
D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 17–24, 2014.
© Springer International Publishing Switzerland 2014

A Search Based Test Data Generation
Approach for Model Transformations

Atif Aftab Jilani1, Muhammad Zohaib Iqbal1,2, and Muhammad Uzair Khan1

1Software Quality Engineering and Testing Laboratory (QUEST),
National University of Computer & Emerging Sciences, Pakistan

2SnT Centre Luxembourg, Luxembourg
{atif.jilani,zohaib.iqbal,uzair.khan}@nu.edu.pk

Abstract. Model transformations are a fundamental part of Model Driven
Engineering. Automated testing of model transformation is challenging due
to the complexity of generating test models as test data. In the case of model
transformations, the test model is an instance of a meta-model. Generating input
models manually is a laborious and error prone task. Test cases are typically
generated to satisfy a coverage criterion. Test data generation corresponding to
various structural testing coverage criteria requires solving a number of predi-
cates. For model transformation, these predicates typically consist of constraints
on the source meta-model elements. In this paper, we propose an automated
search-based test data generation approach for model transformations. The pro-
posed approach is based on calculating approach level and branch distances to
guide the search. For this purpose, we have developed specialized heuristics for
calculating branch distances of model transformations. The approach allows test
data generation corresponding to various coverage criteria, including statement
coverage, branch coverage, and multiple condition/decision coverage. Our
approach is generic and can be applied to various model transformation
languages. Our developed tool, MOTTER, works with Atlas Transformation
Language (ATL) as a proof of concept. We have successfully applied our
approach on a well-known case study from ATL Zoo to generate test data.

Keywords: Software Testing, Model Transformation (MT), ATL, Search Based
Testing (SBT), Structural Testing.

1 Introduction

Model transformations (MT) are a fundamental part of Model Driven Engineering
(MDE). As for any other software, correctness of model transformation is of para-
mount importance. Automated testing of model transformations faces a number of
specific challenges when compared to traditional software testing [1]. The foremost is
the complexity of input/output models. The meta-models involved in the transforma-
tions typically comprise of a large set of elements. These elements have relationships,
sometimes cyclic, that are restricted by the constraints define on the meta-
model/model. Generating input models manually is laborious and error prone. On the

18 A.A. Jilani, M.Z. Iqbal, and M.U. Khan

other hand automated generation of input models requires solving complex con-
straints on the meta-models.

In this paper, our objective is to enable automated structural testing of model trans-
formations. The idea is to generate test cases that cover various execution paths of the
software under test. We present an automated search-based test data generation ap-
proach for model transformations. To guide the search, we propose a fitness function
specific for model transformation. The fitness function utilizes a so-called approach
level and branch distance. The branch distance is calculated based on heuristics de-
fined for various constructs of model transformations.

We selected Alternating Variable Method (AVM) as the search algorithm for this
purpose because it has already been successfully applied for software testing [2]. We
tailored AVM for our specific problem. To the best of our knowledge, this is the first
work to report an automated model transformation structural test data generation ap-
proach based on search-based testing. To support the automation of the proposed
approach, we also developed a tool called MOTTER (Model Transformation Testing
Environment). We apply the test data generation approach on an open source model
transformation from the ATL Zoo1.

The rest of this paper is organized as follows: Section 2 provides the related work
and presents the state of the art related to MT testing and its associated challenges.
Section 3 discusses the proposed test model generation methodology. Section 4 dis-
cusses the tool support, whereas Section 5 discusses the application of the approach
on a case study. Finally Section 6 concludes the paper.

2 Related Work

Fleurey et al.,[3] discuss category partitioning scheme and introduced the concept of
effective meta-model. Wang et al, [4] explores verification and validation of
source/target meta-models in term of coverage. Sen et al., [5] proposed various model
generation strategies including random/unguided and input domain partition based
strategies. Vallecillo et al., [6] propose the use of formal specification for test data
generation. Gomez et al., [7] use the concept of simulated annealing to generate test
models. Cariou et al., [8] proposed a method that use OCL contracts for the verifica-
tion of model transformations. The work proposed by Guerra et al., [9], generates
automated test models, from formal requirement specification and solved pre/post
conditions and invariants using OCL. Wang and Kessentini [10] propose black box
technique for the testing of meta-model structural information. The technique use
search algorithms and provide structural coverage and meta-model coverage.

Kuster et al., [11] reported the challenges associated with White box MT testing.
Buttner et al., [12] proposed the use of first order semantics for a declarative subset of
ATL. Gonzalez and Cabot [13] discuss dependency graph, examine dependency
graph by applying traditional coverage criteria and generate test case as OCL expres-
sion for ATL. McQuillan et al., [14] proposed various white box testing criteria for

1 http://www.eclipse.org/m2m/atl

 A Search Based Test Data Generation Approach for Model Transformations 19

ATL transformations such as, rule coverage, instruction coverage and decision cover-
age. Mottu et al.,[15] proposed a constraint satisfaction problem in Alloy.

The work presented here is significantly different from the above approaches as we
adopt a search-based test data generation approach for automated white-box testing of
model transformations. We build on the previous work of OCL solver [2, 16, 17] to
generate valid meta-model instances and provide search heuristics for various model
transformation language constructs.

3 Automated Test Data Generation for MT

This section discusses the automated test data generation approach for structural test-
ing of model transformations.

3.1 Test Case Representation

A test case in our context is a set of input models (i.e., a set of instances of input me-
ta-model) that provide maximum coverage of the model transformation under test. A
number of coverage criteria have been developed for structural testing of software
programs [18]. To achieve a specified coverage level, the test data needs to solve
various predicates in the transformation language. In the case of model transforma-
tions, these predicates are typically constraints on the elements of meta-models.

3.2 Problem Representation

In the context of test data generation for model transformations, a problem is equiva-
lent to a transformation language predicate. A language predicate P (problem) is
composed of a set of Boolean clauses {b1, b2 ... bn} joined by various Boolean opera-
tions, such as, and, or and not. Each clause bi, itself comprises of various variables
{bi1, bi2 ... biZ} used in the clause. To solve a problem (P), the search algorithm first
needs to solve all clauses which are (n) in number, and for each clause (bi), need to
generate correct values for the entire variables till (z). To generate test data for trans-
formation predicates, search algorithm needs guidance. We provide heuristics for
various clauses of model transformation languages. The heuristics are defined as a
branch distance function d(), which returns a numerical value representing how close
the value was to solving the branch condition. A value zero represents that branch
condition is satisfied; otherwise a positive numerical non-zero value is returned that
provides an estimate of distance to satisfy the constraint.

3.3 Test Data Generation

The algorithm for search-based test data generation for model transformations is
shown in Fig. 1. Following sections discuss the various steps of the strategy.

Generating Instance Models. The first step is to generate a random instance of meta-
model. The generated model should be a valid instance of the source meta-model.

20 A.A. Jilani, M.Z. Iqbal, and M.U. Khan

Generating a valid instance requires solving the various constraints on the meta-model.
The generated instance should also contain links corresponding to the mandatory asso-
ciations of the meta-model (i.e., having a multiplicity of 1 or above). A number of
techniques have been proposed in the literature for generating meta-model instances
[19]. A major problem is satisfying the various constraints on the meta-models, typi-
cally written in Object Constrain Language (OCL). For generating instances that satis-
fy the OCL constraints, we extended the approach presented in [2].

Algorithm generateTestData(mm, CFG, max)
Input mm: source meta-model, CFG: Control flow graph, max; No of maximum

iterations
Declare C: Set of conditions={}, n: # of iteration performed Tm: A random test data

(instance of a meta-model), bi: A Condition from C,
1. begin
2. Generate a random instance Tm of mm as test data
3. Traverse Tm on CFG and add all branching conditions into C.
4. for each Ci ϵ C
5. Calculate fitness f(O) = mini=0→C.size(ACi(O) + nor (BCi(O)))
6. if f(O) != 0 AND n < max
7. then modify Tm by adding/modifying instances of meta-elements according to

search algorithm.
8. Increment n
9. end if.
10. end for
11. end

Fig. 1. Algorithm for the proposed test data generation strategy

To generate an instance of source meta-model we first traverse the model trans-
formation under test to identify the set of meta-model elements used in the transfor-
mation. This set is referred to as an effective meta-model [3]. The identified set of
elements is typically related to other elements not used in the transformations. We
keep all elements as part of the effective meta-model that have mandatory relation-
ships. We initially generate instances of all meta-elements used in the transformation
predicate and then add links between the instances based on the meta-model.

Fitness Functions for MT Language. Search algorithms are guided by fitness func-
tions that evaluate the quality of a candidate solution. The fitness function, for exam-
ple, in the case of structural coverage can evaluate how far a particular test case is
from solving a predicate. The fitness functions are problem-specific and need to be
defined and tuned according to the problem being targeted.

Model transformation languages are similar to programming languages in a way
that they are imperative and have control flow and side effects. The model transfor-
mation languages are also similar to Object Constraint Language (OCL), because they
are written on modeling elements (and their syntax is inspired from OCL). Therefore
the fitness function that we developed for testing of model transformations is adapted
from the fitness functions of programming languages and OCL [2]. The goal of the

 A Search Based Test Data Generation Approach for Model Transformations 21

search is to minimize the fitness function f, which evaluates how far a particular test
case is from solving a predicate. If the predicate is solved, then f(t) = 0.

Since our approach is based on heuristics, the generated solutions of our approach
are not necessarily optimal. The heuristics do not guarantee that the optimal solution
will be found in a reasonable time. However, various software engineering problems
faced by the industry have been successfully solved using search based
algorithms.[20]. Our fitness function is a combination of approach level and branch
distance and can be represented by the following equation:

f(O) = mini=0→TP.size(ATPi(O) + nor (BTPi(O)))

where O is an instance of input meta-model generated as a candidate test data, TP is a
set of target predicates to be solved. ATPi(O) represents the approach level achieved
by test data O. The approach level calculates the minimum number of predicates re-
quired to be solved to reach the target predicate TPi.

BTPi(O) represents the branch distance of a target predicate TP. The branch distance
heuristically evaluates how far the input data are, from solving a predicate. The
branch distance guides the search to find instances of meta-model that solve the target
predicates. For example, to solve a predicate on a class Account: account→ size () >
10, the search needs to create eleven Account instances.

We consider a normalized value (nor) for branch distance between the values
[0, 1], since branch distance is considered less important than approach level. We
apply a widely used normalizing function for this purpose [2]: nor(x) = x/x+1.

To calculate both the approach level and branch distance, we instrumented the
transformation language code. Based on the coverage criterion, in some cases, the
generated test data not only needs to satisfy the predicates to true, but also needs to
satisfy the negation of the predicates (for example, to achieve branch coverage). In all
such cases, we simply negate the predicate and for the negated predicate, generate the
data that evaluated the negated predicate to true. To calculate the approach level, an
important step is to construct a control flow graph (CFG) of the model transformation
code. The CFG provides the guidance to the algorithm to achieve the desire coverage.

Branch Distances for MT Constructs. The transformation languages have a number
of predefined data types, called primitive types. Typical primitive types include Boo-
lean, Integer, Real, and String. The predicates are defined on attributes of primitive
types, collection types or meta-model classes and combine the attributes with various
operators resulting in a Boolean output. Branch distance calculations for various im-
portant operations of model transformations are adopted from [2].

Applying the Search Algorithm. We selected Alternating Variable Method (AVM)
[2] as the search algorithm. For a set of variables {v1, v2,....vn}, AVM works to max-
imize the fitness of v1, by keeping the values of other variable constant, which are
generated randomly. It stops, if the solution is found. Otherwise if solution is not
found or fitness is lesser than v1, AVM switch to the second variable v2. Now all other
variables will be kept constant. The search continues until a solution is found or all
the variables are explored. If a randomly generated initial model is not able to satisfy
the target predicate, a fitness value is generated for the test model. We generate a new

22 A.A. Jilani, M.Z. Iqb

model by modifying the pr
that of previous model, the

4 Tool Support

In this section, we present
ronment (MOTTER). Fig.
We have developed MOTT
already existing componen
only, but it is designed in a
MOTTER is performing va
time error and at same time
tracted. For a given progra
transformation, its compon
source model and calculates

Fig. 2. A

Coverage Analyzer and fi
coverage are achieved. Fitne
ness of the instance model an
refined version of OCL Solv
data values for OCL queries.
classes, instance of meta-mo
Generator component gener
coverage of transformation.
mation construct. Search Alg
and test data is generated by
nent guides the search by gen

5 Case Study

In this section, we demons
proach on a famous Simple

bal, and M.U. Khan

revious model. If the fitness of new model is greater t
new model is used for next search iteration.

our implementation of model transformation testing en
2 shows the architectural diagram of the MOTTER to

TER in java language that enables it to interact with
nts of OCL Solver [2]. Currently, MOTTER support A
a way to support several model transformation languag
arious tasks, it supports ATL compilation, shows comp
e able to execute a program in way that CFG could be
am in ATL, MOTTER constructs the CFG for the gi

nent ATLExecutor executes the transformation for a gi
s the fitness and the branches covered so far.

Architectural diagram of the MOTTER tool

itness calculator ensure that coverage criterion, such as bra
ess calculator guides the coverage analyzer regarding the
nd calculates the approach level. The Solver in MOTTER

ver [2]; the original OCL solver is OCL specific and gener
. For MOTTER, the data values are not simple. The values
odel and include the relationships between the classes. Ob
rates the object model that serves as a test model to ens
Distance Calculator module calculates distances of trans

gorithm Engine component uses AVM to solve the heuris
y the data generator component. The Data Generator com
nerating values that solve the heuristics.

strate how test models are generated by applying our
eClass2SimpleRDBMS ATL transformation [21]. The c

than

nvi-
ool.
the

ATL
ges.
pile
ex-

iven
iven

anch
 fit-
is a

rates
s are
bject
sure
sfor-
stics

mpo-

ap-
case

 A Search Based Test Data Generation Approach for Model Transformations 23

study has six helper methods and one matched rule. The matched rule Persis-
tentClass2Table is considered as the main rule. It comprises of nine (9) predicate
statements, such as tuple.type→oclIsKindOf(SimpleClass!Class). To exercise various
coverage criteria, these predicates have upmost importance. We first generate test data
for all branch coverage. All Branch coverage requires exercising of each statement
and conditions, and to do so all predicates need to be solved.

We slightly modified some statements in the transformation as some of the code
segments of the original transformation could not be executed (part of the dead code).
Since, we have nine different branching conditions and for each such condition, our
tool has generated data that satisfies the conditions and their negations. Consider a
condition, taken from persistentClass2Table, acc→size()=0. The condition has an
approach level value one, because to exercise this we first need to solve the condition,
tuple.type→oclIsKindOf(SimpleClass!Class). MOTTER has successfully solved all
nine conditions and generates various object models (test models) to satisfy all branch
coverage, decision coverage and statement coverage criterion. The case study demon-
strates the applicability of the approach on real transformations. The performance and
evaluation of the approach is not discussed due to space limitation.

6 Conclusion

We discussed an automated, structural search-based test data generation approach for
model transformations testing. Our approach generates test data to satisfy various
structural coverage criteria, such as branch coverage. To guide the search, we devel-
oped a fitness function that comprises of approach level and branch distance. To calcu-
late branch distance for model transformation constructs, we adopted the existing heu-
ristics for programming languages and Object Constraint Language. We not only gen-
erate meta-elements instances of effective meta-model but also handle the mandatory
relationships that exist between different meta-elements. Therefore, our instance gen-
eration approach is able to generate valid meta-model instances. The output of the
approach is a set of instance models of the source meta-model that can be used as test
models to attain transformation coverage. The use of search based heuristics for the
automated test data (model) generation particularly in the case for model transforma-
tion is a major contribution of the work. We applied Alternating Variable Method
(AVM) as a search algorithm for test data generation. The applicability of the approach
is demonstrated by applying on a widely referred case study from the ATL transforma-
tion zoo, the SimpleClass2SimpleRDBMS transformation. The case study covers a
number of important ATL constructs. The proposed approach successfully generated
test models to achieve the desired coverage. We also developed a prototype tool
MOTTER to automate the proposed methodology. The tool currently supports trans-
formation written in ATL, but it is extensible to handle other transformation languages.

References

1. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers to sys-
tematic model transformation testing. Communications of the ACM 53(6), 139–143 (2010)

2. Ali, S., Iqbal, M., Arcuri, A., Briand, L.: Generating Test Data from OCL Constraints with
Search Techniques. IEEE Transactions on Software Engineering 39(10), 26 (2013)

24 A.A. Jilani, M.Z. Iqbal, and M.U. Khan

3. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.L.: Qualifying input test data for model
transformations. Software and Systems Modeling 8(2), 185–203 (2009)

4. Wang, J., Kim, S.-K., Carrington, D.: Automatic generation of test models for model transfor-
mations. In: 19th Australian Conference on Software Engineering, ASWEC 2008. IEEE (2008)

5. Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for model trans-
formation testing. Theory and Practice of Model Transformations, 148–164 (2009)

6. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal specification
and testing of model transformations. Formal Methods for Model-Driven Engineering,
399–437 (2012)

7. Gómez, J.J.C., Baudry, B., Sahraoui, H.: Searching the boundaries of a modeling space to
test metamodels. In: 2012 IEEE Fifth International Conference on Software Testing, Veri-
fication and Validation (ICST). IEEE (2012)

8. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of
model transformations. In: Proceedings of the Workshop the Pragmatics of OCL and Other
Textual Specification Languages at MoDELS (2009)

9. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations based on
visual contracts. Automated Software Engineering, 1–42 (2012)

10. Wang, W., Kessentini, M., Jiang, W.: Test Cases Generation for Model Transformations
from Structural Information. In: 17th European Conference on Software Maintenance and
Reengineering, Genova, Italy (2013)

11. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations–first experiences using
a white box approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 193–204.
Springer, Heidelberg (2007)

12. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

13. González, C.A., Cabot, J.: ATLTest: A White-Box Test Generation Approach for ATL
Transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 449–464. Springer, Heidelberg (2012)

14. McQuillan, J.A., Power, J.F.: White-box coverage criteria for model transformations. In:
Model Transformation with ATL, p. 63 (2009)

15. Mottu, J.-M., Sen, S., Tisi, M., Cabot, J.: Static Analysis of Model Transformations for
Effective Test Generation. In: ISSRE-23rd IEEE International Symposium on Software
Reliability Engineering (2012)

16. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A Search-based OCL Constraint Solver for
Model-based Test Data Generation. In: 2011 IEEE 11th International Conference on
Quality Software, pp. 41–50 (2011)

17. Ali, S., Iqbal, M.Z., Arcuri, A.: Improved Heuristics for Solving OCL Constraints using
Search Algorithms. In: Proceeding of the Sixteen Annual Conference Companion on
Genetic and Evolutionary Computation Conference Companion (GECCO). ACM,
Vancouver (2014)

18. Myers, G., Badgett, T., Thomas, T., Sandler, C.: The art of software testing. Wiley (2004)
19. Wu, H., Monahan, R., Power, J.F.: Metamodel Instance Generation: A systematic literature

review. arXiv preprint arXiv:1211.6322 (2012)
20. McMinn, P.: Search - based software test data generation: A survey. Software Testing,

Verification and Reliability 14(2), 105–156 (2004)
21. Bézivin, J., Schürr, A., Tratt, L.: Model transformations in practice workshop. In: Bruel, J.-

M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer, Heidelberg (2006)

	A Search Based Test Data Generation Approach for Model Transformations
	1 Introduction
	2 Related Work
	3 Automated Test Data Generation for MT
	3.1 Test Case Representation
	3.2 Problem Representation
	3.3 Test Data Generation

	4 Tool Support
	5 Case Study
	6 Conclusion
	References

