0 : ∅�0.9 CP
C0 : ∅�0.9 RP
A1 : A0 �0.9 HIP
A2 : A1 �0.9 REJ
A3 : A1 �0.1 ACC
A4 : A0 �0.4 PEV

A5 : A4 �0.4 ACC
A6 : A4 �0.2 REJ
A7 : A0 �0.8 V P
A8 : A7 �0.8 REJ
A9 : A7 �0.2 ACC
B1 : B0 �0.9 HIP
B2 : B1 �0.9 REJ

B3 : B1 �0.1 ACC
B4 : B0 �0.8 V P
B5 : B4 �0.8 REJ
B6 : B4 �0.2 ACC
C1 : C0 �0.9 LIP
C2 : C1 �0.9 ACC
C3 : C1 �0.1 REJ

We can compute the following two fuzzy preferred and stable extensions:
• E1 = {(A2, 0.9), (A8, 0.8), (A6, 0.2), (B5, 0.8), (B2, 0.9), (C3, 0.1), (B0, 0.9),
(B1, 0.9), (A0, 0.9), (A1, 0.9), (A4, 0.4), (A7, 0.8), (B4, 0.8), (C0, 0.9), (C1, 0.9)},
and Output(E1)={REJ,CP,BP,RP,LIP,PEV,HIP,VP}.
• E2 = {(A3, 0.8), (A5, 0.4), (B6, 0.2), (C2, 0.9), (B3, 0.1), (B0, 0.9), (B1, 0.9),

(A0, 0.9), (A1, 0.9), (A4, 0.4), (A7, 0.8), (B4, 0.8), (C0, 0.9), (C1, 0.9)},
and Output(E2)={ACC,CP,BP,RP,LIP,PEV,HIP,VP}.

Based on formula (1) and subjective definition of the fuzzy quantifier almost all
(Figure 1), the force of each extension is δE1 = 0.8 and δE2 = 0.57, which means
that arguments for rejection are stronger than arguments for acceptance. We
can here make a decision but it is not justifiable because the rejection of the
recyclable packagings is counter-intuitive, since they are supported by strong
pros arguments and no arguments are against them.

Independently of the aggregation operator used to compute the force of an ex-
tension, the strength of arguments against one type of packaging has an indirect
influence on the rejection of the others. To fix the system, we split arguments
according to the type of packaging on which they are expressed. So, arguments
Ai,i=0,...,9, Bj,j=0,...,6 and Ck,k=0,...,3 are about the acceptance or the rejection
of respectively biodegradable (denoted Bio), compostable (denoted Com) and
recyclable (denoted Rec) packagings. Then, we draw three argumentation graphs
on which we compute preferred and stable extensions, and we obtain:

• EBio
1 = {(A0, 0.9), (A1, 0.9), (A2, 0.9), (A7, 0.8), (A8, 0.8), (A4, 0.4), (A6, 0.2)},

then Output(EBio
1 )= {REJ, BP, HIP, PEV, VP} resulting to the rejection of

biodegradable packagings,
• ECom

1 = {(B0, 0.9), (B1, 0.9), (B2, 0.9), (B4, 0.8), (B5, 0.8)}, so Output(ECom
1 )=

{REJ, CP, HIP, VP} leading to the rejection of compostable packagings,
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• ERec
1 = {(C0, 0.9), (C1, 0.9), (C2, 0.9)}, and Output(ERec

1 )={ACC, RP, LIP},
supporting the acceptance of recyclable packagings.

This way to deal with arguments allows to make decisions about each packag-
ing choice based on the force of the delivered extensions. So, δEBio

1
= 0.5 (average

rejection), δECom
1

= 0.8 (strong rejection) and δERec
1

= 0.9 (strong acceptance).
It is worth noticing that in classical argumentation approach, the user gets the
same extensions but no means to compare between them.

Using the Delivered Extensions in the Querying Process. From the
obtained extensions, we know the reasons why recyclable packagings are recom-
mended and why biodegradable and compostable packagings are not. This result
can be used in the querying process by adding to the query the predicate “recycle
= true” to retrieve the recyclable packaging materials from the database.

5 Related work

Comparison with Preference-Based ASPIC+ [2]. The approach of [2]
relies on a preference-based Structured Argumentation Framework (SAF) built
upon ASPIC+. An argumentation theory AT = (AS,K) is then a triple 〈A, C,!〉
where A is the set of all finite arguments of AS, ! is an ordering on A, and
(X,Y ) ∈ C iff X attacks Y . The instantiation of this SAF needs the definition
of the operator !, which is tricky from the application point of view, since !
must satisfy several conditions to be called reasonable [2]. Moreover, ASPIC+
requires the definition of two negations (the contrary and the contradiction),
which is not intuitive for the experts providing the arguments.

Comparison with Fuzzy Argumentation Systems.Several fuzzy-based ar-
gumentation approaches have been proposed during the last decade. In [14–16]
possibilistic defeasible logic programming [17] approaches have been developed.
They suffer from the difficulties related to the definition of the necessity and
possibility measures, since each argument is attached with a necessity degree,
and possibilities are attached to the different models of the logical language. In
the same context, a possibilistic label-based argumentation approach has been
also proposed in [18, 19], expressing the reliability of argument sources. Then,
arguments of a single source have a same reliability degree. In [20], a fuzzy argu-
mentation system for trust has been proposed. The approach is similar to ours
in the spirit but the context is quite different since in this approach arguments
are not structured.

In [21, 22] a fuzzy attack relation is defined to express the strength of attacks
between arguments. This approach is also different than ours since we make use
of crisp attacks. In [21] the strength of attacks depends on both fuzzy set of
arguments supporting the attacker and the strength of the attack. In [22], at-
tack and defeat relations involve a binary preference relation over arguments,
in such a way that non-symmetric attacks can fail, resulting to non-intuitive
extensions. [23] introduces an argumentation approach based on fuzzy descrip-
tion logic (fuzzy SHIF DL). Arguments are a combination of fuzzy linguistic
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variables and ontological knowledge, and involved in fuzzy attack and support
relations. A preference relation is also used. This approach requires users to
manually specify the attack and support relations between arguments.

6 Conclusion

We have introduced a quantitative preference-based argumentation system rely-
ing on the fuzzy sets theory and ASPIC structured argumentation framework.
Arguments are built upon the fuzzy set of important rules and premises, allow-
ing the computation of their strength. Extensions are attached with a score in
]0, 1] aggregating the strength of its contained arguments, based on fuzzy quan-
tified propositions. Finally, the approach is applied on real world application for
managing the end of life of packaging.

As future work, we plan to implement the approach to study the behavior
of the system (i) according to the definition of the linguistic quantifier, (ii) the
t-norm used for computing the arguments’ strength, and (iii) the variation of the
grades of importance associated to premises and rules. In the same line, studying
the behavior of the system under a lattice of fuzzy values is worthwhile.
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15. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic programming frame-
work for possibilistic argumentation: Formalization and logical properties. Fuzzy
Sets and Systems 159(10), 1208–1228 (2008)
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Abstract. As one of the most important factors that interfere in peo-
ples life, the soil is characterized by quantitative and qualitative fea-
tures which describe not only the soil itself, but also the environment,
the weather and the vegetation around it. Different types of soil can be
identified by means of these features. A good soil classification is very
important to get a better use of the soil. Soil classification, when per-
formed manually by experts, is not a simple task, as long as the experts
opinions may vary considerably. Besides, different types of soil cannot be
defined deterministically. With the objective of exploring an alternative
approach towards solving this problem, we investigated in this paper the
application of an automatic procedure to generate a soil classifier from
data, using a fuzzy decision tree induction algorithm. In order to com-
pare the results obtained by means of the fuzzy decision tree classifier,
we used two well known methods for classifiers generation: the classic
decision tree induction algorithm C4.5 and the fuzzy rules induction al-
gorithm named FURIA.

Keywords: fuzzy rule based systems, decision tree, fuzzy decision tree,
classification, soil classification, soil classification system.

1 Introduction

Due to its use to food cultivation, the soil is one of the most important factors
that interfere in people’s life, since good food requires good soil. To take advan-
tage of all it’s best qualities, not only in food branch, it is very important to
know the characteristics of the soil present in each site [20]. Motivated by this,
some different classes of soils have been created according to their characteris-
tics. The soil characteristics are related to quantitative and qualitative features
that describe the soil, the environment, the weather and the vegetation around
them. By knowing its main characteristics, the class that the soil belongs to is
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also known and then, it is possible to make the best use of it. Although this
classification is very useful, it involves very subjective criteria and as it is usu-
ally done by experts, it depends very much on the experts opinion. Aiming to
support the experts task and reduce the influence of subjectiveness in the clas-
sification process, some classification systems can be constructed automatically
from data.

Fuzzy decision trees combine the advantages of decision trees, such as the
embedded feature selection and low computational cost, with the ability of pro-
cessing uncertainty and imprecision of fuzzy systems. Some fuzzy decision trees
algorithms have been proposed in the literature [2–7]. In this work, we use the
fuzzy decision tree induction algorithm (FuzzyDT) described in [2], which is
an algorithm based on the well known C4.5 algorithm, to generate fuzzy rules.
FuzzyDT starts with the fuzzyfication of the continuous features before induc-
ing the fuzzy decision tree. This algorithm has shown good results in a previous
work, when it was applied to a real-world problem, the prediction and control
of the coffee rust disease in Brazilian crops [8]. In the work presented here, we
investigate the generation of a classification system to deal with the problem
of soil classification using FuzzyDT. We also compare the results with the ones
obtained by the classic C4.5 algorithm [9] and FURIA algorithm, proposed in
[10]. We evaluated them by comparing their accuracy, measured by the correct
classification rate, and interpretability, measured by the format and the number
of rules generated by each algorithm.

The paper is organized as follows: in the next section, we describe briefly
the soil classification problem. In section 3, a short description of decision trees
and the main concepts of C4.5 are presented and we describe a general view
of the fuzzy classification systems and of the FuzzyDT and FURIA algorithms.
The experiments and analyses are presented in section 4. The final conclusions
are discussed in section 5.

2 Soil Classification

The soil is very important to the human beings and was defined in [1] as ”a col-
lection of solid, liquid and gas parts, which could be three-dimensional, moving,
formed by minerals and organic materials that occupy most of the surface of
the continental extensions of our planet”. In Brazil, the soil classification is gov-
erned by the Brazilian System of Soil Classification (SiBCS) [1], a hierarchical
and multi categorical system, which is open to improvements and expansions.

According to Oliveira [11], researcher and member of the Executive Com-
mittee of the Brazilian System of Soil Classification, classifying the soil is very
important because it allows:

a) to understand the relation between the individuals
b) to recall the properties of the classified objects
c) to predict the individuals’ behavior
d) to improve the use of the soil in a place
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e) to estimate the productivity of a stand
f) to provide research themes
g) to explore data from research or observations
h) to facilitate the communication

Actually, the soil classification is extremely important when used to identify the
occurrence of different soil in the environment, as in the soil maps.

Nowadays, the SiBCS is constituted by six categorical levels:

1) Order
2) Suborder
3) Large group
4) Subgroup
5) Family
6) Series

So far, the 5th and 6th levels are not organized yet. The attributes which
were used in the organization of each level are soils characteristics identified
in the research or inferred from other attributes or previous knowledge from
soil science. In each categorical level, a set of classes is defined by one or more
rules. In this work, we approach specifically the classes Brown Latosol and Brown
Nitosol. Brown (redish yellow colors) is a suborder of Latosol and Nitosol orders.
Evaluating the soil as Brown Latosol and Brown Nitosol is a crucial problem to
the research community because, with the development of the soil science, the
understanding of the main diagnostic attributes is under discussion. Diagnostic
attributes are characteristics or properties that are used to divide the soil by
classification system’s levels. Some issues arise in cases where it is difficult to
distinguish the soil’s characteristics or when it presents conceptual overlap, which
hampers the characterization, separation and classification of the soils [12]. The
suborder of brown soils has some peculiarities, which demands new investigations
that provide a better differentiation among them.

The soil classification task performed by experts started with pedological stud-
ies, a practical activity, where over a hundred characteristics’ data were collected.
These characteristics are defined by quantitative and qualitative data which de-
scribe the soil, the environment, the weather and the vegetation around and are
used to soil classification. Furthermore, some data were obtained from laboratory
analyses done on the collected data, and some other derived from the previous
ones.These features were all added to the database in order to complete the set
of features that will be used in the classification. Then, these data are discussed
by experts which classify the samples based on a predefined pattern of each class
and the current soil classification system.

3 Classic and Fuzzy Classification Systems

Nowadays, it is very common to deal with a lot of data which are often available
on open sources. However, analyzing these data and extracting useful information
from them is not an easy task for humans.
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In order to solve this problem, some methods of inductive learning have been
developed. Among the most used inductive learning methods are the algorithms
that generate classifiers. They consist in, given a set of examples, each one de-
scribed by a set of attributes and a class (or label), learning from these examples
and representing the extracted knowledge in a model that is capable of classifying
new examples of unknown classes.

A fuzzy system is a system that includes at least one linguistic variable, whose
values are linguistic terms represented by fuzzy sets [18].

A very popular and useful type of fuzzy systems are the rule-based fuzzy
systems (RBFS), which have a knowledge base, formed by a fuzzy data base and
a rule base and an inference mechanism, which processes the rules in the rule
base using a reasoning method.

Generally speaking, a classification problem is the problem of assigning a
given input data to one of a set of pre-determined set of classes. Rule-based
fuzzy classification systems (RBFCS) are a type of RBFS which deals with fuzzy
classification problems. After the rules have been constructed, they can be used
to classify new instances by applying an inference mechanism such as the ones
proposed in [17]. The rules of a RBFCS with n attributes and m classes have
the form:

IF X1 is A1 AND X2 is A2 ... AND Xn is An THEN Class is Cj

Where Xi represents the attributes of the set of examples, Ai are the attribute
values represented by linguistic terms and Cj is one of the classes in the set of
classes {C1, C2, ...Cm}.

In the following we describe briefly the learning algorithms used in this work,
namely the classic C4.5 algorithm, the FuzzyDT algorithm and the FURIA al-
gorithm.

3.1 C4.5 Algorithm

C4.5 is one of the most popular algorithms of decision trees induction. It was
proposed by Quinlan [9] and uses entropy and information gain measures to find
the most informative attributes for each new split.

The information gain of an attribute is defined as the information that is
provided to classification by splitting a set of examples, based on that attribute.
It corresponds to its entropy reduction. Higher information gains implies more
homogeneous subsets in term of class after splitting. According to Shannon [19],
the entropy of a set S containing k possible classes is defined as:

E(S) = −
k∑

j=1

freq (Cj , S)

|S| · log2
(
freq (Cj , S)

|S|

)
Where freq(Cj , S) represents the number of examples in S that belongs to

class Cj and |S| is the number of examples in S.
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The entropy shows the average amount of information necessary to classify
an example in S.

After splitting S into n subsets Si(i = 1, ...n) by a node test with attribute
X (which is the attribute that provided the highest information gain) the infor-
mation gain InfGain is given by S’s entropy reduction [19]:

InfGain(X) = E(S)−
n∑

i=1

|Si|
|S| E(Si)

Once the tree is induced, C4.5 performs a post pruning method, which is
based on the estimation of the real error of the model, according to its apparent
error, aiming to generalize the final model and avoid overfiting.

3.2 FuzzyDT

FuzzyDT is an algorithm to induce fuzzy decision trees based on the classic
C4.5.The first steps are the definition of fuzzy partitions in the continuous at-
tributes domains and the fuzzification of the attribute values. After that, the
tree induction process is applied to generate the fuzzy rules. Algorithm 3.2.1
presents the main steps of FuzzyDT [2].

Algorithm 3.2.1. The FUZZYDT algorithm [2]

1. Define the fuzzy data base, i.e., the fuzzy granulation for the domains of the
continuous features;
2. Replace the continuous attributes of the training set using the linguistic labels of
the fuzzy sets with highest compatibility with the input values;
3. Calculate the entropy and information gain of each feature to split the training
set and define the test nodes of the tree until all features are used or all training
examples are classified with the same class label;
4. Apply a pruning process.

3.3 Fuzzy Unordered Rule Induction Algorithm: FURIA

FURIA, the Fuzzy Unordered Rule Induction Algorithm, was proposed in [10]
as a modification and extension of the famous RIPPER algorithm.

The algorithm considers that a rule covers an example x = (x1, x2, ..., xn)
if, and only if, the value of the attribute xi satisfy all predicates of the rules
antecedent. Then, it orders the training examples according to the relative fre-
quency of classes, from the least to the most frequent class. So, it learns rules for
all classes, except for the last, which is the most frequent one. Once a rule is cre-
ated, the examples covered by it are removed from the set of training examples.
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The algorithm proceeds with the next class until there are no more examples
in the training set or the last created rule is too much complex, according to a
predefined measure.

Finally, RIPPER builds a default rule to the last class, which is the most
frequent one. Intuitively, creating a default rule could be questionable, since it
can privilege the most frequent class. One of the changes to this algorithm, that
originated FURIA, is concerned with this default rule.

The main difference between FURIA and RIPPER is that FURIA infers fuzzy
rules instead of crisp rules. Moreover, it does not order the training examples
to infer the rules. Consequently, FURIA does not build a default rule, using a
one-vs-rest decomposition to infer unordered rules.

When using an unordered rule set without default rule to classify a new in-
stance, two problems can occur: First, a conflict may occur when the instance is
equally well covered by rules from different classes. Second, it may happen that
the instance is not covered by any rule. The first problem is rather unlikely to
occur and, in case it still does, it is resolved by calculating the support of the
rules and classifying the new instance as the class that occurs in the consequent
of the rule which has higher support value. The second one is not so simple to
resolve. For this, in [10], Cohen proposes a rule stretching method. The idea
is to modify the rules in a local way so as to make them applicable to the in-
stance that is been classified. It is done by replacing the rules by their minimum
generalizations for the given instance. As proposed by [10], a generalization or
stretching of a rule is obtained by deleting one or more of its antecedents, and it
is minimal if it does not delete more antecedents than necessary to cover the in-
stance. Thus, the minimal generalization of a rule is simply obtained by deleting
all antecedents that are not satisfied by the instance.

Once all minimal generalizations are derived, FURIA re-evaluates each rule
by its Laplace accuracy on the training data and then classify the instance by
the rule with the highest evaluation.

4 Experiments

In this section we present the experiments developed, aiming to determine which
of the three methods cited above (FuzzyDT, C4.5 or FURIA) gives better results
for the soil classification problem.

The tests were performed using a real data set which instances were extracted
from Brazilian System of Soil Information [11] and from researches on soil profil-
ing, assigned by the Brazilian Institute of Geography and Statistics (IBGE) from
Santa Catarina and by the Center of Agroveterinary Science of State University
of Santa Catarina (CAV-UDESC).

To obtain the data set, a filter was applied to extract observations which
follow the characteristics below:

• Altitude: upper than or equals to 600 meters;
• Soil’s classes: Brown Latosol, Red Latosol , Red-yellow Latosol, Yellow
Latosol, Brown Nitosol, Haplic Nitosol, Humic Cambisol, Haplic Cambisol;
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• Location: from Paraná, Santa Catarina and Rio Grande do Sul states;
• Profile’s sub-horizon B with largest amount of data.

While selecting the data, some attributes were ignored because they are not
used neither to soils characterization nor classification.

Since there was only a small amount of observations from classes Red Latosol,
Red-yellow Latosol, Yellow Latosol, Haplic Nitosol, Humic Cambisol and Hap-
lic Cambisol, they were grouped into a single class which were named Other
Latosols, Nitosols and Cambisols (OLNC).

After the preprocessing, the remaning data included instances from three
possible classes:

(a) Brown Nitosol (BN)
(b) Brown Latosol (LB)
(c) Other Latosols, Nitosols e Cambisols (OLNC)

The characteristics of these soils were expressed by 25 attributes,described in
Table 1 by means of the name, the type (discrete or continuous), the number of
values in the case which the attribute is discrete and a brief descrition of each
attribute.

The tests were carried out by using 10-fold Cross Validation. For C4.5 and
FURIA algorithms, it was used the implementation of these algorithms available
in the software WEKA [16] and for FuzzyDT, our own Java implementation.
The parameters of the algorithms C4.5 and FURIA were maintained as the
default ones and FuzzyDTs data fuzzyfication was done using partitions with
three triangular fuzzy sets per attribute. The results, comprising the accuracy
and number of rules generated by each method, are shown in Table 2. The rules
format generated by each one of the algorithms are illustrated by the examples
presented in Table 3.

As can be seen in Table 2, FuzzyDT obtains the best result in terms of ac-
curacy, followed by FURIA and then C4.5. Concerning the number of rules,
FuzzyDT generates the worse result, with a higher number than the other two
methods. Although FURIA gives the lowest number of rules, the rules format do
not favor comprehensibility of the system as a whole. While in the rules gener-
ated by C4.5 and Fuzzy DT it is possible to clearly identify both, the attribute
which is been tested and its partition, with FURIA this recognition is not so
simple to be done. This is mainly because the attribute values are represented
by the parameters of trapezoidal membership function of its fuzzy sets. Besides
that, analyzing the rule base constructed by FURIA, we realize that a different
partition is generated for each attribute in each rule. This way, the fuzzy sets
generated by the algorithm do not have a semantic meaning shared by all rules
and the interpretability of the system is deteriorated.
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Table 1. Attribute’s characteristics

Attribute Discrete/Continuous Description

l texture Discrete 3 Level of texture of the soil.

l structure Discrete 3 Level of structure of the soil.
s structure Discrete 3 Structures size of the soil.

sh structure Discrete 5 Structures shape of the soil.

consistency moist Discrete 3 Level of consistency of the moist soil.

l plasticity Discrete 3 Level of plasticity of the soil.

l tackiness Discrete 3 Level of tackiness of the soil.

waxy Discrete 2
Presence or absence of waxy and shiny
appearance.

l waxy Discrete 4 Waxys level of the soil.
q waxy Discrete 4 Quantity of waxy of the soil.

l distinctness Discrete 4 Level of distinctness of the soil.

horizon A Discrete 4 Type of horizon A.

source material Discrete 7 Source material of the soil.
clay Continuous Clay content of the soil.

cxc clay Continuous Cation exchange capacity of the clay.

fine sand Continuous Fine sand content of the soil.
grit Continuous Grit content of the soil.

total sand Continuous Total sand content of the soil.

sulfuric attack SiO2 Continuous
Si by sulfuric acid attack expressed by
SiO2.

sulfuric attack Al2O3 Continuous
Al by sulfuric acid attack expressed by
Al2O3.

carbon nitrogen Continuous Carbon/Nitrogen.

Fe2O3 clay Continuous Fe2O3/Clay content.

Al2O3 clay Continuous Al2O3/Clay content.

SiO2 clay Continuous SiO2/Clay content.

Ki clay Continuous Ki/Clay content.

Table 2. Tests’ results to C4.5, FURIA and FuzzyDT algorithms

C4.5 FURIA FuzzyDT

Accuracy # of Rules Accuracy # of Rules Accuracy # of Rules

82.85 50 83.99 20 92.99 104

Table 3. Example of rules format generated by the three methods

Method Example of Rule

C4.5 grit ≤ 120 and SiO2 clay ≤ 0.088222: BN

FURIA
(source material = Sao Bento) and (sulfuric attack Al2O3 in
[−∞,−∞, 227, 232]) ≥ classe=OLNC

FuzzyDT IF source material IS 4 AND grit IS low THEN CLASS IS 3
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5 Conclusion

The best use of the different types of soil depends on a proper classification.
This is not an easy task since it implies very subjective expert opinions. Aiming
at solving this problem, we proposed and tested the use of a fuzzy decision tree
approach, named FuzzyDT to build a fuzzy classification system which deals
with the problem of soil classification. We compared the generated FuzzyDT
with two other classification systems, obtained from the algorithms C4.5 and
FURIA. Analysing the results, it is possible to observe that FuzzyDT reaches
the highest accuracy but generates the highest number of rules. In spite of that,,
its rules are interpretable, following the format of standard fuzzy rules. FURIA
and C4.5 obtained very similar results with respect to accuracy while FURIA
generates the lower number of rules. Nevertheless, it generates rules that are
not interpretable, once for each rule, a different partition for each attribute is
generated, which implies that the fuzzy sets generated by the algorithm are not
interpretable.

In the future work we intend to investigate techniques to be applied on the
set of fuzzy rules generated by FuzzyDT, to reduce the number of rules, while
still preserving the good accuracy obtained.
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Abstract. Nowadays, a huge amount of high resolution satellite images
are freely available. Such images allow researchers in environmental sci-
ences to study the different natural habitats and farming practices in a
remote way. However, satellite images content strongly depends on the
season of the acquisition. Due to the periodicity of natural and agricul-
tural dynamics throughout seasons, sequential patterns arise as a new
opportunity to model the behaviour of these environments. In this paper,
we describe some preliminary results obtained with a new framework for
studying spatiotemporal evolutions over natural and agricultural areas
using k-partite graphs and sequential patterns extracted from segmented
Landsat images.

Keywords: Temporal Patterns, Data Mining and Remote Sensing.

1 Introduction

Several regions over the earth are composed of complex landscapes with regard
to land cover and land use. Outside urban areas, we commonly observe mo-
saics of natural, semi-natural and agricultural areas. In Europe, mapping and
monitoring those areas became a major issue and several procedures have been
established for guiding and controlling such tasks. With regard to natural areas
we can cite the Habitats Directive (92/43/EEC) and the associated Natura 2000
network of protected sites. In this context, member states must report the con-
servation status of the habitats within their territory every six years [5]. Con-
cerning agriculture, Land Parcel Identification Systems (LPIS) emerged since
1992 (Council Reg. No 3508/1992). LPIS is used as a reference for annual decla-
ration by farmers, for administrative and cross-checks, and on the spot controls
(including control with remote sensing) [13].
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The detection of natural and agricultural areas from remote sensing data is a
key point for land cover mapping. Image classification is a widespread method
for mapping land cover. The overall objective is to categorize all pixels in an
image into land cover classes [9]. Usually, image classification is based on the
differential spectral response of land surfaces (radiance values recorded at pixel
level). However, most of classifications are based on single image and present
lot of bias in their results, or require extensive ground truth data in order to
attempt a high accuracy.

Temporal pattern recognition can furnish complementary information to fea-
ture identification. Actually, natural vegetation and agricultural crop present
distinct evolutions during phenological cycles and growing seasons. In that light,
multi-date imagery can enhance the pertinence and the accuracy of land cover de-
tection. Time series analysis comprises methods for analysing temporal data [12],
several images in our case, in order to extract meaningful statistics and other
characteristics of the data. Temporal data allows researchers to create a data
model for analysing past values and forecasting future ones [11]. Specifically, this
work is focus on natural and agricultural areas modelling over time. Sequential
pattern mining is the part of time series analysis concerned with finding statis-
tically relevant patterns between data examples where the values are delivered
in a different time moments [10].

Optical remote sensing, such as Landsat images are commonly used in envi-
ronmental researches. Image processing techniques are usually grouped in Pixel
based analysis or Object based image analysis (OBIA). Several time series pixel-
based approaches have been proposed, but OBIA studies rarely uses multi-
temporal data [12].

In this paper we combine OBIA with sequential pattern mining to create a
k-partite graph to represent natural and agricultural areas. Our approach starts
segmenting multi-date satellite images over a same area. From these segmen-
tations, a k-partite graph is built considering objects as nodes and represent-
ing object image overlap as edges. Later, in order to determine the optimum
bounding box of each object and study its dynamics, we propose the creation of
k-partite subgraphs. Finally, subgraphs are supplied to an expert in order to be
categorized.

1.1 Paper Organisation

This paper is organised as follows: Firstly, we introduce some concepts about
optical remote sensing in Section 2. Section 3 describes k-partite graphs and
sequential pattern representation. Our technique to maximise image coverage is
introduced in Section 4. Experimental findings about agricultural and natural
areas are depicted in Section 5. Section 6 concludes and draws future works.

2 Remote Sensing Satellite Images

In general we talk about remote sensing when the acquisition of data is done
without making any physical contact. This is the case of Earth observation plat-
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forms such as Landsat. The optical sensors onboard Landsat acquires multispec-
tral images (composed by multiple bands), each band representing a portion of
the electro-magnetic spectrum. For this study, we used Landsat Thematic Map-
per (TM) images without the thermal band. Remote sensing images are usually
characterized by different resolutions and other technical characteristics, in our
case they are as follows:

– Spatial Resolution. The size of a pixel in a raster image is 30x30 meters.
– Spectral Resolution. The spectral bands are six: blue, green, red, near

infrared (NIR) and two parts of short wavelength infrared (SWIR-1 and 2).
– Radiometric Resolution. The sensor is able to distinguish is 256 intensi-

ties of radiation (8 bits).
– Swath Width. The scene size is a ground square of about 185 x 185 km.

Apart from these parameters another important issue in time-series studies is
the frequency of revisits by the satellite. The revisit time of Landsat is of 16 days,
but in practice the number of useful images is lower, mostly due to unsuitable
whether conditions during satellite acquisition. For this study, we selected six
images covering of the same geographic area (the Natura 2000 Lower Aude Valley
site, located in south of France) between February and September 2009.

To avoid errors and misplacement over time, all images were already georef-
erenced, as well as radiometrically and atmospherically corrected by CESBIO-
CNES [6]. Additional fine spatial positioning corrections were applied in order
to keep the spatial shift between all the time stamps less than one pixel.

2.1 Segmentation

Image segmentation is a fundamental step in OBIA and its consists in merging
pixels into objects clusters [3]. Objects (or segments) are regions generated by
one or more criteria of homogeneity in one or more dimensions of a feature
space [4]. The aim of segmentation is to create a new representation of the
image more meaningful and easier to analyse. This approach is similar to human
visual interpretation of digital images, which works at multiple scales and uses
colour, shape, size, texture, pattern and context information [9].

Image segmentation results in a set of objects that collectively cover the entire
image without any overlapping. With respect to the homogeneity criteria, adja-
cent objects are expected to be significantly different between them. In this work
we use the software eCognition Developer 8.8.1 for image segmentation (multires-
olution segmentation algorithm). Only the pixels within the boundaries of the
Lower Aude Valley Natura 2000 site (4,842 ha) were used for segmentation and
further processing steps. Nine raster layers (radiometric or ’colour’ information)
were used simultaneously for image segmentation. Six of them correspond to
the Landsat spectral bands and the other are spectral indices. Spectral indices
are commonly used in remote sensing as they can be helpful for detecting and
characterizing some specific features, like vegetation, soil, water, etc. We used
the Normalized Difference Vegetation Index (NDVI) [8], the Normalized Differ-
ence Water Index (NDWI) [7] and the Visible and Shortwave Infrared Drought
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Fig. 1. Segmentation example representing the time stamp of 10 July 2009

Index (VSDI) [14]. In order to obtain objects of interest related to natural and
agricultural areas, we conceived a segmentation rule-set composed of 3 main
steps:

1. Medium-coarse segmentation to delineate general zones (colour and shape
components combined but “color > shape”): about 170-200 objects

2. Very fine segmentation focused on colour component: about 6,000 objects
3. Medium-fine segmentation with balanced weights for colour and shape com-

ponents: about 500-600 objects

This process was independently applied for each Landsat image. The last
segmentation level (3) was then exported from each time-stamp and used as
input for the subsequent processing steps. Figure 1 illustrates the segmentation
layer obtained for the time stamp of 10 July 2009.

3 Sequential Patterns and k-partite Graphs

This section describes the traditional sequential pattern mining problem and
high-lights the need for a specific way to handle remote sensing temporal infor-
mation by using k-partite graphs.

3.1 k-partite Graphs

A k-partite graph is a graph G = (V,E) with vertex set V and edge set E,
whose graph vertices V can be partitioned into k disjoint sets Vk so that no two
vertices within the same set are adjacent. In this work, we assume that any edge
eij has a weigh equal to wij where i and j correspond to two vertexes vi ∈ Vi
and vj ∈ Vj in two consecutive sets (layers).
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3.2 Sequential Patterns

Sequential patterns were introduced in [2] and in general, they are considered as
an extension of the concept of frequent itemset [1] having timestamps associated
to items. Sequential pattern mining aims at extracting sets of items commonly
associated over time.

The problem of generating and mining sequential patterns as a n-bipartite
graph is defined as follows.

Let X be a set of distinct items. An itemset is a subset of items, denoted
by I = (i1, i2, . . . , in), for 1 ≤ j ≤ n, ij ∈ X . A k-partite graph is built as an
ordered list of itemsets, denoted by 〈I1, I2, . . . , Ik〉, where Ii ∈ X for 1 ≤ i ≤ n
and correspond with each Vi nodes set.

Once graph nodes are defined, it is required to define the edges and their corre-
sponding weights. To do that, a function f(Ii, Ij) = wij is defined, if f(Ii, Ij) < 0
it means that there is one edge between a pair of nodes vi and Vj with weight
equal to wij .

3.3 Representation of Natural and Agricultural Areas

In order to represent natural and agricultural area evolutions over time, it is
proposed to create a sequential pattern by using a k-partite graph representation
in the following way:

1. Segmented images are the different itemsets 〈I1, I2, . . . , Ik〉, note that, the
image timestamp provide us the temporal information for creating the dif-
ferent nodes sets and therefore the k-partite graph.

2. Objects extracted from the segmented images allow us to generate the items
il of each itemset Ij .

3. To create the edges, the function f(Ii, Ij) = |pil ∩ pil+1
|/|pil ∪ pil+1

| is cal-
culated, where pil stands for the list of pixels of the item il.

Within this global k-partite graph, it is possible to extract a concrete area
of interest evolution creating a sub-graph chosen one or more items. All this
process is illustrated in Figure 2.

4 Coverage Algorithm

In this paper we have implemented the following algorithm to (completely) cover
one region of interest with sequential patterns: firstly, we detect the previously
unprocessed areas of the image where frequent changes in the pixel values are
produced. After that, we select from the first image the objects included in
the previously selected image area. Later, we generate a sequential pattern and
mark this part of the image as processed and recompute object variability. The
algorithm stops when the region of interest has been completely processed.

Specifically, we implemented the above coverage algorithm as it is described
in Algorithm 1. Firstly, we create a bounding box list containing all the objects
of all the images (lines 2-5), at the same time, we compute the variability of
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Fig. 2. Overall Sequential Patterns Extraction Process

Algorithm 1. BoundingBox Selection
Data: g: main graph
Result: p: patterns list

1 begin
2 bbList = new BBList;
3 foreach layer l ∈ g do
4 foreach node n ∈ l do
5 bb = new bb(n, l, importance(n));
6 bbList = bbList ∪ bb;

7 while !empty(bbList) do
/* 1. Find the corresponding objects in Layer 0 for the most important bounding box */

8 box = bbList.MostImportant();
9 n0 = g.getNodesByBB(0, box);

/* 2. Create the pattern for the selected object with the selected bounding box computing the overlap always

with the selected nodes in Layer 0 */

10 p = p ∪ newPattern(n0, box);
/* 3. Remove all the objects contained in the patterns from the importance of the BB */

11 bbList.updateImportance(p);

each bounding box (object). Bounding box importance is the amount of other
objects overlapping with at least one pixel with the current bounding box, this
computation is described in Algorithm 2.

Once the bounding box list is created, all objects are ranked with regards their
importance. The importance of a bounding box corresponds with the number of
objects in any layer overlapping with at least one pixel with the bounding box.
After that, the most important bounding box is selected (line 7) and recover the
objects overlapping with such bounding box in the first image (line 8). Then, a
new pattern is generated as it is described in Section 3.2 (line 9). After that, we
update bounding boxes importance, subtracting the processed objects from the
importance of each bounding box, if bounding box importance is equal to 0, it
is removed from the list (Algorithm 3). This loop is repeated until the bounding
box list is empty.
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Algorithm 2. Importance
Data: g: main graph, b:bounding box
Result: i: importance

1 begin
2 i = 0;
3 foreach layer l ∈ g do
4 foreach node n ∈ l do

/* if one pixel of node n overlaps

with g */

5 if n.overlap(b) then
6 i + +;

Algorithm 3. Updateimportance
Data: p: pattern
Result: bb:bounding box list

1 begin
2 foreach boundingBox b ∈ bb do
3 foreach layer l ∈ p do
4 foreach node n ∈ l do

/* if one pixel of node n

overlaps with b */

5 if n.overlap(b) then
6 b.i − −;

7 if b.i == 0) then
8 bb.remove(b);

Figure 3 shows the obtained coverage within the perimeter of our study area.
Each polygon represents the spatial extent of a specific bounding box, what
means that the associated pattern has a bigger spatial coverage taking into
account all temporal layers. Polygon color indicates from which time stamp the
bounding box was extracted (as assigned on the legend). In total 331 bounding
box were selected (about 50 - 60 per timestamp), it corresponds to an overall
coverage of 93.56% of the study area.

0 5 km 
Mediterranean Sea

0 5 km
Mediterranean Sea

Selected bounding box  
Colour represents time 
stamp as follows: 

 T0 

 T1 

 T2 

 T3 

 T4 

 T5 

Fig. 3. Obtained spatial coverage

5 Experiments

In order to evaluate the pertinence of our approach, graphical results were an-
alyzed by a remote sensing expert with field knowledge of the study area. For
this analysis, all subgraphs (331 in total) were plotted with an associated unique
ID allowing to locate each bounding box in an Geographic Information System
(GIS). The expert preselected (without taking into account subgraph results)
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about 20 regions of interest (ROI) containing both natural and agricultural ar-
eas. Then, the subgraphs corresponding to this set of ROI were identified and an-
alyzed. The following subsection details the main differences between the graphs
representing spatio-temporal evolutions of agricultural and natural areas within
our study area.

5.1 Pattern Analysis Examples

Agricultural Area. In general, agricultural areas present less complex sub-
graphs as the fields are usually rectangular and the boundaries of the objects
remain very similar from one time stamp to the next one. Even if subgraph
structure is quite simple (i.e. Figure 4 - subgraph 1), radiometric information
varies sharply throughout the time series. Subgraph 1 (Figure 4) illustrates the
temporal pattern of a winter culture (cereal crop in this example). The parcel
presents an important augmentation of the NDVI from late winter up to spring,
which corresponds to the growing season. The crop is harvest in late spring
or early summer, generating a brutal change in the spectral response (between
T2 and T3). Afterwards, the field is characterized by bare soil, which remains
globally stable until the end of the time series.

T0

T1

T2

T3

T4

T5

183

212

264

264 269

248 266

190 227245 229

87 53 62 50 71

68

41 5071 7687 94 100

62 100 9894 103 11572 89

75 91 98107

74 8789 10153

subgraph 1 subgraph 2

Fig. 4. Temporal Pattern examples: Agricultural area (subgraph 1) and Natural area
(subgraph 2)
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Natural Area. In natural areas the boundaries are usually much smoother
than in agricultural fields and the objects rarely have rectangular shapes. As a
consequence, graph structure tends to be more complex and can englobe several
objects per layer. Such kind of graph can also show some drastic radiometric
changes, but in general it concerns only a small portion of the area covered by
the bounding box. In other words, natural habitats are characterized by more
gradual and smoothed evolutions. Subgraph 2 of figure 4 illustrates the temporal
pattern of a temporary lake. Usually flooded during winter and spring, this lake
becomes progressively dry starting from early summer. Aquatic natural habitat
is gradually replaced by some pioneer terrestrial communities, dominated by
annual Salicornia sp. or Suaeda sp. Depending mainly on the local variations of
soil salinity, the vegetation will cover the former flooded area in different ways.
First developments of such particular habitats can be detected since T2 and they
should subsist up to the next flood event (usually during late autumn or winter).

5.2 Discussion

Throughout one year, spatio-temporal evolutions of agricultural and natural ar-
eas are enough dissimilar and it is possible to an expert to separate them by
analysing the time series of satellite images. In a more automatic way, the sub-
graphs generated by our approach synthesizes complex spatio-temporal evolu-
tions and can be useful for this kind of time-consuming task. Actually, subgraph
structure associated to temporal behaviour of object’s radiometry provides com-
plementary and pertinent information allowing detailed analysis.

At this stage, our coverage algorithm is not able to cover 100% of the study
area throughout the time series. Most of times, small objects are not included
in the subgraphs. However, this issue should be improved as the spatial gaps
concerns sometimes also medium-size objects representing interesting natural or
agricultural areas. Another point to improve is spatial redundancy. We verified
that some subgraphs presents high rates of similar objects, what means that the
same area is covered by more than one subgraph. Improving the bounding box
selection should reduce such spatial redundancy.

6 Conclusions

In this paper we have described a complete framework for studying evolving
natural and agricultural areas using satellite images information and k-partite
graph sequential patterns. We have shown that using our approach is possible to
cover a great part of the study area (93.56%) and to analyze in detail a concrete
region of interest. We have also verified with one domain expert that the obtained
sequential patterns are meaningful. As a future work, we would like to develop
some clustering algorithms for k-partite graphs to help the expert to post-process
the results providing some groups of patterns with similar behaviour, instead of
individuals patterns without relation among them.
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Abstract. In many applications, data are often imperfect, incomplete or more
generally uncertain. This imperfection has to be integrated into the learning pro-
cess as an information in itself. The E2M decision trees is a methodology that
provides predictions from uncertain data modelled by belief functions. In this
paper, the problem of rubber quality prediction is presented with a belief func-
tion modelling of some data uncertainties. Some resulting E2M decision trees are
presented in order to improve the interpretation of the tree compared to standard
decision trees.

Keywords: classification, decision trees, rubber quality, hevea, belief functions,
algorithm EM.

1 Introduction

Learning a classifier from uncertain data necessitates an adequate modelling of this
uncertainty, however learning with uncertain data is rarely straightforward. As data un-
certainty is of epistemic nature, the standard probabilistic framework is not necessarily
the best framework to deal with it. More general frameworks have therefore been pro-
posed [1–3] that provide more adequate model for this type of uncertainty. Different
classifier learning techniques [4–6] using these models have then been developed.

In this paper, our goal is to learn a model from agronomic data. More precisely,
we want to predict natural rubber quality from data concerning latex culture and natu-
ral rubber maturation. Generally speaking, uncertain measurements and expert assess-
ments are common in agronomy and life science, mainly due to field and economy
constraints. They are therefore domains where data uncertainty happens a lot. We re-
tain the belief-function theory [2, 7], as it is flexible enough to model a large variety of
data uncertainties. The chosen classifier is the E2M decision tree [8], for it is usually
efficient and interpretable (an essential feature for agronomic experts).

After a short overview on the necessary background in Section 2, we detail in Sec-
tion 3 the application context as well as the uncertainty models we used. We conclude
Section 3 by comparing the results of the obtained E2M decision trees with classical
ones.
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2 Background

We briefly recall the elements needed in the application.

2.1 Formalism

As in any classification problem, the aim is to predict a class label Y from a set of
attributes (or features) X . The classifier is learnt on a learning dataset LD containing
samples of (X ,Y ). The classifier is then evaluated by measuring its accuracy on a test
dataset T D, comparing the predicted class labels with the real ones.

The attributes X = (X1, . . . ,XJ) take their values on ΩX = ΩX1×·· ·×ΩXJ , the class
Y on ΩY = {ω1, . . . ,ωK}. That is, K different classes are predicted using J different
attributes (either categorical or real-valued).

A precise dataset containing N samples is a set of observations of (X ,Y ) and is
denoted by

D =

⎛⎜⎝ x1,y1
...

xN ,yN

⎞⎟⎠=

⎛⎜⎝ x1
1, . . . ,x

J
1,y1

...
x1

N , . . . ,x
J
N ,yN

⎞⎟⎠ .
Samples are here assumed to be i.i.d (independant and identically distributed).

2.2 Belief-Function Theory

The theory of belief functions (TBF), also called evidence theory or Dempster-Shafer
theory was first presented by Dempster [2] in a statistical approach. The very basis of
the T BF is here presented, with a special focus on the evidential likelihood proposed
by Denoeux [9].

Generalities. Assume we have an uncertain observation of a variable W defined on a
finite space ΩW . We model this observation by a belief mass mW : 2ΩW → [0,1] verifying
∑B∈2ΩW mW (B) = 1. We assume here that mW ( /0) = 0. A focal element A ∈ 2ΩW is a set
such that mW (A) > 0. From this mass, the belief and plausibility functions are defined
by:

BelW (A) = ∑
B⊆A

mW (B), PlW (A) = ∑
B∩A �= /0

mW (B)

BelW (A) measures the amount of information that implies W ∈ A, and is a measure of
certainty, while PlW (A) measures the amount of information that does not conflict with
W ∈ A, and is a measure of plausibility. We naturally have BelW (A)≤ PlW (A) with the
two being equal in the specific case of probabilities.
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The particular cases of precise data, imprecise data, missing data, probabilities and
possibilities can all be modelled by belief functions:

precise data : mW ({w}) = 1

imprecise data : mW (A) = 1

missing data : mW (ΩW ) = 1 (complete ignorance)

probabilities : mW (A)> 0 if |A|= 1

consonnant mass functions : mW (A)> 0 and mW (B)> 0 only if A⊂ B or B⊂ A

In our classification context, an evidential dataset ED will be of the form

ED = mX ,Y =

⎛⎜⎝mX ,Y
1
...

mX ,Y
N

⎞⎟⎠=

⎛⎜⎝mX1

1 · · · mXJ

1 mY
1

...
. . .

...
...

mX1

N · · · mXJ

N mY
N

⎞⎟⎠
where mX ,Y

i describes the ith sample with its uncertainty.

Evidential Likelihood. Assume now we want to fit a parametric model with param-
eter θ to the data. Likelihood maximisation often provides a good estimator θ̂ of the
unknown parameter θ . When data are uncertain, the likelihood can be re-written in the
following way:

precise likelihood: L(θ ;w) = Pθ (W = w)

imprecise likelihood: L(θ ;A) = ∑
w∈A

L(θ ;w) (1)

evidential likelihood: L(θ ;mW ) = ∑
A⊆ΩW

mW (Ai)L(θ ;Ai)

As shown in [9], this evidential likelihood can be maximised by the adaptation of the
EM algorithm to belief functions: the E2M algorithm. This algorithm is quite similar to
the EM and is guaranteed to converge towards a local maximum. The main difference
is at the Expectation step (E), where the measure used to compute the expectation is the
conjunctive combination of Pθ and mW .

2.3 Decision Trees

Decision trees are basic classifiers widely used in many areas such as machine learning,
statistics, data mining etc. They are usually built from precise datasets by partitioning
the attribute space in a set of leaves, each leave being thus attached to some conditions
on the attribute values and to a predicted class.

As each leave is characterized by the proportion of the population ”falling” into it as
well as the frequencies of the class within this population, a decision tree can be viewed
as a multinomial mixture whose parameters are the leaves probabilities (corresponding
to the mixture coefficients) and the class probabilities inside the leaves (multinomial).
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Example 1. Let us consider a data set with N = 12 data items, J = 2 attributes and
K = 3 classes. Spaces are described as follows:

ΩX1 = [1,10], ΩX2 = [13,150], ΩY = {a,b,c}.

X1

y = a

X1 < 3

X2

y = b

X2 < 45

y = c

X2 ≥ 45

X1 ≥ 3

t1

t2 t3

Fig. 1. Decision tree illustration

X2

X1

3

45

a b a

a a c

a

b b

c

c c

t1

t2 t3

Fig. 2. Partitioned attribute space

Figures 1 and 2 respectively represent a possible decision tree and its corresponding
partition of the attribute space with the learning dataset represented in it. To leaf t2 are
associated the values A1

2×A2
2 = [3,10]× [13,45[, its estimated probability is 3/12 and

the class estimated probabilities are (1/3, 2/3, 0), and the prediction for any test data item
in t2 (for example, x1 = 6 and x2 = 30) will be y = b.

The growing of a decision tree is recursive, and aims at separating classes inside
leaves. This separation is usually measured by an impurity measure i computed from
the leaves probabilities and the class distributions inside leaves. From a root node con-
taining all the samples of the learning dataset, all possible splits (on all attributes and for
all values) are explored, and the one with the highest purity gain (i.e., highest impurity
reduction) is chosen. Then, for each newly created leave and the sample ”falling” into
it, the process is iterated until some stopping criteria is reached.

2.4 The E2M Decision Trees

To learn decision trees from uncertain data (where potentially both attributes and classes
can be uncertain), we proposed [8] to learn the multinomial mixture of the tree through
the E2M algorithm. Périnel [10] proposed a similar idea, yet only dealt with uncertain
attributes and probabilistic data. We refer to [8] for technical details about the learning
process of E2M decision trees, as well as for some experiments on benchmark data
comparing E2M and CART decision trees and showing the potential interest of E2M
decision trees in terms of accuracy in noisy environments.

3 Application: The Rubber Quality Problem

We first present the application and two uncertainty models we used on the data, before
showing some interesting results. Note that the uncertainty models could be re-used in
similar situations.
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3.1 Problem Description

Natural rubber is the result of a milky fluid transformation: the latex that is extracted
from the hevea tree. Compared to synthetic rubber, natural rubber presents some unique
physical properties but suffers from a pretty high variability in terms of quality, that
experts are not fully able to explain and to control.

In order to better control this quality, one of the biggest rubber company has put
some effort to study this variability in one of its plantations by collecting cultural data.
This plantation is located in a part of Brazil where the climate has the particularity to
be more variable than in the rest of Brazil (the natural origin of the hevea tree is in
the Brazilian forests). However, due to the size of the plantation (approximatively 70
hectars) and various factors (e.g., untracked delay of collection/process due to weather
conditions, tanks mixing productions of many parcels), some variables are subject to
high uncertainties.

Data are constituted of many variables summarised in Table 1 (no Unit means a
dimensionless variable). Meteorological data may influence the latex during three dif-
ferent periods: the latex fabrication by the tree (one week before tapping), the tapping
day during which latex is collected, and the latex maturation in tanks (five days). For
the temperature and the relative humidity, the minimum, median and maximum values
are computed for each day.

The data set contains 3053 examples described by 106 attributes. The quality is mea-
sured by the P30 index which is an elasticity index. In order to use the E2M decision
trees methodology, the P30 was discretised into 5 equiprobable classes. This discretisa-
tion is presented in Table 2.

3.2 Data Uncertainty Modelling

Two types of uncertainty were modelled in this application: one relative to the rainfall,
and one due to parcel mixture in tanks.

Rainfall Uncertainty. The rain is a phenomenon that is geographically very variable,
especially in tropical areas. In the plantation, all the rain data come from a single mete-
orological station located inside the plantation. Since the plantation area is very large,
it is sensible to make the hypothesis that the farther is located a parcel in the plantation
from the meteorological station, the more uncertain is its rainfall data. This uncertainty
is non-probabilistic and progressive, so we chose to model it with a consonant mass
function. Moreover, as more rainfall implies more uncertainty, it is logical to assume
that imprecision of focal elements increases multiplicatively (i.e. more rainfall mea-
sured by the station implies wider focal elements).

To keep the complexity of the uncertainty reasonable, we limited the mass to five
focal elements of the form: [w(1− δ ),w(1+ δ )] where w is the original precise rain-
fall data and where δ ∈ Δ = {0,0.25,0.5,0.75,1}. The proposed model is easy to ex-
pand to more than five focal elements and can therefore accommodate various levels
of complexity (depending on the available computational power and on possible time
constraints).
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Table 1. Variables characteristics

variable type category unit
period categorical agronomical
season categorical climatic
weight numerical agronomical kg

X (latitude) numerical geographical km
Y (longitude) numerical geographical km

clone categorical agronomical
panel categorical agronomical

tapping system categorical agronomical
surface numerical agronomical hectar

planting year numerical agronomical year
first tapping year numerical agronomical year

tapping age numerical agronomical year
annual number of tapped trees numerical agronomical

tapped tree per hectar numerical agronomical
temperature numerical climatic celcius degrees

relative humidity numerical climatic
sun hours numerical climatic hours
rainfall numerical climatic mm

P30 numerical agronomical

Table 2. P30 discretisation

class labels P30 range
very bad [1.87 ; 14.7[

bad [14.7 ; 21.6[
medium [21.6 ; 27.4[

good [27.4 ; 32.9[
very good [32.9 ; 49.5[

We define a function g : [0,dmax]×Δ → [0,1] (dmax being the maximal distance be-
tween a location of interest and the measurement station) such that the rainfall w of
a parcel located at a distance d from the meteorological is characterized by g(d,δ ) =
mW ([w(1− δ ),w(1+ δ )]) for all δ ∈ Δ .

We distinguish two types of focal elements, the most precise ones (δ < 0.5), and the
most imprecise ones (δ ≥ 0.5). In the first case (precise ones), we assume that the farther
was the parcel from the meteorological station (d increasing), the smaller had to be the
masses assigned to those focal elements. In the second, we want to assign bigger masses
to the farther parcels. Such assumptions can be translated in the following constraints:{

δ < 0.5 → ∂g
∂d < 0

δ ≥ 0.5 → ∂g
∂d > 0

(2)
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that merely translate the assumption into derivative behaviors. As function g is used to
define mass functions, we must add the following constraints

∀(d,δ ) ∈ [0,dmax]×Δ , g(d,δ )≥ 0 (3)

∀d ∈ [0,dmax], ∑
δ∈Δ

g(d,δ ) = 1 (4)

that simply ensure one that the obtained mass functions will be well-defined, i.e. that it
will be positive (constraint (3)) and will sum up to one (constraint (4)).

One simple solution of this problem is to use two linear functions, one increasing for
the most precise focal elements (δ < 0.5) and one decreasing for the most imprecise
ones (δ ≥ 0.5), and to use a convex sum of those two functions. We obtain:

g(d,δ ) = δ (
2d

5dmax
)+ (1− δ )(

2
5
− 2d

5dmax
) (5)

Example 2. Consider three rainfall measurements w1 = 0, w2 = 10 and w3 = 30 from
the station, and for each of these measurements some corresponding parcels of interest
respectively distant of 20km, 50km and 2km from the station. Assuming that dmax = 80,
we obtain mw1({0}) = 1, given the multiplicative uncertainty, and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mw2({10}) = 0.15
mw2([7.5,12.5]) = 0.175

mw2([5,15]) = 0.200
mw2([2.5,17.5]) = 0.225

mw2([0,20]) = 0.250

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mw3({30}) = 0.39

mw3([22.5,37.5]) = 0.295
mw3([15,45]) = 0.2

mw3([7.5,52.5]) = 0.105
mw3([0,60]) = 0.01.

The absence of rain is thus considered certain (mw1 ) whereas positive rainfall data
masses are concentrated on imprecise focal elements when coming from distant parcels
(mw2 ) and on more precise ones when coming from parcels close from the meteorolog-
ical station (mw3).

Parcelar Mixtures Uncertainty. During the harvest, the latex coming from many
parcels is usually mixed in some tank. All the parcel variables (i.e., most agronomi-
cal variables of Table 1) we have are therefore subject to uncertainty as the amount of
latex coming from each parcel in tanks is not tracked. During a pre-treatment of the
data, we therefore split all those parcel variables into rough and uncertain proportions
(due to latex production high variability) computed from the weight of latex produced
annually by each parcel (shifting from 18 original attributes to 106, with all the split
ones being in range [0,1]).

For example, if 25% of a tank content comes from clone A parcels and 75% from
clone B parcels, the actual amount of clones A and B latex in the tank may be quite
different, as each clone has variable production capacities (that may depend differently
on the weather, soil conditions, etc.). We model this uncertainty such that the more
balanced are the parcel proportions in a tank, the more uncertain become those propor-
tions: proportions of a tank with latex from only one pure parcel should remain certain,
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while proportions of a tank with equal amounts of latex coming from different parcels
should be maximally uncertain.

To do that we used simple intervals around computed crisp proportions, with the in-
terval width increasing as proportions become uniform. To measure this uniformity we
simply used the Shannon entropy denoted ent computed on the set of parcel proportions
of the tanks. The obtained model is the following: for each parcel variable X j having r
modalities with the positive proportions {p1, . . . , pr},⎧⎪⎪⎨⎪⎪⎩

m j1([max(p1− ent(p1,...,pr)
r ,0),min(p1 +

ent(p1,...,pr)
r ,1)]) = 1

...

m jr([max(pr− ent(p1,...,pr)
r ,0),min(pr +

ent(p1,...,pr)
r ,1)]) = 1

(6)

with m ji modelling the uncertainty about the jith proportion.

Example 3. Let us consider a tank containing 75% of clone A and 25% of clone B. The
entropy on those proportions is equal to 0.8113. The obtained masses are therefore{

mclone A([34.43%,100%]) = 1
mclone B([0%,65.57%]) = 1

3.3 Experiments

In order to see the consequences of integrating data uncertainty the way we described in
Section 3.2, we perform some experiments comparing standard CART trees and E2M
trees on the original precise dataset and its corresponding evidential dataset obtained
with our uncertainty models, respectively.

For both methodologies, the stopping criteria is a maximum of 5 leaves (to preserve a
high interpretability) and a relative purity gain of 0.05.The error rates were computed as
the proportion of misclassified examples in the test dataset. Their means were computed
from ten 3-fold cross validations. It is noticeable that we used standard (precise error
rates) even for the E2M decision trees for comparison purposes. Given the small tree
size, no pruning is done.

Table 3. Results

methodology mean error rates 95% confidence interval
CART 0.6607 [0.6314 ; 0.6900]
E2M 0.6560 [0.6266 ; 0.6854]

As shown in Table 3, the accuracies of the two methodologies are quite similar, even
if the E2M accuracy is slightly better. Let us now shift to the main interesting part for
the experts (and hence for the application goal): the interpretation of the trees.
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3.4 Interpretation

In a pure knowledge discovery concern, we learnt CART and E2M decision trees on
the whole dataset in order to compare the informations they provide about the natural
rubber quality explanation. Within such a goal, it should also be noted that integrating
data uncertainty makes the result somehow more faithful to our actual information (and
therefore more reliable for the experts). The learning parameters were exactly the same
as in Section 3.3.

Month

very good clone PR255

very bad

< 80%

UR min matur

Temp med tapping

good

< 20.4

medium

≥ 20.4

< 36.9

very good

≥ 36.9

≥ 80%

Mar to AugSept to Feb

Fig. 3. CART decision tree

Month

very good

Sept to Febr

# tapped trees per Ha

Temp min matur

clone PR255

very bad

< 45%

good

≥ 45%

< 16.2

good

≥ 16.2

< 415

very bad

≥ 415

Mar to Aug

Fig. 4. E2M decision tree

In Figures 3 and 4 that show the learning results, UR min matur is the minimum of
relative humidity during the maturation of the latex in buckets, Temp med (resp. min)
tapping is the medium (resp. minimum) temperature during the tapping day, # of tapped
tree per Ha is the number of tapped trees per hectare.

As shown in those figures, integrating data uncertainty makes the number of tapped
trees per hectare appear in the tree. Not only the E2M decision tree suggests a high re-
lation between quality and productivity, but it also provides a density acceptable bound
inside the plantation. According to the experts, this issue points out the potential need
to investigate further this path. We can also notice that this data uncertainty lessen the
role of clone PR255 proportion in the rubber quality explanation.

4 Discussion

In the rubber application, the prediction results from CART and E2M decision trees do
not seem very different in term of accuracy (even if E2M has a slight advantage), but the
interpretation of the trees can be quite different; this latter interpretation being as im-
portant as accuracy in many applications. Indeed, we observe that some variables may
play a significant role in rubber quality explanation once their uncertainty is modelled
(here by belief functions). Modelling uncertainty also provides more trustful results for
the experts.
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Perspectives concerning the application include the modelling of additional uncer-
tainties (in particular with respect to the tapping day) as well as additional studies in-
volving more variables (e.g., tree diseases, soil conditions) or other prediction goal (e.g.,
quantity of production, which is also important from an economical viewpoint).

Finally, as the uncertainty models we have introduced may be useful in other areas
(particularly the distance-based model of rainfall), we plan to generalize them and study
in more details their properties.

Acknowledgments. This work has been done thanks to CIRAD fundings and LASB
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Abstract. This paper deals with an interval programming approach for
an operational transportation problem, arising in a typical agricultural
cooperative during the crop harvest time. More specifically, an interval
programming model with uncertain coefficients occurred in the right-
hand side and the objective function is developed for a single-period
multi-trip planning of a heterogeneous fleet of vehicles, while satisfying
the stochastic seed storage requests, represented as interval numbers.
The proposed single-period interval programming model is conceived and
implemented for a real life agricultural cooperative case study.

Keywords: interval linear programming, single-period multi-trip trans-
portation planning problem, OR in agriculture.

1 Introduction

Gathering the harvest is considered one of the most crucial activity in agricul-
tural environment for both cooperatives and individual farmers, in terms of the
high costs involved and the vulnerability to weather conditions. Logistics and
transportation activities constitute an inherent and primordial component of the
agricultural cooperative system [2,5].

In most cases, farmers deliver their harvest to the nearest storage facility. For
the sake of proximity storage availability, the cooperative forwards received cere-
als from buffer silos to expedition ones. Hence, new crop quantities are received
as time progresses, which leads require planning the transfer and transportation
of stored seed products.

Satisfaction of farmers’ grain storage requests and high level reception service
represent the main priority of the agricultural cooperatives during the harvest
season. Quantities to be received at each storage facility are ordinarily unknown.
In this regard, the case study cooperative has only an approximate information
based-on prediction of the daily farmers’ crop delivery quantities, represented as
interval numbers.
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The purpose of this paper is to present a single-period multi-trip transporta-
tion planning application, modelled as a linear programming model with interval
objective function and right-hand side constraints. It was motivated by a real
case study encountered at a typical French agricultural cooperative.

The remainder of this paper is structured as follows: in the next section, a
review of literature related to the interval programming research and applications
is provided. The problem statement and modelling is presented in Section 3.
After that, in Section 4, the solution method is exposed. In Section 5, several
computational experiments are reported and discussed. Finally, in Section 6,
overall remarks are drawn and topics for future research are outlined.

2 Literature Review

The conjecture of many real life problems presupposes miscellaneous types of un-
certainties ([14],[23]). Classical mathematical programming models, nonetheless,
only cope with deterministic values of problem input data. With the requirement
of tackling non-deterministic data, appropriate techniques have been developed
to suit various purposes and for different features of the stochastic data repre-
sentation: probabilistic, possibilistic, and/or interval formats.

For decision-making problems considering uncertainty, the stochastic linear
programming models touch effectively upon various random data with known
probability distributions [12,22]. On this topic, the simple recourse model (a
type of two-stage or multi-stage stochastic programming) consists in optimizing
the expected objective function subject to some expected constraints [20]. Inte-
grated chance-constrained programming is another approach in which solutions
are feasible for a discrete set of probabilistic scenarios and all soft constraints
are satisfied simultaneously with a given confidence level [8,18]. In turn, de-
pendent chance-constrained programming pertains to maximizing some chance
functions of events defined on stochastic sets in a complex uncertain decision
system [16,15]. In fuzzy linear programming, the constraints and the objective
function are regarded as fuzzy sets and their membership functions are assumed
to be known.

Nevertheless, it turns out to be often difficult to specify a relevant membership
function or an appropriate probability distribution in an stochastic environment
[21,11]. In the last two decades, many theoretical studies have been focused
on solving interval linear programming problems, in which the bounds on the
uncertain data variation are required, without insisting on their probability dis-
tributions or membership functions. The interval analysis method was pioneered
by Moore in 1959 as a tool for automatic control of the errors in a computed
results [24].

Interval programming models where only the coefficients of the objective func-
tion are random and represented in interval format, are studied in [10,1,3,13]. Re-
lated to this matter, min-max regret optimization approach is usually employed,
where different criteria that can be optimized, are distinguished: worst-case, best-
case, worst-case relative regret, worst-case absolute regret and maximum regret
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criteria, respectively. In this context two kinds of optimality (i.e. possible/weak
and necessary/strong optimality) are defined.

Another stream of recent literature considers the interval left-hand side lin-
ear programming. In the work designed by [6], the authors have incorporated
stochastic coefficients with multivariate normal distribution within an interval
parameter linear programming context. On the other hand, when randomness,
represented as interval numbers, appears in right-hand side constraints, only few
results have already been obtained. The difficulty resides in the fact that the set
of feasible solutions in not exactly known. In [9] the authors have investigated
the complexity of two optimization versions, which correspond to the worst and
best optimum solutions, when each right-hand side coefficient is defined as an
interval number.

However, to the best of our knowledge and as remarked by [17], there are
only few results on the issue of optimal solutions for a general interval linear
programming, where the vector of the objective function, the coefficient matrix
and the right-hand side are all interval matrices.

On the other hand, interval linear programming seems to be a sound approach
to face uncertainty issues that are met in real life applications. Nonetheless,
it is worth pointing out that a very few number of papers can be found in
which interval linear programming applications are developed, notwithstanding
its possible wide usage for modelling and solving real world problems [6,7].

3 Problem Statement and Modelling

Let us consider an agricultural cooperative specialized in multi-seed production
and commercialization. The cooperative involves several hundred of farmers, for
whom it provides consulting, drying, storage, transportation and many other
customer services.

Once the cereals have reached their physiological maturity, they are harvested
and carefully forwarded towards storage facilities (also named silos), designed
especially for this purpose. Many cooperatives use two types of silos: expedition
silos E, used for a long time period storage, and buffer silos B, which serve
as proximity facilities at the time of harvest. Due to limited storage capacity
of buffer silos, an inventory control level and a daily grain transfer to expedi-
tion silos are organized during whole harvest season. This ensures the buffer
silos availability, which contributes to increase the level of reception and storage
services.

Heterogeneous vehicle fleet K, previously dimensioned, is dedicated to empty
the buffer silos b (b ∈ B), whose cells c (c ∈ Cb) are quickly filling up as harvest
time progresses. In order to maintain buffer silos sufficiently empty, a regular
(single-period) cereal transfer (delivery) is organized from buffer silos to expedi-
tion ones.

More precisely, in each period of time (day) a multi-trip planning is performed
in order to guarantee a sufficient silo capacity for receiving the quantities of
different varieties v expected to be delivered in the following periods of time.
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All of the above transfer activities are realized by seeking to minimize the ex-
ceeded quantities to be received in the next p periods of time, that cannot by
adequately stored with respect to the current buffer silo b stock level of each cell
c, scbv.

Table 1. Modelling notation

Parameters:

v, v ∈ V crop variety index
b, b ∈ B buffer silo index
e, e ∈ E expedition silo index
k, k ∈ K vehicle index
c, c ∈ Cb silo cell index
p, p ∈ P a short time horizon

Deterministic Data:

scbv stock level of variety v in the cell c of buffer silo b at the beginning of
the planning period

ucb capacity of cell c of buffer silo b
hcbv 1, if the cell c is allowed to stock the variety v and 0, otherwise
rv′v′′ 1, if varieties v′ and v′′ are compatible and 0, otherwise
gk capacity of vehicle k
teb travel time between the silos e and b
tl loading time
tu unloading time
T daily working time
M big value, e.g. greater than or equal to ucb

Stochastic Data:

q±bv quantity of variety v expected to be delivered to buffer silo b during the
period of time ahead

q̃±bv quantity of variety v expected to be delivered to buffer silo b in p fol-
lowing periods of time

Variables:

ycb quantity of cell c of buffer silo b to be transferred
zcbv 1, if the cell c of buffer silo b contains the variety v
wcbv available capacity for stocking the variety v of the cell c of buffer silo b
xk
cbe number of round trips between the silos b and e for emptying the cell c

of silo b
fvb exceeded quantity of variety v at silo b, in terms of the q̃±bv against the

current silo stock level

The daily quantities to be received at each storage facility are unknown. In this
sense, the case study cooperative has only an approximate information based-on
statistical analysis and prediction of the daily farmers’ crop delivery quantities,
valued as interval numbers, whilst considering the meteorological repercussion on
the progress and achievement of the gathering activity and the farmers’ delivery
behaviour. Therefore, let us denote by q±bv the quantity of variety v to be delivered
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to the buffer silo b in the next period of time. The uncertain data q̃±bv are defined
to represent the forecasted quantity interval of the variety v to be received by
the buffer silo b in p following periods of time.

Before proceeding to the problem modelling, let us consider moreover the
following problem assumptions:

• Each vehicle can transport per trip goods belonging only to one buffer cell.

• The vehicles start from the first expedition silo (depot point) foreseen in
their respective daily multi-trip planning. Respectively, they return to the
last expedition silo (ending point) due in its daily multi-trip planning.

• Speed of vehicle is given and fixed. No traffic jam is considered.

• The total working time of each vehicle is limited to T per day.

• Non-Euclidean distance is considered between any two transporting points.
Thus, the travel time teb, from silos e to b, is not equal to tbe, from b to e.

• For all buffer and expedition silos, the loading tl and unloading tu times are
given and fixed.

The decision integer variables xkcbe denote the number of round trips made by
the vehicle k between the buffer silo b and the expedition silo e, for emptying a
quantity ycb from the cell c of buffer silo b. By the same token, the decision vari-
ables wcbv represent the available capacity of silo c of buffer silo b for receiving
the variety v, while respecting their compatibility hcv and the total cell capacity
ucb. The data hcv are defined to take the value 1, if the cell c is allowed to stock
the variety v and 0, otherwise. In this manner, the cereal allotment pursuing
and the variety-cell management are considered. Additionally, an inter-varietal
compatibility rv′v′′ must also be taken into account for a suitable seed nature al-
lotment and traceability. The data rv′v′′ take the value 1, if varieties v′ and v′′ are
compatible and the value 0, otherwise. Two varieties are considered compatible,
if they can be mixed and stored in the same cell.

The decision positive variables fvb express the exceeded quantities of each
variety v, in terms of expected quantity q̃±bv to be delivered in the following p
periods of time to the buffer silo b, with reference to the total available silo
storage capacity of variety v,

∑
c∈Cb

wcbv.
In order to guarantee an appropriate storage service, buffer silos must be emp-

tied in such a way to minimize the exceeded quantities at each buffer silos in the
following p periods of time, in terms of each expected variety to be delivered and
its associated quantity. Subsequently, by considering the defined decision vari-
ables and data parameters introduced above (see Table 1), a linear programming
model with interval right-hand sides and objective function (1)-(15) is formalized
hereafter:

min
∑
v∈V

∑
b∈B

fvb (1)
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subject to:

fvb ≥ q̃±bv −
∑
c∈Cb

wcbv ∀v, ∀b (2)

∑
c∈Cb

wcbv ≥ q±bv ∀v, ∀b (3)

ucb −
∑
v∈V

scbv + ycb =
∑
v∈V

wcbv ∀b, ∀c (4)

wcbv ≤M · hcbv ∀v, ∀b, ∀c (5)

1 + wcbv > zcbv ∀v, ∀b, ∀c (6)

wcbv ≤M · zcbv ∀v, ∀b, ∀c (7)

zcbv′ + zcbv′′ ≤ rv′v′′ + 1 ∀v′, v′′(v′ �= v′′), ∀b, ∀c (8)∑
k∈K

∑
e∈E

xkcbe · gk ≥ ycb ∀c, ∀b (9)

∑
c∈Cb

∑
b∈B

∑
e∈E

(teb + tbe + tl + tu) · xkcbe ≤ T ∀k (10)

wcbv ≥ 0 ∀c, ∀b, ∀v (11)

zcbv ∈ {0, 1} ∀c, ∀b, ∀v (12)

ycb ≥ 0 ∀b, ∀c, ∀k (13)

xkcbe ∈ N ∀e, ∀b, ∀c, ∀k (14)

fvb ≥ 0 ∀v, ∀b (15)

Exceeded quantity of each variety at each buffer silo is calculated by the
constraints (2), in terms of the expected quantity to be received in the following
p periods of time against the current silo stock level. Constraints (3) ensure an
available silo capacity for stocking the quantity for each seed variety foreseen to
be delivered in the following time period. Stock equilibrium constraints for each
silo cell are expressed by (4). Constraints (5) verify if the cells c of buffer silo
b is allowed to stock the varieties v. Constraints (6) and (7) impose the binary
variable zcbv to take the value 1, if the cell c of buffer silos b is reserved to stock
the variety v in the next period of time. This is prescribed for respecting the
inter-varietal compatibility in each cell c of buffer silo b, required by constraints
(8). In order to guarantee a sufficient available capacity of the buffer silo, the
constraints (9) trigger a seed transfer from buffer silos b to expedition ones e,
which is performed by using a heterogeneous vehicle fleet K. Constraints (10)
confine to T the total working time of each vehicle k. The objective function (1)
seeks to minimize the exceeded quantity expected to be received in the following
p periods of time against the current silo stock level.

In the interval programming model (1)-(15), uncertainty, represented by in-
tervals, concerns both the objective function and the right-hand side constraints.
Hence, the set of feasible solutions is not exactly known and any solution may be
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not feasible for all interval right-hand side constraints. Correspondingly, classical
min-max optimization criteria cannot be directly employed [9].

4 Solution Methods

An interval programming model (1)-(15) with interval coefficients, simultane-
ously occurring in the objective function and right-hand side constraints are
considered. In this context, the aim consists of determining the best possible
optimum and the worst one over all possible configurations, which correspond
to an assignment of plausible values for each of the model uncertain parameters.

As far as uncertainty on objective function coefficients is regarded, two criteria
are classically considered: the worst case criterion and the best case one. Let X
be the set of (1)-(15) problem feasible solutions. Given x ∈ X , the configuration
to be considered is the one that corresponds to the worst (best) for this solution.
In this sense, the value of x, noted fworst(x) (fbest(x)) is defined as presented
below:

fworst(x) = maxq̃−≤q̃≤q̃+

∑
v∈V

∑
b∈B

fvb (16)

fbest(x) = minq̃−≤q̃≤q̃+

∑
v∈V

∑
b∈B

fvb (17)

where q̃± = (q̃±bv)b∈B,v∈V .
The problem is to determine the solution xworst(xbest), which minimizes

fworst(x) and fbest(x) respectively, as follows:

fworst(xworst) = minx∈Xfworst(x) (18)

fbest(xbest) = minx∈Xfbest(x) (19)

On the other hand, classical criteria cannot be directly applied when uncer-
tainty concerns right-hand side constraints. Denote by P q the program (1)-(15),
where q varies in the interval q− ≤ q ≤ q+, q± = (q±bv)b∈B,v∈V . In the context of
linear programs with interval right-hand sides, the objective of the best (worst)
optimal solution problem is to determine the minimum (maximum) value ϑ(P q)
of the optimal solution of P q, when q varies in the interval [q−, q+]. Let us for-
malize the best optimal solution problem (BEST) and the worst optimal solution
problem (WORST), hereafter:

BEST :

{
min ϑ(P q)
s.t q− ≤ q ≤ q+ (20)

WORST :

{
max ϑ(P q)
s.t q− ≤ q ≤ q+ (21)

Let XBEST (XWORST) be the set of optimal solutions of BEST (WORST).
In the light of the above mentioned approaches, four cases are studied in this
paper, for handling the interval programming model (1)-(15):
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fWORST
worst = minx∈XWORSTfworst(x) (22)

fBEST
worst = minx∈XBESTfworst(x) (23)

fWORST
best = minx∈XWORSTfbest(x) (24)

fBEST
best = minx∈XBESTfbest(x) (25)

Criteria (22), (23), (24) and (25) allow to provide the best possible optimum
and the worst one over all possible configurations in order to reveal a kind of
robustness information, by handling both uncertainty on objective function and
right-hand sides. As [19] stated, the range of the objective function between the
best and the worst optimum values provides an overview of the risk involved,
which can be reflected by specifying the values of the uncertain coefficients.

5 Computational Results

The model (1)-(15) was conceived to better organize the buffer silos emptying
during the harvest season for an Agricultural Cooperative Society, situated in
the region of Arcis-sur-Aube (France). More precisely, this is a grain and oilseed
agricultural cooperative, for which an appropriate buffer silos emptying policy
and multi-trip transportation planning is necessary to ensure a high level seed
reception and storage services.

The interval programming model (1)-(15) has been implemented by using
the C++ language. Criteria (22), (23), (24) and (25) have been used and the
corresponding models have been solved by using ILOG CPLEX (version 12.6.0)
optimization software, for instances with up to 30 varieties, 3 expedition silos,
11 buffer silos and between 10 and 15 cells per buffer silo (whose capacities vary
between 200 and 800 tonnes per cell). Computational experiments have been
carried out on an Intel(R) Core(TM) i7-2720QM CPU 2.20GHz workstation.

Commonly, the harvest lasts about one month. During this period, the ex-
pected quantities to be received by each case study silo were estimated based-on
cooperative predictive modelling of the farmers’ crop delivery behaviour and cli-
mate forecasting data, derived from nearby weather stations with an acceptable
reliability level. Due to a small gap between varieties’ ripeness dates and to a
high farmers’ gathering yield, the value of p was empirically fixed to 3.

In what follows, let us examine the figures Fig. 1 et Fig. 2, which illustrate
the output results corresponding to the best possible optimum and the worst
optimum over all possible configurations for a time horizon of 7 harvest days.
More specifically, the figure Fig. 1 reports the optimal values for (22) and (23), as
well as, the figure Fig. 2 provides the optimal value of (24) and (25), respectively.

Representative gaps between the objective values of approaches (22)-(23) and
(24)-(25) corresponding to the periods 2, 3 and 6, suggest about eventual consid-
erable buffer storage unavailability. It could be due to the fact that a significant
range of varieties is expected to be delivered. For preventing unsuitable seed
nature allotment or quality degradation, the cooperative should rent supple-
mentary vehicle during the respective periods of time. Contrarily, the multi-trip
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planning solutions provided by (22) could be realised during the periods 1, 4 and
5, since negligible objective values and gaps are recorded for these periods.

As computational results pointed out, approaches (22), (23), (24), (25) help
to handle efficiently the inventory control and multi-trip transportation planning
problem by presenting good alternative solutions. They offer a pertinent decision
support by taking into account weather and farmers’ delivery uncertainties.

6 Conclusions and Topics for Future Research

This paper presents an interval programming model for a single-period multiple
trip transportation planning problem, for purpose of maintaining available coop-
erative buffer silos during the harvest season. Best and worst optimum criteria,
prescribed to deal with uncertainty on objective function, have been considered
for both best and worst optimal solution problems, which address uncertainty
on right-hand side coefficients.

Future research would be dedicated to tackle and study other approaches
of problem robustness (e.g. maximum regret criterion, etc.). Moreover, other
problem formulations would be also tested to deal with the problem considered
in this paper (e.g. composing the rented fleet of vehicles, whilst ensuring the
buffer silos availability, etc.).
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1 LUNAM Université, Groupe ESA, UPSP GRAPPE, Angers, France
c.coulon@groupe-esa.com

2 INRA, SupAgro, UMR MISTEA, Montpellier, France
bch@supagro.inra.fr

3 INRA, SAD-UEVV-1117, Colmar, France
marie.scholtus@angers.inra.fr

4 Irstea, UMR ITAP, Montpellier, France
serge.guillaume@irstea.fr

Abstract. Fuzzy logic is a powerful interface between linguistic and nu-
merical spaces. It allows the design of transparent models based upon
linguistic rules. The FisPro open source software includes learning al-
gorithms as well as a friendly java interface. In this paper, it is used
to model a composite agronomical feature, the vine vigor. The system
behavior is characterized by its numerical accuracy and analyzed accord-
ing to the induced knowledge. Well known input output relationships are
identified, but also some rules reflect local interactions.

Keywords: Fuzzy rules, Learning, Agronomy, Vine

1 Introduction

In many application fields, there is a need for interactive computerized system
that gather data and knowledge from a wide range of sources, in order to help
understanding a complex phenomenon and making a decision. In particular, the
application fields of agronomy and environment are in demand for advanced
modeling and decision support tools while presenting some specificities. Obser-
vational and modeling studies call for various spatio-temporal scales: plot, farm,
catchment basin, designation of origin, and many influential parameters have
to be considered. Data are acquired with very different means and resolutions,
ranging from manual costly measurements such as soil analysis or plant hydric
potential to high resolution data from embedded sensors and aerial images. In
any case, the variability that characterizes life sciences is pervasive and results in
data uncertainty and a lack of reproducibility. Therefore, human expertise is fun-
damental in interpreting data, and stakeholders in agronomy and environmental
have always relied on expertise to interpret observations and to take decisions.

When expertise and data have to be integrated in a reasoning framework,
fuzzy logic and Fuzzy Inference Systems (FIS) can play an original part in the

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 127–137, 2014.
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modeling and decision support process [1]. Let us take as an example the case
of vine growing, that is a complex agricultural system involving several factors.
The vegetative vine development is called vigor. It takes into account the rhythm
and the intensity of the vine shoot growth. Empirically, in relative terms, vine
vigor level of a plot is well known as being stable over the years. It is highly
influenced by environmental factors, such as soil or climate, but can also be
modified by agricultural practices (choice of rootstock, inter-row management,
pruning type, among others). Vine vigor is a key parameter to control the balance
between vegetative growth and productivity, which influences berry composition
and then wine characteristics.

For a composite feature such as vine vigor, it is unrealistic to design for-
mal mathematical models based on ecophysiological knowledge. An alternative
approach consists in deriving empirical models from experiments. However, for
perennial crops such as grapevine, full experimental designs to test a large num-
ber of factors in interaction are very difficult to implement. Furthermore the
collected data are tainted with uncertainty; the features can suffer from impre-
cision, as many assessments are made by human beings. The learning process
must be adapted to deal with partial and imperfect data, and to include valuable
pieces of expert knowledge.

Various learning methods can be used to produce a model to study interactions
between variables. They include artificial intelligence or statistical techniques.
Both can deal with some kinds of data imperfection and both have been used
in agri-environmental modeling. Common choices include classical linear models
and decision trees [2] or, for more recent developments, Bayesian networks [3].
These statistical models are efficient in a wide range of situations, and often
yield a confidence interval, since they are based on probability theory. However,
they may be difficult to interpret or to use in cases where data imperfection and
uncertainty is prevalent. Fuzzy modeling and FIS offer an interesting alternative
in such a case, mainly because they provide an interface between the numerical
and the linguistic spaces [4].

The objective of the present paper is to show the interest of FIS to study the
interactions between environmental factors, agricultural practices and vine vigor.
The approach attempts to make the best of domain expertise and of available
field data, though they are incomplete, in order to design an interpretable model.
The interpretability makes it possible to analyze the system behavior and to
evaluate interactions between variables.

Software with a friendly interface is indispensable to allow interactive
modeling and decision support. FisPro1 is an open source software that has
been recently used in several agronomic and environmental applications. These
applications cover different topics: agricultural management using decision vari-
ables defined at catchment scale [5]; modeling interactions among sustainability
components of an agro-ecosystem [6]; determining optimum rates of nitrogen
for corn on the basis of field and crop features [7]; predicting vine vigor and

1 http://www.fispro.org/, email: fispro@supagro.inra.fr
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precocity [8]; characterizing management zones from viticulture data [9]; a soil
occupation diagnostic for sugarcane harvest [10].

The paper is organized as follows. Section 2 presents some general function-
alities for fuzzy modeling and learning with FisPro. Section 3 describes the
application to vine vigor, and analyzes the results from a knowledge discovery
point of view. Some conclusions are given in Section 4.

2 FisPro: Fuzzy Inference System Design and
Optimization

FisPro implements an applied research work in the field of interpretable
FIS [11,4,1]. FisPro has been used to design FIS in different domains, includ-
ing economics, hydraulics, robotics, agri-food industry, medicine, agronomy and
environment. . .Among fuzzy software products, FisPro stands out because of
the interpretability of fuzzy systems automatically learned from data. Inter-
pretability is guaranteed at each step of the FIS design with FisPro: variable
partitioning, rule induction, optimization.

2.1 A Framework for Fuzzy Modeling

A typical FIS is represented in Figure 1. It consists of three stages: 1) fuzzifi-
cation to transform numerical values into membership degrees in the fuzzy sets
associated to linguistic concepts, 2) fuzzy rule base, 3) defuzzification process,
to infer a crisp value from the rule aggregation result.

output

output

If...Then

input μ

base
Fuzzy rule Defuzzification

crisp

crisp
Inference engineFuzzification

Average

μ (x)
A

μ
L
(x)

LargeSmall

x

ŷ

x

Fig. 1. A fuzzy inference system

In the present work, FisPro has been used to design FIS, according to the
approach summarized in Figure 2.

That approach combines expertise and data. For instance, the number of
fuzzy sets is chosen according to expert knowledge, but data make easier the
lengthy task of linguistic modeling, by learning fuzzy set characteristic points.
Automatic rule learning is done to highlight the interactions that arise from the
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Fig. 2. FIS and linguistic modeling with FisPro

multidimensional characteristics. Optimization allows FIS parameter tuning. In
a case study when data are scarce, as for the study of vine vigor, the FIS output
is analyzed from a knowledge discovery point of view, instead of the classical
validation step only based on numerical accuracy.

2.2 Linguistic Variable and Fuzzy Partitioning with FisPro

Working with the membership degrees in the different linguistic concepts, instead
of the raw data values, reduces the system sensitivity to raw data variation. This
is a convenient and meaningful way to tackle biological variability.

The readability of fuzzy partitioning is a pre-requisite condition to build an in-
terpretable rule base. The necessary conditions for interpretable fuzzy partitions
have been studied by several authors [12]: Distinguishable concepts, a justifi-
able number of fuzzy sets, coverage (each data point, x, should belong signifi-
cantly, μ(x) > ε, at least to one fuzzy set), normal and significantly overlapping
fuzzy sets. These requirements are all fulfilled by the strong fuzzy partitions,
illustrated in Figure 3. For each point in the universe, the sum of the member-
ship degrees in all the fuzzy sets is equal to one. Even if, in interactive design,
other membership function (MF) shapes are available and fuzzy partitions can
be freely adjusted, FisPro automatic procedures systematically generate strong
fuzzy partitions with semi-trapezoidal shapes at the edges and either triangular
or trapezoidal shaped MFs elsewhere.

The process of partitioning comes to choose the number of fuzzy sets and the
corresponding characteristic points. When possible, the number of fuzzy sets
is determined by expertise, in order to facilitate the interpretation. Variables
can be continuous or discrete, under the condition that their values are ordered
and have a progressive semantic meaning. Discrete variables are described by k
ordered values. The characteristic points of MFs for continuous inputs are not
easy to determine only by expertise so a learning procedure can be run (see
Figure 2), for instance with the monodimensional k-means algorithm on the
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Fig. 3. A strong fuzzy partition with three linguistic labels

input data, independently for each variable. Then the cluster centers are chosen
as characteristic points.

In Fispro, MF partitions can be visualized together with the data distribution,
as shown in Figure 3. They can be edited and all modifications are dynamically
passed on to other windows, including the inference window.

Several indices have been defined to characterize fuzzy partitions, and are
available in FisPro. The partition coefficient (PC) and the partition entropy
(PE), both proposed by Bezdek [13], are implemented in FisPro. Let N be the
data set size, c the number of fuzzy sets and μi(k) the membership degree of the

kth item in the ith group, the available indices are PC = 1
N

N∑
k=1

c∑
i=1

μ2i (k) and

PE = − 1
N

{∑N
k=1

∑c
i=1 [μi(k) loga(μi(k))]

}
.

According to these criteria a good partition should minimize entropy and
maximize the coefficient partition.

2.3 Rule Learning and Optimization with FisPro

The fuzzy rules are defined as:

IF X1 is A
r
1 AND X2 is A

r
2 . . . AND Xp is A

r
p THEN y is Cr .

Rule Learning
It is difficult to define a best method for fuzzy rule learning. Several methods are
available in FisPro, and are detailed in [4]. They all respect the interpretability
of the fuzzy partitions. If the number p of input variables is high, it is advisable
to select the most influential ones prior to learning, for instance by running fuzzy
decision trees. If p is not too high, WM (Wang & Mendel) can be used to handle
classification cases. For regression cases, when the number n of available data
items is high, a statistical inspired method (Fuzzy Orthogonal Least Squares) is
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interesting to detect outliers and select the most important sources of output
variability. The FPA method (Fast Prototyping Algorithm), which is used in the
present work, yields a data summary under the form of fuzzy rules.

FPA principles are recalled below. In a first step, the rules corresponding to
the input combinations are generated, only if there are corresponding data in the
data set. In a second step their conclusions are initialized according to the data

values: Cr =

∑
i∈Er

Wr(xi) ∗ yi∑
i∈Er

Wr(xi)
, where Wr(xi) is the matching degree of the ith

example for the rth rule, defined as: Wr(x) = μAr
1
(x1)∧ μAr

2
(x2)∧ . . .∧ μAr

p
(xp)

and Er is a subset of examples chosen according to their matching degree to the
rule. If there are not enough items that fire the rth rule with a degree higher
than the user defined threshold, the rule is not kept. Thus, FPA yields a subset
of all the possible rules. We set the threshold to a membership degree of 0.2, and
the minimum cardinality of Er to 1.

Optimization and Median FIS
Parameter optimization allows to optimize all parts of a FIS, using the Solis
and Wets algorithm, see [14] for details. As partition parameters and rules have
been generated separately, it is interesting to run an optimization procedure of
the model as a whole. The optimization algorithm used in this work has been
proposed in [1]. It is adapted from Glorennec [15] and based upon the work of
Solis and Wets [16]. It allows optimizing all of the FIS parameters: input or
output partitions and rule conclusions.

In our approach, the input variables were optimized each in turn, the order
depending on the variable importance. To assess that importance, the variables
were ranked according to a fuzzy decision tree. The data set was split into a
learning set (70% of the vine plots) and a test set (30% of the vine plots). Ten
pairs of learning and test sets were randomly created, taking into account the
output distribution levels. The optimization procedure was guided by the root

mean square error RMSE =

√√√√ 1

N

N∑
i=1

‖ŷi − yi‖2, where ŷi is the inferred value

for the ith item, yi its observed value and N the number of items. The usual
R-squared (R2) was also used to characterize the system accuracy.

The optimization process does not change the system structure; the number of
MFs remains the same for all the variables as well as the rule premise structure.
Only the MF parameters and the rule conclusions are modified. This allows
the semantic properties of the initial model to be preserved while the model
accuracy is improved. This also allows to define a median FIS from the ten-fold
optimization sequence. The median FIS fuzzy set characteristic points are the
median values of the corresponding values obtained for each fold, as well as the
consequent parts of the rules.

FisPro provides some useful tools for exploratory analysis of the FIS beha-
vior and representativeness, such as response surfaces and the summary of links
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between rules and activated examples. Sampling procedures for cross-validation
are integrated in the learning and optimization processes.

3 System Analysis

The case study is located in the middle Loire Valley, on the Saumur Protected
Designation of Origin (PDO, in French Appellation d’Origine Contrôlée) area,
in France. It includes 78 vine plots. All the vineyards considered in the study
were planted with Vitis vinifera cultivar Cabernet franc, the main grape variety
in the region, and with similar planting densities. In the studied area, according
to expert knowledge, the vine vigor is influenced by soil factors and by two main
agricultural practices: rootstock choice and inter-row management. The system
was built using three input variables corresponding to the three main influential
factors:

1. Vine vigor imparted by soil (V IGS). This indicator is calculated using a
fuzzy inference system [8], considering three input variables: the water hold-
ing capacity, the gravel percentage in the soil profile and the parent rock
hardness. V IGS is a numerical variable between 1 (Low imparted vigor)
and 3 (High imparted vigor) .

2. Vigor conferred by rootstock (V IGR). Vine is grafted on a rootstock to fight
against the attack of an insect called Phylloxera vastatrix. The rootstock,
at the interface between soil and vine variety, interacts with the variety to
modify the development of the whole plant. For each rootstock, vigor level
was determined from the literature. V IGR is a discrete variable with five
values (1 - Very low; 1.5 - Low; 2 - Medium; 2.5 - High and 3 - Very High).

3. The inter-row management constraint on vine vigor (V IGC). A grass cover
is introduced in the vineyard inter-rows to limit runoff and soil erosion. How-
ever it also limits vine vegetative development on account of competitions
for soil water and nitrogen. V IGC was defined as a discrete variable with 10
values (between 0 - No constraint and 3 - High constraint). Constraint values
were obtained by crossing the constraint imparted by the cover crop variety,
thanks to advisory services technical reports, and the cover crop area.

The system output is the vine vigor given by expert assessment, V IGOBS . Vigor
is linked to the shoot growth and leaf areas observed on vine plots. V IGOBS can
take one of the following labels: 1 - Very Low; 2 Low; 3 - High and 4 - Very High.
The Medium label was not used on purpose to avoid safe haven assessments.

The number of fuzzy sets was determined by expertise, in order to have a
number of concepts corresponding to the usual expert vocabulary used by do-
main experts and technicians. The discrete variable, V IGR, was described by
five ordered values. V IGS and V IGC were partitioned into three fuzzy sets cor-
responding to the usual terms Low, Medium and High. The initial fuzzy set
characteristics points are given in Table 1 (left).

The rule base learnt by running the FPA procedure described in Section 2
is shown in Table 2 and some comments are given in the following paragraphs.
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Table 1. The fuzzy partition parameters (left) and FIS accuracy (right)

V IGS V IGC

Param. Initial Optimized Initial Optimized

C1 1.4 1.4 1.00 1.02
C2 2.0 2.1 1.65 1.50
C3 2.8 2.1 2.25 2.18

FIS RMSE R2

Learning set Initial 0.67 0.64
Optimized 0.52 0.77
Rel. gain 22% 20%

Test set Initial 0.67 0.60
Optimized 0.54 0.73
Rel. gain 19% 22%

Table 2. The fuzzy rule base

System inputs Rule conclusions
Rules V IGS V IGR V IGC Initial Optimized

1 Medium Low High 2.6 2.1
2 Low Medium Medium 3.7 4.0
3 Low Low High 1.3 1.2
4 Low Low Medium 1.2 1.3
5 Medium Low Medium 2.5 2.4
6 Low Medium High 3.5 3.8
7 High Low High 4.0 4.0
8 Medium Medium Medium 2.7 1.4
9 Medium Medium High 2.7 1.1
10 Low Medium Low 2.5 2.2
11 High Medium Medium 3.0 2.9
12 Medium Medium Low 3.3 3.2
13 High Medium High 3.0 2.9
14 High Low Medium 4.0 4.0
15 Low Low Low 3.2 3.8
16 Low High Medium 4.0 3.9
17 High Low Low 4.0 3.9
18 Medium Low Low 2.7 2.5
19 High Medium Low 3.5 4.0

First of all, only 19 rules were generated because some combinations were absent
from the learning data set. No vine plots were planted with a rootstock that
confers either a Very Low or a Very High vine vigor level. After optimization, the
fuzzy set parameters C2 and C3 of V IGS were identical (Table 1), so that there
was no smooth transition between a Medium level of V IGS and a High level.

Consequents of rules 8 and 9 strongly decreased after optimization (-1.3 and
-1.6 on a [1-4] scale) in contrast with the consequent of rule 2 that did not much
change. For the rules corresponding to a Medium V IGS , the rule conclusions
systematically decreased after the optimization.

Table 1 (right) summarizes the results of optimization runs, comparing the
average results of the initial and the median FIS over the learning and test sam-
ples. The median FIS significantly improved the accuracy over the test samples,
with a relative gain of 19% for the RMSE and 22% for the R2. The median FIS-
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based model has a relatively good accuracy, so its behavior can be interpreted to
study the interactions pointed out by the rules. Some examples are given below.

In rules 11, 13 and 19, environmental factors imparting a High vigor are not
associated to a rootstock that confers a Low vigor level. Goulet and Morlat
[17] already noticed that the practices in the vineyard are sometimes unsuitable
because they have not been well adapted to environmental factors. For example,
the authors indicate that in the vineyard of the Sarthe in Loire Valley (France),
72% of the vine plots have a too vigorous rootstock since the environmental
factors already induce a very strong vigor.

The effect of the V IGC variable can also be discussed. When vine plots have
no intercrop, i.e. no constraint on vine vigor, V IGC=Low (rules 10, 12, 15,
17, 18 and 19), the estimated vigor is always higher than 2, unlike vine plots
with an intercrop. The impact of a grass cover as intercrop on vine is well
known in the literature due to competition for water and nitrogen. In [18], the
authors indicated that intercrop reduces vine growth, i.e. the vigor, of the present
year but also of the next years by decreasing grapevine nitrogen reserves. These
already known relationships, interpreted by expertise, confirm the ability of the
method to extract knowledge from a database.

Let us now consider plots intercropped with a crop that involves a High con-
straint (V IGC=High). When the soil imparts a Medium or a Low vigor, the
estimated vigor is coherent with the empirical knowledge: a Low vigor rootstock
leads to a lower vigor; the more the soil imparts a Low vigor, the greater the
difference between rootstocks. On the contrary, when the soil imparts a High
vigor level, and for Low vigor rootstock, the system estimates a High vigor level
(rule 7). At first sight, this is unexpected. It might be explained by the ability
of some Low vigor rootstocks to adapt to soil humidity.

4 Conclusion

The use of a fuzzy formalism for inference systems increases the model com-
plexity by introducing more parameters, by having to choose fuzzy operators
and so on. One must be careful that this rise in complexity is accompanied by
some benefits. The work presented in this paper tried to show the interest of
using fuzzy inference systems that integrate expertise and data, for modeling a
complex phenomenon in agronomy, namely vine vigor.

From the agronomical point of view, our procedure allows to study the combi-
nations of features, therefore complementing the expertise, which is often related
to the effect of one feature, independently from the other ones. This work lays
down the foundations of a decision support tool aiming to adapt the agricultural
practices to the environment in order to get a given vigor target. A next step
consists in testing the method in other vineyards, including rule analysis and
system behavior assessment.



136 C. Coulon-Leroy et al.

From the methodological point of view, some work remains to be done to
deal with the uncertainty of input and output measurements or assessments, for
instance to define accuracy indices taking into account a fuzzy target instead of
a crisp one.
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Abstract. In this work, the class of fuzzy polynomial implications is
introduced as those fuzzy implications whose expression is given by a
polynomial of two variables. Some properties related to the values of
the coefficients of the polynomial are studied in order to obtain a fuzzy
implication. The polynomial implications with degree less or equal to
3 are fully characterized. Among the implications obtained in these re-
sults, there are some well-known implications such as the Reichenbach
implication.

Keywords: Fuzzy implication, polynomial implication, (S,N)-implication,
exchange principle.

1 Introduction

Fuzzy implications have become one of the most important operations in fuzzy
logic. Their importance lies on the fact that they perform an analogous function
to the classical implication in binary logic. Fuzzy implications generalize the
classical ones in the sense that restricted to {0, 1}2 both coincide. Nowadays,
these operations are modelled by means of monotonic functions I : [0, 1]2 → [0, 1]
satisfying the aforementioned border conditions. In the last years, a great number
of researchers have devoted their efforts to the study of these logical connectives.
Thus, we can highlight the survey [8] and the books [2] and [3], entirely devoted
to fuzzy implications. This peak of interest in fuzzy implications is induced by
the wide range of applications where these operations are useful. They play
an essential role in approximate reasoning, fuzzy control, fuzzy mathematical
morphology and other fields where these theories are applied.

All these applications trigger the need of having a large bunch of different
classes of implications. In [11] the relevance of having many different classes of
implications is pointed out. The main reason is that any “If-Then” rule can be
modelled by a fuzzy implication and therefore, depending on the context and
the proper behaviour of the rule, different implications can be suitable in each
case. In addition, fuzzy implications are used to perform backward and forward
inferences and so the choice of the implication can not be independent from the
inference rule it is going to model.

In order to answer adequately to this necessity, several classes of fuzzy implica-
tions have been introduced. There exist two main strategies to obtain new classes.

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 138–147, 2014.
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The first one is based on the use of aggregation functions (t-norms, t-conorms,
uninorms or aggregation functions in general) and other logical connectives, such
as fuzzy negations. Some examples of this strategy are R and (S,N)-implications,
QL and D-operations, among many others (see [3]). The second one is based on
the use of univalued generators, obtaining the well-known Yager’s implications
or the h-implications. An exhaustive compilation of the different classes of fuzzy
implications can be found in [10].

The implications obtained by means of these strategies can have very different
expressions that will depend on the expressions of the aggregation functions or
the generators used in their construction. However, the final expression of the
fuzzy implication is important for its use in any application. It is well-known that
some expressions of functions are tougher in order to compute their values and
more propitious to spread possible errors caused by numerical approximations
of the inputs. Consequently, operations with polynomial or rational expressions
are more friendly than those which have a more complex expression from the
computational point of view. Thus, in [1] and [7], all the rational Archimedean
continuous t-norms are characterized. This family of t-norms is the well-known
Hamacher class which contains the t-norms given by the following expression

Tα(x, y) =
xy

α+ (1− α)(x + y − xy) , x, y ∈ [0, 1]

with α ≥ 0. Note that the only polynomial t-norm is the product t-norm
TP (x, y) = xy. Moreover, in [5], Fodor characterizes all the rational uninorms as
those whose expression is given by

Ue(x, y) =
(1− e)xy

(1− e)xy + e(1− x)(1− y)

if (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)} and, U(1, 0) = U(0, 1) = 0 or U(0, 1) = U(1, 0) =
1. In this case, there not exist any polynomial uninorm since they are never
continuous.

So after recalling some definitions and results which will be used in this work,
the main target is the introduction of fuzzy polynomial implications, those im-
plications which have a polynomial of two variables as their expression. Some
necessary conditions on the coefficients of a polynomial in order to be suitable to
obtain a fuzzy implication are determined. After that, we will fully characterize
all fuzzy polynomial implications of degree less or equal to 3 and we will study
which additional properties they fulfil. From the derived results, the relation-
ship of the obtained fuzzy polynomial implications with (S,N) and f -generated
Yager’s implications will be established. The paper ends with some conclusions
and future work we want to develop.

2 Preliminaries

Let us recall some concepts and results that will be used throughout this paper.
First, we give the definition of fuzzy negation.
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Definition 1 ([6, Definition 1.1]). A non-increasing function N : [0, 1] →
[0, 1] is a fuzzy negation, if N(0) = 1 and N(1) = 0. A fuzzy negation N is

(i) strict, if it is continuous and strictly decreasing.
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].

Next, we recall the definition of fuzzy implication.

Definition 2 ([6, Definition 1.15]). A binary operator I : [0, 1]2 → [0, 1] is
called a fuzzy implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

From the definition, we can deduce that I(0, x) = 1 and I(x, 1) = 1 for all
x ∈ [0, 1] while the symmetrical values I(x, 0) and I(1, x) are not determined.
Some additional properties of fuzzy implications which will be used in this work
are:

• The left neutrality principle,

I(1, y) = y, y ∈ [0, 1]. (NP)

• The exchange principle,

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]. (EP)

• The law of importation with a t-norm T ,

I(T (x, y), z) = I(x, I(y, z)), x, y, z ∈ [0, 1]. (LI)

• The ordering property,

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

Finally, we recall the definitions of (S,N)-implications and Yager’s f-generated
implications.

Definition 3 ([3, Definition 2.4.1]). A function I : [0, 1]2 → [0, 1] is called
an (S,N)-implication if there exist a t-conorm S and a fuzzy negation N such
that

IS,N(x, y) = S(N(x), y), x, y ∈ [0, 1].

Definition 4 ([3, Definition 3.1.1]). Let f : [0, 1] → [0,∞] be a continuous
and strictly decreasing function with f(1) = 0. The function If : [0, 1]2 → [0, 1]
defined by

If (x, y) = f−1(x · f(y)), x, y ∈ [0, 1],

understanding 0 · ∞ = 0, is called an f -generated implication. The function f
is an f -generator of the implication If .
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3 Polynomial Implications

In this section, we will introduce the concept of fuzzy polynomial implication and
we will determine some necessary conditions on the coefficients of the polynomial
in order to obtain a fuzzy implication from this expression.

Remark 1. Although in the introduction, the characterizations of rational Archi-
medean continuous t-norms and rational uninorms have been recalled (under-
standing a rational function as a quotient of two polynomials), in this work we
will only focus on the fuzzy polynomial implications. This limitation is a direct
consequence of the definition of a fuzzy implication. While uninorms and t-norms
are associative functions and therefore, there exists a quite restrictive property
in their definitions, fuzzy implications have a more flexible definition. This flex-
ibility allows the existence of a great number of fuzzy polynomial implications
and therefore, their study is worthy in itself.

Definition 5. Let n ∈ N. A binary operator I : [0, 1]2 → [0, 1] is called a fuzzy
polynomial implication of degree n if it is a fuzzy implication and its expression
is given by

I(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj

for all x, y ∈ [0, 1] where aij ∈ R and there exist some 0 ≤ i, j ≤ n with i+ j = n
such that aij �= 0.

The following example shows the existence of fuzzy polynomial implications
of any degree n ∈ N with n ≥ 2.

Example 1. Let us consider the parametrized family of fuzzy negations given by
Nn(x) = 1−xn for all x ∈ [0, 1] and n ∈ Z+, and the probabilistic sum t-conorm,
whose expression is SP (x, y) = x+y−xy for all x, y ∈ [0, 1]. It is straightforward
to check that the probabilistic sum belongs to the family of Hamacher t-conorms
(the dual t-conorms of the Hamacher t-norms) and moreover, it is the unique
polynomial t-conorm. Then, if we consider these two operators, we can construct
the following parametrized family of (S,N)-implications

ISP ,Nn−1(x, y) = SP (Nn−1(x), y) = 1− xn−1 + xn−1y

for all x, y ∈ [0, 1] and n ≥ 2. As it can be observed, they are polynomial
implications of degree n. In addition, they satisfy (LI) with TP (x, y) = xy and
therefore, they are also Yager’s f -generated implications with f(x) = n−1

√
1− x

(see [9]).

A first property which can be derived form the definition is the continuity of
these implications.

Proposition 1. All fuzzy polynomial implications are continuous implications.
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Remark 2. It is worthy to note that some usual implications whose expression
is piecewise polynomial will not be considered as polynomial functions. Thus,
for instance, among many others, the following implications are not polynomial
since they do not satisfy the requirements of the Definition 5:

IGD(x, y) =

{
1 if x ≤ y,
y if x > y,

ILK(x, y) =

{
1 if x ≤ y,
1− x+ y if x > y.

Note that both implications of the previous remark have a non-trivial one
region. This fact is not a coincidence as the following result proves.

Proposition 2. All fuzzy polynomial implications I have a trivial one region,
i.e., I(x, y) = 1 if, and only if, x = 0 or y = 1.

This property is studied in detail in [4] where it is proved that this property
is essential to generate strong equality indices. Furthermore, in particular, the
polynomial implications never satisfy (OP). On the other hand, they can satisfy
(EP) and in that case, they are (S,N)-implications.

Proposition 3. Let I(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj be a polynomial implication of degree

n. If I satisfies (EP), then I is an (S,N)-implication generated by the strict fuzzy

negation N(x) =

n∑
i=0

ai0x
i and the t-conorm S(x, y) =

∑
0≤i,j≤n
i+j≤n

aij(N
−1(x))iyj.

However, the question of which polynomials can be fuzzy polynomial impli-
cations remains still unanswered. The problem relies on to characterize which
coefficients aij ∈ R have to be chosen in order to generate a polynomial p(x, y)
satisfying the conditions of the Definition 2. We will partially answer this ques-
tion in general for polynomials of degree n. First of all, the next result determines
the necessary and sufficient conditions a polynomial must satisfy in order to be
the expression of a fuzzy polynomial implication.

Theorem 1. A polynomial p(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj of degree n is a fuzzy poly-

nomial implication if, and only if, the following properties hold:

(i) p(0, y) = p(x, 1) = 1 for all x, y ∈ [0, 1].
(ii) p(1, 0) = 0.

(iii) ∂p(x,y)
∂x ≤ 0 for all x, y ∈ [0, 1].

(iv) ∂p(x,y)
∂y ≥ 0 for all x, y ∈ [0, 1].

(v) 0 ≤ p(1, y), p(x, 0) ≤ 1.

The two first properties of the previous theorem provide some conditions on
the coefficients aij of the polynomial p(x, y) in a direct way.
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Proposition 4. Let p(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj be a polynomial of degree n. Then

we have the following equivalences:

(i) p(0, y) = 1 if, and only if, a00 = 1 and a0j = 0 for all 0 < j ≤ n.

(ii) p(x, 1) = 1 if, and only if,

n∑
j=0

a0j = 1 and

n−i∑
j=0

aij = 0 for all 0 < i ≤ n.

(iii) p(1, 0) = 0 if, and only if,

n∑
i=0

ai0 = 0.

Thus, the next result gives some necessary conditions on the coefficients of
the fuzzy polynomial implications.

Corollary 1. Let I(x, y) =
∑

0≤i,j≤n
i+j≤n

aijx
iyj be a polynomial implication of degree

n. Then the following properties hold:

(i) a00 = 1.
(ii) a0j = 0 for all 0 < j ≤ n.

(iii)

n∑
j=0

a0j = 1 and

n−i∑
j=0

aij = 0 for all 0 < i ≤ n.

(iv)

n∑
i=1

ai0 = −1.

However, the transfer of the properties (iii)-(v) of Theorem 1 to properties on
the coefficients of the polynomial is harder for polynomials of degree n. Conse-
quently, and with the aim of characterizing some polynomial implications, from
now on we will restrict the study to polynomial implications of degree less or
equal to 3.

3.1 Degree Less or Equal to One

First, we are going to study the existence of polynomial implications of degree
less or equal to 2, i.e., fuzzy implications given by the following expression

I(x, y) = a00, with a00 ∈ R,
I(x, y) = a00 + a10x+ a01y, with a10 �= 0 or a01 �= 0.

It is easy to check that by Corollary 1 in the first case, it must hold that a00 = 0
and a00 = 1. Therefore, there not exist fuzzy polynomial implications of degree
less or equal to 1. Let us recall again that there exist constant piecewise fuzzy
implications. Two well-known examples of these implications are the least ILt

and the greatest IGt fuzzy implications defined as follows

ILt(x, y) =

{
1 if x = 0 or y = 1,
0 otherwise,

IGt(x, y) =

{
0 if x = 1 and y = 0,
1 otherwise.
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Furthermore, there are also no fuzzy polynomial implications of degree 1. In
this case, Corollary 1 states that the coefficients must satisfy a00 = 1, a01 = 0,
a10 = 0 and also a10 = −1. Therefore, there is no feasible solution. However,
there exist again fuzzy implications which are polynomial of degree less or equal
to 1 piecewise. For instance, among many others, we have the fuzzy implications
presented in Remark 2. To sum up, from the previous discussion, the following
result is immediate.

Proposition 5. There are no fuzzy polynomial implications of degree less or
equal to 1.

3.2 Degree 2

Now we deal with the characterization of all polynomial implications of degree
2, i.e., those whose expression is given by

I(x, y) = a00 + a10x+ a01y + a11xy + a20x
2 + a02y

2

with a211 + a220 + a202 �= 0. First of all, using Corollary 1, we obtain that there
exists only a value for each coefficient, namely a00 = 1, a10 = −1, a11 = 1
and a01 = a20 = a02 = 0. Replacing these values into the expression of the
polynomial, we get

p(x, y) = 1− x+ xy = IRC(x, y),

i.e., we obtain the Reichenbach implication. Since it is a well-known fuzzy im-
plication, it satisfies the remaining conditions of Theorem 1. Therefore, there
exists only one fuzzy polynomial implication of degree 2.

Proposition 6. There exists only one fuzzy polynomial implication of degree 2,
the Reichenbach implication I(x, y) = 1− x+ xy.

Note that the implication IRC is an (S,N)-implication obtained using the
method introduced in Example 1 as ISP ,N1 . It is well-known that this implication
is also a Yager’s f -generated implication with f(x) = 1 − x and so, it satisfies
(LI) with TP .

3.3 Degree 3

Finally, in this section, we will analyse the fuzzy polynomial implications of
degree 3. These implications have the following expression

I(x, y) =
∑

0≤i,j≤3
i+j≤3

aijx
iyj

where aij ∈ R and there exist 0 ≤ i, j ≤ 3 with i + j = 3 such that aij �= 0.
Corollary 1 in this case provides some relations between the different coefficients.
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Corollary 2. Let I(x, y) =
∑

0≤i,j≤3
i+j≤3

aijx
iyj be a fuzzy polynomial implication of

degree 3. Then the following properties hold:

• a00 = 1 and a01 = a02 = a03 = a30 = 0.
• a12 = −a10 − a11.
• a20 = −1− a10.
• a21 = 1 + a10.
• a10 �= −1 or a10 �= −a11.
The previous result reduces the candidate polynomials to be the expression

of a polynomial implication to

p(x, y) = 1+ a10x+(−1− a10)x2 + a11xy+(1+ a10)x
2y+(−a10− a11)xy2 (1)

where a10 �= −1 or a10 �= −a11. However, not all these polynomials satisfy the
properties (iii)-(v) of Theorem 1 and therefore, not all are fuzzy implications.
The next result fully characterizes all fuzzy polynomial implications of degree 3.

Theorem 2. Let I : [0, 1]2 → [0, 1] be a binary operator. Then I is a fuzzy
polynomial implication of degree 3 if, and only if, I is given by

I(x, y) = 1 + αx+ (−1− α)x2 + βxy + (1 + α)x2y + (−α− β)xy2 (2)

with α, β ∈ R, α �= −1, α �= −β, and one of these cases hold:

• −2 ≤ α ≤ −1 and −1− α ≤ β ≤ 2.
• −1 < α < 0 and 0 ≤ β ≤ −2α.
• α = β = 0.

At this stage, let us study some properties of these implications in order
to determine after that, the class of fuzzy implications which these operations
belong to.

Proposition 7. Let I be a fuzzy polynomial implication of degree 3 given by
Expression (2). Then the following statements are equivalent:

• I satisfies (EP).
• I satisfies (NP).
• α = −β with −2 ≤ α ≤ 0.

In this case, the implication I is given by

I(x, y) = 1 + αx + (−1− α)x2 − αxy + (1 + α)x2y. (3)

Since the most usual fuzzy implications satisfy (NP), there exist fuzzy polyno-
mial implications of degree 3 which are neither (S,N), R, QL nor D-implications.
For example, the following fuzzy polynomial implications do not satisfy (NP)

I1(x, y) = 1− 2x+ x2 + xy− x2y+ xy2, I2(x, y) =
1

2
(2− x− x2 + x2y+ xy2).

On the other hand, using Proposition 3, the fuzzy polynomial implications
of degree 3 satisfying (EP) are (S,N)-implications obtained from the unique
polynomial t-conorm SP .
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Theorem 3. Let I : [0, 1]2 → [0, 1] be a binary operator, S a t-conorm and N
a fuzzy negation. Then the following assertions are equivalent:

(i) I is a fuzzy polynomial implication of degree 3 and an (S,N)-implication
obtained from S and N .

(ii) S = SP and N(x) = 1 + αx + (−1− α)x2 with −2 ≤ α ≤ 0.

Finally, and using the recent characterization of Yager’s f -generated implica-
tions in [9], the next result determines which fuzzy polynomial implications of
degree 3 are Yager’s implications.

Theorem 4. Let I : [0, 1]2 → [0, 1] be a binary operator. Then the following
assertions are equivalent:

(i) I is a fuzzy polynomial implication of degree 3 and a Yager’s f -generated
implication.

(ii) I is a fuzzy polynomial implication of degree 3 satisfying (LI) with TP (x, y) =
xy.

(iii) I(x, y) = 1− x2 + x2y, the f -generated implication with f(x) =
√
1− x.

As one might expect, the obtained implication belongs to the family con-
structed in Example 1 taking ISP ,N2 .

4 Conclusions and Future Work

In this paper, we have started the study of fuzzy implications according to their
final expression instead of the usual study on the construction methods of these
operators using aggregation functions or generators. As a first step, we have
studied the fuzzy polynomial implications, presenting some general results for
polynomial implications of any degree and characterizing all fuzzy polynomial
implications of degree less or equal to 3. The family of polynomial implications
has a non-empty intersection with (S,N)-implications and f -generated implica-
tions, although there are also implications of this family which do not belong to
any of the most usual families of implications. From the obtained results, some
questions remain unanswered and must be tackled as future work. First,

Problem 1. Characterize all fuzzy polynomial implications of any degree.

For this purpose, it will be a vital requirement to determine which condi-
tions on the coefficients of the polynomial imply the properties 3-5 of Theorem
1. Finally, from the results obtained in Proposition 6 and Theorem 3, we can
conclude that all fuzzy polynomial implications of degree 2 or 3 which are also
(S,N)-implications satisfy S = SP . From this previous discussion, the next ques-
tion emerges:

Problem 2. Is there any fuzzy polynomial implication which is also an (S,N)-
implication obtained from a t-conorm S �= SP ?

Finally, it would be interesting to check the advantages of using polynomial
fuzzy implications instead of other implications in a concrete application in terms
of computational cost saving and the reduction of the spreading of possible errors
caused by numerical approximations of the inputs.
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Abstract. In this paper a characterization of all fuzzy implications with
continuous e-natural negation that satisfy the law of importation with a
given uninorm U is provided. The cases when the considered uninorm U
is representable or a uninorm in Umin are studied separately and detailed
descriptions of those implications with continuous natural negation with
respect to e that satisfy the law of importation with a uninorm in these
classes are done. In the process some important examples are included.

Keywords: Fuzzy implication, law of importation, uninorm, fuzzy
negation.

1 Introduction

Fuzzy implication functions are the generalization of binary implications in clas-
sical logic to the framework of fuzzy logic. Thus, they are used in fuzzy control
and approximate reasoning to perform fuzzy conditionals [15, 20, 26] and also
to perform forward and backward inferences in any fuzzy rules based system
through the inference rules of modus ponens and modus tollens [17, 26, 30].

Moreover, fuzzy implication functions have proved to be useful in many other
fields like fuzzy relational equations [26], fuzzy DI-subsethood measures and
image processing [7, 8], fuzzy morphological operators [13, 14, 21] and data
mining [37], among others. In each one of these fields, there are some additional
properties that the fuzzy implication functions to be used should have to ensure
good results in the mentioned applications.

The analysis of such additional properties of fuzzy implication functions usu-
ally reduces to the solution of specific functional equations. Some of the most
studied properties are:

a) The modus ponens, because it becomes crucial in the inference process
through the compositional rule of inference (CRI). Some works on this prop-
erty are [23, 34–36].

b) The distributivity properties over conjunctions and disjunctions. In this case,
these distributivities allow to avoid the combinatorial rule explosion in fuzzy
systems (see [10]). They have been extensively studied again by many au-
thors, see [1, 2, 4, 6, 31–33].

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 148–157, 2014.
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c) The law of importation. This property is extremely related to the exchange
principle (see [27]) and it has proved to be useful in simplifying the process
of applying the CRI in many cases, see [3] and [16]. It can be written as

I(T (x, y), z) = I(x, I(y, z)) for all x, y, z ∈ [0, 1],

where T is a t-norm (or a more general conjunction) and I is a fuzzy implica-
tion function. The law of importation has been studied in [3, 16, 24, 25, 27].
Moreover, in this last article the law of importation has also been used in
new characterizations of some classes of implications like (S,N)-implications
and R-implications. Finally, it is a crucial property to characterize Yager’s
implications (see [28]).

Although all these works devoted to the law of importation, there are still
some open problems involving this property. In particular, given any t-norm T
(conjunctive uninorm U), it is an open problem to find all fuzzy implications I
such that they satisfy the law of importation with respect to this fixed t-norm
T (conjunctive uninorm U). Recently, the authors have studied this problem,
for implications with continuous natural negation, in the cases of the minimum
t-norm and any continuous Archimedean t-norm (see [29]).

In this paper we want to deal with this problem but for the case of a conjunc-
tive uninorm U lying in the classes of representable uninorms and uninorms in
Umin. We will give some partial solutions (in the sense that we will find all solu-
tions involving fuzzy implications with an additional property). Specifically, we
will characterize all fuzzy implication functions with continuous natural nega-
tion with respect to e that satisfy the law of importation with any conjunctive
uninorm U in the mentioned classes. Along the process, some illustrative ex-
amples as well as particular cases when the fixed conjunctive uninorm U is an
idempotent uninorm in Umin are presented separately.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms and t-
conorms (all necessary results and notations can be found in [22]) and uninorms
(see [12] and Chapter 5 in [3]). To make this work self-contained, we recall here
some of the concepts and results used in the rest of the paper.

We will only focus on conjunctive uninorms in Umin and representable uni-
norms.

Theorem 1 ([12]). Let U be a conjunctive uninorm with neutral element e ∈
]0, 1[ having functions x �→ U(x, 1) and x �→ U(x, 0) (x ∈ [0, 1]) continuous ex-
cept (perhaps) at the point x = e. Then U is given by

U(x, y) =

⎧⎪⎪⎨⎪⎪⎩
eT

(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2,

e+ (1− e)S
(

x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2,

min(x, y) otherwise.

(1)
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where T is a t-norm and S is a t-conorm. In this case we will denote the uninorm
by U ≡ 〈T, e, S〉min.

The class of all uninorms with expression (1) will be denoted by Umin. Next,
we give the definition of a conjunctive representable uninorm.

Definition 1 ([12]). A conjunctive uninorm U with neutral element e ∈ (0, 1)
is representable if there exists a continuous and strictly increasing function h :
[0, 1] → [−∞,+∞] (called additive generator of U), with h(0) = −∞, h(e) = 0
and h(1) = +∞ such that U is given by

Uh(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and U(0, 1) = U(1, 0) = 0.

Now, we give some definitions and results concerning fuzzy negations.

Definition 2 ([11, Definition 1.1]). A decreasing function N : [0, 1] → [0, 1]
is called a fuzzy negation, if N(0) = 1, N(1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous,
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].

Next lemma plays an important role in the results presented in this paper.
Essentially, given a fuzzy negation, it defines a new fuzzy negation which in some
sense can perform the role of the inverse of the original negation.

Lemma 1 ([3, Lemma 1.4.10]). If N is a continuous fuzzy negation, then the
function RN : [0, 1]→ [0, 1] defined by

RN (x) =

{
N (−1)(x) if x ∈ (0, 1],
1 if x = 0,

where N (−1) stands for the pseudo-inverse of N given by N (−1)(x) = sup{z ∈
[0, 1] | N(z) > x} for all x ∈ [0, 1], is a strictly decreasing fuzzy negation.
Moreover,

(i) R
(−1)
N = N,

(ii) N ◦RN = id[0,1],
(iii) RN ◦N |Ran(RN ) = id|Ran(RN ),

where Ran(RN ) stands for the range of function RN .

Now, we recall the definition of fuzzy implications.

Definition 3 ([11, Definition 1.15]). A binary operator I : [0, 1]2 → [0, 1] is
said to be a fuzzy implication if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.
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Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition. Fuzzy implications can satisfy additional properties coming
from tautologies in crisp logic. In this paper, we are going to deal with the law
of importation, already presented in the introduction.

The natural negation with respect to e of a fuzzy implication will be also
useful in our study.

Definition 4 ([3, Definition 5.2.1]). Let I be a fuzzy implication. If I(1, e) =
0 for some e ∈ [0, 1), then the function Ne

I : [0, 1] → [0, 1] given by Ne
I (x) =

I(x, e) for all x ∈ [0, 1], is called the natural negation of I with respect to e.

Remark 1.
(i) If I is a fuzzy implication, N0

I is always a fuzzy negation.
(ii) Given a binary function F : [0, 1]2 → [0, 1], we will denote by Ne

F (x) =
F (x, e) for all x ∈ [0, 1] its e-horizontal section. In general, Ne

F is not a fuzzy
negation. In fact, it is trivial to check that Ne

F is a fuzzy negation if, and only
if, F (x, e) is a non-increasing function satisfying F (0, e) = 1 and F (1, e) = 0.

3 On the Satisfaction of (LI) with a Given Conjunctive
Uninorm U

In this section, the main goal is the characterization of all fuzzy implications
with a continuous natural negation with respect to e ∈ [0, 1) which satisfy the
Law of Importation (LI) with a fixed conjunctive uninorm U .

First of all, the first question which arises concerns if fixed a concrete conjunc-
tive uninorm U , any fuzzy negation can be the natural negation with respect to
some e ∈ [0, 1) of a fuzzy implication satisfying (LI) with U . The answer is neg-
ative since as the following result shows, there exists some dependence between
the conjunctive uninorm U and the natural negation of the fuzzy implication I
with respect to some e ∈ [0, 1). To characterize which fuzzy negations are com-
patible with a conjunctive uninorm U in this sense, the following property will
be considered:

if N(y) = N(y′) for some y, y′ ∈ [0, 1], then N(U(x, y)) = N(U(x, y′)) ∀x ∈ [0, 1].
(2)

Note that any strict negation obviously satisfies the previous equation. How-
ever, there are many other negations, not necessarily strict, which satisfy this
property as we will see in next sections. Note also that similar conditions on a
negation N as (2) were considered in [9].

On the other hand, the following proposition is straightforward to check.

Proposition 1. Let I : [0, 1]2 → [0, 1] be a binary function such that Ne
I is a

fuzzy negation for some e ∈ [0, 1). If I satisfies (LI) with a conjunctive uninorm
U , then Ne

I and U satisfy Property (2).
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Next result gives the expression of any binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) satisfying (LI) with a conjunctive uninorm U .
Note that the binary function only depends on the uninorm U and its natural
negation with respect to e ∈ [0, 1).

Proposition 2. Let I : [0, 1]2 → [0, 1] be a binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) satisfying (LI) with a conjunctive uninorm U .
Then

I(x, y) = Ne
I (U(x,RNe

I
(y))).

From now on, we will denote these implications generated from a conjunctive
uninorm U and a fuzzy negation N by IN,U (x, y) = N(U(x,RN (y))).

Remark 2. Instead of RNe
I
, we can consider any function N1 such that N

(−1)
1 =

Ne
I andNe

I ◦N1 = id[0,1]. This is a straightforward consequence of the satisfaction
of Property (2) in this case. Since Ne

I (RNe
I
(y)) = Ne

I (N1(y)), then using the
aforementioned property, Ne

I (U(x,RNe
I
(y))) = Ne

I (U(x,N1(y))) and therefore,
INe

I ,U
can be computed using either RNe

I
or N1.

Moreover, this class of implications satisfies (LI) with the same conjunctive
uninorm U from which they are generated.

Proposition 3. Let N be a continuous fuzzy negation and U a conjunctive uni-
norm satisfying Property (2). Then IN,U satisfies (LI) with U .

Now, we are in condition to fully characterize the binary functions I with Ne
I

a continuous fuzzy negation for some e ∈ [0, 1) satisfying (LI) with a conjunctive
uninorm U .

Theorem 2. Let I : [0, 1]2 → [0, 1] be a binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) and U a conjunctive uninorm. Then

I satisfies (LI) with U ⇔ Ne
I and U satisfy Property (2) and I = INe

I ,U
.

Note that it remains to know when Ne
I and U satisfy Property (2). From

now on, we will try given a concrete conjunctive uninorm U , to determine which
fuzzy negations satisfy the property with U .

4 On the Satifaction of Property 2 for Some Uninorms

In the previous section, Proposition 1 shows that the conjunctive uninorm and
the natural fuzzy negation with respect to some e ∈ [0, 1) of the fuzzy implication
must satisfy Property (2). Consequently, given a fixed conjunctive uninorm U ,
in order to characterize all fuzzy implications with a continuous natural nega-
tion with respect to some e ∈ [0, 1) satisfying (LI) with U , we need to know
which fuzzy negations are compatible with the conjunctive uninorm U . In this
section, we will answer this question for some conjunctive uninorms presenting
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for each one, which fuzzy negations can be considered and then finally, using the
characterization given in Theorem 2, the expressions of these fuzzy implications
can be retrieved easily.

First of all, we want to stress again that the goal of this paper is to characterize
all fuzzy implications with a continuous natural negation with respect to some
e ∈ [0, 1) satisfying (LI) with a concrete conjunctive uninorm U . Therefore, there
are other implications satisfying (LI) with a conjunctive uninorm U than those
given in the results of this section. Of course, these implications must have non-
continuous natural negations with respect to any e ∈ [0, 1) such that I(1, e) = 0.
An example of a fuzzy implication having non-continuous natural negations with
respect to any e ∈ [0, 1) such that I(1, e) = 0 is the least fuzzy implication.

Proposition 4. Let ILt be the greatest fuzzy implication given by

ILt(x, y) =

{
1 if x = 0 or y = 1,
0 otherwise.

Then ILt satisfies (LI) with any conjunctive uninorm U .

Consequently, although ILt satisfies (LI) with any conjunctive uninorm U , we
will not obtain this implication in the next results since it has no continuous
natural negation at any level e ∈ [0, 1).

4.1 Representable Uninorms

The first class of uninorms we are going to study is the class of representable
uninorms. The following result shows that the fuzzy negation must be strict in
order to satisfy Property (2) with a uninorm of this class.

Proposition 5. If U is a representable uninorm, then Property (2) holds if, and
only if, N is an strict fuzzy negation.

At this point, we can characterize all fuzzy implications with a continuous nat-
ural negation with respect to some e ∈ [0, 1) satisfying (LI) with a representable
uninorm U .

Theorem 3. Let I : [0, 1]2 → [0, 1] be a binary function with Ne
I a continuous

fuzzy negation for some e ∈ [0, 1) and let h : [0, 1]→ [−∞,+∞] an additive gen-
erator of a representable uninorm. Then the following statements are equivalent:

(i) I satisfies (LI) with the conjunctive representable uninorm Uh.
(ii) Ne

I is strict and I is given by I(x, y) = Ne
I (U(x, (N

e
I )
−1(y))) ={

Ne
I (h

−1(h(x) + h((Ne
I )
−1(y)))) if (x, y) /∈ {(0, 0), (1, 1)},

1 otherwise.

Note that the implications obtained in the previous theorem are in fact (U,N)-
implications derived from the negation (Ne

I )
−1 and the uninorm (Ne

I )
−1-dual of

Uh. Moreover, in the case that (Ne
I )
−1 coincides with the negation associated to

the representable uninorm Uh, the implication is also the RU -implication derived
from Uh (see [5]). Similar results with implications derived from t-norms were
also obtained in [29], see also [18, 19].
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4.2 Uninorms in Umin

The second class of uninorms which we want to study is the class of uninorms in
Umin. We will restrict ourselves to the cases where the underlying t-norm and t-
conorm are continuous Archimedean or idempotent. Therefore, we will consider
four different cases.

� U ≡ 〈TM , e, SM〉min. In a first step, we will consider the uninorm U ≡
〈TM , e, SM 〉min where TM (x, y) = min{x, y} and SM (x, y) = max{x, y}, which in
addition to the class of Umin, it belongs also to the class of idempotent uninorms,
those satisfying U(x, x) = x for all x ∈ [0, 1]. In contrast with the representable
uninorms, in this case we will have continuous non-strict negations satisfying
Property (2) with these uninorms.

Proposition 6. If U ≡ 〈TM , e, SM 〉min, then Property (2) holds if, and only if,
N is a continuous fuzzy negation satisfying the following two properties:

1. There exists α ∈ (0, 1] such that N(x) = 0 for all x ≥ α.
2. If N(x) = k for all x ∈ [a, b] for some constant k > 0 then a ≥ e or b ≤ e.

Note that any strict fuzzy negation satisfies the previous properties. In addi-
tion, those non-strict continuous fuzzy negations whose non-zero constant regions
do not cross x = e satisfy also Property (2) with U ≡ 〈TM , e, SM 〉min. From this
result and using Theorem 2, the expressions of the fuzzy implications we are
looking for can be easily obtained.

� U ≡ 〈T, e, SM〉min with a Continuous Archimedean t-norm T . Now
we focus on the case when we consider an underlying continuous Archimedean
t-norm in addition to the maximum t-conorm. In this case, many of the fuzzy
negations which were compatible with the uninorm of the first case are not
compatible now with the uninorm of the current case.

Proposition 7. If U ≡ 〈T, e, SM〉min with T a continuous Archimedean t-norm,
then Property (2) holds if, and only if, N is a continuous fuzzy negation satisfying
that there exists some α ∈ [0, e] such that N(x) = 1 for all x ≤ α and N is strictly
decreasing for all x ∈ (α, e).

Of course, as we already know, strict fuzzy negations are compatible with these
uninorms. Furthermore, when it is continuous but non-strict, the only constant
region allowed in [0, e] is a one region while in [e, 1], the fuzzy negation can have
any constant region. Again, using Theorem 2, we can obtain the expressions of
the fuzzy implications with a continuous natural negation with respect to some
e ∈ [0, 1) satisfying (LI) with some of these uninorms.

� U ≡ 〈TM , e, S〉min with a Continuous Archimedean t-conorm S. In
this third case, we analyse the case when we consider an underlying continuous
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Archimedean t-conorm in addition to the minimum t-norm. In this case, in
contrast to the second case, now the main restrictions on the constant regions
are located in [e, 1].

Proposition 8. If U ≡ 〈TM , e, S〉min with S a continuous Archimedean
t-conorm, then Property (2) holds if, and only if, N is a continuous fuzzy nega-
tion satisfying:

1. There exists α ∈ (0, 1] such that N(x) = 0 for all x ≥ α.
2. If N(x) = k for all x ∈ [a, b] for some constant k > 0 then b ≤ e.

As always strict fuzzy negations are compatible with these uninorms. More-
over, when the fuzzy negation is continuous but non-strict, the only constant
region which could cross x = e is the zero region while in [0, e], the fuzzy nega-
tion can have any constant region. Finally, Theorem 2 can be applied to obtain
the expressions of these implications.

� U ≡ 〈T, e, S〉min with a Continuous Archimedean t-norm T and t-
conorm S. In this last case, we analyse the case when we consider an underlying
continuous Archimedean t-norm T and t-conorm S. This is the case where fewer
fuzzy negations are compatible with the considered uninorm. In fact, only two
special constant regions are allowed.

Proposition 9. If U ≡ 〈T, e, S〉min with T a continuous Archimedean t-norm
and S a continuous Archimedean t-conorm, then Property (2) holds if, and only
if, N is a continuous fuzzy negation satisfying the following two properties:

1. There exist α ∈ [0, e] and β ∈ [e, 1] with α < β such that N(x) = 1 for all
x ≤ α and N(x) = 0 for all x ≥ β.

2. N is strict for all x ∈ (α, β).

Clearly, we retrieve strict fuzzy negations when α = 0 and β = 1. As we can
see, continuous non-strict fuzzy negations are also possible but only two constant
regions (zero and one regions) are allowed. In order to get the expressions of these
implications, Theorem 2 must be used.

5 Conclusions and Future Work

In this paper, we have characterized all fuzzy implications satisfying (LI) with a
conjunctive uninorm U when the natural negation of the implication with respect
to some e ∈ [0, 1) is continuous. Moreover, we have determined in particular the
expression of these implications when the conjunctive uninorm U belongs to
the class of Umin with some underlying continuous Archimedean or idempotent
t-norm and t-conorm and to the class of representable uninorms.

As a future work, we want to study the remaining uninorms of the class of
Umin and some other classes such as idempotent uninorms. In addition, we want
to establish the relation between the new class of implications introduced in this
paper IN,U and (U,N)-implications.
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Abstract. Recently, Grzegorzewski [5–7] introduced two new families
of fuzzy implication functions called probabilistic implications and prob-
abilistic S-implications. They are based on conditional copulas and make
a bridge between probability theory and fuzzy logic. In the same arti-
cle [7] author gives a motivation to his idea and indicates some interest-
ing connections between new families of implications and the dependence
structure of the underlying environment. In this paper the laws of con-
traposition and the law of importation are studied for these families of
fuzzy implications.

Keywords: Fuzzy implications, Probabilistic implications, Laws of
contraposition, Law of importation, Functional equations.

1 Introduction

Fuzzy implications belong to the main logical operations in fuzzy logic. They
generalize the classical implication, which takes values in the set {0, 1}, to the
unit interval [0, 1]. These functions are not only essential for fuzzy logic sys-
tems and fuzzy control, but they also play a significant role in solving fuzzy
relational equations, in fuzzy mathematical morphology and image processing,
and in defining fuzzy subsethood. In the scientific literature one can find many
families of fuzzy implications along with their properties and applications. For
the overview of this class of functions see the monograph [2] and the very recent
book [1].

Recently, Grzegorzewski [5–7] introduced two new families of fuzzy implica-
tions - probabilistic implications and probabilistic S-implications. He also exam-
ined basic properties of families of probabilistic implications and probabilistic
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S-implications, like the left neutrality property, the exchange principle, the iden-
tity principle and the ordering property.

In this paper we continue the investigations and we examine the laws of con-
traposition and the law of importation for these two families of fuzzy implica-
tions. It should be noted that contrapositive symmetry of a fuzzy implication
with respect to a fuzzy negation plays an important role in approximate rea-
soning, deductive systems, decision support systems, formal methods of proof,
etc. (cf. [3, 10]). Similarly, fuzzy implications satisfying law of importation have
been found very useful in fuzzy relational inference mechanisms, since one can
obtain an equivalent hierarchical scheme which significantly decreases the com-
putational complexity of the system (see [9, 13]).

The paper is organized as follows. After this introduction, Section 2 contains
some preliminaries, where we recall basic concepts and definitions which will
be used in the paper. Sections 3 introduces laws of contraposition and the law
of importation. In Sections 4 and 5 we discuss the laws of contraposition for
probabilistic implications and probabilistic S-implications, respectively, while
Section 6 and 7 are devoted to the law of importation for these two families of
implications, respectively. Last section contains conclusion and postulates some
open problems.

2 Preliminaries

In this section we introduce general definitions of fuzzy operators, which will be
exploited henceforth: fuzzy implications, triangular norms and fuzzy negations.
We also recall the main definitions of probabilistic implications and probabilistic
S-implications.

As it was mentioned before, fuzzy implication functions are generalizations
of the classical implication to fuzzy logic. According to the well-established fact
that the fuzzy concepts have to generalize adequately the corresponding crisp
concepts, the most accepted definition of fuzzy implication nowadays is the fol-
lowing one.

Definition 2.1 ([2, Definition 1.1.1]). A function I : [0, 1]2 → [0, 1] is called
a fuzzy implication if it satisfies the following conditions:

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second variable,
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Definition 2.2 (see [11]). An associative, commutative and non-decreasing
operation T : [0, 1]2 → [0, 1] is called a t-norm if it has the neutral element 1.

Definition 2.3 (see [4, p. 3], [11, Definition 11.3]). A non-increasing func-
tion N : [0, 1]→ [0, 1] is called a fuzzy negation if N(0) = 1, N(1) = 0. A fuzzy
negation N is called

(i) strict if it is strictly decreasing and continuous;
(ii) strong if it is an involution, i.e. N(N(x)) = x for all x ∈ [0, 1].
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Definition 2.4 (see [2, Definition 1.4.15]). Let I be a fuzzy implication. The
function NI defined by NI(x) = I(x, 0), x ∈ [0, 1], is called the natural negation
of I.

Definition 2.5 (see [12]). A copula (specifically, a 2-copula) is a function
C : [0, 1]2 → [0, 1] which satisfies the following conditions:

(C1) C(x, 0) = C(0, y) = 0, for all x, y ∈ [0, 1],

(C2) C(x, 1) = x, for all x ∈ [0, 1],

(C3) C(1, y) = y, for all y ∈ [0, 1],

(C4) C(x2, y2)−C(x2, y1)−C(x1, y2)+C(x1, y1) ≥ 0, for all x1, x2, y1, y2 ∈ [0, 1]
such that x1 ≤ x2, y1 ≤ y2.

Example 2.6. The following are some basic copulas investigated in the literature.

(a) C(x, y) =M(x, y) = min(x, y).

(b) C(x, y) =W (x, y) = max(x + y − 1, 0).

(c) C(x, y) = Π(x, y) = x · y.
(d) Farlie-Gumbel-Morgenstern’s family, FGM(θ), where θ ∈ [−1, 1]:

Cθ(x, y) = x · y + θx · y(1− x)(1 − y).

(e) Ali-Mikhail-Haq’s family, AMH(θ), where θ ∈ [−1, 1]:

Cθ(x, y) =
x · y

1− θ(1− x)(1 − y) .

It can be shown that every copula is bounded by the so-called Fréchet-
Hoeffding bounds, i.e., for any copula C and for all x, y ∈ [0, 1] it holds

W (x, y) ≤ C(x, y) ≤M(x, y).

Finally in this section, we present the formulas for probabilistic implications
and probabilistic S-implications, which are based on conditional copulas.

Definition 2.7 ([7]). Let C be a copula. A function IC : [0, 1]2 → [0, 1] given
by

IC(x, y) =

{
1, x = 0
C(x,y)

x , x > 0
, x, y ∈ [0, 1],

is called a probabilistic implication (based on copula C).

Definition 2.8 ([7]). Let C be a copula. A function ĨC : [0, 1]2 → [0, 1] given
by

ĨC(x, y) = C(x, y)− x+ 1, x, y ∈ [0, 1],

is called a probabilistic S-implication (based on copula C).
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Remark 2.9. Not every probabilistic implication is also a fuzzy implication - we
need to add the condition (I1), that IC is non-increasing with respect to the first
variable (the rest of conditions from fuzzy implication’s definition are satisfied
for any probabilistic implication, see [7]). Among functions based on the above
examples of copulas,

IM(x, y) = IGG(x, y) =

{
1, x ≤ y
y
x , x > y

,

i.e., IM = IGG is the Goguen implication and

IΠ(x, y) =

{
1, x = 0

y, x > 0
,

i.e., IΠ = ID is the least (S,N)-implication (see [2]), but IW is not. Probabilis-
tic implications based on copulas from family FGM(θ) are fuzzy implications
only for θ ≥ 0, whereas probabilistic implications based on copulas from family
AMH(θ) are fuzzy implications for all θ ∈ [−1, 1]. However, it is worth noting
that any probabilistic S-implication is a fuzzy implication.

3 The Laws of Contraposition and the Law of
Importation

One of the most important tautologies in the classical two-valued logic is the
law of contraposition:

p→ q ≡ ¬q → ¬p.

Since the classical negation satisfies the law of double negation (¬(¬p) ≡ p), the
following laws are also tautologies in the classical logic:

¬p→ q ≡ ¬q → p,

p→ ¬q ≡ q → ¬p.

A natural generalization of those classical tautologies to fuzzy logic is based on
fuzzy negations and fuzzy implications and plays an important role in various
applications of fuzzy implications.

Definition 3.1. Let I be a fuzzy implication and N be a fuzzy negation.

(i) We say that I satisfies the law of contraposition with respect to N , if

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]. (CP)

(ii) We say that I satisfies the law of left contraposition with respect to N , if

I(N(x), y) = I(N(y), x), x, y ∈ [0, 1]. (L-CP)



162 M. Baczyński, P. Grzegorzewski, and W. Niemyska

(iii) We say that I satisfies the law of right contraposition with respect to N , if

I(x,N(y)) = I(y,N(x)), x, y ∈ [0, 1]. (R-CP)

If I satisfies the (left, right) contrapositive symmetry with respect to N , then we
also denote this by CP(N) (respectively, by L-CP(N), R-CP(N)).

We can easily observe that the three properties introduced in Definition 3.1
are equivalent when N is a strong negation (see [2, Proposition 1.5.3]).

The equation
(p ∧ q)→ r ≡ (p→ (q → r)),

known as the law of importation, is another tautology in classical logic. The
general form of the above equivalence is introduced in the following definition.

Definition 3.2 ([9]). Let I be a fuzzy implication and T be a t-norm. I is said
to satisfy the law of importation with t-norm T , if

I(x, I(y, z)) = I(T (x, y), z), x, y, z ∈ [0, 1]. (LI)

4 The Laws of Contraposition for Probabilistic
Implications

We start our investigation with the following result.

Lemma 4.1. Let IC be a probabilistic implication based on some copula C. The
natural negation NIC is the least fuzzy negation, i.e., for all x ∈ [0, 1] we get

NIC (x) = ND1(x) =

{
1, x = 0

0, x > 0
.

Proof. For any probabilistic implication IC and any x ∈ [0, 1] we get

NIC (x) = IC(x, 0) =

{
1, x = 0
C(x,0)

x , x > 0
=

{
1, x = 0

0, x > 0
.

��

Now we are able to investigate the laws of contraposition for probabilistic
implications.

Lemma 4.2. No probabilistic implication satisfies the laws of contraposition
(CP) and (L-CP) with any negation N .

Proof. Since IC satisfies the left neutrality principle (see [7, Lemma 9]) and NIC

is not a strong negation, from [2, Corollary 1.5.5] we get that IC does not satisfy
(CP) with any fuzzy negation.

Similarly, since NIC is not a continuous negation, from [2, Corollary 1.5.15]
we get that IC does not satisfy (L-CP) with any fuzzy negation. ��
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Lemma 4.3. Every probabilistic implication satisfies (R-CP) only with respect
to the least fuzzy negation ND1.

Proof. One can easily check that any probabilistic implication satisfies (R-CP)
with ND1. Indeed,

IC(x,ND1(y)) =

{
1, x = 0
C(x,ND1(y))

x , x > 0
=

⎧⎪⎨⎪⎩
1, x = 0
C(x,1)

x , x > 0 and y = 0
C(x,0)

x , x > 0 and y > 0

=

⎧⎪⎨⎪⎩
1, x = 0

1, x > 0 and y = 0

0, x > 0 and y > 0

=

{
1, x = 0 or (x > 0 and y = 0)

0, x > 0 and y > 0

= IC(y,ND1(x)).

Now, since IC satisfies the left neutrality principle (see [7, Lemma 9]), from [2,
Lemma 1.5.21] we conclude that ND1 is the only such negation. ��

5 The Laws of Contraposition for Probabilistic
S-Implications

Similarly, as in the previous section, we start our investigation with the following
result.

Lemma 5.1. Let ĨC be a probabilistic S-implication based on some copula C.
The natural negation NĨC

is the classical strong negation, i.e., for all x ∈ [0, 1]
we get

NĨC
(x) = NC(x) = 1− x.

Proof. For any probabilistic S-implication ĨC and all x ∈ [0, 1] we get

NĨC
(x) = ĨC(x, 0) = C(x, 0)− x+ 1 = 1− x.

��

Lemma 5.2. Let ĨC be a probabilistic S-implication. If ĨC satisfies the (CP)
with respect to a fuzzy negation N , then N is the strong classical negation NC.

Proof. We know that any probabilistic S-implication satisfies the left neutrality
principle (see [7, Lemma 21]), so in view of [2, Lemma 1.5.4 (v)] we conclude
that N = NĨC

= NC. ��

Corollary 5.3. Probabilistic S-implication ĨC based on a copula C satisfies
(CP) (with respect to NC) if and only if C satisfies the following equation

C(x, y)− x+ 1 = C(1 − y, 1− x) + y, (1)

for all x, y ∈ [0, 1].
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Remark 5.4. At this moment we are not able to solve the above equation, but
it should be noted that some probabilistic S-implications ĨC satisfy the law
of contraposition (CP) with respect to NC (e.g. implications based on copulas
Π , M , W or copulas from the family FGM(θ)), and some do not (e.g. some
implications based on copulas from the family AMH(θ)). In fact probabilistic
S-implications were studied by Hlinĕná et al. [8] in connection with generator
triples of fuzzy preference structures and their Proposition 7 is the other version
of our Corollary 5.3.

Example 5.5. We show that some probabilistic implications and/or probabilistic
S-implications based on copulas from the family AMH(θ) do not satisfy CP(NC).
Let us take any copula C ∈ AMH(θ) and assume that (1) holds, i.e.

xy

1− θ(1 − x)(1 − y) − x+ 1 =
(1− x)(1 − y)

1− θxy + y. (2)

Let θ = 1 and x = y = 1
4 . Then the left side of (2) equals 25

28 , while the right side
of (2) is equal to 17

20 , which is a contradiction. In fact we can get the result, that
condition (1) is satisfied if and only if (θ = 0∨x ∈ {0, 1}∨y ∈ {0, 1}∨x+y = 1).

Lemma 5.6. Let ĨC be a probabilistic S-implication. If ĨC satisfies the (L-CP)
or (R-CP) with respect to a fuzzy negation N , then N is the strong classical
negation NC.

Proof. Since any probabilistic S-implication satisfies the left neutrality principle
(see [7, Lemma 21]), in view of [2, Lemma 1.5.14] and [2, Lemma 1.5.21], respec-
tively, we conclude that N = NĨC

= NC in both cases. ��

The last fact in this section, for which we omit the proof, indicates new
big groups of probabilistic S-implications which appropriately satisfy (CP) and
which do not satisfy (CP).

Theorem 5.7. Let C1, C2 be some copulas. For any copula C such that
C = θC1 + (1− θ)C2, where θ ∈ [0, 1], the following equivalence holds:

⎛⎝ ĨC
satisfies (CP)

with respect to NC.

⎞⎠ ⇐⇒

⎛⎝ both ĨC1 and ĨC2

satisfy (CP)
with respect to NC.

⎞⎠
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6 The Law of Importation (LI) for Probabilistic
Implications

Lemma 6.1. If a probabilistic implication IC and a t-norm T satisfy the law of
importation (LI), then T is positive, i.e., ¬∃x,y �=0T (x, y) = 0.

Proof. For x = 0 or y = 0 it is easy to check, that (LI) is satisfied for any
probabilistic implication IC and any t-norm T .

Now, let us assume, that x, y �= 0 and z = 0. Then

IC(x, IC(y, 0)) = IC(x, 0) = 0,

and

IC(T (x, y), 0) =

{
1, T (x, y) = 0

0, T (x, y) > 0
.

Therefore, if there exist x, y �= 0 such that T (x, y) = 0, then IC(x, IC(y, 0)) �=
IC(T (x, y), 0). ��

Now we will study five examples of copulas and probabilistic implications
based on these copulas, looking for the positive t-norms, for which those specific
implications satisfy (LI). We can assume that x, y, z �= 0. In this case (LI) is
equivalent to

C(T (x, y), z)

T (x, y)
=
C(x, C(y,z)

y )

x
.

Example 6.2.

(i) Probabilistic implication IΠ satisfies (LI) with any positive t-norm T .

(ii) Probabilistic implication IM satisfies (LI) only with the product t-norm
TP .

(iii) Probabilistic implication IW satisfies (LI) only with product t-norm TP .

(iv) Probabilistic implications generated by copulas from the family FGM(θ)
do not satisfy (LI) with any t-norm T (except the case when θ = 0, but
then we deal with product copula Π - see case (i)).

(v) Among probabilistic implications generated by copulas from the family
AMH(θ) for θ �= 0, only implication for θ = 1 satisfies (LI) with product
t-norm TP .

Let us notice another interesting fact.

Remark 6.3. Probabilistic implications generated by Π and M satisfy (LI) with
the t-norm TP , however no probabilistic implication generated by copulas C =
θΠ + (1 − θ)M for ∈ (0, 1) satisfy (LI) (with TP or any other t-norm T ).
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7 The Law of Importation (LI) for Probabilistic
S-Implications

Lemma 7.1. If a probabilistic S-implication ĨC satisfies (LI) with a t-norm T ,
then T must be of the form T (x, y) = x− C(x, 1 − y).

Proof. Let z = 0. Then for any x, y ∈ [0, 1] we get

C(T (x, y), z)− T (x, y) + 1 = C(x,C(y, z)− y + 1)− x+ 1

⇐⇒ 0− T (x, y) + 1 = C(x, 0− y + 1)− x+ 1

⇐⇒ T (x, y) = x− C(x, 1− y).

��

Remark 7.2. On the other endpoints of x, y, z’s domains (x = 0, y = 0, x = 1,
y = 1 and z = 1) the equation (LI) is satisfied for any probabilistic S-implication
ĨC and the t-norm T (x, y) = x− C(x, 1− y).

What we have to do now is to check for every probabilistic S-implication ĨC
if the function T (x, y) = x− C(x, 1− y) satisfies (LI) on the rest of its domain,
i.e. for x, y, z ∈ (0, 1), and if so defined T is a t-norm.

Example 7.3. Table 1 includes the list of functions which are the only candidates
for t-norms for which particular probabilistic S-implications may satisfy (LI).

Table 1. Copulas and candidates for t-norms (see Example 7.3)

Copula Candidate for (LI)

CΠ TP (x, y) = xy
CM TLK(x, y) = max(x+ y − 1, 0)
CW TM (x, y) = min(x, y)
C ∈ FGM(θ) T (x, y) = xy − θxy(1− x)(1− y)

C ∈ AMH(θ) T (x, y) = xy
1− θ(1− x)

1− θ(1− x)y

It can be proved that the pairs of functions (ĨCΠ , TP ), (ĨCM , TLK), (ĨCW , TM )
satisfy (LI), whereas probabilistic S-implications generated by the copulas from
families FGM(θ) or AMH(θ) do not satisfy (LI) with functions listed in Table 1.

Please note that in [8] the function T from the above Lemma 7.1 is denoted
as Cflip2. Moreover in [8, Proposition 6] it is shown that Cflip2 is commutative
(necessary condition for T to be a t-norm) if and only if C = (Ĉ)t, where Ĉ is
the survival quasicopula to C. In fact the condition C = (Ĉ)t is fulfilled if and
only if I(x, y) = C(x, y) + 1 − x (i.e., the probabilistic S-implication) possesses
the (CP) property (with respect to NC).
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8 Conclusion

In this paper we have examined particular properties of probabilistic implications
and probabilistic S-implications, i.e. (CP), (L-CP), (R-CP) and (LI).

However, some questions are still open. For instance, is there any particular
family of copulas which satisfy the equation (1) from Corollary 5.3? Or, does the
formula T (x, y) = x − C(x, 1 − y) from Lemma 7.1 express any special kind of
relation between functions T and C (some “duality”)? We may draw hypothesis
that if any probabilistic implication satisfies (LI) with a t-norm T , then it also
satisfies (LI) with the product t-norm TP .

It should be stressed that recently introduced probabilistic implications and
probabilistic S-implications are still not enough examined families of implications
and there are many other interesting properties which should be considered in
their case.
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13. Štěpnička, M., Jayaram, B.: On the suitability of the Bandler-Kohout subproduct

as an inference mechanism. IEEE Trans. Fuzzy Systems 18, 285–298 (2010)



Sequential Clustering for Event Sequences

and Its Impact on Next Process Step Prediction

Mai Le1, Detlef Nauck2, Bogdan Gabrys1, and Trevor Martin3

1 University of Bournemouth
2 British Telecommunications

3 University of Bristol

Abstract. Next step prediction is an important problem in process an-
alytics and it can be used in process monitoring to preempt failure in
business processes. We are using logfiles from a workflow system that
record the sequential execution of business processes. Each process exe-
cution results in a timestamped event. The main issue of analysing such
event sequences is that they can be very diverse. Models that can ef-
fectively handle diverse sequences without losing the sequential nature
of the data are desired. We propose an approach which clusters event
sequences. Each cluster consists of similar sequences and the challenge
is to identify a similarity measure that can cope with the sequential na-
ture of the data. After clustering we build individual predictive models
for each group. This strategy addresses both the sequential and diverse
characteristics of our data. We first employ K-means and extent it into
a categorical-sequential clustering algorithm by combining it with se-
quential alignment. Finally, we treat each resulting cluster by building
individual Markov models of different orders, expecting that the repre-
sentative characteristics of each cluster are captured.

1 Introduction

In order to achieve operational excellence, companies must run efficient and
effective processes [1], [2]. They must also be able to predict if processes will
complete successfully or run into exceptions in order to intervene at the right
time, preempt problems and maintain customer service.

It is a real challenge to build such models for business process data due to
many reasons. Let us point out two main reasons which we think most dominant.
First, business process data is sequential in nature. A business process instance
(Sj) is a composition of discrete events (or tasks) in a time-ordered sequence, Sj

=
{
s
(j)
1 , s

(j)
2 , . . . , s

(j)
nj

}
, sk takes values from a finite set of event types E =

{e1, . . . , eL}. Each of these events has its own attributes. For simplicity, we
assume that a process does not contain any overlapping events, that means there
are no parallel structures [1]. Second, business process data can be very diverse
because in practice, processes are typically designed based on knowledge about
how a certain objective can be achieved efficiently. When process execution is
not enforced by automatic workflow systems, people do not always follow the
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design. In large companies, many departments can be involved in the execution
or maintenance of a process and processes can be implemented across a large
number of IT systems. In these environments it can easily happen that over
time the company loses track of the original process design and process evolves
in an uncontrolled fashion. Consequently, there are many prototypes (different
execution sequences) for one process [1].

Even though there is a rich source of mathematical models in data mining, not
any sequential approaches seem to be effective in solving this particular problem.
The solution is to ’divide’ the process into smaller groups of tasks/steps and at
each group, build a model accordingly [3], [4]. The shortcoming of these local
models is that the coherence and the interaction between events from different
event logs are lost. We propose another strategy addressing the complexity and
diversity of process data which partitioning process data into groups of sequences
of similar characteristics. Mathematical models are chosen according to the prop-
erties of the sequences in the resulting groups. The strength of this method is
that it keeps the sequential form of the process, discriminates and adequately
deals with different representative prototypes.

Existing sequential clustering approaches are found in the works of [5], [6]
etc. The principle of these approaches is to build a distance measure matrix by
first, modelling the data sequences one by one then comparing the likelihood of
a sequence fitting to a chosen model. Any probabilistic model can be used here
to describe the data e.g. linear autoregressive, graph-based models etc. HMM
based sequential clustering is the most common and has shown its great perfor-
mance in certain fields where data consists of continuous and/or long sequences.
To fit data sequences to descriptive models, the data is assumed to have some
properties or prior probabilistic distribution. It might be a better idea com-
paring the sequences directly based on the events and the order in which they
occurred than to build a HMM for each sequence in our data, in particular for
short length sequences. Hence, we use local sequence alignment (SA) to match
all sequences pairwise and the outcome of the matchings are used as a simi-
larity measure function. The proposed sequential clustering algorithm provides
subgroups of sequences which are similar in the way events have occurred. Each
resulting cluster is then treated by a couple of hybrid Markov models which are
studed in our previous work.

The rest of the paper is organised as follows: Section 2 presents the sequence
alignment technique. It is followed by Section 3 which introduces clustering and
the proposed sequential clustering approach. Experiments and experimental re-
sults discussion take place in Section 4. Finally, Section 5 will conclude and draw
a future research plan based on hints obtained from the former section.

2 Sequence Alignment - Similarity Measure Function

Algorithms used in sequence alignment are mainly categorised into global align-
ment and local alignment. Global alignment provides a global optimisation so-
lution, which spans the entire length of all query sequences. One such algorithm
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was introduced by Needleman and Wunchs [7]. In contrast, local alignment aims
to find the most similar segments from two query sequences [8], [9]. In this work
we use local alignment. There are two basic matrices associated with local se-
quence alignment algorithms: substitution matrix and score matrix. The role of
the substitution matrix is to generate the degree of matching any two events
from the set of event types, or in other words matching subsequences of length
1. This degree which is irrespective of the position of the events then contributes
to the matching score in the score matrix that considers the complete sequences,
i.e. all events in the order they occur. We now introduce these two matrices.

Substitution Matrix: In biology a substitution matrix describes the rate at
which one amino acid in a sequence transforms to another amino acid over time.
Regarding business process data no mutation occurs. Therefore, we do not need
the complex version of the substitution matrix and we use the identity matrix.

Score Matrix: This matrix’s elements are similarity degrees of events from the
two given sequences considering the positions.

hi0 = h0j = h00 = 0, (1)

These hi0, h0j and h00 values are the initial values for the recursive formula that
is used to compute hij .

hij = max {hi−1,j − δ, hi−1,j−1 + s(xi, yj),
hi,j−1 − δ, 0} ,

(2)

where s(xi, yj) is the element of the substitution matrix and xi, yj are events at
positions i and j. δ is the penalty for deletion or insertion. The ith event in a
sequence can be aligned to the jth event in another sequence, or can be aligned to
nothing (deletion). The optimal pair of aligned segments in this case is identified
by the highest score in the matrix. The segment is then found by tracking back
from that optimal highest score diagonally up toward the left corner until 0 is
reached.

3 Data Clustering

Clustering is one of the main constituent elements in data mining. It is known
as an unsupervised learning family. The aim of data clustering is to get the
data distributed into a finite number of clusters, typically based on the distance
between data points. Hence, a distance measure function is required and is vitally
important. Clustering aims to group data in a way that each object in one cluster
is similar to other objects in the same cluster more than to other objects in other
clusters. Clustering approaches mainly are one of the following types:

– hierarchical clustering: agglomerative clustering [10], [11],
– probabilistic clustering: EM algorithm [12],
– partitioning clustering: K means clustering, K modes, K prototypes [10],
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– fuzzy clustering [13],
– grid based clustering algorithm [14] (no distance required, only population

of the grids is counted),
– graph-based algorithm Click [15].

As sometimes sequential features describe data best, one option is to consider
each sequence as a multivariate feature vector and use vector composition based
clustering to cluster the given sequences [16]. However, decomposition based
approaches require sequences of the same length. Overcoming such issue, there
are a large number of HMM-based sequential clustering algorithms and exten-
sions [5], [6], [17], [18] etc. In these publications, the authors model individual
data sequences by probabilistic models then use likelihood to build a distance
matrix. Traditional clustering techniques are applied to partitioning the data
using the obtained distance matrix.

dij =
l(si, λj) + l(sj , λi)

2
, (3)

where dij are the distance between sequence i and sequence j, l(si, λj) is the
likelihood of a sequence i belonging to a model λ(j).

K Means Clustering. K means clustering in data mining is itself an NP hard
problem [19]. However, heuristic K means algorithms exist and provide locally
optimal solutions. Some common K means algorithms are Lloyd algorithm [19],
Bradley, Fayyad and Reina algorithm [10]. K means is widely used because of its
simplicity and competence. Researchers have tried to improve the original ap-
proach. One of the alternative algorithms is to modify the original K means to
profit from extra information about some specific data points should or should
not be assigned to certain clusters [20] (constraints of belonging). Another al-
ternative algorithm is to make the algorithm faster by using triangle inequality
to avoid unnecessary computation [21].
K is usually chosen in the first place or estimated by trial but there are

also a number of studies on how to select a reasonable value for K [22]. Given
the number of clusters K, first, the corresponding centers are initialised. These
centers can be data points randomly taken from the available dataset. Second,
each data point is assigned to the closest cluster based on the distance between
the data point andK centers. Once all the data points are assigned, a new center
for each cluster is determined. For numerical data, such centers are mean values
of the elements in the corresponding clusters. The procedure of assigning data
points to clusters and recomputing centers is repeated until it converges.

K Means Variant for Event Sequences. The sequence matching degree
presented earlier is used as similarity measure in our proposed K means clustering
which will be called SA based clustering from now on through out this paper.
Because we directly use ordered events of data sequences to compare sequences,
there is no mean value for each cluster. We resort to choose the sequence in
each cluster whose total distance (similarity) to other members of the cluster is
smallest (largest) as the new center.
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4 Evaluation

We carried out a number of experiments based on records from two real processes
(DS1− 2) from a multi-national telecommunications company. DS1 is a legacy
process, it consists of 2367 process instances of different lengths, varying from
1 to 78, 285 unique tasks (events) and about 20 process attributes. DS2 is also
a real process with 11839 entries, 576 process instances with different lengths,
and also has hundreds of unique tasks. The lengths of process instances in DS2
vary considerably. We would like to illustrate our process data and its complex
property as mentioned in the introduction before getting into the main experi-
ments. The diagram in Figure 1 shows the complexity of the subset of DS1. It
is basically impossible to visually analyse or understand the process from this
figure.

Fig. 1. Process model obtained by using Aperture visualising a highly complex process

To benchmark our proposed clustering we use HMM based sequential clus-
tering. Each data sequence is described by one HMM. The distance between
any pair of sequences is computed based on the loglikelihood of fitting the one
sequence to the descriptive HMM of the other sequence. Once the distance ma-
trix is built, K-means clustering is used. We use an available HMM toolbox in
Matlab to develop the HMM based clustering.

The final goal of clustering business process data in this work is to improve the
performance whilst predicting the data. We use Markov models and one of its
extensions to predict the next process step in the experiments. The performances
of these models applied to clustered data are means to evaluate the clustering
strategy. In other words, they are proofs for verifying the impact of the strategy
on the predictive capability.

– MM - Markov Models : in order to find the next task following the current
one, we build transition matrices of different order Markov models.
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– MSA - Hybrid Markov Models : a default prediction improvement module is
added to higher order Markov models to obtain better accuracy. The default
prediction is improved by comparing a new pattern to all the patterns from
the transition matrix using sequence alignment. The most similar pattern
found from the matrix is used as a substitution for the given one to contribute
the prediction.

Our aim is to improve the accuracy of the prediction on the original data by
clustering the data into groups of sequences with similar characteristics. Each
group requires a suitable predictive model. To verify if we can cluster the data
into such groups and if we can improve the accuracy by finding a suitable model
for each group, we first present the MMs and MSAs performance on DS1 and
DS2:

Fig. 2. Percentage correct of MM and MSA in predicting next process step using DS1

Fig. 3. Percentage correct of MM and MSA in predicting next process step using DS2

The results from Figures 2 and 3 show that the performances of these predic-
tive models are quite low, only about 25%. We then introduce the performances
of the same models applied to the clustered data. Both sequential methods,
HMM based and our proposed clustering (SA based), are implemented to gain
distance matrices. Therefore, K means clustering becomes sequential K means
using such matrices as distance measure. Sequential K means HMM based and
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SA based are used to cluster DS1, DS2 into 3 (or 6) and 2 clusters respectively.
Figures 4 and 6 illustrate the performances of MMs and MSAs applied to 3
and 6-cluster-DS1, which we obtained by SA based clustering, respectively and
Figures 5 and 7 illustrate the same with HMM based clustering.

Fig. 4. Percentage correct of different order MMs and MSAs in predicting next process
step using 6 clusters obtained by applying SA based clustering to dataset DS1

Fig. 5. Percentage of correct next process step predictions of different order MMs and
MSAs using 6 clusters obtained by applying HMM based clustering to dataset DS1

As can be seen, in the case of K means SA based with K = 6, MMs and
MSAs applied to cluster 5 have significantly high performance. The highest per-
formance is 78.69 % (third order MSA) which is almost four times greater than
the performance of the same models applying to the whole DS1 and 2.5 times
comparing to these of the other clusters. Applying MMs and MSAs on clusters 4
and 6 provides better accuracy (27.27% and 28.94% respectively) than applying
these on the original DS1 (23.76%).

In contrast, there is not much difference in terms of performance of these
predictive models applying to the original data set DS1 or the clustered data
using K means HMM based. With K = 3, in both cases HMM based ans SA
based, there is not much change in terms of the accuracy of the process next step
prediction regarding to the accuracy of the same models applied on the original
DS1.
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Fig. 6. Percentage of correct process next step predictions of different order MMs and
MSAs using 3 clusters obtained by applying SA based clustering to dataset DS1

Fig. 7. Percentage of correct next process step predictions of different order MMs and
MSAs using 3 clusters obtained by applying HMM based clustering to dataset DS1

The significant accuracy improvement in cluster 5 is the proof for our initial
intuition that (1) if we manage to have subsets of data which consist of similar
sequences then there exists a suitable model which performs well in each subset.
Also, these models perform better in certain subsets than others and than the
whole data set before being divided. (2) It indirectly proves that our proposed
sequential clustering performs well, similar sequences are naturally clustered into
clusters. (3) Our SA based clustering is more suitable for this type of data than
the common HMM based clustering. In the case of data set DS2, there is not
much improvement in terms of prediction accuracy after clustering the data
with both clustering approaches. The highest performance of the fourth order
MSA is about 27% applied to cluster 2 obtained by SA based and HMM based
clusterings comparing to 20% to whole DS2. The performances of the first to
fifth order MMs and MSAs applied to clusters 1 and 2 obtained by clustering
DS2 in the case SA based clustering are illustrated in Figure 8.

When clustering DS2 using the two methods, only two clusters are formed,
when we decrease the clustering goodness, more clusters are obtained but most
of them have very low populations. The results of the experiments on clustered
DS1 and DS2 show that different clusters need different predictive models.
Higher order MMs and MSAs are especially good for data sequences in cluster 5
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Fig. 8. Percentage of correct next process step predictions of different order MMs and
MSAs using 2 clusters obtained by applying SA based clustering to data set DS2

Fig. 9. Percentage of correct next process step predictions of different order MMs and
MSAs using 2 clusters obtained by applying HMM based clustering to data set DS2

generated from DS1 using sequential K means clustering with K = 6. None of
these models works well on other clusters from both data sets DS1 and DS2. It
is sensible saying that the experimental models are not good for clustered data
of DS2 as this data set is relatively small.

5 Conclusions

In order to deal with individual process prototypes differently, we first attempt to
cluster process data into different groups of similar sequences. Such data consists
of discrete symbolic sequences. After studying a number of available sequential
clustering approaches, in this paper we introduce a new sequential clustering
approach which is suitable for business process data. We also use the common
HMM based sequential clustering in order to compare to our proposed approach.
We then use predictive models to predict next process step and we significantly
improve the next process step prediction in one cluster of one of the used data
sets. This implies the data has been successfully clustered in a natural way and
proves our strategy right.

The experimental results encourage and motivate us to continue and ex-
tend our work. The future work dicrections will explore different predictive
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approaches, for example, decision trees, neural networks etc. to profit from their
abilities in clustered data. We are ultimately interested in recovering the process
logic even though our recover process can be the combination of a number of
representative prototypes.
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Abstract. This paper introduces a new method of fuzzy semisupervised hierar-
chical clustering using fuzzy instance level constraints. It introduces the concepts
of fuzzy must-link and fuzzy cannot-link constraints and use them to find the op-
timum α-cut of a dendrogram. This method is used to approach the problem of
classifying scientific publications in web digital libraries. It is tested on real data
from that problem against classical methods and crisp semisupervised hierarchi-
cal clustering.

Keywords: Semisupervised clustering, Fuzzy Instance level Constraints, Digital
Libraries.

1 Introduction

The popularity of Internet has changed the way people consult bibliographic informa-
tion. This has helped to the development and widespread of digital libraries on the web.
This kind of services offer information about a specific topic stored in registers like the
ones in a library. It is possible to find several examples in the area of scientific publica-
tions, like DBLP, CiteSeerX, INSPEC or Google Scholar. These services make finding
a specific publication very easy, but if we want to find all publications by an author it
can be very hard for several reasons.

Specifically, if we consider that an author name can be written in several ways (full,
abbreviated, using initials, etc.), search results will be very different according to the
query made. In the same way, if there is more than one author sharing the same name,
it is possible that their publications had been mixed. These problems are respectively
known as Multirepresentation and Identity Uncertainty. The first one refers to the occur-
rence of several representations for the same name, while the second one can be defined
as the impossibility of distinguish among two different authors sharing the same name.

Let us illustrate these problems with an example: looking in a digital library for an
author called J. Smith. Using this query, the results can be related to James Smith, Julia
Smith, Joseph Smith, among others. On the other hand, if we look for James Smith, it
would not return those registers under J. Smith, even if the author uses that name in
some of his works.
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As a consequence of that, there are several data that are probably mixed and can
have noise. However, it is possible to disambiguate these results and find a clean clas-
sification of publications by name using an Automatic Authority Control method [1].
That proposal was based on a hierarchical clustering algorithm combined with a prox-
imity measure designed ad-hoc for the problem. Additionally, it needed an expert dur-
ing the validation process who evaluated the solution. Even if the results of that method
where quite satisfactory, the use of the expert led us to the idea of using her/his infor-
mation to help the clustering process.

A good way to use external information in the process of classifying scientific pub-
lications is the use of Semisupervised Clustering[2]. It can be defined as a group of
techniques between fully supervised classification and unsupervised clustering. These
methods use a small amount of external information helping to guide the clustering
process to a better solution.

The main advantage of semisupervised clustering in comparison to supervised clas-
sification is that it needs considerably less information, that it is usually provided dif-
ferently that it is easier to obtain than class labels. It means that these methods can be
applied to a wider range of problems. Specifically, if we focus on one of the main types
of semisupervision, instance level constraints, it only needs information about if some
pairs of instances are or are not in the same class. For that reason, these methods can be
applied in situations where it is not possible or it is very hard to label the instances, as
happens in the problem of classifying publications.

As previously stated, this technique fits very well the problem of classifying scientific
publications by author. Given a group of publications obtained from a search in a digital
library, it is not possible to know in advance the number of authors they belong to. So, as
this information is not available, it is not possible to know how many groups (clusters)
can be found in the data. For that reason, it is very difficult to assign them a label.
However, if an expert is given two publications, she/he can say if they belong to the
same author, at least with certain degree of belief.

Semisupervision has not been a very used technique in combination with hierarchical
clustering. Additionally, it had always been introduced in the algorithms during the pro-
cess of grouping elements. Normally, this technique had been used to drive the solution
to one that fits the constraints. However, we propose to use these techniques differently.
The method that we are introducing in this paper does not modify the clustering pro-
cess itself but it helps to find the optimum α-cut of the dendrogram. It allows the use
of a hierarchical clustering technique that does not need to prior knowledge about how
many groups will be obtained. As it was previously addressed, the problem that is been
approached in this paper does not provide that information.

Instance level constraints have always been used is a crisp way, so they were lim-
ited to those problems where the expert was certain about the provided information.
However, we propose to soften those conditions by the use of fuzzy instance level con-
straints. The use of these fuzzy constraints allow the expert to give a certain degree of
belief about if two elements belong or not to the same cluster.

This paper is organized as follows: Section 2 gives a brief bibliography of previous
work on this problem and semisupervised clustering. Section 3 introduces a formaliza-
tion that will help to approach the problem of classifying publications by author. Then,
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on Section 4 a new fuzzy semisupervised hierarchical clustering algorithm is proposed,
introducing semisupervision as fuzzy instance level constraints. That model has been
used on Section 5. Finally, some conclusions and future work are given on Section 6.

2 Previous Work

In the last times, Semisupervised Clustering has been a very popular area of research.
Among the different variations of these techniques, instance level constraints as pro-
posed by Wagstaff [3], are a very interesting model that has been receiving a lot of
attention. Some of the most relevant works based on this model can be found on [2].

The problem of how to classify publication by author has been previously treated
from several points of view. However, the proposed solutions typically focus on the
Identity Uncertainty problem. It has been approached using different classification
methods, both supervised and unsupervised. Among the supervised proposals, there are
some that use Support Vector Machines (SVM) [4], or variations of SVM, like LASVM
[5]. Other proposals include: Naive-Bayes [6], Random Forest [7], Latent Dirichlet Al-
location [8] or Markov Chains [9]. On the other hand, among unsupervised methods it
is possible to find proposals based on WAD method [10] or on hierarchical heuristics
[11].

In contrast with previous works, in this proposal we solve at the same time the Mul-
tirepresentation and Identity Uncertainty problems. Additionally, most previous works
generally use information that can not be found on some digital libraries, as author’s
email. The method described on this paper is focusing only on information that can be
found on any digital library. An unsupervised first approach of this methodology can be
found on: [1], [12]. Results from these works lead us to the development of the generic
theoretical framework that has been used on this paper.

In [13] an initial proposal of how to introduce instance level constraints into hier-
archical clustering was made. The use of constraints to find the optimum α-cut of a
dendrogram is different from the tendency in the literature to use them inside the clus-
tering process itself. However, that proposal used crisp constraints, which led us to
facing the idea of fuzzy instance level constraints. This new kind of constraints allow
us to use them in problems where there is uncertainty or it is not possible to find a re-
liable expert. For that reason, this paper introduces a new method of fuzzy hierarchical
semisupervised clustering based on instance level constraints. Additionally, it proposes
its application to the classification of scientific publications by author.

3 Theoretical Framework

In this section we describe a generic theoretical framework to find a set E = {e1, . . . ,en}
representing any kind of entity that can be expressed as a set of names. Examples of
these entities can be authorities, companies, diseases, etc. Let us define:

– N = {n1, . . . ,nk}, a set of names.
– T = {t1, . . . , tm}, a set of entities or cases, such as ∀t ∈ T |t = (n,

−→
f ); with n ∈ N,

where n can be in different cases and f is a vector of factors extracted from texts.
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The previous definition allow us to describe each entity as a set of names, so the problem
of finding E can be translated into finding a partition of the space of names: P(N) =
{N1, . . . ,Nn} such as ∀i; Ni ≡ ei. This partition of the space of names is induced by a
partition of the space of cases. In fact, it will be obtained by means of a fuzzy clustering
process P(T ) = (C1, . . . ,Cn). So, for each Ci = {ti j = (ni j,

−→
fi j)}, it is established that

Si = {n|∃ti j ∈ Ci;ti j = (n, fi j)}. Obviously, ∪l
i=1Sl = N i.e. S (N) = {Si, . . . ,Sn} is a

cover of the space of names.
As previously stated, partition P(T ) is obtained by means of a clustering process

using a proximity measure determining the similarity among the elements to group. For
that reason, it is necessary to use a measure that allow the comparison of t according to
the content of N.

Cover S (N) can be transformed into a partition of the space of names P(N) by a
validation process. It involves the use of an expert and returns a set of names that are
the prototypes of the partition.

It is proposed to use this model to find authorities, defined as the different names
that can identify an author. To do that, a methodology is described using publications
from Digital Libraries as cases and an ad-hoc proximity measure for this problem. All
these concepts and methods will be detailed in the following section.

3.1 Authority Control in the Theoretical Framework

The previous model can be applied to solve the problem of classifying publications in
a digital library by name. We can define an authority as a group of different representa-
tions for the name of a specific author. Using this definition, to find the set of authorities
in several publications obtained from a digital library is equivalent to find the set E of
entities. The elements of this model can be identified in this problem as:

– Set of entities E is the set of authorities.
– Set of cases T is the set of publications to be classified. Each ti is a publication of

the set.
– t =(n,

−→
f ), where n is a name and f is a vector of factors. Specifically, t =(n, f1, f2)

where n is the author’s name, f1 are terms from title and abstract and f2 is a list of
coauthors.

– P(T ) is a partition of the set of publications.
– S (N) can be obtained from the names, n, of P(T ).

Digital libraries offer a wide range of information that can be used as factors, such
as titles, authors, date of publication, venue, abstract, author’s email, etc. Considering
that this method it is intended to be very generic and it should be suitable for any digital
library, data used as factors must be found in any source. Specifically it uses terms from
titles and authors. Additionally, it can use terms from abstract if they are available.
It is considered that these factors allow distinction among publication and are general
enough to be found in any digital library.
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Proximity measure used in this process is the opposite of a divergence measure used
to compare different factors in t. This measures m can be defined as:

m(t1, t2) =

⎧⎨⎩
1, if mn = 1;
(1−λ1−λ2)×mn

+λ1× dt +λ2×mc, otherwise.
(1)

Where mn is a name divergence measure, dt is a distance among terms, mc is a
coauthors divergence measure and λ1, λ2 are two weights in the interval [0,1] used to
control the influence of each component. For each specific problem, dt is cosine dis-
tance. Names measure mn is obtained using a pseudo-distance specifically designed for
names sharing a common componentc[12]. Coauthor’s measure, mc is a modification of
the previous measure for names that do not have common substring [12]. Validation of
the results of this model to obtain the partition P(N) is made according to the process
described in [1].

4 Fuzzy Semisupervised Clustering

In this section, a new way to introduce semisupervision into hierarchical clustering is
described. It makes use of instance level constraints.

Hierarchical clustering is a family of clustering algorithms that instead of creating a
partition of the input dataset, it creates a hierarchy of elements in a binary tree called
dendrogram. Each dendrogram is equivalent to an ultrametric distance matrix U and
generates a fuzzy similarity matrix for the elements to be grouped [14]. This kind of
clustering does not generate a partition of the input elements but a set of nested parti-
tions according to several levels α . Those α are just the α-cuts of the fuzzy similarity
matrix. Then, the problem of finding the best partition of the dendrogram to obtain
the best partition of the input elements is equivalent to the problem of finding the best
α−cut of the fuzzy similarity matrix. There are objective unsupervised methods to find
that partition like the one on [15].

On previous works we have used the unsupervised method to find the optimum α-cut
of the partition without using external information [1], [12]. Now, it is our goal to find
the optimum partition using instance level constraints [3]. These constraints are given
by an expert with knowledge about some of input data.

Instance level constraints indicate if two elements are or are not in the same group.
It is possible to distinguish two kinds: must-link and cannot-link. Let us define them as:

– MUST-LINK M : Given ti and t j, if ∃ a M (ti, t j), then ti and t j must be in the same
cluster.

– CANNOT-LINK H : Given ti and t j, if ∃ a H (ti, t j), then ti and t j cannot not be in
the same cluster.

Traditionally, this kind of constraints have been given in a crisp way. However, crisp
information is not appropriate for problems where there is uncertainty or it is not possi-
ble to find an expert that can give true knowledge about the working data, or even, there
are two experts that do not agree in their information. In these cases, the use of fuzzy
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constraints would allow us to soften the conditions by giving a degree of belief about if
two elements are or are not in the same group. With these ideas, the previous definition
can be redefined as:

– FUZZY MUST-LINK M = β : Given ti and t j, if ∃ a M (ti, t j) = β , then ti and t j

belong to the same cluster with degree β ∈ [0,1].
– FUZZY CANNOT-LINK H = γ: Given ti and t j, if ∃ a H (ti, t j), then ti and t j are

not in the same cluster with γ ∈ [0,1].

It is possible to represent the constraints between pairs of elements using two matri-
ces Mm and Mc such as:

Mm(ti, t j) =

{
β , if∃M (ti, t j)
−1, if�M (ti, t j)

(2)

Mc(ti, t j) =

{
γ, if∃H (ti, t j)
−1, if�H (ti, t j)

(3)

Such as �(ti, t j) ∈ T |M (ti, t j) = β and H (ti, t j) = γ , meaning that there can not be
two restrictions must-link and cannot-link for the same pair of elements.

In the same way, for each α-cut of the dendrogram it is also possible to create a
matrix C from the opposite of the matrix U representing the elements that have been
clustered on each step. So, for each α-cut there is a matrix Cα with the elements joined
at that specific α-level. Each Cα (ti, t j) will have two possible values:

– Cα(ti, t j) = 1 if elements ti and t j are in the same group
– Cα(ti, t j) = 0 if elements ti and t j are not in the same group

Matrices Mm and Mc can be compared with the different matrices Cα according to
(4).

s(M(ti, t j),Cα (ti, t j)) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v, if Mm(ti, t j)≥ α and Cα(ti, t j) = 1;
−w, if Mm(ti, t j)≥ α and Cα(ti, t j) = 0;
v, if Mc(ti, t j)≥ α and Cα(ti, t j) = 0;
−w, if Mc(ti, t j)≥ α and Cα(ti, t j) = 1;
0, otherwise .

(4)

Where v is used to adjust the weight that reinforce the constraint have in the expres-
sion and w is the penalty of contradict the constraint. For this problem, we suggest to
use v = 1 and w = 0.5, but this values can be changed according to the problem or the
confidence of the expert.

So, the optimum α-cut can be calculated by maximizing the expression in (5)

S = max
α∈[0,1]

{
n

∑
i, j

s(M(ti, t j),Cα (ti, t j))} (5)

The α from matrix Cα for which (5) have its maximum is the optimum α-cut of
the dendrogram. Cutting the tree at that level will give us the optimum partition of the
dataset.
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5
4
3
2
1
0.9 0.8 0.4 0.2

1.0   0.8   0.4   0.2   0.2      
0.8   1.0   0.4   0.2   0.2
0.4   0.4   1.0   0.2   0.2
0.2   0.2   0.2   1.0   0.9
0.2   0.2   0.2   0.9   1.0

Fig. 1. Example of dendrogram and its equivalent opposite of the ultrametric matrix

4.1 Example

Let us illustrate this method with an example. Figure 1 shows an example dendrogram
and its equivalent opposite of the ultrametric matrix returned by a clustering process
over 5 elements. An expert with knowledge about the problem has given the following
constraints:

– Mm(1,2) = 0.8
– Mm(4,5) = 1.0
– Mc(2,3) = 0.9
– Mc(1,5) = 0.6

From the ultrametric matrix we have four different α-cuts: α = {0.9,0.8,0.4,0.2}.
For each one of them we are going to evaluate s(M,Cα ), with values of v = 1, w = 0.5.

So, for each α:

s(M(ti, t j),C0.9) =

⎧⎪⎪⎨⎪⎪⎩
Mm(1,2) = 0.8< 0.9 and C0.9(1,2) = 0; 0
Mm(4,5) = 1.0≥ 0.9 and C0.9(4,5) = 1; 1
Mc(2,3) = 0.9≥ 0.9 and C0.9(2,3) = 0; 1
Mc(1,5) = 0.6< 0.9 and C0.9(1,5) = 0; 0

= 2 (6)

s(M(ti, t j),C0.8) =

⎧⎪⎪⎨⎪⎪⎩
Mm(1,2) = 0.8≥ 0.8 and C0.8(1,2) = 1; 1
Mm(4,5) = 1.0≥ 0.8 and C0.8(4,5) = 1; 1
Mc(2,3) = 0.9≥ 0.8 and C0.8(2,3) = 0; 1
Mc(1,5) = 0.6< 0.8 and C0.8(1,5) = 0; 0

= 3 (7)

s(M(ti, t j),C0.4) =

⎧⎪⎪⎨⎪⎪⎩
Mm(1,2) = 0.8≥ 0.4 and C0.4(1,2) = 1; 1
Mm(4,5) = 1.0≥ 0.4 and C0.4(4,5) = 1; 1
Mc(2,3) = 0.9≥ 0.4 and C0.4(2,3) = 1; −0.5
Mc(1,5) = 0.6≥ 0.4 and C0.4(1,5) = 0; 0

= 1.5 (8)

s(M(ti, t j),C0.2) =

⎧⎪⎪⎨⎪⎪⎩
Mm(1,2) = 0.8≥ 0.2 and C0.2(1,2) = 1; 1
Mm(4,5) = 1.0≥ 0.2 and C0.2(4,5) = 1; 1
Mc(2,3) = 0.9≥ 0.2 and C0.2(2,3) = 1; −0.5
Mc(1,5) = 0.6≥ 0.2 and C0.2(1,5) = 1; −0.5

= 1 (9)

Now, using (5) we get:

S = max
α∈[0,1]

s(M,Cα ) = max{2,3,1.5,1}= 3→ α = 0.8 (10)

So, the optimum α-cut is found at α = 0.8 obtaining three clusters.
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5 Experimental Results

This section will show the behaviour of fuzzy instance level constraints to obtain the
optimum α-cut of a dendrogram. They will be compared with crisp instance level
constraints[12] and classic unsupervised methods[15].

This method has been tested using two datasets obtained from real searches of the
surname Smith over DBLP and CiteSeerX. Resulting datasets contain 500 and 485 in-
stances respectively. It is our intention to find out how many instance level constraints
this method needs to find the optimum α-cut properly. For that reason, these data had

Fig. 2. Comparison of the different methods to obtain the α-cut of a dengrogram using data
extracted from DBLP and CiteSeerX. Horizontal axis show the percentage of constraints used on
the method. Line named Fuzzy correspond with the method using fuzzy instance level constraints,
line named crisp correspond to crisp instance level constraints and line named Unsupervised
correspond with the unsupervised method to obtain the optimum α-cut of the dendrogram.
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been handed over to an expert who had given us fuzzy instance level constraints for all
pair of instances. It is important to point out that all constraints with a degree of belief
lower than 0.5 have been discarded, as information under this level is not considered
reliable.

Previously described data had gone through a fuzzy clustering algorithm with the
divergence measure described on [1]. Resulting dendrogram is cut using three different
methods: a classic unsupervised one described on [15], crisp instance level constraints
[13] and fuzzy instance level constraints. For each of the methods using instance level
constraints, the cut had been performed with a different amount of constraints that is
increased iteratively. Starting with a very small amount of constraints, 0.1%, they have
been increased up to 90%. For each of the α-cuts of the dendrogram, the f-measure [16]
of the resulting clusters have been obtained. Results from this experiment can be seen
on Figure 2.

On the Figure it is possible to observe a very similar behaviour. The lines corre-
sponding to the fuzzy and crisp method outperform the unsupervised method using a
small amount of constraints. It means that the use of instance level constraints help to
find the optimum α-cut of a dendrogram. However, if we compare the fuzzy and crisp
method, we can see that even if the crisp method needs less constraints to work prop-
erly, the similarity between the crisp and fuzzy problems indicate that it is possible use
fuzzy semisupervised clustering on problems with uncertainty or unreliable experts.

Additionally, as it is possible to see in the Figure, the results tend to stabilize after a
determinate amount of restrictions. It indicates that the expert only need to provide in-
formation about between 5% or 10% of the pairs of instances. It means that the number
of constraints needed for a proper performance of this method is quite low, which make
easier to find experts that can be used on these problems.

6 Conclusions

In this paper the use of fuzzy instance level constraints on hierarchical semisupervised
clustering had been studied. These constraints have the advantage against crisp con-
straints that they can be used in problems where the expert cannot provide certain in-
formation.

At it had been proved, its use on the problem of the classification of scientific publi-
cations outperform classical methods. Additionally, its behaviour is very similar to crisp
instance level constraints which allow its application on those cases where the expert
cannot give certain data.

It remains as a future work the study of the entropy of the constraints given by the
expert, as well as the study of the influence of the distinct types of constraints in the
final solution. Another very interesting line of work could be the use of these constraints
on other kinds of clustering or use them not only on the process of finding the optimum
α-cut of a dendrogram, but on the clustering itself.
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Abstract. In this work, we propose a pseudometric based on a fuzzy relation,
which is itself derived from a fuzzy partition. This pseudometric is a metric in
the particular case in which the fuzzy partition is composed solely by triangular
fuzzy sets. We prove that these functions are indeed a pseudometric and a metric
and illustrate their use in an experiment for the classification of land use in an
area of the Brazilian Amazon region.

Keywords: classification, k-NN, fuzzy partitions, distance, metric, pseudometric.

1 Introduction

One of the main approaches to classification is the so-called k-NN classifiers, in which
an element of a domain is assigned the class that represents the majority of the classes
of its closest k neighbours (see [9] for a review of classification techniques). The func-
tion used to obtain the neighbors of an element x in a multi-dimensional domain O
is usually a metric (or distance) on O, but there are a few works proposing the use of
pseudometrics in general instead (see for instance [4]).

In this work, we propose the use of a function that is the complement in [0, 1] of
a particular kind of similarity relation, called an Order Compatible Fuzzy Relation
(OCFR�), defined using a total order (Ω,!) [8]. An OCFR� itself is derived from
a particular type of fuzzy partition (a collection of fuzzy sets), called Convex Fuzzy
Partitions (CFP�). The creation of OCFR� was motivated by the need to ease the bur-
den of creating suitable relations for use in a particular fuzzy case-based reasoning
classification approach [6].

The main goal of this work is to prove that the proposed function is i) a pseudometric,
when obtained from a specific type of CFP�, called 2-Ruspini, and, in particular, ii) a
metric, when this CFP� is moreover composed solely of triangular fuzzy sets. We also
briefly describe an application of this function in the classification of land use in an area
of the Brazilian Amazon region.

2 Fuzzy Convex Partitions and Order-Compatible Relations

In Fuzzy Sets Theory, membership to sets is no longer an all-or-nothing notion [1].
A fuzzy set A on a domain Ω is characterized by a mapping A : Ω → [0, 1], called
the membership function of A. It is said to be normalized when ∃ x0 ∈ Ω such that

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 189–198, 2014.
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A(x0) = 1. A level cut of A is defined as ∀α ∈ (0, 1], [A]α = {x ∈ Ω | A(x) ≥ α}.
The core and support of a fuzzy set A are particular types of level cuts defined as
core(A) = {x ∈ Ω | A(x) = 1} and supp(A) = {x ∈ Ω | A(x) > 0}), respectively.
Particular types of fuzzy sets are those described by linear by parts membership func-
tions, in which all level cuts are (nested) intervals of the domain. If A0 is such a fuzzy
set and its core is given by ∃ xl, xu ∈ Ω, core(A0) = [xl, xu], then A0 is trapezoidal
(respec. triangular), when xl �= xu (respec. xl = xu). A collection of fuzzy sets is usu-
ally called a fuzzy partition, with more specific definitions depending on the properties
obeyed by the fuzzy sets composing the partition.

A fuzzy relation S is characterized by a mapping from a multidimensional domain
O = Ω1 × ...×Ωn to [0, 1]. Its normalization is defined similarly to that for fuzzy sets
in one-dimensional domains. Given two distinct fuzzy relations S and S′, we say that
S is finer than S′, when ∀x, y ∈ Ω,S(x, y) ≤ S′(x, y).

A T -norm operator is a mapping ' : [0, 1]2 → [0, 1], that is commutative, asso-
ciative, monotonic and has 1 as neutral element. Given a T -norm ', its associated
residuated implication operator I� is defined as [7].

I�(x, y) = sup{z ∈ [0, 1] | '(x, z) ≤ y},

and its associated biresiduationBI� is defined by

BI�(x, y) = min(I�(x, y), I�(y, x)).

In particular, the Lukasiewicz T -norm operator is defined as

'L(x, y) = max(x+ y − 1, 0).

and its associated residuated operator and biresiduation are respectively defined as

– IL(x, y) = min(1− x+ y, 1),
– BIL(x, y) = 1− | x− y |,

where | . | denotes the absolute value of a real number.
Let S : Ω2 → [0, 1] be a fuzzy binary relation and (Ω,!) be a total order. For-

mally, S is an Order Compatible Fuzzy Relation with Respect to a Total Order (Ω,!)
(OCFR� or OCFR, for short), when it obeys the following properties [8]:

– ∀x, y, z ∈ Ω, S(x, x) = 1 (reflexivity)
– ∀x, y, z ∈ Ω, S(x, y) = S(y, x) (symmetry)
– ∀x, y, z ∈ Ω, if x ! y ! z, then S(x, z) ≤ min(S(x, y), S(y, z)) (compatibility

with total order (Ω,!), or !-compatibility for short).

Let (Ω,!) be a total order and let A = {A1, ..., At} be a collection of fuzzy sets
in Ω. Formally, A is a Convex Fuzzy Partition with Respect to a Total Order (Ω,!)
(CFP� or CFP, for short), if it obeys the following properties [8]:

1. ∀Ai ∈ A, ∃x ∈ Ω,Ai(x) = 1 (normalization),
2. ∀x, y, z ∈ Ω, ∀Ai ∈ A, if x ! y ! z then
Ai(y) ≥ min(Ai(x), Ai(z)) (convexity),



Using a Fuzzy Based Pseudometric in Classification 191

3. ∀x ∈ Ω, ∃Ai ∈ A, Ai(x) > 0 (domain-covering),
4. ∀Ai, Aj ∈ A, if i �= j then core(Ai) ∩ core(Aj) = ∅

(non-core-intersection).

Let A(Ψ,�) denote the set of all CFPs that can be derived considering a total order
(Ω,!). CFP A ∈ A(Ψ,�) is said to be a n-CFP if each element in Ω has non-null
membership to at most n fuzzy sets in A (n ≥ 1). In particular, a 2-CFP� A is called a
2-Ruspini partition, when it obeys additivity:

– ∀x ∈ Ω,
∑

iAi(x) = 1 (additivity)

In [8], the authors propose to generate OCFR� S+ : Ω2 → [0, 1] from a CFP� A as

S+(x, y) =

{
0, if S∗(x, y) = 0
SL(x, y), otherwise

∀x, y ∈ Ω,S∗(x, y) = sup
i

min(Ai(x), Ai(y))

∀x, y ∈ Ω,SL(x, y) = infi 1− | Ai(x) −Ai(y) |

Note that SL is constructed based on the Lukasiewicz biresiduated operatorBIL.
When A is a 2-Ruspini partition, S+(x, y) obeys the following properties (see [8]

for proofs):

– ∀Ai ∈ A, ∀c ∈ core(Ai), ∀x ∈ Ω,S(c, x) = S(x, c) = Ai(x)
(core-restrictivity);

– ∀x, y ∈ Ω,S(x, y) ≥ S∗(x, y) = supimin(Ai(x), Ai(y))
(level-cut-compatibility).

Core-restrictivity states that the “slice” from S, corresponding to an element c at the
core of a set Ai (the column of element c in [7]), is exactly the same as Ai, whereas
level-cut-compatibility ensures that any two elements ofΩ that belong to level cut [Ai]α
of a fuzzy set Ai in A will also belong to level cut [S]α of relation S [8].

3 Function f+

A metric, or distance function, d : Ω → R satisfies the following properties:

– ∀x, y ∈ Ω, d(x, y) ≥ 0 (non-negativity)
– ∀x, y ∈ Ω, d(x, y) = 0 if and only if x = y (identity of indiscernibles)
– ∀x, y ∈ Ω, d(x, y) = d(y, x) (symmetry)
– ∀x, y ∈ Ω, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A pseudometric satisfies non-negativity, symmetry and the triangle inequality, but
the identity of indiscernibles property is substituted by a weaker property:

– ∀x ∈ Ω, d(x, x) = 0 (anti-reflexivity)
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Let A be a CFP� and S+
A be the result of applying S+ to A. Here we propose the use

of function f+A : Ω2 ∈ [0, 1] in tasks in which metrics and pseudometrics are employed:

∀x, y ∈ Ω, f+A(x, y) = 1− S+
A(x, y).

This formula can be written directly as:

∀x, y ∈ Ω, f+A(x, y) =

{
1, if ∀i,min(Ai(x), Ai(y)) = 0,
supi | Ai(x) −Ai(y) |, otherwise.

When no confusion is possible, we denote f+A as simply f+.
Below, we first prove some properties of f+ and then prove that it is a pseudometric

in general and a metric when A is composed solely of triangular fuzzy sets. Note that,
since S+

A obeys the compatibility with total order property, we obtain the inequality

∀x, y ∈ Ω, f+A(x, z) ≥ max(f+A(x, y), f+A(y, z)).

Therefore, that property leads us to obtain a lower bound for f+A(x, z), in terms of
f+A(x, y) and f+A(y, z), when x ! y ! z. By proving the triangle inequality for f+A , we
will then obtain an upper bound for f+A , that does not depend on the order of x, y and z
in Ω.

In the following, we say that two elements p and q in Ω relate to each other with
respect to a CFP� A, when they both have non-null membership degree to at least one
fuzzy set in A, i.e when ∃A ∈ A, min(A(p), A(q)) > 0.

Let A be a 2-Ruspini CFP�. Each element in Ω has non-null membership to either
1 or 2 fuzzy sets in A, due to the additivity and covering properties. Therefore, with
respect to A, any two elements p and q in Ω can either: i) be unrelated, when ∀Ai ∈ A,
min(Ai(p), Ai(q)) = 0, ii) be related by a single fuzzy set, when ∃B ∈ A such that
p, q ∈ supp(B) and ∀Ai ∈ A, Ai �= B, min(Ai(p), Ai(q)) = 0, or iii) be related by
exactly two fuzzy sets, when there exists two contiguous fuzzy sets B1, B2 in A such
that p, q ∈ supp(B1)∩ supp(B2) and for all Ai ∈ A such that Ai �= B1 and Ai �= B2,
min(Ai(p), Ai(q)) = 0.

Corollary 1. Let (Ω,!) be a total order, A be a 2-Ruspini CFP�, S+(x, y) be an
OCFR derived from A and f+ = 1− S+.

1. If p and q are unrelated, we have f+(p, q) = 1.

Proof. In this case, for all Ai ∈ A, min(Ai(p), Ai(q)) = 0, and thus the result
follows from the definition of f+.

2. If p and q are related by a single fuzzy setB ∈A, then either (a) f+(p, q) = 0, when
p and q both belong to the core of B, or (b) f+(p, q) = max(1−B(p), 1−B(q)),
otherwise.

Proof. In this case, there exists B ∈ A such that p, q ∈ supp(B) and for all
Ai ∈ A, Ai �= B, min(Ai(p), Ai(q)) = 0.
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– a) If p and q belong to the core of B, B(p) = B(q) = 1 and thus | B(p) −
B(q) |= 0. Due to additivity in 2-Ruspini partitions, for all Ai ∈ A such that
Ai �= B, min(Ai(p), Ai(q)) = 0 =| Ai(p)−Ai(q) |. Therefore, f+(x, z) = 0.

– b) If p and q do not both belong to the core of B, then there exist two fuzzy
sets B− and B+ in A adjacent to B, to its left and right, respectively, which
are such that p ∈ supp(B−) ∩ supp(B) and q ∈ supp(B) ∩ supp(B+).
All fuzzy sets Ai ∈ A such that Ai /∈ {B−, B,B+} can be disregarded in
the calculation of f+(p, q), because for any A in A, if min(A(p), A(q)) =
0, then | A(p) − A(q) |= 0. We thus have ∀p, q ∈ supp(B), f+(p, q) =
maxA∈{B−,B,B+} | A(p)−A(q) |=max(| B−(p)−B−(q) |, | B(p)−B(q) |,
| B+(p) − B+(q) |). But B+(p) = B−(q) = 0, because p /∈ supp(B+) and
q /∈ supp(B−). Moreover, ∀p ∈ supp(B−) ∩ supp(B+), we have B−(p) =
1−B(p) and ∀q ∈ supp(B)∩supp(B+),B+(q) = 1−B(q), due to additivity
in A. We thus have f+(p, q) = max(| 1 − B(p) − 0 |, | B(p) − B(q) |,
| 0− 1 +B(q) |) = max(1 −B(p), 1−B(q)).

3. If p and q are related by 2 fuzzy setsB1 andB2 in A, we have f+(p, q) =| B1(p)−
B1(q) |=| B2(p)−B2(q) |.

Proof. In this case, there exists two contiguous fuzzy sets B1, B2 in A such that
p, q ∈ supp(B1)∩ supp(B2) and for all Ai ∈ A such that Ai �= B1 andAi �= B2,
min(Ai(p), Ai(q)) = 0. As seen previously, we only have to consider fuzzy sets
B1 and B2 from A. We thus have f+(p, q) = max(| B1(p) − B1(q) |, | B2(p) −
B2(q) |). But since A is 2-Ruspini and B1 and B2 are contiguous, f+(p, q) =|
B1(p)−B1(q) |=| B2(p)−B2(q) |, which completes the proof.

Corollary 2. Let (Ω,!) be a total order and A be a 2-Ruspini CFP� derived from A.
Function f+ derived from A satisfies the triangle inequality.

Proof. To prove triangle inequality, we have to verify that

∀x, y, z ∈ Ω, f+(x, z) ≤ f+(x, y) + f+(y, z).

Let suppp stand for the union of supports of the fuzzy sets to which an element p in
Ω has non-empty membership, i.e. ∀p ∈ Ω, suppp = ∪i {supp(Ai) | Ai(p) > 0}. We
have to verify two cases.

– Case 1: x and z are unrelated in A, i.e. for all Ai ∈ A, min(Ai(x), Ai(z)) = 0.

In this case, by definition, f+(x, z) = 1. When y /∈ suppx∪ suppz, i.e. y is related
to neither x nor z in A, we have f+(x, y) = f+(y, z) = 1 and thus f+(x, z) =
1 ≤ f+(x, y) + f+(y, z) = 2. When y ∈ suppx, we have f+(y, z) = 1, since
by hypothesis suppx ∩ suppz = ∅, and therefore f+(x, z) = 1 ≤ f+(x, y) +
f+(y, z) = f+(x, y) + 1. We use a similar reasoning when y ∈ suppz.

– Case 2: x and z are related in A, i.e. ∃A ∈ A, min(A(x), A(z)) > 0.

When y /∈ suppx ∪ suppz, i.e. y is related to neither x nor z in A, we have
f+(x, y) = f+(y, z) = 1. We thus obtain f+(x, z) ≤ f+(x, y) + f+(y, z) = 2.
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Let us now examine the case in which y is related to either x or z or both. As
mentioned above, since A is a 2-Ruspini CFP�, we have two possibilities for x and
z; they are related by either 1 or 2 fuzzy sets.

• Case 2.1: x and z are related by a single fuzzy set, i.e., there existsB ∈ A such
that x, z ∈ supp(B) and ∀Ai ∈ A, Ai �= B, min(Ai(x), Ai(z)) = 0.

If y /∈ supp(B), since y ∈ suppx ∪ suppz, it either unrelated to x or to z
(but not both) and thus, using Corollary 1.1, either f+(x, y) = 1 or f+(y, z) =
1 and therefore f+(x, z) ≤ f+(x, y) + f+(y, z).

Let us now suppose that y ∈ supp(B). Without lack of generality, let us
assume that x ≤ z. From Corollary 1.2, if x and z belong to the core of B,
we trivially have f+(x, z) = 0 ≤ f+(x, y) + f+(y, z). Otherwise, we have
f+(x, z) = max(1−B(x), 1 −B(z)).

Let us consider the latter case. There are two possibilities for y, it is either
i) related to both x and z or ii) related to either x or z but not both.

In i), x, y, z ∈ supp(B) and thus f+(x, z) = max(1 − B(x), 1 − B(z))
≤ max(1−B(x), 1−B(y))+max(1−B(y), 1−B(z)) = f+(x, y)+f+(y, z).

In ii) either y ∈ supp(B−) or y ∈ supp(B+), whereB− andB+ are fuzzy
sets in A to the left and right of B respectively. If y ∈ supp(B−), x and y are
related by two fuzzy sets,B− andB, and by Corollary 1.3 we have f+(x, y) =|
B(x) − B(y) |. Moreover, y and z are unrelated and thus f+(y, z) = 1.
Therefore, f+(x, z) = max(1 − B(x), 1 − B(z)) ≤| B(x) − B(y) | + 1
= f+(x, y) + f+(y, z). The case in which y ∈ supp(B+) is proved in a simi-
lar manner.

• Case 2.2: x and z are related by exactly 2 fuzzy sets, i.e. when there exists two
contiguous fuzzy sets B1, B2 in A such that x, z ∈ supp(B1) ∩ supp(B2) and
for all Ai ∈ A such that Ai �= B1 and Ai �= B2, min(Ai(x), Ai(z)) = 0.

From Corollary 1.3, we have f+(x, z) =| B1(x) − B1(z) |. Without lack
of generality, let us suppose thatB1 stands to the left ofB2 and that x ≤ z. We
then have B1(x) ≥ B1(z) and thus f+(x, z) = B1(x)−B1(z).

We verify two possibilities for y:
∗ i) y ∈ supp(B1) ∩ supp(B2):

We have to consider three orderings in what regards y :
· y ≤ x ≤ z: In this case,B1(y) ≥ B1(x) ≥ B1(z) and using Corollary

1.3, f+(x, y) = B1(y)−B1(x) and f+(y, z) = B1(y)−B1(z). But
f+(x, z) = B1(x) − B1(z) ≤ B1(y) − B1(x) + B1(y) − B1(z)
= f+(x, y) + f+(y, z).
· x ≤ y ≤ z: We have B1(x) ≥ B1(y) ≥ B1(z) and in a similar

manner we obtain f+(x, z) = B1(x) − B1(z) = B1(x) − B1(y) +
B1(y)−B1(z) = f+(x, y) + f+(y, z).
· x ≤ z ≤ y: We have B1(x) ≥ B1(z) ≥ B1(y) and in a similar

manner to y ≤ x ≤ z we obtain f+(x, z) ≤ f+(x, y) + f+(y, z).
∗ ii) y /∈ supp(B1) ∩ supp(B2):

Since y ∈ supp(B), either a) y ∈ supp(B1) − supp(B2) or b) y ∈
supp(B2)− supp(B1).
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In a), x and y are related by two fuzzy sets, B1 itself, and a fuzzy set to
the left of B1, which we will call B−1 . Applying Corollary 1.3 we obtain
f+(x, y) =| B1(x) − B1(y) |. Moreover, since y is unrelated to z, we
obtain f+(y, z) = 1 (see Corollary 1.1). Therefore f+(x, z) =| B1(x)−
B1(z) |≤| B1(x) − B1(y) | + 1 = f+(x, y) + f+(y, z). We obtain a
similar result for the case b), which ends the proof.

Corollary 3. Let (Ω,!) be a total order, A a 2-Ruspini CFP�, and f+ derived from A.
If all fuzzy sets in A are triangular, f+ satisfies the identity of indiscernibles property.

Proof. To satisfy the identity of indiscernibles property, we should have f+(x, y) = 0
if and only if x = y. Let us suppose that there exists two elements p and q in Ω such
f+(p, q) = 0 and p �= q.

But f+(p, q) = 0 only when two conditions are satisfied:

1. ∃i,min(Ai(p), Ai(q)) > 0 and
2. supi | Ai(p)−Ai(q) |= 0.

As seen in Corollary 1, any two elements in the domain may be either unrelated or
related by 1 or 2 fuzzy sets. But p and q are necessarily related, due to the first condition
above. Therefore, we have to analyse two cases:

– Case 1: p and q are related by a single fuzzy set B.
In this case, as seen in Corollary 1.2, we have to verify weather both p and q belong
to core(B). But in a triangular fuzzy set A ∈ A, core(A) = cA ∈ Ω, i.e. the
core is a point. Since p and q are distinct and the core of B is a point, p and q
cannot not both belong to the core(B). The remaining possibility is that f+(p, q) =
max(1−B(p), 1−B(q)). But this expression go to 0 only whenB(p) = B(q) = 1,
which would mean that they both belong to the core of B, what contradicts the
previous result.

– Case 2: p and q are related by two contiguous fuzzy sets B1 and B2.
As seen in Corollary 1.3, we have f+(p, q) =| B1(p) − B1(q) |. But in this case,
f+(p, q) = 0 only when B1(p) = B1(q). Since B1 is triangular, B1(p) = B1(q)
only when p = q = core(B1), which contradicts the hypothesis.

Since in both cases, we obtain a contradiction of the hypothesis, we conclude that the
identity of indiscernibles property holds.

Function f+ derived from a 2-Ruspini CFP� A is not a distance in the general case,
because identity of indiscernibles does not hold when there exists a fuzzy set A in A
such that core(A) = [a, b], with a, b ∈ Ω and a �= b, i.e, A is either a trapezoidal fuzzy
set or crisp interval. Indeed, in such a case, ∀p, q ∈ [a, b] we have f+(p, q) = 0. We
now prove that f+ is a pseudometric for any 2-Ruspini CFP� A and a distance when
all fuzzy sets in A are triangular.

Proposition 1. Let f+ be derived from a 2-Ruspini CFP� A on Ω.

1. Function f+ is a pseudometric.
2. Function f+ is a distance when all fuzzy sets in A are triangular.
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Proof. It is straightforward to verify that f+ satisfies symmetry, anti-reflexitivity and
non-negativity, because S+ is a symmetric and reflexive fuzzy relation. Moreover, in
Corollary 2 we proved that the triangle inequality property holds for function f+. This
proves part 1.

We proved in Corollary 3 that f+ satisfies the identity of indiscernibles property,
when all fuzzy sets in A are triangular. This proves part 2, which completes the proof.

We now propose to use the arithmetic means to in order to extend f+ to multi-
dimensional domains. In Proposition 2, we prove that the resulting function has the
same properties as in the one-dimensional domain.

Proposition 2. Let O = Ω1 × ... × Ωm, where ∀i, (Ωi,!) is a total order. Let Ai be
a 2-Ruspini CFP� on Ωi and f+i be derived from Ai. Let f+(μ) : O → [0, 1] be the

extension of function f+ to multidimensional domains, defined as

f+(μ)(x, y) = μ(f+1 (x1, y1), ..., f
+
m(xm, ym)),

where μ : [0, 1]m → [0, 1] is the arithmetic means, i.e., μ(a1, ..., am) =
∑

1≤i≤m ai

m .

1. Function f+(μ) is a pseudometric.

2. Function f+(μ) is a distance when all fuzzy sets in A are triangular.

Proof. Function f+(μ) trivially satisfies symmetry, anti-reflexitivity and non-negativity.

We now prove that the triangle inequality property holds for f+(μ).

From the definitions of f+ and f+(μ) and from Proposition 1, we have

f+(μ)(x, z) =
∑

i f
+
i (xi,zi)

m ≤
∑

i f
+
i (xi,yi)+f+

i (yi,zi)

m =
∑

i f
+
i (xi,yi)

m +
∑

i f
+
i (yi,zi)

m =

f+(μ)(x, y) + f+(μ)(y, z). Therefore, f+(μ) satisfies the triangle inequality and is thus a
pseudometric. This proves part 1.

Let x and y be two elements in the m-dimensional space O. But from Proposition
1, when all fuzzy sets in each 2-Ruspini CFP� Ai, defined on its corresponding Ωi, is
composed solely of triangular fuzzy sets, we have ∀i(f+i (xi, yi) = 0 ⇔ xi = yi).
But ∀i(f+i (xi, yi) = 0 ⇔ xi = yi) ⇒ [∀i(f+i (xi, yi) = 0) ⇔ ∀i(xi = yi)].
Since we trivially have i) x = y iff ∀i ∈ [1,m], xi = yi and ii) f+μ (x, y) = 0 iff
∀i ∈ [1,m], f+i (xi, yi) = 0, we thus have (f+μ (x, y) = 0 ⇔ x = y). Therefore f+(μ)
satisfies the identity of indiscernibles and is thus a metric, when the Ai’s are composed
of triangular fuzzy sets, which concludes the proof.

4 Use of f+ in a Classification Application

In the following, we briefly describe an experiment that illustrates the use of function
f+ in a land use classification task in the Brazilian Amazon region. The area of interest
covers approximately 411 km2 and in the municipality of Belterra, state of Pará, in
the Brazilian Amazon region, partially contained in the National Forest of Tapajós. An
intense occupation process occurred in the region along the BR-163 highway (Cuiabá-
Santarém), with opening of roads to establish small farms, after deforestation of primary
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forest areas [2]. As a result, there are mosaics of secondary vegetation in various stages,
with pastures and cultivated areas embedded in a forest matrix [3].

In this application [5], 14 attributes have been considered, derived from either radar
or optical satellite images, with 6 classes: forest, initial or intermediate regeneration, ad-
vanced regeneration or degraded forest, cultivated area, exposed soil, and pasture. The
samples consist of 428 ground information based hand-made polygons. The attribute
value for each polygon is the average of the values for the pixels composing it. The ex-
periments have been done using 10 folders (9 for training and 1 for testing), partitioned
as 2 sets containing 42 elements and 8 sets containing 43 elements.

Figure 1 brings the accuracy results for this application, considering k-NN with 1
to 19 neighbors, using the Euclidean distance (kNN_dE) and the Mahalanobis distance
(kNN_dM), as well as function f+(μ) obtained from two types of partitions using 3 fuzzy
sets each, a triangular one (kNN_dFtg) and a trapezoidal one (kNN_dFtz). In order to
calculate f+ for each attribute, the corresponding domain was reduced to the interval
of the minimal and maximal sample values; both of which extended by 20%. For both
the triangular and trapezoidal partitions, the fuzzy sets were homogeneously distributed
on the reduced domain.

a)

b)

Fig. 1. Classification accuracy results for: a) k-NN average and b) k-NN maximum
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We see from the figures that all methods had high accuracy and that the best results
were obtained with the Euclidean distance and the use of f+μ for the chosen triangular
partitions. We also see that the use of triangular partition with f+μ , with the advantage
of producing its best results with a small number of neighbours, contrarily to all of the
other methods.

5 Conclusions

In this work, we have proposed the use of a pseudometric based on a particular type of
fuzzy partition, that becomes a distance when the underlying partition is formed solely
by triangular fuzzy sets. The extension of this function for multi-dimensional domains
was also proposed. We have proved that this function derived from both trapezoidal
and triangular partitions enjoy good properties, which make them formally suitable to
be used in k-NN classifiers. Finally, we have shown a real-world experiment, in which
this function obtained very good results, showing its practical use in applications. The
obtained results are very promising and future work includes applying these functions
in other experiments.
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Abstract. We study quasi-Lovász extensions as mappings f : Cn → IR
defined on a nonempty bounded chain C, and which can be factorized
as f(x1, . . . , xn) = L(ϕ(x1), . . . , ϕ(xn)), where L is the Lovász extension
of a pseudo-Boolean function ψ : {0, 1}n → IR and ϕ : C → IR is an
order-preserving function.

We axiomatize these mappings by natural extensions to properties
considered in the authors’ previous work. Our motivation is rooted in de-
cision making under uncertainty: such quasi-Lovász extensions subsume
overall preference functionals associated with discrete Choquet integrals
whose variables take values on an ordinal scale C and are transformed
by a given utility function ϕ : C → IR.

Furthermore, we make some remarks on possible lattice-based variants
and bipolar extensions to be considered in an upcoming contribution by
the authors.
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1 Introduction and Preliminary Results

The discrete Choquet integral has been widely investigated in aggregation theory
due to its many applications, for instance, in decision making (see the edited
book [8]). A convenient way to introduce the discrete Choquet integral is via the
concept of Lovász extension.

1.1 Lovász Extensions and the Discrete Choquet Integral

Let C be a chain under a linear order � or, equivalently, under a minimum ∧
or a maximum ∨; for instance, B := {0, 1} with the usual ordering given by

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 199–205, 2014.
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0 < 1. Given a permutation σ ∈ Sn, where Sn denotes the set of permutations
on [n] = {1, . . . , n}, we define

Cn
σ := {x = (x1, . . . , xn) ∈ Cn : xσ(1) � · · · � xσ(n)}.

For every A ⊆ [n], we denote by 1A the n-tuple whose i-th component is 1 if
i ∈ A and is 0 otherwise. For instance, 1∅ is the constant 0 tuple, denoted 0,
whereas 1[n] is the constant 1 tuple.

Consider an n-place pseudo-Boolean function, i.e. a function ψ : Bn → IR, and
define the set function vψ : 2[n] → IR by vψ(A) = ψ(1A) for every A ⊆ [n]. Ham-
mer and Rudeanu [9] showed that such a function has a unique representation
as a multilinear polynomial of n variables

ψ(x) =
∑

A⊆[n]

aψ(A)
∏
i∈A

xi ,

where the set function aψ : 2
[n] → IR, called the Möbius transform of vψ, is

defined by

aψ(A) =
∑
B⊆A

(−1)|A|−|B| vψ(B).

The Lovász extension of a pseudo-Boolean function ψ : Bn → IR is the function
Lψ : IR

n → IR whose restriction to each subdomain IRn
σ (σ ∈ Sn) is the unique

affine function which agrees with ψ at the n+1 vertices of the n-simplex [0, 1]n∩
IRn

σ (see [10,11]). We then have Lψ|Bn = ψ.
It can be shown (see [7, §5.4.2]) that the Lovász extension of a pseudo-Boolean

function ψ : Bn → IR is the continuous function

Lψ(x) =
∑

A⊆[n]

aψ(A)
∧
i∈A

xi , x ∈ IRn. (1)

Its restriction to IRn
σ is the affine function

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)
(
vψ(A

↑
σ(i))− vψ(A↑σ(i+ 1))

)
, x ∈ IRn

σ, (2)

or equivalently,

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)
(
Lψ(1A↑

σ(i)
)− Lψ(1A↑

σ(i+1))
)
, x ∈ IRn

σ, (3)

where A↑σ(i) = {σ(i), . . . , σ(n)}, with the convention that A↑σ(n+1) = ∅. Indeed,
for any k ∈ [n + 1], both sides of each of the equations (2) and (3) agree at
x = 1A↑

σ(k)
.

It is noteworthy that Lψ can also be represented by

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)
(
Lψ(−1A↓

σ(i−1))− Lψ(−1A↓
σ(i)

)
)
, x ∈ IRn

σ,
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where A↓σ(i) = {σ(1), . . . , σ(i)}, with the convention that A↓σ(0) = ∅. Indeed,
for any k ∈ [n+ 1], by (3) we have

Lψ(−1A↓
σ(k−1)) = ψ(0) + Lψ(1A↑

σ(k)
)− Lψ(1A↑

σ(1)
).

A function f : IRn → IR is said to be a Lovász extension if there is a pseudo-
Boolean function ψ : Bn → IR such that f = Lψ.

An n-place Choquet integral is a nondecreasing Lovász extension Lψ : IR
n →

IR such that Lψ(0) = 0. It is easy to see that a Lovász extension L : IRn → IR is
an n-place Choquet integral if and only if its underlying pseudo-Boolean function
ψ = L|Bn is nondecreasing and vanishes at the origin (see [7, §5.4]).

1.2 Quasi-Lovász Extensions on Bounded Chains

A generalization of the notion of Lovász extension of a pseudo-Boolean function
was introduced in [4] and called “quasi-Lovász extension”. In this paper we
extend this notion to the following concept.

Let C be a bounded chain under the usual operations ∧ and ∨, and with least
and greatest elements 0 and 1, respectively. We make no notational distinction
between 0, 1 ∈ C and 0, 1 ∈ IR; this notational abuse will not give raise to
ambiguities.

We say that a function f : Cn → IR is a quasi-Lovász extension if there is a
Lovász extension L : IRn → IR and an order-preserving mapping ϕ : C → IR such
that f can be factorized into the composition

f(x1, . . . , xn) = L(ϕ(x1), . . . , ϕ(xn)). (4)

For such a ϕ : C → IR we set ϕ(C) := {ϕ(x) : x ∈ C} that is contained in some
real interval I. To simplify our exposition we will assume that ϕ(0) = 0 and
that ϕ(C) ⊆ I = [0, a], for a = ϕ(1) (shift by ϕ(0) if necessary). Also, for every
f : Cn → IR, we denote by f0 the function f0(x) := f(x)− f(0).

Such an aggregation function is used in decision under uncertainty, where ϕ is
a utility function and f an overall preference functional. It is also used in multi-
criteria decision making where the criteria are commensurate (i.e., expressed in
a common scale). For a recent reference, see Bouyssou et al. [1].

2 Axiomatizations and Representations of Quasi-Lovász
Extensions on Bounded Chains

We now provide an axiomatization of quasi-Lovász extensions on bounded chains
in terms of comonotonic modularity and an ordinal variant of homogeneity, as
well as provide a complete description of all possible factorizations (into a com-
position of a Lovász extension with an order-preserving unary mapping) when
such a factorization exists.
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2.1 Comonotonically Modular and Separable Functions

Recall that a function f : Cn → IR is said to be modular (or a valuation) if

f(x) + f(x′) = f(x ∧ x′) + f(x ∨ x′) (5)

for every x,x′ ∈ Cn, and where x ∧ x′ (resp. x ∨ x′) denotes the n-tuple whose
ith component is xi∧x′i = min(xi, x

′
i) (resp. xi∨x′i = max(xi, x

′
i)). It was proved

(see Topkis [12, Thm 3.3]) that a function f : Cn → IR is modular if and only
if it is separable, that is, there exist n functions fi : C → IR, i ∈ [n], such that
f =

∑
i∈[n] fi.

1 In particular, any 1-place function f : C → IR is modular.

We say that a function f : Cn → IR is comonotonically modular if (5) holds
for every σ ∈ Sn and x,x′ ∈ Cn

σ .

Fact 1. A function f is comonotonically modular if and only if so is the function
f0 = f − f(0).
Theorem 2. A function f : Cn → IR is comonotonically modular if and only if
one or, equivalently, both of the conditions hold:

(i) there exists a function g : Cn → IR such that, for every σ ∈ Sn and every
x ∈ Cn

σ ,

f(x) = g(0) +
∑
i∈[n]

(
g(xσ(i) ∧ 1A↑

σ(i)
)− g(xσ(i) ∧ 1A↑

σ(i+1))
)
. (6)

In this case, we can choose g = f .
(ii) f is comonotonically separable, that is, for every σ ∈ Sn, there exist func-

tions fσi : C → IR, i ∈ [n], such that

f(x) =

n∑
i=1

fσi (xσ(i)) =

n∑
i=1

fσσ−1(i)(xi), x ∈ Cn
σ .

In this case, we can choose fσn (xσ(n)) = f(xσ(n)∧1{σ(n)}), and fσi (xσ(i)) =
f(xσ(i) ∧ 1A↑

σ(i)
)− f(xσ(i) ∧ 1A↑

σ(i+1)), for i ∈ [n− 1].

Proof. It is easy to verify that (i) ⇒ (ii). Moreover, each fσσ−1(i) is clearly
modular and hence comonotonically modular. Since the class of comonotonically
modular functions is closed under addition, we have that (ii) is sufficient. Thus,
to complete the proof, it is enough to show that every comonotonically modular
function f satisfies (i).

Let σ ∈ Sn and x ∈ Cn
σ . By comonotonic modularity, for every i ∈ [n− 1] we

have

f(xσ(i) ∧ 1A↑
σ(i)

) + f(x0
A↓

σ(i)
) = f(xσ(i) ∧ 1A↑

σ(i+1)) + f(x0
A↓

σ(i−1)
),

that is,

f(x0
A↓

σ(i−1)
) =

(
f(xσ(i) ∧ 1A↑

σ(i)
)− f(xσ(i) ∧ 1A↑

σ(i+1))
)
+ f(x0

A↓
σ(i)

). (7)

By using (7) for i = 1, . . . , n− 1, we obtain (6) with g = f . ��
1 This result still holds in the more general framework where f is defined on a product
of chains.
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2.2 Axiomatizations of Quasi-Lovász Extensions

To axiomatize the class of quasi-Lovász extensions, we will also make use of
the following generalization of homogeneity. We say that f : Cn → IR is weakly
homogeneous if there exists an order-preserving function ϕ : C → IR satisfying
ϕ(0) = 0 such that f(x ∧ 1A) = ϕ(x)f(1A) for every x ∈ C and every A ⊆ [n].
Note that every weakly homogeneous function f satisfies f(0) = 0.

The following two results are variants of Lemma 2 and Proposition 3 in [4].
and their proofs follow in complete analogy.

Lemma 3. For every quasi-Lovász extension f : Cn → IR, f = L ◦ ϕ, we have

f0(x ∧ 1A) = ϕ(x)L0(1A), x ∈ C, A ⊆ [n]. (8)

Proposition 4. Let f : Cn → IR be a nonconstant quasi-Lovász extension, f =
L ◦ ϕ. Then the following conditions are equivalent.

(i) f0 is weakly homogeneous.
(ii) There exists A ⊆ [n] such that f0(1A) �= 0.
(iii) ϕ(1) �= 0.

In this case we have f0(x∧1A) =
ϕ(x)
ϕ(1) f0(1A) for every x ∈ C and every A ⊆ [n].

We can now provide axiomatizations of the class of quasi-Lovász extensions
defined on bounded chains. The proof follows the same steps as in the proof of
Theorem 14 in [4].

Theorem 5. Let f : Cn → IR be a nonconstant function. Then, the following
assertions are equivalent.

(i) f is a quasi-Lovász extension and there exists A ⊆ [n] such that f0(1A) �=
0.

(ii) f is comonotonically modular and f0 is weakly homogeneous.
(iii) There is an order-preserving function ϕf : C → IR satisfying ϕf (0) = 0

and ϕf (1) = 1 such that f = Lf |{0,1}n ◦ ϕf .

Proof. Let us prove that (i) ⇒ (ii). By definition, we have f = L ◦ ϕ, where
L : IRn → IR is a Lovász extension and ϕ : C → IR is an order-preserving function
satisfying ϕ(0) = 0. By Proposition 4, f0 is weakly homogeneous. Moreover, by
(3) and (8) we have that, for every σ ∈ Sn and every x ∈ Cn

σ ,

f(x) = f(0) +
∑
i∈[n]

ϕ(xσ(i))
(
L0(1A↑

σ(i)
)− L0(1A↑

σ(i+1))
)

= f(0) +
∑
i∈[n]

(
f(xσ(i)1A↑

σ(i)
)− f(xσ(i)1A↑

σ(i+1))
)
.

Theorem 2 then shows that f is comonotonically modular.



204 M. Couceiro and J.-L. Marichal

Let us prove that (ii)⇒ (iii). Since f is comonotonically modular, by Theo-
rem 2 it follows that, for every σ ∈ Sn and every x ∈ Cn

σ ,

f(x) = f(0) +
∑
i∈[n]

(
f(xσ(i) ∧ 1A↑

σ(i)
)− f(xσ(i) ∧ 1A↑

σ(i+1))
)
,

and, since f0 is weakly homogeneous,

f(x) = f(0) +
∑
i∈[n]

ϕf (xσ(i))
(
f(1A↑

σ(i)
)− f(1A↑

σ(i+1))
)

(9)

for some order-preserving function ϕf : C → IR satisfying ϕf (0) = 0. By (3), we
then obtain f = Lf |{0,1}n ◦ ϕf . Finally, by (9) we have that, for every A ⊆ [n],

f0(1A) = ϕf (1)f0(1A).

Since there exists A ⊆ [n] such that f0(1A) �= 0 (for otherwise, we would have
f0 ≡ 0 by (9)), we obtain ϕf (1) = 1.

The implication (iii)⇒ (i) follows from Proposition 4. ��

Remark 6. It is noteworthy that the class of quasi-polynomial functions on
bounded chains [2] (or, more generally, on bounded distributive lattices [3])
is likewise axiomatizable in terms of comonotonic modularity by considering a
lattice variant of weak homogeneity [6], namely: a function f : Cn → IR is said to
be weakly ∧-homogeneous if there exists an order-preserving function ϕ : C → IR
such that f(x ∧ 1A) = ϕ(x) ∧ f(1A) for every x ∈ C and every A ⊆ [n].

2.3 Factorizations of Quasi-Lovász Extensions

We now describe all possible factorizations of f into compositions of Lovász
extensions with order-preserving functions.

Theorem 7. Let f : Cn → IR be a quasi-Lovász extension, f = L ◦ ϕ. Then
there exists A∗ ⊆ [n] such that f0(1A∗) �= 0 if and only if there exists a > 0 such
that ϕ = aϕf and L0 =

1
a (Lf |Bn )0.

Proof. (Sufficiency) We have f0 = L0 ◦ ϕ = (Lf |{0,1}n )0 ◦ ϕf , and by Theorem 5
we see that the conditions are sufficient.

(Necessity) By Proposition 4, we have

ϕ(x)

ϕ(1)
=
f0(x ∧ 1A∗)

f0(1A∗)
= ϕf (x).

We then have ϕ = aϕf for some a > 0. Moreover, for every x ∈ {0, 1}n, we have

(Lf |{0,1}n )0(x) =
(
(Lf |{0,1}n )0 ◦ ϕf

)
(x) = f0(x) = (L0 ◦ ϕ)(x)

= a(L0 ◦ ϕf )(x) = aL0(x).

Since a Lovász extension is uniquely determined by its values on {0, 1}n ⊆ IR,
we have (Lf |{0,1}n )0 = aL0. ��
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3 Concluding Remarks and Directions for Further
Research

We have axiomatized the class of quasi-Lovász extensions, considered in the
wider setting of functions f : Cn → IR defined on a bounded chain C, thus
partially generalizing the results presented in the proceedings of IPMU2012 [5].
It remains now to consider the symmetric variant of the notion of quasi-Lovász
extension defined on bipolar scales C = Cpos ∪ Cneg where Cpos is a bounded
chain and Cneg is its “negative” copy.

Acknowledgments. This research is supported by the internal research project
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Abstract. Previously, we investigated the definition and applicability of
the fuzzy integral (FI) for nonlinear multiple kernel (MK) aggregation in
pattern recognition. Kernel theory provides an elegant way to map multi-
source heterogeneous data into a combined homogeneous (implicit) space
in which aggregation can be carried out. The focus of our initial work
was the Choquet FI, a per-matrix sorting based on the quality of a base
learner and learning was restricted to the Sugeno λ-fuzzy measure (FM).
Herein, we investigate what representations of FMs and FIs are valid
and ideal for nonlinear MK aggregation. We also discuss the benefit of
our approach over the linear convex sum MK formulation in machine
learning. Furthermore, we study the Möbius transform and k-additive
integral for scalable MK learning (MKL). Last, we discuss an extension
to our genetic algorithm (GA) based MKL algorithm, called FIGA, with
respect to a combination of multiple light weight FMs and FIs.

Keywords: Fuzzy integral, fuzzy measure, Möbius transform, multiple
kernel learning, heterogeneous data fusion.

1 Introduction

Explosive growth in sensing and computing has given rise to numerous techno-
logical and mathematical dilemmas. Two well-known examples are big data and
data diversity. Herein, we focus on the latter but in the context of a framework
that can address the former as well. Consider the humanitarian effort of demi-
ning; the automatic identification and removal of hazards such as landmines and
improvised explosive devices (IEDs) [1, 2]. These devices are responsible for injur-
ing and claiming the lives of thousands of soldiers and civilians. The problem is
that no single sensor or algorithm solves this challenging task. Instead, multiple
sensors, multiple features, multiple algorithms and even human interaction/input
is often critical for robust detection in different environments. However, infor-
mation arising from multiple sensors, algorithms and people often result in great
diversity, such as mixed-data type, multi-resolution (e.g., spatial and temporal),

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 206–215, 2014.
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mixed-uncertainty, etc. An important question is, what is a well-grounded (non
ad-hoc) way to carry out pattern analysis in light of such heterogeneity? This
challenge is in no-way restricted to humanitarian demining. Another engineering
example is combining multi-sensor, multi-band, multi-algorithm and even high-
level human knowledge for wide area motion image analysis or earth observations
using unmanned aerial vehicles. The point is, numerous challenges require the
fusion and subsequent analysis of multi-source disparate data.

In prior work, we investigated the definition and applicability of the fuzzy in-
tegral (FI) for nonlinear multiple kernel (MK) aggregation in pattern recognition
[3]. Kernel theory provides an elegant way to map multi-source heterogeneous
data into a combined homogeneous (implicit) space where well-defined aggre-
gation can be performed. The focus of our initial work was the Sugeno and
Choquet FIs, a per-matrix sorting based on the quality of a base learner, e.g., a
support vector machine (SVM), and learning was restricted to a Sugeno λ-fuzzy
measure (FM). However, numerous questions remain: what types or representa-
tions of FIs are valid; are some representations better than others; what is an
effective way to learn the FM for problems involving a large number of inputs;
and what is the actual benefit of the FI for MK aggregation in comparison to
other state-of-the-art MK techniques? Herein, we investigate these challenges.

This article is organized as follows. First, the FM, FI and the Möbius
transform are reviewed. Next, MK aggregation and our prior fuzzy integral MK
learning (FIMKL) work is described. The selection and representation of FI for
nonlinear MK aggregation is then explored. Next, we investigate importance
differences between FIMK and the popular machine learning linear convex sum
(LCS) MKL formulation. The Möbius transform and the k-additive integral are
then explored for efficient and scalable MKL. Last, we discuss the utilization of
a combination of different light weight FMs in the context of our prior FIMKL
genetic algorithm (GA) MKL algorithm, called FIGA.

2 Fuzzy Measure and Integral

The fusion of information using the Sugeno or Choquet FI has a rich history
[4–8]. Depending on the problem domain, the input can be experts, sensors,
features, similarities, pattern recognition algorithms, etc. The FI is defined with
respect to the FM, a monotone (and often normal) measure. With respect to
a set of m information sources, X = {x1, ..., xm}, the FM encodes the (often
subjective) worth of each subset in 2X .

Definition 1 (Fuzzy Measure). For a finite set of sources, X , the FM is a
set-valued function g : 2X → [0, 1] with the following conditions:

1. (Boundary condition) g(φ) = 0,
2. (Monotonicity) If A, B ⊆ X with A ⊆ B, then g(A) ≤ g(B).



208 L. Hu et al.

Note, if X is an infinite set, there is a third condition guaranteeing continuity
and we often assume g(X) = 1 as usual (although it is not necessary in general).

Numerous FI formulations have been proposed [4, 7, 9] for generalizability,
differentiability and to address different types of uncertain data. Herein, we stick
to the conventional (real-valued integrand and measure) Choquet integral.

Definition 2 (Difference-in-Measure form of Choquet FI). For a finite
set of m sources, FM g, and integrand h : X → (+, the discrete Choquet FI is∫

h ◦ g =
m∑
i=1

ωih
(
xπ(i)

)
, (1)

where ωi =
(
Gπ(i) −Gπ(i−1)

)
, Gπ(i) = g

(
{xπ(1), ..., xπ(i)}

)
, Gπ(0) = 0, and π(i)

is a sorting on X such that h(xπ(1)) ≥ . . . ≥ h(xπ(m)).
Numerous measures exist, e.g., the Sugeno λ-FM, S-decomposable measures,

possibility (and necessity) measures and k-additive FMs. The literature contains
numerous ways to estimate their parameters from data, e.g., [10].

2.1 Möbius Transform

While the difference-in-measure and difference-in-integrand formulations are
common, the FI can also be represented in terms of the Möbius transformation.
The Möbius transform is of particular use for compactly expressing different
formulas, e.g., Shapley and the k-additive measure/integral [11].

Definition 3 (Möbius Transform). The Möbius transformation of a FM g is

M(A) =
∑
B⊆A

(−1)|A\B| g(B), ∀A ⊆ X. (2)

Note, the Möbius transformation is invertible via the Zeta transform,

g(A) =
∑
B⊆A

M(B), ∀A ⊆ X. (3)

Definition 4 (Möbius Transform Representation of the Choquet FI).
The Möbius transformation representation of the Choquet FI is∫

h ◦ g =
∑
A⊆X

M(A)
∧

xi∈A
h(xi). (4)

Remark 1. Equation (4) does not require sorting like Equation (1).
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2.2 Multiple Kernel

In this section, we review basic concepts and definitions of kernels [12] needed
for FIMK. First, assume that from each source of information in X , we measure
a feature vector x, where xi describes the source xi.

1

Definition 5 (Kernel). Suppose we have a feature mapping φ : Rd → RH,
where d is the dimensionality of the input space andRH is a (higher-)dimensional
space called the Reproducing Kernel Hilbert Space (RKHS). A kernel is the inner
product function κ : Rd ×Rd →R, which represents the inner-product in RH,

κ(xi,xj) = 〈φ(xi), φ(xj)〉 , ∀xi,xj ∈ X . (5)

Definition 6 (Mercer Kernel). Assume a kernel function κ and finite data
X = {x1, ...,xn}. The n × n matrix K = [Kij = κ(xi,xj)], i, j ∈ {1, ..., n}, is a
Gram matrix of inner products. Thus, K is symmetric and positive semi-definite
(PSD), xT

i Kxi ≥ 0, ∀xi ∈ X . Since K is PSD, all eigenvalues are non-negative.

This framework is particularly attractive for heterogeneous data fusion.
Specifically, measuring similarity can be tailored to each individual domain. For
example, if an input is a graph then a graph-based similarity kernel can be used.
If another input is a histogram, then a kernel like the intersection kernel can be
used. In effect, kernel theory provides a convenient way to map heterogeneous
data into a homogeneous (implicit) space. In terms of aggregation, this is ideal.
Aggregation can be engaged in the resultant homogeneous space to fuse multi-
ple inputs. Furthermore, for homogeneous spaces, such as feature-valued data,
kernel fusion is an elegant way to help mitigate challenges like feature vector
size imbalance and feature vector scaling for the common method of combining
feature-valued data (concatenation or arraying).

For readability, from now on we will denote features that are projected into the
RKHS RH as φi, where φi is equivalent to φ(xi). Furthermore, we will assume
that each source in X has either multiple features extracted from it or multiple
kernels computed from a feature. We will use a super-script in this situation,
viz., xk

i is the feature vector describing source xi that is used to compute the
kth kernel matrix Kk; thus, we use φki to denote φ(xk

i ).

Remark 2. Let K1 = [κ1(xi,xj)] and K2 = [κ2(xi,xj)], i, j ∈ {1, ..., n}. The
set of Mercer kernels is closed under the following (non-exhaustive) set of op-
erations for i, j ∈ {1, ..., n} [12]: Kij = (K1)ij + (K2)ij , Kij = c(K1)ij , ∀c ≥ 0,
Kij = (K1)ij + c, ∀c ≥ 0, Kij = (K1)ij(K2)ij .

1 Later, we will extend this idea to the scenario where one can have multiple feature
vectors (really, multiple kernels) per source. This can manifest in one (or a combi-
nation) of two ways: i) different kernels can be computed from one feature type, or
ii) a kernel can be computed from each of multiple heterogeneous feature types.
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Kernel design takes a number of forms. In most scenarios, a single kernel is
employed. Its parameters are generally specified manually or the selections of the
kernel and its parameters are learned from data. However, the most widespread
practice is to experimentally choose from a finite number of kernels and associ-
ated kernel parameters to pick a winner. In recent years, MK has been proposed
to address the problem of finding a “best” kernel for a data set, and more re-
cently, for focusing on the fusion and unique transformation of different sources
(e.g., sensors and/or features). Specifically, MKL has emerged to find such kernel
combinations automatically. Research has shown that the construction of a ker-
nel from a number of base kernels allows for a more flexible encoding of domain
knowledge from different sources or cues.

Linear aggregation is the strategy employed by most [13, 14]. It is based on a
(potentially weighted) summation of base kernels, K =

∑m
k=1 ωkKk, where ω are

weights, and Kk = [κk(x
k
i ,x

k
j )] is the kernel matrix produced by the kth feature

extracted from the sources X . Many search for a single aggregate kernel to
transform xi and xj , thus one kernel function κ is applied to all features extracted
from xi and xj . However, better performance may be obtained by placing each
feature in its own space, viz., the kth feature vector gets its own kernel function
κk. Approaches to MK aggregation differ in the way that restrictions are placed
on the weights ω. The most common categories include the linear sum (ωk ∈ R),
conic sum (ωk ∈ R+ ), and convex sum (ωk ∈ R+ and

∑m
k=1 ωk = 1). Compared

to linear sum, conic and convex sums are appealing because they lead to weight
(thus kernel and/or source) importance interpretation.

A few nonlinear aggregations methods have been proposed. However their
representations and expressiveness are extremely limited and they are difficult
to interpret. In [3], we investigated the Sugeno and Choquet FIs for MK. We
proved that per-element aggregation is not theoretically valid. Semantically, per-
element does make much sense, but mathematically—viz., in terms of production
of a Mercer kernel—it is not valid (a counter proof was provided with respect
to the maximum operator and negative eigenvalues). Instead, we proposed an
alternative solution based on sorting at the matrix level. Assume each kernel
matrix Kk has a numeric “quality.” As we showed, this can be computed, for
example, by computing the classification accuracy of a base-learner that uses
kernelKk (or by a learning algorithm such as a genetic algorithm). Let νk ∈ [0, 1]
be the kth kernels quality. These qualities can be sorted, ν(1) ≥ ν(2) ≥ ... ≥ ν(m).

Definition 7 (Difference-in-Measure Choquet FI for MK Aggrega-
tion). Given m base Mercer kernels, {κ1, . . . , κm}, FM g and a sorting ν(1) ≥
ν(2) ≥ ... ≥ ν(m), the difference-in-measure Choquet FI

Kij =

m∑
k=1

(Gπ(k) −Gπ(k−1))(Kπ(k))ij =

m∑
k=1

ωk(Kπ(k))ij , i, j ∈ {1, ..., n}, (6)

produces a Mercer kernel as multiplication by positive scalar and addition are
PSD preserving operations [3]. Since Equation (6) involves per-matrix sorting it
can be compactly wrote in a simpler (linear algebra) form, K =

∑m
k=1 ωkKπ(k).
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3 FIMK Insight and Scalable MKL

In this section, we address FIMKL expressibility and scalability. The first topic
is how is FIMK different from the LCS MK formulation and why does it out-
perform other methods from machine learning? The second topic is a search for
appropriate ways to represent FIMK to restrict its operation as the number of
free parameters grow exponentially with respect to the number of inputs. This
is significant in MKL as many explore the use of a relatively large number of
kernels. A kernel can be applied to each sensor/source, feature index, or group
(i.e., each bin in a histogram of gradients or the full descriptor). In addition,
multiple kernels can be used for each of the above and different parameters are
often explored. The point is, scalability is an important element of MKL.

3.1 Comparison of FIMK to Linear Convex Sum MK

The majority of machine learning MK research uses LCS form. It is often desired
due to its advantage in optimization for MKL. One example is Bach’s SMO-like
algorithm for tackling convex and smooth minimization problems [15].

Remark 3. The weights in equations (1) and (6) are positive, wi ≥ 0, by definition
(monotonicity) and their sum is 1, i.e.,

m∑
k=1

wk =
(
Gπ(m) −Gπ(m−1)

)
+ ...+

(
Gπ(1) −Gπ(0)

)
= Gπ(m) −Gπ(0) = 1.

Both FIMK and LCS MK are type convex sum, i.e., wk ∈ (m
+ and

∑m
k=1 wk = 1.

However, one is linear, the other is not, and the weights are derived from the FM.
The Choquet FI is capable of representing a much larger class of aggregation
operators. For example, it is well known that the Choquet FI can produce,
based on the selection of FM, the maximum, minimum, ordered weighted average
(OWA), family of order statistics, etc. However, the machine learning LCS form
is simply m weights anchored to the individual inputs. The LCS is a subset (one
of the aggregation operators) of the Choquet FI.

In [3], we reported improved SVM accuracies and lower standard deviations
over the state-of-the-art, MKL group lasso (MKLGL) [14], on publically avail-
able benchmark data. We put forth a genetic algorithm (GA), called FIGA,
based on learning the densities for the Sugeno λ-FM. An important question not
addressed in our initial work is why exactly does FIMK perform notably better
than LCS and, more specifically, MKLGL? Herein, we consider two possibilities.
First is the expressibility of FIMK in terms of aggregation. Simply put, FIMK
is nonlinear and more expressive, i.e., it can represent a much wider class of
aggregation operators that can be specified or learned from data. Second is the
learning algorithm, i.e., FIGA versus MKLGL. This is a more difficult topic to
tackle mathematically. These two optimization algorithms operate in extremely
different ways. Group lasso is an advanced approach designed to work on con-
strained problems, LCS type formulations. While it is relatively efficient and
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mathematically elegant, it is simple to envision problems for which LCS is a in-
ferior solution to a nonlinear or higher-order polynomial solution. On the other
hand, GAs are a family of meta-heuristic optimization techniques that can op-
erate on extremely challenging optimization surfaces. They exist to help avoid,
potentially, pitfalls of early convergence to local minimia relative to a given ini-
tialization. Arguments can be made for both, i.e., efficiency versus expressibility.
Globally, it is not likely this question has an answer (one approach better than
the other). At the end of this article we show preliminary results for reducing
FIGA to learning a simpler LCS solution to (empirically) understand what im-
pact optimization had on our previous SVM-based experiments. However, first
we investigate an additional compact way of representing the FI for MKL.

3.2 k-additive Choquet Integral for FIMK

In this section, we explore a definition of the Choquet FI for MK aggregation
under the Möbius transform. If we attempt to directly analyze Equation (4)
in terms of a valid Mercer kernel producing aggregation operator then we run
into the same problem as before of per-element sorting and subsequently the
existance of a FM of all ones (g(A) = 1, ∀A ⊆ X such that A �= φ) that re-
sults in the maximum (known to not preserve PSD). Furthermore, the Möbius
transform values can be positive, zero or negative. We know multiplication by
positive scalars results in preservation of PSD, but we cannot guarantee PSD
preservation in general for multiplication by negative numbers. Note, based on
our proposed matrix-level sorting with respect to a base learner, this condition
also arises for the common difference-in-integrand form of the Choquet FI and
MK aggregation. However, we proved that the difference-in-measure form does
indeed guarantee PSD preservation. Furthermore, we know that the difference-
in-measure and difference-in-integrand are equivalent, they can algebraically be
rewritten in terms of one another. We also know the Möbius transform form is
equilivant to the difference-in-measure form of the Choquet FI. Two representa-
tions do not make it clear if the Choquet FI is valid with respect to per-matrix
sorting. However, we proved (see [3]) one of these three forms and the other two
are valid as well as they are simply re-formulations of one another.

Specifically, Equation (4) is not guaranteed to be valid because minimum is
performed on a per-element basis (counter proof is trivial). We consider a slight
reformulation of the Möbius transform, in combination with k-additivity, for MK
aggregation that preserves the PSD property of matrices. Here, k-additivity is
explored as it limits interaction between subsets to size |A| ≤ k,A ⊆ X .

Definition 8 (k-additive FI for MK). The k-additive form of the Choquet
FI for MK aggregation on a per-matrix basis (in terms of linear algebra) is

K =
∑

A⊆X,|A|≤k

M(A)
∧

xi∈A
Ki, (7)

where
∧

is a per-matrix operator with respect to the associated ν(i) values.
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The main reason for considering the Möbius transform, outside of academic
curiosity, is MKL. In MKL, it is often the case that we consider a large number
of kernels. Different kernels for different sensors, features, feature groups, sets of
parameters for kernels, etc. This presents a serious challenge for FIMK. Namely,
FIMK is driven by the FM and the FM is exponential in the number of inputs.
For example, [14] considered 793 kernels (different kernels for each individual
feature and different kernels for the entire feature vector). While some might
consider this rather extreme, such an approach would result in an unsolvable
(intractable) problem if the full lattice was desired in FIMK, i.e., 2793 − 2 free
parameters. Constraints need be imposed to make FIMK scalable in this domain.
For example, the 2-additive FI only requires m+

(
m
2

)
parameters, where

(
m
2

)
is

the number of 2−combinations. Regardless, this problem is still constrained by
the monotonicity constraints and boundary conditions.

Example 1 (Maximum Operator). Consider a FM in which g(A) = 1, ∀A ⊆ X .
Furthermore, let m = 3. One obtains M(φ) = 0, M(xi) = 1, M({xi, xj}) = −1
and M(X) = 1. With respect to Equation (7), we get

K =M(x1)K1 + ...+M({x1, x2}) (K1 ∧K2) + ...+ (K1 ∧K2 ∧K3)

= K1 +K2 +K3 − (K1 ∧K2)− (K1 ∧K3)− (K2 ∧K3) + (K1 ∧K2 ∧K3) .

Furthermore, for a base learner sorting like ν3 ≥ ν2 ≥ ν1,

K = K1 +K2 +K3 −K1 −K1 −K2 +K1 = K3,

i.e., we get the maximum (with respect to our base learners) of our kernels.

Example 2 (Average). Consider m sources and a FM in which g(φ) = 0, g(X) =

1, and g(A) = |A|
|X| for A ⊂ X \φ. We obtainM(φ) = 0,M(xi) =

1
|X| ,M(A) = 0

for A ⊆ X, |A| > 1, and thus K = 1
mK1 + ...+ 1

mKm.

4 Multi-measure FIGA and Preliminary Results

The primary purpose of this article is to explore different compact representa-
tions of the FM and FI for MKL. We experimentally investigate if there is any
observable benefit for SVM-based classification in pattern classification. Our re-
sults are compared to the LCS form and MKLGL on public domain benchmark
data. Specifically, we explore an extension to FIGA. Herein, we explore a combi-
nation of the k-additive integral, the possibility measure and an OWA for MKL.
The Sugeno λ-FM is not used as λ becomes difficult to accurately calculate in a
computer for high order polynomials ((m−1)th order). These are three different
compact measures (i.e., they involve relatively few number of free parameters
versus 2m − 2) that together provide a wide range of possibilities for learning
an effective MK aggregation strategy. In the case of the possibility measure and
an OWA FM, m values are learned (densities for the former and the weights in
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the latter). To begin, a chromosome is assigned to one of these three types. We
use standard one point crossover between the densities (weights in the case of
the OWA). In the case of an OWA, the values are normalized so they sum to 1.
When a k-additive FM is crossed with another type of FM, just the m densities
are crossed and monotonicity constraints are checked. Any violated constraints
are “repaired” by simply assigning the smallest possible valid value. We also use
elitism so that the best solution is kept every generation.

Below, FIGA is also used to search for the weights in an LCS to understand
the result of MKLGL versus the proposed GA framework. Specifically, what con-
tribution do we observe with respect to the GA instead of linear versus nonlinear
aggregation? In the case of the GA, 20 kernels are used on the full feature vector:
the dot product, the RBF (different multiples of 10 relative to 1

d , where d is the
feature dimensionality) and the polynomial kernel (of second, third and fourth
order). We also note that the MKLGL article used a much greater number of
kernels, 117, 442 and 793 respectively.

Table 1. Comparison of FIGA to MKLGL and FIMK to LCS form

Method Breast Ionosphere Sonar

Classification MKLGL reported in [14] 96.6± 1.2 92.0 ± 2.9 82.0 ± 6.8
Accuracy FIGA: just LCS form 97.95 ± 0.17 94.23 ± 0.50 91.03 ± 2.70
[0, 100]% FIGA: combination of FMs/FIs 98.00 ± 0.14 95.40 ± 0.47 92.86 ± 1.17

Table 1 tells the following story. First, it is clear that the GA approaches
are more effective than the MKLGL approach, even though the GA approaches
use fewer component kernels. Note that the FIGA approaches achieve a mean
improvement of about 10% over MKLGL on the Sonar data set. The perfor-
mance of FIGA comes at a cost though, as MKLGL is much faster in terms of
actual running time than FIGA. Second, we see that FIGA using a combination
of FM/FIs is somewhat more effective than the FIGA LCS form. These find-
ings are not surprising as our intuition tells us that the nonlinear aggregation
allowed by the FM/FI formulation is more flexible than just the LCS aggrega-
tion; hence, these results reinforce our expectation. Furthermore, FIGA using
the combination of different compact FMs and FIs leads to improved perfor-
mance at no real additional cost over the FIGA using just an LCS aggregation.
Overall, these results are not surprising as different data sets require different
solutions, and while an LCS may be sufficient for a given problem, it may not
be appropriate for a different problem. Also, it should be noted that the FM/FI
formulation includes LCS aggregation as a subset of its possible solutions; hence,
when LCS is appropriate the FM/FI aggregation can mimic the LCS. In sum-
mary, these experiments suggest that the learner (GA vs GL) appears to be the
most important improvement factor, followed by a slight improvement by using
the nonlinear FM/FI aggregation versus LCS.
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5 Conclusion and Future Work

In summary, we explored different compact FMs and FIs and their combination
for MKL in the context of a GA for pattern recognition. We compared this
framework to the LCS formulation and MKLGL optimization approach from
machine learning. These contributions led to performance benefit in terms of
SVM-based classification on benchmark data sets. In future work, we will explore
additional, (constrained) efficient ways of learning the FM for FIMKL. We will
also explore more efficient non-GA solvers relative to a set of FMs.
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{dubois,prade}@irit.fr

2 ERIC, Université de Lyon, France
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Abstract. Fuzzy measures or capacities are the most general represen-
tation of uncertainty functions. However, this general class has been little
explored from the point of view of its information content, when degrees
of uncertainty are not supposed to be numerical, and belong to a finite
qualitative scale, except in the case of possibility or necessity measures.
The thrust of the paper is to define an ordering relation on the set of
qualitative capacities expressing the idea that one is more informative
than another, in agreement with the possibilistic notion of relative speci-
ficity. To this aim, we show that the class of qualitative capacities can
be partitioned into equivalence classes of functions containing the same
amount of information. They only differ by the underlying epistemic atti-
tude such as pessimism or optimism. A meaningful information ordering
between capacities can be defined on the basis of the most pessimistic
(resp. optimistic) representatives of their equivalence classes. It is shown
that, while qualitative capacities bear strong similarities to belief func-
tions, such an analogy can be misleading when it comes to information
content.

Keywords: Fuzzy measures, possibility theory, qualitative reasoning,
information content.

1 Introduction

Qualitative fuzzy measures (or q-capacities) are monotonic set-functions on a fi-
nite set with a range in a finite totally ordered set. They are instrumental in the
representation of uncertainty of events, or yet, of the relative weights of groups
of criteria in multicriteria evaluation, in the non-numerical environment, when
likelihood or value scales are just totally or partially ordered sets, e.g. complete
lattices [6]. An important issue to be clarified, if q-capacites are to be seriously
considered as a tool for representing uncertainty, is the one of information con-
tent, and more generally the comparison of q-capacities in terms of their relative
information content.

Important special cases of q-capacities are possibility and necessity measures
[4]. For the latter set-functions, there is an abundant literature concerning in-
formation comparison, based on the notion of relative specificity [14,4]. Namely,
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a possibility (or a necessity) measure is entirely characterized by a possibility
distribution over the elementary events, that defines a fuzzy set, and informa-
tion comparison is carried out using fuzzy set inclusion, whereby a fuzzy set
is more specific than another one, if and only if the former is a subset of the
latter. However, there is almost no literature on the informational comparison
of q-capacities in the general case. Some authors [10] have proposed notions of
entropy for discrete capacities that evaluate the diversity of the coefficients ap-
pearing in the set-function. Our aim is rather to extend the specificity ordering
to general q-capacities.

To do so, one may get inspiration from the theory of belief functions, where
several informational orderings of various strength have been defined [13,3]. A
belief function is a ∞-monotone set-function, that can be defined by means of a
probability distribution over a power set (its Moebius transform), the degree of
belief of an event summing the probability weights of all subevents that imply it.
A belief function is then more informative than another if the former is eventwise
greater than the latter. Another stronger definition, called specialisation, is based
on the inclusion of focal sets. In the qualitative setting, it is also possible to
compare q-capacities in an eventwise way. Besides, a qualitative counterpart of
the Moebius transform can be defined, and a qualitative form of specialisation
can be defined as well [12]. However, when indistinctly applied to q-capacites
(like possibility and necessity measures), these definitions, even if formally well-
defined, seem to baffle intuition.

In this paper, we try to provide a meaningful notion of information comparison
between capacities, noticing that q-capacities differ not only by their information
content, but also by the range of attitudes towards uncertainty they may encode.
For instance, based on a given possibility distribution, the possibility measure is
optimistic and the necessity measure is pessimistic [8], but one may argue they
have the same information content.

2 Framework and Notations

We consider a finite set (of states, criteria, etc.) S = {s1, · · · , sn} and a finite
totally ordered scale L with top 1 and bottom 0. Let min denote the minimum,
max the maximum. Moreover L is equipped with an involutive negation ν. A
q-capacity is a mapping γ : 2S → L such that γ(∅) = 0, γ(S) = 1, and if A ⊆ B
then γ(A) ≤ γ(B). When L = {0, 1}, γ is called a Boolean capacity.

A special case of capacity is a possibility measure defined with a possibility dis-
tribution π : S → L. The possibility measure is defined by Π(A) = maxs∈A π(s).
The value π(s) is understood as the possibility that s be the actual state of the
world. Precise information corresponds to the situation where ∃s∗, π(s∗) = 1 and
∀s �= s∗, π(s) = 0. Complete ignorance is represented by the vacuous possibility
distribution π? such that ∀s ∈ S, π?(s) = 1. A possibility distribution π is more
specific than another possibility distribution ρ if ∀s ∈ S, π(s) ≤ ρ(s) [14,4]. This
definition makes perfect sense since the set of possible values represented by π
is smaller, hence more precise, than the one represented by ρ.
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The q-capacity conjugate of γ, denoted by γc, is defined using the involutive
negation ν by γc(A) = ν(γ(Ac)) ∀A ⊆ S, where Ac is the complement of the set
A. In particular, the conjugate of a possibility measure is a necessity measure
which is of the form N(A) = ν(maxs�∈A π(s)).

The inner qualitative Moebius transform of γ is a mapping γ# : 2S → L
defined by γ#(E) = γ(E) if γ(E) > maxB⊂E γ(B) and 0 otherwise [9,11]. It
contains the minimal information that is sufficient to reconstruct γ as γ(A) =
maxE⊆A γ#(E). Let Fγ = {E, γ#(E) > 0} denote the family of so-called fo-
cal sets associated to γ. Note that the inner qualitative Moebius transform of
γ is strictly monotonic with inclusion on Fγ . The inner qualitative Moebius
transforms of a possibility measure Π coincides with its possibility distribution
π (focal sets are singletons) while the focal sets of a necessity measure N are
nested (the cuts of π).

3 Can We Transfer Quantitative Definitions of
Information Comparison to the Qualitative Setting?

When comparing capacities γ and δ, the inequality γ ≤ δ is not always expressing
something relevant about how informative γ is with respect to δ. Indeed, for
instance if γ is the vacuous possibility function Π?(A) = 1 if A �= ∅ and δ is the
vacuous necessity function N?(A) = 0 if A �= Ω, we have Π? > N?. However,
they have exactly the same information content since based on the vacuous
possibility distribution assigning 1 to all elements of S and they are maximally
uniformative among other possibility and necessity functions.

In the numerical setting, information comparison relations exist especially in
the setting of belief functions. A belief function on S is defined by means of a
probability distribution m over 2S \ {∅} as

Bel(A) =
∑

E,E⊆A

m(E), ∀A ⊆ S. (1)

The conjugate functions are plausibility measures defined by Pl(A) = 1 −
Bel(Ac). Bel(A) = 1 expresses full certainty of A, since then Pl(Ac) = 0 ex-
presses that the complement Ac is impossible.

There are several definitions of information comparison for belief functions. A
belief function Bel1 is said to be more informative (in the wide sense) than Bel2
if ∀A ⊆ S,Bel1(A) ≥ Bel2(A). This is due to the fact that Bel1 assigns greater
degrees of certainty to events (while Bel(A) = 0 expresses no information).
In terms of imprecise probabilities, it is equivalent to have the inclusion {P :
P ≥ Bel1} ⊆ {P : P ≥ Bel2}. And notice that for plausibility functions the
inequality is reversed (Pl1(A) ≤ Pl2(A)).

Another information comparison method is based on specialisation, that relies
on the mass assignments : m1 is a specialization ofm2 (denoted by m1 �s m2) if
and only if there exists a joint mass x(A,B) with marginalsm1 andm2, such that
x(A,B) = 0 whenever A � B,A ∈ F1, B ∈ F2. It expresses inclusion between
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focal sets of Bel1 and Bel2, that is sets E with mi(E) > 0. It can be checked
that m1 �s m2 implies that Bel1 is more informative (in the wide sense) than
Bel2, but not conversely.

There is a formal analogy between q-capacities and belief functions, since
γ(A) = maxE,E⊆A γ#(E), whereby γ# plays the role of a mass assignment,
and

∑
turns into max. This is why it is then tempting to consider γ as more

informative than δ whenever ∀A ⊆ S, γ(A) ≥ δ(A). This is all the more natural
as the following result, adapted from [12], holds:

Proposition 1. ∀A ⊆ S, γ(A) ≥ δ(A) if and only if ∀F ∈ Fδ, ∃E ∈ Fγ s.t.
E ⊆ F , γ#(E) ≥ δ#(F ).

Proof: γ(A) ≥ δ(A) writes maxE,E⊆A γ#(E) ≥ maxF,F⊆A δ#(F ). Suppose
A = F is a focal set of δ. Then the latter is equivalent to maxE,E⊆F γ#(E) ≥
δ#(F ), hence to ∀F ∈ Fδ, ∃E ∈ Fγ s.t. E ⊆ F and γ#(E) ≥ δ#(F ).
Conversely, suppose the latter holds. If δ(A) = 0 then the result is obvious. If
δ(A) �= 0 hence let us consider F the focal element included in A such that
δ(A) = δ#(F ). There exists E a focal element of γ included in F such that
γ#(E) ≥ δ(A). We have E ⊆ F ⊆ A so γ(A) ≥ γ#(E) ≥ δ(A). �

The condition ∀F ∈ Fδ, ∃E ∈ Fγ s.t. E ⊆ F , γ#(E) ≥ δ#(F ) is clearly a
qualitative rendering of the specialisation relation. It formally means that for
any focal set F of δ there is a more important and more precise focal subset
of γ, that explains the domination of γ over δ. Here, the two definitions of
informational comparison are equivalent, which departs from the quantitative
case.

However, this result is misleading. Neither the values of their lower Moebius
transforms γ# and δ#, nor the size of focal sets A,B with γ#(A) > 0 and
δ#(B) > 0 tell us much on their information content. For instance, focal sets of
the vacuous possibility measure Π? are all singletons, and the unique focal set
of N? is the whole set S. Viewing γ as a counterpart to belief functions w.r.t.
γ# is thus not appropriate.

In such a context this article focuses on a basic question: When does a q-
capacity represent the idea of certainty like belief functions, when does it repre-
sent plausibility (the conjugate of a belief functions)? In other words, when it is
uncertainty-averse or pessimistic ? When it is uncertainty-prone or optimistic ?

4 Optimistic and Pessimistic q-Capacities

Given a possibility distribution π the corresponding Π is optimistic in the sense
that Π({s}) = 1 as soon as s is fully possible (among other states); and its
corresponding conjugateN = Πc is pessimistic, in particularN({s}) = 0, ∀s ∈ S
as soon as two distinct elements in S are fully possible. More generally, N(A) ≤
Π(A), ∀A ⊆ S and more specifically N(A) > 0 implies Π(A) = 1. Finally,
N(A) = 1 expresses full certainty while Π(A) = 1 just expresses a lack of
surprise for the occurrence of A. Likewise, belief functions are pessimistic while
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their conjugate plausibility functions, which rely on the same mass function, are
optimistic.

The above considerations motivate the following definition.

Definition 1. A q-capacity γ is said to be pessimistic (resp. optimistic) if γ ≤
γc (resp. if γ ≥ γc).
This definition first appears in [6] where a pessimistic (resp. optimistic) capacity
is called uncertainty-averse (resp: uncertainty-prone). It is easy to see that:

– a q-capacity may be neither pessimistic nor optimistic. There may exist A,B
such that γ(A) < γc(A) (pessimistic for A), and γ(B) > γc(B) (optimistic
for B).

– a q-capacity may be both : γ = γc is possible. For instance with Boolean
q-capacities (L = {0, 1}) on a space with 2n + 1 elements, γn(A) = 1 if
|A| > n and 0 otherwise.

To check if a capacity is pessimistic, it is enough to check the property γ(A) ≤
γc(A) for focal sets. For if A is not focal, then there is a focal set E contained
in A such that γ(A) = γ(E), and it is clear that if γ(E) ≤ γc(E) then γ(A) ≤
γc(E) ≤ γc(A), since A ⊆ E. This remark helps checking the pessimism of γ.

Proposition 2. The following properties hold:

– If γ is pessimistic then γ(A) = 1 implies γ(Ac) = 0. For Boolean capacities,
γ is pessimistic if and only if min(γ(A), γ(Ac)) = 0.

– If γ is optimistic then γ(A) = 0 implies γ(Ac) = 1. For Boolean capacities,
γ is optimistic if and only if max(γ(A), γ(Ac)) = 1.

Proof: Let us suppose γ pessimistic and γ(A) = 1. Then γc(A) = 1, hence
γ(Ac) = 0. Conversely in the binary case, either γ(A) = 0 and then γ(A) ≤
γc(A), or γ(Ac) = 0 then γc(A) = 1 and γ(A) ≤ γc(A).

The proof for the optimistic case is similar. �
Note that we find a result proved in [2]. In that paper, a preference rela-

tion between acts represented by functions is called strongly pessimistic (resp.
optimistic) if and only if it is represented by a Sugeno integral with respect
to a necessity measure (resp. possibility measure). In that paper, contrary to
ours, a preference relation is called pessimistic (resp. optimistic ) the relation
is represented with a Sugeno integral with respect to capacity γ such that
min(γ(A), γ(Ac)) = 0 (resp. max(γ(A), γ(Ac)) = 1) 1. Here we shall respectively
call such capacities strictly pessimistic (resp. optimistic). Strictly pessimistic
capacities are indeed special cases of pessimistic ones:

Proposition 3. If a capacity is such that for all subsets A, min(γ(A), γ(Ac)) =
0 then it is pessimistic.

Proof: Suppose γ is not pessimistic. Then ∃A, γ(A) > ν(γ(Ac)). Hence γ(A) >
0, but then by assumption, γ(Ac) = 0, hence γ(A) > 1, which is impossible. �
1 In the case of Boolean functions, Sugeno integral reduces to a capacity.
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Considering a capacity γ, for each α > 0 ∈ L we can define a Boolean capacity
γα called its α-cut, as follows: for all A ⊆ S, γα(A) is equal to 1 if γ(A) ≥ α
and 0 otherwise. Then, γ = maxα∈Lmin(α, γα), Fγ = ∪α∈LF (γα), and we can
show:

Proposition 4. A capacity is strictly pessimistic if and only if ∀α > 0 ∈ L, γα
is pessimistic.

Proof: : If ∃A,α > 0 : min(γ(A), γ(Ac)) = α, then γα(A) = γα(Ac) = 1 hence
by Proposition 2, γα is not pessimistic. The converse is obvious. �

We can moreover describe the topological features of families of focal sets of
pessimistic q-capacities:

Proposition 5. γ is a pessimistic q-capacity if and only if any two focal sets E
and F that have empty intersection satisfy γ#(E) ≤ ν(γ#(F )).

Proof: γ ≤ γc if and only if ∀E ∈ Fγ , γ#(E) ≤ ν(γ(Ec)). But γ(Ec) =
maxF :F∩E=∅ γ#(F ). So γ#(E) ≤ minF :F∩E=∅ ν(γ#(F )). �
The condition γ#(F ) > ν(γ#(E)) that prevents disjoint focal sets means that
weights γ#(F ), γ#(E) are both high enough. In particular, the focal sets E of
a pessimistic γ such that γ#(E) > ν(γ#(E)) (i.e., weights of focal sets in the
upper part of the value scale) intersect pairwisely. All focal sets intersect the focal
set with weight 1. And if the focal sets of a q-capacity all pairwisely intersect,
then the q-capacity is pessimistic. This property is characteristic for Boolean
capacities: γ is a pessimistic Boolean capacity if and only if the intersection of
two focal sets is not empty.

In the non-Boolean case, one may have disjoint focal sets with small enough
weights inside or overlapping focal sets with high weights.

Example 1. Consider a q-capacity with 4 focal sets, E,F,G1, G2 such that F ⊆
E, Gi ∩E �= ∅ for i = 1, 2, and F,G1, G2 are disjoint (Fig. 1). Assume γ#(E) =
1, γ#(F ) = α > ν(α), and γ#(Gi) = βi < ν(α). Then it is easy to check that γ is
pessimistic, since γc(E) = 1, γc(F ) = ν(max(β1, β2)) > α, γc(Gi) = ν(α) > βi.

E

F

G1

G2

Fig. 1. Focal sets of a pessimistic q-capacity
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For optimistic capacities one gets dual results:

Proposition 6. Let γ be an optimistic q-capacity. If A is a focal set such that
γ(A) �= 1 then Ac contains a focal set of γ.

Proof: Let A be a focal set of γ. γ(A) = α entails γ(Ac) ≥ ν(α) > 0. �

So for each A such that γ#(A) �= 1 we can find another focal set B such that
A∩B = ∅. It means that the focal sets of optimistic capacities tend to be disjoint
while those of pessimistic capacities tend to overlap. The precise description of
focal sets of optimistic capacities can benefit from the knowledge of the focal
sets of pessimistic ones, as explained in [7].

5 Entailment between Capacities

Based on the above considerations, it makes sense to consider the following
definition:

Definition 2. If γ1 and γ2 are two pessimistic capacities then γ1 is more infor-
mative than γ2 if and only if γ1 ≥ γ2 (eventwise).

Indeed, if a pessimistic q-capacity γ1 assigns a high value to event A, then it
will assign a very small value to its complement. In particular γ1(A) = 1 implies
γ1(A

c) = 0 (since ν(γ1(A
c)) = 1), so that this kind of capacity expresses the

idea of certainty, while its conjugate expresses the notion of plausibility [5] and
satisfies the opposite statement. Hence if γ1 systematically assigns a certainty
value higher than or equal to the one assigned by γ2 to events, the former provides
more information than the latter.

Note that by construction, γ1 ≥ γ2 is equivalent to

[γ1(A), γ
c
1(A)] ⊆ [γ2(A), γ

c
2(A)], ∀A ⊆ S.

In fact γ1 and its conjugate contain the same amount of information but
differ by the attitude toward uncertainty. As pointed out in [5], the width of
the interval [γ1(A), γ

c
1(A)] reflects the quantity of ignorance regarding event A,

namely, for any pessimistic capacity

– γ1(A) = 1(= γc1(A)) expresses the certainty of A.
– γc1(A) = 0(= γ1(A)) expresses the impossibility of A.
– γc1(A) = 1 and γ1(A) = 0 expresses total ignorance regarding A.

Note that if the optimistic capacities are two possibility measures, this notion
of relative information content reduces to the specificity ordering: Π1 is more
informative than Π2 if and only if Π1 ≤ Π2 if and only if π1 is more specific
than π2, i.e. π1 ≤ π2.

Given a capacity γ one can derive its pessimistic and optimistic versions (re-
spectively called assurance and opportunity functions by Yager [15]):

Definition 3. The pessimistic version of a q-capacity γ is γ∗(A) = min(γ(A),
γc(A)) and its optimistic version is γ∗(A) = max(γ(A), γc(A)).
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Note that γ∗ and γ
∗ are both q-capacities (monotonic increasing with inclusion),

and, by construction, γ∗ is the ν-conjugate of γ∗ (i.e. γ∗ = γc∗) So each has the
same information content as the other.

In such a context we can introduce a relation ≈ between q-capacities express-
ing the idea of containing the same amount of information :

Definition 4. γ and δ contain the same amount of information, denoted by
γ ≈ δ if and only if γ∗ = δ∗ and γ∗ = δ∗.

This is an equivalence relation on the set of L-valued q-capacities on S. Note
that we have γ∗ = δ∗ if and only if γ∗ = δ∗; so we just need to consider one
equality. If γ∗ = δ∗ it means that for all subsets A of S, the sets of values
{γ(A), γ(Ac)} and {δ(A), δ(Ac)} are equal. So for each event A we must decide
the attitude in front of uncertainty : pessimistic if we assign the least value,
optimistic if we assign the greatest one (while respecting monotonicity).

Proposition 7. The equivalence class C≈(γ) of γ is upper bounded by γ∗ and
lower-bounded by γ∗.

Proof: min(γ∗, γ
c
∗) = γ∗ so γ∗ ∈ C≈(γ) and γ∗ ≥ minδ∈C≈(γ) δ. Moreover for

all δ ∈ C≈(γ) we have δ ≥ min(δ, δc) = δ∗ = γ∗ which entails minδ∈C≈(γ) δ ≥ γ∗.
So minδ∈C≈(γ) δ = γ∗. Similarly, we can prove that maxδ∈C≈(γ) δ = γ∗. �

If δ ∈ C≈(γ) is a pessimistic q-capacity, then min(δ, δc) = δ = γ∗ so γ∗
is the unique pessimistic q-capacity in C≈(γ). Similarly one obtains that γ∗ is
the unique optimistic q-capacity in C≈(γ). As a consequence, we must com-
pare q-capacities in terms of their information content via a comparison of their
equivalence classes, which justifies the following definition :

Definition 5. A q-capacity γ is said to be to be more informative than a q-
capacity δ in the wide sense if and only if γ∗ ≥ δ∗.

Likewise we can compare two q-capacities in terms of their relative pessimism
in front of uncertainty by means of another relation:

Definition 6. A q-capacity γ is said to be to be less pessimistic than a q-capacity
δ in the wide sense if and only if {A : γ(A) = γ∗(A)} ⊆ {A : δ(A) = δ∗(A)}.

These definitions completely disentangle the two aspects carried by
q-capacities: namely the attitude in front of uncertainty and the information
content, in agreement with possibilistic specificity.

6 Particular Cases

We consider in fact extreme cases of q-capacities.

Complete Ignorance. We consider the q-capacity defined by γ(S) = 1 and
γ(A) = 0 otherwise. This is nothing but the vacuous necessity measure N? whose
conjugate is Π?. Clearly, N? is pessimistic and and it is less informative than
any capacity, since [N?(A), Π?(A)] = [0, 1] for A �= S, ∅.
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Precise Information. For each element si in S we define the following q-

capacity σi(A) =

{
1 if si ∈ A
0 otherwise

. It represents the precise information x = si.

Note that σi = σci is self-conjugate, so we have σi∗ = σ∗i = σi. Some obvious
remarks concerning this familly of q-capacities:

– If we consider two q-capacities σi and σj with si �= sj then neither of the
two is more informative than the other.

– σi and σj contain the same information if and only if si = sj .
– C≈(σi) = {σi}, which is obvious since it is self-conjugate.
– There is no pessimistic q-capacity γ �= σi such that γ ≥ σi. Indeed σi is self-

conjugate and [σi∗(A), σ
∗
i (A)] reduces to 0 or 1, i.e., cannot contain the non-

trivial intervals [γ∗(A), γ
∗(A)]. For each capacity γ, either the information

content of γ and σi are incomparable or γ is less informative than σi.

Self-conjugate q-capacities. In the numerical setting the most well-known
self-conjugate capacities are probability measures that cannot be defined here,
but for the precise q-capacities σi. Self-conjugate capacities σ are such that
∀A ⊆ S, σ(A) = ν(σ(Ac)) = σc(A). They are at the same time pessimistic and
optimistic. It is then obvious that they are maximally specific: there is no ca-
pacity that is more informative than any σ since the intervals [σ∗(A), σ

∗(A)] are
reduced to points, hence cannot contain [γ∗(A), γ

∗(A)] for any γ �= σ. A remark-
able subclass of self-conjugate capacities are symmetric ones, where γ(A) = α|A|
only depend on the cardinality of A, α|A| = ν(α|S\A|) ≥ α|S\A| if |A| ≥ |S|/2.
They are completely defined by a strictly increasing sequence of n = |S| co-
efficients αi such that αi = ν(αn−i+1). Of course, the precise q-capacities are
a subclass of self-conjugate ones since if σ#({si}) = 1 then Fσ = {{si}}, i.e.
σ = σi.

7 Conclusion

This paper has tried to define the information content of a capacity when the
value scale is purely ordinal. We have exploited the fact that a qualitative ca-
pacity accounts for both uncertainty and attitude in front of it, as pointed out in
[6,15]. We propose a mathematical definition of information content comparison
irrespective of the attitude toward uncertainty, and a comparison of capacities
in terms of pessimism, irrespective of how much uncertainty they express.

Some issues remain open, and especially the structure of the set of focal sets of
optimistic capacities. Informally, the focal sets of a pessimistic capacity tend to
overlap each other, while the focal sets of an optimistic capacity tend to be dis-
joint. And the larger the focal sets, the less informative the pessimistic capacity.
A strict form of pessimism is when all focal sets intersect pairwisely; maximal
pessimism is obtained for nested focal sets (necessity measures). Alternatively,
maximal pessimism is obtained for disjoint focal sets (possibility measures); then
the smaller the focal sets the less informative the optimistic capacity. It would
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also be interesting to deepen the analogy and the differences between the qual-
itative and the quantitative settings for the modeling of uncertainty aversion.
These results may be useful to clarify the potential use of qualitative capacities
in various areas where aggregation functions are useful, especially in multicrite-
ria analysis and information fusion. For instance, in a multiple source problem,
q-capacities can be useful to merge possibility distributions [1]; focal sets of the
q-capacity can then be understood as possibly antagonistic points of view on
information.
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Abstract. The paper pursues the definition of a maxitive integral on
all real-valued functions (i.e., the integral of the pointwise maximum of
two functions must be the maximum of their integrals). This definition
is not determined by maxitivity alone: additional requirements on the
integral are necessary. The paper studies the consequences of additional
requirements of invariance with respect to affne transformations of the
real line.

Keywords: maxitive measures, nonadditive integrals, location and scale
invariance, Shilkret integral, convexity, subadditivity.

1 Introduction

In theories of reasoning and decision making under uncertainty, measures (or
capacities) are used to describe uncertain belief or information, and can be ex-
tended to integrals in order to evaluate and compare uncertain (real-valued)
payoffs. In particular, the additive capacities used in the Bayesian theory can be
extended (almost) uniquely to an additive integral. By contrast, the extension to
a maxitive integral of the maxitive capacities used in alternative theories is not
unique, and additional requirements are needed in order to determine it. The
present paper focuses on additional requirements of invariance with respect to
the choice of the measurement scale of the payoffs.

The invariance with respect to the choice of the scale unit determines the
Shilkret integral on nonnegative functions. This integral satisfies some properties
that are important for the evaluation of uncertain payoffs, such as subadditivity
or the law of iterated expectations, but it cannot be extended in a reasonable way
to a maxitive integral on all real-valued functions. By contrast, the invariance
with respect to the choice of the zero point of the measurement scale (almost)
determines a maxitive integral on all real-valued functions, called convex integral.
The name comes from the property of convexity, which is satisfied besides other
important ones for the evaluation of uncertain payoffs, such as the law of iterated
expectations.

The paper is organized as follows. The next section introduces the concepts of
capacities and of integrals as their extensions. The Shilkret and convex integrals
are then studied in Sects. 3 and 4, respectively. The final section gives directions
for further research.
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2 Integrals as Extensions of Capacities

Let β be a set and let μ be a capacity on β. That is, μ : P(β) → [0, 1] is a
monotonic set function such that μ(∅) = 0 and μ(β) = 1, where monotonic
means that μ(A) ≤ μ(B) for all A ⊆ B ⊆ β.

The capacity μ can be interpreted as a quantitative description of uncertain
belief or information about Ω ∈ β. The larger the value μ(A), the larger the
plausibility of Ω ∈ A, or the larger the implausibility of Ω /∈ A. This is in
agreement with the monotonicity of μ, while the requirements μ(∅) = 0 and
μ(β) = 1 can be interpreted as meaning that Ω ∈ ∅ is impossible and that
nothing speaks against Ω ∈ β, respectively.

More precise interpretations of the values of μ can lead to additional require-
ments on the set function μ. The best known additional requirement is (finite)
additivity: μ(A∪B) = μ(A)+μ(B) for all disjoint A,B ⊆ β. Additive capacities
(also called probability charges, or finitely additive probability measures) are the
quantitative descriptions of uncertain belief about Ω ∈ β used in the Bayesian
theory [1,2].

The continuity (from below and from above) of the set function μ is often
required together with the additivity for technical reasons. The resulting re-
quirement is countable additivity: μ(

⋃
n∈NAn) =

∑
n∈N μ(An) for all sequences

(An)n∈N of (pairwise) disjoint An ⊆ β. Countably additive capacities (also called
probability measures) are the quantitative descriptions of uncertain information
about Ω ∈ β used in probability theory [3]. However, countable additivity is too
strong a requirement when β is uncountable, and therefore μ cannot usually be
defined on the whole power set P(β), at least under the axiom of choice [4].

A common requirement on the set function μ alternative to additivity is (fi-
nite) maxitivity: μ(A ∪ B) = μ(A) ∨ μ(B) for all (disjoint) A,B ⊆ β. Maxitive
capacities (also called possibility measures, consonant plausibility functions, or
idempotent measures) have been studied in various contexts [5,6,7]. As quan-
titative descriptions of uncertain belief or information about Ω ∈ β, maxitive
capacities play a central role in possibility theory [8], but they also appear for
instance as consonant plausibility functions in the theory of belief functions [9],
or as supremum preserving upper probabilities in the theory of imprecise prob-
abilities [10]. Moreover, the description of uncertain belief by means of maxitive
capacities also corresponds for example to the descriptions by means of degrees
of potential surprise [11], or of degrees of support by eliminative induction [12].
Of particular importance in statistical applications is the fact that the likelihood
(ratio) of composite hypotheses is a maxitive capacity [13,14].

The requirement of maxitivity of the set function μ can be generalized to the
requirement of ω-maxitivity (where ω is a cardinal): μ(

⋃
A∈AA) =

∨
A∈A μ(A)

for all nonempty A ⊆ P(β) of cardinality at most ω. Maxitivity corresponds to
ω-maxitivity when ω is finite and at least 2. Contrary to the case of additivity, the
requirement of ω-maxitivity for infinite cardinals ω does not pose any problem:
a ω-maxitive set function can always be extended from a ring of subsets of β to
the whole power set P(β) [15, Theorem 1].
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The capacity μ on β has a particularly simple description when it is ω-
maxitive with ω the cardinality of β. In fact, μ is then completely described
by its values on the singletons: μ(A) =

∨
ω∈A μ{Ω} for all nonempty A ⊆ β.

This implies in particular the ω-maxitivity of μ for all cardinals ω, also called
complete maxitivity. For example, in statistics, the likelihood of composite hy-
potheses is a completely maxitive capacity: θ(H) =

∨
θ∈H θ{α} for all composite

hypotheses H ⊆ Θ, where Θ is a set of simple hypotheses, and α �→ θ{α} is the
(relative) likelihood function on Θ [13,14].

Since each A ⊆ β can be identified with its indicator function IA on β,
the capacity μ can be identified with a functional on the set of all indicator
functions IA with A ⊆ β. The remaining of this paper studies extensions of
this functional to larger classes of functions on β, and in order to avoid trivial
results, it is assumed that there is a C ⊆ β such that 0 < μ(C) < 1.

Let F be a set of extended real-valued functions f : β → R. A functional
F : F → R is said to extend the capacity μ to F if F (IA) = μ(A) for all
A ⊆ β. In this definition, as in the rest of the paper, it is assumed as part of
the condition that the expressions are well-defined. That is, F can extend μ to
F only if IA ∈ F for all A ⊆ β, because otherwise the expression F (IA) = μ(A)
would not be well-defined.

2.1 Extension of Additive Capacities

In the Bayesian theory, the uncertain belief about Ω ∈ β is described by an
additive capacity μ on β, while the evaluation of a (bounded) uncertain payoff
f(Ω) on the basis of this belief is given by its expectation

∫
f dμ, which is defined

as follows.
Let B be the set of all bounded functions f : β → R, and let S ⊆ B be the

subset of all simple functions (i.e., all functions s : β → R such that their images
s(β) are finite). The (standard) integral of f ∈ B with respect to an additive
capacity μ on β is denoted by

∫
f dμ and is defined as∫

f dμ =
∨

s∈S : s≤f

∑
x∈s(ν)

xμ{s = x} =
∧

s∈S : s≥f

∑
x∈s(ν)

xμ{s = x},

where {s = x} is the usual short form for the set {Ω ∈ β : s(Ω) = x}. The integral
is well-defined when μ is additive [16], and corresponds to the Lebesgue integral
when μ is countably additive [17].

The next theorem shows that the integral with respect to an additive capacity
μ on β is the unique monotonic, additive extension of μ to B. A functional
F : F → R is said to be monotonic if F (f) ≤ F (g) for all f, g ∈ F such that
f ≤ g, while F is said to be (finitely) additive if F (f + g) = F (f) + F (g) for all
f, g ∈ F . Note that the additivity of a functional F on B implies its monotonicity
when some weak additional requirement is satisfied: for example when F (f) ≥ 0
for all f ∈ B such that f ≥ 0.
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Theorem 1. When μ is additive, its additive extension to B is not unique, but
the functional f �→

∫
f dμ on B is the unique monotonic, additive extension of

μ to B.

Proof. When μ is additive, the functional F : f �→
∫
f dμ extends μ and is

monotonic and additive [16, Chap. 4]. If F ′ is an additive extension of μ to B,
then its additivity implies F ′(Δ f) = ΔF ′(f) for all Δ ∈ Q and all f ∈ B, and
therefore also

F ′(s) =
∑

x∈s(ν)

xμ{s = x} = F (s)

for all simple functions s ∈ S such that s(β) ⊆ Q. If F ′ is also monotonic, then
its monotonicity implies F ′(f) = F (f) for all f ∈ B.

However, additive extensions of μ to B that are not monotonic also exist, at
least under the axiom of choice. Let ν : R→ R be a discontinuous additive func-
tion such that ν(0) = 0 and ν(1) = 1 [18, Corollary 5.2.1]. Then the functional
F ′ : f �→

∫
ν ◦ f dμ on B is an additive extension of μ, but F ′ �= F . ��

2.2 Extension of Maxitive Capacities

In the Bayesian theory, the uncertain belief about Ω ∈ β is described by an
additive capacity μ on β, and the evaluations of uncertain payoffs f ∈ B are
described by the unique monotonic, additive extension of μ to B. Analogously,
when the uncertain belief or information about Ω ∈ β is described by a maxitive
capacity μ on β, the evaluations of uncertain payoffs f ∈ B can be described
by a maxitive extension of μ to B. However, the next theorem shows that the
maxitive extension to B of a maxitive capacity μ on β is not unique. A functional
F : F → R is said to be maxitive if F (f ∨ g) = F (f) ∨ F (g) for all f, g ∈ F .
Note that the maxitivity of a functional implies its monotonicity.

Theorem 2. When μ is maxitive, its maxitive extension to B is not unique.

Proof. When μ is maxitive, both functionals

F : f �→
∨

x∈R>0

xμ{f > x} and F ′ : f �→
∨

x∈R>0

(x ∧ μ{f > x})

on B are maxitive extensions of μ, because μ{f ∨g > x} = μ{f > x}∨μ{g > x}
for all f, g ∈ B and all x ∈ R. However, F �= F ′, since for instance F (2) = 2,
while F ′(2) = 1. When f ≥ 0, the values F (f) and F ′(f) are known as Shilkret
and Sugeno integrals of f with respect to μ, respectively [5,19]. ��

In order to obtain a unique extension to B of a maxitive capacity μ on β,
additional requirements are necessary, besides maxitivity (and monotonicity). A
particularly important requirement for evaluations of uncertain payoffs is their
invariance with respect to changes in the measurement scale of the payoffs, such
as changes in the location of the zero point or changes in the scale unit. A
functional F : F → R is said to be location invariant if F (f +Δ) = F (f)+Δ for
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all f ∈ F and all Δ ∈ R, while F is said to be scale invariant if F (Δ f) = ΔF (f)
for all f ∈ F and all Δ ∈ R>0.

The (standard) integral with respect to additive capacities is location and
scale invariant [16]. The best known location and scale invariant integral with
respect to nonadditive capacities is the one of Choquet [20,21]. The Choquet
integral of f ∈ B with respect to a capacity μ on β is denoted by

∫
Cf dμ and is

defined as ∫ C

f dμ =

∫ 0

−∞
(μ{f > x} − 1) dx+

∫ +∞

0

μ{f > x} dx,

where the right-hand side is the well-defined sum of two improper Riemann
integrals. The Choquet integral with respect to a capacity μ on β is a mono-
tonic extension of μ to B, which is additive when μ is additive [22]. Therefore,∫
Cf dμ =

∫
f dμ for all f ∈ B when μ is additive.

The next theorem shows that no maxitive extension to B of a maxitive ca-
pacity μ on β is location and scale invariant. Maxitive extensions satisfying one
of these two additional requirements are studied in the next two sections.

Theorem 3. When μ is maxitive, there is no location and scale invariant, max-
itive extension of μ to B.

Proof. Let F be a scale invariant, maxitive extension to B of a maxitive capacity
μ on β. As assumed above, there is a C ⊆ β such that 0 < μ(C) < 1. Hence,
μ(β \ C) = 1 and

F (IC + 1) = F
(
(2 IC) ∨ Iν\C

)
= (2μ(C)) ∨ 1 < μ(C) + 1 = F (IC) + 1,

and therefore F is not location invariant. ��

3 Shilkret Integral

Let E be the set of all extended real-valued functions f : β → R, let E+ ⊆ E be
the subset of all nonnegative functions, and let B+ = B ∩ E+ the subset of all
bounded, nonnegative functions. The Shilkret integral of f ∈ E+ with respect to
a capacity μ on β is denoted by

∫
Sf dμ and is defined as∫ S

f dμ =
∨

x∈R>0

xμ{f > x}.

The Shilkret integral has a particularly simple expression when μ is completely
maxitive:

∫
Sf dμ =

∨
ω∈ν f(Ω)μ{Ω} for all f ∈ E+ [5].

The next theorem shows that the Shilkret integral with respect to a maxitive
capacity μ on β is the unique scale invariant, maxitive extension of μ to B+. The
Shilkret integral maintains ω-maxitivity also for infinite cardinals ω. A functional
F : F → R is said to be ω-maxitive if F (

∨
f∈G f) =

∨
f∈G F (f) for all nonempty

G ⊆ F of cardinality at most ω.
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Theorem 4. When μ is maxitive, the functional f �→
∫
Sf dμ on B+ is the

unique scale invariant, maxitive extension of μ to B+. Moreover, when ω is an
infinite cardinal and μ is ω-maxitive, the functional f �→

∫
Sf dμ on E+ is the

unique scale invariant, ω-maxitive extension of μ to E+.

Proof. When ω is a cardinal and μ is ω-maxitive, the functional f �→
∫
Sf dμ on

E+ is a scale invariant, ω-maxitive extension of μ to E+ [15, Lemma 1]. Such an
extension is unique on B+ when ω ≥ 2 [15, Theorem 2 (iii)], and it is unique also
on E+ when ω is infinite [15, Theorem 3 (iii)]. ��

An important property for evaluations of uncertain payoffs is convexity, mean-
ing that diversification does not increase the risk [23,24]. A functional F : F → R
is said to be convex if F (θ f + (1− θ) g) ≤ θF (f)+(1−θ)F (g) for all θ ∈ (0, 1)
and all f, g ∈ F , whereas F is said to be subadditive if F (f + g) ≤ F (f) + F (g)
for all f, g ∈ F . Note that convexity and subadditivity are equivalent for a scale
invariant functional.

The characterization of the capacities with respect to which the Choquet
integral is convex (i.e., subadditive) is a well-known result [20,22,21]. The next
theorem gives also a characterization of the capacities with respect to which
the Shilkret integral is convex (i.e., subadditive). The capacity μ is said to be
submodular if μ(A ∪B) + μ(A ∩B) ≤ μ(A) + μ(B) for all A,B ⊆ β. Note that
additive or maxitive capacities are submodular.

Theorem 5. The functional f �→
∫
Cf dμ on B is convex if and only if μ is

submodular, while the functional f �→
∫
Sf dμ on E+ is convex if and only if μ

is maxitive.

Proof. Both functionals f �→
∫
Cf dμ on B and f �→

∫
Sf dμ on E+ are scale in-

variant. The first one is subadditive if and only if μ is submodular [21, Chap. 6],
while the second one is subadditive if and only if μ is maxitive [15, Theo-
rem 4 (iii)]. ��

The Shilkret integral with respect to maxitive capacities satisfies also other
important properties for evaluations of uncertain payoffs, such as the law of
iterated expectations (or evaluations). By contrast, the Choquet integral satisfies
this law only with respect to additive capacities (i.e., only when it corresponds
to the standard integral) [15,25]. However, the Shilkret integral is defined only
for nonnegative functions, and its extension to functions taking negative values
is problematic.

When μ is maxitive, the Shilkret integral is the unique scale invariant, max-
itive extension of μ to B+, but the next theorem shows that its further (scale
invariant, maxitive) extension to B is not unique. In fact, the values assigned
to negative functions by such extensions are independent from μ. To impose a
dependence from μ, some kind of symmetry of the extension could be required.
For example, since μ determines the values of its extensions on all indicator
functions IA, the determination of the values on all negative indicator functions
−IA could be required. An extension F : F → R of a capacity μ on β is said
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to be symmetric if F (−IA) = −μ(A) for all A ⊆ β, while F is said to be dual
symmetric if F (−IA) = −μ(A) for all A ⊆ β, where the dual capacity μ on β
is defined by μ(A) = 1− μ(β \A). Note that all location invariant extensions of
a capacity are dual symmetric, and the (standard) integral with respect to an
additive capacity is also symmetric.

However, the next theorem also shows that no scale invariant, maxitive ex-
tension to B of a maxitive capacity μ on β is symmetric or dual symmetric,
and neither is it convex and calibrated. A functional F : F → R is said to be
calibrated if F (Δ) = Δ for all constant functions Δ ∈ F . Note that all scale
invariant extensions of μ to B+, all scale invariant, (dual) symmetric extensions
of μ to B, and all location invariant extensions of μ to B are calibrated.

Theorem 6. When μ is maxitive and λ is a real-valued function on β such that∧
ω∈ν λ(Ω) = 1, the functional

f �→
{∨

ω∈ν f(Ω) λ(Ω) if f < 0,∫
S(f ∨ 0) dμ otherwise

on E is a scale invariant, calibrated, maxitive extension of μ to E, but no scale
invariant, calibrated, maxitive extension of μ to B is symmetric, dual symmetric,
or convex.

Proof. Since the functional f �→
∫
Sf dμ on E+ is a scale invariant, calibrated,

maxitive extension of μ to E+ when μ is maxitive, its further extension to E
defined in the theorem is also scale invariant, calibrated, and maxitive.

Let F be a scale invariant, calibrated, maxitive extension to B of a maxitive
capacity μ on β. As assumed above, there is a C ⊆ β such that 0 < μ(C) < 1.
Hence, μ(β \ C) = 1 and

F (−IC) ∨ F (−Iν\C) = 0 > −μ(C) = (−μ(C)) ∨ (−μ(β \ C)) ,

and therefore F is not symmetric. Neither can F be dual symmetric, because
0 < μ(β \ C) < 1, while

F (−Iν\C) = F
(
(−2 Iν\C) ∨ (−1)

)
=
(
2F (−Iν\C)

)
∨ (−1)

implies F (−Iν\C) ∈ {−1, 0}. Finally, if f = IC ∨ μ(C), then F (f) = μ(C) and
since

F (f + (−μ(C))) = F ((1− μ(C)) IC) > 0 = F (f) + F (−μ(C)) ,

F is not subadditive (i.e., convex). ��

4 Convex Integral

The convex integral of f ∈ E with respect to a capacity μ on β is denoted by∫
Xf dμ and is defined as∫ X

f dμ =
∨
x∈R

(x+ ν ◦ μ{f > x}) ,
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where ν is the function on [0, 1] defined by ν(0) = −∞ and ν(x) = x − 1
otherwise. The convex integral has a particularly simple expression when μ is
completely maxitive:

∫
Xf dμ =

∨
ω∈ν :μ{ω}>0 (f(Ω) + μ{Ω} − 1) for all f ∈ E .

The next theorem shows that the convex integral with respect to a maxitive
capacity μ on β is the unique location invariant, maxitive extension of μ to B,
when ∅ is the only null set (i.e., μ(A) > 0 for all nonempty A ⊆ β). When
there are nonempty null sets, the location invariant, maxitive extension to B of
a maxitive capacity μ on β is not unique, but the convex integral is the only
null preserving one. An extension F : F → R of a capacity μ on β is said to be
null preserving if F (f) = 0 for all f ∈ F such that μ{f �= 0} = 0. Note that all
extensions of a capacity are null preserving when ∅ is the only null set.

Theorem 7. When μ is maxitive, the functional f �→
∫
Xf dμ on B is the unique

location invariant, maxitive extension of μ to B if and only if ∅ is the only null
set, and in general it is the unique location invariant, null preserving, maxitive
extension of μ to B. Moreover, when ω is an infinite cardinal and μ is ω-maxitive,
the functional f �→

∫
Xf dμ on E is the unique location invariant, null preserving,

ω-maxitive extension of μ to E.

Proof. When ω ≥ 2 is a cardinal and μ is ω-maxitive, the functional f �→
∫
Xf dμ

on E is a location invariant, null preserving, ω-maxitive extension of μ to E [15,
Corollary 5]. Such an extension is unique on B [15, Corollary 6], and it is unique
also on E when ω is infinite [15, Corollary 7].

Let σ be the set function on P(β) defined by σ(∅) = −∞ and σ(A) = μ(A)−1
otherwise. When μ is maxitive, the functional f �→

∨
x∈R (x+ σ{f > x}) on B is

a location invariant, maxitive extension of μ to B [15, Corollary 6], and it differs
from the functional f �→

∫
Xf dμ on B when there are nonempty null sets. ��

Convexity and subadditivity are not equivalent for functionals that are not
scale invariant. The next theorem shows that the convex integral with respect
to maxitive capacities is not subadditive. However, it is convex, and this is the
reason for its name.

Theorem 8. The functional f �→
∫
Xf dμ on B is convex if and only if μ is

maxitive. But when μ is maxitive, no location invariant, maxitive extension of
μ to B is subadditive.

Proof. When μ is maxitive, the functional f �→
∫
Xf dμ on B is convex [15,

Theorem 7]. But when μ is not maxitive, there are A,B ⊆ β and Δ ∈ R>0 such
that μ(A∪B)−Δ > μ(A)∨μ(B). Hence, if g = IA∪B+Δ IB and h = IA∪B−Δ IB ,
then

∫
Xg dμ = μ(A ∪B) and

∫
Xh dμ = μ(A ∪B)− Δ, and since∫ X(

1
2 g +

1
2 h

)
dμ = μ(A ∪B) > 1

2

∫ X

g dμ+ 1
2

∫ X

h dμ,

the functional f �→
∫
Xf dμ on B is not convex.
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Let F be a location invariant, maxitive extension to B of a maxitive capacity
μ on β. As assumed above, there is a C ⊆ β such that 0 < μ(C) < 1, and thus
there is an n ∈ N such that n (1− μ(C)) ≥ 1. Hence, if f = (1− μ(C)) IC , then

F (n f) ≥ μ(C) > 0 = n (F (IC ∨ μ(C)) − μ(C)) = nF (f),

and therefore F is not subadditive. ��

Besides convexity and location invariance, the convex integral with respect
to maxitive capacities satisfies also other important properties for evaluations
of uncertain payoffs, such as the law of iterated expectations (or evaluations)
[15]. The convex integral can be generalized by replacing the set function ν ◦ μ
in its definition with an arbitrary monotonic set function σ on P(β) such that
σ(∅) = −∞ and σ(β) = 0, also called a penalty on β [15].

In particular, the convex integral with respect to completely maxitive ca-
pacities (or penalties) is strictly related to the idempotent integral of tropical
mathematics [7] and to convex measures of risk [24]. It corresponds to the func-
tional f �→

∨
ω∈Ψ (f(Ω)− κ(Ω)) on E , where Ψ ⊆ β is not empty and κ is a

real-valued function on Ψ such that
∧

ω∈Ψ κ(Ω) = 0.

5 Conclusion

The present paper studied maxitive integrals with respect to maxitive capaci-
ties, and in particular the Shilkret and convex integrals. These have particularly
simple expressions when the capacities are completely maxitive. In this case,
the Shilkret and convex integrals can be characterized as evaluations of uncer-
tain payoffs by few basic decision-theoretic properties. These will be discussed
in future work, with particular emphasis on the case of likelihood-based decision
making [14,26].
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Abstract. This paper investigates fuzzy extensions of cooperative
games and the coincidence of the solutions for fuzzy and crisp games.
We first show that an exact game has an exact fuzzy extension such that
its fuzzy core coincides with the core. For games with empty cores, we
exploit Lovász extensions to establish the coincidence of Weber sets for
fuzzy and crisp games.

Keywords: Core, Weber set, Exact game, Lovász extension, Regularity,
Convex games.

1 Introduction

Classical cooperative game theory deals with the situation where players have
only two alternative possibilities. That is, whether they join a coalition or not,
without any option for the degree of commitment. Further, once the players
join a coalition, all of them are required to commit themselves fully to the
coalition. On the contrary, cooperative fuzzy games proposed by [1, 2] allow for
the partial participation of players in coalitions where the attainable outcomes of
a game depends on the degree of commitment of the players, thereby modelling
ambiguous decision making as observed in most group behavior.

Fuzzy games are defined on fuzzy coalitions. The restriction of fuzzy games
to usual coalitions (characteristic functions) yields a crisp (or nonfuzzy) game.
However, there are numerous fuzzy games that are fuzzy extensions of a given
game and there are innumerable fuzzy games that yield the same crisp game.
Similar to classical cooperative game theory, the fuzzy core is a fundamental
solution concept in fuzzy game theory. Since the fuzzy core of a fuzzy game is
included in the core of its original (or crisp) game, part of the information on
the core of a crisp game is inevitably lost in the fuzzy core. This means that
there exists a payoff vector in the core of a crisp game that is blocked by the
forming of a fuzzy coalition. Can such a payoff vector be a plausible solution of
a game? Importantly, the core of a crisp game is a reasonable solution concept
only when the crisp game does not permit fuzzification.

� This research is supported by a Grant-in-Aid for Scientific Research (No. 23530230)
from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 236–245, 2014.
c© Springer International Publishing Switzerland 2014



Fuzzy Weber Sets and Lovász Extensions 237

The first question addressed in this paper is as follows. Under what conditions
in crisp games and their fuzzy extensions is the coincidence of the core of a fuzzy
game and that of a crisp game guaranteed? The response given in the paper is
that consistent classes of games and their fuzzy extensions that guarantee the
core coincidence is the class of exact games and their exact extensions inves-
tigated in [12, 15, 16]. For the core coincidence, the useful observation made
by [1] that the superdifferential of a positively homogeneous fuzzy game is the
fuzzy core plays a crucial role because the above extensions are positively ho-
mogeneous, concave functions and the standard convex analysis are effectively
used.

However, if the core of a crisp game is empty, which can happen in many
applications, then the core coincidence is utterly in vain. In this case, what kind
of solutions and fuzzy extensions should be pursued for the coincidence of the
solutions for fuzzy and crisp games? This is the second question addressed in
this paper. To answer this natural question, we propose to exploit Weber sets
and Lovász extensions (or Choquet integrals) for the class of “all” crisp games.
The advantage of Weber sets is exemplified by the fact that the Weber set of
any crisp game is nonempty and contains the core (see [19]).

The Weber set is defined as the convex hull of the marginal contributions
of each player. We define the fuzzy Weber set of a fuzzy game via the limiting
marginal contributions of each player in terms of the directional derivative of a
fuzzy game and demonstrate that the fuzzy Weber set of the Lovász extension of
any crisp game coincides with the Weber set. Toward this end, we prove that the
Clarke superdifferential of the Lovász extension is the fuzzy Weber set. The fact
that Lovász extensions are not necessarily concave or differentiable furnishes one
with another reason to utilize the Clarke superdifferential, a generalized notion
of the superdifferentials in convex analysis (see [5]), to investigate Weber sets.
Based on the powerful technique of nonsmooth analysis brought into cooperative
game theory, we provide an additional characterization of convex games in terms
of the regularity of the Lovász extensions, as a weaker form of smoothness.

2 Preliminaries

2.1 Clarke Superdifferentials

The directional derivative of an extended real-valued function f : Rn → R ∪
{−∞} at x ∈ Rn in the direction h ∈ Rn is defined by

f ′(x;h) = lim
α↓0

f(x+ θh)− f(x)
θ

when this limit exists in R. The superdifferential εf(x) of f at x is given by

εf(x) = {p ∈ Rn | f(y)− f(x) ≤ 〈p, y − x〉 ∀y ∈ Rn},

where we denote by 〈x, y〉 the inner product of the vectors x, y ∈ Rn. An element
in εf(x) is called a supergradient of f at x. It follows from the standard argument
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of convex analysis in finite dimensions that if f is concave and f(x) is finite, then
εf(x) is a nonempty, compact, convex subset of Rn, the directional derivative
f ′(x;h) exists in any direction h ∈ Rn,

εf(x) = {p ∈ Rn | f ′(x;h) ≤ 〈p, h〉 ∀h ∈ Rn}

and
f ′(x;h) = min

p∈∂f(x)
〈p, h〉 for every h ∈ Rn. (2.1)

(See [14, Theorems 23.1, 23.2 and 23.4].)
A real-valued function f : Rn → R is Lipschitz of rank K ≥ 0 near a given

point x̄ ∈ Rn if there exists some ϕ > 0 such that

|f(x)− f(y)| ≤ K‖x− y‖ for every x, y ∈ x̄+ ϕB.

Here, B is the open unit ball in Rn and ‖·‖ is the Euclid norm of Rn. A function
f is said to be locally Lipschitz if f is Lipschitz near x for every x ∈ Rn. Let f
be Lipschitz near x. The Clarke directional derivative of f at x in the direction
h ∈ Rn, denoted by f◦(x;h), is defined as follows

f◦(x;h) = lim inf
y→x
α↓0

f(y + θh)− f(y)
θ

.

The Clarke superdifferential of f at x, denoted by εCf(x), is defined by

εCf(x) = {p ∈ Rn | f◦(x;h) ≤ 〈p, h〉 ∀h ∈ Rn}.

If f is Lipschitz near x, then εCf(x) is nonempty, convex and compact. Further-
more,

f◦(x;h) = min
p∈∂Cf(x)

〈p, h〉 for every h ∈ Rn. (2.2)

(See [5, Proposition 2.1.2]). The function f is regular at x provided that f admits
the directional derivative f ′(x;h) at x with f ′(x;h) = f◦(x;h) for every h ∈ Rn.
If f is concave, then it is regular at every point x and εCf(x) = εf(x) (see [5,
Propositions 2.2.6 and 2.2.7]).

2.2 Cores, Exact Games and Weber Sets

Denote by N = {1, . . . , n} the finite set of players with its generic element
denoted by i. A nonempty subset of N is called a coalition. A set function
v : 2N → R with v(∅) = 0 is a game, which is alternatively denoted by (N, v). A
payoff vector is an element in Rn. For any payoff vector x = (x1, . . . , xn) ∈ Rn

and coalition S ∈ 2N , define x(S) =
∑

i∈S xi and x(∅) = 0. A payoff vector
x ∈ Rn is feasible for a game v if x(N) ≤ v(N). The set C(v) of feasible payoff
vectors which cannot be improved upon by any coalition is the core of a game v
is defined by

C(v) = {x ∈ Rn | x(N) = v(N), x(S) ≥ v(S) ∀S ∈ 2N}.
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The characteristic function of S ∈ 2N \{∅} is denoted by �S , which is identified
with a vector in Rn such that its i-th component is 1 if i ∈ S and 0 otherwise.
A game is balanced if its core is nonempty. A balanced game v is exact if

v(S) = min
x∈C(v)

x(S) for every S ∈ 2N .

A game v is convex (or supermodular) if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for every S, T ∈ 2N .

Convex games are exact. Convex games are exact (see [4, 16]).
Denote by φN the set of all permutations on N . For each i ∈ N , define the

subset of N by
P Π
i = {j ∈ N | δ(j) < δ(i)}.

Then P Π
i is the set of players precedent to i with respect to the order δ ∈

φN . Define the payoff vector aΠ(v) ∈ Rn whose component is the marginal
contribution of each player by

aΠi (v) = v(P Π
i ∪ {i})− v(P Π

i ), i ∈ N.

The Weber set of a game v is defined by

W(v) = co{aΠ(v) ∈ Rn | δ ∈ φN}.

For every game v, we have C(v) ⊂ W(v) (see [7, 19]). It is well known that a
game v is convex if and only if C(v) =W(v) (see [8, 9, 18, 19] and Remark 4.1).

3 Fuzzy Games and Fuzzy Extensions

3.1 Fuzzy Cores and Superdifferentials

Following [1, 2], we introduce the notions of (cooperative) fuzzy games. A vector
s ∈ [0, 1]n is called a fuzzy coalition and it is interpreted as a profile of the “rate
of participation” of the players. The fuzzy coalition θ�N ∈ [0, 1]n with θ ∈ [0, 1]
describes that the commitment of each player is the same level θ. A function
ϑ : [0, 1]n → R with ϑ (0) = 0 is called a fuzzy game, denoted alternatively by
(N,ϑ ). A vector x ∈ Rn is a feasible payoff of a fuzzy game ϑ if x(N) ≤ ϑ (�N ).
The fuzzy core of ϑ is defined by the set

Cf (ϑ ) = {x ∈ Rn | x(N) = ϑ (�N ) and 〈s, x〉 ≥ ϑ (s) ∀s ∈ [0, 1]n}.

A fuzzy game ϑ is balanced if Cf(ϑ ) is nonempty.
Throughout this paper, we restrict our focus to the fuzzy games satisfying

positive homogeneity: ϑ (θs) = θϑ (s) for every s ∈ [0, 1]n and θ ≥ 0 with
θs ∈ [0, 1]n. Then ϑ is extended naturally to the entire domain Rn by

s �→

⎧⎨⎩‖s‖ϑ
(
s

‖s‖

)
if s ∈ Rn

+ \ {0},

−∞ if s �∈ Rn
+

(3.1)

preserving positive homogeneity on Rn, i.e.,
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(Positive homogeneity): ϑ (θs) = θϑ (s) for every s ∈ Rn and θ ≥ 0.

For this extension we retain the same notation ϑ . The advantage of positively
homogeneous fuzzy games is exemplified with the following useful observation
due to [1, Proposition 11.1.3.2].

Theorem 3.1. If (N,ϑ ) is a positively homogeneous fuzzy game, then Cf (ϑ ) =
εϑ (θ�N ) for every θ ≥ 0.

Hence, the investigation of the properties of fuzzy cores is reduced to the
superdifferential calculus of positively homogeneous fuzzy games with the aid of
convex analysis. In particular, the fuzzy core of a positively homogeneous concave
fuzzy game is nonempty, compact and convex (see [1, Proposition 11.1.3]). For a
fuzzy game ϑ , the directional derivative ϑ ′(s; �{i}) is called the limiting marginal
contribution of player i ∈ N at fuzzy coalition s ∈ [0, 1]n and it is well defined
for every s ∈ Rn

+ whenever ϑ is positively homogeneous and concave on [0, 1]n

because it is extended to Rn
+ by (3.1) preserving these properties.

A fuzzy extension of a game (N, v) is a fuzzy game ϑ v : [0, 1]n → R such
that ϑ v(�S) = v(S) for every S ∈ 2N . There are numerous fuzzy extensions of
a given game. On the contrary, the restriction of a fuzzy game ϑ : [0, 1]n → R
to characteristic functions yields a crisp game vσ : 2N → R defined by vσ (S) =
ϑ (�S) for S ∈ 2N . There are innumerable fuzzy games that yield a same crisp
game. It is evident that Cf(ϑ v) ⊂ C(v) and Cf (ϑ ) ⊂ C(vσ ). A natural question
arises here. Under what condition on v, ϑ v and ϑ , does the coincidence C(v) =
Cf(ϑ v) and Cf (ϑ ) = C(vσ ) happens? It is a main concern of this paper.

A partial answer to the coincidence Cf (ϑ ) = C(vσ ) was proposed in [3] under
the supermodularity and separate convexity of ϑ . Supermodularity implies the
convexity of the crisp game vσ , which is satisfied for many applications. How-
ever, as we shall see below, most useful fuzzy extensions of games do not fulfill
separate convexity, but satisfy concavity. In particular, the convexity of games
is equivalent to the concavity of the Lovász extensions of those. To deal with
Lovász extensions, the most important class of fuzzy extensions, more suitably,
an alternative hypothesis on fuzzy games should be pursued. We touch on this
problem in Subsection 4.1.

3.2 Exact Fuzzy Extensions

In view of the definition of an exact game v, the support function ϑ : Rn
+ → R

of the core C(v) defined by ϑ (s) = minx∈C(v)〈s, x〉 for s ∈ Rn
+ gives rise to a

possible fuzzy extension of v. As ϑ is a pointwise minimum of family of con-
tinuous linear function s �→ 〈s, x〉 over x in C(v), it is upper semicontinuous,
superadditive, positively homogeneous and translation invariant. This observa-
tion suggests that it is quite natural to introduce the functions possessing these
properties as suitable extensions of exact games (see [12, 15]).

Definition 3.1. A positively homogeneous fuzzy game ϑ : Rn
+ → R is exact if

the following conditions are satisfied.
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(Upper semicontinuity): ϑ is upper semicontinuous.
(Superadditivity): ϑ (s+ t) ≥ ϑ (s) + ϑ (t) for every s, t ∈ Rn

+.
(Translation invariance): ϑ (s+ θ�N ) = ϑ (s) + θϑ (�N ) for every s ∈ Rn

+ and
θ ≥ 0.

The following characterization of exact games is due to [15, Theorem 2.2].

Theorem 3.2. Let (N, v) be a game. Then the following conditions are equiva-
lent.

(i) v is exact.
(ii) v has an exact fuzzy extension ϑ v : Rn

+ → R such that

C(v) = εϑ v(θ�N ) for every θ ≥ 0.

(iii) v has an exact fuzzy extension ϑ v : Rn
+ → R such that

ϑ v(s) = (ϑ v)′(θ�N ; s) = min
x∈C(v)

〈s, x〉 = 〈s, y〉

for every s ∈ Rn
+, y ∈ εϑ v(s) and θ ≥ 0.

The above theorem implies that for an exact game v and its exact fuzzy
extension ϑ v, the limiting marginal contribution of player i ∈ N at the diagonal
θ�N is given by

(ϑ v)′(θ�N ; �{i}) = min
x∈C(v)

xi = v({i}) for every θ ≥ 0. (3.2)

[16] defined the fuzzy extension ϑ v
S : Rn

+ → R of an exact game v by

ϑ v
S (s) = max

{ ∑
S∈2N

ΔSv(S)− ΔNv(N)

∣∣∣∣∑S∈2N ΔS�S − ΔN�N = s
ΔS ≥ 0 ∀S ∈ 2N

}
.

This leads to another characterization of exact games.

Theorem 3.3. A game (N, v) is exact if and only if ϑ v
S : Rn

+ → R is a fuzzy
extension of v such that

ϑ v
S (s) = min

x∈C(v)
〈s, x〉 for every s ∈ Rn

+.

It follows from Theorem 3.3 that the “consistency” of the exact game and the
fuzzy extension holds in the sense that

v
extension−→ ϑ v

S
restriction−→ vσv

S
= v.

Moreover, the coincidence of the core holds for every exact game v and the fuzzy
extension ϑ v

S .

Corollary 3.1. If v is exact, then C(v) = Cf(ϑ v
S ) = εϑ v

S (θ�N ) for every θ ≥ 0.
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4 Coincidence of Weber Sets

4.1 Lovász Extensions

For an arbitrarily given vector s = (s1, . . . , sn) ∈ Rn, let δ ∈ φN be a permuta-
tion with sΠ(1) ≥ · · · ≥ sΠ(n). Define Si = {j ∈ N | sj ≥ sΠ(i)} for each i ∈ N . A
function ϑ v

L : Rn → R is the Lovász extension of a game v : 2N → R if it is of
the form1

ϑ v
L (s) =

n−1∑
i=1

(sΠ(i) − sΠ(i+1))v(Si) + sΠ(n)v(Sn).

It follows from the definition that ϑ v
L (�S) = v(S) for every S ∈ 2N and ϑ v

L

satisfies positive homogeneity, Lipschitz continuity with rank |v(N)| and trans-
lation invariance. Unlike the exact fuzzy extensions investigated in the previous
section, every game is extendable via its Lovász extensions as a fuzzy extension.

It is known that εϑ v
L (�N ) = C(v) (see [6, Proposition 3]). On the other hand,

εϑ v
L (θ�N ) = Cf (ϑ v

L ) for every θ ≥ 0 by Theorem 3.1. Therefore, we obtain the
coincidence of the core for any game.

Theorem 4.1. C(v) = Cf (ϑ v
L ) = εϑ v

L (θ�N ) for every θ ≥ 0.

A game is convex if and only if its Lovász extension is superadditive (see [13,
Theorem 4.6]). Thus, the Lovász extension of a game is an exact fuzzy extension
if and only if the game is convex (see [10, Proposition 4.1]), and if and only if it
is the support functional of the core, i.e.,

ϑ v
L (s) = min

x∈C(v)
〈s, x〉 for every s ∈ Rn. (4.1)

(See [13, Theorem 4.7].)
To characterize Lovász extensions further, we introduce another condition on

fuzzy games along the lines of [17]. Vectors s and t in Rn are comonotonic if
(si − sj)(ti − tj) ≥ 0 for every i, j ∈ N .

(Comonotonic additivity): ϑ (s+ t) = ϑ (s)+ϑ (t) for every pair of comonotonic
s, t in Rn.

Recall that vσ is a crisp game obtained from the restriction of a fuzzy game
ϑ to characteristic functions. A fuzzy game ϑ is positively homogeneous and
comonotone additive if and only if it is represented as a Lovász extension of vσ ,
that is, ϑ = ϑ vΓ

L (see [17, Proposition 1]). This result implies the “consistency”

1 It is easy to verify that Lovász extension Γ v
L coincides with the Choquet integral of

v:

Γ v
L (s) =

∫ +∞

0

v({i ∈ N | si ≥ q})dq +
∫ 0

−∞
[v({i ∈ N | si ≥ q}) − v(N)]dq

for every s ∈ Rn.
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of a fuzzy game with positive homogeneity and comonotone additivity and the
Lovász extension of its restriction in the sense that

ϑ
restriction−→ vσ

extension−→ ϑ vΓ
L = ϑ. (4.2)

Furthermore, as εϑ vΓ
L (θ�N ) = C(vσ ) = Cf (ϑ vΓ

L ) = Cf(ϑ ) by Theorem 4.1, the
following coincidence is true.

Theorem 4.2. If (N,ϑ ) is a positively homogeneous, comonotone additive fuzzy
game, then Cf (ϑ ) = C(vσ ) = εϑ (θ�N ) for every θ ≥ 0.

For another characterization of Lovász extension of monotone games in terms
of fuzzy extensions satisfying monotonicity, linearity with respect to games, pos-
itive homogeneity and translation invariance, see [11].

4.2 Fuzzy Weber Sets

Let ϑ : Rn → R be a positively homogeneous, locally Lipschitz fuzzy game. If ϑ
has the directional derivative ϑ ′(s; �{i}), then it is called the limiting marginal
contribution of player i ∈ N at fuzzy coalition s ∈ [0, 1]n. Denote by as(ϑ ) =
(ϑ ′(s; �{1}), . . . , ϑ

′(s; �{n})) ∈ Rn the vector of limiting marginal contributions
at s ∈ [0, 1]n.

Let D = {s ∈ Rn | ∃ i, j ∈ N : si = sj}. For each distinct i, j ∈ N there exists
no δ ∈ φN such that P Π

i = P Π
j = ∅. Hence, there exists no δ ∈ φN such that

aΠi (v) = v({i}) and aΠj (v) = v({j}). This observation suggests that the vector of
limiting marginal contributions as(ϑ ) at any s ∈ D should be excluded from the
definition of the fuzzy Weber sets to keep the consistency with the definition of
the Weber sets.

Definition 4.1. The fuzzy Weber set of (N,ϑ ) is defined by the set

Wf (ϑ ) = co{as(ϑ ) ∈ Rn | s ∈ [0, 1]n \D}.

For fuzzy Weber sets to be a reasonable solution concept, any payoff vector
in Wf (ϑ ) needs to be feasible. This is indeed true for a fuzzy game ϑ such that
the directional derivative ϑ ′(s;h) exists for every s ∈ [0, 1]n and h ∈ Rn. To this
end, it suffices to show that

∑
i∈N ϑ

′(s; �{i})) ≤ ϑ (�N ) for every s ∈ [0, 1]n,
but this inequality trivially follows from the fact that h �→ ϑ ′(s;h) is positively
homogeneous and concave (see [14, Theorem 23.1]).

We are ready to provide the main result of this paper, the coincidence of the
Weber and fuzzy Weber sets for “every” game. This result is more significant
than the core coincidence because Theorem 4.1 is meaningless when the core is
empty, but the coincidence of Weber sets is always valid without any assumption
on games.

Proposition 4.1. W(v) =Wf (ϑ v
L ) = εCϑ

v
L (θ�N ) for every θ ≥ 0.

Corollary 4.1. If (N,ϑ ) is a positively homogeneous, comonotone additive
fuzzy game, then Wf (ϑ ) =W(vσ ) = εCϑ (θ�N ) for every θ ≥ 0.
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4.3 Regularity and Convexity

Although ϑ v
L always possesses the Clarke directional derivative (ϑ v

L )
◦(s; �{i})

for every s ∈ [0, 1]n in view of the Lipschitz continuity, there is no guarantee
that it coincides with the limiting marginal contribution (ϑ v

L )
′(s; �{i}). Since

the inequality (ϑ v
L )
◦(s; �{i}) ≤ (ϑ v

L )
′(s; �{i}) is true by definition, the Clarke

directional derivative underestimates the limiting marginal contribution of each
player. This discrepancy disappears whenever ϑ v

L is regular and thereby it is rea-
sonable to introduce the notion of regularity of games, which is a mild condition
on the “smoothness” of ϑ v

L .

Definition 4.2. A game (N, v) is regular if its Lovász extension ϑ v
L is regular

at the origin.

Here, the regularity of v means that (ϑ v
L )
◦(0;h) = (ϑ v

L )
′(0;h) for every h ∈ Rn.

The third remarkable property of the Lovász extension is that the regularity
of ϑ v

L is equivalent to the convexity of v. Specifically, we can derive an additional
characterization of convex games as follows.

Theorem 4.3. Let (N, v) be a game. Then the following conditions are equiva-
lent.

(i) v is convex.
(ii) v is regular.
(iii) ϑ v

L is concave.
(iv) ϑ v

L (s) = min
x∈C(v)

〈s, x〉 = min
x∈W(v)

〈s, x〉 for every s ∈ Rn.

(v) C(v) = Cf (ϑ v
L ) =Wf (ϑ v

L ) =W(v).

Remark 4.1. The equivalence of condition (i) and the coincidence C(v) =W(v)
in Theorem 4.3 is well known. [8, Theorem (22)] and [18, Theorems 3 and 5]
demonstrated independently the inclusion W(v) ⊂ C(v) whenever v is convex.
The converse inclusion C(v) ⊂ W(v) for convex game v was established by [9,
Corollary 1]. It was proven by [19, Theorem 14] that the inclusion C(v) ⊂ W(v)
holds for every game v. The equivalence (i) ⇔ (iii) is attributed to [4, p. 289].
Regularity in condition (ii) and its relevance to (fuzzy) Weber sets are new in
the literature.

4.4 Regularity and Supermodularity

Let ∨ and ∧ be the lattice operations in Rn defined by

s ∨ t = (max{s1, t1}, . . . ,max{sn, tn})

and
s ∧ t = (min{s1, t1}, . . . ,min{sn, tn}).

(Supermodularity): ϑ (s) + ϑ (t) ≤ ϑ (s ∨ t) + ϑ (s ∧ t) for every s, t ∈ Rn.
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Theorem 4.4. Let (N,ϑ ) be a positively homogeneous fuzzy game. Then the
following conditions are equivalent.

(i) ϑ is supermodular and translation invariant.
(ii) ϑ is concave and Cf (ϑ ) = C(vσ ) =W(vσ ) =Wf (ϑ ).
(iii) ϑ is regular and Cf (ϑ ) = C(vσ ) =W(vσ ) =Wf (ϑ ).
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Relative Features
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Abstract. In a weighted sum model such as the Analytic Hierarchy Pro-
cess, a set function value is constructed from the weights of the model.
In this paper, we use relative individual scores to propose a set func-
tion that shows the features of an alternative. The set function value
for the alternative is calculated by averaging the values of the set func-
tion representation of the weights generated when the alternative has
the highest comprehensive score. By interpreting the functions, we can
understand the features of an alternative. We discuss the properties of
the set functions, and extend to Choquet integral models.

Keywords: alternatives, multi-criteria decision-making, set functions,
fuzzy measures, Choquet integral, Shapley value, Möbius transformation.

1 Introduction

In multi-criteria decision-making models, such as the Analytic Hierarchy Pro-
cess [3] and Choquet integral models [2][4], it is useful to display the features
of an alternative. The figures are determined from the relative evaluation scores
among alternatives. There are some works to explain of a decision such as [6],
[8], and [9]. Especially in [9], explanations are generated by analyzing whether
the decision would be taken by changing the values of weights. In this paper, by
changing the values of weights, for an alternative, we show which set of criteria
is important differnt conditions on the comparison of weights and the figure of
the degree. The aim of this paper is to define the figures using set functions, and
analyze the set function properties.

Table 1. Example 1 (Two Criteria and Four Alternatives Model)

Alternatives Criterion 1 (C1) Criterion 2 (C2)

A1 0.35 0.15
A2 0.05 0.50
A3 0.24 0.34
A4 0.36 0.01

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 246–255, 2014.
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Table 1 is an example of a two-criteria (C1 and C2) and four-alternatives (A1,
. . ., A4) multi-criteria decision-making model. In the weighted sum model, if a
decision maker (DM) sets greater importance on C1, then the alternative A1 is
selected, because it has a large score (0.35) for C1 and a modest score (0.15)
for C2. If the DM sets extremely high importance on C1, then A4 is selected,
because the A4 score for C1 is a little higher than that of A1. A2 is selected
if the DM sets greater importance on C2, and A3 is selected if C1 and C2 are
considered to be equally important.

Using these relations among alternatives scores, we propose the set function
representation EX,j(A) of alternative j. Figure 2 illustrates the result of the
proposed set function.

In [10], we proposed the concept of set functions. In this paper, we propose a
uniform generating method, compare this with the random generating method,
and extend the concept to Choquet integral models.

2 Notation

Let Y = {1, . . . , n} be the set of criteria (n: number of criteria), and m be the
number of alternatives. xji ∈ [0, 1], i = 1, . . . , n, j = 1, . . . ,m) is the individual

score of the i-th criterion and j-th alternative. The xji have the property of

strong commensurability. X is the matrix representation of xji . In this paper, X
is given in advance, such as by pairwise comparisons.

wk = (wk
1 , . . . , w

k
n), w

k
i ∈ [0, 1],

∑
i w

k
i = 1 gives the weight of each criterion.

As we calculate various cases by varying w, we use the superscript k.
The comprehensive score ykj is calculated as the weighted sum

ykj =

n∑
i=1

(wk
i x

j
i ). (1)

A fuzzy measure μ is defined as

μ : 2Y → [0, 1] where μ(∅) = 0 and μ(A) ≥ μ(B) if A ⊇ B. (2)

The comprehensive score ykj calculated by Choquet integral is

ykj =

n∑
i=1

[xjψ(i) − x
j
ψ(i+1)]μ({σ(1), . . . , σ(i)}) (3)

where σ(i) is the permutation on Y , that is, xjψ(1) ≥ . . . ≥ xjψ(n), Y =

{σ(1), . . . , σ(n)}, σ(n+1) = n+1, and xjn+1 = 0. The Shapley value of μ [1][5] is

Πi(μ) ≡
∑
S⊆Y

λn(S)[μ(S)− μ(S \ {i})] where λn(S) =
(n− |S |)!(|S | −1)!

n!
(4)

and the Möbius transformation [7] is

σ(A) ≡
∑
B⊆A

(−1)|A\B|μ(B) and μ(A) =
∑
B⊆A

σ(B), ∀A ∈ 2Y . (5)
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3 Set Function Representations (Weighted Sum Cases)

3.1 Set Functions

EX,j(A) shows the degree to which alternative j is the best alternative when
criteria in A have the large weights. If EX,j(A) has a high score, we interpret
that alternative j is usually selected when wi, ∀i ∈ A are large values. For some
X , EX,j(A) is defined as

EX,j : 2
Y → R+, EX,j(∅) = 0, j = 1, . . . ,m. (6)

When n = 2, Y = {1, 2}, EX,j is constituted of EX,j(∅), EX,j({1}), EX,j({2}),
and EX,j({1, 2}).EX,j({1}) shows the degree to which alternative j has the high-
est comprehensive score when only w1 is assigned a greater score. EX,j({1, 2})
shows the degree to which alternative j has the highest comprehensive score when
both w1 and w2 are assigned greater values, that is, cases close to w1 = w2.

3.2 Set Function for wk

Ek(A) shows the reconstituted weight of set A and is calculated by rank de-
pended method such as the Choquet integrals. For example, if n = 3 and wk

2 ≥
wk

3 ≥ wk
1 , then E

k({2}) = wk
2 − wk

3 , E
k({2, 3}) = wk

3 − wk
1 , and E

k({1, 2, 3}) =
wk

1 .

Definition 1 (Set Function for w). For some wk, the set function Ek is

Ek({σ(1), . . . , σ(i)}) = [wk
ψ(i) − wk

ψ(i+1)], (7)

(i = 1, . . . , n) where σ(i) is the permutation on Y , that is, wk
ψ(1) ≥ . . . ≥ wk

ψ(n),

Y = {σ(1), . . . , σ(n)}, σ(n+ 1) = n+ 1, and wk
n+1 = 0. Values that are not as-

signed by eq. (7) are zero, that is, Ek(A) = 0, ∀A ∈ (2Y \
⋃n

i=1{{σ(1), . . . , σ(i)}}).

For A ∈ {{σ(1)}, {σ(1), σ(2)}, . . . , {σ(1), . . . , σ(n)}}, the Ek(A) can be active,
Ek(A) > 0. ({σ(1)}, {σ(1), σ(2)}, . . . , {σ(1), . . . , σ(n)})) is the maximum chain
of Y .

Theorem 1. For any wk and i, ∑
B�i

Ek(B) = wk
i , (8)∑

A∈2Y
[|A | Ek(A)] = 1. (9)

Proof. Eq. (8) is trivial.∑
A∈2Y

[|A | Ek(A)] =

n∑
i=1

[|{σ(1), . . . , σ(i)}| Ek({σ(1), . . . , σ(i)})]

=

n∑
i=1

[i(wk
ψ(i) − wk

ψ(i+1))] =

n∑
i=1

wk
ψ(i) = 1.



Set Function Representations of Alternatives’ Relative Features 249

For example, if wk = (0.7, 0.3), then Ek({1}) = 0.7− 0.3 = 0.4, Ek({2}) = 0,
Ek({1, 2}) = 0.3, and Ek({1}) + Ek({2}) + 2Ek({1, 2}) = 1.

3.3 Set Functions for the Alternative j

For weightswk, if the alternative j is selected, the set function Ek(A), ∀A belongs
to alternative j. By generating multiple wk, k = 1, . . . ,K, we calculate E∗X,j . q

k
j

is a flag for when alternative j is selected for wk. If two or more alternatives are
selected for wk, qkj is assigned on a pro-rata basis, that is,

Hk = {j | ykj ≥ ykl , ∀l = 1, . . . ,m}, (10)

qkj =

{
1/ | Hk | if j ∈ Hk

0 otherwise
, Qj =

K∑
k=1

qkj . (11)

Obviously,
∑

j q
k
j = 1∀k and

∑m
j=1Qj = K.

As the selection of the best alternative is depended on weights and individual
scores, the set function E∗X,j that shows the relative features of alternative j

is defined as the average value of Ek(A) when alternative j is selected. In this
paper, we calculate the set function using simulations.

Definition 2 (E∗X,j). E
+
X,j and E∗X,j are defined as

E+
X,j(A) =

K∑
k=1

[qkjE
k(A)], (12)

E∗X,j(A) =E
+
X,j(A)/Qj, ∀A ∈ 2X . (13)

Let d > 0 be the simulation number (positive integer). In this method, we use
wi ∈ {0, 1/d, 2/d, . . . , d/d}.
Definition 3 (Uniform Generating Method). βU is the set of all weights
wk for the simulation.

βU = {w | wi ∈ {0, 1/d, 2/d, . . . , d/d} where
∑

wi = 1 } (14)

We number the elements of βU , that is, βU = {w1, . . . ,wK}.

Definition 4 (RandomGeneratingMethod).w′
k
i is assigned by uniform ran-

dom numbers in (0, 1). wk
i is given by wk

i =
w′k

i∑
i w

′k
i

∀k, and βR={w1, . . . ,wK}.

The average and standard deviation of A ∈ 2Y are
EM

X (A) ≡ [
∑K

k=1 E
k(A)]/K and ESD

X (A) ≡ [
∑K

k=1(E
k(A)− EM

X (A))2/K]0.5.
Figure 1 illustrates the calculation process of E∗X,j(A) in the uniform gener-

ating method, example 1, and d = 100. For each w1 and w2 = 1−w1, E
k(A) are

calculated from eq. (7). For w1 ∈ [0, 0.457], A2 is selected, therefore E∗X,2({1})
is the average value of Ek({1}) for w1 ∈ [0, 0.457], that is, 0.567, E∗X,2({2}) = 0,
and E∗X,2({1, 2}) = 0.2165.
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Fig. 1. Calculation Process
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Fig. 2. EW
X,j of Example 1

3.4 Interpretation and Properties of the Set Functions

Theorem 2. For any j where Qj > 0,∑
A∈2Y

[|A | E∗X,j(A)] = 1 (15)

Proof.

∑
A∈2Y

|A | E∗X,j(A) =
∑
A∈2Y

|A | E+
X,j(A)/Qj =

∑
A∈2Y

|A |
K∑

k=1

(qkjE
k(A))/

K∑
k=1

qkj

=

K∑
k=1

[qkj
∑
A∈2Y

(|A | (Ek(A)))]/

K∑
k=1

qkj =

K∑
k=1

qkj /

K∑
k=1

qkj = 1

From the theorem, E∗X,j(A) shows the selectability of alternative j, because
E∗X,j(A) is the average value when alternative j is selected. As the average and

standard deviation of Ek(A) differ according to | A |, we define EW
X,j(A) as

Definition 5

EW
X,j(A) ≡

E∗X,j(A)− EM
X (A)

ESD
X (A)

. (16)

Figure 2 is EW
X,j(A) from example 1. The figure shows the relative future

performance of each alternative. For example, A1 is selected when Ek({1}) has
a high score, and is not selected when Ek({2}) has a high score. A3 is selected
when Ek({1, 2}) has a high score, and is not selected when either Ek({1}) or
Ek({2}) has a high score.
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Theorem 3. For any A,

m∑
j=1

QjE
W
X,j(A) = 0. (17)

Proof.

m∑
j=1

QjE
W
X,j(A) =

m∑
j=1

[E+
X,j(A)/Qj − EM

X (A)]Qj

ESD
X (A)

=

m∑
j=1

[E+
X,j(A)− EM

X (A)Qj ]

ESD
X (A)

=

[

m∑
j=1

K∑
k=1

qkjE
k(A)] −KEM

X (A)

ESD
X (A)

= 0

EW
X,j(A) can be used to compare alternatives. For this purpose, we define

Eϕ
X,j(A) as

Definition 6

Eϕ
X,j(A) ≡ E

+
X,j(A)/K, ∀A ∈ 2Y (18)

Theorem 4

m∑
j=1

∑
A∈2Y

[|A | Eϕ
X,j(A)] = 1 (19)

Proof

m∑
j=1

∑
A∈2Y

[|A | Eϕ
X,j(A)] = [

m∑
j=1

∑
A∈2Y

|A | E+
X,j(A)]/K

=
1

K

∑
A∈2Y

m∑
j=1

[|A | E+
X,j(A)] =

1

K

K∑
k=1

∑
A∈2Y

[|A | Ek(A)] =
K

K
= 1

Figure 3 shows a comparison between the uniform and random generating
methods. Both graphs have the same trend—if Ek({1}) is high, A1 is usually
selected, and if Ek({1, 2}) is high, A2 or A3 are usually selected.

3.5 Shapley Value and Möbius Transformation

As set functions are closely related to fuzzy measure theories, we use the Möbius
transformation and discuss the resulting properties.

Definition 7. The average importance of alternative j and criterion i is defined
as

Sϕ
X,ji =

∑
B�i

Eϕ
X,j(B). (20)
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Fig. 3. Set Function Representation of Example 1 (Weighted Sum)

From the definition,

Sϕ
X,ji = [

K∑
k=1

qkjw
k
i ]/K. (21)

Definition 8 (Cumulative Set Function). The Cumulative Set Function

Gϕ
X,j for Eϕ

X,j is defined as

Gϕ
X,j(A) =

∑
B⊆A

[|B | Eϕ
X,j(B)]. (22)

Eq. (22) is the inverse Möbius transformation of [| B | Eϕ
X,j(B)]. As [| B |

Eϕ
X,j(B)] ≥ 0∀B, Gϕ

X,j are monotone and super-additive fuzzy measures. As the

Shapley value of the fuzzy measure Gϕ
X,j is

∑
B�i(|B | E

ϕ
X,j(B))/ |B |, Sϕ

X,ji is
the Shapley value of criterion i when alternative j is selected.

Theorem 5. Gϕ
X,j and Sϕ

X,ji have the following properties:

Sϕ
X,ji =

1

K

K∑
k=1

qkjw
k
i (23)

m∑
j=1

n∑
i=1

Sϕ
X,ji = 1 (24)

m∑
j=1

Sϕ
X,ji =

1

n
, ∀i if

K∑
k=1

wk
1 = . . . =

K∑
k=1

wk
n (25)

Gϕ
X,j(Y ) = Qj/K (26)
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Proof. From Theorem 1,

Sϕ
X,ji =

∑
B�i

Eϕ
X,j(B) =

1

K

K∑
k=1

∑
B�i

qkjE
k(B) =

1

K

K∑
k=1

qkjw
k
i .

m∑
j=1

n∑
i=1

Sϕ
X,ji =

m∑
j=1

n∑
i=1

1

K

K∑
k=1

qkjw
k
i =

1

K

K∑
k=1

n∑
i=1

wk
i = 1.

As
1

K

K∑
k=1

wk
i =

1

n
from the assumption of eq. (25) and

n∑
i=1

1

K

K∑
k=1

wk
i = 1,

m∑
j=1

Sϕ
X,ji =

1

K

K∑
k=1

m∑
j=1

qkjw
k
i =

1

K

K∑
k=1

wk
i =

1

n
.

From Theorem 1,

GX,j(Y ) =
∑

B∈2Y
[|B | Eϕ(B)] =

∑
B∈2Y

[|B |
k∑

k=1

qkjE
k(B)]

K
=

k∑
k=1

qkj

K
=
Qj

K
.

Sϕ
X,ji is the average weight i when alternative j is selected and the sum of i and
j is 1. GX,j(Y ) shows the frequency with which alternative j is selected.

4 Set Function Representations (Choquet Integral Cases)

In the Choquet integral cases, we divide a fuzzy measure feature into weights
and interaction degrees. In this model, we use the normal fuzzy measure, that
is μ(Y ) = 1. The weight of a fuzzy measure μk is the Shapley value of the
fuzzy measure, and the interaction degree of a fuzzy measure μk is the Möbius
transformation σk of μk without singletons.

Definition 9 (Weights and Interaction Degrees).

wk
i ≡ Πi(μk), (27)

Mk(A) ≡
{
0 if | A |≤ 1

σk(A) otherwise
. (28)

Analogous to the weighted sum cases, by generating lots of μk, we analyze
the average set functions when the alternative is selected.

Definition 10 (Uniform Generating Method μ). βF is the set of all fuzzy
measures μk for the simulation,

βF = {μ | μ(A) ∈ {0, 1/d, 2/d, . . . , d/d}, ∀A ∈ 2Y \ {∅, Y }
where μ is a fuzzy measure }. (29)
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Let K =|βF |, and let qkj and Qj be as defined in eqs. (11) , where the ykj are

calculated by eq. (3). E∗X,j , E
W
X,j , and E

ϕ
X,j are calculated in the same way as

for the weighted sum cases.

Definition 11.

M∗
X,j(A) ≡

k∑
k=1

[qkjM
k(A)]/Qj , MC

X,j(A) ≡
∑
B⊆A

[|B |M∗
X,j(B)] (30)

M∗
X,j(A) shows the interaction degree among the elements of A. MC

X,j(A) shows

the cumulative set function of M∗
X,j(A). If M

C
X,j(A) is positive, alternative j is

usually selected when the fuzzy measure μk has super-additivity among A.

5 Numerical Examples

In Table 2, X denotes the model of example 2, where n = 4 and m = 5. Table
2 gives the set function representations of the weighted sum model using the
uniform generating method, d = 100, and K = 176, 851. As Q1 = 0, A1 is
not selected for any weights. As Eϕ

X,3({3}) has the highest value, A3 is usually

selected when Ek({3}) is a high value. Despite x32 = 0.4, Eϕ
X,3({2}) = 0.01 is

fairly low, because x52 = 0.44. When Ek({2}) has a high value, A5 is selected.

Table 2. Set Function Representation of Example 2 (Weighted Sum)

X S�
X,ji

j C1 C2 C3 C4 Qj C1 C2 C3 C4

A1 0.18 0.1 0.2 0.12 0
A2 0.44 0.01 0.04 0.03 10,553 0.04 0.01 0.01 0.00
A3 0.01 0.4 0.45 0.05 53,425 0.05 0.08 0.14 0.03
A4 0.35 0.05 0.11 0.5 75,605 0.13 0.06 0.08 0.16
A5 0.02 0.44 0.2 0.3 37,269 0.03 0.11 0.03 0.05

E�
X,j

j {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3} {4} {1, 4} {2, 4} {1, 2, 4} {3, 4} {1, 3, 4} {2, 3, 4} Y

1
2 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.01 0.00 0.06 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02
4 0.04 0.00 0.01 0.00 0.01 0.00 0.00 0.06 0.02 0.00 0.01 0.01 0.02 0.00 0.03
5 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.01

Table 3 gives results for the Choquet integral case using the uniform gen-
erating method, where d = 10 and K = 25.683 × 109. Unlike the weighted
sum model, A1 is selected when super-additivity exists between C1, C2, and C3
(MC

X,1({1, 2, 3}) = 2.55), or Y (MC
X,1(Y ) = 4.26). A2 is usually selected when

Ek({1}) has a high value (EW
X,2({1} = 3.66) and/or when {1, 2}, {1, 3} and/or

sub-additivity exists between C1, C2, and C3 (MC
X,2({1, 2, 3}) = −3.02).
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Table 3. Set Function Representation of Example 2 (Choquet Integral)

EW
X,j

j {1} {2} {1, 2} {3} {1, 3} {2, 3} {1,2,3} {4} {1, 4} {2, 4} {1,2,4} {3, 4} {1,3,4} {2, 3,4} Y

1 0.92 -0.39 0.39 -0.04 1.99 -0.32 0.92 -0.40 -0.23 -0.33 -0.26 -0.31 0.07 -0.43 -0.46
2 3.66 -0.41 0.64 -0.40 0.86 -0.33 0.43 -0.41 -0.11 -0.33 -0.10 -0.33 -0.06 -0.43 -0.88
3 -0.27 0.13 -0.02 0.54 0.12 0.43 0.42 -0.36 -0.32 -0.18 -0.33 -0.03 -0.24 0.16 -0.01
4 0.38 -0.37 -0.07 -0.29 0.04 -0.32 -0.28 0.35 0.44 -0.11 0.21 0.04 0.40 -0.29 -0.05
5 -0.31 0.38 0.11 -0.13 -0.21 0.01 -0.06 -0.10 -0.27 0.34 0.05 -0.02 -0.30 0.24 0.09

MC
X,j

j Qj {1, 2} {1, 3} {2, 3} {1, 2, 3} {1, 4} {2, 4} {1, 2, 4} {3, 4} {1, 3, 4} {2, 3, 4} Y

1 0.080 × 109 0.41 1.02 -0.37 2.55 -0.49 -0.21 2.32 -0.02 2.46 -0.22 4.26
2 0.130 × 109 -0.85 -0.93 -0.18 -3.02 -0.84 0.20 -2.43 0.27 -2.73 0.57 -2.67
3 7.554 × 109 0.08 -0.07 0.71 0.03 -0.12 0.03 0.28 -0.01 -0.16 0.08 -0.07
4 10.227 × 109 0.04 0.02 -0.18 0.12 0.27 -0.23 -0.28 -0.15 -0.25 -0.56 -0.29
5 7.692 × 109 -0.13 0.05 -0.46 -0.17 -0.21 0.28 0.12 0.21 0.51 0.67 0.46

6 Conclusion

We have defined set functions that show the relative features of alternatives. There
is room for further research into the interpretation of these set functions. In the
uniformgeneratingmethod, the simulationnumberK increases exponentiallywith
n or d, especially in Choquet integral cases. In Choquet integral cases, it is hard to
give an intuitive explanation of the difference betweenEW

X,j(A) andM
∗
X,j(A) when

| A |≥ 2.
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Abstract. In this paper, we propose a suffcient condition for a solution
to be optimal for a 2-additive Choquet integral in the context of mul-
tiobjective combinatorial optimization problems. A 2-additive Choquet
optimal solution is a solution that optimizes at least one set of param-
eters of the 2-additive Choquet integral. We also present a method to
generate 2-additive Choquet optimal solutions of multiobjective combi-
natorial optimization problems. The method is experimented on some
Pareto fronts and the results are analyzed.

Keywords: Choquet integral, Multicriteria decision making, Fuzzy
measure, Multiobjective combinatorial optimization, k-additivity.

1 Introduction

Multiobjective combinatorial optimization problems (MOCO) aim at finding
the Pareto optimal solutions among a combinatorial set of feasible solutions. A
Pareto optimal solution is a solution that is not Pareto dominated by any other
solutions; the set of all these solutions is named the Pareto optimal set (or the
Pareto front, in the objective space). However, the set of all the Pareto optimal
solutions can be huge, especially in the case of several objectives [1]. Therefore
it is worth to study the set of solutions that optimize a specific function, for
example a weighted sum, as it generally reduces the size of the set of interesting
Pareto optimal solutions. In this latter case, it is well-known that the set of
potential optimal solutions is the convex envelop of the feasible solutions set. In
order to attain solutions located in the non-convex part of the feasible solutions
set, other aggregation operators could be used as function to be optimized. In
this paper, we will focus on a specific aggregation operator: the Choquet integral.

The Choquet integral [2] is one of the most powerful tools in multicriteria
decision making [3, 4]. A Choquet integral can be seen as an integral on a
non-additive measure (or capacity or fuzzy measure), that is an aggregation
operator that can model interactions between criteria. It presents extremely
wide expressive capabilities and can model many specific aggregation operators,
including, but not limited to, the weighted sum, the minimum, the maximum, all

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 256–265, 2014.
c© Springer International Publishing Switzerland 2014
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the statistic quantiles, the ordered weighted averaging operator [5], the weighted
ordered weighted averaging operator [6], etc.

However, this high expressiveness capability needs a great number of param-
eters. While a weighted sum operator with p criteria requires p− 1 parameters,
the definition of the Choquet integral with p criteria requires the setting of 2p−2
values, which can be high even for low values of p. The notion of k-additivity
has been introduced by Grabisch [7] in order to reduce the number of needed
parameters while keeping the possibility to take into account the interactions

between k criteria among the p criteria; typically for k = 2, one only needs p2+p
2

parameters.
Some papers already deal with the optimization of the Choquet integral of

MOCO problems [8–10] when the Choquet integral is completely defined by the
decision maker. Recently, Lust and Rolland investigated a method to generate
the whole set of Choquet optimal solutions. The aim is to compute all the solu-
tions that are potentially optimal for at least one parameter set of the Choquet
integral. This method was studied in the particular case of biobjective combina-
torial optimization problems [11], and for the general case in [12]. A characteri-
zation of the Choquet optimal solutions through a set of weighted-sum optimal
solutions has been stated.

In this contribution, we focus on the specific case of the 2-additive Choquet
integral. In the next section, we recall the definition of the Choquet integral.
We propose then a sufficient condition for a solution to be Choquet optimal
with a 2-additive capacity. We finally present some experimental results where
we study the difference between the exact set of Choquet optimal with a 2-
additive capacity and the set obtained with the sufficient condition proposed in
this paper.

2 Aggregation Operators and Choquet Integral

We introduce in this section the basic concepts linked to multiobjective combi-
natorial optimization problems, the weighted sum and the Choquet integral.

2.1 Multiobjective Combinatorial Optimization Problems

A multiobjective (linear) combinatorial optimization (MOCO) problem is gen-
erally defined as follows:

“max
x

”f(x) = Cx = (f1(x), f2(x), . . . , fp(x))

subject to Ax ≤ b
x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables
C ∈ Rp×n −→ p objective functions

A ∈ Rr×n and b ∈ Rr×1 −→ r constraints
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A feasible solution x is a vector of n variables, having to satisfy the r con-
straints of the problem. Therefore, the feasible set in decision space is given
by X = {x ∈ {0, 1}n : Ax ≤ b}. The image of the feasible set is given by
Y = f(X ) = {f(x) : x ∈ X} ⊂ Rp. An element of the set Y is called a cost-
vector or a point.

Let us consider in the following, without loss of generality, that all the objec-
tives have to be maximized and we design by P the set of objectives {1, . . . , p}.
The Pareto dominance relation (P -dominance for short) is defined, for all y1, y2 ∈
Rp, by:

y1  P y
2 ⇐⇒ [∀k ∈ P , y1k ≥ y2k and y1 �= y2]

The strict Pareto dominance relation (sP -dominance for short) is defined as
follows:

y1  sP y
2 ⇐⇒ [∀k ∈ P , y1k > y2k]

Within a feasible set X , any element x1 is said to be P -dominated when
f(x2)  P f(x1) for some x2 in X , P -optimal (or P -efficient) if there is no
x2 ∈ X such that f(x2)  P f(x1) and weakly P -optimal if there is no x2 ∈ X
such that f(x2)  sP f(x

1). The P -optimal set denoted by XP contains all the P -
optimal solutions. The image f(x) in the objective space of a P -optimal solution
x is called a P -non-dominated point. The image of the P -optimal set in Y, equal
to f(XP ), is called the Pareto front, and is denoted by YP .

2.2 Weighted Sum

Instead of generating the P -optimal set, one can generate the solutions that op-
timize an aggregation operator. One of the most popular aggregation operator is
the weighted sum (WS), where non-negative importance weights θi(i = 1, . . . , p)
are allocated to the objectives.

Definition 1. Given a vector y ∈ Rp and a weight set θ ∈ Rp (with θi ≥ 0 and∑p
i=1 θi = 1), the WS fws

α (y) of y is equal to:

fws
α (y) =

p∑
i=1

θiyi

Definition 2. Let x ∈ X and y = f(x) be its image in Y. If ∃θ ∈ Rp
+ (θi > 0)

such that fws
α (y) ≥ fws

α (y2) ∀ y2 ∈ Y then x is a supported P -optimal solution,
and its image y a supported P -non-dominated point.

Note that there exist P -optimal solutions that do not optimize a WS, and
they are generally called non-supported P -optimal solutions [1].

2.3 Choquet Integral

The Choquet integral has been introduced by Choquet [2] in 1953 and has been
intensively studied, especially in the field of multicriteria decision analysis, by
several authors (see [3, 4, 13] for a brief review).

We first define the notion of capacity, on which the Choquet integral is based.
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Definition 3. A capacity is a set function v: 2P → [0, 1] such that:

– v(∅) = 0, v(P) = 1 (boundary conditions)
– ∀A,B ∈ 2P such that A ⊆ B, v(A) ≤ v(B) (monotonicity conditions)

Therefore, for each subset of objectives A ⊆ P , v(A) represents the impor-
tance of the coalition A.

Definition 4. The Choquet integral of a vector y ∈ Rp with respect to a capacity
v is defined by:

fCv (y) =

p∑
i=1

(
v(Y ↑i )− v(Y

↑
i+1)

)
y↑i

=

p∑
i=1

(y↑i − y
↑
i−1)v(Y

↑
i )

where y↑ = (y↑1 , . . . , y
↑
p) is a permutation of the components of y such that 0 =

y↑0 ≤ y↑1 ≤ . . . ≤ y↑p and Y ↑i = {j ∈ P , yj ≥ y↑i } = {i↑, (i + 1)↑, . . . , p↑} for i ≤ p

and Y ↑(p+1) = ∅.

We can notice that the Choquet integral is an increasing function of its argu-
ments.

We can also define the Choquet integral through the Möbius representa-
tion [14] of the capacity. Any set function v: 2P → [0, 1] can be uniquely ex-
pressed in terms of its Möbius representation by:

v(A) =
∑
B⊆A

mv(B) ∀A ⊆ P

where the set function mv : 2P → R is called the Möbius transform or Möbius
representation of v and is given by

mv(A) =
∑
B⊆A

(−1)(a−b)v(B) ∀A ⊆ P

where a and b are the cardinals of A and B.
A set of 2p coefficients mv(A) (A ⊆ P) corresponds to a capacity if it satisfies

the boundary and monotonicity conditions [15]:

1. mv(∅) = 0,
∑
A⊆P

mv(A) = 1

2.
∑

B⊆A, i∈B
mv(B) ≥ 0 ∀A ⊆ P , i ∈ P

We can now write the Choquet integral with the use of Möbius coefficients.
The Choquet integral of a vector y ∈ Rp with respect to a capacity v is defined
as follows:

fCv (y) =
∑
A⊆P

mv(A)min
i∈A

yi
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A Choquet integral is a versatile aggregation operator, as it can express pref-
erences to a wider set of solutions than a weighted sum, through the use of a
non-additive capacity. When solving a MOCO problem, with the Choquet in-
tegral, one can attain non-supported P -optimal solutions, while it is impossible
with the weighted sum [11].

However, this model needs also a wider set of parameters to capture this
non-additivity. For p criteria, one only needs p − 1 weights to use a weighted
sum, where 2p − 2 weights are needed to use a Choquet integral based on a
capacity. Therefore, the concept of k-additivity has been introduced by [7] to
find a compromise between the expressiveness of the model and the number of
needed parameters.

Definition 5. A capacity v is said to be k-additive if

– ∀A ⊆ P ,mv(A) = 0 if card(A) > k
– ∃A ⊆ P such that card(A) = k and mv(A) �= 0

We will specially focus in this paper on 2-additive capacities and propose a
sufficient condition for a solution of a MOCO problem to be 2-additive Choquet
optimal.

3 Characterization of Choquet Optimal Solutions

3.1 Choquet Optimal Solutions

A characterization of the set of Choquet optimal solutions of a MOCO problem
has been proposed in [12]. We briefly recall it here.

We denote the set of Choquet optimal solutions of a MOCO problem with p
objectives XC : it contains at least one solution x ∈ X optimal for each possible
Choquet integral, that is ∀v ∈ V , ∃xc ∈ XC | fCv (f(xc)) ≥ fCv (f(x)) ∀x ∈ X ,
where V represents the set of capacity functions defined over p objectives. Note
that each Choquet optimal solution is at least weakly P -optimal [11].

In [11], Lust and Rolland studied the particular case of two objectives and
they showed that XC could be obtained by generating all WS-optimal solutions
in each subspace of the objectives separated by the bisector (f1(x) ≥ f2(x)
or f2(x) ≥ f1(x)), and by adding a particular point M with M1 = M2 =
max
x∈X

min(f1(x), f2(x)).

In [12], Lust and Rolland extended this characterization to the general case.
Let σ be a permutation on P . Let Oψ be the subset of points y ∈ Rp such

that y ∈ Oψ ⇐⇒ yψ1 ≥ yψ2 ≥ . . . ≥ yψp .
Let pOσ be the following application:

pOσ : Rp → Rp, (pOσ (y))ψi = (min(yψ1 , . . . , yψi)), ∀i ∈ P

For example, if p = 3, for the permutation (2,3,1), we have:

pOσ (y) =
(
min(y2, y3, y1),min(y2),min(y2, y3)

)



2-additive Choquet Optimal Solutions Set 261

We denote by POσ (Y) the set containing the points obtained by applying the
application pOσ (y) to all the points y ∈ Y. As (pOσ (y))ψ1 ≥ (pOσ (y))ψ2 ≥ . . . ≥
(pOσ (y))ψp , we have POσ(Y) ⊆ Oψ.

Theorem 1
YC ∩Oψ = Y ∩WS(POσ (Y))

where WS(POσ (Y)) designs the set of WS-optimal points of the set POσ (Y).
This theorem characterizes the solutions which can be Choquet optimal in

the set of feasible solutions as being, in each subspace of the objective space Y
where yψ1 ≥ yψ2 ≥ . . . ≥ yψp , the solutions that have an image corresponding
to a WS-optimal point in the space composed of the original subspace plus the
projection of all the other points following the application pOσ .

Proof: see [12].

3.2 2-additive Choquet Optimal Solutions

We are now interested in the definition of the set of solutions of a MOCO prob-
lem that potentially optimize a 2-additive Choquet integral (and not a general
Choquet integral). How does the constraints of 2-additivity restrict the set YC?
We will denote YC2 the set of 2-additive Choquet optimal solutions. As stated
above, σ is a permutation on P and Oψ is the subset of points y ∈ Rp such that
y ∈ Oψ ⇐⇒ yψ1 ≥ yψ2 ≥ . . . ≥ yψp .

Theorem 2

∀ψ ∈ π, if y ∈ Y ∩WS(Pπ
ψ(Y))⇒ y ∈ YC2 ∩Oψ

where:

– ψ is an application P → P such that ψ(1) = 1 and ψ(i) < i ∀i �= 1. Let π be
the set of all applications ψ.

– pπψ is an application on Y such that (pπψ(y))ψi = min(yψδ(i)
, yψi).

For example, if p = 4, for the permutation (1,2,3,4) and ψ = (1, 1, 2, 3), we
have:

• (pπψ(y))1 = min(y1, y1) = y1
• (pπψ(y))2 = min(y1, y2)
• (pπψ(y))3 = min(y2, y3)
• (pπψ(y))4 = min(y3, y4)

– Pπ
ψ(Y) is the set containing the points obtained by applying the application

pπψ to all the points y ∈ Y.
– WS(Pπ

ψ(Y)) designs the set of supported points of the set Pπ
ψ(Y).
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Proof

In the following, we will denote Oψ as simply O for the sake of simplicity, and
we will consider, without loss of generality, that the permutation σ is equal
to (1, 2, . . . , p), that is y ∈ O ⇔ y1 ≥ y2 ≥ · · · ≥ yp. We will consequently
note pπψ as simply pπ and Pπ

ψ(Y) as Pπ(Y). We know that YC2 ⊆ Y and then
YC2 ∩O ⊆ Y ∩O.

Let us suppose that y ∈ O. Let y ∈ WS(Pπ(Y)) ∩ Y. Then there are

θ1, . . . , θp ≥ 0 such that

p∑
i=1

θi = 1 and

∀z ∈ Y,
∑
i∈P

θiyi ≥
∑
i∈P

θip
π(z)i

By definition, pπ(z)i = min(zπ(i), zi), ∀i ∈ P .
Let A ⊆ P . Let us define a set functionm such thatm(A) = θi if A = {ψ(i), i}

and m(A) = 0 if not.
Then

∑
i∈P

θi(p
π(z))i =

∑
i∈P

θi min(zπ(i), zi)

=
∑
A⊆P

m(A)min
i∈A

zi

Let us remind that the set function m corresponds to a capacity v if:

1. m(∅) = 0,
∑
A⊆P

m(A) = 1

2.
∑

B⊆A, i∈B
m(B) ≥ 0 ∀A ⊆ P , i ∈ P

All these conditions are satisfied:

– m(∅) = 0 by definition

–
∑
A⊆P

m(A) =
p∑

i=1

θi = 1

– all m(B) are non-negative as θi ≥ 0

Moreover, as m(A) = 0 ∀A such that card(A) > 2, v is a 2-additive capacity.
Therefore we have a capacity v and its set of Möbius coefficients such that
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∀z ∈ Y,

fCv (y) =
∑
A⊆P

m(A)min
i∈A

yi

=
∑
i∈P

θiyi

≥
∑
i∈P

θip
π(z)i

≥
∑
A⊆P

m(A)min
i∈A

zi

≥ fCv (z)

So y ∈ YC2 . �

From this theorem, we can derive an algorithm to generate a set XC2 contain-
ing solutions of a MOCO problem that optimize a 2-additive Choquet integral.

For all the permutations σ on P , we have to:

1. Consider an application ψ such that ψ(1) = 1 and ψ(i) < i ∀i �= 1.
2. Determine the set Pπ

ψ(Y) containing the projections obtained with the ap-
plication pπψ for each y ∈ Y.

3. Determine the solutions in Oψ that optimize a WS considering Pπ
ψ(Y).

4 Experiments

We have applied the algorithm for defined Pareto fronts, that is, a Pareto front
is given, and the aim is to determine, among the P -non-dominated points, the
2-additive Choquet optimal points.

To generate Pareto fronts, we have applied a heuristic to multiobjective knap-
sack instances. We have used knapsack instances with random profits. The
heuristic is an adaptation of the one presented in [16]. Note that the aim is
only to generate a set of non-dominated points to experiment the sufficient con-
dition.

The results are given in Table 1 for p = 4, k = 2, and 250 points, and in
Table 2 for p = 4, k = 2, and 500 points.

We have considered all possible applications ψ. We have also computed the
exact number of 2-additive Choquet optimal solutions with a linear program: for
each point of the Pareto front, we check if there exists a 2-additive capacity v
such that the Choquet integral of this point is better that all the other points.
Note that this method can be applied since we consider the particular case of
a given Pareto front. For the problem with 250 points, 140 points optimize a
2-additive Choquet integral and for the problem with 500 points, 200 points
optimize a 2-additive Choquet integral. We see that our method can only reach
a subset of this set (since the method is only based on a sufficient condition).
The number of 2-additive Choquet optimal points generated depends on the
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Table 1. Random multiobjective knapsack instances (250 points, 140 are 2-additive
Choquet optimal)

δ #2C-Optimal

(1,1,1,1) 124
(1,1,1,2) 124
(1,1,1,3) 131
(1,1,2,1) 131
(1,1,2,2) 131
(1,1,2,3) 139

Table 2. Random multiobjective knapsack instances (500 points, 200 are 2-additive
Choquet optimal)

δ #2C-Optimal

(1,1,1,1) 164
(1,1,1,2) 164
(1,1,1,3) 174
(1,1,2,1) 186
(1,1,2,2) 187
(1,1,2,3) 196

application ψ. For the set with 250 points, with ψ = (1, 1, 1, 1), 124 points are
generated, while with the application (1, 1, 2, 3), 139 points are computed. For
the set with 500 points, with ψ = (1, 1, 1, 1), 164 points are generated, while
with the application (1, 1, 2, 3), 196 points are computed. Some application ψ
allows thus to reach more 2-additive Choquet optimal solutions. However, even
by merging the sets obtained with all possible applications ψ, they are still 2-
additive Choquet optimal solutions that cannot be reached with our method
based on the sufficient condition.

5 Conclusion

We have introduced in this paper a sufficient condition to produce 2-additive
Choquet optimal solutions of multiobjective combinatorial optimization prob-
lems. We have also presented an algorithm to obtain these solutions based on
this condition. The algorithm can be applied to generate an interesting subset of
the Pareto optimal set (in case of the size of this set is too high). This work about
generating 2-additive Choquet optimal solutions opens many new perspectives:

– As our condition is only sufficient, a necessary and sufficient condition will
be required to generate all the 2-additive Choquet optimal solutions of a
MOCO problem. The condition will also have to be generalized to k > 2.
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– Following [17], it will be interesting to study and to define what brings
exactly and concretely (for a decision maker) the 2-additive Choquet optimal
solutions that are not WS optimal solutions, given that they are harder to
compute.

– More experiments will be needed to show the differences between WS op-
timal solutions, Choquet optimal solutions and 2-additive Choquet optimal
solutions of MOCO problems.
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Abstract. In a context of Multiple Criteria Decision Aid, we present
some necessary and suffcient conditions to obtain a symmetric Choquet
integral compatible with some preferences on a particular set of alterna-
tives. These axioms are based on the notion of strict cycle and the MOPI
conditions.

Keywords: Choquet integral, binary alternatives, capacity, trinary
alternatives.

1 Introduction

Multiple criteria decision Aid (MCDA) aims at representing the preferences of a
decision maker (DM) over a set of options (or alternatives) X = X1 × · · · ×Xn,
in regard to a finite set of criteria N = {1, . . . , n} or attributes X1, . . . , Xn.
One possible model is the transitive decomposable one where an overall utility is
determined for each alternative. The 2-additive Choquet integral has been proved
to be a versatile aggregation function to construct overall scores [3,4,12,13] and
is based on the notion of the 2-additive capacity or fuzzy measure. This model
assumes that partial utilities belong to non-negative or unipolar scales.

Grabisch and Labreuche [5,6] and Bouyssou et al [2] show through some moti-
vating examples that, sometimes, unipolar scales are not appropriate to represent
the DM’s preferences. Therefore, in some situations, bipolar scales appear more
useful. Bipolar scale is defined as a scale composed of a negative, a positive and
a neutral part which respectively allow representing a negative, a positive and
a neutral affect towards an option. The Choquet integral has been extended to
the bipolar scale based on the notion of capacity or on the notion of bi-capacity
[5,8,9]. One of these extensions is the symmetric Choquet integral, also called
Šipoš integral, defined by a capacity. In this paper we consider a symmetric
Choquet integral defined by a 2-additive capacity.

To identify a 2-additive capacity for symmetric Choquet integral, we assume
that the DM can provided an ordinal information on a particular set of alter-
natives, the set of trinary actions. An ordinal information is a preference infor-
mation represented by a strict preference relation and an indifference relation.

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 266–275, 2014.
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A trinary action is a fictitious alternative which takes either the neutral value
0 for all criteria, or the neutral value 0 for all criteria except for one or two
criteria for which it takes the satisfactory value 1 or the unsatisfactory value
−1. We think that this hypothesis is reasonable due to the bipolar scale that we
manipulate. We study the case when this ordinal information on trinary actions
can be considered as an ordinal information on unipolar scales.

We present the necessary and sufficient conditions on this ordinal information
for the existence of a 2-additive capacity such that the symmetric Choquet inte-
gral w.r.t. this capacity represents the preference of the decision maker. The first
condition concerns the existence of strict cycles in the ordinal information, the
second condition concerns the strict cyles in the ordinal information restricted
to unipolar scales and the last condition, called MOPI condition, comes from
the definition of a 2-additive capacity.

The next section show how to represent an ordinal information by a 2-additive
Choquet integral, while the last section how to represent an ordinal information
in the case of symmetric Choquet integral.

2 The Representation of the Ordinal Information by a
2-additive Choquet Integral

The 2-additive Choquet integral is a particular case of the well known Choquet
integral [10]. Its main property is to model interactions between two criteria.
These interactions are simple and more meaningful than those produced by
using the Choquet integral. This aggregation function is based on the notion of
capacity μ defined as a set function from the powerset of criteria 2N to [0, 1]
such that:

1. μ(∅) = 0
2. μ(N) = 1
3. ∀A,B ∈ 2N , [A ⊆ B ⇒ μ(A) ≤ μ(B)] (monotonicity).

A capacity μ on N is said to be 2-additive if its Möbius transform m : 2N → R
defined by

m(T ) :=
∑
K⊆T

(−1)|T\K|μ(K), ∀T ∈ 2N . (1)

satisfies the following two conditions:

• For all subset T of N such that |T | > 2, m(T ) = 0;
• There exists a subset B of N such that |B| = 2 and m(B) �= 0.

Given an alternative
x := (x1, ..., xn) ∈ X , the expression of the 2-additive Choquet integral is

given by [6]:

Cμ(u(x)) =

n∑
i=1

viui(xi)−
1

2

∑
{i,j}⊆N

Iij |ui(xi)− uj(xj)| (2)
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where

• For all i ∈ N , ui : Xi → R+ is an utility function associated to the attribute
Xi;

• u(x) = (u1(x1), . . . , un(xn)) for x = (x1, ..., xn) ∈ X ;

• vi =
∑

K⊆N\i

(n− |K| − 1)!|K|!
n!

(μ(K ∪ i)− μ(K)) is the importance of crite-

rion i corresponding to the Shapley value of μ [16];
• Iij = μij − μi − μj is the interaction index between the two criteria i and j
[3,15].

Therefore the 2-additive Choquet integral appears as a good compromise be-
tween the arithmetic mean and the Choquet integral.

We simplify our notation for a capacity μ by using the following shorthand:
μi := μ({i}), μij := μ({i, j}) for all i, j ∈ N , i �= j. Whenever we use i and j
together, it always means that they are different.

2.1 The Ordinal Information on Binary Alternatives

We assume that the DM is able to identify for each criterion i two reference
levels:

1. A reference level 1i in Xi which he considers as good and completely sat-
isfying if he could obtain it on criterion i, even if more attractive elements
could exist. This special element corresponds to the satisficing level in the
theory of bounded rationality of [17].

2. A reference level 0i in Xi which he considers neutral on i. The neutral level is
an element which is thought by the DM to be neither good nor bad, neither
attractive nor repulsive relatively to his concerns with respect to the criterion
i. The existence of this neutral level has roots in psychology (see [18]), and
is used in bipolar models like Cumulative Prospect Theory (see [19]).

We set for convenience ui(1i) = 1 and ui(0i) = 0. The use of Choquet inte-
gral requires to ensure the commensurateness between criteria. Therefore the
previous reference levels can be used in order to define the same scale on each
criterion [7,11]. For more details about these reference levels, see [4,6].

We call a binary action or binary alternative, an element of the set

B = {0N , (1i,0N−i), (1ij ,0N−ij), i, j ∈ N, i �= j} ⊆ X

where

• 0N = (1∅,0N) =: a0 is an action considered neutral on all criteria.
• (1i,0N−i) =: ai is an action considered satisfactory on criterion i and neutral
on the other criteria.

• (1ij ,0N−ij) =: aij is an action considered satisfactory on criteria i and j
and neutral on the other criteria.
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The number of binary actions is 1 + n+
n× (n− 1)

2
= 1 +

n× (n+ 1)

2
. For

any 2-additive capacity μ, we get the following consequences:

Cμ(u(a0)) = 0 (3)

Cμ(u(ai)) = μi (4)

Cμ(u(aij)) = μij (5)

Therefore, in order to compute all the parameters of the 2-additive Choquet
integral, Mayag et al. [13] suggest to ask to the DM some preference information
{P, I} on the set of binary actions, called ordinal information on B, and given
by:

P = {(x, y) ∈ B × B : DM strictly prefers x to y} (6)

I = {(x, y) ∈ B × B : DM is indifferent between x and y} (7)

The following notations are used indifferently: (x, y) ∈ P is equivalent to x P y
and (x, y) ∈ I is equivalent to x I y.

To test if these preferences are representable by a 2-additive Choquet integral,
a relation M modelling the simple monotonicity conditions μ({i}) ≥ 0 and
μ({i, j}) ≥ μ({i}) for a capacity μ is added to {P, I}. The relationM is defined
such that for (x, y) ∈ {(ai, a0), i ∈ N} ∪ {(aij , ai), i, j ∈ N, i �= j},

x M y if not(x (P ∪ I) y).

2.2 MOPI Conditions and the Characterization Theorem

Given an ordinal information {P, I} on B, Mayag et al. [13] give necessary and
sufficient conditions on B for which {P, I} is representable by a 2-additive Cho-
quet integral i.e. for which there exists a 2-additive capacity μ such that:

(x, y) ∈ P =⇒ Cμ(u(x)) > Cμ(u(y)) (8)

(x, y) ∈ I =⇒ Cμ(u(x)) = Cμ(u(y)) (9)

This characterization is based on the MOPI property defined by:

Definition 1. [MOPI property] Let i, j, k ∈ N , i fixed.

1. A Monotonicity of Preferential Information in {i, j, k} w.r.t. i is the following
property (denoted by ({i, j, k},i)-MOPI):

aij ∼ ai∨j
aik ∼ ai∨k
i ∨ j �= i ∨ k

⎫⎬⎭⇒ [not(al TCP a0), l ∈ {i, j, k} \ {i ∨ k, i ∨ j}] (10)

where
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• The criterion i ∨ j refers to criterion i or j.
• The relation TCP is defined by x TCP y if there exists a path of (P ∪
I ∪M) from x to y (i.e. there exist x1, . . . , xp such that x = x1 (P ∪ I ∪
M) x2 (P ∪ I ∪M) · · · (P ∪ I ∪M) xp−1 (P ∪ I ∪M) xp = y) which is
strict (i.e. there exists i in {1, ..., p− 1} such that xi P xi+1).

• The relation ∼ on B is defined by x ∼ y if there exists a cycle of (I ∪M)
containing x and y (a path from x to y and a path from y and x).

2. The set {i, j, k} satisfies the property of MOnotonicity of Preferential Infor-
mation (MOPI) if ∀l ∈ {i, j, k}, ({i, j, k},l)-MOPI is satisfied.

Example 1. Let N = {1, 2, 3, 4} and i = 1 fixed. The property ({1, 2, 3}, 1)-
MOPI reads as follows: {

a12 ∼ a2
a13 ∼ a1

⇒ not(a3 TCP a0)

and{
a12 ∼ a1
a13 ∼ a3

⇒ not(a2 TCP a0)

and{
a12 ∼ a2
a13 ∼ a3

⇒ not(a1 TCP a0).

Now we suppose P �= ∅ (“non triviality” axiom).

Theorem 1. An ordinal information {P, I} is representable by a 2-additive
Choquet integral on B if and only if the following conditions are satisfied:

1. (P ∪ I ∪M) contains no strict cycle;
2. Any subset K of N such that |K| = 3 satisfies the MOPI property.

Proof. See [13].

3 The Represention of the Ordinal Information by a
2-additive Symmetric Choquet Integral

The symmetric Choquet integral, also called Šipoš integral, is a simple way
to generalize Choquet integral for bipolar scales [5,8,9]. Given an alternative
x := (x1, ..., xn) ∈ X and a 2-additive capacity, the expression of the symmetric
Choquet integral is given by:

C̆μ(ŭ(x)) = Cμ(ŭ(x)
+)− Cμ(ŭ(x)

−) (11)

where

• ŭ(x) = (ŭ1(x1), . . . , ŭn(xn)) with ŭi : Xi → R the utility function associated
to Xi, i = 1, . . . , n;

• ŭ(x)+ := (ŭ1(x1)
+, . . . , ŭn(xn)

+) with ŭi(xi)
+ = ŭi(xi) ∨ 0, i = 1, . . . , n;

• ŭ(x)− := (ŭ1(x1)
−, . . . , ŭn(xn)

−) with ŭi(xi)
− = (−ŭi(xi))∨ 0, i = 1, . . . , n.
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We call C̆μ a 2-additive symmetric Choquet integral when μ is 2-additive.
Because this aggregation function uses bipolar scales, it can be also defined from
a symmetric bi-capacity, see [9] for more details about this concept. We just
recall that a function σ : 3N → R is a bi-capacity on 3N if it satisfies the
following two conditions :

σ(∅, ∅) = 0 (12)

∀(A1, A2), (B1, B2) ∈ 3N : [(A1, A2) � (B1, B2)⇒ σ(A1, A2) ≤ σ(B1, B2)]
(13)

Where

• 3N := {(A,B) ∈ 2N × 2N |A ∩ B = ∅} is the set of couples of subsets of N
with an empty intersection;

• (A1, A2) � (B1, B2)⇔ [A1 ⊆ B1 and B2 ⊆ A2].

3.1 The Ordinal Information on Trinary Alternatives

In addition to the two reference levels 1i and 0i in Xi, we assume that the
DM is also able to identify for each criterion i the reference level −1i in Xi.
This corresponds to the level which he considers completely unsatisfying. We
set ŭi(−1i) = −1. Using these three reference levels, we consider now the set
trinary alternatives or trinary actions1 denoted by T and defined by

T ={(1∅,−1∅), (1i,−1∅), (1∅,−1j), (1i,−1j), (1ij ,−1∅), (1∅,−1ij), i, j ∈ N} ⊆ X,

where

• (1∅,−1∅) =: a0|0 is an action considered neutral on all criteria.
• (1i,−1∅) =: ai| is an action considered satisfactory on criterion i and neutral
on the other criteria.

• (1∅,−1j) =: a|j is an action considered unsatisfactory on criterion j and
neutral on the other criteria.

• (1i,−1j) =: ai|j is an action considered satisfactory on criteria i, unsatisfac-
tory on j and neutral on the other criteria.

• (1ij ,−1∅) := aij| is an action considered satisfactory on criteria i and j and
neutral on the other criteria.

• (1∅,−1ij) := a|ij is an action considered unsatisfactory on criteria i and j
and neutral on the other criteria.

The trinary actions are used in [14] to elicitate a bi-capacity and are adapted

for bipolar scales. Their number is 1 + 2 × n +
2× n× (n− 1)

2
= 1 + 2 × n2.

Roughly speaking there are 4 times as much trinary actions for 2 additive bi-
capacities compare to the 2 additive capacities.

1 Some authors, like in [1], prefer the term “ternary alternatives” instead of trinary
alternatives.
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Example 2. If N = {1, 2, 3} then T = {a0|0; a1|; a2|; a3|; a|1; a|2; a|3; a1|2;
a1|3; a2|1; a2|3; a3|1; a3|2; a12|; a13|; a|12; a23|; a|13; a|23}

Given a 2-additive capacity μ, we get the following consequences for a sym-
metric Choquet integral:

C̆μ(ŭ(a0|0)) = Cμ(u(a0)) = 0 (14)

C̆μ(ŭ(ai|)) = Cμ(ŭ(a
+
i| ))− Cμ(ŭ(a

−
i| )) = μi = Cμ(u(ai)) (15)

C̆μ(ŭ(a|j)) = Cμ(ŭ(a
+
|j))− Cμ(ŭ(a

−
|j)) = Cμ(ŭ(a

+
|j)) = −μj = −Cμ(u(aj))

(16)

C̆μ(ŭ(ai|j)) = Cμ(ŭ(a
+
i|j))− Cμ(ŭ(a

−
i|j)) = μi − μj = Cμ(u(ai))− Cμ(u(aj))

(17)

C̆μ(ŭ(aij|)) = Cμ(ŭ(a
+
ij|))− Cμ(ŭ(a

−
ij|)) = μij = Cμ(u(aij)) (18)

C̆μ(ŭ(a|ij)) = Cμ(ŭ(a
+
|ij))− Cμ(ŭ(a

−
|ij)) = −μij = −Cμ(u(aij)) (19)

Hence, due to the bipolarity of the scales used, to entirely determine the 2-
additive capacity for the symmetric Choquet integral, we choose in this case
to get some preferential information from the DM on trinary actions instead of
binary actions. Furthermore the Equations 14 to 19 show that there is a strong
link between binary and trinary actions. The preference information on T given
by the DM is expressed by the two following relations:

• P̆ = {(x, y) ∈ T × T : the DM strictly prefers x to y},
• Ĭ = {(x, y) ∈ T × T : the DM is indifferent between x and y}.

Definition 2. The ordinal information on T is the structure {P̆ , Ĭ}.

Example 3. Given N = {1, 2, 3} and T = {a0|0; a1|; a2|; a3|; a|1; a|2; a|3;
a1|2; a1|3; a2|1;
a2|3; a3|1; a3|2; a12|; a13|; a|12; a23|; a|13; a|23}, the following preferences are an

ordinal information on T : P̆ = {(a2|1, a3|2)} and Ĭ = {(a1|, a2|)}

As in Section 2.2 we will suppose P̆ �= ∅ in this section (“non-triviality” axiom)
and will complete {P̆ , Ĭ} by the binary relation M̆ on T defined as follows:
for (x, y) ∈ {(ai|, a0|0), i ∈ N} ∪ {(a0|0, a|i), i ∈ N} ∪ {(aij|, ai|), i, j ∈ N} ∪
{(a|i, a|ij), i, j ∈ N} ∪ {(a|i, ai|j), i, j ∈ N} ∪ {(ai|j , a|j), i, j ∈ N}

xM̆y ⇔ not (x (P̆ ∪ Ĭ) y)

The relation M̆ models the natural monotonicity conditions for bicapacity (see
Equation (13)): σ(∅, {i, j}) ≤ σ(∅, {j}) ≤ σ(∅, ∅) and σ(∅, {j}) ≤ σ({i}, {j}) ≤
σ({i}, ∅) ≤ σ({i, j}, ∅)

Definition 3. An ordinal information {P̆ , Ĭ} on T is called a B-ordinal infor-
mation if it fulfills the following conditions: for all i, j, k, l ∈ N
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1.
ai|j ({P̆ ∪ Ĭ}) ak|

or

a|k ({P̆ ∪ Ĭ}) aj|i
or

ak| ({P̆ ∪ Ĭ}) ai|j
or

aj|i ({P̆ ∪ Ĭ}) a|k
or

ai|j ({P̆ ∪ Ĭ}) akl|
or

a|kl ({P̆ ∪ Ĭ}) aj|i
or

akl| ({P̆ ∪ Ĭ}) ai|j
or

aj|i ({P̆ ∪ Ĭ}) a|kl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒ [a0|0 ˘TC aj|] (20)

2.
ai|j ({P̆ ∪ Ĭ}) ak|l

or

al|k ({P̆ ∪ Ĭ}) aj|i

⎫⎬⎭⇒ [al| ˘TC aj| and aj| ˘TC al|] (21)

where x ˘TC y ⇔ there exists a path (not necessarily strict) of (P̆ ∪ Ĭ ∪ M̆)
from x to y.

In fact, a B-ordinal information is an ordinal information on T which can
be treated as an ordinal information on B. Generally, to compute a 2-additive
capacity for symmetric Choquet integral, one asks only preferences on a positive
or negative part of the scale. In our case, this type of preference information on
B corresponds to a particular case of a B-ordinal information.

3.2 Our Characterization Theorem

Given an ordinal information on T , our aim is to find necessary and sufficient
conditions for which there exists a 2-additive capacity such that {P̆ , Ĭ} is repre-
sentable by a symmetric Choquet integral i.e. for which there exists a 2-additive
capacity μ satisfying:

(x, y) ∈ P̆ =⇒ C̆μ(ŭ(x)) > C̆μ(ŭ(y)) (22)

(x, y) ∈ Ĭ =⇒ C̆μ(ŭ(x)) = C̆μ(ŭ(y)) (23)

Before to give our result, lets us show how to deduce an ordinal information
on B from a B-ordinal information on T . Given {P̆ , Ĭ} in this case, we construct
the relations P and I on B as follows:
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i. Construction of P :

Initially we set P = ∅. For all i, j, k, l ∈ N ,

• if ai| P̆ aj| or a|i P̆ a|j then add (ai, aj) in P ;

• if ai| P̆ akl| or a|kl P̆ a|i then add (ai, akl) in P ;

• if a|i P̆ a|kl or akl| P̆ ai| then add (akl, ai) in P ;

• if ai|j P̆ ak| or a|k P̆ aj|i then add (ai, ak) in P ;

• if ak| P̆ ai|j or aj|i P̆ a|k then add (ak, ai) in P ;

• if ai|j P̆ akl| or a|kl P̆ aj|i then add (ai, akl) in P ;

• if akl| P̆ ai|j or aj|i P̆ a|kl then add (akl, ai) in P ;

• if ai|j P̆ ak|l or al|k P̆ aj|i then add (ai, ak) in P .

ii. Construction of I:

Initially we set I = ∅. For all i, j, k, l ∈ N ,

• if ai| Ĭ aj| or a|i Ĭ a|j then add (ai, aj) in I;

• if ai| Ĭ akl| or a|kl Ĭ a|i then add (ai, akl) in I;

• if a|i Ĭ a|kl or akl| Ĭ ai| then add (akl, ai) in I;

• if ai|j Ĭ ak| or aj|i Ĭ a|k then add (ak, ai) in I;

• if ai|j Ĭ akl| or aj|i Ĭ a|kl then add (ai, akl) in I;

• if ai|j Ĭ ak|l or al|k Ĭ aj|i then add (ai, ak) in I.

Example 4. It is not difficult to see that P̆ = {(a2|1, a3|2)} and Ĭ = {(a1|, a2|)}
given in Example 3 is a B-ordinal information on T . Therefore, from {P̆ , Ĭ}
we compute the following ordinal information on B: P = {(a2, a3)} and I =
{(a1, a2)}.

The following Theorem extends the characterization of ordinal information
on B to a B-ordinal information T .

Theorem 2. A B-ordinal information on T , {P̆ , Ĭ}, is representable by a 2-
additive symmetric Choquet integral if it fulfills these three conditions:

1. There is no strict cycle of (P̆ ∪ Ĭ ∪ M̆)
2. There is no strict cycle of (P ∪ I ∪M)
3. Any subset K of N such that |K| = 3 satisfies the MOPI property (using

(P ∪ I ∪M)).

Where {P, I} is an ordinal information on B computed from {P̆ , Ĭ} as shown
above.

Knowing that the trinary actions are mainly useful to elicitate a 2-additive
bi-capacity, this characterization gives a family of ordinal information on T com-
patible with a symmetric Choquet integral (a particular case of bipolar Choquet
integral).
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Abstract. Fuzzy measures on multisets are studied in this paper. We show that
a class of multisets on a finite space can be represented as a subset of positive
integers. Comonotonicity for multisets are defined. We show that a fuzzy mea-
sure on multisets with some comonotonicity condition can be represented by a
generalized fuzzy integral.

Keywords: Fuzzy measure, multiset, Choquet integral, Sugeno integral, Gener-
alized fuzzy integral.

1 Introduction

Multisets or bags are a generalization of sets in which multi-occurrences of elements are
allowed. They have been used in the areas of mathematics and computer science [12],
among other disciplines.

Standard set operations as union and intersection have been defined for multisets.
Other operations have been defined as well. In this paper we focus on fuzzy measures
and integrals on multisets. Some preliminary results on fuzzy measures on multisets
were presented in [17,10].

Fuzzy measures, also known as non-additive measures, are monotonic set functions
on a reference set. They generalize additive measures (probabilities) not requiring the
measure to be additive and replacing this axiom by the one of monotonicity. Fuzzy
integrals have been defined which integrate a function with respect to a non-additive
measure. The most well known fuzzy integrals are the Sugeno integral [13,14] and the
Choquet integral [3]. See [16] for a state-of-the-art description of the field.

In this paper we focus on fuzzy measures and Choquet integral on multisets. We
show that a class of multisets can be represented as subsets of positive integers. We also
define comonotonicity for multisets, and we show that a fuzzy measure on multisets,
with some comonotonicity condition, can be represented by a Choquet integral.

The structure of the paper is as follows. In Section 2 we review some definitions
that are needed in the rest of the paper. In Section 3 we focus on the representation of
integrals on finite multisets. In Section 4, we present a way to extend a fuzzy measure
on the class of measurable sets to the class of multisets. We finish the paper with some
concluding remarks on Section 5.
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2 Preliminaries

This section is divided in two parts. First we review the definition of Choquet and
Sugeno integrals, and then some definitions related to multisets.

2.1 Choquet Integral

Here we present the definition of fuzzy measures and of the Choquet integral. The
Choquet integral integrates a function with respect to a fuzzy measure.

Definition 1. Let X be a universal set and X be a σ -algebra of 2X . Then, (X ,X ) is
called a fuzzy measurable space. We say that a function f : X → R+ is X -measurable
if {x| f (x)≥ a} ∈X for all a.

Definition 2. [4] Let f and g be X -measurable functions on X; then, we say that f
and g are comonotonic if

f (x) < f (y)⇒ g(x)≤ g(y)

for x,y ∈ X.

Definition 3. [14] Let (X ,X ) be a fuzzy measurable space; then, a fuzzy measure μ
on (X ,X ) is a real valued set function, μ : X −→R+ with the following properties.

(i) μ( /0) = 0, μ(X) = k where k ∈ (0,∞).
(ii) μ(A)≤ μ(B) whenever A⊂ B, A,B ∈X .

A triplet (X ,X ,μ) is said to be a fuzzy measure space.

Definition 4. [3,8] Let (X ,X ,μ) be a fuzzy measure space and let f be a non-negative
X -measurable function; then, the Choquet integral of f with respect to μ is defined by

(C)
∫

X
f dμ :=

∫ ∞

0
μ f (r)dr,

where μ f (r) = μ({x| f (x)≥ r}).
Let X = {x1,x2, . . . ,xn} and f (x1)< f (x2)< · · ·< f (xn). Then the Choquet integral

of f is expressed as

(C)
∫

X
f dμ =

n

∑
k=1

( f (xk)− f (xk−1))μ({xk, . . . ,xn})

where f (x0) = 0.
Let f ,g be comonotonic measurable functions. Then, since for all a,b > 0 either

{x| f (x) ≥ a} ⊂ {x|g(x) ≥ b} or {x| f (x) ≥ a} ⊃ {x|g(x) ≥ b}, the following theorem
can be proved.

Theorem 1. [4] Let (X ,X ,μ) be a fuzzy measure space. Then, for comonotonic mea-
surable functions f , and g, we have

(C)
∫

X
( f + g)dμ = (C)

∫
X

f dμ +(C)
∫

X
gdμ .

We call this property the comonotonic additivity of a Choquet integral.
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2.2 Multisets

Let X be a universal set. Then, a multiset M of X is characterized by the count function
CM : X → N := {0,1,2, . . .}. Here, CM corresponds to the number of occurrences of the
object x ∈ X .

We denote by M (X) the class of multisets of X .

Example 1. Let X := {a,b,c} and M := (a,a,a,b,b), that is, CM(a) = 3, CM(b) = 2,
CM(c) = 0.

We can express M in Example 1 either as M = (3/a,2/b) or as M = ((a,3),(b,2)).

Definition 5. Let M,N ∈M (X). Then, we define:

– the inclusion of multisets by

M ⊂ N ⇔CM(x)≤CN(x)

for all x ∈ X;
– the equality of multisets M = N by

CM(x) =CN(x).

Let M ∈M (X). Then P(M) denotes the class of subsets of multiset M, that is,

P(M) := (N|N ⊂M,N ∈M (X)}.

Proposition 1. Let |X |= n and M ∈M (X). If M = ((ai,ki)|i = 1,2, . . .n}, then

|P(M)|= Π n
i=1(ki + 1).

Example 2. Let M = (a,a,a,b,b), M0 = /0, M1 = (a), M2 = (a,a), M3 = (a,a,a),
M4 = (a,a,a,b), M5 = (a,a,a,b,b), M6 = (a,a,b), M7 = (a,a,b,b), M8 = (a,b), M9 =
(a,b,b), M10 = (b), M11 = (b,b).

Then P(M) = {Mi|i = 0,1,2, . . . ,11}.
Definition 6. Let A,B∈M (X), and let α ∈N. Then, we define some binary operations
on M (X). Definitions include union, intersection, addition of two multisets and multi-
plication of a multiset by an integer. In these definitions,∨ corresponds to the maximum
and ∧ to the minimum.

(i) CA∪B(x) =CA(x)∨CB(x)
(ii) CA∩B(x) =CA(x)∧CB(x)

(iii) CA+B(x) =CA(x)+CB(x)
(iv) CαA(x) = αCB(x)

where x ∈ X and CA is the count function of A.

Proposition 2. Let A,B ∈M (X). We have

A∩B⊂ A∪B⊂ A+B

Example 3. Let X := {a,b,c} and A := (a,a,b), B := (a,b,b,c). Then we have

(i) A∪B = (a,a,b,b,c)
(ii) A∩B = (a,b)

(iii) A+B = (a,a,a,b,b,b,c)
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3 Repesentation of Integral on Finite Multisets

Let X be a finite universal set and |X |= n.
Let P be the set of prime numbers, that is, P := {2,3,5,7, . . . ,}.
Since X is a finite set, there exists a one to one mapping ϕX from X to a subset of P,

that is, ϕX : X →{p1, p2, . . . , pn}.
Let M ∈M (X). We have an induced one to one mapping ΦX from M (X) to a subset

S of natural numbers by ΦX(M) := Π n
i=1ϕX (xi)

CM(xi). In this case we say that ΦX (M) is
a natural number representation of a multiset M.

Example 4. Let X := {a,b,c} and ϕX (a) = 2,ϕX(b) = 3,ϕX(c) = 5. Then ΦX (A) :=
2CA(a)3CA(b)5CA(c) for A ∈M (X).

In fact, if A := (a,a,b,c), then ΦX (A) = 22 ·3 ·5 = 60.

Let M ∈M (X). We have

ΦX(P(M)) := {Π n
i=1ϕX(xi)

CA(xi)|A ∈P(M)}.

Proposition 3. Let M ∈M (X); then, ΦX(P(M)) is a set of divisors of ΦX (M).

Example 5. Let X := {a,b,c} and ϕX (a) = 2,ϕX(b) = 3,ϕX(c) = 5.
Let M := (a,a,a,b,b,c).
Then ΦX (M) := 233251 = 120, and

ΦX (P(M)) := {1,2,3,4,5,6,8,10,12,15,24,30,40,60,120}.

Theorem 2. Let N ⊂M (X).
For f : N →R+ and μ be a fuzzy measure on 2N there exist a subset N0 of a set of

non negative integers N, fN : N0 →R+ and μN : a fuzzy measure on 2N0 such that

(C)
∫
N

f dμ = (C)
∫

N0

fN dμN .

Conversely the Choquet integral on the set of positive integer can be regarded as the
Choquet integral on multisets.

Remark. Since a multiset on a finite universal space can be regarded as a positive
integer, a class of multisets can be regarded as a subset of the positive integers, and
a function on a class of multisets as a function on a subsets of positive integers. This
shows that to study a function and the integral on the class of multisets, which seems
complicated, is identical to the study of functions and integrals on subsets of positive
integers as long as the universal set is finite.

As a special case of this fact, a fuzzy measure and the integral on the discrete space
is identical with the ones on finite subsets of prime numbers.

From this point of view, it is natural to study the fuzzy integral on multisets if the
universal space is finite or countable.

If the universal space is not countable, the representation above is impossible.
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Example 6. Let X := {a,b} and N := {(a),(a,a),(a,b)}. Then, define a function f
on N by

f ((a)) = 9, f ((a,a)) = 3, f ((a,b)) = 5,

and a fuzzy measure on 2N by
μ({(a)}) = 1, μ({(a,a)}) = 1.8, μ({(a,b)}) = 1.5, μ({(a),(a,a)}) = 2.5,
μ({(a),(a,b)}) = 2.2, μ({(a,a),(a,b)}) = 3. μ(N ) = 4

Then we have

(C)
∫
N

f dμ = ( f ((a))− f ((a,b)))μ({(a)})+ ( f ((a,b))− f ((a,a)))μ({(a),(a,b)})

+ f ((a,a))μ(N )

= 4× 1+ 2× 2.5+3×4= 21

Using a natural number representation, we have N0 = {2,4,6},
fN (2) = 9, fN (4) = 3, fN (6) = 5, and
μN ({2}) = 1, μN ({4}) = 2, μN ({6}) = 1.5, μN ({2,4}) = 2.5, μN ({2,6}) = 2.2,
μN ({4,6}) = 3. μN (N0) = 4.

The example above can be regarded under the next scenario.

Scenario 1. The supermarket sells several packed fruits. Let us consider the following
ones.

– (a): one orange
– (a,a):one pack of two oranges
– (a,b): one pack of one orange and one apple.

Note that a single apple is not sold there.
Let us consider that a customer, Tom, wants to buy 20 oranges and 5 apples.
Then, the fuzzy measure μ(∗) is the price of packed fruits, which has discount for

a specific combination. In addition, the function f (A) corresponds to the number of
packed fruits A that the customer buys.

Then the Choquet integral of f with respect to μ is the total price Tom should pay.

In such scenario, the problem is to minimize the total price. In Example 6 we had
that the Choquet integral is 21. Alternatively, if we define the function g on N by

g((a)) = 1,g((a,a)) = 7,g((a,b)) = 5,

then the total is

(C)
∫
N

gdμ =(g((a,a))− g((a,b)))μ({(a,a)})+(g((a,b))−g((a)))μ({(a,a),(a,b)})

+ f ((a))μ(N )

= 2× 1.8+ 4× 3+1×4= 19.6
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Therefore (C)
∫

gdμ < (C)
∫

f dμ , that is, g is better selection of packs than f .

For this scenario, for established prices μ , when Tom wants to buy the multiset M ∈
M , his best selection with respect to the final price would be the function f : N →R+

such that
M ≤ ∑

A⊂N
f (A) ·1A (1)

and with a minimal Choquet integral. Formally:
Let F = { f |M ≤ ∑A⊂N f (A) ·1A}, Tom’s best selection is

argmin
f∈F

(C)
∫

f dμ .

4 Distorted Measure on Multisets and Integral

Let X be finite. We can define a fuzzy measure μ on 2X . Let M be a multiset on X , then

we can represent a count function CM by CM :=
n

∑
i=1

ai1Ai , with ai > 0 and A1 � A2 �

. . .An, Ai ∈X . We call this representation the comonotonic additive representation of
CM . Note that the comonotonic additive representation of a M is unique.

Then we can define an extension μ̄ of fuzzy measure μ to a multiset M by

μ̄(M) :=
n

∑
i=1

ai ·μ(Ai)

with ai > 0 and A1 � A2 � . . .An, Ai ∈X .
We say that μ̄ is a comonotonic extension of μ .
Since

μ̄(M) = (C)
∫

X
CMdμ ,

we have the next proposition.

Proposition 4. [10] Let M,N ∈M (X), and let μ be a fuzzy measure on 2X . If M and
N are comonotonic, then μ̄(M+N) = μ̄(M)+ μ̄(N).

Let g : R+ → R+ be monotone and g(0) = 0. We can define a fuzzy measure η on
N ⊂M(X) by

η(A) = g( ∑
M∈A

μ̄(M)) (2)

for A ∈N .
We say that η is a distorted measure generated by μ and g.

Corollary 1. Let N ⊂M (X). Then, for a function f : N →R+ and a distorted mea-
sure η generated by μ and g on 2N there exist a subset N0 of a set of non negative
integers N, fN : N0 →R+ and μN : a distorted measure on 2N0 such that

(C)
∫
N

f dη = (C)
∫

N0

fN dμN .
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Example 7. Let X := {a,b,c}. Then, let us define the fuzzy measure μ on 2X by
μ({a}) = 1, μ({b}) = 1.5, μ({c}) = 2, μ({a,b}) = 2, μ({b,c}) = 3,
μ({a,c}) = 2.5, μ({a,b,c}) = 4.
Let M := {a,a,a,a,b,b,c}.
We have a comonotonic additive representation of CM by
CM = 1{a,b,c}+ 1{a,b}+ 2× 1{a}.
Then we have the comonotonic extension of μ by
μ̄(M) = μ({a,b,c})+ μ({a,b})+ 2×μ(a)= 4+ 2+ 2× 1= 8.
Let N := {(a),(c),(a,a,a,b),M} and g(x) = x2.
Then we have a distorted measure η by η(A) = (∑B∈A μ̄(B))2.
Using a natural number representation, N0 = {2,5,24,720}.
Define a function f : N → R+ by
f ((a)) = 0, f ((c)) = 4, f ((a,a,a,b)) = 5, f (M) = 2.
That is, fN (2) = 0, fN (5) = 4, fN (24) = 5, fN (720) = 2,
μN ({24}) = η((a,a,a,b)) = (μ̄((a,a,a,b)))2 = (2μ((a))+ μ((a,b)))2 = 16
μN ({5,24}) = η((c),(a,a,a,b)) = (μ̄((c))+ μ̄(a,a,a,b)))2 = (2+ 4)2 = 36

μN ({5,24,720}) = η((c),(a,a,a,b),M)

= (μ̄({c})+ μ̄((a,a,a,b))+ μ̄(M))2

= (2+ 4+ 8)2 = 196

μN ({2,5,24,720}) = η((a),(c),(a,a,a,b),M)

= (μ̄((a))+ μ̄((c))+ μ̄((a,a,a,b))+ μ̄(M))2

= (1+ 2+ 4+ 8)2 = 225

We have

(C)
∫
N

f dη = (C)
∫

N0

fN dμN

= ( fN (24)− fN (5))μN ({24})+ ( fN (5)− fN (720))μN ({5,24})
+ ( fN (720)− fN (2))μN ({5,24,720})+ fN (2)μN ({2,5,24,720})
= 1× 16+ 2× 36+2×196+0×225= 480

Remark. We use Σ to define a distorted measure η in Equation 2. This can be extended
using a binary operation with associativity [7,1]. Moreover to define a comonotonic
extension μ , we can use the generalized fuzzy integral [9] instead of Choquet integral.
We can chose the suitable operation or integral instead of Choquet integral with respect
to a distorted measure.

5 Conclusion

In this paper we have studied fuzzy measures and Choquet integral for multisets on a
finite universal space. We have shown in Theorem 2 that Choquet integrals for multisets
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can be seen as a Choquet integral on a set of positive numbers. We have also shown an
scenario where this type of measures and integrals can be applied. Finally, we have
presented some results about distorted measures on multisets. We expect to have deeper
results in the future using number theory. In particular, we will focus on the extension
of the results to a generalized fuzzy integral, including the Sugeno integral.
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Abstract. On multivariate analyses generally distributions of explana-
tory variable have deviation depending on each unique quality, and elim-
inating deviation often beneficially effiective. We propose two algorithms
for rescaling of raw data and verify the validity of them using real reliable
big data.

Keywords: monotone measure, Choquet integral, multivariate analy-
ses, inclusion-exclusion integral.

1 Introduction

Recently, data is becoming important for us and as the data itself grows dra-
matically, the storage and data management solutions that we correct become
more critical. With such data we must attempt multivariate analyses and find
the best way to analyze each data for the sake of getting various information
from it. Our aim is, roughly speaking, to predict or estimate the value of a re-
sponse variable from the known values explanatory variables or predictors, so
that we have to determine models which yields the value of response variable
by several explanatory variables. The most widely used model is the multiple
linear regression model which specifies a response variable as a linear combina-
tion of independent explanatory variables. On the other hand, other models are
proposed, for example, the Choquet integral model using monotone measures
can express interactions among explanatory variables. These data, especially
explanatory variables have deviation in the distribution depending on each spe-
cial quality and several authors have been also investigating from this point of
view[1]. In this study, we propose two algorithms for rescaling of raw data to
eliminate deviation and using real big data, and verify the validity of them.

2 Preliminaries

Throughout this paper, the whole set is denoted by N := {1, 2, . . . , n} and 2N

denotes the power set of N . The minimum and the maximum operation in 2N

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 284–293, 2014.
c© Springer International Publishing Switzerland 2014
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are denoted by ∧ and ∨, respectively. For a set A, the number of elements of A
is denoted by |A|.

2.1 Mathematical Preparation

Definition 1 (Monotone Measure[2]). A set function v : 2N → [0, 1] is
called a monotone measure if it satisfies
1. v(∅) = 0, v(N) < +∞, and
2. v(A) ≤ v(B) whenever A ⊂ B,A,B ∈ 2N .

Definition 2 (Choquet Integral[3]). Let v be a monotone measure defined
on 2N , and f a non-negative function on N . The Choquet integral of f with
respect to v is defined by

(C)

∫
f dv :=

n∑
i=1

(
f(σ(i)) − f(σ(i− 1))

)
v({σ(i), . . . , σ(n)}),

where σ is a permutation on N such that f(σ(1)) ≤ · · · ≤ f(σ(n)) and f(σ(0)) :=
0.

Definition 3 (Möbius transform). Let v be a set function on 2N . The Möbius
transform of v, denoted by mv, is defined by

mv(A) :=
∑
B⊂A

(−1)|A\B|v(B)

for any A ∈ 2N . And v and mv are one-to-one correspondence with

v(A) =
∑
B⊂A

mv(B)

for any A ∈ 2N .

Proposition 1 ([4]). The Choquet integral of f with respect to v is represented
with Möbius transform of v by

(C)

∫
fdv =

∑
A⊂N

(∧
i∈A

f(i)

)
mv(A).

Definition 4 (k-additive Measure[5]). Let v be a monotone measure on 2N

and k a positive integer. A monotone measure v which satisfies mv(A) = 0
whenever |A| > k is called k-additive measure.

k-additive measure admits an interpretation that this measure has interactions
only among k elements. The proposition below shows that the Choquet integral
is represented as a linear combination of the Möbius transforms of v.

The inclusion-exclusion integral (IE integral) is defined by as follows.
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Definition 5 (Inclusion-Exclusion Integral[6, 7]). Let v be a positive mono-
tone measure defined on 2N , ⊗ : ∪n

k=1R
k → R be an n-ary operation on R and

let f be a function N → R. The inclusion-exclusion integral of f with respect to
v is defined by

⊗
∫
f dv :=

∑
A⊂N

{∑
B⊃A

(
(−1)|B\A|

⊗
i∈B

f(i)

)}
v(A),

where ⊗i∈Bwi = ⊗{wi | i ∈ B}, B ⊂ N .

Remark that in [6, 7], ⊗ is assumed t-norm. But, in this paper we generalize it
to general n-ary operation. Product-like operations such as t-norms are suitable
as the n-ary operation of the inclusion-exclusion integral.

The IE integral can be represented by another form(Cf. [8–10]).

Proposition 2. The inclusion-exclusion integral is represented with Möbius
transform of v by

⊗
∫
f dv =

∑
A⊂N

(⊗
i∈A

f(i)

)
mv(A).

By Propositions 1 and 2, we can regard the Choquet integral as an IE integral,
then we obtain IE integral representation of the Choquet integral:

(C)

∫
fdv = ∧

∫
fdv =

∑
A⊂N

{∑
B⊃A

(
(−1)|B\A|

∧
i∈B

f(i)

)}
v(A),

which enables us to calculate the Choquet integral without rearrangement of f
or Möbius transform of v.

Definition 6 (T -norm [11–13] etc.). If a binary operation ⊗ : [0, 1]× [0, 1]→
[0, 1] satisfies
1. 0⊗ 0 = 0, x⊗ 1 = x for any x > 0,
2. x ≤ y implies x⊗ z ≤ y ⊗ z,
3. x⊗ y = y ⊗ x and
4. x⊗ (y ⊗ z)) = ((x⊗ y)⊗ z),
then ⊗ is called a T -norm.

By 4 in Definition 6, t-norm ⊗ is extended to n-ary operation [0, 1]n → [0, 1].

Definition 7 (Dombi’s t-norm [14]). Dombi’s t-norm . : [0, 1]2 → [0, 1] is
defined by

x. y :=
1

1 +

((
1
x − 1

)α
+
(

1
y − 1

)α
) 1

λ

, θ > 0.
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2.2 Regression Analyses Models

In the latter half of Section 2, we describe regression analyses and introduce
several models needed later. Let n,m be natural numbers. In this study, we
consider m data sets of response variable and n explanatory variables, or predic-
tors. One data set is consisted of explanatory variables (xj1, x

j
2, . . . , x

j
i , . . . , x

j
n)

and response variable yj . Our objective is to select the most similar identifica-
tion model to response using explanatory variables, in other words, to find a
functions F which explains the relation between (xj1, x

j
2, . . . , x

j
i , . . . , x

j
n) and y

j

by yj = F (xj1, x
j
2, . . . , x

j
i , . . . , x

j
n).

Table 1. Data sets

Data No. x1 x2 · · · xi · · · xn y

1 x1
1 x1

2 · · · x1
i · · · x1

n y1

2 x2
1 x2

2 · · · x2
i · · · x2

n y2

...
...

...
...

...
...

...
...

j xj
1 xj

2 · · · xj
i · · · xj

n yj

...
...

...
...

...
...

...
...

m xm
1 xm

2 · · · xm
i · · · xm

n ym

First, we introduce multiple linear regression.

Definition 8 (Multiple Linear Regression Model). Let a0, a1, . . . , an ∈ R.
Multiple linear regression model is defined by

y = a1x1 + a2x2 + · · ·+ anxn + a0.

a0 is the intercept point.

Multiple linear regression model is the most common type model of regression
analyses. But it does not have high describing ability, so that several models are
proposed. Especially, models used by monotone measure are able to describe the
interaction between explanatory variables. Let (x1, x2, . . . , xn, y) be a data, v be
a monotone measure on 2N and mv be a Möbius transform of v. Put a function
f := (x1, x2, . . . , xn) defined on N .

Definition 9 (Choquet Integral Model[15]). Let a0, a1, . . . , an, a1,2, . . . ,
a1,2,...,n ∈ R. Choquet integral model is defined by

y = (C)

∫
fdv =

∑
A⊂N

{∑
B⊃A

(
(−1)|B\A| ∧

i∈B

f(i)

)}
v(A)

= a1

∑
I⊃{1}

(
(−1)|I\{1}|

∧
i∈I

xi

)
+ · · ·+ an

∑
I⊃{n}

(
(−1)|I\{n}| ∧

i∈I

xi

)
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= a1,2

∑
I⊃{1,2}

(
(−1)|I\{1,2}|

∧
i∈I

xi

)
+ · · ·+ an−1,n

∑
I⊃{n−1,n}

(
(−1)|I\{n−1,n}| ∧

i∈I

xi

)
...

+a1,2,...,n(x1 ∧ x2 ∧ · · · ∧ xn) + a0,

and Möbius type Choquet IE integral model is as follows:

y = (C)

∫
fdv =

∑
A⊂N

(∧
i∈A

f(i)

)
mv(A)

= a1x1 + a2x2 + · · ·+ anxn

+a1,2(x1 ∧ x2) + a1,3(x1 ∧ x3) + · · ·+ an−1,n(xn−1 ∧ xn)

+a1,2,3(x1 ∧ x2 ∧ x3) + a1,2,4(x1 ∧ x2 ∧ x4) + · · ·+ an−2,n−1,n(xn−2 ∧ xn−1 ∧ xn)

...

+a1,2,...,n(x1 ∧ x2 ∧ · · · ∧ xn) + a0.

The definitions of multiplication IE integral model are similar to Choquet IE
integral model. It is IE integral model adopted multiplication as n-are operation.
This integral corresponds with the multi-linear extension defined by G. Owen[16].

Definition 10 (Multiplication IE Integral Model). Let a0, a1, . . . , an,
a1,2, . . . , a1,2,...,n ∈ R. Multiplication IE integral model is defined by

y = Π

∫
fdv =

∑
A⊂N

{∑
B⊃A

(
(−1)|B\A| ∏

i∈B

f(i)

)}
v(A)

= a1

∑
I⊃{1}

(
(−1)|I\{1}|

∏
i∈I

xi

)
+ · · ·+ an

∑
I⊃{n}

(
(−1)|I\{n}| ∏

i∈I

xi

)

= a1,2

∑
I⊃{1,2}

(
(−1)|I\{1,2}|

∏
i∈I

xi

)
+ · · ·+ an−1,n

∑
I⊃{n−1,n}

(
(−1)|I\{n−1,n}| ∏

i∈I

xi

)
...

+a1,2,...,n(x1x2 · · ·xn) + a0,

and Möbius type Multiplication IE integral model is as follows:

y = Π

∫
fdv =

∑
A⊂N

(∏
i∈A

f(i)

)
mv(A)

= a1x1 + a2x2 + · · ·+ anxn

+a1,2(x1 · x2) + a1,3(x1 · x3) + · · ·+ an−1,n(xn−1 · xn)
+a1,2,3(x1 · x2 · x3) + a1,2,4(x1 · x2 · x4) + · · ·+ an−2,n−1,n(xn−2 · xn−1 · xn)
...

+a1,2,...,n(x1 · x2 · · ·xn) + a0.



Rescaling for Evaluations Using Inclusion-Exclusion Integral 289

The definitions of Dombi’s IE integral model are also similar to other IE integral
models, but Dombi’s T -norm is defined on [0, 1]2, so that we have to normalize
explanatory values within [0, 1].

Definition 11 (Dombi’s T -norm IE Integral Model). Let a0, a1, . . . ,
an, a1,2, . . . , a1,2,...,n ∈ R. Let f ′ = (x′1, x

′
2, . . . , x

′
n) be a [0, 1] normalized f , in

other words,

f ′(i) =
f(i)−

∧
f(i)∨

f(i)−
∧
f(i)

,

where there are m data set and
∨
f(i) and

∧
f(i) are the maximum and the

minimum values of m f(i). Then Dombi’s integral model is defined by Dombi’s
IE integral model is defined by

y=(D)

∫
f ′dv =

∑
A⊂N

{∑
B⊃A

(
(−1)|B\A| ⊙

i∈B

f ′(i)

)}
v(A)

=a1

∑
I⊃{1}

(
(−1)|I\{1}|

⊙
i∈I

x′
i

)
+ · · ·+ an

∑
I⊃{n}

(
(−1)|I\{n}| ⊙

i∈I

x′
i

)

=a1,2

∑
I⊃{1,2}

(
(−1)|I\{1,2}|

⊙
i∈I

x′
i

)
+ · · ·+ an−1,n

∑
I⊃{n−1,n}

(
(−1)|I\{n−1,n}| ⊙

i∈I

x′
i

)
...

+a1,2,...,n(x
′
1 � x′

2 � · · · � x′
n) + a0,

where . is Dombi’s T -norm, and Möbius type Dombi’s IE integral model is as
follows:

y = (D)

∫
f ′dv =

∑
A⊂N

(⊙
i∈A

f ′(i)

)
mv(A)

= a1x
′
1 + a2x

′
2 + · · ·+ anx

′
n

+a1,2(x
′
1 � x′

2) + a1,3(x
′
1 � x′

3) + · · ·+ an−1,n(x
′
n−1 � x′

n)

+a1,2,3(x
′
1 � x′

2 � x′
3)+a1,2,4(x

′
1 � x′

2 � x′
4) + · · ·+ an−2,n−1,n(x

′
n−2 � x′

n−1 � x′
n)

...

+a1,2,...,n(x
′
1 � x′

2 � · · · � x′
n) + a0.

Concerning to Möbius type models, assuming v k-additive measure, we can re-
duce the number of terms from 2n to

∑k
γ=1 nCγ.

3 Rescaling of Data – Our Proposal Methods

In this section, we discuss preprocessing of input data, which are explanatory
variables in our case. Explanatory variables have deviation in the distribution
depending on each special quality. We give an example.
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Example 1. On subjective evaluation of video quality, a model has been rec-
ommended by Telecommunication Standardization Sector of the International
Telecommunication Union(ITU-U) as J.247 Annex A[17]. It’s explanatory val-
ues are

x1 := overall noize,

x2 := degradation caused by block distortion,

x3 := degradation associated with blurring,

x4 := local spatial degradation,

x5 := freeze degradation,

which all are objective values and human subjective evaluation of video quality y
is predicted by

y = a1x1 + a2x2 + a3x3 + a4x4 + a5 log10(x5)

+a6(a1x1 + a2x2 + a3x3 + a4x4) log10(x5) + a0

= a1x1 + a2x2 + a3x3 + a4x4 + a5x
′
5 (1)

+(a1a6)x1x
′
5 + (a2a6)x2x

′
5 + (a3a6)x3x

′
5 + (a4a6)x4x

′
5 + a0,

where x′5 := log10(x5).

We can regard the model as the multiple IE integral model with 2-additive
measure considering that coefficients of x2x3, x2x4, . . . , x3x4 are vanished. The
model specialize in subjective video quality estimation and is based on experi-
ence. Explanatory variable x5 is rescaled by function Res(x) = log10 x. Values of
x5 largely concentrate to a small interval so that rescaling them by the increasing
function γ(x) = log10 x is reasonable for the sake of dispersing them. We propose
two methods for determining increasing rescaling function using training data
of explanatory values.

Definition 12 (Our Proposed Method 1, Rearrangement Method). Let
x1, x2, . . . , xm be training data of an explanatory value.

1. Rearrange x1, x2, . . . , xm in ascending order, that is, let x1 ≤ x2 ≤ · · · ≤ xm.
2. Let ψ := (xm − x1)/(m− 1).
3. Let m + 2 points X0 := (x1 − ψ, 0), X1 := (x1, 1), X2 := (x2, 2), · · · , Xm :=

(xm,m), Xm+1 := (x1 + ψ,m+ 1). If xj = · · · = xj+γ, then let Xj = · · · =
Xj+k := (xj , j + k/2).

4. Define Res(x) on R by X0, · · · , Xm and their linear interpolation.

Definition 13 (Our Proposed Method 2, Cumulative Frequency Dis-
tribution Method). Let x1, x2, . . . , xm be training data of an explanatory
value.

1. Rearrange x1, x2, . . . , xm in ascending order, that is, let x1 ≤ x2 ≤ · · · ≤ xm.
2. Make a graph of cumulative frequency distribution of data.
3. Let 2 points X0 := (2x1 − xm, 0), Xm+1 := (2xn − x1,m+ 1).
4. Define Res(x) on R by the graph of cumulative frequency distribution, X0,
Xm and their linear interpolation.
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4 Experimentation

We analyze real data sets of human subjective evaluations on video quality in Ex-
ample 1 to verify the validity of our proposalmethods.We prepare 1139data sets of
human subjective evaluations on video quality. Each data set (y, x1, x2, x3, x4, x5)
is consist of one response variable which is subjective evaluations on video quality
and five explanatory values, that is, n = 5 . Using 500 data sets of 1139 data sets,
we determine each values of the parameters, then we estimate values of response
variable using 500 data sets of other 639 data sets.

4.1 Regression Analyses Models

We adopt the following four models.

1. MLR Model multiple linear regression model:

y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a0.

2. 2-MCIEI Model 2-additive Möbius type Choquet IE integral model:

y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5

+a1,2(x1 ∧ x2) + a1,3(x1 ∧ x3) + a1,4(x1 ∧ x4) + a1,5(x1 ∧ x5) (2)

+a2,3(x2 ∧ x3) + a2,4(x2 ∧ x4) + a2,5(x2 ∧ x5) + a3,4(x3 ∧ x4)
+a3,5(x3 ∧ x5) + a4,5(x4 ∧ x5) + a0.

3. 2-MMIEI Model 2-additive Möbius type multiplication IE integral model
which is the model replaced ∧ with multiplicative operator in (2).

4. 2-MDIEI Model 2-additive Möbius type Dombi’s IE integral model which
is the model replaced ∧ with Dombi’s T -norm,. in (2). We set the parameter
θ = 2.5. Explanatory values, x1, . . . , x5 have to be noralized in [0, 1].

4.2 Rescaling Methods

We attempt non-rescaling and two rescaling methods, rearrangement method
(Rearrangemethod)andcumulative frequencydistributionmethod(CFDmethod)
for each models. We also Therefore there are twelve pattern of combinations of
models and rescaling methods. Besides we also adopt the model ITU-U recom-
mended (1).

4.3 Results

Using 500 data sets, we determine each values of the parameters which minimize
mean square error, then we estimate values of response variable using other 500
data sets. We remark that obtained values as the parameters of 2-MCIEI model,
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2-MMIEI model, 2-MMIEI model and 2-MDIEI model are not generally non-
additive measure. They don’t satisfy non-negativity or monotonicity in general.
We compare these nine methods with mean square error(MSE) of each estimated
values ŷj and corresponded response variables of data yj :

MSE =
1

500

500∑
j=1

(yj − ŷj)2
yj

.

Table 2. Mean square error(MSE)

MLR 2-MCIEI 2-MMIEI 2-MDIEI ITU-U
num. of parameters 6 16 16 16 6

non-rescaling 0.3917 0.3037 0.3176 0.2798
Method 1 Rearrange 0.3065 0.2614 0.2798 0.2885 0.2938
Method 2 CHD 0.2976 0.2422 0.2577 0.2493

Our result is shown in table 2 which indicates the validity of rescaling by our
both proposed methods comparing with non-rescaling and also ITU-U model.
ITU-U model is empirically obtained. And whereas our rescaling methods enable
us to construct a precise model in algorithmically way.

5 Conclusions

We have examined the validity of the proposed methods applying to the estima-
tion for subjective evaluation with large reliable data. We may go on from the
results of the examination to the conclusion that our proposed rescaling methods
are valid for any regression analyses models. Especially, our rescaling methods
is considered that an excellent effect is obtained in the Choquet integral model,
because in the case of the Choquet integral model,

1. it can be difficult to retain independency among values. For example, in
an extreme case that all data satisfies x1 < x2 < · · · < xn, then the val-
ues f(1), f(1) ∧ f(2), . . . , f(1) ∧ · · · ∧ f(n) are completely same. In the case
that there are some data depending on other data, we cannot estimate the
parameters at all. And

2. minimum operation of explanatory values means their comparison, so that
we have to make their scales same range. Using method 2, it is automatically
realized.

The future plans are

1. studying properties of operators using in IE integral model, and find well-
suited operators to our two rescaling methods. and

2. applying our methods to various real data and also investigating other con-
ventional models of various subjective evaluation problems which can be
interpreted as rescaling to verify validity of our rescaling methods.
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Construction of a Bi-capacity and Its Utility

Functions without any Commensurability
Assumption in Multi-criteria Decision Making

Christophe Labreuche
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1 avenue Augustin Fresnel

91767 Palaiseau Cedex - France

Abstract. We consider a multi-criteria evaluation function U defined
over a Cartesian product of attributes. We assume that U is written as
the combination of an aggregation function and one value function over
each attribute. The aggregation function is assumed to be a Choquet
integral w.r.t. an unknown bi-capacity. The problem we wish to address
in this paper is the following one: if U is known, can we construct both
the value functions and the bi-capacity? The approaches that have been
developed so far in the literature to answer this question in an analytical
way assume some commensurability hypothesis. We propose in this paper
a method to construct the value functions and the capacity without any
commensurability assumption. Moreover, we show that the construction
of the value functions is unique up to an affne transformation.

Keywords: Choquet integral, bi-capacity, commensurability, bipolarity.

1 Introduction

One of the most widely used model in decision theory is the weighted sum. The
overall value is then written as a weighted sum of value functions on each at-
tribute. This model has been extensively studied in the context of decision under
uncertainty [1,2] and multi-criteria decision making [3]. The main drawback of
this model is that it assumes the independence among the criteria. The Choquet
integral which subsumes the weighted sum, has been used in decision theory
to overcome the limitation of the weighted sum [4]. The Choquet integral is a
versatile aggregation function that has been applied to Multi-Criteria Decision
Analysis [5] and Data fusion. Its main interest lies in its ability to represent
interaction among the attributes. The overall value for this model is written
as the Choquet integral of value functions on each attribute. The model of the
Choquet integral has been extended to represent bipolar decision behaviour [6].
Conditional relative importance is an example of such decision strategy. A bipo-
lar scale is characterized by a neutral element that is neither good nor bad. A
bipolar Choquet integral is described by a bi-capacity.

Unlike the weighted sum, the use of the Choquet integral implies that the
scales representing the attributes are commensurate. There are very few works

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 294–303, 2014.
c© Springer International Publishing Switzerland 2014



Construction of a Bi-capacity and Its Utility Functions 295

in which both the Choquet integral and the value functions are constructed in an
analytical way without making any a priori assumption about commensurability.
One can mention reference [7] which considers the case of a Choquet integral.
The aim of this paper is to extend this approach to bipolar Choquet integrals.

In [8], the neutral element of a bipolar scale is determined under the knowledge
that the decision maker satisfies a special decision strategy called conditional
relative importance between criteria. In this work, by analyzing the non linear
decision strategies represented in the overall utility function, it is possible to
identify the neutral value in the value functions. This idea will be used and
extended in this paper.

The main idea of this paper is now summarized. Commensurability between
the criteria is required for the bipolar Choquet integral since this aggregation
function is based on a ranking of the values of the criteria. Yet, the bipolar
Choquet integral is a piecewise weighted sum function, in which the weights
of the criteria are the same whenever the criteria keep the same sign and are
ranked in the same order. Considering two criteria i and k, the weight of criterion
i depends on the relative utilities on criteria i and k. This means that, if the value
xk of criterion k varies and the other criteria are fixed, then one may observe that
the weight of criterion i suddenly changes when the utility on criterion k is equal
to the utility on criterion i or to the opposite of the utility on criterion i. Hence,
from an element xi on attribute i, one can identify two elements x1k and x2k. The
neutral level over an attributeXi can be uniquely identified as the single value for
which x1k = x2k. This construction does not work if the weight of criterion i does
not depend on criterion k. If this holds for any value on the other criteria, one
can show that the criteria i and k are independent. Applying this construction
to any pair i, k of criteria, one obtains a partition of the set of criteria. In each
set, the criteria interact one with another, and it is thus possible to construct
vectors of values on the attributes that are commensurate. There is complete
independence between the criteria of any two sets in this partition. Hence one
cannot ensure commensurability between two sets in the partition. But this is
not a problem since the bipolar Choquet integral is additive between groups
of criteria that are independent. When the neutral elements are obtained and
commensurate reference elements are identified, then the utility functions and
the bi-capacity can be derived by extending the MACBETH methodology [9].

The layout of the paper is as follows. Our major difficulty in the construction
of the value function is to construct two reference values on each attribute that
are commensurate. This is done in Section 4, based on the construction that we
have just presented. When two sequences of commensurate values are obtained,
we are able to construct the value functions and the bi-capacity by generalizing
the approach of [10] to the case when the commensurability is attained only
within each set in a partition of the criteria (see Section 5).

2 Notation and the Choquet Integral on a Bipolar Scale

Consider a problem of selecting one option among several, where each option
is described by several attributes. N = {1, . . . , n} is the set of attributes and
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the set of possible values of attribute i ∈ N is denoted by Xi. Options are thus
elements of the product set X := X1 × · · · ×Xn. We are looking at a numerical
representation U of the option in the following form:

U(x) = F (u1(x1), . . . , un(xn)) (1)

where F : RN → R is the aggregation function and ui : Xi → R are the utility
functions.

2.1 Choquet Integral

A capacity (also called fuzzy measure) on a set N of criteria is a set function σ :
2N → [0, 1] such that σ(∅) = 0, σ(N) = 1 and σ(A) ≤ σ(B) for all A ⊆ B ⊆ N .

The Choquet integral of x = (x1, . . . , xn) ∈ [0, 1]n defined w.r.t. a game σ has
the following expression [11] :

Cδ(a1, . . . , an) =

n∑
i=1

(
aτ(i) − aτ(i−1)

)
σ ({ν(i), · · · , ν(n)}) , (2)

where aτ(0) := 0 and ν is a partition on N such that aτ(1) ≤ aτ(2) ≤ · · · ≤ aτ(n).
The Choquet integral has been proved to be able to model both the importance
of criteria and the interaction between criteria.

2.2 Bi-capacity

A bipolar scale is characterized by a neutral element, demarcating attractive and
repulsive elements. Th neutral level on attribute i is noted Oi. It is characterized
by ui(zeroi) = 0. Let

Q(N) = {(S, T ) ∈ P(N)× P(N) | S ∩ T = ∅}

A bi-capacity is a function μ : Q(N)→ R satisfying [12]: (i) S ⊆ S′ ⇒ μ(S, T ) ≤
μ(S′, T ); (ii) T ⊂ T ′ ⇒ μ(S, T ) ≥ μ(S, T ′); (iii) μ(∅, ∅) = 0, μ(N, ∅) = 1,
μ(∅, N) = −1.

The first two properties depict increasingness. μ(S, T ) is interpreted as the
overall assessment of the ternary act (1S ,−1T , 0−S∪T ) taking value 1 on at-
tributes in S, value −1 on attributes in T and value 0 on the remaining
attributes.

The Choquet integral w.r.t. a bi-capacity has been proposed in [12]. Let a ∈
RN , N+ = {i ∈ N, ai ≥ 0} and N− = N \N . Define the capacity σ by

∀S ⊆ N , σ(S) := μ
(
S ∩N+, S ∩N−

)
.

Then the Choquet integral w.r.t. μ is defined by:

BCμ(a) := Cδ (aN+ ,−aN−) . (3)
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3 Statement of the Problem

In this paper, we assume that we know the overall value U(x) for all x ∈ X . It
is supposed to take the form for all x ∈ X ,

U(x) = BCμ(u1(x1), . . . , un(xn)). (4)

The aim is to construct μ and u1, . . . , un without knowing O1,l dotrs,On.
For the sake of simplicity, we assume that

X = Rn,

and that the value functions are strictly increasing. Furthermore, we assume that
U is continuous and that for all i ∈ N , there exists x−i ∈ X−i such that

lim
xi→+∞

U(x) = +∞ and lim
xi→−∞

U(x) = −∞. (5)

4 Properties on Profiles of Commensurate Values

Consider i, k ∈ N with i �= k. We assume here that we know Oi. We wish to find
some properties allowing us to find xi, xk that are commensurate (i.e. such that
ui(xi) = uk(xk)) or skew-commensurate (i.e. such that ui(xi) = −uk(xk)). Set
ψ±i by

ψ+i μ(C
+, C−) = μ(C+ ∪ {i}, C−)− μ(C+, C−)

ψ−i μ(C
+, C−) = μ(C+, C− ∪ {i})− μ(C+, C−).

If U follows expression (4), then we have

εU

εxi
(x) =

⎧⎨⎩
ϕ ψεi μ(C

+ ∪ {k}, C−) u′i(xi) if uk(xk) > ui(xi)
ϕ ψεi μ(C

+, C−) u′i(xi) if ui(xi) > uk(xk) > −ui(xi)
ϕ ψεi μ(C

+, C− ∪ {k}) u′i(xi) if − ui(xi) > uk(xk)

where ϕ = + if ui(xi) > 0, and ϕ = − otherwise, and C+, C− ∈ Q(N \ {i, k}).
We have the following result.

Theorem 1. Let xi ∈ Xi. Then one of the following three cases holds:

(i) for all xi ∈ Xi \ {Oi}, there exists x−i,k ∈ X−i,k and x−k , x
+
k ∈ Xk such

that the function xk �→ ∂U
∂xi

(x) takes 3 values and is constant in the three

intervals (−∞, x−k ), (x
−
k , x

+
k ) and (x+k ,∞). Values x+k and x−k satisfy{

uk(x
+
k ) = ui(xi) and uk(x

−
k ) = −ui(xi) if ui(xi) > 0

uk(x
+
k ) = −ui(xi) and uk(x

−
k ) = ui(xi) if ui(xi) < 0

(6)

For xi = Oi, there exists x−i,k ∈ X−i,k and xΘk ∈ Xk such that the function
xk �→ ∂U

∂xi
(x) takes 2 values (and there does not exist x−i,k ∈ X−i,k such that

the function xk �→ ∂U
∂xi

(x) takes 3 values) and is constant in the two intervals
(−∞, xΘk) and (xΘk,∞). Then uk(x

Θ
k) = 0.
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(ii) for all xi ∈ Xi, there exists x−i,k ∈ X−i,k and xΘk ∈ Xk such that the
function xk �→ ∂U

∂xi
(x) takes 2 values (and there does not exist x−i,k ∈ X−i,k

such that the function xk �→ ∂U
∂xi

(x) takes 3 values) and is constant in the
two intervals (−∞, xΘk) and (xΘk,∞). Then

uk(x
Θ
k) ∈ {−ui(xi), ui(xi)}. (7)

(iii) for all xi ∈ Xi and all x−i,k ∈ X−i,k, the function xk �→ ∂U
∂xi

(x) is

constant. Then ∀ρ ∈ {+,−} and ∀(C+, C−) ∈ Q(N \ {i, k})

ψεiμ(C
+ ∪ {k}, C−) = ψεiμ(C

+, C−) = ψεiμ(C
+, C− ∪ {k}). (8)

The situation proved in Theorem 1 is summarized in Figure 1.
If we are in the situation (i) in Theorem 1, the two elements x−k and x+k that

are constructed from xi are denoted by Comm−i→k(xi) and Comm+
i→k(xi), where

Comm stands for commensurability. We are indeed able to find an element on
attribute k that is commensurate with the element xi on attribute i. Moreover
it is also apparent that xΘk = Ok.

Situation (ii) corresponds to a degenerate bipolar case. This occurs for in-
stance if we consider the Choquet integral w.r.t. a standard capacity.

Situation (iii) in Theorem 1 implies that criteria i and k are independent (see
(8)). This is an important consequence of this theorem.

�

�

∂U
∂xi

(x)

xk

1

uk
−1(ui(xi))uk

−1(−ui(xi))

z

z′

z′′

Fig. 1. Function xk �→ ∂U
∂xi

(x) with z := ε δεi μ(C
+, C− ∪ {k}) u′

i(xi), z′ :=

ε δεiμ(C
+, C−) u′

i(xi) and z′′ := ε δεiμ(C
+ ∪ {k}, C−) u′

i(xi)

From now on, we will assume that for every pair of criteria, only the two
situations (i) and (iii) can occur. Case (ii) is left for future research.

5 Construction of the Bi-capacity and the Value
Functions

We propose a step by step construction of the bi-capacity and the utility func-
tions, assuming that U is known. Following [10], it is possible to construct the
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value functions on a bounded unipolar scale through a Choquet integral with an
unknown capacity as soon as one can identify on each attribute two reference
levels O and G (G stands for Good) on each attribute. For unbounded bipolar
scales, one needs three reference levels B (B stands for Bad), O (the neutral and
G to construct a value function [6], with the property that ui(Gi) = 1 = −ui(Bi).

5.1 Determination of the Partition of Criteria

First of all, according to Theorem 1, two criteria i and k can either be make
commensurate (case (i)) or not (case (iii)). Hence the set N of criteria can
be partitioned into disjoint subsets such that one can construct commensurate
profiles in each subset. We introduce the Algorithm 1 to construct a partition T
of N .

Function getPartition() :
T ← ∅ and R ← N ;
While (R �= ∅) do

Select j ∈ R; S ← {j} and R ← R \ {j};
While (∃i ∈ S, k ∈ R such that situation (i) in Theorem 1 holds) do

S ← S ∪ {k}; R ← R \ {k};
done
T ← {T , S};

done
return T ;

End

Algorithm 1. Algorithm for the determination of the partition T

5.2 Determination of the Neutral Elements

By Theorem 1, if i, k are in situation (i), then the neutral elementOi can be easily
characterized: it is the unique xi ∈ Xi such that Comm−i→k(xi) = Comm+

i→k(xi).
One can easily design a dichotomy algorithm that returns an estimate of the
neutral element. The precise description of this algorithm is omitted due to
space limitation.

When S = {i} with S ∈ T , then the concept of a neutral element does not
exist and we fix Oi to any element in Xi.

5.3 Construction of the Value Functions on the Positive Part of the
Scales

We define G,B as any output of getCommensurateSequence(T ,O) (see Al-
gorithm 2). In the algorithm, getValue(j,Oj) returns a random element of Xj

above Oj . Theorem 2 below shows that the outputs of the algorithm have the
required property for being commensurate profiles with one above the neutral
element and the other one below the neural element.
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Function getCommensurateSequences(T ,O) :
For all S ∈ T do

Select i ∈ S;
xi ← getValue(j,Oj);
If (|S| = 1) then

yi ← null;
else

R ← {i};
While (∃i ∈ R,k ∈ S \R s.t. situation (i) in Theorem 1 holds) do

R ← R ∪ {k};
xk ← Comm+

i→k(xi);
yk ← Comm−

i→k(xi);
If (|R| = 2) then

yi ← Comm−
k→i(xk);

end If

done

end If

end For
return (x, y);

End

Algorithm 2. Determination of the commensurate reference profiles G,B

Theorem 2. Let T be the outcome of the function “getPartition” (see Algorithm
1), and (x, y) be the outcome of the function “getCommensurateSequence” (see
Algorithm 2). Then T forms a partition of N . For all S ∈ T , we have if |S| > 1{

∀i, k ∈ S ui(xi) = uk(xk) > 0,
∀i, k ∈ S ui(yi) = uk(yk) < 0.

Moreover if μ is a bi-capacity representing U , then

∀(C+, C−) ∈ Q(N) μ(C+, C−) =
∑
S∈T

μ(C+ ∩ S,C− ∩ S).

Consider first i ∈ S ∈ T with |S| > 1. Then the utility function on the positive
part of the scale is define as follows: for all xi ∈ Xi with xi ≥ Oi

v+i (xi) =
U(xi,O−i)− U(ON)

U(Gi,O−i)− U(ON )
. (9)

With this definition, we have the following normalization

v+i (Gi) = 1 and v+i (Oi) = 0.
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The utility function on the negative part of the scale is defined as follows: for
all xi ∈ Xi with xi ≤ Oi

v−i (xi) =
U(xi,O−i)− U(ON )

U(ON )− U(Bi,O−i)
. (10)

With this definition, we have the following normalization

v−i (Bi) = −1 and v−i (Oi) = 0.

Finally we set vi(xi) = v+i (xi) if xi ≥ 0 and vi(xi) = v−i (xi) otherwise.
When S = {i}, formula (9) is used to define vi(xi) for all xi ∈ Xi.

5.4 Identification of the Bi-capacity

For each S ∈ T , we define a bi-capacity mS on S, from B,O,G by

∀(C+, C−) ∈ Q(S) mS(C
+, C−) =

U(GC+ ,BC− ,O−C+∪C−)− U(ON)

U(GS ,O−S)− U(ON)
. (11)

We set m = {mS}S∈T .

5.5 Main Result

Theorem 3. Let us consider an overall value function U that takes the form
(4), where u1, . . . , un, μ (and also O1, . . . ,On) are unknown.

Let T ,O,G,B as defined previously, vi defined by (9) and (10), and m defined
by (11). Then for all x ∈ X

U(x) = U(ON )

+
∑
S∈T

(U(GS ,O−S)− U(ON))BCmS (vS(xS)),

where vS(xS) = (vi1 (xi1 ), vi2(xi2 ), . . . , vis(xis) if S writes S = {i1, i2, . . . , is}.
Let us consider two constructions 〈T ,O,G,B, v1, . . . , vn,m〉 and 〈T ′,O′,G′,B′,

v′1, . . . , v
′
n,m

′〉 from U . Then T ′ = T and m′ = m. Moreover, for all S ∈ T there
exists ΔS > 0 and βS ∈ R such that

If |S| > 1, ∀i ∈ S ∀xi ∈ Xi v′i(xi) = ΔSvi(xi), (12)

If |S| = 1, ∀i ∈ S ∀xi ∈ Xi v′i(xi) = ΔSvi(xi) + βS (13)

The previous result shows that the scales are ratio scales (given up to a dila-
tion) only for subsets S ∈ T such that |S| > 1. All compatible scales are identical
up to dilation. The renormalization are different in each set of the partition T .
Moreover, the capacities defined on each set of the partition are uniquely defined.



302 C. Labreuche

Lemma 1. Let T be a partition of N , and μ be a bi-capacity on N . Assume
that

∀(C+, C−) ∈ Q(N) μ(C+, C−) =
∑
S∈T

μ(C+ ∩ S,C− ∩ S).

Then for all a ∈ RN

BCμ(a) =
∑
S∈T

BCμ(aS , 0−S).

From the previous lemma, the Choquet integral is just the sum of the aggre-
gation functions over each S ∈ T . This is the form of the GAI network that
generalizes the additive value model [13].

Corollary 1. We consider a pair of commensurate profiles O,G such that∑
S∈T

(U(GS ,O−S)− U(ON )) = 1. (14)

It is always possible to construct profiles satisfying this relation.
Under the condition of Theorem 3, let us define a bi-capacity μ̂ over N by

∀S ∈ T ∀(C+, C−) ∈ Q(S)
μ̂(C+, C−) = (U(GS ,O−S)− U(ON ))mS(C

+, C−),

∀(C+, C−) ∈ Q(N) μ̂(C+, C−) =
∑
S∈T

μ̂(C+ ∩ S,C− ∩ S),

and we define v̂i by
v̂i(xi) = vi(xi) + U(ON ).

Then μ̂ is a capacity, and for all x ∈ X

U(x) = BCμ̂(v̂1(x1), . . . , v̂n(xn)).

Let us consider two constructions 〈T ,O,G,Bv̂1, . . . , v̂n, μ̂〉 and 〈T ,O′,G′,B′,
v̂′1, . . . , v̂

′
n, μ̂

′〉 satisfying (14). Then for all S ∈ T there exists ΔS > 0 and βS ∈ R
such that

If |S| > 1, ∀i ∈ S ∀xi ∈ Xi v̂′i(xi) = ΔS v̂i(xi),

If |S| = 1, ∀i ∈ S ∀xi ∈ Xi v̂′i(xi) = ΔS v̂i(xi) + βS ,

μ̂′(S, ∅) = μ̂(S, ∅)
ΔS

.

Condition (14) is the normalization condition. It implies that the
bi-cooperative game μ̂ that is constructed, is a bi-capacity.

Concerning the second part of the previous corollary, it says that if the scale v̂
is a ratio scale when coalition S ∈ T contrains at least two criteria. Moreover, if
v̂ is transformed, then the bi-capacity μ̂ of S shall be transformed by the inverse
of this transformation. As a whole the overall utility thus remains the same.
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6 Conclusion

One of the main difficulties in the application of the Choquet integral in multi-
criteria decision making is the necessity to make the value function commensu-
rate. This paper proposes an approach to construct the Choquet integral without
any prior commensurability assumption. The idea is that if the value of criterion
k varies and the other criteria are fixed, then one may observe that the weight
of criterion i suddenly changes when the value of criterion k is equal to that of
criterion i. This enables us to construct sequences of commensurate values on
the different attributes.

For future work, we shall consider the case (ii) in Theorem 1. We believe that
this will bring interesting links with the partially unipolar bi-capacities.
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Abstract. The paper presents three variants for multi-valued representation of 
neutrosophic information. These three representations are provided in the 
framework of multi-valued logics and it provides some calculation formulae  
for the following neutrosophic features: truth, falsity, neutrality, undefinedness, 
saturation, contradiction, ambiguity. In addition, it was defined net-truth,  
definedness, neutrosophic score and neutrosophic indeterminacy.  

Keywords: Neutrosophic information, multi-valued logic, truth, falsity,  
neutrality, undefinedness, saturation, ambiguity, contradiction, neutrosophic in-
determinacy. 

1 Introduction 

In the fuzzy representation of information proposed by Zadeh [19], the degree of truth 
is described by  while the degree of falsity is the negation of , namely . 
We extend the representation of fuzzy information to a three-valued one by defining 
the truth, falsity and ambiguity [11]: 

                                                  (1.1) 

            (1.2) 

     (1.3) 

with the partition:                    (1.4) 

Thus we have extracted three fuzzy information features and . The ambiguity 

represents the only one component of indeterminacy, namely . 
In the intuitionistic fuzzy representation of information proposed by Atanassov [1], 

the degree of truth is described by , the degree of falsity is described by  with 
the condition . We extend the representation of intuitionistic fuzzy infor-
mation to a four-valued one defining the truth, falsity, ambiguity and undefinedness 
[11]: 
 

      (1.5) 

T T TF −=1

),min( FTTt −=

),min( TFFf −=

),min(2 FTa =

1=++ fat

0=⋅ ft

ai =

T F
1≤+ FT

),min( FTTt −=
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     (1.6) 

      (1.7) 

      (1.8) 

with the partition:          (1.9) 

Thus, we have extracted four fuzzy information features and . The indeter-

minacy has two components: ambiguity and undefinedness, namely . 

The bifuzzy information is provided by the degree of truth  and the degree of falsi-
ty . Atanassov proposed a three-valued representation [2] defining the truth, falsi-
ty, and undefinedness: 

      (1.10) 

     (1.11) 

    (1.12) 

with the partition:                     (1.13) 

Also, for bifuzzy case, a penta-valued representation based on truth, falsity, undefi-
nedness, contradiction and ambiguity was proposed in [9], [11] and [12]: 

    (1.14) 

    (1.15) 

    (1.16) 

    (1.17) 

                  (1.18) 

with the fuzzy partition: 

     (1.19) 

and having the properties: , . The indeterminacy has three compo-

nents: ambiguity, undefinedness and contradiction, namely . 
The neutrosophic representation of information was proposed by Smarandache  

[15-18] and it is provided by the triplet (T,I,F): degree of truth, degree of indetermina-
cy and degree of falsity. Analyzing the components, we can observe, the bifuzzy pair 
has its own indeterminacy defined by similarity between T and F, by example 

. In this context, we have two values for indeterminacy: the first is ex-

plicit and the second is implicit. This fact could generate some confusions and the 
neutrosophic model could become inconsistent. By example, for (1,0,1) the explicit 

),min( TFFf −=

),min(2 FTa =

FTu −−= 1

1=+++ fuat

0=⋅ ft

uai +=

T
F

2

),min( FT
Tt −=

2

),min( FT
Ff −=

),max(1 FTu −=

1=++ fut

),min( FTTt −=

),min( TFFf −=

)1,min(1 FTu +−=

1)1,max( −+= FTc

|1|||1 −+−−−= FTFTa

1=++++ fcuat

0=⋅cu 0=⋅ ft

cuai ++=

||1 FTI −−=
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indeterminacy is 0 but the bifuzzy information has a contradictory nature and its inde-
terminacy is 1. Because of that, in this paper we will consider that the neutrosophic 
information is obtained adding the neutrality N  to the bifuzzy information (T,F). The 
triplet of neutrosophic information will be denoted with (T,N,F). This paper will rede-
fine for the neutrosophic information the features like truth, falsity, undefinedness, 
contradiction, ambiguity, indeterminacy, net truth, definedness, neutrosophic score and 
it introduces new features like neutrality and saturation. In the following, the paper has 
the structure: Section 2 presents the construction of net truth, definedness, neutrosophic 
score; Section 3 presents some calculation formulae for neutrosophic indeterminacy; 
Section 4 presents a tetra-valued representation based on truth, falsity, neutrality and 
undefinedness; Section 5 presents a penta-valued representation of neutrosophic infor-
mation based on truth, falsity, neutrality, saturation and undefinedness; Section 6 
presents a hepta-valued representation based on truth, falsity, neutrality, saturation, 
contradiction, ambiguity and undefinedness; Section 7 outlines some conclusions. 

2 The Net-Truth, Definedness and Neutrosophic Score 

We extend the notions of net truth and definedness from bifuzzy information to neu-
trospohic one. For bifuzzy information it was defined in [12] the net-truth and defi-
nedness .We will define the net-truth and definedness [14] in the following way: 

     (2.1) 

                (2.2) 

If the neutrosophic definedness is positive, the information is or over-defined, if it 
is zero, the neutrosophic information is complete and if it is negative, the information 
is incomplete. The pair provides a bi-valued representation of neutrosophic 

information. Combining these two components into a scalar, one obtains the neutro-
sophic score defined by: 

      (2.3) 

The neutrosophic score defines the following order relation: 

                                            (2.4) 

The proposed order relation (2.4) could be used in decision making procedures if the 
neutrosophic information is employed. 

3 The Neutrosophic Indeterminacy 

For neutrosophic indeterminacy, we will trace the Kosko idea for fuzziness calculation 
[6]. Kosko proposed to measure this information feature by a similarity function be-
tween the distance to the nearest crisp element and the distance to the farthest crisp ele-
ment. For neutrosophic information the two crisp elements are  and .  

τ
δ

N

FT

+
−=

1
τ

4
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||1 δ
τη

+
=
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We consider the following vector: . For and it 

results: and . We will compute the distances: 

   (3.1) 

            (3.2) 

The indeterminacy will be defined by the similarity between these two distances. 
Using the Czekanowskyi formula [4] it results the similarity and the indeterminacy: 

                         (3.3) 

                         (3.4) 

For  and  it results the intuitionistic fuzzy entropy [13]. For 
and , it results the fuzzy entropy proposed by Kaufman [5]. 

Using the Ruzicka formula [4] it results the similarity and indeterminacy formulae: 

    (3.5) 

     (3.6) 

For , it result the bifuzzy entropy [12]. For and , it results 
the fuzzy entropy proposed by Kosko [6]. We notice that the neutrosophic indetermi-
nacy is a strictly decreasing function in  and non-decreasing in and in

. Taking into account these properties we can construct other formulae, by 

example: 

          (3.7) 

      (3.8) 

         (3.9) 

4 Tetra-Valued Representation of Neutrosophic Information 

The three valued representation of bifuzzy information (1.10-1.12) will be extended for 
neutrosophic information adding the neutrality feature. Formulae (1.10-1.12) compress 

the unit square to a triangle with the vertices ,  and 

. Here, we will extend this compression from 2-dimensional space to  

3-dimensional one. We will compress the unit cube  (the primary space of  
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neutrosophic information) to a tetrahedron with the vertices , ,

, . We define the truth, falsity, neutrality and undefinedness 

[14]:  

           (4.1) 

      (4.2) 

            (4.3) 

     (4.4) 

 
These four parameters define a partition of unity.  

                 (4.5) 

 Having this representation, the neutrosophic information could be true, false, neu-
tral or undefined. The indeterminacy has three components: neutrality, undefinedness 
and ambiguity: 

       (4.7) 
where ambiguity is defined by: 

                  (4.8) 

The formulae (4.1 - 4.4) provide a way to transform any neutrosophic information 
into an incomplete one, because from (4.5) it results: 

                     (4.9) 

We must mention that, for , one obtains (1.10), (1.11) and (1.12) proposed by 
Atanassov for transforming a bifuzzy information into an intuitionistic one [2]. 

We define the union, intersection and the complement operators. 
• The Complement: 

For any  the complement is defined by: 

                             (4.10) 

For the union and intersection we will use the formulae proposed in [8], [10]. The 
formulae proposed here are different from those proposed by Ashbacher [3]. 

• The Union 
For  and  

                            (4.11) 

                        (4.12) 

                        (4.13) 

                      (4.14) 
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• The Intersection: 
                   (4.15) 

                   (4.16) 

    (4.17) 

      (4.18) 

where  represents any Frank t-norm [7] and  represents its t-conorm. The above 
remark is valid for all the next sections of this paper where the symbols ,  are 
used. 
Finally, after union or intersection operations, we can obtain the values for the prima-
ry space, using the following inverse transform from the tetrahedron to the unit cube: 
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   (4.21) 

5 Penta-Valued Representation of Neutrosophic Information 
Based on Definedness  

We will compress the unit cube  to a double tetrahedron with the vertices 
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the base while the undefinedness point  is under the base. Using the neutrosophic 

definedness (2.2), we define the truth, falsity, neutrality, saturation and undefinedness 
by: 
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          (5.6) 

These five parameters verify the condition of fuzzy partition, namely:  

  (5.7) 

Having this representation, the neutrosophic information could be true, false, neutral, 
saturated and undefined. In the first step, for this representation the indeterminacy has 
four components: neutrality, saturation, undefinedness and ambiguity: 

  (5.8) 

where ambiguity is defined by: 

   (5.9) 

In the second step, we extract the contradiction  from the pair  by 

 while saturation and ambiguity become , 

and we obtain for indeterminacy a five-valued representation: 

     (5.10) 
We define the union, intersection and the complement operators. 

• The Complement: 
For any  the complement is defined by: 

                  (5.11) 

For the union and intersection we will use the formulae proposed in [9]. 
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6 Hepta-Valued Representation of Neutrosophic Information 
Based on Indeterminacy Decomposition 

The penta-valued representation of bifuzzy information (1.14-1.18) will be extended 
for neutrosophic information adding neutrality and saturation. Using the indetermina-
cy defined by (3.7) we will define a hepta-valued representation base on the following 
features: truth t, falsity f, ambiguity a, contradiction c, saturation s, neutrality n and 
undefinedness u. Firstly, we define the following auxiliary parameters: 

     (6.1) 

           (6.2) 

Using the net-truth, we define de index of truth and the index of falsity: 

        (6.3) 

          (6.4) 

We obtained the following three-valued fuzzy partition: 
       (6.5) 

The indeterminacy will have the same structure with that defined by (5.10). In the 
next, we will identify the components of indeterminacy: ambiguity, contradiction, 
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with the following property: 
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• The Complement: 
For any  the complement is defined by: 

                     (6.13) 

For the union and intersection we will use the formulae proposed in [9]. 
• The Union 

For  and  

         (6.14) 
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     (6.17) 

         (6.18) 

• The Intersection: 
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The complement operators defined by (4.10), (5.11) and (6.13) are compatible with 
the complement defined by Ashbacher [3]. 

7 Conclusion 

Three multi-valued representations of neutrosophic information are presented in  
this paper, mainly in order to model features of its certainty and uncertainty. All the 
proposed representations verify the condition of fuzzy partition and are accompanied  
by operators like complement, union and intersection. It was extended the concepts  
of certainty like truth and falsity, the concepts of uncertainty like undefinedness,  
ambiguity and contradiction. In addition, it was defined new concepts related to the 
particularity of neutrosophy like saturation, neutrality, neutrosophic score and neutro-
sophic indeterminacy. 

The particularization of the obtained formulae leads to some formulae that already 
exist in the specialty literature and are related to bifuzzy information, intuitionistic 
fuzzy information and fuzzy one. This fact proves the effectiveness of our approach. 
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Abstract. This paper addresses the task of information scoring seen as
measuring the degree of trust that can be invested in a piece of infor-
mation. To this end, it proposes to model the trust building process as
the sequential integration of relevant dimensions. It also proposes to for-
malise both the degree of trust and the process in an extended multival-
ued logic framework that distinguishes between an indiffierent level and
the actual impossibility to measure. To formalise the process, it proposes
multivalued combination operators matching the desired behaviours.

Keywords: trust, information quality, many-valued logic, information
scoring, trust building.

1 Introduction

Amongst the diverse facets of information scoring, trust holds a central role.
Qualifying the degree of trust that can be put in a piece of information can
mean either evaluating its certainty – i.e. the reality of the fact it reports [1–3] –
or the extent to which the rater is convinced, based on the process by which he
forms an opinion about a hitherto unknown piece of information [4, 5].

Existing models differ in the dimensions they take into account to assess
the degree of trust but also in the formal paradigms they use to represent it.
Among the existing criteria, some examples are reliability, competence, sincerity,
intention of the source, credibility, understood as confirmation by other sources,
or plausibility, defined as likelihood with respect to a priori knowledge of the
piece of information [1–6].

Information scoring as evaluation of trust has been formalised using both sym-
bolic and numeric frameworks to evaluate each dimension and combine them us-
ing various aggregation operators to yield the final degree of trust. The original
military model uses two discrete graded scales, respectively measuring source
reliability and information credibility [1]. The aggregation is simply a concate-
nation of the two resulting symbols. This leads to difficulty in comparisons,
hindering the evaluation’s legibility [7]. Other models present the degree of trust
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as a single numerical value, a coefficient between 0 and 1, in either possibil-
ity [3] or evidence [6, 8, 9] theory frameworks. In the former, for instance, the
dimensions are evaluated using possibility distributions, their aggregation relies
on discounting, conjunctive and reinforcement operators [3].

This paper proposes to formalise information scoring in an extended multival-
ued logic framework: first off, as in the numerical approaches mentioned above,
a unique degree is returned; second, as in the symbolic approach, it is defined
on a discrete graded scale, which is further clarified with linguistic labels speci-
fying the degrees’ meaning, for all measured quantities [5]. Indeed, multivalued
logic offers formal tools and concepts [10] which allow these improvements of the
model’s legibility. The proposed extension of the multivalued framework arises
in the introduction of an additional degree modelling the case where a dimension
cannot be quantified, through lack of knowledge, thus distinguishing it from the
case where the evaluation leads to a neutral, indifferent value.

Each dimension mentioned above is individually evaluated in this extended
multivalued framework. The resulting level of trust is also measured in this
framework by successive integration of the dimensions: this paper proposes to
model the trust building process as the sequential projection of the activation
along selected dimensions on the current level of trust. To achieve this, the
required properties for information scoring process projection operators are dis-
cussed and corresponding functions are proposed.

The paper is organised as follows: Section 2 presents the trust building process
as the sequential projection of dimensions on the level of trust. Section 3 presents
the proposed extended multivalued logic framework that distinguishes between
lack of knowledge and indifference. Sections 4 and 5 are dedicated to the two
types of combination operators identified. The paper then concludes with some
directions for future work.

2 A Model of the Trust Building Process

This section presents a general model of the process through which trust in a
piece of information is constructed. The principle of this model lies in updating
the trust value by the sequential projection of the dimensions which partake in
its evaluation. In particular, this section focuses on the attributes which will be
formalised in the following sections, such as the influence of dimension projection,
leading to specifications for the projection operators, as well as the difference
between unknown and neutral levels.

2.1 Trust Building as a Sequence of Projections

The model described in this paper dynamically measures trust as a score whose
value shifts with the consecutive consideration of different dimensions. These
factors are projected on the current score, resulting in an updated trust value:
trust-building is modelled as the consecutive integration of answers to different
questions. This principle is illustrated in Figure 1, discussed further below, where
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5 5 5 5

4 4 4 4

3 3 3 3

2 2 2 2

1 1 1 1

0 0 0 0

Fig. 1. Sequential projection of dimensions on trust

the shaded disks represent the current level of trust and the arrows four factors
consecutively influencing its evolution. Obviously, the questions should not be
redundant, nor should they be dependent. They should span different levels of
specificity, from the most general, that is depending only on the context, not on
the considered piece of information, to the particular, directly dependent on the
informational content.

This principle is put in use in [5], where the dimensions are selected so as to
consecutively answer the following questions: ‘Who is telling me?’, which cor-
responds to source reliability; ‘What does he know about the topic?’, to source
competence; ‘How likely does it seem?’, to information plausibility; ‘Is anyone
else reporting it?’, to information credibility. The first two relate to the source
where the other two depend on the informational content. Furthermore, the
evaluation of the source’s reliability, how trustworthy the source is, is constant,
whatever the considered piece of information, where competence depends both
on the source and the topic, so is more specific to the piece of information. Plau-
sibility, taken here as compatibility with the rater’s knowledge, is contextual
and subjective in that it depends both on the piece of information and the rater.
Credibility is completely contextual, since it is taken as a degree of confirma-
tion of the considered piece of information. The four dimensions therefore span
the divide from source to information, general to contextual and subjective to
objective, ensuring they are neither redundant nor dependent.

2.2 Combining the Dimensions: Influence of the Projections

Once the dimensions participating in the evaluation are selected, one must look
at how their intensities are combined and the order in which they are considered.
In order to model the trust building process, we propose to order the dimensions
from the most immutable to the least, that is from the most general to the most
specific, both content and contextwise. The idea behind this ordering is that the
evaluation of trust starts with global dimensions and is progressively corrected
with respect to the specifics of the considered piece of information.

These consecutive corrections entail that most projections have an abating
influence. For instance, the model presented in [5] and briefly summarised above
suggests that the evaluation starts with source reliability, the most general di-
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mension as its value stays the same regardless of the content. It is then adapted
to the assertion by the projection of source competence, this adaptation result-
ing in either a lower updated value or, at most, leaving it unchanged: faced with
a trustworthy source, the fact that he is a specialist on the topic should not
increase one’s trust. Rather, if he were to talk about something which he knew
nothing about, would one’s doubts begin to rise. Similar arguments also apply
to information plausibility. For this reason, an abating operator is needed to
project most dimensions onto trust.

However, a second type of operator is necessary to model credibility, as this
particular dimension can have both an increasing and weakening influence on
the trust level. Indeed, the final step in a trust building process is to try to
cross-check the informational content, i.e. to find confirmation or invalidation.
Credibility appears in most existing models [1, 3, 5], usually, as the final projected
dimension. This is in agreement with the specificity ordering proposed above, as
cross-checking is both content and context dependent. Another argument for the
credibility being the final step in the process is that its projection depends on
the score of the confirmation which, thus, needs to have already been computed.
Regarding credibility’s influence, confirmations increase the trust level where
invalidations weaken it, which explains the need for a specific cross-checking
operator rather than the abating operator which, by definition, is one-way.

These two types of operators are illustrated in Figure 1, where the colour
intensity of each arrow corresponds to the level to which each dimension is
measured. The second and third sets of arrows, which all – except for the ones
coming from the disks labelled 0, discussed in the following subsection – point
downwards, are examples of abating operators. The final set of arrows, in both
directions, is an example of the cross-checking operator.

2.3 Preserving the Expressiveness of Ignorance

The proposed sequential process relies on evaluations being made. However,
there may be situations in which it is impossible to measure a particular dimen-
sion. It may, for instance, be impossible to evaluate an as yet unknown source’s
reliability, for lack of knowledge. Such a situation should not be confused with
one in which a source is ‘neither trustworthy nor untrustworthy’, which conveys
some knowledge on the matter. The latter is usually in the middleground of
the evaluation scale. Distinguishing the two cases is necessary when projecting
dimensions, as ignorance should not beget knowledge: if a dimension cannot be
measured, its projection should not influence the outcome.

For this reason, a specific level is used in [1], representing the impossibility to
measure. Likewise, in the example shown in Figure 1, this partly accounts for the
horizontal arrows: projection of an impossible to measure dimension does not
change the score, regardless of its current value. In addition, the disks labelled 0
represent a situation where the level of trust is unknown, i.e. none of the previous
dimensions have been measured. In the absence of knowledge, the first dimension
which can be evaluated moves the score out of ignorance. Note that, if evaluation
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of trust was possible at any stage, it remains possible in all subsequent stages.
Thus, no arrow points to a disk marked 0.

3 Extended Multivalued Logic Framework

The multivalued logic paradigm is based on a symbolic, discrete truth scale
and offers a formal framework to manipulate and combine these degrees [10]. It
constitutes a candidate framework to model the trust building process described
in the previous section, addressing the clarity and legibility concerns: the discrete
scales used both for measuring the dimensions and the level of trust, such as that
presented in Figure 1, can be mapped to multivalued logic degrees. Moreover,
multivalued logic combination operators can help express trust as a projection
of dimensions in a single degree. However, to fully express all aspects of the
model, the multivalued logic paradigm needs to be able to distinguish between
an indifferent and an unknown degree.

After having recalled the essential characteristics of multivalued logic, this
section describes the proposed extension and discusses its properties.

3.1 Multivalued Logic

Multivalued logic models reasoning using the M truth degrees of a totally or-
dered set LM = {ν0, . . . , νM−1}, where να ≤ νβ ⇔ Δ ≤ β, coupled to an invo-
lutive negation satisfying De Morgan’s laws. The ordering property guarantees
all degrees in LM are comparable. They span, at a granularity varying with
M , the different levels of veracity they represent from ν0, meaning ‘false’, to
νM−1, for ‘true’. The switch between the two appears around the middle value
νM−1

2
, usually forced into the chosen scale by choosing an odd M . Furthermore,

all να’s come with a semantic label increasing their legibility.
On top of the expressiveness and legibility of the truth scale, multivalued

logic offers tools to reason with truth degrees, through operators that generalise
conjunction, disjunction or implication [10]. It also has operators for symbolic
arithmetic, beyond a purely logic interpretation [11].

3.2 Introduction of an Ignorance Degree: τ?

Discrete scales used for information scoring can be mapped to multivalued logic
degrees. In accordance with what was discussed in the previous section and in
Section 2.3, the indifferent value can be mapped to νM−1

2
, leaving the question

of representing the absence of knowledge.
We propose to extend the multivalued logic framework by introducing an

additional degree, denoted ν?, in order to distinguish between ignorance and
indifference. We propose to define this degree by the following properties, where
. denotes any multivalued operator:

1. ν? �∈ LM

2. ∀να ∈ LM , ν? . να = να . ν? = να

3. ¬ν? = ν?
4. ν? . ν? = ν?
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The first property sets ν? apart from other degrees, not submitting it to the same
ordering constraints as να ∈ LM : an element whose truth cannot be evaluated
cannot be compared to an element whose truth is known, no matter how true.
Therefore, we propose to define ν? as an exception to the total order rule and of a
different nature than other degrees. The second property defines ν? as a neutral
element for all operators, in particular for both conjunctions and disjunctions,
which implies it does not preserve the order on LM . The last two properties
define the behaviour of ν? when combined with itself.

It can be shown easily that ν? preserves some essential properties of a De Mor-
gan algebra, specifically the involution of negation and De Morgan’s laws, but
contradicts the axioms of identity, complement as well as the absorption law.

3.3 Characteristics of the Extended Multivalued Framework

We propose that truth be evaluated on LM extended with ν?, which we write
Le
M = LM ∪ {ν?}. This section shows how it offers an essential gain in expres-

siveness, illustrating it in the information scoring application.
As already stated, ν? is not comparable to any degree, which may seem con-

tradictory with the sought qualities of truth degrees. However, the localised loss
of comparability in Le

M is not an issue as ν? never needs be compared to any
degree, and, in fact, satisfies an expectation: a fact whose truth is given as ν? is
neither more, nor less true than any other. For this same reason, the introduc-
tion of ν? places the comparison between a ‘half true’ fact and another back in
its rightful place in LM ’s semantic hierarchy.

When constructing or modifying a logic framework, one should take heed of
the impact on the consistency of the resulting system, i.e. the impossibility to
infer a contradiction. In the case of multivalued logics, this property is already
relaxed since the laws of excluded middle and noncontradiction do not hold. Now
adding ν? does not introduce inconsistency: because ν? is defined as a neutral el-
ement for all combination operators, any inconsistency proved after its inclusion
will persist should it be removed.

4 Multivalued Abating Combination Operator

The previous section defined the extended formal framework Le
M . This section

and the next propose operators for manipulating degrees in Le
M and, more specif-

ically, operators exhibiting the properties detailed in Section 2 to model trust
building. These operators are mappings Le

M × Le
M −→ Le

M with current score
and evaluation of the dimension for inputs and updated score for output.

This section focuses on the abating operator whose necessity is detailed in
Section 2. A formal description of the required properties is given before a cor-
responding function is defined.

4.1 Formal Description of the Required Behaviour

The properties needed for an abating operator F : Le
M × Le

M −→ Le
M are:
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− ∀να, νβ ∈ LM F (να, νβ) ≤ να
− ∀να ∈ Le

M F (ν?, να) = F (να, ν?) = να
− ∀να, νβ , νγ ∈ LM if να ≤ νβ , then F (να, νγ) ≤ F (νβ , νγ)

and F (νγ , να) ≤ F (νγ , νβ)
The first property guarantees the abating behaviour, by imposing the updated

value is at most equal to the current value να. The second property defines ν? as
a neutral element of F : when the current score is still unknown, the value of the
projected dimension directly determines the updated score. Conversely, when
the level of the dimension cannot be measured, the score is not updated. The
final property ensures the operator is increasing in both its arguments. Indeed,
the higher the current score, the higher the updated one, for any correction;
reciprocally, for any given level of trust, the more the dimension is activated, the
higher the updated score.

4.2 Proposed Operator

In order to satisfy the properties listed in the previous subsection, one could
consider extending t-norms. Indeed, t-norms, in the regular multivalued case,
satisfy the first and third properties, leaving only the special case of ν?. How-
ever, t-norms have other properties, such as commutativity and associativity,
which are superfluous in this particular context and would lead to unwanted
constraints, limiting the expressiveness of the model. Furthermore, even if these
properties were accepted, the different nature of the arguments, current score
vs. dimension level, makes them inconsistent.

We, therefore, propose to define a new operator, illustrated in Figure 2, based
on a set of parameters ωγα ∈ LM that define transition thresholds between a
current score να and its updated value νγ :

F (να, νβ) =

⎧⎨⎩
min{νγ ∈ LM |νβ � ωγα} if να, νβ ∈ LM

νβ if να = ν?
να if νβ = ν?

The first line sets the conditions for the transition from να to νγ . The other cases
describe ν? as a neutral element for both arguments.

Note that consistency with the proposed model imposes constraints on the
parameters ωγα: to guarantee the function is increasing, they must be ordered,
so that if νγ ≤ νπ, then ωγα ≤ ωπα. However, these ordering constraints on ωγα are
imposed for a given value of να but constraints of the form ωβα = ωγα⊕ωβγ , where
νγ is an intermediate value between να and νβ and⊕ a suitable sum operator [11],
are not required: going directly from να to νβ need not be equivalent to successive
transitions from να to νγ and from νγ to νβ .

5 Multivalued Cross-Checking Combination Operator

Two remarkable properties of credibility projection require a dedicated operator:
first it can both weaken or increase the level of trust. Second, it involves an
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Fig. 2. An example of F (τα, τβ) ignoring τ?: the degrees of L5 represent possible values
of the current score, the arrows labelled with κγ

α transitions from τα to τγ

additional argument: besides the usual current score and dimension level, it
depends on the current evaluation of the confirmation or invalidation. Indeed,
an absolute confirmation should obviously increase the level of trust. However,
if said corroboration has a low trust value, its influence should be less than that
of a highly trusted confirmation.

5.1 Formal Description of the Required Behaviour

The cross-checking operator G is therefore a mapping, G : Le
M × Le

M ×Le
M −→

Le
M , satisfying the following properties:
− G is increasing in all 3 arguments
− ν? is a neutral element for all 3 arguments
− ∀να, νβ , νγ ∈ LM G(να, νβ , νγ) ≥ να if νβ ≥ νM−1

2

G(να, νβ , νγ) ≤ να if νβ < νM−1
2

The arguments for the monotonicity of operator G are similar to the ones
explaining F ’s, as given in Section 4.1. The third property outlines the change
of behaviour between confirmations (where credibility is in the top half of the
scale: νβ ≥ νM−1

2
), for which G exhibits an increasing trend, and invalidations

which have a weakening effect on the trust level.

5.2 Proposed Operator

Based on the properties required of the cross-checking operator, we propose the
following function, illustrated in Figure 3:

G(να, νβ , νγ) =

⎧⎨⎩
να if νβ = ν?
F̃i(να, g(νβ , νγ)) if νβ < νM−1

2

F̃c(να, g(νβ , νγ)) otherwise

As detailed below, G’s increasing and weakening trends are described by func-
tions F̃c and F̃i respectively.
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F̃i

F̃c

τ0 τ1 τ2 τ3 τ4

Fig. 3. An example of G, τβ(τα, τγ), in L5

In both cases, the range of influence is determined by a weighted credibility,
defined as the aggregation of the degree of confirmation/invalidation, as mea-
sured by the credibility dimension νβ , and the trust level of the cross-checking
piece of information νγ . The aggregation operator g : Le

M × Le
M −→ Le

M must
satisfy the following boundary conditions:

∀να, νβ ∈ LM g(να, νβ) ≤ να if να ≥ νM−1
2

g(να, νβ) ≤ ¬να if να < νM−1
2

Indeed, the trust level of a confirmation can only weaken the impact of the
credibility projection, along the same lines as the abating operator. The case
of invalidation is similar, except for the negation of the credibility, which only
serves to allow a symmetric behaviour. The monotonicity of g must satisfy the
following constraints, whose formal description is omitted for lack of space: g
must be increasing (resp. decreasing) in its first argument for confirmations
(resp. invalidations); g must be increasing in its second argument. Finally, ν?
must be an absorbing element for both arguments: if either cannot be evaluated,
neither can the weighted credibility.

The F̃i operator, which controls the abating influence of weighted invalida-
tions, is similar to the general abating operator defined in Section 4, its only
specificity being its monotonicity in its second argument. Indeed, F̃i(να,νβ) in-
creases whereas F (να, νβ) decreases, when νβ grows. Consequently, constraints

on ωγα, and their comparisons with νβ , are reversed in F̃i defined similarly to F :

F̃i(να, νβ) =

⎧⎨⎩
min{νγ ∈ LM |νβ ≥ ωγα} if να, νβ ∈ LM

να if νβ = ν?
νβ if να = ν?

An example of such an operator is represented in the bottom half of Figure 3.
The F̃c operator, which controls the emphasising influence of weighted confir-

mations, satisfies properties similar to that of F , except for the first one which
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becomes ∀να, νβ ∈ LM , F̃c(να, νβ) ≥ να, to express the emphasising influence.
We thus propose to define:

F̃c(να, νβ) =

⎧⎨⎩
max{νγ ∈ LM |νβ ≥ ωγα} if να, νβ ∈ LM

να if νβ = ν?
νβ if να = ν?

An example of such an operator is represented in the top half of Figure 3. Note
that the definitions of the F̃i and F̃c functions are independent, it is not required
that ωγα= ωαγ to allow for different sentivities to contradictory arguments.

6 Conclusion and Future Works

This paper proposes a sequential model for a trust building process, as the con-
secutive projection of dimensions on the current evaluation, as well as its formal
and operational transposition in an extended multivalued logic framework. The
latter offers a way to distinguish between indifference and ignorance, which is
critical to adequately represent trust building. From the characterisation of the
desired properties for the required projection operators, it defines special com-
bination operators and gives the formal expression of suitable functions.

Future works will include the implementation of the proposed model and
the definition of an evaluation protocol to lead an experimental study of user
response to the proposed model. On a more formal level, another perspective lies
in the theoretical study of the logical reasoning properties offered by the proposed
extended multivalued logic Le

M , beyond the degree manipulation tools explored
in this paper. Regarding information scoring, future works will aim at proposing
tools allowing for the integration of the dynamics of trust building, like the
influence on the evolution of trust of alternating confirmations and invalidations.
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In: Hüllermeier, E., Kruse, R., Hoffimann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp.
258–267. Springer, Heidelberg (2010)

10. Akdag, H., De Glas, M., Pacholczyk, D.: A qualitative theory of uncertainty. Fun-
damenta Informaticae 17, 333–362 (1992)

11. Seridi, H., Akdag, H.: Approximate Reasoning for Processing Uncertainty. J. of
Advanced Comp. Intell. and Intell. Informatics 5, 110–118 (2001)



Tableau Calculus for Basic Fuzzy Logic BL

Agnieszka KuffllackaΘ

Department of Computing, Imperial College London
agnieszka.kulacka11@imperial.ac.uk

http://www.doc.ic.ac.uk/~ak5911/

Abstract. In this paper we present a tableau calculus for BL, basic
fuzzy logic introduced by Petr Hájek in his monograph Metamathematics
of Fuzzy Logic. We show that it is sound and complete with respect
to continuous t-norms, and demonstrate the refutational procedure and
the search for models procedure on a selected example. The idea of the
calculus is based on the decomposition theorem for a continuous t-norm,
by which this operation is shown to be equivalent to the ordinal sum of
a family of t-norms defined on countably many intervals.

Keywords: tableaux, continuous t-norm, fuzzy logic.

1 Introduction

Basic fuzzy logic BL is a propositional logic in which the truth values of formulas
are from interval [0, 1], and was introduced by Petr Hájek in [7] as a generalisation
of fflLukasiewicz logic, Product logic and Gödel logic. Formulas of BL are written
with propositional atoms and 0̄ (falsum) joined by strong conjunction & and
implication →. The other connectives ∧,∨,↔ and formula 1̄ (verum) may be
treated as abbreviations. The semantics of the connectives &,→ are given by a
continuous t-norm and its residuum. A t-norm is a function � : [0, 1]2 → [0, 1]
that is associative, commutative and monotonic with x � 1 = x for x ∈ [0, 1].
Its residuum is ⇒: [0, 1]2 → [0, 1] defined by x ⇒ y = sup{z : x � z ≤ y} for
x, y ∈ [0, 1]. Basic fuzzy logic BL has been proven in [3] and [6] to be the logic of
continuous t-norms. Here, we take a further step and construct a tableau calculus
for BL to prove validity of a formula or to construct a model if a formula is not
valid.

A tableau calculus is a formal proof procedure that can be viewed as a refu-
tational procedure to prove a given formula valid in a given logic, or as a search
procedure for models with certain properties, in which a given formula is satis-
fiable, or both. In general, we start the procedure of tableau calculus with some
expression, which asserts that a given formula κ is not valid. In the case of fuzzy
logic BL, we will begin with an inequality Υ stating that the translated formula
κ (to be described in full later in the paper) is less than 1. Then we apply some
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branch expansion rules, and either close all the branches using some closing rules,
by which we fail to find a model that satisfies Υ , or we obtain at least one open
branch, by which we find a partial description of a model such that Υ is not
contradictory in it. Thus, either we prove validity of κ by refutation, or we find
a model in which κ is not valid.

Tableau methods for propositional logics have a long tradition (see [1], [5]) and
have advantages over Hilbert systems such as bounded non-determinism, which
means that there is a finite number of choices given by each branch expansion
rule, and also the process of refutation and model searching terminates. They are
automatic and thus well-suited for computer implementation. As described in the
previous paragraph, not only can they show that a formula is valid, but in case
it is not, they provide a model, in which the formula is not valid. There are some
dual tableaux introduced for many-valued logics and fuzzy logics in [12] and [13];
however our approach is different. It follows in some respect the idea of the paper
[8], where we constructed a relational hypersequents framework for fflLukasiewicz
modal fuzzy logic, but this approach is more general as far as the propositional
rules are concerned since it deals with the logic of any continuous t-norm, not
only that of fflLukasiewicz t-norm. There are some approaches to construct proof
systems based on a relational hypersequents frameworks for BL (see [2], [15]),
though our approach involves inequalities that may be implemented with some
adaptation of methodology to deal with operations on real numbers as in [16],
and which exist due to occurence of Product proto-t-norms in some ordinal sums.

It should be noted that there are no fast and modern theorem provers and this
limits real applications of fuzzy logics. There is also a gap for implementation
of ordinal sums that contains Product proto-t-norms (see below). [16] We take
a step towards filling this gap by introducing a tableau calculus for BL that
is adaptable to logics that are complete with respect to any ordinal sums of
fflLukasiewicz and Product proto-t-norms.

The tableau calculus that is introduced in this paper is based on the decompo-
sition theorem for continuous t-norms (see [4], [7], [9], [11]), which we will recall
in section 2. After introducing the calculus in section 3, we will then demon-
strate an application of the calculus. We prove soundness and completeness of
the calculus in section 5 and we conclude the paper with some ideas for further
research.

2 Decomposition Theorem

First, we will define fflLukasiewicz and Product proto-t-norms and a special case
of an ordinal sum of a family of continuous t-norms. This will be followed by
the decomposition theorem for a continuous t-norm and the corollary for its
residuum.

Definition 1. Let 0 ≤ aK < bK ≤ 1 and K ∈ {L, P}.
1. �Lukasiewicz proto-t-norm defined on [aL, bL] is the function �aL,bL : [aL, bL]2 →
[aL, bL] given by equation (1). For every x, y ∈ [aL, bL],

x �aL,bL y = max{aL, x+ y − bL}. (1)



Tableau Calculus for Basic Fuzzy Logic BL 327

2. Product proto-t-norm defined on [aP , bP ] is the function �aP ,bP : [aP , bP ]2 →
[aP , bP ] given by equation (2). For every x, y ∈ [aP , bP ],

x �aP ,bP y = aP +
(x− aP )(y − aP )

bP − aP
. (2)

Definition 2. Let I be a countable index set and let ([aKn
n , bKn

n ])n∈I be a fam-
ily of intervals with 0 ≤ aKn

n < bKn
n ≤ 1,Kn ∈ {L, P} such that for all i �= j ∈ I,

(aKi

i , bKi

i ) ∩ (a
Kj

j , b
Kj

j ) = ∅. Then the ordinal sum of a family of proto-t-norms

(�aKn
n ,bKn

n
)n∈I is the function � : [0, 1]2 → [0, 1] defined by:

x � y =

{
x �

a
Kn
n ,b

Kn
n

y if x, y ∈ [aKn
n , bKn

n ]

min(x, y) otherwise,

where �aKn
n ,bKKn

is either fflLukasiewicz proto-t-norm when Kn = L or Product

proto-t-norm when Kn = P defined on [aKn
n , bKn

n ].

Theorem 3. (Decomposition theorem [4], [7], [9], [11])
The following two are equivalent:
1. The function � : [0, 1]2 → [0, 1] is a continuous t-norm.
2. The function � is the ordinal sum of a family of proto-t-norms (�aKn

n ,bKn
n

)n∈I ,

where I is a countable index set and ([aKn
n , bKn

n ])n∈I is a family of intervals with
0 ≤ aKn

n < bKn
n ≤ 1,Kn ∈ {L, P} such that for all i �= j ∈ I, (aKi

i , bKi

i ) ∩
(a

Kj

j , b
Kj

j ) = ∅.

Corollary 4. Let � be an ordinal sum of a family of proto-t-norms (�aKn
n ,bKn

n
)n∈I ,

where I is a countable index set and ([aKn
n , bKn

n ])n∈I is a family of intervals with

0 ≤ aKn
n < bKn

n ≤ 1,Kn ∈ {L, P} such that for all i �= j ∈ I, (aKi

i , bKi

i ) ∩
(a

Kj

j , b
Kj

j ) = ∅. Then, the residuum of � is the function ⇒: [0, 1]2 → [0, 1] given

by equation (3). For every x, y ∈ [0, 1],

x ⇒ y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if x ≤ y,

bLi − x+ y if x > y and x, y ∈ [aL
i , b

L
i ],

aP
i +

(y−aP
i )(bPi −aP

i )

x−aP
i

if x > y and x, y ∈ [aP
i , b

P
i ],

y, otherwise,

(3)

where [aLi , b
L
i ], [a

P
i , b

P
i ] are intervals with fflLukasiewicz proto-t-norm and Product

proto-t-norm defined on them, respectively.

3 Tableau Calculus

In this section we will introduce a tableau calculus for showing that a formula
κ of BL is valid or that there is a countermodel, in which the truth value of
the formula κ is less than 1. First we define a tableau formula, then we define
a translation function, by which we will get a term for a tableau formula at the
root of a tree (also defined below) from a formula κ of BL.
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Definition 5. (Tableau formula)
Let L0 = Par ∪ {+,−, ·,÷,min,max,≤, <, 0, 1} and L1 = L0 ∪ {�,⇒} be sig-
natures, where Par is a set of constants (parameters), +,−, ·,÷,min,max, �,⇒
are binary function symbols and ≤, < are binary relation symbols. Let V ar be
a set of variables.
1. If x, y are L1-terms, then x ≤ y, x < y, x = y are tableau formulas.
2. Let E be a set of tableau formulas s ≤ t, s < t, s = t, where s, t are L0-terms.
We say that a mapping σ : V ar → [0, 1] is a solution of E iff there exists L0-
structureM = (R,+,−, ·,÷,min,max,≤, <, 0, 1, ρ), where +,−, ·,÷ (division),
min,max, 0, 1,≤, < are interpreted as usual with x ÷ 0 assigned to 0 for any
x ∈ R and ρ : Par→ [0, 1] is a function, such thatM, σ |=

∧
E. We will callM

an L0-structure modelling E. By convention
∧
∅ = ' (verum).1

Definition 6. (Translation function)
Let F be the set of formulas of BL and T be the set of L1-terms. Let μ :
PROP → V ar (we will write μ(p) as μp) be a one-to-one mapping assigning
variables to propositional atoms. Let κ, γ ∈ F . Then, we define a translation
function ν : F → T, inductively:
1. τ (0̄) = 0, τ (1̄) = 1, 4. τ (ψ → ϕ) = τ (ψ) ⇒ τ (ϕ),
2. τ (p) = μ(p) for every p ∈ PROP , 5. τ (ψ ∨ ϕ) = max{τ (ψ), τ (ϕ)},
3. τ (ψ&ϕ) = τ (ψ) � τ (ϕ), 6. τ (ψ ∧ ϕ) = min{τ (ψ), τ (ϕ)}.

Let us recall some definitions from graph theory, which we will modify for
the purposes of defining the calculus. A graph is a structure (N,E), where N
is a finite set of nodes, E is a set of edges such that E ⊆ N × N such that
¬E(n, n) for all n ∈ N . A successor of n ∈ N is n′ ∈ N iff there is an edge e
such that (n, n′) = e. A predecessor of n ∈ N is n′ ∈ N iff there is an edge e′

such that (n′, n) = e′. A path from n ∈ N to n′ ∈ N is a sequence of nodes
n0 = n, n1, ..., nk = n′ such that k ≥ 0 and ni is a predecessor of ni+1 for all
0 ≤ i ≤ k − 1. A leaf is a node with no successors, and a root is a node with
no predecessors. A branch is a path from a root to a leaf. We will call a tree an
acyclic connected graph (N,E), in which there is exactly one root and if a node
is not a root, then it has exactly one predecessor. The height of a node n ∈ N
within a branch B, denoted by h(n,B), is the number of nodes on the path from
n to a leaf.

Definition 7. A tableau T for a formula κ of BL is a tree whose nodes are sets
of tableau formulas and whose root is {ν(κ) < 1}, and on which the branch ex-
pansion rules have been fully applied. The rules of branch expansion are defined
below, where x, y, 0, 1 are L1-terms, T is an L0-term and ϑ is a set of tableau
formulas. The multiple inequality should be understood in the usual way, e.g.
instead of writing a ≤ c, c = d, d < f , we write a ≤ c = d < f . Let ♦ ∈ {≤, <}.
Let K,K0, ...,Kn−1 ∈ {L, P} be the labels as shown in the branch expansion

rules. Suppose that parameters aK0
0 < bK0

0 ≤ aK1
1 < ... ≤ aKn−1

n−1 < b
Kn−1

n−1 (n ≥ 1)
have been selected in the previous steps.

1 Note that
∧

is a symbol interpreted as conjunction in two-valued logic.
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Let aK , bK ∈ Par − {aKi

i , bKi

i |0 ≤ i < n− 1} be distinct. Then IK is exactly
one of the sets:
Case 1. {0 ≤ aK < bK ≤ aK0

0 },
Case 2. {aK = aKi

i < bK = bKi
i } for some 0 ≤ i ≤ n− 1 such that K = Ki,

Case 3. {bKi
i ≤ aK < bK ≤ a

Ki+1

i+1 } for some 0 ≤ i ≤ n− 2,

Case 4. {bKn−1
n−1 ≤ aK < bK ≤ 1}.

If no parameters have been selected in the previous steps, then IK is
Case 5. {0 ≤ aK < bK ≤ 1}.

The motivation for the following conditions is to take care of the cases when
two L1-terms x, y (variables in the active term, i.e.one undergoing substitution,
see below) are not in the same interval (aKi

i , bKi

i ) (unlike in the cases above),
which is equivalent to either x is not in any such interval (cases 6, 9, 10) or x is
in such an interval and y is not in the same one (the other cases). J is exactly
one of the sets:
Case 6. {0 ≤ x ≤ aK0

0 },
Case 7. {aKi

i ≤ x ≤ bKi
i , y ≤ aKi

i } for some 0 ≤ i ≤ n− 1,

Case 8. {aKi
i ≤ x ≤ bKi

i , bKi
i ≤ y} for some 0 ≤ i ≤ n− 1,

Case 9. {bKi
i ≤ x ≤ a

Ki+1

i+1 } for some 0 ≤ i ≤ n− 2,

Case 10. {bKn−1
n−1 ≤ x ≤ 1}.

If no parameters have been selected, then J is empty (Case 11.).

Branch Expansion Rules. Let z1, z2 be L1-terms that contain x � y, x⇒ y as
a subterm, respectively. We will use a notation z1[v/x � y] and z2[v/x ⇒ y] to
denote that in z1, z2 we substituted an L1-term v for x � y and x ⇒ y, respec-
tively, as shown in the rules below. We choose which subterm is an active term
and assume that the tableau formula containing it does not belong to ϑ .
Rule (�L): A branch with a node Γ ∪ {z1 ♦ T} expands following the subrules:

�L. Γ ∪ IL ∪ {aL ≤ x ≤ bL, aL ≤ y ≤ bL, z1[max{aL, x+ y − bL}/x � y] ♦ T}
P. Γ ∪ IP ∪ {aP ≤ x ≤ bP , aP ≤ y ≤ bP , z1[a

P + (x−aP )(y−aP )

bP −aP /x � y] ♦ T}
min. Γ ∪ J ∪ {z1[min{x, y}/x � y] ♦ T}
Rule (�R): A branch with a node Γ ∪ {T ♦ z1} expands following the subrules:

�L. Γ ∪ IL ∪ {aL ≤ x ≤ bL, aL ≤ y ≤ bL, T ♦ z1[max{aL, x+ y − bL}/x � y]}
P. Γ ∪ IP ∪ {aP ≤ x ≤ bP , aP ≤ y ≤ bP , T ♦ z1[a

P + (x−aP )(y−aP )

bP −aP /x � y]}
min. Γ ∪ J ∪ {T ♦ z1[min{x, y}/x � y])}
Rule (⇒ L): A branch with a node Γ ∪ {z2 ♦ T} expands following the subrules:

All. Γ ∪ {x ≤ y, z2[1/x ⇒ y] ♦ T}
�L. Γ ∪ IL ∪ {aL ≤ y < x ≤ bL, z2[b

L − x+ y/x ⇒ y] ♦ T}
P. Γ ∪ IP ∪ {aP ≤ y < x ≤ bP , z2[a

P + (y−aP )(bP −aP )

x−aP /x ⇒ y] ♦ T}
min. Γ ∪ J ∪ {y < x, z2[y/x ⇒ y] ♦ T}
Rule (⇒ R): A branch with a node Γ ∪ {T ♦ z2} expands following the subrules:

All. Γ ∪ {x ≤ y, T ♦ z2[1/x ⇒ y]}
�L. Γ ∪ IL ∪ {aL ≤ y < x ≤ bL, T ♦ z2[b

L − x+ y/x ⇒ y]}
P. Γ ∪ IP ∪ {aP ≤ y < x ≤ bP , T ♦ z2[a

P + (y−aP )(bP −aP )

x−aP /x ⇒ y]}
min. Γ ∪ J ∪ {y < x,T ♦ z2[y/x ⇒ y]}
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Note that at node n, each of the branch expansion rules applied generates several
nodes, which exact number depends on the number of parameters already at n
as more of the cases 1-11 will be used. For rules (�L), (�R) we have subrules fflL.,
P., min., and for rules (⇒ L), (⇒ R) additionally a subrule All. For the subrules
fflL., P. of all rules, we have cases 1-5, and for the subrule min., we have cases
6-11.

The branch expansion rules are motivated by decomposition theorem 3 and
its corollary 4.

Definition 8. For each branch B of a tableau T and each node n ∈ B, we
consider the set of L0-formulas in n, n�L0

. We say that B is closed if for some
node n ∈ B, n�L0

has no solution, otherwise it is open. Tableau T is closed if it
only contains closed branches.2 A tableau T is open if it has an open branch.

4 Example

Now we will show a tableau constructed for the prelinearity axiom with propo-
sitional atoms to illustrate the applicability of the rules. Note that this is only
a part of a tableau, the branches passing through the nodes (11), (13) and (14)
are missing, but they are easy to reconstruct.

Example 9. Let us build a tableau for formula (p→ q) ∨ (q → p).

(1) {max{μp ⇒ μq, μq ⇒ μp} < 1}
(11) {μp ≤ μq ,max{1, μq ⇒ μp} < 1} Rule (⇒ L) All. (to be completed)

(12) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 ,max{bL0 − μp + μq, μq ⇒
μp} < 1}

Rule (⇒ L) �L. Case 5

(12.1) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , μq ≤ μp,max{bL0 − μp +
μq , 1} < 1}

Rule (⇒ L) All. closed

(12.2) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , 0 ≤ aL
1 < bL1 ≤ aL

0 , aL
1 ≤

μp < μq ≤ bL1 ,max{bL0 − μp + μq , b
L
1 − μq + μp} < 1}

Rule (⇒ L) �L. Case 1 closed

(12.3) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , aL
0 = aL

1 < bL1 =

bL0 , aL
1 ≤ μp < μq ≤ bL1 ,max{bL0 − μp + μq, b

L
1 − μq + μp} < 1}

Rule (⇒ L) �L. Case 2 closed

(12.4) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , bL0 ≤ aL
1 < bL1 ≤ 1, aL

1 ≤
μp < μq ≤ bL1 ,max{bL0 − μp + μq , b

L
1 − μq + μp} < 1}

Rule (⇒ L) �L. Case 4 closed

(12.5) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , 0 ≤ aP
1 < bP1 ≤ aL

0 , aP
1 ≤

μp < μq ≤ bP1 ,max{bL0 − μp + μq , a
P
1 +

(μp−aP
1 )(bP1 −aP

1 )

μq−aP
1

} < 1}

Rule (⇒ L) P. Case 1 closed

(12.6) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , bL0 ≤ aP
1 < bP1 ≤ 1, aP

1 ≤

μp < μq ≤ bP1 ,max{bL0 − μp + μq , a
P
1 +

(μp−aP
1 )(bP1 −aP

1 )

μq−aP
1

} < 1}

Rule (⇒ L) P. Case 4 closed

(12.7) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , 0 ≤ μq ≤ aL
0 , μp <

μq ,max{bL0 − μp + μq, μp} < 1}
Rule (⇒ L) min. Case 6 closed

(12.8) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , aL
0 ≤ μq ≤ bL0 , μp ≤

aL
0 , μp < μq ,max{bL0 − μp + μq, μp} < 1}

Rule (⇒ L) min. Case 7 closed

(12.9) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , aL
0 ≤ μq ≤ bL0 , bL0 ≤

μp, μp < μq,max{bL0 − μp + μq, μp} < 1}
Rule (⇒ L) min. Case 8 closed

(12.10) {0 ≤ aL
0 < bL0 ≤ 1, aL

0 ≤ μq < μp ≤ bL0 , bL0 ≤ μq ≤ 1, μp <

μq ,max{bL0 − μp + μq, μp} < 1}
Rule (⇒ L) min. Case 10 closed

(13) {0 ≤ aP
0 < bP0 ≤ 1, aP

0 ≤ μq < μp ≤ bP0 ,max{aP
0 +

(μq−aP
0 )(bP0 −aP

0 )

μp−aP
0

, μq ⇒ μp} < 1}

Case (⇒ L) P. Case 5 (to be completed)

(14) {μq < μp,max{μq , μq ⇒ μp} < 1} Rule (⇒ L) min. Case 11 (to be completed)

This tableau is closed as all its branches are closed (once it is completed).

2 By Tarski theorem [14] on decidability of the first-order theory of (R,+, ·), it is
decidable whether a tableau is closed.
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5 Soundness and Completeness of Tableau Calculus

In the proof of soundness and completeness theorem of the tableau calculus, we
will use a lemma showing the equivalence between existence of an open branch of
a tableau with root {ν(κ) < 1} and existence of a model, in which the formula κ
is not valid. This, however, needs to be preceded by a definition of satisfiability
of a branch.

Definition 10. Let B be a branch of tableau T . Let 0 ≤ aK0
0 < bK0

0 ≤ ... ≤
a
Kn−1

n−1 < b
Kn−1

n−1 ≤ 1, where n ≥ 0 and K0, ...,Kn−1 ∈ {L, P}, be the inequalities
between the parameters introduced by branch extension rules in B. Let lB be
the leaf of the branch. Suppose that M is an L0-structure modelling lB and
σ : V ar → [0, 1] such that M, σ |=

∧
lB.

1. We expand the modelM to an L1-structureMB = (R,+,−, ·,÷,min,max,≤,
<, 0, 1, ρ, �B,⇒B) such that for every v, w ∈ [0, 1],

v �B w =

⎧
⎪⎪⎨

⎪⎪⎩

max{ρ(aLk ), v + w − ρ(bLk )} if v, w ∈ [ρ(aLk ), ρ(b
L
k )], 0 ≤ k ≤ n− 1,

ρ(aPk ) +
(v−ρ(aP

k ))·(w−ρ(aP
k ))

ρ(bP
k
)−ρ(aP

k
)

if v, w ∈ [ρ(aPk ), ρ(bPk )], 0 ≤ k ≤ n− 1,

min(v, w) otherwise,

v ⇒B w =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if v ≤ w

ρ(bLk )− v + w if ρ(aLk ) ≤ w < v ≤ ρ(bLk ), 0 ≤ k ≤ n− 1,

ρ(aPk ) +
(w−ρ(aP

k ))·(ρ(bPk )−ρ(aP
k ))

v−ρ(aP
k
)

if ρ(aPk ) ≤ w < v ≤ ρ(bPk ), 0 ≤ k ≤ n− 1,

w otherwise.

2. A subset of a node S of branch B is B-satisfiable via M, σ iff MB, σ |=
∧

S,

where the L1-structureMB is constructed from M as in 1.
Now, we say that branch B is satisfiable iff there exist M, σ such that all nodes
of B are B-satisfiable via M, σ.

Lemma 11. Let T be a tableau with a root {ν(κ) < 1}. Then the following
are equivalent:
1. T has an open branch.
2. There is a model A = ([0, 1], �,⇒, 0, 1, V ), where � is a continuous t-norm and
⇒ is its residuum, V : PROP → [0, 1] such that VΘ(κ) < 1.3

Proof. Suppose that branch B of tableau T is open. So there is an L0-structure
M modelling leaf lB of B and an assignment σ : V ar → [0, 1] such that
M, σ |= lB. We will construct a model A such that VΘ(κ) < 1. First, we put
V (p) = σ(ν(p)) for all p ∈ PROP . We define operation � : [0, 1]2 → [0, 1] as �B
and operation ⇒: [0, 1]2 → [0, 1] as ⇒B (see definition 10). By theorem 3 and
corollary 4, � is a continuous t-norm with residuum ⇒ and also by definitions 6
and 10, VΘ(κ) = �ν(κ)�MB ,ψ, where �z�MB,ψ is the value of L1-term z in MB
under the assignment σ. By induction on h(mB,B), we show the claim that every

3 V� is the extension of V to all formulas in BL with V�(0̄) = 0, V�(1̄) = 1, V�(ψ∨ϕ) =
max{V�(ψ), V�(ϕ)}, V�(ψ ∧ ϕ) = min{V�(ψ), V�(ϕ)}, V�(ψ&ϕ) = V�(ψ) � V�(ϕ) and
V�(ψ → ϕ) = V�(ψ) ⇒ V�(ϕ).
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node mB of B is B-satisfiable viaM, σ. The sketch of the proof is as follows. Let
m′B be the node of B such that h(m′B,B) = h(mB,B) + 1, where mB is assumed
to be B-satisfiable viaM, σ. Then m′B is also B-satisfiable viaM, σ by definition
7. Therefore, in particular by this claim, the root of T is B-satisfiable via M, σ,
and thus by definitions 6 and 10, �ν(κ)�MB ,ψ = VΘ(κ) < 1.

Conversely, suppose that there is a model A = ([0, 1], �,⇒, 0, 1, V ), where �
is a continuous t-norm and ⇒ is its residuum, V : PROP → [0, 1] such that
VΘ(κ) < 1. We know that for every node nB of a branch B, we have nB�L0

⊆ lB,
where lB is the leaf of the branch. Therefore, a branch is open if its leaf lB has
a solution. That is, we need to find an L0-structure modelling lB, sayM, and a
mapping σ : V ar → [0, 1] such thatM, σ |=

∧
lB. First, we take σ(ν(p)) = V (p)

for all p ∈ PROP . Now in (1) below, we construct the structureM; the process
reduces to constructing the mapping ρ : PAR → [0, 1]. At the same time we
will be selecting nodes on a branch, we will call it B. Then, in (2) we show that
branch B is open.
(1) By theorem 3, � is defined as the ordinal sum of proto-t-norms (�αKn

n ,βKn
n

)n∈I .
We will assign values of parameters occurring on B under ρ to elements of
{ΔKn

n , βKn
n : n ∈ I}. Suppose we selected the sequence of nodes n1, ..., nl, where

l ≥ 1, n1 is the root of T and ni+1 is the successor of ni for all 1 ≤ i ≤ l.
That is branch B is partially defined and ρ is defined for all parameters on these
nodes. By comparing nl and its successors, we deduce what the active term is
and thus which of the branch expansion rules has been applied. Suppose it is
(�L), the other cases are similar. Thus, there are subformulas of κ, κ1, κ2, and
L0-term T ,4 such that z ♦ T , where ν(κ1) � ν(κ2) is a subterm of z, belongs to
nl, but to none of its successors. We know whether or not there is i ∈ I such
that VΘ(κ1), VΘ(κ2) ∈ [ΔKi

i , βKi

i ]. If there is such i and Ki = L (or Ki = P ),
we select the subrule fflL. of (�L) (the subrule P. of (�L), respectively), and de-

pending on the relation of ΔKi

i , βKi

i to these Δ
Kj

j , β
Kj

j that are the values of
parameters occurring on nl, we select the node, say n

′
l, resulting from Cases 1-5.

We then assign to the parameters at n′l that do not occur in nl, say a, b with

a < b, values ρ(a) = ΔKi

i , ρ(b) = βKi

i . Suppose now there is not i ∈ I such

that VΘ(κ1), VΘ(κ2) ∈ [ΔKi

i , βKi

i ]. We know the relations among VΘ(κ1), VΘ(κ2),
and the values of parameters occurring in nl, thus we know which of Cases 6-11
match these values in the model A. Therefore, we can select the subsequent node.
We have now selected the next node in the path from the root. The procedure
terminates at a leaf, where there are no L1-terms occurring, at which point we
selected all nodes in branch B. We also partially defined the function ρ. To the
parameters that have not received values under ρ in this procedure, we assign
arbitrary values from [0, 1]. We have now constructed an L0-structure M.
(2) To be able to show that M, σ |=

∧
lB, where lB is the leaf of branch B, it

is sufficient to prove that for all nodes in B, nB, MB, σ |=
∧
nB. We will sketch

the proof by induction on d(nB,B) = h(r,B) − h(nB,B), where r is the root
of tableau T of which B is a branch. We need to show that if MB, σ |=

∧
nB,

4 Note that T may be a parameter and that this parameter has already been assigned
a value by ρ.
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then MB, σ |=
∧
n′B, where d(n

′
B,B) = d(nB,B) + 1. By inspecting nB, n

′
B, we

know which formula is in nB − n′B. Suppose that {z ♦ T } = nB − n′B, where
ν(κ1) � ν(κ2) is the active formula; the other cases are similar. By (1) above,
we know which case and which subrule of which branch expansion rule are used
to generate n′B. Thus, suppose that it was Rule (�L) fflL. Case 1 (again, the
other cases are similar). Let a, b be the new parameters occurring at n′B. Thus,
{0 ≤ a < b ≤ aL0 } ⊆ n′B − nB, where aL0 is a parameter occurring at nB. By (1)
above, we know that 0 ≤ ρ(a) < ρ(b) ≤ ρ(aL0 ). The other elements of n′B−nB are
(a) a ≤ ν(κ1) ≤ b, (b) a ≤ ν(κ2) ≤ b, (c) z[max{a, ν(κ1) + ν(κ2) − b}/ν(κ1) �
ν(κ2)] ♦ T .

Claim. Let α be a subformula of κ. Then �ν(α)�MB ,ψ = VΘ(α).

Proof of the claim. By induction on α. The base case for atomic α is easy. Take
subformulas of κ, α, γ and assume the induction hypothesis for them. We show
the result for α&γ, i.e. �ν(α&γ)�MB ,ψ = VΘ(α&γ). The cases for α → γ, α∨γ, α∧γ
are similar.

LHS=�ν(α&γ)�MB ,ψ = �ν(α) � ν(γ)�MB ,ψ = �ν(α)�MB ,ψ �B �ν(γ)�MB ,ψ =
VΘ(α) �B VΘ(γ), by inductive hypothesis. RHS=VΘ(α&γ) = VΘ(α) � VΘ(γ). Now,
by construction in (1), �B, � agree on VΘ(α), VΘ(γ) as long as α, γ are subformulas
of κ. Therefore, LHS=RHS. This completes the proof of the claim.
By (1) above and Claim, the inequalities (a), (b) and (c) are true inMB, σ. Thus,
MB, σ |=

∧
n′B. Therefore, we showed also that M, σ |=

∧
nB�L0

. We have now
proved that in particularM, σ |=

∧
lB. Thus, there is an L0-structure modelling

lB, M, and a mapping σ such that M, σ |=
∧
lB. Therefore B is open. ��

Theorem 12. (Soundness and Completeness)
Let κ be a formula of BL. Then every tableau with the root {ν(κ) < 1} is closed
iff κ is valid with respect to every continuous t-norm.

Proof. Immediate from lemma 11. ��

6 Conclusion and Further Research

In this paper we constructed a tableau calculus for continuous t-norms based on
the decomposition theorem and we showed that it is sound and complete. We
can see that if a formula is not valid in BL, we can find a continuous t-norm
that is the ordinal sum of finitely many proto-t-norms, in which the value of the
formula is less than 1. It should be noted that the approach can be simplified
due to the result of Montana in [10] who proved that the variety of BL-algebras
is generated as a quasivariety by the class of all ordinal sums of finitely many
fflLukasiewicz t-norm. We decided to leave it in this current form as it provides a
foundation for constructing tableaux for fuzzy logics whose semantics is based
on ordinary sums with some components that are Product proto-t-norms. The
tableau calculus may constitute a basis for further research in tableaux methods
for other fuzzy logics including predicate logic or modal logic. One may also
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provide the implementation for the tableau methods. Further work may involve
achieving complexity results for this proof system and using it to prove the
Co-NP completeness of BL.
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2 IRIT-CNRS, Université Paul Sabatier, Toulouse, France

3 IIIA-CSIC, Bellaterra, Spain

Abstract. This paper proposes an extension of the MEL logic to a lan-
guage containing modal formulae of depth 0 or 1 only. MEL is a logic
of incomplete information where an agent can express both beliefs and
explicitly ignored facts, that only uses modal formulae of depth 1, and
no objective ones. The extended logic, called MEL+ has the same axioms
as, and is in some sense equivalent to, S5 with a restricted language, but
with the same expressive power. The semantics is not based on Kripke
models with equivalence relations, but on pairs made of an interpreta-
tion (representing the real state of facts) and a non-empty set of possible
interpretations (representing an epistemic state). Soundness and com-
pleteness are established. We provide a rationale for using our approach
when an agent reasons about what is known of the epistemic state of
another agent and compares it with what is known about the real world.
Our approach can be viewed as an alternative to the basic epistemic
logic not concerned with introspection. We discuss the diffierence with
S5 used as a logic for rough sets, and the similarity with some previous
non-monotonic logics of knowledge is highlighted.

Keywords: Modal logic, possibility theory, epistemic logic, rough sets.

1 Introduction

In the recent past [1,2], some efforts have been made to relate possibility theory
and modal logic under the simplest possible syntactic and semantic framework.
The resulting language of this logic called MEL is a fragment of KD where no
objective formula (not preceded by a modality) appears, and where modalities
cannot be nested. Models of MEL are simply non-empty subsets of interpreta-
tions of some standard propositional language. They represent the possible epis-
temic states of some agent. Then the necessity modality represents belief, and
an agent believes a proposition if and only if the latter is true in all propositional
interpretations compatible with the agent’s epistemic state. This logic has ax-
ioms K and D, and another axiom saying that the agent believes all tautologies.
Each epistemic state can be interpreted as a Boolean possibility distribution,
and it can be shown that the necessity modality is a Boolean necessity measure.
This attempt to relate possibility theory and modal logic contrasts with other
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previous connections between these notions, involving more elaborate construc-
tions [8,9,3,10].

The MEL logic has a language which is a fragment of the language of the
logic S5 often used as an epistemic logic. Its semantics does not use accessibility
relations explicitly, and is much simpler. Moreover one cannot express the intro-
spective axioms 4 and 5 in MEL as the nesting of modalities is not possible in
its language. Nevertheless, two issues are worth investigating in connection with
MEL:

– Is it possible to extend the language of MEL to objective non-modal formu-
lae, while preserving the same style of semantics as MEL ?

– Given that standard epistemic logics such as S5 rely on accessibility (equiv-
alence) relations, what is the connection between these two semantics ?

The aim of this paper is to provide an answer to both questions. In the next
section, a brief presentation of the logic MEL is recalled. Then an extension of
the MEL language to objective formulae and the corresponding extension of the
MEL semantics is proposed. Finally we discuss the usual Kripke style semantics
of S5 and compare them to our semantics, which we consider more natural than
the relational semantics based on indiscernible possible worlds according to an
equivalence relation. We claim that the latter semantics is more fit to rough
sets and can account for the idea of forgetting [11]. Moreover, we show that our
approach comes closer to some knowledge logics proposed in the early 1990’s, in
the area of non-monotonic reasoning.

2 MEL, A Simple Epistemic Logic

The usual truth values true (1) and false (0) assigned to propositions are of
ontological nature (which means that they are part of the definition of what
we call proposition), whereas assigning to a proposition a value whose meaning
is expressed by the word unknown sounds like having an epistemic nature: it
reveals a knowledge state according to which the truth value of a proposition (in
the usual Boolean sense) in a given situation is out of reach (for instance one
cannot compute it, either by lack of computing power, or due to a sheer lack of
information). It corresponds to an epistemic state for an agent that can neither
assert the truth of a Boolean proposition nor its falsity.

Admitting that the concept of “unknown” refers to a knowledge state rather
than to an ontic truth value, we may keep the logic Boolean and add to its syntax
the capability of stating that we ignore the truth value (1 or 0) of propositions. The
natural framework to syntactically encode statements about knowledge states of
propositional logic (PL) statements is modal logic, and in particular, the logic KD.
Nevertheless, if one only wants to reason about e.g. the beliefs of another agent, a
very limited fragment of this language is needed. The logic MEL [1,2] was defined
for that purpose.

Let us consider L to be a standard propositional language built up from a
finite set of propositional variables V = {p1, . . . , pk} along with the Boolean
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connectives of conjunction and negation ¬. As usual, a disjunction γ∨κ stands
for ¬(¬γ ∧ ¬κ) and an implication γ→ κ stands for ¬γ ∨ κ. Further we use '
to denote γ ∨ ¬γ, and ⊥ to denote ¬'. Let us consider another propositional
language L� whose set of propositional variables is of the form V� = {�γ |
γ ∈ L} to which the classical connectives can be applied. It is endowed with
a modality operator expressing certainty, that encapsulates formulae in L. In
other words L� = {�Δ : Δ ∈ L} | ¬Φ | Φ ∧ Ψ .

MEL is a logic on the language L� and with the following semantics. Let
β be the set of classical interpretations for the propositional language L, i.e.
β consists of the set of mappings w : L → {0, 1} conforming to the rules of
classical propositional logic. For a propositional formula γ ∈ L we will denote
by Mod(γ) the set of w ∈ β such that w(γ) = 1. Models (or interpretations) for
MEL correspond to epistemic states, which are simply subsets ∅ �= E ⊆ β. The
truth-evaluation rules of formulas of L� in a given epistemic model E is defined
as follows:

– E |= �γ if E ⊆Mod(γ)
– E |= ¬Φ if E �|= Φ
– E |= Φ ∧ Ψ if E |= Φ and E |= Ψ

Note that contrary to what is usual in modal logic, we do not evaluate modal
formulas on particular interpretations of langage L because modal formulas in
MEL do not refer to the actual world.

The notion of logical consequence is defined as usual ϑ |= Φ if, for every
epistemic model E, E |= Φ whenever E |= Ψ for all Ψ ∈ ϑ .

MEL can be axiomatized in a rather simple way (see [2]). The following are
a possible set of axioms for MEL in the language of L�:

(PL) Axioms of PL for L�-formulas
(K) �(γ→ κ)→ (�γ→ �κ)
(D) �γ→ �γ

(Nec) �γ, for each γ ∈ L that is a PL tautology, i.e. if Mod(γ) = β.

The only inference rule is modus ponens. The corresponding notion of proof,
denoted by 1, is defined as usual from the above set of axioms and modus
ponens.

This set of axioms provides a sound and complete axiomatization of MEL,
that is, it holds that, for any set of MEL formulas ϑ ∪ {γ}, ϑ |= γ iff ϑ 1 γ.
This is not surprizing: MEL is just a standard propositional logic with additional
axioms, whose propositional variables are the formulas of another propositional
logic, and whose interpretations are subsets of interpretations of the latter.

Notice that MEL also actually captures the L�-fragment of the normal modal
logics KD, hence of other logics, such as the well-known logics KD45 and S5,
also commonly referred to as the logics of belief and knowledge, respectively.
However, they are obtained from KD with axioms (called 4, 5, T) that cannot
be expressed in the MEL language L�.
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3 Extending MEL to Reason about The Actual World
and Someone’s Beliefs

In this section we extend the language of MEL to allow dealing with not only
subjective formulas that express an agent’s beliefs, but also objective formulas
(i.e. non-modal formulas) that express propositions that hold true in the actual
world (whatever it might be). The extended language will be denoted by L+

� , and
it thus contains both propositional and modal formulas. It exactly corresponds
to the non-nested fragment of the language of usual modal logic.

3.1 Language, Axioms and Semantics

More precisely, the language L+
� of MEL+ extends L� and is defined by the

following formation rules:

– If γ ∈ L then γ,�γ ∈ L+
�

– If Φ, Ψ ∈ L+
� then ¬Φ,Φ ∧ Ψ ∈ L+

�

�γ is defined as an abbreviation of ¬�¬γ. Note that L ⊆ L+
� and that in L+

�

there are no formulas with nested modalities.
Semantics for MEL+ are given now by “pointed” MEL epistemic models, i.e.

by structures (w,E), where w ∈ β and ∅ �= E ⊆ β. The truth-evaluation rules
of formulas of L+

� in a given structure (w,E) is defined as follows:

– (w,E) |= γ if w(γ) = 1, in case γ ∈ L
– (w,E) |= �γ if E ⊆Mod(γ)
– usual rules for ¬ and ∧

Logical consequence, as usual: ϑ |= Φ if, for every structure (w,E), (w,E) |= Φ
whenever (w,E) |= Ψ for all Ψ ∈ ϑ .

The following are the axioms for MEL+ in the language of L+
� :

(PL) Axioms of propositional logic
(K) �(γ→ κ)→ (�γ→ �κ)
(D) �γ→ �γ

(Nec) �γ, for each γ ∈ L that is a PL tautology, i.e. if Mod(γ) = β.

The only inference rule is modus ponens.1

3.2 Completeness

In what follows, we will denote by 1PL the notion of proof of classical proposi-
tional language on the language L+

� taking all �-formulas as new propositional
variables. We will further let ϑ ∪ {Φ} be a set of L+

� -formulas. We need first to
recall the following lemma [2].

1 An equivalent presentation could be to replace (Nec) by the usual Necessitation rule
in modal logics, but restricted to tautologies of propositional logic: if ϕ ∈ L is a
theorem, derive �ϕ.
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Lemma 1. ϑ 1 Φ iff
ϑ ∪ {�γ | 1PL γ} ∪ {instances of axioms (K), (D) and (Nec) } 1PL Φ

Theorem 1. ϑ 1 Φ iff ϑ |= Φ.

Proof. From left to right is easy, as usual. For the converse direction, assume
ϑ �1 Φ. By the preceding lemma and the completeness of PL, there exists a
propositional evaluation v on the whole language L+

� (taking �-formulas as gen-
uine propositional variables) such that v(Ψ) = 1 for all Ψ ∈ ϑ ∪ {�γ | 1PL

γ}∪{instances of axioms (K) and (D)} but v(Φ) = 0. We have to build a struc-
ture (w,E) that it is a model of ϑ but not of Φ. So, we take (w,E) as follows:

– w is defined as the restriction of v to L, i.e. w(γ) = v(γ) for all γ ∈ L.
– E =

⋂
{Mod(γ) | v(�γ) = 1}

Note that, since by assumption v(�') = 1, E �= ∅. Then the last step is to show
that, for every Ψ ∈ L+

� , v(Ψ) = 1 iff (w,E) |= Ψ.We prove this by induction. The
case Ψ being a non-modal formula from L is clear, since in that case w(Ψ) = v(Ψ).
The interesting case is when Ψ = �κ. Then we have:

(i) If v(�κ) = 1 then, by definition of E, E ⊆Mod(κ), and hence (w,E) |= �κ.
(ii) Conversely, if E ⊆ Mod(κ), then there must exist λ such that v(�λ) = 1

andMod(λ) ⊆Mod(κ). Hence this means that λ → κ is a PL theorem, and
hence we have first, by the necessitation axiom, that v(�(λ → κ)) = 1, and
thus v(�λ) ≤ v(�κ) holds as well by axiom (K), and therefore v(�κ) = 1
holds as well.

As a consequence, we have that (w,E) |= Ψ for all Ψ ∈ ϑ and (w,E) �|= Φ.

Remark 1. Notice that if the notion of logical consequence |= is reduced to con-
sidering only structures (w,E) such that w ∈ E, then one should add the fol-
lowing well-known axiom (T): �γ→ γ to keep completeness.

4 Relating MEL and MEL+ to KD45 and S5

Recall the normal modal systems KD, KD4, KD45 and S5 (see e.g. [4] for details).

Proposition 1. Let γ a formula from L�. Then MEL 1 γ iff KD 1 γ.
Proof. AssumeKD �1 γ, then there is a serial Kripke model (W, e,R) and w ∈ W
such that e(w,γ) = 0. Since γ does not contain nested modal operators, e(w,γ)
only depends on the truth-evaluations of subformulas of γ at all the worlds from
R(w) = {w′ | wRw′}, which is non-empty since R is serial. We can assume
R(w) ⊆ β. Define, for each w′ ∈ R(w), the propositional evaluation vw′(.) :=
e(w′, .), and the epistemic model Ew := {vw′ : w′ ∈ R(w)}. Then Ew |= γ, if
and only if e(w,γ) = 1. Hence MEL �1 γ.

Conversely, assume MEL �1 γ, then there is an epistemic model E such that
E �|= γ. Now, consider the Kripke model M = (E, e,R) where R = E × E
with e(v, ·) = v(·) for every v ∈ E. M is clearly a serial model. The fact that
E �|= γ implies that e(w,γ) = 0 for some w ∈ E, and hence M �|= γ, and by
completeness, KD �1 γ.
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Corollary 1. Let γ a formula from L�. Then MEL 1 γ iff L 1 γ for L ∈
{KD4,KD45, S5}.

Now let us consider the case of MEL+. Then we have even stronger relation-
ships to KD45 and S5.

Proposition 2. Let γ a formula from L+
� . Then MEL+ 1 γ iff KD 1 γ.

Proof. The proof is very similar to that of Proposition 1.

Corollary 2. Let γ a formula from L+
� . Then MEL+ 1 γ iff L 1 γ for L ∈

{KD4,KD45}.

Note that this corollary does not hold for L = S5, indeed, �γ→ γ is an axiom
of S5 that is not provable in MEL+.

Let us call MEL++ the extension of MEL+ with the axiom (T): �γ → γ.
Then notice that an easy adaptation of the proof of completeness theorem for
MEL+ proves that MEL++ is complete with respect to the class of reflexive
pointed epistemic models (w,E) where w ∈ E.

Proposition 3. Let γ a formula from L+
� . Then, MEL++ 1 γ iff S5 1 γ.

The proof easily follows from that of Proposition 2 by taking into account
that one has to deal with reflexive epistemic models.

Moreover, by recalling the well-known result that any formula of KD45 and
S5 is logically equivalent to another formula without nested modalities, we can
formulate the following stronger relationships.

Proposition 4. The following conditions hold true:

– For any arbitrary modal formula γ, there is a formula γ′ ∈ L+
� such that

KD45 1 γ iff MEL+ 1 γ′.
– For any arbitrary modal formula γ, there is a formula γ′ ∈ L+

� such that
S5 1 γ iff MEL++ 1 γ′.

Remark 2. Recently, Petruszczak [16] indicated that simplified Kripke frames
could indeed be used for the semantics of systems K45, KB5 and KD45, us-
ing subsets of propositional valuations in place of relations, as we proposed.
He proves it by constructing specific accessibility relations equivalent to such
subsets, as in [1] for MEL, while the completeness proof in [2] and here is direct.

5 MEL+ vs. Other Logics of Incomplete Information

The language MEL is supposed to encode the following situation [1]. There
are two agents, one of which, say A, reasons about some beliefs possessed by
another agent B, the former is aware of, on the basis of the testimony of the
latter. Namely, A partially knows what the other agent believes. A belief base
in MEL typically contains the testimony of agent B, namely propositions agent
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B believes (�Δ), some that he explicitly does not know (�Δ∧�¬Δ), and finally
some other propositions that agent A is aware the agent B knows the truth-
value of, without guessing which (�Δ ∨ �¬Δ). The logic MEL enables agent A
to infer more beliefs agent B possesses but did not reveal. Such a (meta-)belief
base for agent A is equivalent to a set of possible epistemic states for agent B.
In MEL+, agent A is allowed to add what is known about the real world in the
form of standard propositions. So Δ ∧ �¬Δ means that agent A considers Δ is
true, while he knows that agent B believes it is false. Under this set-up, a MEL+

model (w,E) is interpreted as the fact that A envisages the real world to be w
and the epistemic state of B to be E. If A considers that B’s beliefs are always
correct, the former can assume axiom T is valid, thus he reasons in MEL++ to
strengthen his own knowledge of the real world. Alternatively, A may mistrust
B and may wish to take advantage of knowing wrong beliefs of A.

5.1 Epistemic Logic and Accessibility Relations: A Critique

In contrast, usual semantics of S5 [7] consider the epistemic state of an agent
is modelled by an equivalence relation R on a set of possible worlds W .2 The
statement wRw′ reads “world w′ is accessible from w”. The world w′ is said
to be an epistemic or doxastic alternative to world w for the agent, depending
on whether knowledge or belief is the considered attitude. There are various
attempts to make sense of this relation, such that the agent cannot distinguish
w from w′, or w′ is a possible state of affairs from the point of view of what the
agent knows in w, etc. The underlying idea seems to be that “the set of worlds
considered possible by an agent depends on his or her informational resources
at that instant” (Stanford Encyc. Philos.).

However this view, which seems to be shared by many scholars, is not so easy
to grasp. Interpreting ”accessible worlds” as worlds compatible with the agent
epistemic state, we can assume that the epistemic state of the agent depends on
his or her informational resources at that instant (in MEL this possibility is not
considered). But it is not clear that the agent is aware of his own informational
resources to the point of articulating them in the same language as the one he
uses to speak about the current states of affairs. If w stands for an objective state
of facts, it may not include the particulars of the agent. The epistemic state of
the agent depends on many hidden internal features of the agent but his current
observations about the actual world w refer to something external, the agent is
focused on. It is not clear that the vocabulary used to describe the actual world
w is rich enough to also account for the inner state (of health or informational
resources) of the agent that holds some beliefs about w. For instance suppose
the agent has incomplete information on the outcome of coin flipping round after
the toss: this epistemic state will generally not depend on the outcome of the
toss (like “if the result is heads then he knows it, otherwise he does not know”).

2 See [6] for an alternative semantics that makes the internal structure of possible
worlds more explicit, encoding both objective facts and agents’ mental states in a
possible world. We thank one reviewer for pointing this out to us.
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In a nutshell, while an equivalence class of R represents context-dependent
knowledge of the agent, it is not clear that this contextual dependence is part
of the agent’s knowledge about himself, let alone about another agent. So in
the epistemic logic approach the accessibility relation seems to be a circular
notion, where possible worlds seem to include the description of the agent mental
circumstances as well as the description of his epistemic state regarding the
problem he considers. This view may make sense when introspection is the main
issue (the agent being partially unaware of his own knowledge), but it seems to
be at odds with the problem of an agent reflecting about other agents knowledge,
as in the set-up for MEL and MEL+. As the set-up for MEL is not introspective,
this relational semantics looks like a questionable artifact for this logic, where
we assume agents are aware of their own knowledge and lack of knowledge. Note
that if R =W ×W one can only distinguish between tautologies (i.e. �Π where
Π is a PL tautology), contradictions and contingent modal propositions.

One may extend the MEL set-up by considering a separate set of possible
mental dispositions S corresponding to “informational resources” (due to specific
situations or circumstances) an agent can access at a particular moment. On the
other hand,W encodes the question the agent is concerned with at that moment;
it pertains to the outside world, so S ∩W = ∅ The accessibility relation R is
relating S to W , namely E = R(s) ⊆ W is the epistemic state of the agent
when his mental disposition is s. Note that, under this view, there is no point
of R being an equivalence relation. But this extension assumes that the set S of
mental dispositions of the agent is known and observable by another agent.

5.2 Comparison to Logics of Rough Sets

The semantics of S5 in terms of equivalence relations [4] makes it in fact the
natural logical setting for rough sets [14]. Pawlak’s rough sets [15] are based on
the notion of approximation spaces (W,R), where R, called the indiscernibility
relation, is an equivalence relation on the domain W of discourse. The premise
is that due to lack of complete information about the objects in the domain, it
is likely that many of the objects are indistinguishable from each other. This
is patent in information systems I := (W,At, VAt, f), where At is a set of at-
tributes, VAt a set of values for the attributes in At, and f : W × At → VAt a
function assigning values for attributes to objects of the domain. I then induces
an indiscernibility relation R corresponding to every subset B ⊆ At:

xRy, if and only if f(x, b) = f(y, b), for all b ∈ B.

The lower and upper approximations of a subset X of the domain with respect
to R are defined as

X := {x ∈ W : R(x) ⊆ X}; X := {x ∈W : R(x) ∩X �= ∅}.

Sets with identical approximations are said to be roughly equal, and for any X ,
the collection of all subsets of the domain roughly equal to X is termed a rough
set by Pawlak in [15].
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Any logic of rough sets thus has an essential modal nature, the necessity and
possibility operators capturing the lower and upper approximations in the rough
set semantics respectively. In fact, for any S5 Kripke model M = (W, e,R), one
may observe that e(�γ) = e(γ) and e(�γ) = e(γ), where e(γ) := {w ∈ W :

e(w,γ) = 1}. However, unlike MEL or MEL+, rough set logics make use of the
full modal language, that is, nested modalities are allowed. For instance one
would use a formula such as �(p ∧ �q) to refer to a set (X ∩ Y ).

This approach can easily be extended to rough set models based on a relation
that is not necessarily an equivalence one [17,18]. These logics remain modal, and
use nested modalities. Indeed, it is well known in modal logic [4] that, once fixed
the basic axioms (PL) and (K), then each additional modal axioms corresponds
a different property of the accessibility relation.

5.3 Comparison to the Logic of Minimal Belief and Negation as
Failure (MBNF)

In [12] Lifschitz defines a simplified version of Lin and Shoham logic [13] of
minimal knowledge and justified assumptions. His (nonmonotonic) logic, in the
propositional version, contains two modal operators, one for minimal belief B
and another for negation as failure not. For positive formulas, i.e. formulas not
containing not, the (monotonic) semantics is very similar to that of MEL+:
semantics are given by structures (I, S), where I is an interpretation of propo-
sitional variables (or equivalently a set of atoms) and S a set of interpretations.
The author writes that,“intuitively, I represents ‘the real world’, and S the set
of ‘possible worlds’ ”. As in MEL+, for a nonmodal formula γ, a structure (I, S)
satisfies the formula Bγ whenever each I ′ ∈ S satisfies γ. Therefore MBNF
structures (I, S) exactly correspond to pointed epistemic MEL+ models.

The nonmonotonic semantics of MBNF is defined as to capture the notion of
minimal belief. A model of a theory T (set of positive formulas) is a structure
(I, S) such that it makes true all the formulas of T and it is maximal in the sense
that there is no other structure (I ′, S′) making the formulas of T true and such
that S � S′. For instance, the only model of Bγ in this semantics is (I,Mod(γ)),
while the models of Bγ∨Bκ are (I,Mod(γ)) and (I,Mod(κ)). Then the corre-
sponding notion of (nonmonotonic) consequence relation is defined accordingly.
For instance one has Bp |= ¬Bq but {Bp,Bq} �|= ¬Bq.

Actually, MBNF models for formulas of the language of MEL (resp. MEL+)
correspond to the minimum specific epistemic models in MEL (reps. pointed
epistemic models in MEL+) in the sense of possibilistic logic.

6 Conclusion

In this paper, we argue that the usual semantics of epistemic logics based
on accessibility relations is not very natural when the purpose is to reason about
beliefs or incomplete knowledge entertained by an external agent, and introspec-
tion is ruled out. To this end, we have shown that the fragment MEL+ (resp.
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MEL++) of the KD45 (resp. S5) logic, the richest of doxastic (resp. epistemic)
logics, involving modal formulas of depth 0 or 1 can have simplified semantics
that are more intuitive than equivalence relations, while the latter make sense
for capturing rough sets. The connection between MEL+ and MBNF clearly sug-
gests the former has more to do with logic programming than to the mainstream
modal logic tradition, as already noticed with generalized possibilistic logic (a
multimodal extension of MEL), that can encode answer-set programming [5].
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Abstract. This paper focuses on resolution in linguistic first order logic
with truth value taken from linear symmetrical hedge algebra. We build
the basic components of linguistic first order logic, including syntax and
semantics. We present a resolution principle for our logic to resolve on
two clauses having converse linguistic truth values. Since linguistic in-
formation is uncertain, inference in our linguistic logic is approximate.
Therefore, we introduce the concept of reliability in order to capture the
natural approximation of the resolution inference rule.

Keywords: Linear Symmetrical Hedge Algebra, Linguistic Truth Value,
Linguistic First Order Logic, Resolution, Automated Reasoning.

1 Introduction

Automated reasoning theory based on resolution rule of Robinson [14] has been
research extensively in order to find efficient proof systems [1, 6]. However, it
is difficult to design intelligent systems based on traditional logic while most
of the information we have about the real world is uncertain. Along with the
development of fuzzy logic, non-classical logics became formal tools in computer
science and artificial intelligence. Since then, resolution based on non-classical
logic (especially multi-valued logic and fuzzy logic) has drawn the attention of
many researchers.

In 1965, Zadeh introduced fuzzy set theory known as an extension of set
theory and applied widely in fuzzy logic [21]. Many researchers have presented
works about the fuzzy resolution in fuzzy logic [2, 8, 9, 15, 18, 20]. In 1990, Ho
and Wechler proposed an approach to linguistic logic based on the structure of
natural language [10]. The authors introduced a new algebraic structure, called
hedge algebra, to model linguistic truth value domain, which applied directly to
semantics value in inference. There also have been many works about inference
on linguistic truth value domain based on extended structures of hedge algebra
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such as linear hedge algebra, monotony linear hedge algebra [7, 12, 13]. Re-
searchers also presented truth functions of new unary connectives (hedges) from
the set of truth values to handle fuzzy truth values in a natural way [3, 5, 19].
Recently, we have presented the resolution procedure in linguistic propositional
logic with truth value domain taken from linear symmetrical hedge algebra [11].
We have constructed a linguistic logic system, in which each sentence in terms of
“It is very true that Mary studies very well’ ’ is presented by PVeryTrue, where P
is “Mary studies very well”. Two clauses having converse linguistic truth values,
such as PVeryTrue and PMoreFalse, are resolved by a resolution rule. However, we
cannot intervene in the structure of a proposition. For example with the knowl-
edge base: “It is true that if a student studies hard then he will get the good
marks” and “It is very true that Peter studies hard”, we cannot infer to find the
truth value of the sentence “Peter will get the good marks”. Linguistic first or-
der logic overcomes this drawback of linguistic propositional logic. Furthermore,
knowledge in the linguistic form maybe compared in some contexts, such as when
we tell about the value of linguistic variable Truth, we have LessTrue < VeryTrue
or MoreFalse < LessFalse. Therefore, linear symmetrical hedge algebra is an ap-
propriate to model linguistic truth value domain.

As a continuation of our research works on resolution in linguistic proposi-
tional logic systems [11, 17], we study resolution in linguistic first order logic.
We construct the syntax and semantics of linguistic first order logic with truth
value domain taken from linear symmetrical hedge algebra. We also propose a
resolution rule and a resolution procedure for our linguistic logic. Due to the un-
certainty of linguistic information, each logical clause would be associated with
a certain confidence value, called reliability. Therefore, inference in our logic is
approximate. We shall build an inference procedure based on resolution rule with
a reliability Δ which ensures that the reliabilities of conclusions are less than or
equal to reliabilities of premises.

The paper is structured as follows: section 2 introduces basic notions of lin-
ear symmetrical hedge algebras and logical connectives. Section 3 describes the
syntax and semantics of our linguistic first order logic with truth value domain
based on linear symmetrical hedge algebra. Section 4 proposes a resolution rule
and a resolution procedure. Section 5 concludes and draws possible future work.
Due to the lack of space several proofs had to be omitted. They appear in the
full paper at http://arxiv.org/abs/1403.6237.

2 Linear Symmetrical Hedge Algebra

We consider an abstract algebra called hedge algebra HA = (X,G,H,≤) where
G is the set of generators and H is the set of hedges. The set of values X
generated from G and H is defined as X = {ψc|c ∈ G, ψ ∈ H}. ≤ is a partial
order on X such that a ≤ b if a < b or a = b (a, b ∈ X).

Let h, k be two hedges in the set of hedges H . Then k is said to be positive
(negative) w.r.t. h if for every x ∈ X , hx ≥ x implies khx ≥ hx(khx ≤ hx)
or, conversely, hx ≤ x implies khx ≤ hx(khx ≥ hx). h and k are converse
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if ∀x ∈ X,hx ≤ x iff kx ≥ x. h and k are compatible if ∀x ∈ X, x ≤ hx
iff x ≤ kx. h modifies terms stronger or equal than k, denoted by h ≥ k, if
∀x ∈ X, (hx ≥ kx ≥ x) or (hx ≥ kx ≥ x).

The set of primary terms G usually consists of two comparable ones, denoted
by c− < c+. Such HAs are called symmetric ones. For symmetric HAs, the set
of hedges H is decomposed into two non-empty disjoint subsets H+ and H− so
that each element in H+ is a converse operation of the operations in H−, i.e.
H+ = {h ∈ H |hc+ > c+} and H− = {h ∈ H |hc+ < c+}. Two hedges in each
of the sets H+ and H− are comparable. Thus, H+ and H− become posets. Let
I /∈ H be the identity hedge, i.e., Ix = x ∀x ∈ X . A linear symmetric HA is
defined as follows:

Definition 1. [10, 13] An abstract algebra (X,G,H,≤) where G = {c−, c+},
H �= ∅ and X = {σc|c ∈ G, σ ∈ H∗}, is called a linear symmetric HA (lin-HA,
for short) if it is satisfies the following conditions:

(A1) For all h ∈ H+ and k ∈ Hi, h and k are converse,
(A2) The sets H+ ∪ I and H− ∪ I are linearly ordered with the least element I,
(A3) For each pair h, k ∈ H, either h is positive or negative w.r.t. k,
(A4) If h �= k and hx ≤ kx then h′hx ≤ k′kx for all h, k, h′, k′ ∈ H and x ∈ X,
(A5) If u /∈ H(v) and u ≤ v then u ≤ hv, for any h ∈ H.

Let x = hn...h1a be an element of the hedge algebra AX where a ∈ {c+, c−}.
The converse element of x is an element x such that x = hn...h1a

′ where a′ ∈
{c+, c−} and a′ �= a. In lin-HA, every element x ∈ X has an unique converse
element in X .

HAs are extended by augmenting two hedges Φ and Σ defined as Φ(x) =
infimum(H(X)) and Σ(x) = supremum(H(x)), for all x ∈ X [4]. It is shown
that, for a free lin-HA with H �= ∅, Φ(c+) = Σ(c−). We denote Σ(c+) = ' and
Φ(c−) = ⊥. Let us put W = Φ(c+) = Σ(c−) (called the middle truth value), we
have ⊥ < c− < W < c+ < '.

Definition 2. A linguistic truth domain X taken from a lin-HA AX = (X,
{c−, c+}, H,≤) is defined as X = X ∪ {⊥,W,'}, where ⊥,W,' are the least,
the neutral, and the greatest elements of X, respectively.

Proposition 1. [4] For any lin-HA AX = (X,G,H,≤), the linguistic truth
domain X is linearly ordered.

To define the logical connectives, different t-norms and t-conorms are used
[11, 16, 20]. In this paper we define logical connectives using Gödel’s t-norm and
t-conorm operators. Let K = {n|n ∈ N, n ≤ N0}. Let m,n ∈ K. Gödel’s t-norm
(T) and t-conorm (S) operators are defined as follows:
−T (m,n) = min(m,n).
−S(m,n) = max(m,n).

Given a lin-HA AX, since all the values in AX are linearly ordered, truth
functions for conjunctions and disjunctions are Gödel’s t-norms and t-conorms,
respectively.
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Definition 3. Let X be a linguistic truth domain, which is a lin-HA. The logi-
cal connectives ∧ (respectively ∨) over X are defined to be Gödel’s t-norm (re-
spectively t-conorm), and furthermore to satisfy the following: ¬Δ = Δ, and
Δ→ β = (¬Δ) ∨ β, where Δ, β ∈ X.

Proposition 2. Let X = X∪{⊥,W,'} be a linguistic truth domain taken from
a lin-HA AX = (X, {c−, c+}, H,≤); Δ, β, λ ∈ X, we have:

– Double negation: ¬(¬Δ) = Δ
– Commutative: Δ ∧ β = β ∧ Δ, Δ ∨ β = β ∨ Δ
– Associative: (Δ ∧ β) ∧ λ = Δ ∧ (β ∧ λ), (Δ ∨ β) ∨ λ = Δ ∨ (β ∨ λ)
– Distributive: Δ ∧ (β ∨ λ) = (Δ ∧ β) ∨ (Δ ∧ λ), Δ ∨ (β ∧ λ) = (Δ ∨ β) ∧ (Δ ∨ λ)

3 Linguistic First Order Logic Based on Linear
Symmetrical Hedge Algebra

In this section we define the syntax and semantics of our linguistic first-order
logic.

Definition 4. The alphabet of a linguistic first-order language consists of the
following sets of symbols:

– constant symbols: a set of symbols a, b, c, . . ., each of 0-ary;
– logical constant symbols: MoreTrue,VeryFalse,⊥,', ...;
– variable: x, y, z, . . .;
– predicate symbols: a set of symbols P,Q,R, . . ., each associated with a positive

integer n, arity. A predicate with arity n is called n-ary;
– function symbols: a set of symbols f, g, h, . . ., each associated with a positive

integer n, arity. A function with arity n is called n-ary;
– logical connectives: ∨,∧,¬,→,↔;
– quantifies: universal quantification ∀, existentional quantification ∃;
– auxiliary symbols: �, (, ), . . ..

Definition 5. A term is defined recursively as follows:

– either every constant symbol or every variable is a term,
– if t1, . . . , tn are terms and f is a n-ary function symbol, f(t1, . . . , tn) is a

term (functional term).

Definition 6. An atom is either a zero-ary predicate symbol or a n-ary predicate
symbol P (t1, . . . , tn), where t1, . . . , tn are terms.

Definition 7. Let A be an atom and Δ be a logical constant. Then Aα is called
a literal.

Definition 8. Formulae are defined recursively as follows:

– a literal is a formula,
– if F,G are formulae, then F ∨G, F ∧G, F → G,F ↔ G,¬F are formulae,
– if F is a formula and x is a free variable in F , then (∀x)F and (∃x)F are

formulae.
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The notions of free variable, bound variable, substitution, unifier, most general
unifier, ground formula, closed formula, etc. are similar to those of classical logic.

Definition 9. A clause is a finite disjunction of literals represented by L1∨L2∨
... ∨ Ln, where Li(i = 1, 2, ..., n) is a literal. An empty clause is denoted by �.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. It
is well known that transforming a formula in first order logic into a CNF formula
preserves satisfiability [1]. In Section 4 we shall be working with a resolution
procedure which processes CNF formulae, or equivalently clause sets.

Definition 10. An interpretation for the linguistic first order logic is a pair
I=<D,A> where D is a non empty set called domain of I, and A is a function
that maps:

– every constant symbol c into an element cA ∈ D;
– every n-ary function symbol f into a function fA : Dn → X;
– every logical constant symbol l into an element lA ∈ X;
– every n-ary predicate symbol P into an n-ary relation PA : Dn → X, where

X is the truth value domain taken from lin-HA;
– every variable x into a term.

Given an interpretation I=<D,A> for the linguistic first order logic, the truth
value of a symbol S in the alphabet of the logic is denoted by I(S).

Definition 11. Given an interpretation I=<D,A>, we define:

– Value of a term: I(t) = tA, I(f(t1, . . . , tn)) = f(I(t1), . . . , I(tn)).
– Truth value of an atom: I(P (t1, . . . , tn)) = P (I(t1), . . . , I(tn)).
– Truth value of a logical constant: I(c) = cA.
– Let P be an atom such that I(P ) = Δ1. Truth value of a literal Pα2 :

I(Pα2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ1 ∧ Δ2 if Δ1, Δ2 >W,

¬(Δ1 ∨ Δ2) if Δ1, Δ2 ≤W,

(¬Δ1) ∨ Δ2, if Δ1 >W, Δ2 ≤W,
Δ1 ∨ (¬Δ2), if Δ1 ≤W, Δ2 >W.

– Let F and G be formulae. Truth value of a formula:

• I(¬F ) = ¬I(F )
• I(F ∧G) = I(F ) ∧ I(G)
• I(F ∨G) = I(F ) ∨ I(G)
• I(F → G) = I(F )→ I(G)

• I(F ↔ G) = I(F )↔ I(G)

• I((∀x)F ) = min∀d∈D{I(F )}
• I((∃x)F ) = max∃d∈D{I(F )}

Definition 12. Let I=<D,A> be an interpretation and F be a formula. Then

– F is true iff I(F ) ≥ W . F is satisfiable iff there exists an interpretation I
such that F is true in I and we say that I is a model of F (write I |= F ) or
I satisfies F .
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– F is false iff I(F ) < W and we say that I falsifies F . F is unsatisfiable iff
there exists no interpretation that satisfies F .

– F is valid iff every interpretation of F satisfies F .
– A formula G is a logical consequence of formulas {F1, F2, . . . , Fn} iff for

every interpretation I, if I |= F1 ∧ F2 ∧ . . . ∧ Fn we have that I |= G.

Definition 13. Two formulae F and G are logically equivalent iff F |= G and
G |= F and we write F ≡ G.

It is infeasible to consider all possible interpretations over all domains in order
to prove the unsatisfiability of a clause set S. Instead, we could fix on one special
domain such that S is unsatisfiable iff S is false under all the interpretations over
this domain. Such a domain, which is called the Herbrand universe of S, defined
as follows.

Let H0 be the set of all constants appearing in S. If no constant appears in S,
then H0 is to consist of a single constant, say H0 = {a}. For i = 0, 1, 2, . . ., let
Hi+1 be the union of Hi and the set of all terms of the form fn(t1, . . . , tn) for
all n-place functions fn occurring in S, where tj , j = 1, . . . , n, are members of
the set Hi. Then each Hi is called the i-level constant set of S and H∞ is called
the Herbrand universe (or H-universe) of S, denoted by H(S).

The set of ground atoms of the form Pn(t1, . . . , tn) for all n-ary predicates Pn

occuriring in S, where t1, . . . , tn are elements of the H-universe of S, is called
the atom set, or Herbrand base (H-base, for short) of S, denoted by A(S).

A ground instance of a clause C of a clause set S is a clause obtained by
replacing variables in C by members of H-universe of S.

We now consider interpretations over the H-universe. In the following we
define a special over the H-universe of S, called the H-interpretation of S.

Definition 14. Let S be a clause set, H be the H-universe of S, and I=<D,A>
be an interpretation of S. I is an H-interpretation of S if the following holds:

– D = H,
– Let c be a constant symbol, cA = c,
– Let f be a n-ary function symbol, fA maps (h1, . . . , hn) ∈ Hn to
f(h1, . . . , hn) ∈ H

– Let A = {A1, . . . , An, . . .} be the H-base (or atom set) of S, H-interpretation
I = {m1, . . . ,mn, . . .}, where mj = Aj or mj = ¬Aj .

Given I =< D,A > interpretation over D, an H-interpretation I =< H,A >
corresponding to I is an H-interpretation that satisfies the following condition:

Let h1, . . . , hn be elements of H and let m : H → D be a mapping from H to
D then PA(h1, . . . , hn) = PA(m(h1), . . . ,m(hn))

Given an Interpretation I, we can always find a corresponding I
H-interpretation.

Theorem 1. A clause set S is unsatisfiable iff S is false under all the
H-interpretations of S.
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Let S be a clause set and A(S) be the H-base of S. A semantic tree for S is
a complete binary tree constructed as follows:

– For each node Ni at the i
th level corresponds to an element Ai of A(S), that

is, the left edge of Ni is labeled Ai < W, the right edge of Ni is labeled
Ai ≥W.

– Conversely, each element of A(S) corresponds to exactly one level in the tree,
this means if Ai ∈ A(S) appears at level i then it must not be at any other
levels.

Let T be a semantic tree of a clause set S and N be a node of T . We denote
I(N) to be the union of all the sets labeled to the edges of branch of T down
to N . If there exists an H-interpretation I in T which contains I(N), such that
I(N) falsifies some ground instance of S, then S is said to be failed at the node
N . A node N is called a failure node of S iff S falsifies at N and I(N ′) does not
falsify any ground instance of a clause in S for every ancestor node N ′ of N . N
is called an inference node if all the immediate descendant nodes of N are failure
nodes. If every branch in T contains a failure node, cutting off its descendants
from T , we have T ′ which is called a closed tree of S. If the number of nodes in
T ′ is finite, T ′ is called a finite closed semantic tree.

Lemma 1. Let S be a clause set. Then S is unsatisfiable iff for every semantic
tree of S, there exists a finite closed tree.

In the next section we present the inference based on resolution rule for our
linguistic logic. Lemma 1 will be used to prove the soundness and completeness
of resolution inference rule.

4 Resolution

In two-valued logic, when we have a set of formulae {A,¬A} (written as
{ATrue, AFalse} in our logic) then the set is said to be contradictory. How-
ever in our logic, the degree of contradiction can vary because the truth do-
main contains more than two elements. Let us consider two sets of formulae
{AVeryTrue, AVeryFalse} and {ALessTrue, ALessFalse}. Then the first set of formulae is
“more contradictory” than the second one. Consequently, the notion of reliability
is introduced to capture the approximation of linguistic inference.

Definition 15. Let Δ be an element of X such that Δ > W and C be a clause.
The clause C with a reliability Δ is denoted by the pair (C,Δ).

The reliability Δ of a clause set S = {C1, C2, . . . , Cn} is defined as follows:
Δ = Δ1 ∧ Δ2 ∧ . . . ∧ Δn, where Δi is the reliability of Ci (i = 1, 2, . . . , n).

A clause (C2, Δ2) is a variant of a clause (C1, Δ1) if Δ1 �= Δ2 or C2 is equal to
C1 except for possibly different variable name.
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Definition 16. Given two clauses (C1, Δ1) and (C2, Δ2) without common vari-
ables, where C1 = Aa ∨ C′1, C2 = Bb ∨ C′2. Define the linguistic resolution rule
as follows:

(Aa ∨ C′1, Δ1) (Bb ∨ C′2, Δ2)

(C′1λ ∨C′2λ, Δ3)

where λ is an m.g.u of A and B; and a, b, and Δ3 satisfy the following condi-
tions: a ∧ b < W, a ∨ b ≥ W, Δ3 = f(Δ1, Δ2, a, b) with f is a function ensuring
that Δ3 ≤ Δ1, and Δ3 ≤ Δ2.
(C′1λ ∨ C′2λ, Δ3) is a binary resolvent of (C1, Δ1) and (C2, Δ2). The literals Aa

and Bb are called literals resolved upon.

In Def. 16, Δ3 is defined so as to be smaller or equal to both Δ1 and Δ2. In
fact, the obtained clause is less reliable than original clauses. The function f is
defined as following:

Δ3 = f(Δ1, Δ2, a, b) = Δ1 ∧ Δ2 ∧ (¬(a ∧ b)) ∧ (a ∨ b) (1)

Obviously, Δ1, Δ2 ≥W, and Δ3 depends on a, b. Additionally, a ∧ b <W implies
¬(a ∧ b) >W. Moreover, (a ∨ b) ≥W. Then, by Formula (1), we have Δ3 ≥W.

An inference is sound if its conclusion is a logical consequence of its premises.
That is, for any interpretation I, if the truth values of all premises are greater
than W, the truth value of the conclusion must be greater than W.

Definition 17. A resolvent of clauses C1 and C2 is a binary resolvent of factors
of C1 and C2, respectively.

Definition 18. Let S be a clause set. A resolution derivation is a sequence of
the form S0, . . . , Si, . . ., where

– S0 = S, and
– Si+1 = Si∪{(C,Δ)}, where (C,Δ) is the conclusion of a resolution inference

with premises Si based on resolution rule in Def. 16 and (C,Δ) /∈ Si.

We find that resolution derivation S0, . . . , Si, . . . is infinite because the set of
assignments and the set of semantic values are infinite. However, if the original
clause set S is unsatisfiable, the sequence Si always derives an empty clause
�. The soundness and completeness of resolution derivation is shown by the
following theorem:

Theorem 2. Let S be a clause set, S0, . . . , Si, . . . be a resolution derivation. S
is unsatisfiable iff there exists Si containing the empty clause �.

A resolution proof of a clause C from a set of clauses S consists of repeated
application of the resolution rule to derive the clause C from the set S. If C is
the empty clause then the proof is called a resolution refutation. We represent
resolution proofs as resolution trees where a node is labeled with a clause. The
root node without child node is labeled with the conclusion clause. All nodes
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with no parent node are labeled with clauses from the initial clause set S. All
other nodes must have two parents and are labeled with a clause C such that

C1 C2

C

where C1, C2 are the labels of the two parent nodes. If RT is a resolution tree
representing the proof of a clause with reliability (C,Δ), then we say that RT
has the reliability Δ.

Example 1. Let AX = (X, {False,True, }, H,≤ be a lin-HA where H+ = {V,M}
andH− = {P, L} (V=Very, M=More, P=Possible, L=Less); Consider the clause
set after transforming into CNF as following:

1. A(x)MFalse ∨B(z)MFalse ∨ C(x)PTrue

2. C(y)MFalse ∨D(y)VMTrue

3. C(t)VVTrue ∨ E(t, f(t))MFalse

4. E(a, u)True

5. A(a)VTrue

6. B(a)LTrue

7. D(a)MFalse

where a, b are constant symbols; t, x, y, u, z are variables. At the beginning,
each clause is assigned to the highest reliability '. We have a resolution proof
as follows:

(A(x)MFalse ∨B(z)MFalse ∨ C(x)PTrue,�) (A(a)VTrue,�)
[a/x]

(B(z)MFalse ∨ C(a)PTrue,MTrue) (B(a)LTrue,�)
[a/z]

(C(a)PTrue, LTrue) (C(y)MFalse ∨D(y)VMTrue,�)
[a/y]

(D(a)VMTrue, LTrue) (D(a)MFalse,�)

(�, LTrue)

5 Conclusion

We have presented syntax and semantics of our linguistic first order logic system.
We based on linear symmetrical hedge algebra to model the truth value domain.
To capture the approximate of inference in nature language, each clause in our
logic is associated with a reliability. We introduced an inference rule with a
reliability which ensures that the reliability of the inferred clause is less than
or equal to those of the premise clauses. Based on the algebraic structure of
linear symmetrical hedge algebra, resolution in linguistic first order logic will
contribute to automated reasoning on linguistic information. It would be worth
investigating how to extend our result to other hedge algebra structures and to
other automated reasoning methods.

Acknowledgement. The authors would like to thank the National Foundation
of Science and Technology Development for its support under Grant 102.04-
2013.21.



354 T.-M.-T. Nguyen et al.

References

[1] Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving, 1st
edn. Academic Press, Inc., Orlando (1997)

[2] Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets and Systems 117(2), 215–230
(2001)

[3] Esteva, F., Godo, L., Noguera, C.: A logical approach to fuzzy truth hedges.
Information Sciences 232, 366–385 (2013)

[4] Ho, N.C., Wechler, W.: Extended hedge algebras and their application to fuzzy
logic. Fuzzy Sets and Systems 52(3), 259 (1992)
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[16] Smutná-Hliněná, D., Vojtáš, P.: Graded many-valued resolution with aggregation.
Fuzzy Sets and Systems 143(1), 157–168 (2004)

[17] Tran, D.-K., Vu, V.-T., Doan, T.-V., Nguyen, M.-T.: Fuzzy linguistic propositional
logic based on refined hedge algebra. In: 2013 IEEE International Conference on
Fuzzy Systems (FUZZ), pp. 1–8 (2013)

[18] Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(3), 361–370
(2001)

[19] Vychodil, V.: Truth-depressing hedges and bl-logic. Fuzzy Sets and Systems
157(15), 2074 (2006)

[20] Weigert, T.J., Tsai, J.-P., Liu, X.: Fuzzy operator logic and fuzzy resolution. J.
Autom. Reasoning 10(1), 59–78 (1993)

[21] Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)



 

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 355–365, 2014. 
© Springer International Publishing Switzerland 2014 

A Fuzzy Set Based Evaluation of Suppliers on Delivery, 
Front Office Quality and Value-Added Services 

Margaret F. Shipley, Gary L. Stading, and Jonathan Davis 

University of Houston Downtown 
326 North Main Street 
Houston, Texas 77002 

shipleym@uhd.edu, stadingg@uhd.edu, davisg@uhd.edu 

Abstract. Fuzzy probabilities are used in an algorithmic process to address the 
ambiguity and uncertainty in supplier selection. Supplier selection is receiving 
increased focus in supply chain management (SCM) and was the impetus of a 
survey sent to 3000 companies that deal with an industry-dominated seven sup-
pliers. This study focuses on three criteria, each having four attributes; delivery, 
front-office quality, and value-added services. The respondent data are parti-
tioned, the algorithm is applied to the twelve aspects of the criteria using a 
spreadsheet program, the results are analyzed, and discussion is provided of a 
weighted scoring approach to rank order the suppliers.  

Keywords: Fuzzy Set Theory, Fuzzy Probability, Supplier Selection. 

1 Introduction 

Supplier selection decisions are receiving increased focus in industry, and the asso-
ciated academic papers have no shortage of ideas about how selection decisions can 
be made. Alternatives range from simple expert opinion methods that are not reliably 
repeatable to quantitative methods that may not account for various criteria associated 
with standards for supplier performance. Even where quantitative supplier perfor-
mance data are readily available, subjective judgment of qualitative performance me-
trics must be provided by a variety of sources, including senior management ([1],[2]), 
experts in the field ([3],[4],[5]) and even a project’s team members [6]. However, 
subjective judgments offered in terms of linguistic variables provide a degree of un-
certainty and input ambiguity into the decision. Customer demands are generally un-
certain and supplier evaluation, selection and coordination lead to various strategies to 
manage supplier relationships ([7],[8]). Fuzzy logic has been recognized as an impor-
tant tool in the analysis of uncertainty in decision making situations, including supply 
chain management (SCM). 

Lui [9], proposed a fuzzy model for partial backordering models in 1999. Five years 
later inventory discounting considered the buyer-seller relationships [10], and location 
aspects for inventory control became fuzzy considerations [11]. Supply chain decisions 
for integrated just-in-time inventory systems recognized the fuzzy nature of annual 
demand and production rates as being no longer statistically based. The assumption  
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of known annual demand was considered by the authors to be unrealistic such that the 
proposed model included fuzzy annual demand and/or production rate, employing  
the signed distance, a ranking method for fuzzy numbers, to estimate fuzzy total cost of 
the JIT production in today’s supply chain environment. A fuzzy-set based method 
derived the optimal buyer’s quantity and number of lots from the vendor [12]. 

Fuzzy programming contributed to the following: optimal product mix based on 
ABC analysis [13]: fuzzy multi-objective linear programming minimized total pro-
duction and transportation costs; the number of rejected items and total delivery time 
as related to labor and budget constraints [14]; and fuzzy goal programming consi-
dered supply chain management from the perspective of activity-based costing with 
mathematically derived optimization for evaluating performance of the value-chain 
relationship [15]. Manufacturing processes as related to business logistics looked at 
the data itself as fuzzy in Quality Function Deployment’s relationship to customer 
service [16]. The pursuit of goals such as quality further led to attempts to balance 
production process capacities of assembly lines. Fuzzy goals were used as a tool for 
measuring, displaying and controlling industrial process variables [13]. 

Considering different quality standards in a supply chain network, Chan et al. used 
a fuzzy neural approach to suggest adjustments of product quantity from various sup-
pliers [17]. The Fuzzy Suitability Index (FSI) aggregated rankings and multiplied, by 
weight, each criterion [18]. With the same goal of ranking suppliers according to per-
formance, a method was proposed whereby n decision makers evaluated the perfor-
mance of m suppliers in k criteria, rating the importance of the k criteria in linguistic 
terms. Aggregation of the fuzzy expressions for importance weights, and a fuzzy pre-
ference index led to rank ordering of the suppliers [19]. 

Supplier selection was developed from a rule-based perspective. The approach se-
lected was fuzzy associated rule mining from the database for supplier assessment 
[20]. Sevkli [21] in his comparison of a recognized crisp ELECTRE model versus a 
fuzzy ELECTRE model, reached the conclusion that using fuzzy sets for multi-criteria 
supplier selection decisions is superior. 

2 Fuzzy Supplier Selection Model 

Fuzzy logic addresses the ambiguity of data and uncertainty in this decision making 
situation, where a fuzzy subset A of a set X is a function of X into [0,1]. For a brief 
foundation in the basics, see ([22], [23],[24]). While a new class of implication opera-
tors has been proposed [25], the more traditionally utilized fuzzy operations are used 
in this research. A and B denote two fuzzy sets, so the intersection, union, and com-
plement are defined by: 

 A ∩ B = Σ γi / xi, where γi = Min {αi, ßi};  
A ∪ B = Σ γi / xi, where γi = Max {αi, ßi};  
¬A = Σ γi / xi, where γi = 1 - αi;  
and it is assumed that B = Σ ßi / xi      ([26],[27],[28],[29]) 
 
Extension principles ([30],[23],[31]) often guide the computations when dealing 

with fuzzy sets. Letting ƒ be a function from X into Y, with Y as any set and A as 
above, then ƒ can be extended to fuzzy subsets of X by: 
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ƒ(A) = Σy uƒ(A)(y) / y, where uƒ(A)(y) = Maxxεƒ
-1

(y) A(x)T 

thus, ƒ(A) is a fuzzy subset of Y. In particular, if ƒ is a mapping from a Cartesian 
product such as X × Y to any set, Z, then ƒ can be extended to objects of the form 
(A,B) where A and B are fuzzy subsets of X and Y by: 

ƒ(A,B) = Σ uƒ(A,B) (z) / z, where uƒ(A,B)(z) = Max(x,y)εƒ
-1

(z) Min{A(x), B(x)}. 
A fuzzy set P whose elements all lie on the interval [0,1] can be expressed as a 

fuzzy probability. Consider a set of n fuzzy probabilities each having r elements, 


=

=
r

j
ijiji aa

1

α for i = 1, 2,…,n, where αij denotes the degree of belief that a possi-

ble value of ai is aij. Then (a1,a2,...an) constitutes a finite fuzzy probability distribution 

if and only if there are n-tuples ai, i = 1,2,...,n such that 1
1

=
=

n

i
ia . 

To qualify as a finite fuzzy probability distribution, each fuzzy probability in the 
distribution must have the same number of elements (some of the a's may be zero), 
and these elements should be ordered in the sense that the sum of the elements in each 
specific position must equal one. So the n-tuples (aij), i=1,2,...,n form probability dis-
tributions in the crisp sense. This type of probability distribution can be transformed 
such that the resulting distribution has entropy at least as great as the original [32]. 

A version of fuzzy expected values was first used when Zebda [31] defined Qijk = Σ 
αijk / ak as the fuzzy probability that from State i and making Decision j, reach State k. 
Associated with this are fuzzy benefits Bijk where Bijk = Σ ßijk / bk

′ 
Then the averaged benefit is defined by E(Bijk) = Σcijℓ / bℓ where: 
cijℓ = ,… , ,…  , ß  

for bℓ =Σk axbx if Σk ax=1 and 0 otherwise. 
Here, ƒ(a1,...,ap,b1

′,...,bp
′) = Σ axbx

′ 

2.1 Algorithm 

The algorithm preserves information during the process of computing and evaluating 
fuzzy probabilities until a final weighted model collapses the results into an objective 
score.  

0. Randomly partition the criteria data set into ℓ subsets of equal size. 
1. For each attribute φ of each supplier ν, subjectively assign scores sφkν. The 

supplier rating (sφkν) is then given by the equation sφkν = ∑  τφk / sφk for all ν 
where τφk = 1 (ν=1,2,…,m; k=1,2,…,n; and 1 < φ < x). 

2. Define the fuzzy expected value, Qφkν, for each attribute φ of each ν in 
terms of each sφkν as Qφkjν = ∑ αφkjν / aφkjν for all sφkjν, where each αφkjν 
represents belief in the probability aφkjν that ν will be scored sφkjν (ν 
=1,2,…,m; k=1,2,…,n; 1 < φ < x and j=1,2,…,ℓ). 

3. Group the probabilities aφkjν into combinations φφν such that ∑aφkjν = 1 for 
some set H of k’s. aφkjν = 0 for k ∉ H.  
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4. Across all partitions ℓ, compute bφν = {∑ aφkjν sφkjν if ∑ aφkjν = 1, otherwise 0 
(k = 1,2,…,r; j=1,2,…,ℓ and p = the distinct number of ∑ aφkjν = 1; 1< ℓ ≤p). 

5. For all αφkjν ≠ 0 find cφν = Min {τφkjν, αφkjν}, where cφν is the degree of belief 
that the expected value is bφν. 

6. Defuzzify the expected value for each attribute φ to find E(sφν) = ∑ cφν bφν / 

∑ cφν. 

3 Application 

The application presents a real-world supplier selection decision-making problem 
based upon: 1) generation of data from a survey of purchasing professionals, and 2) 
partitioning of the resulting data to fit the algorithm detailed above. 

3.1 Example Data 

A survey was distributed to about 3,000 companies in Texas that purchase semi-
conductors, passives, RF/microwaves, connectors and interconnects, and electrome-
chanical devices from a small set of dominant suppliers. Representative industries 
included automotive, communications, contract design/engineering, power/electrical, 
medical/dental, computer, manufacturing, and military/aerospace. The survey queried 
each customer’s number of years of activity in the industry in designated ranges from 
less than two to 21 or more. Customers dealt with multiple suppliers and specified 
their firm’s annual sales revenue as under $5,000,000 to over $2,000,000,000. With 
412 surveys received, the response rate was slightly under 15%. 

For model application purposes, the survey provided performance measurements on 
each supplier, as well as measures of the importance of each criterion to the customer and 
the customer’s level of belief explicitly tied to the company’s annual amount of business 
conducted with the targeted group of suppliers. Survey questions relating directly to the 
importance of this fuzzy supplier selection application included a query of the amount of 
money the customer spends on electronic components in a year. These ranges were: 
<$100,000; $100,000..$499,999; $500,000..$999,999; $1,000,000..$9,999,999; 
$10,000,000..$24,999,999; and >$25,000,000. These ranges were used to identify a 
firm’s level of activity with the suppliers in question and, therefore, its expected level of 
confidence (interpreted as r belief) in its assessments (see Table 2). 

Survey questions emphasized different aspects of quality by which a customer 
would select a supplier. Delivery specific questions related to on-time performance, 
availability of inventory, shipping accuracy and return authorization process. Front 
office quality was assessed based on quote completeness, credit and payment terms, 
cancelled/non-returnable letters, and contract processing. Finally, value-added servic-
es dealt with customized processing, knowledgeable specialists, technical design  
services, e-business services and sales management. Price was assumed to be compe-
titively based for the seven suppliers/ vendors evaluated by the industry respondents. 
However, one supplier, Kent, was removed from the set due to: a) low survey res-
ponses compared to the other suppliers, and b) no longer existing as an independent 
company, having been acquired by Avnet after the survey was conducted. 
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An extensive study by Simpson et al. [33] determined the highest number of forms 
and percentage of all forms containing Price, Delivery, Quality (PDQ) with other 
selection criteria. To validate our survey’s criteria relevance, a comparison was made 
as follows:  

Table 1. Comparison of Survey Attributes to Comprehensive Survey of Relevance to Supplier 
Evaluation 

Survey 
Category Industry Question Simpson et al. 

% of 
Forms 
using 

    
Delivery On-time delivery  Delivery timeliness 61.9 

 Availability of inventory  
Inventory accuracy 
Fill Rate 

15.5 
15.5 

 Shipping accuracy  
Accurate delivery 
Inspection Prior to  
Shipping 

32.1 
27.4 

 Return material authorization 
Return procedures 
Complaint Handling 
Process 

20.2 
33.3 

    
Front Of-
fice 
Quality  

Quote completeness &  
turnaround 

Quality documentation 
Prompt ordering process 
Timely ordering 

48.8 
28.6 
16.7 

 Credit and payment terms Payment process 10.7 
 

Non-cancellable-return letters 
Corrective/preventative  
measures 

54.8 

 Contract processing 
Customer/PO  
requirements met 
Accurate invoicing 

78.6 
20.2 

    
Value Add-
ed Services 

Knowledge specialists  
adding value 

Staff problem solver 
Staff expertise 

11.9 
20.2 

 Technical design services Technical assistance 32.1 
 

e-business service 
EDI capability 
Inventory mgt. system 
Inventory tracking 

14.3 
35.7 
35.7 

 Sales & sales management  
support 

Quality management 
Staff responsive 

54.8 
21.4 
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Given that real-world collection of survey data is, to varying degrees, imperfect,  
a threshold was established below which respondent data would be considered  
incomplete and removed. The resulting dataset left a pool of 150 useful responses to 
be applied to the fuzzy algorithm. The remaining survey responses were randomly 
partitioned into two sets of 75 responses each in accordance with Step 0 of the model 
algorithm.  

4 Modeling Process 

By Step 1 of the algorithm, φ =1,2,3,4 attributes as defined above. Each of the four 
attributes is subjectively assigned a score by the respondent for each of the six suppli-
ers (m=6), equating to Poor, Below Average, Average, Above Average and Excellent 
(n=5). Supplier rating sφν is then given by the equation sφν = ∑τφkν / sφkν for each 
supplier, ν, and, by Step 2, the fuzzy probability Qφkjν, for each attribute of ν in terms 
of sφkjν is Qφkjν = ∑ αφkjν / aφkjν for all sφν. Each αφkjν represents belief in the 
probability aφkjν that ν will perform to the level of the assigned score sφν 
(k=1,2,…,5; ν =1,2,…,6; φ =1,2,3,4; and j=1,2). 

Table 2 shows the scoring of respondent belief as proportional to total possible 
spending. 

Table 2. Respondent Belief Associated with Spending 

Spending Degree of belief
< $100,000 0.0020 
< $500,000 0.0100 
< $1,000,000 0.0300 
< $10,000,000 0.2000 
< $25,000,000 0.7000 

> $25,000,000 1.0000 

5 Results 

The fuzzy probabilities from the respondents for the six suppliers are found by Step 3 
of the algorithm and result in four fuzzy probability (summation to 1.0) combinations 
for ν3; 8 combinations for ν4; 5 combinations for ν5 and 2 combinations for ν6.  Using 
spreadsheet computerization of the algorithmic process for Steps 4, 5, and 6 using six 
suppliers: 
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Table 3. Results for Delivery Category Attributes 

Table 4. Results for Front Office Quality Attributes 

Table 5. Results for Value-Added Services Attributes 

 
 

Supplier On-Time 
Delivery 

Availability 
of Inventory 

Shipping 
Accuracy 

Return  
Authorization 

Overall 
Average 

ν1: Arrow 3.80 3.77 3.93 3.80 3.82 
ν2: Avnet 3.69 3.63 3.90 3.68 3.72 
ν3:Future 3.71 3.60 3.81 3.30 3.61 

ν4:Insight 3.65 3.33 3.83 3.66 3.62 

ν5:Pioneer 3.57 3.27 3.70 3.61 3.54 

ν6: TTI 3.89 3.71 4.06 3.68 3.83 

Supplier Quote Com-
pleteness 

Credit/PMT 
Terms 

Non-Return 
Letters 

Contract 
Terms 

Overall 
Average 

ν1: Arrow 3.81 4.02 3.60 3.71 3.79 

ν2: Avnet 3.49 3.92 3.32 3.60 3.58 

ν3:Future 3.53 3.81 3.34 3.42 3.53 

ν4: Insight 3.55 3.68 3.36 3.51 3.53 

ν5: Pioneer 3.68 3.74 3.51 3.41 3.58 

ν6: TTI 3.79 3.81 3.62 3.54 3.69 

Supplier Knowledge 
Specialists 

Technical 
Design Help 

e-Business 
Services 

Sales/Mgt. 
Support 

Overall 
Average 

ν1: Arrow 3.90 3.51 3.56 3.80 3.69 

ν2: Avnet 3.64 3.46 3.41 3.57 3.52 

ν3: Future 3.50 3.39 3.02 3.46 3.34 

ν4:Insight 3.46 3.37 2.98 3.45 3.31 

ν5:Pioneer 3.57 3.25 3.17 3.47 3.37 

ν6: TTI 3.63 3.28 4.19 3.66 3.44 
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6 Discussion 

Using an individual criteria approach based on simple averaging, TTI and Arrow 
perform best on Delivery attributes (3.83, 3.82, respectively); Arrow is the best for 
Front Office Quality (3.79), and Arrow is best for Value-Added Services (3.69). 
Looking more closely into the attributes comprising the criterion category, Arrow 
outperforms all others in Availability of Inventory (3.77) and Return Authorization 
(3.80) while TTI outperforms all others in On-time delivery (3.89) and Shipping Ac-
curacy (4.06). For Front Office attributes, TTI exceeds Arrow only in Non-Return 
letters (3.62). Similarly, TTI outperforms Arrow only on the e-Business Services 
(4.19) attribute of Value-Added Services. Of note, is although Arrow scores higher on 
several attributes, its score on all twelve of these is only higher than a 4 on Cre-
dit/PMT terms (4.02) while TTI has the overall highest score (4.19) on e-Business 
Services and another score that exceeds 4 on Shipping Accuracy (4.06). 

Considering a simple rank ordering process for each criterion category and letting 
D denote Delivery, FO denote Front Office Quality, and VA denote Value Added, we 
can see where each supplier ranked in comparison with all others:  

Table 6. Ranking of Suppliers on each Decision Criterion Category 

Supplier First Second Third Fourth Fifth Sixth 
Arrow D(1), 

FO(3), 
VA(3) 

D(3) 
FO(1), 
VA(1) 

    

Avnet  FO(2), 
VA(2) 

D(3), 
FO(1), 
VA(2) 

D(1)  FO(2) 

Future   D(1), 
VA(1) 

D(1) D(1), 
FO(3), 
VA(3) 

D(1) 

Insight    D(2), 
FO(3), 
VA(1) 

D(2) FO(1), 
VA(3) 

Pioneer   FO(2) VA(3) D(1), 
FO(1) 

D(3), 
FO(1), 
VA(1) 

TTI D(3), 
FO(1), 
VA(1) 

D(1), 
FO(1), 
VA(1) 

FO(2), 
VA(1) 

 VA(1)  

 
Overall rankings based on the number of times ranked first, second, to sixth show 

Arrow as the first place winner over TTI, but Avnet almost ties with Arrow for second 
place by outperforming in both Front-office Quality and Value Added Services. Avnet 
also garners the most third place rankings. The other suppliers generally compete for 
fourth to sixth place with Insight being better in all areas except Value Added where 
Pioneer performs better. Assigning points for first as 11, second as 9, etc. then the 
overall ranking would be: Arrow, TTI and Avnet, with the others basically tied.  
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If, however, the buyer is more concerned with a particular criterion, then weights 
of relative importance could be applied. Simpson’s work [33] provides a list of crite-
ria and the percentage of time these are observed as being on the supplier evaluation 
forms. We have by Table 1 correlated our attributes to those of the Simpson [33] 
study and by extension to the criteria/categories of Delivery, Front-Office Quality and 
Value-Added Services. Assuming that the attributes expressed in the Simpson study 
[33] are as we have equated them to our criteria, the first two attributes of importance 
are within Front-office Quality; contract processing (98.8%) followed by quote com-
pleteness and turnaround (94.1%). The leading supplier in both regards is Arrow. 
Third and fourth on the list of most frequently used on evaluation of supplier forms 
are in Value-Added Services; specifically e-business service at 85.7% and sales man-
agement support at 76.2%. TTI ranks higher in the former and Arrow ranks higher in 
the latter. The next three most likely aspects for supplier evaluation per Simpson [33] 
and our correlated categories show TTI to be the best. Assuming a threshold of 55% 
of the companies using the decision criteria, TTI would be selected based upon on-
time delivery, shipping accuracy, and non-cancellable-return letters. If the threshold is 
set lower, Arrow captures all other attributes considered in this study. 

7 Conclusions 

As the Discussion indicates, this study has no solution. Instead, the focus was on de-
velopment and analysis of the process. Following the fuzzy probability based algo-
rithmic process is easy for simple example illustrations. This study expands beyond 
explanation and illustration purposes in an attempt to put a large set of data into the 
model. The results are basically brute-forced through Excel looking at all combina-
torial fuzzy probably summations of 1.0 or greater. So, use of the algorithm and an 
Excel spreadsheet approach has been shown to be able to resolve this supplier selec-
tion decision making problem. 

There is, however, a need to determine these probability combinations as input into 
the spreadsheet. The authors are, thus, developing an interface to the spreadsheet that 
will determine all combinations across all the qualitatively defined score values and to 
use only those that satisfy Step 3 of the algorithm. 

The ability to translate a simple survey into fuzzy sets is a plus for this study. Typi-
cally, gathered data can be translated by the process shown. However, designing a 
survey that more easily determines belief and membership functions would be prefer-
able. Still, the Excel process is simple to use and easy transference of data is useful 
for business decisions.  
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Abstract. In many fields of research where diffierent gridded spatial
data needs to be processed, the grids do not align properly. This can
be for a multitude of reasons, and it complicates drawing conclusions
and further processing the data; it requires one grid to be transformed
to match the other grid. In this article, we present the first results of a
completely new approach to transforming data that are represented in
one grid, to have it match a given target grid. The approach uses tech-
niques from artificial intelligence and simulates an intelligent reasoning
on how the grid can be transformed, using additionally available infor-
mation to estimate the underlying distribution. The article describes the
algorithm, and results on artificial datasets are discussed.

1 Introduction

1.1 Problem Description

Numerical data that are spatially correlated are often represented in a gridded
format. This means that the map over which the numerical data holds, is divided
using a raster. Each cell of the raster (or grid) is then assigned a value that is
deemed representative for this area. As such, the real world spatial distribution of
the modelled value is approximated using a discrete model. Usually, a regular grid
with rectangular or square cells is used. Data are often supplied from different
sources, and different data are acquired using different technologies. As such,
the data are often represented in incompatible grids: these are grids that have a
different orientation, or different size of grid cells. They are called incompatible,
as it is not possible to directly map data from a cell in one grid, to another cell
in the other grid. However, this is exactly what needs to be done: scientists want
to find correlations between two grids, or assess the influence of one feature
onto another feature (e.g. the concentration of air pollutants to which people
are exposed). One example is the health impact of airborne pollutants, such as
described in [1]. A more complicated example would be judging the benefit of
cycling in a city [2]: cycling is good for your health, as it is physical exercise,
but cycling in a polluted environment may cause more downsides than benefits.
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There is the exposure to exhaust gasses, but also the changed risk and effects
of having an accident, which also needs to be taken into account. Such studies
require pollution data, traffic information, accident statistics, traffic patterns and
many more. All this information is usually not represented in the same format,
and combining the data properly is an issue.

Consider for instance a pollutant that is present over a large area, most likely
in different concentrations at different places. The exact distribution might not
be fully known (e.g. due to a limited number of measuring points) and is provided
as a regular grid with grid cells of e.g. 500m x 500m. Similarly, the population
density can also be provided in a gridded format, but its grid cells can have
a different size, e.g. 100m x 100m, and even be rotated. Determining which
people are exposed to which concentration is a complicated problem, and requires
transforming one grid onto the other one. This is illustrated on figure 1: a 4x4
grid has to be remapped onto a 9x9 grid that is slightly angled. If it would be
known that the data is related to the black line, the distribution in the 9x9
grid can be better suited, as shown by shaded squares in the examples (a) and
(b). Current methods often result in transformations in which the data is more
spread out, and moves away from the likely underlying distribution. To overcome
this, we present a method that incorporates additional information in order to
perform a better transformation of the data.

(a) (b)

Fig. 1. Example of an input grid (2x2, in bold) that needs to be remapped onto a
target grid (3x3, dotted line). Diffierent additional data are represented by the thick
lines in (a) and (b).

1.2 Current Solution Methods

Current solution methods all work on the same principle: the grid that needs to
be transformed (this will be called the input grid) is analysed and a distribution
of the underlying data is assumed. Using this assumed underlying distribution,
the data are then remapped to match the grid it will need to be combined with
(this will be the target grid). A short summary of the most common methods
is supplied; for a more detailed overview on different approaches for the map
overlay problem, we refer to [3].

The most commonly used is areal weighting, [4]. In this approach, the amount
of overlap between a gridcell of the input grid and a gridcell of the target grid
determines the portion of the associated value of the input gridcell that will be
remapped onto the target. Each target gridcell thus gets associated a weighted
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sum, where the weights are determined by the amount of overlap with the over-
lapping input gridcells. This approach assumes that the data in each cell of the
input grid are spread uniformly. This assumption however is not always true: in
the case of air pollution, the concentration of some pollutants could be linked
to linear sources e.g. traffic on roads or could be caused by point sources, which
implies that the concentration should be more focussed around the source (tak-
ing into account dispersion of the pollutant using existing dispersion models).
In figure 1, this means that the data of the 4 input grid cells would be spread
out over the 9 target grid cells, not considering the source indicated by the thick
line.

A more refined approach to this is areal smoothing. In this approach, the data
modelled in the input grid is approximated by interpreting the data as a third
dimension, and fitting a smooth surface over it. The assumption here is that
the data modelled by the input grid are showing a smooth distribution over
the whole region of interest. The smooth 3D surface is then resampled using
the target raster. This sampling results in the values that will be associated
with the cells. While allowing for a smooth transition, the method has the same
disadvantage as areal weighting, in that it cannot cope well with local effects
such as point or line sources.

2 Rulebase Approach

2.1 A Different Look at the Problem

The main issue with the problem is that the underlying distribution is not known:
the current methods approach the problem by (implicitly) assuming a distribu-
tion. Additional knowledge might however be present to help determine a better
distribution. An example where one dataset can be improved is when different
datasets are fused. In [5], the authors combine different datasets in order to ob-
tain a higher quality dataset. The methodology however is applied on vectorial
data that is tagged (e.g. a region tagged as forest, a region tagged as agricultural
land, etc). After deriving a common ontology, and after combining the different
definitions for regions on the maps, the authors derive a new map that contains
the combined information of both.

Generally, when there is a grid representing data, there might be other knowl-
edge that are known to influence the distribution. In the ongoing example of the
air pollutant, the type of pollutant and its source can provide information on
this. If the particular chemical or particle originates from car exhausts, then
the distribution should more or less match the road network (after correction
for dispersion). Different pollutants might as such have a different underlying
distribution. Such knowledge, makes it possible to make good judgements on
the underlying distribution, as shown in [6]. For every grid cell in the target
grid, the additional knowledge can be considered. This can be by taking amount
over overlap with features of the additional knowledge, the distance to specific
items, etc. In [7], a detailed description on how an expert would reason about
the redistribution using additional data is presented.



Fuzzy Rulebase Approach to Remap Spatial Data 369

The additional knowledge should only be used to steer the distribution, but
it should not be followed too strongly: if the additional knowledge is from a
different time (e.g. pollution data from 2010, traffic information from 2009), the
correlation is weaker. Following that data too strongly might not even be possible
and thus would either yield no solution, or a solution that obscures real data.
The additional data might also not be the only explanation for the distribution,
other sources might be present but unknown. This again is an argument for not
too strictly adhering to this information.

2.2 Emulating the Intelligent Reasoning

A fuzzy inference system is a system that uses fuzzy sets to represent data and
evaluates predicates using simple rules and fuzzy matching [8]. Fuzzy sets are
a way of representing uncertain or imprecise information by means of a mem-
bership function ([9], [10]). The membership function indicates the possibility or
membership of each value. Given an adequate domain, such membership func-
tions can be used to represent e.g. linguistic terms such as low : on a domain
[0, 100] all values below 10 can the be low (with possibility 1), values above 20
can be considered as not low (represented by possibility 0), and values between
10 and 20 have a linearly decreasing membership from 1 to 0. The fuzzy inference
system has multiple rules of the form:

IF x is <linguistic term> THEN y is <linguistic term>

Here, x is a numerical input variable, y is the output value, and <linguistic

term> is a fuzzy set representation for e.g. high, low or other other possible
value descriptions. There can be multiple input values, combined using logical
operators and and or. The input variable is matched against the linguistic term,
which results in a value in [0, 1] that indicates how well the value matches the
term. Based on this, y is assigned a linguistic term in its domain. The term is
represented by a fuzzy set. There are multiple rules in the rulebase, and x can
match multiple rules at the same time, resulting in multiple fuzzy sets for y. All
these results for y are aggregated to a single fuzzy set, which is then subsequently
defuzzified to yield the crisp result. Several algorithms for defuzzification exist,
but for now the most common center of gravity will be used.

In [7], we presented how an inference system can be applied to emulate the
intelligent reasoning. Key to achieving this is defining the rulebase and the pa-
rameters in the rulebase. In order to guarantee that the new distribution still
resembles the input distribution, the redistribution of the data happens locally,
within a single input cell. The target grid is specified completely independent
from the input grid, so first a new grid is computed, the segment grid. This grid
is made up of all the intersections between input and output cells. Each cell in
this grid (for the remainder of this article called segment) will only overlap with
a single cell from the input grid, and with a single cell from the output grid.
Every input cell is completely and exactly covered by a number of segments,
as is every output cell. In the algorithm, the segment grid will be used as the
new target grid. The problem then becomes a problem of redistributing the data
in an input cell over the contained segments. Subsequently, the segments can
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be combined differently to form output cells. To facilitate implementation, the
additional knowledge is also represented as gridded data. Even if the original
knowledge is in a different format (e.g. a road network represented by lines), it
is a straight forward operation to convert this to a grid with a small cell size.

2.3 Parameters and Range

In order to make the inference system, it is necessary to define parameters.
These are values that are considered to provide some correlation with an output:
proportional (a high value of the parameter coincides with a high value of the
ideal value), or inverse proportional (a higher value of the parameter coincides
with a lower value of the ideal value). In [11], several candidates for parameters
were proposed. Here, the considered parameters are:

– amount of the auxiliary cell covered by the segment
– amount of the input cell covered by the segment
– amount of the interior of the auxiliary cell covered by the interior of the

segment

These parameters were chosen after running several experiments, as they pro-
vided the best overall results. Consider the first parameter: ”amount of the
auxiliary cell covered by the segment”. It is intuitive to state that the more of
the auxiliary cell is covered by this segment, the higher the value of this segment
should be: higher auxiliary value should yield a higher output value. In the rule-
base this could be called aux_overlap, the value would be used in a rule of the
form:

IF aux_overlap is low THEN output is low

IF aux_overlap is medium THEN output is medium

IF aux_overlap is high THEN output is high

The linguistic terms low, medium and high for aux_overlap need to be defined,
which means finding adequate limits for the domain of the aux_overlap value.
When the limits of the domain for the parameter (e.g. aux_overlap) are known,
a number of equally spaced and shaped triangular fuzzy sets are defined over
this domain to define the linguistic terms. The number of triangular fuzzy sets
is chosen for each parameter. The more fuzzy sets are defined on the domain,
the more rules the rulebase will have; this effectively poses a practical limit.
More fuzzy sets should yield more possibilities of distinguishing different values.
The main problem now is determining the domain. In our interpretation, the
domain is defined by the possible values this particular parameter can have for
this segment, thus it varies with each segment. For the relation between segments
and the auxiliary grid, there are several possibilities. In the simplest case, the
segment covers part of an auxiliary cell. The total value of this auxiliary cell can
therefore be considered to be in this segment (e.g. in case of a point source that
is the source of the entire value), partly in this segment, or not at all in this
segment (e.g., if the value is due to sources outside of this segment - which is
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possible as there are other segments overlapping the same cell). The first case
results in the maximum possible value. The last case results in the minimum
possible value, 0 unless one or more auxiliary cells are fully contained inside
the segment, the minimum possible value is then total value of those contained
cells. The weighted value is considered as the value of the parameter that is
verified, and thus is passed as parameter x. The calculation for the range of
other parameters is done similarly.

The range for the value of an output cell is initially unknown, but it is limited
by the total of its containing segments. For each segment, the output range
is from 0 to the value of the overlapping input cell - due to the definition of
the segments, there is exactly one. The exact value is obtained using the fuzzy
inference system, resulting in a fuzzy set that is then defuzzified. However, the
values of all segments that form an input cell should sum up to the value of that
input cell. As the fuzzy result for each segment is defuzzified independently, there
is no way to guarantee this. Currently, the defuzzified output is considered as a
proportion of the total value of all segment: the real range does not matter, so
for now the output range for each segment is [0, 100], where 100 is an arbitrarily
chosen value. Once all the segment values are calculated and defuzzified, the
obtained value is interpreted as a relative amount of the total of all values for
segments that overlap this input cell.

2.4 Rulebase Construction

The construction of the rulebase at present is fairly rudimentary: after rules that
evaluate the first parameter, the addition of each new parameter multiplies the
number of rules by the number of linguistic terms for that parameter. It makes
every possible combination of each linguistic term for this parameter and the
existing rulebase. In the current examples, three parameters, each represented
to ten linguistic terms, result in a rulebase that has 103 rules. The range of the
output value is expanded with each added parameter: the more parameters say
it should be a large value, the larger the value will be. Afterwards, the output
range will be rescaled to match the true range. This is a simple way of creating
the rulebase, but it results in a very big rulebase in which many rules may never
be matched: contradictions between parameters are present.

3 Experiments

To test the methodology, different datasets were generated: a geometric test
pattern was sampled onto an 12x12 grid (figure 2a) to result the input grid. In
the first three test cases, the grid has to be remapped onto a 25x25 grid; the
optimal solution (obtained by sampling the geometry onto the grid) is shown on
figure 2b, the solution using areal weighting is shown on figure 2c. The fourth
test case requires the remapping onto a 25x25 grid that is at a 20◦ angle, the
ideal solution and areal weighting solution are shown on respectively figure 2d
and figure 2e.
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(a) (b) (c) (d) (e)

Fig. 2. (a) generated input data with grid, (b) ideal solution for target 1, (c) areal
weighting for target 1, (d) ideal solution for target 2, (e) areal weighting solution
for target 2. Darker shades represent higher associated values; but the scale between
diffierent grids does not match. For each grid, black indicates the highest occurring
colour in that grid; the lighter the colour, the lower the associated value.

All samples were run using the same three chosen parameters from the pre-
vious section; the rulebase system was generated in the same way for all tests,
and used ten linguistic variables defined over the domains of each parameter.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Case 1: low resolution auxiliary data: (a) auxiliary data, (b) result, (c) detail
of the remapping of the input data and case 2: High resolution auxiliary data: (d)
auxiliary data, (e) result, (f) detail of the remapping of the input data

The developed methodology uses auxiliary data that has to be provided by
the user. Experiments were run with different data as auxiliary data, but the
auxiliary data was also presented on a grid which was sampled from the same
geometries as the input data: this yields perfect data, which should provide the
best results and allows for the system to be tuned and verified.

In the first test case, 15× 15 auxiliary grid with the same orientation (figure
3a) is used. The result (figure 3b) clearly reveals more detail than areal weighting
(figure 2c). The second test case uses a 27×27 auxiliary grid (figure 3d), and the
result shows even more detail (figure 3e). As input and target are the same, it
should be compared against the same areal weighting result. The redistribution
of the data in the input cells over the segments are shown on figure 3c and figure
3f for both cases: the bold lines show the input grid, the dotted line the output
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grid. The segment grid is the irregular grid defined by all these lines. The center
part of the segment grid is enlarged for better visibility. On the segment grids, it
is clear to see how the value of each input cell is redistributed over its segments.
The benefits of the higher resolution auxiliary data are even more visible on this
segment grid. Particularly in the second column of the input, the redistribution
differs as a result of the different auxiliary data, and the higher values are shifted
to the left of those cells. The third test case uses the same target grid, but now

(a) (b) (c)

(d) (e) (f)

Fig. 4. Case 3: low resolution rotated auxiliary data: (a) auxiliary data, (b) result, (c)
detail of the remapping of the input data and Case 4: low resolution rotated auxiliary
data and rotated target: (a) auxiliary data, (b) result, (c) detail of the remapping of
the input data.

employs an auxiliary grid 15×15 angled 10◦. The fourth test case illustrates the
effects if the 25 × 25 target grid is angled 20◦. Particularly the distribution of
the data inside the cells over the segments in interesting, figures 4c and figure
4f.

To derive a more quantified comparison, consider the absolute difference of
the value of a cell in the optimal grid (figure 2b for the first three cases, figure
2d for the fourth case) and the calculated value for the same cell. In table 1,
the average and maximum of these differences are shown for both the presented
method and for areal weighting. The values for average weighting are the same
for the first three cases, as the input and targets are the same. For the results
of the presented method, all the values of the second case are lower than those
of the first case. This means that the second case has a better result, which is

Table 1. Properties of the results of the 4 examples

average diffierence maximum diffierence
presented areal weighting presented areal weighting

case 1 3.70 3.97 41.62 33.16
case 2 3.11 3.97 39.74 33.16
case 3 3.54 3.97 32.86 33.16
case 4 7.32 7.55 81.00 82.25
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also visible on the figures (figure 3b vs. figure 3e). For these cases, the presented
method has a lower average difference than areal weighting, but it has a higher
maximum average. In simple terms, this means that there are less errors, but
larger errors occur. This is consistent with the fact that our methods concentrates
the data more, whereas areal weighting tends to smear out the data more over
multiple cells: where the line patterns using areal weighting is just visible as a
blur, the presented method is able to distinguish more of the pattern. In the case
3 and 4, a low resolution auxiliary grid was used to show that this is enough to
contribute. A 15× 15 grid does not add that much information over a 12 × 12,
but still enough to provide better results. Case 3 shows that the low resolution
auxiliary grid at an angle performs slightly worse on average, but better on
the maximal difference. In case 4, the values are much higher, as remapping
to an angled grid is a more complicated issue. But the presented method still
outperforms areal weighting. Compared with the areal weighting approach, the
proposed methodology offers better results in remapping the data to the target
grid, even when the auxiliary data has a relatively low resolution. The segment
grids provide the highest resolution, but unfortunately are irregular. Particularly
when input and target are at an angle, the resulting segment grid is not suitable
as final representation. The conversion to the target grid is done by adding up
all segments that together belong to the same grid cell in the target grid. This
effectively lowers the resolution again, which is clearly visible on the figures of
the segment grid. However, it results in the desired format. This final step is
irreversible: it disconnects the result from the original input grid, and by adding
up the values of the segments, the value of an input cell is possibly spread out
over a slightly larger region.

4 Conclusion

The complexity of the presented method is linear with the number of cells in
the segment grid, i.e. the number of cells in the intersection of input and output
grid. Consequently, the method scales quite easily. Furthermore, the calculation
of each segment can be done independently of other segments, implying they can
be computed in parallel. In the above examples, the parameters were manually
chosen by us from a large set of parameters ([11]), based on empirical studies on
many data. Automatically determining the best possible parameters for a given
dataset would improve the applicability. As can be seen on the segmented grids of
all examples, but more-so on figure 4, all calculations are constrained within the
cells of the input grid.The method tries to localize point sources or line sources at
a local level. Mapping the data from the segments to the target grid has the result
that data of a segment is spread out over a larger area. As such, it may also give
the impression that data are moving out of the original input cells, particularly as
the resulting grid is later most likely interpreted as having a uniform distribution
within the grid cells. The same applies however to other methods, but as the
intermediate results show higher accuracy, perhaps a different aggregation can be
considered. In the presented approach, each cell from the input grid is divided in
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a number of segments, a possibility distribution for the value of each segment is
determined. The value of all segments overlapping an input cell should sum up to
the value of the input cell; to achieve this, the defuzzified results were interpreted
as relative portions, which required an additional rescaling. The results can be
improved by performing a more appropriate defuzzification, and avoiding the
rescaling.

In this article, we presented the first experimental results of a novel way to
transform gridded data. Unlike current methods, the approach uses addition-
ally known information to estimate an underlying distribution. The presented
method uses a fuzzy inference system in order to determine the values of the
grid cells in the target. The results are promising, and further research in both
refining the system and testing it with real world data are foreseen.
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Actions IRSES project No. 247645, acronym GESAPU.

References

1. Tainio, M., Sofiev, M., Hujo, M., Tuomisto, J.T., Loh, M., Jantunen, M.J.: Eval-
uation of the european population intake fractions for european and finnish an-
thropogenic primary fine particulate matter emissions. Atmospheric Environment
43(19), 3052–3059 (2009)

2. Woodcock, J., Tainio, M., Cheshire, J., O’Brien, O., Goodman, A.: Health effiects of
the london bicycle sharing system: health impact modelling study. British Medical
Journal 348(2) (2014)

3. Gotway, C.A., Young, L.J.: Combining incompatible spatial data. Journal of the
American Statistical Association 97(458), 632–648 (2002)

4. Flowerdew, R., Green, M.: Areal interpolation and types of data. In: Foterhingham,
S., Rogerson, P. (eds.) Spatial analysis and GIS, pp. 141–152. Taylor & Francis
(1994)

5. Duckham, M., Worboys, M.: An algebraic approach to automated information
fusion. International Journal of Geographic Information Systems 19, 537–558
(2005)

6. Verstraete, J.: Using a fuzzy inference system for the map overlay problem.
In: 3rd International Workshop on Uncertainty in Greenhouse Gas Inventories,
pp. 289–298 (2010)

7. Verstraete, J.: Solving the map overlay problem with a fuzzy approach. Climatic
Change, 1–14 (2014)

8. Mendel, J.M.: Uncertain rule-based fuzzy logic systems, Introduction and new
directions. Prentice Hall (2001)

9. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
10. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and

Systems 90, 141–150 (1999)
11. Verstraete, J.: Parameters to use a fuzzy rulebase approach to remap gridded spa-

tial data. In: Proceedings of the 2013 Joint IFSA World Congress NAFIPS Annual
Meeting (IFSA/NAFIPS), pp. 1519–1524 (2013)



Fast and Incremental Computation

for the Erosion Score

Gilles Moyse and Marie-Jeanne Lesot

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

firstname.lastname@lip6.fr

Abstract The erosion score is a Mathematical Morphology tool used
primarily to detect periodicity in data. In this paper, three new compu-
tation methods are proposed, to decrease its computational cost and to
allow to process data streams, in an incremental variant. Experimental
results show the significant computation time decrease, especially for
the effcient levelwise incremental approach which is able to process a
one million point data stream in 1.5s.

Keywords: Mathematical Morphology, Erosion Score, Incremental.

1 Introduction

Mathematical Morphology (MM) defines a set of techniques for the analysis
of spatial structures, and is widely used in image processing, understanding,
segmentation or compression [10,13]. Functional MM applies its principles to
function values and has been used for several types of data processing tasks, such
as such as signal sieving [1,14], signal pre-processing [17], text categorisation [4],
fuzzy classes identification [5] or gradual rule extraction [11].

This paper focuses on the erosion score operator, that has been applied to
efficiently detect periodicity in time series, interpreted as functions associating
xt at each time t [9]. The erosion score is based on the fundamental MM erosion
operator and is more precisely defined as the sum of successive erosions until
total erosion.

This paper considers the implementation issue for this operation and proposes
three computation methods both to decrease the computational cost and to allow
to process data incrementally: the proposed levelwise approach is based on the
identification of levels in the data, to reduce the number of steps required to
compute the erosion score for all data points. On the other hand, the proposed
incremental extensions of both the basic and the levelwise computation methods
make it possible to progressively update erosion scores when new data points
become available, so as to process data streams.

The paper is organised as follows: Section 2 recalls the general MM principles
and the erosion score as well as existing works related to optimised methods to
compute MM operations. The following sections then respectively introduce the
Levelwise, Incremental and Levelwise Incremental approaches. Lastly, Section 6
presents the experiments carried out to compare the proposed approaches.
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© Springer International Publishing Switzerland 2014
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2 Context and Motivations

Erosion Score Operation. Mathematical Morphology relies on two basic op-
erators, erosion and dilation, combined in various ways to define more complex
composed operators (see [13] for a detailed presentation). In functional MM,
given a function f : E → F and a structuring element B defined as a subset
of E of a known shape, e.g. an interval centred at the origin, erosion is the
function ρB(f) : E → F defined as [ρB(f)](x) = infb∈B f(x + b). Dilation is
defined in a similar way, using the sup operator. These two basic operations
can be used repeatedly or alternatively, leading to different types of composed
operators, such as opening, closing or alternated filters [13].

The operator proposed in [9] to detect periodicity relies on the computation
and aggregation of successive erosions. Given a time series X containing n val-
ues {x1, . . . xn} in [0, 1] obtained at regular time intervals and the structuring
element B = (−1, 0, 1), the previous erosion definition induces the following re-
cursive form for the jth erosion of the ith value: xji = min(xj−1

i−1 , x
j−1
i , xj−1

i+1 ),
denoting by convention x0i = xi, x0 = xn+1 = +∞. The iterativity property of

this erosion yields xji = min(xi−j , . . . , xi+j).
The erosion score is defined for a minimum zero X satisfying the property

∃i ∈ {1...n} such that xi = 0 as the sum of the successive erosions until total
erosion: denoting zi the number of erosion steps needed for xi to be totally
eroded, i.e. the smallest erosion step j such that xji = 0

esi =

zi∑
j=0

xji (1)

Other methods based on successive erosions mostly aim at being used in 2D
contexts, as the erosion curve [6] or the ultimate erosion [3].

Implementation Optimisation. Efficient implementation methods have been
proposed for many MM operations, to make it possible to compute them
faster [16] or to allow them to process data incrementally [2].

In particular, various optimisations to quickly compute successive erosions
have been proposed (see [7] for a recent state of the art): for instance they reduce
the number of redundant operations when using various structuring elements [12]
or propose a two pass optimisation to ensure a constant time computation of an
erosion for any structuring element. However, such methods are not relevant for
the erosion score computation where a single and simple structuring element is
considered.

Another category of methods rely on the identification of specific values in
the dataset, called anchors [15] or obtained after filtering out useless values to
reduce the computation time [2]. The methods proposed in the paper belong to
this category but they use another definition for the values of interest, as the
latter are used to compute a different score.
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3 Levelwise Method

The “naive” implementation of the erosion score consists in computing the suc-
cessive erosions of the dataset and summing the obtained values until all eroded
values equal 0. Since xi is eroded in zi iterations by definition of zi and the whole
dataset is processed at each iteration, its complexity is O((maxi zi)× n).

In this section, a levelwise approach is proposed: it does not process the whole
dataset at each iteration but reduces the number of iterations for each data point
individually. It is based on the identification of key erosion steps, i.e. a subset of
the initial dataset sufficient to compute the erosion scores.

3.1 Notations

When computing the successive eroded values xji , it can be observed that some
of them are equal to the previous one. Identifying only the key ones, defined as
the xji different from the previous one, allows to compute the erosion score by
adding the distinct values multiplied by their number of repetitions.

Formally, the key erosion steps are such that xji �= xj−1
i , i.e. xji < xj−1

i due

to their definition. Let us denote J<
i = {j ∈ {1, . . . , n}|xji < xj−1

i }, Ωi its size
and Di the ordered set of its values, sorted in ascending order, to which 0 is
added as di0: Di = {di0, . . . , diωi} is an ordered subset of {0, . . . , n} where only
the key steps are kept, in that the erosion score can be computed knowing them
only. It can be noted that the maximal value of Di is di,ωi = zi. It holds that

∀l ∈ {0, . . . , Ωi − 1} , dil < dil+1 and xi = xdi0

i = xdi0+1
i = · · · = xdi1−1

i > xdi1

i =

xdi1+1
i = · · · = xdi2−1

i > xdi2

i and so on until x
di,ωi

−1

i > x
di,ωi

i = 0.

We also introduce the notations χil = xdil

i and θil its index such that χil =
xαil

. dil can be seen as the number of points between xi and its lth key value,
χil is its value and θil its index. An illustrative example is given in Fig. 1.

3.2 Levelwise Computation of the Erosion Score

For any data point xi, Di then contains the key erosions, so the erosion score
can be computed knowing these values only, as stated in the following theorem:

Theorem 1. Levelwise computation of esi

esi =

ωi−1∑
l=0

(di,l+1 − dil)χil =

ωi−1∑
l=0

(|θi,l+1 − i| − |θil − i|)xαil

Proof. The demonstration directly follows from the definitions of χ, θ and d
developing the definition given in Eq. (1)

esi = x0
i + · · ·+ xdi1−1

i︸ ︷︷ ︸
(di1−di0)χi0

+ xdi1
i + · · ·+ xdi2−1

i︸ ︷︷ ︸
(di2−di1)χi1

+ ...+ x
di,ωi−1

i + · · ·+ x
di,ωi

−1

i︸ ︷︷ ︸
(diωi

−di,ωi−1)χi,ωi−1

+ x
di,ωi
i︸ ︷︷ ︸
0

=

ωi−1∑
l=0

(di,l+1 − dil)χil
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x0
8 = x8

x1
8 = x9 < x8

x2
8 = x3

8 = x4
8 = x9

x5
8 = x3 < x1

8

x6
8 = x7

8 = x3

x8
8 = x0 < x5

8

i = 8, ω8 = 3

d80 = 0, χ80 = x8, λ80 = 8
d81 = 1, χ81 = x9, λ81 = 9
d82 = 5, χ82 = x3, λ82 = 3
d83 = 8, χ83 = x0, λ82 = 0

Fig. 1. Example and computation of D8 = {d80, d81, d82, d83}, χ8l and λ8l

The expression based on θil is obtained from the fact that dil = |θil − i|.
Based on this theorem, the levelwise implementation is computed from the θil
values only. They are computed by searching xi key erosions until a zero is
reached, i.e. for j from 1 to zi, so in zi iterations. Since the erosion score is
computed at the same time, the complexity of this method is O (

∑
zi) which is

lower than the naive one presented previously.

4 Incremental Method

Incremental approaches aim at processing the data successively, updating inter-
mediate results instead of considering each data point independently. They can
decrease the computational time; moreover they make it possible to process data
streams, where the whole dataset is not available at once but data points are
obtained progressively.

In this section and the following, we propose incremental methods to compute
the erosion score, respectively based on the basic and the levelwise approaches.

4.1 Notations

In the context of data streams, xn+1 denotes the latest data point received at
time t+1. We denote xi(t) = xi if i ∈ {1, . . . , n} and xi(t) = +∞ otherwise. For
simplicity sake, the notation xi is preferred to xi (t) when no ambiguity arises.
The value x0 = 0 is added in order to ensure the minimum zero property and
thus that the algorithm terminates. At time t, the jth erosion of xi is denoted
xji (t) and its erosion score esi (t).

The objective of incremental methods is to compute the new erosion scores
esi (t+ 1) from the existing erosion scores esi (t) and the new value xn+1.
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4.2 Update Equations for Eroded Values and Erosion Score

The theorem below establishes the update equation that gives the new eroded
values for any data point when a new data point xn+1 is collected.

Theorem 2. Update equations for the successive eroded values
Denoting q = max{k ∈ {1, . . . , n} |xk ≤ xn+1} and m = (n+ 1 + q)/2,

xji (t+ 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xji (t) if i ≤ m
xji (t) if i > m and j < n+ 1− i
xn+1 if i > m and n+ 1− i ≤ j < i− q
x
j−(i−q)
q if i > m and j ≥ i− q

Proof. q is the index of the latest data point less than or equal to the new point
xn+1 and m the middle of the index interval between q and n+ 1.

The proof consists in studying, for any i and j whether xn+1 and/or xq are

involved in the computation of xji (t+ 1). Since xji = min(xi−j , . . . , xi+j), this is
equivalent to checking whether n+ 1 and/or q belongs to {i− j, . . . , i+ j}.

If xn+1 is not involved, then xji (t + 1) = xji (t). This is the case if the data
point is closer to xq than to xn+1, so when i ≤ m, since xq ≤ xn+1 by definition.
If i > m and j < n+1− i, xn+1 is not involved too, since n+1 /∈ {i− j, ...i+ j}.

If i > m and n + 1 − i ≤ j < i − q, then xn+1 is involved but not xq, so

xji (t + 1) = xn+1. Indeed, for all l ∈ {q + 1, . . . , n + 1}, xl ≥ xn+1 and the
minimal data value on all index intervals included in {q + 1, . . . , n+ 1} is xn+1.

Finally, if i > m and j ≥ i − q, then both xn+1 and xq are involved, so

xji (t+ 1) ≤ xq ≤ xn+1, by definition of xq. Therefore:

xji (t+ 1) = min(xi−j , . . . , xq, . . . , xn+1, . . . , xi+j) = min(xi−j , . . . , xq)

= min(xq−(j−i+q) , . . . , xq, . . . , xq+(j−i+q)) = xj−i+q
q

These update equations lead to the update equations for the erosion score:

Theorem 3. Computation of es (t+ 1)
Denoting q = max {k ∈ {1, . . . , n} |xk ≤ xn+1} and m = (n+ 1 + q) /2,

esi (t+ 1) =

⎧⎪⎨⎪⎩
esi (t) if i ≤ m

esq (t) + 2 (i−m)xn+1 +
n−i∑
j=0

xji (t) otherwise

Proof. The theorem is a direct consequence of Theorem 2: if i ≤ m, the suc-
cessive erosions are not modified so neither is their sum. If i > m, the following
decomposition of the erosion score proves the theorem:

esi (t+ 1) =

n−i∑
j=0

xji (t+ 1)︸ ︷︷ ︸
=
∑n−i

j=0 xj
i (t)

+

i−q−1∑
j=n+1−i

xji (t+ 1)︸ ︷︷ ︸
=2(i−m)xn+1

+

+∞∑
j=i−q

xji (t+ 1)︸ ︷︷ ︸
=esq(t)
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It is easily proven that the complexity of the incremental method is O
(
Π2
)
,

where Π = n − q, i.e. the distance between the new point and the latest lower
data point.

5 Incremental Levelwise Method

This section proposes an alternative incremental method, based on the levelwise
expression of the erosion score stated in Theorem 1 and on incremental update
equations for the θ indices.

Theorem 4. Incremental computation of θil
Denoting q = max {k ∈ {1, . . . , n} st xk < xn+1}, m = (n+ 1 + q) /2 and ki

defined for i > m such that di,ki−1 (t) < n+ 1− i ≤ diki (t) and kn+1 = 0

∀i, ∀l, θil (t+ 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θil (t) if i ≤ m
θil (t) if i > m and l < ki

n+ 1 if i > m and l = ki

θq,l−ki−1 (t) if i > m and l > ki

∀i, Ωi (t+ 1) =

{
Ωi (t) if i ≤ m
ki + Ωq (t) if i > m

Proof. The incremental expression stated in Theorem 2 allows the update of xji
for j = 0...zi. Since Di is a subset of 0...zi containing only the key erosions, this
proof is based on the one presented for the incremental method. ki is introduced
to represent the index in Di denoting the first erosion involving xn+1.

As in the incremental case, if i ≤ m, or if i > m and xn+1 is not involved, i.e.
l < ki, then the successive erosions are unchanged, so θil (t) = θil (t+ 1).

If l = ki then the eroded value is xn+1, so its index θi,ki is n+ 1.
Finally, as proved for the incremental method, the next erosions, following

the one equal to xn+1, are the erosions of xq. In the levelwise context, it implies
that the key erosions following the one equal to xn+1 are also the key erosions
of xq for l = 0...Ωq, so for i > m and l > ki, θil (t+ 1) = θq,l−ki−1 (t).

Regarding Ωi the number of elements in Di, when the eroded values are
unchanged, i.e. i ≤ m, the number of key erosions is unchanged too, and
Ωi (t+ 1) = Ωi (t). If i > m, then the key erosions are those from 0 to the
first implying xn+1 whose index is ki, plus the Ωq key erosions of xq, yielding
Ωi (t+ 1) = ki + Ωq (t).

This theorem together with the levelwise expression of the erosion score stated in
Theorem 1 lead to the following levelwise incremental expression of the erosion
score:
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Theorem 5. Incremental levelwise computation of esi
Denoting m, q and ki as defined in Theorem 4 and pi defined for i ≥ m such

that θipi(t) = q:

∀i, esi(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

esi(t) if i ≤ m
χi,ki−1(t)(n+ 1− i− diki(t)) if m < i < n+ 1

−
pi−1∑
j=ki

χij(t)(di,j+1(t)− dij(t))

+2xn+1(i−m) + esi(t)

2xn+1(n+ 1−m) + esq(t) if i = n+ 1

The variables d and χ are used to improve readability, but esi(t + 1) can be
computed with θ only since dil = |θil − i| and χil = xαil

.
The proof is omitted because of space constraints. It follows from the decom-

position of the sum given in Theorem 1 into 4 terms, corresponding to l lower
than ki−2, equal to ki−1, between ki and pi, and greater than pi. In each term,
the θil(t+ 1) values are replaced by their expression given by Theorem 4.

The implementation then consists in using a Λ matrix storing all θil values.
When a new data point xn+1 is processed, its predecessor xq is first identified.
Then for each row whose index is greater than m, Λ is updated by computing
ki, inserting n+1 as the kthi value in the list, and copying the values from (θql)l
at index ki+1.

6 Experiments

6.1 Experimental Protocol

The 4 methods, namely “naive”, “incremental”, “levelwise”, and “incremental
levelwise”, are compared over artificial datasets generated as noisy repetitions of
identical blocks of different shapes (triangle, rectangle, sine, wave). Noise applies
either on the size of the individual blocks, randomly enlarging or shrinking them,
or on the data points, randomly adding or subtracting small values (see [8] for
a more detailed presentation of the data generation process).

Each method is then applied to compute the erosion score of each data point
in each dataset. For a given dataset, all methods return the same result. The
data points are read one by one for the incremental approaches so as to emulate
a stream.

For each method, the computational time as well as the memory consumption
are measured; their average and standard deviation are computed over all the
datasets randomly generated according to the protocol sketched above. Further-
more, the average value of Ωi is recorded for the levelwise methods.

The implementation is done in VB.NET and the experiments are run on a
Windows® virtual machine started with 4 CPUs and 4 Go of memory on a
physical machine with an Intel i7® CPU and 16 Go of memory.
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6.2 Computational Time Comparison

Figure 2 shows the computational time for three levels of dataset sizes: the top
graph compares all 4 methods for datasets containing less than 10,000 data
points. It shows that the incremental methods outperform the non incremental
ones. The naive implementation is significantly slower and less robust as the
high standard deviation shows. Furthermore, the incremental methods run much
faster in a real situation since the arrival of a new data implies only one com-
putation whereas the non incremental ones have to run the computation anew
over the whole dataset.

In order to differentiate more precisely the incremental methods, larger data-
sets are used, ranging from 10,000 to 100,000 data points as showed on the middle
graph of Fig. 2. In this second round of experiments, the incremental levelwise
method appears significantly faster than the incremental one. Moreover, the
large values of standard deviation for the latter indicate a lack of robustness.
This is due to the sensitivity of the position of zero values within the dataset
for the methods not based on the levelwise approach. Indeed, as underlined in
the complexity analysis of the 2 methods (see Section 2), if the largest zi in a
dataset is increased by only 1, another full scan of the dataset is needed with the
naive method. With the levelwise approach on the contrary, one more iteration
is needed only for the concerned data point

Finally, the largest datasets (bottom graph on Fig. 2) show that the incre-
mental levelwise approach for erosion score computation is robust and can handle
efficiently and in a very reasonable amount of time a large dataset on the order
of one million data points. Moreover, since it is incremental, it can handle a
million new data from one stream in 1.5 seconds, or equivalently handle 1 new
data over a million streams in the same time.

6.3 Memory Consumption

In terms of memory, the non levelwise methods, whether incremental or not, are
not based on specific data structures and thus do not need more memory than
the space needed by the dataset and the resulting erosion scores: denoting n the
number of data points, the memory consumption in this case is 2n.

In the levelwise methods, the Λ matrix is stored, entailing an additional
memory usage: it is implemented as a list of n lists each of them containing
Ωi values. Its memory requirements is then

∑
Ωi or equivalently n × avg(Ωi).

Over all carried out experiments, the average Ωi is 30, the minimum 2 and max-
imum 129, thus the required storing capacities remain reasonable.

Hence, the levelwise methods are more greedy in terms of memory than the
non levelwise ones. Nonetheless, this can be mitigated simply for the incremental
levelwise since when a zero value is reached, all previous values become useless
in the erosion score, so the θi before the 0 value can be removed from Λ.
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Fig. 2. Computational time for (top) small datasets and all 4 methods, (middle) me-
dium datasets and incremental methods, (bottom) large datasets and the incremental
levelwise method

7 Conclusion and Future Works

This paper proposed 3 variants to compute the erosion score based on one hand
on a levelwise computation principle and on the other hand on update equations
to progressively adapt to new incoming data points. Such incremental approaches
make it possible to process data streams where data points are not available
simultaneously. Experimental studies show the relevance of these variants and
in particular the performance of the levelwise incremental approach, in terms of
time consumption at the expense of a reasonable increase of memory storage.
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Future works aim at integrating the efficient levelwise incremental method to
the periodicity detection task, to identify periodicity in large time series. Other
perspective include the use of this approach to other time series pre-processing
tasks where the series structure must be identified.
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Abstract. We consider incomplete data sets using two interpretations
of missing attribute values: lost values and “do not care” conditions.
Additionally, in our data mining experiments we use global probabilistic
approximations (singleton, subset and concept). The results of validation
of such data, using global probabilistic approximations, were published
recently. A novelty of this paper is research on the complexity of corre-
sponding rule sets, in terms of the number of rules and number of rule
conditions. Our main result is that the simplest rule sets are induced
from data sets in which missing attribute values are interpreted as “do
not care” conditions where rule sets are induced using subset probabilis-
tic approximations.

1 Introduction

Probabilistic approximations, for complete data sets and based on an equiva-
lence relation, were studied for many years [14–19]. Incomplete data sets may
be analyzed using global approximations such as singleton, subset and concept
[5–7]. Probabilistic approximations, for incomplete data sets and based on ar-
bitrary binary relations, were introduced in [8], while first experimental results
using probabilistic approximations were published in [1].

In this paper incomplete data sets are characterized bymissing attribute values.
We will use two interpretations of a missing attribute value: lost values and “do
not care” conditions. Lost values indicate the original value was erased or never
obtained, and as a result we should use only existing, specified attribute values
for rule induction. “Do not care” conditions identify data that may be replaced
by any specified attribute value, typically someone refused to answer a question.

A probabilistic approximation is defined using a probability Δ. If Δ is equal
to one, the probabilistic approximation is equal to the lower approximation;
if Δ is a sufficiently small, positive number, the probabilistic approximation is
equal to the upper approximation. Both lower and upper approximations are
fundamental ideas of rough set theory.

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 386–395, 2014.
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The main objective of this paper is research on the complexity of rule sets, in
terms of the number of rules and number of rule conditions, induced from data
sets with lost values and “do not care” conditions, while rule sets are induced
using three global approximations: singleton, subset and concept. These approx-
imations and their relationship to probabilistic approximations are defined in
section 3. Our main result is that the simplest rule sets are induced from data
sets in which missing attribute values are interpreted as “do not care” conditions
where rule sets are induced using subset probabilistic approximations.

2 Attribute-Value Pair Blocks

We assume that the input data sets are presented in the form of a decision table.
Example of decision tables are shown in Tables 1 and 2. Rows of the decision
table represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Tables 1 and 2, U = {1, 2, 3, 4, 5, 6, 7, 8}. Some
variables are called attributes while one selected variable is called a decision and
is denoted by d. The set of all attributes will be denoted by A. In Tables 1 and
2, A = {Wind, Humidity, Temperature} and d = Trip.

An important tool to analyze data sets is a block of an attribute-value pair.
Let (a, v) be an attribute-value pair. For complete decision tables, i.e., decision
tables in which every attribute value is specified, a block of (a, v), denoted by
[(a, v)], is the set of all cases x for which a(x) = v, where a(x) denotes the value
of the attribute a for the case x. For incomplete decision tables the definition of
a block of an attribute-value pair is modified [5–7].

– If for an attribute a there exists a case x such that a(x) = ?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks [(a, v)] for all values v of attribute a,

Table 1. An incomplete decision table with lost values

Attributes Decision

Case Wind Humidity Temperature Trip

1 low ? high yes

2 ? ? high yes

3 high high ? yes

4 ? low low yes

5 ? high low no

6 low ? low no

7 high high high no

8 high high ? no
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– If for an attribute a there exists a case x such that the corresponding value is
a “do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

Table 2. An incomplete decision table with “do not care” conditions

Attributes Decision

Case Wind Humidity Temperature Trip

1 low ∗ high yes

2 ∗ ∗ high yes

3 high high ∗ yes

4 ∗ low low yes

5 ∗ high low no

6 low ∗ low no

7 high high high no

8 high high ∗ no

Table 3. Blocks [(a, v)] of attribute value pairs (a, v)

Lost values “Do not care” conditions

[(Wind, low)] {1, 6} {1, 2, 4, 5, 6}
[(Wind, high)] {3, 7, 8} {2, 3, 4, 5, 7, 8}
[(Humidity, low)] {4} {1, 2, 4, 6}
[(Humidity, high)] {3, 5, 7, 8} {1, 2, 3, 5, 6, 7, 8}
[(Temperature, low)] {4, 5, 6} {3, 4, 5, 6, 8}
[(Temperature, high)] {1, 2, 7} {1, 2, 3, 7, 8}

A block of a decision-value pair is called a concept. In Tables 1 and 2, the
concepts are [(Trip, yes)] = {1, 2, 3, 4} and [(Trip, no)] = {5, 6, 7, 8}. Table 3
presents the attribute-value blocks computed for Table 1 (lost values) and Table 2
(“do not care” conditions).

Let B be a subset of the set A of all attributes. For a case x ∈ U the charac-
teristic set KB(x) is defined as the intersection of the sets K(x, a), for all a ∈ B,
where the set K(x, a) is defined in the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) =? or a(x) = ∗ then the set K(x, a) = U.
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Table 4. Characteristic sets for the entire attribute set A

Characteristic sets

Case Lost values “Do not care” conditions

1 {1} {1, 2}
2 {1, 2, 7} {1, 2, 3, 7, 8}
3 {3, 7, 8} {2, 3, 5, 7, 8}
4 {4} {4, 6}
5 {5} {3, 5, 6, 8}
6 {6} {4, 5, 6}
7 {7} {2, 3, 7, 8}
8 {3, 7, 8} {2, 3, 5, 7, 8}

For example, the characteristic set for case 1 from Table 1 is

KA(1) = [(Wind, low)] ∩ U ∩ [(Temperature, high)]

= {1, 6} ∩ {1, 2, 3, 4, 5, 6, 7, 8} ∩ {1, 2, 7} = {1}

and the characteristic set for case 1 from Table 2 is

KA(1) = [(Wind, low)] ∩ U ∩ [(Temperature, high)]

= {1, 2, 4, 5, 6} ∩ {1, 2, 3, 4, 5, 6, 7, 8} ∩ {1, 2, 3, 7, 8} = {1, 2}.

All characteristic sets for Tables 1 and 2 are presented in Table 4. For a complete
data set the characteristic set KB(x), where x ∈ U , is an equivalence class of
the indiscernibility relation [12, 13].

3 Probabilistic Approximations

In our work we define probabilistic approximations based on the conditional

probability of X given KB(x), Pr(X | KB(x)) =
|X ∩ KB(x)|
|KB(x)| with |Y | denoting

the cardinality of set Y . Let B be a subset of the attribute set A and X be a
subset of U .

We further define three kinds of global probablistic approximations: singleton,
subset and concept. A B-singleton probabilistic approximation of X with the
threshold Δ, 0 < Δ ≤ 1, denoted by apprsingletonα,B (X), is defined as follows

{x | x ∈ U, Pr(X | KB(x)) ≥ Δ}.
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A B-subset probabilistic approximation of the set X with the threshold Δ,
0 < Δ ≤ 1, denoted by apprsubsetα,B (X), is defined as follows

∪{KB(x) | x ∈ U, Pr(X | KB(x)) ≥ Δ}.

A B-concept probabilistic approximation of the set X with the threshold Δ,
0 < Δ ≤ 1, denoted by apprconceptα,B (X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X | KB(x)) ≥ Δ}.

Global probabilistic approximations for the concept [(Trip, no)] from Table 1
are presented in Table 5.

Table 5. Global approximations for [(Trip, no)], Table 1

Probabilistic approximations

α singleton subset concept

1/3 {2, 3, 5, 6, 7, 8} {1, 2, 3, 5, 6, 7, 8} {3, 5, 6, 7, 8}
2/3 {3, 5, 6, 7, 8} {3, 5, 6, 7, 8} {3, 5, 6, 7, 8}
1 {5, 6, 7} {5, 6, 7} {5, 6, 7}

4 Experiments

In our experiments we used eight real-life data sets taken from the University of
California at Irvine Machine Learning Repository. These data sets were modified
by replacing 35% of existing attribute values by symbols of lost values, i.e.,
question marks. All data sets with lost values were edited, symbols of lost values
were replaced by symbols of “do not care” conditions, i.e., by stars. Thus, for
each data set, two data sets were created for experiments, one with missing
attribute values interpreted as lost values and the other one as “do not care”
conditions.

In our experiments we used the MLEM2 (Modified Learning from Examples
Module, version 2) rule induction algorithm of the LERS (Learning from Exam-
ples using Rough Sets) data mining system [1, 3, 4].

Probabilistic rules were induced from modified data sets. For each concept
X and the set Y equal to a probabilistic approximation of X of a given type
(singleton, subset or concept) a modified data set was created, see [9–11]. In this
data set all cases from Y had the same decision values as in the original data
set, all remaining cases were labeled with a special, additional value. The LERS
system, using the MLEM2 algorithm, was used to induce a rule set. Blocks of
attribute-value pairs in the MLEM2 algorithm were modified, taking into account
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Fig. 3. Rule set size for the echocardio-
gram data set
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Fig. 8. Rule set size for the wine recogni-
tion data set
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cancer data set
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echocardiogram data set
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Fig. 14. Condition counts for the iris
data set

missing attribute values. For the modified data set, only rules describing the
concept X survived, remaining rules were deleted. The aggregate rule set was
combined from rule sets induced from all modified data sets.

For any data set we tested six methods of handling missing attribute values:

– singleton probabilistic approximation combined with lost values, denoted as
Singleton, ?,

– singleton probabilistic approximation combined with “do not care” condi-
tions, denoted as Singleton, ∗,

– subset probabilistic approximation combined with lost values, denoted as
Subset, ?,

– subset probabilistic approximation combined with “do not care” conditions,
denoted as Subset, ∗,

– concept probabilistic approximation combined with lost values, denoted as
Concept, ?, and

– concept probabilistic approximation combined with “do not care” conditions,
denoted as Concept, ∗.

As follows from [2], all six methods do not differ significantly (Friedman’s test
(5% significance level) in terms of the error rate.

Our main objective was to compare all six methods in terms of the complexity
of rule sets. It is clear that for our data sets the method (Subset, ∗) provides
smaller size of rule sets than all three methods associated with lost values: (Sin-
gleton, ?), (Subset, ?) and (Concept, ?). Additionally, the same method produces
rule sets with smaller total number of conditions than all three methods associ-
ated with lost values.

Results of our experiments on the size of rule sets are presented in Figures 1–
8. Six selected results on the total number of conditions (because of the space
limit) are presented in Figures 9–14.

The method (Subset, ∗) provides smaller size of rule sets than (Singleton, ∗)
and (Concept, ∗) for five out of eight data sets: Breast cancer, Echocardiogram,
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Iris, Lymphography and Wine recognition and smaller total number of condi-
tions for the same data sets (Wilcoxon test, 5% significance level was used for
Echocardiogram).

Note that on some occasions the difference in performance is quite spectacular,
for example, for the Breast cancer data set, (Subset ∗) method provides 5–7 rules
(with Δ between 0.001 and 1) and with 5–8 conditions, while (Singleton, ?),
(Subset, ?) and (Concept, ?) methods provide rule sets with 118–124 rules and
330–349 conditions. The error rate for (Subset, ∗) is between 28.52% and 29.90%,
for all three methods associated with lost values, the error rate is between 27.44%
and 29.90%.

Rule sets induced from data sets with “do not care” conditions are simpler, in
general, than rule sets induced from data sets with lost values since for any data
set, an attribute-value block for the data set with “do not care” conditions is a
superset of the corresponding block (the same attribute-value pair) for the data
set with lost values. The MLEM2 rule induction algorithm induces rules using
these attribute-value blocks, so a rule induced from the data set with “do not
care” conditions covers more cases than a rule induced from the data set with
lost values.

5 Conclusions

For a given data set, all six methods of handling missing attribute values (using
three kinds of global probabilistic approximations and two interpretations of
missing attribute values) do not differ significantly with respect to the error rate
[2]. However, as follows from our research presented in this paper, these methods
differ significantly with respect to the complexity of rule sets; the simplest rule
sets are induced using subset probabilistic approximations and missing attribute
values interpreted as “do not care” conditions. Therefore, if we have a choice
how to interpret missing attribute values, the best rule set would be induced by
subset probabilistic approximations with missing attribute values interpreted as
“do not care” conditions.

The focus of this work was a study of rule set complexity using different
missing attribute interpretations and approximation methods while applying
the same rule induction algorithm, MLEM2. Further investigation with other
rule induction algorithms would be need in order to determine if the results are
algorithm dependent.
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Abstract. This paper deals with the possibility roots of binomial parameter 
interval estimation. It shows that conventional probability methods consist to 
obtain confidence intervals representing de dicto parameter uncertainty from 
coverage intervals representing de re uncertainty of observed samples. We 
relate the different types of coverage intervals to equivalent de re possibility 
distributions whose lead after inversion to de dicto possibility distributions 
corresponding to the stacking up of all confidence intervals at all levels. The 
different choices for the centre of the intervals corresponds to the different 
existing methods, in the same vein a novel one centred on the mean is proposed.  

Keywords: Possibility theory, binomial parameter estimation, coverage 
intervals, confidence intervals. 

1 Introduction 

The first distribution introduced in probability is the Bernoulli ones that is a simple 
discrete distribution taking only two outcomes: 0 (failure) and 1 (success). The 
probability that the considered variable takes the value 1 is conventionally denoted p. 
If a Bernoulli trial is repeated independently n times, the random variable Sn defined 
by the sum of successes follows a binomial distribution denoted Bin(n,p). The 
binomial distribution is frequently used to model a lot of issues involving decision 
from samples: controlling failures in components’ production, medical and biological 
tests, demographic analysis, opinion poll, games, ... But, beyond these practical 
interests, the binomial proportion estimation is fundamental in the very definition of 
probability. Indeed, the estimation of p is at the root of the justification of the 
unknown probability estimation by the observed realised frequency on a large sample, 
thanks to the weak law of large numbers established by Jacob Bernoulli [1]. 
Therefore, it is important to study the practical and theoretical sides of what the 
possibility theory [2][3] has to say on the binomial parameter estimation. This is the 
purpose of this article that considers the existing probability approaches under a 
possibilistic angle from probability-possibility transformations [4][5][6] identifying 
the coverage intervals of a probability distribution to alpha-cuts of the equivalent 
possibility distributions.   

First, fundamental notions of probability estimation and possibility theories are 
recalled. We point out the fact that the estimation of the parameter p, which is fixed 
but unknown, is characterized by a so called de dicto uncertainty (because it concerns 
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knowledge uncertainty [7]) that is deduced in one way or another from a so-called de 
re uncertainty (because it concerns observed things) issued from the sample. 
Secondly, we present a possibility-theory-based view of the conventional probability 
approaches used to build confidence intervals for a binomial parameter [8][9]. A new 
estimation method (to our knowledge) based on asymmetrical coverage intervals 
centred on the mean is then proposed.  Finally, we conclude on the unified framework 
proposed by the possibilistic view and on the new estimation methods that are 
suggested by the possibility view.   

2 Fundamental Probability Estimation Notions  

In this section, we present first in an intuitive way the fundamental binomial 
estimation concepts already involved in the pioneers’ works. Then, we propose 
modern formulation of these concepts and relate them to the notion of coverage and 
confidence intervals. 

2.1 de re and de dicto Uncertainties 

The estimation of the binomial parameter p is at the root of the justification of the 

estimation of an unknown probability by the observed frequency n
n

S
F

n
=  on a large 

sample of size n, thanks to the weak law of large numbers established by Jacob 
Bernoulli since the beginning of probability [1]: 

2

(1 )
0 ( )n

p p
P F p

n
ε ε

ε
−∀ > − ≥ ≤    (1) 

This theorem expresses the probability concentration increase phenomenon as n 
increases. In fact this theorem allows one to deduce information from dispersed 
observed data. Indeed, as n increases, the fluctuations of Fn around p are decreasing 
and we become quasi-sure that nF p= .  

Reading the equation (1) in a direct way allows from the knowledge of p to make a 
prevision (with a considered risk) of the fluctuation of nF , i.e., to define an interval in 

which nF  is to be found within at least a definite probability (thus called a coverage 

interval). In a reciprocal way, the equation (1) allows to determine an interval 
depending upon nF containing the unknown fixed parameter p with a probability level 

(thus called confidence interval). In fact, the more concentred is the probability the 
narrower are the coverage intervals, and the narrower are the confidence intervals 
obtained by inversion.  At the limit for n infinite, nF fluctuates no more (it becomes a 

Dirac distribution), and we can deduce with complete certainty that nF p= .  

The preceding considerations highlight a fundamental point: the obtained 
knowledge on the fixed unknown p is characterized by a de dicto uncertainty that is 
related to the de re uncertainty issued from the fluctuations of the observed sample.  
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2.2 Formal Definition of Coverage Intervals 

Let us first define a discrete random variable X on a probability space 

( ), ,F PΩ composed of a sample space Ω ; a set of subset of eventsF ; a function P 

returning an event’s probability as : , ( )X Xω ωΩ →    such that: 

{ }( ) ( ),X X ω ωΩ = ∈ Ω  is a countable subset of . 

{ }( ), , ( )k k kx X A X xω ω∀ ∈ Ω = ∈ Ω =  belongs to the familyF of events having a 

probability assigned by P; ( ) kX xω = is called a realisation of the random variable. 

The application X allows to transport the probability P from Ω  onto ; 
The ( )kP X x= ’s are considered as punctual masses and the probability of a subset of 

  is defined as the sum of its punctual masses. The set function PX defined by 

{ }( ) ( ) ( )k X k k kp P x P A P X x= = = =  is called the distribution function of the random 

variable X . 
As seen previously, the realisations of a random variable fluctuate and thus are 

dispersed, therefore it is useful to know the intervals in which the realisations are 
included with a specified proportion. This is formalized by the notion of coverage 
interval of level [ ]1 ( 0,1 )α α− ∈  of a random variable X defined as an interval of 

the form  1 1( ), ( 1 )X XG Gβ β α− − + −   where 1
XG−  is the inverse cumulative distribution 

function of X (also called quantile function). These coverage intervals are not unique, 
different choices for [ ]0,1β ∈ lead to different types of coverage intervals: lower 

unilateral ( 0β = ), upper unilateral ( β α= ), bilateral (
2

αβ = ). Generally, they are 

built about central points such as the mean, the mode, the median. The coverage 
intervals are sometimes called prediction intervals because as a coverage interval of 
level 1 α− contains (1 )%α− of the population, there is (1 )%α−  chance that an 

observation coming from this population falls in this interval. Note that the coverage 
intervals for a discrete random variable do not always exist for all the level due to the 
discreteness of the realisations. 

Finally, let us point out the deterministic nature of the coverage intervals which 
have definite bounds, and thus the de re nature of the uncertainty they model. Indeed, 
they reflect the observation fluctuations (due to the very phenomenon or to the way 
they are observed). Therefore, to increase the number of observations does not 
decrease the de re uncertainty but simply improves the validity of its representation 
according to the observed random phenomenon.  

2.3 Formal Definition of Theoretical and Realised Confidence Intervals 

The notion of confidence interval is more subtle because it aims at defining the 
uncertainty of a fixed unknown parameter (i.e. without fluctuations), and thus 
corresponds to a de dicto uncertainty characterizing the knowledge declared. The 
main difficulty for determining confidence intervals comes from the fact that as p is 
unknown, hence there are multiple probability measure P we could consider for the 
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probability space { }( )0,1 , 2 n
n

n n
ΩΩ = =F . In fact, only a family ( ) [ ]0,1p p

P
∈

 of 

probability measures defined by { } ( ) ( )( ) (1 )n nS Sn
pP p pω ωω −= − can be soundly 

considered with 
1

( ) ( ) ( ) 0 1
n

n i i
i

S X and X orω ω ω
=

= = . We have thus a so called 

statistical model ( ) [ ]( )0,1
, ,n n p p

P
∈

Ω F  with for every [ ]0,1p ∈  the distribution of nS  

under pP that follows a binomial distribution Bin(n,p). The theoretical confidence 

intervals are then defined in the following way. Let   ( ) [ ]( )0,1
, ,n n p p

P
∈

Ω F  be the 

statistical model and 1 2( , ,..., )nX X X X= a sample coming from this model, a 

theoretical confidence interval for p of confidence level at least 1 α− is a closed 
interval with random variable bounds L(X) and U(X) satisfying [8]: 

[ ]0,1
inf ( ( ) ( )) 1p

p
P L X p U X α

∈
≤ ≤ ≥ −  

It is very important to note that the function
[ ]0,1

inf p
p

P
∈

 defined on nF  by 

[ ]0,1
inf ( )p

p
A P A

∈
 does not provide a probability but a lower bound of probability. That 

is why we speak about a level of confidence and not about a level of probability (we 
will see in the next sub-section that this level can be related to possibility/necessity 
notions). Further, when we replace the random variable X with its realisation we obtain 
for p realised (or numerical) confidence intervals ( [ ]( ), ( )n nL f U f ( nf is the observed 

frequency) with deterministic bounds. The event [ ]( ), ( )n np L f U f∈ is either true or 

false, but it is not subject to fluctuations, and thus cannot be interpreted as a frequentist 
probability. In fact, the theoretical confidence interval is a procedure (often called 
estimator) which when applied an infinite times leads to a success rate at least equal to 
the level of confidence. For example, it is sound to say before making the observations 
that for 100 confidence intervals of level 90% realised in similar conditions, 90 of them 
will contain the unknown fixed parameter. But our purpose is to have information 
about the uncertainty of p after having made the observations, i.e., once having 
obtained a realised confidence interval [ ]( ), ( )n nL f U f . In fact, this realised confidence 

interval conveys a de dicto uncertainty. Indeed, it seems logical to us to transfer the 
uncertainty (i.e. the level of confidence) of the theoretical confidence interval to  
the realised confidence interval. Indeed, in itself (in absence of other information) the 
realisation does not change in our opinion the degree of probability (subjective here 
assigned to the event [ ]( ), ( )n np L f U f∈ . This transfer is coherent with the notion of 

bet at the basis of subjective probability. Indeed, if we are ready to bet 90 euros against 
10 euros that a random interval of level 90% contains the unknown parameter p, we are 
also ready to bet 90 euros that the unknown parameter is within the realised confidence 
interval of level 90%. We meet again here the idea of prediction conveyed by a 
realised confidence interval. Finally, let us point about the random nature of theoretical 
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confidence intervals and the de dicto nature of the uncertainty (obtained here by 
transfer) conveyed by realised confidence intervals. Indeed, they are a reflection of the 
knowledge incompleteness about p that comes from the limited number of 
observations and of their fluctuations. Thus, the uncertainty on the knowledge of p 
could be reduced by increasing the number of observations.   

3 Possibility Distribution versus Coverage and Confidence 
Intervals 

As mentioned above, beyond vocabulary and definition difficulties, the probability 
interpretation of confidence intervals is not so clear. We hope that the possibility 
theory based view of coverage and confidence intervals exposed in this section will 
allow to better understand and to reconcile historical and current points of view. 

3.1 Basics of Possibility Theory 

A fundamental notion of the possibility theory [3] is the possibility distribution, 
denotedπ . Here, we consider possibility distributions defined on the real line, i.e. 
π is an upper semi-continuous mapping from R to the unit interval such that π(x) = 1 
for some x belonging to R. A possibility distribution generates two non-additive set 
functions [3]: possibility measure Π  and a necessity measure Ν as 

follows. , ( ) sup ( )x AA R A xπ∈∀ ⊂ Π = and , ( ) 1 ( ) inf (1 ( ))x AA R N A A xπ∉∀ ⊂ = − Π = −  

The possibility measure Π  satisfies: , , ( ) max( ( ), ( ))A B R A B A B∀ ⊂ Π ∪ = Π Π  

The necessity measure Ν  satisfies: , , ( ) min( ( ), ( ))A B R N A B N A N B∀ ⊂ ∩ =  

To qualify the informativeness of a possibility distribution, the concept of 
specificity is useful. A possibility distribution 1π  is called more specific (i.e. thinner 

in a broad sense) than 2π  as soon as 1 2, ( ) ( )x R x xπ π∀ ∈ ≤ (fuzzy set inclusion). The 

more specific π, the more informative it is. If ( ) 1xπ =  for some x and ( ) 0yπ = for 

all y x≠ , then π is totally specific (fully precise and certain knowledge), if 

( ) 1xπ = for all x then π is totally non specific (complete ignorance). In fact, a 

numerical degree of possibility can be viewed as an upper bound to a probability 
degree [10]. Namely, with every possibility distribution π one can associate a non-
empty family of probability measures dominated by the possibility measure: 

}{( ) , , ( ) ( )P A R P A Aπ = ∀ ⊂ ≤ Π . This provides a bridge between probability and 

possibility. 

3.2 Relationships with Coverage Intervals 

For the same probability density function and for the same probability level, we can 
have different types of coverage intervals. Indeed, we can impose one of the bounds 
or the centre or another point of the coverage intervals. A coverage interval is said 
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optimum if its length is the smallest among all the coverage intervals of the same 
level. For all types, coverage intervals are nested versus the probability level, and thus 
can be represented as a whole by a possibility distribution. Indeed, an unimodal 
numerical possibility distribution can be viewed as a nested set of intervals, which are 

the α -cuts of π : [ ] }{, , ( )x x x xα α π α= ≥ and these α-cuts can be identified with the 

coverage intervals of probability level 1β α= −   of a random variable X, i.e. an 

interval that contains a portion of X with probability β≥ . This approach has been 

used in previous works [5][6] to define a probability-possibility transformation. 
One important result is that for any random variable X having a cumulative 

distribution function G, and for any central point c, a possibility distribution of type 1 
defined by [6] : 

1 1( ) ( ) 1 ( ( )) ( ( ))
X X

c cx G x G h x h xπ π= + − =  (with [ ] [ ]: , ,h c c−∞ → +∞  a decreasing 

function such that ( )h c c= ) is an unimodal distribution with mode c  satisfying  : 
1, ( ) ( )c
X XA A P A∀ ∏ ≥ . If X has an unimodal density f  (i.e. f is strictly increasing before 

the mode M  and strictly decreasing after M ), an optimal equivalent possibility 
distribution is obtained by : [ ], , ( ) {inf ( ) ( )}x M h x y M f x f y∀ ∈ −∞ = ≥ = . 

Another new way we propose here is to represent coverage intervals by a 
possibility distribution of type 2 defined as follows: 

2 ( ( )) 1 ( ( ))

( ) 1 ( ( ))
( )

X

c G l x G r x
for x c and for x c

G c G r c
xπ −≤ ≥

−
=   

with r and l being respectively increasing and decreasing functions defined on 
[ ] [ ], ,c et c−∞ +∞  and such that ( ) ( )l c r c c= = . The possibility distribution 2

X

cπ is 

unimodal with mode c and it satisfies:  2, ( ) ( )c
X XA A P A∀ ∏ ≥ . 

 
Proof: 2 ( ) 1

X

c cπ = since ( ) ( )l c r c c= = , then if 2, ( ) 1 ( )c
X XA c A P A⊃ ∏ = ≥ , and 

if c A∉ and sup( )x A c∈ < ,then 2 ( ( ))
( ( ))

( )
( )

X

c G l x
G l x

G c
xπ ≥= because ( ) 1G c < ,therefore

2 ( ) ( )c
X XA P A∏ ≥ . If c A∉ and inf( )x A c∈ > , 2 1 ( ( ))

1 ( ( ))
1 ( ( ))

( )
X

c G r x
G r x

G r c
xπ − ≥ −

−
= . 

Finally, let us remark that if the probability distribution is symmetric about c, then 
if l(x))=r(x)=x, we have 1 2 , )( ) ( ) min(2 ( ) 2(1 ( )

X X

c cx x G x G xπ π= = − . 

3.3 Relationships with Realised Confidence Intervals 

As explained before, the realised confidence intervals are such that 

[ ]0,1
inf ( ( ) ( )) 1p

p
P L x p U x α

∈
≤ ≤ ≥ − , i.e.

[ ]
[ ]

0,1
inf ( ( ), ( ) ) 1p

p
P L x U x α

∈
≥ − , therefore the 

confidence level of the realised confidence interval is a necessity degree. If we 
dispose of a family of realised nested confidence intervals { }1 2, ,..., mI I I  
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1, 1,...,i iI I i m+⊂ = , every iI having a confidence level of iλ  defined as a necessity 

degree then the equivalent possibility distribution is defined by [10]:  

1,...,
( ) min max(1 , ( ))X x i ii m
x I xπ λ= =

= −  where ( )iI x  is the characteristic function of iI . 

The preceding equation expresses in fact the conjunction of the possibility 
distributions equivalent to each realised confidence interval of each level. The 
resulting possibility distribution corresponds to the more specific de dicto possibility 
distribution according to the available information.  
Another way to obtain directly (without considering the realisation of random 
variables) de dicto confidence intervals is to consider Fisher inference, leading to 
fiducial confidence intervals [11]. According to us, Fisher idea may be expressed in a 
possibility setting by considering possible at a definite level all values of the 
parameter p whose corresponding coverage intervals at the same level contains the 
observation. The fiducial confidence intervals are thus clearly related by inversion to 
coverage intervals. Interestingly, in a lot of situations (particularly when the 
distributions are increasing with the parameter as it is the case for the binomial 
distribution) the realised confidence intervals are equal to the fiducial confidence 
intervals, and therefore we will not discuss further here the controversial aspects of 
frequentist and fiducial inferences. 

4 Methods for Building Binomial Confidence Intervals 

In this section we recall first the main properties of the binomial distribution, and then 
we present the usual methods for building binomial confidence intervals [9] in a 
possibility setting. Finally a new derived method is exposed. 

4.1 Binomial Distribution Properties  

Let us denote Sn the random variable associated to the repetition of n identical and 
independent Bernoulli trials having p as success probability. Sn follows a binomial 
distribution Bin(n,p) defined by : ( ) (1 )k k n k

n nP S k C p p −= = − . This binomial 

distribution is asymmetric (except for p=0.5) and its mean is E np= . If ( 1)n p+ is not 

an integer, the distribution strictly increases on [0, ( 1) ]n p+    and strictly decreases 

on[ ( 1) , ]n p n+   , and thus it has only one mode ( 1)M n p= +   , and the mean is 

equal to the mode E M np= = . If ( 1)n p+  is an integer the distribution strictly 

increases on [0, ( 1) 1]n p+ −  and strictly decreases on [( 1) , ]n p n+  ; thus it has two 

modes ( 1) 1 ( 1)M n p and n p= + − +  and the mean [ ]1,E np M M= ∈ − is not 

reachable. In all cases, the distance between the mean and the mode is such that 
1M E− < . The median is defined by 1m np ou np= ±       . Note that the reason of 

non monotony observed sometimes when inverting coverage intervals is due to fact 
that the expressions of the mode and of the median are varying with n and p. 
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4.2 Wald-DeMoivre-Laplace Method  

It is the gold standard method (popularized by Wald) based on the approximation of 
the binomial distribution by a normal distribution (established by Laplace on the basis 
of DeMoivre derivations). The estimator p̂  (obtained from the observations) of the 

proportion p  follow approximately a normal distribution 
(1 )

( , )
p p

N p
n

− 
, and 

thus p̂ p− follows approximately a normal distribution with a mean equal to 0 and a 

standard deviation equal to 
ˆ ˆ(1 )p p

n

−
 (here we have replaced the unknown standard 

deviation with its sample estimation; the Wilson score method  [9] consider the true 
standard deviation). The distribution of random variable p̂ p−  is what is called an 

asymptotic pivotal distribution though it does not depend upon the unknown 
parameter p. From inverting the de re possibility distribution of type 1 around 0 
equivalent to this normal probability distribution, confidence intervals can be easily 
deduced. Let us note that the normal approximation is more or less good and that it 
does not grant the level of confidence (see figure 1). The fact that no exact pivotal 
distribution (i.e. non-asymptotic) exists for a discrete distribution (unlike continuous 
distributions) makes the building of confidence intervals a difficult task.  

 
Fig. 1. de dicto possibility distributions for 8 (left) and 5 (right) successes for 10 trials 

4.3 Clopper-Pearson Method  

The Clopper-Pearson [9] approach consists in inverting the de re possibility 
distribution of type 2 about the median equivalent to the binomial distribution  
(Gp denotes the cumulative binomial distribution with a success proportion p).  
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The expression of the de dicto possibility distribution corresponding to an observation 
of k failures is thus: 

2 (( , ) min(2 ( / ),2(1 ( / ),1) / )
p

CP med
p p Gp k G k n G k n k nπ π= − =  

An important point is that this de dicto possibility distribution is unimodal but it is 
not the most specific. Indeed, Blaker [9] by inverting the de re possibility distribution 
of type 1 about the median obtained a possibility distribution included in the former. 
But in a few situations the Blaker’s possibility distribution of p is not unimodal 

4.4 Wilson-Sterne, Crow and Clunies-Ross Methods  

In order to obtain the more specific de dicto possibility distribution, Wilson (1942) 
considered the more specific de re possibility distribution, i.e. the one of type 1 about 
the mode.  This method is more known under the name of Sterne method (1954) or of 
likelihood minimum [9]. The possibility distribution has the following expression:   

( , ) ( '/ ) (1 ( / )), /

( , ) ( / ) (1 ( ''/ )), /

St
p p

St
p p

p k G k n G k n p k n

p k G k n G k n p k n

π
π

= + − ≤
= + − ≥

 with 
( ')

'' ( )

k h k

k h k

=
=

 

Thus: 1 (( , ) / )
p

St mod
Gp k k nπ π=  

This method does not ensure to obtain an unimodal distribution. A modification 
proposed by Crow (1956) prevents of having disjoint coverage intervals, but it leads 
sometimes after inversion to non nested confidence intervals. A more sound approach 
is the one of Clunies–Ross (1958)[9] that proposed to fill in the holes between the 
disjoint intervals, leading thus to an unimodal possibility distribution; the price to pay 
is a less specific possibility distribution. 

4.5 A New Method 

An approach we have not seen in the literature is to invert the de re possibility 
distribution of type 2 about the mean leading to : 

2 (
( ) 1 ( )

( / ) 1 ( / )
( , ) min( , ,1) / )

p

p pnew mean
G

p pG p G p

G k n G k n
p k k nπ π

−
−

= =  

This de dicto possibility distribution is unimodal and has the advantage to be 
centred about the maximum likelihood estimates.  

The figure 1 at the end of the paper illustrates cases where respectively 8 and 5 
successes have been observed for 10 trials. 

5 Conclusion 

In this paper, we have highlighted the relationships between conventional parameter 
interval estimation methods and possibility distributions. Indeed, the most used 
probability methods amount to invert the de re possibility distribution equivalent to 
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all coverage intervals built about different centres (mode, median, mean) to obtain a 
de dicto possibility distribution equivalent to the fiducial confidence intervals of all 
confidence levels. A new method based on a new probability-possibility 
transformation centred about the sample mean of the binomial proportion (i.e. the 
maximum likelihood estimation) has been exhibited. In perspectives, the Bayesian 
approach of binomial parameter estimation could be cast in the possibility framework 
by transforming the posterior probability distribution into a possibility distribution.   
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Abstract. In this paper, we will develop a new multi-item economic
production quantity model with limited storage space. This new model
will then be extended to allow for fuzzy demand and solved numerically
with a non-linear programming solver for two cases: in the first case the
optimization problem will be defuzzified with the signed distance mea-
sure and in the second case, the storage constraint needs to be fulfilled,
only to a certain degree of possibility. Both cases are solved and illus-
trated with an example.

Keywords: Economic Production Quantity, Triangular fuzzy numbers,
Inventory constraint, Signed distance, Chance constrained optimization.

1 Introduction

Even with more than 100 years of EOQ (Economic Order Quantity) develop-
ment, current stream of new findings and results do not tend to decrease. Even
if the first model by Harris [8] was very simple, it has been very popular in in-
dustry and also an inspiration to many researchers. In this basic model the order
size needed to be determined given holding costs, order setup costs and annual
demand. This model has been altered in many ways to capture more complex
and realistic situations in the industry. For instance, the EPQ (Economic Pro-
duction Quantity) solved a problem where the product is produced to stock,
also multi item, storage capacity limitation and so on is further extensions of
the basic model.

These additions may be very crucial, even to the extent of only having stor-
age capacity for one weeks production (this was the case in a Nordic plywood
production facility that we have collaborated with). It is obvious that we will
produce to stock in the process industry environment. In these settings we need
the EOQ-models with some proper extensions. The uncertainties in the process
industry can sometimes be measured probabilistically, but sometimes data is
not enough and therefore fuzzy measures may be needed, c.f [3,5]. There have
also been a lot of research contributions in this line of research. For instance
[3] solved an EOQ model with backorders and infinite replenishment lead time

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 406–415, 2014.
c© Springer International Publishing Switzerland 2014
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with fuzzy lead times. However, sometimes the environment may be more sta-
ble, and only a few things may be uncertain. These fuzzy uncertainties may
come from the fact that the demand may be uncertain, but still reliable data
is not found to make justified probabilistic statements. This case is tackled in
our paper for a special case of inventory constraints. Often is desirable to try
to solve the EOQ-models with their extensions analytically through the solu-
tion of the derivatives (as also done originally by Harris, [8]). There are also
other optimization approaches used in the EOQ literature. If the uncertainties
in the EOQ-models can be modeled stochastically (as done in [9]), the track
of probabilistic models should be conducted, but this is not always possible in
the process industry. For the uncertainties relevant to this paper it is better to
use fuzzy numbers instead of probabilistic approaches ([17,18]). In the line of
research of fuzzy EOQ-models, there are contributions for instance like Chang
[6], who worked out fuzzy modifications of the model of [13], which took the de-
fective rate of the goods into account. Ouyang and Wu and [11] Ouyang and Yao
[12] solved an EOQ-model with the lead times as decision variables as well as
the order quantities. Taleizadeh and Nematollahi [15] presented again an EOQ-
model with a final time horizon, with perishable items, backordering and delayed
payments. Sanni and Chukwu [14] did a EOQ-model with deteriorating items,
ramp-type demand as well as shortages. This paper has a track of research de-
velopment behind. Already Björk and Carlsson [3] solved analytically an EOQ
problem with backorders, with a signed distance defuzzification method. Björk
[1] solved again a problem with a finite production rate and fuzzy cycle time,
which was extended in [2] to a more general fuzzy case. The approach used in
this paper is novel since there are no papers (to our knowledge) that focus on
the realistic modeling of inventory constraints. Our solution methodology is to
one part similar also to Björk and Carlsson [4] and Björk [1], , where the fuzzy
model is defuzzified using the signed distance method [16], however, the solu-
tion is here not found through the derivatives, but numerically, since our fuzzy
problem is more difficult to solve. This paper extends the results in the recent
publication by Björk [2] with the limited storage capacity restriction with a more
complex, but much more realistic inventory space constraint model. In addition,
we consider not only the crisp case, but also the case of chance constrained for-
mulation (in the fuzzy sense) of the storage limitations. The rest of the paper
is structured as follows. First we will explain some preliminaries, then we will
present the crisp case, after which we allow the demand to be fuzzy. Finally we
solve the model both with defuzzification method as well as introducing fuzzy
necessity constraints. Finally we will show this with an example as well as make
some concluding remarks.

2 Preliminaries

In this section we introduce the necessary definitions and notations that are
necessary for developing and solving our new model. We focus on fuzzy numbers
and possibilistic chance constrained programming.
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2.1 Fuzzy Numbers

Fuzzy sets have been introduced by Zadeh [17] to represent uncertainty different
from randomness. In this paper, we employ fuzzy sets to model incomplete infor-
mation inherent in many real world applications of inventory management. The
most used special case of fuzzy sets is the family of triangular fuzzy numbers.

Definition 1 Consider the fuzzy set Ã = (a, b, c) where a < b < c and defined
on R, which is called a triangular fuzzy number, if the membership function of
Ã is given by

μÃ(x) =

⎧⎪⎨⎪⎩
x−a
b−a if a ≤ x ≤ b
c−x
x−b if b ≤ x ≤ c
0 otherwise

In order to find non-fuzzy values for the model, we need to use some distance
measures, and we will use the signed distance [16]. Before the definition of this
distance, we need to introduce the concept of Δ-cut of a fuzzy set.

Definition 2 Let B̃ a fuzzy set on R and 0 ≤ Δ ≤ 1. The Δ-cut of B̃ is the set
of all the points x such that μB̃(x) ≥ Δ, i.e. B̃(Δ) = {x|μB̃(x) ≥ Δ} .

Let β be the family of all fuzzy sets B̃ defined on R for which the Δ-cut
B̃(Δ) = [B̃l(Δ), B̃u(Δ)] exists for every 0 ≤ Δ ≤ 1, and both B̃l(Δ) and B̃u(Δ)
are continuous functions on Δ ∈ [0, 1].

Definition 3 For B̃ ∈ β define the signed distance of B̃ to 0̃ as

d(B̃, 0̃) =
1

2

∫ 1

0

(B̃l(Δ) + B̃u(Δ))dΔ

2.2 Chance Constrained Programming

Chance constrained programming, originally introduced in probabilitic environ-
ment by Charnes and Cooper [7], is a widely-used method to handle uncertain
parameters in optimization problems. The original approach was later modified
to incorporate fuzzy parameters and possibility and necessity measures [10]. Ac-
cording to this approach, it is not necessary to use any defuzzification method,
the extent to which the constraints of the models are satisfied in terms of pos-
sibility or necessity are calculated.

Possibility measure [19] is a maxitive normalized monotone measure, i.e.

Pos

(⋃
i

Bi

)
= sup

i
Pos(Bi).

where {Bi} is any family of sets in the universe of discourse. The dual measure
of possibility, termed as necessity, is defined as:

Nec(B) = 1− Pos(BC).
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We can consider fuzzy numbers as possibility distributions on the real line
using the formula

Pos(C ⊂ R) = sup
x∈C

μB(x),

where μB(x) is the membership function of the fuzzy number B. In this paper
we will calculate the possibility of the fulfilment of constraint with the left-hand
side being a fuzzy expression and the right-hand side as a crisp number (size of
available storage). As crisp numbers are special cases of fuzzy numbers we can
use the following formula for A ∈ R:

Pos(B ≤ A) = sup {μB(x) | x ≤ A} .

3 EPQ Model with Fuzzy Parameters and Storage
Constraint

In this section, we are first going to present the crisp and fuzzy models, and two
approaches for solving the fuzzy formulation. The parameters and variables (can
be assumed strictly greater than zero) in the classical multi-item EPQ model
with shared cycle time and storage space limitation are the following (where the
index i ∈ I = {1, 2, . . . , n} denotes the products):

– Qi is the production batch size (variable)
– Ki is the fixed cost per production batch (parameter)
– Di is the annual demand of the product (parameter)
– hi is the unit holding cost per year (parameter)
– T is the cycle time (variable)
– Pi is the annual production rate (parameter)
– ai is the storage area requirement per inventory unit (parameter)
– A is the maximum available storage area (parameter)

The total cost function (TCU), including production setup costs, the inventory
holding costs, and the constraint concerning the limitation on the storage area
for all products are given by

min TCU(Q1, . . . , Qn) =

n∑
i=1

KiDi

Qi
+

n∑
i=1

hiQiρi
2

s. t. aiQiρi +
∑
j>i

aj

⎛⎝Qjρj − IDj −

⎛⎝∑
k>j

QkDj

Pk

⎞⎠−
⎛⎝∑

k≤i

QkDj

Pk

⎞⎠⎞⎠
+
∑
j<i

aj

⎛⎝Qjρj −

⎛⎝ i∑
k=j+1

QkDj

Pk

⎞⎠⎞⎠ ≤ A, i = 1, ..., n

(1)

where I = T−
∑n

i=1

Qi

Pi
(the idle time of the machine, we suppose it takes place in

the end of a cycle, between the production of item n is finished and production
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of item 1 starts) and ρi = 1 − Di

Pi
. Here we assume that

∑n
i=1

Di

Pi
≤ 1.The

production batch size Qi can also be described with the cycle time T according
the formula Qi = TDi.

The storage constraint can be justified in the following way. First, we have
to notice that the maximum storage requirement occurs at one of the n time
points (ti, i = 1, , n) when the production of one of the n items is finished. This

follows from the observation that for any i ≤ n, if aiρiQi ≥
∑

k �=i

akQiDk

Pi
(the

required storage place for item i during production is bigger than the storage
that becomes available because of all the other product units sold based on the
predicted demand), then we need more storage place at time point t(i+1) than
ti (and the storage requirement continuously increases between the two time
points); otherwise we need more storage place at time point ti than t(i + 1)
(with continuous decrease between the two points).

After using the ρi = 1 − Di

Pi
substitution and replacing the cycle time in the

constraint, we obtain the following form of the objective function:

TCU(Q1, . . . , Qn) =

n∑
i=1

KiDi

Qi
+

n∑
i=1

hiQi

2
−

n∑
i=1

hiQiDi

2Pi
(2)

and the constraint

aiQi −
aiQiDi

2Pi
+
∑
j>i

ajDj

(
j−1∑

k=i+1

Qk

Pk

)

+
∑
j<i

aj

⎛⎝Qj −

⎛⎝ i∑
k=j

QkDj

Pk

⎞⎠⎞⎠ ≤ A, i = 1, ..., n

(3)

To incorporate the uncertainty related to the estimation of demand as an
input parameter for this model, we assume that the demand is uncertain but
it is possible to describe it with a triangular fuzzy number (asymmetric). The
fuzzy demand (D̃i ) will then be represented as an asymmetrical triangular fuzzy
number:

D̃i = (Di − ψi, Di, Di + ηi)

The Total Annual Cost in the fuzzy sense will be

˜TCU(Q1, . . . , Qn) =

n∑
i=1

KiD̃i

Qi
+

n∑
i=1

hiQi

2
−

n∑
i=1

hiQiD̃i

2Pi
(4)
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and the storage limitation with fuzzy demand can be written as

aiQi −
aiQiD̃i

2Pi
+
∑
j>i

ajD̃j

(
j−1∑

k=i+1

Qk

Pk

)

+
∑
j<i

aj

⎛⎝Qj −

⎛⎝ i∑
k=j

QkD̃j

Pk

⎞⎠⎞⎠ ≤ A, i = 1, ..., n

(5)

We will employ two different approaches to find the optimal solution to this
problem:

1. We calculate the signed distance for the total cost function and the constraint
to obtain the defuzzified version of the model and then solve it as a crisp
problem.

2. We use necessity measure to specify the required degree of fulfilment for the
storage constraint and solve the problem based on this new constraint.

For the first approach, we need to calculate first the signed distance of an
asymmetric triangular fuzzy number (representing the demand) from 0 as

d(D̃I , 0̃) =
1

2

∫ 1

0

((D̃i)l(Δ) + (D̃i)u(Δ))dΔ

=
1

2

∫ 1

0

[(Di − ψi + ψiΔ) + (Di + ηi − ηiΔ)]dΔ = Di +
ψi + ηi

4
(6)

The defuzzified total cost function can be obtained as

TCU(Q1, . . . , Qn) =

n∑
i=1

KiDi

Qi
+

n∑
i=1

Ki(ηi − ψi)
4Qi

+

n∑
i=1

hiQi

2

−
n∑

i=1

hiQiDi

2Pi
−

n∑
i=1

hiQi(ηi − ψi)
8Pi

(7)

and the defuzzified storage constraint can be written as

aiQi −
aiQiDi

2Pi
− aiQi(ηi − ψi)

8Pi
+
∑
j>i

ajDj

(
j−1∑

k=i+1

Qk

Pk

)

+
∑
j>i

aj(ηi − ψi)
4

(
j−1∑

k=i+1

Qk

Pk

)

+
∑
j<i

aj

⎛⎝Qj −
(
Dj +

ηi − ψi
4

)⎛⎝ i∑
k=j

Qk

Pk

⎞⎠⎞⎠ ≤ A, i = 1, ..., n

(8)

As for the second approach, we need to notice that the left hand side of the
fuzzy constraint for every i is a linear combination of triangular fuzzy numbers
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and as a result of this, the whole expression also represents an asymmetric tri-
angular fuzzy number for every i. According to this, we can define a triangular
fuzzy number for every i with the center

Ci =aiQi −
aiQiDi

2Pi
+
∑
j>i

ajDj

(
j−1∑

k=i+1

Qk

Pk

)

+
∑
j<i

aj

⎛⎝Qj −Dj

⎛⎝ i∑
k=j

Qk

Pk

⎞⎠⎞⎠ (9)

with left end-point of the support as

ϑi =aiQi −
aiQi(Di + ηi)

2Pi
+
∑
j>i

aj(Dj − ψj)
(

j−1∑
k=i+1

Qk

Pk

)

+
∑
j<i

aj

⎛⎝Qj − (Dj + ηj)

⎛⎝ i∑
k=j

Qk

Pk

⎞⎠⎞⎠ (10)

and right end-point of the support as

σi =aiQi −
aiQi(Di − ψi)

2Pi
+
∑
j>i

aj(Dj + ηj)

(
j−1∑

k=i+1

Qk

Pk

)

+
∑
j<i

aj

⎛⎝Qj − (Dj − ψj)

⎛⎝ i∑
k=j

Qk

Pk

⎞⎠⎞⎠ (11)

To use the possibility measure for evaluating the storage constraint, we have
to define first to which extent we require the constraint to be satisfied (what
should be the possibility), as 0 ≤ Ω ≤ 1, and we require that for every i, the
fuzzy number C̃i = (ϑi, Ci, σi) satisfies that C1 − (1− Ω)(Ci − ϑi) ≤ A.

4 Example

In this section we will present a numerical example to compare three different
approaches to solve the problem defined in (1). We will calculate the optimal
solutions for the:

– crisp model
– fuzzy model through signed distance-based defuzzification
– chance constrained formulation.

This problem is a fictive one, even if the numbers are in the likely range of a real
Finnish paper producer. The parameters of the model are described in Table 1.

The optimal solutions for the crisp and fuzzy case are given in Table 2. As we
can observe, the approach using signed distance as the defuzzification approach
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Table 1. Parameters for the example

Product Ki Di hi ai Pi ηi δi
1 1500 900 3 10 5500 135 225

2 1000 400 3 15 5500 60 100

3 1200 700 3 8 5600 105 175

4 1300 700 3 12 5500 105 175

5 1400 500 3 9 5500 75 125

6 900 800 3 11 5800 120 200

7 1300 800 3 13 6200 120 200

8 1100 900 3 14 6000 135 225

results in a slightly lower total cost value. The optimal batch size is lower for
every type of product. The possible explanation is that, since we accounted for
the uncertainty and the membership functions are specified in a way that the
right width is larger than the left (there is more uncertainty concerning the upper
bound for demand), we need to produce less units at a time and have shorter
cycle times in order to be able to react changes in the demand according to the
uncertainty.

As for the chance constrained formulation, we used Ω = 0.8, i.i. a 80 % assur-
ance that the available storage is enough at any given point. According to this,
the total cost value decreases significantly: by accepting a specific amount of risk
of running out of storage space, we can decrease the overall cost of the company.
The main change in the cost is the consequence of the higher production batches
and as a result the lover setup costs. As we are accept the risk related to the
storage space availability, we allow for larger number of units to be produced.

Table 2. Optimal solutions for the example with the diffierent approaches

Product Crisp model Signed-distance approach Chance constrained

TCU 7969.37 7923.99 7373.93

Q1 1082.81 1063.67 1172.33

Q2 640.52 627.48 701.52

Q3 1005.00 981.82 1104.13

Q4 1134.30 1106.32 1176.15

Q5 1158.12 1124.61 1228.94

Q6 1184.33 1192.60 1224.46

Q7 1162.32 1132.67 1298.00

Q8 1068.35 1018.69 1314.65

To perform a simple sensitivity analysis, we considered a parameter that plays
an important role in the final decision, the available storage space A. The results
of the optimal TCU values for the three considered models are listed in Table 3.
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The results show that the total cost value increases for all methods as we decrease
the total available storage space. Additionally, we can observe that the difference
between the crisp solution and the signed-distance solution increases with the
storage space, while the difference with respect to the chance constrained solution
decreases.

Table 3. The results for diffierent values of A

A Crisp Signed distance Chance constrained

3000 9792.47 9752.93 9611.49

3500 8725.48 8683.22 8567.16

4000 7969.37 7923.99 7827.64

4500 7420.31 7371.56 7291.09

5 Conclusions

Inventory optimization can have a positive impact for a company both on respon-
siveness and cost as well as the environment. The model introduced in this paper
is a variation of the EPQ model with many items, one manufacturing machine
and limited storage space, with the demand represented as a triangular fuzzy
number to incorporate uncertainty in the model. This allows for taking expert
opinion into account when modeling uncertainties, especially when new suppliers
and/or products are introduced. The model provides an optimal solution that
takes these uncertainties into account.

The first main contribution of the model presented in the paper is the for-
mulation of the storage constraint. Although there exists previous models in-
corporating storage capacity in EPQ models, they are usually to restrictive as
they use in many cases simply the sum of the batch sizes which is clearly an
overestimation of the required storage. We provided a formula that specifies the
exact storage requirement that can occur. As a second contribution, we used this
formula to extend the traditional and fuzzy EPQ model with uncertain demand.
We solved the fuzzy model using two different approaches: defuzzification using
the signed distance measure and chance constrained programming.

Our model is particularly suitable for solving optimization problems in a pro-
cess industry context. An example resembling Finnish paper industry was used to
illustrate the effect of limited storage space on the different solution approaches.
Future research tracks will include increasing the presented model to several
machines with shared inventory space. Different defuzzification methods will be
needed to be used. Finally a complete sensitivity analysis of the different mod-
els would need to be done within specific problem domains (such as the Nordic
paper industry).
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Abstract. In order to ensure thermal energy efficiency and follow government’s 
thermal guidance, more flexible and efficient buildings’ thermal controls are re-
quired. This paper focuses on proposing scalable, efficient and simple thermal 
control approach based on imprecise knowledge of buildings’ specificities. Its 
main principle is a weak data-dependency which ensures the scalability and 
simplicity of our thermal enhancement approach. For this, an extended thermal 
qualitative model is proposed. It is based on a qualitative description of influ-
ences that actions’ parameters may have on buildings’ thermal performances. 
Our thermal qualitative model is enriched by collecting and assessing previous 
thermal control performances. Thus, an approximate reasoning for a smart 
thermal control becomes effective based on our extended thermal qualitative 
model.  

Keywords: Qualitative modeling, approximate reasoning, smart thermal con-
trol, online learning, preference based learning. 

1 Introduction 

Since the first oil crisis in 1974, buildings thermal regulation, in France, has become 
stricter and harder to fulfill. Thus, highly developed thermal control techniques be-
came mandatory in order to fulfill the government’s thermal guidance and decrease 
buildings energy consumption. However, in spite of the big advances in thermal tech-
nologies (e.g., thermostat), smart thermal control suffers from deployment issues (i.e., 
deployment costs, significant settings, significant measurement, etc.). In fact, the 
uniqueness of each building complicates the design of sufficiently efficient and wide-
ly applicable thermal controls which leads to additional costs each time that the solu-
tion needs to be deployed in a different building. Therefore, smart thermal control 
related researches remain relevant and focus mainly on efficient and highly reusable 
aspects of thermal control approaches. This paper’s work can be referenced in this 
latter research area and contributes to building’s thermal performance enhancement. 
Zero Learning Data and Zero Setting Parameters challenges are, hence, considered in 
this paper studies. For this, we propose a new approach (THPE: THermal Process 
Enhancement) based on an Extended Qualitative Model (EQM) in order to bypass the 
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complexity of quantitative modeling and the insufficiency of qualitative ones. In fact, 
the EQM is based on a relevant, rather than precise, thermal enhancement modeling 
and an approximate, rather than accurate, reasoning. These features ensure the sim-
plicity, scalability, efficiency and longevity of our THPE. This last implements an 
iterative enhancement process which is described in this paper: first, a review on 
thermal enhancement modeling is summarized and our orientation for an extended 
qualitative modeling is justified. Section 3 explains the THPE’s overall algorithm. 
Important aspects dealing with uncertainty management and decision making are then 
detailed. In the conclusion section, some of the THPE thermal control experimenta-
tion results are displayed, as well as, some theoretical perspectives. 

2 Summarized Review and Related Works 

Efficient thermal control can be seen as a complex system control (i.e., climate, ther-
modynamic materials properties, thermal technologies and regulation, human behavior, 
etc.). In fact, considering most of thermal process’s influence factors may lead to a 
significant thermal control improvement. Therefore, predictive and advanced control 
approaches have been proposed to ensure smart thermal control [1-7]. Applied to the 
thermal context, the predictive control considers socio-economic objectives such as 
minimizing energy consumption and maximizing thermal comfort [1,2]. It is based on 
a mathematical thermal control modeling. Therefore, the more detailed and accurate 
the model parameters are, the more efficient the control would be. However, mathe-
matical model design requires expertise, as well as, detailed and precise quantitative 
knowledge on buildings’ thermal behavior. Advanced control has been applied for 20 
years in smart thermal control [3]. It is mainly based on Artificial Intelligence (AI) 
techniques and aims to provide a simple, efficient and adaptive control without requir-
ing detailed mathematical modeling. Indeed, learning techniques are used for system 
modeling. Two different paradigms can be distinguished: the quantitative one (i.e. 
statistical modeling [4] and AI modeling techniques such as ANNs (Ant Neural Net-
works) [5], SVMs (Support vector Machines) [6], etc.) and the qualitative one (i.e., 
qualitative rules and expert based modeling [7]). Quantitative control modeling re-
quires input training data which is, usually collected through onsite measurements, 
surveys, and available documentations. Data pre-treatment and post-treatments are, 
hence, requested in order to improve the model efficiency. Thermal control quantita-
tive learning is obviously a complicated task which requires important computation 
loads. In fact, mathematical modeling is the hardest one since it requires the biggest 
amount of setting data and measurements. Statistical modeling is much easier than the 
mathematical one however it stills not sufficient and flexible for a refined smart ther-
mal control. Well learned ANN and SVM models are more appropriate to ensure a 
refined smart thermal control. They, however, need significant computation loads, as 
well as, efficient and sufficient training-data. The qualitative formalism allows reduc-
ing the complexity of thermal control modeling. It can be less data dependent com-
pared to the quantitative ones (expert knowledge could be sufficient for the smart con-
trol modeling). Ambiguities and accuracy’s lack may affect negatively the qualitative 
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modeling efficiency and longevity for a continuous enhancement purposes. Neverthe-
less, a qualitative thermal control modeling can be easily adapted for different thermal 
scales such as buildings and smart grids. In order to ensure an efficient, scalable and 
simple smart thermal control, we have applied well-known qualitative enhancement 
techniques [8-11]. These techniques were proposed a long time ago by Williams [9], 
Kuipers [9] and others [10,11] in order to improve qualitative modeling efficiency and 
reduce their ambiguities. A survey is proposed in [11]. Therefore, we propose an Ex-
tended Qualitative Model (EQM) for an efficient, scalable and simple smart thermal 
control. Time-related informations, as well as, available quantitative observations have 
been used in order to improve the EQM reliability and accuracy. Moreover, simplified 
and generalized thermal behaviors have been considered for the thermal control  
qualitative modeling which is, also, denoted as a substantial qualitative enhancement 
technique. Hence, the EQM allows the abstraction of thermal specificities while main-
taining a sufficiently relevant representation for thermal enhancement purposes. The 
approximate reasoning (THPE: THermal Process Enhancement) based on our EQM 
can, thus, be generalized for various thermal scales and specificities. Furthermore, it 
does not require any particular setting data and important computation loads. 

3 THPE’s General Approach 

Our smart thermal control THPE is inspired from human’s increasing abilities when 
manipulating objects. Let us consider an amateur cyclist who is learning how to effi-
ciently ride his new bicycle. When climbing hills, the cyclist is continually trying to 
adapt his riding in order to maximize his speed and minimize his effort. For this, he 
does not know much about his bicycle metal, tires and wheels spoke compositions 
and measurements. He generally does not know precisely the characteristics of his 
climbing paths. However, over the time, the cyclist remains able to improve his 
climbing performances. In fact, the more he climbs, the more his riding performances 
will get better. Actually, his improvement is only based on simple rules and compari-
sons over his previous climbing. For instance, the cyclist may know basic riding rules 
about his bicycle rear wheel cogs: if climbing is hard then use a bigger cog and if you 
want to go faster then use a smaller one. Using these simple cog’s rules and consider-
ing his previous climbing observations, the cyclist displays an approximate reasoning 
that can be illustrated by the following statements: “This new hill looks like a previous 
one that exhausted me by that time. Therefore, to make it less exhausting I should try 
a bigger cog for this new hill”, “I once tried to climb this kind of hills but every time 
my performances were slow. To go faster, I should use a smaller cog this time”. Our 
THPE tries to reproduce the same approximate reasoning. In fact, when we are not 
familiar with buildings’ thermal behavior, thermal control of buildings may seem 
intricate. Uncertainty about how relevant a thermal control is for a given thermal situ-
ation, is then in its highest level. The same reasoning remains true for the control of 
any complex system. However, objective observations (i.e., vaguely identified physi-
cal behavior) and subjective ones (i.e., human preferences) may contribute to reduce 
uncertainty about thermal control. Therefore, we introduce our EQM which is used to 
represent simplified thermal control rules similarly as the cog’s rules in the cyclist 
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example. It, also, defines how these thermal control rules should be applied to ensure 
the control enhancement for different thermal situations. The EQM design is based on 
influence approximations relating thermal control parameters to thermal perfor-
mances. In order to extend thermal qualitative modeling, the EQM’s parameters and 
performances display time-related informations of the thermal general behavior. The 
influences, among parameters and performances, are vaguely identified from thermal 
general behavior models. Their accuracy is constantly improving through online 
thermal quantitative observations. Similarly as the cyclist memories about his old 
climbing experiences, keeping track of predate thermal control, as well as, their per-
formances allows recalling them in similar control situations. A Thermal Control 
Manager (TCM) has been conceived in order to maintain thermal historical data. For 
each thermal control attempt, the thermal situation, controls and performances are, 
then, stored by the TCM. This last is described by the following set TCM =  

{ 1.. ,( , , )}k k kk n S CMD PERF=  where n  is the number of previous thermal controls 

and kS , kCMD  and kPERF  are, respectively, the thk  thermal situation (i.e., out-
door and indoor temperatures, etc.), controls and performances. To support compari-
son over the previous attempts and apply approximate reasoning, AI techniques have 
been deployed. Fig. 1 displays the THEP’s algorithm describing the general approach 
for a smart thermal control based on the EQM and TCM. newS  refers to a new ther-
mal situation for which an efficient thermal control needs to be computed. It, mainly, 
involves indoor and outdoor thermal current situations, as well as, thermal setpoints 
that need to be reached before occupants show up. Setpoints can, also, be efficiently 
identified based on an overall aggregation function (i.e., thermal comfort), as well as, 
thermal indoor and outdoor fluctuations [12,13]. In this paper, we particularly focus 
on THPE’s aspects dealing with reducing uncertainty about buildings’ thermal con-
trol. Thus, we start by explaining our different approaches used for decreasing uncer-
tainty about the EQM influence approximations. In order to ensure an accurate ther-
mal control, quantitative knowledge is, then, used (step 1 and 2 in Fig. 1). Section 5 
deals with uncertainty about the choice of these quantitative information in order to 
ensure an efficient and accurate thermal control. 
 

THEP ( , ) 

if  then   call the energy manager   else 

1. Compute  where, ,  is similar to  (section 5) 

if  then   call the energy manager   else 

2. Find ,  is most favored for  (section 5) 

3. Compute  for  based on the EQM (section 4) and the quantitative information of  

4. Apply  and update the  with the new attempt  

end if 

end if 

end 

 
Fig. 1. THPE general algorithm 

newS TCM

TCM = ∅
*TCM TCM⊆ *( , , )S CMD PERF TCM∀ ∈ S newS

*TCM = ∅
* * *( , , ) |S CMD PERF *( , , )S CMD PERF TCM∀ ∈ *CMD newS

newCMD newS *CMD
newCMD TCM ( ), ,new new newS CMD PERF
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4 Influence Approximations 

In order to ensure the THPE weak dependency w.r.t. each building’s thermal specific-
ities, the EQM applies an event-based representation [14] for the thermal control laws 
description. This last is more relevant than a classical sampled time representation. It 
is, also, considered sufficient for the thermal control laws’ description since steps and 
ramps signals are usually used for the thermal regulations. For instance, the EQM 
considers the thermal control starting time which is useful to improve control delays. 
For each thermal control law tL ( )  we associate a control parameter vector 

( , , )C t p y= Δ Δ Δ . These 3 control events are described by the thermal example showed 

in Fig. 2 and refer, respectively, to tL ( )  delay (time-gap between tL ( )  starting time 

1t  and thermal control starting time 0t ), gradient (characterized by the time-gap be-

tween tL ( )  highest 1y  and lowest 0y  values) and amplitude (height-gap between 

tL ( )  highest and lowest values). CMD  refers to the set of control parameter vectors 

C  applied on all building’s actuators. Rather than building’s thermal profiles, ther-
mal performances are considered in order to ensure the EQM weak dependency w.r.t. 
each building’s thermal specificities. Indeed, the performance vector P =
( , ,cost comfort )flexibility  describing thermal energy consumption, stationary thermal 

comfort and setpoints’ achievement delay, ensures building’s thermal assessment in 
our EQM. PERF  corresponds, then, to the set of all building’s rooms thermal per-
formance vectors P . General thermal behaviors have been studied in order to identify 
how each control parameter influences the considered thermal performance. Tab. 1 
describes, for our EQM, the gradient directions computed over each performance 
w.r.t. each control parameter. Considering gradient directions rather than precise de-
rivative values ensures the EQM’s weak dependency w.r.t. building’s thermal speci-
ficities. Hence, the EQM’s accuracy may be lacking. However combined to thermal 
quantitative measurements ( *CMD  in Fig. 1), the gradient direction based influences 
are considered sufficient for the THPE’s thermal enhancement. For each thermal per-
formance j , where Pj S∈  and PS  is the considered thermal performance set (e.g., 

{ , , }PS cost comfort flexibility= ), and control parameter i , where Ci S∈  and CS  is 

the considered control parameter set (e.g., { , , }CS t p y= Δ Δ Δ ), an influence function 

:ijF C P
i jV V× → { ,0, }− +  is defined, where values of thermal control parameters ic , 

Ci S∀ ∈ , and performances jp , Pj S∀ ∈ , are, respectively, defined in C
iV  and P

jV . 

ijF  indicates whether the performance j  increases (+) or decreases (−) w.r.t. varia-

tions of the control parameter i . A (0) valued ijF  function indicates that the control 

parameter i  has no influence on the performance j . The ijF  qualitative gains can, 

thus, be considered by the EQM for buildings’ thermal control enhancement. Tab. 1 
displays our EQM’s influence functions. Objective and subjective thermal related 
knowledge is introduced in order to identify influence functions: 
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Table 1. Gradient direction based influences (0 means no influence) 

CS  

PS  tΔ  pΔ  yΔ  

cost  ( ),t cost t costF c pΔ Δ −  +  
comfort  0  0  ( ),y comfort y comfortF c pΔ Δ  

flexibility  − − +
 
 
Objective knowledge corresponds, mainly, to interpretable physical phenomena. 
These latter can be easily confirmed by studying sign variations of simplified thermal 
behaviors. For instance, it is commonly known that, in winter time, thermal energy 
consumption ( cost ) increases by increasing the command law height ( yΔ ). This is 

illustrated, in Tab. 1, by a constant influence function describing a gradual rule type 
on C P

y costV VΔ ×  such as the greater the heating step amplitude is, the greater the thermal 

energy consumption would be. Therefore, regardless of buildings thermal specifici-
ties, qualitative thermal influence functions can be deduced from simplified physical 
behaviors (e.g., y costFΔ ). Buildings’ special features can occasionally be responsible of 

ijF ’s sign variations (e.g., t costFΔ ). In this case, simple learning techniques are applied 

over the TCM’s previous attempts in order to specifically identify each building’s 
bending points. For instance, t costFΔ  depends on building ventilation and insulation 

properties: starting the heating process earlier or later impacts differently the thermal 
energy consumption. Fig. 3 shows some possible shapes of the continuous function 
relating tcΔ  to costp  measurements. The shape of this function is obtained from the 

simplified thermal behavior (i.e., in some cases, t costFΔ  displays a maximum. Other-

wise it is decreasing for any tcΔ  value). The maximum remains to be identified. Fig. 

3’s displayed maximums can be explained by the fact that, when outdoor temperature 
is lower than the indoor one, building’s ambient temperature decreases until the con-
trol law is launched at time 1t . The tcΔ ’s interval for which cost  increases refers to 

situations where it is more costly to start heating for a short time from a low tempera-
ture than heating the building for a longer time but starting from a higher temperature. 
The decreasing costp  w.r.t. tcΔ  refers to the opposite behavior. Furthermore, the 

HVAC (Heating Ventilation and Air-Conditioning) system is responsible for the rapid 
decrease of building’s ambient temperature when the heating system is off. In fact, the 
HVAC continuously injects a weak percentage of the outdoor air for ventilation  
purposes. 
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Fig. 2. EQM’s Control laws events Fig. 3.  with regard to  variations 

from different ventilation perspective 

 
Consequently, we propose to use measurements in order to capture, for each building, 

the C
t tc VΔ Δ∈  value that entails sign variation in the continuous function (Fig. 3) and 

finally online learn t costFΔ  function. For this, we consider the membership function 

:t costμΔ
C
tVΔ → [0,1 ] which describes the possibility degree that C

t tc VΔ Δ∈  may corres-

pond to t costFΔ ’s sign variation (i.e., a maximum of the continuous function relating 

Δt to cost ). Initially, when no information is available, ( )t cost tcμΔ Δ , C
t tc VΔ Δ∀ ∈ . This 

case illustrates the complete ignorance regarding t costFΔ  behavior. t costμΔ  is built 

through online thermal quantitative observations. Triplets of ( , )t costc pΔ  are ranked 

according to tcΔ . The qualitative derivative of the continuous function relating tcΔ  to 

costp  is, then, computed. t costFΔ ’s values can, hence, be deduced. Each new relevant 

thermal attempt ( , , )new new newS CMD PERF  recommended by the THPE (section 5) and 

stored by the TCM, provides new triplets of ( , )t costc pΔ  which enables new t costμΔ ’s 

computations. Therefore, the ignorance interval span of t costμΔ  decreases since every 

new qualitative derivative informs about the monotony of the continuous function. 
When uncertainty is not considered in the qualitative derivative computations, t costμΔ

’s values belong to the {0,1}  set instead of the [0,1] interval. Uncertainty about the 

continuous function variations may either come from thermal disturbance or the tech-
nique used for the quantitative observations imprecision management. This kind of 
uncertainty management is out of this paper scope which is dedicated to discuss gen-
eral uncertainty aspects in buildings’ thermal control enhancement. Ideally, the online 
learning process is over when *! C

t tc VΔ Δ∃ ∈  such as *( ) 1t cost tcμΔ Δ = . The membership 

function based online learning can easily be generalized in order to precisely identify 
more complicated buildings’ thermal dependent influence functions. 
 
Subjective knowledge can also be used in order to reduce uncertainty about buildings 
thermal control. This knowledge involves occupants’ expectations w.r.t. building’s 
performances and usages. Preference models have been, then, considered. They con-
tribute, as well, to improve our EQM efficiency. The considered preference models 

costp
tcΔ
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can rather be buildings dependent or independent. For instance, in Tab. 1, y comfortFΔ  

influence function relating ycΔ  to comfortp  measurements, is built from an overall 

thermal performance model that captures the multidimensional concept of thermal 
comfort [12,13]. y comfortFΔ  values can thus be identified considering building’s occu-

pants thermal sensations as well as thermal context variations (i.e., humidity and  
sunshine characteristics). In fact, depending on the thermal context, an increasing 
ambient temperature may either improve or distract the occupant’s thermal sensation. 
Hence, y comfortFΔ  acknowledge sign variations since thermal command law amplitude 

influence building’s ambient temperature. Using thermal comfort standard such as the 
PPD [15] index is useful to ensure the EQM independency toward buildings’ thermal 
properties. As the PPD formalism is complex and inadequate for control purposes, a 
MAUT (Multi Attribute Utility Theory) version called CIPPD has been proposed to 
make it easily interpretable [12,13]. The CIPPD is based on utility functions defined 
for each thermal comfort attribute (i.e., ambient temperature, humidity, radiant  
temperature, air speed, etc.). Attributes’ utilities are then aggregated to compute the 
comfort performance. For more information about the thermal comfort based control 
enhancement, please refer to our previous works [12,13] where you can find an  
extended discussion about the thermal comfort related issues. Considering the 
CIPPD’s analytic form, sgn( ( ( )) )Td u T dT  function, where T  refers to the ambient 

temperature and Tu  to its related utility function, provides y comfortFΔ  values. 

Once the EQM influences are approximated using thermal objective and subjective 
knowledge, thermal enhancement control can then be operated. Contradictory influ-
ences on thermal performances can, simply, be resolved by considering user’s priori-
ties. For instance, building’s occupants may be more demanding about their thermal 
comfort. The EQM will then give priority to the comfort performance optimization, 
then flexibility and last the cost performance. Hence, based on the EQM, it becomes 
possible to recommend control parameters increase/decrease. Step 3 of the THPE 

(Fig. 1) is, then, as follows: the quantitative information * * *( , , )S CMD PERF TCM∈ , 

computed in step 2, provides the most favored prior attempt w.r.t. the current situa-
tion. Then, the EQM’s rules are applied to compute a more likely better command 

law newCMD  from *CMD . The most favored * * *( , , )S CMD PERF TCM∈  used to 

improve the EQM accuracy enhancement is explained in section 5. 

5 Quantitative Knowledge Choice 

The EQM’s approximate reasoning is based on the selection of the quantitative con-

trol statement * * *( , , )S CMD PERF TCM∈  as explained in Fig. 1. From one hand, 
* * *( , , )S CMD PERF  is chosen such as *S  is as similar as possible to newS  (step 1 in 

Fig. 1), and, from the other hand, *PERF  correspond to prior best realized thermal 
performances (step 2 in Fig. 1). Three decision criteria have been considered in order 
to identify the most likely favored previous attempt stored by the TCM: i. The first 
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one is similarity between previous thermal situations S  and the new one newS . It 
allows overcoming non-linearity problems related to thermal controls (step 1 in Fig. 
1) since maximizing the similarity allows linear reasoning around a setting point. 

Similarity between thermal situations is based on a distance ' "( , )dist S S , where 'S  

and "S  are two thermal situations. The smaller ' "( , )dist S S  is, the more similar 'S  

and "S  are. Since thermal situations are only defined by temperature measurements, 

there are no commensurateness problems in ' "( , )dist S S  definition. ii. The second 

criterion considered in TCM’s statement evaluation is thermal performance. Obvious-
ly, the better the resulting thermal performances PERF  are, the more favored the 
control statement would be. For this, Multi-Criteria Decision Analyses techniques 
have been deployed. Thus, a preference model over the considered performances PS  

is identified. Firstly, utility functions ( costu , comfortu  and flexibilityu ) are defined for each 

performance to ensure commensurability. They allow the assessment of each perfor-
mance over the same scale which is the satisfaction degree or utility scale [0,1]. Se-
condly, an aggregation function is required in order to ensure the overall thermal 

evaluation k
rP  for each room r R∈  ( R  corresponds to the building room’s set) and 

prior thermal control attempt k . These steps are related to the energy manager prefe-
rence modeling which depends on his energy policy. The preference model may be 
identified using indirect methods such as Macbeth. We assume that a weighted sum is 
sufficient to capture this preference model. When thermal control is related to a subset 
of rooms 'R R⊆ , overall thermal assessment has to consider all thermal perfor-
mances over 'R . Thus, our EQM proposes to proceed firstly by aggregating all  
performances from the energy consumption ( sum ), thermal comfort ( min ) and flex-
ibility ( max ) points of view; secondly, the preference model defined for one room is 
applied for 'R . We denote by kP  the overall building thermal assessment associated 

to the thk  ( kPERF ) prior thermal attempt stored by the TCM. iii. The last criterion 
considered for TCM’s statement assessment is related to previous enhancement re-
sults. In fact, predate thermal controls which have led to thermal enhancement failures 
are disadvantaged in the future TCM’s element evaluations. Therefore, we associate a 

set kBad  to each ( , , )k k kS CMD PERF TCM∈ . kBad  gathers prior thermal controls 

that were computed from ( , , )k k kS CMD PERF  and led to thermal performance de-

creases. Considering these 3 criteria, an overall score kscore  (1) can be computed for 

each TCM’s stored control in a limited neighborhood of newS  in order to satisfy the 
thermal process linear behavior expected property: 

' '
'

{1,.., }, {1 ( , )} * {1 ( , )}k

k k new k k new k
k Bad

k n score dist S S dist S S
∈

∈ = − −∏P P         (1) 

The favored quantitative information * * *( , , )S CMD PERF TCM∈  used for our EQM 

enrichment (step 3 in Fig. 1) satisfies * kscore score≥ , ( , , )k k kS CMD PERF TCM∀ ∈ . 
*( ,S  * *, )CMD PERF  is, then, used by the EQM in order to compute more accurate 

enhancement thermal control. 
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6 Conclusion and Some Experimental Results 

In our previous work, we have proposed an approach allowing the computation of the 
most relevant target values (i.e., setpoints) to be provided to the energy control system 
in order to improve the thermal sensation and reduce thermal energy consumption 
[12,13] This paper completes our approach by answering the question how to effi-
ciently reach these setpoints without using any quantitative model and important 
computation loads to precisely identify each buildings thermal regulation system. Our 
iterative approach THPE provides thermal control recommendations, as soon as, it is 
deployed without needing any a priori learning or identification. These control rec-
ommendations are then refined thanks to quantitative observations and qualitative 
physical aspects related to thermal processes. Our THPE has been evaluated on a 
simulated building area. It ensures a quite quick and stable convergence to an opti-
mum (based on the considered preference model) thermal control for every new ther-
mal situation. In fact, a few enhancement iterations (less than 10 in most evaluation 
tests) are needed in order to find the optimum thermal control for any new thermal 
situation. For instance, Fig. 4 shows one room thermal enhancement process. Day 0 
matches the TCM initial previous thermal control observation. Day 1 corresponds, in 
the same room, to the thermal profile computed for a new thermal situation based on 
Day 0’s posteriori available quantitative information. The EQM recommendations 
over Day 0’s control ensures 14.5% of thermal energy consumption decrease. Control 
enhancements are iteratively computed for the same thermal situation as Day 1 (from 
Day 2 to Day 5). In Fig. 4, the THPE’s enhancement converges in 5 iterations where 
Day 5 displays the thermal profile that ensures the optimum thermal performances for 
the considered thermal situation. Our experimentations reveal about 7 to 31% for one 
room thermal performance enhancement and 12 to 24% for several rooms thermal 
enhancement. Average enhancement ensured by the THPE is evaluated to 16%. How 
the THPE can bypass frequent thermal control deployment issues such as quantitative 
data availability, it can be considered as an outstanding point compared to the existent 
thermal control solutions. Any comparison becomes, thus, unbalanced because of the 
different application conditions. Trying to operate an MPC in few days on a com-
pletely new building is not conceivable. It goes the same when asking the THPE for 
the same efficiency as an MPC based control. Yet, perspectives remain possible to 
improve our THPE efficiency. Uncertainty management in influence functions can be 
improved by using continuous scales membership functions. Ambiguous measure-
ments coming from thermal disturbances (i.e., windows and door opening) should 
complete this point. Sensors data precision can be studied as well. Qualitative interac-
tions between the control enhancement parameters could also be studied in order to 
compute enhancement recommendations based on subsets of control parameters var-
iations instead of singletons. This will warrantee the THPE’s convergence to a global 
optimum rather than a local one. 
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Fig. 4. One room thermal enhancement 
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Abstract. This paper presents an approach by combining robust fuzzy
principal component analysis (RFPCA) technique with the multiscale
principal component analysis (MSPCA) methodology. Thus the two typ-
ical issues of industrial data, outliers and changing process conditions are
solved by resulting MS-RFPCA methodology. The RFPCA is proved to
be effiective in mitigating the impact of noise, and MSPCA has become
necessary due to the nature of complex systems in which operations occur
at diffierent scales. The effciency of the proposed technique is illustrated
on a simulated benchmark of biological nitrogen removal process.

Keywords: Process monitoring, robust fuzzy PCA, multiscale PCA,
fault diagnosis, wavelet analysis, water treatment plant.

1 Introduction

The monitoring techniques allows to monitor continuously any changes in pro-
cesses. For this purpose a statistical techniques have been implemented, it aims
to achieve and maintain process under control. The first ideas of SPM for quality
improvement go back as far as the beginning of the century. Where the principal
components analysis is the most widely accepted technique to this day, the PCA
technique can be seen as a projection method which allows to project the obser-
vations since space with p variable dimensions towards a space with k dimensions
(k ≺ p) such as a maximum of information is preserved. This fully take the na-
ture of modern WWTPs characterized by a multitude of correlated variables
[1]. Tomita et al [2] have shown the possibility of reducing the analysis from 12
variables of an activated sludge wastewater treatment down to 3 principal com-
ponents which are more relevant to the process, deviation of measurements is
then detected. This work has shown that the PCA is an adequate tool for repre-
sentation and extracting of information. Several others recent applications of this
approach and adaptation of it to wastewater treatment operations have found
their way, [3], [4], [5]. Despite its success in this field, one of the most important
obstacle faced is the sensitivity to outliers, also the fact that the majority of col-
lected data from industrial processes are normally contaminated by noise makes
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it unreliable in some cases. Also, in order to circumvent this difficulty, several
approaches of PCA have been proposed, among the variants, robust fuzzy PCA
(RF-PCA) showed promising results. In this approach, fuzzy variant of PCA
uses fuzzy membership and diminish the effect of outliers by assigning small
membership values to outliers in order to make it robust. Another shortcoming
of conventional PCA is that modeling by PCA is done at a single scale where
the actual industrial process may include events and disturbances that occur
at different time-frequency range, the waste water treatment plant (WWTP)
is exemplary in this respect. To solve this problem the PCA is extended for
single scale to multiscale (MSPCA) modeling approach. MSPCA uses wavelet
decomposition to approximately decorrelate variables autocorrelation, and also
capture the linear variable correlation by PCA to extract features.

In this work, we propose the combination of MSPCA approach with a RFPCA
algorithm, we thus aim to solve the problem of noise and provide a solution to
the problem of monitoring during changing process conditions. The result is an
effective monitoring methodology.

2 PCA Statistical Monitoring Principles

Principal component analysis is a multivariate statistical projection method,
it is presented as a search of the subspace that maximizes the variance of the
projected points, ie. the subspace that best represents the diversity of individuals
through the variance-covariance structure.

The first step of this method is the construction of data matrix X , containing
all the available data obtained by collected measurements when the process is
in control. Denote the correlation matrix of X as Σ = XTX

/
(N − 1), and

performing singular value decomposition (SVD) to the matrix Σ yields

Σ = UΛUT

where Un×n is a unitary matrix and Λ = diag(θ1, . . . , θn) is a diagonal matrix
formed by the eigenvalues of the covariance matrix in decreasing magnitude
(θ1 ≥ θ1 ≥ . . . ≥, θn). The column vectors in the matrix U = [u1, u2, . . . , un]
forms a new orthogonal base of space Rn, For dimension reduction, only the
eigenvalues θq ≺ n are used for projection of output data in the new space. It
is quite useful to consider all the directions which covers a significant portion
of a total variance, these directions also be called as new basis vectors for the
subspace, so the desired transformation matrix consisting of the first q columns
of the matrix U , ie. the eigenvalues belonging to the largest eigenvalues of Λ.
So the first q (< n) linear independence vectors P̂ ≡ Uq = [u1, u2, . . . , uq] of U

spans the principal component subspace Ŝ. The other n− q vectors P̃ ≡ Un−q =

[uq+1, uq+2, . . . , un] of U spans the residual space S̃. The data vector x ∈ Rn

can be decomposed as
x = x̂+ x̃ = Ĉx+ C̃x

where x̂ ∈ Ŝ and x̃ ∈ S̃ are projection of x on the subspaces Ŝ and S̃, respectively.
The matrix Ĉ = UÛT and C̃ = UÛT . The score vector in the space model
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t = P̂Tx ∈ Rq is a reduced, q−dimensional representation of the observed
vector x. On the other hand, the residual e = (I − P̂ P̂T )x ∈ Rn, represents the
portion not explained by the PCA model.

In genaral, a PCA based statistical process monitoring scheme utilizes two
monitoring statistics, Hotelling’s T 2 and Q statistics (SPE), which are most
frequently used in the industrial processes. Typically, these indices are used to
detect faults respectively in the principal component subspace Ŝ and the residual
subspace S̃. In this work only the Q statistics is used. The SPE index is defined
as a measure of the squared norm of the residual vector x̃. Box [6] shown that
the confidence limit for SPE from a PCA model can be calculated as :

ψ2α = gχ2
h,α (1)

g = α2/α1 (2)

h = α21/α2 (3)

where αi =
m∑

j=q+1

θij for i = 1, 2. Under normal operating conditions, the SPE

index shall be satisfied : SPE ≤ ψ2α.

3 Robust Fuzzy PCA

In actual industrial process modeling, data were often contain outliers problem.
RFPCA addresses this limitation. It uses robust rules in order to replace tradi-
tional PCA and create robust fuzzy PCA. Then the influence of outliers will be
reduced and consequently defects will accurately detected. The RFPCA algo-
rithms used here were introduced in [7]. These algorithms are based on Xu and
Yuille algorithms [8]. Xu and Yuille proposed an optimization function with an
energy measure e (xi) subject to the membership set ui ∈ {0, 1} given as :

E (U,w) =

n∑
i=1

uie (xi) + η

n∑
i=1

(1− ui) (4)

The goal is to minimize E(U,w) with respect to ui and w. Where
X = {x1, x2, .., xn} is the data set, U = {ui |i = 1, ..., n} is the membership
set and η is the threshold. The variable ui serves to decide whether xi is an out-
lier or a sample. When ui = 1 the portion of energy contributed by the sample
xi is taken into consideration; otherwise xi is considered as an outlier [8]. Since
ui is the binary variable and w is the continuous variable, the optimization with
gradient descent approach is hard to solve using gradient descent. To overcome
the problem the fuzzy variant of the objective function is proposed in [7].

E =

n∑
i=1

umi e (xi) + η

n∑
i=1

(1− ui)m (5)

subject to ui ∈ [0, 1] and m ∈ [0, 1). Now ui being the membership of xi be-
longing to data cluster and (1− ui) is the membership of xi belonging to noise
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cluster. m is the so-called fuzziness variable. In this case, e (xi) measures the
error between xi and the class center. This idea is similar to the C-means al-
gorithm [9]. Since ui is now a continuous variable the difficulty of a mixture of
discrete and continuous optimization can be avoided and the gradient descent
approach can be used. Firstly, the gradient of equation (2) is computed respect
to ui and equaled to zero, therefore :

ui =
1

1 +
(

e(xi)
η

)1/((m−1))
(6)

Using this result in the objective function and simplifying, we obtain

E =

n∑
i=1

⎛⎜⎝ 1

1 +
(

e(xi)
η

)1/((m−1))

⎞⎟⎠
m−1

e (xi) (7)

The gradient with respect to w is

ψE

ψw
= β (xi)

(
ψe (xi)

ψw

)
(8)

where,

β (xi) =

⎛⎜⎝ 1

1 +
(

e(xi)
η

)1/(m−1)

⎞⎟⎠
m

(9)

and m is the fuzziness variable. if m = 1, the fuzzy membership reduced to the
hard membership and can be determined by following rule:

ui =

{
1 if (e (xi)) 〈η
0 otherwise

(10)

Now η is a hard threshold in this situation. There is no general rule for the
setting of m, but most papers set m = 2. In [7], authors derived three RFPCA
algorithms, these ones are slightly different, for each algorithm the same pro-
cedure is followed except step 6 and 7. We have applied the first one in this
work.

FRPCA1 algorithm :
Step 1: Initially set the iteration count t = 1, iteration bound T , learning

coefficient Δ0 ∈ (0, 1] soft threshold η to a small positive value and randomly
initialize the weight w.

Step 2: While t is less than T , perform the next steps 3 to 9.
Step 3: Compute Δt = Δ0(1− t

T ), set i = 1 and σ = 0.
Step 4: While i is less than i, do steps 5-8.
step 5: Compute y = wTxi, u = yw and v = wTu.
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step 6: Update the weight:

wnew = wold + ΔTβ (xi) [y (xi − u) + (y − v) xi]

step 7: Update the temporary count ψ = ψ + e1 (xi).
step 8: Add 1 to i.
step 9: Compute η =

(
π
n

)
and add 1 to t.

The weight w in the updating rules converges to the principal component
vector almost surely [10], [11]

4 Multiscale PCA Methodology

Multiscale Principal Components Analysis (MSPCA) was introduced by Bakshi
(1998) that combines the merits of wavelet analysis and PCA. In particular,
PCA is used to extract linear relations among variables, whereas wavelets have
the ability to extract deterministic features in the measurements and decorre-
late the autocorrelation among the measurements. Using wavelet, methodology
involves choosing the mother wavelet from a large library of admissible func-
tions, a selected family of wavelets with the decomposition level L is applied
to the signal s, yielding detail coefficients Dis(i=1...s) and approximation coeffi-
cient ALs. Next, principal component analysis is performed on each matrix of
the detail scales and the matrix of approximation AL. The goal is to extract
the correlation across the sensors. PCA control charts such as Q statistics can
be monitored the resulting coefficient at each scale. The wavelet coefficients of
data representing normal operation are beforehand calculated, also the detec-
tion limit for Q statistics are determined from them. Applying the Q statistics
at each scale permits identification and selection of the scales that contain the
significant features representing the abnormal operation.

Fig. 1. MSPCA Methodology
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5 MS-RFPCA Methodology

Multiscale RFPCA algorithm here intgrates RFPCA with multiscale analysis of
wavelet. A decision that is crucial for the performance of the MS-RFPCA model
is when the choice of the depth or number of scales of the wavelet decompo-
sition does not take an important part of consideration. Usually, the choice of
this number is an important factor in the MSPCA methodology. It should be se-
lected to provide maximum separation between the deterministic and stochastic
components of signals [12]. Therefore if we select a very small number of depth,
then the last scaled signal will have a significant amount of noise that will be
retained in the result of MSPCA. In the case of MSRFPCA and sight that is
based on FRPCA method, thus this problem will not be asked, otherwise and
when the depth is too large, the matrix of coefficients at coarser scales will have
very few rows due to the dyadic down sampling, and this will affect the accuracy
of the PCA at that scale. In our version (MSRFPCA), we choose the number of
depth so that will not be very large to avoid the latter case. We give here the
detailed algorithm including fault identification.

– Setup MSPCA Reference Model:
1. Get the reference data when a process is under normal condition. For

each variable in the reference data matrix, compute the wavelet decom-
position and get the reference wavelet coefficients.

2. For each scale, put the reference wavelet coefficients from all variables
together and apply FRPCA to get the reference RFPCA model (includ-
ing mean, standard deviation and PC loadings) and control limits for T 2

or Q statistics. Repeat this procedure for all scales.
3. Define reconstruction scenarios based on the number of decomposition

level. For each reconstruction scenario, assign the selected significant
scales with the corresponding reference wavelet coefficients and the in-
significant scales with zeros (hard thresholding). Reconstruct the signal
from the selected and thresholded coefficients for each variable. Put the
reconstructed signal of all variables together and apply RFPCA to get
the reference RFPCA model (including mean, standard deviation, PC
loadings, and control limits) for this reconstruction scenario. Repeat the
same procedure to all reconstruction scenarios.

– Online Process Monitoring:

1. Determine the size of the moving window of dyadic length, w. Generate
a data window with w samples from the real-time data by moving the
time window. For each variable in the data window, compute the wavelet
coefficients.

2. For each scale, calculate T 2 and Q scores based on the reference RFPCA
model in I.(2).

3. Compare the T 2 and Q scores with the control limits in I.(2), retain
wavelet coefficients that violate the control limits and assign those within
the control limits to zero.

4. Reconstruct the signal in the moving window variable-by-variable.
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5. Since only the most recent sample (the last data in the moving window)
is of interest, determine the reconstruction scenario based on the last
T 2 and Q scores of each scale and get the detection limits for the last
reconstructed signal. Calculate T 2 and Q scores of the last reconstructed
signal based on the reference RFPCA model in I.(3).

6. If T 2 and/orQ scores of the last reconstructed signal exceed the detection
limits, fire an alarm.

6 Application on Water Treatment Plant

In this section an activated sludge model No.1 (ASM1) for nitrogen removal is
presented. The basic design of this plant is shown in Fig. 2. In general, nitrogen
removal proceeds in two steps. The first step is nitrification, i.e. the biological
oxidation of ammonium to nitrate, this process requires an aerobic environment.
During this phase ammonia nitrogen is converted into nitrite by Nitrosommas
and subsequently into nitrate by Nitrobacters, for the process this phase is the
crucial step. In the next step, the produced nitrate is subjected to anoxic condi-
tions in denitrification reactor, where it is converted into harmless nitrogen gas.
Anoxic/anaerobic processes operate alternately to enhance the nitrogen removal.
As illustrated in Fig 2, before it enters the aeration reactor, raw wastewater Qin

is passed by the anoxic zone, afterward the influent flow Qout is fed into a settler
to separate the stream into the clean water and sludge, the major part of it is
recycled to reactor Qr, and a small part is wasted Qw. The actual process model
is based on the activated model sludge No.1 (ASM1) by [13]. It was adopted
with two modifications: (i) the nitrification is modeled by a two step processes
(the conversion of nitrite to nitrate by the nitrosoma bacteria and the conver-
sion of nitrite to nitrate by the nitrobacters) and (ii) the hydrolysis of rapidly
biodegradable substrate is included.

Fig. 2. Schematic of a typical wastewater tretment plant

Then the resulting biodegradation model consists of 18 state variables (parti-
cles and soluble concentrations) and 30 model parameters. However it is possible
to reduce the model, such model is proposed by [14]. This model consists of 8
states variables : dissolved oxygen

(
S
p
O2
, Sn

O2

)
, nitrate

(
S
p
NO3

, Sn
NO3

)
, ammonia(

S
p
NH4

, Sn
NH4

)
, and biodegradable substrate concentrations (Sp

S , S
n
S), for each

reactor zone (p and n denote pre-denitrification and nitrification respectively).
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So, this model consists of eight state variables :

x = [x1, ..., x8]
T
=
[
S
p
NO3

, S
p
O2
, S

p
NH4

, S
p
S , S

n
NO3

, Sn
O2
, Sn

NH4
, Sn

S

]T
.

More information about parameters and mathematical model can be consulted
in [13].

Validation results for the developed model are shown and discussed in the next
for simulated data.

Fig. 3. The SPE plot of linear PCA model in faulty state

Multiscale RFPCA is firstly applied to the normal operation data. Seven
measured variables are constituted the measurement vector z (k) available to be
monitored, it is given as :

z (k) =
[
Sp
NO3

(k) , Sp
O2

(k) , Sn
NO3

(k) , Sn
O2

(k) , u1 (k) , u2 (k) , u3 (k)
]T

where u1 = Qin(influent flow rate), u2 = Qr(internal recirculation rate), u3 =
qair (aeration rate).

Fig. 4. The SPE of MS-RFPCA model in faulty state
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Matrix Z then consists of N observations of the vector z (k). Also, this step
includes determination of MS-FRPCA reference model : reference wavelt coeffi-
cient, reference FRPCA model, statistical limitation (Q).

Now, we test the fault of offset type (brusque fault) created on the level of
the third sensor at at 46 sample time. Fig. 3 and Fig. 4 are the SPE plot of
the classical PCA and the MS-FRPCA approach respectively. According to Fig.
3, the SPE plot shows the distinct change only after a delay of 5 day, whereas
the multi-scale SPE results (Fig. 4) shows that the SPE violates 95% SPE
confidence limit before the 5thday. So, the MS-FRPCA can detect the ramp
fault earlier than traditional PCA which ensure plant safety. Scale Q charts can
help to determine the nature of a disturbance. The SPE plot in Fig. 4 shows a
fault detected in the wavelet approximation model of MS-RFPCA, that results
in change which occur in low frequencies.

Fig. 5. Fault isolation using contribution to SPE (fault in the third sensor)

Our study was not only dedicated to the detection of fault to a certain level
but also to the detection of faulty sensor. To identify the faulty sensor, it was
exploited the contributions approach to detection index SPE, Fig. 5 indicates
clearly that the fault sensor is sx = 3.

In this work, only the sensor faults have been considered. Althought, it is
important to model fault process due to different conditions, such as the toxicity
shock fault caused by a reduction in the normal growth of heterotrophic organ-
isms, there is also an inhabitation fault produced by hospital waste that can
contain bacteria, another fault process that can be considered is bulking fault
produced by the growth of filamentous microorganisms in the active sludge. In
the other side, the method has been tested with drift fault, other different kind
of sensor faults (drift, bias, precision degradation,...) can be handled by the pro-
posed monitoring scheme. We will take these points into considerations in the
next work.
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7 Conclusions

WWTP posed an interesting challenge from the point of changing process condi-
tions. MS-RFPCAmethodology is used to monitor WWTP data during changing
operational conditions. It is based firstly on time-scale decomposition in terms
of increasing the sensivity of the monitoring, and secondly on RFPCA in terms
of reducing noise sensivity. The results showed the advantages of the proposed
monitoring method for continuous wastewater treatment plant.
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Abstract. The Great East Japan Earthquake occurred at 14:46 JST on Friday, 
March 11, 2011. It was the most powerful earthquake to have hit Japan and was 
one of the five most powerful earthquakes in the world since modern record-
keeping began in 1900. The earthquake triggered an extremely destructive tsu-
nami with waves of up to 40.5 m in height. In this paper, in preparation for a 
possible Nankai Trough earthquake, we created a multi-agent tsunami evacua-
tion simulation in Kure city to analyze the evacuation process and determine  
solutions to any problems. More specifically, we focus on the psychological 
conditions of people in the disaster area. During times of emergency, it is said 
that people fall into a psychological condition where they fail to evacuate. 
Based on the simulation results, we can confirm that people under psychologi-
cal conditions require more time to evacuate than those in a normal frame of 
mind. Thus, people need to know more about psychological conditions during 
times of disaster to evacuate safely and efficiently. 

Keywords: tsunami, evacuation, multi-agent simulation, psychological  
conditions, Kure city. 

1 Introduction 

The Great East Japan Earthquake was a 9.0 magnitude undersea megathrust earth-
quake that occurred at 14:46 JST on Friday, March 11, 2011. The earthquake’s epi-
center was off the Pacific coast of the northeastern region of Japan. It was the most 
powerful earthquake to have hit Japan and one of the five most powerful earthquakes 
in the world since modern recordkeeping began in 1900. The earthquake triggered an 
extremely destructive tsunami with waves that reached 40.5 m in height in Miyako, 
Iwate Prefecture. In the Sendai region, waves traveled up to 10 km inland. 

After the disaster, approximately 20,000 people were either dead or missing and 
roughly 130,000 buildings were damaged or destroyed. The earthquake and tsunami 
caused extensive and severe structural damage throughout northeastern Japan, includ-
ing heavy damage to roads and railways as well as fires in many areas. 

After the Great East Japan Earthquake, since there were many people who were 
unable to effectively evacuate, damage was considered to have spread. In fact,  
the ratio of victims in the Great East Japan Earthquake to people was lower than  
that in the Meiji Sanriku Earthquake, which was an 8.2 magnitude undersea megath-
rust earthquake that occurred off the northeast coast of Japan on June 15, 1896. It is 
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believed that various disaster prevention methods take effect under such conditions 
[1]. Actually, to date, the majority of disaster control plans have utilized various dis-
aster prevention measures that focused on aspects such as evacuation roads and ex-
treme flooding due to dam failures. However, noting psychological conditions and 
behavioral characteristics during times of disasters are also important [2]. Therefore, 
it is necessary to examine how we can promote quick and effective evacuation beha-
viors under these psychological conditions. 

Indeed, after the Great East Japan Earthquake, some people successfully brought 
an elderly person unable evacuate on his own to a shelter from the seaside in Natori 
[3]. But, some people failed and were victim of tsunami. In Ishinomaki (population 
65,000), 2,500 people successfully evacuated to shelters. Although, 40,000 people 
returned to the seaside from the hillside by car to evacuate family members. Then, the 
resulting traffic jam brought the streets to a standstill [4]. 

2 Related Works 

There have been numerous studies on tsunamis, especially in Japan, such as the simu-
lation of tsunami hydrodynamics performed by the Japan Cabinet Office or the Japan 
Coast Guard. Conversely, simulations such as Ohata [5], Helbing [6], and Mas [7] 
have focused on crowd behavior of during times of disaster. In the latter simulations, 
most of researches adopt multi-agent simulation [8]. Furthermore, Katada [9] inte-
grated simulations of tsunami hydrodynamics and evacuations. 

Hirose [10] stated that psychological conditions occur during times of disaster. 
However, limited studies utilize a psychology model for evacuation simulation. In 
addition, characteristic behaviors or evacuation actions at the time of disaster have not 
received significant attention. According to Hirose [10], evacuation refers to the proce-
dure of physically moving away from danger; it is a simple, classical, and effective 
way of escaping from impending disaster. In general, when one should evacuate to 
guarantee security and, especially in the case of a tsunami, evacuating the affected area 
in a timely manner can spell the difference between life and death. In other words, 
evacuating before the tsunami arrives can significantly limit the number of victims. 

3 Psychological Conditions Operating in Times of Disaster 

3.1 Panic 

When an abnormal situation occurs, it is generally believed that panic occurs. Panic is 
a sudden sensation of fear that is so strong that it can dominate or prevent reason and 
replace logical thinking with overwhelming feelings of anxiety and frantic agitation, 
which are consistent with an animalistic fight-or-flight reaction. 

Hirose [10] stated that panic is rarely caused and three unique psychological condi-
tions occur at the time of disaster: normality bias, sympathy behavior, and altruistic 
behavior. 
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3.2 Normality Bias 

When an abnormal situation occurs, normality bias arises in people in which they 
believe that it is not a dangerous situation and there is nothing to do. In addition, they 
find relief by attempting to return to everyday life. Originally, it functions to reduce 
the level of anxiety or fear. However, it can sometimes make those insensitive to cer-
tain risks. Examples of normality bias in the Great East Japan Earthquake included 
actions such as clearing a broken window panel or repairing a broken leg of cabinet, 
but not evacuating from the tsunami itself.  

3.3 Sympathy Behavior 

Sympathy behavior is referred to as being imitational or infectious. In this case, 
people want to find relief by matching his/her decisions or actions with others. When 
people cannot decide actions on their own, others often become the key to deciding 
whether to evacuate. For example, in the Great East Japan Earthquake, such behavior 
functioned in actions such as willingly joining traffic jams in an attempt to reach the 
designated shelter.   

3.4 Altruistic Behavior 

Altruistic behavior occurs in actions such as helping people despite any dangerous 
situations. This behavior is believed to be affected by the moral sense that every hu-
man being possesses at some level. For example, in the Great East Japan Earthquake, 
such behavior could be seen in actions such as evacuating an elderly person who had 
difficulty evacuating on his own before thinking of oneself.  

4 Model 

Ohata et al. reproduced evacuation simulation on a multi-agent simulator called KK-
MAS of Kozo Keikaku Engineering Inc. in the 2003 Tokachi Oki Earthquake. In the 
earthquake, the tsunami alarm warned the public within 6 min. By 16 min, the tsunami 
waves had reached Kushiro city with the largest waves arriving 4 hours and 13 min 
after the earthquake. In this paper, we reproduced the Ohata’ model on following Arti-
soc [11].  In our model, we simulated the evacuations toward the shelters and calcu-
lated the necessary time to evacuate as well as the number of evacuees for each shelter. 

4.1 Kure City 

In this study, we supposed that the Nankai Trough Earthquake occurred in the daytime 
on Sunday when the majority of the residents of Kure city were at home. It is estimated 
that the magnitude of the earthquake was 6+ and the resulting tsunami with waves of 
up to 4 m in height reached the city 161 min after the earthquake. In addition, we sup-
posed that the residents living in the area forecasted to be flooded evacuated on foot 
[12], especially in the lower altitude areas of less than 10 m. In our model, we adopted 
10 towns in the city and 30 shelters, as shown in Fig. 1 and Table 1. 
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Fig. 1. Town, shelters and network of roads 

We set the identification number of each town and population according to the ba-
sic resident register of March 31, 2013 [13]. Town 7 includes Kure city’s largest mall, 
and the adjacent towns between Towns 5 and 8 include many residents. In this study, 
we set the resident agent to stand for two people, which is the average population of a 
household, as shown in Table 1 because the residents per household (as of March 31, 
2013) averaged 1.937 in the area. According to the questionnaires in Hokkaido Nan-
sei Oki Earthquake of 1994, many people evacuated by family unit [14]. 

Table 1. Town identification (ID), population, number of resident agents, and shelter ID 

Town 
ID 

Popula-
tion 

Number 
of resi-
dent 
agents 

Shelter 
ID 

Town 
ID 

Popula-
tion 

Number 
of resi-
dent 
agents 

Shelter 
ID 

0 67 33 0

6 4,375 2,187

16 

1 2,292 1,146
1 17 
2 18 
3 19 

2 64 32
4 20 
5 21 

3 2,430 1,215

6 22 
7 23 
8

7 1,506 753
24 

9 25 

4 987 493

10
8 4,323 2,161

26 
11 27 
12

9 1,173 586
28 

13 29 

5 2,960 1,480
14

Sum 20,177 10,088  
15
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It is assumed that residents evacuate to shelters located in their town. In addition, 
we set five shelters on our own terms since there are towns in which a shelter was not 
set by Kure city. Of course, for tsunami evacuations, the surrounding topography 
should be considered, especially in regard to hills. In this regard, there was substantial 
building damage on slopes in the 2001 Geiyo Earthquake [15]. Therefore, in our 
model, we limited the evacuations to buildings and not to hills due to possible slope 
failures after the earthquake. 

We adopted a network type for modeling and defined the node as a node agent, 
which represents intersections and shelters. We also set 30 shelter nodes and 213 
intersection nodes. Links represent roads and we set 384 links, as shown Fig. 1.  

4.2 Resident Agent 

Each resident agent (household) includes each of the following parameters in Table 2. 

4.3 Behavior Rule 

The resident agent is generated on a node at the first time step and goes forward to the 
Aim shelter. Speed is described by the distance of travel per time step. In this model, 
we set one time step as 1 s. The walking speed is assumed to be group speed since it 
has been shown that the walking speed of a group is slower because people tend to 
adjust their walking speeds to match slower individuals within the group. Moreover, 
the walking speed of a group of elderly people compared to that of younger people 
can be extremely different. From other studies [16], we set the Speed of a young resi-
dent agent as 0.98 m/s (standard deviation 0.20 m/s) and the Speed of an elderly resi-
dent agent as 0.84 m/s (standard deviation 0.13 m/s). According to the basic resident 
register, elderly people (65 years or older) make up 34% of Kure city’s population.  

We set the Starting time for each resident agent on the basis of the survey from the 
2003 Tokachi Oki Earthquake [17], as shown in Table 3. Incidentally, according to a 
questionnaire and interview [10], 30%–40% of the people did not evacuate in Japan. 
In addition, it has been confirmed that not all people in the affected area evacuated 
during the Great East Japan Earthquake [17]. However, in our model, we assume that 
all residents evacuate the disaster-prone area. 

We set the Aim shelter to be the nearest shelter in the same town. In the prelimi-
nary experiment, we compared cases in which resident agents go to the nearest shelter 
in the city and to the nearest shelter in the same town. We found that it is more effec-
tive when resident agents go to the nearest shelter in the same town. Based on ques-
tionnaires [17], the majority of residents evacuated to a shelter in their own towns. 

Each resident agent heads for their respective Aim shelter on foot. On each node, 
the resident agent chooses the Aim node toward the Aim shelter. The resident agent 
chooses one node whose direction is closer to that of the Aim shelter. The resident 
agent moves forward to the Aim node from the Current node on the link. When the 
resident agent reaches the Aim node, the Aim node becomes the new Current node 
and the resident agent chooses the new Aim node until arriving at the Aim shelter.  

Furthermore, we implemented the psychological condition at the time of disaster. 
In this paper, we treated two psychological conditions: normality bias and sympathy 
behavior. We will deal with altruistic behavior in another study that focuses on human 
psychological conditions in an evacuation simulation. 
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Table 2. Parameters of resident agent 

parameter definition parameter definition 
ID ID number Age young or old 
X X coordinate Starting time time to start evacuation 
Y Y coordinate Aim shelter shelter to evacuate 
Direction direction for the aim 

node 
Current node node that is currently 

located 
Speed distance of travel per 

time step 
Aim node next node on the course 

to the aim shelter 
State on a node or on a link  

Normality Bias 
As stated earlier, when an abnormal situation occurs, normality bias arises in  
which people believe that it is not a dangerous situation and there is nothing to do.  
In addition, they find relief by attempting to return to everyday life. We implemented 
this psychological thinking by assuming that resident agents start their evacuations 
late. In the model, we set 3% of the resident agents with Starting times between  
900 and 2700 s after the earthquake occurred as shown in Table 3. 

Table 3. Setting of normality bias 

Starting 
time[s] 

Ratio [%] 

Not [17] 
Normality bias 

work 
0–150 10 10 

150–300 15 15 
300–450 20 20 
450–600 30 30 
600–750 15 15 
750–900 10 7 
900–2700 0 3 

Sympathy Behavior 
As previously stated, people want to find relief by matching his/her decisions or ac-
tions with others. We implement this behavior by matching the speed of a resident 
agent with a randomly chosen resident agent ahead of it.  

4.4 Conditions and Evaluation 

We compared six patterns by the combination of whether normality bias works and 
whether sympathy behavior works even if modified. We evaluated simulation results 
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by two evacuation values: Finish evacuation time and proportion for each shelter. We 
measured the Finish evacuation time in which all resident agents complete their evac-
uation to a shelter and we calculate the proportion of counted number of resident 
agents for every 30 shelters. 

5 Simulation Results 

We simulated 100 trials for each pattern and showed the average and standard devia-
tion of the completed evacuation time in Table 4.  

As shown in Table 4, when both normality bias and sympathy behavior do not 
work, i.e., normal conditions, it takes 1944.59 s or approximately 32 min on average 
to complete the evacuation. In this case, the standard deviation is 388.30 s.  

On average, the Finish evacuation time extends by 6% when sympathy behavior 
works. In addition, the Finish evacuation time extends by 68% on average when nor-
mality bias works. That is, when psychological conditions at the time of disaster oc-
cur, it takes more time to evacuate all residents. Furthermore, we found that normality 
bias affect the Finish evacuation time more than sympathy behavior.  

The standard deviation of the Finish evacuation time decreases when both normali-
ty bias and sympathy behavior work. That is, when some psychological conditions at 
the time of disaster work, the differences are small between trials and it takes 3243 s 
to complete the evacuation in most trials. 

On the contrary, the Finish evacuation time shortens by 3% on average when mod-
ified sympathy behavior works. We believe that the reason why resident agents rush 
to evacuate is that they find another resident agent in a hurry. In this regard, we ex-
pect an improvement in evacuation time under special psychological conditions dur-
ing times of disaster.  

Fig. 2 shows the proportion of resident agents who evacuated to each shelter in 
same town. The horizontal axis represents the Shelter ID. When a shelter is located in 
town with even numbered ID, we put the Shelter ID in parentheses and painted the 
bars. Then, we recognize that the shelter belongs to a different town by parentheses of 
the Shelter ID and color of bars. We found that many resident agents evacuated to 
Shelter 14, which is located in Town 5 with the largest population. Shelter 15 is also 
located in the town, but it is inland and many resident agents near the seaside chose to 
concentrate on Shelter 14 instead. 

Table 4. Finish evacuation time 

 

Normality bias 
Not Work 

Average
Standard 
deviation

Average
Standard 
deviation 

Sympathy 
behavior 

Not 1944.59 388.30 3266.23 262.97 
Work 2065.18 255.16 3243.99 128.69 
Work (modified) 1882.82 317.80 3282.65 174.04 
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Fig. 2. Proportion of agents evacuated for each shelter when both Normality bias and Sympathy 
behavior work 

We confirm through our multi-agent simulation that it takes more time to evacuate 
when normality bias or sympathy behavior works at the time of disaster. In addition, 
when two psychological conditions work simultaneously, it increases evacuation time 
up to 68%.  

When normality bias works, the Starting times of the resident agents are 900 and 
2700 s with an average of 1800 s. On the other hand, when normality bias does not 
work, such Starting times are between 750 and 900 s with an average of 825 s. In this 
case, the difference of the averages is 975 s. However, based on the simulation re-
sults, 1321.64 s (=3266.23 − 1944.59) are needed for evacuation when normality bias 
works at the time of disaster than when it does not work. 

In Kure city, it is assumed that the tsunami arrived in 161 min or 9660 s after the 
earthquake occurred. In our simulation results, the resident agents could evacuate 
before the arrival of the tsunami. However, there remains a risk with having such 
ample time. For example, after the Great East Japan Earthquake in Kushiro city, once 
people evacuated to a shelter, majority of them returned home to help evacuate their 
family members before the arrival of the largest tsunami wave [17]. 

As stated earlier, altruistic behavior arises at the time of disaster. By this psycho-
logical condition, completing evacuations can take more time. Moreover, as seen in 
Ishinomaki city [1], since many people returned to the seaside by car to pick up fami-
ly members, substantial traffic jams occurred and many people failed to evacuate the 
area. 

6 Conclusion 

In this study, we adopted a multi-agent simulation model that focused on psychologi-
cal conditions during disaster. We confirm that it takes more time to complete evacua-
tions if psychological conditions exist at the time of disaster and normality bias and 
sympathy behavior work. By recognizing that special psychological conditions work, 
it can promote early evacuations during such situations and present possibilities for 
improvements in evacuation processes. 
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The data in this model was based on information from the 2003 Tokachi Oki 
Earthquake. In this regard, the people of Tokachi are more used to tsunamis than 
those in Kure city. Therefore, it is possible that the Starting time is later than that in 
Tokachi and we must consider such local characteristics in the future. Furthermore, 
from the simulation results, there are some shelters that people concentrated on more 
than others. Most of these were located near the seaside; thus, it is important to pro-
mote early evacuations to other inland shelters while improving the seaside shelters 
due to their higher risk of flooding. 
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Abstract. We consider the open shop scheduling problem with uncer-
tain durations modelled as fuzzy numbers. We define the concepts of
necessary and possible β-robustness of schedules and set as our goal to
maximise them. Additionally, we propose to assess solution robustness by
means of Monte Carlo simulations. Experimental results using a genetic
algorithm illustrate the proposals.

1 Introduction

Scheduling problems form an important body of research since the late fifties,
with multiple applications in industry, finance and science [1]. In particular,
the open shop scheduling problem models situations frequently appearing in
testing components of electronic systems, in general repair facilities when repairs
can be performed in an arbitrary order, as well as in certain medical diagnosis
procedures. However, the open shop is NP-complete for a number of resources
m ≥ 3 and has a significantly large search space. Specific and efficient methods
to solve it are necessary but still scarce, despite their increasing presence in the
recent literature [2].

Traditionally, it has been assumed that problems are static and certain: all
activities and their durations are precisely known in advance and do not change
as the solution is being executed. However, for many real-world scheduling prob-
lems design variables are subject to perturbations or changes, causing optimal
solutions to the original problem to be of little or no use in practice. There-
fore, a common practical requirement is to obtain so-called robust solutions,
which should still work satisfactorily when design variables change slightly, for
instance, due to manufacturing tolerances.

A source of changes in scheduling problems is uncertainty in activity dura-
tions. There exists great diversity of approaches to dealing with this kind of
uncertainty [3]. Perhaps the best-known is stochastic scheduling, although fuzzy
sets and possibility theory provide an interesting alternative, with a tradeoff
between the expressive power of probability and their associated computational
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complexity and knowledge demands. Indeed, fuzzy sets have been used in differ-
ent manners in scheduling, ranging from representing incomplete or vague states
of information to using fuzzy priority rules with linguistic qualifiers or preference
modelling (cf. [4]).

The approaches to proactive robustness are several and varied. For instance,
in stochastic settings, heuristic rules are used to include time buffers or slacks
between activities in a baseline schedule [5]. In combinatorial optimisation, min-
max or min-max regret criteria are applied to construct solutions having the best
possible performance in the worst case [6], an approach already translated to the
fuzzy framework [7],[8]. However, this may be deemed as too conservative when
the worst case is not crucial and an overall acceptable performance is preferred.
This is the basis for the β-robustness approach in stochastic scheduling [9], taking
into account the subjective aspect of robustness through a target level specified
by the decision maker so the goal is to maximise the likelihood that a solutions’s
actual performance is not worse than the target. This technique can be related
to chance-constrained programming in linear optimisation, which has also been
extended to fuzzy and fuzzy stochastic coefficients (cf. [10]).

The open shop problem with uncertainty constitutes a relatively new and
complex research line. While there are many contributions to solve fuzzy job
shop problems (we can cite, among others, [11],[12], [13] or [14]), the literature
on fuzzy open shop is still scarce. Among the few existing proposals, a heuristic
approach is proposed in [15] to minimise the expected makespan for an open shop
problem with stochastic processing times and random breakdowns; in [16] the
expected makespan of an open shop with fuzzy durations is minimised using a
genetic algorithm hybridised with local search. Finally, in the framework of mul-
tiobjective approach, a possibilistic mixed-integer linear programming method is
proposed in [17] for an OSP with setup times, fuzzy processing times and fuzzy
due dates to minimise total weighted tardiness and total weighted completion
times and in [18] a goal programming model based on lexicographic multiob-
jective optimisation of both makespan and due-date satisfaction is adopted and
solved using a particle swarm algorithm.

In this paper, we intend to advance in the study of the fuzzy open shop prob-
lem, and in particular, in the search of robust solutions. In analogy to stochastic
scheduling, we shall define the concepts of β∗-robust and β

∗-robust schedules in
terms of necessity and possibility, so the objective will then be to maximise such
robustness. Then, we shall propose to perform an additional analysis of the ob-
tained solutions using a Monte-Carlo simulation method based on the semantics
of fuzzy schedules from [13]. Finally, we adapt the genetic algorithm from [19]
and provide experimental results to illustrate our proposals.

2 The Fuzzy Open Shop Problem

The open shop scheduling problem, or OSP in short, consists in scheduling a
set of n jobs J1, . . . , Jn to be processed on a set of m physical resources or
machinesM1, . . . ,Mm. Each job consists ofm tasks or operations, each requiring
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the exclusive use of a different machine for its whole processing time without
preemption, i.e. all operations must be processed without interruption. In total,
there are mn operations, {oij , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. A solution to this
problem is a schedule–an allocation of starting times for all operations– which
is feasible, in the sense that all constraints hold, and is also optimal according
to some criterion, most commonly minimising the makespan Cmax, that is, the
completion time of the last operation (and therefore, of the whole project).

In real-life applications, it is often the case that the exact time it takes to
process a task is not known in advance. However, based on previous experience,
an expert may have some knowledge (albeit uncertain) about the duration. The
crudest representation of such knowledge would be a human-originated confi-
dence interval; if some values appear to be more plausible than others, then a
natural extension is a fuzzy interval or fuzzy number. The simplest model is a
triangular fuzzy number or TFN, denoted A = (a1, a2, a3), given by an interval
[a1, a3] of possible values and a modal value a2 ∈ [a1, a3], so its membership
function takes a triangular shape:

μA(x) =

⎧⎪⎨⎪⎩
x−a1

a2−a1 : a1 ≤ x ≤ a2
x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Triangular fuzzy numbers and more generally fuzzy intervals have been ex-
tensively studied in the literature (cf. [20]) and widely used in scheduling.

In the open shop, we essentially need two operations on fuzzy numbers, the
sum and the maximum. For any bivariate continuous isotonic function f and
any two fuzzy numbers A and B, if Aα = [aα, aα] denotes the Δ-cut, the result
f(A,B) is a fuzzy number F such that Fα = [f(aα, bα), f(aα, bα)], that is, com-
puting the function is equivalent to computing it on every Δ-cut. In particular,
this is true for both the addition and the maximum. However, evaluating two
sums or two maxima for every value Δ ∈ [0, 1] is cumbersome if not intractable
in general. For the sake of simplicity and tractability of numerical calculations,
we follow [11] and approximate the results of these operations by a linear inter-
polation evaluating only the operation on the three defining points of each TFN
(an approach also taken, among others, in [12], [18] or [21]). The approximated
sum coincides with the actual sum, so for any pair of TFNs A and Bs:

A+B = (a1 + b1, a2 + b2, a3 + b3) (2)

Regarding the maximum, for any two TFNs A,B, if F = max(A,B) denotes their
maximum and G = (max{a1, b1},max{a2, b2},max{a3, b3}) the approximated
value, it holds that ∀Δ ∈ [0, 1], f

α
≤ g

α
, fα ≤ gα. The approximated maximum

G is thus a TFN which artificially increases the value of the actual maximum
F , although it maintains the support and modal value. This approximation can
be trivially extended to the case of more than two TFNs.

Given a task processing order δ, the schedule (starting and completion times
of all tasks) may be computed as follows. For every task x with processing time
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px, let Sx(δ) and Cx(δ) denote respectively the starting and completion times
of x, let PMx(δ) and SMx(δ) denote the predecessor and successor tasks of
x in the machine sequence provided by δ, and let PJx(δ) and SJx(δ) denote
respectively the predecessor and successor tasks of x in the job sequence provided
by δ. Then the starting time Sx(δ) of x is a TFN given by:

Sx(δ) = max(SPJx(Π) + pPJx(Π), SPMx(Π) + pPMx(Π)), (3)

Clearly, Cx(δ) = Sx(δ) + px(δ). If there is no possible confusion regarding the
processing order, we may simplify notation by writing Sx and Cx. The completion
time of the last task to be processed according to δ thus calculated will be the
makespan, denoted Cmax(δ) or simply Cmax. We obtain a fuzzy schedule in
the sense that the starting and completion times of all tasks and the makespan
are fuzzy intervals, interpreted as possibility distributions on the values that
the times may take. However, notice that the task processing ordering δ that
determines the schedule is deterministic; there is no uncertainty regarding the
order in which tasks are to be processed.

3 Robust Schedules

The usual objective of deterministic scheduling of minimising the makespan
could, in principle, be translated to the fuzzy framework as minimising the ex-
pected makespan E[Cmax]. However, minimising the expected makespan may
be criticised, since it reduces the information provided by a fuzzy makespan to
a single value, thus loosing part of the information. Neither does it address the
practical requirement of solution robustness. Therefore we propose instead to
find the equivalent to what has been called in the stochastic framework β-robust
schedules [9,22], schedules with a certain confidence level that the performance
will be within a given threshold.

The membership function μD of a fuzzy duration D may be interpreted as
a possibility distribution on the real numbers [23,24], representing the set of
more or less plausible, mutually exclusive values of a variable y (in our case, the
underlying uncertain duration). Since a degree of possibility can be viewed as
an upper bound of a degree of probability, μD also encodes a whole family of
probability distributions.

It is well known that for a given interval I ⊆ R, the possibility and necessity
measure that D ∈ I are respectively given by φ(D ∈ I) = supy∈I μD(y) and
N(D ∈ I) = infy∈I 1− μD(y) = 1− supy �∈I μD(x) = 1 −φ(D �∈ I), so necessity
and possibility are dual measures which provide lower and upper bounds for the
probability that y is in I given the information ‘y is D’: N(D ∈ I) ≤ Pr(D ∈
I) ≤ φ(D ∈ I). In particular, for A = (a1, a2, a3) a TFN, the necessity and the
possibility that A is less than a given real number r are given by:

N(A ≤ r) =

⎧⎪⎨⎪⎩
0, r ≤ a2,
r−a2

a3−a2 , a2 ≤ r ≤ a3,
1, a3 < r

φ(A ≤ r) =

⎧⎪⎨⎪⎩
0, r ≤ a1,
x−a1

a2−a1 , a1 ≤ r ≤ a2,
1, a2 < r

(4)
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a1 a3

A

a2
r

N(A ≤ r)
Π(A ≤ r)

Fig. 1. Necessity N(A ≤ r) and possibility Π(A ≤ r) for varying values of r ∈ R

Clearly, for any value r, N(A ≤ r) ≤ φ(A ≤ r). Figure 1 illustrates both
measures.

Assuming we have a target or threshold for the makespan CΘ, we may want
to maximise the confidence that Cmax will “for sure” be less than this threshold.
In our setting, this means to maximise the necessity degree that Cmax is less
than CΘ.

Definition 1. A schedule with makespan Cmax is said to be necessarily β∗-
robust w.r.t. a threshold CΘ if and only if β∗ = N(Cmax ≤ CΘ). Analogously,
the schedule is said to be possibly β∗-robust w.r.t. CΘ iff β∗ = φ(Cmax ≤ CΘ).
β∗ and β

∗ are respectively the degrees of necessary and possible robustness w.r.t.
the threshold CΘ.

Clearly, if a schedule is β∗-robust and β∗-robust w.r.t. the same threshold,
and β = Pr(Cmax ≤ CΘ), we have that β∗ ≤ β ≤ β∗.

The degree of necessary robustness represents the degree of confidence that
the makespan will certainly be less than the threshold. In the following, we will
consider that the objective will be to find a schedule maximising this confidence
level, so the resulting problem may be denoted O|fuzz pi|β∗(CΘ) following the
three-field notation [25]. Obviously, by maximising the degree of necessary ro-
bustness we are also maximising the possible robustness of the schedule.

4 Monte-Carlo Simulation Assessment

Assuming we have solved the above optimisation problem and have obtained a
β∗-robust schedule w.r.t. C

Θ, is there a means of assessing the actual robustness
of such schedule? In other words, does the concept of β∗-robustness really capture
the desired high-level characteristic of robustness? Here, we propose a method for
an empirical assessment of solutions to the O|fuzz pi|β∗(CΘ) problem, based on
using Monte-Carlo simulations and inspired by the semantics for fuzzy schedules
from [13].

In [13] fuzzy schedules are interpreted as a-priori solutions, found when the
duration of tasks is not exactly known. In this setting, it is impossible to predict
what the exact time-schedule will be, because it depends on the realisation of
the tasks’ durations, which is not known yet. Each fuzzy schedule corresponds to
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a precise ordering of tasks and it is not until tasks are executed according to this
ordering that we know their real duration and, hence, know the exact schedule,
the a-posteriori solution with exact job completion times and makespan. The
practical interest of a solution to the fuzzy open shop would then lie in the
ordering of tasks that it provides a priori using the available incomplete infor-
mation, which should ideally yield good schedules in the moment of its practical
use. Its behaviour could therefore be evaluated on a family of K deterministic
open shop problems, representingK possible a posteriori realisations of the fuzzy
problem. These may be simulated by generating an exact duration p̂x for each
task at random according to a probability distribution which is coherent with
the fuzzy duration px.

Given a solution to the fuzzy open shop, consider the task processing order
δ it provides. For a deterministic version of the problem, let p̂ be the matrix
of precise durations, such that p̂ij , the a-posteriori duration of operation oij , is
coherent with the constraint imposed by the fuzzy duration pij . The ordering δ
can be used to process the operations, where the duration of each operation oij is
taken to be p̂ij . This yields a time-schedule with precise starting and completion
times for all tasks and, in particular, a real makespan Cmax(δ, p̂), which may
be under or above the threshold CΘ. If instead of a single deterministic instance
we consider the whole family of K deterministic problems, each with a duration
matrix, we obtain K makespan values; the proportion ω of those values among
the K which are actually below the threshold CΘ gives us an empirical measure
of the robustness of δ. If the β∗-robustness is a good measure of the schedules
robustness, then a schedule with high β∗ should correspond to a high ω.

5 Genetic Algorithm

To solve the optimisation problem O|fuzz pi|β∗(CΘ), we propose to use the
genetic algorithm (GA) from [19]. In principle, to do so it would only be nec-
essary to substitute the fitness function therein by the β∗-robustness degree of
the schedule represented by each chromosome. However, such a straightforward
approach has a serious drawback: the initial population, generated at random,
consists of poor schedules, with high makespan values which, most likely, will
yield a value β∗ = 0 for any reasonable threshold CΘ, thus making it impossible
for the GA to evolve.

In order to overcome this drawback, we propose to adapt the GA to use an
“adaptive” threshold, with successive approximations CΘ

0 > CΘ
1 > . . . until CΘ is

reached. Given the first population, a first threshold CΘ
0 is obtained as the most

pessimistic value of the best makespan in this population, making sure that
there will be chromosomes with non-zero fitness values (in fact, the individual
with the best makespan will have fitness 1), thus allowing the GA to evolve.
The threshold can then be updated along successive generations with new more
demanding values CΘ

g linearly decreasing from CΘ
0 to CΘ. This smooth updating

allows the GA to evolve to robust solutions w.r.t. iteratively smaller thresholds.
Finally, in order to give the GA the chance of obtaining β∗-robust solutions w.r.t.
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Fig. 2. Evolution of the best and mean solution of GA and the C�
g values for the

instance j8-per10-1 averaged across 10 runs

CΘ, in the last generations of the algorithm the CΘ value is used to compute the
β∗-robustness degree as fitness function.

6 Experimental Results

For the experimental study we shall use the test bed given in [16], where the
authors follow [11] to generate a set of fuzzy instances from well-known open
shop benchmark problems. Given a deterministic instance, each deterministic
processing time t is transformed into a symmetric fuzzy processing time p(t)
with modal value p2 = t and where values p1, p3 are taken as random integer
values such that the resulting TFN is symmetric w.r.t. p2 and its maximum
range of fuzziness is 30% of p2. The original benchmark consists of 6 families,
denoted J3, J4,. . . , J8, of sizes from 3× 3 to 8× 8, containing 8 or 9 instances
each. In this work we only consider the largest instances: i.e. the 9 instances of
size 7× 7 and the 8 instances of size 8× 8.

In a real problem, the target value CΘ would be provided by an expert
with a reasonable knowledge of the problem. However, as we are using syn-
thetic problems, such expert is not available and in consequence the target
values must be set following some criterium. In our case, we have taken the
best known solution A = (a1, a2, a3) for each instance [18] and we have defined
CΘ = a2+TF×(a3−a2), where TF is a given tightness factor. To obtain the best
possible performance, a parametric analysis (not reported here due to the lack
of space) was conducted using TF = 0.75. The resulting parameter values were:
population size=100, crossover probability=0.7, mutation probability=0.05, and
number of generations=2000 from which the last 200 use the CΘ value. The
GA has been run with these parameters 10 times on each problem instance.
Figure 2 shows the convergence pattern for j8-per10-1, one of the largest in-
stances, with the remaining instances presenting a similar behaviour. The figure
shows the evolution along 2000 generations of the fitness value of the best in-
dividual together with the mean fitness of the population and the CΘ

g threshold
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used at each generation g to compute the β∗-robustness. As expected, we can
appreciate that the algorithm’s behaviour is sensitive to the CΘ

g values. Initially,
a less-demanding CΘ

0 allows the GA to evolve properly so the average quality
of the population improves. After the first generations, CΘ

g decreases becoming
more demanding and in consequence, despite the fact that the population con-
tinues evolving, the robustness deteriorates for some generations (notice that
for the same solution, its robustness value is dependent on the threshold CΘ).
Finally, in the last iterations the goal CΘ remains fixed and robustness values
improve again thanks to the algorithm’s evolution.

To empirically measure the robustness of the schedules obtained by the GA,
we follow the Monte-Carlo simulation assessment introduced in Section 4 and
generate samples of K = 1000 deterministic problems for each fuzzy instance,
with random a-posteriori durations following a probability distribution which is
coherent with the TFNs that model the fuzzy durations. We have then obtained
the makespan values for each deterministic problem using the ordering provided
by the GA on the fuzzy instanc, and we have finally computed the proportion
ω out of the K deterministic makespan values which are below the threshold
CΘ. Table 1 shows, for each fuzzy instance, the threshold CΘ, the β∗ value of
the best, average and worst solution across 10 runs, the CPU time (Runtime) in
seconds, and the proportion ω obtained in the simulation for the best solution
(ω-robustness). We can appreciate that even for the worst solutions β∗ > 0, so
in all solutions the possible β∗-robustness is 1. Moreover, the obtained “real”
robustness values (ω) are always 1 or very close to 1, even in those instances

Table 1. Results of the GA and the a-posteriori analysis across the largest instances
of the Brucker data set

β∗-robustness
Instance C� Best Average Worst Runtime κ-robustness

j7-per0-0 1105.25 0.3682 0.2258 0.1082 9.2s. 0.9830
j7-per0-1 1140.00 0.7439 0.6231 0.4789 9.0s. 1.0000
j7-per0-2 1136.75 0.5493 0.4364 0.3147 9.0s. 0.9980
j7-per10-0 1099.50 0.7500 0.5294 0.2895 8.6s. 1.0000
j7-per10-1 1075.75 0.7319 0.5383 0.1972 8.9s. 1.0000
j7-per10-2 1079.75 0.6408 0.4701 0.2351 9.2s. 1.0000
j7-per20-0 1028.50 0.6477 0.5667 0.4524 9.0s. 1.0000
j7-per20-1 1075.00 0.7541 0.5041 0.1509 9.0s. 1.0000
j7-per20-2 1059.50 0.6288 0.3657 0.1508 9.1s. 1.0000

j8-per0-1 1106.50 0.3750 0.2164 0.0473 13.6s. 0.9190
j8-per0-2 1115.75 0.4696 0.2561 0.1735 13.8s. 0.9630
j8-per10-0 1110.00 0.9054 0.5723 0.3273 13.5s. 1.0000
j8-per10-1 1074.00 0.5714 0.4162 0.2692 13.7s. 0.9830
j8-per10-2 1059.25 0.4179 0.2601 0.0753 13.9s. 0.9850
j8-per20-0 1062.75 0.6433 0.4975 0.3994 13.6s. 1.0000
j8-per20-1 1048.00 0.7164 0.5445 0.4133 13.6s. 1.0000
j8-per20-2 1059.00 0.5444 0.4451 0.3299 13.6s. 0.9960
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where β∗ is smaller (e.g. j7-per0-0). This could be explained by the conserva-
tive character of the necessary robustness. In fact, in all cases where the fuzzy
schedule has β∗ ≥ 0.6, the makespan values for all deterministic simulations are
below the threshold CΘ.

7 Conclusions

We have tackled a variant of the open shop scheduling problem where uncer-
tainty in durations is modelled using triangular fuzzy numbers. We have defined
necessary and possible β-robustness in terms of scheduling and we have pro-
posed as objective function to maximize the most pessimistic measure which is
the necessary β-robustness. Moreover, we have proposed a method to empirically
assess the actual robustness of the solutions. We have tested our approach using
a genetic algorithm from the literature using an adaptive threshold of makespan
values that overcomes the drawback of a likely random search by the GA. Based
in the promising results, in the future we intend to improve on the β-robustness
by adapting to the fuzzy framework the definition of Δ-β-robustness, that is, for
a given confidence level β (ideally close to 1), try to minimise the threshold Δ
for which this confidence is obtained (as in [22] for stochastic scheduling). We
also intend to consider some kind of multiobjective approach that maximises
robustness and minimises makespan.
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Abstract. The present paper introduces aggregative spaces and their
category AGS, and then establishes a dual adjunction between AGS
and the category Agop of aggregation operators on bounded partially
ordered sets. Spatial aggregation operators and sober aggregative spaces,
enabling us to restrict the dual adjunction between AGS and Agop to
a dual equivalence between the full subcategory of Agop consisting of
spatial aggregation operators and the full subcategory of AGS consisting
of sober aggregative spaces, will also be subjects of this paper.
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1 Introduction

There is a considerable interest in the studies on (n-ary) aggregation operators
(agops for short) for replacing the particular bounded partially ordered set (poset
for short) ([0, 1],≤) by other reasonable bounded posets, e.g. agops on ([a, b],≤)
in [3,10,14], agops on (I[0, 1],!w) (the so-called an interval-valued agops) in [12],
agops on (L∗,≤L∗) in [8], triangular norms on a general bounded poset in [4], a
general bounded lattice in [15,16], pseudo-uninorms on a general complete lattice
in [17,18]. As is shown in [5,11,13], agops on general bounded posets and their
category Agop provide a useful and an abstract framework for such studies.

The dualities between certain ordered algebraic structures and certain spaces
have been an important issue in many branches of mathematics (see [6,7] and the
references therein). The famous duality between the full subcategory SobTop
of Top of all sober topological spaces and the full subcategory SpatFrm of
Frm of all spatial frames [9] is one of such dualities. In an analogous manner to
this duality, our aim in this paper is to find out an appropriate notion of space
providing a categorical duality for agops. For this purpose, after the next pre-
liminary section, we introduce the aggregative spaces and their category AGS,
and establish a dual adjunction between AGS and Agop in Section 3. Section
4 provides the notions of spatial agops and sober aggregative spaces, and proves

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 457–465, 2014.
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a dual equivalence between the full subcategory SobAGS of AGS of all sober
aggregative spaces and the full subcategory SpatAgop of Agop of all spatial
agops. Furthermore, the presented dual adjunction and dual equivalence have
been also discussed for some full subcategories of Agop.

2 Preliminaries

2.1 Categorical Tools

Adjoint situations and equivalences in the category theory are essential tools for
formulating the main results of this paper. By definition, an adjoint situation
(#, Π) : F 3 G : C → D consists of functors G : C → D, F : D → C, and

natural transformations idD
�→ GF (called the unit) and FG

φ→ idC (called
the co-unit) satisfying the adjunction identities G(ΠA) ◦ #G(A) = idG(A) and
ΠF (B) ◦ F (#B) = idF (B) for all A in C and B in D. If (#, Π) : F 3 G : C → D
is an adjoint situation for some # and Π, then F is said to be a left adjoint to
G, F 3 G in symbols. A functor G : C → D is called an equivalence if it is
full, faithful and isomorphism-dense. In this case, C and D are called equivalent
categories, denoted by C ∼ D.

Proposition 1. [2,7] Given an adjoint situation (#, Π) : F 3 G : Cop → D, let
Fix (Π) denote the full subcategory of C of all C-objects A such that ΠopA : A→
FGA is a C-isomorphism, and Fix (#) the full subcategory of D of all D-objects
B such that #B : B → GFB is a D-isomorphism. Then the following statements
are true:

(i) The restriction of F 3 G to [Fix (Π)]op and Fix (#) induces an equivalence
[Fix (Π)]op ∼ Fix (#).

(ii) If ΠopA is an epimorphism in C for each C-object A, then both Fix (Π) and
Fix (#) are reflective in their respective categories with the reflectors F opGop and
GF , and reflection arrows ΠopA and #B, resp.

For more information about adjoint situations and equivalences, we refer to [1].

2.2 Aggregation Operators and Their Categories

Let (L,≤) be a bounded poset with the least element ⊥ and the greatest element
'. An aggregation operator on L is defined to be a function A :

⋃
n∈N+

Ln → L

satisfying the following conditions:
(AG.1) If Δ1 ≤ β1, Δ2 ≤ β2, ... and Δn ≤ βn for all Δi, βi ∈ L, i = 1, 2, ..., n

(n ∈ N+), then A(Δ1, ..., Δn) ≤ A(β1, ..., βn).
(AG.2) A(Δ) = Δ for all Δ ∈ L.
(AG.3) A(⊥, ...,⊥) = ⊥ and A(', ...,') = '.
For n ≥ 2, a function B : Ln → L is called an n-ary aggregation operator on L

iff the conditions (AG.1) and (AG.3) are satisfied. A 1-ary aggregation operator
B : L → L is the identity map idL on L. Every aggregation operator A on L
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uniquely determines a family of n-ary aggregation operators {An | n ∈ N+} by
An(Δ1, ..., Δn) = A(Δ1, ..., Δn).

With regard to the special cases of (L,≤), an aggregation operator on L
produces an aggregation process for fuzzy sets, interval-valued fuzzy sets, in-
tuitionistic fuzzy sets, type 2 fuzzy sets and probabilistic metrics [5]. We fur-
ther remark that whereas (AG.2) is proposed as a convention by some authors
(e.g., see [3,11,13]), this condition is used to set up many interesting properties
of aggregation operators such as their close connection with partially ordered
groupoids in [5].

Definition 1. [5] The category Agop of aggregation operators has as objects
all triples (L,≤, A), where (L,≤) is a bounded poset and A is an aggregation

operator on L, and as morphisms all (L,≤, A) u→ (M,≤, B), where u : (L,≤)→
(M,≤) is an order-preserving function such that u(⊥) = ⊥, u(') = ' and the
following diagram commutes for all n ∈ N+:

Ln un

−→Mn

An ↓ ↓ Bn

L
u−→ M ,

i.e. u(A(Δ1, ..., Δn)) = B (u(Δ1), ..., u(Δn)) for all Δ1, ..., Δn ∈ L. Composition
and identities in Agop are taken from the category Set of sets and functions.

Definition 2. [5] (i) Asagop is the full subcategory of Agop of all (L,≤, A)
such that A is associative, i.e.

A(Δ1, ..., Δk, ...Δn) = A2(Ak(Δ1, ..., Δk), An−k(Δk+1, ..., Δn))

for all n ≥ 2, k = 1, .., n− 1 and Δ1, ..., Δn ∈ L.
(ii) Smasagop is the full subcategory of Asagop of all (L,≤, A) such that A

is symmetric, i.e.

A(Δ1, ..., Δn) = A(ΔΠ(1), ..., ΔΠ(n))

for all n ∈ N+, Δ1, ..., Δn ∈ L and for all permutations δ(1),...,δ(n) of {1, .., n}.

3 Aggregative Spaces and Their Relations with
Aggregation Operators

3.1 Definition of Aggregative Spaces and Their Category

For a given set X , we call a subset ν of the power set P(X) of X an aggregative
system on X if ∅ ∈ ν , X ∈ ν , and G1, G2 ∈ ν implies G1 ∩ G2 ∈ ν for all
G1, G2 ∈ P(X). By an aggregative space, we mean a pair (X, ν) of a set X
and an aggregative system ν on X . To formulate the category of aggregative
spaces, we need to recall that every function f : X → Y determines a function
f← : P(Y )→ P(X), sending each subset G of Y to the preimage of G under f .
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Definition 3. The category of aggregative spaces, denoted by AGS, is a cate-
gory whose objects are aggregative spaces, and whose morphisms f : (X, ν) →
(Y, σ) are functions f : X → Y having the property that for every G ∈ σ,
f← (G) ∈ ν . Composition and identities in AGS are the same as those in Set.

It is remarkable to mention that AGS is a special kind of the category
(Z1,Z2)S of (Z1,Z2)-spaces, which has been developed in [6]. More clearly,
AGS is exactly the same as the category (V⊥,F)S, where V⊥ and F are the
subset systems, defined by V⊥ (P ) = {∅} and F (P ) = {G ⊆ P | G is finite} for
every poset P in [6].

3.2 Dual Adjunction between AGS and Agop

Our aim in this section is to show that there exists an adjoint situation (η, ϕ) :
βAG 3 PtAG : Agopop → AGS. For this purpose, we first establish the functors
βAG : AGS → Agopopand PtAG : Agopop → AGS.

Every aggregative space (X, ν) induces an Agop-object (ν,⊆, X(∩)τ ), where
X(∩) is the aggregation operator on P(X), defined by X(∩) (G1, ..., Gn) = G1∩
... ∩ Gn and X(∩) (G) = G for every G,G1, ..., Gn ∈ P(X) (n ≥ 2), and X(∩)τ
is the restriction of X(∩) to the set

⋃
n∈N+

νn. This means that the assignment of

the Agop-object (ν,⊆, X(∩)τ ) to every aggregative space (X, ν) is a function
βAG from the objects of AGS to the objects of Agop. On the other hand,
for a given AGS-morphism f : (X, ν) → (Y, σ), the restriction f←|ν of f← to σ

is an Agop-morphism f←|ν : (σ,⊆, Y (∩)δ) → (ν,⊆, X(∩)τ ). Thus, βAG can be
extended to a functor from AGS to Agopop:

Proposition 2. The map βAG : AGS → Agopop, defined by

βAG (X, ν) = (ν,⊆, X(∩)τ ) and βAG (f) =
(
f←|ν

)op

,

is a functor.

In the formulation of the functor PtAG : Agopop → AGS, we will use the
notion of filter defined as follows.

Definition 4. Let (L,≤, A) be an object of Agop. A subset G of L is called a
filter of (L,≤, A) iff G satisfies the next conditions:

(F1) G is an upper set of (L,≤), i.e. for all Δ, β ∈ L, Δ ∈ G and Δ ≤ β imply
β ∈ G,

(F2) ⊥ /∈ G,
(F3) ' ∈ G,
(F4) For all Δ1, ..., Δn ∈ L, Δ1, ..., Δn ∈ G iff A(Δ1, ..., Δn) ∈ G.

Lemma 1. Given an Agop-object (L,≤, A), let F(L) denote the set of all fil-
ters of (L,≤, A). For each a ∈ L, let Ψa = {G ∈ F(L) | a ∈ G} and Ψ(L) =
{Ψa | a ∈ L}. Then, PtAG(L,≤, A) = (F(L), Ψ(L)) is an aggregative space.
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Proof. For each G ∈ F(L), by (F2) and (F3) in Definition 4, F(L) = Ψ� ∈ Ψ(L)
and ∅ = Ψ⊥ ∈ Ψ(L). Furthermore, we obtain from (F4) that for all a, b ∈ L,
Ψa ∩ Ψb = ΨA(a,b). Therefore, Ψ(L) is an aggregative system on F(L).

Proposition 3. The map PtAG : Agopop → AGS, defined by

PtAG

(
(L,≤, A) u→ (M,≤, B)

)
= PtAG(L,≤, A)

PtAG(u)→ PtAG(M,≤, B),

where [PtAG(u)] (G) = (uop)
←

(G) for all G ∈ F(L), is a functor.

Proof. Lemma 1 shows that PtAG maps the objects of Agopop to the objects

of AGS. Let (L,≤, A) u→ (M,≤, B) be an Agopop-morphism, i.e. (M,≤, B)
uop

→
(L,≤, A) is an Agop-morphism. For every G ∈ F(L), since (uop)← (G) ∈ F(M),
PtAG(u) : F(L)→ F(M) is a set map. In addition to this, we easily see that for
every b ∈ M , [PtAG(u)]

←
(Ψb) = Ψuop(b), i.e. [PtAG(u)]

←
(V ) ∈ Ψ(L) for every

V ∈ Ψ(M). This proves that PtAG(u) : PtAG(L,≤, A) → PtAG(M,≤, B) is an
AGS-morphism. Hence, the assertion follows from the fact that PtAG preserves
composition and identities.

To accomplish our task in this section, we now consider two natural transfor-
mations-the unit and co-unit of the asked adjunction-given in the next two lem-
mas.

Lemma 2. For every AGS-object (X, ν), the map η(X,τ) : X → F (ν), de-
fined by η(X,τ) (x) = ν(x) = {G ∈ ν | x ∈ G}, is an AGS-morphism (X, ν) →
PtAGβAG (X, ν). Moreover, η =

(
η(X,τ)

)
(X,τ)∈Ob(AGS)

: idAGS → PtAGβAG is

a natural transformation.

Proof. It is obvious that for every x ∈ X , ν(x) ∈ F (ν), and so η(X,τ) : X → F (ν)
is indeed a map. To see that η(X,τ) : (X, ν) → PtAGβAG (X, ν) is an AGS-
morphism, note first that

PtAGβAG (X, ν) = (F (ν) , Ψ (ν)) .

Then, since η←(X,τ) (ΨG) = G for every G ∈ ν , we obtain that η←(X,τ) (V ) ∈ ν for

every V ∈ Ψ (ν), i.e. η(X,τ) : (X, ν) → PtAGβAG (X, ν) is an AGS-morphism.
The proof of the second part requires only the naturality of η which means the
commutativity of the rectangle

(X, ν)
η(X,τ)−→ PtAGβAG (X, ν)

f ↓ ↓ PtAGβAG (f)

(Y, σ)
η(Y,ν)−→ PtAGβAG (Y, σ)

for every AGS-morphism (X, ν)
f→ (Y, σ). Since

[PtAGβAG (f)]
(
η(X,τ)(x)

)
=
(
f←|ν

)← (
η(X,τ) (x)

)
,
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the commutativity of the rectangle above follows from the following observation:
For every x ∈ X and every H ∈ σ,
H ∈ η(Y,δ) (f(x))⇔ H ∈ σ and f(x) ∈ H ⇔ f←|ν (H) ∈ ν and x ∈ f←|ν (H)

⇔ f←|ν (H) ∈ η(X,τ) (x)⇔ H ∈
(
f←|ν

)← (
η(X,τ) (x)

)
⇔ H ∈ [PtAGβAG (f)]

(
η(X,τ)(x)

)
.

Lemma 3. For every Agop-object (L,≤, A), the map e(L,≤,A) : L → Ψ(L),
defined by e(L,≤,A) (a) = Ψa, is an Agop-morphism (L,≤, A)→ βAGPtAG(L,≤
, A). Moreover, ϕ =

(
eop(L,≤,A)

)
(L,≤,A)∈Ob(Agop)

: βAGPtAG → idAgopop is a

natural transformation.

Proof. Consider first that βAGPtAG(L,≤, A) =
(
Ψ(L),⊆,F (L) (∩)Ψ(L)

)
. In

order to prove that e(L,≤,A) : (L,≤, A) → βAGPtAG(L,≤, A) is an Agop-
morphism, we proceed as follows. For all a, b ∈ L with a ≤ b, since Ψa ⊆ Ψb

(by (F1) in Definition 4), e(L,≤,A) is order-preserving. We also obtain from (F2)
and (F3) in Definition 4 that e(L,≤,A) preserves ⊥ and '. Furthermore, by mak-
ing use of (F4) in Definition 4, we see that Ψa1 ∩ ... ∩ Ψan = ΨA(a1,...,an) for all
a1, ..., an ∈ L, and so

e(L,≤,A)(A(a1, ..., an)) = ΨA(a1,...,an) = Ψa1 ∩ ... ∩ Ψan

= e(L,≤,A)(a1) ∩ ... ∩ e(L,≤,A)(an)

= F(L) (∩)Ψ(L)

(
e(L,≤,A)(a1), ..., e(L,≤,A)(an)

)
.

This completes the proof of the first part of the assertion. For the second part, the
only property of ϕ that we have to verify is its naturality, i.e. the commutativity
of the diagram

βAGPtAG(L,≤, A)
ε(L,≤,A)−→ (L,≤, A)

βAGPtAG(u) ↓ ↓ u

βAGPtAG(M,≤, B)
ε(M,≤,B)−→ (M,≤, B)

(1)

for each Agopop-morphism (L,≤, A) u→ (M,≤, B). Since all arrows and all
compositions in (1) are taken in Agopop, it can be simplified to be a rectangle

(M,≤, B)
e(M,≤,B)−→

(
Ψ(M),⊆,F (M) (∩)Ψ(M)

)
uop ↓ ↓ PtAG(u)

←
|Ψ(M)

(L,≤, A)
e(L,≤,A)−→

(
Ψ(L),⊆,F (L) (∩)Ψ(L)

)
,

(2)

where all arrows and all compositions are performed in Agop. The commuta-
tivity of (2) is obtained as[

PtAG(u)
←
|Ψ(M)

◦ e(M,≤,B)

]
(b) = [PtAG(u)]

← (Ψb) = Ψuop(b)

=
[
e(L,≤,A) ◦ uop

]
(b)

for all b ∈M .
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Theorem 1. (η, ϕ) : βAG 3 PtAG : Agopop → AGS is an adjoint situation.

Proof. It is not difficult to check the adjunction identities

PtAG

(
ϕ(L,≤,A)

)
◦ ηPtAG(L,≤,A) = idPtAG(L,≤,A),

ϕνAG(X,τ) ◦βAG

(
η(X,τ)

)
= idνAG(X,τ)

for every Agop-object (L,≤, A) and every AGS-object (X, ν). Then, the re-
quired result follows immediately from Lemma 2 and Lemma 3.

Remark 1. Since βAG (X, ν) = (ν,⊆, X(∩)τ ) is an object of Smasagop for
every AGS-object (X, ν), the adjoint situation in Theorem 1 can be restricted
to an adjoint situation (η, ϕr) : βr

AG 3 PtrAG : Smasagopop → AGS, where
βr

AG (PtrAG) is the co-domain (the domain) restriction of βAG (PtAG) and
ϕr(L,≤,A) = ϕ(L,≤,A) for every Smasagop-object (L,≤, A). An analogous adjoint
situation can also be written for the category Asagop instead of Smasagop.

4 Spatial Aggregation Operators, Sober Aggregative
Spaces and Their Duality

Spatiality and sobriety are two important notions that enable us to restrict the
adjunction βAG 3 PtAG to an equivalence. To clarify this fact, we first start
with their definitions:

Definition 5. (i) An Agop-object (L,≤, A) is called spatial iff for all a, b ∈ L
with a � b, there exists a G ∈ F(L) such that a ∈ G and b /∈ G.

(ii) An AGS-object (X, ν) is called sober iff for all U ∈ F (ν), there exists a
unique x ∈ X such that U = ν(x).

Proposition 4. Let (L,≤, A) be an Agop-object, and (X, ν) an AGS-object.
(i) (L,≤, A) is spatial iff e(L,≤,A) : (L,≤, A) → βAGPtAG(L,≤, A) is an

Agop-isomorphism.
(ii) (L,≤, A) is spatial iff (L,≤, A) is isomorphic to (σ,⊆, Y (∩)δ) for some

aggregative space (Y, σ).
(iii) (X, ν) is sober iff η(X,τ) : (X, ν) → PtAGβAG (X, ν) is an AGS-

isomorphism.

Proof. (i) Note first that (L,≤, A) is spatial iff for all a, b ∈ L, Ψa ⊆ Ψb im-
plies a ≤ b. Now, by assuming spatiality of (L,≤, A), this equivalence directly
gives the injectivity of the underlying set map of e(L,≤,A), and so does its bi-

jectivity. It is easy to check that e−1
(L,≤,A) : βAGPtAG(L,≤, A) → (L,≤, A) is

an Agop-morphism, and so e(L,≤,A) : (L,≤, A) → βAGPtAG(L,≤, A) is an
Agop-isomorphism. Conversely, if e(L,≤,A) : (L,≤, A) → βAGPtAG(L,≤, A) is

an Agop-isomorphism, then since e−1
(L,≤,A) : βAGPtAG(L,≤, A) → (L,≤, A) is

an Agop-morphism, Ψa ⊆ Ψb implies a = e−1
(L,≤,A) (Ψa) ≤ e−1

(L,≤,A) (Ψb) = b for

all a, b ∈ L, so (L,≤, A) is spatial.
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(ii) If (L,≤, A) is spatial, then we have from (i) that (L,≤, A) is isomorphic to
(σ,⊆, Y (∩)δ) for the aggreative space (Y, σ) = PtAG(L,≤, A). Conversely, sup-
pose (L,≤, A) is isomorphic to (σ,⊆, Y (∩)δ) for some aggregative space (Y, σ),
i.e. there exists an Agop-isomorphism u : (L,≤, A)→ (σ,⊆, Y (∩)δ). Then, for
a, b ∈ L with a � b, since u(a) � u(b), there exists at least one z ∈ Y such that
z ∈ u(a) and z /∈ u(b). It is clear that u(a) ∈ σ (z) and u(b) /∈ σ (z), and so
a ∈ u← (σ (z)) and b /∈ u← (σ (z)). Hence, we obtain the spatiality of (L,≤, A)
from the fact that u← (σ (z)) is a filter of (L,≤, A).

(iii) follows from that for a given AGS-object (X, ν), (X, ν) is sober iff the
underlying set map of η(X,τ) is a bijection iff η(X,τ) : (X, ν)→ PtAGβAG (X, ν)
is an AGS-isomorphism.

Corollary 1. The full subcategory SpatAgop of Agop of all spatial objects is
dually equivalent to the full subcategory SobAGS of AGS of all sober objects.

Proof. Since Proposition 4 (i) and (iii) verify that Fix (ϕ) = SpatAgop and
Fix (η) = SobAGS, the assertion follows from Theorem 1 and Proposition 1
(i).

Proposition 5. SpatAgop and SobAGS are reflective subcategories of Agop
and of AGS with reflectors βop

AGPt
op
AG and PtAGβAG, and the reflection arrows

e(L,≤,A) and η(X,τ), respectively.

Proof. Since e(L,≤,A) = ϕop(L,≤,A) is obviously an epimorphism in Agop, and

Fix (ϕ) = SpatAgop and Fix (η) = SobAGS, Proposition 1 (ii) directly yields
the claimed result.

Proposition 6. Let (L,≤, A) be an Agop-object, and (X, ν) an AGS-object.
(i) βAG (X, ν) is spatial, (ii) PtAG(L,≤, A) is sober.

Proof. (i) is immediate from Proposition 4 (ii). To see (ii), let us first consider
the fact that PtAG(L,≤, A) = (F(L), Ψ(L)). Then, the sobriety of PtAG(L,≤, A)
follows from the observation that for all U ∈ F (Ψ(L)), G = {a ∈ L | Ψa ∈ U} is
the unique element of F(L) with the property that U = [Ψ(L)] (G).

Proposition 7. The full subcategory SpatAsagop of Asagop of all spatial ob-
jects, the full subcategory SpatSmasagop of Smasagop of all spatial objects
and SpatAgop are equivalent to each others.

Proof. Since SpatSmasagop is a full subcategory of SpatAgop, the inclusion
functor SpatSmasagop ↪→ SpatAgop is a full and faithful functor. For ev-
ery SpatAgop-object (L,≤, A), by Proposition 4 (i) and Proposition 6 (i),
βAGPtAG(L,≤, A) is a SpatSmasagop-object, and e(L,≤,A) : (L,≤, A) →
βAGPtAG(L,≤, A) is a SpatAgop-isomorphism. This proves that the inclu-
sion functor SpatSmasagop ↪→ SpatAgop is isomorphism-dense, and hence
an equivalence. Similarly, the inclusion functor SpatAsagop ↪→ SpatAgop is
an equivalence, which completes the proof.
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Corollary 2. SpatAgopop ∼ SpatAsagopop ∼ SpatSmasagopop ∼
SobAGS.
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Abstract. We illustrate a preliminary proposal of weighted fuzzy aver-
ages between two membership functions. Conflicts, as well as agreements,
between the diffierent sources of information in the two new operators are
endogenously embedded inside the average weights. The proposal is moti-
vated by the practical problem of assessing the fuzzy volatility parameter
in the Black and Scholes environment via alternative estimators.

Keywords: merging, aggregation, fuzzy mean.

1 Introduction and Motivation

In [2] we introduced a methodology for membership elicitation on parameters.
The goal was to estimate the hidden volatility parameter σ of a risky asset
through both the historical volatility estimator σ̂, based on a sample of log-
returns of the asset itself, and the estimator σ = VIX/100, based on VIX which is
a volatility index obtained through a set of prices for options written on the asset.
Thanks to the interpretation of membership functions as coherent conditional
probability assessments (see [3,4]) integrated with observational data and expert
evaluations, we were able in some cases to elicit proper membership functions for
the volatility parameter based on each single estimator, while in another case two
memberships were considered possible. Moreover, results were obtained through
probability-possibility transformation of specific simulation distributions. Thus,
the peculiarity of the proposal was to deal with implicit and alternative sources of
information, while one of the open problem was to find proper fusion operators.

In literature it is known that the choice of a fusion operator, given the variety
of information items, is not unique and heavily context-dependent. Classes of
aggregation functions covered include triangular norms and conorms, copulas,
means and averages, and those based on nonadditive integrals [11]. A main char-
acteristic of the aggregation functions is that they are used in a large number
of areas and disciplines, leading to a strong demand for a wide variety of aggre-
gation functions with predictable and tailored properties [12], [13]. Authors in
[15] affirm that there are more than 90 different fuzzy operators proposed in the
literature for fuzzy set operations. The role of fuzzy sets in merging information
can be understood in two ways: either as a tool for extending estimation tech-
niques to fuzzy data (this is done applying the extension principle to classical
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estimators, and methods of fuzzy arithmetics - see [5] for a survey); or as a tool
for combining possibility distributions that represent imprecise pieces of infor-
mation (then fuzzy set-theoretic operations are instrumental for this purpose -
see [9] for a survey).

In view of this dichotomy, the role of standard aggregation operations like
arithmetic mean is twofold. It is a basic operation for estimation and also a
fuzzy set-theoretic connective. A bridge between the “estimation” and the “fu-
sion” views of merging information is ensured using the concept of constrained
merging [8, §6.6.2]. We borrow from it the motivation of including a “smart”
component in the averaging process to address conflicts in the data to be fused,
but, contrarily to the original “intelligent” proposal, without the introduction
of an exogenous “combinability function”. We need two different kinds of fusion
operators: one for merging conjointly the values stemming from the different
estimators; and another that disjointly considers different possibilities or dis-
tribution models. Our operators are weighted averages where conflicts, as well
as agreements, are endogenously embedded on the average weights; for the rea-
sons mentioned above the choices for the weights we suggest here are deeply
motivated by the practical problem at hand. The difference between the two
proposals is in which direction there is a deformation of the arithmetic mean:
for merging of joint information distortion is toward canonical conjunction, i.e.
min, while for merging of alternative information distortion is toward canonical
disjunction, i.e. max.

The rest of the paper is organized as follows: next section briefly refreshes
main fuzzy membership notions and introduces basic notations for our purposes,
while subsequent Section 3 defines our weighted averages proposals. Section 4
illustrates the numerical applications to the original practical problem of elicita-
tion of a single membership function for the fuzzy volatility parameter σ̃ and its
consequences on the option pricing. A similarity comparison with crisp bid-ask
prices is also performed. Section 5 briefly concludes the contribution.

2 Notation

Given our goal of parameter estimation, for the sequel we will consider real val-
ued quantities. We recall that a membership function μ : R→ [0, 1] of the fuzzy
set of possible values of a random variableX can be viewed as a possibility distri-
bution (see e.g. [17]). In particular, the subset μS = {x ∈ R : μ(x) > 0} is named
the “support” of the membership while the subset μ1 = {x ∈ R : μ(x) = 1} is
its “core”. Membership functions are fully characterized by their (dual) repre-
sentation through Δ-cuts μα = {x ∈ R : μ(x) ≥ Δ} , Δ ∈ [0, 1]. The Δ value
can be conveniently interpreted as 1 minus the lower bound of the probability
that quantity X hits μα. Then the possibility distribution is viewed as the fam-
ily of probability measures ([6]): P = {prob. distr. P : P (X ∈ μα) ≥ 1− Δ} . In
[2] we were able to elicit membership functions through probability-possibility
transformations ([7]) induced by confidence intervals around the median of spe-
cific simulating distributions; we got so called “fuzzy numbers”, i.e. unimodal
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membership functions with nested Δ-cuts. Hence, each μ we consider has an in-
creasing left branch μl and a decreasing right one μr and each Δ-cut is identified
by an interval [μαl , μ

α
r ] in the extended reals R̃.

Aggregations are performed between Δ-cuts, so we always deal with two inter-
vals, possibly degenerate, [μ1αl , μ1

α
r ] and [μ2αl , μ2

α
r ]. From these it is immediate

to define their four characteristic values

μαlO = min{μ1αl , μ2αl } μαlI = max{μ1αl , μ2αl }; (1)

μαrI = min{μ1αr , μ2αr } μαrO = max{μ1αr , μ2αr }, (2)

and their lengths

πα
1 = μ1αr − μ1αl πα

2 = μ2αr − μ2αl πα = μαrO − μαlO; (3)

where the subscript O refers to the “outer” values, while the subscript I to the
“inner” ones (see e.g. Fig.1).

μ μ
2

ΔΔ α Δ
2

α

δα

Δα

Fig. 1. Characteristic values for the merging of two α-cuts

A crucial value for our proposal is the “height” h of the intersection between
μ1 and μ2, i.e.

h = max{Δ : [μ1αl , μ1
α
r ] ∩ [μ2αl , μ2

α
r ] �= ∅} (4)

whenever the two memberships overlaps, while h = 0 if μ1 and μ2 are incom-
patible. Other involved quantities are

ψα = |μαrI − μαlI | (5)

that measures the width of the intersection if the two Δ-cuts overlaps or, other-
wise, the minimal distance between them; and

δα = πα − ψα (6)

that measure the length of the parts outside the (possible) intersection.
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With such quantities, for the levels Δ ≤ h we can define the relative contri-
butions ραl and ραr of the inner memberships μlI , μrI to the intersection as:

ραl =

πα

Δα
lI

πα

Δα
lI
+ πα

Δα
lO

=
πα

lO

πα
1 +πα

2

; (7)

ραr =

πα

Δα
rI

πα

Δα
rI

+ πα

Δα
rO

=
πα

rO

πα
1 +πα

2

; (8)

with

πα
lI =

{
πα

1 if μαlI = μ1αl
πα

2 if μαlI = μ2αl
πα

lO =

{
πα

1 if μαlO = μ1αl
πα

2 if μαlO = μ2αl
(9)

and, similarly,

πα
rI =

{
πα

1 if μαrI = μ1αr
πα

2 if μαrI = μ2αr
πα

rO =

{
πα

1 if μαrO = μ1αr
πα

2 if μαrO = μ2αr
. (10)

3 A Proposal of Two Smart Weighted Averages

We propose two new binary operations � and � to average in a conjunctive or in a
disjunctive way, respectively, different information μ1 and μ2. Both generalize, by
deformation, the usual arithmetic mean between two fuzzy numbers: � deforms
the arithmetic mean toward the min conjunction operator, while � toward the
max disjunction operator.

Hence we define our generalized conjunction level-wise by setting as Δ-cut
(μ1 � μ2)α the interval

[(μ1 � μ2)αl , (μ1 � μ2)αr ] = [wlαμαlI + (1− wlα)μαlO , wrαμαrI + (1− wrα)μαrO]
(11)

with weights:
for Δ ≤ h

wlα =
1

2
+
ραl
2

, wrα =
1

2
+
ραr
2
, (12)

for Δ > h,

wlα =
(μ1 � μ2)hl − μαlO + k(Mα

l −Mh
l ) + αl(Δ)

(μαlI − μαlO)
(13)

wrα =
(μ1 � μ2)hr − μαrI + k(Mα

r −Mh
r )− αr(Δ)

(μαrO − μαrI)
(14)

with [Mα
l ,M

α
r ] the Δ-cut of the arithmetic fuzzy mean; αl and αr specific

quadratic functions used to emphasize the deformation, and k=
(μ1�μ2)hr−(μ1�μ2)hl

Mh
r −Mh

l

a scale factor. It is important to remark that, since the intersections between
the Δ-cuts are empty for Δ > h, the choice of the weights in that case just
resumes our operator to the arithmetic mean, but shifted and deformed to be
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“glued” with the lower levels and to emphasize the contradiction between the
two sources.

Similarly, our generalized disjunction Δ-cuts (μ1 � μ2)α is defined as

[WαμαlO + (1−Wα)μαlI , W
αμαrO + (1−Wα)μαrI ] (15)

with weights

Wα =
1 + (1−α) Πα

Δα

2
. (16)

We have already underlined that the main goal of the averaging operators � and
� is to deform usual fuzzy arithmetic mean toward min and max connectives,
respectively. This realizes by the inter-change in equations (11) and (15) among
the extremes. In fact in (11) weights wlα and wrα deform the results toward
the “inner” part, through (12), until there is an overlap between the Δ-cuts,
and abroad from it, through (13,14), otherwise. On the contrary in (15) weights
Wα always deform the average towards the “outer” part, as much as there is
“contradiction” between the two memberships. Other properties of � and � are
the closure (both averages of two fuzzy numbers produce a fuzzy number), the
idempotence and the symmetry. It is easy to find examples of non-associativity of
� and �, but virtually no averaging operation is associative because it is known
[10] that the only associative averaging operations are of the form median.

4 Applied Example

As already stressed in the Introduction, the proposed weighted averages � and
� were motivated by the need left unresolved in [2] of an implicit assessment
of fuzzy volatility in the Black and Scholes environment based on two different
estimators σ̂ and σ, and on different simulating models for searched parameter
σ. In particular, for each estimator, different scenarios are considered on the
base of historical data and experts evaluations. For each scenario it was pos-
sible to build a pseudo-membership for the considered estimator by coherent
extension of a-priori information and likelihood values stemming from specific
simulation distribution of the unknown parameter. At the end, observed values
of the estimators permitted to select most plausible scenarios, that could be a
single one if there were sure dominance of one scenario over the others, or more
than one if dominance was partial. For each scenario a probability-possibility
transformation of the associated simulating distributions gave as results differ-
ent membership functions. The adopted simulating distributions for σ were the
uniform, the log-normal and the gamma densities, with parameters determined
by the different scenarios characteristics. Hence, we have to face several merg-
ing requirements: among memberships associated to different selected scenarios,
among memberships stemming from different simulating functions and between
memberships associated to the two different estimators σ̂ and σ.
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4.1 Elicitation of Fuzzy Volatility

As preliminary illustrative results let us show a prototypical situation (corre-
sponding to “Case 2” in [2]) where for at least one estimator there is more
than one plausible scenario and different simulating models produce quite dif-
ferent outputs, though at the end the two sources give quite agreeing results. In
particular, for such “Case 2”, associated to σ̂obs = 0.16 the Log-Normal simu-
lating model furnished two alternative scenarios (the “medium” or the “high”)
among the five considered, while the other two models agreed in selecting only
the “medium” one. Here, by transforming the three simulating distributions we
obtain the memberships reported in Fig.2 (a) where for the Log-Normal the
two alternative memberships has been already merged through (15). About the

Fig. 2.Membership functions for Case 2 representing scenarios stemming from diffierent
simulating distributions, as selected by σ̂obs = 0.16 (a) or by νobs = 0.19 (b)

other estimator σ, its observed value σobs = 0.19 always led to the selection of
the “medium” scenario, obtaining the three memberships plotted in Fig.2 (b).

Since the simulating models are alternative, for both groups we can apply
level-wise the weighted average (15) just between the two most contradictory
memberships, since the third remains fully covered by the others. At this point we
have two fuzzy numbers representative of the two sources μψ̂obs

and μδobs which
can be merged in a conjunctive way obtaining the final result μψ = μψ̂obs

� μδobs
reported in Fig.3.

4.2 From Elicitation of the Fuzzy Volatility to Fuzzy Option Pricing

It is well known that under the assumptions in Black and Scholes ([1]), a closed
formula is available for the price of European Call Options, given by

C(t, S, r, σ,K, T ) = SN(d1)− e−r(T−t)KN(d2), (17)

with

d1 =
log(S/K) + (r + ψ2

2 )(T − t)
σ
√
T − t

and d2 = d1 − σ
√
T − t, (18)
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Fig. 3. Final membership function (solid) for σ in Case 2 obtained as μσ = μσ̂obs
�μνobs

of the information coming from σ̂ (dotted) and ν (dashed-dotted). Arithmetic mean
(grey dashed) has been also reported for comparison.

where K,T are the strike price and the maturity of the Option, respectively, S is
the price in t of the underlying asset and r, σ are model parameters representing
the constant risk free continuously compounded rate and the volatility of the
asset, and N(·) is the standard Normal cumulative function. Let us consider
function C as a function of the volatility parameter only, assuming the other
inputs as constant values i.e. c = C(t, S, r, σ,K, T ) = C(σ). Assuming that
parameter σ is modeled as a a fuzzy number σ̃, it is possible to detect the
propagation of uncertainty from the volatility parameter to the option price by
defining the fuzzy extension c̃ = C(σ̃) of c = C(σ); if the volatility σ is a fuzzy
number σ̃ described through its Δ-cuts [σ̃αl , σ̃

α
r ], for each level Δ, then the option

price c is still a fuzzy number c̃, also described by its Δ-cuts [c̃αl , c̃
α
r ]. To obtain the

fuzzy extension of C to normal upper semi-continuous fuzzy intervals one may
apply the methodology as in [14], based on the solution of the box-constrained
optimization problems {

c̃αl = min {C(σ)|σ ∈ [σ̃αl , σ̃
α
r ]}

c̃αr = max {C(σ)|σ ∈ [σ̃αl , σ̃
α
r ]} .

(19)

Since C is a strictly increasing function in σ we easily obtain{
c̃αl = C(σ̃αl )
c̃αr = C(σ̃αr ).

(20)

4.3 Empirical Application

According to the fuzzy number obtained by suitably merging information on
volatility as in Subsection 4.1, we compute the corresponding fuzzy option prices
for SPX options written on the S&P500 Index. We considered options traded on
October 21st, 2010: a maximum of 50 strike prices were available (for the one-
month to maturity options) as well as 11 different expiration dates for a total
of 168 options. The underlying price on October, 21st 2010 was S=1180.26. In
order to asses the empirical significance of fuzzy option prices computed via our
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approach we need a proper comparison with the market bid and ask prices for
the corresponding options. Besides, a selection criteria is needed to identify a set
of more representative options on which to base our empirical exercise; it is well
known that the more an option is traded the more its price may be interpreted
as as an equilibrium price between supply and demand. For this reason, we
compute, for each expiration date available, the mean trading volume obtained
as the ratio of the total trading volume on options with that maturity and the
total number of options with that maturity. We select, this way, 37 options.

To the end of comparing fuzzy option prices to market prices, we compute a
suitably defined measure of fuzzy distances between the Black and Scholes fuzzy
prices and the market bid-ask prices thought as crisp intervals, where the prices
can be located with a step membership function with value 1 in the bid-ask
interval and value 0 otherwise. For such purpose we consider two different fuzzy
distance measures:

(a) the well known modified Bhattacharyya distance (see e.g. [18]) and
(b) the usual fuzzy similarity defined through min as t-norm and max as t-

conorm (obtained also in [16] as special case of general similarities based on
coherent conditional probabilities).

Further, to evaluate the added value of our merging approach with respect to
usual fuzzy merging, we compute the distance/similarity measures also for the
fuzzy option prices obtained applying the extension principle in the case when
the fuzzy volatility parameter is modeled as the fuzzy arithmetic mean between
memberships of σ̂ and σ (see a comparison of the two pricing techniques in
Fig. 4). In 24 cases out of 37 the distance (a) is smaller for the fuzzy option
prices obtained by our proper merging rather than by fuzzy arithmetic mean
(see Fig. 5 (a)). Consistent results are obtained through the computation of the
fuzzy similarity (b) which is larger for our fuzzy merging in 23 out of 24 cases
above (see Fig. 5 (b)).

Fig. 4. Memberships of the SPX option price consequent of fuzzy volatility obtained
by our merging (a) or by fuzzy arithmetic mean (b) of σ̂ and ν; both for T=30 days
and K=1150 and compared to the Bid-Ask crisp interval
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Fig. 5. Bhattacharyya distances (a) and fuzzy similarities (b) between the Bid Ask
crisp intervals and Fuzzy Option Prices obtained by our merging (black) or through
the fuzzy arithmetic mean (grey)

5 Conclusion

We have illustrated a preliminary study of two weighted averages between mem-
bership functions that try to encompass in the usual fuzzy arithmetic mean the
agreement or the contradiction of two heterogeneous sources of information. For-
mal properties of the two proposed operators � and � must be fully investigated
and practical consequences fully analyzed. Anyhow the first empirical results we
have shown here seem to be promising, in particular with respect to the applica-
bility in very different situations and the capability of conciliating quite different
information.
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Abstract. This paper focuses on the extension of Analytical Hierarchy Process 
under Group Decision Making (AHP-GDM) with some induced aggregation 
operators. This extension generalizes the aggregation process used in AHP-
GDM by allowing more flexibility in the specific problem under consideration. 
The Induced Ordered Weighted Average (IOWA) operator is a promising tool 
for decision making with the ability to reflect the complex attitudinal character 
of decision makers. The Maximum Entropy OWA (MEOWA) which is based 
on the maximum entropy principle and the level of ‘orness’ is a systematic way 
to derive weights for decision analysis. In this paper, the focus is given on the 
integration of some induced aggregation operators with the AHP-GDM based-
MEOWA as an extension model. An illustrative example is presented to show 
the results obtained with different types of aggregation operators.   

Keywords: AHP-GDM, Maximum Entropy OWA, Induced Generalized OWA. 

1 Introduction 

Multiple Criteria Decision Making (MCDM) is one of the active topics in Operations 
Research. In general, MCDM can be considered as a process of selecting one alterna-
tive from a set of discrete alternatives with respect to several criteria. One of the most 
widely used MCDM techniques is the Analytic Hierarchy Process (AHP), which was 
proposed by Saaty (Saaty, 1977). The AHP is based on the judgment of problems 
with multiple criteria by means of the construction of a ratio scale corresponding to 
the priorities of alternatives. Since its introduction, AHP has been used in many appli-
cations. More details on the analysis and review of AHP and its applications can be 
referred for instance in (Vaidya and Kumar, 2006; Saaty, 2013). In order to deal with 
complex decision making problems involving multiple experts’ assessments, the AHP 
has been extended to AHP-Group Decision Making (AHP-GDM) model. Escobar and 
Moreno-Jimerez (2007) and Gargallo et al. (2007) for example, have modified the 
conventional AHP method to AHP-GDM and showed the effectiveness and reliability 
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of the model. The AHP are popularly used in applications due to some advantages, 
include a hierarchy structure by reducing multiple criteria into a pairwise comparison 
method for individual or group decision making and it allows the use of quantitative 
and qualitative information in evaluation process. 

The Ordered Weighted Average (OWA) on the other hand is a family of aggrega-
tion procedures and was developed by Yager (Yager, 1988). The OWA operators are 
introduced to provide a parameterized class of mean-type aggregation operators. 
These include a family of aggregation operators that lie between the ‘and’ (min) and 
the ‘or’ (max), and a unified framework for decision making under uncertainty. Sub-
sequently, Yager (2004) generalizes the OWA operator by combining it with other 
mean operators and called it the Generalized OWA (GOWA). This includes a wide 
range of mean operators, such as the OWA, Ordered Weighted Geometric Average 
(OWGA), Ordered Weighted Harmonic Average (OWHA) and Ordered Weighted 
Quadratic Average (OWQA) operators. The Induced OWA (IOWA) is another exten-
sion of the OWA operator. Yager and Filev (1999) inspired by the work of (Mitchell 
and Estrakh, 1997) have introduced the IOWA operator as a general type of aggrega-
tion. The main difference between OWA and IOWA is in the reordering step. Instead 
of directly order the argument values as in OWA operator, the IOWA operator utilizes 
another mechanism called induced variables as a pair of argument values, in which  
it uses a first component to induce the argument values of a second component. The 
advantage of IOWA is the ability to consider complex attitudinal character of  
the decision makers that provide a complex picture of the decision making process. 
The IOWA operator has been studied by a lot of authors in recent years, see for  
example (Chiclana et al. 2004; Xu, 2006; Merigo and Casanovas, 2011).  

Recently, much attention has been given on the integration of AHP with OWA op-
erator (i.e., concentrated on aggregation process) as inspired by the work of (Yager 
and Kelman, 1999). At first, Yager and Kelman (1999) have proposed the extension 
of AHP using OWA operator with fuzzy linguistic quantifier. This approach genera-
lizes the weighted average normally used in AHP to OWA based linguistic quantifier. 
In addition to OWA based fuzzy linguistic quantifier technique, the Maximum Entro-
py OWA (MEOWA) operator has been proposed to be used in decision making anal-
ysis. O’ Hagan (1988, 1990) has developed a maximum entropy approach, which 
formulates the problem as a constraint nonlinear optimization model with a prede-
fined degree of orness as constraint and entropy as objective function, and used it to 
determine OWA weights. Subsequently, Filev and Yager (1995) have examined the 
analytical properties of MEOWA operators and proposed the analytic approach of 
MEOWA operator. Since that the MEOWA has been used in many applications, in-
clude in MCDM area (Yager, 2009; Ahn, 2011).  

In this paper, the focus is given on the integration of induced aggregation operators 
with MEOWA weights in AHP-GDM as an extension model. The reason for doing 
this is because there are situations in which it is necessary to aggregate the variables 
with an inducing order instead of aggregating with the conventional OWA operator. 
For example, such a method is useful when the attitudinal character of the decision 
maker is particularly complex or when there are a number of external factors (i.e., 
personal effects on each alternative) affecting the decision analysis. The general 
framework model for AHP-GDM which include different types of aggregation opera-
tors is proposed. The main advantage of this approach is the possibility of considering 
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a wide range of induced aggregation operators. Therefore, the decision makers get a 
more complete view of the problem and able to select the alternative that it is in ac-
cordance with their interests. These problems are studied in detail by conducting an 
extensive analysis of some families of induced aggregation operators. 

The remainder of this paper is organized as follows. In Section 2, the different 
types of aggregation operators are reviewed in general. Section 3 briefly discusses the 
AHP method. Section 4 examines the MEOWA technique. In section 5, the process of 
using the IGOWA operators in AHP-GDM is discussed. Section 6 provides an illustr-
ative example of the developed method and Section 7, the conclusions of the paper. 

2 Preliminaries  

In the following, the basic aggregation operators that are used in this paper are briefly 
discussed. 

Definition 1 (Yager, 1988). An OWA operator of dimension  is a mapping :  that has an associated weighting vector  of dimension  such that ∑ 1 and 0,1 , then: 

 , , … , ∑  (1) 

where  is the th largest  and  is the set of positive real numbers. 

Definition 2 (Yager and Filev, 1999). An IOWA operator of dimension  is a map-
ping :  that has an associated weighting vector  of dimension  
such that ∑ 1 and 0,1 , then: 

 , , , , … , , ∑  (2) 

where  is the  value of the IOWA pair ,  having the th largest ,  is 
the order-inducing variable and  is the argument variable. Note that, in case of 
‘ties’ between argument values, the policy proposed by Yager and Filev (1999) will 
be implemented, in which each argument of tied IOWA pair is replaced by their aver-
age. 

Definition 3 (Merigo and Gil-Lafuente, 2009). An IGOWA operator of dimension  
is a mapping :  that has an associated weighting vector  of dimen-
sion  such that  ∑ 1  and  0,1 , then: 

 , , , , … , , ∑ ⁄
 (3) 

where  is the  value of the IGOWA pair   having the th largest ,    
is the  order inducing variable,  is the argument variable and  is a parameter  
such that ∞, ∞ . With different values of  , various type of weighted average 
can be derived. For instance, when 1 , IOWHA operator can be derived,  
when 2 , the IOWQA operator is derived. The OWA, the IOWA, and the 
IGOWA operators are all commutative, monotonic, bounded and idempotent. 
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3 The Analytical Hierarchy Process Method 

The AHP is introduced based on the weighted average model for complex decision 
making problems (Saaty, 1977; Saaty, 2013) or also known as multiplicative prefe-
rence relation. The AHP can be divided into three major steps; developing the AHP 
hierarchy, pairwise comparison of elements of the hierarchical structure and con-
structing an overall priority rating. Specifically, the pairwise comparison matrix for 
each level has the following form: Let   where  is pairwise compar-
ison rating for components i and components j ( , 1,2, … , . The matrix  is 
reciprocal, such that  for  and all its diagonal elements are unity, 1, . In order to measure the degree of consistency, calculate the consis-
tency index (CI) as follows:  

  (4) 

where  is the biggest eigenvalue that can be obtained once we have its asso-
ciated eigenvector and  is the number of columns of matrix . Further, we can 
calculate the consistency ratio (CR), which is defined as follows: 

  (5) 

where RI is the random index, the consistency index of a randomly generated pairwise 
comparison matrix. It can be shown that RI depends on the number of elements being 
compared. The table for RI can be referred in Saaty (1977). The consistency ratio 
(CR) is designed in such a way that if  0.10 then the ratio indicates a reasona-
ble level of consistency in the pairwise comparison.  

For the given hierarchical structure, the overall evaluation score,  of the ith al-
ternative is calculated as follows:  ∑ . The performance of alter-
natives  with respect to criteria  is described by a set of criteria values  

; 0,1  for 1,2, … ,  and 1,2, … , . The evaluation process in the 
AHP uses a simple weighted linear combination to calculate the local scores of each 
alternative. 

4 Maximum Entropy OWA 

Various approaches have been suggested for obtaining the weights in decision making 
process. Motivated by the maximum entropy principle, O’Hagan (1988, 1990) has 
developed a way to generate OWA weights by maximizing the entropy which subject 
to the weight constraint and the value of the attitudinal character (or degree of orness). 
The methodology is based on the mathematical programming problem and have come 
to be known as the Maximum Entropy OWA weights. It can be noticed that MEOWA 
weights used to spread the weights as uniformly as possible and at the same time  
satisfying the attitudinal character. 
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Filev and Yager (1995) obtained an analytic solution for the determination of the 
MEOWA weights. In particular, the authors showed that the MEOWA weights for an 
aggregation of degree n can be expressed as: 

 
⁄∑ ⁄ , 1,2, … ,  (6) 

where ∞, ∞  is a parameter dependent upon the value , which is desired 
attitudinal character. Specifically, they showed that 1 ln , where  
as a positive solution of the equation ∑ 1⁄ 0.  

In what follows, the MEOWA weight will be used to be integrated with AHP-
GDM in the next section. In this case, the value  is computed based on the weight 
of AHP pairwise comparison (criteria weight or relative importance of criteria). The 
attitude of expert in differentiate each criterion under consideration determine the 
degree of orness. Then, based on the degree of orness, MEOWA weight, or defined as 
ordered weight can be calculated. 

5 An Extension of the AHP-Group Decision Making Method 

In this section, an extension of the AHP method under group decision making is pre-
sented. In what follows, the proposed method is represented step by step as in the 
consequence algorithm. Assume , , 1,2, … ,  comprise a finite set of 
alternatives. Let , , 1,2, … ,  and , , 1,2, … , ;  1,2, … ,  are the criteria and sub-criteria under consideration, respectively. Then, let 

, ( , 1,2, … , , be a group of experts, with each expert  presenting 
his/her preferences or opinions for rating the alternatives , and weighting the crite-
ria  (or sub-criteria ). Based on the above concepts, the algorithm for the 
IGOWA AHP-GDM consists of the following steps. 

Step 1: Each decision maker or expert ( , 1,2, … , , compares the  alter-
natives , 1,2, … ,  and provides a pairwise comparison matrix: 

  , , 1,2, … ,  (7) 

with ( , 1) and , . Then, the alternatives values  
for each expert  can be calculated as follow:  

 ∑ ∑ ∑ , , 1,2, … ,  (8) 

Step 2: Compute the judgment matrix for a group of experts . Consider Θ  as 
the weight that the th expert , 1,2, … ,  has in forming the group decision  Θ 0; ∑ Θ 1 . 

 ∏ , 1,2, … ,  (9) 
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Step 3: Calculate the pairwise comparison matrix for the criteria , ,1,2, … ,  and sub-criteria ,  , 1,2, … , ; 1,2, … , . Then derive the 

criteria weights  and sub-criteria weights  using the same formulation as for 
alternatives, equations (8) and (9).  

Step 4: Calculate the composite weights of the criteria  and sub-criteria . 

  (10) 

Step 5: Compute the orness value  using the Maximum Entropy OWA to 
calculate the ordered weight, . 

 ∑ 1⁄  (11) 

where  is the reordered th criteria weight,  (or composite weight) associated 

with . 
Step 6: Find a positive solution  of the algebraic equation.  

 ∑ 1⁄ 0 (12) 

Step 7: Compute the ordered weight  using the equation (6), where 0 1 
and ∑ 1. 

Step 8: Finally, the overall score  of the ith alternative is defined as the 
summation of the product of weight of each criterion by the performance of the alter-
native with respect to that criterion, 

  ∑  (13) 

where  is the  value of the OWA pair ,  having the th largest  of 

the order-inducing variable, and  is the argument variable. Besides,  is the 
ordered weight based on Maximum Entropy OWA and  is a parameter such that ∞, ∞ , with different values of   reflect various types of weighted average.  

Note that, when , the IGOWA-AHP-GDM turn to GOWA-AHP-GDM. 

Similarly, when  values are not arranged using OWA function, then the method 
turn to conventional AHP-GDM. 

6 Illustrative Example 

An illustrative example is given to implement the methodologies discussed in the 
previous sections. For this purpose, let consider an investment selection problem 
where a company is looking for an optimal investment. There are five possible alter-
natives to be considered as follows:  is a computer company;  is a chemical 
company;  is a food company;  is a car company;  is a TV company.  

In order to evaluate these alternatives, a group of experts must make a decision 
according to the following four attributes:  = risk analysis;  = growth analysis; 

 = social-political impact analysis; and  = environmental impact analysis.  
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In this case, assume that three experts involved and the weight vector for the experts is Θ 0.5,0.3,0.2 , 1,2,3. Due to the fact that the attitudinal character is very 
complex because it involves the opinion of different members of the board of directors, 
the experts use order inducing variables to represent it as shown in Table 1. 

Table 1. Inducing variables 

    

 25 18 24 16 
 12 34 18 22 
 22 13 28 21 
 31 24 14 20 
 30 25 23 16 

First, let all the experts agreed to provide pairwise comparison of criteria as shown 
in Table 2. In this case, no sub-criteria considered. Hence, based on criteria weight 
technique, the weight for each criterion can be derived and consistency ratio is then 
computed to check the consistency of pairwise comparison.     

Table 2. Pairwise comparison matrix and the weight ratio of criteria 

    

 1 0.5 2 4 0.3111 CR=0.036 

 2 1 2 3 0.4064 

 0.5 0.5 1 2 0.1824  
 0.25 0.3333 0.5 1 0.1001  

Subsequently, the weights  are proceed to be calculated with the MEOWA. The 
results of this weight are presented in Table 3, where α is the measure of orness,  is 
the positive solution of algebraic equation, is the value that relates to the weights 
and the measure of orness, and  is the weight of MEOWA. 

Table 3. The α, ,  values of criteria weights and MEOWA weights  

α   

 0.5682 1.1793 0.4948 0.3148 0.2669 0.2263 0.1919 

 0.5339 1.0849 0.2445 0.2813 0.2593 0.2390 0.2203 

 0.4232 0.8301 -0.5586 0.1850 0.2229 0.2685 0.3235 

 0.6154 1.3275 0.8499 0.3639 0.2741 0.2065 0.1555 

 0.6429 1.4262 1.0650 0.3941 0.2763 0.1937 0.1358 
 
Next, each expert provides rating (or pairwise comparison) for all alternatives with 

respect to each criterion in order to get relative performance of alternatives in specific 
criterion. The results of standardized performance of each expert are shown in Tables 
4, 5 and 6, respectively. 
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Table 4. Standardized performance ratings of Expert 1 

     
 0.1866 0.2412 0.2618 0.2571 
 0.3069 0.1353 0.0892 0.0881 
 0.0573 0.0743 0.1528 0.1539 
 0.3069 0.1353 0.0526 0.4129 
 0.1422 0.4137 0.4436 0.0881 

Table 5. Standardized performance ratings of Expert 2 

     
 0.0881 0.1618 0.0604 0.0890 
 0.4129 0.2760 0.1382 0.1579 
 0.0881 0.1054 0.3972 0.2976 
 0.2571 0.0596 0.0954 0.2976 
 0.1539 0.3971 0.3088 0.1579 

Table 6. Standardized performance ratings of Expert 3 

   
 0.0890 0.1042 0.0743 0.0986 
 0.2976 0.3902 0.1353 0.1611 
 0.1579 0.0588 0.2412 0.4162 
 0.2976 0.1505 0.1353 0.0624 
 0.1579 0.2962 0.4137 0.2618 

 
Then, the results for each expert can be aggregated to form a matrix for group con-

sensus. Table 7 presented the aggregated performance of experts. 

Table 7. Aggregated performance of experts 

    
 0.1285 0.1809 0.1311 0.1544 
 0.3334 0.2071 0.1105 0.1184 
 0.0798 0.0788 0.2230 0.2288 
 0.2893 0.1081 0.0760 0.2565 
 0.1487 0.3823 0.3924 0.1305 

 
Finally, the overall score  of each alternative ith is derived as the summation 

of the product of MEOWA weights by the aggregated performance of experts. With 
this information, different results are obtained using different types of IGOWA opera-
tors. The final results of the aggregation process with different operators are shown in 
Tables 8 and 9. Meanwhile the ordering of investments is shown in Table 10. 
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Table 8. Aggregated results 1 

AM WA OWA OWHA OWQA IOWA 
0.149 0.147 0.151 0.148 0.152 0.146 
0.192 0.226 0.220 0.180 0.239 0.189 
0.153 0.128 0.122 0.098 0.139 0.146 
0.182 0.193 0.186 0.137 0.207 0.200 
0.263 0.258 0.281 0.219 0.307 0.258 

Table 9. Aggregated results 2 

IOWHA IOWQA GM WG OWG IOWG 
0.143 0.148 0.147 0.145 0.139 0.145 
0.157 0.208 0.173 0.205 0.199 0.171 
0.112 0.163 0.134 0.112 0.108 0.128 
0.150 0.219 0.157 0.167 0.160 0.175 
0.204 0.285 0.232 0.229 0.250 0.229 

Table 10. Ranking of the investments 

 Ranking  Ranking 
AM  IOWHA  
WA  IOWQA  

OWA  GM  
OWHA  WG  
OWQA  OWG  
IOWA  IOWG  

7 Conclusions 

This paper has presented an extension of the Analytical Hierarchy Process method 
under Group Decision Making (AHP-GDM) with some induced aggregation opera-
tors. The Maximum Entropy OWA (MEOWA) has been proposed to derive weights 
in the AHP-GDM model. First, some modifications have been made to generalize the 
aggregation process used in AHP-GDM with some Induced Generalized Ordered 
Weighted Average (IGOWA) operators. The main advantages of this approach are  
the ability to deal with the complex attitudinal character of the decision makers and 
the aggregation of the information with a particular reordering process. Therefore, the 
decision makers get a more complete view of the problem and able to select the alter-
native that it is in accordance with their interests. The procedure of the AHP-GDM 
method with IGOWA operators has been discussed in detail. A numerical example on 
investment selection problem has been given to exemplify the feasibility of the pro-
posed method. The comparison of some induced aggregation operators has also been 
made. 
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Calibration of Utility Function

and Mixture Premium

Jana Špirková

Faculty of Economics, Matej Bel University,
Tajovského 10, 975 90 Banská Bystrica, Slovakia

Abstract. Calibration of the diffierent types of utility functions of money
is discussed in this paper. This calibration is based on an expected utility
maximization of diffierent alternatives of investment strategies which are
offiered to persons in a short questionnaire. Investigated utility functions
have diffierent Arrow-Pratt absolute and relative risk aversion coeffcients.
Moreover, the paper proposes a basic concept of uncertainty modeling
by the chosen utility functions for the determination of so-called maxi-
mum mixture premium in non-life insurance. This concept is based on
aggregation of maximum premiums by so-called mixture function with
the selected weighting function. A case study is included.

Keywords: utility, calibration, risk aversion, mixture premium.

1 Introduction

The aim of this paper is to propose a new possibility of determining the maximum
gross annual premium in non-life insurance. The paper focuses on the modeling
of uncertainty by calibration of two chosen personal utility functions of money,
by expected utility maximization and by aggregation. More precisely, the paper
proposes a model for determination of maximum premium acceptable for both
the insured and the insurer.

Uncertainty modeling analysis investigates the uncertainty of variables that
are used in decision-making problems. In other words, uncertainty analysis aims
to make a technical contribution to decision-making through the quantification
of uncertainties in the relevant variables. Utility function may be used as a
basis to describe individual approaches to risk. In general, there are three basic
approaches to risk. Two of them refer to risk loving and risk averse, which are
accepted only in gambling. And the third one, risk-neutral, is between these
two extremes. Risk-neutral behavior is typical of persons who are enormously
wealthy. Many people may be both risk averse and risk loving, depending on the
range of monetary values being considered.

A more modern approach of the utility theory was advanced by John von
Neumann and Oskar Morgenstern in 1947 in their book Theory of Games and
Economic Behavior [11]. In 2007, the 60th-anniversary edition of this book was
published [12]. These authors proposed that a utility function may be tailored for
any individual, under certain conditions. These conditions provide several valid,

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 486–495, 2014.
c© Springer International Publishing Switzerland 2014



Calibration of Utility Function and Mixture Premium 487

basic shapes for the utility function. We can find a very interesting approach
about utility functions in [8], [9], [13] and [15].

Our paper has 5 sections. In Section 2, we give preliminaries of basic properties
of utility functions. Moreover, we mention possibilities of averaging aggregation
by so-called mixture operators (mixture functions). In Section 3, we give a pos-
sible way of calibration of utility functions by a short personal questionnaire
and by the criterion of expected utility maximization. Section 4 represents a
case study - the application of calibrated utility functions on modeling of maxi-
mum premium in non-life insurance. Moreover, it contains a concept of so-called
mixture premium, which represents suitable aggregation of multiple premium
values determined on the basis of calibrated utility functions, that means on the
basis of different approaches to risk. Finally, Section 5 contains conclusions and
indications of our next investigation of the mentioned topic.

2 Preliminaries

This paper focuses on two selected utility functions with different properties,
specifically, with different absolute and relative risk aversion coefficients, and
moreover, with different values of expected utilities in sign. At the beginning,
we give the basic properties of these functions.

2.1 Utility Function and Expected Utility

The first investigated utility function is exponential and it is given by

u(x) =
1

Δ
·
(
1− exp−α·x) if Δ > 0. (1)

The second one is a power function and it can be written as follows:

u(x) =
x1−α

1− Δ if Δ > 1. (2)

Both above-mentioned functions represent a standard class of utility functions,
but with different properties regarding Arrow-Pratt absolute and relative risk
aversion coefficients. While the function (1) has a constant absolute risk aversion
coefficient (ARA)

ARA(x)exp = −u
′′(x)

u′(x)
= Δ, (3)

the function (2) has not, and it is given as follows

ARA(x)power =
Δ

x
. (4)

The function (1) is characterized by a relative risk aversion coefficient (RRA)

RRA(x)exp = −x · u
′′(x)

u′(x)
= x · Δ, (5)
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while the function (2) by a constant, and it is given by

RRA(x)power = Δ. (6)

The well-known theorem below describes properties of the utility function and
its expected utility. It can written as follows.

Theorem 1. (Jensen’s inequality) [13] Let X be a random variable (with a finite
expectation). Then,
if u(x) is concave,

E [u (X)] ≤ u (E [X ]) . (7)

If u(x) is convex,
E [u (X)] ≥ u (E [X ]) . (8)

Equality holds if and only if u (x) is linear according to X or var (X) = 0.

2.2 Expected Utility Maximization

Expected utility is calculated by the well-known formula

E [u (X)] =

n∑
i=1

u(xi) · pi, (9)

where X = (x1, x2, . . . , xn) is a vector of the possible alternatives and pi is the
probability of alternative xi , i = 1, 2, · · · , n.

The criterion of expected utility maximization corresponds to the preference
order !, for which

X ! Y ≡ E [u(X)] ! E [u(Y )] (10)

for a utility function u. The relation (10) means that among two random variables
X, Y we prefer the random variable with the larger expected utility. If u(x) is
non-decreasing, the rule (10) is monotone. The investor who follows (10) is called
an expected utility maximizer.

2.3 Mixture Function

In many applications we can meet with averaging aggregation of a set of inputs
into one representative value. There is a growing interest in aggregation func-
tions, which include, under certain conditions, also mixture functions. Books [2]
and [7] bring an overview of almost all aggregation methods.

The application in this paper focuses on aggregation of selected maximum
premiums by a mixture function. We stress that the weights of this function are
functions of input values.

Let [a, b] ⊂ R be a closed non-trivial interval and x = (x1, x2, · · · , xn) be an
input vector. Then, the mixture function can be defined as follows.
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Definition 1. The mapping Mg : [a, b]n → [a, b] with a weighting differentiable
function g : [a, b]

n → [0, ∞[ given by

Mg(x1, . . . , xn) =

n∑
i=1

g(xi) · xi
n∑

i=1

g(xi)
(11)

is called a mixture operator.

We have to emphasize that in general, mixture functions need not be mono-
tone non-decreasing (monotone non-decreasingness is one of basic properties of
aggregation functions). There exist sufficient conditions for their monotonicity.
For the purposes of our paper, we give here only two sufficient conditions for
non-decreasingness of a mixture function with non-increasing weighting function
g which are given by g(x) + g′(x) ≥ 0 or g(x) + g′(x) · x ≥ 0 . Other sufficient
conditions can be found, for example in [7] or [14].

3 Calibration of Utility Function

The selected utility functions (1) and (2) which are mentioned in Section 2, are
created by the coefficient Δ, which in general represents the approach to risk. For
the purpose of calibration of the mentioned utility functions we have designed
the following questionnaire because it is very clear and time-saving, [10].
Suppose that you are going to invest 17,000 euros and you have a choice between
four different investment strategies for a three-year investment. Which of these
alternatives would you prefer?

– Alternative A1: in the best case profit 1,700 euros (10.00%)1, in the worst
case profit 550 euros (3.24%).

– Alternative A2: in the best case profit 2,600euros (15.29%), in the worst case
zero profit (but no loss), (0.00%).

– Alternative A3: in the best case profit 4,000 euros (23.53%), in the worst
case loss 1,700 euros (-10.00%).

– Alternative A4: in the best case profit 6,500 euros (38.53%), in the worst
case loss 4,000 euros (-23.53%).

Respondents have chosen one of the previous alternatives. It is apparent that
individual alternatives are put in order, so that the first alternative is of the low-
est risk and the fourth alternative is of the highest risk. We evaluated expected
utilities for all alternatives and for some selected risk aversion coefficients Δ in
the utility functions (1) and (2). On the basis of the equation (9) we evaluated
expected utilities and determined maximal expected utilities by

E[u(x)] = p · u(x1) + (1 − p) · u(x2)→ max (12)

1 Percentage of possible profit or loss sequentially in all alternatives.
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for all alternatives on the level of all used Δ. Our results are written in Tab. 1
and Tab. 2. Observe, that all values - the best and the worst cases we divided
by 10, 000 for easier evaluation with respect to suitable decimal places.

Tab. 1 and Tab. 2 show the expected utilities with respect to each alternative
and coefficient Δ. It is obvious the expected utilities depend on the probability
of occurence of the best case x1 or the worst case x2. For each Δ, we look for
an alternative with the maximum expected utility. For each alternative, there is
a set of Δs. From this set we take the Δ with the highest expected utility. For
alternatives A2, A3 and A4, we set the probability at p = 0.20 and 1− p = 0.80,
respectively. If we set the same probability for alternative A1, we would obtain
an empty set of Δs. In order to show the essence of our calibration, for A1 we
have chosen the probability p = 0.99 and 1 − p = 0.01. The results in Tab. 1
show that the maximum expected utilities are sequential with Δ = 6, 3, 2, 1.
This means that the respondent who chooses alternative A1 has utility function
u1(x) =

1
6 ·
(
1− exp−6x

)
. Another respondent who will choose the alternative A2

has the utility function u2(x) =
1
3 ·

(
1− exp−3x

)
, for alternative A3, the utility

function is given by u3(x) =
1
2 ·
(
1− exp−2x

)
, and finally, for alternative A4 the

utility function is given by u4(x) = 1− exp−x.

Table 1. Expected utilities of individual alternatives w.r.t. α and (1)

Alternative A1 A2 A3 A4

the best case x1 1.87 1.96 2.10 2.35
the worst case x2 1.75 1.70 1.53 1.30
probability p 0.99 0.80 0.80 0.80

probability (1− p) 0.01 0.20 0.20 0.20
Expected utilities

α = 1 0.4568851 0.8507766 0.8587277 0.8691983
α = 2 0.8809222 0.4887262 0.4893129 0.4889345
α = 3 0.3321079 0.3321816 0.3321668 0,3317526
α = 4 0.2498581 0.2498656 0.2498451 0.2497076
α = 5 0.1999825 0.1999829 0.1999766 0.1999386
α = 6 0.1666644 0.1666644 0.1666629 0.1666530
α = 7 0.1428568 0.1428568 0.1428565 0.1428539
α = 8 0.1249999 0.1249999 0.1249999 0.1249992
α = 9 0.1111111 0.1111111 0.1111111 0.1111109
α = 10 0.0999999 0.0999999 0.0999999 0.0999999
α = 11 0.0909091 0.0909091 0.0909091 0.0909091
α = 12 0.0833333 0.0833333 0.0833333 0.0833333

Source: own construction

Tab. 2 gives expected utilities calculated by power function (2). The respon-
dent who has chosen alternative A1 has the utility function with risk aversion
coefficient Δ = 12, hence his/her utility function is given by u(x) = −1

11·x11 ; the
respondent who has chosen alternative A2 will have Δ = 10 and the correspond-
ing utility function u(x) = −1

9·x9 ; the respondent who has chosen alternative A3
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Table 2. Expected utilities of individual alternatives w.r.t. α and (2)

Alternative A1 A2 A3 A4

the best case x1 1.87 1.96 2.10 2.35
the worst case x2 1.75 1.70 1.53 1.30
probability p 0.99 0.80 0.80 0.80

probability (1− p) 0.01 0.20 0.20 0.20
Expected utilities

α = 2 -0.5351260 -0.5258103 -0.5116713 -0.4942717
α = 3 -0.1431866 -0.1387254 -0.1334216 -0.1316026
α = 4 -0.0510868 -0.0489855 -0.0474083 -0.0508922
α = 5 -0.0205064 -0.0195385 -0.0194081 -0.0240641
α = 6 -0.0087806 -0.0083486 -0.0086885 -0.0130056
α = 7 -0.0039166 -0.0037327 -0.0041531 -0.0076975
α = 8 -0.0017970 -0.0017247 -0.0020903 -0.0048420
α = 9 -0.0008417 -0.0008175 -0.0010969 -0.0031722
α = 10 -0.0004006 -0.0003956 -0.0005955 -0.0021362
α = 11 -0.0001930 -0.0001948 -0.0003324 -0.0014663
α = 12 -0.0000939 -0.0000974 -0.0001898 -0.0010205

Source: own construction

will have Δ = 5, and the corresponding utility function u(x) = −1
4·x4 ; and the re-

spondent who has chosen alternative A4 will have Δ = 3 and the corresponding
utility function u(x) = −1

2·x2 .

4 Personal Utility in Non-Life Insurance

In this section, we propose a model for determining the maximal annual gross
premium in a non-life insurance. We use the utility functions in the shape (1)
and (2).

4.1 Utility of the Insured

In general, our respondent has two alternatives - to buy insurance or not. Suppose
that he/she owns a capital w, which he/she values wealth by the utility function
u. If he/she is insured against a loss X for a gross annual premium GP , he/she
has a certain situation and his/her decision to buy insurance gives him/her the
utility value u (w −GP ). If he/she is not insured, it means an uncertain situation
for insured. In this case, the expected utility is E [u (w −X)]. Based on Jensen’s
inequality (7), we get

E [u (w −X)] ≤ u (E [w −X ]) = u (w − E [X ]) ≤ u (w −GP ) . (13)

Since utility function u is a non-decreasing continuous function, GP ≤ Pmax,
where Pmax denotes the maximum premium to be paid. This so-called zero
utility premium is the solution to the following utility equilibrium equation

E [u (w −X)] = u (w − Pmax) . (14)
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On the basis of individual personal utility functions, we can determine maximum
premium of our respondent - client of an insurance company will be willing to
pay for insurance of his/her wealth on the basis of the following model: our client
has 17,000 euros and he/she wants to insure his/her wealth worth 12,000 euros.
The maximum premium Pmax is calculated by inverse function u−1 to the utility
equilibrium equation (14), which is given by

Pmax = w − u−1 (E [u (w −X)]) . (15)

The previous function gives a maximum premium determined according to the
exponential utility function (1) as follows

Pmax
exp =

ln(1− p∗ + p∗ · exp(Δx))
Δ

, (16)

and according to the power function (2) by

Pmax
power = w −

(
(w −X)1−α · p∗ + w1−α · (1 − p∗)

)1/(1−α)
, (17)

where p∗ is the probability of occurence of insured event. In the case of our
investigated utility functions the resulting values of maximum premiums with
respect to risk aversion coefficients are given in Tab. 3 and Tab. 4, below. The
first column in each table gives the probability of occurence of insured event p∗.

Table 3. Premiums according to utility function (1)

probability p∗ E [X] Pmax
1 Pmax

2 Pmax
3 Pmax

4

α = 6 α = 3 α = 2 α = 1 MPg

0.001 12 1,415.80 116.60 49.87 23.17 53.99
0.002 24 2,170.10 229.25 99.24 46.30 107.31
0.003 36 2,687.48 338.23 148.13 69.36 159.95
0.004 48 3,081.74 443.75 196.55 92.38 211.98
0.005 60 3,400.33 546.04 244.50 115.34 263.40

...
...

...
...

...
...

...
0.900 10,800 11,824.54 11,658.90 11,523.34 11,552.15 11,652.00
1.000 12,000 12,000.00 12,000.00 12,000.00 12,000.00 12,000.00

Source: own construction

Remark 1. Note, that the insured is willing to pay a premium which is of equal
value as the loss. For more information, see for example [4] and [16].

4.2 Mixture Premium

So far, we have examined individual alternatives and premiums only regardless
of the number of respondents. Because we also have at hand a number of re-
spondents who have chosen particular alternatives, we can aggregate maximum
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Table 4. Premiums according to utility function (2)

probability p∗ E [X] Pmax
1 Pmax

2 Pmax
3 Pmax

4

α = 12 α = 10 α = 5 α = 3 MPg

0.001 12 7,632.12 6,247.34 521.16 89.06 332.32
0.002 24 8,203.64 7,035.38 971.11 176.73 638.99
0.003 36 8,521.79 7,471.46 1,365.65 263.05 924.08
0.004 48 8,740.56 7,769.82 1,715.96 348.05 1,190.37
0.005 60 8,906.37 7,995.03 2,030.24 431.78 1,440.08

...
...

...
...

...
...

...
0.900 10,800 11,951.88 11,941.12 11,867.62 11,879.90 1,918.0
1.000 12,000 12,000.00 12,000.00 12,000.00 12,000.00 12,000.00

Source: own construction

premiums of all respondents, and thus to determine the most suitable maxi-
mum premium accepted by the insured and the insurer. We have 164 responses,
namely 18 of the respondents (n1 = 18) have chosen alternative A1, 60 (n2 = 60)
have chosen A2, 52 (n3 = 52) have chosen A3, and the remaining 34 respondents
have chosen alternative A4 (n4 = 34).

Now, we propose a definition of so-called Mixture Premium. It can be defined
as follows.

Definition 2. The function MPg : [0,∞]
k → [0,∞] given by

MPg(P
max
1 , Pmax

2 , · · · , Pmax
k ) =

k∑
i=1

g(Pmax
i ) · Pmax

i · ni
k∑

i=1

g(Pmax
i ) · ni

, (18)

where k is the number of alternatives in questionnaire, is called a mixture pre-
mium.

On the basis of the formula (18), we evaluated the aggregated maximum mixture
premium MPg, the values of which are in Tab. 3 and Tab. 4, in the last column.
In our investigation, we apply weighting function g : [0,∞] →]0,∞[, which is
given by g(x) = x−q, where q ≥ 0. Function g is a non-increasing weighting func-
tion and the mixture operator (11) is an aggregation operator if 0 ≤ q ≤ 1. We
have chosen just this weighting function to give the highest weight to the small-
est maximum premium obtained from all alternatives. Obviously, the decision
maker has also other posibilities to investigate and determine the most suitable
maximum premium, for example, to use parameter q ∈ ]0, 1[, or other weight-
ing functions. In our future work, we plan to study aggregation of maximum
premiums according to the distances of individual premiums from the expected
loss.
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5 Conclusion

In our paper, we proposed a process of utility calibration on the basis of expected
utility maximization. Moreover, we have created individual personal utility func-
tions for the determination of maximum premiums in the case of an insurance
of wealth worth 12,000 euros.

In our next study we plan to aggregate the obtained premiums by so-called
Density-based Averaging operator [1], [3] where variable weights depend on the
relative density of a data sample, in our case on the relative distances of indi-
vidual premiums with different risk aversion coefficients, and moreover, on the
relative distances from the expected loss.

The expected utilities and the correspondig maximum premiums and mixture
premiums have been evaluated by MS Office Excel 2010 and Mathematica 8
systems.
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Abstract. In [2], we introduced the notion of the parental synergy. In
the same paper, moreover, an expression was advanced for the prior
convergence error (the error which is found in the marginal probabili-
ties computed for a node when the parents of this node are wrongfully
assumed to be independent), in which the parental synergy has a key po-
sition as weighting factor. This key position suggests that the parental
synergy captures a fundamental feature of a Bayesian network. In this
paper a proof is provided for the correctness of the conjectured expression
of the prior convergence error.

1 Introduction

A Bayesian network is a concise representation of a joint probability distribution
over a set of stochastic variables, consisting of a directed acyclic graph and a
set of conditional probability distributions [4]. The nodes of the graph repre-
sent the variables of the distribution and the arcs of the graph capture (condi-
tional) independencies. From a Bayesian network, in theory, any probability of
the represented distribution can be inferred. Since computation of the correct
probabilities requires that the dependencies between the variables are taken into
account, inference is NP-hard in general [3]. The design of a Bayesian network
is such that in the computation of the marginal probabilities of a node just the
dependencies between its parent nodes have to be considered. In [1] we termed
the error which may arise in the computed marginals when these dependencies
are neglected the prior convergence error.

In [2] we introduced the notion of the parental synergy. The parental synergies
of a node are computed from the parameters as specified for this node in a
Bayesian network. In the same paper, we conjectured an expression for the prior
convergence error for the general case of a child node with an arbitrary number
of dependent parent nodes. The proposed expression is of interest because of
its structure. It includes a part that captures the degree of the dependency
between the parent nodes, and a part composed of the parental synergies of the
node. In the expression of the prior convergence error these parental synergies
act as weighting factors, determining to what extent the degree of dependency
between the parent nodes can affect the computed probabilities. We stated that

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 496–505, 2014.
c© Springer International Publishing Switzerland 2014
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the role of the parental synergy in the expression of the prior convergence error
suggests that it captures a fundamental feature of a Bayesian network. In this
respect, we note that the parental synergy is related to the concepts of qualitative
influence and additive synergy as defined for qualitative probabilistic networks
by Wellman [5]. The concept of parental synergy, however, is more general and
more informative. In this paper, we provide a proof of the correctness of the
expression of the prior convergence error that we conjectured in [2].

2 General Preliminaries

We will use the following notation: Variables are denoted by upper-case letters
(A, Ak), and their values by lower-case letters (ai, aik); sets of variables by bold-
face upper-case letters (A,Ak) and their instantiations by bold-face lower-case
letters (ai, aik). An arbitrary value assignment to A may also be indicated by a
instead of ai and an arbitrary joint value assignment to A may also be indicated
by a instead of ai. The upper-case letter is also used to indicate the whole range
of values or value combinations of a variable or a set of variables.

Figure 1 depicts the graph of a Bayesian network. The network includes a
node C with n, possibly dependent, parents A = A1, . . . , An, n ≥ 0. In this
network, the marginal probability Pr(c), of an arbitrary value c of C, equals

Pr(c) =
∑
A

Pr(c | A) · Pr(A)

An approximation of this probability can be found by assuming independence
of the parents A, which yields the probability

P̃r(c) =
∑
A

Pr(c | A) · Pr(A1) · . . . · Pr(An)

In [1], we defined the prior convergence to equal Pr(c) − P̃r(c), and in [2], we
conjectured an expression for the prior convergence error given a node with
an arbitrary number of arbritrary-valued, possibly dependent, parent nodes, as
depicted in Figure 1. We restate this expression below.

The parental synergy, a notion that we introduced in [2], is an important
factor in the conjectured expression of the prior convergence error and in the
definition of the parental synergy an indicator function, called ψ, is used. The
definitions of this indicator function and of the parental synergy are stated first.

Definition 1. (The Indicator Function ψ) Let A and B be disjoint sets of
variables. The indicator function ψ on the joint value assignments ai1 , . . . , ain
to the set of variables A = A1, . . . , An, n ≥ 0, given a specific assignment
as1 , . . . , asn and an arbitrary value assignments b is:

ψ(ai1 , . . . , ain | as1 , . . . , asnb) =
{

1 if
∑

k=1,...,n aik �= ask is even

−1 if
∑

k=1,...,n aik �= ask is odd

where true ≡ 1 and false ≡ 0. �
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The indicator function compares the joint value assignment ai1 , . . . , ain with the
assignment as1 , . . . , asn , and counts the number of differences: the assignment
ai1 , . . . , ain is mapped to the value 1 if the number of differences is even and is
mapped to −1 if the number of differences is odd. We note that although b has
no influence on the outcome of ψ, for notational reasons it is convenient if the
function allows for this arbitrary value assignment.

Definition 2. (The Parental Synergy) Let B be a Bayesian network, rep-
resenting a joint probability distribution Pr over a set of variables V. Let A =
{A1, . . . , An} ⊆ V, n ≥ 0, and let C ∈ V such that C is a child of all variables
in the set A, that is, Aj → C, j = 1, . . . , n. Let a be a joint value assignment to
A and let c be a value of C. Furthermore, let X ⊆ ρ(C)\A, where ρ(C) denotes
the parents of C, and let x be a value assignment to X. The parental synergy
of a with respect to c given X = x, denoted as Yx(c | a), is

Yx(c | a) =
∑
A

ψ(a | A) · Pr(c | Ax)

Yx(c) = Pr(c | x) �

Example 1. For a node C with parents A with values a1, a2 and a3 and B with
values b1 and b2, with Pr(c | a1b1) = r, Pr(c | a1b2) = s, Pr(c | a2b1) = t, Pr(c |
a2b2) = u, Pr(c | a3b1) = v and Pr(c | a3b2) = w, Y (c | a1b1) = r−s−t+u−v+w,
Ya2(c | b2) = −t+ u and Ya1b2(c) = s. �

Note that the parental synergy is related to the concepts of qualitative influ-
ence and additive synergy as defined for qualitative probabilistic networks by
Wellman [5]. Most obviously, in a binary network, given a node C with a single
parent A, the sign of the qualitative influence between A and C is derived from
Pr(c | a)−Pr(c | ā), which equals Y (c | a); given a node C with just the parents
A and B the sign of the additive synergy of A and B with respect to C is derived
from Pr(c | ab) − Pr(c | ab̄) − Pr(c | āb) + Pr(c | āb̄), which equals Y (c | ab).
The parental synergy, however is more general since it is defined for an arbitrary
number of parent nodes whereas the qualitative influence concerns the interac-
tion between a child node and one parent node, the additive synergy concerns
the interactions between a child node and two parent nodes and no analogous
concepts are defined for interactions between a child node and more than two
parent nodes. Moreover, the parental synergy is more informative, since it yields
a number whereas the qualitative influence and the additive synergy are given
by a ′+′, a ′−′ or the uninformative sign ′?′.

In [2], we conjectured an expression for prior convergence error Pr(c)− P̃r(c).
This expression is stated in the following theorem.
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D

A1 An

C

Fig. 1. A graph of a Bayesian network with a node C with the, possibly dependent,
parents A1, . . . , An

Theorem 1. Let B be a Bayesian network, representing a joint probability dis-
tribution Pr over a set of arbitrary-valued variables V. Let C ∈ V and let
ρ(C) = A = {A1, . . . , An} ⊆ V, n ≥ 0 be the set of, possibly dependent, parents

of C. The prior convergence error Pr(c)− P̃r(c) then equals

∑
m

[∑
Am

(
(Pr(Ax . . . Ay)−Pr(Ax)·. . .·Pr(Ay))·

∑
A\Am

YA\Am
(c | Am)

)]
/2n

where

{m} = P({1, . . . , n})
Am = {Ax . . . Ay},m = {x, . . . , y} �

By the summation over m, all combinations of parent nodes are considered,
moreover, by the summation over Am for each combination of parent nodes all
combinations of value assignments to these parent nodes are taken into account.
In the remainder of the paper, we will keep using these notations m and Am.

The expression above is of theoretical value. It shows that the parental syn-
ergy is a weighting factor that determines the impact of the degree of depen-
dency between the parent nodes for a given value assignment, as reflected by
Pr(Ax . . . Ay) − Pr(Ax) · . . . · Pr(Ay) on the size of the convergence error. Note
that if the number of elements ofm is smaller than two, that is, if just one parent
or zero parents are considered, then Pr(Ax . . . Ay) equals Pr(Ax) · . . . · Pr(Ay)
and thus Pr(Ax . . . Ay)− Pr(Ax) · . . . · Pr(Ay) equals zero.

3 The Prior Convergence Error Illustrated

Given a node with just two, binary, parent nodes, the prior convergence error
and the role of the parental synergy can be illuminated graphically. Consider
Figure 1 and consider that n = 2, that A1 and A2 are binary. The expression of
the prior convergence error then reduces to
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Pr(c)− P̃r(c) = [
∑
A1A2

(
Pr(A1A2)− Pr(A1) · Pr(A2)

)
· Y (c | A1A2)]/4

{using that Pr(a1a2) + Pr(a1ā2) + Pr(ā1a2) + Pr(ā1ā2) = 1

and that Pr(ai) = Pr(aiaj) + Pr(aiāj)}
=

(
Pr(a1a2)− Pr(a1) · Pr(a2)

)
· Y (c | a1a2)

which can, using that Pr(a1a2) = Pr(a1 | d)·Pr(a2 | d)·Pr(d)+Pr(a1 | d̄)·Pr(a2 |
d̄) · Pr(d̄) and that Pr(ai) = Pr(ai | d) · Pr(d) + Pr(ai | d̄) · Pr(d̄), be written as

Pr(c)− P̃r(c) = l ·m · n · Y (c | a1a2)

where

l = Pr(d)− Pr(d)2

m = Pr(a1 | d)− Pr(a1 | d̄)
n = Pr(a2 | d)− Pr(a2 | d̄)

Now consider for example that Pr(d) = 0.5, Pr(a1 | d) = 0.5,Pr(a1 | d̄) =
0.9,Pr(a2 | d) = 0.1,Pr(a2 | d̄) = 0.9,Pr(c | a1a2) = 1,Pr(c | a1ā2) = 0,Pr(c |
ā1a2) = 0 and Pr(c | ā1ā2) = 1. The prior convergence error for this example
is illustrated in Figure 2a. The line segment in this figure captures the exact
probability Pr(c) as a function of Pr(d). Pr(d) itself is not indicated in the
figure, note however, that each particular Pr(d) has a corresponding Pr(a1) and
Pr(a2). The end points of the line segment, for example, are found at Pr(d) =
1 with the corresponding Pr(a1) = 0.5 and Pr(a2) = 0.1 and at Pr(d) = 0
with the corresponding Pr(a1) = 0.9 and Pr(a2) = 0.9. The surface captures

P̃r(c) as a function of Pr(a1) and Pr(a2). The convergence error equals the
distance between the point on the line segment that matches the probability
Pr(d) from the network and its orthogonal projection on the surface. For Pr(d) =

0.5 the difference between Pr(c) and P̃r(c) is indicated by the vertical dotted line
segment and equals 0.66 − 0.5 = 0.16. The factor l reflects the location of the
point with the exact probability on the line segment and the factors m and n
reflect the location of the line segment. The parental synergy Y (c | a1a2) now
reflects the curvature of the surface with the approximate probabilities. The
curvature of the surface determines to what extent the dependency between A1

and A2 can affect the computed probabilities. In the example, the curvature of
the surface is maximal. Figure 2b shows, in contrast, a situation in which the
parental synergy equals zero. In this example the specifications for nodes D,
A1 and A2 remained the same, but the specification for node C has changed to
Pr(c | a1a2) = 0.6,Pr(c | a1ā2) = 0.1,Pr(c | ā1a2) = 1.0 and Pr(c | ā1ā2) = 0.5.
Now, the surface is flat; Y (c | a1a2) = 0 and the prior convergence error equals
zero.
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Pr(c)

01Pr(a1)

1
Pr(a2)

0.66

0.5

1

0

(a)

Pr(c)

01Pr(a1)

1
Pr(a2)

0.47

1

0

(b)
Fig. 2. The prior convergence error Pr(c)−P̃r(c) illustrated, given a child node with just
two, binary, parent nodes A1 and A2, given Y (c | ab) = 2 (a) and given Y (c | ab) = 0
(b)

4 A Proof the Expression of the Prior Convergence Error

In order to proof the validity of Theorem 1 we propose the following expressions
for Pr(c) and P̃r(c).

Proposition 1. Let B be a Bayesian network, representing a joint probability
distribution Pr over a set of variables V. Let C ∈ V and let ρ(C) = A =
{A1, . . . , An} ⊆ V, n ≥ 0 be the set of, possibly dependent, parents of C. The
prior probability Pr(c) then equals

Pr(c) =
∑
m

∑
Am

Pr(Am) ·
∑

A\Am

YA\Am
(c | Am)/2n (1)

Example 2. For a variable C with the parents A1 and A2, according to Propo-
sition 1

4 · Pr(c) =
∑
A1A2

Pr(A1A2) · Y (c | A1A2) +
∑
A1

Pr(A1) ·
∑
A2

YA2(c | A1) +∑
A2

Pr(A2) ·
∑
A1

YA1(c | A2) +
∑
A1A2

YA1A2(c) �

Given Proposition 1, the approximation P̃r(c) can be written as:

P̃r(c) =
∑
m

∑
Am

Pr(Ax) · . . . · Pr(Ay) ·
∑

A\Am

YA\Am
(c | Am)/2n (2)
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In the proof of Proposition 1 we will use the following lemma:

Lemma 1. Let A = {A1, · · · , An} be a set of variables and let a = a1, . . . , an
be an arbitrary given joint value assignment to A. Then 2n · Pr(a) equals

2n · Pr(a) =
∑
m

∑
Am

Pr(Am) · ψ(Am | a) �

Example 3. Given the variables A with the values a and ā and B with the
values b and b̄, according to Lemma 1, 4 · Pr(ab) = Pr(ab) − Pr(ab̄) − Pr(āb) +
Pr(āb̄) + Pr(a)− Pr(ā) + Pr(b)− Pr(b̄) + 1 �

Proof of Lemma 1. We first rewrite

2n · Pr(a) =
∑
m

∑
Am

Pr(Am) · ψ(Am | a)

=
∑
m

∑
Am

∑
A\Am

Pr(A\Am,Am) · ψ(Am | a)

=
∑
m

∑
A

Pr(A) · ψ(Am | a)

In the expression
∑

m

∑
A Pr(A)·ψ(Am | a) we have that

∑
m selects all possible

combinations of the variables ofA, and
∑

A sums, for each of those combinations,
Pr(A) · ψ(Am | a). The outcome of the function ψ is determined by the variables
selected by m with the values as determined by

∑
A, and the values of A in the

given joint value assignment a.

Example 4. Given the variables A and B and the value assignment A = a and
B = b, the expression∑

m

∑
A

Pr(A) · ψ(Am | a)

results in:∑
AB

Pr(AB) · ψ(AB | ab) +
∑
AB

Pr(AB) · ψ(A | ab) +∑
AB

Pr(AB) · ψ(B | ab) +
∑
AB

Pr(AB) · ψ(. | ab)

�

Now divide {m} in {m−1} = {m | 1 /∈ m} and {m+1} = {m | 1 ∈ m}.
Thus, m−1 selects all possible subsets from A in which A1 is included and m+1

selects all possible subsets from A without A1. These two sets of subsets of A
include, in pairs, the same subsets, apart from A1. Thus, ∅ is selected by m−1
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and {A1} is selected by m+1; {A2} is selected by m−1 and {A1, A2} is selected
by m+1, etcetera. For each of those pairs, we find for all value combinations A
with A1 �= a1 that

ψ(Am−1 | a) = −ψ(Am+1 | a)

(Remember that a = a1, . . . , an. The outcome of ψ(Am−1 | a) is, apart from
A1, determined by the same value assignments to the same variables as the
outcome of ψ(Am+1 | a). Now when A1 �= a1 there is one extra difference in
value assignment, which changes the sign of the outcome of ψ.) Thus under the
condition that A1 �= a1 we find that

∑
m+1

∑
A

Pr(A) · ψ(Am+1 | a) +
∑
m−1

∑
A

Pr(A) · ψ(Am−1 | a) = 0

This implies that we only have to consider A1 = a1 and thus that

2n · Pr(a) =
∑
m

∑
A

Pr(A) · ψ(Am | a)

=
∑
m+1

∑
A

Pr(A) · ψ(Am+1 | a) +
∑
m−1

∑
A

Pr(A) · ψ(Am−1 | a)

=
∑
m

∑
A/A1

Pr(A/A1, a1) · ψ(Am(/A1, a1) | a)

where

ψ(Am(/A1, a1) | a) =
{
ψ(Am/A1, a1 | a) if 1 ∈m

ψ(Am | a) if 1 /∈m

In a next step we divide m in m−2 and m in m+2. We have, analogous to the
division of m in m−1 and m in m+1, that for all value combinations A/A1,
given that A2 �= a2

ψ(Am−2(/A1, a1) | a) = −ψ(Am+2(/A1, a1) | a)

And thus we have that:

2n · Pr(a) =
∑
m

∑
A/A1

Pr(A/A1, a1) · ψ(Am(/A1, a1) | a)

=
∑
m

∑
A/A1A2

Pr(A/A1A2, a1a2) · ψ(Am(/A1A2, a1a2) | a)
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This pinning down of the value of a variable in the summation over A can be
repeated for all n which implies that

2n · Pr(a) =
∑
m

∑
A

Pr(A) · ψ(Am | a)

=
∑
m

Pr(a) · ψ(am | a)

which concludes the proof of Lemma 1. �

Proof of Proposition 1. In order to prove Proposition 1 we multiply left and
right hand of Expression 1 with 2n and rewrite the resulting right hand using
the definition of the parental synergy.

2n · Pr(c) =
∑
m

∑
Am

Pr(Am) ·
∑

A\Am

YA\Am
(c | Am)

=
∑
m

∑
Am

Pr(Am) ·
∑

A\Am

∑
A∗

m

ψ(Am | A∗m) · Pr(c | A∗m,A\Am)

=
∑
m

∑
Am

Pr(Am) ·
∑
A

ψ(Am | A) · Pr(c | A)

In the second step above, an asterisk is used in order to distinguish between
the two different summations over Am. In the next step, A∗m and A\Am are
combined to A after which an asterisk is not needed any more to indicate the
distinction. Note that (for notational reasons), ψ(Am | A∗m) is changed to ψ(Am |
A), which has the same outcome. Simply rearranging terms and dividing the left
and the right hand of the equation by 2n now results in the following form of
Proposition 1

Pr(c) =
∑
A

Pr(c | A) ·
∑
m

∑
Am

Pr(Am) · ψ(Am | A)/2n

Since, by definition

Pr(c) =
∑
A

Pr(c | A) · Pr(A)

and, by Lemma 1,

2n · Pr(A) =
∑
m

∑
Am

Pr(Am) · ψ(Am | A)

rewriting Proposition 1, together with the proof of Lemma 1, provides the proof
of Proposition 1. �

Proof of Theorem 1. The validity of Theorem 1 follows from the validity of
Proposition 1 and its consequence Equation 2. �
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5 Discussion

In [2], we conjectured an expression for the prior convergence error. The prior
convergence error is the error which is found in the marginal prior probabilities
computed for a node in a Bayesian network when the parents of this node are
wrongfully assumed to be independent. The proposed expression is interesting
because of its structure. The expression consists of a part that captures the de-
gree of dependency between the parents of the node, and furthermore it includes
the parental synergies of the node. The parental synergies are computed from
the conditional probabilities as specified for the node in a Bayesian network and
act as a weighting factor, determining to what extent the degree of dependency
between the parent nodes can affect the computed probabilities. The role of the
parental synergy in the expression of the prior convergence error suggests that
it captures a fundamental feature of a Bayesian network. In this respect, we
noted that the parental synergy is related to the concepts of qualitative influ-
ence and additive synergy as defined for qualitative probabilistic networks by
Wellman but is more general and more informative. In this paper we provided
a proof of the correctness of the expression of the prior convergence error that
we conjectured in [2].

Acknowledgments. This research was supported by the Netherlands Organi-
sation for Scientific Research (NWO).
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Abstract. An Influence Diagram is a probabilistic graphical model used to repre-
sent and solve decision problems under uncertainty. Its evaluation requires to per-
form a series of combinations and marginalizations with the potentials attached
to the Influence Diagram. Finding an optimal order for these operations, which
is NP-hard, is an element of crucial importance for the efficiency of the evalua-
tion. The SPI algorithm considers the evaluation as a combinatorial factorization
problem. In this paper, we describe how the principles of SPI can be used to solve
Influence Diagrams. We also include an evaluation of different combination se-
lection heuristics and a comparison with the variable elimination algorithm.

Keywords: Influence Diagrams, Combinatorial Factorization Problem,
Exact Evaluation, Heuristic Algorithm.

1 Introduction

Influence Diagrams (IDs) [1,2] provide a framework to model decision problems with
uncertainty for a single decision maker. The goal of evaluating an ID is to obtain the
best option for the decision maker (optimal policy) and its utility.

Most of the evaluation algorithms proposed in the literature [3,4,5,6] require to per-
form a series of combinations and marginalizations with the probability and utility func-
tions (potentials). Finding an optimal order for these operations, which is NP-hard [7],
is an element of crucial importance for the efficiency of the evaluation. Thus the eval-
uation of an ID can be seen as a combinatorial factorization problem. This idea was
already used to make inference in Bayesian Networks (BNs) with the first version of
Symbolic Probabilistic Inference algorithm (SPI) [8] and with an improved algorithm
in the SPI family called set-factoring [9]. In a related work [10] some experiments with
SPI were performed to evaluate decision networks, however it was not given any detail
of the algorithm. In this paper we describe the SPI algorithm for evaluating IDs taking
into account the differences of an ID: two kind of potentials, the temporal order between
decisions, etc. The experimental work shows how SPI can improve the efficiency of the
evaluation on some IDs and different combination selection heuristics are compared.

The paper is organized as follows: Section 2 introduces some basic concepts about
IDs and the motivation of this work; Section 3 describes how SPI can be used for evalu-
ating IDs; Section 4 includes the experimental work and results; finally Section 5 details
our conclusions and lines for future work.

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 506–516, 2014.
c© Springer International Publishing Switzerland 2014
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2 Preliminaries

2.1 Influence Diagrams

An ID [1,2] is a probabilistic graphical model for decision analysis under uncertainty
with three kinds of nodes: chance nodes (circles) that represent random variables; de-
cision nodes (squares) that correspond with the actions which the decision maker can
control; and utility nodes (hexagons) that represent decision maker preferences.

We denote by UC the set of chance nodes, by UD the set of decision nodes, and by
UV the set of utility nodes. The decision nodes have a temporal order, D1, . . . ,Dn, and
the chance nodes are partitioned into a collection of disjoint sets according to when
they are observed: I0 is the set of chance nodes observed before D1, and Ii is the set
of chance nodes observed after decision Di is taken and before decision Di+1 is taken.
Finally, In is the set of chance nodes observed after Dn. That is, there is a partial order:
I0 ≺ D1 ≺I1 ≺ ·· · ≺ Dn ≺In. Fig. 1 shows an example of an ID.

Fig. 1. An ID for a decision problem with one decision D1. The set of chance variables is par-
titioned into the sets: I0 = {A} and I1 = {B,C,E,F,G}. The utility function is a sum of two
local utilities, one associated to D1, G, and F and the other associated to D1, C, and E.

In the description of an ID, it is more convenient to think in terms of predecessors: the
parents of a chance node Xi, denoted pa(Xi), are also called conditional predecessors.
The parents of a utility nodeVi, denoted pa(Vi), are also called conditional predecessors.
Similarly, the parents of a decision Di are called informational predecessors and are
denoted pa(Di). Informational predecessors of each decision Di, must include previous
decisions and their informational predecessors (no-forgetting assumption).

The universe of the ID is U = UC ∪UD = {X1, . . . ,Xm}. Let us suppose that each
variable Xi takes values on a finite set ΩXi = {x1, . . . ,x|ΩXi |}. Each chance node Xi has
a conditional probability distribution P(Xi|pa(Xi)) associated. In the same way, each
utility node Vi has a utility function U(pa(Vi)) associated. In general, we will talk about
potentials (not necessarily normalized). The set of all variables involved in a potential
φ is denoted dom(φ), defined on Ωdom(φ) = ×{ΩXi |Xi ∈ dom(φ)}. The elements of
Ωdom(φ) are called configurations of φ . Therefore, a probability potential denoted by
φ is a mapping φ : Ωdom(φ) → [0,1]. A utility potential denoted by ψ is a mapping
ψ : Ωdom(ψ) → R. The set of probability potentials is denoted by Φ while the set of
utility potentials is denoted by Ψ .
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2.2 Motivation

The goal of evaluating an ID is to obtain an optimal policy δi for each decision Di, that is
a function of a subset of its informational predecessors. The optimal policy maximizes
the expected utility for the decision.
Optimal policy: Let ID be an influence diagram over the universe U =UC ∪UD and

let UV be the set of utility nodes. Let the temporal order of the variables be described
as I0 ≺ D1 ≺I1 ≺ ·· · ≺ Dn ≺In. Then, an optimal policy for Di is

δDi(I0,D1, . . . ,Ii−1)= argmax
Di

∑
Ii

max
Di+1

· · ·max
Dn

∑
In

∏
X∈UC

P(X |pa(X))

(
∑

V∈UV

U(pa(V ))

)
(1)

For example consider the ID shown in Fig. 1. The optimal policy for D1 can be
calculated directly from Eq.1:

δD1(A) = argmax
D1

∑
G,F,E,C,B

P(G)P(F)P(E)P(C)P(B|C,E,F,G)P(A|B)U (2)

where U = (U1(G,F,D1)+U2(E,C,D1)) is the sum of the local utilities. The table
representing the joint probability of all chance variables might be too large. For that
reason, some evaluation algorithms such as Variable Elimination (VE) for IDs [11] re-
order the marginalizations of the variables as follows:

δD1(A) = argmax
D1

∑
G

P(G)∑
F

P(F)∑
E

P(E)∑
C

P(C)∑
B

P(B|C,E,F,G)P(A|B)U (3)

Assuming that all the variables are binary and considering only the computations be-
tween probability potentials, the calculation of δD1(A) requires 124 multiplications and
64 additions to marginalize out the variables in I0. Independently of the elimination
ordering used to solve this ID, VE will always have to combine the marginal poten-
tials with a large potential such as P(B|C,E,F,G) or P(A|C,E,F,G). However, with a
re-order of the operations this situation can be avoided:

δD1(A) = argmax
D1

∑
B,C,E

(
(P(A|B)(P(E)P(C)))

(
∑
F,G

P(B|C,E,F,G)(P(F)P(G))U

))
(4)

Using Eq.4 the calculation of the optimal policy requires 72 multiplications and 32
additions. In some cases it could be better to combine small potentials even if they do
not share any variable (e.g., P(E) and P(C)). This combination will never be performed
using VE since it is guided by the elimination ordering. Thus the efficiency of the evalu-
ation can be improved if an optimization in the order of both operations, marginalization
and combination, is performed [9].

3 Symbolic Probabilistic Inference

3.1 Overview

As VE does, SPI removes all variables in the decision problem in reverse order of the
partial ordering imposed by the information constraints. That is, it first sum-marginalizes
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In, then max-marginalizes Dn, sum-marginalizes Ik−1, etc. This type of elimination
order is called a strong elimination order [12]. The general scheme of SPI algorithm as
presented in this paper is shown in Definition 1.

Definition 1 (SPI Algorithm)
Let ID be an influence diagram. Let Φ and Ψ be the set of all probability and util-
ity potentials respectively. Let the temporal order of the variables be described as
I0 ≺ D1 ≺I1 ≺ ·· · ≺ Dn ≺In. Then, the procedure for evaluating the ID using SPI
algorithm is:

1. for (k := n;k> 0;k := k− 1)
(a) Remove chance variables in Ik (Definition 2)
(b) Remove decision Dk (Definition 4)

2. Remove chance variables in I0 (Definition 2)

VE considers the evaluation as a problem of finding the optimal elimination ordering
whereas SPI considers it as a combinatorial factorization problem. That is, VE chooses
at each step the best variable to remove while SPI chooses the best pair of potentials
to combine and eliminate the variables when possible. In this sense SPI is finer grained
than VE.

3.2 Removal of Chance Variables

In order to remove a subset of chance variables Ik, our version of SPI considers proba-
bility and utility potentials separately: first, SPI tries to find the best order for combining
all the relevant probability potentials in Φk (potentials containing any of the variables
in Ik). For that purpose, all possible pairwise combinations between probability poten-
tials are stored in the set B. At each iteration, a pair of probability potentials is selected
to be combined. The procedure stops when all variables has been removed. A variable
can be removed in the moment it only appears in a single probability potential. This
procedure is shown in Definition 2.

Definition 2 (Removal of a Subset of Chance Variables). Let Ik be the set of vari-
ables to remove, let Φ and Ψ be the set of all current probability and utility potentials
respectively in an ID. Then, the procedure for removing Ik is:

1. Set the relevant potentials:

Φk := {φ ∈Φ|Ik ∩dom(φ) �= /0} Ψ k := {ψ ∈Ψ |Ik ∩dom(ψ) �= /0}

2. Update Φ := Φ\Φk and Ψ :=Ψ\Ψ k

3. Initialize the combination candidate set B := /0.
4. Repeat:

(a) if |Φk|> 1, then
i. Add all pairwise combinations of elements of Φk to B which are not al-

ready in B.
ii. Select a pair p := {φi,φ j} of B according to some criteria and combine

both potentials: Set φi j := φi⊗φ j
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iii. Determine the set W of variables that can be sum-marginalized:

W := {X ∈ dom(φi j)∩Ik|∀φ ∈Φk\p : X �∈ dom(φ)}

iv. Update B by deleting all pairs p where φi ∈ p or φ j ∈ p.
v. Delete φi and φ j from Φk.

else
i. Let φi j be the single potential in Φk.

ii. Determine the set W of variables that can be sum-marginalized:

W := {X ∈ dom(φi j)∩Ik}

iii. Delete φi j from Φk.
(b) Select the utility potentials relevant for removing W:

Ψ W := {ψ ∈Ψ k|W∩dom(ψ) �= /0}

(c) Sum-marginalize variables in W from φi j and ΨW. A probability potential φ↓Wi j

and a set of utility potentials Ψ↓W are obtained as a result (Definition 3).
(d) Update the set of variables to remove: Ik :=Ik\W
(e) Update the set of relevant potentials:

Φk := Φk ∪{φ↓Wi j } Ψ k := (Ψ k \ΨW)∪Ψ↓W

Until Ik = /0
5. Update Φ := Φ ∪Φk and Ψ :=Ψ ∪Ψ k

In Definition 2 only probability potentials are combined while utility potentials are
not. Let us suppose that we aim to remove a variable X from a set of probability po-
tentials {φ1, . . . ,φk,φi j} and from a set of utility potentials {ψ1, . . . ,ψl ,ψm, . . .+ψn}.
Let φi j and {ψm, . . . ,ψn} be the potentials containing X . Then, the removal of X can be
made using Eq.5.

∑
X

φ1 · · ·φkφi j (ψ1 + · · ·+ψl +ψm + · · ·+ψn) =

= φ1 · · ·φk

(
∑
X

φi j

)(
ψ1 + · · ·+ψl +

∑X (φi j (ψm + · · ·+ψn))

∑X φi j

)
(5)

The utility potentials must be combined with φi j which is the resulting potential of
combining all potentials containing X . For that reason, the utilities can only be com-
bined when a variable can be removed. That is the moment when φi j has been calcu-
lated. The procedure for sum-marginalizing a set of variables (Definition 3) involves
finding good order for summing the utility potentials. The procedure for that is quite
similar to the procedure for combining probabilities, however the combination candi-
date set B can contain singletons as well. The reason for that is that in some cases it
could be better to apply the distributive law [5,11].
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Definition 3 (Sum-Marginalization). Let φ be a probability potential and Ψ W a
set of utility potentials relevant for removing the chance variables in W. Then, the
procedure for sum-marginalizating W from φ and Ψ W is:

1. Initialize the combination candidate set B := /0.
2. Repeat:

(a) Add all pairwise combinations of elements of ΨW to B which are not already
in B.

(b) Add to B all potentials in ΨW that contains any variable of W which is not
present in any other potential of ΨW, that is a variable that can be removed.

(c) Select a pair q := {ψi,ψ j} or a singleton q := {ψi} from B according to some
criteria.

(d) If q is a pair, then ψi j := ψi +ψ j. Otherwise, ψi j := ψi

(e) Determine the set V of variables that can be sum-marginalized:

V := {X ∈ dom(ψi j)∩W|∀ψ ∈ΨW\q : X �∈ dom(ψ)}

(f) Sum-marginalize V, giving as a result:

φ↓V := ∑
V

φ ψ↓V := ∑
V
(φ ⊗ψi j)/φ↓V

(g) If q is a pair, remove ψi and ψ j from ΨW and any element in B containing
them. Otherwise, only remove ψi from Ψ W and any element in B containing it.

(h) Update φ := φ↓V and ΨW :=Ψ W∪{ψ↓V}
(i) Update the set of variables to remove: W := W\V

Until W = /0
3. Return φ and Ψ W

3.3 Removal of Decision Variables

Once all variables in Ik are removed using algorithm in Definition 2, a similar proce-
dure must be performed to remove a decision variable Dk (see Definition 4). However,
this removal does not imply the combination of any probability potential since any deci-
sion is d-separated from its predecessors [11]. Thus, any probability potential φ(Dk,X)
must be directly transform into φ(X) if Dk is a decision and X is a set of chance vari-
ables that belong to Ii with i< k. This property is used at step 2 of Definition 4.

Definition 4 (Removal of a Decision Variable). Let Dk be the decision variable to re-
move, let Φ and Ψ be the set of all current probability and utility potentials respectively.
Then, the procedure for removing Dk is:

1. Set the relevant potentials:

Φk := {φ ∈Φ|Dk ∈ dom(φ)} Ψ k := {ψ ∈Ψ |Dk ∈ dom(ψ)}

2. Foreach φ ∈ Φk, remove Dk by restricting φ to any of the values of Dk. The set of
potentials Φ↓Dk is given as a result.
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3. Max-marginalize variable Dk fromΨ k and record the policy for Dk. A new potential
ψ↓Dk is obtained as a result (Definition 5).

4. Update the set of potentials in the ID:

Φ := (Φ\Φk)∪Φ↓Dk Ψ := (Ψ\Ψk)∪{ψ↓Dk}

Definition 5 (Max-Marginalization). Let Ψ be a set of utility potentials and D a de-
cision variable. Then, the procedure for max-marginalizating D from Ψ is:

1. Initialize the combination candidate set B := /0.
2. While |Ψ |> 1:

(a) Add all pairwise combinations of elements of Ψ to B which are not already in
B.

(b) Select a pair q := {ψi,ψ j} according to some criteria and sum both potentials
giving as a result ψi j .

(c) Update B by deleting all pairs p where ψi ∈ p or ψ j ∈ p.
(d) Update Ψ :=Ψ\{ψi,ψ j}∪{ψi j}

3. Let ψD be the single potential in Ψ .
4. Max-marginalize D, giving as a result: ψ↓D := maxD ψD

5. Return ψ↓D

3.4 Heuristics

During the removal of the chance variables, at each iteration a pair of probability po-
tentials is selected to be combined (Definition 2, step 4.a.ii). For that, some heuristics
used with VE can be adapted for selecting a pair. Let p := {φi;φ j} be a candidate pair
to be combined, let φi j = φi⊗ φ j be the resulting potential of the combination and let
W be the set of variables that can be removed. Then, the heuristics minimum size [13],
minimum weight [12] and Cano and Moral [14] are defined as:

min size(p) = |dom(φi)∪dom(φ j)|= |dom(φi j)| (6)

min weight(p) = ∏
X∈dom(φi j)

|ΩX | (7)

Cano Moral(p) =
∏X∈dom(φi j) |ΩX |

∏Y∈W |ΩY |
(8)

Li and D’Ambrosio [9] also proposed an heuristic that selects a pair that minimises
the score s1 and maximises the score s2:

s1(p) = |dom(φi j)|− |W| (9)

s2(p) = |dom(φi)|+ |dom(φ j)| (10)

Any of the heuristics previously mentioned can also be used for selecting a pair of
utility potentials at steps 2.c and 2.b of Definitions 3 and 5 respectively. These heuristics
will be considered in the experimental analysis.
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3.5 Example
Let us consider the ID in Fig. 1 to illustrate the behaviour of the SPI algorithm as
described in this paper. In order to simplify the notation, φ(X1, . . . ,Xn) will be denoted
φX1,...,Xn . First, SPI proceeds to remove variables in the chance set I1 = {B,C,E,F,G}
using the algorithm in Definition 2. The initial combination candidate set is:

{φC;φE},{φC;φF},{φC;φG},{φC;φBCEFG},{φC;φAB},{φE ;φF},{φE ;φG},{φE ;φBCEFG},
{φE ;φAB},{φF ;φG},{φF ;φBCEFG},{φF ;φAB},{φG;φBCEFG},{φG;φAB},{φBCEFG;φAB}
If the minimum size heuristic is used for selecting the next pair of potentials, there

are 6 pairs minimizing this score. Let us suppose that the pair {φC;φE} is chosen, then
the resulting potential is φCE . There is not any variable that can be removed, since C
and E appear in other potentials (e.g., φBCEFG). Then, the set B is updated by removing
pairs containing φC or φE and by adding new pairwise combinations with φCE :

{φCE ;φF},{φCE ;φG},{φCE ;φBCEFG},{φCE ;φAB},{φF ;φG},
{φF ;φBCEFG},{φF ;φAB},{φG;φBCEFG},{φG;φAB},{φBCEFG;φAB}

The process will continue by choosing a pair to combine until all variables have been
removed. The whole process is shown in Fig. 2 in a factor graph [7]. Nodes without any
parent correspond to initial potentials while child nodes correspond to the resulting po-
tentials of a combination. The numbers above each potentials indicate the combination
ordering and arcs labels indicate the variables that are sum-marginalized.

φ (6)
Aφ (5)

ABCE

φ (3)
ABCEφ (1)

CEφC

φE
φAB

φ (4)
BCEFGφ (2)

FGφF

φG

φBCEFG

↓{B,C,E}
↓{F,G}

Fig. 2. Combination order of the probability potentials obtained using SPI for removing the
chance set I1 = {B,C,E,F,G} during the evaluation of the ID shown in Fig.1

In the 4th iteration, after generating the potential φBCEFG, variables F and G can be
removed. Then, the algorithm in Definition 3 is executed in order to combine utility
potentials and max-marginalize these variables: the combination candidate set of utility
potentials is B := {{ψD1FG}} and the resulting potentials are φBCE and ψD1BCE . Simi-
larly, in the 5th iteration, variables B,C and E can be removed. Now, the combination
candidate set contains a pair and a singleton, that is B := {{ψD1CE ;ψD1BCE},{ψD1BCE}}.
The element selected from B is the pair {ψD1CE ;ψD1BCE}. The variables B,C and E can
be removed after adding both utility potentials in the pair, thus it is not needed to per-
form any additional iteration. The resulting potentials are φA and ψD1A which are also,
in this case, the resulting potentials of algorithm in Definition 2. SPI will now proceed
to remove decision D1 using Definition 4 and chance variable A using Definition 2.
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4 Experimental Work

For testing the SPI algorithm, a set of 10 IDs found in the literature are used: NHL and
IctNeo are two real world IDs used for medical purposes [15,16]; the oil wildcatter’s
problem with one and two utilities [17,18]; the Chest Clinic ID [19] obtained from the
Asia BN; an ID representing the decision problem in the poker game [11]; an ID used
at agriculture for treating the mildew [11]; finally, three synthetic IDs are used: the mo-
tivation example shown in Fig.1 with binary and not binary variables and the ID used
by Jensen et al. in [6]. Each ID is evaluated using the SPI and the VE algorithms with
the heuristics shown in Section 3.4. The Li and D’Ambrosio heuristic is not used with
the VE algorithm because it is a specific heuristic for the SPI algorithm. An efficiency
improvement used in both algorithms consists on discarding any unity probability po-
tential generated.

Table 1 shows the total number of operations needed for each evaluation, that is the
number of multiplications, divisions, additions and maximum comparisons. The ratio
of the number of operations using SPI to the number of operations using VE is also
shown. It can be observed that SPI requires a lower number of operations than VE in
7 out of 10 IDs when using the minimum size and the Cano and Moral heuristic. By
contrast, if the minimum weight heuristic is used instead, SPI offers better results in 6
out of 10 IDs. Comparing Li and D’Ambrosio heuristics with the rest, it can be seen that
this criteria only offers better results in 2 out 10 IDs.

Table 1. Number of operations needed for evaluating each ID using SPI and VE algorithms and
different heuristics

min size min weight cano moral li dambrosio
ID SPI VE ratio SPI VE ratio SPI VE ratio SPI

NHL 2.74·106 5.04·106 0.54 6.96·106 4.95·106 1.41 6.96·106 8.80·106 0.79 2.05·107

IctNeo 2.42·106 4.34·105 5.57 2.36·106 3.90·105 6.04 2.36·106 4.36·105 5.4 1.07·106

Oil Wildcatter 125 150 0.83 125 150 0.83 125 157 0.8 125

Oil Split Costs 137 162 0.85 137 162 0.85 137 169 0.81 137

Chest Clinic (Asia) 598 657 0.91 598 625 0.96 598 645 0.93 682

Poker 4499 1775 2.53 4499 1831 2.46 4499 1582 2.84 6.12·104

Mildew 2.63·104 3.31·104 0.8 2.36·104 3.31·104 0.72 2.36·104 2.60·104 0.91 5.02·104

motivation binary 324 511 0.63 324 511 0.63 324 513 0.63 356

motivation not binary 1753 6559 0.27 1753 2273 0.77 1753 1919 0.91 4597

Jensen et al. 922 533 1.73 922 533 1.73 922 545 1.69 746

5 Conclusions and Future Work

In this work we have described how the SPI algorithm can be used for evaluating IDs,
which considers the evaluation as combinatorial factorization problem. That is, SPI tries
to find an optimal order for the operations of marginalization and combination. Thus,
SPI is finer grained than VE. Moreover, we also propose adapting some of the heuristics
that VE uses for selecting the next pair of potentials to combine.
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The experimental work shows that, in many cases, the SPI algorithm can reduce the
number of operations needed to evaluate an ID compared to VE. However, SPI does
not strictly dominates VE. For that reason, a line of future research could be determin-
ing which features of an ID make that SPI offers better results. The efficiency of SPI
for evaluating some IDs also depends on the heuristic used, thus another line of future
research could be looking for alternative heuristics. One method that improves the effi-
ciency of the evaluation is Lazy Evaluation (LE) [6], [20], which is based on message
passing in a strong junction tree. The SPI algorithm was already proposed as method
for computing the messages in the LE of Bayesian networks [21]. Thus similar ideas
could be applied for computing the messages in the LE of IDs.
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16. Bielza, C., Gómez, M., Insua, R.S., Fernández del Pozo, J.A., Barreno Garcı́a, P., Caballero,
S., Sánchez Luna, M.: Ictneo system for jaundice management. Revista de la Real Academia
de Ciencias Exactas, Fı́sicas y Naturales 92(4), 307–315 (1998)

17. Raiffa, H.: Decision analysis: Introductory lectures on choices under uncertainty (1968)
18. Dawid, P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic networks and expert systems:

Exact computational methods for Bayesian networks. Springer (2007)
19. Goutis, C.: A graphical method for solving a decision analysis problem. IEEE Transactions

on Systems, Man and Cybernetics 25(8), 1181–1193 (1995)
20. Madsen, A., Jensen, F.: Lazy propagation: a junction tree inference algorithm based on lazy

evaluation. Artificial Intelligence 113(1-2), 203–245 (2004)
21. Madsen, A.: Variations over the message computation algorithm of lazy propagation. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(3), 636–648 (2005)



On Causal Compositional Models:

Simple Examples�

Radim Jiroušek1,2
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Abstract. The “algebraic” form of representation of probabilistic causal
systems by compositional models seems to be quite useful and advanta-
geous because of two reasons. First, decomposition of the model into its
low-dimensional parts makes some of computations feasible, and, second,
it appears that within these models, both conditioning and intervention
can be realized as a composition of the model with a degenerated one-
dimensional distribution. The syntax of these two computational pro-
cesses are similar to each other; they diffier just by one pair of brackets.
Moreover, as it is shown in the last part of this paper on examples, it
appears that these models can also cope with the problem of unobserved
variables elimination.

1 Introduction

Each of us is interested in the relation of causation from childhood; it first
enables us to answer the WHY questions, and a couple of years later, more
sophisticated WHAT IF questions. Moreover, referring to any textbook we can
see that practically all the knowledge is explained using causal relation. The
importance of causation is visible also from the fact that from most of the articles
in professional journals describing data mining applications one can see that the
described research was performed with the (sometimes hidden) goal to support or
to uncover some new causal relations. However, this is often misleading, because,
as Pearl says in his book ([5], page 40): The sharp distinction between statistical
and causal concepts can be translated into a useful principle: behind every causal
claim there must lie some causal assumption that is not discernable from the joint
distribution and, hence, not testable in observational studies. Such assumptions
are usually provided by humans, resting on expert judgment. Therefore, when
using causal models one should keep this fact in mind. We can construct causal

� This is an extended version of the talk presented at the 16th Czech-Japan Seminar
on Data Analysis and Decision Making under Uncertainty held in Mariánské Lázně,
Sept. 19–22, 2013 [3]. The extension manifests itself not only in a new example and
a more detailed way of presentation, but mainly in a new section on hidden variables
and the respective computations of conditioning and intervention (Section 6).

A. Laurent et al. (Eds.): IPMU 2014, Part I, CCIS 442, pp. 517–526, 2014.
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models only when we have a knowledge allowing us to specify causal relations,
allowing us to determine what is cause and what is effect.

In this paper we present some preliminary ideas regarding application of prob-
abilistic causal models represented in a form of compositional models. To keep the
presentation as simple and informal as possible, we introduce most of the concepts
just on examples. We consider only finite valued random variables that are
denotedbyupper caseLatincharacters:X,Y, Z,W, .... Sets of thesevariablesarede-
noted by lower case characters (x, y, ...), and their probability distributions are de-
noted using characters of a Greek alphabet ω, θ, μ, σ, δ. So, ω(X1, . . . , Xn) denotes
an n-dimensional probability distribution. Its n − 1-dimensional marginal distri-
bution is denoted by ω−Xi , or, denoting x = {X1, . . . , Xi−1, Xi+1, . . . , Xn} we use
also the symbol ω↓x. The latter symbol ω↓y can be used for any y ⊆ {X1, . . . , Xn}.

In the above mentioned Pearl’s book [5] (from which the causal model studied
in this paper is taken over), one of the most important notions is the con-
cept of an intervention. It means that by an external force we change the
value of an intervention variable. As a simple example consider two binary
variables: A - alarm bell rings or not, and S - smoke is or is not in a room.
A smoke in the room makes the alarm bell ring. Therefore, if δ(A,S) de-
scribes the relationship between these two variables then the conditional prob-
ability δ(A = bell rings|S = smoke is) should be close to 1, and therefore
δ(S = smoke is|A = bell rings)5 δ(S = smoke is). But when considering the
intervention that will be here denoted by do(A = bell rings), which means that
by some way or another we make the alarm bell ring (no matter whether there
is a smoke in the room or not) it does not create a smoke in the room. Therefore

δ(S = smoke is|do(A = bell rings)) = δ(S = smoke is).

2 Causal Networks

Let us continue considering the above mentioned smoke-alarm example1 and
extend it by two other variables: D - day of the week, and B denoting whether
Bob is at work or not. In this example, Bob is an irredeemable and undisciplined
smoker whose presence at work increases probability of the appearance of the
smoke in the room, and therefore also the probability of the activation of the
alarm. This naturally holds only in working days when he is at work.

Such a situation can be described by a Bayesian network with a graph in
Figure 1(a). This Bayesian network defines a four-dimensional probability
distribution

ω(D,B, S,A) = δ1(D)δ2(B|D)δ3(S|B)δ4(A|D,S) (1)

that represents the respective knowledge.
It is well-known from Bayesian network theory (see e.g. [1]) that without

changing the resulting joint distribution ω we can modify the graph and the sys-
tem of conditional distributions so that distribution ω is defined by another (but
probabilistically equivalent) Bayesian network with a graph from Figure 1(b).

1 For another illustrative causal model from the field of economy see [6].
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Fig. 1. Smoke-alarm example

However, the situation is different when we start considering the model to be
causal. It means that we assume that the arrows point from the causes to effects.
Now, if the graph from Figure 1(a) is causal then the graph from Figure 1(b)
cannot be causal because of the different orientation of the arrows connecting
nodes D and B. Really, one can hardly imagine that asking Bob to come to work
on Sunday will really change the day of week.

Generally, for causal models three types of queries are considered in Pearl’s
book ([5], page 29)

– predictions - would the alarm ring if we find the smoke in the room?
– interventions - would the alarm ring if we make sure that there is smoke

in the room?
– counterfactuals - would the alarm ring had the smoke been been in the

room, given that the alarm does in fact not ring and the smoke is not in the
room?

In this paper we will consider the first two queries and show how they can
be answered when the causal system is represented in a form of a compositional
model.

3 Compositional Models

For a more thorough introduction to compositional model theory the reader is
referred to [2]. In this paper we will introduce these models rather informally.

The basic idea is simple. Considering a three-dimensional distribution
δ(X,Y, Z) and knowing that variables X and Z are conditionally indepen-
dent given variable Y , one can decompose δ into its two-dimensional marginals
δ(X,Y ) and δ(Y, Z). It means that the original three-dimensional distribu-
tion can be unambiguously reconstructed (composed) from its two-dimensional
marginals using a simple formula

δ(X,Y, Z) =
δ(X,Y ) · δ(Y, Z)

δ(Y )
.
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This formula can be rewritten using an operator of composition % that is defined
as follows.

Consider two (non-empty) sets of variables x and y. We do not impose any
conditions regarding the mutual relation of these sets; they may be but need
not be disjoint, one may be a subset of the other. Let ω and θ be distributions
defined for x and y, respectively. To avoid technical problems connected with
division by zero, we assume that marginal θ↓x∩y dominates ω↓x∩y, i.e.,

θ↓x∩y(·) = 0 =⇒ ω↓x∩y(·).

In this case we can define composition of ω and θ by the formula2

ω % θ =
ω · θ
θ↓x∩y

.

Note that for disjoint x and y the marginal ω↓x∩y = θ↓x∩y = 1, and θ % ω
simplifies to a product of (independent) distributions.

It is known that the composition of distributions ω(x) and θ(y) is always a
distribution of variables x∪ y. In [2], many properties of the operator of compo-
sition are proven. In this paper we will do just with the following three that are
formulated for ω(x) and θ(y).

(ω % θ)↓x = ω; (2)

ω↓x∩y = θ↓x∩y =⇒ ω % θ = θ % ω; (3)

z ⊇ x ∩ y =⇒ (ω % θ)↓z = ω↓x∩z % θ↓y∩z, (4)

from which the following two properties can easily be deduced.

x ⊇ y =⇒ ω % θ = ω; (5)

z ⊆ x =⇒ ω↓z % ω = ω. (6)

Let us start considering the iterative application of the operator of composi-
tion to a sequence of distributions. Since it is not a difficult task to show that
this operator is generally neither commutative nor associative, we have to spec-
ify the ordering in which the operators are to be applied. If the opposite is not
explicitly specified by brackets, we will always apply the operator of composition
from left to right. Therefore, e.g.,

δ % ω % θ % μ % σ = (((δ % ω) % θ) % μ) % σ.

When computing the effect of intervention it will appear advantageous to
compensate the lack of associativity by introducing another operator, so called

2 To avoid technical problems, if not specified explicitly otherwise, in this paper we
will consider only positive distributions. Under this assumption the dominance as-
sumption holds for any couple of distributions and therefore their composition is
always defined.
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an anticipating operator , defining a special type of composition. For a set of
variables z and distributions ω(x) and θ(y) it is defined by the formula:

ω ©%zθ = (θ↓(z\x)∩y · ω) % θ.

Its advantage is expressed by Theorem 9.4 in [2] saying that for δ(z), ω(x) and
θ(y)

δ(z) % ω(x) % θ(y) = δ(z) % (ω(x) ©%zθ(y)). (7)

4 Conditioning by Composition

From now on, consider a general probability distribution ω(X1, X2, . . . , Xn) and
define a degenerated one-dimensional probability distribution σ|i;α as a distribu-
tion of variable Xi achieving probability 1 for value Xi = Δ, i.e.,

σ|i;α(Xi) =

{
1 if Xi = Δ,
0 otherwise.

Let us compute

σ|i;a % ω =
σ|i;a(Xi) · ω(X1, . . . , Xn)

ω↓{Xi}

for any combination of values of all variables X1, . . . , Xn. It is clear that if
Xi �= Δ, σ|i;a % ω = 0. In opposite case, i.e., if Xi = Δ, then

σ|i;a % ω =
ω(X1, . . . , Xi−1, Xi = Δ,Xi+1, . . . , Xn)

ω↓{Xi}(Xi = a)

= ω(X1, . . . , Xi−1, Xi+1, . . . , Xn)|Xi = Δ).

It means that σ|i;a % ω is an n-dimensional distribution that equals 0 for all
combinations of values for which Xi �= Δ. In case that Xi = Δ, then it equals
the conditional distribution ω(X1, . . . , Xi−1, Xi+1, . . . , Xn)|Xi = Δ). Therefore

ω(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi = Δ) = (σ|i;a % ω)
−Xi .

Naturally, this way of expressing conditional distributions can also be used
for distributions represented as compositional models. Therefore, for

ω(X1, . . . , Xn) = μ1 % μ2 % . . . % μm

we get

ω(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi = Δ) =
(
σ|i;a % (μ1 % μ2 % . . . % μm)

)−Xi
.

As said above, in this paper we do not have a space to go more deeply into
theory of compositional models, nevertheless let us state that the brackets in the
preceding formula are important. This is because the operator of composition is
not associative. Moreover, in the next section we will show an important prop-
erty, namely: if μ1 %μ2 % . . . %μm is a causal model then the result of intervention
is computed by the formula

ω(X1, . . . , Xi−1, Xi+1, . . . , Xn|do(Xi = Δ)) =
(
σ|i;a % μ1 % μ2 % . . . % μm

)−Xi
.
(8)
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5 Compositional Causal Models

Consider a system {X1, X2, . . . , Xn} of finite-state variables. For each variable
let C(Xi) denote the set of the variables that are causes of Xi. Naturally, some
C(Xi) may be empty (in fact, to get a Markovian model at least one of these sets
must be empty), and Xi �∈ C(Xi). Using Pearl’s terminology [5], we say that the
causal model is Markovian if there exists an ordering of variables (without loss
of generality we will assume that it is the ordering X1, X2, . . . , Xn) such that
C(X1) = ∅, and for all i = 2, 3, . . . , n C(Xi) ⊆ {X1, . . . , Xi−1}.

For the sake of simplicity denote xi = C(Xi) ∪ {Xi}. If we have probability
distributions μi(xi) we can construct a compositional causal model (CCM) as

ω(X1, . . . , Xn) = μ1(x1) % μ2(x2) % . . . % μn(xn).

There are several theorems in [2] saying under what conditions one can change
the ordering of distributions in a compositional model without influencing the
resulting joint distribution. It is important to stress that for causal models,
most of such transformations are forbidden. For causal models, we can con-
sider only the orderings guaranteeing their Markovianity, i.e., for which C(Xi) ⊆
{X1, . . . , Xi−1}. And it is the result of Kratochv́ıl that says that all these order-
ings define the same joint probability distribution ω(X1, . . . , Xn) (see [4]).

In what follows we will need the following three properties (for the respective
proofs see [2]). For distributions μ1(x1), μ2(x2), μ3(x3)

x1 ⊇ x2 ∩ x3 =⇒ μ1 % μ2 % μ3 = μ1 % μ3 % μ2; (9)

x1 ⊇ x2 ∩ x3 =⇒ μ1 % μ2 % μ3 = μ1 % (μ2 % μ3); (10)

x2 ⊇ x1 ∩ x3 =⇒ μ1 % μ2 % μ3 = μ1 % (μ2 % μ3). (11)

At the end of the previous section we promised to show how to compute
the effect of an intervention in CCMs. Let us repeat the idea of Pearl [5], who
computes it as a conditioning in a Bayesian network, in which all the arrows
heading to the intervention node are deleted. To show that we do the same in a
CCM we will need a possibility to find a causal graph corresponding to a given
CCM.

Consider a CCM μ1(x1) % μ2(x2) % . . . % μn(xn). If it is constructed in the way
described at the beginning of this section then for each i = 1, 2, . . . , n the set
xi \ (x1 ∪ . . .∪xi−1) is a singleton (i.e., |xi \ (x1 ∪ . . .∪xi−1)| = 1). In a few lines
below we will need a minor generalization of this condition, namely that

|xi \ (x1 ∪ . . . ∪ xi−1)| ≤ 1. (12)

Let us construct a causal graph from μ1(x1) % μ2(x2) % . . . % μn(xn) meeting
condition (12). The elements from x1 ∪ . . . ∪ xn are nodes of the constructed
causal graph, and there is an arrow (Xi → Xj) in this graph if and only if there
is a distribution μk(xk) in the CCM, for which

{Xi, Xj} ⊆ xk;
Xj �∈ x1 ∪ . . . ∪ xk−1;
Xi ∈ x1 ∪ . . . ∪ xk−1.
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Now, consider two different CCMs:

ω(X1, . . . , Xn) = μ1(x1) % μ2(x2) % . . . % μn(xn),

θ(X1, . . . , Xn) = ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn(xn),

and construct for both of them the corresponding causal graphs. It is evident that
if condition (12) holds for CCM ω, then it holds true also for CCM θ. Moreover,
the reader can almost immediately see that, in the causal graph corresponding
to CCM θ, there are no arrows heading to node Xi, and that all the other arrows
from the causal graph corresponding to CCM ω are preserved in the causal graph
corresponding to CCM θ. It means that an intervention in CCM ω can be done
through conditioning in CCM θ (see [5]):

ω(X1, . . . , Xi−1, Xi+1, . . . , Xn|do(Xi = Δ))

= θ(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi = Δ)

=
(
σ|i;a % (ω

↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn(xn))
)−Xi

So, to show the validity of the expression (8) we have to show that

σ|i;a %
(
ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn(xn)

)
= σ|i;a % μ1(x1) % μ2(x2) % . . . % μn(xn).

(13)

When computing σ|i;a %
(
ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn(xn)

)
, it is im-

portant to realize that both σ|i;a and ω↓Xi are distributions defined for the same
variable Xi. Therefore we can apply property (11)

σ|i;a %

((
ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn−1(xn−1)

)
% μn(xn)

)
= σ|i;a %

(
ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn−1(xn−1)

)
% μn(xn).

The same idea can also be applied to a shorter sequence, which yields

σ|i;a %

((
ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn−2(xn−2)

)
% μn−1(xn−1)

)
= σ|i;a %

(
ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn−2(xn−2)

)
% μn−1(xn−1).

Thus, applying property (11) n times we get that

σ|i;a %
(
ω↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn(xn)

)
= σ|i;a % ω

↓Xi(Xi) % μ1(x1) % μ2(x2) % . . . % μn(xn),

and to show the validity of the required equation (13) it is enough to apply
property (5) to the first operator of composition.



524 R. Jiroušek

6 Causal Models with Unobserved Variables

Consider a simple Markovian causal model that is treated in Section 3.4.3 of [5].
It has four variables U,X, Y and Z, where the first variable is unobserved (latent,
unmeasured) whilst all the others are measurable. The causal structure of the
considered model is defined by the sets C(U) = ∅, C(X) = {U}, C(Y ) = {X},
and C(Z) = {U, Y }. Thus, this causal model is represented by only one CCM,
namely

ω(U) % ω(U,X) % ω(X,Y ) % ω(U, Y, Z). (14)

However, since variable U is unobservable, there is no way how to estimate the
necessary marginal distributions ω(U), ω(U,X) and ω(U, Y ), we can get only
estimates of ω(X,Y, Z) (and its maginals). This, as a matter of course, en-
ables us to compute “predictive” conditional distributions like ω(Y |X = Δ) and
ω(Z|X = Δ). Nevertheless, there is a natural question whether there is a chance
to compute also the effects of interventions ω(Y |do(X = Δ)), ω(Z|do(Y = β)),
ω(Z|do(X = Δ)), ω(Y, Z|do(X = Δ)) and ω(X,Z|do(Y = β)). In [5] Pearl com-
putes all the above mentioned effects and says that in all the derivations, the
graph (of the respective causal network) provides both the license for applying
the inference rules and the guidance for choosing the right rule to apply. Sur-
prisingly enough, thanks to the compositional form of the model we can do the
necessary computations just with the help of the above introduced properties.

A trivial solution is for ω(Y |do(X = Δ))3:

ω(Y |do(X = Δ)) =
(
σ|X;α % ω(U) % ω(U,X) % ω(X,Y ) % ω(U, Y, Z)

)↓{Y }
(5)
=
( (
σ|X;α % ω(U) % ω(X,Y ) % ω(U, Y, Z)

)−{Z})↓{Y }
(4)
=
(
σ|X;α % ω(U) % ω(X,Y ) % ω(U, Y )

)↓{Y }
(5)
=
( (
σ|X;α % ω(U) % ω(X,Y )

)−{U})↓{Y }
(4)
=
(
σ|X;α % ω(X,Y )

)↓{Y }
= ω(Y |X = Δ),

which corresponds to our intuition.
A bit more complicated is to compute

ω(Z|do(Y = β)) =
(
σ|Y ;β % ω(U) % ω(U,X) % ω(X,Y ) % ω(U, Y, Z)

)↓{Z}
(11)
=

(
σ|Y ;β % (ω(U) % ω(U,X)) % ω(X,Y ) % ω(U, Y, Z)

)↓{Z}
(6)
=

(
σ|Y ;β % ω(U,X) % ω(X,Y ) % ω(U, Y, Z)

)↓{Z}
(6)
=

(
σ|Y ;β % (ω(X) % ω(U,X)) % ω(X,Y ) % ω(U, Y, Z)

)↓{Z}
(11)
=

(
σ|Y ;β % ω(X) % ω(U,X) % ω(X,Y ) % ω(U, Y, Z)

)↓{Z}
3 The numbers above the signs of equation refer to the properties used.
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(10)
=

(
σ|Y ;β % ω(X) % (ω(U,X) % ω(X,Y )) % ω(U, Y, Z)

)↓{Z}
(11)
=

(
σ|Y ;β % ω(X) % (ω(U,X) % ω(X,Y ) % ω(U, Y, Z))

)↓{Z}
=

( (
σ|Y ;β % ω(X) % ω(U,X, Y, Z)

)−U
)↓{Z}

(4)
=

(
σ|Y ;β % ω(X) % ω(X,Y, Z)

)↓{Z}
=

(
ω(X) % σ|Y ;β % ω(X,Y, Z)

)↓{Z}
.

It is more sophisticated to compute ω(Z|do(X = Δ)). For this we will use,
among others, the anticipating operator (introduced in Section 3).

ω(Z|do(X = Δ)) =
(
σ|X;a % ω(U) % ω(U,X) % ω(X,Y ) % ω(U, Y, Z)

)↓{Z}
(5)
=
(
σ|X;a % ω(U) % ω(X,Y ) % ω(U, Y, Z)

)↓{Z}
(9)
=
(
σ|X;a % ω(X,Y ) % ω(U) % ω(U, Y, Z)

)↓{Z}
(7)
=
(
σ|X;a % ω(X,Y ) %

(
ω(U) ©%{X,Y }ω(U, Y, Z)

))↓{Z}
(4)
=

(
σ|X;a % ω(X,Y ) %

(
ω(U) ©%{X,Y }ω(U, Y, Z)

)−U
)↓{Z}

To express
(
ω(U) ©%{X,Y }ω(U, Y, Z)

)−U

we will use the idea of extension used

for this purpose by Pearl in [5].

(
ω(U) ©%{X,Y }ω(U, Y, Z)

)−U

=
(
ω(U) ©%{Y }ω(U, Y, Z)

)−U

=

((
ω(U,X) ©%{Y }ω(U, Y, Z)

)−X
)−U

=
(
θ(Y ) · ω(U,X) % ω(U, Y, Z)

)↓{Y,Z}
=

(
θ(Y ) · ω(X) % ω(U,X) % ω(U, Y, Z)

)↓{Y,Z}
(5)
=

(
θ(Y ) · ω(X) % ω(U,X) % ω(X,Y ) % ω(U, Y, Z)

)↓{Y,Z}
(10)
=

(
θ(Y ) · ω(X) % (ω(U,X) % ω(X,Y )) % ω(U, Y, Z)

)↓{Y,Z}
=

(
θ(Y ) · ω(X) % ω(U,X, Y ) % ω(U, Y, Z)

)↓{Y,Z}
(11)
=

(
θ(Y ) · ω(X) % (ω(U,X, Y ) % ω(U, Y, Z))

)↓{Y,Z}
=

(
θ(Y ) · ω(X) % ω(U,X, Y, Z)

)↓{Y,Z} (4)
=
(
θ(Y ) · ω(X) % ω(X,Y, Z)

)↓{Y,Z}
=

(
ω(X) ©%{Y }ω(X,Y, Z)

)−X

,
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which eventually leads to

ω(Z|do(X = Δ)) =

(
σ|X;a % ω(X,Y ) %

(
ω(X) ©%{Y }ω(X,Y, Z)

)−X
)↓{Z}

.

7 Conclusions

As promised in Introduction, we have presented some preliminary ideas regard-
ing causal compositional models. Namely, we have shown how to compute in-
tervention in these models. For the sake of simplicity we have assumed that the
considered probability distributions are positive. Let us stress that this assump-
tion can easily be replaced by the assumption of dominance of the respective
distributions. So, the approach can be used also in situations when some of the
considered dependencies are deterministic.

The computations presented in the last section may seem rather tedious and
laborious. This is because we proceeded very slowly making one elementary
modification at each step. In fact, it is rather surprising that as for tools from
compositional model theory, we could do just with a small battery of elementary
rules, most of which can easily be deduced just from the definition of the operator
of composition. The only step that can be considered as advanced was connected
with the application of the anticipating operator.
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Abstract. Variable selection in Bayesian networks is necessary to assure  
the quality of the learned network structure. Cinicioglu & Shenoy (2012)  
suggested an approach for variable selection in Bayesian networks where a 
score, Sj, is developed to assess each variable whether it should be included in 
the final Bayesian network. However, with this method the variables without 
parents or children are punished which affects the performance of the learned 
network. To eliminate that drawback, in this paper we develop a new score,  
NSj. We measure the performance of this new heuristic in terms of the predic-
tion capacity of the learned network, its lift over marginal and evaluate its  
success by comparing it with the results obtained by the previously developed Sj 
score. For the illustration of the developed heuristic and comparison of the re-
sults credit score data is used. 

Keywords: Bayesian networks, Variable selection, Heuristic. 

1 Introduction 

The upsurge of popularity of Bayesian networks brings a parallel increase in research 
for structure learning algorithms of Bayesian networks from data sets. The ability of 
Bayesian networks to represent the probabilistic relationships between the variables is 
one of the main reasons of the rise in reputation of Bayesian networks as an inference 
tool. This also generates the major appeal of Bayesian networks for data mining. With 
the advancement and diversification of the structure learning algorithms, more va-
riables may be incorporated to the learning process, bigger data sets may be used for 
learning, and inferences become faster even in the presence of continuous variables. 
The progress achieved on structure learning algorithms for Bayesian networks is en-
couraging for the increasing use of Bayesian networks as a general decision support 
system, a data mining tool and for probabilistic inference. On the other hand, though 
the quality of a learned network may be evaluated by many different aspects, the per-
formance of the learned network very much depends on the selection of the variables 
to be included to the network. Depending on the purpose of the application, the  
characteristics of an application may differ and hence the expectations from a Baye-
sian network performance may vary. Therefore to assure to end up with a Bayesian 
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network of high quality, variable selection in Bayesian networks should constitute an 
important dimension of the learning process. There is a considerable literature in sta-
tistics on measures like AIC, BIC, Caplow’s C-p statistic etc. that are used for varia-
ble selection in statistical models. These measures have been adopted by the machine 
learning community for evaluating the score based methods for learning Bayesian 
network models (Scutari, 2010).  However, these scores are used as a measure of the 
relative quality of the learned network and do not assist in the variable selection 
process. Additionally, as discussed in Cui et al. (2010), traditional methods of step-
wise variable selection do not consider the interrelations among variables and may not 
identify the best subset for model building. Despite the interest for structure learning 
algorithms and adaptation of different measures for the evaluation of the resulting 
Bayesian networks, variable selection in Bayesian networks is a topic which needs 
further attention of the researchers. Previously Koller and Sahmi (1996) elaborate the 
importance of feature selection and state that the goal should be to eliminate a feature 
if it gives us little or no additional information. Hruschka et al. (2004) described 
Bayesian feature selection approach for classification problems. In their work, first a 
BN is created from a dataset and then the Markov blanket of the class variable is used 
to the feature subset selection task. Sun & Shenoy (2007) provided a heuristic method 
to guide the selection of variables in naïve Bayes models. To achieve the goal, the 
proposed heuristic relies on correlations and partial correlations among variables. 
Another heuristic developed for variable selection in Bayesian networks was pro-
posed by Cinicioglu & Shenoy (2012). With this heuristic a score called Sj was devel-
oped which helps to determine the variables to be used in the final Bayesian network. 
By this heuristic first an initial Bayesian network is developed with the purpose of 
learning the conditional probability tables (cpts) of all the variables in the network. 
The cpts indicate the association of a variable with the other variables in the network. 
Using the cpt of each variable, its corresponding Sj score is calculated. In their paper 
Cinicioglu & Shenoy (2012) illustrate that by applying proposed heuristic the perfor-
mance of the learned network in terms of the prediction capacity may be improved 
substantially. In this paper first we discuss the Sj score, and then identify the problem 
that though the Sj score demonstrates a sound performance on prediction capacity, its 
formula leads to the problem that the variables without parents or children in the net-
work are punished and that in turn affects the overall performance of the heuristic. 
Trying to eliminate that drawback, in this paper we suggest a modified version of the 
Sj score, which is called as NSj. We measure the performance of this new score in 
terms of the prediction capacity of the learned network, its lift compared to the mar-
ginal model and evaluate its success by comparing it with the results obtained by the 
previously developed Sj score. For the illustration of the developed heuristic and com-
parison of the results credit score data is used. The outline of the remainder of the 
paper is as follow: The next section gives details about the credit data set used for the 
application of the proposed heuristic. In section 3 the development of the new heuris-
tic is explained, where both Sj and NSj scores are discussed in detail in subsections 3.1 
and 3.2 respectively. In section 4, using both of the variable selection scores Sj and 
NSj, different Bayesian networks are created. The performance results of these two 
heuristics are compared in terms of the prediction capacity and improvement rates 
obtained compared to the marginal model.  
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2 Data Set 

The data set used in this study is a free data set, called the German credit data, pro-
vided by the UCI Center for Machine Learning and Repository Systems. The original 
form of the data set contains the information of 1000 customers about 20 different 
attributes, 13 categorical and 7 numerical, giving the information necessary to eva-
luate a customer’s eligibility to get a credit. Before the use of the data set for the ap-
plication of the proposed heuristics several changes are made in the original data set. 
In this research, the German credit data set is transformed into a form where the nu-
merical attributes “Duration in month”, “Credit amount”, “Installment rate in percen-
tage of disposable income”, “Present residence since”, “Age in years”, “Number of 
existing credits at this bank” and “Number of people being liable to provide mainten-
ance for” are discretized. The variable “Personal status and sex” is divided into two 
categorical variables as “Personal status” and “Sex”. In the original data set the cate-
gorical variable “Purpose” contains eleven different states. In this paper some of these 
states are joined together, like “car” and “used car” as “car”, “furniture”, “radio” and 
“domestic appliances” as “appliances” and “retraining” and “business” as “business”, 
resulting in seven different states at the end. The final data set used in this study con-
stitutes of 21 columns and 1000 lines, referring the number of variables and cases 
consequently.  

3 Development of the Proposed Heuristic 

3.1 Sj Score 

The heuristic developed by Cinicioglu & Shenoy (2012) is based on the principle that 
a good prediction capacity of a Bayesian network depends on the choice of the va-
riables that have high associations with each other. A marginal variable present in a 
network will not have any dependencies with the remaining variables in the network 
and thus won’t have any impact for the overall performance of the network. In that 
instance, the arcs learned using an existing structure learning algorithm shows the 
dependency of a child node with its parent node, hence a proof of association. How-
ever, not all variables which do not place themselves as marginals, can be incorpo-
rated to the final Bayesian network. The idea is to develop an efficient heuristic for 
variable selection where the Bayesian network created using the selected variables 
will show a superior prediction performance compared to the random inclusion of 
variables to the network. Besides, though the presence of an arc shows the dependen-
cy relationship between two variables in the network, the degree of association is not 
measured there and may vary quite differently among variables. A natural way to 
examine the association of a variable with other variables considered for inclusion in 
the final Bayesian network is to learn an initial Bayesian network structure at first and 
then use the conditional probability tables of each variable as a source of measure-
ment for the degree of association.   
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Applying the distance measure to the conditional probability table of a variable, the 
degree of change on the conditional probabilities of a child node depending on the 
states of its parents may be measured. In that instance a high average distance ob-
tained indicate that the conditional probability of the variable considered changes a 
great deal depending on the states of its parents. Thus, a high average distance is an 
indication of the high association of a child node with its parents.  

The average distance of each variable may be calculated using the formula given 
below. Here d represents the average distance of the variable of interest with its parent 
variables. p and q  stand for the conditional probabilities of this variable for the dif-
ferent states of its parents, i stands for the different states of the child node and n  
stands for the number of states of the set of parent nodes. ∑ / 2  ,                                                   (1) 

However, there may be variables in the network which do not have a high level of 
association with its parent node but do possess a high association with its children. 
Basing the selection process on the average distance of each variable solely will dete-
riorate the performance of the network created. Besides, while the average distance 
obtained from the cpt of a variable shows the degree of association of a child node 
with its parents, the same average distance also shows the degree of association of a 
parent node with its child, jointly with the child’s other parents. Following this logic 
Cinicioglu & Shenoy (2012) developed the Sj score given in Equation (2) below. In 
this formula the Sj score of a variable j is the sum of the average distance of this vari-
able dj and the average of the average distances of its children. Here ij denotes the 
child variable i of the variable j and cj denotes the number of j’s children.  ∑                                                  (2) 

Consider Table 1 given below. This table is the cpt of the variable “Credit amount”. 
Using the formula given in Equation (1) the average distance of this variable is calcu-
lated as 0.0107. Considering Figure 1 given below, we see that “Credit Amount”  
possesses three children. Hence in order to calculate the Sj score of “Credit Amount” 
we need to find the average distances of the child variables, average them and then 
add it to the average distance of the “Credit Amount”.  

A high Sj score is desired as an indication of the high association with other va-
riables. Ideally, according to the heuristic, the variable with the lowest Sj score will be 
excluded from the analysis and a new BN will be created with the remaining va-
riables. This network will include the new cpts which will be the basis for the selec-
tion of the variable to be excluded from the network. This process is repeated until the 
desired number of variables is obtained. This repeated process is the ideal way of 
applying the heuristic, however if not automated will require a great deal of time. In 
the following, subsection 3.2, the shortcomings of the Sj score are discussed. As a 
modification of the Sj score to handle the problems involved with the old variable 
selection method, a new score called NSj is suggested.  
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Table 1. Cpt of the variable “Credit Amount” 

 Credit Amount 

Telephone 0 - 4000 4000 -8000 8000 -12000 12000-16000 16000-20000 

None 0.8286 0.1364 0.0300 0.0033 0.0017 

Yes 0.6308 0.2347 0.0807 0.0489 0.0049 

 

 

Fig. 1. Variable “Credit Amount” with its three children and calculation of SCredit Amount 

3.2 A New Variable Selection Score: NSj  

The heuristic developed by Cinicioglu & Shenoy (2012) tries to identify the variables 
which possess a high level of association with their parent and child variables. With 
that purpose the variable selection score developed, Sj, is comprised of two parts: Sj is 
the sum of the average distance of the variable of interest and the average of the aver-
age distances of its children. This way, with the Sj score the variable is evaluated by 
considering both the association with its parents and also with its children. However, 
this approach also has the drawback that the variables without parents or children are 
penalized for inclusion to the final Bayesian network.  

Consider the formula of the Sj score given in Equation (2). A variable without par-
ents will only have a marginal probability distribution, not a cpt, and thus its average 
distance will be considered as zero. Similarly, for a variable which does not have any 
children the Sj score will be equal to its average distance. The resulting Sj scores for a 
variable without parents and for a variable without children are given in Equations (3) 
and (4) respectively. 

For a variable j without parents   ∑                                  (3) 

For a variable j without children                          (4) 

As illustrated above because of the formulation of the Sj score, variables which do not 
possess parents or children will be punished in the variable selection process. If such a 
variable which lacks parents or children has a strong association with the present part 
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(its parents or children depending on the case) though, then this selection process may 
cause to create networks with lower performance. To overcome this problem, in this 
research, a modified version of the Sj score, NSj, is presented. For variables which lack 
either parents or children the score will remain to be the same as the old one. For 
variables which possess both parents and children on the other hand, NSj will be equal 
to the half of the old Sj score. These two cases are formulated in Equation (5) and (6) 
given below.  

For a variable j without parents or children  ∑                                     (5) 

For a variable j both with parents and children 

  ∑
                                  (6) 

The variables which don’t have any parents or children will be eliminated from the 
network. In the following section both of these heuristics will be used to learn BNs 
from the credit data set introduced in Section 2, their performance will be evaluated in 
terms of the prediction capacity and improvement obtained compared to the marginal 
model.  

4 Evaluation of the Proposed Heuristic 

In this section the performance of the variable selection scores Sj and NSj are com-
pared. The evaluation is made in terms of the prediction capacity and improvement of 
the BNs created using the suggested scores. For the application of the heuristic, first, 
it is necessary to learn an initial BN from the data set. For illustration and evaluation 
of the suggested scores the credit data set given in Section 2 will be used. For learning 
BNs from the data set WinMine, software (Heckerman et al., 2000) developed by 
Microsoft Research, is used. The main advantage of WinMine is its ability to auto-
matically calculate log-scores and lift over marginals of the learned BNs. Log-score is 
a quantitative criterion to compare the quality and performance of the learned BNs. 
The formula for the log score is given below.  , … , ∑ | /    (7) 

where n is the number of variables, and N is the number of cases in the test set.  
For the calculation of the log-score, the dataset is divided into a 70/30 train and  

test split1 and the accuracy of the learned model on the test set is then evaluated using 
the log score. Using WinMine the difference between the log scores of the provided 

                                                           
1 In WinMine only the percentage of the test/training test data may be determined. Using a 

different software in further research 10-fold cross validation will increase the validity of the 
results. 
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model and the marginal model can also be compared which is called as the “lift  
over marginal”. A positive difference signifies that the model out-performs the mar-
ginal model on the test set. The initial BN learned from the credit data set is given in 
Figure 2 below. 

 

Fig. 2. The initial BN learned from the credit data set containing all of the variables 

Using the cpts obtained through the initial BN we can calculate both the Sj and NSj 
scores. Figure 3 given below depicts the graph of both Sj and NSj scores for the 21 
variables used in the initial BN. The observations made are as follows: For seven 
variables in the network the corresponding Sj and NSj scores agree. These seven va-
riables are the ones which either lack parents or children.  

 

Fig. 3. Graph of the Sj and NSj scores calculated using the cpts obtained from the initial BN 

In our analysis we want to compare the performance of these two variable selection 
scores. With that purpose two sets of variables are created, one by selecting the va-
riables with the highest Sj scores and the second with the highest NSj scores. Using the 
variables selected the corresponding BNs are learned. The performance of the BNs 
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are compared in terms of prediction capacity of the provided model and in terms of 
the improvement obtained. As the next step the same process is repeated by using the 
cpts of the new BNs to calculate the new Sj and NSj scores. Accordingly, the variables 
to be excluded from the network is decided according their ranking on the variable 
selection score considered, Sj or NSj. In our analysis, we repeated the steps five times 
and created BNs using 17, 15, 13, 11 and 8 variables, all selected according their 
ranking in the corresponding variable selection scores. The results of their perfor-
mance are listed in Table 2 given below.  Both of the variable selection scores obtain 
better results compared to the marginal model and also the average distance measure. 
Notice that also the results of the BNs created using the average distance dj are listed 
in the same table. This is done for comparison purposes to illustrate that both of the 
variable selection scores do result in superior performance compared to the average 
distance measure. Additionally, in almost all the networks considered except the BN 
with 17 variables, we obtained better performing networks using the NSj score both in 
terms of the prediction capacity and improvement obtained. 

Table 2. Performance results of the variable selection scores Sj and NSj
2
 

  LogScore Prediction rate 
Lift Over 
Marginal 

Improvement 
obtained 

initial BN  − 0.76 59.13% 0.19 7.13% 

Top 17 
variables 

dj − 0.83 56.38% 0.17 6.30% 

Sj − 0.73 60.30% 0.21 8.20% 

NSj − 0.77 58.58% 0.19 7.36% 

Top 15 
variables 

dj − 0.77 58.46% 0.19 7.18% 

Sj − 0.72 60.87% 0.22 8.48% 

NSj − 0.72 60.87% 0.22 8.48% 

Top 13 
variables 

dj − 0.78 58.29% 0.21 7.84% 

Sj − 0.73 60.23% 0.20 7.65% 

NSj − 0.66 63.27% 0.22 8.95% 

Top 11 
variables 

dj − 0.73 60.39% 0.19 7.35% 

Sj − 0.72 60.66% 0.19 7.41% 

NSj − 0.65 63.74% 0.22 9.06% 

Top 8 
variables 

dj − 0.76 58.87% 0.18 6.97% 

Sj − 0.67 62.65% 0.18 7.44% 

NSj − 0.66 63.14% 0.22 9.08% 

5 Results, Conclusions and Further Research 

In order to ensure the prediction capacity of a BN learned from the data set and to be 
able to discover hidden information inside a big data set it is necessary to select the 
right set of variables to be used in the BN to be learned. This problem is especially 

                                                           
2 The results are rounded to two decimal places. 
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apparent when there is a huge set of variables and the provided data is limited. In the 
last decade the research on structure learning algorithms for BNs have grown substan-
tially. Though, there exists a wide research for variable selection in statistical models, 
the research conducted for variable selection in BNs remains to be limited. The varia-
ble selection measures developed for statistical models have been adapted by the ma-
chine learning community for evaluating the overall performance of the BN and do 
not provide guidance in variable selection for creating a good performing BN.  The 
variable selection score Sj  (Cinicioglu &Shenoy, 2012), provides a sound perfor-
mance for prediction capacity of the resulting network, however has the drawback 
that the variables without parents or children punished for inclusion to the network. 
Motivated by that problem in this research we suggest a modification to the Sj score, 
called as NSj which fixes the problems inherent in its predecessor Sj.  A credit score 
data set is used for applying the proposed heuristic. The performance of the resulting 
BNs using the proposed heuristic is evaluated using logscore and lift over marginal 
which provides the prediction capacity of the network and the improvement obtained 
using the provided model compared to the marginal model. These results are  
compared with the results obtained using the distance measure and the Sj score.  
Accordingly, the new developed NSj score show better performance both in terms of 
prediction capacity and the improvement obtained. For further research, different 
variable selection scores from statistical models and different data sets may be used to 
evaluate the results of the proposed heuristic.  
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Abstract. This paper proposes an original recommender system (RS)1

based upon an automatic extraction of trends from opinions and a mul-
ticriteria multi actors assessment model. Our RS tries to optimize the
use of the available information on the web to reduce as much as possible
the complex and tedious steps for multicriteria assessing and for iden-
tifying users’ preference models. It may be applied as soon as i) overall
assessments of competing entities are provided by trade magazines and
ii) web users’ critics in natural languages and related to some charac-
teristics of the assessed entities are available. Recommendation is then
based on the capacity of the RS to associate a web user with a trade
magazine that conveys the same values as the user and thus represents
a reliable personalized source of information. Possibility theory is used
to take account subjectivity of critics. Finally a case study concerning
movie recommendations is presented.

Keywords: Possibility theory, Intervals merging, Multicriteria aggrega-
tion, Recommender system, Opinion-mining.

1 Introduction

In recent years, many companies and web sites have set up systems to ana-
lyze the preferences of their users in order to better meet their expectations.
To date, recommendation systems are present in many areas such as tourism
/leisure, advertising, e-commerce, movies, etc. Due to the exponential growth
of the quantity of data available on the Internet in recent years, searching and
finding products, services and relevant contents become a difficult task for the
user often drowned out by the mass of information. This explains the growing
interest in recommendation systems (RS) both by users as by commercial sites.
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1 This work is an extension of [1].
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The task of recommendation has been identified as a way to help users to
find information, or elements that are likely of interest. Roughly speaking, we
consider a set of users and a set of items (products or services) that may be
recommended to each user. In addition, a multicriteria recommendation improves
the quality of a RS because it makes explicit the characteristics for which an
item was proposed to the user [2] [3]. A RS that takes advantage of evaluation
related to multicriteria preference elicitation provides users with more relevant
detailed recommendations [2]. However, the implementation of such a model
requires a knowledge base where the items are evaluated w.r.t a set of criteria.
This constraint imposed by the model is very heavy for the user.

In [4], an unsupervised multicriteria opinion mining method is proposed. It
allows users to free themselves from constraining partial evaluations w.r.t each
criterion: users simply submit their critics in natural language to express their
opinions, and system analyzes them automatically. It first dissects the critics
according to the evaluation criteria (thematic segmentation) before calculating
the polarity or opinions of each of the extracts resulting from the segmentation
step (opinion-mining/sentiment analysis).

Combining this method with an interactive multicriteria decision support sys-
tem makes possible to have a highly automated system for recommendation pur-
poses. However, the automated assignment only provides imprecise scores related
to items that are modeled by intervals in an adequate multicriteria analysis pro-
cess. Our possibility theory based approach then manages multiple imprecise
assessments derived from sentiment analysis on each evaluation criterion (inter-
vals fusion) and then aggregate them on all criteria. Finally, we try to match a
user and an adequate specialized magazine in the domain of concern (movies in
our application) that will provide the most suitable personalized recommenda-
tion to the user.

Section 2 summarizes opinion mining approach to extract Internet user’s crit-
ics and compute opinion scores on a set of criteria. Section 3 explains how to
merge these imprecise opinion scores for each criterion and introduces the no-
tion of matching of a distribution with data available on a criterion. Section 4
describes how to deduce the multicriteria model used by a specialized maga-
zine to assess items. Section 5 shows how these approaches can be combined to
address the multicriteria recommendation problem in the case study of movie
recommendations.

2 Opinion-Mining Process

On the basis of statistical methods, the Opinion-mining approach of [4] allows
us to build a lexicon of opinion descriptors for a given thematic. This lexicon is
used to automatically extract the polarity of text segments that are related to the
criterion. Two stages are distinguished in this multicriteria evaluation: - firstly,
the segments of text related to each of the evaluation criteria are extracted with
the Synopsis approach described in [5]. The text is first segmented into criteria.
Then, for each criterion, the polarities of the segments that have been identified
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by the Synopsis approach are computed. This is opinion-mining or sentiment
analysis step.

2.1 Text Segmentation by Criterion

The Synopsis approach is used to identify the text extracts that refer to the
adopted criteria and consists of 3 steps:

1. automatic construction of a training corpus used to learn characteristic words
(or groups of words), called descriptors, for a criterion of interest

2. Automatic learning of these descriptors and construction of a lexicon asso-
ciated with the criterion

3. Text segmentation using the lexicon associated with the criterion

The approach uses a set of seed words. On the one hand, they serve to seman-
tically characterize the criterion of concern, and on the other hand to initiate
the learning of descriptors of the criterion [5]. The training corpus is built au-
tomatically. The hypothesis of the learning is based on the fact that the more
frequently a descriptor is found in the neighborhood of a seed word of the crite-
rion (counting on sliding window), the greater the membership function of this
descriptor to the lexical scope of the criterion.

Synopsis builds automatically its training corpus for each criterion by using
web documents. This corpus is used to automatically build a lexicon of descrip-
tors for each of these criteria. Each lexicon is then used by the segmentation
process to automatically extracts parts of text dealing with this criterion. Synop-
sis will identify several segmentation for each criterion depending of granularity
levels. Those granularities can be associated with user’s level of expertise. The
pertinent levels are automatically identified by Synopsis (see [4] and [5] for more
details).

2.2 Opinion Analysis

The opinions extraction approach is an adaptation of the Synopsis approach to
the extraction of opinions both for the automatic building of the training corpus
and for the descriptors learning phases. Seed words become opinion seed words
[4]. Two sets of words of opinion are initially distinguished the positive ones: P
= {good, nice, excellent, positive, fortunate, correct, superior}; and the negative
ones: N = {bad, nasty, poor, negative, unfortunate, wrong, inferior}.

Assuming a document that contains at least one word of P (resp. N) and none
of N (resp. P) conveys a positive opinion (resp. negative), a set of documents
associated with a seed word is built with a search engine on the web as in Synopsis
(request for seed word ”good” in the movie domains: movie + good - bad - nasty -
negative - poor - unfortunate - wrong - inferior). Opinion descriptors are limited
to adjectives and adjectival groups [4]. Statistical techniques of filtering with
sliding windows of Synopsis are adapted to count opinion descriptors occurences.

Finally, an opinion score for a criterion is provided as a weighted sum of
the text segments’ membership related to the criteria and the positive/negative
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descriptors. Thus, since the extraction of criteria segments depends on the level of
expected precision (i.e. level of expertise), the score of the opinion text related to
the criterion is also affected by the discrimination threshold. For each threshold
the segmentation algorithm of [4] generates the corresponding text segmentation.
Then the opinion scores of the text can be computed for any user’s expertise
level. There exists a lower and upper bound for this score. Accordingly, the
opinion score is an imprecise entity which is then represented as an interval
whose extremities are these lower and upper bounds.

3 Intervals Merging

The imprecision involved here concerns the subjectivity of a critic in the evalu-
ation process of a text. This ”subjectivity” is technically related to the impre-
cision of extraction. It is however ”homogenized” by the automatic processing
of segmentation. Then, evaluation is also uncertain because of the multiplicity
of automatically collected opinions. Belief theory [6], [7] provides an appropri-
ate framework to summarize these opinions and ease their representation and
manipulation in the recommendation process while respecting their imprecision
and uncertainty. Possibility distributions [8] are good approximations of belief
functions. Thus they will be used to represent assessments. Also, possibility func-
tions are appealing from an interpretation point of view in collecting confidence
intervals as well as a computational point of view.

3.1 Possibility Theory

Let β represent a universal set of elements Ω under consideration that is assumed
to be finite and let 2ν represent the power set of β. A possibility distribution
δ is a normalized function δ : β −→ [0, 1] (i.e. ∃Ω ∈ β, such that δ(Ω) = 1).
From δ, possibility and necessity measures are respectively defined for all subsets
A ∈ 2ν: φ(A) = sup

ω∈A
δ(Ω) and N(A) = 1 − φ(Ac). φ(A) quantifies to what

extent the event A is plausible while N(A) quantifies the certainty ofA. An Δ-cut
of possibility distribution δ is the classical subset: Eα = {Ω ∈ β : δ(Ω) ≥ Δ},
Δ ∈]0, 1]. When a distribution has a trapezoidal form, it is classically represented
by its vertices abcd.

3.2 Evidence Theory

The evidence theory shall now be formulated by the basic belief assignment
(bba) m defined from 2ν to [0, 1], such that:

∑
{A⊆ν}m(A) = 1 and m(∅) = 0.

Elements E of 2ν such that m(E) > 0 are called focal elements and their
set is denoted F. The bba m can be represented by two measures: the belief
function Bel(A) =

∑
{E∈F/A⊇E}m(A), A ⊆ β and the plausibility function

Pl(A) =
∑
{E∈F/A∩E �=∅}m(A), A ⊆ β. When focal elements are imprecise, the

probability of any event A ⊆ β, denoted Pr(A), is imprecise and Bel(A) and



540 A. Imoussaten et al.

Pl(A) represent respectively the lower and upper probabilities of event A, i.e.
Pr(A) ∈ [Bel(A), P l(A)]. Two well-known extreme cases of belief and plausibil-
ity measures are probability measures and possibility measures [8].

3.3 Building Possibility Distributions From a Set of Intervals

Let consider a set of distinct intervals {Ij , j = 1, nbi} as the focal elements
and the probability of occurrence of interval Ij as the bba m(Ij) assigned to
this interval. When intervals are nested, i.e. I1 ⊂ I2 ⊂ ... ⊂ Inbi, a possibility
distribution δ may be built from plausibility measure, as proposed in [9]: ∀Ω ∈
β, δ(Ω) = Pl({Ω}) =

∑
j=1,nbi

m(Ij).1Ij (Ω). When intervals are consistent, i.e.⋂
j=1,nbi

Ij = I �= ∅ (all experts share at least one value), but not nested, two

possibility distributions δ1 and δ2 are built: First, we consider the bba m1(Ij)
for focal elements {Ij , j = 1, nbi}. Thus ∀Ω ∈ β, δ1(Ω) =

∑
j=1,nbi

m1(Ij).1Ij (Ω).

Second, r nested focal elements {Es, s = 1, r} are obtained from original data
from the Δ-cuts of δ1: E1 = I and Es = Es−1 ∪ Eαs(δ1) (s = 2, r). The new
bba m2 assigned to intervals Es are computed as proposed in [9]: m2(Es) =∑
{Ij related to Es}m1(Ij) (each assessments Ij being related in a unique way to

the smallest Es containing it). Then a possibility distribution δ2 can be defined
as: ∀Ω ∈ β, δ2(Ω) =

∑
s=1,r

m2(Es).1Es(Ω). Membership functions δ1 and δ2 are

mono modal possibility distributions since
⋂

j=1,nbi

Ij = I �= ∅ holds. Furthermore,

they are the best possibilistic lower and upper approximations (in the sense of
inclusion) of assessment sets {Ij , j = 1, nbi} [9]. It can be seen easily that δ1 ⊆ δ2
(inclusion of fuzzy subsets) as ∀Δ ∈]0, 1], E1,α ⊆ E2,α.

In general however, experts’ assessment might be neither precise nor con-
sistent. The probability and possibility representations correspond respectively
to extreme and ideal situations; unfortunately, critics may reveal contradictory
assessments. This means that the consistency constraint may not be satisfied
in practice, i.e.

⋂
j=1,nbi

Ij = ∅. To cope with this situation, groups of intervals,

maximal coherent subsets (MCS ), with a non-empty intersection are built from
original intervals, which is equivalent to find subsets Kβ ⊂ {1, ..., nbi} with
β ∈ {1, ..., g} such that:

⋂
j∈Kβ

Ij �= ∅, with g being the number of subsets Kβ

[10].

For each group Kβ, lower and upper possibilistic distributions δβ1 and δβ2
are built (as in the previous case when elements are consistent). Let possibility

distribution δ1 (resp. δ2) be the union (denoted
∼⋃
) of possibility distributions

δβ1 (resp. δβ2 ):

δ1 =

∼⋃
β=1,g

δβ1 (resp. δ2 =

∼⋃
β=1,g

δβ2 ) (1)
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then δ1 and δ2 are the multi-modal (g modes) possibilistic lower and upper
approximations of original intervals.

Reasoning with the lower distribution (resp. upper distribution) might corre-
spond to a severe risk aversion position relative to the probability of information
(resp. a flexible risk acceptance position). To maintain the richness of informa-
tion provided by critics, the best way is to keep both distributions.

3.4 Matching between Distribution and a Set of Intervals

Let consider possibility distributions δ1 and δ2 the possibilistic approxima-
tions of intervals {Ij , j = 1, nbi}. Let denote for δ1 (resp. δ2) (N1, φ1) (resp.
(N2, φ2)) the associated possibility and necessity measures. Then δ1 and δ2
are respectively the greatest and smallest fuzzy subsets such that [9]: ∀A ⊆
β, [N1(A), φ1(A)] ⊆ [Bel(A), P l(A)] ⊆ [N2(A), φ2(A)]. Let still consider two
possibility distributions δ and δ∗ defined on β. Two definitions are introduced:

Definition 1. We define the degree of inclusion of δ in δ∗ as:

incl(δ, δ∗) = (

∫
ν

(δ∗ ∧ δ))/
∫
ν

δ (2)

Definition 2. We define the degree of matching of δ to data {Ij , j = 1, nbi} as:

match(δ, {Ij}) = [incl(δ1, δ) + incl(δ, δ2)]/2 (3)

{Ij} is said to match δ better than δ∗ if: match(δ∗, {Ij}) < match(δ, {Ij}). We
also use the notation match(δ, (δ1, δ2)) instead of match(δ, {Ij}) when possible.

Remark 1. Definition 2 leads, for particular cases of δ, to:

– match(δ, {Ij}) ∈ [0, 1].
– If δ1 ⊆ δ ⊆ δ2 (inclusion of fuzzy subsets), then match(δ, {Ij}) = 1.
– If δ2 ⊂ δ, then match(δ, {Ij}) = [1 + (

∫
ν
δ2/

∫
ν
δ)]/2.

– If δ ⊂ δ1, then match(δ, {Ij}) = [(
∫
ν
δ/

∫
ν
δ1) + 1]/2.

– If δ2 ∩ δ = ∅, then match(δ, {Ij}) = 0.

The idea behind the matching is to consider that the distribution δ (with
N and φ its associated possibility and necessity measures) which guarantees
[N1(A), φ1(A)] ⊆ [N(A), φ(A)] ⊆ [N2(A), φ2(A)] for a large number of subset
A ⊆ β, better matches data {Ij , j = 1, nbi}. This approach is similar to the one
in [11] which used in fuzzy pattern matching.

4 Identification of Preferences Model

Aggregation models make the capture of the notion of priorities in the decision-
maker’s strategy possible, and simplify the comparison of any two alternatives
described through their elementary evaluation. The most commonly used opera-
tor to express decision maker preferences is the weighted average mean denoted
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here WAMω. It allows giving non-symmetrical roles to criteria through a vector
of relative weights Ω = (Ω1, ..., Ωn) ∈ [0, 1]n.

The specialized press generally provides a simple overall assessment of items
using evaluation scales such as: number of stars, number of bars, etc.. This
score is accompanied by a more or less detailed critic in natural language which
is supposed to make explicit the assessment of the journal. However it is often
difficult for users to understand the exact reasons that would justify the imprecise
overall score the item received. We model these imprecise scores by possibility
distributions δ̃k on [0, 20] where k is an item index. To make clearer assessments
allocated by a magazine to an item, we try to identify the strategy, the priorities
that characterize this journal: what are the criteria that differentiate the values
conveyed by this journal? As soon as a user knows which critics are of interest in
the assessments of a specialized magazine, he can then choose the journal that
matches the best his priorities and choose a film recommended by this magazine.

Many Internet users contribute to collaborative recommender systems but
provide their opinion in natural language because they are not familiar with as-
sessments and all the less with multi criteria assessments. Our segmentation and
sentiment analysis system automatically collects all these criteria and, for each
critic c that deals with an identified criterion i, it extracts an imprecise score
(depending of the analysis granularity, i.e. the expected level of expertise) which
is modeled as an interval as explained in section 2.2. According to the merging
method presented in section 3.3 we compute two possibility distributions δki,1 (in-

ferior) and δki,2 (superior) for the set of automatically collected imprecise scores

for each item k and each criterion i. Let us note δα,ω
k = WAMω(δ

k
α,1, ..., δ

k
α,n)

with Δ ∈ {1, 2}. The next step is to identify the weights of the distribution
that best match the magazine’s overall assessments. In other words, we search
for weights Ω such that δ̃k and (δ1,ω

k, δ2,ω
k) match as well as possible for a

learning set of items (items). Mathematically, a possible answer is based on our
function match defined in section 3.4 such as:

Ω∗ = Arg max
ω∈[0,1]n

∑
k∈items

match(δ̃k, (δ1,ω
k, δ2,ω

k)) (4)

5 Case Study

The software prototype that supports our recommendation system is based on
a combination of an Internet user with a specialized journal that bears the same
priorities or values as him. The case study presented in this section is based on
movie recommendations. This prototype uses the multicriteria opinion extraction
module in section 2, as well as, a base of movie critics written in natural language
from the famous film critics site IMDB. Critics provided by IMDB (about 3000
critics per movie) provide enough information to get a representative picture of
the diversity of opinions about this movie. Each film critic has been evaluated
by our multicriteria opinions extraction system. To illustrate the method and
simplify the presentation only two criteria are considered in this toy case study:
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Table 1. Inferior and superior possibility distributions

actor and scenario. With the merger process of Section 3.3, we obtain inferior
and superior distributions for 20 films in this case study. Table 1 shows the results
respectively for movies: Gladiator, Avatar, Inglorious Bastard and Departed.

As we can see in table 1 multi modality is present in all distributions. It is
due to the divergence found in critics’ opinions: users are rarely unanimous on
a movie review.

We selected 39 journals in this application. For each movies of the base, some
journals provide overall assessments in the form of a number of stars (trans-
formed into trapezoidal distributions δ̃k) (see table 5). The weight distribution
that characterize the best the journal evaluation strategy is calculated through
equation 4 for each journal: e.g. the weight distribution that explains at best the
scores δ̃k assigned to the 39 movies by the journal in the learning database. Fig.
1 shows that there are large differences between assessment strategy of journals
(e.g. for Cahiers du Cinema, the weights are 0.6 for actor and 0.4 for scenario
while conversely they are 0.22 and 0.78 for Charlie Hebdo). Some journals attach
no importance to actors and some others to scenario.

Note that for a reliable and relevant recommendation, our model should inte-
grate more criteria in the assessment. Finally, Fig. 1 provides to the Internet user
how important criteria are considered in the 39 journals assessment strategy. He

Table 2. Transformation of stars to trapezoidal distributions

numbers of stars */2 * *(*/2) ... ****

abcd trapezium {0,2.5,5,7.5} {2.5,5,7.5,10} {5,7.5,10,12.5} ... {12.5,15,17.5,20}
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Fig. 1. Assessment strategy of movies specialized journals

may then simply choose the journal that conveys the values that are closest to
his mood of the moment and consult the hit list of this journal for a personalized
recommendation. No model of user preference is need to be identified which is
generally a thorny and forbidding task in collaborative RS systems. The user
identifies himself the journal that suits him as best. Note that this simple prin-
ciple allows the user to change his ”preferences system” depending on his mood
every time he goes to the cinema!

6 Conclusion

The automated extraction of critics related to a set of criteria, the imprecise
assessment process based on our sentiment analysis and our fuzzy multicriteria
analysis allows the development of highly automated recommender systems of
type ”multicriteria preference elicitation from evaluations”[2] free of the most
constraining tasks of this type of collaborative systems. This is an important
step because until now the need to manually assess a large number of documents
according to several criteria represented a major obstacle to the implementation
of such systems. The process we propose establishes a cognitive automation that
can be easily deployed into Web applications.
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Abstract. The web can be perceived as a huge repository of items, and users’ 
activities can be seen as processes of searching for items of interest. 
Recommender systems try to estimate what items users may like based on 
similarities between users, their activities, or on explicitly specified preferences. 
Users do not have any influence on item selection processes.  

In this paper we propose a novel collaborative-based recommender 
system that provides a user with the ability to control a process of 
constructing a list of suggested items. This control is accomplished via 
explicit requirements regarding rigorousness of identifying users who 
become a reference base for generating suggestions. Additionally, we 
propose a new way of ranking items rated by multiple users. The 
approach is based on Pythagorean fuzzy sets and takes into account not 
only assigned rates but also their number. The proposed approach is 
used to generate lists of recommended movies from the Netflix 
competition database. 

1 Introduction 

The most common activity of users on the web is looking for items of interest or 
potential interest. The two well-know tools supporting users in these activities are 
search engines and recommender systems [1][2].  

In recommender systems, items presented to the user are selected using variety of 
techniques. The two most popular ones are collaborative and knowledge-based 
approaches [3][4]. In the former approach, items are being suggested based on the 
items seen, bought or simply rated by other users who seen, bought or rated, in  
the past, the same items as the user who is looking for recommendations. In the 
knowledge-based approach, the user provides her preferences and constrains, and 
recommended items match these requirements to the highest possible degree. An 
approach using a description of the items and the user’s interests, called content-
based, is gaining popularity [x][y]. 

The most important task of recommender systems it to provide the users with items 
that represent a best possible match to their interests, and in many cases this fits the 
users’ needs. However, if the user wants to be provided with different items, the 
performance of these systems is not very satisfying. Any deviation from “perfectly” 
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matched items seems to be accidental. The user does not have any control over these 
“extensions” or “additions”. The process of recommendation of items is controlled by 
history of the user’s activities, or directly via the user’s preferences.  

Another vital issue for recommender systems is processing multiple ratings 
associated with a single item. It is always a question how to balance the ratings 
themselves with their number, and how to combine them to obtain a single score 
identifying goodness of an item. 

In the paper we propose application of fuzziness to address the issue of the user’s 
control of a selection process in a collaborative recommender system, as well as to 
determine a single score describing an item based on multiple ratings. The user controls a 
selection process via explicitly shaping composition of a group of users whose items and 
ratings constitute a reference base for building a list of suggested items. The process of 
calculating a single score is based on Pythagorean fuzzy sets proposed in [7][8]. 

The outline of the paper is as follows. Section 2 contains an overview of the whole 
process of building a list of suggestions.  The user-controlled process of building a group 
of users is fully described in Section 3, while details of creating a ranking of items are 
included in Section 4. Section 5 contains description of a real-world example using the 
Netflix competition database. The paper is summed up with a conclusion section. 

2 Fuzzy-Controlled Suggestions: Overview 

When a list of suggested items is provided to the user, it would be good to see some 
variety of items shown to the user. This would resemble a true browsing process – the 
user “roughly” knows what she wants and tends to wander around looking for things 
that could be of interest for her. Of course, the user is doing it with all her 
“background” knowledge regarding what she likes, but at the same time, she lets 
herself to be adventurous. In order to mimic such behaviour, we propose the 
following procedure that ensures a more human-like experience in finding variety of 
items that could have potential interest to the user. 

The first step is to determine a group of users that have evaluated the same items (for 
example movies) in a similar way as the user who looks for suggestions. The similarity is 
controlled by the user, and reflects her way of determining a level of matching between 
her evaluations and evaluations of other individuals who experienced (watched) the same 
items (movies) as she. So far, we envision three possible ways of identifying similarity of 
items (movie) evaluations: a) strict – evaluations have to match to the highest possible 
degree, b) strict on high – positive evaluations have to match to the highest possible 
degree, however for the negative evaluations the user is forgiving, in other words, the 
user wants to see a list of suggestions created based on users with who agree with her in 
the case of the positive evaluations and could have a different opinion in the case of 
negative evaluations, and c) strict on low – the opposite to the above one, i.e., the user 
wants to see a list of suggestions created based on users with whom she agrees regarding 
the negative evaluations, and relaxes her requirements for matching positive evaluations. 
This process will lead a list of users with similar – up to the user’s requirements – 
preferences regarding items (movies). Each user’s preference pattern is determined by 
aggregation of all matching scores across of all items (movies) overlapping between the 
user and a potential member of a group. 

The second step is to identify a list of items that have not been experienced by the 
user who looks for suggestions, but common to all the users from the group. It is the 
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simplest step – it involves finding a common set of items among all items experienced 
by the members of the group identified in the first step. 

The third step is to rank all selected items. The ranking of items has to take into 
consideration two components: quantitative – a number of ratings for each item, and 
qualitative – a distribution of positive and negative ratings.   

3 Building User Groups with Different Levels of Strictness  

3.1 General Overview 

In order to provide any suggestions we need to have a pool of users who somehow 
resembles or have similar interests to the user who is looking for suggestions. 
Selection of such a group can be done in multiple ways, and in majority of situations 
such as process happens without any influence of the user. The approach we propose 
here provides the user with a way of indicting how “close” members of created group 
should be when compared with the user. The user governs this process via providing 
linguistic terms identifying strictness of the comparison between items rated by the 
user and items rated by members of a group being created. 

3.2 Comparison of Ratings 

Any items rated by two users can be compared using different approaches. The 
simplest one would be to check if both ratings are the same. In such a case, we would 
obtain a binary result – a perfect match or total mismatch. Quite often, such a 
comparison is useful and it leads to finding a person who is very much like the user, 
kind of “a mirror image of the user”. However, in the situation the user would like to 
“expend” her set of items and “go beyond” its own comfort zone, i.e., find something 
more diverse – a different type of comparison is needed. The approach presented here 
addresses such a need.  

A proposed approach for comparison of ratings uses linguistic terms to control 
flexibility of this process, i.e., how differences between ratings should be treated. 
There are a number of different rating schemas, but without loss of generality we 
assume for the rest of the paper that the ratings are in the range from 1 to 5, where 1 
represents “do not like” and 5 “like very much”, with 3 indicating “neutral”. To make 
the comparison of ratings controllable we identify three terms describing strictness of 
the comparison process: 

- two-side bounded evaluation:  the comparison is very strict, both ratings – positive 
and negative – have to be matched to the highest degree; 

- positive-side bounded evaluation: the comparison is strict for positive evaluations, 
and relaxed for negative evaluations, in other words the user is okay when her 
negative ratings are not considered very “seriously”, but positive ratings have to be 
matched to the highest degree; 

- negative-side bounded evaluation: the comparison is opposite to the above one – 
positive ratings do not have to match perfectly, but the negative ones have to be 
respected. 
Let us assume we have two items to compare: an item to which the comparison is 

done – we called it a reference_item, and an item being compared – we called it an 
other_item. The comparison procedure is as follows: 1) the rating Rref of the 
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reference_item is subtracted from the rating Rother of the other_item, 2) the obtained 
difference is modified by an appropriate mapping representing the user’s evaluation 
requirement, and the resulting value is a level of compatibility of two ratings. 

An implementation of terms controlling the evaluation process is done using fuzzy 
sets. Let us define a universe of discourse D that is a range of differences between 
ratings. A fuzzy set is a mapping  : 0,1 , 

and the compatibility of ratings is    

where μLTerm is a fuzzy set associated with an appropriate linguistic term. Three 
possible sets representing the described above terms are shown in Fig 1.  

 

   
(a)                                             (b) 

 
(c) 

Fig. 1. Examples of fuzzy sets representing three linguistic terms: two-side bounded (a), 
positive-side bounded (b), negative-side bounded (c) 

Fig 1(a) represents a fuzzy set for the two-side bounded evolution. It allows for a 
small deviation of Rother from Rref: the perfect match gives the score of 1.0, while a 
difference of 1.0 or -1.0 leads to the score of 0.5. Any other difference gives the score 
of 0.0. A fuzzy set for the negative-side bounded evaluation, Fig 1(b), gives the score 
of 1.0 for the perfect match. However, it “penalizes” the situation when the difference 
Rother-Rref is positive, what ensures that the user’s low ratings are well matched. On the 
other hand, when the difference Rother-Rref is negative, i.e., when Rother is smaller than 
Rref, the evaluation is more forgiving – there is no requirement for a good match for 
the user’s high ratings. A fuzzy set presented in Fig 1(c) for the positive-side bounded 
evaluation reflects the inverse behaviour to the negative-side bounded case.   

3.3 Group Generation 

A group is built in a process of selecting users who have a similar pattern of rating 
items to the user who looks for suggestions. Using different comparison fuzzy sets we 
obtain different groups of users. Each of these groups contains users who match the 
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user (our reference user) differently. This effect is desirable because this means that 
each group contains a slightly (not totally) different set of users. And a different set of 
users leads to a different set of items – therefore, suggestions provided by each group 
can be a bit different. 

In a nutshell, a process of creating a group of users can be described via the 
following algorithm: 

 

INPUT: Mref  movies rated by the user Uref 
 ULall  a list of users 
 {Mi}  a set of movies rated by each user (Ui) from the list ULall 
OUTPUT:  G a list of users constituting a group 
 
1  Select Users who ranked the Same Movies as Uref, i.e., Mi contains Mref 

2 Create a list of Selected Users: ULother  
3 for each user Ui from ULother 
4  for each movie from Mref 
5   Compare Ratings: calculate score and store it 
6  rof 
7  Create Rating Compatibility measure: aggregate scores 
8 rof 
9 Sort Users from ULother based on Rating Compatibility measures 
10 Create group G: select top 25 percent from sorted ULother 
 

Another human-like aspect of creating a group is a linguistic-based control of an 
aggregation process (line 7). In the proposed approach we use linguistic-based OWA [9]. 
Any linguistic quantifiers can be applied to calculate a rating compatibility measure.  

3.4 Example 

To illustrate the process let us take a look at a very simple situation where we have 
the Uref and another user – Ui, and both of them ranked the same five items. Their 
ratings are in Table 1 column 1 and 2, respectively. 

Table 1. Illustration of a proposed method for composing a group of users 

Uref Ui difference 
Ri-Rref 

two-side positive-side negative-side 

ratings Rating Compatibility 

5 1 -4 0 0.25 0 

4 2 -2 0 0.5 0 

3 3 0 1 1 1 

2 4 2 0 0 0.25 

1 5 4 0 0 0.5 

 
The difference between ratings is shown in column 3. This different is use as the 

input to three different linguistic terms introduced in the previous section: two-side 
bounded – the obtained values are in column 4; positive-side bounded – column 5; 
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and negative-side bounded – column 6. It can be easily observed that the two-side 
bounded term is very strict, the positive-side bounded term “forgives” when there is a 
mismatch for items ranked high by Uref, and the negative-side bounded term 
“forgives” when the mismatch happens for items which the Uref ranked low. 

The application of OWA with the linguistic quantifier MOST leads to a small 
compatibility score of 0.04 in the case of the two-side bounded evaluation. For the 
negative- and positive-side bounded evaluation the score is the same 0.15. 

4 Ranking of Items with Multiple Ratings 

4.1 Overview 

The group generation process ends up with a group of users who rank items in a way 
that resembles the user’s way, i.e., it could “tightly” resemble the user’s rankings for 
both positive and negative rankings, or just one of them. At the same time many of 
these users ranked items that have not been experienced/ranked by the user yet, and a 
set of these items is a starting point for building a suggestion list. 

In general multiple users from the group can rank, in the scale from 1 (worst) to 5 
(best), a single item. It means that a single item can have multiple rankings. The 
proposed approach is taking into consideration two aspects in order to determine a 
single score representing a degree of attractiveness to the user. These two aspects are: 
overall combined ratings provided by the users from the group; and a number of users 
who provided these ratings. Such calculated degree of attractiveness is used to sort 
item and provide a list of suggestions to the user. In the proposed method we use 
Pythagorean fuzzy sets to identify the final ranking of suggestions. 

4.2 Pythagorean Fuzzy Sets 

The Pythagorean fuzzy sets (PFS) have been proposed by Yager in [7][8]. It is a class 
of new non-standard fuzzy sets. A membership grade of PFS can be expressed as: r(x) 
called the strength of commitment, and d(x) called the direction of commitment, for 
each x from the domain X. Both of them are in the range from 0.0 to 1.0. Here, r(x) 
and d(x) are linked with a pair of membership grades AY(x) and AN(x). AY(x) represents 
support for membership of x in A, while AN(x) represents support against membership 
of x in A. The relations between all these measures are: 

 

   
where arccos  

and 1 2 

The value of r(x) allows for some lack of commitment. Its value is in the unit 
interval and the larger r(x) is the stronger the commitment is, and the less the 
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uncertainty it represented. The value of direction of commitment d(x), on the other 
hand, can provide an interesting insight into relations between AN(x) and AY(x). For θ 
= 0, i.e., when there is not AN(x) part, the value of d(x) = 1 and this means that there is 
no “negative” comments and the commitment direction is fully positive. When both 
AY(x) and AN(x) are equal, the angle θ = π/4 and the value of d(x) = 0.5 indicating a 
natural direction of commitment. The other boundary condition is when only AN(x) is 
present and there is no AY(x) – in this case d(x) = 0.0 representing a lack of positive 
direction of commitment . As you can see the value of d(x) is “detached” from the 
number of comments, it only depends on the ratio of comments. It is a very interesting 
feature of PFS that is used in the proposed approach. 

4.3 Pythagorean-Based Ranking  

A process of building a ranking starts with determining a score, called degree of 
attractiveness, for a single item. The process comprises a number of steps. 

The first step is to build PFS for a single item. In order to do this we perform a 
mapping from the users’ ratings into AY(x) and AN(x) values. It happens in the 
following way: 

- ratings 5 and 4 are mapped into 1.0 and 0.5, and the sum of them is assigned to AY(x) 
- ratings 1 and 2 are mapped into 1.0 and 0.5, and the sum of them is assigned to AN(x) 
- rating 3 is natural and is not mapped at all 

Based on obtained values of AY(x)  and AN(x), we calculate values r(x) – strength of 
commitment, and d(x) – direction of commitment. This is performed for all movies. 
We find rmax and normalize all r(x). Now, the maximum r(x) is 1.0, and all other ones 
are in the range from 0.0 to 1.0. 

The next step is to calculate a score – an attractiveness value. And this is done 
using a single transformation of d(x) and r(x). If we represent a PFS in polar 
coordinates (Fig 2), we can think of an area bounded by the axe AN(x), r(x), and a 
fragment of the circle circumference connecting AN(x)  and the tip of the r(x) – a thick 
line in Fig 2 (a). Such defined fragment of the circle represents simultaneously two 
things: a level of commitment (normalized rnorm(x)) and a direction of commitment – 
in this particular case more commitment means smaller angle θ and larger the circle 
fragment. The formula representing this relationship is: 2  

and knowing that 1 2 

so 2 

As we can see, the attractiveness is simply a product of r(x) (strength commitment) 
and d(x) (direction of commitment), the π/2 is a simple constant that can be omitted 
for in the comparison process. If we calculate score for another PFS, Fig 2(b), we can 
compare both PFSs. 
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(a)                                                         (b) 

Fig. 2. PFSs in polar coordinates: a single PFS (a), and two PFS with different r(x) and d(x) (b) 

With such defined attractiveness of an item, ranking of items rated by the users for a 
determined group is a simple sorting process. As the result we obtain a list of 
suggestions. 

4.4 Example  

As in the case of building a group of users, also here we present a simple example that 
explains how five items with multiple ratings are compared, and eventually ranked. 
Let us assume the ratings as shown in Table 2, column 1. 

Table 2. Illustration of a proposed method for ranking items with multiple ratings 

ratings AY AN r rnorm d score rank 

Item-1 5, 4, 3, 2, 1 1.5 1.5 2.1213 0.6975 0.50 0.3486 3 

Item-2 5, 3, 1 1.0 1.0 1.4142 0.4650 0.50 0.2325 4 

Item-3 5, 4 1.5 0 1.5000 0.4932 1.00 0.4932 2 

Item-4 5, 4, 4, 4, 3, 2 2.5 0.5 2.5495 0.8383 0.87 0.7293 1 

Item-5 4, 3, 2, 2, 1, 1 0.5 3.0 3.0414 1.0000 0.11 0.1100 5 

 
Table 2 contains all intermediate results, however we focus on the last four 

columns: rnorm – normalized strength of commitment, d – direction of commitment, as 
well as score and rank. As we can see the strongest commitment has Item-5, and the 
weakest Item-2. In the case of direction of commitment – the most positive has Item-3 
and Item-4, the most negative Item-5. Overall, the score – a product of rnorm and d 
indicates Item-4 as the most  suitable suggestion, with Item-3 as the second (even if it 
has only two ratings but both positive), and Item-1 as the third (quite a number of 
ratings but evenly split between positive and negative). 

5 Case Study 

5.1 Overview and Data Set Description 

In order to illustrate the proposed method in a real-world scenario, we have applied it 
to building a list of suggested movies. For this purpose we use Netflix data that has 
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been used in Netflix competition [10]. The database of movies and ratings contains a 
total of 17770 movies and 480190 users.  

We have created a user Uref who wants a suggestion list created from Netflix 
movies. We assume that the Uref have seen fifteen movies. A sample of these movies 
and the ratings assigned to them by the user are presented in Table 3. 

Table 3. A sample of movies and their ratings 

movie 
rating 

title ID 

Star Trek: Voyager: Season 7 10141 5 

Star Trek: Insurrection 12513 5 

Star Trek: The Next Generation: Season 1 10666 5 

The Sound of Music 12074 2 

The Exorcist 2: The Heretic 9387 2 

The Exorcist 16793 1 

Night of the Living Dead 9940 1 

5.2 Group Building Process 

The first step is to determine a group of users who “fit” the Uref requirements 
regarding compatibility of movie ratings. We used all three terms introduced in 
Section 3. As the result we obtained three groups of users: 

- group T-SB: obtained with the two-side bounded term; it contains 2 users (their 
userIDs 1578801 and 647979), and a number of movies rated by the users is 4972; 

- group N-SB: obtained with the negative-side bounded term: a number of users in 
the group is 6, and a number of different rated movies is 11034; 

- group P-SB: obtained with the positive-side bounded term: the group is the largest, it 
includes 8 users, and a number of different movies to be selected from is 17540. 

5.3 Generation of Recommendations 

The movies associated with each of the groups, and not seen by the Uref, have been 
used to create the suggestion lists. Due to the space limitations only top three movies, 
their scores and some statistics are shown: 

- group T-SB: top movies are Akira Kurosawa's Dreams, The Good, and the Bad 
and the Ugly,  Chariots of Fire; a total of 562 movies have a score above 0.5, 
including 235 with a perfect score of 1.0; 

- group N-SB: top movies are The Lord of the Rings: The Fellowship of the Ring: 
Extended Edition, Lord of the Rings: The Return of the King, and Star Wars: 
Episode IV: A New Hope; in this case 421 movies obtained a score above 0.5, 
including 8 with 1.0; 

- group P-SB: top movies are Lord of the Rings: The Return of the King, Lord of 
the Rings: The Fellowship of the Ring, and Lord of the Rings: The Two Towers; a 
total of 130 movies with a core above 0.5, only 3 with 1.0 score. 
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Please note that the recommendations generated based on the group T-SB contain 
the highest number of movies, and almost half of them have a perfect score. The fact 
that the Uref is very strict here shows that only two users from 480190 watched the 
same movies and rated them in the same way. Therefore, the suggestions do not have 
a huge “base” – only two users have rated each movie. This explains a high number of 
movies with a perfect score, and somehow diverse set of recommendations.  

For the recommendations built using the other two groups, N-SB and P-SB, the 
situation is different: more users match the movie ratings made by Uref, so the lists of 
suggestions seem to include movies that appears to be a good fit to Uref interests. There 
are a much smaller number of movies with the perfect score, but this can be explained by 
the fact that it is more difficult to find consensus among a larger number of users. 

6 Conclusion 

The users’ anticipations regarding what can be found on the web exceeds initial 
expectations of finding items that represent a perfect match to what the users already 
know. On many occasions, the users want to be exposed to variety of items, items that 
go beyond their core interests. The recommendation systems try to provide the user 
with diversity of suggested items, but it is done without the users’ input. 

In the paper we introduce two fuzzy-based techniques that allow the user to control 
a degree of variation in recommended items. The user can be very strict and look only 
for items that fit her interests, or quite forgiving and open for related suggestions 
outside her interests. The first technique allows the user to control a process of 
identification a group of “reference users”. Items rated by members of such a group 
are used to create an initial list of possible suggestions. The second technique is 
applied for generating a final ranking of items. It combines multiple ratings provided 
by members of the reference group, and generates a single score that reflects both 
number of ratings and their values. 

The new methods have been used to generate lists of suggested movies using 
Netflix database. 
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Abstract. Community detection is of great importance for understand-
ing graph structure in social networks. The communities in real-world
networks are often overlapped, i.e. some nodes may be a member of
multiple clusters. How to uncover the overlapping communities/clusters
in a complex network is a general problem in data mining of network data
sets. In this paper, a novel algorithm to identify overlapping communi-
ties in complex networks by a combination of an evidential modularity
function, a spectral mapping method and evidential c-means clustering
is devised. Experimental results indicate that this detection approach
can take advantage of the theory of belief functions, and preforms good
both at detecting community structure and determining the appropri-
ate number of clusters. Moreover, the credal partition obtained by the
proposed method could give us a deeper insight into the graph structure.

Keywords: Evidential modularity, Evidential c-means, Overlapping
communities, Credal partition.

1 Introduction

In order to have a better understanding of organizations and functions in the
real networked system, the community structure, or the clustering in the graph
is a primary feature that should be taken into consideration [3]. As a result, com-
munity detection, which can extract specific structures from complex networks,
has attracted considerable attention crossing many areas from physics, biology,
and economics to sociology [1], where systems are often represented as graphs.

Generally, a community in a network is a subgraph whose nodes are densely
connected within itself but sparsely connected with the rest of the network [17].
Many of the community detection approaches are in the frame of probability
theory, that is to say, one actor in the network can belong to only one commu-
nity of the graph [9,4]. However, in real-world networks, each node can fully or
partially belong to more than one associated community, and thus communities
often overlap to some extent [11,15]. For instance, in collaboration networks, a
researcher may be active in many areas but with different levels of commitment,
and in social networks, an actor usually has connections to several social groups
like family, friends, and colleagues. In biological networks, a node might have
multiple functions [11].
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In the last decades, for identifying such clusters that are not necessarily dis-
joint, there is growing interest in overlapping community detection algorithms.
Zhang et al. [17] devised a novel algorithm to identify overlapping communities
in complex networks based on fuzzy c-means (FCM). Nepusz et al. [8] created an
optimization algorithm for determining the optimal fuzzy membership degrees,
and a new fuzzified variant of the modularity function is introduced to determine
the number of communities. Havens et al. [5,6] discussed a new formulation of
a fuzzy validity index and pointed out this modularity measure performs better
compared with the existing ones.

As can be seen, most of methods for uncovering the overlapping community
structure are based on the idea of fuzzy partition, which subsumes crisp partition,
resulting in greater expressive power of fuzzy community detection compared
with hard ones. Whereas credal partition [2], which is even more general and
allows in some cases to gain deeper insight into the structure of the data, it has
not been applied to community detection.

In this paper, an algorithm for detecting overlapping community structure
is proposed based on credal partition. An evidential modular function is intro-
duced to determine the optimal number of communities. Spectral relaxation and
evidential c-means are conducted to obtain the basic belief assignment (bba) of
each nodes in the network. The experiments on two well-studied networks show
that meaningful partitions of the graph could be obtained by the proposed de-
tection approach and it indeed could provide us more informative information
of the graph structure than the existing methods.

2 Background

2.1 Modularity-Based Community Detection

Let G(V,E,W ) be an undirected network, V is the set of n nodes, E is the set of
m edges, andW is a n×n edge weight matrix with elements wij , i, j = 1, 2, · · · , n.
The objective of the hard (crisp) community detection is to divide graph G into
c clusters, denoted by

β = {Ω1, Ω2, · · · , Ωc}, (1)

and each node should belong to one and only one of the detected communities [8].
Parameter c can be given in advanced or determined by the detection method
itself.

The modularity, which measures the quality of a partition of a graph, was
first introduced by Newman and Girvan [10]. This validity index measures how
good a specific community structure is by calculating the difference between the
actual edge density intra-clusters in the obtained partition and the expected one
under some null models, such as random graph. One of the most popular form
of modularity is given by [3]. Given a partition with c group shown in Eq. (1),
and let ‖W‖ =

∑n
i,j=1 wij , ki =

∑n
j=1 wij , its modularity can be defined as:

Qh =
1

‖W‖

c∑
k=1

n∑
i,j=1

(wij −
kikj
‖W‖ )ψikψjk, (2)
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where ψik is one if vertex i belongs to the kth community, 0 otherwise.
The communities of graph G can be detected by modularity optimization, like

spectral clustering algorithm [13], which aims at finding the optimal partition
with the maximum modularity value [3].

2.2 Belief Function Theory and Evidential c-Means

The credal partition, a general extension of the crisp and fuzzy ones in the theo-
retical framework of belief function theory, has been introduced in [2,7]. Suppose
the discernment frame of the clusters is β as in Eq. (1). Partial knowledge re-
garding the actual cluster node ni belongs to can be represented by a basis belief
assignment defined as a function m from the power set of β to [0, 1], verifying∑

A⊆νm(A) = 1. Every A ∈ 2ν such that m(A) > 0 is called a focal element.
The credibility and plausibility functions are defined in Eq. (3) and Eq. (4).

Bel(A) =
∑

∅�=B⊆A

m(B), ∀A ⊆ β, (3)

Pl(A) =
∑

B∩A �=∅
m(B), ∀A ⊆ β. (4)

Each quantity Bel(A) represents the degree to which the evidence supports
A, while Pl(A) can be interpreted as an upper bound on the degree of support
that could be assigned to A if more specific information is available [12]. The
function pl : β → [0, 1] such that pl(Ω) = Pl({Ω}) is called the contour function
associated to m.

The bbas in the credal level can be expressed in the form of probabilities by
pignistic transformation [2], which is defined as

BetP (Ωi) =
∑

ωi∈A⊆ν

m(A)

|A|(1−m(∅)) , (5)

where |A| is the number of elements of β in A.
Evidential c-means (ECM) [7] is a direct generalization of FCM. The optimal

credal partition is obtained by minimizing the following objective function:

JECM =

n∑
i=1

∑
Aj⊆ν,Aj �=∅

|Aj |αmi(Aj)
βd2ij +

n∑
i=1

ψ2mi(∅)β , (6)

constrained on ∑
Aj⊆ν,Aj �=∅

mi(Aj) +mi(∅) = 1, (7)

where mi(Aj) is the bba of ni given to the nonempty set Aj , while mi(∅) is the
bba of ni assigned to the emptyset. The value dij denotes the distance between ni
and the barycenter associated to Aj , and |·| is the cardinal of the set. Parameters
Δ, β, ψ are adjustable and can be determined based on the requirement.
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3 Evidential Community Detection

Before presenting the credal partition of a graph G(V,E,W ), the hard and fuzzy
partitions are firstly recalled. The crisp partition can be represented by a matrix
Uh = (uik)n×c, where u

h
ik = 1 if the ith node ni belongs to the kth cluster Ωi

in the partition, and uhik = 0 otherwise. From the property of this partition, it
clearly should satisfy that

∑c
k=1 u

h
ik = 1, i = 1, 2, · · · , n. The generalization of

the hard partition, following that a node may belong to more communities than
one but with different degrees, can be described by the fuzzy partition matrix
Uf = (uik)n×c, where u

f
ik is not restricted in {0, 1} but can attain any real

value from the interval [0, 1]. The value ufik could be interpreted as a degree of
membership of ni to community Ωk.

The credal partition of G, which refers to the framework of belief func-
tion theory, can be represented by a n-tuple: M = (m1,m2, · · · ,mn). Each
mi = {mi1,mi2, · · · ,mi2c} is a bba in a 2c-dimensional space, where c is the
cardinality of the given discernment frame of communities β = {Ω1, Ω2, · · · , Ωc}
as before, and Ωi denotes the ith detected community. Note that β is the dis-
cernment frame in the framework of belief function theory.

3.1 The Evidential Modular Function

Similar to the fuzzy modularity by Nepusz et al. [8] and by Havens et al. [5],
here we introduce an evidential modularity:

Qe =
1

‖W‖

c∑
k=1

n∑
i,j=1

(wij −
kikj
‖W‖ )plikpljk, (8)

where pli = {pli1, pli2, · · · , plic} is the contour function associated to mi, which
describes the upper value of our belief to the proposition that the ith node
belongs to the kth community.

Let k = (k1, k2, · · · , kn)T , B = W − kTk/ ‖W‖, and PL = (plik)n×c, then
Eq. (8) can be rewritten as:

Qe =
trace(PL B PLT )

‖W‖ . (9)

Qe is a directly extension of the crisp modularity function (2). When the credal
partition degrades into the hard one, Qe is equal to Qh.

3.2 Spectral Mapping

White and Smyth [13] showed that optimizing the modularity measure Q can be
reformulated as a spectral relaxation problem and proposed spectral clustering
algorithms that seek to maximize Q. By eigendecomposing a related matrix,
these methods can map graph data points into Euclidean space, the clustering
problem on which space is of equivalence to that on the original graph.
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Let A = (aij)n×n be the adjacent matrix of the graph G. The adjacency
matrix for a weighted graph is given by the matrix whose element aij repre-
sents the weight wij connecting nodes i and j. The degree matrix D = (dii)
is the diagonal matrix whose elements are the degrees of the nodes of G, i.e.
dii =

∑n
j=1 aij . The eigenvectors of the transition matrix M = D−1A are used.

Verma and Meila [14] and Zhang et al. [17] suggested to use the eigenvectors
of a generalised eigensystem Ax = θDx, and pointed out that it is mathemati-
cally equivalent and numerically more stable than computing the eigenvectors of
matrixM [14]. To partition the nodes of the graph into c communities, the top
c− 1 eigenvectors of the above eigensystem are used to map the graph data into
points in the Euclidean space, where the traditional clustering methods, such as
c-means (CM), FCM and ECM can be evoked.

3.3 Evidential Community Detection Scheme

Let C be the upper bound of the number of communities. The evidential com-
munity detection scheme is displayed as follows:

S.1 Spectral mapping:
For 2 ≤ c ≤ C, Find the top c generalized eigenvectors Ec = [e1, e2, · · · , ec]
of the eigensystem Ax = θDx, where A and D are the adjacent and the
degree matrix respectively.

S.2 Evidential c-means:
For each value of c (2 ≤ c ≤ C), let Ec = [e2, · · · , ec]. Use ECM to partition
the n samples (each row of Ec is a sample data on the c − 1 dimensional
Euclidean space) into c classes. And we can get a credal partition M for the
graph.

S.3 Choosing the number of communities:
Find the suitable number of clusters and the corresponding evidential par-
tition scheme by maximizing the evidential modular function Qe.

In the algorithm, C can be determined by the original graph. It is an empirical
range of the community number of the network. If c is given, we can get a credal
partition using the proposed method and then the evidential modularity can
be derived. The modularity is a function of c and it should peak around the
optimum value of c for the given network. As in ECM, the number of parameters
to be optimized is exponential in the number of communities and linear in the
number of nodes. When the number of communities is large, we can reduce the
complexity by considering only a subclass of bbas with a limited number of focal
sets [7].

4 Experimental Results

To evaluate the proposed method in this paper, two real-world networks are
discussed in this section. A comparison for the detected communities by credal,
hard and fuzzy partitions is also illustrated to show the advantages of evidential
community structure over others.
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4.1 Zachary’s Karate Club

The Zachary’s Karate Club [16] is an undirected graph which consists of 34
vertices and 78 edges, describing the friendship between members of the club
observed by Zachary in his two-year study. This club is visually divided into
two parts, due to an incipient conflict between the president and instructor (see
Fig. 2-a).

The modularity peaks around c = 2 or c = 3 as shown in Fig. 1-a. Let c = 3,
the detected communities by CM, FCM and ECM are displayed in Fig. 2. As
it can be seen, a small community separated from Ω1 is detected by all the
approaches. The result by FCM shown here is got by partitioning nodes to
the cluster with the highest membership. Zhang et al. [17] suggested to use a
threshold θ to covert the fuzzy membership into the final community structure.
For node i, let the fuzzy assignment to its communities be μij , j = 1, 2, · · · , c.
Node i is regarded as a member of multiple communities Ωk with μik > θ. But
there is no criterion for determining the appropriate θ. However, in ECM we
can directly get the imprecise classes indicating our uncertainty on the actual
cluster of some nodes by hard credal partitions [7].

As we can see in Fig. 2-c, for ECM, node 1,9,10,12,31 belong to two clusters
at the same time. This is coincident with the conclusion in [17] apart from the
fact that a significant high membership value is given to Ω1 for node 12 by
FCM. Actually, the case that node 12 is clustered into Ω12 � {Ω1, Ω2} seems
reasonable when the special behavior of this node is considered. The person
12 has no contact with others except the instructor (node 1). Therefore, the
most probable class of node 12 should be the same as that of node 1. It is
counterintuitive if the person 12 is partitioned into either Ω1 or Ω2, as it has no
relation with any member in these two communities at all. The credal partition
can reflect the fact that Ω1 and Ω2 is indistinguishable to node 12, while the
fuzzy method could not. Furthermore, the mass belief assigned to imprecise
classes reflects our degree of uncertainty on the clusters of the included nodes.
As illustrated in Fig. 3-b, the mass given to imprecise clusters for node 1 is
larger than that to the other four nodes. This reflects our uncertain on node 1’s
community is largest. As node 1 is the instructor of the club, this fact seems
reasonable.

Actually, the concept of credal partitions suggests different ways of summa-
rizing data. For example, the data can be analysed in the form of fuzzy partition
thanks to the pignistic probability transformation shown in Eq. (5). It is shown
in Fig. 3-a pignistic probabilities play the same role as fuzzy membership. A crisp
partition can then be easily obtained by partitioning each node to the commu-
nity with the highest pignistic probability. In this sense, the proposed method
could be regarded as a general model of hard and fuzzy community detection
approaches.
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Fig. 1. Modularity values with community numbers
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4.2 American Football Network

The network we investigate in this experiment is the world of American college
football games between Division IA colleges during regular season Fall 2000 [4].
The vertices in the network represent 115 teams, while the links denote 613
regular-season games between the two teams they connect. The teams are divided
into 12 conferences containing around 8-12 teams each and generally games are
more frequent between members from the same conference than between those
from different conferences.

In ECM, the number of parameters to be optimized is exponential in the
number of clusters [7]. For the number of class larger than 10, calculations are
not tractable. But we can consider only a subclass with a limited number of focal
sets [7]. In this example, we constrain the focal sets to be composed of at most two
classes (except β). Fig. 1-b shows how the modularity varies with the number of
communities. For credal partitions, the peak is at c = 10. This is consensus with
the original network (shown in Fig. 4-a) composed of 10 large communities (more
than 8 members) and 2 small communities (8 members or less than 8 members).
Set c = 10 in ECM, we can find all the ten large communities, eight of which
are exactly detected. For the nodes in small communities, ECM partitions most
of them into imprecise classes. As there are more than 10 communities in this
network, we use Ωi+j to denote the imprecise communities instead of Ωij in the
figures related to this experiment to obviate misunderstanding.

For hard partitions, nodes in small communities are simply partitioned into
their “closest” detected cluster, which will certainly result in a loss of accuracy
for the final results. Credal partitions make cautious decisions by clustering nodes
which we are uncertain into imprecise communities. The introduced imprecise
clusters can avoid the risk to group a node into a specific class without strong
belief. In other words, a data pair can be clustered into the same specific group
only when we are quite confident and thus the misclassification rate will be
reduced.
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Fig. 4. American football network

5 Conclusion

In this paper, a new community detection approach combing the evidential mod-
ularity, spectral mapping and evidential c-means is presented to identify the
overlapping graph structure in complex networks. Although many overlapping
community-detection algorithms have been developed before, most of them are
based on fuzzy partitions. Credal partitions, in the frame of belief function the-
ory, have many advantages compared with fuzzy ones and enable us to have
a better insight into the data structure. As shown in the experimental results
for two networks in the real world, credal partitions can reflect our degree of
uncertain more intuitively. Actually, the credal partition is an extension of both
hard and fuzzy ones, thus there is no doubt that more rich information of the
graph structure could be available from the detected structure by the method
proposed here. We expect that the evidential clustering approaches will be em-
ployed with promising results in the detection of overlapping communities in
complex networks with practical significance.
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Abstract. Probabilistic fuzzy systems combine a linguistic description
of the system behaviour with statistical properties of data. It was orig-
inally derived based on Zadeh’s concept of probability of a fuzzy event.
Two possible and equivalent additive reasoning schemes were proposed,
that lead to the estimation of the output’s conditional probability den-
sity. In this work we take a complementary approach and derive a prob-
abilistic fuzzy system from an additive fuzzy system. We show that some
fuzzy systems with universal approximation capabilities can compute the
same expected output value as probabilistic fuzzy systems and discuss
some similarities and diffierences between them. A practical relevance of
this functional equivalence result is that learning algorithms, optimiza-
tion techniques and design issues can, under certain circumstances, be
transferred across diffierent paradigms.

Keywords: Probabilistic Fuzzy Systems, Additive Fuzzy Systems,
Conditional Density Approximation.

1 Introduction

Probabilistic fuzzy systems (PFS) can deal explicitly and simultaneously with
fuzziness or linguistic uncertainty and probabilistic uncertainty. A probabilistic
fuzzy system follows an idea similar to [1–4] where the different concepts [5–8]
of fuzzy sets and probabilities are complementary [6].

As a mathematical notion, a fuzzy set F on a finite universe U is unambigu-
ously defined by a membership function uF : U → [0, 1]. The mathematical
object representing the fuzzy set is the membership function uF (x) indicating
the grade of membership of element of x ∈ U in F . At the mathematical level the
domain of the fuzzy sets is [0, 1]U . On the other hand a probabilistic measure Pr
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of an experiment ρ yet to be performed, is a mapping 2U → [0, 1] that assigns a
number Pr(A) of event A to each subset of U , satisfying the Kolmogorov axioms.
Pr(A) is the probability that a generic outcome of ρ, an ill-known single-valued
variable x, hits the well-known set A. If the outcome of ρ is such that x ∈ A,
then we say that event A has occurred. In this case there is uncertainty about
the occurrence of any particular x and consequently of event A. This uncertainty
is described by Pr(A). At the mathematical level the domain of the mapping Pr
is the Boolean algebra 2U .

Various rule base structures and reasoning mechanisms for fuzzy systems (e.g.
[9–11]), emphasize the modelling of the linguistic uncertainty and interpolation
capability of fuzzy systems, being typically used for approximating deterministic
functions, in which the stochastic uncertainty is ignored. A probabilistic fuzzy
system, as it was formally defined in [12], was based on the concept of proba-
bility of fuzzy events. This type of system estimates a conditional probability
density function for the output variable, given the inputs to the system. Two
equivalent additive reasoning mechanism have been proposed for PFS, one based
on the concept of fuzzy histograms and another based on the stochastic mapping
between fuzzy antecedents and fuzzy consequents.

In this work we follow a different reasoning and derive a probabilistic fuzzy
system starting from a additive fuzzy system. This different analysis provides a
different insight and understanding of probabilistic fuzzy systems, which can be
related to Mamdani fuzzy systems and fuzzy relational models and departs from
the concept of probability of fuzzy events. This allows us to formalize the defi-
nition of probabilistic fuzzy systems while exposing similarities and differences
with different models or concepts. The relation of probabilistic fuzzy system to
well known fuzzy systems helps to explain its success for function approximation.
A practical relevance of the functional equivalence presented in this work is that
learning algorithms, optimization techniques and design issues can be transferred
to probabilistic fuzzy systems. Furthermore, it also allows to interpret models
transversely across different modeling paradigms.

The outline of the paper is as follows. In Section 2, we give an overview of the
original definition of probabilistic fuzzy systems and present the two equivalent
additive reasoning mechanisms of a PFS, as well as the different outputs. In
Section 3 we present the new derivation of a probabilistic fuzzy system starting
from fuzzy additive systems and discuss in Section 4 several issues related to our
findings. Finally we conclude the paper in Section 5.

2 Probabilistic Fuzzy Systems

Probabilistic fuzzy systems combine two different types of uncertainty, namely
fuzziness or linguistic vagueness, andprobabilistic uncertainty. In thisworkwe con-
sider that the probabilistic uncertainty relate to aleatoric variability, while fuzzy
sets are used to represent gradualness, epistemic uncertainty or bipolarity [7, 13].

The PFS consists of a set of rules whose antecedents are fuzzy conditions
and whose consequents are probability distributions. Assuming that the input
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space is a subset of Rn and that the rule consequents are defined on a finite
domain Y ⊆ R, a probabilistic fuzzy system consists of a system of rules Rq,
q = 1, . . . , Q, of the type

Rq : If x is Aq then f(y) is f(y|Aq) , (1)

where x ∈ Rn is an input vector, Aq : X −→ [0, 1] is a fuzzy set defined on X
and f(y|Aq) is the conditional pdf of the stochastic output variable y given the
fuzzy event Aq. The interpretation is as follows: if fuzzy antecedent Aq is fully
valid (x ∈ core(Aq)), then y is a sample value from the probability distribution
with conditional pdf f(y|Aq).

A PFS has been described with two possible and equivalent reasoning mecha-
nisms, namely the fuzzy histogram approach and the probabilistic fuzzy output
approach [12]. In both cases, we suppose that J fuzzy classes Cj form a fuzzy
partition of the compact output space Y .

2.1 Fuzzy Histogram Model

In the fuzzy histogram approach, we replace in each rule of (1) the true pdf

f(y|Aq) by its fuzzy approximation (fuzzy histogram) f̂(y|Aq) yielding the rule

set R̂q, q = 1, . . . , Q defined as

R̂q : If x is Aq then f(y) is f̂(y|Aq) , (2)

where f̂(y|Aq) is a fuzzy histogram conform [14]

f̂(y|Aq) =
J∑

j=1

P̂r(Cj |Aq)uCj(y)∫∞
−∞ uCj (y)dy

. (3)

The numerator in (3) describes a superposition of fuzzy events described by
their membership functions uCj (y), weighted by the probability P̂r(Cj |Aq) of
the fuzzy event. The denominator of (3) is a normalizing factor representing the
fuzzified size of class Cj . Because of overlapping membership functions, fuzzy
histograms have a high level of statistical efficiency, compared to crisp ones
and several classes of fuzzy histograms also have a high level of computational
efficiency [15].

The interpretation of this type of reasoning is as follows. Given the occurrence
of a (multidimensional) antecedent fuzzy event Aq, which is a conjunction of
the fuzzy conditions defined on input variables, an estimate of the conditional
probability density function based on a fuzzy histogram f̂(y|Aq) is calculated.

2.2 Probabilistic Fuzzy Output Model

In the probabilistic fuzzy output approach, sometimes also referred to as Mam-
dani PFS [16–18], we decompose each rule (1) to provide a stochastic mapping
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between its fuzzy antecedents and its fuzzy consequents. The rules are written
in the following form.

Rule R̂q: If x is Aq then y is C1 with P̂r(C1|Aq) and
. . .

y is CJ with P̂r(CJ |Aq).

(4)

These rules specify a probability distribution over a collection of fuzzy sets that
partition the output domain. The rules of a PFS also express linguistic informa-
tion and they can be used to explain the model behaviour by a set of linguistic
rules. This way, the system deals both with linguistic uncertainty as well as
probabilistic uncertainty.

The interpretation for the probabilistic fuzzy output approach is as follows.
Given the occurrence of a (multidimensional) antecedent fuzzy event Aq, which
is a conjunction of the fuzzy conditions defined on input variables, each of the
consequent fuzzy events Cj is likely to occur. The selection of consequent fuzzy

events is done proportionally to the conditional probabilities P̂r(Cj |Aq), (j =
1, 2, . . . , J). This applies for all the rules Rq, q = 1, 2, . . . , Q.

The probabilistic fuzzy system in this form resembles a deterministic Mamdani
fuzzy system with rule base multiplicative implication and additive aggregation.
The difference lies in the fact that in a Mamdani fuzzy system only one of the
outputs is considered in each rule, while in a PFS, each fuzzy output Cq can

happen with a given conditional probability P̂r(Aq |Cj).

2.3 Outputs of Probabilistic Fuzzy Systems

Although the fuzzy rule bases (2) and (4) are different, under certain conditions,
the two corresponding probabilistic fuzzy systems implement the same crisp
input-output mapping [12]. The output of the fuzzy rules (4) is the same as
in the rules (2), if an additive reasoning scheme is used with multiplicative
aggregation of the rule antecedents [19].

Given an input vector x, the output of a probabilistic fuzzy system is a con-
ditional density function which can be computed as

f̂(y|x) =
J∑

j=1

Q∑
q=1

βq(x)P̂r(Cj |Aq)
uCj(y)∫∞

−∞ uCj (y)dy
, (5)

where

βq(x) =
uAq(x)∑Q

q′=1 uAq′ (x)
(6)

is the normalised degree of fulfillment of rule Rq and uAq is the degree of fulfill-
ment of rule Rq. When x is n-dimensional, uAq is determined as a conjunction
of the individual memberships in the antecedents computed by a suitable t-
norm, i.e., uAq (x) = uAq1

(x1) ◦ · · · ◦ uAqn
(xn), where xi, i = 1, . . . , n is the i-th
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component of x and ◦ denotes a t-norm. From the obtained output probability
distribution it is possible to calculate a crisp output using the expected value

μ̂y|x = Ê(y|x) =
∫ ∞

−∞
yf̂(y|x)dy =

Q∑
q=1

J∑
j=1

βq(x)P̂r(Cj |Aq)z1,j , (7)

where z1,j is the centroid of the jth output fuzzy set defined by

z1,j =

∫∞
−∞ yuCj(y)dy∫∞
−∞ uCj(y)dy

. (8)

It can be shown [12] that the conditional density output f̂(y|x) of a PFS is a

proper probability density function i.e.,
∫∞
−∞ f̂(y|x)dy = 1 and that the crisp

outputs, expected value Ê(y|x) and second moment Ê(y2|x), exist if the output
space is well-formed, i.e. the output membership values satisfy

J∑
j=1

uCj(y) = 1, ∀y ∈ Y, y <∞. (9)

3 Probabilistic Fuzzy Systems as Additive Fuzzy Systems

In this work we depart from the previous definition presented in Section 2.2 and
instead derive a probabilistic fuzzy system from an additive fuzzy system. This
deterministic fuzzy system has rule base multiplicative implication and additive
aggregation, where the crisp model output is obtained using the center of gravity
defuzzification method. In the following section we present the additive fuzzy
system under consideration and how it can be converted in a probabilistic fuzzy
system.

3.1 Additive Fuzzy Systems

Let R = ∪Q
q=1Rq be a rule base for a additive fuzzy system of the type

Rule R̂q: If x is Aq then y is C1 with w(Aq , C1) and
. . .

y is CJ with w(Aq , CJ) ,
(10)

where w(Aq , Cj) ∈ R≥0 are non-negative weights. The system defined by (10) is
similar to the standard additive model [20, 21] but in the former, the consequents
are not directly dependent on x.

Although the fuzzy rule base system defined by (10) can be obtained by replac-
ing the conditional probabilities P̂r(Cj |Aq) by non-negative weights w(Aq , Cj) ∈
R≥0 in the fuzzy rule system (4), the crisp output of both systems is different,
as the following theorem shows.



572 R.J. Almeida et al.

Theorem 1. Let R = ∪Q
q=1Rq be a fuzzy rule base as defined by (10) such

that uAq(x) > 0, ∀q and the output space follows (9), and the rule base uses
multiplicative implication and additive aggregation. Then the crisp model output
y∗ obtained using the center of gravity defuzzification method is

y∗ =

∑Q
q=1

∑J
j=1 βq(x)w(Aq , Cj)v1,jz1,j∑Q

q=1

∑J
j=1 βq(x)w(Aq , Cj)v1,j

, (11)

where z1,j is given by (8) and v1,j is the area of the jth output fuzzy set defined
by

v1,j =

∫ ∞

−∞
uCj(y)dy . (12)

Proof. The center of gravity defuzzification method is given by

y∗ =

∫∞
−∞ yχ(x, y)dy∫∞
−∞ χ(x, y)dy

, (13)

where χ(x, y) is the output of the fuzzy system under consideration. For the
case of the additive fuzzy system (10) using with multiplicative implication and
additive aggregation the output is

χ(x, y) =

Q∑
q=1

J∑
j=1

βq(x)w(Aq , Cj)uCj(y) . (14)

Substituting (14) into (13) we obtain

y∗ =
∫ ∞
−∞ y

∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)uCj

(y)dy∫ ∞
−∞

∑Q
q=1

∑
J
j=1 βq(x)w(Aq,Cj)uCj

(y)dy

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ yuCj

(y)dy∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ uCj

(y)dy

=

∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ uCj

(y)dy

∫∞−∞ yuCj
(y)dy

∫∞−∞ uCj
(y)dy

∑Q
q=1

∑J
j=1 βq(x)w(Aq,Cj)

∫ ∞
−∞ uCj

(y)dy

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)v1,jz1,j∑Q

q=1

∑
J
j=1 βq(x)w(Aq,Cj)v1,j

.

(15)

3.2 Equivalence to Probabilistic Fuzzy Systems

Starting from an additive fuzzy system defined in (10), it is possible to obtain
a probabilistic fuzzy system. Before formalizing this result we introduce the
following definition of a probability kernel.

Definition 1. A kernel is a mapping K : X × Y → R≥0 from the measurable
space (X,X ) to the measurable space (Y,Y). The kernel K is a probability kernel
if it is defined as a probability measure on (Y,Y).
Given this definition we can now prove that a probabilistic fuzzy system can be
obtained starting from the fuzzy system defined in (10).
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Theorem 2. If the mapping w(Aq , Cj) is defined as a probability kernel and
each output consequent Cj are functions defined on a random variable space then
the output of the PFS is a conditional probability density for y given x. Under
this definition, the fuzzy rule base in (10) has a functional equivalent to the PFS
in (4) and the crisp output (11) has a functional equivalent to the conditional
output of the PFS in (5).

Proof. The defined non-negative weights w(Aq , Cj) : (X × Y ) → R≥0 form
a kernel on the measurable space (Rn × R). If w(Aq, Cj) is also defined as a

probability measure on (Y,Y), such that
∑J

j=1 w(Aq , Cj) = 1, ∀q = 1, . . . , Q
then according to Definition 1, w(Aq , Cj) is a probability kernel. We recall that

using (6) we obtain
∑Q

q=1 βq(x) = 1. Furthermore, since the output fuzzy sets
Cj are admissible functions for defining random variables then they are limited
to those for which a probability distribution exists. A simple form to ensure this
is to normalize them

uC′
j
=

uCj(y)∫∞
−∞ uCj(y)dy

. (16)

The output of the fuzzy system χ(x, y) in (13) is then a conditional density
function for Y given X such that:∫∞

−∞ χ(x, y)dy =
∫∞
−∞

∑Q
q=1

∑J
j=1 βq(x)w(Aq , Cj)uC′

j
dy

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq , Cj)

∫∞
−∞ uCj

(y)∫∞
−∞ uCj

(y)dy
= 1 .

(17)

In the case that w(Aq, Cj) is defined as a probability kernel, the additive
fuzzy system defined by the rule base (10) is a probabilistic fuzzy system as
presented in (4). Furthermore, the center of gravity output (11) of the additive
fuzzy system has a functional equivalent to the expectation of the conditional
output of the PFS (5)

y∗ =
∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)v1,jz1,j∑Q

q=1

∑J
j=1 βq(x)w(Aq,Cj)v1,j

=
∑Q

q=1

∑J
j=1 βq(x)w(Aq , Cj)z1,j .

(18)

Since w(Aq , Cj) is a probability kernel, (18) is equivalent to (7).

A practical relevance of the functional equivalence result is that learning algo-
rithms, optimization techniques and design issues can be transferred across dif-
ferent paradigms. Furthermore, this result helps to explain the success of fuzzy
systems for function approximation in the presence of probabilistic uncertainty.

4 Discussion

The previous sections have shown that a probabilistic fuzzy system defined by
(4) can be obtained starting from a additive fuzzy system (10). An important
aspect is that since w(Aq, Cj) is defined as a probability kernel then it has a
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functional equivalent to Pr(Cj |Aq) in (4), implying that
∑J

j=1 P̂r(Cj |Aq) = 1 and

P̂r(Cj |Aq) ≥ 0. In this paper we do not assume any particular algebraic structure
for the conditional probability of fuzzy events. There are several examples of
definitions of conditional probabilities of fuzzy events that satisfy the classical
axioms of conditional probabilities as given by [22] and [23] that can be found in
[24–26]. This is an important issue that needs to be studied closely in the future.

It is also interesting to note that the system defined by (10) can be trans-
formed in a fuzzy relational model [11] when w(Aq , Cj) is replaced by the fuzzy
relation u(Aq, Cj). Similarly to a fuzzy relational model, a probabilistic fuzzy sys-

tem can also be fine tuned by modifying the probability parameters P̂r(Cj |Aq),
while maintaining the fuzzy input and fuzzy output space constant. We stress
that a fuzzy relational model and a probabilistic fuzzy system have different
interpretations, based on the nature of the uncertainty of the relation and out-
put being modelled, as described in Section 1. In a fuzzy relational model the
elements of the relation represent the strength of association between the fuzzy
sets, while in the case of a fuzzy probabilistic model they are a stochastic map-
ping between fuzzy sets. Furthermore, the output fuzzy sets of a probabilistic
fuzzy system are defined in the space of a stochastic variable y. These differences
leads to different nature of outputs, albeit under certain circumstances, there is
a functional equivalence between both models crisp output. In the general case
that w(Aq , Cj) are non-negative weights, or in the case of a fuzzy relational
model u(Aq, Cj) are fuzzy relations, the output of such a system is not a proper
probability density function.

As a result of theorem 1 and theorem 2, a Mamdani fuzzy model can be
regarded as a special case of the fuzzy system defined in (10), or equivalently the
system defined by (4). A Mamdani fuzzy model is recovered when the system
is purely deterministic by setting setting for all q = 1, . . . , Q, ∃ω ∈ {1 . . . , J}
such that P̂r(Cκ|Aq) = 1 and P̂r(Cj |Aq) = 0, j �= ω i.e., only one of the possible
consequents is certain for each rule Q.

5 Conclusions

This paper presents a new form to derive a probabilistic fuzzy system start-
ing from an additive fuzzy system. This new reasoning departs from the original
derivation of a PFS which was based on Zadehs’ concept of probability of a fuzzy
event. We show that in certain cases an additive fuzzy system can compute the
same expected output value as a PFS. We discuss some similarities between
Mamdani and fuzzy relation models with probabilistic fuzzy systems. A prac-
tical relevance of the functional equivalence result is that learning algorithms,
optimization techniques and design issues can be transferred across different
paradigms. Furthermore, our results provide insight why additive determinis-
tic fuzzy systems have proven to be so successful for function approximation
purposes.
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Abstract. Our concern is with the determination of the firing level of the 
antecedent fuzzy set in a fuzzy systems model rule base.  We first consider the 
case where the input information is also expressed in terms of a normal fuzzy 
set.  We provide the requirements needed by any formulation of this operation. 
We next consider the case when the input information is expressed using a 
measure.  Here we also provide the requirements for any formulation that can 
be used to determine the firing level of the antecedent fuzzy set when the input 
information is a measure. We provide some examples of these formulations. 
Since a probability distribution is a special case of a measure we are able to 
determine the firing level of fuzzy rules with probabilistic inputs. 

1 Introduction 

Based on the ideas of Zadeh [1] fuzzy system modeling provides a method for 
building models of complex systems and mathematical functions [2, 3]. A fuzzy 
systems model consists of a rule base in which the antecedent conditions of the rules 
are expressed using normal fuzzy sets.  Central to the use of these models is the 
determination of the firing level of the antecedent conditions based on the input to the 
model. In most cases the input to the fuzzy model has been expressed also using fuzzy 
sets. We provide a general formulation for the calculation of this value and look at 
possible implementations. 

Another purpose here is to extend the capabilities of the fuzzy systems modeling 
technology by allowing a wider class of input information.  Here we shall consider the 
case where the input is expressed using a measure representation [4, 5]. A notable 
special case is a probability distribution.  In providing this extension a particularly 
important issue that arises is the determination of the firing level of a fuzzy set 
antecedent when the input information is expressed using a measure.  

2 Determination of Individual Antecedent Firing Levels  

In fuzzy systems modeling a typical rule is of the form  

If V1 is A1 and V2 is A2, … and Vn is An then U is b, 

where the Aj are normal fuzzy subsets over the domain of its associated variable the 

Vj. An important step in the use of these models is the determination of the firing 
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levels for the individual antecedent components, the Vj is Aj, given the knowledge 

about the value of the variable Vj, denoted, Inf(j).  In the case where we know the 

exact value for Vj, Vj = aj then we simply get for τj, the firing level of the component 

Vj is Aj, that τj = Aj(aj), the membership grade of aj in Aj. 

Once we introduce some uncertainty or imprecision in our knowledge of the value 
of Vj the situation becomes more complex.  Let us consider the case where our 

knowledge is expressed by a normal fuzzy set Ej.  One commonly used approach in 

this situation is to use the measure of possibility [6], τj = Poss[Aj/Ej] = Maxx[Aj(x] ∧ 

Ej(x)]. One case that deserves attention here is where Ej corresponds to no 

knowledge, Ej = Xj.  In this case τj = 1.  Thus we get complete satisfaction of the 

requirement that Vj is Aj in the case when we don’t know anything about the current 

value of Vj. This is somewhat troubling.  

A second approach is to use the measure of necessity (certainty) [7].  In this case 

τj = Cert[Aj/Ej] = 1 - Poss[ A j /Ej] = 1 - Maxx[ A j (x) ∧ Ej(x)].  Here we are 

determining the firing level as the negation of the possibility of not A being satisfied.  
Here we see here that if Vj is precisely known, Ej = {aj} we still get τj = Aj(aj).  At 

the other extreme if we have no knowledge of Ej(x) = 1 for all x.  Then τj = 

Cert[Aj/Ej] = 1 - Maxx[ A j (x)] = 0.  Thus here we get a firing of the antecedent as 

zero.  We note that if Ej is normal then Cert[Aj/Ej] ≤ Poss[Aj/Ej].   

The preceding two formulations are specific examples of a more general operation 
that determines the satisfaction of the requirement that Vj is Aj given Vj = Ej.  We 

shall refer to this as the Validity of Aj given Ej and denote it as Val(Aj/Ej).  In the 

following, for notational simplicity we suppress the subscript j and simply use the 
notation Val(A/E).  Here we are interested in satisfying the condition V is A given  
the knowledge V is E.  In the following we provide a general characterization of the 
concept Val(A/E). 
 
Definition: If A and E are two normal fuzzy subsets of X we say Val(A/E) is a 
quantification of the degree of satisfaction of A given E if Val(A/E) has the properties 

1) If E is a singleton, E = {x), then Val(A/E) = A(x) 
2) If A is the whole special, A = X, then for any E, Val(A/E) = 1 
3) If A ∩ E = ∅ the Val(A/E) = 0 
4) Val(A/E) is monotonic in A, if A1 ⊆ A2 then Val(A1/E) ≤ Val(A2/E)  

We point out that the condition A ∩ E = ∅ implies that Maxx[A(x) ∧ E(x)] = 0.  We 

can show that the measures of possibility and certainty satisfy these conditions.   
Another example of an operator that satisfies these conditions, is defined as 

Mid(A/E) = 
Σ jA(x j) E(x j)

ΣiE(xi )
.  We can easily show that this is also a Val operator. 
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If E = X then Mid(A/E) = 
i A(xi )

n
. We see this as a compromise between the 

extremes of the Poss and Cert formulations which give one and zero respectively 
when E = X. 

We now provide another formulation, CP(A/E), which we can show is a Val 
function. Here we let ρ be an index function so that ρ(k) is the index of the element in 

X with the kth largest value for A(xi), thus A(xρ(k)) is the kth largest membership 

grade in A.  Using this we define 

CP(A/E) = (Max
k ≤ jj=1

n

 [E(xρ(k))] − Max
k≤j−1

[E(xρ(k) )]) A(xρ( j) ) .   

In the above by convention for j = 1 we define Max
k≤j−1

[E(xρ(k))]  = 0. Using the 

notation wj = Max
k≤j

[E(xρ(k) )] − Max
k≤j−1

[E(xρ(k) )]  we see CP(A/E) = 
w j

j=1

n

 A(xρ( j) )
. 

Its clear that since both A and E are normal fuzzy sets all wj ≥ 0 and 
w j

j=1

n

  = 1 and 

hence CP(A/E) is a weighted average of the A(xi).  We also note here that if E = X, 

then CP(A/E) = 1. 
We now look at some general properties of validity operators. 

 
Theorem: For any collection Vali(A/E), i = 1 to q, of validity operators and set of q 

weights wi ∈ [0, 1] and Σiwi = 1 then Val(A/E) = Σiwi Vali(A/E) is a validity 

operator. 
Thus we see the linear combination of validity operators is a validity operator.  A 

notable example of the use of the linear combination of validity operators is 

Val(A/E) = αPoss(A/E) + α Cert(A/E) 

Another interesting example of the combination of these operators is  

Val(A/E) = αPoss(A/E) + βCert(A/E) + (1 - (α + β))Mid(A) 

where we have α + β ≤ 1. 
We easily can show that if Val1, …, Valq are validity operators then 

Val(A/E) = Mini[Vali(A/E)] is a validity operator.  However we point out if we 

replace Min by any other non-idempotent t–norm this does not hold.  Also 
Val(A/E) = Maxi[Vali(A/E)] is a validity operator.  We again note that this does not 

hold if we replace Max by another t-conorm S.  
We observe if Val1, … Valq are validity operators and H is any mean aggregation 

operator [8] then Val(A/E) = H(Val1(A/E), Val2(A/E), …, Valq(A/E)) is a validity 

operator.  
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Consider now a generalization of possibility measure, PossT(A/E) = Maxj[T(A(xj), 

E(xj))], here we replace Min by a t-norm T.  We can show that PossT(A/E) is a 

validity operator.  More generally if T and S are t-norms and t-conorms and we define 
PossT, S[A/E] = Sj[T(A(xj), E(xj))] then PossT, S[A/E] is a validity operator.  We 

also can show that if CertT, S[A/E] = 1 - PossT, S[ A /E] then CertT, S is a validity 

operator. 
In the preceding we considered the situation where our knowledge about the 

variable V was in the form of fuzzy subset E.  We now turn to the case where our 
knowledge about V is expressed using a measure. 

3 Measure Representation of Uncertain Information 

A fuzzy measure μ on space X is a mapping μ: 2X → [0, 1] such that μ(∅) = 0, μ(X) 
= 1 and μ is monotonic, μ(A) ≥ μ(B) if B ⊆ A [4, 9].   

We note that for any fuzzy measure because of the monotonicity property we have 
μ(A ∪ B) ≥ Max[μ(A), μ(B)] and μ(A ∩ B) ≤ Min(μ(A), μ(B)].  Assume μ1 and μ2 

are two measures such that for all A we have μ1(A) ≥ μ2(A) we denote this as μ1 ≥ 

μ2.  We can associate with any measure μ a dual measure μ̂  defined μ̂ (A) = 1 - 

μ( A ). It is clear that the dual of the dual is the original measure.  Thus μ and μ̂  come 

in unique pairs.  

Two notable examples of measure are μ* and μ*.  Here μ*(A) = 1 for A ≠ ∅ and 

μ*(∅) = 0 and μ*(A) = 0 for A ≠ X and μ(X) = 1.  These are duals of each other, μ̂*  

= μ* and μ̂*  = μ*.  In addition μ* ≥ μ* for any measure μ we have  μ* ≤ μ ≤ μ*. 

If V is a variable taking its value in the space X we can represent uncertain or 
imprecise information about the value of V using a measure μ on the space X.  Under 
this representation the measure of a set A, μ(A), indicates our anticipation of finding 
the value of the variable V in A [5].  We see here that the dual μ̂ (A) is a measure of 

the anticipation of not finding the value of the variable in not A. 
Let us look at the use of some special fuzzy measures using this perspective of 

representing information about an uncertain variable.  If we know that V is exactly 
equal to a then we represent this by the measure μa such that μa(A) = 1 if a ∈ A and 

μa(A) = 0 if a ∉ A.  We can show that μ̂a  = μa.  Here we say that μ is self-dual. 

At the other extreme from the measure μa are the measure μ* and μ*.  These are 

used to represent situations in which we know nothing about the value of variables 
other than it that is lies in X.  However these measures represent this ignorance in 

different ways.  μ* represents our ignorance in a very optimistic way, it anticipates 
that V lies in any set A, μ(A) = 1, except ∅.  μ* represents our ignorance in a very 
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pessimistic way, it anticipates that V lies in no set except X.  Thus while both μ* and 

μ* are representing ignorance they are doing it in different ways/ 

Another notable measure is μn(A) = 
| A |

n
.  It is the number of elements in the set 

A divided by the total number of elements, n, in X.  We see that μn({xj}) = 1/n for all 

xj.  While this is often used to represent situations when not knowing anything about 

the anticipation of the outcome, we note, however that this has the implicit 
assumption that all elements have the same anticipation.  We also note that for this 
measure μ̂n = μ. 

We can represent probabilistic uncertainty using a measure μ so that 

μ(A) = pi
xi ∈A
  where pi = Prob(xi).  Thus here μ({xi}) = pi.  A very special case of 

probability measure is one in which pi = 1/n for all i, this is μn.  Another special case 

of probability is one in which pi = 1 for one xi and pj = 0 for j ≠ i.  This actually is the 

same as the case  where we know the value of V is xi.  A probability measure is also 

self-dual. 
Possibilistic uncertainty can also be represented in this framework using a 

possibility measure μ.  Here if πi is the possibility of xi, then for any subset A, μ(A) = 

Max
xi ∈A

[πi ] .  We easily see μ({xi}) = πi.  We note that for possibility measure μ(A ∪ 

B) = Max[μ(A), μ(B)] for A ∩ B = ∅.  An interesting special case of this is one in 
which πi = 1 for xi ∈ A and πi = 0 for all xi ∉ A.  This can be seen as the possibility 

representation of the information that V ∈ A.  Actually we see the measure μ* is an 
example of possibility measure in which πi = 1 for all i.  This can be seen as a 

possibilistic representation of unknown. 
Closely related to the possibility measure is the certainty measure.  If μ is a 

possibility measure its dual is a certainty measure [4].  Thus with μ a possibility 
measure μ̂ (A) = 1 - μ( A ) is a certainty measure.  It can be shown μ̂ (A ∩ B) = 

Min( μ̂ (A), μ̂ (B)).  It can be shown that μ(A) ≥ μ̂ (A) and μ(A) + μ̂ (A) ≥ 1.   

Another special case of uncertainty is a cardinality-based uncertainty.  Here for 
every subset A, μ(A) = α|A| where |A| is the cardinality of A.  In this case αi are a 

collection of weights so that αi ∈ [0, 1] where αi ≤ αj if j > i.  We also require that α0 

= 0 and αn = 1.  Two examples of cardinal measures are μ* and μ*.  For μ* we have 

αj = 1 for j > 0 and α0 = 0.  For μ* we have we have αj = 0 for j < n and αn = 1.   
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4 Firing Fuzzy Rules With Measure Information 

Earlier we considered the problem of determining the firing level of the antecedent V 
is A given the knowledge that V is E where E is another fuzzy subset.  We extend our 
capabilities to the case where our knowledge about V instead of being another fuzzy 
set is a measure μ.  Our concern here is with the determination of Val(A/μ). 

When our knowledge was V is E we required four conditions be satisfied by any 
formulation of Val(A/E).  Two of these conditions involved only information about 
A, these were the requirement that if A = X we get Val(X/E) = 1 and the monotonicity 
condition Val(A1/E) ≤ Val(A2/E) if A1 ⊆ A2.  Another of these conditions only 

involved information about E, this was the requirement that Val(A/E) = A(xi) is E is 

the knowledge that V = xi, E = {xi}.  The other condition involved information about 

the relationship between A and E, the that if A ∩ E = ∅ then Val(A/E) = 0. 
The first two conditions can be easily generalized to the case where we have V is μ 

1) If A = X then Val(A/μ) = 1 
2) If A1 ⊆ A2 then Val(A1/μ) ≤ Val(A2/μ) 

The third condition is about case when the measure μ conveys the information that V 
assumes some specific value.  This expressed as 

3) if μ is a measure representing V = xi,  then Val(A/μ) = A(xi) 

The fourth condition requires a little more thought before we can move it to case 
where we have V is μ.  This condition said that if the information, V is E, is 
completely conflicting with the antecedent, V is A, then Val(A/E) = 0.  When our 
knowledge is V is μ our fourth condition is that if μ and A are completely conflicting 
then Val(A/μ) = 0.  We now turn to the definition of complete conflict between a 
measure μ and a fuzzy set A.  We shall say a measure μ is completely conflicting with 
the antecedent V is A if for any xj having A(xj) ≠ 0 the measure μ has the property 

that μ(B ∪ {xj}) = μ(B) for all subsets B of X.  We see some immediate implications 

of the case when A and μ are conflicting.  If A(xj) ≠ 0 then μ({xj}) = 0.  This follows 

since {xj} = ∅ ∪ {xj) and μ(∅) = 0.  From this we see that for any xk we have 

Min(μ({xk}), A(xk)) = 0,  More generally, since Min is the largest t-norm, then for 

any t-norm T, T(μ({xk}), A(xk)) = 0 and in particular the product μ({xk}) A(xk) = 0.   

We now state another interesting property of a measure μ that is completely 
conflicting with a fuzzy set A.  If μ is completely conflicting with the fuzzy subset A then 
for any subset B of X consisting of only elements that have A(x) > 0, then μ(B) = 0. 

Furthermore we observe that if A(xj) > 0 then μ(X - {xj}) = 1.  This follows since 

(X – {xj}) ∪ (xj) = X and μ(X) = 1. 

We shall now look for some formulations that allow us to provide a definition of 
Val(A/μ) that satisfies the four conditions.  Let us now consider the possibility of 
using Choqμ(A) to provide a formulation for Val(A/μ).  In anticipation of this we 

shall say something about the Choquet integral [10-12]. 
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Assume μ is a measure on a space X = {x1, …, xn} and let f be a function on X such 

that f: X → [0, 1].  Thus for each xi ∈ X we have f(xi) ∈ [0, 1].  The Choquet integral of 

the f with respect to the measure μ is defined as Choqμ(f) = (μ(H j) − μ(H j−1)
j=1

n

 )

 
f(xρ(j)) where ρ(j) is the index of the element in X having the jth largest value for f.  In 

addition let Hj = {xρ(k)|k = 1 to j}, the subset of X having the j largest values for f(xi). 

If we let wj = μ(Hj) - (Hj-1) then Choqμ(f) = w j
j=1

n

 f(ρ(j)) where wj ≥ 0 and w j
j=1

n

  = 

1, Choqμ(f) is a mean aggregation of the f(xi). 

We shall use the Choquet integral to provide a formulation for Val(A/μ).  Here we use 
the membership function of A as the function f in Choqμ(f), thus Val(A/μ) = Choqμ(A). 

We now show that this satisfies the four conditions we require of Val(A/μ). 
1) We first see that if A = X then A(x) = 1 for all x and hence  

Choqμ(A) = w j
j=1

n

 A(xr(j)) = w j
j=1

n

  = 1 

2) From the known monotonicity of the Choquet integral if A1 ⊆ A2, 

A1(xi) ≤ A2(xi), then Choqμ(A1) ≤ Choqμ(A2). 

3) The case where V = xi corresponds to a measure, μi such that μi(B) = 1 if xi ∈ 

B and μi(B) = 0 if xi ∉ B. Here then Choqμi
(A) = (μi (H j)− μi(H j−1))

j=1

n

 A(xr(j)), 

however we see that mi(Hj) – μi(Hj-1) = 1 when xi ∈ Hj and xi ∉ Hj - 1.  Thus occurs 

when xr(j) = xi thus Choqμ(A) = A(xi). 

4) Finally the requirement that if A and μ are conflicting then Val(A/μ) = 0.  As we 
earlier noted A and μ are completely conflicting if for any xj having A(xj) ≠ 0 the 

measure μ has the property that μ(B ∪ {xj}) = μ(B) for all B. Consider now the 

Choquet integral in this case, Val(A/μ) = (μ(H j)− μ(H j−1))
j=1

n

 A(xr(j)), where r(j) is 

the index of the element with the jth largest value for A(xi). We see that the xr(j)'s 

can be partitioned into two classes, j = 1 to K where A(xr(j)) > 0 and j = K + 1 to n 

where A(xr(j)) = 0. Here then Val(A/m) = (μ(H j)− μ(H j−1))
j=1

K

 A(xP(j)). Furthermore 

since Hj = Hj-1 ∪ {xP(j)} then μ(Hj) = μ(Hj - 1 ∪ {xP(j)}) for j = 1 to K.  If A and μ 
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are conflicting then μ(Hj) = μ(Hj - 1) for all xP(j) where A(xp(j)) > 0, in this case for 

all j = 1 to K.  Thus if A(xp(j)) > 0 then μ(Hj) - μ(Hj-1) = 0 and hence Val(A/m) = 0. 

Thus we see that the use of Choquet integral, Choqμ(A), satisfies all the conditions 

required of a formulation for Val(A/μ). 

5 Validity for Various Types of Inputs 

Using the formulation Val(A/μ) = Choqμ(A) let us look at the types of structures that 

are obtained for various different kinds information about V. 
We have already shown that if our knowledge is V = xi, then Val(A/μi) = A(xi). 

Consider the case where μ is a probability measure.  In this case μ({xi}) = pi and for any 

crisp subset B, μ(B) = pi
xi ∈B
 . Here Val(A/μ) =  (μ(H j)− μ(H j−1))

j=1

n

 A(xρ( j) ) . Since 

Hj = Hj-1 ∪ {xρ(j)) and μ is an additive measure then μ(Hj) - μ(Hj-1) = μ({xρ(j)}) = 

pρ(j).  Thus in the case of a probabilistic input μ we get Val(A/μ) = p jA(x j)
j=1

n

 .   

This is essentially the probability of A under the probability measure μ.  This is 
Zadeh's definition of the probability of a fuzzy set [6]. 

We now consider the situation in which we have a cardinality-based measure as 
our source of information.  A recall a cardinality-based measure is defined in terms of 
a collection of parameters  0 = h0 ≤ h1 ≤ h2 ≤ .… ≤ hn = 1 such that then for any crisp 

subset B, μ(B) = h|B|.  If we let rj = hj - hj - 1 for j = 1 to n, then we have rj ∈ [0, 1]. 

Since |Hj| = j then μ(Hj) = hj and hence μ(Hj) – μ(Hj - 1) = rj and therefore we get  

Val(A/μ) = Choqμ(A) = (μ(H j)− μ(H j−1))
j=1

n

 A(xρ( j) )  = rj(Aρ( j) )
j=1

n

  

This is an OWA aggregation [13] of the A(xi) with OWA weights wj = rj. For the 

two forms of unknown, μ* and μ*, we respectively get Val(A/μ*) = 1 and Val(A/μ*) 

= Aρ(n), the minimal membership in A. 

In the case where the input is of the form of a possibility measure were μ({xi}) = 

πi and for any crisp subset B, μ(B) = Max
xi∈B

[πi ] . We can show that Val(A/μ) = 

( Max
k =1to j

[πρ(k)] − Max
k =1to j−1

[πρ(k)])A(xρ( j) )
j=1

n

  where ρ(j) is the index of the element 

with the jth largest membership grade in A.  We note this is what we earlier referred 
to as CP type of formula.  Thus here we get one of forms for determining the firing 
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level of the antecedent fuzzy subset A given as the input another fuzzy set E where 
E(i) = πi.. 

Another class of measures, closely related to possibility measures, are the necessity 
measures [7]. Necessity measures are defined by the property that μ(A ∩ B) = 
Min[μ(A), μ(B)]. It is well known that necessity measures are duals of possibility 
measures. If  is a possibility measure the measure μ defined so that μ(A) =  

1 - ( A ) is a necessity measure.  We see that if  ({xi}) = πi then we have for the 

associated necessity measure that μ(X - {xi}) = 1 - πi = βi.  We can define a necessity 

measure μ using the collection β1, …, βn of  parameters so that βi ∈ [0, 1] and 

Mini[βi] = 0, at least one βi = 0.  Using these we have that for any crisp set A that 

μ(A) = Min
xi∉A

[βi ] .   

Here we see that in the case of a necessity measure μ(Hj) = Min
xi∉H j

[βi ]  = 

Min
k>j

[βρ(k) ] .  In addition μ(Hj - 1) = Min
xi∉H j−1

[βi ]  = μ(Hj) ∧ βρ(j) = Min
k > j−1

[βρ(k)] .  

Using this in Val(A/μ) = (μ(H j)− μ(H j−1))
j=1

n

 A(xρ( j) )  we get Val(A/μ) =  

(Min
k>j

[βρ(k)] − Min
k > j−1

[βρ(k) ])A(xρ( j) )
j=1

n

 . 

If we denote βi = 1 - πi then Min
k>j

[βρ(k) ] = 1 − Max
k>j

[πρ(k) ] and 

Min
k>j−1

[βρ(k) ] = 1 − Max
k>j−1

[πρ(k) ] .  Using this we get  

wj = μ(Hj) - μ(Hj - 1) = Max
k>j−1

[πρ(k)] - Max
k>j

[πρ(k) ]  

Another class of measures is the Sugeno measures [9].  For this measure if  
A ∩ B = ∅ then μλ(A ∪ B) = μλ(A) + μλ(B) + λμλ(A)μλ(B)  where λ > -1.  If 

μλ({xi}) = Li then it can be shown that μλ(B) = 
1
λ

[ (1+ λLi )−1]
xi ∈B
∏ .Let us now 

calculate Val(A/μλ) = Choqμλ (A) = (μλ (H j)− μλ (H j−1))
j=1

n

 A(xρ( j) ) .  We first 

observe that since Hj = Hj - 1 ∪ {xρ(j)} and Hj-1∩ {xρ(j)}= ∅ then 

μλ(Hj) = μλ({xρ(j)}) + μλ(Hj - 1) + λμλ({xρ(j)})μλ(Hj - 1) 

μλ(Hj) = Lρ(j) + μλ(Hj - 1) + λLρ(j)μλ(Hj - 1) 
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We see that μλ(Hj) - μλ(Hj -1) = Lρ(j) + λLρ(j)μλ(Hj - 1) = Lρ(j)(1 + λμλ(Hj - 1)). 

Furthermore since Hj -1 = {xρ(k)/k = 1 to j - 1} then μ(Hj - 1) = 

1
λ

(( (1+ λLρ(k))−1)
k ≤ j−1
∏ . Therefore  

μλ(Hj) - μλ(Hj - 1) = Lρ(j)(1 + ( (1+ λLρ(k)))−1
k ≤ j−1
∏ ). 

Hence we get the formulation that wj = Lρ(j) (1+ λLρ(k) )
k ≤ j−1
∏ .  Using this form for 

wj we get 

Val(A/μλ) =  (A(xρ( j) )
j=1

n

 Lρ( j) (1+ λLρ(k) ))
x ≤ j−1
∏  

We note if λ = 0 then we get the simple additive case and here wj = Lρ(j). 

A very clearly recursive relationship exists for generating the wj  

W1 = Lρ(1) 

wj = 
Lρ( j)

Lρ( j−1)
⋅(1+ λLρ( j−1)) w j−1       for j > 1 

6 Conclusion 

Our focus was with the firing level of the antecedent fuzzy set in a fuzzy systems 
model. First we considered the case where the input was also expressed in terms of a 
normal fuzzy set. We provided the requirements for any formulation of this operation. 
We considered the case when the input information was a measure.  We provided the 
requirements for any formulation that can be used to obtain the firing level of the 
antecedent fuzzy set when the input is a measure. We provided some examples of 
these formulations. Using these results we were able to determine the firing level of 
fuzzy rules with probabilistic inputs. 
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Abstract. When dealing with complex problems, it is often the case
that fuzzy systems must undergo an optimization process. During this
process, the preservation of interpretability is a major concern. Here we
present a new mathematical framework to analyze the notion of inter-
pretability of a fuzzy partition, and a generic algorithm to preserve it.
This approach is rather flexible and it helps to highly automatize the op-
timization process. Some tools come from the field of algebraic topology.

Keywords: fuzzy system, fuzzy partition, optimization, tuning, inter-
pretability, algebraic topology.

1 Introduction

One of the appealing features of fuzzy ruled based systems is that in most cases
they are easily interpretable by humans. However, when used to tackle complex
problems, there is often need to make use of automatic optimization methods
that improve the original system (cf. [2]). These automatic methods have a
drawback: It may entail important losses in the interpretability of the system,
in particular in the fuzzy partitions. The goal of this paper is to deal with this
loss of interpretability.

Although there is no standard definition for the notion of interpretability of
a fuzzy system, we can distinguish, following [1,7], two levels of interpretability:
That of fuzzy partitions and that of rule analysis. In this paper we deal with
the problem of preserving the interpretability of the fuzzy partitions during the
process of parametric optimization or tuning. We can divide this work in two
parts: Firstly we provide a mathematical framework in which the concept of
interpretability may be formalized, and secondly we provide a generic algorithm
that takes as input a fuzzy system that the user considers interpretable, and a
function to optimize (that measures the quality of a fuzzy system) and gives as
output an optimized fuzzy system that preserves interpretability.

Thanks to this formalization the optimization process will be, in our view,
much more painless for the user than in previous approaches. In particular it
may be carried out not only by experts in optimization of fuzzy systems as usual,
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but also by users that are just experts in the problem-specific domain and whose
knowledge in fuzzy theory may be limited.

In our approach we do not fix a priori the notion of interpretability. The math-
ematical framework that we propose is problem-independent and sufficiently
generic to let the user establish which configuration he wants to preserve during
the optimization. The essential point is the formalization of the notion of inter-
pretability in topological and geometrical terms. Its preservation implies some
particular constraints on the acceptable solutions for the optimization problem.
In the generic algorithm that we propose, the codification and verification of
these constraints is automatically done.

The geometric and topological analysis begins with a collection of fuzzy sys-
tems that the user considers interpretable (although in the our description of the
algorithm we suppose that this family is composed of just one system). The do-
main of each variable is partitioned in such a way that the relative order of the
different membership functions is constant on each region. These regions, and the
order relations associated to them, will determine the geometric and topological
constraints that will be taken into account during the optimization. In order to
codify this information, a key role is played by homology groups. We make use
of these well-known algebraic objects, which are able to capture a very significant
part of the topology of a space and are well-suited for computer calculations. There
exist several implementations to compute different homology groups. The reader
interested in more details may consult for instance [4], [5] or [8].

2 Analyzing the Interpretability: A Topological
Framework

2.1 The Main Idea

What we propose in this paper is not an absolute definition of interpretabil-
ity, but rather a framework in which the actual definition, which will strongly
depend on the user, can be expressed. We may talk then, given a user U , of
interpretability relative to U . Our approach is strongly focused on topology: Our
viewpoint is that the properties of the fuzzy partition that the user requires to
be preserved are essentially of a topological nature.

Let us say a user defines a fuzzy partition such as the one on Figure 1 (top).
It seems reasonable to consider that the user requires the optimization process
to preserve, at least, the order of the terms. This order, although not explicitly
formalized, underlies the solution we usually find in the literature: To strongly
constrain the possible variations of the membership functions, in order to obtain
very similar configurations as the original one, as in Figure 1 (top).

Some difficulties may arise if we try to define an order in a case such as
that of Figure 1 (bottom). In more general cases, such as those of 2-dimensional
variables, the concept of order may not even make any sense. However, there
are always some basic properties that the user wants to preserve to be able
to attach some meaning to the system. In our approach, these properties have
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a topological nature and are locally determined by the values of the different
membership functions. In particular, we think that the relative order of these
values is crucial.

The main idea is to partition the numeric domain of the variable into regions
in which the relative order of the membership functions is constant, such as
in Figure 1 (bottom). We use the following notation: If t1, t2, t3 are linguistic
terms and μt1 , μt2 , μt3 their corresponding membership functions, then a region
R of the domain is said to satisfy the relation t1 > t2 > t3, or have the label
t1 > t2 > t3, if for every x ∈ X the relation μt1(x) > μt2(x) > μt3(x) holds.

0

1 R3

R1 R5R2 R4 R6

R7

R8 R9 R10

R11

R12R13

E>L=H

E>L>H

E=L>H

L>E>H

L>E=H

L>H>E

L=H>E

H>L>E

H>L=E

H>E>L

H=E>L

E>H>L

E>H=L

Extreme Low High

0 10050 7525
x1 x2 x3 x4 x5 x6 x7x8 x9

0

1 MediumLow High

0

1 MediumLow High

Fig. 1. Top: Example of a fuzzy partition and some typical constraints on it (classical
approach). Bottom: Decomposition of the domain [0, 100] in regions Ri in which the
relative order of the membership functions is constant (our approach). For instance, if
µE , µL, µH are the membership functions corresponding to Extreme, Low, High, then
R2 gets the label Extreme > Low > High, since µE(x) > µL(x) > µH(x) ∀x ∈ R2.

Some properties of this partition will be required to be preserved during the
optimization process. Examples of such properties could be:

– There is a region R2 in which the relation Extreme > Low > High holds, with
neighbors R1 and R3, such that in R1 we have Low = High < Extreme, and
in R3 we have Extreme = Low > High.

– The value 50 belongs to the region R6 that verifies Low > High > Extreme.

The rest of the section will be devoted to make this main idea more precise.
In particular, we will present two key notions: The geometric and topological
signatures.

2.2 Notation and Definitions

The definitions concerning fuzzy systems, such as linguistic variable, membership
function, etc. are standard (see for instance [6]). We consider that the numeric
domains associated to each linguistic variable are equipped with a natural topol-
ogy (as it is the case with Rn).
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– Let Ω be the set of possible fuzzy systems under consideration, and let
A = A1 × . . . × An (typically A ⊆ Rn) be the domain of the parameter
vector that we consider as determining a fuzzy system. A solution to our
optimization problem will be then an element ā ∈ A.

– We denote by ω : A → Ω the map that determines a fuzzy system ω(ā)
from the parameter vector ā. In particular ω determines every membership
function of the system.

– We denote by V the set of all linguistic variables and we suppose it is the
same for every ω ∈ Ω. We denote by Domv the domain of a linguistic variable
v ∈ V .

2.3 Geometric Signature

Let ω ∈ Ω be a fuzzy system and v ∈ V a linguistic variable. The geomet-
ric signature of ω relative to v, that we denote by Gω(v), is a mathematical
object that captures all the potentially interesting properties of the partition
induced by ω on Domv. It provides the regions in which the relative order of
the different membership functions is constant, and together with each region,
its corresponding order.

As an illustration, consider that for a certain ω ∈ Ω and v ∈ V , Figure 1
(bottom) represents the partition induced by ω on Domv. In this case Gω(v)
is the map that associates to i ∈ {1, . . . , 13} the region Ri, together with the
corresponding order relation on terms. For instance:

– Gω(v)(1) is the region R1, i.e. the interval [0, x1], together with the label
Extreme > Low = High. This means that for every x ∈ R1, μExtreme(x) >
μLow(x) = μHigh(x), where μExtreme, μLow, μHigh are the corresponding
membership functions.

– Gω(v)(3) is the region R3, i.e. the set {x2} composed of only one point,
together with the label Extreme = Low > High. In practice, regions of low
dimension (0 in this case) may be ignored.

In some cases the user might consider certain “dummy” functions Domv →
[0, 1] to code particular constraints, such as interactions between membership
functions. For instance, to deal with strong partitions we might consider the
constant function 1 and the function

∑
i μi(x) (where μi represents the i-th

membership function).
The geometric signature of ω, denoted by Gω, is the map that associates Gω(v)

to v ∈ V .

2.4 Topological Signature

The topological signature of ω relative to v, that we denote by Tω(v), is a a weaker
concept than that of the geometric signature, i.e. for ω, η ∈ Ω, if Gω(v) = Gη(v)
then Tω(v) = Tη(v). It codes the topological information contained in Gω(v).
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The topological signature of ω is the map that associates Gω(v) to v ∈ V . We
denote by Tω.

In the field of computational topology, the use of homology groups is widely
spread to deal with the topology of a space. We will not provide here any def-
inition concerning homology theory, since it is out of the scope of this paper;
nevertheless we should say that these groups are topological invariants of alge-
braic nature, that capture an important part of the topological information of a
space and are well-suited from an algorithmic viewpoint. The reader interested
may consult for instance [4], a standard reference in algebraic topology, or [5]
and [8] for an approach more focused on computational aspects.

We can propose then to code the topological signature in terms of these homol-
ogy groups, that we denote by HN for N ∈ N. Let v ∈ V and consider ω, η ∈ Ω
such that ω induces a partition on Domv composed of regions R1, . . . , Rn and η
induces a partition on Domv composed of regions S1, . . . , Sn. We say that Tω(v)
and Tη(v) are equal if there is a n-permutation σ such that:

1. the order on terms corresponding to Ri is the same as that of Sσ(i) for
i = 1, . . . , n, and moreover

2. Hn(
⋃

k∈K Sh(k)) ≈ Hn(
⋃

k∈K Rk) for each K ⊆ I and n ∈ N.

The homology groups are characterized by some integers, namely the Betti
numbers and the torsion coefficients; they will be stored and used as topological
signature. However, we should say that this is a general-purpose coding; in prac-
tice there may be different ways to implement the notion topological signature,
depending mostly on the nature of Domv. In some cases the computation of
these homology groups may not be necessary and a much more efficient coding
can be devised.

To illustrate the notion of topological signature, consider that for a certain
ω ∈ Ω and v ∈ V , Figure 1 (bottom) represents the partition induced by ω
on Domv. In this case, Tω(v) provides for each i ∈ {1, . . . , 13} the the order
on terms corresponding to the region Ri, and for each K ⊆ {1, . . . , 13} the
topological information of

⋃
i∈K Ri. For instance, if we consider K = {4, 5},

Tω(v) codes the fact that R4 ∪ R5 is connected, and if we consider K = {1, 6, 9}
the fact that R1∪R6∪R9 is composed of three connected components. Essentially,
Tω(v) codes the following information:

1. There are 13 regions Ri (each one being a connected set),
2. the order on terms corresponding to R1 is Extreme > Low = High, that of

R2 is Extreme > Low > High, etc.
3. R1 is neighbor of R2, R2 is neighbor of R1 and R3, etc.

Hence if we consider another η ∈ Ω whose decomposition of Domv is given by
regions S1, . . . , SM , then Tη(v) = Tω(v) iff M = 13, and for some permutation
σ we have:

1. The order on terms corresponding to Sσ(1) is Extreme > Low = High, that of
Sσ(2) is Extreme > Low > High, etc.

2. Sσ(1) is neighbor of Sσ(2), Sσ(2) is neighbor of Sσ(1)and Sσ(3), etc.
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3 User Interactions: An Operational Definition of
Interpretability

As we have already mentioned, we do not provide an absolute definition of inter-
pretability, but rather, given a user U , a conceptual and operational framework
to deal with interpretability relative to U . The goal of this section is to show
how we can define and manipulate this interpretability relative to U , relaying on
the notions presented in Section 2 and, importantly, on some interactions with
U . We should mention that the interactions we present here seem to us flexible
enough to cover most part of needs; however, other interactions could be con-
sider. Our base hypothesis is that the notion of interpretability has essentially a
topological flavor. An oversimplified version of this hypothesis would be :

Assumption 1. For every user U , there is a family {ω1, . . . , ωn} = Σ ⊂ Ω of
representative systems, such that every η ∈ Ω considered as interpretable by U ,
satisfies Tη = Tωi for a certain i ∈ {1, . . . , n}.

Since we want to provide an operational definition of interpretability relative
to U , we need, of course, some interaction with U . We suppose then that Σ �= ∅
and that U is capable of specifying Σ, i.e. providing a parameter vector āi ∈ A
such that ω(āi) = ωi, for i = 1, . . . , n. This first interaction, in which U provides
Σ, is the slightest interaction with U that our method needs. However, if we want
to make our method more flexible, we can allow U to provide more information.
Next we present the two other kind of interactions that we consider.

For the sake of simplicity, we suppose hereafter that Σ is composed of only
one system, Σ = {ω0}. The general case is easily deduced from this particular
case (see the end of this section).

Relaxation of the topological conditions. This is basically a relaxation of Assump-
tion 1. Once U has provided Σ = {ω0}, one could consider that for a solution
ā ∈ A to be acceptable, i.e. such that ω(ā) is interpretable relatively to U , ā
must satisfy Tω(ā) = Tω0 . Instead, we may let the user relax this condition: He
could omit, if he wishes, some of the topological conditions imposed by Tω0 .
Typically it may consist in merging different regions and requiring a relaxed or-
der on terms; in this case the relaxed order should be compatible with the order
of the merged regions (see example in Figure 3). This notion of compatibility
could be easily formalized in terms of the lattice of partial orders on terms.
This interaction with U induces some topological conditions Ct that a solution
ā must satisfy to be considered interpretable by U . For instance, if there is no
relaxation, a solution ā satisfies Ct if and only if Tω(ā) = Tω0 .

Addition of geometric conditions. U may strengthen the conditions for a solution
to be considered interpretable. This extra conditions are of a geometric rather
than topological nature. This will allow U to specify the regions to which certain
points should belong. If we consider again Figure 1 (bottom), U may want to
include the condition “0 ∈ R1”, that is “0 should belong to the region indexed by
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1”, or more precisely “0 should belong to the region whose corresponding order
on terms is Extreme > Low = High, that is neighbor of other region (namely R2)
whose corresponding order is Extreme > Low > High, that is neighbor of etc. ”.
It is clear that we can codify these kind of conditions in terms of the point 0
and the signature Tω0 . We note by Cg the geometric conditions imposed by this
interaction with U .

Definition of interpretability The interactions we have just described allow us
to provide the following definition of interpretablity: A solution is interpretable
relative to U if it satisfies the conditions Ct and Cg. During the optimization
process we will use this definition to test if a solution is valid or not. In the general
case, in which Σ is not necessarily composed by only one ω0, the definition is
very similar. For each ω ∈ Σ, the user goes through the same interactions: Firstly
he can relax the topological conditions induced by Tω, and secondly he can add
geometric conditions related with Gω; then these interactions provide conditions
Ct

ω and Cg
ω for each ω ∈ Σ. In this case, a solution ā is interpretable relative to

U , if there is ω ∈ Σ such that ā satisfies the conditions Ct
ω and Cg

ω.

4 Algorithm

We present here the different parts of a generic algorithm that fulfills our purpose:
To optimize a given fuzzy system while preserving its interpretability. In Figure
2 we can see a scheme of this algorithm, but rather than explaining it in its more
abstract form, we prefer to focus in the explanation of a particular example. The
generic case will easily be induced from this description.

Let us consider a certain fuzzy system ω0 modeling a 2-dimensional problem,
in which only one linguistic variable v is involved. For instance there may be some
rules involving the terms East, West and Center that are used to activate some
procedures: We could imagine a fuzzy controller that produces policy decisions
(e.g. public transports, taxes, etc.) for towns in a certain area, following rules of
the type “If town T is in region East then apply policy P to T ”. An example of
the membership functions associated to East, West and Center can be found in

Fig. 2. Scheme of the algorithm. The steps correspond to the description in the text.
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Fig. 3. Left: Example of three membership functions associated to a 2-dimensional
variable (darker colors represent values closer to 1). The black dots represent towns.
Center: Regions induced by the membership functions, with their corresponding labels.
Right: A relaxation of the topological conditions and the addition of two geometric
conditions: Since only the highest-valued functions are relevant, some labels are merged;
moreover town X must belong to the region in which µWest is the highest-valued
function and town Y to the region in which µCenter is the highest-valued function.

Figure 3 (left). Let us say a user U considers ω0 as interpretable and wants to
optimize it using a performance function f .

Preprocessing

Step 0. The user gives ω0 and f as input.

Step 1. The first part of the algorithm consists in computing the geomet-
ric signature, that is the regions in which the order of terms is constant. Let
μWest, μCenter, μEast be the membership functions corresponding to the terms
West, Center, East. The domain is discretize and each function is evaluated on
each point of the grid. This evaluation induces a label for each point, e.g. a point
x gets the label West < East < Center if μWest(x) < μEast(x) < μCenter(x).
Then we can explicitly compute the regions (maximal connected components
with the same label) by using, for instance, the method described in [3]. See
Figure 4 (top).

Step 2. At this point comes the second interaction with U (apart from Step 0):
The regions are presented to him (we can omit regions of dimension 0 and 1)
and then he can, first relax the topological conditions that will be imposed to
the acceptable (interpretable) solutions, and afterwards impose some geometric
conditions. In Figure 3 we can see an example in which U , only interested in
the function with highest value, decides to relax the topological conditions by
merging the regions that share the same highest-valued function; he also imposes
the geometric conditions “town X must belong to the region in which the value
of West is the biggest” and “town Y must belong to the region in which the
value of Center is the biggest”.

Step 3. No other interaction with U is needed, since he has just operationally de-
fined what he considers as interpretable: This definition is essentially contained



596 R. de Aldama and M. Aupetit

Fig. 4. Top: Signature computation (step 1: discretization and computation of regions).
The Betti numbers of each region will be used to code the topology. Bottom left: A
possible configuration of a solution that is acceptable. Bottom center: A configuration
that does not satisfy the topological conditions since the region whose highest-valued
function is µCenter is disconnected. Bottom right: A configuration that does not satisfy
the geometric conditions since town Y does not belong to the region whose highest-
valued function is µCenter.

in the right side of Figure 3. In Figure 4 (bottom) we can find examples of in-
terpretable and not-interpretable solutions. This topological information is then
coded in terms of homology groups, following the explanations of Section 2 and
using for instance the algorithms presented in [5].

Optimization Process

Step 4. This well-coded information, as well as the function f and ω0, is given as
an input to an optimization algorithm, and is interpreted as a constraint C on
the (signatures of the) solutions. This optimization algorithm may be of different
types (e.g. metaheuristic or exact) depending on the nature of f . As it is the case
for any iterative optimization algorithm, it should contain a “solution generator”
module. This module may have different ways of dealing with constraints. The
most basic option would be to test C for each solution that it generates and to
use the result of the test to generate a new solution. Another option would be to
do some kind of preprocessing, in which the acceptable domain is approximated,
and then to only generate valid solutions. In any case we will need to iterate a
process similar to Step 1 and Step 3: Given ā ∈ A, compute Gω(ā) and Tω(ā),
and use them to test if ā satisfies C (these are Step 4a and Step 4b in Figure 4).
This will ensure that the final solution is interpretable relative to U .
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5 Conclusion and Perspectives

We have presented a generic method to deal with the loss of interpretability in
fuzzy partitions during the optimization of a fuzzy system. It relies essentially on
topological concepts and tools, which confers a solid mathematical foundation.
Our definition of interpretability is not absolute, but rather relative to each user,
who implicitly defines the notion by means of some specific interactions. That
makes this approach very flexible. Moreover, we think this method is sufficiently
general to be uniformly applicable to most situations, without the need of an
expert in optimization of fuzzy systems. This claim is justified by the fact that
the user interactions are straightforward (no need of expertise in fuzzy systems
optimization), as we can see in the description given in Section 4. This notion of
interpretability could also open the door to other uses, independent of optimiza-
tion; for instance, the quality of a system could be influenced by the complexity
of its signature.

There are nevertheless some technical limitations. In the general case the
computations are expensive, for instance that of homological groups. Also, if
the membership functions are highly irregular, this might create lots of different
regions to analyze. However, in a typical case of dimension 1 or 2 and simple
functions (such as triangles) this should not be an issue. Other pathological cases
may arise, such as a solution inducing a valid topology in which some regions are
extremely small and not perceptible by the user. These limitations need some
careful study, but do not seem impossible to overcome. We are currently working
on the implementation of some case studies for user testing.
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Asmuss, Svetlana III-317
Aupetit, Michaël I-588
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