
ChainTracker, a Model-Transformation Trace

Analysis Tool for Code-Generation
Environments

Victor Guana and Eleni Stroulia

Department of Computing Science
University of Alberta
Edmonton, Canada

{guana,stroulia}@ualberta.ca

Abstract. Model-driven engineering is advocated as an effective method
for developing families of software systems that systematically differ
across well defined dimensions. Yet, this software construction paradigm
is rather brittle at the face of evolution. Particularly, when building code-
generation environments, platform evolution scenarios force developers to
modify the generated code of individual generation instances in an ad-hoc
manner. Thus violating the systematicity of the original construction pro-
cess. In order to maintain the code-generation environment synchronized,
code refinements have to be traced and backwardly propagated to gener-
ation infrastructure, so as to make these changes systematically possible
for all systems that can be generated. This paper presents ChainTracker,
a general conceptual framework, and model-transformation composition
analysis tool, that supports developers when maintaining and synchroniz-
ing evolving code-generation environments. ChainTracker gathers and
visualizes model-to-model, and model-to-text traceability information for
ATL and Acceleo model-transformation compositions.

1 Introduction

Code-generation environments automate and systematize the process of building
families of software systems. They typically rely on one or more domain-specific
languages, and a set of model transformations that reify the abstractions ex-
pressed in the domain models and generate executable code [1]. The transforma-
tions work by injecting execution semantics into the initial problem specification,
through a composition of model-to-model and model-to-text transformation mod-
ules.

Like all software, code-generation environments are bound to evolve [2]. Re-
cent empirical studies revealed that practitioners face challenges when new re-
quirements arise, and changes have to be introduced in either the source code
of a generated application, or the domain-specific languages and the model-
transformation compositions involved in the code-generation process [3].

Although, in principle, developers avoid modifying the code of a system after
it is generated, approximately 40% end up having to do so [3][2] and, when
they do, they have to spend copious amounts of time inspecting how changes

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 146–153, 2014.
c© Springer International Publishing Switzerland 2014

ChainTracker, a Model-Transformation Trace Analysis Tool 147

impact models and transformations, so changes can be backwardly propagated
to the generation environments, and later reused in the generation of future
systems. So far, little progress has been made towards supporting developers
when performing these modifications during the construction and maintenance
of code-generation environments.

The work we describe in this paper makes two novel contributions. The first is
a general conceptual framework that formalizes how to model and collect trace-
ability information in code-generation environments with model-transformation
compositions that use (i) rule-based transformation languages to implement
models-to-model transformations, an (ii) template-based languages to implement
model-to-text transformations, distinguishing between explicit and implicit trace-
ability links. The second contribution of our work is ChainTracker, a model-
transformation composition analysis tool that supports developers when main-
taining and synchronizing evolving code-generation environments. ChainTracker
gathers and visualizesmodel-to-model, andmodel-to-text traceability information
for ATL [4] and Acceleo [5] model-transformation compositions (as examples of
the above rule-based model-to-model and template-based model-to-code transfor-
mation languages).

2 Background and Related Work

In principle, traceability information can be used in multiple ways, including to
assess metamodel coverage in a code-generation environment, to verify model-
transformation correctness, and to reduce the cognitive challenges when under-
standing a model-transformation chain [6][7]. However, most of the time, trace-
ability information is collected manually or through experimental tools. More
importantly, all current tools are unable to examine the model-to-text transfor-
mations, ignoring the last step in the model-transformation composition and
effectively relying on developers for mapping code changes to their upstream
dependent generation infrastructure.

Let us now review in some detail current approaches to traceability in model-
driven engineering. Falleri, et al. [8] propose an imperative language in order to
create trace models inside individual model-transformation modules. In this pro-
posal, developers have to insert traceability constructs inside the transformation
code to gather the traceability information of a transformation module. Similarly,
Jouault [9] presents a strategy to keep track of ATL trace links by extendingmodel-
transformation rules with ATL constructs that build a traceability model con-
forming to a traceability metamodel proposed by the same author.

Van Amstel et al. [10] present a tool that gathers and visualizes traceability
information of transformation compositions. In this case, the implemented tool
makes explicit the mappings between source and target elements of a transfor-
mation, highlighting the hierarchical structure of both metamodels and ATL
transformation modules. Jouault’s proposal does not provide insights on possi-
ble visualization mechanisms to reduce the cognitive challenges of coping with
massive amounts of information derived from complex model-transformation

148 V. Guana and E. Stroulia

compositions. Furthermore, none of the proposals presented above provide any
type of support to collect or visualize traceability information for model-to-text
transformations.

In Section 3 we present ChainTracker’s implementation architecture and vi-
sualization mechanisms. ChainTracker works as a third-party tool that analyses
model-transformation compositions (that include model-to-textmappings), keep-
ing the semantics of transformation rules intact, and providing an orthogonal
set of metamodels that contain traceability information by statically interpret-
ing a set of transformation rules that have been composed in order to generate
code. In Section 3, we also introduce the concept of implicit traceability links
(not covered by the current proposals). Implicit traceability links augment the
traceability analysis by identifying indirect relations between source and target
metamodels. This information provides additional support to developers when
analysing the impact of changes in metamodels and transformations, that need
to be synchronized after generated code refinements.

3 The ChainTracker Architecture

As shown in Figure 1, the architecture of ChainTracker consists of four main
components: the ATL Parser, the Tuple Extractor, the Acceleo Parser, and the
Tuple Visualizer. ChainTracker receives as input all the relevant transformations
of a model-transformation composition to be analysed (ATL scripts for model-
to-model and Acceleo scripts in the case of model-to-text transformations).

4.

3.

2.

1.

Tuple Visualizer
«Input»

Acceleo Scripts

Model-to-Text
Traceability Links Acceleo Parser

«conformingTo»

Implicit
Traceability

Links

«Input»
Source and Target

Metamodels

«Input»
ATL

Implicit Tuple
Solver

MarcoPolo Tuple
Metamodel
(Figure 4)

«conformingTo»

Explicit Tuple
Solver

Explicit
Traceability

Links

«conformingTo»

MarcoPolo Core Metamodel
(Figure 4)

Transformation
ModelsATL Parser

2.

Implicit
Traceability

Links
Implicit Tuple

Solver
Explicit Tuple

Solver

Explicit
Traceability

Links

Tuple Extractor

Fig. 1. ChainTracker Implementation Architecture

3.1 A Transformation Composition Example

We will illustrate the ChainTracker process using a simple model-transformation
composition example. The goal of the composition is to refactor the elements of
a model conforming to the MetamodelA, and produce a model conforming to
MetamodelB, both portrayed in Figure 2. Then, the composition generates a

ChainTracker, a Model-Transformation Trace Analysis Tool 149

Java class that contains attributes initialized using elements of the latter model.
Listings 1.1 and 1.2 present our model-to-model andmodel-to-text transformation
examples respectively.

element2element1

Metamodel B

element2element1

Metamodel A
Y

name:String
description1:String
description2:String

11

X2
description2:String

X1
description1:String

X
name:String

Fig. 2. Metamodel A (source) and Metamodel B (target) examples

3.2 The ATL Parser

The main functionality of the ATL Parser is to read, parse, and simplify a set
of ATL transformation scripts. ChainTracker uses the reflexive capabilities of
ATL’s virtual machine to obtain the XMI-AST representation of a set of ATL
scripts. ChainTracker implements a programmatic transformation that takes
the XMI model of an ATL script, and produces a simplified representation that
contains all the information relevant for the traceability link recollection. The
resulting model conforms to MarcoPolo, a metamodel that we have designed
in order to highlight transformation mappings in rule-based and template-based
transformation languages (Figure 3). MarcoPolo is composed by two main pack-
ages, MarcoPolo Core and MarcoPolo Tuple. In this particular case, MarcoPolo
Core is conceived to manage the complexity of transformation tuples that rep-
resent ATL transformation mappings. Effectively, we use MarcoPolo“to find our
way” through the traceability links of a model-transformation composition.

MarcoPolo Tuple MetamodelMarcoPolo Core Metamodel

0..n

implicitSources1
target

1

source

ImplicitSourceConcept
type
relationName

SourceConcept
modelURI
modelName
elementID
attributeID

TranformationTuple
tansformationURI
tansformationID
ruleID

TargetConcept
modelURI
modelName
elementID
attributeID

1

sourceElement source

1

1 owner
0..n

attributes

1
originates

1 owner

0..n

targetAttributes

0..n
 targetElements

SourceElement
sourceModel
sourceModelVariable
sourceElementType

SourceAttribute
implicitSources

TargetAttribute
compositeName

TargetElement
targetModel
targetModelVariable
targetElementType

TransformationMap
name
type
ownerModule
uri

Fig. 3. MarcoPolo Metamodel

In MarcoPolo Core, we see each transformation module as a 3-tuple (TM, TE,
se), where TM is the set of transformation rules, and TE a collection of its
target-model elements. TE is defined as a tuple (TA, se) in which TA is a set of

150 V. Guana and E. Stroulia

target attributes ta, and se a unique source-model element. Furthermore each
source-model element se contains a set, namely SA, that represent multiple
source attributes sa. Finally, ta is modelled as a nested tuple (ta, sa) establish-
ing a one-to-one mapping from a target attribute to a source attribute. Following
this definition, it can be seen that in MarcoPolo the origins of a target attribute
come from one, and only one, source attribute. However, the attribute’s implicit
source concept could have pointers to other intermediate source elements that
participate in the creation of a target element as explained below.

1 module A2B;
2 create OUT : B from IN : A;
3 rule X2Y {
4 from
5 x : A!X
6 to
7 y : B!Y (
8 name <− x.name,
9 description1 <− x.element1.description1,

10 description2 <− x.element1.element2.description2)}

Listing 1.1. ATL - A2B Transformation Module Example

In our example, after the X2Y matched rule is parsed (Listing 1.1), a model
conforming to MarcoPolo Core is produced with the following (ta, sa) tuples:

– (Y : name, (X : name))
– (Y : description1, (X : element1/description1))
– (Y : description2, (X : element1/elenment2/description2/))

On cursory examination, these tuples would be identified as all the trace-
ability links that map the elements of the MetamodelA into elements in of the
MetamodelB. However, even though there are one-to-one mappings between
the target and source attributes in the transformation, there are many more
dependency links between the source and target metamodels. For example, the
creation of the Y : description2 attribute in the MetamodelB, depends not
only on the attribute X2 : description2 of the MetamodelA, but also on the
model associations element1 and element2, and the element X1 as well. If any
of the associations changes, or if the element X1 disappears, the transformation
X2Y will be broken. In effect, there are two types of traceability links that need
to be preserved and made visible: explicit and implicit traceability links. The
former type reflects the dependencies between the endpoints of the mappings
in a transformation rule (as shown above); the latter type includes the depen-
dencies between metamodel elements and associations used to navigate or query
the source metamodel, and select information relevant during the creation of a
target attribute.

In order to be able to detect implicit traceability links, MarcoPolo Core in-
cludes the implicit source attribute as a part of the source attribute concept. The
implicit source represents the relative path that a mapping rule follows when nav-
igating source model concepts in order to create a target attribute (see Figure
3). After the ATL modules are parsed, the implicit source contains a chain of
meta-associations and meta-attributes, often extracted from OCL expressions.

ChainTracker, a Model-Transformation Trace Analysis Tool 151

For example, in the context of the X2Y rule, the implicit source value for the
source attribute X2 : description2 is X : element1/element2/description2/.
Notice how the implicit source does not include information about where the
element1 and element2 associations come from, and if there is an intermedi-
ate element that binds them, in this case X1. Given that both OCL and ATL
model-navigation expressions are solved in execution time, this information is
not explicitly available in the ATL abstract syntax model. ChainTracker’s Tuple
Extractor implements an ATL interpreter that takes the source attribute con-
text together with its implicit source, in order to identify where the intermediate
associations and intermediate attributes come from.

3.3 The Tuple Extractor

The main functionality of the Tuple Extractor component is to analyze every
source-to-target mapping and identify sets of explicit and implicit traceability
links. For that purpose, the Tuple Extractor takes as input a set of models
conforming to MarcoPolo Core that represent all the mappings between source
and target models implemented in a transformation script. It also takes all the
intermediate metamodels used in the composition as input and output patterns.

The Tuple Extractor consists of two sub-modules (Figure 1). While the ex-
plicit tuple solver takes a set of MarcoPolo instances and extracts all the ex-
plicit transformation links for a given transformation mapping. The implicit
tuple solver finds the intermediate or navigated concepts involved in a given
transformation rule. These concepts can be either metamodel elements or asso-
ciations. In our example, the implicit tuple solver will take a (ta, sa) tuple such
as (Y : description2, (X : element1/elenment2/description2/)), and through a
recursive exploration of the A2B source metamodel, it will discover the three
implicit traceability links:

– (Y : description2, X : element1) Association element1 that belongs to X
– (Y : description2− > X1 : element2) Association element2 that belongs to X1
– (Y : description2− > X2 : description2) Element X2 and description2 attribute

The final result of the Tuple Extractor module is a set of MarcoPolo Tu-
ple instances that portray the explicit and implicit traceability links of a given
set of ATL transformation scripts.

3.4 The Acceleo Parser

So far we have described how ChainTracker collects traceability information
from model-to-model transformations. The Acceleo Parser identifies transfor-
mation tuples that map model elements into text artifacts. It takes an Ac-
celeo script together with the metamodel that the script uses as input, and
statically analyses its code-injection statements. Model-to-text traceability links
are modelled in the form of tuples with the following structure ((startLineID,
endLineID), (moduleID, fileID, sourceModelID, source ElementID)). In

152 V. Guana and E. Stroulia

the tuples, startLineID and endLineID specify the initial and final code line
identifiers where a specific source element is queried for a code injection state-
ment, or used in an Acceleo model navigation construct.

1 [module B2Java(’http://ualberta.edu.cs.ssrg.cge.b’)]
2 [template public generateElement(yB : Y)]
3 [comment @main/]
4 [file (’Generated.java’, false , ’UTF−8’)]
5 public class Generated {
6 [for (it : Y | yB)]
7 private Y [it .name/];
8 [/for]
9 public Generated (){

10 [for (it : Y | yB)]
11 [it .name/] = new Y([it.description1/], [it .description2 /]);
12 [/for]}}
13 [/ file]
14 [/template]

Listing 1.2. Acceleo 3.0 - B2Java Transformation Module Example

After analysing the Acceleo model-to-text transformation script presented in
Listing 1.2, the Acceleo Parser identifies traceability links such as ((13, 13),
(B2Java,Generated.java,MetamodelB, Y : description1))

3.5 The Tuple Visualizer

In order to communicate the traceability information to developers, Chain-
Tracker includes a web-based traceability-visualization tool implemented in the
Tuple Visualizer. Figure 4 presents the visualization of the traceability link tu-
ples obtained using ChainTracker’s Tuple Extractor, and the Acceleo Parser for
our A2B (model-to-model) and B2Java (model-to-text) composition example.

Fig. 4. Model-Transformation Composition Traceability Visualization

In Figure 4, red lines represent explicit traceability links according to Mar-
coPolo’s definition, and blue lines represent implicit traceability information of
the composition. The details of the transformation tuples behind the links can
be obtained by hovering the cursor over a link.

ChainTracker, a Model-Transformation Trace Analysis Tool 153

4 Conclusions and Future Work

In this paper we described ChainTracker, a tool designed to support the main-
tenance and evolution of code-generation environments. In the face of an en-
vironment’s platform evolution, ChainTracker can support developers to trace
ad-hoc modifications, from the generated code to is generation environment,
thus enabling corresponding changes to the generation infrastructure so as to
make these changes systematically possible for all systems that can be gener-
ated. ChainTracker is currently aware of the ATL and Acceleo transformation
syntaxes, which it parses to extract traceability information in its syntactically
simpler MarcoPolo metamodel. The second contribution of our work, beyond
ChainTracker itself, is the conceptual framework underlying the design of the
tool that formalizes how we model, and collect traceability information in code-
generation environments, distinguishing between explicit and implicit links and
capturing both in MarcoPolo. We believe that this framework is general and
can support the extension of ChainTracker to deal with other transformation
technologies, beyond ATL and Acceleo.

References

1. Czarnecki, K.: Overview of generative software development. In: Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 326–
341. Springer, Heidelberg (2005)

2. Van Deursen, A., Visser, E., Warmer, J.: Model-driven software evolution: A re-
search agenda. In: Proceedings 1st International Workshop on Model-Driven Soft-
ware Evolution, pp. 41–49 (2007)

3. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of mde in industry. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 471–480. ACM (2011)

4. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

5. Musset, J., Juliot, É., Lacrampe, S., Piers, W., Brun, C., Goubet, L., Lussaud, Y.,
Allilaire, F.: Acceleo user guide (2006)

6. Guana, V.: Supporting maintenance tasks on transformational code generation
environments. In: Proceedings of the 2013 International Conference on Software
Engineering, pp. 1369–1372. IEEE Press (2013)

7. Guana, V., Stroulia, E.: Backward propagation of code refinements on transforma-
tional code generation environments. In: 2013 International Workshop on Trace-
ability in Emerging Forms of Software Engineering (TEFSE), pp. 55–60 (2013)

8. Falleri, J., Huchard, M., Nebut, C., et al.: Towards a traceability framework for
model transformations in kermeta (2006)

9. Jouault, F.: Loosely coupled traceability for atl. In: Proceedings of the European
Conference on Model Driven Architecture (ECMDA) Workshop on Traceability,
Nuremberg, Germany, vol. 91. Citeseer (2005)

10. van Amstel, M., Serebrenik, A., van den Brand, M.: Visualizing traceability in
model transformation compositions. In: Pre-Proceedings of the First Workshop on
Composition and Evolution of Model Transformations (2011)

	ChainTracker, a Model-Transformation Trace
Analysis Tool for Code-Generation
Environments

	1 Introduction
	2 Background and Related Work
	3 The ChainTracker Architecture
	3.1 A Transformation Composition Example
	3.2 The ATL Parser
	3.3 The Tuple Extractor
	3.4 The Acceleo Parser
	3.5 The Tuple Visualizer

	4 Conclusions and Future Work
	References

