
Tracing Program Transformations with String Origins�

Pablo Inostroza1, Tijs van der Storm1,2, and Sebastian Erdweg3

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 INRIA Lille, France

3 TU Darmstadt, Germany
{Pablo.Inostroza.Valdera,Tijs.van.der.Storm}@cwi.nl,

erdweg@informatik.tu-darmstadt.de

Abstract. Program transformations play an important role in domain-specific
languages and model-driven development. Tracing the execution of such transfor-
mations has well-known benefits for debugging, visualization and error reporting.
In this paper, we introduce string origins, a lightweight, generic and portable
technique to establish a tracing relation between the textual fragments in the in-
put and output of a program transformation. We discuss the semantics and the
implementation of string origins using the Rascal meta programming language
as an example. We illustrate the utility of string origins by presenting data struc-
tures and operations for tracing generated code, implementing protected regions,
performing name resolution and fixing inadvertent name capture in generated
code.

1 Introduction

Program transformations play an important role in domain-specific language (DSL) en-
gineering and model-driven development (MDD). In particular, DSL compilers are of-
ten structured as a sequence of transformations, starting with an input program and
eventually generating code. It is well-known that origin tracking [16] and model trace-
ability [1,8,12,13,14] provide valuable information for debugging, error reporting and
visualization.

In this paper, we focus on traceability for transformations that generate (fragments
of) text. We propose string origins, a lightweight technique that links each character
in the generated text to its origin. A string either originates directly from the input
model, occurs as a string literal in the transformation definition, or is synthesized by
the transformation (e.g., by string concatenation or substitution). We represent string
origins using a combination of unique resource identifiers (URIs) and offset and length
values that identify specific text fragments in a resource. We propagate string origins
through augmented versions of standard string operators, such that the propagation is
fully transparent to transformation writers. In particular, parsing and unparsing retains
string origins for text fragments that appear in the AST, such as variable names.

Through applications of string origins we further confirm the usefulness of
model traceability by realizing generic solutions to common problems in program-
transformation design. First, string origins allow us to link generated elements back
� This research was supported by the Netherlands Organisation for Scientific Research (NWO)

Jacquard Grant “Next Generation Auditing: Data-Assurance as a service” (638.001.214).

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 154–169, 2014.
c© Springer International Publishing Switzerland 2014

Tracing Program Transformations with String Origins 155

to their origin. In Section 3.1, we show how this enables the construction of editors
with embedded hyperlinks to inspect generated code. Second, we present an example
of attaching additional information to generated code via string origins. Section 3.2
describes how this enables protected regions in generated code. Third, string origins
can be interpreted as unique pointers that identify subterms. In Section 3.3, we use the
origins of symbolic names (variables, type names, method names, etc.) to implement
name resolution. Finally, string origins can be used to systematically replace fragments
of the generated code that have the same origin. In Section 3.4, we show a generic so-
lution for circumventing accidental variable capture (hygiene) by systematic renaming
of generated names.

In Section 4, we discuss the implementation of string origins in the context of Ras-
cal [9]. Overall, we found that string origins have a number of important benefits that
can improve the design of program transformations and transformation engines:

• Totality: Unlike existing work in origin tracking and model traceability [12], string
origins induce an origin relation which is total. That is, the origin relation maps
every character in the output text of a transformation back to its origin.

• Portability: Since the origin relation is based on string values and string operations
instead of inferred from transformation code, the structure or style of the transfor-
mation language is largely irrelevant. As a result, string origins are portable across
transformation systems, transformation styles, and technological spaces. Even in
the case of graphical modeling languages, embedded strings (e.g., names, labels,
etc.) could be annotated with their location in the serialization format used to store
such models.

• Universality: String origins are independent of the source or target language, since
they only apply to the primitive type string. In particular, origin propagation is
independent of the AST structure or meta model.

• Extensibility: String origins are automatically propagated as annotations of sub-
strings. As such, string origins can serve as general carriers of additional, domain-
specific information. Marking certain subsstrings as protected (Section 3.2) is an
example of this.

• Non-invasiveness: Transformation languages that support string manipulation dur-
ing program transformation can support string origins by modifying the internal
representation of strings, without changing the programming interface of strings.
The only visible change is at input boundaries where strings are constructed.

We have implemented string origins as an experimental feature of Rascal, a meta pro-
gramming language for source code analysis and transformation [9]. The applications
and example code of this paper have all been prototyped in Rascal. The full code of the
examples can be found online at https://github.com/cwi-swat/string-
origins.

2 String Origins

We illustrate the basic idea of string origins in Figure 1. The code in the middle shows
a simple transformation which converts name and email address specifications to the

https://github.com/cwi-swat/string-origins
https://github.com/cwi-swat/string-origins

156 P. Inostroza, T. van der Storm, and S. Erdweg

BEGIN:VCARD
VERSION:4.0
N:Pablo Inostroza
EMAIL:pvaldera@cwi.nl
END:VCARD

str toVCARD(str input) =
 "BEGIN:VCARD
 'VERSION:4.0
 'N:<name>
 'EMAIL:<email>
 'END:VCARD"
 when [name, email] :=
 split("\n", input);

Pablo Inostroza
pvaldera@cwi.nl

Input model
pablo.txt

Transformation
ToVCARD.rsc

Output model
pablo.vcard

origin

origin

Fig. 1. Example of a simple Rascal transformation with trace links

VCARD format. Arrows and shading indicate the origin relation. The white-on-black
substrings in the output are introduced by the transformation; their origins point to the
string template in the transformation code in the middle. In contrast, the substrings with
gray backgrounds (name and email) are copied over from the input to the output, and
hence point back to the input model. The substrings in the result are partitioned accord-
ing to the origin relation: a fragment originates in either the input, or the transformation.

Note that the transformation processes the input by splitting the string. It is important
to realize that this does not break the origin relation, but instead makes it more fine-
grained: the output fragments “Pablo Inostroza” and “pvaldera@cwi.nl” have distinct
origins pointers to the exact corresponding substrings in the input.

2.1 Representing String Origins

Many transformations take text files as input and, eventually, produce text files as out-
put. Moreover, the transformations themselves are expressed often as transformation
code that is stored in text files as well. String origins exploit this fact by representing
origins as source locations. Conceptually, a source location is a tuple consisting of a
URI identifying a particular resource and an area identifying a text fragment within the
resource. We represent an area by its start offset and length.

In the context of Rascal, source locations are represented by the built-in loc data type.
To give an example, |file:///etc/passwd|(0, 50) identifies the first 50 characters in the file
/etc/passwd, starting at offset 0. Rascal’s source locations also represent begin and end
line and column numbers, but for the remainder of this paper we will abstract from
this technical detail. Although source locations are built into Rascal, they are easily
implemented in any other transformation system.

The propagation of string origins is transparent: The transformation writer can fully
ignore their presence and simply uses standard string operations such as concatenation
or substitution. We discuss the details of the propagation in Section 4. Here, we want
to highlight how to build generic tools on top of origin information. To this end, we
provide an API for accessing locations and origins of substrings. First, we provide a
function for decomposing a string into its atomic substrings (called chunks):

alias Index = rel[loc pos, str chunk];
Index index(str x, loc output);

Tracing Program Transformations with String Origins 157

Function index constructs an Index by collecting the atomic substrings of a string at a
given location (e.g., a file path). The type Index is defined as a binary relation from the
location of a substring to the corresponding chunk. The relation type rel is native in
Rascal and is equivalent to a set of tuples. Second, each of the chunks in an Index has
an associated origin which can be retrieved with the function origin.

loc origin(str x); // require: x is a chunk

For example, we can call index on the generated VCARD shown in Fig. 1. Assuming
the output location is |file:///pablo.vcard|, we get the following index:

{<|file:///pablo.vcard|(0,28), "BEGIN:VCARD\nVERSION:4.0\nN:">,
<|file:///pablo.vcard|(28,14), "Pablo Inostroza">,
<|file:///pablo.vcard|(42,7), "\nEMAIL:">,
<|file:///pablo.vcard|(49,14), "pvaldera@cwi.nl">,
<|file:///pablo.vcard|(63,9), "\nEND:VCARD">}

Applying the origin function on any of the chunks retrieves the location where that
particular chunk of text was introduced. Combining both functions gives us the origin
relation, modeled by the Trace data type, which relates output locations to their corre-
sponding origins:

alias Trace = rel[loc pos, loc org];
Trace trace(str s, loc out) = {<l, origin(chunk)> | <l, chunk> ← index(s, out)}

Function trace maps function origin over all chunks of the index. Considering again the
example of Fig. 1, the trace relation of the generated VCARD looks as follows:

{<|file:///pablo.vcard|(0,28), |file:///ToVCARD.rsc|(28, 28)>,
<|file:///pablo.vcard|(28,14), |file:///pablo.txt|(0,14)>,
<|file:///pablo.vcard|(42,7), |file:///ToVCARD.rsc|(66, 7)>,
<|file:///pablo.vcard|(49,14), |file:///pablo.txt|(15,14)>,
<|file:///pablo.vcard|(63,9), |file:///ToVCARD.rsc|(86, 9)>}

Note that the URIs in the origins distinguishes chunks originating in the input (pablo.txt)
from chunks introduced by the transformation (ToVCARD.rsc). Both the index and trace
relations are the stepping stones for the generic tools developed in the subsequent sec-
tion.

2.2 String Origins in M2T and M2M Transformations

The previous example illustrates the use of string origins for text-to-text transformations.
However, string origins are also useful in model-to-text and model-to-model transfor-
mations. More specifically, when parsing text into an AST, the string fragments that
appear as leaves of the AST have string origins attached, pointing to the corresponding
text fragment in the input file. Model-to-model transformations preserve the origins of
strings copied from the input model and generate new origins for synthesized string
fragments. Similarly, unparsing and other model-to-text transformations preserve the
origins of strings in the AST. Again, the origin propagation is transparent to transfor-
mation writers, parsing and unparsing because origins are propagated through standard
string operators.

158 P. Inostroza, T. van der Storm, and S. Erdweg

state opened
close => closed

end
state closed
open => opened
lock => locked

end
state locked
unlock => closed

end

(a) An example state machine

controller(
[... /∗ event declarations ∗/ ...],
[state("opened"@{|input|(62,6)}, [],

[transition("close"@{|input|(70,5)},
"closed"@{|input|(79,6)})]),

state("closed"@{|input|(100,6)},[],
[transition("open"@{|input|(108,4)},

"opened"@{|input|(116,6)}),
transition("lock"@{|input|(124,4)},

"locked"@{|input|(132,6)})]),
state("locked"@{|input|(152,6)},[],

[transition("unlock"@{|input|(160,6)},
"closed"@{|input|(170,6)})])])

(b) Parsed AST of the state machine

prog([
fdef("opened"@{|input|(62,6)},[],val(nat(0))),
fdef("closed"@{|input|(100,6)},[],val(nat(1))),
fdef("locked"@{|input|(152,6)},[],val(nat(2))),
... // dispatch functions per state
fdef(// main dispatch
"main"@{|meta|(1280,13)},
["state"@{|meta|(1307,5)},
"event"@{|meta|(1316,5)}],

cond(equ(var("state"@{|meta|(1515,5)}),
call("opened"@{|input|(62,6)}, [])),

call("opened-dispatch"
@{|meta|(1565,9),|input|(62,6)},

[var("event"@{|meta|(1583,5)})]),
cond(equ(var("state"@{|meta|(1515,5)}),

call("closed"@{|input|(100,6)},[])),
call("closed-dispatch"

@{|input|(100,6),|meta|(1565,9)},
[var("event"@{|meta|(1583,5)})]),

cond(equ(var("state"@{|meta|(1515,5)}),
call("locked"@{|input|(152,6)},[])),

call("locked-dispatch"
{|meta|(1565,9),|input|(152,6)},

[var("event"@{|meta|(1583,5)})]),
val(error("UnsupportedState"

@{|meta|(1375,16)}))))))], [])

(c) Generated AST of the compiled state machine

Fig. 2. The names in the state machine code (a) end up as strings in the AST (b), the origins of
which are propagated to the compiled AST (c). State machine input is represented by URI input,
the transformation definition by URI meta.

Tracing origin information for string fragments in an AST is often useful. For exam-
ple, variable names typically occur as string fragments in an AST. Figure 2 illustrates
tracing of variable names in the context of a DSL for state machines. Figure 2a shows
the source code of a state machine. Parsing the state machine produces an abstract
syntax tree (AST), which is shown in Figure 2b. Note that all strings in this AST are
annotated with their origin, using the pseudo-notation “@”. The AST is then translated
to an imperative program which is shown in Figure 2c. Some strings have input origins
(e.g., “opened”), some are introduced by the transformation and have meta origins (e.g.,
“main”), and some strings have origins in both the input and transformation because of
concatenation (e.g., “opened-dispatch”).

3 Applications of String Origins

3.1 Hyperlinking Generated Artifacts

One of the foremost applications of string origins is relating (sub)strings of the output
back to the input of a transformation [10,12]. Applications of this information include
embedding links back to the source program in generated code, inspectors, debuggers
(e.g., using SourceMaps [15]), or translating back errors produced by further transfor-
mations (e.g., general-purpose language compiler errors). In this section we show an

Tracing Program Transformations with String Origins 159

Fig. 3. Three editors showing (1) generated code with embedded hyperlinks (2) the input state
machine model and (3) the transformation code. Fragments of the generated code that originate
from the input are in bold red.

example of inspecting the result of a program transformation where the output is shown
in an editor with embedded hyperlinks to the input or transformation code.

To display hyperlinks for parts of the generated code, the offsets of the chunks in the
generated code must be mapped back to the origin associated with each corresponding
chunk. Fortunately, the trace relation introduced in Section 2.1 contains exactly this
information. The hyperlinks are created by finding the location of a click in the Trace
mapping and moving the focus and cursor to the corresponding editor.

A demonstration of this feature is shown in Fig. 3. The screenshot shows three editors
in Rascal Eclipse IDE. The first column shows generated Java code. The substrings
highlighted in red are the substrings originating from the input, a textual model for
state machines (shown in the middle). The other substrings (in black) are introduced by
the code generator, which is shown in the right column. Clicking anywhere in the first
column will take you to the exact location where the clicked substring originated.

3.2 Protecting Regions of Generated Code

In many cases, a model-to-text transformation is intended to generate just a partial im-
plementation that has to be completed by the programmer. Normally, if the transfor-
mation is re-run, the manually edited code is overwritten. In general, this problem is
addressed by explicitly marking certain zones of the generated text as editable. The
MOF Models to Text Standard [11], for instance, introduces the unprotected keyword
at the transformation level to specify whether a region can be editable by the end pro-
grammer or not. Another traditional solution is the generation gap pattern [6], in which
the generated code and the code that is expected to be handwritten are related by in-
heritance. This, however, demands that the generated code is written in a language that

160 P. Inostroza, T. van der Storm, and S. Erdweg

features inheritance and also that the writer of the transformation encodes this design
pattern in the transformation.

String origins allow us to tackle this problem in a language and transformation
design agnostic way. Since locations correspond to extended URIs, they can be en-
riched with meta data in the form of query string parameters. We provide three func-
tions tagString(key,value), getTagValue(key) and isTagged(key), as an abstract interface
to these query strings. The tagString function could be used in a transformation to tag
regions of text as editable. For instance, the following code snippet marks a substring
as being editable in the code generator for a state machine language:

str command2java(Command command) =
"private void <command.name>(Writer output) {

’ output.write(\"<command.token>\\n\");
’ <tagString("// Add more code here", "editable", command.name)>
’}";

The function tagString transparently marks the origin of the inserted string ("// Add

more code here") to be an editable region and names it as the name of the command
input to command2java.

To provide editor support for editable regions, the marked substrings need to be
extracted from the generated code. The function extract constructs a map from output
location to region name using the index function introduced in section 2.1.

alias Regions = map[loc pos, str name];
Regions extract(str s, loc l) =

(l: getTagValue(x, "editable") | <l, x> ← index(s, l), isTagged(x, "editable"));

From the index computed on the generated code s and the target location l, the function
extract collects all locations which have an associated string value that is tagged as
editable. An editor for s can then use the locations in the domain of this map to allow
changes to the regions identified by the locations. In fact, it maintains another map, this
time from region name (range of the result of extract) to the contents of each region.

When the code is regenerated, the edited contents of the regions need to be plugged
back into the newly generated code, to restore the manual modifications. The function
plug performs this task:

alias Contents = map[str name, str contents];
str plug(str s, loc l, Contents c) = substitute(s, extract(s, l) o c);

The Contents type captures the edits made in the editable regions. The function plug
uses a generic substitution function (substitute) which receives a map from location
to string and performs substitution based on the locations. To obtain this map, plug
composes the map returned by extract with the contents c, where the map composition
operator o is similar to relational composition.

As a proof of concept, we have added a feature to the Rascal editor framework that
uses the presented infrastructure in order to provide consistent editing of generated
artifacts with editable areas. When a transformation that produces editable regions is
executed, a file with information about the editable offsets is generated as well. When
the user opens a generated file, the editor checks if the region information is available. If
so, the editor restricts the editing of text just to the regions marked as editable, ensuring

Tracing Program Transformations with String Origins 161

Fig. 4. Editor featuring highlighted editable regions

that the fixed generated code stays as it is. Fig. 4 shows a screenshot of the editor with
highlighted editable regions.

3.3 Resolving Symbolic Names

Textual DSLs or modeling languages employ symbolic names to encode references, for
instance from variables to declarations. As a result, DSL compilers and type checkers
require name analysis to resolve references to referenced entities, in fact imposing a
graph structure on top of the abstract syntax tree (AST) of the DSL. The names them-
selves cannot be used as nodes in this graph, since then different occurrences of the
same name will be indistinguishable. A solution to this problem is to assign unique la-
bels to each name occurrence in the source code. Since no two names can occupy the
same location in the source code, string origins are excellent candidates to play the role
of such labels.

Figure 5a shows the abstract syntax of the state machine language used in Fig. 2.
Note that states, events and transitions contain strings. Each of these strings will be an-
notated with an origin by the state machine parser as in Fig. 2b. Figure 5b shows the
generic type Ref for reference graphs: a tuple consisting of the set of all name occur-
rences (names), and a relation mapping uses of names to declarations. The function
resolve computes a reference graph by first constructing two relations mapping names
of states and events to declarations of states and events, respectively (sds resp. eds).
The last comprehension uses the deep matching feature of Rascal (/) to find transitions
arbitrarily deep in the controller ctl. Each transition then contributes two edges to the
relation e.

Reference graphs such as returned by resolve have numerous generic applications in
the context of DSL engineering. For instance, reference graphs can be used to imple-
ment jump-to-definition hyperlinking of editors: when the user clicks on the use of a
name, the reference graph can be used to find the location of its declaration. Another
application is rename refactoring: given a reference graph, and the locations of a name
occurrence, it is possible to track other names that reference it or are referenced by it and
consistently rename them. Finally, if Ref is slightly modified to distinguish uses from

162 P. Inostroza, T. van der Storm, and S. Erdweg

data Controller
= controller(list[Event] events,

list[State] states);
data State
= state(str name,

list[Transition] trans);

data Event
= event(str name, str token);

data Transition
= transition(str event, str state)

(a) AST data type of state machines

alias Ref = tuple[set[loc] names,
rel[loc use, loc def] refs];

Ref resolve(Controller ctl) {
sds = { <x, origin(x)> | state(x, _) ← ctl.states };
eds = { <x, origin(x)> | event(x, _) ← ctl.events };
v = range(sds) + range(eds);
e = { <origin(e),ed>, <origin(s),sd>

| /transition(e, s) := ctl,
<e, ed> ← eds, <s, sd> ← sds};

return <v, e>;
}

(b) Name resolution for state machines

Fig. 5. Implementing name resolution for state machines

declarations in the names component, reference graphs can be used to report unbound
names or unused declarations.

3.4 Enforcing a Same Origin Policy for References

A common problem with code generation is that names used in the input (source names)
which pass through a transformation and end up in the output might interact with names
introduced by the transformation (introduced names). For instance, the declaration of
a name introduced by the transformation might capture a reference to a source name,
or vice versa. This is the problem that is traditionally solved in the work on macro
hygiene [3].

The problem of inadvertent name capture is best illustrated using an example. Fig-
ure 6a shows the simple state machine used earlier in Fig. 2a, but this time the last state
is named current. The code generator of state machines – partially shown in Fig. 6b – in-
troduces another instance of the name current to store the current state in the generated
Java implementation of the state machine. As a result, the declaration of this current
captures the reference to the state constant current.

The reference arrows in Fig. 6c show that both current variables in the if-condition
are bound by the current state variable declaration. However, the right-hand side of
the equals expression should be bound by the constant declaration corresponding to the
state current. Moreover, the Java compiler will not signal an error: even though the code
is statically correct, it is still wrong.

To avoid name capture, the algorithm described below renames the source names in
the output of a transformation if they are also in the set of non-source names. The result
can be seen in Fig. 6d: the source occurrences of current are renamed to current0, and
inadvertent capture is avoided. Effectively, the technique amounts to enforcing a same
origin policy for names, similar to how a same origin policy avoids cross-site scripting

Tracing Program Transformations with String Origins 163

state opened
close => closed

end

state closed
open => opened
lock => current

end

state current
unlock => closed

end

(a) Input

str controller2run(Controller ctl) =
"void run(Scanner input, Writer output) {
’ int current = <ctl.states[0]>;
’ while (true) {
’ String tk = input.nextLine();
’ <for (s ← ctl.states) {>
’ <state2if(s)>
’ <}>
’ }
’}";

str state2if(State s) =
"if (current == <s.name>) {
’ <for (transition(e, s2) ← s.transitions) {>
’ if (<e>(tk)) current = <s2>;
’ <}>
’ continue;
’}";

(b) Excerpt of state machine compiler

static final int current = 2;
void run(...) {
int current = opened;
...
if (current == current) {

if (unlock(tk)) current = closed;
continue;

}
...

} (c) Incorrect output

static final int current0 = 2;
void run(...) {
int current = opened;
...
if (current == current0) {

if (unlock(tk)) current = closed;
continue;

}
...

} (d) Repaired output

Fig. 6. Example of repairing name capture: the input (a) contains the name current, but this
name is introduced in the transformation as well (b). Consequently, the introduced variable in the
output shadows the constant declaration (c). The fix function renames all occurrences of current
originating in the input to current0 so that capture is avoided (d). The arrows in (c) and (d) link
variable uses to their declarations.

attacks in Web application security1: names originating from different artifacts should
not reference each other.

In [5] the authors showed how string origins proved to be instrumental in automati-
cally repairing the problem of unintended variable capture. In this section we present a
technique that is simpler but also more conservative: it might rename more identifiers
than is actually needed. Whereas the method of [5] is parameterized in the scoping rules
of both source and target language, the technique of this section is language agnostic,
and does not require name analysis of the source or target language.

The key observation is that whenever name capture occurs it involves a source name
and a name introduced by the transformation. This difference is reflected in the origins
of the name occurrences in the output: the origins’ source locations will have different
URIs. The same origin policy then requires that for every reference in the generated
code from x to y, both x and y originate from the input or neither. The same origin
policy is enforced by ensuring that the set of source names is disjoint from the set of
names introduced by the transformation. This can be realized by consistently renaming
source names in the generated code when they collide with non-source names.

To formalize the same origin policy, let t = f (s) be the result of some transformation
f on input program s, inducing a trace relation τ ∈ Trace, and let Gs = 〈Vs,Es〉, Gt =
〈Vt ,Et〉 be the reference graphs of the source s and target t, respectively. The same origin
policy then requires that

∀〈l1, l2〉 ∈ Et ,〈l1,o1〉 ∈ τ,〈l2,o2〉 ∈ τ : o1 ∈Vs ⇔ o2 ∈Vs

1 http://en.wikipedia.org/wiki/Same-origin_policy

http://en.wikipedia.org/wiki/Same-origin_policy

164 P. Inostroza, T. van der Storm, and S. Erdweg

str fix(str gen, Index names, loc inp) {
bool isSrc(str x) = origin(x).path == inp.path;
set[str] other = { x | <_, x> ← names, !isSrc(x) };
set[str] allNames = { x | <_, x> ← names };
map[loc,str] subst = ();
map[str,str] renaming = ();
for (<l, x> ← names, isSrc(x), x in other) {

if (x notin renaming) {
<y, allNames> = fresh(x, allNames);
renaming[x] = y;

}
subst[l] = renaming[x];

}
return substitute(gen, subst);

}

Fig. 7. Restoring disjointness by fixing source names

To enforce the same origin policy, one more assumption on reference graphs is needed,
namely that the locations in every reference edge point to the same textual name. In
other words: every use is bound by a declaration with the same name. For instance, the
reference edges drawn in Fig. 6c and Fig. 6d satisfy this invariant since variable uses
l1, l2, l3 point to occurrences of the name current, which is also the name used in the
declaration l0.

If we assume that the same name invariant is true for Et , then the same origin policy
is satisfied if the set of source names is disjoint from the set of names introduced by the
transformation. The same name invariant ensures that for every 〈l1, l2〉 ∈ Et , we have
that l1 and l2 point to the same name. Consequently, it is not possible that one name
originates from the input (e.g., through o1) but the other does not (e.g., through o2)
because that would contradict disjointness of names.

The code for restoring disjointness is shown in Fig. 7. The function fix has three
parameters: the generated code gen, the index names capturing the names occurring in
gen, and a source location identifying the input program inp. The latter is used by the
predicate isSrc to determine whether a name x is a source name by checking if the path
in the origin of x is the input path.

The for-loop iterates over the index names that represents all names in the generated
string gen. If such a name x originates in the source and is also used as an other name,
an entry is created in the substitution subst, mapping location l to a new name. The new
name is retrieved from the renaming map which records which source names should
be renamed to which new name. The function fresh produces a name that is not used
anywhere (i.e., it is not in allNames). The variable allNames is updated by fresh to
ensure that consecutive renames do not introduce new problems.

Note that fix could also be parameterized with an additional set of external names
which might capture or be captured by source names. External names could include the
reserved identifiers (keywords) of the target language or (global) names that are always
in scope (e.g., everything in java.lang). The only required change is to add the external
names to other.

Tracing Program Transformations with String Origins 165

4 Implementation

The implementation of string origins requires changes to the internal representation of
strings used by the transformation engine. In this section we discuss the implementation
of string origins in Rascal.

As Rascal is implemented in Java, we have implemented string origins in Java as
well. Rascal string values (of type str) are internally represented as objects conforming
to the interface IString. We have reimplemented this interface to support string origins,
changing only the internal representation. Instances of IString are constructed through
a factory method IString string(java.lang.String) in the Rascal factory interface for creat-
ing values (IValueFactory).

To ensure that the propagation of string origins is complete, every created string now
needs a location to capture its origin. We have extended IValueFactory with another fac-
tory method IString string(java.lang.String, ISourceLocation) to support this. Calls to the
original string(...) method were changed to the new one, everywhere in the Rascal imple-
mentation. The locations where changes have been made correspond to the following
three categories:

• Input: any function that reads a resource into a string must be modified to install
origins on the result. In Rascal, these are built-in library functions like readFile(loc),
readLines(loc), parse(loc), etc.

• String literals: constant string values that are created as part of a Rascal program
get the origin of the string literal in the Rascal file. Whenever a string literal is
evaluated, its location is looked up in its AST and passed to the factory method.
This category also covers interpolated string templates.

• Conversions: converting a value to a string in Rascal is achieved through string in-
terpolation. For instance, "<x>" returns the string representation of x. If x evaluates
to a string, the result of the conversion is that string itself (including origin); other-
wise, the newly created string gets the locations of the expression x in the Rascal
source.

String origins are propagated through all string operations. As a result, all opera-
tions provided in the IString interface have been reimplemented. The two most im-
portant operations are concat and substring. Their semantics is illustrated in Fig. 8.
The top two string values are annotated with source locations |file:///foo.txt|(0,5) and
|file:///bar.txt|(0,5). Concatenating both strings (middle row) produces a new, composite
string, where the original arguments to concat are still distinguishable, and have their
respective origins. Finally, the substring operation computes a new composite string
with the origin of each component updated to reflect which part of the original input is
covered. Besides concat and substring, all common string operations such as indexOf,
replaceAll, split etc. can be defined on strings with origins, with full propagation.

Internally, Rascal strings with origins are represented as binary trees. A string is
either a chunk object which has a source location attached to it, or it is a concat object
which represents two concatenated strings. A string represented as a binary tree can
be flattened to a list containing elements with a string value and source location for
each chunk object at the leaves. This list is the basis for the functions index and origin
introduced in Section 2.1.

166 P. Inostroza, T. van der Storm, and S. Erdweg

|file:///foo.txt|(0,5) |file:///bar.txt|(0,4)

|file:///foo.txt|(2,3) |file:///bar.txt|(0,2)

|file:///foo.txt|(0,5) |file:///bar.txt|(0,4)

substring (, 2, 7)

concat (,)

C : E U R N L 0 3

C : E U R N L 0 3

E U R N L

Fig. 8. The concat and substring operations defined on origin strings

Although in our experience the performance penalty introduced by representing
strings as binary trees is acceptable in practice, further benchmarking is needed to assess
the overall impact. In particular, it will be interesting to see how the choice of represen-
tation affects different use cases. For instance, when generating code, concatenation is
one of the most frequently executed string operations. The binary tree representation
is optimized for that: concatenation is an O(1) operation. On the other hand, analyzing
strings (e.g., substring, parsing, matching) is much more expensive if a string is a bi-
nary tree. But then again, the penalty will be most significant if these operations apply
to strings resulting from concatenation in the first place. We consider investigating these
and other aspects of performance an important area for further research.

5 Related Work

String origins are related to previous work in origin tracking, taint propagation and
model traceability in model-driven engineering. Below we discuss each of these areas
in turn.

Origin Tracking. The main inspiration of string origins is origin tracking [16]. In the
context of term-rewriting systems, this technique relates intermediate subterms matched
and constructed during a rewriting process. Origin tracking was proposed as a technique
to construct automatic error reporting, generic debuggers and visualization in program
transformation scenarios. String origins are related in that the result is a relation be-
tween input and output terms. However, for string origins, only string valued elements
are in this relation. Furthermore, the origin relation of [16] is derived from analyzing
rewrite rules. As a result the transformation writer is restricted to this paradigm. With
string origins, a transformation can be arbitrary code.

Taint Propagation. In Web applications, untrusted user input might potentially end up
as part of a database query, a command-line script execution or web page. Malicious
input could thus compromise the system security in the form of code injection attacks.
Taint propagation [7] is a mechanism to raise the level of security in such systems by

Tracing Program Transformations with String Origins 167

tracking potentially risky strings at runtime. It consists of three main phases: mark cer-
tain sources of strings as tainted, propagating taint markers across the execution of the
program, and disallowing the use of tainted strings at certain specific points called sinks.
The propagation is achieved by annotating the string values themselves and making sure
that string operations propagate taintedness.

Although in general the taint information is coarse-grained: any string that is com-
puted from any number of tainted strings is tainted as well. A finer granularity is em-
ployed in character-based taint propagation [2]. String origins are very similar to this
approach in that the origin is known for each character in a string. On the other hand,
string origins can be considered more general, because origins capture more informa-
tion than just taintedness. In fact, taint propagation could easily be realized using string
origins by considering certain input locations as tainted.

In [4], the authors present an application of taint propagation to the domain of model-
to-text transformations, specifically, to support debugging of failures introduced in a
transformation. Their approach consists in instrumenting the transformation in order to
add so-called tainted marks to each identifiable element of the input. On the other hand,
the user of the transformation has to identify erroneous sections in the output. Since the
taints from the input are consistently propagated by the instrumented transformation, it
is possible to relate the errors in the output to specific elements of the input. In this work,
the input is an XML document and the transformation, an XSLT file. The granularity of
this technique is at the level of XML nodes, which provides quite precise information
for the error tracking analysis.

Traceability in Model-Driven Engineering. In model-driven engineering, models are
refined through transformations to produce executable artifacts. In [1], the authors ar-
gue for the need for automatic generation of trace information in such a setting. Several
endeavors towards this goal have been reported in the context of different model trans-
formation systems, such as ATL, MOF, and Epsilon.

For instance, ATL transformations can be manually enriched with traceability rules
that conform to a traceability metamodel [8]. Besides the target models, the enriched
transformations will also automatically produce trace models when executed. In order
to avoid the manual work of adding these specifications to existing transformations, the
authors present a technique for automatically weaving the trace rules into the transfor-
mation. Unlike string origins, this approach relies on the structure of the ATL rules to
derive the trace links, and such links just relate a subset of the elements in the target
model to certain elements in the source model, but not to the transformation itself.

Another approach to address traceability is the MOF Models to Text Transformation
Language standard [11]. In this specification, transformations can be decorated with a
trace annotation so when the transformation is executed, a relation between its output
and its input is constructed. As in the case of [8], the transformation conveys the trace-
ability information explicitly. To overcome this, [12] and [13] introduce an alternative
technique for managing traceability in MOFScript, a language for defining model to
text transformations based on the MOF standard. In this case, “any reference to a model
element that is used to produce text output results in a trace between that element and
the target file”. Like string origins, this technique provides implicit propagation and fine-
grained tracing. However, no relation between the output and the text fragments coming

168 P. Inostroza, T. van der Storm, and S. Erdweg

from the transformation is created. Just as in the case of ATL, MOFScript depends on
the structure of the rules to analyze the transformation and generate trace information.

Finally, The Epsilon Generation Language (EGL) is a model-to-text transformation
language defined at the core of the Epsilon Platform [14]. EGL provides an API to
construct a transformation trace. However, this API is coarse-grained (file-level).

6 Conclusion

String origins identify the exact origin of a fragment of text. By annotating string values
with their origins, the origins are automatically propagated through program transfor-
mations, independent of transformation style or paradigm. The result is that for every
string valued element in the output of a transformation, we know where it came from,
originating in the input program or introduced by the transformation itself.

String origins have diverse applications. They address traditional model traceability
concerns by linking output elements to where they were introduced. We have shown two
applications in this space, namely hyperlinked editors for generated code and protected
regions. Moreover, string origins can be used to uniquely identify sub terms, which is
instrumental for implementing name resolution, rename refactoring, jump-to-definition
services and error marking. Finally, we have shown that by distinguishing source names
from introduced names, accidental name capture in generated code can be avoided in a
reliable and language agnostic way.

The implementation of string origins is simple and independent of any specific meta-
model, transformation engine or technological space. Any transformation system or pro-
gramming language that manipulates string values during execution can support string
origins by changing the internal representation of strings. The standard programming
interface on strings remains the same. As a result, code that manipulates strings does not
have to be changed, except for the code that creates strings in the first place. Although
conceptually simple, we have shown that string origins, nevertheless, provide a power-
ful tool to improve the understandability and reliability of program transformations.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Syst. J. 45(3), 515–526 (2006)

2. Chin, E., Wagner, D.: Efficient character-level taint tracking for Java. In: Proceedings of the
2009 ACM Workshop on Secure Web Services, pp. 3–12. ACM (2009)

3. Clinger, W., Rees, J.: Macros that work. In: Proceedings of Symposium on Principles of
Programming Languages (POPL), pp. 155–162. ACM (1991)

4. Dhoolia, P., Mani, S., Sinha, V.S., Sinha, S.: Debugging model-transformation failures using
dynamic tainting. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 26–51. Springer,
Heidelberg (2010)

5. Erdweg, S., van der Storm, T., Dai, Y.: Capture-avoiding and hygienic program transforma-
tions. In: Proceedings of European Conference on Object-Oriented Programming (ECOOP).
Springer (to appear, 2014)

6. Fowler, M.: Domain-Specific Languages. Addison Wesley (2010)

Tracing Program Transformations with String Origins 169

7. Haldar, V., Chandra, D., Franz, M.: Dynamic taint propagation for Java. In: 21st Annual
Computer Security Applications Conference, p. 9. IEEE (2005)

8. Jouault, F.: Loosely coupled traceability for ATL. In: Proceedings of the European Confer-
ence on Model Driven Architecture (ECMDA) Workshop on Traceability, pp. 29–37 (2005)

9. Klint, P., van der Storm, T., Vinju, J.: Rascal: A domain-specific language for source code
analysis and manipulation. In: Proceedings of Conference on Source Code Analysis and
Manipulation (SCAM), pp. 168–177 (2009)

10. Kolovos, D.S., Rose, L., Paige, R., García-Domínguez, A.: The Epsilon book,
http://www.eclipse.org/epsilon/doc/book/ (accessed November 13, 2012)

11. Object Management Group (OMG). MOF Model to Text Transformation Language 1.0.
formal/2008-01-16 (January 2008)

12. Oldevik, J., Neple, T.: Traceability in model to text transformations. In: 2nd ECMDA Trace-
ability Workshop (ECMDA-TW), pp. 17–26 (2006)

13. Olsen, G.K., Oldevik, J.: Scenarios of traceability in model to text transformations. In:
Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 144–156.
Springer, Heidelberg (2007)

14. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The Epsilon generation language.
In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 1–16.
Springer, Heidelberg (2008)

15. Seddon, R.: Introduction to JavaScript source maps (2012),
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

16. van Deursen, A., Klint, P., Tip, F.: Origin tracking. Symbolic Computation 15, 523–545
(1993)

http://www.eclipse.org/epsilon/doc/book/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

	Tracing Program Transformations with String Origins
	1 Introduction
	2 StringOrigins
	2.1 Representing String Origins
	2.2 String Origins in M2T and M2M Transformations

	3 Applications of String Origins
	3.1 Hyperlinking Generated Artifacts
	3.2 Protecting Regions of Generated Code
	3.3 Resolving Symbolic Names
	3.4 Enforcing a Same Origin Policy for References

	4 Implementation
	5 Related Work
	6 Conclusion
	References

