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Abstract. Reuse techniques are key for the industrial adoption of
Model-Driven Engineering (MDE). However, while reusability has been
successfully applied to programming languages, its use is scarce in MDE
and, in particular, in model transformations.

In previous works, we developed an approach that enables the reuse
of model transformations for different meta-models. This is achieved by
defining reusable components that encapsulate a generic transformation
template and expose an interface called concept declaring the structural
requirements that any meta-model using the component should fulfil.
Binding the concept to one of such meta-models induces an adaptation of
the template, which becomes applicable to the meta-model. To facilitate
reuse, concepts need to be concise, reflecting only the minimal set of
requirements demanded by the transformation.

In this paper, we automate the reverse engineering of existing transfor-
mations into reusable transformation components. To make a transfor-
mation reusable, we use the information obtained from its static analysis
to derive a concept that is minimal with respect to the transformation
and maximizes its reuse opportunities, and then evolve the transforma-
tion accordingly. The paper describes a prototype implementation and
an evaluation using transformations from the ATL zoo.

Keywords: Model transformation, Reusability, Reverse engineering,
Re-engineering.

1 Introduction

Reusability is a key enabler for the industrial adoption of Model-Driven Engi-
neering (MDE). Some techniques have been proposed to reuse complete transfor-
mations, such as superimposition [19], phases [14] and genericity [13], but their
use is still an exception. As noted by [1], one reason for this situation is the lack
of repositories for selecting and effectively reusing transformations. Even the
ATL Transformation Zoo [2], which is the closest relative to a transformation
repository, consists of a collection of transformations not designed for reuse. This
contrasts with the rich ecosystems of libraries in e.g., object-oriented languages
like Java or C#, which successfully promote development with reuse.
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In previous works [13], we proposed a technique for transformation reuse
based on generic programming. In our approach, reusable transformation com-
ponents encapsulate a transformation template developed against so-called con-
cepts, which resemble meta-models but their elements are variables. Binding
these variables to concrete meta-model elements induces a rewriting of the tem-
plate to make it compatible with the meta-model. Thus, we obtain reusability
because the transformation component can be used with any meta-model that
can be bound to its concepts. However, this technique implies developing trans-
formations with reusability up-front, by designing suitable concepts for the input
and output domains and then writing the transformation template accordingly.
Thus, it is not possible to profit from existing transformations beyond their use
as a reference to manually implement a generic, reusable transformation. While
concepts need to be concise to facilitate reuse and include only the elements
accessed by a template, transformations are developed for concrete meta-models
(e.g. UML) which reflect the complexity of a domain and may include accidental
complexity from the transformation point of view. Hence, making an existing
transformation reusable requires both a simplification of the meta-model into a
truly reusable concept, and an according reorganization of the transformation.

In this work, we propose a semi-automatic process to reverse engineer existing
transformations into generic, reusable transformations. It has been implemented
for ATL as this is one of the most widely used transformation languages. Our
aim is to foster reuse by facilitating the transition from existing, non-reusable
transformations into reusable components that can be offered as transformation
libraries in a repository. The process starts by extracting the effective meta-
model of a transformation, which implies its static analysis to derive typing
information. Then, the effective meta-model is evolved towards a concise concept
through a series of refactorings, and the transformation is co-evolved accordingly
if needed. The approach is supported by a prototype tool, and has been evaluated
using transformations of the ATL zoo.

Organization. Section 2 presents our previous work on reusable transforma-
tions. Then, Section 3 overviews our proposal to the reverse engineering of exist-
ing transformations into reusable components, which is detailed in the following
two sections: static analysis of ATL transformations (Section 4), and extrac-
tion and customization of concepts (Section 5). We evaluate our approach in
Section 6, review related work in Section 7, and draw conclusions in Section 8.

2 Reusable Transformations

In order to build a reusable transformation, in previous work [13] we proposed
the notion of transformation components with a well-defined interface called
concept. Fig. 1 shows a generic transformation component to calculate metrics for
object-oriented languages, as well as its instantiation for a specific meta-model.
The component (label 1) includes a transformation template from a hand-made
concept characterising object-oriented languages to a metrics meta-model. We
only show an excerpt of the template, which calculates the Depth of Inheritance
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rule Class2MeasureSet { 
  from class: OOconcept!Class 
  to   set:   MetricsMM!MetricsSet 
  do { 
    set.name    <- 'class ' + class.name; 
    set.metrics <- thisModule.Metric('DIT', class.DIT()); 
    ... 
  } 
} 
helper context OOconcept!Class def : DIT() : Real =  
  if (self.super->isEmpty()) 
  then 0 
  else  
    let dits:Set(Integer) = self.super->collect(s | s.DIT()) in 
    1 + dits->select(v | dits->forAll(v2 | v>=v2))->first() 
  endif;  
... 
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... 
helper context UML!Class def : DIT() : Real =  
  if (self.super->isEmpty()) 
  then 0 
  else  
    let dits:Set(Integer) = self.super->collect(s | s.DIT()) in 
    1 + dits->select(v | dits->forAll(v2 | v>=v2))->first() 
  endif;  
... 
helper context UML!Class def: super : Set(UML!Classifier) = 
 self.generalization->collect(g | g.general) 
   ->excluding(self)->asSet(); 
... 

Fig. 1. Example of definition and usage of transformation components

Tree (DIT) metric. The concept, which is the component interface, gathers the
structural requirements that a meta-model needs to fulfil to qualify as input
meta-model for the transformation. The concept should be as simple as possible
to facilitate reuse, excluding elements that are not needed by the transformation.
In the example, the concept includes class Attribute even if it is not used in the
excerpt of the ATL template, because other rules do it.

The way to reuse a component is to bind its concepts to meta-models (label
2). While it is possible to have concepts as source and target of a transformation
template, binding only the source is more common in practice [13]. If a concept
is not bound, it is simply treated as a meta-model. By default, each element in
the concept must be bound to one meta-model element. This can be adjusted for
each concept element by attaching a cardinality that indicates how many times
it may be bound. By space constraints, we do not discuss this feature further.

In the figure, the source concept is bound to the UML2 meta-model. The
binding is performed through a dedicated domain-specific language which allows
defining correspondences. The left of each correspondence refers to a concept el-
ement, like Element, Class or Class.super. The right may include either elements
of the bound meta-model or OCL expressions defined over the meta-model.
For example, Element is bound to NamedElement, Class to Class, and reference
Class.super is bound to a collection of Class obtained through the OCL expression
Class.generalization->collect(...). We use a structural approach, so that abstract
classes in the concept may not need to be bound, in which case, any feature
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defined in it should be bound in its concrete subclasses. Thus, if Element were not
bound in the example, then name should be bound in both Class and Attribute.

The binding induces an adaptation to the transformation template (label 3),
yielding an ATL transformation applicable to the instances of the bound UML2
meta-model. In this case, the adaptation modifies the context of the helper, and
adds a new helper that calculates the superclasses of a given one (relation super

in the original concept), as given by the binding of Class.super.
Altogether, building a reusable component involves the development of a

transformation template and its associated concepts from scratch. In the ex-
ample, we developed a transformation to calculate metrics and a concept for
object-oriented languages. However, the ATL zoo already contains two trans-
formations that calculate object-oriented metrics for KM3 and UML2. Unfortu-
nately, these meta-models (especially UML2) contain a lot more elements than
the transformation needs, thus not being suitable to be used as concepts. If we
would have been able to make reusable one of these transformations, we would
have saved a lot of effort, as the resulting component would be applicable to any
object-oriented modelling language. Thus, in the rest of the paper, we present
a proposal to automate the reverse engineering of existing transformations into
reusable components. As running example, we will reverse-engineer the trans-
formation excerpt of Fig. 1, defined over the UML2 meta-model.

3 Making Existing Transformations Reusable

Promoting existing transformations into reusable components poses several chal-
lenges. First, we need to simplify the used meta-models (e.g. UML2) into con-
cepts. This process can be automated by calculating the effective meta-models of
the transformation (i.e. the classes and features accessed by the transformation
code). However, the effective meta-model might not be the ideal concept, as we
may like e.g., to merge classes or reorganize the inheritance hierarchy. Doing this
manually can be cumbersome, since it must be checked if the change breaks the
transformation behaviour (i.e., adapting the transformation would imply remov-
ing a rule), and then changing the transformation accordingly if needed. In this
section, we introduce our proposal to automate this process.

Fig. 2 shows the steps in our approach. First, the transformation to be made
reusable is selected. This implies looking up potential sources of interesting trans-
formations, such as in-house developed transformations, transformation reposi-
tories (e.g. the ATL zoo) and open source MDE tools that include model trans-
formations (e.g. MoDisco and Fornax). However, not any transformation is ad-
equate to be generalised into a generic transformation (although they still can
profit from the process to improve its quality and be deployed in a repository).
For example, the Ant to Maven transformation fully depends on the Ant and
Maven semantics, and thus it cannot be generalized to other build systems. Intu-
itively, we say that a transformation is amenable to reuse when there are variants
of the meta-models it uses (e.g. variants of UML class diagrams, different versions
of it, or meta-models for related notations, like Ecore).
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Fig. 2. Main steps in the reverse engineering of transformations into reusable units

The second step performs a static analysis of the transformation. This is
particularly needed in ATL because ATL does not enforce type correctness,
hence transformations may be ill-typed. Moreover, the creation of a suitable
concept for the transformation requires precise type information. If the analysis
detects errors, the developer is required to fix them (step 3), otherwise, the
effective meta-model of the transformation is automatically extracted (step 4).

Starting from the effective meta-model, a concept is derived, which includes
the minimum structural requirements that a meta-model should fulfil to be used
with the transformation (step 5). The concept is more concise than the effec-
tive meta-model, as it is refactored taking into account the static analysis of
the transformation, e.g., to remove unused features and intermediate abstract
classes, or to move features up or down class hierarchies. The aim is having a
concept as simple as possible to facilitate its reuse. The suitable refactorings are
automatically computed and the user is only requested to approve them. For
example, if we start from a transformation defined over the UML2 meta-model,
the system may suggest replacing class Generalization by a reference parents, as
this will facilitate future bindings. Additionally, it is possible to customize the
concept through user-selected refactorings allowing, e.g., merging two classes
into one, or changing an enumerate attribute by a set of subclasses (step 6). In
this way, designers can include tacit knowledge of the domain in the design of
the concept. A common example is the renaming of classes to assign names more
akin to the domain. Both the creation and the customization of concepts may
imply the automatic rewriting of the transformation to keep it consistent, and
they are iterative since the application of a refactoring may enable another one.

The final step (label 7) is to document and package the concepts and trans-
formation template. This can be done using a variety of formats, including text-
and contract-based documentation. Currently, we use the PaMoMo language to
describe the transformation contract via pre/post-conditions and invariants [6],
enriching the transformation with documentation and an automatically gener-
ated test suite. For space constraints, we leave out this step of the process.

4 Static Analysis of ATL Transformations

Our reverse engineering procedure needs to extract the static meta-model foot-
print of a transformation. This requires static type information regarding the
classes and features used by the transformation. In strongly typed languages
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Fig. 3. Analysis of a helper

like Kermeta [15], the type information is available in the abstract syntax tree,
but other languages, like ATL, do not provide this information. Hence, as a pre-
requisite to apply our approach, we introduce a static analysis stage to gather as
much type information as possible from the ATL transformation. This section
presents the static analyser that we have built for this purpose.

In the simplest setting, our analyser performs a bottom-up traversal of the
abstract syntax tree, propagating types from leaf nodes to the root of the ex-
pressions (i.e. using synthesized attributes). In some cases, particularly for pa-
rameters, types also need to be passed top-down (i.e. using inherited attributes).

Fig. 3 shows the analysis of an ATL helper which gathers the “active” direct
superclasses of a class. Each node of the abstract syntax tree is annotated with
its type (boxes to the right linked with dashed lines to the nodes). These types
are propagated along the nodes, as depicted by the red, curved lines (we only
show some of them). For nodes corresponding to a property access or operation
invocation, the existence of the property or operation is checked.

Even though the helper is accepted by the ATL engine, the analyser reports
a warning because the isActive property is defined in Class but not in Classifier,
which is the type of the variable c. At runtime, this expression will fail if the
model includes classifiers different from classes, like Interface objects.

Reporting these issues is important to help improving the quality of the trans-
formation and understand its constraints if they are not documented. Moreover,
the analyser should avoid raising false warnings and errors which may lead to
low-quality type information. To this end, we have enhanced the basic analysis
with the following features:

– Multiple Type Collections. In OCL, it is possible to mix objects of differ-
ent, unrelated types in the same collection, typically through the use of union



192 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

and including operations. Our analyser keeps track of these operations in order
to: (a) infer common supertypes, or (b) assign multiple potential types to
the same expression node. This provides more accurate typing information
for the effective meta-model extraction and concept creation phases.

– Implicit Casting. ATL does not support the oclAsType operation, which
complicates the analysis as there is no explicit way for downcasting. Thus,
our analysis looks for oclIsKind/oclIsTypeOf expressions that implicitly down-
cast a reference. For instance, the following variants of the expression in
Fig. 3 are deemed correct by our analyser, because the usages of oclIsKindOf

ensure that the type of c will be Class when used in the c.isActive expression.

self.generalization−>collect(g | g.general)−>
select(c | c.oclIsKindOf(UML!Class))−>
select(c | c.isActive )

self.generalization−>collect(g | g.general)−>
select(c | if c.oclIsKindOf(UML!Class) then

c.isActive else false endif)

– Structural Type Inference. As explained above, a property access may
not be resolved due to the lack of downcasting (either explicit or implicit).
In such a case, our analyser looks for the property in the subclasses of the
receptor’s type. If it is found in one or more subclasses, they are tentatively
assigned to the expression, and a warning is raised.

This list is not exhaustive, and we aim at improving the analyser since, the
better it gets, the more accurate the reverse engineering process will be. Indeed,
any other ATL analyser could be used instead of ours, whenever it provides the
meta-model footprint of the transformation. The meta-model footprint refers to
the meta-model elements involved in the transformation. This corresponds to
the set of used types, in the example {Class, Classifier, Generalization}, and the
set of used features, in the example {Classifier.generalization, Generalization.general,
Class.isActive} (see Fig. 3). For practical purposes, we distinguish two kinds of
used types: explicit types if they are explicitly mentioned in the transformation,
and implicit types if they are indirectly reached through navigation expressions.

Additionally, our analyser outputs information about call sites, which are
the locations where an operation or feature is accessed. This is the concrete
class that receives the feature access, which may be different from the class
defining the feature. Thus, for each call site, we store a pair of concrete class
and feature. In the example, the set of call sites is {〈Class, Classifier.generalization〉,
〈Generalization, Generalization.general〉, 〈Class, Class.isActive〉}. This provides more in-
formation than just the accessed features, since it is possible to know that the
Classifier.generalization feature is only accessed by Class objects.

5 Creation and Customization of Concepts

From the information extracted in the static analysis phase, we infer a concept
that will act as interface for the reusable component. For this purpose, first we
prune the meta-model to keep only the elements needed by the transformation.
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rule Class2MeasureSet {
from class: UML!Class
to set: MetricsMM!MetricsSet
do {
set.name <− ’class ’ + class.name;
set.metrics <− thisModule.Metric(’DIT’, class.DIT());

}}

helper context UML!Class def : DIT() : Real =
if (self.super−>isEmpty())
then 0
else
let dits:Set(Integer) = self.super−>collect(s | s.DIT()) in
1 + dits−>select(v | dits−>forAll(v2 | v>=v2))−>first()

endif;

helper context UML!Class def: super : Set(Classifier) =
self.generalization−>collect(g | g.general)
−>excluding(self)−>asSet();

Meta-model Footprint

Explicit types:
- Class

Implicit types:
- Classifier
- Generalization

Features:
- NamedElement.name
- Classifier.generalization
- Generalization.general

Call sites:
- 〈Class, NamedElement.name〉
- 〈Class, Classifier.generalization〉
- 〈Generalization, Generalization.general〉

Fig. 4. ATL transformation over UML2 meta-model (left). Source meta-model foot-
print obtained after the static analysis (right).

Then, we convert the pruned meta-model into a concept which may be simpli-
fied through the application of several refactorings, and customised to take into
account specific knowledge of the domain.

5.1 Extraction of Effective Meta-model

To calculate the effective meta-model, we use a pruning algorithm like the one
presented in [15], using the meta-model footprint obtained in the static analysis
as input. The algorithm keeps in the meta-model the implicit and explicit types,
and respects the inheritance hierarchies.

As an example, Fig. 4 shows a transformation defined over the UML2 meta-
model, and the footprint that our static analysis returns. This footprint is used
to extract the effective meta-model of the transformation. In particular, Fig. 5(a)
shows an excerpt of UML2, while Fig. 5(b) shows the effective meta-model that
results from applying the pruning algorithm to the transformation in Fig. 4.

5.2 Concept Creation

The effective meta-model is refactored into a more compact concept by removing
or simplifying non-essential elements for the transformation, for which we take
into account the call site information. On the one hand, the concept is the
interface for reusability, and hence large inheritance hierarchies are discouraged
because they affect comprehensibility [3]. On the other hand, concepts should
be as simple as possible to facilitate their binding to meta-models. For example,
the effective meta-model in Fig. 5(b) is not a suitable concept yet, because
it contains some classes (like NamedElement) which may be not found in every
object-oriented notation. This class appears in the effective meta-model because
it is a container for name, which is only used by Class in the transformation.
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Fig. 5. Sequence of operations to convert the UML2 meta-model into a concept

To help creating the concept, we make available a number of refactorings au-
tomating the identification of simplification opportunities, their application, and
the co-evolution of the transformation whenever it is needed. The system auto-
matically suggests refactoring opportunities to the user, along with an explana-
tion of the rationale of the proposal and its consequences (e.g. the transformation
must be co-evolved). The user only needs to approve their application, since the
refactoring locations are automatically gathered. Some of the refactorings are
likely to be always accepted, such as removing empty classes. Hence, our tooling
allows the user to configure which refactoring opportunities should be applied
automatically. Moreover, the refactorings are applied in an iterative fashion,
since the application of a refactoring may yield new refactoring opportunities.

– Push Down Feature. It moves a feature defined in a class to one or more
of its subclasses, if only the instances of such subclasses use the feature.
This information is taken from the call sites computed in the analysis phase.
The refactoring is parameterized with the maximum number of subclasses to
which the feature can be moved, in order to prevent duplication of the same
feature in too many subclasses. For example, according to the call sites, the
NamedElement.name and the Classifier.generalization features are only used by
Class instances, thus they are moved to Class (see result in Fig. 5(c)).

– Remove Empty Class. Classes without features are removed if they do
not belong to the explicit types set (i.e. they are only used in navigation
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expressions). If the removed class is both a subtype and a supertype, the
inheritance relationships are rearranged (this is called pull-up inheritance
in [4]). The goal of this refactoring is to collapse inheritance hierarchies to
enhance the comprehensibility of the concept and facilitate future bindings.
In the running example, Namespace is removed, as well as NamedElement be-
cause the previous refactoring “pushed down” its only feature (see Fig. 5(d)).

– Remove Unused Feature. Any feature appearing in the effective meta-
model but not in the footprint is removed. This is needed because the pruning
algorithm [15] leaves opposite references even when they do not appear in the
effective meta-model. Thus, this refactoring refines the pruning algorithm.

– Make Leaf Abstract Class Concrete. The effective meta-model may
include leaf abstract classes, if their subclasses do not belong to the set of
explicit types. In such a case, this refactoring makes such classes concrete,
thus enforcing their binding to some class in the bound meta-models.

– Pull Up Feature. If several subclasses with a common parent share fea-
tures, these are pulled up to the parent. This situation can arise initially in
the effective meta-model, or due to the application of other refactorings. The
refactoring can be parameterized with the minimum number of classes that
should define the feature in order to pull it up.

– Remove Association Class. An association class acts as a reference that
is able to carry properties. A typical example is Generalization in the UML2
meta-model. If a transformation does not use the properties of an associa-
tion class (except the reference to the target class, like general in UML2),
and the class does not appear in the explicit types set (except when used
in allInstances operation), then the association class can be replaced by a
simple reference in the concept. In such a case, the transformation needs
to be co-evolved, replacing the navigations through the association class by
references. The benefit of this refactoring is two-fold. Firstly, the concept
becomes simpler. Secondly, the binding will be simpler if the meta-model
also represents the same element as a reference, whereas if not, binding a
reference in a concept to a class in a meta-model is easier than the other
way round (we just need an expression like the one in Fig. 1 for Class.super).
Fig. 5(e) shows its application to the concept, which implies co-evolving
the transformation template. The details of the transformation rewriting are
left out due to space constraints. In the running example, the expression
self.generalization->collect(g | g.general)->excluding(self)->asSet() gets rewritten
into self.generalization general->excluding(self)->asSet().

5.3 Concept Customization

The previous process yields a concept, simplified to make it concise and reusable.
However, this concept still retains the nomenclature and some design decisions
from the meta-model from which it was derived. At this point, domain expertise
can be used to customise the concept so that it reflects tacit knowledge of the
domain. A typical example is the renaming of classes and features using the
terms most frequently used in the domain. Similarly, some design options may
be more common in a particular domain than others.
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Next, we enumerate the domain-specific customizations currently supported,
some of them inspired by standard object-oriented refactorings [5]. Some refac-
torings induce an adaptation of the transformation template, or use the infor-
mation extracted from the static analysis of the transformation:

– Renaming of Classes and Features. It changes the name of classes and
features, rewriting the transformation to accommodate the new names.

– Extract Sub/Superclass. This is a pair of related refactorings. Extract
subclass splits a class into a superclass/subclass pair, the former optionally
abstract. Extract superclass creates a new abstract superclass for a given set
of classes, pulling up their common features. In both cases, the transforma-
tion does not need to be adapted.

– Collapse Hierarchy. This refactoring merges a class and a child class. It
can only be applied if the parent class is not an explicit type, and it has just
one child. This refactoring does not rewrite the transformation. However,
if the concept includes some reference to the superclass, then the user is
warned that if the superclass is bounded to a meta-model class with several
children, collapsing the hierarchy excludes those children from the reference.
For example, this refactoring is applicable in Fig. 5(e) because Classifer is not
an explicit type and has a unique child Class. The result is a concept with
a single node Class and a self-reference generalization general. In this case, a
warning is issued because Classifier received a reference. This means that if
the resulting concept is bound back to the UML2 meta-model, mapping Class

in the concept to Class in the meta-model, the reference generalization general

will only contain Class objects. Instead, if we keep the concept in Fig. 5(e) and
map both Classifiers in the concept and the meta-model, then the reference
may hold any subclass of Classifier (Class objects but also Interface objects).

– Replace Enumerate with Inheritance. An enumeration attribute used
to distinguish several class types is replaced by a set of subclasses, one for
each possible value. This refactoring is applicable if the enumeration literals
are only present in comparisons, getting substituted by oclIsKindOf(...).

This list is not exhaustive, as we are working on additional ones, taken from [5].
As a difference from the refactorings presented in the previous section, the iden-
tification of the customization opportunities is not automated as it is difficult
to deduce, e.g., whether the name of a class is appropriate in a domain or if
a certain notion is better represented using two classes instead of one. Thus,
users must select the locations where a customization should be performed, and
then the concept is changed accordingly and the transformation is automatically
adapted when possible.

6 Evaluation and Tool Support

We have evaluated our approach along two dimensions, described by the following
two questions. First, can we obtain a reusable component from a transformation
not designed to be reused?. Second, to what extent is the effective meta-model
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Process DSC NOH ANA ADI NAC
U
M

L

Initial meta-model 247 246 6.91 5.60 48
Compute effective meta-model 31 30 0.77 0.47 23
Ref. remove empty class (14) 17 15 0.59 0.36 9
Ref. make abstract class concrete (1) 17 15 0.59 0.36 8
Ref. push down feature (5) 17 15 0.59 0.36 8
Ref. remove empty class (2) 15 13 0.53 0.27 6
Ref. remove association class (1) 14 13 0.57 0.29 6

K
M

3

Initial meta-model 16 16 0.31 0.07 2
Compute effective meta-model 11 10 0.45 0.01 2
Ref. remove empty class (1) 10 9 0.4 0.01 1
Ref. push down feature (1) 10 9 0.4 0.01 1

DSC: design size in classes
NOH: number of hierarchies
ANA: average number of ancestors
ADI: average depth of inheritance
NAC: number of abstract classes

Fig. 6. Metrics taken at each step of the process, for UML2 and KM3. The number of
applications of each refactoring is shown between parentheses.

simpler than the original one, and the concept simpler than the effective meta-
model?. To answer these questions, we have made an experiment based on two
transformations from the ATL zoo, which calculate object-oriented metrics, one
for UML2 (UML2Measure) and the other one for KM3 (KM32Measure).

To answer the first question, we applied our reverse engineering process to
UML2Measure. We obtained a concept which we were able to bind to other object-
oriented notations like KM3, Ecore, Java/Jamopp and MetaDepth. The bind-
ings have less than 40 LOC, whereas the original transformation has about 370
LOC. This shows that our technique is effective, and yields reusable transforma-
tion components with concise concepts as interface for reuse.

To answer the second question, we reverse engineered both transformations
and measured the effective meta-models/concepts obtained along the process.
We used the object-oriented metrics proposed in [3], related to understandability
and functionality quality attributes. High values of these metrics influence neg-
atively the understandability. Fig. 6 summarizes the results. For UML2Measure,
computing the effective meta-model removes all classes not related to class dia-
grams; however, the metrics relative to hierarchies and abstract classes indicate
that the effective meta-model still has complex hierarchies. Our refactorings re-
duce this complexity to the half, obtaining a concept significantly simpler than
the meta-model. In the case of KM32Measure, the computation of the effective
meta-model and the refactorings have less impact because KM3 is a very simple
meta-modelling core, almost a concept.

We also evaluated the gain from using the final, refactored concept as interface
for reuse, w.r.t. using the effective meta-model for that purpose. Thus, we reused
UML2Measure for Ecore, KM3, Java/Jamopp and MetaDepth. In all cases, the
bindings from the concept were simpler than from the effective meta-model. For
instance, abstract classes can be left unbound in our approach; but since the
effective meta-model contained lots of them, the burden to decide what to bind
to what was much lower for the concept. The push down feature refactorings
improved the comprehensibility of the concept, because features were no longer
hidden in the middle of hierarchies. The remove association class refactoring
was particularly useful, as none of the bound meta-models had the notion of
Generalization present in UML2. Thus, we had to define fairly complex bindings
from the effective meta-model to emulate the Generalization class, but the bindings



198 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

from the concept were straightforward. Altogether, this experiment shows that
the obtained concept favours reuse more than the effective meta-model. A more
extensive evaluation to confirm this intuition is left for future work.

Additionally, we validated the correctness of our implementation, binding the
concept obtained from the UML2Measure transformation to the original UML2
meta-model. Then, we executed the original transformation and the adapted
template using several third-party UML models as input, checking with EMF
Compare that the results were in fact the same.

To support our reverse engineering process, we have built an Eclipse plug-in
integrated in the Bentō1 tool. The tool is interactive. As an example, Fig. 7 shows
part of the interaction for the KM32Measure case: (1) the original transformation
and the component information is configured, (2) the analysis phase detects
warnings and errors in the transformation, (3) the refactoring opportunities are
listed and can be easily applied, displaying the result in a tree-based visualiza-
tion. Step (3) can be repeated if the system finds new refactoring proposals due
to the application of a previous refactoring, or to apply domain customizations.
To support this step, the tool allows computing metrics and showing informa-
tion about the use of the concept in the transformation (4). Interestingly, the
metrics facility has been included by reusing the oo2measure component obtained
in the evaluation, and binding it to Ecore. Finally, the component is packaged
by generating meta-information for our Bentō tool (5).

7 Related Work

Proposals on model transformation reuse can be type-centric or type-
independent. The former include reuse mechanisms for single rules, like rule
inheritance [11], and for whole transformations, like superimposition [19] and
phases [14]. Regarding type-independent approaches, there are fine-grained tech-
niques like parameterized rules [8,10,17], and coarse-grained ones aimed at
reusing complete transformations [16]. Among these proposals, only [16] sup-
ports the reuse of transformations for arbitrary meta-models, as in our case. For
this purpose, the authors extract the effective meta-model of the transformation
as-is, and adapt the meta-model where the transformation is to be reused by
making it a subtype of the effective meta-model. In contrast, we use concepts
as reuse interface, we simplify the effective meta-model to facilitate its binding,
and we do not modify the models/meta-models to be transformed but we adapt
the transformation.

Our approach performs a static analysis of the original transformation. Even
though the ATL IDE includes a static analysis engine that proposes feature
completions, this only provides basic information which is not very accurate. The
static analyser presented in [18] allows navigating ATL transformation models.
The analyser, which is a facade to the ATL meta-model provided as a Java API,
does not provide type information or advanced analysis support.

1 The tool and a screencast are available at http://www.miso.es/tools/bento.html

http://www.miso.es/tools/bento.html
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Fig. 7. Process followed to reverse engineer the KM32Measure transformation

Our meta-model extraction procedure relates to works on meta-model slicing
and shrinking, though our goal is to simplify a meta-model to make an associated
transformation easier to reuse. This poses additional challenges, like the need to
identify whether a meta-model refactoring does not break the transformation.

Meta-model pruning is usually structure-preserving. For instance, the algo-
rithm presented in [15] takes a set of elements of interest of a meta-model (in
our case the meta-model footprint of the transformation) and returns a pruned
version of the meta-model containing the minimum set of elements required for
the new version to be a subtype of the original. Our approach is similar, but we
simplify the resulting meta-model, e.g., by flattening hierarchies and removing
opposite features unless both ends belong to the meta-model footprint. In [7],
static meta-model footprints are obtained from Kermeta code in order to esti-
mate model footprints. Kermeta includes type information in the syntax tree,
hence no explicit static analysis is needed. The meta-model pruning phase is in
line with [15], except that it includes all subclasses of every selected class.

A few works propose simplification techniques for meta-models, mostly based
on refactorings for object oriented systems [5]. For instance, in [4], the au-
thors present some type-safe meta-model reduction operations which guarantee
extensional equivalence between the original and the reduced meta-model
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(i.e. the set of models conforming to both meta-models is the same). Their
approach computes the meta-model snippet needed to represent a selection of
classifiers and features from a set of initial models, and then applies several
type-safe reduction operations to the meta-model snippet. As reduction oper-
ations, they support the flattening of hierarchies and the removal of features
declared by classifiers which were not explicit in the initial models. Type-safety
is achieved through the pull-up inheritance, push-down feature and specialize
feature type refactorings [5]. In our case, we obtain the meta-model footprint
through the static analysis of the transformation, which is more challenging.
While we support the same reduction operations (among others), their appli-
cability is restricted by the transformation, which may prevent some changes.
Moreover, we provide further refactorings whose goal is to facilitate the binding
of the concept, and may induce the transformation adaptation.

Some of our concept refactorings require adapting the transformation, like in
meta-model/transformation co-evolution [9,12]. These works distinguish three
kinds of transformation changes: fully automated, partially automated and fully
semantic. In our case, we only consider meta-model changes that lead to fully au-
tomated transformation changes, as we aim at an automated process. In contrast
to [9,12], we use typing information derived from the transformation.

Altogether, to the best of our knowledge, this work is the first attempt to
reverse-engineering model transformations for enhancing their reusability.

8 Conclusions

In this paper, we have presented our approach to reverse engineer existing trans-
formations into reusable components that can be applied to different meta-
models. For this purpose, we first perform a static analysis of the candidate
transformation to extract typing information and identify type errors. Then,
we use this information to build a concept, that is, an interface optimised and
customised to facilitate the reuse of the transformation. In this process, the
transformation may need to be adapted to make it conformant to the concept.

We have demonstrated our approach and supporting tool by performing the
reverse engineering of an existing ATL transformation to calculate object-
oriented metrics. The results show that the obtained concepts tend to be more
concise than meta-models, and therefore suitable for our purposes.

In the future, we foresee having a repository of reusable components that
can be navigated and integrated with other components, thus speeding up the
development of MDE projects. In addition to support reusability of whole trans-
formations, we will also consider extracting slices of an existing transformation,
and its subsequent re-engineering into a reusable component. We would like to
consider other kinds of components, like components for code generation or in-
place transformation, as well as further transformation languages in addition to
ATL. While we support the manual definition of PaMoMo specifications for
documenting transformation components, we plan to work on their automatic
derivation from existing transformations. Such specifications could be used as
composability criteria for components and for testing.
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Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23–41.
Springer, Heidelberg (2010)

10. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W.: Surviving the heterogeneity jungle with composite mapping oper-
ators. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275.
Springer, Heidelberg (2010)

11. Wimmer, M., et al.: Surveying rule inheritance in model-to-model transformation
languages. JOT 11(2), 3:1–3:46 (2012)

12. Di Ruscio, D., Iovino, L., Pierantonio, A.: A methodological approach for the cou-
pled evolution of metamodels and atl transformations. In: Duddy, K., Kappel, G.
(eds.) ICMT 2013. LNCS, vol. 7909, pp. 60–75. Springer, Heidelberg (2013)

13. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Flexible model-to-model transfor-
mation templates: An application to ATL. JOT 11(2), 4:1–4:28 (2012)

14. Sánchez Cuadrado, J., Molina, J.G.: Modularization of model transformations
through a phasing mechanism. SoSyM 8(3), 325–345 (2009)
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