

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 106–121, 2014.
© Springer International Publishing Switzerland 2014

Synchronization of Models of Rich Languages
with Triple Graph Grammars: An Experience Report*

Dominique Blouin1, Alain Plantec2, Pierre Dissaux3, Frank Singhoff2,
and Jean-Philippe Diguet1

1 Lab-STICC, Université de Bretagne-Sud, Centre de recherche, BP 92116
56321 Lorient CEDEX, France

{dominique.blouin,jean-philippe.diguet}@univ-ubs.fr
2 Lab-STICC, Université de Bretagne-Occidentale, 20 av. Le Gorgeu,

29238 Brest CEDEX, France
{alain.plantec,singhoff}@univ-brest.fr

3 Ellidiss Technologies, 24 Quai de la Douane, 29200 Brest, France
pierre.dissaux@ellidiss.com

Abstract. We report our experience of using Triple Graph Grammars (TGG) to
synchronize models of the rich and complex Architecture Analysis and Design
Language (AADL), an aerospace standard of the Society of Automotive
Engineers. A synchronization layer has been developed between the OSATE
(Open Source AADL Tool Environment) textual editor and the Adele graphical
editor in order to improve their integration. Adele has been designed to support
editing AADL models in a way that does not necessarily follow the structure of
the language, but is adapted to the way designers think. For this reason, it
operates on a different meta-model than OSATE. As a result, changes on the
graphical model must be propagated automatically to the textual model to
ensure consistency of the models. Since Adele does not cover the complete
AADL language, this must be done without re-instantiation of the objects to
avoid losing the information not represented in the graphical part. The TGG
language implemented in the MoTE tool has been used to synchronize the tools.
Our results provide a validation of the TGG approach for synchronizing models
of large meta-models, but also show that model synchronization remains a
challenging task, since several improvements of the TGG language and its tool
were required to succeed.

Keywords: Model Transformation, Model Synchronization, TGG, MoTE,
AADL.

1 Introduction

Model-Driven Development (MDD) often requires the use of many models to cover
the various aspects of the system being developed. It is often the case that designers

* This work has been supported by the US Army Research, Development and Engineering

Command (REDCOM).

 Synchronization of Models of Rich Languages with Triple Graph Grammars 107

need to describe the same system with different modeling languages to benefit from
the assets of each language. For example, an embedded system model of the Architec-
ture Analysis and Design Language (AADL) [1] may need to be translated into Simu-
link [2] for functional validation of the system through simulation. Users often want
to be able to modify both the AADL and Simulink models and have their changes
automatically propagated to maintain consistency of the models. In general, the in-
formation content of each model is not the same. One of the models may contain
information that is not reflected in the other model because it is irrelevant for the pur-
pose of the model. For example, an AADL model may include power consumption
related properties, which are essential for power analysis of the system, but totally
useless for functional validation with Simulink. Conversely, a simulation model may
include details regarding the simulation, which are not needed on the AADL side.
Hence, it is essential to be able to maintain the consistency of the models without the
loss of the information that is not shared by both models. This is called model syn-
chronization [19], which is a particular type of model transformation, as it operates on
parts of the models at a finer level of granularity.

The need for model synchronization is becoming more and more important for the
AADL community, and for model-based engineering in general, since more and more
heterogeneous models are used together. For example, batch model transformations
have been implemented between AADL and SysML [3], and between AADL and
MARTE [4]. Another example is the Adele graphical editor [5], which implements
the graphical syntax of AADL and operates on a meta-model of its own. It is the sub-
ject of our case study.

Although the need for model synchronization is widely spread, only transformation
tools based on Triple Graph Grammars (TGG) can currently perform such type of
transformation. Hence, the purpose of this paper is to report on our experiment on
applying TGGs on a large and rich language such as the AADL. Our experiment vali-
dates the TGG approach for model synchronization, despite the many shortcomings
that were identified during the work. Our contributions are:

• A synchronization layer between two AADL editors using different meta-models
to represent AADL specifications.

• The new concept of generic TGG rules allowing to drastically reduce the number
of rules needed for transforming models of large meta-models, thus improving sca-
lability.

• A method to reuse existing model objects during synchronization thus avoiding
information loss.

• Other minor improvements related to the expressivity of the TGG language.

This paper is structured as follows. Section 2 presents our model synchronization
case study. Section 3 justifies the selection of the MoTE tool for our experiment.
Next, an overview of the implemented solution is presented in Section 4. Section 5
briefly describes the Adele-AADL TGG and our contributions to the TGG language
and MoTE tool. Section 6 discusses the tests that were performed on the synchroniza-
tion layer, and suggests other potential improvements. Section 7 introduces the related
work and finally, Section 8 concludes the paper.

108 D. Blouin et al.

2 Case Study

2.1 AADL

AADL is a rich component-based architecture description language that allows the
capture of many aspects of an embedded system. The goal is perform model analysis
in order to detect design errors early in the life cycle. AADL supports the specifica-
tion of systems as an assembly of software and hardware components divided into
categories. Software categories are thread, thread group, data, process and subpro-
gram. Hardware categories are processor, virtual processor, memory, device, bus and
virtual bus. Hardware and software components classifiers can be declared in libraries
or hierarchically organized in systems for reuse. AADL components interact through
features (interaction points) and connections, which together model data or control
flows between components.

One advantage of AADL compared to languages such as UML is that it has both a
textual and a graphical syntax. Users can therefore use the syntax they are more com-
fortable with, or the syntax that is best suited for whatever has to be edited in the
model. Unfortunately, there has never been any usable graphical editor developed for
the language, and it is a major drawback for the adoption of AADL. Graphical editors
are complex, and every attempt to develop a graphical editor for AADL resulted in
partially implemented tools that were barely usable.

2.2 AADL Editors

For instance, this was the case of the Adele graphical editor [5]. It stores AADL spe-
cifications using a meta-model of its own, which facilitates the edition of models by
providing a choice of two edition modes. For example, Adele models can be edited in
a top-down intuitive approach that does not follow the structure of the AADL lan-
guage. Textual AADL specifications are generated from the Adele models for being
processed by other tools.

Among these other tools, the Open Source AADL Tool Environment (OSATE) [6]
is the main textual editor for AADL. It also provides model analysis facilities. Both
Adele and OSATE can be deployed in the Eclipse environment for their simultaneous
use. Unfortunately, Adele was never developed to the point where all constructs of the
AADL language were managed. Constructs such as modes, flows, prototypes etc.
have never been implemented, and sooner or later, Adele users were forced to use
OSATE for editing these constructs through textual syntax. The result is that regene-
rating the textual files from the graphical model was then destroying the unhandled
constructs. This was a serious issue because users were soon or later required to syn-
chronize the models by hand. Three options could be envisaged to solve this problem:

• Implement the language constructs which are missing in Adele.
• Rebuild an editor that operates directly on the OSATE meta-model.
• Build a synchronization layer between OSATE and Adele.

 Synchronization of M

Because model synchron
the third solution was cho
synchronization with the A
tuitive edition modes speci
the OSATE meta-model dir

2.3 The OSATE Meta-

The OSATE meta-model c
illustrated by the way rules
are encoded in the meta
subcomponents of many ca
etc, as represented by the s
category (e.g.: processor), t
the subcomponents (owned
class for the category (
interaction points), which a
manner. As it will be expla
revealed several scalabilit
implementing several impro

Fig. 1. A diagram of the AA
references and classes for ever

2.4 The Adele Meta-mo

The Adele editor offers tw
different types of diagram
declaring classifiers that c
specification. Conversely, t
system instance specificatio
sifiers to the time when the
tion, a system diagram spec

To support these two edi
ways. Package diagrams a

Models of Rich Languages with Triple Graph Grammars

nization is an important need for the AADL commun
osen. It would also provide a first case study of mo

AADL. In addition, it would allow preserving the more
ific to Adele, and hardly supported by editors working
rectly.

model

contains 260 classes and is strongly typed. This is w
for components decomposition in terms of subcompone

a-model. For example, an AADL system can cont
ategories such as buses, data, devices, memories, proces
subcomponent containment references of Fig. 1. For e
the containing class declares a specific reference to cont
dProcessorSubcomponent), and a specific subcompon
(ProcessorSubcomponent). AADL features (compon
are contained in component types are handled in a sim
ined in Section 5, this structure of the OSATE meta-mo
ty issues, which were so important that they requi
ovements of the TGGs to validate their use.

ADL system implementation class showing distinct containm
ry allowed subcomponent category

odel

o modes to edit an AADL specification supported by t
ms. The declarative mode (package diagram) consists

an be instantiated later on to produce a system insta
the instance mode (instance diagram) consists of creatin
on, and to postpone the declaration of subcomponent c
ey need to be reused for modeling other systems. In ad
cification contains all subcomponents in a single tree.
ition modes, the Adele meta-model is used in two differ

are edited according to the left part of Fig. 2, where

109

nity,
odel
e in-
g on

well
ents
tain
ses,

each
tain
nent
nent

milar
odel
ired

ment

two
s of
ance
ng a
las-
ddi-

rent
the

110 D. Blouin et al.

hierarchy ends at the subcomponent level, and subcomponents of a subcomponent are
declared in the classifier of the subcomponent. Instance diagrams are edited according
to the right hand side of the figure, where all subcomponents are contained in a single
tree whose root is the parent component implementation.

Fig. 2. The Adele meta-model and its uses for the declarative and instance edition modes

Compared to OSATE, the Adele meta-model is weakly typed and contains much
fewer classes (48 compared to 260). For a given component category, the same class
is used for representing component types, component implementations and
subcomponents, where OSATE will declare three distinct classes (ProcessorType,
ProcessorImplementation and ProcessorSubcomponent).

3 Model Synchronization Tool Selection

The first task of the project consisted of reviewing the available model synchroniza-
tion tools. Our requirements were the following:

• The tool should be based on the Eclipse Modeling Framework (EMF), since both
Adele and OSATE are implemented using this framework.

• The synchronization process should execute fast enough so that the user does not
notice it.

• The objects should not be re-instantiated when changes are performed on the ob-
jects, with the instances being reused as much as possible and updated to restore
consistency. This is to prevent information losses due to information not trans-
formed by the TGG and contained in the destroyed object.

Several tools have been developed for model transformation. Well-known tools are
ATL [9], Epsilon [10], Kermeta [11], Tom [12], and tools implementing the OMG
Query View Transformation (QVT) language [13]. However, these tools only support
classical one-way batch transformations. Model synchronization, where only part of a
model is transformed (incremental transformation) is not supported. These tools are
therefore not suitable to solve our problem, even though the relational part of QVT
(QVT-R) is promising for model synchronization.

3.1 Approaches for Model Synchronization

As explained in [14], two main approaches exist for model synchronization. The first
one considers that inconsistencies will naturally occur during design (e.g., the user
modifies one specification without taking care of performing the corresponding
modification on the other side), and means are provided to detect the inconsistencies

 Synchronization of Models of Rich Languages with Triple Graph Grammars 111

and automatically generate a set of actions to be applied on the models to restore con-
sistency. This set of actions is called a repair plan, and inconsistencies are typically
expressed by a set of constraints whose evaluation to true identifies inconsistent
models.

The second approach uses coupled graph grammars. Consistency is characterized
by membership of the models in the resulting graph language. Automatically generat-
ed operational transformations deal with maintaining the models consistent in case
one model is changed. The most widely known language for this approach is the
Triple-Graph Grammar [15]. Its power comes from the fact that the relation between
the two models can be made operational so that models can be transformed / synchro-
nized in either direction. While a graph grammar can be used for defining the dynam-
ic evolution of a single model, a triple graph grammar allows to define the relation
between two different kinds of models by defining and coupling three graph gram-
mars (Fig. 4): one grammar for each type of model to be transformed, and a third
grammar for a correspondence model whose purpose is to maintain traceability links
between elements of the two models to be synchronized.

3.2 Tool Selection

Among the two approaches, only the TGG appeared to be mature enough. We could
not find any tool implementing the first approach. On the opposite, TGGs have been
around for more than 15 years, and several model synchronization experiments have
been performed such as [16] and [17]. Our selection of the TGG tool has been strong-
ly based on [19], which presents a survey of the three most widely known TGG tools
still actively developed: (1) The Model Transformation Engine (MoTE) [7], (2) The
TGG Interpreter [20] and (3) The eMoflon tool suite [21].

Both MoTE and eMoflon compile TGG rules into story diagrams. For MoTE, the
story diagrams are interpreted to transform the models, while for eMoflon, Java code
is generated from the story diagrams, which is then executed to perform the transfor-
mations. The TGG interpreter works differently as it directly interprets the TGG rules
to perform the transformation. This has the advantage of allowing testing the trans-
formation at development time, but has the drawback of reduced performance. In-
deed, the survey indicated that that the TGG interpreter is the slowest, while MoTE
and eMoflon have similar performances, with eMoflon being slightly faster than
MoTE.

All three tools impose restrictions on the input TGGs for being able to prove cor-
rectness, and to increase performance in pattern matching in the case of MoTE. MoTE
imposes the strongest restrictions on the TGGs. Both MoTE and eMoflon have proven
completeness1. However, a serious drawback of eMoflon is that it did not support
incremental transformations at the time of the survey, which prevented its use.

1 Completeness means that every graph of a graph language (TGG) of a given TGG can be

generated by the tool’s forward/backward transformation from a graph of the translator’s
input domain.

112 D. Blouin et al.

While the survey did not strongly favor any of the three tools, MoTE appeared to
be the best choice to synchronize Adele and OSATE. It supports incremental trans-
formation, is fairly fast, has good formal properties and is completely based on EMF.
Although a new version of MoTE (MoTE 2) improving performance and expressivity
is currently under development, our work was performed with the version 1. This is
because at the time we did this work, no TGG graphical editor was available for
MoTE 2. At some point during the project, we considered porting our grammar to
MoTE 2, but ran into several problems with the MoTE2 development tools and run-
time execution. For this reason, we decided to complete the work with MoTE 1 first,
and to postpone migration to MoTE 2 to a next phase of the project.

4 Overview of the Implemented Solution

This section introduces the architecture of the Adele-OSATE synchronization layer
and its integration in the Eclipse-based modeling environment. We adopted an ap-
proach inspired from the work of [22], [23] and [24], where model synchronization is
viewed as a specific task of Global Model Management (GMM). We have therefore
developed a GMM language allowing formalization and interpretation of the various
relations that can exist between models of a modeling environment. This includes the
consistency relation between Adele and OSATE models, implemented as a synchro-
nization relation using the MoTE TGG engine.

Fig. 3 presents the architecture of the Adele-OSATE synchronization relation and
its deployment into the Eclipse workbench. A GMM controller listens for resource
change events, which are sent by the resources manager of the Eclipse platform when
users save the models through the editor. For a given changed resource, the GMM
controller calls the GMM engine that processes the relations that concern the re-
source. These relations are declared in a GMM specification. The editor adapter layer
is used to provide direct access to the internal resource of any opened editor of the
resources to be synchronized, thus making the results of synchronization immediately
visible in opened editors.

Fig. 3. The architecture of the Adele-OSATE synchronization layer, implemented as a syn-
chronization relation of the Global Model Management language

 Synchronization of Models of Rich Languages with Triple Graph Grammars 113

Note that the MoTE synchronization relation makes use of a cache of the model
objects, which are linked through the correspondence models for being synchronized.
Changes made by any tool to the changed resource are merged into the cache, thus
ensuring the objects traced by the correspondence models are not destroyed whatever
the way the tool performed the changes2. Despite the fact that the merge operation
increases complexity, it has the advantage but isolating the model objects to ensure
that synchronization will work independently of the way the objects are modified. The
merge layer is implemented using EMF Compare [25], which had to be tuned for
merging models correctly as presented in Section 5.

5 The Adele-OSATE TGG

The TGG that was developed for synchronizing Adele and OSATE contains a total of
60 rules, as detailed in Table 1. The major portion of the AADL language has been
covered, which makes our experience a relevant case study for applying TGGs to
complex and rich languages. Most rules could be easily expressed, except for the
connection rules, which required improvements of the TGG language and MoTE tool,
and even modifications of the Adele meta-model. Therefore, this section focuses on
these improvements, which unfortunately cannot all be presented due to the lack of
space.

Table 1. Statistics of the Adele-OSATE

AADL Construct # of Rules /
Contexts

AADL Construct # of Rules /
Contexts

Package and public package
section (axiom)

1 Subcomponents 11

Component Types 2 Connections 20
Component Type Features 10 Flows Not Handled
Feature Group Types 4 Modes Not Handled
Feature Group Type Features 10 Properties Not Handled
Component Implementation 2 Prototypes Not Handled

 Total 60

5.1 TGG Language Improvements

Generic TGG Rules
A first encountered problem relates to scalability of both the development and
runtime tools, which could be fixed by introducing the concept of generic TGG rules.
Indeed, while MoTE scales very well in transforming large models [19], we
discovered limitations in handling complex languages like AADL. As illustrated in
Fig. 4, a constraint on TGG rules is that the class of the created elements (green) must

2 As a matter of fact, this need was initially discovered because the OSATE textual editor,

which is based on the Xtext framework [8], systematically re-parses the AST as soon as any
modification is made to the textual file.

114 D. Blouin et al.

be concrete (can be instantiated), and that the references to the created elements must
be changeable. Without our improvement, the rule of Fig. 4 is not valid, since both the
Adele component and AADL subcomponent classes are abstract, and the
ownedSubcomponent reference is not changeable being derived. As introduced in
section 2.3, the OSATE meta-model is strongly typed, and only the specific classes of
each subcomponent category (Fig. 1) should have been used in TGG rules.

Fig. 4. The Adele-OSATE TGG rule for typed subcomponents

However, this quickly leads to an explosion of the number of required TGG rules.
In order to meet the TGG “instantiability” constraints, a TGG rule would be required
for each pair of parent component category and subcomponent category. For example,
for the system parent category, 9 rules would be required to cover all allowed sub-
component categories. In addition, a subcomponent can be created in several contexts,
which must all be covered by the rules. A subcomponent can be created with a type as
illustrated in Fig. 4, or untyped as shown in Fig. 5, or typed as its parent, or with the
subcomponent being inherited and refined to a more specialized type, according to the
AADL subcomponent refinement mechanism. In total, the AADL language implies a
number of 11 different creation contexts for a subcomponent of a given category.
Hence, this implies that in order to cover only the system component implementation,
99 TGG rules are needed. However there are 14 component categories in AADL, and
a simple calculation shows that more than 700 TGG rules would actually be required
just for specifying the transformation of subcomponents!

Such a large number of rules cannot be handled by MoTE. First, the Story Diagram
(SD) generator did not scale well with the number of TGG rules. It was observed that
when a TGG reaches a number of roughly 300 rules, SD generation would require too
much memory and would not complete on the computer used for this project, which
had about 3.5 GB of RAM memory. Furthermore, the disk space required to store
such a large number of SDs would make the release of the synchronization layer not
manageable (about 3GB for 250 TGG rules). As a matter of fact, the space taken for a
given synchronization SD increases with the total number of TGG rules, making the
size of the total SDs not growing linearly with the number of TGG rules. SDs are

 Synchronization of Models of Rich Languages with Triple Graph Grammars 115

generated in a way that when a rule that produced a given set of objects is not
matched anymore due to changes of the objects, a call is placed to all other rules of
the entire grammar in order to discover a potentially matching rule. As a result, when
the total number of rules increases in a TGG, the number of calls of the synchroniza-
tion SDs increases and can potentially lead to performance issues.

Fig. 5. The TGG rule for untyped subcomponents

To avoid these scalability issues, our first attempt was to optimize the SD generator to
avoid consuming too much memory. But that turned out to be unnecessary after we
implemented the concept of generic TGG rule allowing reducing the number of required
rules for subcomponents from more than 700 to 11. This is shown in Fig. 4, which is the
actual rule used in our Adele-OSATE TGG, and where the class Subcomponent of the
created model element on the AADL side is abstract, and the containing reference
(ownedSubcomponent) is not changeable in the AADL meta-model. The solution
consisted of modifying the MoTE TGG language so that the TGG designer can provide
an expression attached to model objects whose class is abstract, and to unchangeable
model links. The SD interpreter then evaluates these expressions at runtime to determine
which concrete class has to be instantiated, and which changeable reference has to be
updated. In our specific case, the expression is a call action providing a static method of a
transformation helper class called to determine the concrete class to be instantiated from
the actual concrete class of the model element on the other side. A similar method is
provided to determine the changeable reference from the types of the parent model
element and the subcomponent.

Reuse of Objects to Avoid Information Loss
We also encountered problems with model objects being re-instantiated when syn-
chronizing changes, despite the fact that MoTE had already been improved regarding
this aspect. MoTE implements the algorithm presented in [26], which avoids re-
instantiating the entire set of objects created in the sub-tree of the changed object.

However, changing a reference from an object to another model object caused re-
instantiation of the object. For example, consider the rule of Fig. 4, which describes the
creation of a subcomponent of a given type. When the subcomponent type is changed to
null, the MoTE engine will detect that the rule that created the model element is not
matched anymore due to the changes. In such case, it will try to match all other rules of
the TGG. In our example, the rule of Fig. 5 (when the subcomponent is untyped) will

116 D. Blouin et al.

obviously be matched. MoTE will then repair the corresponding object by marking it as
deleted, and by instantiating a new subcomponent and setting its properties according to
the newly matched rule. This operation is performed with a dedicated SD named repair
structure. While this is an improvement compared to the original algorithm, it is not
sufficient for our use case. Elements such as AADL properties contained in subcompo-
nents and declared on only one side of the TGG must be preserved. We therefore devel-
oped an original solution to avoid this re-instantiation (Fig. 6). It has the advantage of
simplicity and limited overhead compared to other solutions such as that presented in
[27].

Fig. 6. The process of reusing an existing model object after changes

The objective is to be able to find the existing object that has changed so that it can be
reused when applying the newly matched rule instead of instantiating a new object. For-
tunately, when the repair structure SD of the newly matched rule is called, the correspon-
dence node that refers to the changed object is always passed to the rule. We then simply
need to identify the existing object to be reused from the set of objects referred by the
correspondence node. For this, we can first discard all objects whose class is not the same
as that of the object to be re-created. However, this criterion is not sufficient since there
could be many objects with the same class created for a given correspondence node. To
uniquely identify the changed object, we require an additional constraint to be verified by
the TGG rules at the time they are defined. Comparing the rules of Fig. 4 and Fig. 5, we
notice that their patterns are quite similar, and the only difference between them is that
for the first one, there is a link to the type of the subcomponent, while for the second one,
this link is removed and a constraint stating that the subcomponent type is null is added.
If we require that the created subcomponent model objects have identical names for both
rules (adeleSubcomponent and aadlSubcomponent), which is typically the case when
good practices are used in TGG rules definition, we can then identify the existing object
to be reused from the name of its model object in the newly matched rule. However, to
make this possible, the way the correspondence model is represented has to be changed
to associate with each created object the name of the model object of the creation rule.
This is easily implemented in MoTE.

 Synchronization of Models of Rich Languages with Triple Graph Grammars 117

Now that the existing object is identified, two additional steps must be performed.
First all references of the reused object to objects that are already mapped in the cor-
respondence model must be removed. This is because the proper references will be set
as if the object was newly created when the repair structure SD is applied. So we
avoid setting the same object twice in case of multiple cardinality references. Con-
versely, objects that are not mapped in the correspondence model such as properties
will not be reset by this process and will be preserved as desired.

This simple solution appears to work quite well for our Adele-OSATE TGG and
ensures that whatever was contained by the subcomponent and not handled by the
TGG is preserved. The only drawback is that it enforces using the same name in the
created model objects of all rules for a given type of created model object. However,
this can be ensured by adding constraints to the TGG meta-model.

Other Improvements
Other improvements were implemented but only briefly mentioned due to lack of
space. We enhanced the MoTE global pattern matching constraints, by adding an
applicability clause to the constraint. It states whether it is to be applied only during
forward or reverse transformations. We also added the capability to specify an addi-
tional reference to a model object link to be used for matching purposes. In some
cases, MoTE tries to match a pattern from the inverse direction of a model object link,
starting from the target object to the source object. If the reference of the link has an
opposite reference or is a containment reference, MoTE uses the opposite or the con-
tainer reference to navigate to the source object. However, for some references of the
OSATE meta-model, opposite references exist but are not explicitly specified in the
meta-model. We therefore added a property on the TGG model object link class to
specify this reference, and modified the SD interpreter for making use of it.

5.2 Tooling Improvements

Cross-Resource References Management
Another major issue with MoTE is that cross-resource references are not handled. For
example, if a component refers to a component contained in a different resource, its
reference property will not be handled during transformations. Such a shortcoming is
more than enough to prevent a tool from being used. For languages like AADL,
which provide packages declared in separate files to better organize a specification,
this is a blocking limitation.

To overcome this problem, we modified the MoTE TGG engine so that it takes
care of pre-building the correspondence model with correspondence nodes of external
model elements. This fix slightly increases execution time, since a complete corres-
pondence model has to be recursively created for each cross resource. However, each
correspondence model is stored in the TGG engine cache so that the impact on per-
formance is limited.

EMF Compare Improvements
As illustrated in Fig. 3, the integration of MoTE in our modeling environment is
achieved through the use of a model object cache. This is needed to ensure that the
model elements traced by the correspondence model are maintained. EMF Compare

118 D. Blouin et al.

1.3 has been used to merge the changes detected in the resources of the workspace
into the resources of the cache.

Again, a few improvements were needed for being able to merge the models cor-
rectly. The first issue relates to the way EMF Compare merges changes in which cross
resource references are involved. Our synchronization layer requires that if a refer-
ence to an external element is set, then the external model element should be con-
tained in a resource of the cache on the cache side, because it may already be referred
by a correspondence model. However, the default behavior of EMF Compare is to set
the same referenced object in the target object as that of the source object, and EMF
Compare had to be adapted to take this into account.

Another problem is related to the order in which the merge operations are per-
formed. To avoid unnecessary re-instantiation of objects, the delete operations, which
are received as model change events by the TGG engine, should be added at the end
of the transformation queue. In this way, the references to the object to be deleted can
be moved to other objects before the object is deleted during synchronization. Hence,
this implied modifying the order of the merge operations in EMF Compare to ensure
that deletion operations are performed at the end. Other minor merging issues were
also identified and corrected but cannot be presented due to the lack of space.

Other Improvements
Other improvements to MoTE were required as well, such as the implementation of
post-creation actions, which were declared in the TGG language but not implemented
in the TGG compiler. The same is true for position constraints used to define whether
an element is to be added at the first or the last position in a list. This feature was
handled in the SD interpreter but not in the TGG language. We also introduced the
between constraint used when the element should neither be the first and nor the last
element, provided that there are at least two elements in the list. We also had a few
issues with the MoTE change listener that receives model changes events to be added
as modifications to the TGG engine transformation queue for synchronization.

6 Discussion

6.1 Implemented Synchronization Layer

The concrete result of this work is a synchronization layer between Adele and
OSATE, solving the problem of integrating tools that are essential for the growing
AADL community. Experience gained during this project supports the ongoing work
of integrating other languages and tools with the AADL such as VHDL.

Automated tests were developed for the synchronization layer for testing bidirec-
tional batch transformations and synchronization transformations, and for consistency
checks performed by creating and analyzing correspondence models. In addition, we
have tested our synchronization layer with several realistic and complex AADL mod-
els such as electronic hardware systems using all constructs of the AADL language
handled by Adele. Such systems require up to 7 levels of recursive component exten-
sions declared in different files, which was used to validate our fix of the MoTE for
the cross-resource references problem.

 Synchronization of Models of Rich Languages with Triple Graph Grammars 119

6.2 Suggestions for Further Improvements

Based on our experiment, we found that current TGG approaches require further im-
provements for being suitable for industrial use. These would increase the usability of
TGGs and ease the development of model synchronization layers. For example, it
would be useful to have a mechanism to allow reusing one side of an existing TGG
(for instance the AADL side) and complete the other side according to the new lan-
guage to be synchronized with AADL (e.g., VHDL). Another improvement could be
to provide a “soft” reference mechanism for model links of graph patterns, instead of
requiring the reference to be declared in the class of the source model object. In our
experiment, this would have avoided the need to add references to the Adele meta-
model, which are used only for TGG rule matching purposes. This is even more im-
portant for the cases where the modeling languages cannot be modified (e.g.: the
AADL). In addition, other improvements published in the literature would really need
to be implemented in MoTE. These are described in the related work section.

It was also found that the use of TGGs could be made much easier if better docu-
mentation was provided. In the actual state, the transformation designer needs to un-
derstand the generated SDs to be able to define correct TGGs, and several additional
TGG validation rules would need to be enforced. For example, when defining con-
straints, beginners have no clue which model objects can be used in constraints. The
bound model objects depend on the specific type of transformation (mapping, batch or
synchronization), and several errors occur at runtime due to unbound model objects
being referenced in constraint expressions.

7 Related Work

To our knowledge, no experience has been made to assess the usability of TGGs for
synchronizing models of complex and rich languages such as the AADL, with a real
need to integrate tools used by an active community. However, a few similar works
can be compared to ours.

In [19], a set of benchmarks has been performed for large models to compare three
TGG tools (MoTE, eMoflon and the TGG Interpreter). However, the meta-models are
extremely simple. In [16], synchronization has been implemented with MoTE be-
tween SysML and AUTOSAR, but only subsets of the languages were covered. A
work closer to ours is presented in [17], where the synchronization of Modal Se-
quence Diagrams (MSDs) with networks of Timed Game Automata (TGA) using the
TGG Interpreter is presented. Like for us, their experiment lead to the development of
several improvements such as:

• The integration of OCL in TGGs, which is already implemented in MoTE.
• TGG rule generalization / inheritance, which is also introduced in [18] for eMof-

lon, and would be worth implementing in MoTE.
• Reusable patterns, which allow declaring in a single TGG rule several contexts of

creation of a given graph of model elements. This would have helped in MoTE by
reducing the number of required rules for handling the numerous creation contexts
(e.g., 11 for subcomponents).

120 D. Blouin et al.

• Global constraints, which are already implemented in MoTE, to which we added
an applicability clause for specific transformation directions (forward / reverse).

Furthermore, in [27], a new algorithm is presented and implemented in the TGG In-
terpreter to allow further reuse of model elements during synchronization. It avoids
the loss of the information not handled by the TGG rules. We provided a different
solution to this problem, which appears to be simpler but requires additional con-
straints to be met by a set of TGG rules describing the contexts of creation of a given
model object class.

8 Conclusion and Perspectives

In this paper, we reported our experience in synchronizing models of two different
meta-models for the complex feature-rich AADL language. Our experiment shows
that applying state of the art model synchronization techniques remains challenging,
despite the good quality of the MoTE tool that was used. This case study allowed the
development of several improvements of TGGs to account for the size of the AADL
meta-model and its properties. However, the fact that we succeeded in synchronizing
the tools validates the TGG approach and opens interesting perspectives.

A future work will consist of porting our improvements and our Adele-OSATE
TGG to MoTE 2, in order to benefit from the MoTE 2 improvements. In addition, we
are currently working on improving other aspects of TGGs and MoTE through the
development of an endogenous refinement transformation for AADL, and an AADL-
VHDL transformation. We also plan to write a cookbook to help developers get
acquainted with TGG development.

References

1. SAE International, Architecture Analylsis and Design Language (AADL),
http://standards.sae.org/as5506b/

2. MathWorks, MathLab Simulink,
http://www.mathworks.fr/products/simulink/

3. OMG, Systems Modeling Language (SysML), http://www.omgsysml.org/
4. OMG, Modeling and Analysis of Real-Time Embedded Systems (MARTE),

http://www.omgmarte.org/
5. The Adele Graphical Editor for AADL,

https://wiki.sei.cmu.edu/aadl/index.php/Adele/
6. Open Source AADL Tool Environment (OSATE),

http://www.aadl.info/aadl/currentsite/tool/osate-down.html
7. The Model Transformation Engine (MoTE), http://www.mdelab.de/mote/
8. The Xtext Framework, http://www.eclipse.org/Xtext/
9. The Atlas Transformation Language (ATL), http://www.eclipse.org/atl/

10. The Epsilon Project, http://www.eclipse.org/epsilon/
11. The Kermeta Project, http://www.kermeta.org/
12. The Tom Project, http://tom.loria.fr
13. OMG, Query View Transformation (QVT), http://www.omg.org/spec/QVT/

 Synchronization of Models of Rich Languages with Triple Graph Grammars 121

14. Boronat, A., Meseguer, J.: Automated Model Synchronization: A Case Study on UML
with Maude. Proc. of the ECEASST (41) (2011)

15. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg (1995)

16. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping SysML
and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A.,
Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg
(2010)

17. Greenyer, J., Rieke, J.: Applying Advanced TGG Concepts for a Complex Transformation
of Sequence Diagram Specifications to Timed Game Automata. In: Schürr, A., Varró, D.,
Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 222–237. Springer, Heidelberg
(2012)

18. Klar, F., Königs, A., Schürr, A.: Model Transformation in the Large. In: Proc. of the 6th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC-FSE 2007), pp. 285–294
(2007)

19. Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schafer, W., Lauder, M.,
Anjorin, A., Schürr, A.: A Survey of Triple Graph Grammar Tools. In: Proc. of the 2nd
International Workshop on Bidirectional Transformations (2013)

20. TGG-Interpreter,
http://www.cs.upb.de/index.php?id=tgg-interpreter/

21. eMoflon, http://www.emoflon.org/
22. Hebig, R., Seibel, A., Giese, H.: On the Unification of Megamodels. In: Proc. of the 4th

International Workshop on Multi-Paradigm Modeling (MPM 2010). ECEASST, vol. 42
(2011)

23. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing in Model Management.
In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 197–212. Springer, Heidelberg
(2009)

24. Seibel, A., Neumann, S., Giese, H.: Dynamic hierarchical mega models: comprehensive
traceability and its efficient maintenance. Softw. Syst. Model 9(4), 493–528 (2010)

25. EMF Compare, http://www.eclipse.org/emf/compare/
26. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models, Tech.

Rep. 28, Hasso Plattner Institute at the University of Potsdam (2009)
27. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model syn-

chronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F.
(eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidelberg (2011)

28. Giese, H., Hildebrandt, S., Seibel, A.: Improved Flexibility and Scalability by Interpreting
Story Diagrams. ECEASST (18) (2009)

	Synchronization of Models of Rich Languages with Triple Graph Grammars: An Experience Report
	1 Introduction
	2 Case Study
	2.1 AADL
	2.2 AADL Editors
	2.3 The OSATE Meta- model
	2.4 The Adele Meta-mo odel

	3 Model Synchronization Tool Selection
	3.1 Approaches for Model Synchronization
	3.2 Tool Selection

	4 Overview of the Implemented Solution
	5 The Adele-OSATE TGG
	5.1 TGG Language Improvements
	5.2 Tooling Improvements

	6 Discussion
	6.1 Implemented Synchronization Layer
	6.2 Suggestions for Further Improvements

	7 Related Work
	8 Conclusion and Perspectives
	References

