
Developing eMoflon with eMoflon

Erhan Leblebici1,�, Anthony Anjorin1,��, and Andy Schürr2

1 Graduate School of Computational Engineering, Technische Universität Darmstadt
{leblebici,anjorin}@gsc.tu-darmstadt.de

2 Real-Time Systems Lab., Technische Universität Darmstadt
andy.schuerr@es.tu-darmstadt.de

Abstract. eMoflon is a Model-Driven Engineering (MDE) tool that sup-
ports rule-based unidirectional and bidirectional model transformation.
eMoflon is not only being used successfully for both industrial case stud-
ies and in academic research projects, but is also consequently used to
develop itself. This is known as bootstrapping and has become an im-
portant test, proof-of-concept, and success story for us. Interestingly,
although MDE technologies are inherently self-descriptive and higher-
order, very few actively developed MDE tools are bootstrapped. In this
paper, we (i) report on the current state and focus of eMoflon, (ii) share
our experience with bootstrapping in an MDE context, and (iii) provide a
scalability analysis of a core component in eMoflon implemented as both
a unidirectional and bidirectional model transformation with eMoflon.

Keywords: eMoflon, MDE, model transformation, bootstrapping.

1 Introduction and Motivation

eMoflon1 is a graph transformation tool that supports the rule-based specifica-
tion of model transformations, which play a central role in Model-Driven Engi-
neering (MDE). eMoflon builds upon the Eclipse Modelling Framework (EMF),
using Ecore for metamodelling, Story Driven Modelling (SDM) [3] (a dialect
of programmed graph transformations) for unidirectional model transformation,
and Triple Graph Grammars (TGGs) [6] for bidirectional model transforma-
tion. eMoflon consists of an Eclipse plugin as backend, and two frontends: a set
of Eclipse-based editors supporting a textual syntax, and a plugin for Enterprise
Architect (EA), a professional UML tool, supporting a visual syntax.

Besides industrial case studies and academic research projects, an important
proof-of-concept for eMoflon is its own self-development. This is often referred
to as bootstrapping and will be used in the rest of this paper to present the main
features supported by eMoflon. Figure 1 depicts a schematic overview of the
chain of model transformations employed internally by eMoflon.

� Supported by the ‘Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

�� The project on which this paper is based was funded by the German Federal Ministry
of Education and Research, funding code 01IS12054. The authors are responsible for
all contents.

1 www.emoflon.org

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 138–145, 2014.
c© Springer International Publishing Switzerland 2014

www.emoflon.org

Developing eMoflon with eMoflon 139

XML

I.a

Ecore

TGG

II.b

II.c

II.a

III
SDM

SDM

injection

IV.a

IV.b
Java

Frontend

(visual)

I.b
Frontend

(textual)

Fig. 1. An overview of the main model transformations used in eMoflon

Ecore, SDM and TGG models are specified in either a visual or textual con-
crete syntax using the respective frontend. The first step in the chain (marked
as I.a, I.b in Fig. 1) maps the frontend-specific representation to and from a
common, frontend-independent XML tree structure. This is realized with C#
code in the case of EA, and with standard (un)parsers in the case of our textual
syntax. The tree structure is used as a generic exchange format decoupling the
backend from its different frontends. It is kept as simple as possible to shift the
complexity of the transformation to the subsequent steps in the chain.

The second step (marked as II.a, II.b, and II.c. in Fig. 1) is to transform the
generic tree structure to actual instances of our Ecore, SDM, and TGG meta-
models. These transformations are bootstrapped (depicted as bold white arrows)
meaning that they are implemented with eMoflon itself. The transformation II.a
is bidirectional to enable importing external Ecore instance models (e.g., as pro-
vided by the Transformation Tool Contest2). A unidirectional version of II.a is
also available in the XML-Ecore direction with SDM, as support for SDM in
eMoflon was implemented before TGGs. The two versions of II.a provide for
an interesting qualitative and quantitative comparison of SDM and TGGs, and
we shall use excerpts of transformation II.a as our running example throughout
the paper. The transformations II.b and II.c transform a tree structure to SDM
and TGGs, respectively. These transformations are currently unidirectional, but
bidirectionalizing them is work in progress as it would, for example, enable trans-
forming generated models (result of III) back into the respective concrete syntax.

TGGs are operationalized by compiling them to SDM with the transformation
III, which is bootstrapped with SDMs as a unidirectional model transformation.
Bidirectionality is not absolutely necessary in this case as the SDM generated
from a TGG represents low-level operationalization details and is not an artifact
meant for further user adjustments. Finally, unidirectional model-to-text trans-
formations IV.a and IV.b generate Java projects from Ecore and SDM, with the
option of injecting hand-crafted (Java) code into the generated files.

In this paper, our contribution is to share and discuss our experience of boot-
strapping in an MDE context. For this, we use excerpts from the import/export
mechanism of eMoflon as our running example, which is developed with SDMs

2 http://www.transformation-tool-contest.eu/

http://www.transformation-tool-contest.eu/

140 E. Leblebici, A. Anjorin, and A. Schürr

and TGGs in two different versions. We also provide a scalability comparison
of these two versions. That is of particular interest in the context of bootstrap-
ping eMoflon. The rest of the paper is structured as follows: Section 2 intro-
duces eMoflon’s support for metamodelling with Ecore. Support for unidirec-
tional (SDMs) and bidirectional (TGGs) model transformation is presented in
Sect. 3 and 4, respectively, together with an evaluation of runtime scalability in
Sect. 5. Bootstrapping transformation tools in general, and eMoflon in particu-
lar, is discussed in Sect. 6 together with related work. Sect. 7 states our future
focus and concludes the paper.

2 Metamodelling with Ecore

eMoflon supports Ecore-conform metamodelling used to specify the data struc-
tures to be manipulated with model transformations. An excerpt of the meta-
model used to represent the generic exchange format in eMoflon is depicted as
a class diagram to the left of Fig. 2, consisting basically of labelled Nodes with
children and Attributes. To demonstrate how this tree structure is used, the tree
metamodel itself is represented as a generic tree to the right of Fig. 2 (as an object
diagram). Only the tree structure for representing EClasses and EReferences

is shown, i.e., EAttributes as well as multiplicities and containment are omit-
ted. The EClasses “Node” and “Attribute” are represented as nodes in the tree
labelled as “EClass” with attributes for their names and a global ID used for
cross references in the tree. EReferences are represented analogously, placed in
the tree as children of a “references” node of the respective “EClass” node.

«EClass»
Node

name :EString

«EClass»
Attribute

name :EString
value :EString

:Node

name = "EClass"

:Attribute

name = "name"
value = "Node"

:Attribute

name = "id"
value = "001"

:Node

name = "EReference"

:Node

name = "EReference"

:Node

name = "references"

:Attribute

name = "name"
value = "childen"

:Attribute

name = "typeID"
value = "001"

:Attribute

name = "name"
value = "attribute"

:Attribute

name = "typeID"
value = "002"

:Node

name = "EClass"

:Attribute

name = "name"
value = "Attribute"

:Attribute

name = "id"
value = "002"

:Node

name = "references"

attribute
0..*

children
0..*

Fig. 2. Metamodel used as an exchange format and its representation as a generic tree

3 Unidirectional Model Transformations with SDM

Story Driven Modelling (SDM) [3] is used in eMoflon to specify unidirectional
model transformation. SDM combines graph patterns with control flow struc-
tures consisting of a start node, connected activity nodes, and stop nodes. Fig-
ure 3 depicts the SDM handleReferences that transforms the tree structure
representing a reference to an actual instance of EReference in Ecore. The SDM,
simplified for presentation purposes, takes a related node and class (classNode
and eClass) as parameters, and consists of two activity nodes.

Developing eMoflon with eMoflon 141

Exporter::handleReferences (eClass: EClass, classNode: Node): void

for_all_reference_nodes

classNode :
Node

references : Node

name == "references"

reference : Node

name == "EReference"

name : A ttribute
name == "name"

typeID : A ttribute

name == "typeID"

create_reference
eClass :
EClass

referencedEClass : EClass :=
findEClass(typeID)

eReference : EReference

name := name.value

++

++
eType++

eReferences

attribute

attribute
children

children

[End]

[Each Time]

Fig. 3. SDM for exporting references of an EClass

Starting with a for-each activity node (for all reference nodes) that de-
termines all occurrences of the specified pattern in the tree, the SDM iter-
ates over all subtree structures that represent references in the given root node
classNode. Fixed elements in the pattern such as classNode (bound to the given
parameter) are depicted with a bold frame, while all other elements are deter-
mined via pattern matching, such that all constraints are satisfied (e.g., name
== "typeID"). For each occurrence of the pattern, the SDM executes the second
activity create reference. This activity creates a new EReference (depicted
green with a “++” markup) between eClass, fixed to the given parameter, and
referencedEClass, determined by invoking a helper method that returns the
class referenced by typeID. Binding an object over a method call (possibly with
parameters as in our case) is a standard language feature in SDM as defined
in [4]. Such helper methods can be implemented again with SDM or with plain
Java (e.g., using a pre-filled hash table for efficiency reasons). This enables re-
cursion and the integration of hand-crafted code in SDM.

4 Bidirectional Model Transformations with TGGs

Triple Graph Grammars (TGGs) [6] are a declarative, rule-based technique to
specify bidirectional model transformation. A TGG is a set of rules that describe
how consistent triples of source and target models (graphs), connected by a cor-
respondence model, are built up simultaneously. All operational transformations
such as forward, backward and update propagation, are automatically derived
from the single specification. In the following, the same transformation imple-
mented with SDMs in Fig. 3, i.e., handling references in the tree, is presented as
a TGG rule (depicted in Fig. 4). Black elements represent the pre-condition of
the rule, i.e., an occurrence of these elements must be found in order to apply the

142 E. Leblebici, A. Anjorin, and A. Schürr

references : Node
name == "references"

classNode :
Node

eClass :
EClass

eReference :
EReference

++

referencedEClass :
EClass

referencedClassNode :
Node

referenceNode :
Node

++

typeID : A ttribute

name := "typeID"

++
name : A ttribute

name := "name"

++

id : A ttribute

name == "id"

c2e : NodeToEClass

r2e : NodeToEReference
++

r2r : NodeToEClass

{eq(name.value, eReference.name)}

{eq(typeID.value, id.value)}

targetchildren

++
eReferences

++

eType

attribute

++attribute ++attribute

++
children

source

value

++

source

++
target

source target

value name

value

Fig. 4. TGG rule for handling references

rule. Green elements with a ++ markup state the post-condition that must hold
after the rule has been applied. The rule, therefore, states that an EReference

is created together with the depicted subtree structure. TGGs are declarative
in the sense that no explicit control structure or rule dependencies are speci-
fied. The underlying algorithm figures out automatically the correct choice and
sequence of rules to apply for each operational scenario. Attribute constraints
such as eq(name.value, eReference.name) are specified with a bidirectional
extensible textual constraint language, and ensure that eReference is named cor-
rectly using the appropriate attribute in the tree, and that referenceNode has
the correct typeID value corresponding to the referenced class node in the tree.

In case of a forward transformation, the TGG rule in Fig. 4 is modified by
adding all source elements to its context. This means that the required tree struc-
ture is “parsed” and only the correspondence link and the target elements are
created when applying the rule. Unfortunately, finding the referenced class node
might be very time-consuming as no direct connection exists from the reference
node to the referenced class node in the tree. In the worst case, one must iterate
over all class nodes in the tree to find the correct one. As an optimization tech-
nique for such cases, we propose binding expressions to bind an element directly
from another via an auxiliary method, which can be implemented with SDM or
plain Java. In our example, the binding expression (depicted as a dashed arrow
in the rule) takes the type id attribute of the reference node as input and returns
the referenced class node, which should have the same type id. Analogously to
the helper method for the SDM (Fig. 3), this is realized in constant time as a
table lookup in a lazy cache. Integrating such hand-crafted components seems
to contradict the declarative nature of TGG rules, but they serve as a crucial
and pragmatic means of dealing with performance issues at critical points.

In our example, a second rule is required to handle self-references and would
only differ slightly from the rule depicted in Fig. 4. For such cases, eMoflon sup-
ports rule refinements, a modularity concept for TGGs. Using refinements, an
abstract rule covering the commonalities of both rules can be specified and refined

Developing eMoflon with eMoflon 143

appropriately in the concrete rules. Rule refinement avoids pattern duplication
and greatly improves the readability and maintainability of TGG specifications.

5 Scalability

The plots on the left and right side of Fig. 5 show our runtime measurements
in linear and logarithmic scale, respectively, for the import with TGGs and the
export with TGGs and SDM. The y-axis shows the time in seconds, the x-axis
the number of elements of randomly generated Ecore models. Vertical dashed
lines indicate a change in step size in the x-axis. The logarithmic plot shows two
additional measurement points for very large models containing up to 300.000
elements. All measurements were repeated 10 times (the median is plotted) and
executed on an Intel i5-3550 (3.30 GHz) processor with 8 GB RAM running
Windows 7 and Eclipse 4.3.

0

20

40

60

80

100

120

140

160

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
10

00
00

ti
n
s

of Ecore elements

TGG Import

TGG Export

SDM Export

0,1

1

10

100

1000

10000
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0
90

00
0

10
00

00
20

00
00

30
00

00

ti
n
s

of Ecore elements

TGG Import

TGG Export

SDM Export

Fig. 5. Runtime measurements in linear and logarithmic scale

Our TGG algorithm is in theory polynomial with respect to model size, and
our results back this claim (showing even almost linear behaviour for up to 10.000
elements). Our results also show that both directions (import and export) exhibit
very similar runtime behaviour, reflecting the bidirectional and symmetrical na-
ture of TGGs. On the other hand, the TGG-based transformations are 10-15
times slower than the SDM implementation and run out of memory as from
200.000 elements for the export, and 300.000 for the import (this difference is
due to the tree being much larger than the corresponding Ecore model).

6 Discussion and Related Work

MDE technologies are inherently self-descriptive and higher-order but, to the
best of our knowledge, very few model transformation tools are actually de-
veloped with bootstrapping. ATL [5] and FUJABA [3], however, are examples
for tools/toolsuites that do practice bootstrapping. Although the bootstrapped
FUJABA code generator CodeGen2 is actually reused in eMoflon to generate

144 E. Leblebici, A. Anjorin, and A. Schürr

Java code from SDMs, it is only used as a well-tested black-box component and
is no longer bootstrapped. Figure 1 in the introduction reflects our pragmatic
decision on what is to be bootstrapped in eMoflon after considering our current
research foci and the advantages/challenges of bootstrapping.

Bootstrapping is a common technique in compiler construction for General
Purpose Languages (GPLs) such as C++. SDM and TGGs, however, are Do-
main Specific Languages (DSLs) for model transformation, and cannot replace a
GPL. Nevertheless, we are convinced that it is just as advantageous to use such
transformation languages for defining suitable parts of their compilers. Barzdins
et al. [1] demonstrate this by obtaining model transformation languages from
existing ones via bootstrapping. A transformation language Li is compiled to
a lower-level language Li−1 with a compiler written in Li−1. This corresponds
to TGGs being compiled to SDMs with SDMs (cf. Fig. 1). In addition to their
arguments for usability and efficiency of bootstrapped languages, our experi-
ence shows the following advantages: (i) the tool itself is a non-trivial test that
cannot be skipped, (ii) a proof-of-concept is established regarding the capabil-
ities of the developed transformation languages, and (iii) both functional and
non-functional requirements are equally considered due to intensive self-usage.
Regarding the last point, language-related features such as binding expressions
and modularity concepts (cf. Sect. 4), as well as non-functional qualities such as
user-friendliness and performance are constantly being improved on the basis of
our self-usage experience.

Buchmann et al. [2] challenge the added value of graph-based model trans-
formations in general and SDMs in particular, referring to the bootstrapping
of CodeGen2. Some of the drawbacks they identify are indeed relevant for our
bootstrapping, including a lack of means for low-level details such as exception
handling, and missing modularity concepts for patterns. Moreover, our experi-
ence reveals further challenges of bootstrapping with SDMs: (i) increased com-
plexity when making changes as they must be tested before and after building a
new version of the tool, (ii) an increased dependency on underlying code genera-
tors and their shortcomings, and (iii) redundant implementations of components
(initial versions with Java, later versions with SDMs, and in some cases finally
with TGGs).

7 Conclusion and Future Focus

In this paper, we have reported on the current state of eMoflon, conducted a
scalability analysis of a core component in eMoflon implemented with eMoflon,
and shared our experience with bootstrapping. For the future, the focus of TGGs
in eMoflon will be synchronization of concurrently changed models, a special
case of model transformation where models are no longer created from scratch,
but are updated incrementally to reflect the changes. Moreover, work on a new
pattern matching engine is in progress to replace CodeGen2 and improve the code
generation capabilities of eMoflon and, therefore, our development experience.

Developing eMoflon with eMoflon 145

References

1. Barzdins, J., Kalnins, A., Rencis, E., Rikacovs, S.: Model Transformation Languages
and their Implementation by Bootstrapping Method. In: Avron, A., Dershowitz, N.,
Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 130–145.
Springer, Heidelberg (2008)

2. Buchmann, T., Westfechtel, B., Winetzhammer, S.: The Added Value of Pro-
grammed Graph Transformations A Case Study from Software Configuration Man-
agement. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233,
pp. 198–209. Springer, Heidelberg (2012)

3. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Transformations. LNCS,
vol. 1764, pp. 296–309. Springer, Heidelberg (2000)

4. Heinzemann, C., Rieke, J., Detten, M.V., Travkin, D., Lauder, M.: A new Meta-
Model for Story Diagrams. In: 8th International Fujaba Days, pp. 2–6 (2011)

5. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

6. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Com-
puter Science. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)

	Developing eMoflon with eMoflon
	1 Introduction and Motivation
	2 Metamodelling with Ecore
	3 Unidirectional Model Transformations with SDM
	4 Bidirectional Model Transformations with TGGs
	5 Scalability
	6 Discussion and Related Work
	7 Conclusion and Future Focus
	References

