
Davide Di Ruscio
Dániel Varró (Eds.)

 123

LN
CS

 8
56

8

7th International Conference, ICMT 2014
Held as Part of STAF 2014
York, UK, July 21–22, 2014, Proceedings

Theory and Practice
of Model Transformations

Lecture Notes in Computer Science 8568
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Davide Di Ruscio Dániel Varró (Eds.)

Theory and Practice
of ModelTransformations

7th International Conference, ICMT 2014
Held as Part of STAF 2014
York, UK, July 21-22, 2014
Proceedings

13

Volume Editors

Davide Di Ruscio
University of L’Aquila
Department of Information Engineering, Computer Science and Mathematics
Via Vetoio, 67010 L’Aquila, Italy
E-mail: davide.diruscio@univaq.it

Dániel Varró
Budapest University of Technology and Economics
Department of Measurement and Information Systems
Magyar tudósok krt. 2, 1117 Budapest, Hungary
E-mail: varro@mit.bme.hu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08788-7 e-ISBN 978-3-319-08789-4
DOI 10.1007/978-3-319-08789-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942443

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
a number of leading conferences on software technologies. It was formed after
the end of the successful TOOLS federated event (http://tools.ethz.ch) in 2012,
aiming to provide a loose umbrella organization for practical software technolo-
gies conferences, supported by a Steering Committee that provides continuity.
The STAF federated event runs annually; the conferences that participate can
vary from year to year, but all focus on practical and foundational advances
in software technology. The conferences address all aspects of software technol-
ogy, from object-oriented design, testing, mathematical approaches to modelling
and verification, model transformation, graph transformation, model-driven en-
gineering, aspect-oriented development, and tools.

STAF 2014 was held at the University of York, UK, during July 21-25, 2014,
and hosted four conferences (ICMT 2014, ECMFA 2014, ICGT 2014 and TAP
2014), a long-running transformation tools contest (TTC 2014), eight workshops
affiliated with the conferences, and (for the first time) a doctoral symposium.
The event featured six internationally renowned keynote speakers, and welcomed
participants from around the globe.

The STAF Organizing Committee thanks all participants for submitting and
attending, the program chairs and Steering Committee members for the indi-
vidual conferences, the keynote speakers for their thoughtful, insightful, and
engaging talks, the University of York and IBM UK for their support, and the
many ducks who helped to make the event a memorable one.

July 2014 Richard F. Paige

Preface

This volume contains the papers presented at ICMT2014: the 7th International
Conference on Model Transformation held during July 21-22, 2014, in York as
part of the STAF 2014 (Software Technology: Applications and Foundations)
conference series. ICMT is the premier forum for researchers and practitioners
from all areas of model transformation.

Model transformation encompasses a variety of technical spaces, including
modelware, grammarware, dataware, and ontoware, a variety of model represen-
tations, e.g., based on different types of graphs, and a variety of transformation
paradigms including rule-based transformations, term rewriting, and manipula-
tions of objects in general-purpose programming languages.

The study of model transformation includes foundations, structuring mecha-
nisms, and properties, such as modularity, composability, and parameterization
of transformations, transformation languages, techniques, and tools. An impor-
tant goal of the field is the development of high-level model transformation
languages, providing transformations that are amenable to higher-order model
transformations or tailored to specific transformation problems.

The efficient execution of model queries and transformations by scalable
transformation engines on top of large graph data structures is also a key chal-
lenge in different application scenarios. Novel algorithms as well as innovative
(e.g., distributed) execution strategies and domain-specific optimizations are
sought in this respect. To achieve impact on software engineering in general,
methodologies and tools are required to integrate model transformation into
existing development environments and processes.

This year, ICMT received 38 submissions. Each submission was reviewed by
at least three Program Committee members. After an online discussion period,
the Program Committee selected to accept 14 papers as part of the conference
program. These papers included regular research papers, tool papers, and expe-
rience reports orginized into five sessions on model transformation testing and
analysis, tracing and reverse engineering of transformations, and foundations and
applications of model synchronization. We were honored to host Jean Bézivin
as a keynote speaker of ICMT 2014, who gave an invited talk on “Software
Modeling and the Future of Engineering.”

Many people contributed to the success of ICMT 2014. We would like to
truly acknowledge the work of all Program Committee members and reviewers
for the timely delivery of reviews and constructive discussions given the very
tight review schedule. We are also indebted to Philip Langer (Vienna University

VIII Preface

of Technology) serving as the web chair of ICMT 2014. Finally, the authors
themselves constitute the heart of the model transformation community and
their enthusiasm and hard work is a also key contribution.

May 2014 Davide Di Ruscio
Daniel Varro

Organization

Program Committee

Achim D. Brucker SAP AG, Germany

Jordi Cabot Inria-École des Mines de Nantes, France
Antonio Cicchetti Mälardalen University, Sweden
Tony Clark Middlesex University, UK
Benoit Combemale IRISA, Université de Rennes 1, France
Krzysztof Czarnecki University of Waterloo, Canada
Juan de Lara Universidad Autonoma de Madrid, Spain
Gregor Engels University of Paderborn, Germany
Jesus Garcia-Molina Universidad de Murcia, Spain
Holger Giese Hasso Plattner Institute, University

of Potsdam, Germany
Martin Gogolla University of Bremen, Germany
Jeff Gray University of Alabama, USA
Reiko Heckel University of Leicester, UK
Zhenjiang Hu National Institute of Informatics, Japan
Ludovico Iovino University of L’Aquila, Italy
Ethan K. Jackson Microsoft Research, USA
Gerti Kappel Vienna University of Technology, Austria
Dimitris Kolovos University of York, UK
Thomas Kühne Victoria University of Wellington, New Zealand
Jochen Küster FH Bielefeld, Germany
Ralf Lämmel Universität Koblenz-Landau, Germany
Tihamér Levendovszky Vanderbilt University, USA
Richard Paige University of York, UK
Marc Pantel IRIT/INPT, Université de Toulouse, France
Alfonso Pierantonio University of L’Aquila, Italy
István Ráth Budapest University of Technology and

Economics, Hungary
Bernhard Rumpe RWTH Aachen University, Germany
Houari Sahraoui DIRO, Université de Montréal, Canada
Andy Schürr TU Darmstadt, Germany
Jim Steel University of Queensland, Australia
Perdita Stevens University of Edinburgh, UK
Markus Stumptner University of South Australia, Australia

X Organization

Eugene Syriani University of Alabama, USA
Jesús Sánchez Cuadrado Universidad Autónoma de Madrid, Spain
Gabriele Taentzer Philipps-Universität Marburg, Germany

Massimo Tisi Inria-École des Mines de Nantes, France
Laurence Tratt Middlesex University, UK
Antonio Vallecillo Universidad de Málaga, Spain
Mark Van Den Brand Eindhoven University of Technology,

The Netherlands
Pieter Van Gorp Eindhoven University of Technology,

The Netherlands
Hans Vangheluwe University of Antwerp, Belgium and McGill

University, Canada
Gergely Varró TU Darmstadt, Germany
Janis Voigtländer University of Bonn, Germany
Edward Willink Willink Transformations Ltd., UK
Manuel Wimmer Vienna University of Technology, Austria
Haiyan Zhao Peking University, China

Additional Reviewers

Abdeen, Hani
Anjorin, Anthony
Antkiewicz, Michal
Baki, Islem
Benomar, Omar
Berger, Thorsten
Bergmann, Gábor
Corley, Jonathan
Cosentino, Valerio
Dang, Duc-Hanh
Eikermann, Robert
Gabmeyer, Sebastian
Gabriels, Joost

Gerth, Christian
Greenyer, Joel
Guo, Jianmei
Hilken, Frank
Hölldobler, Katrin
Krause, Christian
Kusel, Angelika
Lambers, Leen
Leblebici, Erhan
Mayerhofer, Tanja
Ujhelyi, Zoltán
Wijs, Anton

Invited Talk
(Abstract)

Software Modeling and the Future of

Engineering

Jean Bézivin

Independent Consultant in Software Modeling and
Retired Professor of Computer Science

University of Nantes, France

jbezivin@gmail.com

Abstract. In the past fifty years the world of engineering has consider-
ably changed. From computer-assisted to software-intensive, most clas-
sical and emerging domain engineering fields now heavily draw on some
forms of Software Model Engineering (SME) shortly called “Software
Modeling”. Starting from a general map of engineering fields, the talk
will first outline this important evolution and the progressive shift of
SME from the mere support of code production and maintenance to the
much broader spectrum of a central practice in most of these current do-
main engineering fields. In other words the focus of software modeling is
rapidly changing from software engineering to engineering software. But
what is exactly SME? Historically its definition has been rather fluc-
tuating. The last iteration, since 2000, did not even produce a unique
characterization. On the contrary, SME may be viewed as composed as
a set of different facets, some of them not even mutually compatible.
The talk will describe these various segments of SME, their objective,
market, usage characteristics and hopefully convergence of goals. One of
these segments, the management of abstract correspondences between
models (and of transformations, their operational counterparts) will be
for example more particularly detailed and its importance outlined. All
these observations will allow to conclude that, at this point of its his-
tory and in this state of maturity, software modeling may be seen as an
essential contribution to the future of engineering and an outstanding
long-term research opportunity.

Table of Contents

Model Transformation Testing

On the Usage of TGGs for Automated Model Transformation
Testing . 1

Martin Wieber, Anthony Anjorin, and Andy Schürr

A Search Based Test Data Generation Approach for Model
Transformations . 17

Atif Aftab Jilani, Muhammad Zohaib Iqbal, and
Muhammad Uzair Khan

Test Data Generation for Model Transformations Combining Partition
and Constraint Analysis . 25

Carlos A. González and Jordi Cabot

Testing MOFScript Transformations with HandyMOF 42
Jokin Garćıa, Maider Azanza, Arantza Irastorza, and Oscar Dı́az

Foundations of Model Synchronization

Towards a Rational Taxonomy for Increasingly Symmetric Model
Synchronization . 57

Zinovy Diskin, Arif Wider, Hamid Gholizadeh, and
Krzysztof Czarnecki

Correctness of Incremental Model Synchronization with Triple Graph
Grammars . 74

Fernando Orejas and Elvira Pino

Towards a Language for Graph-Based Model Transformation Design
Patterns . 91

Hüseyin Ergin and Eugene Syriani

Applications of Model Synchronization

Synchronization of Models of Rich Languages with Triple Graph
Grammars: An Experience Report . 106

Dominique Blouin, Alain Plantec, Pierre Dissaux,
Frank Singhoff, and Jean-Philippe Diguet

XVI Table of Contents

Triple Graph Grammars in the Large for Translating Satellite
Procedures . 122

Frank Hermann, Susann Gottmann, Nico Nachtigall,
Hartmut Ehrig, Benjamin Braatz, Gianluigi Morelli,
Alain Pierre, Thomas Engel, and Claudia Ermel

Developing eMoflon with eMoflon . 138
Erhan Leblebici, Anthony Anjorin, and Andy Schürr

Tracing and Reverse Engineering of Transformations

ChainTracker, a Model-Transformation Trace Analysis Tool for
Code-Generation Environments . 146

Victor Guana and Eleni Stroulia

Tracing Program Transformations with String Origins 154
Pablo Inostroza, Tijs van der Storm, and Sebastian Erdweg

Transformation of UML and OCL Models into Filmstrip Models 170
Frank Hilken, Lars Hamann, and Martin Gogolla

Reverse Engineering of Model Transformations for Reusability 186
Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

Author Index . 203

On the Usage of TGGs for Automated Model

Transformation Testing

Martin Wieber, Anthony Anjorin, and Andy Schürr

Technische Universität Darmstadt,
Real-Time Systems Lab,

Merckstraße 25, 64283 Darmstadt, Germany
{martin.wieber,anthony.anjorin,andy.schuerr}@es.tu-darmstadt.de

Abstract. As model transformations are fundamental to model-driven
engineering, assuring their quality is a central task which can be achieved
by testing with sufficiently adequate and large test suites. As the latter
requirement can render manual testing prohibitively costly in practice, a
high level of automation is advisable. Triple Graph Grammars (TGGs)
have been shown to provide a promising solution to this challenge as
not only test case generators, but also generic test oracles can be derived
from them. It is, however, unclear if such generated test suites are indeed
adequate and, as different strategies can be used to steer the test gener-
ation process, a systematic means of comparing and evaluating such test
suites and strategies is required.
In this paper, we extend existing work on TGG-based testing by(i) pre-
senting a generic framework for TGG-based testing, (ii) describing a
concrete instantiation of this framework with our TGG tool eMoflon,
and (iii) exploring how the well-known technique of mutation analysis
can be used to evaluate a set of test generation strategies by analyzing
the generated test suites.

1 Introduction

Model transformations represent a fundamental paradigm in Model-Driven En-
gineering (MDE), and therefore, quality assurance of transformations is a crucial
task and subject to active research. A viable strategy to improve the quality of
and trust in model transformations is testing, which requires not only a sufficient
amount of adequate test data, but also a suitable test oracle for test evalua-
tion [4]. Manual testing quickly becomes infeasible for real-world applications,
so automating the test derivation is also an important challenge [27].

String grammar-based test case generation [21] is a well-established technique
used in grammar development [25] and compiler testing [20]. In the approach,
test inputs (representing words of a language) are generated by consecutively
applying the rules of a grammar. A similar approach exists in the MDE domain,
where graph grammars can be used to generate (test) models [9,28,10]. For a
comprehensive testing process, however, a test oracle is also required to decide
whether the output of the System Under Test (SUT) is correct.

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 1–16, 2014.
c© Springer International Publishing Switzerland 2014

2 M. Wieber, A. Anjorin, and A. Schürr

Triple Graph Grammars (TGGs) [26] can be used in this context [18,17], as they
comprise two graph grammars (for source and target) connected by a third cor-
respondence graph grammar. Applying a sequence of TGG rules thus results in
a pair of a source and a target model, connected by the correspondence model. A
TGG represents a declarative, rule-based specification of a language of consis-
tent triples of connected source, target and correspondence models, which can
be used to test a system by generating consistent triples with the rules of the
TGG. The source (resp. target) model of each generated triple serves as input
for the SUT, while the target (resp. source) model is regarded as a valid output
to which the result of the SUT can be compared to. Consequently, the TGG is
used not only for test generation, but also solves the oracle problem.

It remains, however, an open question if the derived test suites are indeed ad-
equate. As with any grammar-based generation technique, this is influenced by
the concrete derivation strategy used to guide and limit the generation process.
In this paper, we demonstrate how the well-known technique of mutation anal-
ysis [8,24] can be used to systematically compare and evaluate such strategies
for TGG-based test generation in terms of adequacy, and report on first results.
Our overall contribution is threefold, as we

(1) Present an abstract framework for TGG-based test generation and evalua-
tion, which can be used to classify current and future approaches (Sect. 2, 3).

(2) Describe (in Sect. 4) a concrete instantiation of the framework based on
the eMoflon tool (www.emoflon.org). In comparison to the MoTE tool [17],
eMoflon supports additional TGG features such as negative application con-
ditions (NACs), bidirectional attribute constraints and relation-like (non-
uniquely defined) mappings of one input to several legal outputs. These
enable more expressive TGGs [19] and, thus, a richer test generation frame-
work (including aligned rule coverage strategies);

(3) Show (with several experiments) how mutation analysis can be used to sys-
tematically evaluate the generated test suites and, indirectly, the applied
strategies (Sect. 5).

2 A TGG-Centric Test Approach

Figure 1 depicts a generic, TGG-based testing framework as a UML component
diagram. The architecture is tool, technology, and platform independent. We
use this architecture in the following to explain the general approach, as well
as to classify and compare concrete instantiations. A TGG specification of the
considered model-to-model transformation serves as the basis of the framework.
The specification is created with a TGG tool 1 such as eMoflon, and serves as
input for a test generator 2 , which is the central component of this framework.
The test generator produces test cases (as pairs of test models and expected
results) by repeated application of TGG rules, and uses two auxiliary functional
blocks:(i) a traversal strategy 2.1 that guides the generation process by selecting

the rules to be applied, and (ii) a stop criterion 2.2 that controls when to end this
process based on a sufficiency notion. The generated test stimuli are input to the

http://www.emoflon.org/

On the Usage of TGGs for Automated Model Transformation Testing 3

Test Bench
SUT

TestStimuli
Result

(Struct.) CoverageData

Test Generator

TestStimuli

ExpectedResult

TGG

TGG Tool

TGG

Oracle Result

ExpectedResult

TGG

Verdict

TestStimuli

Test Set Quality Evaluation

ExpectedResults

TestStimuli

CoverageData

QualityReport

Verdict

TraversalStrategy StopCriterion

QualityRequirements

4
3

5

1

2

2.2 2.1

6

6.1

Fig. 1. Components of a generic TGG-based testing framework

components forming the test bench 3 . Test bench related tasks are to(i) invoke
the SUT 4 with the test stimuli, (ii) produce and maintain coverage data
collected from the SUT if required, and (iii) pass the resulting output of the
SUT to the oracle 5 for evaluation. The oracle determines whether a test fails
or passes in form of a verdict. The verdict can be based on the output of the SUT,
the expected results and test stimuli provided by the test generator, and the TGG
specification. Finally, we include a test set quality evaluation component 6 to
determine the quality of the generated test suite based on relevant pieces of
information. Its inputs might comprise the test stimuli, the expected results, the
verdict of the oracle (for being able to take the quality of the verdicts and the
trustability of the oracle into account), and the coverage data. The evaluation
also uses predefined quality requirements 6.1 as a benchmark.

3 Design Choices and Variability in the Approach

Having introduced the general architecture, we now continue with a discussion of
several variation points concerning concrete implementation of the framework
(for testing and test generation). Figure 2 depicts two feature models we de-
rived for this purpose: one for the testing task setup (left-hand side) and one for
the framework (right-hand side). Feature models are a well-accepted means of
describing a family of related products in terms of their commonalities and vari-
ability [5]. A feature, visualized by a box labelled with the corresponding name,
represents a specific characteristic of the family of products. Features are orga-
nized hierarchically, whereby child features can only be selected if their parent
feature is selected. Child features can be either optional, meaning that products
could comprise any of these features, or mandatory, meaning that all valid prod-
ucts must have this feature. Child features can also be grouped into alternative
or non-empty selection groups, the former (latter) indicating that exactly (at
least) one feature has to be chosen. Additionally, we introduce an (informal)
influences relation among the features, which indicates that the (de-)selection
of the source feature influences the selection or deselection of the target feature.
To preserve legibility, we only include a small amount of such connections.

4 M. Wieber, A. Anjorin, and A. Schürr

Fig. 2. Feature model describing variability in the Setup and the Framework

3.1 Variability Regarding the Setup

The testing task setup is mainly characterized by(i) the test goal, and (ii) the
SUT with its most relevant properties (for other/more properties cf., e.g., [7]).
Potential test goals include(i) performance – can the SUT handle large (e.g.,
element count) or complex (e.g., highly connected) input models, (ii) robustness
– can the SUT cope with invalid input models (w.r.t. the languages induced by
the metamodel or the TGG), and (iii) correctness – does the SUT implement
the specified behavior.

Although the framework follows a specification-based (black-box) testing ap-
proach, design choices are still influenced by properties of the SUT. For example,
the chosen transformation language has a strong influence on the available vali-
dation/verification techniques. The directionality of the SUT has an impact on
required test models. Bidirectionality enables additional options to derive a test
verdict (e.g., by performing a round-trip transformation and comparing the final
result to the original start model). Another related aspect of the SUT concerns
its source-target-relation. Whether a transformation is exogenous (source and
target languages are different) or endogenous (identical source and target meta-
models) influences, e.g., the decision if TGGs are suitable for testing. Design
choices concerning the oracle are also influenced by whether a SUT realizes a
function-like (one to one) or a relation-like (one to many) mapping.

3.2 Variability Regarding the Framework

Concrete implementations of the framework can differ w.r.t. the test generator,
the oracle, and means of quality evaluation. We continue by discussing potential
options and suggesting a corresponding (incomplete) classification.

On the Usage of TGGs for Automated Model Transformation Testing 5

Test Generator. Test models can be generated in many ways, e.g., by using
a problem-specific generator or generic model finders. We suggest to distinguish
two classes of test generators:(i) grammar-based test generators, and (ii) model
finders such as Alloy.1 Grammar-based test generators depend on the gram-
mar type, a generation strategy to select and apply the rules, and a sufficiency
criterion, to decide when to stop generating new “words” of the language. For
robustness testing, it should be possible to generate invalid models (models that
are not part of the language), which is why there is a connection between the
features “Robustness” and “Type”. The transformation language also has some
influence on the choice of grammar type, e.g., TGG-based testing is more natu-
ral for exogenous than endogenous transformations. Model finders tend to suffer
from the combinatorial explosion problem (cf. [11] for an Alloy-specific analysis)
which might render them unsuitable for performance testing.

Oracle. Comparing actual and expected output models is only one of several
oracle options (cf., e.g., [22]) whereby a concrete decision is strongly influenced
by the test goal of the setup. The verdict of an oracle can be based on different
sources of truth (Fig. 2):(i) human intuition, (ii) a specification of the trans-
formation (not necessarily formal or related to TGGs), (iii) proven properties
of the result (obtained through formal verification), (iv) an existing reference
implementation, and (v) checking for a (round-trip) fixpoint in bidirectional
transformations. Several techniques can be used to check the result against the
expectations, such as syntax-based comparison via (model) differencing tools.
For relation-like transformation semantics, however, a potentially infinite set of
valid output-models exists for a single input model, which is difficult to han-
dle with differencing-based oracles. Other options could be more feasible, such
as(i) searching for common sub-patterns in the actual and the expected result,
(ii) defining a distance with an upper bound as a metric to capture similarities
(e.g., the number of distinct differences), or, (iii) in case a TGG is used, a trace-
ability model construction to decide if input and output pairs can be extended
to a consistent triple of the language defined by the TGG.

Test Set Quality Evaluation. As exhaustive testing is almost never feasi-
ble, objective quality indicators for test sets are required to limit testing effort.
There are various options (non-complete list):(i) (relative) adequacy (the ability
to detect artificially incorporated bugs from a mutation analysis), (ii) test cover-
age (achieved coverage of structural or specification elements when running the
tests), (iii) test set size (#test cases), and (iv) test case sizes (#elements).

4 A Concrete Instantiation with eMoflon

We continue by presenting our implementation of the framework with eMoflon,
and categorizing it according to Sect. 2. In addition to this we also introduce a
running example: a tool integration scenario in which a library system (source
domain) and a reference management tool (target domain) are synchronized.

1 http://alloy.mit.edu

http://alloy.mit.edu

6 M. Wieber, A. Anjorin, and A. Schürr

Bibliography

name :String

Publication

citation :String

Researcher

name :String

Author

name :String

Book

title :String

Library

location :String

BookToPublication

LibraryToBibliography

AuthorToResearcher Item

biblio :
Bibliography

++

lib : Library

++

l2b : LibraryToBibliography

++

{eq_gen(lib.location,biblio.name)}

bib :
Bibliography

aut : Author

++

lib : Library

res :
Researcher

++

l2b : LibraryToBibliography

a2r : AuthorToResearcher

++

{eq_gen(aut.name, res.name)}

r 1 : LibraryToBibliographyRule

r 2 : AuthorToResearcherRule Triple of source, correspondence and target metamodels (TGG Schema)

++
source

1

item 0..*
researcher 0..*

owner 1

publication 0..*

author 0..*

source

1

target

1

++
source

++
target

source target
item

0..*

author

1..*

++ researcher

target

1

++
target

location name

name name

source

1

target

1

source

1

++ author

res :
Researcher

aut : Author

library :
Library

book : Book
pub :

Publication

++

b2p : BookToPublication

++

{eq_gen(book.title,pub.citation)}

a2r : AuthorToResearcher

lib : Library

aut : Author

book : Book

title := generatedValue

++

pub : Publication

citation := generatedValue

++

res : Researcher a2r : AuthorToResearcher

b2p : BookToPublication

++

existingBook : Book

title == generatedValue

r 3 : BookToPublicationRule(generatedValue: EString)

r 4 : ExistingBookToPublicationRule

+author

++

+item

+source

+author

++ +item

+target +source

++ +publication

++

+source

++

+target

+target

+item

++

+target

++

+publication

+item

++

+author

title citation

+author
+item

+author

+item

++
+source

+author

Fig. 3. TGG schema and TGG rules r1 - r4 for the running example

4.1 Running Example

The following example showcases relevant TGG features and is later on used
for the case study in Sect. 5. The data structures to be synchronized are rep-
resented as metamodels which describe the concepts and relations in a domain
as classes and associations between classes. The source metamodel, depicted to
the top-left of Fig. 3, defines a Library containing Authors and Items. An
Author can have arbitrarily many Items (only Books are shown for presentation
purposes). Note that Items can belong to multiple authors, cf. the correspond-
ing item-author association. The target metamodel comprises a Bibliography

containing Researchers. The latter can have arbitrarily many Publications.
Note that a Publication belongs to exactly one Researcher. Classes can have
properties such as the location of a Library or the name of a Researcher.
The two metamodels are connected by a correspondence metamodel that spec-
ifies which source and target elements correspond to each other, e.g., Library
and Bibliography via the LibraryToBibliography correspondence type. This
triple of metamodels is referred to as a TGG schema. TGG rules are patterns
consisting of objects and links typed according to the TGG schema.

Rule r1: LibraryToBibliographyRule (top-right of Fig. 3) specifies that
libraries correspond to bibliographies and are created together (axiom rule).
Created elements in TGG rules are green, with a “++” markup. The rule
r2: AuthorToResearcherRule specifies that authors and researchers are created
together, but it also requires a context, namely the library and corresponding
bibliography, into which the author and researcher are added. Context elements
are black (with no markup) and must already have been created by other rules.

On the Usage of TGGs for Automated Model Transformation Testing 7

Rules r1 and r2 make use of bidirectional attribute constraints [3] to specify
how attributes of different elements are related to each other. The constraint
eq gen(lib.location,biblio.name), for example, states that the location of
the library and the name of the corresponding bibliography are to be equal.

Rules r3: BookToPublicationRule and r4: ExistingBookToPublication-

Rule (Fig. 3, bottom) specify how books and publications are added. Rule r3
makes use of a Negative Application Condition (NAC), depicted as the crossed
out element existingBook, to ensure that the rule is only applicable if the author
aut has not published a book with the same title. eMoflon supports such NACs
to ensure that global constraints (in this case, no author can publish more than
one book with the same title) are not violated (note that the title of the new book
is provided as a rule parameter, supplied or generated at run time). Similarly,
r4 enables shared authorship of books (by several authors) and ensures that
respective publications are assigned to each of the researchers. Another NAC is
used in this case to prevent equally named books.

4.2 Design Rationale

We have implemented the components of Fig. 1 as part of our eMoflon tool suite.
The design choices and specific characteristics (cf. Fig. 2) w.r.t. our concrete
implementation are discussed in the following.

Handling Relational Specifications. Using TGGs as specification lan-
guage induces a consistency relation over model pairs: such pairs are in relation
to each other if a connecting correspondence model can be derived with the given
rules. This consistency relation is not necessarily a function. For instance, con-
sider our running example: As it is impossible to ascertain in the target domain
how many authors worked together on the same book (publications are never
shared), the backward transformation has a degree of freedom when translating
publications of different authors with the same citation. These publications can
either be transformed to the same book according to r4, or to a new book for
each author according to r3 (different authors are free to publish books with
the same title), meaning that the consistency relation is non-functional in the
backward direction.

Coping with non-functionality is a challenge for a test (generation) framework.
The oracle must take this degree of freedom into account, i.e., the valid output
models for a given input model can be a set containing multiple elements. If one
(or both) of the metamodels define types that have no respective counterpart
in the opposite domain, then the set of valid output models is even unbounded
in size; one can always construct another valid result from a given result by
adding an instance of one of these types. We suggest (and have implemented)
the following solution:

(a) After using the rules of the TGG to generate pairs of input and valid output
models, we use a model-diff tool – EMFCompare of the Eclipse Modelling
Framework (EMF) – to deduce a set of the discovered valid output models
for every input model by grouping all output models for the same input.
Note that this is a one-time effort during test creation.

8 M. Wieber, A. Anjorin, and A. Schürr

(b) As the complete set of valid output models for an input model can in general
be infinite, our default oracle only uses the deduced sets as a preliminary
check for efficiency reasons: If the produced output model is in the deduced
set then the test is reported as passed. This can be based, e.g., on EMF-
Compare or a less rigid approximation (e.g., hash-based).

(c) If the produced output model is not in the set, an attempt is made to
extend the input model and produced output model to a consistent triple by
creating an appropriate correspondence model. The produced output model
is “correct” with respect to the TGG iff this construction is possible. This
algorithm for correspondence construction is automatically derivable from
the TGG rules but must be rerun every time the tests are executed.

Exploiting NACs for Generating Robustness Tests. A grammar-based
test generation approach typically generates words of the described language
and is not directly suitable for robustness testing, which requires invalid test
stimuli. One could manipulate (and falsify) the rules of the grammar to generate
invalid words, but this seems rather arbitrary and would most likely lead to
inconsistencies in the specification.

As the NACs which our TGG tool supports correspond exactly to global
negative constraints in the source and target metamodels – i.e., the NACs only
ensure that the rules do not violate these constraints [2] – we take the following
approach: In case we encounter a potential rule application that is prohibited
only by the NACs of the rule, it is possible to systematically generate invalid
input models by ignoring the NACs and applying the rule nevertheless. Using
such models for robustness testing corresponds clearly to checking how a SUT
handles models that violate the set of constraints in a domain. For our running
example, such invalid models include libraries with authors who have published
multiple books sharing the same title, or published the same book twice. Our
test generator 2 is able to detect NACs in a TGG rule, create a version of the
rule without the NACs, and allow the traversal strategy 2.1 to decide whether
robustness tests should be generated or not.

Handling Generation of Attribute Values. A non-trivial challenge when
deriving test models lies in generating attribute values that are consistent with
the specification. The attribute constraints supported by eMoflon, such as eq gen

in the running example, are used to generate consistent attribute values. They
can be extended and refined as required (in Java) [3]. For the example, string val-
ues are generated randomly (but can also be repeated with a certain probability
to provoke interesting situations such as books with the same title).

SUT Invocation. Our test generation framework can be used to test arbi-
trary (bi- and unidirectional) model transformations that take instances of the
source/target metamodel as input and produces instances of the second meta-
model as output. We generate test stubs (Java classes) with methods that must
be implemented to invoke the SUT (cf. 4 in Fig. 1).

Coverage Strategies. The traversal strategy 2.1 used by the test generator
to explore the “derivation tree” can easily be implemented and adjusted by
the user. A base class Strategy provides a set of template methods that are

On the Usage of TGGs for Automated Model Transformation Testing 9

invoked by the test generator. The strategy is queried at every decision point in
the test generation process and can filter and sort the current list of applicable
TGG rules and corresponding matching locations. Currently, we provide default
implementations for depth-first and breadth-first search strategies, as well as
random traversal strategies. As default stop criterion 2.2 , one can choose between
upper bounds on:(i) the number of the generated test cases, (ii) the maximal run
time (time out), (iii) the number of rule applications, (iv) certain combinations
of the previous options, and (v) coverage of user-specified rule sequences.

Supported Technologies and Standards. eMoflon takes a generative ap-
proach, meaning that standard EMF-compatible Java code is generated for all
components of the framework. The test generator and test bench represent exe-
cutable components and the framework can be extended by means of Java inheri-
tance to customize traversal strategies, stop criteria, SUTs, quality requirements
etc. JUnit is required because sets of JUnit tests are created and run for the gen-
erated input models. We use the de facto modelling standard EMF/Ecore and,
thus, any SUT that accepts such instance models as input and produces such
models as output can be tested (adapters have to be used otherwise).

Bootstrapping with Graph Transformations. eMoflon is developed with
eMoflon and our test generation framework is no exception to this. Our compiler
that takes a TGG specification as input and derives a test generator 2 as output,
is implemented as a (higher order) model transformation specified completely
with unidirectional programmed graph transformations.

5 Evaluation and Case Study

After describing the quality evaluation component 6 of Fig. 1 in general, we
now give some hints towards its implementation and usage to evaluate: (a) the
usefulness of this black-box testing approach in general, (b) the generated test
suites in terms of mutation scores, (c) the influence of traversal strategies and
stop criteria on test suite quality, and (d) feasible oracle options.

5.1 Assessing Test Suite Quality

We begin with the main technique to evaluate adequacy, namely mutation anal-
ysis, before describing the setup of the case study.

Mutation Analysis and Adequacy. Mutation analysis is a well-established
means to evaluate a test suite’s adequacy or, in other words, its flaw detection
capability. The idea behind it is to systematically introduce single defects into
the SUT each resulting in a mutant of the SUT. The sorts of the defects are
implementation language dependent and should reflect “typical” errors made in
real world situations. If the test suite contains at least one test that leads to
an unexpected or wrong output (by oracle judgment), the mutant is recognized
and said to be killed by the test suite. The mutation score of a test suite is
the ratio of discovered to generated mutants, ranging from 0 to 1. An inherent
challenge of the approach stems from mutants that are equivalent to the SUT

10 M. Wieber, A. Anjorin, and A. Schürr

w.r.t. input/output behavior. Comparing mutation scores is still possible, but
for an absolute grading the scores should be adjusted by removing such SUT-
equivalent mutants. A more interfering effect on the analysis stems from imper-
fect oracles (model comparison can be considered imperfect here) which classify
SUTs and equivalent mutants differently and erroneously kill mutants (false pos-
itives). This can bias mutation scores by over- or underrating adequacy.

Setup. For our evaluation we use the running example with two SUTs: (a) A
handwritten Java implementation, and (b) a (programmed) graph transforma-
tion (eMoflon) implementation (independent of the TGG rules). We refer to
the first as Java and to the second as GraTra. Both SUTs implement the forward
(source-to-target) and the backward (target-to-source) direction of the mapping.

It is important to note here that GraTra is not derived from the TGG spec-
ification. Although this is indeed possible, testing such automatically derived
implementations would equate to testing the TGG tool itself (that provides the
derivation) and is a very different task.

A related point to clarify is why it makes sense to consider other (manual)
implementations of the TGG specification if it is possible to automatically derive
an implementation. There are multiple arguments for doing this from the field of
model-based testing (the TGG is considered here to be the test model), including:
(i) the TGG is often an abstraction of the required transformation and focuses
on the current details that are to be tested, (ii) a manual implementation is
typically much more efficient (runtime and memory consumption), and (iii) the
target platform might not be supported by the chosen TGG tool.

We derived a total of 31 mutants (10 for the forward direction, 21 for the
backward direction) for Java, and 14 mutants (6 for forward, 8 for backward)
for GraTra. Mutants were generated for GraTra and handcrafted in case of Java
(e.g., by inverting Boolean conditions, introducing off-by-one errors, etc.). We
refrained from using Java mutation frameworks because the vast majority of
the resulting defects were too “low level” meaning they did not consider model
and transformation semantics thus breaking the transformation right from the
start. Mutation operators for GraTra basically relax or restrict the application
conditions of the declarative rewriting rules (e.g., by altering the node types or
by converting nodes to NAC elements; cf. [24] for a set of generic operators).
During experimentation it became apparent that several mutants were in fact
equivalent to the solution (7 in case of (a), 4 in case of (b)). We left them in the
mutant set, however, to check if oracles produce false positive results.

Concerning test suite derivation, we implemented the following strategy/stop-
criterion combinations to generate a total of four suites:(1) all rule pairs (AP) –
breadth-first search for rule application sequences that cover all possible pairs of
rules excluding axiom rule r1, which is only allowed as the initial rule (result: 9
model triples); (2) every rule once (ERO) – breadth-first search for the shortest
application sequence that ends with a given rule for all rules (result: 4 model
triples, as we have 4 rules); (3) rule dependencies (RD) – breadth-first search
for a rule application sequence that fulfills a given, problem-specific coverage
requirement 〈r1, ∗, r2, ∗, r3, ∗, r4〉 beginning with application of r1, ending with

On the Usage of TGGs for Automated Model Transformation Testing 11

Table 1. Mutation analysis results (2 SUTs × 2 directions × 3 oracles vs. 4 test sets)

SUT Direction Oracle
EmfCompare 10 0 1 1 1 9 0 0.9 1 0.9 9 0 0.9 1 0.9 10 0 1 1 1
Hash comp. 10 0 1 1 1 8 0 0.8 1 0.8 8 0 0.8 1 0.8 10 0 1 1 1
Link creation 10 0 1 1 1 9 0 0.9 1 0.9 9 0 0.9 1 0.9 10 0 1 1 1
EmfCompare 14 5 1 0.737 0.737 12 5 0.857 0.706 0.605 12 5 0.857 0.706 0.605 14 7 1 0.667 0.667
Hash comp. 12 5 0.857 0.706 0.605 10 5 0.714 0.667 0.476 10 5 0.714 0.667 0.476 12 7 0.857 0.632 0.541
Link creation 13 0 0.929 1 0.929 10 0 0.714 1 0.714 10 0 0.714 1 0.714 13 0 0.929 1 0.929
EmfCompare 5 0 1 1 1 5 0 1 1 1 4 0 0.8 1 0.8 5 0 1 1 1
Hash comp. 5 0 1 1 1 5 0 1 1 1 4 0 0.8 1 0.8 5 0 1 1 1
Link creation 5 0 1 1 1 5 0 1 1 1 5 0 1 1 1 5 0 1 1 1
EmfCompare 5 0 1 1 1 4 0 0.8 1 0.8 4 0 0.8 1 0.8 5 0 1 1 1
Hash comp. 5 0 1 1 1 4 0 0.8 1 0.8 4 0 0.8 1 0.8 5 0 1 1 1
Link creation 5 0 1 1 1 4 0 0.8 1 0.8 4 0 0.8 1 0.8 5 0 1 1 1

AP ERO RD TMD

1

m
ut

_s
co

re

P
P

V

w
ei

gh
te

d
m

ut
_s

co
re

tru
e

po
si

tiv
es

fa
ls

e
po

si
tiv

es

m
ut

_s
co

re

P
P

V

0

eq
ui

va
le

nt

10

#Mutants

Java

10

31

21

FWD

tru
e

po
si

tiv
es

fa
ls

e
po

si
tiv

es

m
ut

_s
co

re

P
P

V

w
ei

gh
te

d
m

ut
_s

co
re

tru
e

po
si

tiv
es

fa
ls

e
po

si
tiv

es

14

w
ei

gh
te

d
m

ut
_s

co
re

GraTra

6

14

8

7BWD

FWD

BWD 3

5

5

no
n-

eq
ui

va
le

nt

to
ta

l

w
ei

gh
te

d
m

ut
_s

co
re

tru
e

po
si

tiv
es

fa
ls

e
po

si
tiv

es

m
ut

_s
co

re

P
P

V

application of r4; the ‘∗’ stand for arbitrary intermediate sequences of rule ap-
plications. This requirement encodes the interdependency of the TGG rules, i.e.,
r2 depends on the context created by r1 and so forth (result: 1 model triple);
(4) timeout and max. depth (TMD) – a depth-first traversal limited by a max.
depth of 20 rule applications and a 3 s timeout (result: 174 model triples). From
each model triple, a forward and a backward test was created.

5.2 Mutation Analysis Results

Table 1 summarizes the results of the mutation analysis for the two SUTs (upper
half dedicated to Java, lower half to GraTra). Each result set is subdivided into
forward (FWD) and backward (BWD) direction each comprising values for the
three oracles EmfCompare, hash comparison, and (correspondence) link creation.
The columns (captioned AP, ERO, . . .) group the results for each of the four
generated test suites. For better interpretability, we included the absolute num-
bers of true positives and false positives. True and false negatives are omitted
for brevity (their resp. values can be calculated from the positive counterparts
and the total number of (non-)equivalent mutants). Note that the highlighted
cells contain the values for the mutation score (mut score or green gamut) and
for a derived metric we refer to as weighted mutation score (weighted mut score
or blue gamut). We also provide the positive predictive value (PPV) as the ratio
of true positives over the sum of true and false positives. It corresponds to the
conditional probability of a true positive hit upon indicating a mutant and is the
weighting factor for calculating the weighted mut score. The rationale for this is
that the weighted mut score represents a more accurate figure of merit for quality
evaluation as it accounts for false positives.

Mutation Scores vs. Strategies. The collected mut score values suggest
that the overall quality of the test suites is quite acceptable, with values ranging
from 0.714 to 1.0 for Java and from 0.8 to 1.0 for GraTra, supporting the hy-
pothesis that such generated tests are able to detect real errors. When it comes
to comparing the test suites, our measurements show that AP and TMD based
test sets perform similarly, outperforming the other two strategies, ERO and

12 M. Wieber, A. Anjorin, and A. Schürr

0 5 10 15 20
10

0

10
1

10
2

10
3

model size [#elements]

m
e
a
n
 r

u
n
−

ti
m

e
 [
µ

s
]
(l
o
g
 s

c
a
le

)

EMFCompare

Hash Comp.

Link Creation

Fig. 4. Mean run time over model size for the 3 oracles

RD, in terms of mut score values. AP and TMD, however, lead to much big-
ger suites (#tests), as explained above, which fits the näıve intuition that more
tests probably detect more defects. Closer analysis reveals that the test suites
also contain bigger test models (in terms of element count), and some mutations
only show themselves in case of bigger models (e.g., altered control variables in
the Java case only take effect if loop counts exceed certain limits). Nevertheless,
even the two test cases derived from the triple produced by RD, or the eight
test cases in case of RO already achieve acceptable mutation scores. They also
require less execution time (AP: 15ms, ERO: 5ms, RD: 1ms, TMD: 400ms).

Influence of Oracles. An aspect worth mentioning relates to the differences
in false positive counts w.r.t. the transformation directions. In the forward case,
no false positives occurred, meaning that all correct output models were rec-
ognized as being correct by the oracles. This is not surprising as this direction
is a function-like mapping with unique output models. When it comes to the
backward direction, EMFCompare still features a relatively high mutation score,
but at the cost of misclassifying most of the equivalent mutants (up to all seven
equivalent mutants for Java). This implies that the oracle misjudges the results
because the actual output model cannot be found in the set of pre-calculated out-
puts. This effect is especially noticeable when using (selective) depth-first search
(as in TMD), since this greatly reduces the chances of generating equivalent out-
puts. Consequently, model-diff seems to be of limited use for non-function-like
mappings. Hash comparison tends to classify more test outputs as being “equal”
to expected results than EMFCompare because the underlying algorithm imple-
ments a notion of equality that is less sensitive to minor model differences (e.g.,
differences in the ordering of child elements are ignored). Consequently mutation
scores are lower, but the problem of false positives still prevails. Link creation,
on the other hand, can obviously cope well with ambiguous results and does not
produce any false positives. This finding is backed by the weighted mut score
values which favor link creation over EMFCompare and hash comparison.

Another important aspect relates to run time penalties induced by the or-
acle options. This issue becomes relevant with increasing model size. Figure 4
shows the mean run time (5% biggest and smallest samples were cropped) of

On the Usage of TGGs for Automated Model Transformation Testing 13

the oracle runs over the size of the output models (measured on a Core2-Duo
P8600 2.4GHz with 8.0GB of RAM). Hash comparison obviously outperforms
the other options by magnitudes. An increase over model size is not noticeable.
EMFCompare reuses the hash function of hash comparison for pre-filtering, which
explains the sporadic drops in its run-time (when hashing sorts out several op-
tions). Neglecting these, the run time grows considerably with model size and
it seems apparent that model diff oracles get impractical for (very) large mod-
els and/or large sets of valid outputs. Our measurements also suggest that link
creation leads to a verdict faster than EMFCompare; except for cases when hash-
based pre-filtering dominates. We infer that there is (probably) no generic oracle
that solves all problems at once. Link creation clearly outperforms the other two
approaches w.r.t. verdict validity in case of ambiguous transformation results,
but needs to be programmed/generated for the specific transformation. On the
other hand, it shows better run-time behavior than the diff-based solution for
most cases.

Threats to Validity. Although we performed all experiments with utmost
care, some underlying parameters potentially threaten the validity of the results:
(i) The case study is obviously limited in size and scope, i.e., only a single

transformation is considered, which can be captured with four TGG rules.
Although this makes implying general conclusions difficult, our example is
chosen to feature complex cases including non-functionality (in the back-
ward direction), attribute constraints, and negative application conditions.
With this we are indeed able to demonstrate how to perform quality evalu-
ation in conjunction with TGG-based test case generation. Also, we under-
stand our results as a proof-of-concept rather than a full-blown empirical
evaluation. A detailed performance evaluation of different strategies with
larger transformation examples is left for future work.

(ii) We could create (and examine) only a limited and manageable number
of mutants. The statistical accuracy would certainly benefit from larger
sample sizes, but generating mutants for Java automatically seems futile
considering the high abstraction level of typical model transformations.
Finally, our mutant-generator for GraTra-like SUTs is still in its infancy
and needs to be improved and extended prior to additional measurements.

6 Related Work

Our work follows an approach first described in [18,17], but incorporates ex-
tended TGG-features such as the support for relation-like mappings which, we
believe, is important for many real-world transformations. In addition, we pro-
vide new contributions as we: (i) present a generic framework including a feature
model to clarify design options, (ii) explain how to practically evaluate concrete
decisions concerning the framework w.r.t. test suite adequacy, and (iii) present
initial evaluation results for several strategies and oracle options.

Comparable approaches to evaluate generated test suites by mutation analysis
for model transformation testing exist [23,15] (the latter approach also generates

14 M. Wieber, A. Anjorin, and A. Schürr

oracles). In these cases, test generation is based on solving derived constraint
satisfaction or SMT problems. Compared to the pattern-based approach of [15],
TGG rules are constructive in nature, i.e., specifying “negative” rules is not
allowed. It is, however, possible to specify global negative constraints in the
source and target domains and automatically derive appropriate NACs for a
given TGG [2]. Furthermore, a TGG-based approach is generally able to gen-
erate (very) large test models and expected outputs (or other oracles) without
necessarily suffering from intolerable run time – an inherent threat to approaches
based on model finders such as Alloy. Finally, choosing between a rule-based or
constraint/pattern-based approach is also a matter of style, preference, training,
and suitability to a specific problem or application domain.

Other benefits of our approach include: (i) attribute values and constraints
are handled in an integrated manner (as in [15]), and (ii) custom strategies offer
great control and flexibility w.r.t. model properties, test case size, and number
of tests. A drawback of our approach is that we require a TGG specification,
which might be hard/impossible to derive for an arbitrary transformation.

In [9] and [28], the respective authors describe approaches to derive instance-
generating graph grammars from (restricted) metamodels, whereby the derived
grammars generate exactly the same languages as the original metamodels. An-
other work that also advocates a comparable approach, but does without ad-
vanced graph transformation concepts like, e.g., NACs, is [10]. In all cases, the
grammar productions can be used for instantiation, and transformation testing is
mentioned by all authors explicitly as one prominent use cases. In our approach,
the (triple graph) grammar needs to be specified by the transformation devel-
oper or test engineer. Other main differences (despite general focus) include that
we: (i) derive oracles (and not only input models), (ii) support bidirectionality,
and (iii) explicitly consider attributes.

Several model generation tools exist: (a) PRAMANA [23], (b) UML2Alloy [1],
(c) UMLtoCSP, EMFtoCSP [6,13], (d) USE [12], or (e) the framework based
on PAMOMO and ocl2smt [14,15]. These tools rely on constraint solving for
finding either (test) models or constraint-violations based on given metamodels
and (OCL) constraints. A detailed comparison with our approach is future work.

The idea of evaluating string grammar based testing and related coverage
concepts, such as (extended) rule coverage (cf. [25,21]), in terms of mutation
adequacy was pursued in [16]. One of the findings was that reduced test suites –
being minimal w.r.t. test case count and size – achieved significantly lower mu-
tant scores than non-reduced test suites. Our results point in the same direction
but the case study is too small to provide strong evidence in this regard.

7 Conclusion and Future Work

We presented a transformation test framework constructed around an extended
TGG-based model and oracle generation approach, which supports NACs, at-
tribute constraints and relation-like mappings. We argued that TGGs are a suit-
able choice for such a framework as they are declarative and sufficiently high-level

On the Usage of TGGs for Automated Model Transformation Testing 15

so that all required components (test generator, oracle) can be derived from the
same specification. Variability in the framework was captured in form of a feature
model and several design decisions were given. We also showed how to use the
quality evaluation component to compare test generation strategies and oracle
options w.r.t. important properties (adequacy, validity, run time).

The results obtained from our small case study suggest that TGG-based test-
ing of model transformations is feasible and that it is possible to achieve high
mutation scores. We showed how to tackle several practical issues related to real
world transformations. The presented framework can be adapted easily in sev-
eral ways to, e.g., cope with quality constraints, or with requirements concerning
the generated test suites. A central finding of this work is that test generation
strategies and oracle functions have a strong influence on test adequacy and
verdict validity. Although correspondence link construction (based on the TGG
specification) seems to be a suitable oracle, we found it to be slower than, e.g.,
model differencing approximations, which might suffice in many cases.

As future work, we plan to conduct more experiments and extend the evalua-
tion. We also need to automate the link creation oracle. Another challenge lies in
an extension to testing problems involving incremental model synchronization.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. SoSyM 9(1), 69–86 (2010)

2. Anjorin, A., Schürr, A., Taentzer, G.: Construction of Integrity Preserving Triple
Graph Grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2012. LNCS, vol. 7562, pp. 356–370. Springer, Heidelberg (2012)

3. Anjorin, A., Varró, G., Schürr, A.: Complex Attribute Manipulation in TGGs
with Constraint-Based Programming Techniques. In: Proc. Workshop on BX 2012.
ECEASST, vol. 49, EASST (2012)

4. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model Transformation Testing Challenges. In: Proc.
IMDT Workshop 2006, Bilbao, Spain (2006)

5. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35(6), 615–636 (2010)

6. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A tool for the formal verification of
UML/OCLmodels using constraint programming. In: Proc. ASE 2007, pp. 547–548.
ACM (2007)

7. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Syst. J. 45(3), 621–645 (2006)

8. DeMillo, R., Lipton, R., Sayward, F.: Hints on Test Data Selection: Help for the
Practicing Programmer. Computer 11(4), 34–41 (1978)

9. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. SoSyM 8(4), 479–500 (2009)

10. Fürst, L., Mernik, M., Mahnič, V.: Converting metamodels to graph grammars:
doing without advanced graph grammar features. SoSyM, 1–21 (2013)

11. Ganov, S., Khurshid, S., Perry, D.E.: Annotations for Alloy: Automated Incremen-
tal Analysis Using Domain Specific Solvers. In: Aoki, T., Taguchi, K. (eds.) ICFEM
2012. LNCS, vol. 7635, pp. 414–429. Springer, Heidelberg (2012)

16 M. Wieber, A. Anjorin, and A. Schürr

12. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. SoSyM 4(4), 386–398 (2005)

13. Gonzalez, C., Buttner, F., Clariso, R., Cabot, J.: EMFtoCSP: A tool for the
lightweight verification of EMF models. In: Proc. FormSERA 2012, pp. 44–50
(2012)

14. Guerra, E., Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations
based on visual contracts. Autom. Softw. Eng. 20(1), 5–46 (2013)

15. Guerra, E., Soeken, M.: Specification-driven model transformation testing. SoSyM,
1–22 (2013)

16. Hennessy, M., Power, J.F.: An analysis of rule coverage as a criterion in generating
minimal test suites for grammar-based software. In: Proc. ASE 2005, pp. 104–113.
ACM (2005)

17. Hildebrandt, S., Lambers, L., Giese, H.: Complete Specification Coverage in Au-
tomatically Generated Conformance Test Cases for TGG Implementations. In:
Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909, pp. 174–188. Springer,
Heidelberg (2013)

18. Hildebrandt, S., Lambers, L., Giese, H., Petrick, D., Richter, I.: Automatic Confor-
mance Testing of Optimized Triple Graph Grammar Implementations. In: Schürr,
A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 238–253.
Springer, Heidelberg (2012)

19. Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schäfer, W.,
Lauder, M., Anjorin, A., Schürr, A.: A Survey of Triple Graph Grammar Tools.
In: Proc. Workshop on BX 2013 (2013) accepted for publ. (to appear)

20. Kossatchev, A., Posypkin, M.: Survey of Compiler Testing Methods. Program. and
Comp. Softw. 31(1), 10–19 (2005)

21. Lämmel, R.: Grammar Testing. In: Hussmann, H. (ed.) FASE 2001. LNCS,
vol. 2029, pp. 201–216. Springer, Heidelberg (2001)

22. Mottu, J.M., Baudry, B., Le Traon, Y.: Model transformation testing: Oracle issue.
In: Proc. the ICSTW 2008, pp. 105–112 (2008)

23. Mottu, J.M., Sen, S., Tisi, M., Cabot, J.: Static Analysis of Model Transformations
for Effective Test Generation. In: Proc. ISSRE 2012, pp. 291–300 (2012)

24. Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation Analysis Testing for Model
Transformations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS,
vol. 4066, pp. 376–390. Springer, Heidelberg (2006)

25. Purdom, P.: A sentence generator for testing parsers. BIT Numerical Mathemat-
ics 12(3), 366–375 (1972)

26. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Com-
puter Science. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)

27. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in
Software Engineering II. LNCS, vol. 5235, pp. 408–424. Springer, Heidelberg (2008)

28. Taentzer, G.: Instance Generation from Type Graphs with Arbitrary Multiplicities.
In: Proc. GT-VMT 2012. ECEASST, vol. 47, EASST (2012)

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 17–24, 2014.
© Springer International Publishing Switzerland 2014

A Search Based Test Data Generation
Approach for Model Transformations

Atif Aftab Jilani1, Muhammad Zohaib Iqbal1,2, and Muhammad Uzair Khan1

1Software Quality Engineering and Testing Laboratory (QUEST),
National University of Computer & Emerging Sciences, Pakistan

2SnT Centre Luxembourg, Luxembourg
{atif.jilani,zohaib.iqbal,uzair.khan}@nu.edu.pk

Abstract. Model transformations are a fundamental part of Model Driven
Engineering. Automated testing of model transformation is challenging due
to the complexity of generating test models as test data. In the case of model
transformations, the test model is an instance of a meta-model. Generating input
models manually is a laborious and error prone task. Test cases are typically
generated to satisfy a coverage criterion. Test data generation corresponding to
various structural testing coverage criteria requires solving a number of predi-
cates. For model transformation, these predicates typically consist of constraints
on the source meta-model elements. In this paper, we propose an automated
search-based test data generation approach for model transformations. The pro-
posed approach is based on calculating approach level and branch distances to
guide the search. For this purpose, we have developed specialized heuristics for
calculating branch distances of model transformations. The approach allows test
data generation corresponding to various coverage criteria, including statement
coverage, branch coverage, and multiple condition/decision coverage. Our
approach is generic and can be applied to various model transformation
languages. Our developed tool, MOTTER, works with Atlas Transformation
Language (ATL) as a proof of concept. We have successfully applied our
approach on a well-known case study from ATL Zoo to generate test data.

Keywords: Software Testing, Model Transformation (MT), ATL, Search Based
Testing (SBT), Structural Testing.

1 Introduction

Model transformations (MT) are a fundamental part of Model Driven Engineering
(MDE). As for any other software, correctness of model transformation is of para-
mount importance. Automated testing of model transformations faces a number of
specific challenges when compared to traditional software testing [1]. The foremost is
the complexity of input/output models. The meta-models involved in the transforma-
tions typically comprise of a large set of elements. These elements have relationships,
sometimes cyclic, that are restricted by the constraints define on the meta-
model/model. Generating input models manually is laborious and error prone. On the

18 A.A. Jilani, M.Z. Iqbal, and M.U. Khan

other hand automated generation of input models requires solving complex con-
straints on the meta-models.

In this paper, our objective is to enable automated structural testing of model trans-
formations. The idea is to generate test cases that cover various execution paths of the
software under test. We present an automated search-based test data generation ap-
proach for model transformations. To guide the search, we propose a fitness function
specific for model transformation. The fitness function utilizes a so-called approach
level and branch distance. The branch distance is calculated based on heuristics de-
fined for various constructs of model transformations.

We selected Alternating Variable Method (AVM) as the search algorithm for this
purpose because it has already been successfully applied for software testing [2]. We
tailored AVM for our specific problem. To the best of our knowledge, this is the first
work to report an automated model transformation structural test data generation ap-
proach based on search-based testing. To support the automation of the proposed
approach, we also developed a tool called MOTTER (Model Transformation Testing
Environment). We apply the test data generation approach on an open source model
transformation from the ATL Zoo1.

The rest of this paper is organized as follows: Section 2 provides the related work
and presents the state of the art related to MT testing and its associated challenges.
Section 3 discusses the proposed test model generation methodology. Section 4 dis-
cusses the tool support, whereas Section 5 discusses the application of the approach
on a case study. Finally Section 6 concludes the paper.

2 Related Work

Fleurey et al.,[3] discuss category partitioning scheme and introduced the concept of
effective meta-model. Wang et al, [4] explores verification and validation of
source/target meta-models in term of coverage. Sen et al., [5] proposed various model
generation strategies including random/unguided and input domain partition based
strategies. Vallecillo et al., [6] propose the use of formal specification for test data
generation. Gomez et al., [7] use the concept of simulated annealing to generate test
models. Cariou et al., [8] proposed a method that use OCL contracts for the verifica-
tion of model transformations. The work proposed by Guerra et al., [9], generates
automated test models, from formal requirement specification and solved pre/post
conditions and invariants using OCL. Wang and Kessentini [10] propose black box
technique for the testing of meta-model structural information. The technique use
search algorithms and provide structural coverage and meta-model coverage.

Kuster et al., [11] reported the challenges associated with White box MT testing.
Buttner et al., [12] proposed the use of first order semantics for a declarative subset of
ATL. Gonzalez and Cabot [13] discuss dependency graph, examine dependency
graph by applying traditional coverage criteria and generate test case as OCL expres-
sion for ATL. McQuillan et al., [14] proposed various white box testing criteria for

1 http://www.eclipse.org/m2m/atl

 A Search Based Test Data Generation Approach for Model Transformations 19

ATL transformations such as, rule coverage, instruction coverage and decision cover-
age. Mottu et al.,[15] proposed a constraint satisfaction problem in Alloy.

The work presented here is significantly different from the above approaches as we
adopt a search-based test data generation approach for automated white-box testing of
model transformations. We build on the previous work of OCL solver [2, 16, 17] to
generate valid meta-model instances and provide search heuristics for various model
transformation language constructs.

3 Automated Test Data Generation for MT

This section discusses the automated test data generation approach for structural test-
ing of model transformations.

3.1 Test Case Representation

A test case in our context is a set of input models (i.e., a set of instances of input me-
ta-model) that provide maximum coverage of the model transformation under test. A
number of coverage criteria have been developed for structural testing of software
programs [18]. To achieve a specified coverage level, the test data needs to solve
various predicates in the transformation language. In the case of model transforma-
tions, these predicates are typically constraints on the elements of meta-models.

3.2 Problem Representation

In the context of test data generation for model transformations, a problem is equiva-
lent to a transformation language predicate. A language predicate P (problem) is
composed of a set of Boolean clauses {b1, b2 ... bn} joined by various Boolean opera-
tions, such as, and, or and not. Each clause bi, itself comprises of various variables
{bi1, bi2 ... biZ} used in the clause. To solve a problem (P), the search algorithm first
needs to solve all clauses which are (n) in number, and for each clause (bi), need to
generate correct values for the entire variables till (z). To generate test data for trans-
formation predicates, search algorithm needs guidance. We provide heuristics for
various clauses of model transformation languages. The heuristics are defined as a
branch distance function d(), which returns a numerical value representing how close
the value was to solving the branch condition. A value zero represents that branch
condition is satisfied; otherwise a positive numerical non-zero value is returned that
provides an estimate of distance to satisfy the constraint.

3.3 Test Data Generation

The algorithm for search-based test data generation for model transformations is
shown in Fig. 1. Following sections discuss the various steps of the strategy.

Generating Instance Models. The first step is to generate a random instance of meta-
model. The generated model should be a valid instance of the source meta-model.

20 A.A. Jilani, M.Z. Iqbal, and M.U. Khan

Generating a valid instance requires solving the various constraints on the meta-model.
The generated instance should also contain links corresponding to the mandatory asso-
ciations of the meta-model (i.e., having a multiplicity of 1 or above). A number of
techniques have been proposed in the literature for generating meta-model instances
[19]. A major problem is satisfying the various constraints on the meta-models, typi-
cally written in Object Constrain Language (OCL). For generating instances that satis-
fy the OCL constraints, we extended the approach presented in [2].

Algorithm generateTestData(mm, CFG, max)
Input mm: source meta-model, CFG: Control flow graph, max; No of maximum

iterations
Declare C: Set of conditions={}, n: # of iteration performed Tm: A random test data

(instance of a meta-model), bi: A Condition from C,
1. begin
2. Generate a random instance Tm of mm as test data
3. Traverse Tm on CFG and add all branching conditions into C.
4. for each Ci ϵ C
5. Calculate fitness f(O) = mini=0→C.size(ACi(O) + nor (BCi(O)))
6. if f(O) != 0 AND n < max
7. then modify Tm by adding/modifying instances of meta-elements according to

search algorithm.
8. Increment n
9. end if.
10. end for
11. end

Fig. 1. Algorithm for the proposed test data generation strategy

To generate an instance of source meta-model we first traverse the model trans-
formation under test to identify the set of meta-model elements used in the transfor-
mation. This set is referred to as an effective meta-model [3]. The identified set of
elements is typically related to other elements not used in the transformations. We
keep all elements as part of the effective meta-model that have mandatory relation-
ships. We initially generate instances of all meta-elements used in the transformation
predicate and then add links between the instances based on the meta-model.

Fitness Functions for MT Language. Search algorithms are guided by fitness func-
tions that evaluate the quality of a candidate solution. The fitness function, for exam-
ple, in the case of structural coverage can evaluate how far a particular test case is
from solving a predicate. The fitness functions are problem-specific and need to be
defined and tuned according to the problem being targeted.

Model transformation languages are similar to programming languages in a way
that they are imperative and have control flow and side effects. The model transfor-
mation languages are also similar to Object Constraint Language (OCL), because they
are written on modeling elements (and their syntax is inspired from OCL). Therefore
the fitness function that we developed for testing of model transformations is adapted
from the fitness functions of programming languages and OCL [2]. The goal of the

 A Search Based Test Data Generation Approach for Model Transformations 21

search is to minimize the fitness function f, which evaluates how far a particular test
case is from solving a predicate. If the predicate is solved, then f(t) = 0.

Since our approach is based on heuristics, the generated solutions of our approach
are not necessarily optimal. The heuristics do not guarantee that the optimal solution
will be found in a reasonable time. However, various software engineering problems
faced by the industry have been successfully solved using search based
algorithms.[20]. Our fitness function is a combination of approach level and branch
distance and can be represented by the following equation:

f(O) = mini=0→TP.size(ATPi(O) + nor (BTPi(O)))

where O is an instance of input meta-model generated as a candidate test data, TP is a
set of target predicates to be solved. ATPi(O) represents the approach level achieved
by test data O. The approach level calculates the minimum number of predicates re-
quired to be solved to reach the target predicate TPi.

BTPi(O) represents the branch distance of a target predicate TP. The branch distance
heuristically evaluates how far the input data are, from solving a predicate. The
branch distance guides the search to find instances of meta-model that solve the target
predicates. For example, to solve a predicate on a class Account: account→ size () >
10, the search needs to create eleven Account instances.

We consider a normalized value (nor) for branch distance between the values
[0, 1], since branch distance is considered less important than approach level. We
apply a widely used normalizing function for this purpose [2]: nor(x) = x/x+1.

To calculate both the approach level and branch distance, we instrumented the
transformation language code. Based on the coverage criterion, in some cases, the
generated test data not only needs to satisfy the predicates to true, but also needs to
satisfy the negation of the predicates (for example, to achieve branch coverage). In all
such cases, we simply negate the predicate and for the negated predicate, generate the
data that evaluated the negated predicate to true. To calculate the approach level, an
important step is to construct a control flow graph (CFG) of the model transformation
code. The CFG provides the guidance to the algorithm to achieve the desire coverage.

Branch Distances for MT Constructs. The transformation languages have a number
of predefined data types, called primitive types. Typical primitive types include Boo-
lean, Integer, Real, and String. The predicates are defined on attributes of primitive
types, collection types or meta-model classes and combine the attributes with various
operators resulting in a Boolean output. Branch distance calculations for various im-
portant operations of model transformations are adopted from [2].

Applying the Search Algorithm. We selected Alternating Variable Method (AVM)
[2] as the search algorithm. For a set of variables {v1, v2,....vn}, AVM works to max-
imize the fitness of v1, by keeping the values of other variable constant, which are
generated randomly. It stops, if the solution is found. Otherwise if solution is not
found or fitness is lesser than v1, AVM switch to the second variable v2. Now all other
variables will be kept constant. The search continues until a solution is found or all
the variables are explored. If a randomly generated initial model is not able to satisfy
the target predicate, a fitness value is generated for the test model. We generate a new

22 A.A. Jilani, M.Z. Iqb

model by modifying the pr
that of previous model, the

4 Tool Support

In this section, we present
ronment (MOTTER). Fig.
We have developed MOTT
already existing componen
only, but it is designed in a
MOTTER is performing va
time error and at same time
tracted. For a given progra
transformation, its compon
source model and calculates

Fig. 2. A

Coverage Analyzer and fi
coverage are achieved. Fitne
ness of the instance model an
refined version of OCL Solv
data values for OCL queries.
classes, instance of meta-mo
Generator component gener
coverage of transformation.
mation construct. Search Alg
and test data is generated by
nent guides the search by gen

5 Case Study

In this section, we demons
proach on a famous Simple

bal, and M.U. Khan

revious model. If the fitness of new model is greater t
new model is used for next search iteration.

our implementation of model transformation testing en
2 shows the architectural diagram of the MOTTER to

TER in java language that enables it to interact with
nts of OCL Solver [2]. Currently, MOTTER support A
a way to support several model transformation languag
arious tasks, it supports ATL compilation, shows comp
e able to execute a program in way that CFG could be
am in ATL, MOTTER constructs the CFG for the gi

nent ATLExecutor executes the transformation for a gi
s the fitness and the branches covered so far.

Architectural diagram of the MOTTER tool

itness calculator ensure that coverage criterion, such as bra
ess calculator guides the coverage analyzer regarding the
nd calculates the approach level. The Solver in MOTTER

ver [2]; the original OCL solver is OCL specific and gener
. For MOTTER, the data values are not simple. The values
odel and include the relationships between the classes. Ob
rates the object model that serves as a test model to ens
Distance Calculator module calculates distances of trans

gorithm Engine component uses AVM to solve the heuris
y the data generator component. The Data Generator com
nerating values that solve the heuristics.

strate how test models are generated by applying our
eClass2SimpleRDBMS ATL transformation [21]. The c

than

nvi-
ool.
the

ATL
ges.
pile
ex-

iven
iven

anch
 fit-
is a

rates
s are
bject
sure
sfor-
stics

mpo-

ap-
case

 A Search Based Test Data Generation Approach for Model Transformations 23

study has six helper methods and one matched rule. The matched rule Persis-
tentClass2Table is considered as the main rule. It comprises of nine (9) predicate
statements, such as tuple.type→oclIsKindOf(SimpleClass!Class). To exercise various
coverage criteria, these predicates have upmost importance. We first generate test data
for all branch coverage. All Branch coverage requires exercising of each statement
and conditions, and to do so all predicates need to be solved.

We slightly modified some statements in the transformation as some of the code
segments of the original transformation could not be executed (part of the dead code).
Since, we have nine different branching conditions and for each such condition, our
tool has generated data that satisfies the conditions and their negations. Consider a
condition, taken from persistentClass2Table, acc→size()=0. The condition has an
approach level value one, because to exercise this we first need to solve the condition,
tuple.type→oclIsKindOf(SimpleClass!Class). MOTTER has successfully solved all
nine conditions and generates various object models (test models) to satisfy all branch
coverage, decision coverage and statement coverage criterion. The case study demon-
strates the applicability of the approach on real transformations. The performance and
evaluation of the approach is not discussed due to space limitation.

6 Conclusion

We discussed an automated, structural search-based test data generation approach for
model transformations testing. Our approach generates test data to satisfy various
structural coverage criteria, such as branch coverage. To guide the search, we devel-
oped a fitness function that comprises of approach level and branch distance. To calcu-
late branch distance for model transformation constructs, we adopted the existing heu-
ristics for programming languages and Object Constraint Language. We not only gen-
erate meta-elements instances of effective meta-model but also handle the mandatory
relationships that exist between different meta-elements. Therefore, our instance gen-
eration approach is able to generate valid meta-model instances. The output of the
approach is a set of instance models of the source meta-model that can be used as test
models to attain transformation coverage. The use of search based heuristics for the
automated test data (model) generation particularly in the case for model transforma-
tion is a major contribution of the work. We applied Alternating Variable Method
(AVM) as a search algorithm for test data generation. The applicability of the approach
is demonstrated by applying on a widely referred case study from the ATL transforma-
tion zoo, the SimpleClass2SimpleRDBMS transformation. The case study covers a
number of important ATL constructs. The proposed approach successfully generated
test models to achieve the desired coverage. We also developed a prototype tool
MOTTER to automate the proposed methodology. The tool currently supports trans-
formation written in ATL, but it is extensible to handle other transformation languages.

References

1. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers to sys-
tematic model transformation testing. Communications of the ACM 53(6), 139–143 (2010)

2. Ali, S., Iqbal, M., Arcuri, A., Briand, L.: Generating Test Data from OCL Constraints with
Search Techniques. IEEE Transactions on Software Engineering 39(10), 26 (2013)

24 A.A. Jilani, M.Z. Iqbal, and M.U. Khan

3. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.L.: Qualifying input test data for model
transformations. Software and Systems Modeling 8(2), 185–203 (2009)

4. Wang, J., Kim, S.-K., Carrington, D.: Automatic generation of test models for model transfor-
mations. In: 19th Australian Conference on Software Engineering, ASWEC 2008. IEEE (2008)

5. Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for model trans-
formation testing. Theory and Practice of Model Transformations, 148–164 (2009)

6. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal specification
and testing of model transformations. Formal Methods for Model-Driven Engineering,
399–437 (2012)

7. Gómez, J.J.C., Baudry, B., Sahraoui, H.: Searching the boundaries of a modeling space to
test metamodels. In: 2012 IEEE Fifth International Conference on Software Testing, Veri-
fication and Validation (ICST). IEEE (2012)

8. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for the verification of
model transformations. In: Proceedings of the Workshop the Pragmatics of OCL and Other
Textual Specification Languages at MoDELS (2009)

9. Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W.: Automated verification of model transformations based on
visual contracts. Automated Software Engineering, 1–42 (2012)

10. Wang, W., Kessentini, M., Jiang, W.: Test Cases Generation for Model Transformations
from Structural Information. In: 17th European Conference on Software Maintenance and
Reengineering, Genova, Italy (2013)

11. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations–first experiences using
a white box approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 193–204.
Springer, Heidelberg (2007)

12. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

13. González, C.A., Cabot, J.: ATLTest: A White-Box Test Generation Approach for ATL
Transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 449–464. Springer, Heidelberg (2012)

14. McQuillan, J.A., Power, J.F.: White-box coverage criteria for model transformations. In:
Model Transformation with ATL, p. 63 (2009)

15. Mottu, J.-M., Sen, S., Tisi, M., Cabot, J.: Static Analysis of Model Transformations for
Effective Test Generation. In: ISSRE-23rd IEEE International Symposium on Software
Reliability Engineering (2012)

16. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A Search-based OCL Constraint Solver for
Model-based Test Data Generation. In: 2011 IEEE 11th International Conference on
Quality Software, pp. 41–50 (2011)

17. Ali, S., Iqbal, M.Z., Arcuri, A.: Improved Heuristics for Solving OCL Constraints using
Search Algorithms. In: Proceeding of the Sixteen Annual Conference Companion on
Genetic and Evolutionary Computation Conference Companion (GECCO). ACM,
Vancouver (2014)

18. Myers, G., Badgett, T., Thomas, T., Sandler, C.: The art of software testing. Wiley (2004)
19. Wu, H., Monahan, R., Power, J.F.: Metamodel Instance Generation: A systematic literature

review. arXiv preprint arXiv:1211.6322 (2012)
20. McMinn, P.: Search - based software test data generation: A survey. Software Testing,

Verification and Reliability 14(2), 105–156 (2004)
21. Bézivin, J., Schürr, A., Tratt, L.: Model transformations in practice workshop. In: Bruel, J.-

M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127. Springer, Heidelberg (2006)

Test Data Generation for Model Transformations

Combining Partition and Constraint Analysis

Carlos A. González and Jordi Cabot

AtlanMod, École des Mines de Nantes - INRIA, LINA, Nantes, France
{carlos.gonzalez,jordi.cabot}@mines-nantes.fr

Abstract. Model-Driven Engineering (MDE) is a software engineering
paradigm where models play a key role. In a MDE-based development
process, models are successively transformed into other models and even-
tually into the final source code by means of a chain of model trans-
formations. Since writing model transformations is an error-prone task,
mechanisms to ensure their reliability are greatly needed. One way of
achieving this is by means of testing. A challenging aspect when test-
ing model transformations is the generation of adequate input test data.
Most existing approaches generate test data following a black-box ap-
proach based on some sort of partition analysis that exploits the struc-
tural features of the source metamodel of the transformation. However,
these analyses pay no attention to the OCL invariants of the metamodel
or do it very superficially. In this paper, we propose a mechanism that
systematically analyzes OCL constraints in the source metamodel in or-
der to fine-tune this partition analysis and therefore, the generation of
input test data. Our mechanism can be used in isolation, or combined
with other black-box or white-box test generation approaches.

1 Introduction

Model-Driven Engineering (MDE) is a software engineering paradigm that pro-
motes the utilization of models as primary artifacts in all software engineering
activities. When software is developed following a MDE-based approach, models
and model transformations are used to (partially) generate the source code for
the application to be built.

Writing model transformations is a delicate, cumbersome and error-prone
task. In general, MDE-based processes are very sensitive to the introduction
of defects. A defect in a model or a model transformation can be easily propa-
gated to the subsequent stages, thus causing the production of faulty software.
This is especially true when developing systems of great size and complexity,
which usually requires writing large chains of complex model transformations.

In order to alleviate the impact defects can cause, a great deal of effort has
been made to find mechanisms and techniques to increase the robustness of
MDE-based processes. Thus far, these efforts have been centered on trying to
somewhat adapt well-known approaches such as testing or verification to the
reality of models and model transformations of MDE (see [1] or [5] for recent

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 25–41, 2014.
c© Springer International Publishing Switzerland 2014

26 C.A. González and J. Cabot

surveys). This has resulted in the appearance of a series of testing and verification
techniques, specifically designed to target models or model transformations.

In the particular case of testing model transformations, the current picture
shares a great deal of similarity with that of traditional testing approaches.
Roughly speaking, testing a model transformation consists in first, automatically
generating a set of test cases (henceforth test models), second, exercising the
model transformation using the generated test models as an input, and finally,
checking whether the execution yielded any errors. However, since models are
complex structures conforming to a number of constraints defined in a source
metamodel, the first and third steps are particularly challenging [4,5].

When addressing test models generation, and along the lines of adapting well-
known approaches, expressions such as black-box, white-box or mutation analysis
are also of common application. Actually, the black-box paradigm based on the
analysis of the model transformation specification is the most exploited one and
has given way to a number of techniques (for example [10] or [15]). The objective
here is to analyze the model transformation’s input metamodel, with the intent
of generating a set of test models representative of its instance space, something
known as metamodel coverage. The problem though, is that a metamodel’s in-
stance space is usually infinite, so what the majority of these methods really
do is to use partition analysis to identify non-empty and disjoint regions of the
instance space where models share the same features.

The challenge when using partition analysis is building the best partition
possible. Since one test model is usually created out of each region identified,
partitions should be small enough, so that all the models from the same region
are as homogeneous as possible (meaning that the sample model from that re-
gion can be used to represent all models from that same region and reduce, this
way, the number of test models to use to get a sufficient confidence level on
the quality of the transformation). Existing approaches address this by taking
advantage of the fact that input metamodels usually come in the form of UML
class diagrams complemented with constraints expressed in the OCL (Object
Constraint Language). Therefore, partition analysis focuses on elements like as-
sociation multiplicities, attributes values or OCL constraints to partition the
model. However, in this last case, current approaches tend to be very superficial,
either focusing only on simple OCL constraints, or deriving just obvious regions
that do not require a deep analysis. This limits the representativeness of the
generated test models and also the degree of coverage achieved when dealing
with non-trivial metamodels.

In this paper, we propose a mechanism for the generation of input test mod-
els based on a combination of constraint and partition analysis over the OCL
invariants of the model transformation’s input metamodel. The method covers a
substantial amount of OCL constructs and offers up to three different test model
generation modes. Besides, it can be used in isolation, or combined with other
black-box or white-box approaches to enhance the testing experience.

The paper is organized as follows: Section 2 outlines our proposal. Section 3
focuses on the analysis ofOCL invariants to identify suitable regions of the instance

Test Data Generation for Model Transformations 27

space. Section 4 describes the three testmodel generationmodes. Section 5 is about
the implementation of the approach and some scenarios where the tool could be
useful. Section 6 reviews the related work and finally, in Section 7, we draw some
conclusions and outline the future work.

2 Overview of Our Approach

Category-partition testing [16] consists in partitioning the input domain of the
element under test, and then selecting test data from each class in the partition.
The rationale here is that, for the purpose of testing, any element of a class is
as good as any other when trying to expose errors.

According to this philosophy, our approach is depicted in Fig. 1. The model
transformation’s input metamodel characterizes a certain domain, and its in-
stance space, possible inputs for the transformation. In the figure, dashed arrows
indicate what characterizes certain elements, whereas solid arrows are data flows.
When generating test models, the component called “OCL Analyzer” partitions
the metamodel’s instance space by analyzing its OCL invariants (Sections 3 and
4). As a result, a series of new OCL invariants characterizing the regions of the
partition are obtained. This information, along with the input metamodel is then
given to the “Test Model Generator” component, for the actual creation of the
test models (Section 4).

Fig. 1. Overall picture

As mentioned before, the main difference between our approach and other
black-box ones based on partition analysis is the way OCL invariants are ana-
lyzed. Whereas our approach is capable of analyzing the majority of OCL con-
structs in a systematic way, approaches like [10] or [15] build partitions by ex-
ploiting only simple OCL expressions that explicitly constraint the values a given
model element can take. This is because numeric or logical values are an easy
target at the time of identifying regions in the instance space. In what follows,
we compare this type of analysis with our proposal to show that they are, in
many cases, insufficient to derive representative test models.

Fig. 2(a) shows a metamodel describing the relationship between research
teams and the papers they submit for publication. A simple partition analysis

28 C.A. González and J. Cabot

would try to exploit the presence of a numerical value in the OCL invariant stat-
ing that every team must have more than 10 submissions accepted. However, that
alone is not enough to generate an interesting partitioning. A more fine-grained
analysis of the constraint would reveal that beyond testing the transformation
with teams with more than 10 accepted submissions, you should also test the
transformation with teams with more than 10 accepted submissions and at least
one rejected one. Our method reaches this conclusion by analyzing the “select”
condition in the OCL expression (more details on this later on). Fig. 3 shows the
difference in the output produced by both analyses. Obviously, the second one
exercises more the transformation and therefore may uncover errors not detected
when using only the first one.

(a) (b)

Fig. 2. Metamodels of the examples used throughout the paper

(a) (b)

Fig. 3. Results of two different partition analyses over the metamodel example

3 OCL Analysis

In this section, we begin the description of how to identify partitions in the
input metamodel’s instance space, focusing on the first step: analyzing the OCL
invariants in the input metamodel to generate new OCL invariants characterizing
suitable regions of the instance space. Next section uses these constraints to
create the actual partitions.

Test Data Generation for Model Transformations 29

Firstly, we talk about the OCL constructs supported by the method. After
that, we describe how to systematically analyze complex OCL invariants made
up by arbitrary combinations of the supported constructs.

3.1 OCL Constructs Supported

The supported OCL constructs have been classified in five groups and presented
here in tabular form. The first group corresponds to expressions involving the
presence of boolean operators (Table 1). The second group is about expressions
formed by a boolean function operating over the elements of a collection (Table
2). The third group includes those boolean expressions involving the presence
of arithmetic operators (Table 3). The fourth group contains other non-boolean
expressions, that can be part of more complex boolean expressions (Table 4).
Finally, the last group (Table 5) shows equivalent expressions for boolean ex-
pressions from Tables 1, 2 and 3 when they are negated.

Tables 1, 2, 3 and 4 share the same structure. For any given row, the sec-
ond column contains a pattern. Analyzing an OCL invariant implies looking for
these patterns, and every time one of them matches, the information in the third
column indicates how to derive new OCL expressions characterizing suitable re-
gions in the instance space. A dash (-) indicates that no new OCL expressions
are derived. The rationale behind a given pattern and the expressions in the
“Regions” column is simple: the pattern represents the invariant that the model
must hold, and the information in the “Regions” column are more refined ex-
pressions that must also hold when the pattern holds. For example, the entry 1
in Table 1 indicates that the pattern expression holds if the two subexpressions
evaluate to the same value. The subexpressions in the “Regions” column indicate
that there are two possibilities for this: either both are true, or both are false.

Table 5 is slightly different, though, and that has to do with how the method
deals with negated expressions. Each time a negated expression is found, it must
be substituted by an equivalent non-negated expression before any new regions
can be identified. Second column in the table shows boolean expressions from
Tables 1, 2 and 3. The third column contains the equivalents to these expressions
when they are negated. In some cases, the substitution process must be applied
recursively since, for some expressions, the negated equivalent can also contain
negated subexpressions.

3.2 Analyzing OCL expressions

Typically, real-life OCL invariants will be composed by combinations of some of
the patterns described above. In the following we give the intuition of how to
process some of these combined expressions, in particular, those of type source →
operation(argument)1:

1 For the case of more complex expressions, involving boolean (AND, OR, ...) or logical
operators (≤, >, ...), the process is quite the same. However, this full process cannot
be described here due to lack of space.

30 C.A. González and J. Cabot

Table 1. Expressions Involving Boolean Operators

Pattern Regions

1 BExp1 = BExp2 BExp1 = FALSE AND BExp2 = FALSE
BExp1 = TRUE AND BExp2 = TRUE

2 BExp1 AND BExp2 BExp1 = TRUE AND BExp2 = TRUE

3 BExp1 OR BExp2 BExp1 = FALSE AND BExp2 = TRUE
BExp1 = TRUE AND BExp2 = FALSE
BExp1 = TRUE AND BExp2 = TRUE

4 BExp1 XOR BExp2 BExp1 = FALSE AND BExp2 = TRUE
BExp1 = TRUE AND BExp2 = FALSE

5 BExp1 <> BExp2 BExp1 = TRUE AND BExp2 = FALSE
BExp1 = FALSE AND BExp2 = TRUE

6 Class.BAttr = TRUE Class :: AllInstances() → forAll(c| c.BAttr = TRUE)

7 Class.BAttr = FALSE Class :: AllInstances() → forAll(c| c.BAttr = FALSE)

Table 2. Expressions Featuring Boolean Functions in the Context of a Collection

Pattern Regions

1 col → exists(body) col → forAll(body)
col → exists(NOT body)

2 col → one(body) col → size() = 1
col → size() > 1

3 col → forAll(body) col → isEmpty()
col → notEmpty()

4 col → includes(o) col → count(o) = 1
col → count(o) > 1

5 col → excludes(o) col → isEmpty()
col → notEmpty()

6 col1 → includesAll(col2) col1 → size() = col2 → size()
col1 → size() > col2 → size()

7 col1 → excludesAll(col2) col1 → isEmpty() AND col2 → notEmpty()
col1 → isEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

8 col → isEmpty() −
9 col → notEmpty() −

1. Find a pattern matching the whole invariant. If not found, end here.

2. Generate the new OCL expressions corresponding to the pattern matched.

3. Find a pattern matching the “source” expression.

4. If found, generate the OCL expressions corresponding to the pattern matched.

5. Repeat the process recursively over the subexpressions in the “source” ex-
pression, until no more matchings are found.

6. Find a pattern matching the “argument” expression.

7. If found, generate the OCL expressions corresponding to the pattern matched.

8. Repeat the process recursively over the subexpressions in the “argument”
expression, until no more matchings are found.

Test Data Generation for Model Transformations 31

Table 3. Boolean Expressions Involving Arithmetic Operators

Pattern Regions

1 col1 → size() = col2 → size() col1 → isEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()

2 col1 → size() = NUM −
3 col1 → size() <> col2 → size() col1 → size() > col2 → size() AND

col1 → notEmpty() AND col2 → notEmpty()
col1 → size() < col2 → size() AND

col1 → notEmpty() AND col2 → notEmpty()
col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

4 col → size() <> NUM AND col → size() > NUM
NUM <> 0 col → notEmpty() AND col → size() < NUM

col → isEmpty()

5 col1 → size() >= col2 → size() col1 → isEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()

6 col → size() >= NUM col → size() > NUM
col → size() = NUM

7 col1 → size() > col2 → size() col2 → isEmpty()
col2 → notEmpty()

8 col → size() > NUM −
9 col1 → size() <= col2 → size() col1 → isEmpty() AND col2 → isEmpty()

col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → notEmpty()

10 col → size() <= NUM AND col → size() < NUM
NUM <> 0 col → size() = NUM

col → isEmpty()

11 col1 → size() < col2 → size() col1 → isEmpty()
col1 → notEmpty()

12 col → size() < NUM col → isEmpty()
col → notEmpty()

13 col → count(o) > NUM col → excluding(o) → isEmpty()
col → excluding(o) → notEmpty()

14 col → count(o) = NUM col → excluding(o) → isEmpty()
col → excluding(o) → notEmpty()

15 col → count(o) < NUM col → isEmpty()
col → notEmpty() AND

col → excluding(o) → notEmpty()
col → notEmpty() AND

col → excluding(o) → isEmpty()

16 Class.NumAttr > NUM Class :: AllInstances() →
forAll(c| c.NumAttr > NUM)

17 Class.NumAttr < NUM Class :: AllInstances() →
forAll(c| c.NumAttr < NUM)

18 Class.NumAttr = NUM Class :: AllInstances() →
forAll(c| c.NumAttr = NUM)

32 C.A. González and J. Cabot

Table 4. Other OCL Functions

Pattern Regions

1 col → select(body) col → forAll(body)
col → exists(NOT body)

2 col → reject(body) col → forAll(NOT body)
col → exists(body)

3 col → collect(body) AND col → forAll(body)
body.oclIsTypeOf(boolean) col → exists(NOT body)

4 col1 → union(col2) col1 → isEmpty() AND col2 → isEmpty()
col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

5 col1 → intersection(col2) col1 = col2
col1 → includesAll(col2) AND

col1 → size() > col2 → size()
col2 → includesAll(col1) AND

col2 → size() > col1 → size()
col1 <> col2

6 col → excluding(o) col → isEmpty()
col → notEmpty()

7 col → subsequence(l, u) col → size() = u − l
col → size() > u − l

8 col → at(n) col → size() = n
col → size() > n

9 col → any(body) col → forAll(body)
col → exists(NOT body)

9. Once the matching phase finishes, every constraint from each matching group
is AND-combined with each one in the rest of the groups. This way, the
final list of OCL expressions is obtained. Each of these OCL expressions
characterizes a region of the input metamodel’s instance space.

As an example, Fig. 2(b) shows another version of the metamodel describing the
relationship between research teams and the papers they submit. It includes two
OCL invariants. The first one states that the members of a team do not review
their own papers, and the second one says that at least one of the teams must
have at least one submission.

The analysis starts with the first invariant. It features a “forAll” operation
matching entry 3 in Table 2. That entry says that the instance space can be
divided in two regions. The region of models with no teams, and the one of
models with any number of teams except zero. They can be characterized as:

Team::AllInstances()–>isEmpty() (A1.1)

Team::AllInstances()–>notEmpty() (A1.2)

Now, a pattern matching the “argument” of the “forAll” operation is searched.
Entry 6 in Table 2 matches. Since the expression is embedded as the argument
of a higher level operator, its context must be identified to build the new OCL
expressions properly. By doing this, the following OCL constraints are obtained:

Test Data Generation for Model Transformations 33

Table 5. Boolean Expressions And Their Negated Equivalents

Pattern Negated Equivalent

1 BExp1 = BExp2 BExp1 <> BExp2
2 BExp1 AND BExp2 NOT BExp1 OR NOT BExp2
3 BExp1 OR BExp2 NOT BExp1 AND NOT BExp2
4 BExp1 XOR BExp2 BExp1 = BExp2
5 col1 → exists(body) col1 → forAll(NOT body)

6 col1 → one(body) col1 → select(body) → size() <> 1

7 col1 → forAll(body) col1 → exists(NOT body)

8 col1 → includes(o) col1 → excludes(o)

9 col1 → isEmpty() col1 → notEmpty()

10 col1 → size() = col2 → size() col1 → size() <> col2 → size()

11 col1 → size() > col2 → size() col1 → size() ≤ col2 → size()

12 col1 → size() < col2 → size() col1 → size() ≥ col2 → size()

13 col → size() ≤ NUM AND NUM <> 0 col → size() > NUM

14 col → size() <> NUM AND NUM <> 0 col → size() = NUM

15 col → size() = NUM (col → size() > NUM) OR
(col → size() < NUM)

16 col → size() > NUM (col → size() = NUM) OR
(col → size() < NUM)

17 col → count(o) > NUM (col → count(o) < NUM) OR
(col → count(o) = NUM)

18 col → count(o) = NUM (col → count(o) < NUM) OR
(col → count(o) > NUM)

19 col → count(o) < NUM (col → count(o) = NUM) OR
(col → count(o) > NUM)

20 Class.NumAttr > NUM (Class.NumAttr < NUM) OR
(Class.NumAttr = NUM)

21 Class.NumAttr < NUM (Class.NumAttr > NUM) OR
(Class.NumAttr = NUM)

22 Class.NumAttr = NUM (Class.NumAttr < NUM) OR
(Class.NumAttr > NUM)

Team::AllInstances()–>forAll(t|t.papersReviewed–>isEmpty()

and t.papersSubmitted–>NotEmpty()) (A2.1)

Team::AllInstances()–>forAll(t|t.papersReviewed–>isEmpty()

and t.papersSubmitted–>isEmpty()) (A2.2)

Team::AllInstances()–>forAll(t|t.papersReviewed–>NotEmpty()

and t.papersSubmitted–>NotEmpty()) (A2.3)

Team::AllInstances()–>forAll(t|t.papersReviewed–>NotEmpty()

and t.papersSubmitted–>isEmpty()) (A2.4)

With this, the matching phase over the first invariant is over. The rest of elements
in the invariant do not match any pattern. Now, the resulting two groups (A1.X
and A2.X) must be combined. This produces the following list of expressions:

34 C.A. González and J. Cabot

Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>NotEmpty()) (A3.1)

Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>isEmpty()) (A3.2)

Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>NotEmpty()) (A3.3)

Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>isEmpty()) (A3.4)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>NotEmpty()) (A3.5)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>isEmpty()) (A3.6)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>NotEmpty()) (A3.7)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>isEmpty()) (A3.8)

With this, the analysis of the first invariant is finished. The analysis of the second
invariant is analogous and yields the constraints in the group B1.X.

Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) (B1.1)

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B1.2)

Putting all together, the analysis of the two invariants in the model of Fig. 2(b)
yielded the groups of constraints A3.X and B1.X, respectively. Each constraint
in these groups characterizes a region of the instance space. They will be the
input for the test model generation phase, described in the next section.

Finally, it is important to mention that the analysis of OCL invariants is not
free from inconveniences. From the example, it can be easily seen that some
of the generated constraints could be simplified (for example in A.3.1, if there
are no “Team” instances, then there is no need to check the subexpression at
the right of “and”). More importantly, some of the constraints produced in the
combination stage could be inconsistent. These problems can be addressed in
two different ways: adding a post-processing stage at this point to “clean” the
constraints obtained, or addressing them directly during the test model creation
stage (our preferred alternative, as we explain in the next section).

4 Partition Identification and Test Models Generation

This section details the identification of partitions and the generation of test
models from the sets of constraints obtained in the previous step. Our approach
provides three different alternatives depending on the effort the tester wants to
invest to ensure the absence of overlapping test models.

4.1 Simple Mode

As shown before, the analysis of one OCL invariant yields a list of new OCL
expressions, each one characterizing a region of the instance space. It cannot

Test Data Generation for Model Transformations 35

be guaranteed though, that these regions do not overlap (i.e. that they consti-
tute a partition). Looking back at the example, this means that the regions in
A3.X might overlap, and the same goes for the regions in B1.X (we have two
groups here because we had analyzed two invariants). Fig. 4(a) and 4(b) illus-
trate the best- and worst-case scenarios when three regions are identified from
the analysis of a given invariant. In the worst case, a generated test model to
cover, for example, region 4, could indeed “fall into” this area, or in any of the
adjacent overlapping areas labeled with a question mark (?). In this situation,
when regions overlap, it is likely that generated test models do it as well.

Ensuring that a number of regions do not overlap requires additional effort,
but in “Single Mode”, no further effort to identify partitions is made. It simply
runs the test model generator over the regions that were identified in the OCL
analysis, each time passing the input metamodel (and its OCL invariants), and
one of the OCL expressions characterizing these regions. It represents a cheaper
way (compared to the other alternatives) of creating test models without ensur-
ing that they will not overlap. Running “Single Mode” over the example of Fig.
2(b) consists in invoking the model generator for each of the OCL expressions
in A3.X and B1.X.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Overlapping and partitions when generating test models

4.2 Multiple-Partition Mode

Given the set of OCL expressions obtained from the analysis of one OCL in-
variant, “Multiple-Partition Mode” produces a new set of OCL expressions that
constitute a partition (i.e. do not overlap each other) of the instance space.

In general, if the analysis of one OCL invariant yields “n” regions, a partition
can be derived, with a number of regions somewhere in the interval [n, 2n - 1].
Although the exact number depends on how the original “n” regions overlap
each other, justifying the lower and upper bounds is rather simple. To show this,
we will focus on the particular case of n = 3 and refer to the OCL expressions
characterizing these regions as Bi, i = 1..3.

The lowerboundcorresponds to thebest-case scenario (Fig. 4(a))where the orig-
inal “n” regions do already constitute a partition. The upper bound corresponds

36 C.A. González and J. Cabot

to the worst-case scenario (Fig. 4(b)) where the “n” regions overlap each other. In
this case, it is possible to derive a partition (Fig. 4(d)) with 7 regions, characterized
by the following OCL expressions:

– D4 = B4 AND NOT B5 AND NOT B6

– D5 = B5 AND NOT B4 AND NOT B6

– D6 = B6 AND NOT B4 AND NOT B5

– D7 = B4 AND B5 AND NOT B6

– D8 = B4 AND B5 AND B6

– D9 = NOT B4 AND B5 AND B6

– D10 = B4 AND NOT B5 AND B6

That is, all the combinations of three elements (the initial number of regions)
that can take two different states (to overlap, not to overlap), excepting:

– NOT B5 AND NOT B4 AND NOT B6

which is not representative of any region, since it falls out of the instance space.
Generalizing for the case of “n” regions, the upper limit of 2n - 1 is obtained.

Running “Multiple-Partition Mode” over the example of Fig. 2(b) consists in
first, creating all the combinations of the OCL expressions in the groups A3.X
and B1.X, and then invoking the model generator to process each of them. The
combination of the expressions in A3.X yields a list of 255 new expressions, so
only the results of combining the OCL expressions in B1.X are shown.

Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) and

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B2.1)

not Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) and

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B2.2)

Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) and not

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B2.3)

4.3 Unique-Partition Mode

Applying “Multiple-Partition Mode” guarantees that the regions obtained for
each OCL invariant do not overlap each other. However, if the input metamodel
has more than one invariant, regions in the partition for one invariant might over-
lap regions in the partitions of the rest of invariants. “Unique-Partition Mode”
guarantees that regions do not overlap each other, no matter where they come
from. Therefore, in “Unique-Partition Mode” only one partition is characterized,
regardless of the number of OCL invariants of the input metamodel. This can be
easily seen with an example. If Fig. 4(c) and Fig. 4(d) were the partitions pro-
duced by “Multiple-Partition Mode” for two invariants, when putting together,
they would overlap as shown in Fig. 4(e). In this scenario “Unique-Partition
Mode” would yield the partition of Fig. 4(f).

Applying “Unique-Partition Mode” is a simple three-step process: First,
“Multiple-Partition Mode” is applied over each invariant. After that, the lists
of OCL expressions characterizing the regions in each partition are merged to-
gether to form one big list. Finally “Multiple-Partition Mode” is applied over

Test Data Generation for Model Transformations 37

that list, to generate the final partition. Applying this mode over the example
of Fig. 2(b) consists in merging the results of “Multiple-Partition Mode” shown
before (255 + 3 = 258 OCL expressions) into one big list and run another itera-
tion of “Multiple-Partition Mode” over that list. Clearly, the main problem for
the practical utilization of this approach could be the combinatorial explosion
in the number of regions conforming the final partition.

4.4 Creating Test Models

After having described how partitions are generated, the last step is the cre-
ation of the actual test models. Without regard of the generation mode selected,
this is a pretty straightforward process. When fed with the input metamodel
(and its OCL invariants) and an OCL invariant characterizing one region of the
input space, the “Test Model Generator” component (Fig. 1) tries to build a
valid instance of the input metamodel, that also satisfies this additional OCL
constraint. The whole set of test models is obtained by repeating this process as
many times as regions were found.

In practical terms, we use a separate tool called EMFtoCSP2 for that. This
tool is capable of looking for valid instances of a given metamodel enriched or not
with OCL constraints. One of its nicest features is that it transforms the problem
of finding a valid instance into a Constraint Satisfaction Problem (CSP). This
is especially convenient to address the issues mentioned at the end of Section
3. For example, when presented with an infeasible combination of constraints,
EMFtoCSP can dismiss it, yielding no test model.

5 Implementation and Usage Scenarios

We have implemented an Eclipse3-based tool that can generate test models fol-
lowing any of the three generation modes exposed before. It can be downloaded
from http://code.google.com/a/eclipselabs.org/p/oclbbtesting/ where the user
will find all the necessary information for its installation and usage.

When used in isolation, the tool produces models to cover the instance space of
the transformation’s input metamodel, out of the OCL invariants of that meta-
model. Since graphical constraints in a model, like associations, multiplicities,
etc can also be expressed in the form of OCL invariants, as detailed in [11], the
tool could also be used to derive test models out of these graphical constraints.

There may be occasions though, in which it is convenient to focus only on
specific sections of the input metamodel: the model transformation could only
“exercise” a part of the input metamodel, or the tester could only be interested on
a specific part of the transformation. In the first case, the tool could be combined
with approaches capable of identifying what the relevant sections of the input
metamodel are, like for example [10]. In the second case, if the preconditions
that trigger specific parts of the model transformation are expressed in such a

2 http://code.google.com/a/eclipselabs.org/p/emftocsp/
3 http://www.eclipse.org

http://code.google.com/a/eclipselabs.org/p/emftocsp/
http://www.eclipse.org

38 C.A. González and J. Cabot

way, that new OCL invariants in the context of the input metamodel can be
derived, then these new invariants could be used to limit the generation of test
models to those regions of the instance space triggering the sections of the model
transformation that are of interest. This could be exploited even further, to allow
the generation of test models aimed at satisfying different coverage criteria over
the transformation [13].

Finally, the tool could also be useful to complement others that lack the ability
to generate test models out of OCL invariants, or do it in a limited way.

6 Related Work

Although not related to model transformation testing, to the best of our knowl-
edge, the first attempt of using partition analysis to derive test models out of
UML class diagrams was made by Andrews et al. [3]. In this work, partition
analysis is employed to identify representative values of attributes and associ-
ation ends multiplicities to steer the generation of test models. However, OCL
invariants are analyzed only in the context of how they restrict the values an
individual attribute can take. This represents only a portion of the analysis of
OCL invariants presented in this paper. Andrews et al. served as inspiration for
the black-box test model generation approach proposed by Fleurey et al. [10,7]
where the partition analysis of [3] is used to identify representative values of the
model transformation input metamodel.

The work of Fleurey et al. influenced a number of proposals in this field as well.
Lamari [15] proposed a tool for the generation of the effective metamodel out of
the specification of a model transformation. Wang et al. [19] proposed a tool for
the automatic generation of test cases, by deriving the effective metamodel and
representative values out of model transformations rules. Sen et al. [17] presented
a tool called “Cartier” for the generation of test cases based on the resolution
of a SAT problem by means of Alloy4. The SAT problem is built, among other
data, out of some model fragments obtained out of a partition analysis of the
input metamodel. Since these works are more/less based on the partition analysis
technique proposed in [3] the comments made there apply here as well.

Also based on the utilization of constraints solvers are the works of Fiorentini
et al. [9] and Guerra [13]. In [9], a logic encoding of metamodels expressed in
the MOF5 language is proposed. The encoding is then exploited by means of a
constraint solver, although OCL does not seem to be supported. [13] presents
a framework for specification-driven testing, that can be used to generate a
complete test suite. It works by transforming invariants and preconditions from
the model transformation specification into OCL expressions, that are then fed
to a constraint solver.

To finish with black-box approaches, Vallecillo et al. [18] presented a proposal
based on the concept of Tract (a generalization of the concept of model transfor-
mation contract [4,8]), where test models are generated by means of a language

4 http://alloy.mit.edu/alloy/
5 http://www.omg.org/spec/MOF/

http://alloy.mit.edu/alloy/
http://www.omg.org/spec/MOF/

Test Data Generation for Model Transformations 39

called ASSL, part of the USE tool6. In this approach, the characteristics of the
test models to be generated, seem to be explicitly indicated beforehand in the
ASSL scripts, whereas in our approach that information is derived automatically
from the analysis of the OCL invariants of the input metamodel.

Compared to the number of black-box test model generation proposals, the
number of existing white-box approaches is rather small. Fleurey et al. [10] com-
plemented their black-box approach by proposing the utilization of the trans-
formation definition to identify relevant values and the effective metamodel, al-
though not mention of OCL is made. Küster et al. [14] proposed three different
test model generation techniques following a white-box approach, although an
automatic way of building test models out of OCL constraints is not included.
Finally, the approach more similar to our work is [12], where test models are
characterized by a series of OCL constraints obtained out of the analysis of the
model transformation internals.

Finally, test case generation through partition analysis, has also been object
of study in the area of model-based testing. Examples of this are [20,6,2].

7 Conclusions

The generation of test models by means of black-box approaches based on parti-
tion analysis has largely ignored the valuable information in the OCL constraints.
This limits the test generation process and consequently, the degree of coverage
achieved over the input metamodel. In this paper, we have presented a black-
box test model generation approach for model transformation testing, based on
a deep analysis of the OCL invariants in the input metamodel of the transfor-
mation. Our method can be configured to be used at three different levels of
exhaustiveness, depending on the user’s needs. A tool supporting the process
has been implemented, and it can be used in isolation or combined with other
test model generation approaches. It can also be useful to generate test models
at different degrees of coverage.

In the future, we want to expand our method so that it could be used not
only for model transformation testing (where all input models are always as-
sumed to be valid metamodel instances) but also for faulty testing (i.e. to test
software implementations that should be able to deal appropriately with wrong
models). Additionally, we would also like to improve the way OCL expressions
characterizing regions of the instance space are generated, to reduce the number
of spurious or infeasible combinations produced.

References

1. Ab Rahim, L., Whittle, J.: A survey of approaches for verifying model transforma-
tions. Software and System Modeling (June 2013) (Published online)

2. Ali, S., Iqbal, M.Z.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL con-
straints with search techniques. IEEE Transactions on Software Engineering 39(10),
1376–1402 (2013)

6 http://sourceforge.net/projects/useocl/

http://sourceforge.net/projects/useocl/

40 C.A. González and J. Cabot

3. Andrews, A.A., France, R.B., Ghosh, S., Craig, G.: Test adequacy criteria for UML
design models. Software Testing, Verification and Reliability 13(2), 95–127 (2003)

4. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Traon, Y.L.: Model transformation testing challenges. In: ECMDA
Workshop on Integration of Model Driven Development and Model Driven Testing
(2006)

5. Baudry, B., Ghosh, S., Fleurey, F., France, R.B., Traon, Y.L., Mottu, J.M.: Barriers
to systematic model transformation testing. Comm. of the ACM 53(6), 139–143
(2010)

6. Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B., Peureux, F., Utting, M.,
Torreborre, E.: Model-based testing from UML models. In: Informatik 2006. LNI,
vol. 94, pp. 223–230. GI (2006)

7. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: An algorithm and a tool. In: 17th Int. Sym-
posium on Software Reliability Engineering, ISSRE 2006, pp. 85–94. IEEE (2006)

8. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of
model transformation contracts. In: OCL and Model Driven Engineering Workshop
(2004)

9. Fiorentini, C., Momigliano, A., Ornaghi, M., Poernomo, I.: A constructive approach
to testing model transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010.
LNCS, vol. 6142, pp. 77–92. Springer, Heidelberg (2010)

10. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: 1st Int. Workshop on Model, Design and Validation,
pp. 29–40 (2004)

11. Gogolla, M., Richters, M.: Expressing UML class diagrams properties with OCL.
In: Clark, A., Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263,
pp. 85–114. Springer, Heidelberg (2002)

12. González, C.A., Cabot, J.: ATLTest: A white-box test generation approach for
atl transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 449–464. Springer, Heidelberg (2012)

13. Guerra, E.: Specification-driven test generation for model transformations. In:
Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 40–55. Springer,
Heidelberg (2012)

14. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations - first expe-
riences using a white box approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 193–204. Springer, Heidelberg (2007)

15. Lamari, M.: Towards an automated test generation for the verification of model
transformations. In: ACM Symposium on Applied Computing (SAC), pp. 998–1005.
ACM (2007)

16. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and gen-
erating functional tests. Comm. of the ACM 31(6), 676–686 (1988)

17. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism knowledge to se-
lect models for model transformation testing. In: 1st Int. Conf. on Software Testing,
Verification and Validation (ICST), pp. 328–337. IEEE (2008)

18. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal spec-
ification and testing of model transformations. In: Bernardo, M., Cortellessa,
V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 399–437. Springer,
Heidelberg (2012)

Test Data Generation for Model Transformations 41

19. Wang, J., Kim, S.K., Carrington, D.: Automatic generation of test models for model
transformations. In: 19th Australian Conf. on Software Engineering (ASWEC),
pp. 432–440. IEEE (2008)

20. Weißleder, S., Sokenou, D.: Automatic test case generation from UML models and
OCL expressions. In: Software Engineering 2008 - Workshopband, Fachtagung des
GI-Fachbereichs Softwaretechnik. LNI, vol. 122, pp. 423–426. GI (2008)

Testing MOFScript Transformations
with HandyMOF

Jokin García, Maider Azanza, Arantza Irastorza, and Oscar Díaz

Onekin Research Group, University of the Basque Country (UPV/EHU)
San Sebastian, Spain

{jokin.garcia,maider.azanza,arantza.irastorza,oscar.diaz}@ehu.es

Abstract. Model transformation development is a complex task. There-
fore, having mechanisms for transformation testing and understanding
becomes a matter of utmost importance. Understanding, among oth-
ers, implies being able to trace back bugs to their causes. In model
transformations, causes can be related with either the input model or
the transformation code. This work describes HandyMOF, a tool that
first eases the transition between the effect (i.e. generated code file) and
the causes (i.e. input model and transformations) and then provides the
means to check the transformation coverage obtained by a test suite.
The challenges are twofold. First, the obtainment of input model suites
which yield to a quantifiable transformation coverage. Second, provid-
ing fine-grained traces that permit to trace back code not just to the
transformation rule but to the inner ’print’ statements. A transformation
that generates Google Web Toolkit (GWT) code is used as the running
example.

1 Introduction

Transformations rest at the core of Model Driven Engineering (MDE). As any
other piece of software, transformations need to be designed, programmed and
tested. This last step becomes even more important if we consider that each
transformation can potentially generate multiple applications, to which its errors
would be propagated [15].

Nevertheless, testing model transformation has proved to be a tough challenge
[1]. Compared to program testing, model transformation testing encounters ad-
ditional challenges which include the complex nature of model transformation
inputs and outputs, or the heterogeneity of model transformation languages
[17]. To face this situation, both black-box techniques [3,5,16] and white-box
techniques [6,8,10] have been proposed. These two approaches are complemen-
tary and should be carried out in concert. In black-box techniques the challenge
rests on coming up with an adequate set of input models. On the other hand,
white-box techniques capture the mechanics of the transformation by covering
every individual step that makes it up [1]. We concentrate on the latter, partic-
ularly focusing on Model-to-Text (M2T) transformations, which have received
little attention. Specifically, MOFScript language 1 is used along the paper.
1 http://modelbased.net/mofscript/

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 42–56, 2014.
c© Springer International Publishing Switzerland 2014

http://modelbased.net/mofscript/

Testing MOFScript Transformations with HandyMOF 43

The drawback of white-box testing approaches is that they are tightly cou-
pled to the transformation language and would need to be adapted or completely
redefined for another transformation language [1]. While standards [14] or well
established languages [9] exist in Model-to-Model (M2M) transformation lan-
guages, the situation is more blurred in M2T transformations. This is the reason
why, while aiming at the same goals as white-box testing (i.e., covering every
step of the transformation), we opted to realize it using a mixed approach. The
model test suite is generated using black-box techniques and then both input
models and the generated code are traced to the transformation. The purpose is
twofold: (1) if a bug is detected in the generated code, it can be traced back to
the transformation line that generated it, and (2) the transformation coverage
obtained by the model test suite can be calculated based on transformation lines
being transited.

Consequently our approach heavily rests on trace models. Broadly, trace mod-
els need to capture a ternary relationship between the source model elements,
the transformation model elements, and the generated code. We chose MOF-
Script as the M2T transformation language as it already supports traceability
between source model elements and locations in generated text files [12]. That is,
it is possible to trace back the generated code from the source elements. Unfor-
tunately, the third aspect (i.e. the transformation model elements) is captured
at a coarse-grained granularity: the transformation rule. This permits coverage
analysis to be conducted at the rule level (i.e., have all transformation rules been
enacted?) but it fails to provide a deeper look inside rules’ code. It would be
similar to programming language testing stopping at the function calls without
peering within the function body. Transformation rules might in themselves be
complex functions where conditional statements and loops abound. Rule-based
coverage might then fail to consider the diversity of paths which are hidden in
the rule’s body.

On these grounds, we complement MOFScript’s native trace model with a
second model that enables traceability between fine-grained transformation el-
ements (e.g., ’print’ and ’println’ statements) and locations in generated text
files. An algorithm is introduced to aggregate trace models to ascertain which
’print’ statements have not yet been visited during testing so that designers can
improve their testing model suites to obtain full coverage. These ideas are re-
alized in HandyMOF, a debugger for MOFScript transformations. A video of
MOFScript at work is available2. We start by setting the requirements.

2 Setting the Requirements

A common methodology for code testing generally comprises a number of well
known steps: the creation of input test cases (i.e., the test suite), running the soft-
ware with the test cases, and finally, analyzing the goodness of the results. Next
paragraphs describe some of the challenges brought by transformation testing.

2 http://onekin.org/downloads/public/screencasts/handyMOF

http://onekin.org/downloads/public/screencasts/handyMOF

44 J. García et al.

Fig. 1. Input map model and desired output

Creation of Test Suites. Obtaining the appropriate test suites becomes
critical to ensure that all the transformation variations are covered, and hence,
representative code samples are obtained. So far, different proposals have been
made for black-box testing of transformations, based on metamodel coverage
[4,16]. Specifically, Pramana is a tool that implements black-box testing by au-
tomatically generating ’model suites’ for metamodel coverage [16].

Fig. 2. Map2GWT transformation

However, black-box testing approaches do not guarantee that the generated
samples cover all the branches of the transformation. This calls for tools like
Pramana to be complemented with white-box testing approaches where the un-
veiling of the transformation code provides additional input to obtain the test
suite.

Testing MOFScript Transformations with HandyMOF 45

Map

-latitude : float
-longitude : float
-description : string
-telephone : string
-downtown : bool
-name : string
-pictures[] : string

Address

1
-addresses0..*

Fig. 3. Map
metamodel

As an example, consider a model that is transformed to
markers in Google maps (see Figure 1). Markers represent
Points of Interest (POI). A conference page contains the loca-
tions of the venue and the main hotels or restaurants available
in the area. Those markers are captured through a Map meta-
model (Figure 3). Transformation rules are defined to handle
the two elements of the Map metamodel, namely, Map and
Address. The output is a Google map where markers are de-
picted together with their pictures, if available. Besides, if the
marker stands for a restaurant, the phone is shown as part
of the marker’s content. This last rule illustrates the need for
white-box testing. The significance of ’restaurant’ as a key
value for changing the transformation flow cannot be ascer-
tained from the string-typed property ’place’. Therefore, the
use of metamodel-based test suite generators like Pramana
does not preclude the need to check that all paths of the trans-
formation have been traversed.

Analyzing the Goodness of the Results. In the testing literature, an
oracle is a program, process or body of data that specifies the expected outcome
for a set of test cases as applied to a tested object [2]. Oracles can be as sim-
ple as a manual inspection or as complex as a separate piece of software. We
focus on assisting manual inspection. This requires means for linking code back
to generators (i.e., MOFScript rules), and vice versa. MOFScript’s native trace
model provides such links at the rule level. However, a rule-based granularity
might not be enough. The address rule (see Figure 2 - lines 14-31) illustrates
how transformation complexity is tied to the complexity of the metamodel el-
ement to be handled or the logic of the transformation itself. This results in
’print’ statements being intertwined along control structures such as iterators
and conditionals. A rule-based granularity encloses the whole output within a
single trace, failing to indicate the rule’s paths being transited. A print-based
granularity will account for a finer inspection of the transformation code. This
in turn, can redound to the benefit of coverage analysis and code understanding.
This sets the requirement for fine-grained traces.

3 The HandyMOF Tool

The previous section identifies two main requirements: semi-automatic construc-
tion of test suites, and fine-grained linkage between transformations and gener-
ated code. These requirements guide the development of HandyMOF, a debugger
for MOFScript included as part of Eclipse (see Figure 4). The canvas of Handy-
MOF is basically divided in two areas:

– Configuration area, where the testing scenario is defined. This includes: (1)
the project folder, (2) the transformation to be debugged (obtained from the
transformation folder in the project), and (3), the input model to be tested
(obtained from the trace models that link to the chosen transformation).

46 J. García et al.

Fig. 4. HandyMOF as a debugger assistant: from transformation to code

– Inspection area. Previous configuration accounts for a transformation enact-
ment that can output one or more code files. The inspection area permits
to peer at both the transformation and the code files. The output reflects
a single transformation enactment (the one with the input model at hand).
Figure 5 shows the case for the input model Map_1.xmi. In this case, only
one code file is generated (i.e. GoogleMapsExample.java). Additional code
files would have been rendered through additional tabs.

The added value of HandyMOF basically rests on two utilities. First, it permits
to selectively peer at the generated code. To this end, both the transformation
and the generated files are turned into hypertexts. Code is fragmented in terms
of ’traceable segment’ (i.e. set of characters outputted by the enactment of the
same ’print’, see later). Finally, both MOFScript print statements and ’traceable
segments’ are turned into hyperlinks. In this way, debugging answers are just a
click away. Answers to questions such as ’which code does this print statement
generate?’ or ’ which print statement caused this traceable segment?’ are high-
lighted by just clicking on the respective hyperlink. Figures 4 and 5 illustrate
two debugging scenarios:

1. Inspecting the output of a given ’print’: which code snippet results from the
enactment of this ’print’? Click on the print statement (’Transformation’
textarea, line 56) and the answer is highlighted.

Testing MOFScript Transformations with HandyMOF 47

Fig. 5. HandyMOF as a debugger assistant: from code to transformation

Fig. 6. HandyMOF as a testing assistant

48 J. García et al.

2. Tracing back a code snippet to its generator (i.e. ’print’ statement), respec-
tively. Which ’print’ statement causes this code snippet? Click on the code
snippet (’Generated code’ textarea, line 44) and the answer is highlighted
(’Transformation’ textarea, line 58).

The second utility is the role of HandyMOF as a coverage analysis assistant.
First, by identifying ’holes’ in the Pramana generated model suite in terms of
’print’ statements not yet visited by any input model. Second, by identifying the
smaller set of model inputs that provides the larger coverage (see later), hence
coming up with a minimal model suite which can speed up future testing. The
process starts by selecting ’all’ as for the input model configuration parameter
(see Figure 6). This triggers the algorithm for the obtainment of the minimal
model suite. The output is reflected in two ways. First, it renders the model
identifiers of such suite. Second, it aggregates the resulting trace models, collects
the visited ’print’ statements, and in the inspection area highlights those ’print’
statements not yet transited. This helps developers to elaborate additional input
models to increase transformation coverage. As can be seen in Figure 6, when
<all> input models are selected, HandyMOF returns the minimal model suite
(right) and highlights those ’print’ statements not yet covered by any input
model sample (left).

4 The HandyMOF Architecture

Fig. 7. HandyMOF ’s Architecture

Figure 7 depicts the main
components and flows of
HandyMOF. The Project Ex-
plorer handles the folder struc-
ture. Pramana provides in-
put models from the corre-
sponding metamodel. Finally,
HandyMOF consumes input
models and transformations
to obtain its own trace mod-
els, that complement MOF-
Script’s native ones, and the
generated code files.

An important question is
whether this approach can
be generalized to other M2T
transformation languages. Ba-

sically, HandyMOF rests on two main premises. First, the existence of a trace
model that links the input model with the generated code. Second, the existence
of a transformation metamodel (and the corresponding injector) that permits to
move from the transformation text to its corresponding transformation model,
and vice versa. Provided these characteristics are supported, HandyMOF could

Testing MOFScript Transformations with HandyMOF 49

be extended to languages other than MOFScript. Next subsections delve into the
main components of HandyMOF, namely the Trace Generator and the Minimal
Model Suite Finder.

4.1 Trace Generator

The goal of this component is to trace the input model, the generated code and the
M2T transformation. It leverages on the trace natively provided by MOFScript
that links the input model with the generated code. The metamodel for Handy-
MOF ’s traces is first described, followed by how these traces are generated.

-ID : string
-name : string
-featureRef : string
-uri : string

ModelElementRef

-sourceOperationID : string
-sourceOperationName : string

Trace

-ID : string
-name : string
-URI : string

File

TraceableSegment

-ID : string
Block

1

-blocks

*

1

-traceablesegment *

-row : int
-column : int

Position

1

0..1

*

-startOffset/endOffset *

*
1

1

-segment

*

-ID : string
-name : string
-featureRef : string
-uri : string
-line : int
-column : int

TransformationElementRef

Trace

-ID : string
-name : string
-URI : string

File

TraceableSegment

-ID : string
Block

1

-blocks

*

1

-traceablesegment *

-row : int
-column : int

Position

1

0..1

*

*

*
1

1

-segment

*

startOffset/
endOffset

Fig. 8. MOFScript’s Traceability Metamodel (left, obtained from [16]) and Handy-
MOF ’s trace metamodel (right)

HandyMOF ’s Trace Metamodel

MOFScript’s trace metamodel defines a set of concepts that enable traceability
between source model elements and locations in generated text files (see Figure 8
left) [12]. A trace contains a reference to the operation (transformation rule) that
generated the trace and references the originating model element and the target
traceable segment. The model element reference contains the ’id’ and ’name’ for
the originating element. It also contains a feature reference, which points out a
named feature within the model element (such as ‘name’ for a property class).
On the other hand, the generated code file is captured in terms of ’blocks’. Blocks
are identifiable units within a file. A block contains a set of segments which are
relatively located within the block in terms of a starting and ending offset.

50 J. García et al.

Fig. 9. Complementary trace model: between model and code (above) and between
transformation and code (below)

This metamodel nicely captures traces from source model elements to the
generated code file through traceable segments. Unfortunately, traceable seg-
ments are related to their transformation rule counterparts rather than to the
inner ’print’ statements. We claim that a finer granularity might help a more
accurate debugging in the presence of large transformation rules. On these
grounds, we complement the natively provided MOFScript trace model with our
own trace model where ’traceable segments’ are linked back not just to trans-
formation rules but to the transformation’s ’print’ statements. Figure 8 right
depicts HandyMOF ’s trace model. Differences stem from the granularity of trace-
able segments. MOFScript traceable segments account for rule enactments. In
HandyMOF, these segments are now partitioned into fine-grained segments: one
for each enacted ’print’ statement. Figure 9 illustrates the two complementary

Testing MOFScript Transformations with HandyMOF 51

traces for a simple case: between model and code (above) and between transfor-
mation and code (below). In this case, as the ’println’ is composed of seven parts,
seven traces will be given, one for each. As the ’print’ is executed three times
(one to create a location for a conference, one for an hotel and the other for a
restaurant), we can see that those traces are tripled. The position of the ’print’ in
the transformation to be the same, as captured in TransformationModelElement.

Obtaining Trace Models in HandyMOF

The process starts by generating the test model suite, in our case this is achieved
using Pramana. Once the model suite is obtained the next step is to link the
M2T transformation with the code that is generated from these models. The
first obstacle rests on the generated code being plain text, so that the trace
model links the transformation elements with the position where the related code
fragment starts (see Figure 8 right). This position can be different depending
on the input model and depends on the execution flow. As a case in point,
imagine an if-then-else statement in the transformation. Each branch may have
a different number of ’print’ statements. As a consequence, the position where
the first statement after the ’if’ starts may vary depending on the executed
branch. The same holds for loops, depending on the input model they may be
executed a different number of times thus changing the position where the rest
of the statements start.

So additional information is required for a particular model, e.g. whether a
conditional instruction is true or false, or the number of iterations, to know
which specific statements have been executed and how many times. This data is
collected in a tracing file.

Transformations are also models and can thus be analyzed or be the input
of another transformation. Therefore, in this proposal, the original M2T trans-
formation will be used to get internal information of its execution, and save it
in the execution trace model. More specifically, taking the original M2T trans-
formation as input, a Higher Order Transformation (HOT) transformation will
modify it, e.g. inserting counter variables in each iterator and flags to mark con-
ditional instructions. As a result, this leveraged transformation not only outputs
the code but also the execution tracing model.

That execution tracing model, and the trace between the input model and
the generated code, along with the original M2T transformation, are used to get
the trace model between the M2T transformation and the code corresponding
to each input model. An ATL M2M transformation is in charge of this trace
generation, calculating the length of each ’print’ from the transformation to set
the offset values in the ’Segment’ elements; and having into account how many
times each ’print’ is executed.

4.2 The Minimal Model Suite Finder

Inorder to analyze theM2Ttransformationand to see towhat extent its statements
have participated in the code generation, the use of input models is unavoidable.

52 J. García et al.

The goal is to get the input models that obtain a 100% coverage of the transfor-
mation code. However, to the best of our knowledge no tool exists that, given an
input domain metamodel and a M2T transformation, generates the models that
provide full coverage of the transformation. As a result, we opted for using Pra-
mana (formerly known as Cartier) [16], a tool that implements black-box testing
for metamodels [16].

Are models generated by Pramana enough to obtain our goal? Pramana serves
engineers by generating model suites for metamodel coverage but its purpose is
not transformation coverage. However, transformations have embedded seman-
tics that need to be considered if the goal is the latter. Different conditions
present in if statements or loops require specific test cases that may not be gen-
erated if the criteria is merely metamodel coverage. As a case in point, the if
statement in Figure 2 (line 18) checks whether the Address corresponds to a
restaurant. Among the many test cases that can be generated from the meta-
model, this statement requires one with precisely that value in the description
attribute to obtain transformation coverage, which is not guaranteed if the gen-
eration of the test cases does not take the transformation into account. Hence,
as in program testing where black-box testing and white-box testing approaches
are used in concert, we need to cater for both metamodel and transformation
coverage.

The proposal of this work is the use of trace models for the analysis of trans-
formation coverage. What is needed is to link the code samples with the transfor-
mation, via the tracing models obtained by the trace generator module. We need
to see how much coverage has been reached using the input models generated
by Pramana.

Hence, the task of the MinimalModelSuiteFinder module (see Figure 7) is to
quantify the transformation coverage, and to rule out those input models whose
transformation only enacts transformation statements that have already been
traversed by previous models. The goal of the module is then to minimize set of
input models and obtain the higher coverage percentage of the transformation
code (specifically, the ’print’ instructions that generate the target code). We
name this set the minimal model suite. While not optimal, the presented greedy
algorithm permits to reduce the test suite size.

Fig. 10. Minimal model suite algorithm (main rule)

Testing MOFScript Transformations with HandyMOF 53

Figure 10 shows one of the functions of the algorithm used in obtaining this
suite. It is a recursive function that finishes when all lines are covered or there
are not more input models to use (line 7). The algorithm can be summarized as
follows:

1. The best model is added to the list of selected models (minimalModelSuite)
(line 4).

2. The prints covered by the best model are added to the list of covered prints
(coveredPrints) (lines 5-6).

3. The best model (i.e., the one that covers most prints) is excluded from the
available models (availableModels) (lines 10-11).

Using these two modules the interface of HandyMOF can be used to check the
correspondence between the M2T transformation and the generated code, be it
on a single instance (see Figure 5) or for the complete model suite to check the
obtained coverage (see Figure 6).

5 Related Work

This work sits inbetween testing and traceability for M2T transformations. Test-
ing wise, no standard or well established proposal exists for M2T transforma-
tion testing [17]. Wimmer et al. present an extension of tracts [7] to deal with
model-to-text transformations [18]. Their approach is complementary to ours as
it focuses on black-box testing (i.e., it considers the specification of the trans-
formation, not its implementation). Our work highlights the complementariness
of black-box and white-box testing techniques. Black-box testing approaches do
not capture the mechanics of the transformation [1], which is precisely where
we intend to aid. McQuillan et al. propose white-box coverage criteria for trans-
formations [11]. Although their work centers in ATL [9] (i.e., a model-to-model
transformation), their coverage criteria could be applicable to our case as well.
We focus on instruction coverage (more precisely on coverage of instructions that
produce an output in the generated code). Gonzalez et al. present a white-box
testing approach for ATL transformations [8]. It follows a traditional white-box
testing strategy where input models are created based on the inner structure
of the transformation. This involves a coupling between the approach and the
transformation language. This might not be problem for M2M transformation
languages (where ATL has become de facto standard) but rises portability issues
for M2T transformations where no predominant language exists. This is why we
opt for a mixed approach where input models are generated using black-box
testing on the search for transformation-language independence. This approach,
albeit less precise, can be applied to any language provided adequate traces can
be obtained. This moves us to traceability.

The table in Figure 11 compares main M2T tools and their traceability sup-
port. Values are obtained from the literature or grasped from videos or forums.
Comparison is set in terms of trace availability for model-to-code, transformation-
to-code and transformation-to-model. The underlying mechanisms and the pur-
sued aim is also included. Within the model-to-code and transformation-to-code

54 J. García et al.

Fig. 11. Traceability comparison.

options, a ’block’ is nothing more than a piece of code, i.e. an identifiable unit
within a file. In these proposals, code blocks to generate and to be traced must be
delimited by special keywords in the transformation. When ’code’ is indicated in
the table, there is a traceability but no information about the underlying details.

Mof2Text specification (i.e. the OMG standard for MOF M2T Transforma-
tion Language) [13] provides support for tracing model elements to text parts.
Specifically, a trace block relates text that is produced in a block to a set of
model elements. Some text parts may be marked as protected in order to be
preserved and not overwritten by subsequent M2T transformations. MOFScript
implements that proposal and handles the traceability between generated text
and the original model, aiming to be able to synchronize the text in response to
model changes and vice versa. MOFScript does not specify any language-specific
mechanisms to support traceability, but a metamodel manages the traces from
a source model to target generated text files. Central in this trace model is the
logical segmentation of a file into blocks; thus, a trace contains a reference to the
transformation rule that generated the trace and references to the originating
model element and to the target traceable segment.

Another implementation of OMG’s M2T specification is the Acceleo code
generator. Acceleo Pro Traceability 3, a tool complementary to the generator,
enables round trip-support: updates in the model or the code are reflected in
the connected artefacts. Since this is a commercial tool, restricted information
describing the solution is available.

Epsilon4 is a platform for model management where several task-specific lan-
guages are integrated, among them one is Epsilon Generation Language (EGL),
which is a template-based code generator, i.e. their proposal for M2T trans-
formations. EGL provides a traceability API that facilitates exploration of the
executed templates, affected files and protected regions that are processed dur-
ing a transformation. Like previous work, this tool does not have support for
transformation coverage either.

3 http://www.obeo.fr/pages/obeo-traceability/en
4 https://www.eclipse.org/epsilon/

http://www.obeo.fr/pages/obeo-traceability/en
https://www.eclipse.org/epsilon/

Testing MOFScript Transformations with HandyMOF 55

As far as we know, the Xtend language does not create traces automatically.
And last but not least, JET 5, Velocity 6, and StringTemplate 7 are other M2T
languages, that with JSP-like or Java-based templates render source code in-
cluding java, HTML, XML, SQL, and so on. No information has been found
about traceability in these platforms.

6 Conclusions

This work presented a proposal for white-box testing of M2T transformations.
Due to the heterogeneity of M2T transformation languages, the test suite is
generated using black-box testing and then, the generated code is traced back
to the transformation and the input model. Main outcomes include: (1) if a
bug is detected in the generated code, it can be traced back to the generating
’print’ statement, (2) each generator statement (i.e., ’print’) can be traced to
the generated code line, and (3) the transformation coverage obtained by the
test model suite can be calculated in terms of visited ’prints’. If the obtained
coverage is not complete, the developer can create input models that cover the
missing transformation lines. This is realized in HandyMOF, a tool for debugging
MOFScript transformations.

This proposal could be generalized for any transformation language fulfilling
our both premises, namely, the existence of a transformation metamodel (and
its injector) and a trace model linking the input model with the generated code.
The part of the tool that would need to be reimplemented in case of exporting
the idea to other languages is the trace generation module, that would have to
be adapted to language structures of the new transformation language. Both the
interface and the coverage analysis are reusable.

Future work includes guiding transformation developers in creating the miss-
ing input models from the unvisited ’prints’. We also contemplate integrating
HandyMOF with other testing approaches to provide an integrated solution.

Acknowledgments. This work is co-supported by the Spanish Ministry of
Education, and the European Social Fund under contract TIN2011-23839. Jokin
enjoyed a grant from the Basque Government under the “Researchers Training
Program”. We thank Cristóbal Arellano for his help developing HandyMOF, and
the reviewers for their comments.

References

1. Baudry, B., Ghosh, S., Fleurey, F., France, R.B., Le Traon, Y., Mottu, J.-M.:
Barriers to Systematic Model Transformation Testing. Communications of the
ACM 53(6), 139–143 (2010)

5 https://www.eclipse.org/modeling/m2t/?project=jet
6 http://veloedit.sourceforge.net/
7 http://sourceforge.net/projects/hastee/

https://www.eclipse.org/modeling/m2t/?project=jet
http://veloedit.sourceforge.net/
http://sourceforge.net/projects/hastee/

56 J. García et al.

2. Bezier, B.: Software Testing Techniques. Van Nostrand Reinhold, New York (1990)
3. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based Test

Generation for Model Transformations: An Algorithm and a Tool. In: 17th Inter-
national Symposium on Software Reliability Engineering (ISSRE 2006), Raleigh,
USA (2006)

4. Cadavid, J.J., Baudry, B., Sahraoui, H.A.: Searching the Boundaries of a Modeling
Space to Test Metamodels. In: 5th International Conference on Software Testing,
Verification and Validation (ICST 2012), Montreal, Canada (2012)

5. Fleurey, F., Baudry, B., Muller, P.-A., Le Traon, Y.: Qualifying Input Test Data
for Model Transformations. Software and System Modeling (SoSyM) 8(2), 185–203
(2009)

6. Fleurey, F., Steel, J., Baudry, B.: Validation in Model-driven Engineering: Test-
ing Model Transformations. In: 1st International Workshop on Model, Design and
Validation (SIVOES-MoDeVa 2004), Rennes, France (2004)

7. Gogolla, M., Vallecillo, A.: Tractable Model Transformation Testing. In: France,
R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698,
pp. 221–235. Springer, Heidelberg (2011)

8. González, C.A., Cabot, J.: ATLTest: A White-Box Test Generation Approach for
ATL Transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 449–464. Springer, Heidelberg (2012)

9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation
Tool. Science of Computer Programming (SCP) 72(1-2), 31–39 (2008)

10. Kuster, J.M., Abd-El-Razik, M.: Validation of Model Transformations - First Ex-
periences using a White Box Approach. In: 3rd International Workshop on Model
Development, Validation and Verification (MoDeVa 2006), Genova, Italy (2006)

11. McQuillan, J.A., Power, J.F.: White-Box Coverage Criteria for Model Transforma-
tions. In: 1st International Workshop on Model Transformation with ATL (MtATL
2009), Nantes, France (2009)

12. Olsen, G.K., Oldevik, J.: Scenarios of Traceability in Model to Text Transfor-
mations. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS,
vol. 4530, pp. 144–156. Springer, Heidelberg (2007)

13. OMG. MOF Model to Text Transformation Language, v1.0. Formal Specification
(January 2008), http://www.omg.org/spec/MOFM2T/1.0/PDF

14. OMG. Query/View/Transformation, v1.1. Formal Specification (January 2011),
http://www.omg.org/spec/QVT/1.1/PDF/

15. Selim, G.M.K., Cordy, J.R., Dingel, J.: Model Transformation Testing: The State
of the Art. In: 1st Workshop on the Analysis of Model Transformations, AMT
2012, Innsbruck, Austria (2012)

16. Sen, S., Baudry, B., Mottu, J.-M.: On Combining Multi-formalism Knowledge to Se-
lect Models for Model Transformation Testing. In: 1st International Conference on
Software Testing, Verification, and Validation (ICST 2008), Lillehammer, Norway
(2008)

17. Tiso,A.,Reggio,G.,Leotta,M.:EarlyExperiences onModelTransformationTesting.
In: 1st Workshop on the Analysis of Model Transformations, AMT 2012, Innsbruck,
Austria (2012)

18. Wimmer, M., Burgueño, L.: Testing M2T/T2M Transformations. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107,
pp. 203–219. Springer, Heidelberg (2013)

http://www.omg.org/spec/MOFM2T/1.0/PDF
http://www.omg.org/spec/QVT/1.1/PDF/

Towards a Rational Taxonomy for Increasingly

Symmetric Model Synchronization

Zinovy Diskin1,2, Arif Wider3,4, Hamid Gholizadeh2, and Krzysztof Czarnecki1

1 University of Waterloo, Canada
{zdiskin,kczarnec}@gsd.uwaterloo.ca

2 McMaster University, Canada
{diskinz,mohammh}@mcmaster.ca

3 Humboldt-Universität zu Berlin, Germany
wider@informatik.hu-berlin.de

4 Beuth Hochschule für Technik Berlin, Germany
awider@beuth-hochschule.de

Abstract. A pipeline of unidirectional model transformations is a well-
understood architecture for model driven engineering tasks such as model
compilation or view extraction. However, modern applications require a
shift towards networks of models related in various ways, whose syn-
chronization often needs to be incremental and bidirectional. This new
situation demands new features from transformation tools and a solid
semantic foundation. We address the latter by presenting a taxonomy of
model synchronization types, organized into a 3D-space. Each point in
the space refers to its set of synchronization requirements and a corre-
sponding algebraic structure modeling the intended semantics. The space
aims to help with identifying and communicating the right tool and the-
ory for the synchronization problem at hand. It also intends to guide
future theoretical and tool research.

1 Introduction

Fig. 1. MDE-pipe in
MDA

Early model-driven engineering (MDE) was based on a
simple generic scenario promoted by the Model Driven
Architecture (MDA) vision [13]: platform-independent
models describing a software system at a high-level of ab-
straction are transformed stepwise to platform-dependent
models, from which executable source code is automat-
ically generated. The generated code can be discarded
anytime, whereas models are the primary artifacts to
be maintained. Software development in the MDA per-
spective appears as a collection of model-transformation
chains or streams “flowing through the MDE-pipe”, as
shown in Fig. 1.

However, this nice pipeline architecture fails to capture two important aspects
of practicalMDE. First, it turns out that some changes are easier to make in lower-
level models (including code) rather than high-level models. This requirement

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 57–73, 2014.
c© Springer International Publishing Switzerland 2014

58 Z. Diskin et al.

leads to round-trip engineering in which transformation-streams in the MDE-
pipe flow back and forth. Second, models (on the same or different abstraction
levels) are typically overlapping rather than disjoint, which in our pipe analogy
means that transformation-streams interweave rather than flow smoothly. Round-
tripping and overlapping thus change the flow from “laminar” to “turbulent”,
as illustrated by the inset figure below on the right. Instead of separated and
weakly interacting transformation-streams, we have a network of intensively in-
teracting models with bidirectional horizontal (the same abstraction level) and
vertical (round-tripping) arrows as shown in Fig. 2.

“Turbulency” of modern model transformation brings
several theoretical and practical challenges. Semantics of
turbulent model transformation is not well understood,
whereas clear semantics is crucial for synchronization tools
because otherwise users have no trust in automatic syn-
chronization. Moreover, tool users and tool developers need
a common language to communicate required and provided
features because not every synchronization problem requires
the same set of features, and implementation of unnecessary
features can be costly and increases chances of unwanted interaction. Having a
taxonomy of synchronization behaviors, with a clear semantics for each taxo-
nomic unit, would help to manage these problems.

Fig. 2. Modern MDE
pipe

We will analyse the basic unit of a model network – a
pair of interrelated models to be kept in sync – and build
a taxonomy of relationships between two models from
the viewpoint of their synchronization, assuming that
concurrent updates are not allowed. It is a strong sim-
plifying assumption; however, this setting already covers
many cases of practical interest and the presented con-
cepts provide a basis for investigating the more complex
concurrent change scenarios. We identify three orthogo-
nal dimensions in the space of such relationships, and 16
synchronization types —points in the space. The space
equips this multitude of types with a clear structure: ev-
ery type is characterized by a triple of its coordinates,
which together determine its synchronization behavior.
We will also show that synchronization types can be or-
dered by having more or less symmetry in their behavior. Then the evolution
of MDE from its early pipeline setting to its current state can be seen as a
trend through the space from asymmetric to symmetric synchronization types.
Therefore, we call this trend symmetrization (an impatient reader may look at
Fig. 5 on p.65 that visualizes the idea). In the journal version of this paper [2],
we build an algebraic framework in which all our synchronization types can be
formally defined. Algebraic laws related to a synchronization type give rise to re-
quirements to synchronization procedures realizing the type. Hence, classifying a

Towards a Rational Taxonomy 59

concrete synchronization case by its type helps to identify and communicate the
right specification and the right tool for the synchronization problem at hand.

The paper is structured as follows. Section 2 introduces two basic features of
model synchronization and shows their orthogonality. Section 3 adds a third or-
thogonal feature and presents the 3D space. Section 4 describes symmetrization
and discusses its challenges. Section 5 presents related work. Section 6 concludes
the paper. Appendix A provides examples for each synchronization type. Ap-
pendix B presents a sketch of the formal semantic foundation for the space.

2 Organizational and Informational Perspectives on
Model Synchronization

In this section, we consider two basic features of binary synchronization sce-
narios: organizational symmetry (org-symmetry) and informational symmetry
(info-symmetry), and then discuss the 2D-plane formed by their combination.
Org-symmetry is fundamental for model synchronization but, to our knowledge,
has not been discussed in the literature in technical (and formal) terms. It cap-
tures the idea of two models being equally authoritative in terms of permitted
updates and their propagation. Info-symmetry characterizes “equality” of infor-
mational contents of models. This feature, and its phrasing in terms of symmetry,
is well known in the literature on algebraic models of bidirectional transforma-
tions [3,4,10].

2.1 Organizational Symmetry

Suppose that two models to be synchronized, A and B, are given together with a
consistency relation between them. Assume that A1 and B1 are two inconsistent
states of the models, and one of the models is to be changed to restore consis-
tency (recall that concurrent updates are not considered). There may be different
policies for such changes. A simple one is when one of the models (say, A), is con-
sidered entirely dominating the other model B, so that consistency restoration
always goes via changing B1 to B2 consistent with A1. This situation is common
when a low-level model B (e.g., bytecode) is generated from a high-level (more
abstract) model A (Java program). Generating Java code (this time model B)
from a UML model A is similar, if round-tripping is not assumed. The low-level
model B is not supposed to be modified manually. When the high-level model
A is changed, the original low-level model is discarded and a new model is re-
generated from scratch. In all such cases, we say that model A organizationally
dominates B, and write A>orgB. Equivalently, we say that B is dominated by
A and write B<orgA. We will also refer to the case as org-asymmetry.

We have an entirely different synchronization type for code generation with
round-tripping. Suppose that a UML model A0, and a Java program B0 gener-
ated from A0, were initially consistent, but later model A was changed to state
A1 inconsistent with B0. Then program B0 must be changed to B1 that is con-
sistent with A1. We say that update A0 → A1 on the A-side is propagated to the

60 Z. Diskin et al.

B-side. Conversely, if model B0 (code) was changed to B1 inconsistent with A0,
then model A must be changed to restore consistency, and we say that update
B0 → B1 was propagated to A. Thus, in contrast to the org-dominance, now
change propagation can go in either direction based on the history: the freshly
updated model dominates irrespectively to whether this freshly updated model
is either A or B. We say that neither model organizationally dominates the other,
write A><orgB, and call this situation org-symmetry. Thus, the basic question
that characterizes the organizational dimension is the following: in what direc-
tion are updates propagated? Are they propagated only from A to B, only from
B to A, or in either direction?

There are also important synchronization cases in-between strict asymmetry
and strict symmetry considered above. A model can be partially dominated in
the sense that some (but not all) updates on this model are allowed to propagate
to the other side depending on the type of the update. Consider, for example,
the outline view of the Java Development Tools (JDT) of the Eclipse IDE. The
outline view is regenerated every time the Java code changes. Thus, there seems
to be an org-dominance of the Java code over the outline view. However, the
JDT allows the user to make some selected operations in the outline view, e.g.,
renaming elements, or moving elements within the hierarchy. These updates are
then propagated to the code. So, whereas all updates from the code (model
B) are propagated to the outline abstract view A, only a few operations are
allowed, and their results then propagated, from the outline A to the code B. We
call this situation org-semi-symmetry and write A≥<orgB. Note the difference
between the left and the right halves of the symbol, which refer to, respectively,
weak (some updates are propagated) and strong (all updates are propagated)
dominance of the direction. A similar semi-symmetric variant of code generation
from UML models could be also constructed. In contrast to the strict asymmetry
version discussed above, some code updates, e.g., changes in method heads, are
allowed to be propagated to the model. Therefore we will sometimes refer to
org-semi-symmetry as partial round-tripping.

Org-symmetry also includes a setting, in which both models are partially
dominated, i.e., both update propagation directions are sensitive for the update
type. Consider, for example, a system model consisting of a UML class diagram
(CD) and a UML sequence diagram (SD) with the following synchronization
policy. If a class name is changed in the CD, this change has to be reflected in
the SD, but class name changes are not allowed in the SD. Dually, if a method
signature is changed in the SD, this change has to be reflected in the CD, but the
latter are not allowed to change method signatures. We call such a case poorly
org-symmetric, and write A≥≤orgB, to distinguish it from rich org-symmetry
A><orgB considered above.

Thus, to completely characterize the org-dimension, one has to ask: Which
updates (if any) are propagated in what direction?

Towards a Rational Taxonomy 61

2.2 Informational Symmetry

The notion of informational symmetry (info-symmetry) is based on intermodel
consistency. The latter can be modeled as a binary relation K ⊂ M×N over
model spaces M and N, in which models A and, resp., B reside (these spaces
are determined by the respective metamodels, or grammars for textual models,
e.g., code). In general, the consistency relation is of type many-to-many. For
example, if M is a space of UML models, and N is a space of Java programs, a
given UML model A∈M can be correctly implemented by many Java programs
B∈N; differences between these Bs are usually termed as “implementation de-
tails”. On the other hand, A normally contains some information not relevant for
code generation, e.g., layout of boxes and arrows, timestamps, etc. Furthermore,
there may be structural differences between two UML models, e.g., in their in-
heritance hierarchies, which also result in the same code if the generator flattens
the inheritance hierarchy. Hence, the same Java program can be a correct im-
plementation of, generally speaking, different UML models. Thus, each of the
models (code and UML) has some private information not needed for the other
model, and they both share some public information important for the other
model, but represent it differently. We then write A><infB and term the case as
info-symmetry.

We have an essentially different synchronization situation between code and
its outline view in a typical IDE, e.g., JDT mentioned above. The outline only
shows parts of the information that is presented in the code, or, more generally,
an abstract view of the code so that only one outline model A is consistent with
a given piece of code B. Of course, the same outline A may be consistent with
many versions of B, so that the consistency relation is of the one-to-many type.
We then write A<infB and term the case as info-asymmetry.

Note that info-asymmetry appears in the case of code generation, if we con-
sider UML models up to their code-relevant context. That is, we consider two
UML models equivalent if their differences do not result in different gener-
ated code. Then consistency becomes a one-to-many relationship, and we have
A<infB. This view on code generation is a useful model of the situation.

An important characteristic of info-asymmetry is that the computational na-
ture of update propagation essentially depends on the direction. Propagating
updates from the source B to the view A is a relatively simple computational
procedure. In contrast, propagating updates from the view to the source is very
non-trivial because some missing information on the source side is to be restored
(see [5,3]). For the info-symmetric case, both update propagation directions need
restoration of missing information, and both are non-trivial.

A special case of info-symmetry is when the consistency relation is of the one-
to-one type and determines a bijection between two model spaces: now neither
of the two models has private data, i.e., both models are just different represen-
tations of the same information. An example is synchronization of a wiki article
described in a lightweight markup language like MediaWiki with the equiva-
lent HTML description of the article. Each of the two models can be uniquely
extracted from the other and update propagation is simple in both directions.

62 Z. Diskin et al.

We call the case poor info-symmetry and write A≈infB, to distinguish it from
rich info-symmetry considered above.

2.3 Organizational and Informational Symmetries Together

Recall two cases of info-asymmetry, A<infB, considered above. The first is when
A is the outline abstract view of code B. The second is when A is a UML
model whose private data is ignored for synchronization, and B is the code
generated from A. Despite the same info-asymmetry relationship between the
models, their synchronization situations (we also say synchronization types) are
different. Indeed, in the former case, the view is mostly a passive receiver of
the source updates, and we have A<orgB (or A≥<orgB, if some updates can
be propagated from the view to the source). In the latter case, the view is
active and generates the source that appears as a passive receiver of the view
updates, A>orgB. What determines the synchronization type of the case is a
combination of two parameters indexing the org- and the info-symmetry, resp. As
these two parameters are independent, they can be considered as two orthogonal
coordinates forming the plane shown in Fig. 3.

Organisational
symmetry (X)

Informational
symmetry (Y)

≈

Fig. 3. Plane of organizational and informational symmetries

The vertical axis has two points corresponding to the two possibilities of
the info-(a)symmetry: Y=0, which corresponds to info-asymmetry A<infB, and
Y=1, which combines two symmetric cases, A≈infB and A><infB. The hor-
izontal axis has three basic points corresponding to the three possibilities of
org-(a)symmetry considered in Section 2.1: X=0 (A<orgB), X= 1

2 (A≥<orgB),
and X=1 (A≥≤orgB and A><orgB). The latter again combines poor and rich
org-symmetry.

2D-types are formed by combining info- and org-symmetries, and, strictly
speaking, type (11) contains four subtypes corresponding to different combina-
tions of poor and rich symmetries. An accurate indexing of such subtypes can

Towards a Rational Taxonomy 63

be found in [2], but in this paper we use a simpler version of the space, and do
not additionally index subtypes inside a type when subtyping is caused by the
existence of poor and rich symmetries. However, there is yet another subtyping
mechanism caused by the interaction of two asymmetric relations: Each of the
types (00) and (120) splits into two subtypes depending on whether two dominant
models coincide or not. For example, a non-editable outline view is dominated
both organizationally and informationally, whereas with code generated from a
UML model without private data, the model dominates organizationally but the
code dominates informationally. Both scenarios are examples of type (00). In
contrast to subtyping caused by rich and poor symmetries, we want to index
these subtypes explicitly. We denote them by (XY)− (even less symmetry, since
the same model is dominated in both relations), or (XY)+ (more symmetry as
one model dominates in one relation, while the other model in the other relation).
Thus, the plane comprises eight synchronization types, and each synchronization
scenario considered above obtains its unique synchronization type (which can be
further specialized by distinguishing poor and rich symmetries).

3 Incrementality: From the Plane of Symmetries to a
3D-Space of Synchronization Types

The third dimension for our taxonomy is incrementality, a well-recognized fea-
ture of model transformations. In Sect. 3.1, we discuss semantic aspects of in-
crementality and its connections with the informational dimension. In Sect. 3.2,
we show how the entire 3D-space of synchronization types is built.

3.1 Incrementality and Delta Propagation

A non-incremental unidirectional model transformation t : M → N from a model
space M to a model space N creates a new target model B = t(A) from scratch
every time the source model A changes, no matter how big the change is. An
incremental model transformation is supposed to be more intelligent: a small
change a in model A is transformed into a respective small change b in model B.

In some synchronization scenarios, incrementality is optional and just im-
proves efficiency. For example, incremental building of the outline view of code
in an IDE may improve efficiency when dealing with very large code files. There
are, however, situations in which incrementality is crucial and the required syn-
chronization cannot be realized without incrementality. An example is partial
code generation. Suppose a UML tool that generates code stubs from class di-
agrams, but does not support round-tripping: Code for class declarations and
method heads is generated, but code in method bodies is to be added at code
level. Now, when method signatures are changed in the class diagram, method
heads must be regenerated while preserving method bodies, otherwise method
implementations would be lost. Thus, while non-private parts of code (method

64 Z. Diskin et al.

heads, class names, etc.) are updated to reflect changes in the UML model, the
private data of the code —the method bodies— must be preserved.

Such a situation is typical when updates are propagated to a side with private
data, if the latter is to be preserved. In more detail, an incremental transforma-
tion takes an update (delta) on one side, say, a : A0 → A1, and the original
model B0 on the other side, and produces an update (delta) on the other side,
t(a,B0) = b : B0 → B1, which restores consistency between A1 and B1, and keeps
the private part of B0 unchanged in B1. Deltas are ideally implemented as traces
of what happened (or should happen) to individual model elements. If correspon-
dences between models A and B are also precisely traced, an update propagation
satisfying the requirements above can be assured [3,4,8]. In case not all necessary
traces can be provided (e.g., updates to code are often not tracked individually),
updates can be provided as pairs of states (e.g., a = (A0, A1)) from which indi-
vidual traces can be inferred (e.g., using heuristics-based model-matching tools).
We call so implemented update propagation state-based.

Incrementality
(Z)

no incrementality

delta propagation

Informational
symmetry (Y)

≈

Fig. 4. Plane of incr. synchronization

By considering our examples of code
generation, and an IDE’s outline view
of the code, it is easy to see that non-
incremental transformation can be
implemented in either direction irre-
spective to the info-symmetry relation
between models. Moreover, correspon-
dences between models can be estab-
lished and then used for incremental
synchronization also irrespective to the
info-symmetry relation. Hence, the ab-
sence or presence of incrementality can
be seen as a new dimension orthogonal
to info-symmetry, and together they
form a taxonomic plane in Fig. 4.

Importantly, although incremental-
ity can be added to any type of the
info-symmetry between two models,
the way incrementality is implemented

does depend on this type. Indeed, the very semantics of incremental synchro-
nization depends on the info-symmetry relation as the latter determines parti-
tioning of model’s data into shared and private, which is crucial for a proper
incremental synchronization. The same is true for non-incrementality as well:
non-incremental code generation and external view computation are as differ-
ent semantically as their incremental versions are. Thus, each of the points on
the plane in Fig. 4 determines a specific semantic framework for model syn-
chronization. Such frameworks (we will refer to them as computational) can be
formalized with a family of algebraic structures called (delta) lenses [3,4,8,2] (see
also Appendix B).

Towards a Rational Taxonomy 65

3.2 A 3D-Space of Model Synchronization Types

Clearly, org-symmetry and incrementality are orthogonal: dominance of one or
another direction of update propagation, and the way the latter is implemented,
can be freely combined. For example, all cases of org-symmetry discussed in
Sect. 2.1 can be implemented incrementally or non-incrementally. We have also
seen in Sect. 2.3 that org-symmetry is orthogonal to info-symmetry. Hence, the
org-symmetry axis X is orthogonal to the plane YZ of computational frameworks
in Fig. 4, so that together they form a 3D-space as shown in Fig. 5. Each point
in the space, i.e., a triple of coordinates, characterizes a certain synchronization
behavior or synchronization type.

Organisational
symmetry (X)

Informational
symmetry (Y)

Incrementality (Z)

≈

Fig. 5. Taxonomic space of synchronization types and the symmetrization trend

Recall that axis X is for indexing org-symmetry: asymmetry is indexed by 0,
symmetry by 1, and semi-symmetry or partial round-tripping has index 1

2 . Axis
Y is for info-symmetry: asymmetry and symmetry are indexed by 0 and 1 resp.
Axis Z only denotes whether incrementality is present or not (incr.=1 or 0),
i.e., whether transformations take previous versions of models into account or
execute always from scratch. In the journal version we also index which direction
is incremental and distinguish between poor (state-based, no traces) and rich
(delta-based) incrementality. Because of the split points on the bottom plane
(Sec. 2.3, Fig. 3), the space comprises 10+6=16 distinct synchronization types.

Every example we discussed obtains its unique type: e.g., a non-incremental
passive outline view is located at type (000)−, and a symmetric multi-model
specification of a system, using incrementally synchronized high-level models is

66 Z. Diskin et al.

at type (111). Correspondingly, a synchronization tool or approach can be se-
lected (or developed) that supports a given synchronization type. For instance,
unidirectional ATL (in its standard non-incremental version) supports synchro-
nization type (010); GRoundTram [9] is a tool for (informationally) asymmetric,
state-based bidirectional transformations that supports type (101).

The space also allows us to classify several important database concepts.
Database views that are not updatable but incrementally computed have the
type (001)−. If some of the view updates can be propagated to the source, the
type is (1201)

−. Appendix A provides a table of examples for each synchroniza-
tion type (without distinguishing between poor and rich symmetries).

The diagonal arrow in Fig. 5 is a visualization of the symmetrization trend
discussed in the introduction; we will analyse it in more detail in the next section.

4 Symmetrization and Its Challenges

With the three-dimensional taxonomic space, the symmetrization trend can be
described as a path from simple, less symmetric synchronization types like (000)+

to more complex, symmetric types like (111), as is visualized by the diagonal
arrow in Fig. 5. In Sec. 4.1, we will illustrate symmetrization by presenting four
synchronization scenarios fundamental for MDE, ordered by increasing symme-
try of their behavior. In Sec. 4.2, we discuss technological and research challenges
posed by this trend, and how our taxonomic space can help to approach them.

4.1 Symmetrization: A Tour of Synchronization Types

Model Compilation or Full Code Generation. This is the scenario envi-
sioned (but rarely achieved) by early MDA: a high-level platform-independent
model A is to be edited and maintained, whereas executable code, model B,
is automatically generated from A and is not meant to be modified manually.
Changes to the code might be allowed but they will be discarded whenever
model A changes. Similarly, in bytecode generation (here, model B) from Java
code (model A), it is possible to do some optimization on the generated byte-
code but they will be discarded with every compilation. We have A>orgB (X=0)
because updates can only be propagated from A to B, and A><infB (Y=1 with
rich info-symmetry) because both A and B have private data (A has layout data
etc., and B has implementation-specific details). Incrementality is not assumed
(Z=0), and the scenario thus has synchronization type (010). A conceptually use-
ful, and often used model of the scenario is to ignore private data of model A and
consider it as an abstract view of code B, which results in informational asym-
metry A<infB and type (000)+. In fact, this simplification can also be applied to
the subsequently presented scenarios, so that there are multiple paths through
the space which follow the symmetrization trend. Note that (irrespectively of
info-symmetry) lack of incrementality combined with organisational asymmetry
results in a lack of autonomy for model B. Models are the only assets of software
development has been the motto of the early MDA.

Towards a Rational Taxonomy 67

Implementation as an Asset or Partial Code Generation. This scenario
occurred more often in early MDA in practice and is still common in current
MDE. High-level modeling languages are often not expressive enough to allow
completely automatic code generation. Then code B generated from high-level
model A is supposed to be manually augmented with implementation details,
for example, method bodies. There is no round-tripping, but in order to pre-
serve manual modifications of B, incremental model transformation is required.
In practice, this incrementality has often been achieved by marking parts of gen-
erated code as protected against manual modifications. Wrt. our taxonomy, we
haveA>orgB (updates are still to be propagated only from A to B) and A><infB,
which combined with incrementality results in type (011). Note that although
B is still dominated organizationally, incrementality gives B some autonomy.

Partial Round-Tripping. This scenario is sometimes achieved by more so-
phisticated MDE technologies. In comparison with partial code generation, we
now allow some changes in code B to be backward propagated to the high-
level model A. However, full round-tripping is not supported yet: only some
modifications in the generated code are allowed, e.g., method signatures can be
modified but class names can not. Thus, we have organizational semi-symmetry
A>≤orgB, informational symmetry A><infB, and incrementality, which results
in type (1211). Model B gains even more autonomy but is still organizationally
dominated byA.

Full Round-Tripping. All updates can be propagated in both directions. This
is the (rarely achieved) goal of UML tools which promise full round-tripping
with the generated code. We have A><orgB, A><infB, and incrementality, re-
sulting in type (111). Now A does not dominate B in any way, and we have
a completely symmetric situation (with both rich org-symmetry and rich info-
symmetry). There is still a distinction between A as a high-level model and B
as a low-level model, but this distinction is not captured by our taxonomy: both
models have equal organizational and informational rights. Models are the only
assets of software development, but code is a first-class model as well.

4.2 Challenges of Symmetrization: Discussion

Symmetrization of model synchronization demands tools that support bidirec-
tionality, incrementality, informational symmetry, and ultimately concurrent up-
dates. Some of the challenges posed by these requirements are discussed below
in terms of our taxonomic space.

Orthogonality in Tool Architectures. Developing synchronization tools
that meet all the requirements above is challenging. However, as we explained
in the paper, several of these requirements are independent of each other (we
will discuss concurrent updates below), and their orthogonality can be effectively
used by tool developers. For example, it is commonly agreed that asymmetric
lenses implement a solution to the view update problem [5]. With our taxonomic
space, this view of lenses can be refined: lenses implement a computational frame-
work (a point on the YZ-plane), which can be augmented with required organiza-
tional facilities (along axis X) to provide different synchronization policies — an

68 Z. Diskin et al.

entirely or partially dominating view, or an entirely dominated view. Moreover,
a semi-symmetric situation with both the view and the source being partially
dominating (and partially dominated) is also implementable on top of the com-
putational framework provided by asymmetric lenses. Such an extension of an
existing approach is more efficient, both conceptually and implementation-wise,
than developing separate tools which can only be applied to one synchronization
type. In general, tool architectures that reflect feature orthogonality would allow
for flexible combination of required features, and facilitate the trade-off between
synchronization capabilities and development costs.

Semantics of Bidirectional Transformations. When updates can be propa-
gated in both directions, two procedures of update propagation, from A to B and
from B to A, must be consistent and satisfy some invertibility property (see [3,4]
for details). When implementing those procedures separately, proving and main-
taining invertibility for complex synchronization becomes a major maintenance
issue. The goal of bidirectional transformations (BX) is to specify a consistency
relation and let the update propagation procedures be inferred from this specifi-
cation, so that they are always consistent by construction. As usually there are
many different possibilities to restore consistency, the implemented behaviour of
the inferred procedures must be clear and predictable for the user. The situation
with QVT-R shows how unclear semantics of a BX tool hinders its acceptance by
the user [14]. When released, QVT-R did not clearly specify the info-symmetry
type of scenarios it was intended for. Particularly, it allowed for non-bijective
synchronization but did not provide clear semantics for such tasks. We think
that many problems could have been avoided if first releases of QVT-R would
have targeted the bijective synchronization case, and clearly communicated this
to the user. Info-symmetric synchronization could have been added later, with a
clear semantics corresponding to this type (e.g., provided by symmetric lenses).
An important use of our taxonomic space is that if a synchronization scenario
targeted by the tool is identified by its type in the space, the scenario is provided
with formal semantics for the benefits of both tool developers and tool users.

Concurrent Updates: Towards the Fourth Dimension. The possibility to
update both sides in parallel can be seen as an independent feature of model
synchronization. Indeed, concurrency can be added to each of the org-symmetry
types on axis X (including the multitude of types hidden in semi-symmetry). Of
course, adding concurrency for the strictly org-asymmetric type (when one side
is entirely dominated) does not make sense practically as any changes on the
suppressed side will be discarded anyway, but we see it as a logically possible
(although practically not usable) case. Thus, each of the org-symmetry types is
split into two: with concurrency allowed or not allowed, all are supplied with a
computational framework. For the non-concurrent cases, computational frame-
works we considered above (see also Appendix B) work without any changes,
but concurrent updates need an essential development of their computational
support. They need special procedures and policies for conflict reconciliation,
and subsequent update merging [11]. Formal algebraic models of concurrent up-
dates is an active research area, especially the info-symmetric case is challenging.

Towards a Rational Taxonomy 69

Therefore we leave adding the fourth dimension of concurrent updates for fu-
ture work but kept a reminder about it in Fig. 5: the symmetrization arrow
goes beyond the space towards even more symmetric scenarios with concurrent
updates.

5 Related Work

Existing works on synchronization – practical and theoretical – usually focus
on only one specific type, i.e., one point in our space. For instance, original
lenses as presented by Foster et al. [5] formalize info-asymmetric state-based
BX. Info-symmetric state-based lenses were proposed in [14]. Delta-based lenses
were introduced for informational asymmetry [3] and symmetry [4]. Triple Graph
Grammars (TGG) [12,7] provide a more operational approach to BX; for exam-
ple, delta-lenses can be implemented by TGG [8]. Incrementality in TGG has
been also studied [6,8]. The org-symmetry dimension has been discussed in the
literature as unidirectional vs. bidirectional transformations [1,12]. We present
a more fine-grained taxonomy by introducing organizational semi-symmetry.

There is little related work that describes the combination of several dimen-
sions of model synchronization and provides a formal foundation. Antkiewicz
and Czarnecki’s [1] is closest to ours in its intention to classify different synchro-
nization scenarios, but deltas are not considered there, and orthogonality of the
dimensions is not elaborated. We consider our work as a continuation of [1] and
we are not aware of other classification work in-between.

6 Conclusion

Symmetrization of MDE, i.e., the shift from model transformation pipelines to
networks of interacting models, poses several challenges for model synchroniza-
tion tools: support of bidirectionality, incrementality, informational symmetry,
and ultimately concurrent updates create a package of non-trivial technological
and theoretical issues to resolve. Having a taxonomy of synchronization behav-
iors, with a clear semantics for each taxonomic unit, can help to manage these
problems. In the taxonomic space that we presented, two dimensions are com-
putational and form a plane classifying pairs of mutually inverse update propa-
gation operations realizing BX. The third dimension is orthogonal to the plane
and classifies relationships of organizational dominance between the models to
be kept in sync. As far as we know, the notion of organizational (a)symmetry
and its orthogonality to incrementality and informational symmetry is novel.

The space can be used to locate the type of the synchronization problem at
hand. From this type, we can infer the requirements for model synchronization
tools, and theories to be applied to the problem. We think of the space as a com-
munication medium for tool users and tool developers, in which they can specify
tool capabilities and behavior. We hope that our space can also guide future re-
search about bidirectional transformations by identifying synchronization types
that are currently not covered, particularly, organizational semi-symmetry. Of
course, concurrent updates are an important dimension, and we plan to integrate
it into our framework in a future work.

70 Z. Diskin et al.

Acknowledgements. Thanks go to the anonymous reviewers for comments on
a preliminary version of the paper. Arif Wider was supported by the German
Academic Exchange Service (DAAD) and by the Federal Ministry of Education
and Research (BMBF), FHprofUnt grant 17075A10 (MOSES). The Canadian
part of the author team was financially supported by Automotive Partnership
Canada within the NECSIS project.

References

1. Antkiewicz, M., Czarnecki, K.: Design Space of Heterogeneous Synchronization. In:
Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Tech-
niques in Software Engineering II. LNCS, vol. 5235, pp. 3–46. Springer, Heidelberg
(2008)

2. Diskin, Z., Gholizadeh, H., Wider, A., Czarnecki, K.: A Three-Dimensional Tax-
onomy for Bidirectional Transformation and Synchronization. Journal of Systems
and Software – Special Issue on Models and Evolution (submitted, 2014)

3. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: The Asymmetric Case. Journal of Object Technol-
ogy 10(6), 1–25 (2011)

4. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case.
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981,
pp. 304–318. Springer, Heidelberg (2011)

5. Foster, J.N., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for
Bidirectional Tree Transformations: A Linguistic Approach to the View-Update
Problem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

6. Giese, H., Wagner, R.: From Model Transformation to Incremental Bidirectional
Model Synchronization. Software and Systems Modeling 8, 21–43 (2009)

7. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between
formal foundations and current practice for triple graph grammars: Flexible re-
lations between source and target elements. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 141–155. Springer,
Heidelberg (2012)

8. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Cor-
rectness of model synchronization based on triple graph grammars. In: Whittle,
J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682.
Springer, Heidelberg (2011)

9. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: An Integrated
Framework for Developing Well-behaved Bidirectional Model Transformations. In:
ASE 2011, pp. 480–483. IEEE (2011)

10. Hofmann, M., Pierce, B., Wagner, D.: Symmetric Lenses. In: POPL (2011)
11. Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On Propagation-

Based Concurrent Model Synchronization. In: Proc. of the 2nd Int’l Workshop on
Bidirectional Transformations (BX 2013). EC-EASST, vol. 57, EASST (2013)

12. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: ICGT, pp. 411–425
(2008)

13. Soley, R., et al.: Model Driven Architecture. OMG White Paper (2000)
14. Stevens, P.: Bidirectional model transformations in QVT: Semantic Issues and

Open Questions. Software and System Modeling 9(1), 7–20 (2010)

Towards a Rational Taxonomy 71

A Synchronization Types And Example Scenarios

(000)− Typical non-editable outline view of an IDE

(000)+ Simplified code generation, i.e., ignoring private data

(1200)
− Partially editable view w/o incr.; impractical b/c source info is not preserved

(1200)
+ Simplified code generation with partial non-incremental round-tripping

(100) Simplified code generation with full round-tripping but w/o incr.; impractical
(010) Non-simplified code generation, i.e., the model hass private data, too

(1210) Bijective synchronization, e.g., WikiMedia/HTML, w/ partial round-tripping
(110) Bijective synchronization, e.g., WikiMedia/HTML, with full round-tripping

(001)− Incrementally updated, non-editable outline view

(001)+ Simplified partial code generation

(1201)
− Partially editable outline view (like the one of Eclipse JDT)

(1201)
+ Simplified partial code generation with partial round-tripping

(101) Simplified partial code generation with full round-tripping
(011) Partial code generation

(1211) Partial code generation with partial round-tripping
(111) Full model round-tripping

B A Sketch of Formal Semantics

The semantics is algebraic and based on operations over models, updates, and
intermodel correspondence mappings—all considered as abstract nodes and ar-
rows. We define a family of algebraic structures given by their carrier sets and
operations over them, which must satisfy a set of equational laws. The presen-
tation below is a dry sequence of briefed definitions (with omitted laws) due to
space limitations. Details, explanations, and discussions can be found in [2].

Formalizing Info-symmetry: Consistency frameworks. A model space is
a directed graph M = (M•,MΔ) with a set M• of nodes called models, and a
set MΔ of arrows called deltas or updates. Deltas can be sequentially composed,
and each model A is assigned with an identity-loop delta idA denoting the idle
update on A. Taken together, these data mean that M is a category.

Let (M,N) be a pair of model spaces. An consistency framework K : M � N
from M to N is given by the following components. (i) Any pair of model A∈M
and B∈N is assigned with a set R(A,B) of correspondence mappings or just
corrs, together with a subset K ⊂ R of consistent corrs. We do not exclude the
cases when K(A,B) has more than one corr, or is empty. We write r : A ↔ B
for a corr r∈R(A,B). (ii) (Re)alignment operations are defined: given a corr
r : A ↔ B and updates a : A → A′, b : B → B′, two new corrs, (a ∗ r) : A′ → B
and (r ∗ b) : A ↔ B′, are uniquely defined. (iii) For any two models A,A′ ∈ M•,
there is a set (perhaps, empty) of updates a : A → A′ called private, composition
of two private updates is private, and idle updates are private. Similarly for the N
side. Non-private updates are called public. It is required that private updates do
not affect consistency: for any corr r : A ↔ B and any private updates a : A → A′,
b : B → B′, we have a ∗ r ∈ K iff r ∈ K iff r ∗ b ∈ K.

72 Z. Diskin et al.

We say that a consistency framework K : M � N determines (informationally)
poor symmetry, asymmetry, or rich symmetry relation between spaces if, resp.,
neither, only one, or both sides have private updates. Similar relations between
two models are actually the respective relations between the spaces where the
models live. The consistency framework may be implicit, but it is always assumed
to be given.

A � r � B

:fPpg↘↘

A′

a
�

� r′ � B′

b
�

A � r � B

:bPpg↙↙
A′

a
�
� r′ � B′

b
�

Formalizing Incrementality: Delta Lenses. A
(delta) lens) over a consistency framework K : M � N
is a pair of operations over corrs and updates, fPpg and
bPpg, called forward and backward update propaga-
tion. The arities of the operations are specified in the
inset figure below right with output arrows dashed,
and output nodes non-framed. We denote a delta lens
by a double arrow λ : M � N to recall two operations.
A lens λ is called well-behaved (wb) if it satisfies sev-
eral laws described in [2]. In particular, if r∈K(A,B)
(see the inset figure), then r′∈K(A′, B′); if, in addi-
tion, a is private, then B′ = B and b is identity. Dual
laws hold for bPpg.

Info-symmetry of the underlying framework K in-
fluences update propagation. It can be proved that if K is info-asymmetric, then
a lens defined above gives rise to an asymmetric delta lens defined in [3]. In this
way, delta lenses provide computational frameworks for types (01) and (11) in
Fig. 4.

Non-incremental propagation can be defined as a special case of the incre-
mental one, if model spaces contain minimal models; see [2] for details. Thus, a
delta lens relating two spaces can provide non-incremental update propagation
as well (types (00) and (10) in Fig. 4).

Organizational dimension: Models as Trajectories. Organizational sym-
metry is about the dominance of change propagation, and we will consider a
changing model as a trajectory in the respective space. Let M = (M•,MΔ) be a
model space. We define a model to be a mapping A : I → M•, whose domain I
is a linearly ordered set of version numbers or indexes. That is, A appears as
model’s immutable identity, whereas its state Ai = A(i) changes as index i runs
over I. Moreover, if we convert the index set I into a graph whose arrows are
pairs (i1i2) with i1 ≤ i2, then A can be seen as a graph mapping that send an
arrow (i1i2) to update delta A12 : A1 → A2, where A1 = A(i1) and A2 = A(i2).

Synchronization of two models is about maintaining certain correspondences
between two trajectories, say, A : I → M and B : J → N, in two model spaces
related by a lens λ : M � N. Given these data, a (consistent) synchronization case
is a pair of trajectories, A : I → M and B : J → N with the following additional
structure. Sets Ipub and Jpub are partitioned, Ipub = Iact�Ipas and Jpub = Jact�
Jpas, with the following intuitive meaning of components. If i∈Iact, model Ai is
to be thought of as independently built on the M-side and propagated to the N-
side. To simplify presentation, assume that propagation is non-incremental. Then

Towards a Rational Taxonomy 73

there must be an index i�∈J such that Bi� = fPpg(Ai). If i∈Ipas, then model
Ai is to be thought of as propagated from the N-side, so that Ai = bPpg(Bi�)
for some i�∈J . We require that mappings i → i� establish isomorphisms Iact ∼=
Jpas and Ipas ∼= Jact. Interpretation of Bj with j∈Jact and j∈Jpas is similar, and
we require that mapping �j ← j be the inverse of i → i�. A synchronization
case is denoted by σ : A � B; and the class of all synchronization cases over a
given lens λ is SCSCSC[λ].

The notion of a synchronization case accurately formalizes a general intuition
of two synchronized trajectories, but does not impose any specific conditions
on this synchronization. However, if special organizational relations between the
models are assumed, some synchronization cases can be a priori prohibited. For
example, we can make model A an entirely passive receiver of changes from B
by requiring Iact = ∅ = Jpas. Thinking extensionally (i.e., in terms of sets),
an organizational relation is a set T ⊂ SCSCSC[λ] of synchronization cases, consid-
ered legal wrt. this relation. We call such sets synchronization types. Different
synchronization types we considered in the paper can be defined formally by
imposing special conditions on index sets like above. We again refer to [2] for
details.

Correctness of Incremental Model Synchronization
with Triple Graph Grammars

Fernando Orejas� and Elvira Pino

Universitat Politècnica de Catalunya, Spain
{orejas,pino}@lsi.upc.edu

Abstract. In model-driven software development, we may have several models
describing the same system or artifact, by providing different views on it. In this
case, we say that these models are consistently integrated.

Triple Graph Grammars (TGGs), defined by Schürr, are a general and power-
ful tool to describe (bidirectional) model transformations. In this context, model
synchronization is the operation that, given two consistent models and an up-
date or modification of one of them, finds the corresponding update on the other
model, so that consistency is restored. There are different approaches to describe
this operation in terms of TGGs, but most of them have a computational cost that
depends on the size of the given models. In general this may be very costly since
these models may be quite large. To avoid this problem, Giese and Wagner have
advocated for the need of incremental synchronization procedures, meaning that
their cost should depend only on the size of the given update. In particular they
proposed one such procedure. Unfortunately, the correctness of their approach is
not studied and, anyhow, it could only be ensured under severe restrictions on the
kind of TGGs considered.

In the work presented, we study the problem from a different point of view.
First, we discuss what it means for a procedure to be incremental, defining a
correctness notion that we call incremental consistency. Moreover, we present
a general incremental synchronization procedure and we show its correctness,
completeness and incrementality.

Keywords: Model Transformation, Model Synchronization, Triple Graph
Grammars, Incremental Model Synchronization.

1 Introduction

In model-driven development, we may have several models describing the same sys-
tem or artifact, by providing different views on it. Then, we say that these models are
consistently integrated. Similarly, we say that two models are consistent if they are com-
plementary descriptions of some system. In this context, given two integrated models,
model synchronization is the problem of restoring consistency when one of these mod-
els has been updated by propagating that update to the other model. The same problem
is also studied in other areas like databases or programming languages [1,14,9].

� This work has been partially supported by the CICYT project (ref. TIN2007-66523) and by
the AGAUR grant to the research group ALBCOM (ref. 00516).

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 74–90, 2014.
c© Springer International Publishing Switzerland 2014

Correctness of Incremental Model Synchronization with Triple Graph Grammars 75

Triple Graph Grammars (TGGs) [11,12] are a general and powerful tool to describe
(bidirectional) model transformations. On the one hand, a TGG allows us to describe
classes of consistently integrated models and, on the other hand, given some source
model M1, using the so-called derived operational rules associated to the TGG, we can
find a corresponding consistent target model M2. There are different approaches to de-
scribe model synchronization in terms of TGGs, but most of them have a computational
cost that depends on the size of the given models. This may be rather inefficient since
the given models may be large. To avoid this problem, Giese and Wagner [4] have ad-
vocated for the need of incremental synchronization procedures, meaning that their cost
should depend only on the size of the given update. In particular they proposed one such
procedure. Unfortunately, the correctness of this approach is not studied and, anyhow, it
could only be ensured under severe restrictions on the kind of TGGs considered, since
the approach only works for the case when source and target models are bijective.

In this paper we address the problem from a different point of view. First, we discuss
what it means for a procedure to be incremental. Specifically, given a derivation used
to create a model and an update on it, we establish what does it means incrementality
with respect to a consistent submodel not affected by the update. Essentially, it means
that there exists a derivation that builds the new model preserving that consistent sub-
model. Then, this idea is formulated as a correctness notion, that we call incremental
consistency. This may be considered a first contribution of the paper.

Our second and main contribution is the introduction of a new general incremental
synchronization procedure. In principle, the input for this procedure would be given by
an integrated model G, a derivation of G representing its structure, and an update on
the source model of G. However, since storing a derivation may be expensive in terms
of the amount of storage needed, we replace the derivation by dependence relations on
the elements of G that are shown to be equivalent, in an adequate sense, to the deriva-
tion. Specifically, we prove a theorem (Th.1 in Sec.4) that guarantees that the largest
consistent submodel not affected by the update can be obtained from that dependencies
without cost depending on the model. Then, the procedure consists of five steps. In the
first one, based on the above result, we identify the part of the model that needs to be
reconstructed and we mark all the elements that may need to be deleted. In the second
step, if needed, we enlarge the part of the model that needs to be reconstructed. As we
will discuss, this second step is only needed in some cases when the update does not
allow incremental consistency with respect to the largest consistent submodel not af-
fected by the update, but with respect to a smaller one. In the third step, following the
same idea presented informally in [5], we build a model that is already consistent, by
applying a variation of forward translation rules [8,6] allowing us to reuse most relevant
information from the target model. For this reason, we call these rules forward transla-
tion rules with reuse. However, the resulting model may not include elements from the
target model that do not have a correspondence in the source model. To avoid this, in the
fourth step we recover these elements by just using our dependence relations. Finally, in
the fifth step we effectively delete target elements that are still marked to be deleted. We
prove that the results of this procedure are always incrementally correct and complete
in the sense that, if there is an incrementally correct solution, the procedure will find it.

76 F. Orejas and E. Pino

When describing our procedure, sometimes we refer to user interaction to take some
decisions that may be not obvious. We want to point out that, from a theoretical point
of view, this is equivalent to considering that our procedure is nondeterministic. On
the other hand, it is important to notice that we do not assume any restriction on the
kind of grammars or graphs considered in this paper. This is not the case of most other
approaches that impose reasonable restrictions to ensure efficiency. As a consequence,
the implementation of our procedure may be computationally costly since, at some
points some exhaustive search may be needed. However, our ideas could also be used
in the context of the restrictions considered by other authors. In that case, our procedure
would be as efficient (or more efficient) than these other approaches. Anyhow, it must
be understood that our contribution is related to the study of when and how we can pro-
ceed incrementally in the synchronization process in the most general case, rather than
restricting its application to the cases where a certain degree of efficiency is ensured.

The paper is organized as follows. In Section 2 we introduce some basic material
needed in the paper and we present a running example that we use to illustrate our ap-
proach and results. In the third section we study the notion of incremental consistency
and in Section 4 we present the dependency relations that are used to represent deriva-
tions. In Section 5 we present our incremental synchronization procedure. Finally, in
Section 6 we discuss related work and we draw some conclusions.

2 Preliminaries

In this section, we describe some basic notions and terminology concerning, model
transformation and model synchronization with Triple Graph Grammars (TGGs). More-
over, we introduce the examples that we will use in the paper.

2.1 Model Synchronization with Triple Graph Grammars

Model synchronization is the operation that, given two consistent models and an update
or modification of one of them, finds the corresponding update on the other model, so
that consistency is restored. Let us be more precise. First, we consider that models are
some kind of typed graphs with attributes (see, e.g., [2]). This means that our models
consist of nodes, edges and attributes1, which are values associated to nodes and edges.
Moreover, a type graph, which is similar to a metamodel, describes the kind of elements
(nodes, edges and attributes) that are part of the given class of models. For example, in
Fig. 1 we can see the type graph of the example considered in this paper. Second, we
consider that integrated models are not just pairs of graphs but triple graphs that, in
addition, provide a correspondence between elements of the given models. Formally, a

triple graph G=(GS sG←GC tG→GT) consists of a source graph GS and a target graph GT ,
which are related via a correspondence graph GC and two mappings (graph morphisms)
sG : GC → GS and tG : GC → GT specifying how source elements correspond to target
elements. For example in figure 2 we can see a triple graph typed by the graph in figure
1. For simplicity, we use double arrows, 〈GS ↔ GT 〉, as an equivalent shorter notation
for triple graphs, whenever the explicit correspondence graph can be omitted.

1 For simplicity, our example includes no attributes.

Correctness of Incremental Model Synchronization with Triple Graph Grammars 77

L

m
��

� � �� R

m′
��

G1
� � �� G2

A simple but powerful way of describing a class of consistently
integrated models is by using a Triple Graph Grammar [11,12],
consisting of a start triple graph, SG2, and a set of production rules
of the form p : L → R, where L and R are triple graphs and L ⊆
R. That is, L(G) = {G | SG

∗
=⇒ G} is the language defined by

a triple grammar G, where
∗

=⇒ is the reflexive and transitive closure of the one step
transformation relation =⇒ defined by the grammar as follows. G1 =⇒ G2 if there is a
production rule p : L → R in G and a matching monomorphism m : L → G1 such that G2

can be obtained by replacing (the image of) L in G1 by (a corresponding image of) R.
Formally, this means that the diagram above on the right is a pushout in the category of
triple graphs. In this case, we write G1

p,m
=⇒ G2, or just G1=⇒G2 if p and m are implicit.

Hence, we say that a triple graph G is consistent if G ∈ L(G). Similarly, we say that
a source graph GS (respectively, a target graph GT) is consistent if there exists a triple
graph 〈GS ↔ GT 〉 ∈ L(G).

Finally, we consider that an update or modification of a graph G, denoted u : G ⇒ G′
is a span of inclusions (or, in general, injective morphisms) G ← G0 → G′ for some
graph G0. Intuitively, the elements in G that are not in G0 are the elements deleted by
u, and the elements in G′ that are not in G0 are the elements added by u.

GS

uS

��

GT����

uT

��
G′S G′T����

Now we can express formally the synchronization problem in
terms of the diagram on the right [7]. Given a triple graph G and
an update uS : GS ⇒ G′S on the source graph3, the synchroniza-
tion problem is to find an update uT : GT ⇒G′T and a triple graph
G′ such that G′ is consistent. These results, uT and G′, are called
the forward propagation of uS over G. Notice that finding the triple graph G′ means
computing the new correspondences of that graph. Notice also that, in general, there
may be no solution to the synchronization problem. In particular, this is the case if G′S
is not consistent, i.e. when there is no consistent triple graph 〈G′S ↔ G′T 〉.

For example, below we will consider the synchronization problems when deleting
the subclass edge between classes C3 and C2 in the triple graph in Fig. 3.

2.2 Model Transformation with Triple Graph Grammars

Model transformation is the problem of finding a consistent triple graph 〈GS ↔ GT 〉,
when given a TGG G and a source model GS. This problem is very related to the prob-
lem of model synchronization. Each of these problems can be seen as a special case of
the other one. In particular, the model transformation problem can be seen as a special
case of model synchronization since it can be solved by computing the propagation of
the update uS : /0 ⇒ GS over the empty triple graph 〈 /0 ↔ /0〉. Similarly, model syn-
chronization can be reduced to model transformation, since given 〈GS ↔ GT 〉 and a
source update uS : GS ⇒ G′S we can solve the synchronization problem just computing

2 In general, without loss of generality, we will consider that SG is always the empty triple graph.
3 Note that the synchronization problem after a target update can be seen as a special case of the

problem considered in this paper, since triple graphs are symmetric structures.

78 F. Orejas and E. Pino

the model transformation of G′S. However, this would not be an efficient solution of the
synchronization problem4.

In the context of TGGs, the model transformation problem can be solved using the
so-called operational rules (forward, backward, source, and target rules) associated to
G. The key idea is that forward rules, generated from the rules in G, preserve the given
source model but add the missing target and correspondence elements. Solving this
problem is equivalent to finding a source consistent derivation [3].

〈GS ↔ /0〉=⇒p1 〈GS ↔ GT
1 〉=⇒p2 . . .=⇒pn 〈GS ↔ GT

n 〉

where p1, p2, . . . , pn are forward rules associated to G.
Finding source consistent derivations or checking if a derivation with forward rules

is source consistent is, in general, quite costly. For this reason, [6] introduces a new
technique based on the use of Boolean-valued translation attributes. These attributes
are associated to all elements in the graph (i.e. nodes, edges, and also other attributes)
to denote if that element has been created or not by a rule. The idea is quite simple. Let
us first consider a slightly different problem. Suppose that we want to know if a given
triple graph is consistent, i.e. if G ∈L(G). Obviously, we may try to see if we can derive
G using the rules in G. However, we can use a different approach: we modify slightly
the TGG rules so that, instead of creating new elements, we just mark the existing ones,
so that to check if G is consistent, we check if we can mark all its elements with the
modified rules. These marks are the translation attributes, that is, the attribute of an
element states if the element has been marked or not. Then, to check if G is consistent
we just have to add all the translation attributes set to false, and try to see if applying
the modified rules we can arrive to a graph with all its translation attributes set to true.

The above idea can be generalized. Suppose that we have a grammar G and a (not
necessarily consistent) triple graph G, and we want to extend it until we arrive to a
consistent graph. A straightforward approach would be to use the rules in G to find a
graph G′ that extends G. But we can also modify the rules in G, so that, if an old rule
would have created an element already in G, the new rule would just mark it; but if the
old rule would create a new element not in G, the new rule would also create it. We
can say that these new rules reuse the elements in G. A similar idea was informally
introduced in [5]. For example, forward translation rules [6] follow this idea to solve
the model transformation problem. The part that is reused is the given source graph GS,
and the extension that we are looking for consists of the target and correspondence parts
of the result. That is, 〈GS ↔ /0〉 is the given triple graph that we want to complete. So, to
solve the model transformation problem, we would first add false translation attributes
to all the elements in GS and then apply the new rules until we arrive to a triple model
G whose source part is like GS, but with all its translation attributes set to true .

2.3 Example

In this subsection we introduce the example that is used to illustrate our techniques. It is
a simplified, and slightly modified, version of the well-known transformation between

4 Actually it would neither be an adequate solution [13].

Correctness of Incremental Model Synchronization with Triple Graph Grammars 79

class diagrams and relational schemas. The type graphs of source, target and correspon-
dence models are depicted in Fig. 1. Source models, whose type graph is depicted on
the left, consist of two kinds of nodes, classes and attributes, and two kinds of edges. On
the one hand, an edge between two classes represents a subclass relationship between
them. On the other hand, attributes are bound to their associated classes by the second
kind of edges. Similarly, the type graph of target models is depicted on the right of
the figure, consisting of tables, columns and foo nodes5, together with edges between
columns and tables, and between foo nodes and columns. Finally, in the center of Fig.
1, we depict the type graph of the correspondence models, consisting of two kinds of
nodes: square nodes to bind classes with their associated tables, and round nodes to
bind attributes with their associated columns.

Fig. 1. Type graph

The rules of the TGG defining the transformation between class diagrams and rela-
tional schemas are depicted in Fig. 2 in short notation, i.e. left and right hand sides of a
rule are depicted in a single triple graph. Elements which are created by the rule are la-
belled with ++ and additionally marked by purple line colouring. Rule 1, Class2Table
creates a new class and its corresponding table. and it also creates the correspondence
element that relates the class and the table. Rule 2, Attribute2Column, given a class C1

and a corresponding table T1, creates an attribute A1 of C1 and a related column c1 of
T1, together with the associated correspondence element. Rule 3, Subclass2Table, given
a class C1 and a corresponding table T1, creates a new class C2 that is a subclass of C1.
In this case, C2 is related to T1 through a new correspondence element. Finally, Rule 4,
FooCreation creates a new foo node associated to an existing column. Notice that, in
this rule, the source and correspondence parts of the triple rule are empty.

In the left of Fig. 3 we depict a triple graph generated by this TGG. That triple graph
could have been generated by a derivation d1 consisting of, first, applying twice the
rule Class2Table, to create classes C1,C2 and tables T1,T2; then, applying the rule Sub-
class2Table, to create C3, and applying three times the rule Attribute2Column to create
attributes A1,A2,A3 and columns c1,c2,c3; finally applying the rule FooCreation to cre-
ate the foo node associated to column c3. But it could have also been created by other
derivations that are permutation equivalent to d1 [2], like derivation d2, consisting of
applying twice the rules Class2Table and Attribute2Column, to create classes C1,C2, ta-
bles T1,T2, attributes A1,A2, and columns c1,c2.; then, applying rule Subclass2Table, to

5 These foo nodes have no special meaning. They are just introduced for our convenience.

80 F. Orejas and E. Pino

:C

:A

:T

:Co

:C

:C

:T

++ ++ ++
++ ++

++ ++ ++
++ ++

++ ++

++ ++ ++
++ ++

1. Class2Table

2. Attribute2Column

3. Subclass2Table

:T :C

:Co :Foo

++
++

4. FooCreation

Fig. 2. Transformations Rules

create C3, rule Attribute2Column to create attribute A3 and column c3, and rule FooCre-
ation to create the foo node.

Finally, in the rest of the paper, we will use green colour6 to depict the elements
affected by an update, in contrast to the black coloured elements that are not affected
by the update.

3 Incremental Model Synchronization and Incremental
Consistency

In the literature on model synchronization, the term “incremental” has two possible
meanings. On the one hand, in most papers, a synchronization procedure is called incre-
mental if the propagation of a source update reuses the information included in the given
target model. Actually, according to this meaning of incrementality, rather than saying
if a procedure is incremental or not, we should say how much incremental it is, depend-
ing on the amount of target information reused. For instance, an extreme case would
be a procedure that, given an integrated model G and a source update uS : GS → G′S,
would compute the propagation of u by computing the model transformation of G′S,
without taking into account the information in G′T . Obviously, this would be the most
non-incremental (or the least incremental) procedure.

On the other hand, in [4], Giese and Wagner advocate that synchronization should
be incremental, meaning that its computational cost should depend mainly on the size
of the modification and not on the size of the given models. This is not the case in most

6 For readers of black and white prints, green elements appear as lighter grey.

Correctness of Incremental Model Synchronization with Triple Graph Grammars 81

existing approaches. Even if they build the solution by modifying the given target model
and reusing its information, their cost still depends on the size of the given models,
because they have to analyze the models to ensure correctness. Our aim is to develop a
procedure that is incremental in both senses.

Our approach is based on assuming that if G is the given integrated model, we know
which derivation d = SG =⇒ . . . =⇒ Gi =⇒ . . . =⇒ G generated it. In this context, if
we know that the given update uS : GS ⇒ G′S does not affect any element in GS

i , i.e.
GS

i ⊆ G′S and the result of the synchronization, G′, also includes Gi, then we say that G′
is incrementally consistent with respect to Gi. Then, the idea underlying our procedure
is to find the largest Gi ⊆ G so that we can build over it the solution Gi ⊆ G′. Moreover,
since we want our procedure to be incremental in the sense of [4], the cost of finding Gi

should not depend on its size.
However, there are many derivations that can be considered equivalent, because the

order in which we apply some productions is irrelevant. These transformations are
called sequentially independent and the derivations are permutation equivalent (for the
concrete definitions see, e.g., [2]). For instance, in the example, derivations d1 and d2

mentioned in subsection 2.3, are permutation equivalent. This means that it is not rele-
vant if we first create classes C1,C2,C3 and tables T1,T2 and then we add the attributes
and columns A1,A2,A3,c1,c2,c3, or if we first create C1,T1,A1,c1, then C2,T2,A2,c2

and finally C3,A3,c3, or if we create the classes, attributes, tables and columns in a
different order. The only limitations are that we cannot create C3 before C2 and T2, be-
cause the rule to create C3 needs that C2,T2 are already there, neither we can create
an attribute/column before their associated class/table, nor we can create a foo node
before its corresponding column. As a consequence, when looking for the submodel
Gi to build the synchronization, we must consider, not only the given derivation d that
generated G, but also all derivations that are permutation equivalent to d.

For example, let us suppose that, in the graph on the left of Fig. 3, we delete the
subclass relation between C3 and C2. The result of the (expected) synchronization is
depicted on the right of that figure. We may see that this result is incrementally con-
sistent with respect to the subgraph depicted in black on the left. So, in this case, our
procedure would first need to find that subgraph and, then, it would construct the result
on the right.

Definition 1 (Incremental consistency). Given a TGG G, a derivation d = SG
∗

=⇒ G
and an update u : GS ⇒ G′S. Let H ⊆ G be such that no element in HS is deleted by u
and there is a derivation d0, permutation equivalent to d with d0 = SG

∗
=⇒ H

∗
=⇒ G.

We say that an integrated model G′ = 〈G′S ↔ G′T 〉 ∈ L(G) is incrementally consistent
with respect to d, u and H if there exists a derivation d′ = SG

∗
=⇒ G′ sastifying that,

d′ = SG
∗

=⇒ H
∗

=⇒ G′.

In most cases, we may consider that the submodel Gi ⊆ G that we look for in our
procedure should always be the largest submodel of G generated by a derivation per-
mutation equivalent to d that is not affected by the given update. This works fine in
many cases, like in the example that we have just described. However, there are cases
where this largest model cannot be completed to an incrementally consistent model. For
instance, let us suppose that the given integrated model G is the triple graph on the right

82 F. Orejas and E. Pino

Fig. 3. Model Synchronization

of Fig. 3 and let us suppose that the given updates consists just of the addition of a sub-
class relation between C3 and C2. In this case, the largest submodel of G not affected by
that update is the whole model G, since the update includes no deletion. However, there
is no way to extend GT so that the final result is consistent. In this case, the submodel
of G that we can use to build an incrementally consistent result is the part of G depicted
in black in the triple graph on the left of Fig. 3.

Nevertheless, the following proposition shows that, given a derivation d of an in-
tegrated model G and given a subset of elements D ⊆ G that must be deleted when
applying a given update, there is a largest consistent graph Gd\D ⊆ G that consists of all
the elements of G that can be generated by d without the use of elements from D in any
derivation d′ that is permutation equivalent to d. Moreover, some of these derivations
d′ include the derivation of Gd\D, i.e. d′ : SG

∗
=⇒ Gd\D

∗
=⇒ G, then we say that d′ is

maximally preserving with respect to D.
The idea is that the result of the synchronization will be built from Gd\D. As a con-

sequence, in most cases, D will be the set of elements deleted by the given update and,
as a consequence, Gd\D would be be the largest submodel of G generated by a deriva-
tion permutation equivalent to d that is not affected by the given update. However, as
explained above, we will need to include in D some additional elements from GS to
ensure that we can extend Gd\D to a consistent graph.

Proposition 1 (Maximal preserving derivations). Given a derivation d = SG
∗

=⇒ G
and a subset of elements D ⊆ G , there is a consistent graph Gd\D ⊆ G such that,

for every derivation d′ permutation equivalent to d, if d′ = SG
∗

=⇒ Gi
∗

=⇒ G and Gi

does not include any element from D then Gi ⊆ Gd\D. Moreover, there are derivations

d′ = SG
∗

=⇒ Gd\D
∗

=⇒ G which are maximally preserving and permutation equivalent
to d.

Correctness of Incremental Model Synchronization with Triple Graph Grammars 83

The idea of the proof is quite simple. The consistent submodel Gd\D is built by in-

cluding in d0 = SG
∗

=⇒ Gd\D all transformations in d that are sequentially independent
with respect to the productions in d that need from elements in D. Then, d′ is built by
extending d0 with the remaining transformations in d.

4 Derivation Dependencies

To build incrementally consistent solutions we need information about the derivation
that generated the given integrated model, since we need to know what part of the
model must remain unchanged after update propagation. However, saving derivations
and working with them may be costly and cumbersome. In this section, we show that
just saving some dependence information associated to the given derivation is enough
for our purposes. The basic idea is to define some dependency relations between the
elements (nodes, edges and attributes) of the given integrated model 〈GS ↔ GT 〉 that
describe if an element e1 was needed for the creation of e2 in a given derivation d. The
first relation, called strict dependency and denoted e1 �d e2, holds if e1 was matched by
the left-hand side of the rule that created e2. For instance, in Example 2, C2 �d1 C3 and
T2 �d1 C3, since the application of rule Subclass2Table that created C3 in derivation d1

had to match its lefthand side to C2 and T2 (and also to their correspondence element).
The second relation, called interdependency and denoted e1 ��d e2, holds if e1 and e2

are created by the same rule. For instance, in Example 2, C2 ��d1 T2, since they are both
created by the same application of the Class2Table rule in d1. Obviously, C2 and T2 are
also interdependent with their correspondence node.

Definition 2 (Dependency relations). Given G and a derivation d : SG
∗

=⇒ G, we de-
fine the following relations on elements of G:

1. Strict dependency: �d is the smallest relation satisfying that if d includes the trans-
formation step depicted below:

L
m ��

� � �� R

m′��
Gi−1

� � �� Gi

then for every e in L and e′ in R\L, m(e)�d m′(e′).
2. Strict interdependency: ��d is the smallest relation satisfying that if d includes the

transformation step depicted above, then for every e,e′ in R\L, m′(e) ��d m′(e′).

The key result for our synchronization procedure is the following theorem that shows
that if in the given integrated model we delete the set of elements D that are dependent
on a given update, the resulting triple graph is Gd\D. Moreover, it also shows that if we
are interested in any submodel of Gd\D that is also generated by the given derivation
(or some permutation equivalent derivation), it is enough to remove from Gd\D some
additional elements together with all the elements that depend on them.

84 F. Orejas and E. Pino

Theorem 1 (Dependency Relations and Incrementality). Let d = SG
∗

=⇒ G be a
derivation, D be a the subset of elements of G, and Closd(D) be the least set satisfying
that:

– D ⊆Closd(D),
– If e′ ∈Closd(D) and e′ ≺d e or e′ ��d e then e ∈Closd(D),

then:

1. Gd\D = G\Closd(D).

2. Given a subset D0 of elements of Gd\D, there is a derivation d0 = SG
∗

=⇒ (G \
Closd(D))\Closd(D0)

∗
=⇒ G permutation equivalent to d.

3. Conversely, if H is a submodel of Gd\D such that there is a derivation d0 = SG
∗

=⇒
H

∗
=⇒ G permutation equivalent to d, then there is a subset D0 of elements of Gd\D

such that H = (G\Closd(D))\Closd(D0).

The proof of this theorem is not difficult. The key issue is to show that the elements
in Closd(D) or of Closd(D∪D0) are exactly the elements generated by the last trans-
formations in a maximally preserving derivation as constructed in Prop.1.

5 A Procedure for Incremental Model Synchronization

In this section we present our procedure for incremental synchronization and we show
its correctness. The input for this procedure is, not only the given integrated model and
source update, but also the dependency relations. Moreover, we assume that there is a
translation attribute set to true for every element in the model. This allows us to use
our techniques needed to ensure the incrementality of solutions. Then, the output is,
not only the resulting integrated model (and the resulting update), but also the updated
dependence relations, so that they can be used to deal with further updates. Notice that
handling explicitly the dependence relations and the translation attributes is not costly,
neither in space nor in time, since all this information is boolean.

According to Theorem 1, we could consider a quite simple incremental synchroniza-
tion procedure. For instance, if we know that we can build an incremental solution from
Gd\D, where D is the set of elements deleted by the given source update u, we could
proceed as follows. In a first step, the procedure would delete from GT and GC all the
elements depending on the elements deleted by u and would mark as non-created all
source elements added by u and all source elements depending on the elements deleted
by u (except the deleted elements themselves). Then we would apply forward trans-
lation rules to the resulting model until arriving to a consistent G′. The dependency
relations would be updated accordingly. Unfortunately, this procedure would not work
as we would like as the following example shows.

Let us consider again the deletion of the subclass relation between C3 and C2 in the
triple graph depicted on the left of Fig. 3. The result of the first step is depicted on the
left of Fig. 4, where the source elements marked as non-created are depicted in green.
The reason is that all the deleted target and correspondence elements depend on the

Correctness of Incremental Model Synchronization with Triple Graph Grammars 85

creation of C3 as a subclass of C2. Finally, the result after applying forward translation
rules is depicted on the right of Fig. 4. As we may see, the foo element related to
column c3 is now not present. Moreover, since c3 has been deleted and created again,
if it included some additional information (e.g. some data attributes), this information
may have been lost.

C1:C

A1:A

T1:T

c1:Co

C2:C

A2:A

T2:T

c2:Co

C3:C

A3:A c’3:Co

T3:T

C1:C

A1:A

T1:T

c1:Co

C2:C

A2:A

T2:T

c2:Co

C3:C

A3:A

Fig. 4. Model Synchronization

To avoid these problems, we apply three ideas. The first one, quite obvious, is that the
elements in the target (and correspondence) graphs should not be deleted but marked, in
order not to lose information. Only at the end of the process we should delete some of
these elements. The second idea is that, when building the resulting model, we should
reuse the information included in the model, using a general form of forward translation
rules, that use the idea presented in [5]. For this purpose, the following notion of forward
transformation rule with reuse plays a main role, where RemAttr(G) denotes the graph
resulting from removing from G all its translation attributes:

Definition 3. Given a rule p : L → R, we say that p′ : L′ → R′ is a forward transforma-
tion rule with reuse over p if:

1. RemAttr(R′) = R, L ⊆ RemAttr(L′)⊆ R.
2. RS ⊆ RemAttr(L′S).
3. The translation attributes in L′ are true for all the elements in L, otherwise they

are false.
4. All translation attributes in R′ are true.

The intuition of these new rules is based on the idea that the given graph G includes
some elements with translation attribute true, which are elements considered really

86 F. Orejas and E. Pino

in the graph, and some other elements with false attribute, meaning that they have
not yet been created, i.e. they are not real elements of G. So, in a rule with reuse, L′
includes all elements in L with attribute true since, to apply the rule, all these elements
must really be in G. But L′ may also include some elements from R \L, with false
attribute, that are reused. Then, after applying p′, all the reused elements have now a
true attribute, since they are now real elements of the graph, and all the elements in
R \L which are not in L′ (i.e. they have not been reused) are added to the graph with
true attribute. Condition 2. states that all source elements in R must be in L′, the reason
is that these are forward rules, i.e., we assume that the rules should only add target and
correspondence elements.

 c:C

a:A

 t:T

 co:Co

++

Attribute2Column with reuse Class2Table with reuse

++
++ ++ t:T c:C

Fig. 5. Examples of rules with reuse

We may notice that, for each original rule, we may have quite a big amount of as-
sociated rules with reuse. This means that creating a priori all of them can make the
model transformation and synchronization processes quite costly. Instead, we believe
that, for implementation, the right approach is to work directly with the original triple
graph rules, L → R, as proposed in [5]. The idea would be that after finding a match
between L and the given graph G, we check how much of R we can reuse, and we
proceed accordingly. However, we must warn that, in some situations, if we reuse as
much as possible, some of this reuse could be inadequate. For instance, suppose that in
our example the given triple graph includes also a class C0 and a related table T0 and
suppose also that the given update not only deletes the subclass relation between C3 and
C2, but it also includes the deletion of the class C0. Then, with maximal reuse, instead
of creating a new table T3 and associating it to C3, we would reuse T0, associating it
to C3. This is probably wrong according to what the user expects, even if the result is
technically correct. Anyhow, we believe that, in the worst case, it is better to produce
an inadequate result that the user can easily amend, that producing some result, which
is also inadequate, but where some information has been lost and can be difficult to
recover. In any case, we also believe that, in general, the decision on how much to reuse
should not be automatic, but it should be taken by the user.

The third idea is related to rules like FooCreation on figure 2, that includes no source
elements. The model transformation process, to construct the synchronization, is driven
by the source elements of the given graph. This means that, while there are source
elements with false translation attributes, we look for a rule that would transform

Correctness of Incremental Model Synchronization with Triple Graph Grammars 87

some of these false source attributes into true. So, a rule like FooCreation will never
be applied in this process. The problem is to know when to apply this kind of rules.
The solution is given by our dependence relations. If there is a target element e with
false translation attribute (i.e. the element was in the original model, but the previous
process has not created it); if all elements e′ such that e′ � e have true attribute (i.e. the
elements that were used to create e have already been created); and if all elements e′′,
such that e �� e′′, have false attribute (i.e. the other elements created together with e
have not been created either); then we can turn the translation attributes of e and all the
elements e′′ to true, because this is like applying the same rule that created e. We call
this operation the recreation of e and all its interdependent elements.

C1:C

A1:A

T1:T

c1:Co

C2:C

A2:A

T2:T

c2:Co

C3:C

A3:A c3:Co

foo3:Foo

C1:C

A1:A

T1:T

c1:Co

C2:C

A2:A

T2:T

c2:Co

C3:C

A3:A c3:Co

T3:T

foo3:Foo

C1:C

A1:A

T1:T

c1:Co

C2:C

A2:A

T2:T

c2:Co

C3:C

A3:A c3:Co

T3:T C T

foo3:Foo

Fig. 6. Synchronization: Some intermediate steps and final model

Following the above ideas, our procedure for incremental synchronization has five
steps. As said above, we assume given the original integrated model, G = 〈GS ↔ GT 〉,
including translation attributes set to true for all its elements, an update u : GS ⇒ G′S,
and the dependency relations associated to the derivation that created 〈GS ↔ GT 〉.

1. Updating and Marking. All elements deleted by u are deleted from GS. All ele-
ments added by u are added to GS with false translation attribute. All elements in
G that are dependent on the elements deleted are marked as false. Finally, any cor-
respondence element whose associated source element has been deleted, is deleted.
As a consequence of Theorem 1, all the elements with true translation attribute
form the submodel Gd\D, where D is the set of elements deleted by u.

2. Selection of a submodel of Gd\D. If needed, the translation attributes of some other
elements of Gd\D and the elements depending on them are set to false. This step
is needed in the case where we cannot build an incrementally consistent derivation

88 F. Orejas and E. Pino

out of Gd\D. For instance, in the case where G is the triple graph on the right of
Fig. 3 and u consists of the addition of a subclass relation between C3 and C2, we
would need to set to false the attributes of C3 and all the elements depending on
it. The decision of which translation attributes have to be set to false may be either
taken by the user or by some search procedure based on some heuristics or just on
backtracking.

3. Forward Model Transformation. While there are elements in GS with false
translation attribute, select a rule that can match at least one of these elements.
Select the amount of the rule to be reused and apply it. 7

4. Recreation of Target Elements. For each element in GT with false translation
attribute, try to recreate it together with all its interdependent elements.

5. Deletion. Any target or correspondence element with false translation attribute
must be deleted.

For instance, Fig. 6 depicts the results of some steps of our procedure if G is the
triple graph on the left of Fig. 3 and u consists of the deletion of the subclass relation
between C3 and C2. In particular, on the left of Fig. 6 we can see the resulting triple
graph after step 1, where the green color means that those elements have a false trans-
lation attribute. In this case, step 2 causes no effect, since it is not necessary to mark to
false any other element. In the middle figure we can see the resulting graph after step
3, where some existing elements have been reused by applying the rules Class2Table
and AttributeColumn with reuse in Fig. 5. The process is almost finished, except that
the Foo element has not yet been created (this is done in step 4) and we still have an
edge between c3 and T2, and a correspondence between C3 and T2, both with false
translation attribute. That edge will be deleted in step 5. Finally, on the right of Fig. 6,
we have the final synchronized model after applying steps 4 and 5.

As a consequence of how our procedure works and our previous results, our proce-
dure is incremental and incrementally correct, in the sense that the solution obtained
is incrementally consistent with respect to the submodel chosen in step 2. Moreover,
the procedure is complete, in the sense that if there is an incrementally consistent solu-
tion with respect to some submodel, the procedure will find it. Finally, the cost of the
procedure is independent of the size of the submodel chosen in step 2.

Theorem 2. The procedure is incremental, incrementally correct and complete.

6 Related Work and Conclusion

As said in the introduction, model synchronization8 is a problem studied in different ar-
eas in Computer Science. In particular, in databases (e.g., [1]), programming languages
(e.g., [9]) and in model-driven software development (MDD). In the former two areas
the kind of models considered are very specific, however in the latter area the kind of

7 In general, some choices may not lead to a result where all elements in the source part have
true translation attribute. In that case, this step may need backtracking.

8 In some cases model synchronization is called incremental model transformation, or just model
transformation. Obviously, this is quite confusing.

Correctness of Incremental Model Synchronization with Triple Graph Grammars 89

models considered may be very different. For this reason, in MDD we need general
approaches, as TGGs [11,12], that can be used for dealing with most kinds of models.

There are several approaches based on TGGs that propose a solution to the model
synchronization problem (that we know [4,7,5,10] and some variations on them) but all
of them are, in our opinion, not completely satisfactory. In particular, even if the con-
struction of the solution does not start from scratch but from the given integrated model
G, the approach in [7] has to analyze the complete graph G to know what parts must be
modified, so its cost depends on the size of the given model. In addition, in [7] not all
elements of the original graph that could be reused are indeed reused. In particular, in
our example, column c3 would have been deleted and created again. This means that, if
that column would have included some additional information, this information would
have been lost. Moreover, the foo element associated to c3 would not be present in the
final result. On the other hand, the only restriction considered in [7] is that the given
TGG should be deterministic, to ensure that their procedure is deterministic.

The approach in [4] does not need to analyze the complete graph G to check which
parts must be modified, so its cost only depends on the size of the modification. How-
ever, their approach only works for the case when source and target models are bijective,
which excludes the case where source models are views of target models (or vice versa).
Moreover, rules like FooCreation, with empty source graph, are forbidden. In addition,
this approach shares with [7] the information loss problem. Finally, that approach has
not been fully formalized.

The approach in [5] proposes a technique to avoid the loss of information in [4] that
is essentially similar to our forward rules with reuse. Unfortunately, even if it is based on
[4], it needs to analyze the complete graph G to check which parts must be modified, so
its cost depends on the size of G. Moreover, the approach imposes the same restrictions
as [4] and lacks formality.

Finally, in [10], like us, the authors use precedence relations to avoid having to ana-
lyze the complete graph G to find which parts must be modified. However, their relation
is coarser than ours. The reason is that our relations are directly based on a given deriva-
tion while in [10], their relation is based on the dependences established by the rules of
the TGG. In particular, this means that two given elements of a model may be indepen-
dent, but their relation may say that one depends on the other. This has some important
consequences. In particular, their synchronization procedure only works if the given
triple graph is forward precedence preserving and if, when adding new elements, the
resulting precedence graph includes no cycles. In addition, to ensure correctness, the
approach also requires that the given TGG is source-local complete. On the other hand,
the procedure needs to use a data structure that encodes how the given graph G has been
derived with the given TGG. No details are given about this structure, but we suppose
that it is more complex than our dependency relations. Finally, this approach also shares
with [7] the information loss problem.

To conclude, in this paper we have presented a new approach for incremental model
synchronization based on TGGs that has been shown to be incremental, correct and
complete. Moreover, our approach is general, in the sense that we do not restrict
the class of TGGs considered. As pointed out in the introduction, we do not assume
any restriction on the kind of grammars or graphs, as other approaches does. On the

90 F. Orejas and E. Pino

contrary, we have focussed on the study of when and how we can proceed incremen-
tally in the synchronization process in the most general case, rather than on finding out
specific conditions and limitations on graphs and grammars that could make some tech-
niques more efficient. As a consequence, it is difficult to provide an accurate evaluation
of its performance: for some TGGs our procedure may exhibit an exponential (on the
size of the updated part) behavior. But for the kind of more restricted TGGs, as the ones
considered in other approaches, the behavior could be close to linear. Anyhow, what
obviously remains to be done is to implement the approach and evaluate it in practice.

Acknowledgements. The authors would like to thank the reviewers of this paper,
whose comments have contributed to improve it.

References

1. Dayal, U., Bernstein, P.A.: On the Correct Translation of Update Operations on Relational
Views. ACM Trans. Database Syst. 7(3), 381–416 (1982)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS Monographs of Theoretical Comp. Sc., Springer (2006)

3. Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration based on
the algebraic approach to triple graph grammars. ECEASST 10 (2008)

4. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model syn-
chronization. Software and System Modeling 8(1), 21–43 (2009)

5. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model synchro-
nization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.)
ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidelberg (2011)

6. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Formal analysis of model transformations based
on triple graph grammars. Software and System Modeling (2012) (to appear)

7. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of Model
Synchronization Based on Triple Graph Grammars. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg (2011)

8. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal analysis of functional behaviour for
model transformations based on triple graph grammars. In: Ehrig, H., Rensink, A., Rozenberg,
G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 155–170. Springer, Heidelberg (2010)

9. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011, pp. 371–384.
ACM (2011)

10. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization with prece-
dence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer, Heidelberg (2012)

11. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Computer Science. LNCS,
vol. 903, pp. 151–163. Springer, Heidelberg (1995)

12. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel, R., Rozenberg, G.,
Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)

13. Stevens, P.: Towards an Algebraic Theory of Bidirectional Transformations. In: Ehrig, H.,
Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 1–17.
Springer, Heidelberg (2008)

14. Terwilliger, J.F., Cleve, A., Curino, C.A.: How Clean Is Your Sandbox? - Towards a Unified
Theoretical Framework for Incremental Bidirectional Transformations. In: Hu, Z., de Lara, J.
(eds.) ICMT 2012. LNCS, vol. 7307, pp. 1–23. Springer, Heidelberg (2012)

Towards a Language for Graph-Based Model
Transformation Design Patterns

Hüseyin Ergin and Eugene Syriani

University of Alabama, USA
hergin@crimson.ua.edu,esyriani@cs.ua.edu

Abstract. In model-driven engineering, most problems are solved using model
transformation. However, the development of a model transformation for a spe-
cific problem is still a hard task. The main reason for that is the lack of a devel-
opment process where transformations must be designed before implemented. As
in object-oriented design, we believe that “good design” of model transformation
can benefit tremendously from model transformation design patterns. Hence, in
this paper, we present DelTa, a language for expressing design patterns for model
transformations. DelTa is more abstract than and independent from any exist-
ing model transformation language, yet it is expressive enough to define design
patterns as guidelines transformation developers can follow. To validate the lan-
guage, we have redefined four known model transformation design patterns in
DelTa and demonstrated how such abstract transformation guidelines can be im-
plemented in five different model transformation languages.

1 Introduction

Model-driven engineering heavily relies on model transformation. However, although
expressed at a level of abstraction closer to the problem domain than code, the devel-
opment of a model transformation for a specific problem is still a hard, tedious and
error-prone task. As witnessed in [1], one reason for these difficulties is the lack of a
development process where the transformation must first be designed and then imple-
mented, as practiced in software engineering. One of the most essential contribution
to software design was the GoF catalog of object-oriented design patterns [2]. Sim-
ilarly, we believe that the design of model transformations can tremendously benefit
from model transformation design patterns. Although very few design patterns have
been proposed in the past ([3,4,5,6,7]), they were each expressed in a specific model
transformation language (MTL) and hence hardly re-usable in any other.

As stated in [8], a design pattern language must be independent from any MTL in
which patterns are implemented. Furthermore, it must be fit to define patterns rather
than transformations. For example, GoF design patterns are described in UML class di-
agram which is independent from the object-oriented programming language used for
the implementation of software. A design pattern language must also be understandable
and implementable by a transformation developer. Additionally, it must allow one to
verify if a transformation correctly implements a pattern. To satisfy the language in-
dependence and implementability requirements, this paper proposes DelTa, a domain-
specific language to describe design patterns for model transformations. Furthermore,

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 91–105, 2014.
© Springer International Publishing Switzerland 2014

92 H. Ergin and E. Syriani

DelTa is expressive enough to define design patterns as guidelines transformation de-
velopers can follow. Note that DelTa currently focuses on graph-based model transfor-
mation only.

In Section 2, we present the syntax and informal semantics of DelTa. To validate the
language in Section 3, we redefine four known model transformation design patterns us-
ing DelTa and demonstrate how design patterns expressed in DelTa can be implemented
in existing graph-based MTLs. In Section 4, we discuss related work. We finally discuss
limitations of our approach and conclude in Section 5.

2 Design Pattern Language for Graph-Based Model
Transformation

DelTa is a neutral language, independent from any MTL. It is designed to define design
patterns for model transformations, hence it is not a language to define model transfor-
mations. We could have used an existing MTL as a notation for DelTa, however our
need is a notation that expresses how elements within a rule are related and how rules
are related with each other. In this respect, DelTa offers some concepts borrowed from
any MTL, abstracts away concepts specific to a particular MTL, and adds concepts to
more easily describe design patterns. This is analogous to how Gamma et al. [2] used
UML class, sequence and state diagrams to define design patterns for object-oriented
languages. In the following, we describe the abstract syntax, concrete syntax, and in-
formal semantics of DelTa.

2.1 Abstract Syntax

As depicted in Fig. 1, a model transformation design pattern (MTDP) consists of three
kinds of components: transformation units (TU), pattern elements and transformation
unit relations (TUR). This is consistent with the structure of common MTLs [9]. TUs
represent the concept of rule in graph-based model transformations [10]. A MTDP rule
consists of a constraint, an action, and optional negative constraints. These correspond
to the usual left-hand side (LHS), right-hand side (RHS) and negative application con-
ditions (NACs) in graph transformation. A constraint defines the pattern that must be
present, a negative constraint defines the pattern that shall not be present, and the action
defines the changes to be performed on the constraint (creation, deletion, or update).
All these expressions operate on strongly typed variables.

There are three types for variables: a pattern metamodel, a metamodel element, or a
trace. The pattern metamodel is a label to distinguish between elements from different
metamodels, since a MTDP is independent from the source and target metamodels used
by an actual model transformation. When implementing a MTPD, the pattern meta-
model shall not be confused with the original metamodel of the source and/or target
models of a transformation, but ideally be implemented by their ramified version [11].
The metamodel labels also indicate the number of metamodels involved in the trans-
formation to be implemented. Metamodel elements are typically either entity-like and
relation-like elements, this is why it is sufficient to only consider entities or relations in
DelTa. An element may be assigned boolean flags to refer to the same variables across

Towards a Language for Graph-Based Model Transformation Design Patterns 93

ModelTransformationDesignPattern

name : String

Transformation

UnitRelation

Pattern

Metamodel

Transformation

Unit

DesignPatternElement Annotation

note : String

1..* 1..* 1..*

*

1

condition

TransformationUnitRelation

Decision Sequence

Random

TransformationUnit

Rule

Action

abstract : boolean

Constraint

NegativeConstraint

PseudoUnit

name : String

START END

result : boolean

Expression

Variable

exists : boolean

name : String

Type

name : String

TransformationBlock

*

*

1

0..1

operatesOn

*

declarations

*
1

DesignPattern

Element

applicationCount

1

PatternMetamodel

Variable

exists : boolean

name : String

Type

name : String

Trace Element

Flag

name : String

value : boolean

RelationEntity

ElementGroup

*
1

source1

target1

*
*

<<enum>>

TUAppCount

single

recursive

TransformationUnit 2..*

<<ordered
>>

1..*

success

1..*

fail

1*

Fig. 1. DelTa Metamodel

rules. Undeclared flags are defaulted to false. This is similar to pivot passing in Mo-
Tif [12] and GReAT [13], and parameter passing in Viatra2 [14]. When implementing a
MTDP, flags may require to extend the original or ramified metamodels with additional
attributes. An element group is an entity that represents a collection of entities and rela-
tions implicitly, when fixing the number of elements is too restrictive. Traceability links
are crucial in MTLs but, depending on the language, they are either created implicitly
or explicitly by a rule. In DelTa, we opted for the latter, which is more general, in order
to require the developer to take into account traceability links in the implementation.

As surveyed in [15], different MTLs have different flavors of TUs. For example, in
MoTif, an ARule applies a rule once, an FRule applies a rule on all matches found, and
an SRule applies a rule recursively as long as there are matches. Another example is in
Henshin [16] where rules with multi-node elements are applied on all matches found.
Nevertheless, all MTLs offer at least a TU to apply a rule once or recursively as long as
possible which are two TU application counts in DelTa. All other flavors of TUs can be
expressed in TURs as demonstrated in [15]. For reuse purposes, rules in DelTa can be
grouped into transformation blocks, similarly to a Block in GReAT.

As surveyed in [12,17], in any MTL, rules are subject to a scheduling policy, whether
it is implicit or explicit. For example, AGG [18] uses layers, MoTif and VMTS [19]
use a control flow language, and GReAT defines causality relations between rules. As
shown in [20], it is sufficient to have mechanisms for sequencing, branching, and loop-
ing in order to support any scheduling offered by a MTL. This is covered by the three
TURs of DelTa: Sequence, Random, and Decision that are explained in Section 2.3.
The former two act on at least two TUs and the latter has three parts; condition, success
and fail TUs. PseudoUnits mark the beginning and the end of the scheduling part of a
design pattern.

94 H. Ergin and E. Syriani

Finally, annotations can be placed on any design pattern element in order to give
more insight on the particular design pattern element. This is especially used for ele-
ment groups and abstract actions.

2.2 Concrete Syntax

Listing 1.1. EBNF Grammar of DelTa in XText

1 MTDP: 'mtdp' NAME
2 'metamodels:' NAME (',' NAME)* ANNOTATION?
3 (('tblock' NAME '*'? ANNOTATION?)?
4 'rule' NAME '*'? ANNOTATION?
5 ElementGroup?
6 Entity?
7 Relation?
8 Trace?
9 Constraint

10 NegativeConstraint*
11 Action)+
12 TURelation+ ;
13
14 ElementGroup: 'ElementGroup' ELEMENTNAME (',' ELEMENTNAME)* ;
15 Entity: 'Entity' ELEMENTNAME (',' ELEMENTNAME)* ;
16 Relation: 'Relation' NAME '(' ELEMENTNAME ',' ELEMENTNAME ')'
17 (',' NAME '(' ELEMENTNAME ',' ELEMENTNAME ')')* ;
18 Trace: 'Trace' NAME '(' ELEMENTNAME (',' ELEMENTNAME)+ ')'
19 (',' NAME '(' ELEMENTNAME (',' ELEMENTNAME)+ ')')* ;
20 Constraint: 'constraint:' '~'? (ELEMENTNAME|NAME)
21 (',' '~'? (ELEMENTNAME|NAME))* ANNOTATION? ;
22 NegativeConstraint: 'negative constraint:' (ELEMENTNAME|NAME)
23 (',' (ELEMENTNAME|NAME))* ANNOTATION? ;
24 Action: ('abstract action:' | 'action:' ('~'? (ELEMENTNAME|NAME)
25 (',' '~'? (ELEMENTNAME|NAME))*)) ANNOTATION? ;
26 TURelation: (TURTYPE ('START' | (NAME ('[' NAME '=' ('true' | 'false')']')?))
27 (',' ('END' | NAME) ('[' NAME '=' ('true' | 'false')']')?) +)
28 | Decision;
29 Decision: NAME '?' DecisionBlock ':' DecisionBlock;
30 DecisionBlock: ('END' | NAME) ('[' ('END' | NAME) '=' ('true' | 'false')']') ?
31 (',' ('END' | NAME) (' [' ('END' | NAME) '=' ('true' | 'false')']') ?) * ;
32 terminal NAME: ('a'..'z'|'A'..'Z') ('a'..'z'|'A'..'Z'|'0'..'9')* ;
33 terminal ELEMENTNAME: NAME '.' NAME ('[' NAME '=' ('true'|'false')
34 (',' NAME '=' ('true'|'false'))* ']')? ;
35 terminal ANNOTATION: '#' (!'#')* '#' ;
36 terminal TURTYPE: ('Sequence' | 'Random') ':' ;

We opted for a textual concrete syntax for DelTa. Listing 1.1 shows the EBNF gram-
mar implemented in Xtext. The structure of a DelTa design pattern is as follows. A
new design pattern is declared using the mtdp keyword. This is followed by a list of
metamodel names. The rules are defined thereafter. Rules can be contained inside trans-
formation blocks represented by the tblock keyword. The ‘∗’ next to the name of the
rule indicates that the rule is recursive; the application count is single by default. A
rule always starts with the declaration of all the variables it will use in its constraints
and actions. Then, the constraint pattern is constructed by enumerating the variables
that constitute its elements. Elements can be prefixed with ‘∼’ to indicate their non-
existence. Flags can be defined on elements using the square bracket notation. Optional
negative constraints can be constructed, followed by an action. An abstract action may
not enumerate elements. The final component of a MTDP is the mandatory TUR def-
initions. A TUR is defined by its type and followed by a list of rule or transformation

Towards a Language for Graph-Based Model Transformation Design Patterns 95

block names. As an exception, decision TUR is a single line conditional that creates a
branch according to the success or fail of the condition rule. Annotations are enclosed
within ‘#’. Listings 1.2– 1.5 show concrete examples of MTDPs using this notation.

2.3 Informal Semantics

The semantics of MTDP rules is borrowed from graph transformation rules [10], but
adapted for patterns. Informally, a MTDP rule is applicable if its constraint can be
matched and no negative constraints can. If it is applicable, then the action must be
performed. Conceptually, we can represent this by: constraint ∧ ¬neg1 ∧ ¬neg2 ∧
. . . → action. The presence of a negated variable (i.e., with exists=false) in a
constraint means that its corresponding element shall not be found. Since constraints
are conjunctive, negated variables are also combined in a conjunctive way. Disjunctions
can be expressed with multiple negative constraints. Actions follow the exact same
semantics as the “modify” rules in GrGen.NET [21]. Elements present in the action
must be created or have their flags updated. Negated variables in an action indicate
the deletion of the corresponding element. Only abstract actions are empty, giving the
freedom to the actual implementation of the rule to perform a specific action. Flags are
not attributes but label some elements to be reused across rules.

MTDP rules are guidelines to the transformation developer and are not meant to
be executed. On one hand, the constraint (together with negative constraints) of a rule
should be interpreted as maximal: i.e., a MT rule shall find at most as many matches
as the MTDP rule it implements. On the other hand, the action of a rule should be
interpreted as minimal: i.e., a MT rule shall perform at least the modifications of the
MTDP rule it implements. This means that more elements in the LHS or additional
NACs may be present in the MT rule and that it may perform more CRUD operations.
Furthermore, additional rules may be needed when implementing a MTDP for a specific
application. Note that the absence of an action in a rule indicates that the rule is side-
effect free, meaning that it cannot perform any modifications.

The scheduling of the TUs of a MTDP (or contained inside a transformation block)
must always begin with START and end with END. TUs can be scheduled in four ways.
The Sequence relation defines a sequencing relation between two or more TUs re-
gardless of their applicability. For example Sequence:A,B means that A should be ap-
plied first and then B can be applied. The Random relation defines the non-deterministic
choice to apply one TU out of a set of TUs. For example Random:A,B means that A or
B should be applied, but not both. The Decision relation defines a conditional branching
and applies the TUs in the success or fail branches according to the application of the
rule in the condition. For example A?B:C means that if A is applicable then B should
be applied after, otherwise C should be applied. Note that the latter TUR can be used
to define loop structures. For example, A?A:A is equivalent to defining A as recursive,
i.e., A*. The notion of applicability of a transformation block is determined by the result
of its END TU. For example, consider a transformation block T and a rule R and P. The
scheduling T?R:P means that if END[result=true] is reached in T, then R will be
applied.

96 H. Ergin and E. Syriani

3 Model Transformation Design Patterns

In this section, we illustrate how to use DelTa pragmatically by redefining four existing
design patterns for MT. Inspired by the GoF catalog templates, we describe a MTDP us-
ing the following characteristics: motivation describes the need for and usefulness of the
pattern, applicability outlines typical situations when the pattern can be applied, struc-
ture defines the pattern in DelTa and explains the pattern, examples illustrates practical
cases where the patterns can be used, implementation provides a concrete implemen-
tation of the pattern in a MTL, and variations discusses some common variants of the
pattern. For the example characteristic, we use a subset the UML class diagram meta-
model with the concepts of class, attributes, and superclasses. For the implementation
characteristic, we have implemented all design patterns in five languages: MoTif, AGG,
Henshin, Viatra2, GrGen.NET. Although we only show one implementation for each in
this paper, the complete implementations can be found in [22]. This is how we validated
the expressiveness, usability, and implementability of patterns defined in DelTa.

3.1 Entity Relation Mapping

– Motivation: Entity relation mapping (ER mapping) is one of the most commonly
used transformation pattern in exogenous transformations encoding a mapping be-
tween two languages. It creates the elements in a language corresponding to el-
ements from another language and establishes traceability links between the ele-
ments of source and target languages. This pattern was originally proposed in [6]
and later refined in [23].

– Applicability: The ER mapping is applicable when we want to translate elements
from one metamodel into elements from another metamodel.

– Structure: The structure is depicted in Listing 1.2. The pattern refers to two meta-
models labeled src and trgt, corresponding to the source and target languages.
It consists of a MTDP rule for mapping entities first and another for mapping rela-
tions. The entityMapping rule states that if an entity e from src is found, then an
entity f must be created in trgt as well as a trace t1 between them, if t1 and f do
not exist yet. The relationMapping rule states that if there is a relation r1 between
e and f in src and there is a trace t1 between e and g, and a trace t2 between f

and h, then create a relation r2 between g and h if it does not exist yet. Both rules
should be applied recursively.

Listing 1.2. One-to-one Entity Relationship Mapping MTDP

mtdp OneToOneERMapping
metamodels: src, trgt
rule entityMapping*

Entity src.e, trgt.f
Trace t1(src.e, trgt.f)
constraint: src.e, ~trgt.f, ~t1
action: trgt.f, t1

rule relationMapping*
Entity src.e, src.f, trgt.g, trgt.h
Relation r1(src.e, src.f), r2(trgt.g, trgt.h)
Trace t1(src.e, trgt.g), t2(src.f, trgt.h)
constraint: src.e, src.f, trgt.g, trgt.h, r1, t1, t2, ~r2
action: r2

Sequence: START, entityMapping, relationMapping, END

Towards a Language for Graph-Based Model Transformation Design Patterns 97

Fig. 2. Rules of ER Mapping in Henshin

– Examples: A typical example of ER mapping is in the transformation from class
diagram to relational database diagrams, where, for example, a class is transformed
to a table, an attribute to a column, and the relation between class and attribute to a
relation between table and column.

– Implementation: We show the implementation of ER mapping in Henshin in
Fig. 2. The pattern states to apply the rules for entities before those for relations.
Henshin provides a sequence structure with SequentialUnit. Henshin uses a com-
pact notation for rules together with stereotypes on pattern elements. «preserve»
is used for the elements found in the constraint of the MTDP rule and «create» is
used to create elements found in the action of the MTDP rule. Here there are two
rules corresponding to entityMapping: one for mapping classes to tables and one
for mapping attributes to columns. In Henshin, traceability links must be modeled
explicitly as a separate class connecting the source and target elements. We did
not need to use NACs because Henshin provides a multi-node option that already
prevents applying a rule more than once on the same match.

– Variations: Sometimes the entities in specific metamodels cannot be mapped one-
to-one. It is possible to define one-to-many or many-to-many ER mappings pattern
using element groups instead of entities (see [22]). Also, some implementations
may require the creation of a trace between the two relations in the relationMapping
rule.

3.2 Transitive Closure

– Motivation: Transitive closure is a pattern typically used for analyzing reachabil-
ity related problems with an inplace transformation. It was proposed as a pattern
in [3] and in [24]. It generates the intermediate paths between nodes that are not
necessarily directly connected via traceability links.

– Applicability: The transitive closure pattern is applicable when the metamodels in
the domain have a structure that can be considered as a directed tree.

– Structure:

98 H. Ergin and E. Syriani

Listing 1.3. Transitive Closure MTDP

mtdp TransitiveClosure
metamodels: mm
rule immediateRelation*

Entity mm.e, mm.f
Relation r1(mm.e, mm.f)
Trace t1(mm.e, mm.f)
constraint: mm.e, mm.f, r1, ~t1
action: t1

rule recursiveRelation*
Entity mm.a, mm.b, mm.c
Trace t1(mm.a, mm.b), t2(mm.b, mm.c), t3(mm.a, mm.c)
constraint: mm.a, mm.b, mm.c, t1, t2, ~t3
action: t3

Sequence: START, immediateRelation, recursiveRelation, END

The structure is depicted in Listing 1.3. The pattern operates on single metamodel.
First, the immediateRelation rule creates a trace element between entities connected
with a relation. It is applied recursively to cover all relations. Then, the recursiveRe-
lation rule creates trace elements between the node indirectly connected. That is if
entities a-b and b-c are connected with a trace, then a and c will also connected
with a trace. It is also applied recursively to cover all nodes exhaustively.

– Examples: The transitive closure pattern can be used to find the lowest common
ancestor between two nodes in a directed tree, such as finding all superclasses of a
class in UML class diagram.

– Implementation: We have implemented the transitive closure in AGG. Fig. 3 de-
picts the corresponding rules. AGG rules consist of the traditional LHS, RHS, and
NACs. The LHS and NACs represent the constraint of the MTDP rule and the RHS
encodes the action. The immediateSuperclass rule creates a traceability link be-
tween a class and its superclass. The NAC prevents this traceability link from being
created again. The recursiveSuperclass rule creates the remaining traceability links
between a class and higher level superclasses. AGG lets the user assign layer num-
bers to each rule and starts to execute from layer zero until all layers are complete.
Completion criteria for a layer is executing all possible rules in that layer until none

Fig. 3. Transitive Closure rules in AGG

Towards a Language for Graph-Based Model Transformation Design Patterns 99

are applicable anymore. Therefore, we set the layer of immediateSuperclass to 0
and recursiveSuperclass to 1 as the design pattern structure stated these rules to be
applied in a sequence.

– Variations: In some cases, a recursive selfRelation rule may be applied first, for
example when computing the least common ancestor class of two classes, as in [5].

3.3 Visitor

– Motivation: The visitor pattern traverses all the nodes in a graph and processes
each entity individually in a breadth-first fashion. This pattern is similar to the “leaf
collector pattern” in [3] that is restricted to collecting the leaf nodes in a tree.

– Applicability: The visitor pattern can be applied to problems that consist of or
can be mapped to any kind of graph structure where all nodes need to be processed
individually.

– Structure:

Listing 1.4. Visitor MTDP

mtdp Visitor
metamodels: mm
rule markInitEntity

Entity mm.e
constraint: mm.e # e is a predetermined entity #
action: mm.e[marked=true]

rule visitEntity*
Entity mm.e
constraint: mm.e[marked=true,processed=false]
action: mm.e[processed=true] # Process current entities #

rule markNextEntity*
Entity mm.e, mm.f
Relation r1(mm.e, mm.f)
constraint: mm.e[processed=true], mm.f[marked=false], r1
action: mm.f[marked=true]

Sequence: START, markInitEntity, visitEntity, markNextEntity
markNextEntity ? visitEntity : END

As depicted in Listing 1.4, the visitor pattern makes use of flags. The markInitEntity
rule flags a predetermined initial entity as “marked”. Note that in actual implemen-
tation, this rule maybe more complex. This rule is applied first and once. The next
rule to be applied is the visitEntity rule. It visits the marked but unprocessed nodes
by changing their processed flags to true. The actual processing of the node is left
at the discretion of the implementation. Then, the markNextEntity rule marks the
nodes that are adjacent to the processed nodes. Marking and processing are split
into two steps to reflect the breadth-first traversal. The markNextEntity rule then
initiates the loop to visit the remaining nodes. Visiting ends when markNextEntity
is not applicable, i.e., when all nodes are marked and have been processed.

– Examples: The visitor pattern helps to compute the depth level of each class in a
class inheritance hierarchy, meaning its distance from the base class.

– Implementation: We have implemented visitor in GrGen.NET as depicted in
Fig. 4. This MTL provides a textual syntax for both rules and scheduling mech-
anisms. In a rule, the constraint is defined by declaring the elements of the pattern
and conditions on attributes are checked with an if statement. Actions are written in

100 H. Ergin and E. Syriani

Fig. 4. Visitor rules and scheduling in GrGen.NET

a modify or replace statement for new node creation and eval statements are used
for attribute manipulation. The markBaseClass rule selects a class with no super-
class as the initial element to visit. Since this class already has a depth level of 0,
we flag it as processed to prevent the visitSubclass rule from increasing its depth.
This is a clear example of the minimality of a MTDP rule, where the implementa-
tion extends the rule according to the application. The visitSubclass rule processes
the marked elements. Here, processing consists of increasing the depth of the sub-
class by one more than the depth of the superclass. The markSubclass rule marks
subclasses of already marked classes. The scheduling of these GrGen.NET rules is
depicted in the bottom of Fig. 4. As stated in the design pattern structure, mark-
BaseClass is executed only once. visitSubclass and markSubclass are sequenced
with the ;> symbol. The ∗ indicates to execute this sequence as long as markSub-
class rule succeeds. At the end, all classes should have their correct depth level set
and all marked as processed. Note that in this implementation, visitSubclass will
not be applied in the first iteration of the loop.

– Variations: It is possible to vary the traversal order, for example a depth-first
strategy may be implemented. It is also possible to visit relations instead of entities.
Another variation is to only have one recursive rule that processes all entities if the
order in which they processed is irrelevant.

3.4 Fixed Point Iteration

– Motivation: Fixed point iteration is a pattern for representing a "do-until" loop
structure. It solves the problem by modifying the input model iteratively until a con-
dition is satisfied. We previously identified this pattern in [5]. Asztalos et al. [25]
also identified a similar structure named traverser model transformation analysis
pattern.

– Applicability: This pattern is applicable when the problem can be solved itera-
tively until a fixed point is reached. Each iteration must perform the same modi-

Towards a Language for Graph-Based Model Transformation Design Patterns 101

fication on the model, possibly at different locations: either adding new elements,
removing elements, or modifying attributes.

– Structure:

Listing 1.5. Fixed Point Iteration MTDP

mtdp FixedPointIteration
metamodels: mm
rule initiate

ElementGroup mm.eg1
constraint: mm.eg1
action: mm.eg1[selected=true] # Initiate the element group #

rule checkFixedPoint
ElementGroup mm.eg1
constraint: mm.eg1
abstract action: # Process the element group #

rule iterate
ElementGroup mm.eg1
constraint: mm.eg1[selected=true]
abstract action: # Advance the initiated group #

Sequence: START, initiate, checkFixedPoint
checkFixedPoint ? END[result=true] : iterate
iterate ? checkFixedPoint : END[result=false]

The structure is depicted in Listing 1.5. The fixed point iteration consists of rules
that have abstract actions because processing at each iteration entirely depends
on the application. Nevertheless, it enforces the following scheduling. The pattern
starts by selecting a predetermined group of elements in the initiate rule and checks
if the model has reached a fixed point (the condition is encoded in the constraint
of the checkFixedPoint rule). If it has, the checkFixedPoint rule may perform some
action, e.g., marking the elements that satisfied the condition. Otherwise, the iterate
rule modifies the current model and the fixed point is checked again.

– Examples: In [5], we showed how to solve three problems with this pattern: com-
puting the lowest common ancestor (LCA) of two nodes in a directed tree, which
adds more elements to the input model; finding the equivalent resistance in an elec-
trical circuit, which removes elements from the input model; and finding the short-
est path using Dijkstra’s algorithm, which only modifies attributes.

– Implementation: Fig. 5 shows the implementation of the LCA from [5] in Mo-
Tif using the fixed point iteration pattern. The initiate rule is extended to create
traceability links on the input nodes themselves with the LinkToSelf rules and with
their parents with the LinkToParent rules. The GetLCA rule implements the check-
FixedPoint rule and tries to find the LCA of the two nodes in the resulting model
following traceability links. This rule does not have a RHS but it sets a pivot to
the result for further processing. The LinkToAncestor rules implement the iterate
rule by connecting the input nodes to their ancestors. The MoTif control structure
reflects exactly the same scheduling of Listing 1.5.

– Variations: In some cases, the initiate rule can be omitted when, for instance, the
iterate rule deletes selected elements such as in the computation of the equivalent
resistance of an electrical circuit [5].

102 H. Ergin and E. Syriani

LinkToAncestor

:GetLCA
?

C
A B

GetLCA

X

Y

X

YBB

X

Y

X

YA A

Rules: Scheduling:

LinkToSelf

,A A

B B

X X
LinkToParent

A A

X X

B B,

,

Fig. 5. Rules and Scheduling in MoTif

4 Related Work

The first work that proposed design patterns for model transformation was by Agrawal
et al. [3]. They defined the transitive closure pattern which is similar to what we showed
in Section 3.2, except that we create traceability links whereas they reuse the same as-
sociation type from the input metamodel. The leaf collector pattern traverses a hierar-
chical tree to find and process all leaves. This can be considered as an application of
the visitor pattern in Section 3.3 where the visitEntity rule is only applied on leaves.
The proxy generator idiom is not a general design pattern, since that it is specific to
languages modeling distributed systems where remote interactions to the system need
to be abstracted and optimized.

Iacob et al. [6] defined five other design patterns for outplace transformations. Sim-
ilar to the ER mapping pattern in Section 3.1, the mapping pattern dictates to first map
entities and then relations. Since it is described using QVT-R, we consider it as an im-
plementation of our ER mapping pattern. The refinement pattern proposes to transform
an edge into a node with two edges in the context of a refinement so that the target
model contains more detail. The node abstraction pattern abstracts a specific type of
node from the target model while preserving the original relations. The flattening pat-
tern removes the composition hierarchy of a model along by replacing the containment
relations. We plan to generalize these three patterns and define them in DelTa. The du-
ality pattern is not a general design pattern, since it is specific to languages for data
control flow modeling by changing by converting edges to nodes and vice versa.

Bézivin et al. [7] mined ATL transformations and ended up with two design patterns.
The transformation parameters pattern suggests to model explicitly auxiliary variables
needed by the transformation in an additional input metamodel, instead of hard-coding
them in ATL helpers. The multiple matching pattern shows how to match multiple el-
ements in the from part of an ATL rule. Newer versions of ATL already support this
feature and therefore this pattern is obsolete now.

The first issue with these three previous works is that all the design patterns are
defined using GReAT, QVT-R, and ATL respectively. Therefore, they should not be

Towards a Language for Graph-Based Model Transformation Design Patterns 103

considered as design patterns for model transformation, but as implementations of de-
sign patterns in a specific MTL. The second issue is that they are all defined as model
transformations, rather than patterns, and use specific input and output metamodels.
Therefore, it is not clear how to reuse these patterns for different application domains.
On the contrary, DelTa is independent from any MTL and defines the patterns using
abstracted elements independent from the input and output metamodels.

Lano et al. [23] proposed other useful patterns using UML class diagrams and OCL
constraints (first-order logic) to specify model transformations. Each transformation is
described with a set of assumptions that represent the precondition of a rule, constraints
that represent the postcondition of a rule, ensures for additional constraints, and in-
variants. The design patterns are for exogenous transformations only. The conjunctive-
implicative form pattern dictates to separate the creation target entities that are at differ-
ent hierarchical levels into different phases. For example, the map objects before links
pattern, essentially our ER mapping pattern, is an instance of this generic pattern. An-
other instance of this pattern is the recurrent constraints pattern where the creation of
a target entity may require a fixed point computation. The fixed point iteration pattern
in Section 3.4 can be used in one of the creation phases here. Two other instances of
the conjunctive-implicative form pattern are the entity splitting and entity merging pat-
terns that essentially correspond to the one-to-many and many-to-one variants of the
ER mapping pattern respectively. The auxiliary metamodel pattern suggests to use an
auxiliary metamodel when the mapping from elements of one language to another is
too complex.

In Lano et al.’s approach, the choice of the design pattern language hinders the un-
derstandability of the patterns. This also makes them hard to implement in MTLs other
than UML-RSDS. Additionally, they defined implementation patterns. In contrast with
design patterns, they are guidelines to implement the assumptions and constraints of
transformation specifications in a MTL. The description is done on an abstract imple-
mentation language that supports sequencing, branching, looping and operation calls,
which is similar to what the TURs of DelTa offer.

Guerra et al. [1] proposed a collection of languages to engineer model transforma-
tions and, in particular, for the design phase. Rule diagrams (RD) are used to describe
the structures of the rules and what they do in the low level implementation phase. Like
DelTa, RD is defined at a level of abstraction that is independent from existing MTLs.
But its purpose is to generate a transformation rather than to define design patterns.
Therefore, there are some similarities and differences between RD and DelTa. In RD,
rules focus on mappings rather than constraints and actions. Hence, they specify designs
for both unidirectional and bidirectional rules. The execution flow of RD supports se-
quencing rules, branching in alternative paths based on a constraint which is similar to
the decision TUR in DelTa, or non-deterministically choosing to apply one rule which
is similar to the random TUR. They also allow rules to explicitly invoke the application
of other rules. RD is inspired from QVT-R and ETL and is therefore more easily imple-
mentable in these language, whereas DelTa currently focuses on graph-based MTLs.

Levendovszky et al. [24] proposed domain-specific design patterns for model trans-
formation as well as other DSLs. In their approach, they defined design patterns with
a specific MTL, VMTS, where rules support metamodel-based pattern matching. They

104 H. Ergin and E. Syriani

proposed two design patterns: the helper constructs in rewriting rules pattern explicitly
produces traceability links, and the optimized transitive closure pattern, which is similar
to the transitive closure pattern in Section 3.2.

5 Conclusion

In this paper, we proposed DelTa as candidate for a design pattern language for model
transformations. DelTa is a language for describing patterns, rather than transforma-
tions. It is independent from any MTL yet directly implementable in most graph-based
MTLs. To validate the language, we described four known design patterns for model
transformation and implemented them in five different languages (the complete imple-
mentations can be found in [22]).

As stated in Section 1, a design pattern language must also be understandable and
suited to verify correct implementations. For the former, we plan to empirically evaluate
DelTa by running user studies. The verifiability requirement remains to be investigated.
A formal specification language such as in [23] can then be used, but at the price of
the understandability and ease of implementability. Furthermore, identifying additional
design patterns will help us evolve the DelTa language and further validate its expres-
siveness.

When implementing the design patterns, we realized that some patterns are easier
to implement in some languages than in others due the constructs they offer for trans-
formation units and for scheduling. In particular, when implementing a pattern that
involves more complex scheduling (such as the fixed point iteration) in MTLs with
very limited scheduling policies (such as AGG), several tricks need to be used, such as
modifying the metamodel or making use of temporary elements or attributes. The lack
of a standard paradigm for model transformations is the main source of this difficulty
that the model transformation community has to agree on. We plan to extend DelTa to
cover non-graph-based MTLs, such as QVT-OM and ATL, and possibly bi-directional
MTLs, such as QVT-R and triple graph grammars.

References

1. Guerra, E., de Lara, J., Kolovos, D., Paige, R., dos Santos, O.: Engineering model transfor-
mations with transML. Software and Systems Modeling 12, 555–577 (2013)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, Boston (1995)

3. Agrawal, A.: Reusable Idioms and Patterns in Graph Transformation Languages. In: Interna-
tional Workshop on Graph-Based Tools. ENTCS, vol. 127, pp. 181–192. Elsevier (2005)

4. Bézivin, J., Rumpe, B., Tratt, L.: Model Transformation in Practice Workshop Announce-
ment (2005)

5. Ergin, H., Syriani, E.: Identification and Application of a Model Transformation Design Pat-
tern. In: ACM Southeast Conference, ACMSE 2013, Savannah GA. ACM (2013)

6. Iacob, M.E., Steen, M.W.A., Heerink, L.: Reusable Model Transformation Patterns. In:
EDOC Workshops, pp. 1–10. IEEE Computer Society (September 2008)

7. Bézivin, J., Jouault, F., Paliès, J.: Towards model transformation design patterns. In: Proceed-
ings of the First European Workshop on Model Transformations, EWMT 2005 (2005)

Towards a Language for Graph-Based Model Transformation Design Patterns 105

8. Syriani, E., Gray, J.: Challenges for Addressing Quality Factors in Model Transformation. In:
IEEE Software Testing, Verification and Validation, ICST 2012, pp. 929–937 (April 2012)

9. Syriani, E., Gray, J., Vangheluwe, H.: Modeling a Model Transformation Language. In: Do-
main Engineering: Product Lines, Conceptual Models, and Languages. Springer (2012)

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. EATCS. Springer (2006)

11. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit Transformation
Modeling. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 240–255. Springer,
Heidelberg (2010)

12. Syriani, E., Vangheluwe, H.: A Modular Timed Model Transformation Language. Journal on
Software and Systems Modeling 12(2), 387–414 (2011)

13. Agrawal, A., Karsai, G., Shi, F.: Graph transformations on domain-specific models. Journal
on Software and Systems Modeling (2003)

14. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.
Science of Computer Programming 68(3), 214–234 (2007)

15. Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: A framework for custom-built model
transformation engines. Software & Systems Modeling, 1–29 (2013)

16. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Con-
cepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette, N.,
Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer,
Heidelberg (2010)

17. Czarnecki, K., Helsen, S.: Feature-Based Survey of Model Transformation Approaches. IBM
Systems Journal 45(3), 621–645 (2006)

18. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of
software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062,
pp. 446–453. Springer, Heidelberg (2004)

19. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model Transformation with a Visual
Control Flow Language. International Journal of Computer Science 1(1), 45–53 (2006)

20. Syriani, E., Vangheluwe, H.: De-/Re-constructing Model Transformation Languages. EASST
29 (March 2010)

21. Geiß, R., Kroll, M.: GrGen. net: A fast, expressive, and general purpose graph rewrite tool.
In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 568–569.
Springer, Heidelberg (2008)

22. Ergin, H., Syriani, E.: Implementations of Model Transformation Design Patterns Expressed in
DelTa. SERG-2014-01, University of Alabama, Department of Computer Science (February
2014), http://software.eng.ua.edu/reports/SERG-2014-01.pdf

23. Lano, K., Rahimi, S.K.: Constraint-based specification of model transformations. Journal of
Systems and Software 86(2), 412–436 (2013)

24. Levendovszky, T., Lengyel, L., Mészáros, T.: Supporting domain-specific model patterns
with metamodeling. Software & Systems Modeling 8(4), 501–520 (2009)

25. Asztalos, M., Madari, I., Lengyel, L.: Towards formal analysis of multi-paradigm model
transformations. SIMULATION 86(7), 429–452 (2010)

http://software.eng.ua.edu/reports/SERG-2014-01.pdf

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 106–121, 2014.
© Springer International Publishing Switzerland 2014

Synchronization of Models of Rich Languages
with Triple Graph Grammars: An Experience Report*

Dominique Blouin1, Alain Plantec2, Pierre Dissaux3, Frank Singhoff2,
and Jean-Philippe Diguet1

1 Lab-STICC, Université de Bretagne-Sud, Centre de recherche, BP 92116
56321 Lorient CEDEX, France

{dominique.blouin,jean-philippe.diguet}@univ-ubs.fr
2 Lab-STICC, Université de Bretagne-Occidentale, 20 av. Le Gorgeu,

29238 Brest CEDEX, France
{alain.plantec,singhoff}@univ-brest.fr

3 Ellidiss Technologies, 24 Quai de la Douane, 29200 Brest, France
pierre.dissaux@ellidiss.com

Abstract. We report our experience of using Triple Graph Grammars (TGG) to
synchronize models of the rich and complex Architecture Analysis and Design
Language (AADL), an aerospace standard of the Society of Automotive
Engineers. A synchronization layer has been developed between the OSATE
(Open Source AADL Tool Environment) textual editor and the Adele graphical
editor in order to improve their integration. Adele has been designed to support
editing AADL models in a way that does not necessarily follow the structure of
the language, but is adapted to the way designers think. For this reason, it
operates on a different meta-model than OSATE. As a result, changes on the
graphical model must be propagated automatically to the textual model to
ensure consistency of the models. Since Adele does not cover the complete
AADL language, this must be done without re-instantiation of the objects to
avoid losing the information not represented in the graphical part. The TGG
language implemented in the MoTE tool has been used to synchronize the tools.
Our results provide a validation of the TGG approach for synchronizing models
of large meta-models, but also show that model synchronization remains a
challenging task, since several improvements of the TGG language and its tool
were required to succeed.

Keywords: Model Transformation, Model Synchronization, TGG, MoTE,
AADL.

1 Introduction

Model-Driven Development (MDD) often requires the use of many models to cover
the various aspects of the system being developed. It is often the case that designers

* This work has been supported by the US Army Research, Development and Engineering

Command (REDCOM).

 Synchronization of Models of Rich Languages with Triple Graph Grammars 107

need to describe the same system with different modeling languages to benefit from
the assets of each language. For example, an embedded system model of the Architec-
ture Analysis and Design Language (AADL) [1] may need to be translated into Simu-
link [2] for functional validation of the system through simulation. Users often want
to be able to modify both the AADL and Simulink models and have their changes
automatically propagated to maintain consistency of the models. In general, the in-
formation content of each model is not the same. One of the models may contain
information that is not reflected in the other model because it is irrelevant for the pur-
pose of the model. For example, an AADL model may include power consumption
related properties, which are essential for power analysis of the system, but totally
useless for functional validation with Simulink. Conversely, a simulation model may
include details regarding the simulation, which are not needed on the AADL side.
Hence, it is essential to be able to maintain the consistency of the models without the
loss of the information that is not shared by both models. This is called model syn-
chronization [19], which is a particular type of model transformation, as it operates on
parts of the models at a finer level of granularity.

The need for model synchronization is becoming more and more important for the
AADL community, and for model-based engineering in general, since more and more
heterogeneous models are used together. For example, batch model transformations
have been implemented between AADL and SysML [3], and between AADL and
MARTE [4]. Another example is the Adele graphical editor [5], which implements
the graphical syntax of AADL and operates on a meta-model of its own. It is the sub-
ject of our case study.

Although the need for model synchronization is widely spread, only transformation
tools based on Triple Graph Grammars (TGG) can currently perform such type of
transformation. Hence, the purpose of this paper is to report on our experiment on
applying TGGs on a large and rich language such as the AADL. Our experiment vali-
dates the TGG approach for model synchronization, despite the many shortcomings
that were identified during the work. Our contributions are:

• A synchronization layer between two AADL editors using different meta-models
to represent AADL specifications.

• The new concept of generic TGG rules allowing to drastically reduce the number
of rules needed for transforming models of large meta-models, thus improving sca-
lability.

• A method to reuse existing model objects during synchronization thus avoiding
information loss.

• Other minor improvements related to the expressivity of the TGG language.

This paper is structured as follows. Section 2 presents our model synchronization
case study. Section 3 justifies the selection of the MoTE tool for our experiment.
Next, an overview of the implemented solution is presented in Section 4. Section 5
briefly describes the Adele-AADL TGG and our contributions to the TGG language
and MoTE tool. Section 6 discusses the tests that were performed on the synchroniza-
tion layer, and suggests other potential improvements. Section 7 introduces the related
work and finally, Section 8 concludes the paper.

108 D. Blouin et al.

2 Case Study

2.1 AADL

AADL is a rich component-based architecture description language that allows the
capture of many aspects of an embedded system. The goal is perform model analysis
in order to detect design errors early in the life cycle. AADL supports the specifica-
tion of systems as an assembly of software and hardware components divided into
categories. Software categories are thread, thread group, data, process and subpro-
gram. Hardware categories are processor, virtual processor, memory, device, bus and
virtual bus. Hardware and software components classifiers can be declared in libraries
or hierarchically organized in systems for reuse. AADL components interact through
features (interaction points) and connections, which together model data or control
flows between components.

One advantage of AADL compared to languages such as UML is that it has both a
textual and a graphical syntax. Users can therefore use the syntax they are more com-
fortable with, or the syntax that is best suited for whatever has to be edited in the
model. Unfortunately, there has never been any usable graphical editor developed for
the language, and it is a major drawback for the adoption of AADL. Graphical editors
are complex, and every attempt to develop a graphical editor for AADL resulted in
partially implemented tools that were barely usable.

2.2 AADL Editors

For instance, this was the case of the Adele graphical editor [5]. It stores AADL spe-
cifications using a meta-model of its own, which facilitates the edition of models by
providing a choice of two edition modes. For example, Adele models can be edited in
a top-down intuitive approach that does not follow the structure of the AADL lan-
guage. Textual AADL specifications are generated from the Adele models for being
processed by other tools.

Among these other tools, the Open Source AADL Tool Environment (OSATE) [6]
is the main textual editor for AADL. It also provides model analysis facilities. Both
Adele and OSATE can be deployed in the Eclipse environment for their simultaneous
use. Unfortunately, Adele was never developed to the point where all constructs of the
AADL language were managed. Constructs such as modes, flows, prototypes etc.
have never been implemented, and sooner or later, Adele users were forced to use
OSATE for editing these constructs through textual syntax. The result is that regene-
rating the textual files from the graphical model was then destroying the unhandled
constructs. This was a serious issue because users were soon or later required to syn-
chronize the models by hand. Three options could be envisaged to solve this problem:

• Implement the language constructs which are missing in Adele.
• Rebuild an editor that operates directly on the OSATE meta-model.
• Build a synchronization layer between OSATE and Adele.

 Synchronization of M

Because model synchron
the third solution was cho
synchronization with the A
tuitive edition modes speci
the OSATE meta-model dir

2.3 The OSATE Meta-

The OSATE meta-model c
illustrated by the way rules
are encoded in the meta
subcomponents of many ca
etc, as represented by the s
category (e.g.: processor), t
the subcomponents (owned
class for the category (
interaction points), which a
manner. As it will be expla
revealed several scalabilit
implementing several impro

Fig. 1. A diagram of the AA
references and classes for ever

2.4 The Adele Meta-mo

The Adele editor offers tw
different types of diagram
declaring classifiers that c
specification. Conversely, t
system instance specificatio
sifiers to the time when the
tion, a system diagram spec

To support these two edi
ways. Package diagrams a

Models of Rich Languages with Triple Graph Grammars

nization is an important need for the AADL commun
osen. It would also provide a first case study of mo

AADL. In addition, it would allow preserving the more
ific to Adele, and hardly supported by editors working
rectly.

model

contains 260 classes and is strongly typed. This is w
for components decomposition in terms of subcompone

a-model. For example, an AADL system can cont
ategories such as buses, data, devices, memories, proces
subcomponent containment references of Fig. 1. For e
the containing class declares a specific reference to cont
dProcessorSubcomponent), and a specific subcompon
(ProcessorSubcomponent). AADL features (compon
are contained in component types are handled in a sim
ined in Section 5, this structure of the OSATE meta-mo
ty issues, which were so important that they requi
ovements of the TGGs to validate their use.

ADL system implementation class showing distinct containm
ry allowed subcomponent category

odel

o modes to edit an AADL specification supported by t
ms. The declarative mode (package diagram) consists

an be instantiated later on to produce a system insta
the instance mode (instance diagram) consists of creatin
on, and to postpone the declaration of subcomponent c
ey need to be reused for modeling other systems. In ad
cification contains all subcomponents in a single tree.
ition modes, the Adele meta-model is used in two differ

are edited according to the left part of Fig. 2, where

109

nity,
odel
e in-
g on

well
ents
tain
ses,

each
tain
nent
nent

milar
odel
ired

ment

two
s of
ance
ng a
las-
ddi-

rent
the

110 D. Blouin et al.

hierarchy ends at the subcomponent level, and subcomponents of a subcomponent are
declared in the classifier of the subcomponent. Instance diagrams are edited according
to the right hand side of the figure, where all subcomponents are contained in a single
tree whose root is the parent component implementation.

Fig. 2. The Adele meta-model and its uses for the declarative and instance edition modes

Compared to OSATE, the Adele meta-model is weakly typed and contains much
fewer classes (48 compared to 260). For a given component category, the same class
is used for representing component types, component implementations and
subcomponents, where OSATE will declare three distinct classes (ProcessorType,
ProcessorImplementation and ProcessorSubcomponent).

3 Model Synchronization Tool Selection

The first task of the project consisted of reviewing the available model synchroniza-
tion tools. Our requirements were the following:

• The tool should be based on the Eclipse Modeling Framework (EMF), since both
Adele and OSATE are implemented using this framework.

• The synchronization process should execute fast enough so that the user does not
notice it.

• The objects should not be re-instantiated when changes are performed on the ob-
jects, with the instances being reused as much as possible and updated to restore
consistency. This is to prevent information losses due to information not trans-
formed by the TGG and contained in the destroyed object.

Several tools have been developed for model transformation. Well-known tools are
ATL [9], Epsilon [10], Kermeta [11], Tom [12], and tools implementing the OMG
Query View Transformation (QVT) language [13]. However, these tools only support
classical one-way batch transformations. Model synchronization, where only part of a
model is transformed (incremental transformation) is not supported. These tools are
therefore not suitable to solve our problem, even though the relational part of QVT
(QVT-R) is promising for model synchronization.

3.1 Approaches for Model Synchronization

As explained in [14], two main approaches exist for model synchronization. The first
one considers that inconsistencies will naturally occur during design (e.g., the user
modifies one specification without taking care of performing the corresponding
modification on the other side), and means are provided to detect the inconsistencies

 Synchronization of Models of Rich Languages with Triple Graph Grammars 111

and automatically generate a set of actions to be applied on the models to restore con-
sistency. This set of actions is called a repair plan, and inconsistencies are typically
expressed by a set of constraints whose evaluation to true identifies inconsistent
models.

The second approach uses coupled graph grammars. Consistency is characterized
by membership of the models in the resulting graph language. Automatically generat-
ed operational transformations deal with maintaining the models consistent in case
one model is changed. The most widely known language for this approach is the
Triple-Graph Grammar [15]. Its power comes from the fact that the relation between
the two models can be made operational so that models can be transformed / synchro-
nized in either direction. While a graph grammar can be used for defining the dynam-
ic evolution of a single model, a triple graph grammar allows to define the relation
between two different kinds of models by defining and coupling three graph gram-
mars (Fig. 4): one grammar for each type of model to be transformed, and a third
grammar for a correspondence model whose purpose is to maintain traceability links
between elements of the two models to be synchronized.

3.2 Tool Selection

Among the two approaches, only the TGG appeared to be mature enough. We could
not find any tool implementing the first approach. On the opposite, TGGs have been
around for more than 15 years, and several model synchronization experiments have
been performed such as [16] and [17]. Our selection of the TGG tool has been strong-
ly based on [19], which presents a survey of the three most widely known TGG tools
still actively developed: (1) The Model Transformation Engine (MoTE) [7], (2) The
TGG Interpreter [20] and (3) The eMoflon tool suite [21].

Both MoTE and eMoflon compile TGG rules into story diagrams. For MoTE, the
story diagrams are interpreted to transform the models, while for eMoflon, Java code
is generated from the story diagrams, which is then executed to perform the transfor-
mations. The TGG interpreter works differently as it directly interprets the TGG rules
to perform the transformation. This has the advantage of allowing testing the trans-
formation at development time, but has the drawback of reduced performance. In-
deed, the survey indicated that that the TGG interpreter is the slowest, while MoTE
and eMoflon have similar performances, with eMoflon being slightly faster than
MoTE.

All three tools impose restrictions on the input TGGs for being able to prove cor-
rectness, and to increase performance in pattern matching in the case of MoTE. MoTE
imposes the strongest restrictions on the TGGs. Both MoTE and eMoflon have proven
completeness1. However, a serious drawback of eMoflon is that it did not support
incremental transformations at the time of the survey, which prevented its use.

1 Completeness means that every graph of a graph language (TGG) of a given TGG can be

generated by the tool’s forward/backward transformation from a graph of the translator’s
input domain.

112 D. Blouin et al.

While the survey did not strongly favor any of the three tools, MoTE appeared to
be the best choice to synchronize Adele and OSATE. It supports incremental trans-
formation, is fairly fast, has good formal properties and is completely based on EMF.
Although a new version of MoTE (MoTE 2) improving performance and expressivity
is currently under development, our work was performed with the version 1. This is
because at the time we did this work, no TGG graphical editor was available for
MoTE 2. At some point during the project, we considered porting our grammar to
MoTE 2, but ran into several problems with the MoTE2 development tools and run-
time execution. For this reason, we decided to complete the work with MoTE 1 first,
and to postpone migration to MoTE 2 to a next phase of the project.

4 Overview of the Implemented Solution

This section introduces the architecture of the Adele-OSATE synchronization layer
and its integration in the Eclipse-based modeling environment. We adopted an ap-
proach inspired from the work of [22], [23] and [24], where model synchronization is
viewed as a specific task of Global Model Management (GMM). We have therefore
developed a GMM language allowing formalization and interpretation of the various
relations that can exist between models of a modeling environment. This includes the
consistency relation between Adele and OSATE models, implemented as a synchro-
nization relation using the MoTE TGG engine.

Fig. 3 presents the architecture of the Adele-OSATE synchronization relation and
its deployment into the Eclipse workbench. A GMM controller listens for resource
change events, which are sent by the resources manager of the Eclipse platform when
users save the models through the editor. For a given changed resource, the GMM
controller calls the GMM engine that processes the relations that concern the re-
source. These relations are declared in a GMM specification. The editor adapter layer
is used to provide direct access to the internal resource of any opened editor of the
resources to be synchronized, thus making the results of synchronization immediately
visible in opened editors.

Fig. 3. The architecture of the Adele-OSATE synchronization layer, implemented as a syn-
chronization relation of the Global Model Management language

 Synchronization of Models of Rich Languages with Triple Graph Grammars 113

Note that the MoTE synchronization relation makes use of a cache of the model
objects, which are linked through the correspondence models for being synchronized.
Changes made by any tool to the changed resource are merged into the cache, thus
ensuring the objects traced by the correspondence models are not destroyed whatever
the way the tool performed the changes2. Despite the fact that the merge operation
increases complexity, it has the advantage but isolating the model objects to ensure
that synchronization will work independently of the way the objects are modified. The
merge layer is implemented using EMF Compare [25], which had to be tuned for
merging models correctly as presented in Section 5.

5 The Adele-OSATE TGG

The TGG that was developed for synchronizing Adele and OSATE contains a total of
60 rules, as detailed in Table 1. The major portion of the AADL language has been
covered, which makes our experience a relevant case study for applying TGGs to
complex and rich languages. Most rules could be easily expressed, except for the
connection rules, which required improvements of the TGG language and MoTE tool,
and even modifications of the Adele meta-model. Therefore, this section focuses on
these improvements, which unfortunately cannot all be presented due to the lack of
space.

Table 1. Statistics of the Adele-OSATE

AADL Construct # of Rules /
Contexts

AADL Construct # of Rules /
Contexts

Package and public package
section (axiom)

1 Subcomponents 11

Component Types 2 Connections 20
Component Type Features 10 Flows Not Handled
Feature Group Types 4 Modes Not Handled
Feature Group Type Features 10 Properties Not Handled
Component Implementation 2 Prototypes Not Handled

 Total 60

5.1 TGG Language Improvements

Generic TGG Rules
A first encountered problem relates to scalability of both the development and
runtime tools, which could be fixed by introducing the concept of generic TGG rules.
Indeed, while MoTE scales very well in transforming large models [19], we
discovered limitations in handling complex languages like AADL. As illustrated in
Fig. 4, a constraint on TGG rules is that the class of the created elements (green) must

2 As a matter of fact, this need was initially discovered because the OSATE textual editor,

which is based on the Xtext framework [8], systematically re-parses the AST as soon as any
modification is made to the textual file.

114 D. Blouin et al.

be concrete (can be instantiated), and that the references to the created elements must
be changeable. Without our improvement, the rule of Fig. 4 is not valid, since both the
Adele component and AADL subcomponent classes are abstract, and the
ownedSubcomponent reference is not changeable being derived. As introduced in
section 2.3, the OSATE meta-model is strongly typed, and only the specific classes of
each subcomponent category (Fig. 1) should have been used in TGG rules.

Fig. 4. The Adele-OSATE TGG rule for typed subcomponents

However, this quickly leads to an explosion of the number of required TGG rules.
In order to meet the TGG “instantiability” constraints, a TGG rule would be required
for each pair of parent component category and subcomponent category. For example,
for the system parent category, 9 rules would be required to cover all allowed sub-
component categories. In addition, a subcomponent can be created in several contexts,
which must all be covered by the rules. A subcomponent can be created with a type as
illustrated in Fig. 4, or untyped as shown in Fig. 5, or typed as its parent, or with the
subcomponent being inherited and refined to a more specialized type, according to the
AADL subcomponent refinement mechanism. In total, the AADL language implies a
number of 11 different creation contexts for a subcomponent of a given category.
Hence, this implies that in order to cover only the system component implementation,
99 TGG rules are needed. However there are 14 component categories in AADL, and
a simple calculation shows that more than 700 TGG rules would actually be required
just for specifying the transformation of subcomponents!

Such a large number of rules cannot be handled by MoTE. First, the Story Diagram
(SD) generator did not scale well with the number of TGG rules. It was observed that
when a TGG reaches a number of roughly 300 rules, SD generation would require too
much memory and would not complete on the computer used for this project, which
had about 3.5 GB of RAM memory. Furthermore, the disk space required to store
such a large number of SDs would make the release of the synchronization layer not
manageable (about 3GB for 250 TGG rules). As a matter of fact, the space taken for a
given synchronization SD increases with the total number of TGG rules, making the
size of the total SDs not growing linearly with the number of TGG rules. SDs are

 Synchronization of Models of Rich Languages with Triple Graph Grammars 115

generated in a way that when a rule that produced a given set of objects is not
matched anymore due to changes of the objects, a call is placed to all other rules of
the entire grammar in order to discover a potentially matching rule. As a result, when
the total number of rules increases in a TGG, the number of calls of the synchroniza-
tion SDs increases and can potentially lead to performance issues.

Fig. 5. The TGG rule for untyped subcomponents

To avoid these scalability issues, our first attempt was to optimize the SD generator to
avoid consuming too much memory. But that turned out to be unnecessary after we
implemented the concept of generic TGG rule allowing reducing the number of required
rules for subcomponents from more than 700 to 11. This is shown in Fig. 4, which is the
actual rule used in our Adele-OSATE TGG, and where the class Subcomponent of the
created model element on the AADL side is abstract, and the containing reference
(ownedSubcomponent) is not changeable in the AADL meta-model. The solution
consisted of modifying the MoTE TGG language so that the TGG designer can provide
an expression attached to model objects whose class is abstract, and to unchangeable
model links. The SD interpreter then evaluates these expressions at runtime to determine
which concrete class has to be instantiated, and which changeable reference has to be
updated. In our specific case, the expression is a call action providing a static method of a
transformation helper class called to determine the concrete class to be instantiated from
the actual concrete class of the model element on the other side. A similar method is
provided to determine the changeable reference from the types of the parent model
element and the subcomponent.

Reuse of Objects to Avoid Information Loss
We also encountered problems with model objects being re-instantiated when syn-
chronizing changes, despite the fact that MoTE had already been improved regarding
this aspect. MoTE implements the algorithm presented in [26], which avoids re-
instantiating the entire set of objects created in the sub-tree of the changed object.

However, changing a reference from an object to another model object caused re-
instantiation of the object. For example, consider the rule of Fig. 4, which describes the
creation of a subcomponent of a given type. When the subcomponent type is changed to
null, the MoTE engine will detect that the rule that created the model element is not
matched anymore due to the changes. In such case, it will try to match all other rules of
the TGG. In our example, the rule of Fig. 5 (when the subcomponent is untyped) will

116 D. Blouin et al.

obviously be matched. MoTE will then repair the corresponding object by marking it as
deleted, and by instantiating a new subcomponent and setting its properties according to
the newly matched rule. This operation is performed with a dedicated SD named repair
structure. While this is an improvement compared to the original algorithm, it is not
sufficient for our use case. Elements such as AADL properties contained in subcompo-
nents and declared on only one side of the TGG must be preserved. We therefore devel-
oped an original solution to avoid this re-instantiation (Fig. 6). It has the advantage of
simplicity and limited overhead compared to other solutions such as that presented in
[27].

Fig. 6. The process of reusing an existing model object after changes

The objective is to be able to find the existing object that has changed so that it can be
reused when applying the newly matched rule instead of instantiating a new object. For-
tunately, when the repair structure SD of the newly matched rule is called, the correspon-
dence node that refers to the changed object is always passed to the rule. We then simply
need to identify the existing object to be reused from the set of objects referred by the
correspondence node. For this, we can first discard all objects whose class is not the same
as that of the object to be re-created. However, this criterion is not sufficient since there
could be many objects with the same class created for a given correspondence node. To
uniquely identify the changed object, we require an additional constraint to be verified by
the TGG rules at the time they are defined. Comparing the rules of Fig. 4 and Fig. 5, we
notice that their patterns are quite similar, and the only difference between them is that
for the first one, there is a link to the type of the subcomponent, while for the second one,
this link is removed and a constraint stating that the subcomponent type is null is added.
If we require that the created subcomponent model objects have identical names for both
rules (adeleSubcomponent and aadlSubcomponent), which is typically the case when
good practices are used in TGG rules definition, we can then identify the existing object
to be reused from the name of its model object in the newly matched rule. However, to
make this possible, the way the correspondence model is represented has to be changed
to associate with each created object the name of the model object of the creation rule.
This is easily implemented in MoTE.

 Synchronization of Models of Rich Languages with Triple Graph Grammars 117

Now that the existing object is identified, two additional steps must be performed.
First all references of the reused object to objects that are already mapped in the cor-
respondence model must be removed. This is because the proper references will be set
as if the object was newly created when the repair structure SD is applied. So we
avoid setting the same object twice in case of multiple cardinality references. Con-
versely, objects that are not mapped in the correspondence model such as properties
will not be reset by this process and will be preserved as desired.

This simple solution appears to work quite well for our Adele-OSATE TGG and
ensures that whatever was contained by the subcomponent and not handled by the
TGG is preserved. The only drawback is that it enforces using the same name in the
created model objects of all rules for a given type of created model object. However,
this can be ensured by adding constraints to the TGG meta-model.

Other Improvements
Other improvements were implemented but only briefly mentioned due to lack of
space. We enhanced the MoTE global pattern matching constraints, by adding an
applicability clause to the constraint. It states whether it is to be applied only during
forward or reverse transformations. We also added the capability to specify an addi-
tional reference to a model object link to be used for matching purposes. In some
cases, MoTE tries to match a pattern from the inverse direction of a model object link,
starting from the target object to the source object. If the reference of the link has an
opposite reference or is a containment reference, MoTE uses the opposite or the con-
tainer reference to navigate to the source object. However, for some references of the
OSATE meta-model, opposite references exist but are not explicitly specified in the
meta-model. We therefore added a property on the TGG model object link class to
specify this reference, and modified the SD interpreter for making use of it.

5.2 Tooling Improvements

Cross-Resource References Management
Another major issue with MoTE is that cross-resource references are not handled. For
example, if a component refers to a component contained in a different resource, its
reference property will not be handled during transformations. Such a shortcoming is
more than enough to prevent a tool from being used. For languages like AADL,
which provide packages declared in separate files to better organize a specification,
this is a blocking limitation.

To overcome this problem, we modified the MoTE TGG engine so that it takes
care of pre-building the correspondence model with correspondence nodes of external
model elements. This fix slightly increases execution time, since a complete corres-
pondence model has to be recursively created for each cross resource. However, each
correspondence model is stored in the TGG engine cache so that the impact on per-
formance is limited.

EMF Compare Improvements
As illustrated in Fig. 3, the integration of MoTE in our modeling environment is
achieved through the use of a model object cache. This is needed to ensure that the
model elements traced by the correspondence model are maintained. EMF Compare

118 D. Blouin et al.

1.3 has been used to merge the changes detected in the resources of the workspace
into the resources of the cache.

Again, a few improvements were needed for being able to merge the models cor-
rectly. The first issue relates to the way EMF Compare merges changes in which cross
resource references are involved. Our synchronization layer requires that if a refer-
ence to an external element is set, then the external model element should be con-
tained in a resource of the cache on the cache side, because it may already be referred
by a correspondence model. However, the default behavior of EMF Compare is to set
the same referenced object in the target object as that of the source object, and EMF
Compare had to be adapted to take this into account.

Another problem is related to the order in which the merge operations are per-
formed. To avoid unnecessary re-instantiation of objects, the delete operations, which
are received as model change events by the TGG engine, should be added at the end
of the transformation queue. In this way, the references to the object to be deleted can
be moved to other objects before the object is deleted during synchronization. Hence,
this implied modifying the order of the merge operations in EMF Compare to ensure
that deletion operations are performed at the end. Other minor merging issues were
also identified and corrected but cannot be presented due to the lack of space.

Other Improvements
Other improvements to MoTE were required as well, such as the implementation of
post-creation actions, which were declared in the TGG language but not implemented
in the TGG compiler. The same is true for position constraints used to define whether
an element is to be added at the first or the last position in a list. This feature was
handled in the SD interpreter but not in the TGG language. We also introduced the
between constraint used when the element should neither be the first and nor the last
element, provided that there are at least two elements in the list. We also had a few
issues with the MoTE change listener that receives model changes events to be added
as modifications to the TGG engine transformation queue for synchronization.

6 Discussion

6.1 Implemented Synchronization Layer

The concrete result of this work is a synchronization layer between Adele and
OSATE, solving the problem of integrating tools that are essential for the growing
AADL community. Experience gained during this project supports the ongoing work
of integrating other languages and tools with the AADL such as VHDL.

Automated tests were developed for the synchronization layer for testing bidirec-
tional batch transformations and synchronization transformations, and for consistency
checks performed by creating and analyzing correspondence models. In addition, we
have tested our synchronization layer with several realistic and complex AADL mod-
els such as electronic hardware systems using all constructs of the AADL language
handled by Adele. Such systems require up to 7 levels of recursive component exten-
sions declared in different files, which was used to validate our fix of the MoTE for
the cross-resource references problem.

 Synchronization of Models of Rich Languages with Triple Graph Grammars 119

6.2 Suggestions for Further Improvements

Based on our experiment, we found that current TGG approaches require further im-
provements for being suitable for industrial use. These would increase the usability of
TGGs and ease the development of model synchronization layers. For example, it
would be useful to have a mechanism to allow reusing one side of an existing TGG
(for instance the AADL side) and complete the other side according to the new lan-
guage to be synchronized with AADL (e.g., VHDL). Another improvement could be
to provide a “soft” reference mechanism for model links of graph patterns, instead of
requiring the reference to be declared in the class of the source model object. In our
experiment, this would have avoided the need to add references to the Adele meta-
model, which are used only for TGG rule matching purposes. This is even more im-
portant for the cases where the modeling languages cannot be modified (e.g.: the
AADL). In addition, other improvements published in the literature would really need
to be implemented in MoTE. These are described in the related work section.

It was also found that the use of TGGs could be made much easier if better docu-
mentation was provided. In the actual state, the transformation designer needs to un-
derstand the generated SDs to be able to define correct TGGs, and several additional
TGG validation rules would need to be enforced. For example, when defining con-
straints, beginners have no clue which model objects can be used in constraints. The
bound model objects depend on the specific type of transformation (mapping, batch or
synchronization), and several errors occur at runtime due to unbound model objects
being referenced in constraint expressions.

7 Related Work

To our knowledge, no experience has been made to assess the usability of TGGs for
synchronizing models of complex and rich languages such as the AADL, with a real
need to integrate tools used by an active community. However, a few similar works
can be compared to ours.

In [19], a set of benchmarks has been performed for large models to compare three
TGG tools (MoTE, eMoflon and the TGG Interpreter). However, the meta-models are
extremely simple. In [16], synchronization has been implemented with MoTE be-
tween SysML and AUTOSAR, but only subsets of the languages were covered. A
work closer to ours is presented in [17], where the synchronization of Modal Se-
quence Diagrams (MSDs) with networks of Timed Game Automata (TGA) using the
TGG Interpreter is presented. Like for us, their experiment lead to the development of
several improvements such as:

• The integration of OCL in TGGs, which is already implemented in MoTE.
• TGG rule generalization / inheritance, which is also introduced in [18] for eMof-

lon, and would be worth implementing in MoTE.
• Reusable patterns, which allow declaring in a single TGG rule several contexts of

creation of a given graph of model elements. This would have helped in MoTE by
reducing the number of required rules for handling the numerous creation contexts
(e.g., 11 for subcomponents).

120 D. Blouin et al.

• Global constraints, which are already implemented in MoTE, to which we added
an applicability clause for specific transformation directions (forward / reverse).

Furthermore, in [27], a new algorithm is presented and implemented in the TGG In-
terpreter to allow further reuse of model elements during synchronization. It avoids
the loss of the information not handled by the TGG rules. We provided a different
solution to this problem, which appears to be simpler but requires additional con-
straints to be met by a set of TGG rules describing the contexts of creation of a given
model object class.

8 Conclusion and Perspectives

In this paper, we reported our experience in synchronizing models of two different
meta-models for the complex feature-rich AADL language. Our experiment shows
that applying state of the art model synchronization techniques remains challenging,
despite the good quality of the MoTE tool that was used. This case study allowed the
development of several improvements of TGGs to account for the size of the AADL
meta-model and its properties. However, the fact that we succeeded in synchronizing
the tools validates the TGG approach and opens interesting perspectives.

A future work will consist of porting our improvements and our Adele-OSATE
TGG to MoTE 2, in order to benefit from the MoTE 2 improvements. In addition, we
are currently working on improving other aspects of TGGs and MoTE through the
development of an endogenous refinement transformation for AADL, and an AADL-
VHDL transformation. We also plan to write a cookbook to help developers get
acquainted with TGG development.

References

1. SAE International, Architecture Analylsis and Design Language (AADL),
http://standards.sae.org/as5506b/

2. MathWorks, MathLab Simulink,
http://www.mathworks.fr/products/simulink/

3. OMG, Systems Modeling Language (SysML), http://www.omgsysml.org/
4. OMG, Modeling and Analysis of Real-Time Embedded Systems (MARTE),

http://www.omgmarte.org/
5. The Adele Graphical Editor for AADL,

https://wiki.sei.cmu.edu/aadl/index.php/Adele/
6. Open Source AADL Tool Environment (OSATE),

http://www.aadl.info/aadl/currentsite/tool/osate-down.html
7. The Model Transformation Engine (MoTE), http://www.mdelab.de/mote/
8. The Xtext Framework, http://www.eclipse.org/Xtext/
9. The Atlas Transformation Language (ATL), http://www.eclipse.org/atl/

10. The Epsilon Project, http://www.eclipse.org/epsilon/
11. The Kermeta Project, http://www.kermeta.org/
12. The Tom Project, http://tom.loria.fr
13. OMG, Query View Transformation (QVT), http://www.omg.org/spec/QVT/

 Synchronization of Models of Rich Languages with Triple Graph Grammars 121

14. Boronat, A., Meseguer, J.: Automated Model Synchronization: A Case Study on UML
with Maude. Proc. of the ECEASST (41) (2011)

15. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg (1995)

16. Giese, H., Hildebrandt, S., Neumann, S.: Model Synchronization at Work: Keeping SysML
and AUTOSAR Models Consistent. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A.,
Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 555–579. Springer, Heidelberg
(2010)

17. Greenyer, J., Rieke, J.: Applying Advanced TGG Concepts for a Complex Transformation
of Sequence Diagram Specifications to Timed Game Automata. In: Schürr, A., Varró, D.,
Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 222–237. Springer, Heidelberg
(2012)

18. Klar, F., Königs, A., Schürr, A.: Model Transformation in the Large. In: Proc. of the 6th
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC-FSE 2007), pp. 285–294
(2007)

19. Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schafer, W., Lauder, M.,
Anjorin, A., Schürr, A.: A Survey of Triple Graph Grammar Tools. In: Proc. of the 2nd
International Workshop on Bidirectional Transformations (2013)

20. TGG-Interpreter,
http://www.cs.upb.de/index.php?id=tgg-interpreter/

21. eMoflon, http://www.emoflon.org/
22. Hebig, R., Seibel, A., Giese, H.: On the Unification of Megamodels. In: Proc. of the 4th

International Workshop on Multi-Paradigm Modeling (MPM 2010). ECEASST, vol. 42
(2011)

23. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing in Model Management.
In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 197–212. Springer, Heidelberg
(2009)

24. Seibel, A., Neumann, S., Giese, H.: Dynamic hierarchical mega models: comprehensive
traceability and its efficient maintenance. Softw. Syst. Model 9(4), 493–528 (2010)

25. EMF Compare, http://www.eclipse.org/emf/compare/
26. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models, Tech.

Rep. 28, Hasso Plattner Institute at the University of Potsdam (2009)
27. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model syn-

chronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F.
(eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidelberg (2011)

28. Giese, H., Hildebrandt, S., Seibel, A.: Improved Flexibility and Scalability by Interpreting
Story Diagrams. ECEASST (18) (2009)

Triple Graph Grammars in the Large

for Translating Satellite Procedures

Frank Hermann1, Susann Gottmann1, Nico Nachtigall1, Hartmut Ehrig2,
Benjamin Braatz1, Gianluigi Morelli3, Alain Pierre3,

Thomas Engel1, and Claudia Ermel2

1 Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg, Luxembourg

firstname.lastname@uni.lu
2 Technische Universität Berlin, Germany
firstname.lastname@tu-berlin.de

3 SES, Luxembourg
firstname.lastname@ses.com

Abstract. Software translation is a challenging task. Several require-
ments are important – including automation of the execution, main-
tainability of the translation patterns, and, most importantly, reliability
concerning the correctness of the translation.

Triple graph grammars (TGGs) have shown to be an intuitive, well-
defined technique for model translation. In this paper, we leverage TGGs
for industry scale software translations. The approach is implemented us-
ing the Eclipse-based graph transformation tool Henshin and has been
successfully applied in a large industrial project with the satellite oper-
ator SES on the translation of satellite control procedures. We evaluate
the approach regarding requirements from the project and performance
on a complete set of procedures of one satellite.

Keywords: model transformation, software translation, refactoring,
triple graph grammars, Eclipse Modeling Framework (EMF).

1 Introduction

Migration of software systems is an important but complex task, especially for
enterprises that are highly dependent on the reliability of their running systems.
The general problem is to translate the source code of a software that is cur-
rently in use into corresponding source code that shall run on the new system.
Up to now, this problem was addressed based on manually written converters,
parser generators, compiler-compilers or meta-programming environments using
term rewriting or similar techniques. Model transformation based on triple graph
grammars (TGGs) is a general, intuitive and formally well-defined technique for
the translation of models [25,26,13]. While previous concepts and case studies
were focused mainly on visual models of software and systems, this paper shows
that model transformation based on TGGs provides a powerful technique for

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 122–137, 2014.
© Springer International Publishing Switzerland 2014

Triple Graph Grammars in the Large for Translating Satellite Procedures 123

software translation as well. Since software systems are on average much larger
than visual models, we provide a general technique for efficiency improvement
and show its applicability within a large scale industrial project.

The general idea of TGGs is to specify a language of integrated models. Such
an integrated model consists of a model of the source domain, a model of the
target domain, and explicit correspondence structures in the middle component.
The source and target models in the present scenario are abstract syntax trees
of source code. The operational rules for executing the translation are gener-
ated from the specified TGG and executed via the graph transformation tool
Henshin [7]. TGGs are equivalent to a restricted class of plain graph transfor-
mation systems [8,13]. This restriction ensures the existence of the explicit cor-
respondence structures and formal properties concerning correctness and com-
pleteness [14]. In this paper, we use rather simple and intuitive but non-trivial
translation patterns. The full translation contains several more complex ones,
e.g., for the reordering and regrouping of blocks. Translation strategies that are
solely based on finding and replacing words (like e.g. Awk1) will fail due to the
highly context-sensitive structural dependencies in the source code.

Within the research project PIL2SPELL with the industrial partner SES
(Société Européenne des Satellites), we developed the general approach for soft-
ware translation in this paper. SES is operating a fleet of 56 satellites manu-
factured by different vendors that often use their own proprietary programming
language for automated operational satellite procedures. In order to reduce the
high complexity and efforts during operation caused by this heterogeneity, SES
developed the open source satellite language SPELL [27] (Satellite Procedure
Execution Language & Library), which is nowadays used by more and more op-
erators and may become a standard in this domain. The main aim of the project
was to provide a fully automated translation of existing satellite control proce-
dures written in PIL (Procedure Intermediate Language) of the satellite manu-
facturer ASTRIUM into satellite control procedures in SPELL.2 Since the PIL
procedures are already validated, the translation has to ensure a very high level
of reliability in terms of fidelity, precision and correctness in order to minimise
the efforts for revalidation. In our first contribution of this paper we propose and
validate the use of TGGs for software translation in the PIL2SPELL project.
Since the PIL2SPELL project is an industrial application of rather large size
(more than 200 translation rules were specified), a technique was needed to im-
prove the efficiency of the TGG rewriting method and tool. Hence, the second
contribution of this paper is a general approach for improving efficiency of graph
transformation systems applied to leverage TGGs for software translations in in-
dustry and we evaluate the implementation in Henshin [7]. The corresponding
technical report [16] for this paper provides full technical details on the formal
constructions and full proofs.

Sec. 2 introduces our running example, Sec. 3 presents the general concept and
Sec. 4 describes the applied TGG techniques. Thereafter, Sec. 5 presents results

1 Awk Community: http://awk.info/
2 In [15], we present a short overview of the PIL2SPELL project.

http://awk.info/

124 F. Hermann et al.

1 SELECT
2 CASE ($BATT = "HIGH")
3 CHECKTM(TEMP_C1)
4 CHECKTM(VOLT_D2 = 4)
5 ENDCASE
6 CASE ($BATT = "LOW")
7 SEND SWITCH_B1_B2
8 CHECKTM(VOLT3 = 5)
9 ENDSEND

10 ENDCASE
11 ENDSELECT

1 if (BATT == ’HIGH’):
2 GetTM(’T TEMP_C1’)
3 Verify([[’T VOLT_D2’, eq, 4]])
4 elif (BATT == ’LOW’):
5 Send(command = ’C SWITCH_B1_B2’,
6 verify = [[’T VOLT3’, eq, 5]])
7 #ENDIF

Fig. 1. Procedure written in PIL (left) and translated procedure in SPELL (right)

for improving the efficiency and scalability, and Sec. 6 evaluates the approach.
Sec. 7 discusses related work and Sec. 8 provides a conclusion and discusses
aspects of future work.

2 Case Study PIL2SPELL

We illustrate the methodology for software translation on some details of the
project PIL2SPELL. Fig. 1 presents a simplified PIL procedure for battery
maintenance and its translation in SPELL. Structures of the form SELECT-CASE-
ENDSELECT are translated into structures of the form if-elif-#ENDIF. SEND

instructions (lines 7-9) for sending telecommands to the satellite are mapped to
corresponding Send statements with the same command-id as argument prefixed
with a C (lines 5-6). Instructions for checking telemetry values (PIL instruction
CHECKTM) are handled in three ways:

1. CHECKTM(X) (line 3): parameter checks without condition are used to retrieve
and display a telemetry value from the satellite. They are translated into
GetTM statements, where prefix T is added to the parameter (line 2).

2. CHECKTM(X = Y) (line 4): parameter checks with additional condition are used
to verify telemetry values and are mapped to Verify statements with a
corresponding condition (line 3).

3. CHECKTM(X = Y) (line 8): parameter checks within a SEND instruction are
translated into a verify argument of the corresponding Send statement
(line 6). △

Note that the translation is context-sensitive as it treats e.g. a CHECKTM in-
struction inside a SEND instruction differently from a not nested CHECKTM in-
struction. Moreover, PIL and SPELL use different concepts for calling subrou-
tines. In order to respect the execution semantics, block structures of the form
STAGE..ENDSTAGE in PIL have to be translated into two SPELL structures. The
first one is a function call that remains in the main part and the second one is
a function definition containing the translated body of the block structure and
it is placed at the beginning of the SPELL procedure. This restructuring and
reordering of information motivates to perform a separation of concerns by split-
ting the translation into parsing, translation and serialisation instead of using
an integrated approach, where some of the phases are merged.

Triple Graph Grammars in the Large for Translating Satellite Procedures 125

Fig. 2. Concept for software translation

3 Concept for Software Translation

The general concept for software translation in Fig. 2 consists of the phases
parsing, AST conversion (main phase), and serialisation. It is executed using
the Eclipse Modeling Framework (EMF) tools Xtext [6] and Henshin [7]. Xtext
supports the syntax specification of textual domain specific languages (DSLs),
in particular of programming languages. Based on the EBNF (Extended Backus-
Naur Form) grammar specification of a DSL and an additional formatting config-
uration, the Xtext framework generates the corresponding parser and serialiser.
The parser checks that the input source code is well-formed and the serialiser en-
sures that the generated output source code is well-defined. The Xtext serialiser
enables us to check and ensure that the output conforms to the given EBNF for
the target language and that additional AST-specific formatting guidelines are
respected. SES explicitly required the conformance to the SPELL EBNF and to
SES formatting guidelines (e.g. alignment of list entries and semantic indenta-
tion), which goes beyond the power of generic template specification. Henshin
is an Eclipse plugin supporting the visual specification and execution of EMF
transformation systems, which is used for the main phase (AST conversion).

Example 1 (Parsing & Serialisation). Fig. 3 (left) shows a fragment of the AST
obtained by parsing the PIL source code example in Fig. 1 (left, lines 7-9).
Root node ∶ Send PIL represents the SEND − ENDSEND structure (lines 7-9) with
telecommand-id (SWITCH B1 B2, left branch) and telemetry parameter check
(CHECKTM, right branch). Fig. 3 (right) shows the obtained SPELL AST frag-
ment after translation. The serialisation of the SPELL AST yields the corre-
sponding source code in Fig. 1 (right, lines 5-6). Root node ∶ Send represents the
Send statement with telecommand-id (C SWITCH B1 B2) in the left branch and
telemetry parameter verification argument (verify) in the right branch. △

The AST-conversion consists of three phases (see Fig. 2). The first and third
phases (initialisation and refactoring) are general in-place transformations and
are performed via plain graph transformation (GT) systems. The second phase
(translation) is performed using a triple graph grammar (TGG), which is pre-
sented in detail in Sec. 4. Note that TGGs can be fully encoded as plain graph
transformations [13]. The initialisation phase is used to extend the given AST of
the source language with additional structures that simplify the specification of
the translation rules in Phase 2. The refactoring phase refines the resulting AST

126 F. Hermann et al.

Fig. 3. Fragment of source AST (left) and target AST (right)

in order to satisfy certain coding guidelines required in the target domain. These
refactorings are specified by compact GT rules that also delete substructures.
Employing a TGG for the refactoring phase instead would drastically increase
the amount of rules.

To reduce the complexity of the translation rules, the initialisation phase is
used to pre-process information and to create additional helper structures that
store this information locally in the source AST. In our case study, the initialisa-
tion rules are used, e.g., to compute a global numbering for the subcomponents
of a satellite procedure that are needed in SPELL. Moreover, we create explicit
pointers from complex instructions to their subcomponents (see, e.g. Ex. 2).

As TGGs are non-deleting, the source model is preserved completely during
the translation. The translation markers ensure that each element is translated
exactly once. At each translation step, a substructure of the given AST is trans-
lated and trace links are created. The resulting fragments in the target domain
are connected according to the tree structure of the input AST. These properties
help to ensure that the resulting output graph has a tree structure and is in fact
an AST.

4 Triple Graph Grammars with Henshin

In the following, we briefly review main concepts for model transformation based
on TGGs [10]. A triple graph is an integrated model consisting of a source
model, a target model and explicit correspondences between them. More pre-
cisely, it consists of three graphs GS , GC , and GT , called source, correspondence,
and target graphs, respectively, together with two mappings (graph morphisms)
sG∶G

C → GS and tG∶G
C → GT . The two mappings in G specify a correspondence

relation between elements of GS and elements of GT .
Triple graphs are related by triple graph morphisms m ∶ G → H [25,10]

consisting of three graph morphisms that preserve the associated correspon-
dences (i.e., left diagrams in Fig. 4 commute). Triple graphs are typed over a

Triple Graph Grammars in the Large for Translating Satellite Procedures 127

(GS

mS

��

=G GCsG��

mC

��

tG �� GT)

mT

��

(HS=H

m

��
HC

sH
��

tH

�� HT)

graph morphism

L

m

��

� � tr �� R

n

��

G
� �

t
�� H

Step (formal)

(PO)

Step (example)

Fig. 4. Triple graph morphism and transformation step

triple type graph TG and attributed according to [10]. For a triple type graph
TG = (TGS ← TGC → TGT), we use L(TG), L(TGS), and L(TGT) to denote
the classes of all graphs typed over TG , TGS , and TGT , respectively.

A triple graph grammar TGG = (TG , S,TR) consists of a triple type graph
TG , a triple start graph S and a set TR of triple rules, and generates the triple
graph language of consistently integrated models L(TGG) ⊆ L(TG) with con-
sistent source and target languages L(TGG)S = {GS ∣ (GS ← GC → GT) ∈
L(TGG)} and L(TGG)T = {GT ∣ (GS ← GC → GT) ∈ L(TGG)}. TGC differ-
entiates the possible types of correspondences.

A triple rule specifies how a given consistently integrated model can be ex-
tended simultaneously on all three components yielding again a consistently inte-
grated model. It is non-deleting and therefore, can be formalised as an inclusion
from triple graph L (left hand side) to triple graph R (right hand side), repre-
sented by tr ∶ L↪ R with tr = (trS , trC , trT). Applying a triple rule tr means to
find a match morphism m ∶ L→ G and to perform a triple graph transformation

step G =
tr ,m
====⇒ H yielding triple graph H defined by the gluing construction3 in

Fig. 4 where the occurrence of L in G is replaced by the occurrence of R in H
and glued to the remaining graph elements) [26]. Moreover, triple rules can be
extended by application conditions for restricting their application to specific
matches [13].

The operational forward translation rules for executing forward model trans-
formations are derived automatically [13] from the TGG. A forward translation
rule trFT and its original triple rule tr differ only on the source component:
elements (nodes, edges or attributes) created by tr become elements that are
preserved and marked as “translated” by the forward translation rule.

Example 2 (Operational Triple Rules). Fig. 5 shows screenshots (tool Hen-
shin [7]) of some generated forward translation rules of the TGG for PIL2SPELL
in short notation. Left- and right-hand side of a rule are depicted in one triple
graph and the elements to be created have the label ⟨++⟩. Translation attributes
are indicated by label ⟨tr⟩. The depicted rules are typical operational rules of
average rule size. Rule (1) translates an existing Instruction LST Elem node
into its corresponding stmt LST Elem node. Both node types are containers for

3 Formally, this is a pushout diagram (PO) in the category of triple graphs.

128 F. Hermann et al.

Fig. 5. Forward translation rules (generated by Henshin)

specific instructions and statements. Rules (2) and (3) depend on rule (1) as
they use the stmt LST Elem nodes as context.

Rules (2)-(4) are some of the rules that translate CHECKTM instructions. They
depend on further rules for the translation of their parameters (TMCond or
TMReport). Depending on the parameter type, the respective SPELL statement
is created, i.e., telemetry conditions (TMCond) yield a Verify statement, teleme-
try reports (TMReport - label without condition) yield a GetTM statement and
telemetry conditions within a SEND instruction become an argument in a verify

list of the corresponding Send statement. This corresponds to items 1–3 in Sec. 2.
Rules (2) and (3) translate CHECKTM instructions that are not embedded within
a specific context while rule (4) translates CHECKTM instructions within a SEND

instruction.
Note that the node type SEND verify LST Elem is created in the initialisation

phase as helper structure and used to mark exactly those CheckTM elements that
handle a telemetry condition (TMCond). The remaining CheckTM elements of a
SEND instruction are translated to GetTM statements outside the scope of the
SPELL Send statement. △

Triple Graph Grammars in the Large for Translating Satellite Procedures 129

A forward translation sequence (GS ,G0 =
tr∗FT
====⇒ Gn,G

T) is given by an input

source model GS , a transformation sequence G0 =
tr∗FT
====⇒ Gn obtained by executing

the forward translation rules TRFT on G0 = (G
S ← ∅ → ∅), and the resulting

target model GT obtained as restriction to the target component of triple graph
Gn = (G

S ← GC → GT). A model transformation based on forward translation
rules MT ∶ L(TGS) ⇛ L(TGT) consists of all forward translation sequences.
Note that a given source model GS may correspond to different target models
GT . In order to ensure unique results, we presented in [13] how to use the
automated conflict analysis engine of AGG for checking functional behaviour
of model transformations.

5 Leveraging TGGs for Software Translations in Industry

As described in the previous section, the basic execution algorithm for forward
translations based on TGGs does not use any kind of pre-defined order on
rules. For medium and large scale projects, the application of rules in a non-
deterministic way would result in poor efficiency. In this section, we present
a general approach for graph transformation systems, with which we leverage
TGGs for larger software translations. This concerns grammars containing more
than 200 rules, like the manually specified rules for the PIL2SPELL project that
were derived from a document of correspondence patterns (small corresponding
source code fragments). The approach is orthogonal to the analysis and reduc-
tion of conflicts via filter NACs for TGGs [13]. Both approaches can be combined
- the second one improves the rules directly while the first provides a structuring
technique on them.

The main observation is that the efficiency of the execution can be im-
proved significantly by analysing the potential dependencies. For example,
rules (2) and (3) in Fig. 5 can only be applied after rule (1) was applied to
translate the node of type Instruction LST Elem. Our strategy is partly in-
spired by several existing optimisations in TGG implementations [17] and de-
pendency analysis for graph transformation systems [12]. It generalises the idea
of precedence triple graph grammars [22] from node type dependencies towards
general rule dependencies and works also for TGGs with attributes. It uses the
general formal results on critical pair analysis [9,21] including the case of trans-
formation rules with application conditions. Practically, we use the critical pair
analysis engine of the tool AGG [28] for determining the dependencies and con-
flicts between the rules. Based on the results, we group those rules together
that show cyclic dependencies or conflicts. The resulting set of groups of rules
shows a partial order that we linearise to a complete order. Finally, we apply
this grouping and ordering technique to the set of forward translation rules.

In order to group the rules of a given rule set R, their sequential dependencies
and conflicts are represented by a dependency-conflict graph DCG(R) contain-
ing the rules as nodes and rule dependencies/conflicts as edges. A pair of rules
(r1, r2) is in conflict if there exists a critical pair for (r1, r2) [9], i.e., there are

130 F. Hermann et al.

two parallel dependent transformation steps t1 = G0 =
r1
==⇒ G1, t2 = G0 =

r2
==⇒ G2.

A pair of rules (r1, r2) is sequentially dependent if there is a transformation

sequence t = (t1; t2) = G0 =
r1
==⇒ G1 =

r2
==⇒ G2, where t2 sequentially depends on t1

(produce-use or forbid-create dependency). Note that the order is relevant for
sequential dependencies. Both concepts can be analysed statically using the tool
AGG [28]. The graph DCG(R) may contain cycles. These cycles are used to de-
fine non-overlapping clusters of rules leading to the acyclic dependency-conflict
cluster graph CLGDC (R). By N(G) we denote the set of nodes of a graph G.

Definition 1 (Dependency-Conflict Cluster Graph). Let R be a set of
rules, then we define:

– dependency-conflict graph DCG(R) with nodes N(DCG(R)) = R and edges
EDCG = {(r → r′) ∣ (r, r′) is a sequentially dependent pair } ∪ {(r → r′),
(r′ → r) ∣ ∃ a critical pair for (r, r′)},

– for r ∈ R the dependency-conflict cluster [r]DC = {r} ∪ {r
′ ∈ R ∣ ∃ a path

(r → . . . r′ . . . → r) in DCG(R)},
– dependency-conflict cluster graph CLGDC (R) with

nodes N(CLGDC (R)) = {c ∣ c = [r]DC ∧ r ∈ R} and
edges E = {(c→ c′) ∣ ∃ r ∈ c, r′ ∈ c′∶ (r → r′) in DCG(R)}. △

A DC-Layered Transformation System (DC-LTS) linearises the partial order
on clusters of a given CLGDC (R) to a complete order where each cluster be-
comes a layer and the sequential order of the layers respects the dependencies
between the clusters. Formally, a layered transformation system LTS = (R,S)
consists of a set of rules R and a sequence S = (Si)i∈I of subsets of R as layers.
Given a graph G, then an execution of LTS is performed by applying each layer
consecutively according to the sequence S, where the rules in each layer Si are
applied exhaustively.

Definition 2 (DC-Layered Transformation System). Let CLGDC (R) be
the derived dependency-conflict cluster graph for R, then LTS = (R,S) with
S = (Si)i∈I is a DC-layered transformation system, if the following conditions
hold

1. S is a permutation of the clusters in N(CLGDC (R)) (cluster compatibility)

2. ∀ edges (a → b) in CLGDC (R)∶ a = Sk ∧ b = Sl ⇒ k < l (sequential order) △

The construction of a DC-layered transformation system LTS for a set of
rules R reduces the amount of rules to be checked for applicability at each
step. By definition, the execution of a layer in an LTS concerns only rules in
that layer. Thm. 1 below ensures preservation of the input-output behaviour. All
terminated sequences via R (i.e., no more rules are applicable) can be performed
via LTS .Each rule only depends on rules in a preceding layer and rules in the
same layer. The input-output relation IOTS of a transformation system TS
contains all pairs (GI ,GO) with a terminated transformation sequence GI ⇒

∗

GO via TS .

Triple Graph Grammars in the Large for Translating Satellite Procedures 131

Theorem 1 (Completeness of DC-LTS). Let R be a set of rules and LTS
be a DC-layered transformation system for R, then: IOR = IOLTS , i.e.
(∃ terminated (G0 =⇒

∗ Gn) via R) ⇔ (∃ terminated (G0 =⇒
∗ Gn) via LTS). △

Proof (Idea). The proof (see [16]) uses the general results of completeness of
critical pairs and the local Church-Rosser Theorem to stepwise shift the steps in
s for obtaining sequence s′ that respects the order in S. Using the construction of
S, this ensures by induction that there is no rule in a cluster Si which depends on
a rule in cluster Sj with j > i. We obtain that s′ can be divided into subsequences
s′i for each cluster Si. Since for each rule of a cluster, the cluster also contains
all conflicting rules, we can again apply completeness of critical pairs and the
local Church-Rosser Theorem and show by contraposition that an extending step
in any subsequence implies an extended step in the original sequence s, which
contradicts the precondition that s is terminated. ◻

A DC-LTS can reduce the effort for backtracking. By Thm. 2 below, func-
tional behaviour of the layers eliminates the need for backtracking of transfor-
mation steps that are not in the current layer. A transformation system TS has
functional behaviour, if IOTS is right unique, i.e. for each input graph, there is
at most one output graph up to isomorphism. A layer Si of an LTS = (R,S)
has functional behaviour, if the induced transformation system with rules Si has
functional behaviour, which can be analysed statically with the tool AGG [13,28].

Theorem 2 (Reduction of Backtracking). Let LTS be a DC-layered trans-
formation system, where each layer has functional behaviour. Then, there is no
need to backtrack already completed layers during the computation of a termi-
nated sequence G0 =⇒

∗ Gn via LTS. Moreover, LTS has functional behaviour. △

Proof. Assume we backtrack already completed layers, then we will obtain the
same output graphs for these layers due to functional behaviour and thus, we
derive the same input graph for the current layer. LTS = (R,S) has functional
behaviour, because each layer has functional behaviour and the layers are exe-
cuted via the fixed sequence S. ◻

The effect of Thm. 2 is that the effort for checking functional behaviour of
the whole system is reduced to the analysis of each layer separately. Note that
application conditions for rules are an appropriate method to ensure functional
behaviour [13]. Our approach can be combined with the generation of filter
NACs [13], which eliminates some types of rule conflicts, but not all.

We improve the performance of a model transformation MT by applying the
concept of a DC-LTS to the set of operational rules of MT . By TRAFOS(MT)
we denote the set of all model transformation sequences TRAFOS(MT) = {s ∣
s = (GS ,G0⇒

∗Gn,G
T) is a model transformation sequence via MT} for a model

transformation MT .

Definition 3 (DC-optimised Model Transformation). Let LTS =
(TRFT , S) be a DC-layered transformation system for the forward transla-
tion rules TRFT of a TGG with induced model transformation MT. The DC-
optimised model transformation MTLTS ∶ L(TG

S) ⇛ L(TGT) is obtained from

132 F. Hermann et al.

MT by restriction to the LTS-compatible model transformation sequences, i.e.,

TRAFOS(MTLTS) = {s ∈ TRAFOS(MT) ∣ s = (GS ,G′0 =
tr∗FT
====⇒ G′n,G

T) and

G′0 =
tr∗FT
====⇒ G′n is a transformation sequence via LTS}. △

By Thm. 3 below, we show that the execution of the DC-LTS does not affect
the existing results for TGGs concerning the notion of correctness and complete-
ness (see Def. 4 below according to [13]).

Definition 4 (Correctness and Completeness). A model transformation
MT is correct, if for each MT-sequence (GS ,G0⇒

∗Gn,G
T) there is a triple

graph G = (GS ← GC → GT) ∈ L(TGG). It is called complete, if for each
GS ∈ L(TGG)S, there is an MT-sequence (GS ,G0⇒

∗Gn,G
T). △

Theorem 3 (Correctness and Completeness). Each DC-optimised model
transformation MTLTS ∶ L(TG

S) ⇛ L(TGT) is correct and complete. △

Proof. By Thm. 1 in [13], we know that model transformationsMT based on for-
ward translation rules are correct and complete. By Thm. 1, we derive that MT
and MTLTS have the same input/output relation and thus, MTLTS is correct
and complete. ◻

6 Evaluation

Fig. 6 shows the evaluation of the efficiency improvement using a standard con-
sumer laptop (CPU: i7-2860QM, RAM: 8GB, Java: 1.7U25, OS: 64-bit version
of Windows 7) for translating all control procedures (202 files, 199,853 lines of
code (LOC)) that were developed by ASTRIUM for the satellite ASTRA 1N.
The construction of the dependency conflict clusters is performed once statically
for the TGG and thus, not contained in the execution times. The left chart shows
the translation via the TGG without efficiency improvement for the smallest 126
files4 (<50KB) – file no. 127 reached a timeout of 10 hours. The amount of nodes
of an AST graph is on average about 4 times the amount of LOC of the file.
The execution of the DC-layered TGG (right chart) is faster (approximately 100
times as fast for graphs with 4,000 nodes) - mainly due to the massively reduced
amount of rule match computations at each step. Fig. 6 shows the execution
times for translating each input file separately. The effective translation of the
full set of files at SES is performed by distributing the files to eight parallel Java
threads (four physical cores). This leads to an additional average speed up factor
of three such that the translation for one satellite takes about five minutes. SES
appreciated the obtained speed as it is largely above what is needed for practical
use.

Table 1 provides an overview of the evaluation of the translator concerning
the industrial requirements of SES. The implementation has been delivered to

4 A file contains the code for one satellite control procedure.

Triple Graph Grammars in the Large for Translating Satellite Procedures 133

Fig. 6. Measurements for satellite ASTRA 1N (logarithmic scale) using Henshin

Table 1. Evaluation of requirements

Requirement Evaluation

Syntactical correctness
and completeness

Ensured for Phase 2 of the AST conversion by Thm. 3;
TGGs simplify the guarantee of a resulting tree structure

Precision/fidelity,
minimal efforts
for revalidation

TGG rules are obtained from DSL mapping document that
was specified by domain experts containing pairs of cor-
responding source and target code fragments

Complete automation Yes: no user interaction, no manual editing of output files.

Maintainability - Visual and intuitive GUI for TGG rules
- No complex control structures for execution
- Automated check of rule dependencies with AGG [28]

Readability - The output source code in SPELL is well aligned
- Output is compliant with SPELL coding guidelines
- All header entries and comments are generated adequately

Efficiency, scalability - Metamodels of generated Xtext plugins: >140 types
- Rules: 484 (TGG: 249, initialisation + refactoring: 235),
- Internal XML representation: ∼50,000 LOC (lines of code)
- Benchmark: ∼5:00 min. for satellite Astra 1N (see Fig. 6)

Direct savings 1–2 man years per satellite (estimated by SES, compared to
manual conversion and validation)

SES and was successfully assessed and validated by SES and the satellite man-
ufacturer ASTRIUM. According to Thm. 3, the translation ensures syntactical
correctness and completeness for Phase 2 of the AST conversion via the TGG.
TGGs simplify the challenge to ensure that the resulting graph of the model
transformation forms an AST. The source model is always preserved and the
execution ensures that elements are translated exactly once. This reduces the
challenge of checking that the rules translate each path or subtree of the source

134 F. Hermann et al.

AST into a path or subtree in the target graph attached to the corresponding
parent node. The size of the TGG, the processed input files and the correspond-
ing execution times in Table 1 show that the presented approach is applicable
for large scale applications. Currently, the following six satellites are running
on the generated control procedures: Astra-1M, Astra-1N, Astra-2E, Astra-2F,
Astra-3B, and SES-6. Moreover, SES is validating two further TGG-translators
for the satellite control languages of the satellite manufacturers THALES and
BOEING.

7 Related Work

Other solutions for software translation include manually writing a converter,
using a compiler-compiler or meta-programming based on term rewriting or sim-
ilar techniques. In fact, a fully manual rewrite in the target language, using the
source language artefact only as a reference, is also feasible in some situations
and even has been the preferred approach for the mission-critical satellite control
procedures at SES, before the approach presented in this paper has been taken
into account.

Compiler-compilers or parser generators, such as ANTLR [24], can be used
to generate a parser based on the grammar of a source language. Then, the
generation of the target language has to be programmed either in annotation
to the source grammar or by traversing the generated abstract syntax tree. In
both cases, only the source language can be specified in an adequate way by its
grammar, while the target language is implicit in the manually written code.

Source transformation systems based on term rewriting include the DMS sys-
tem [2], TXL [4], the Rascal language [19] and the Spoofax language work-
bench [18] with the Stratego/XT engine [3]. Using these systems is quite similar
to our approach, which can be seen, e. g., in the Extract-Analyze-Synthesise
(EASY) Paradigm for Rascal [20]. Both, the source and the target language, are
specified in some form of grammar formalism and the transformation between
the languages is given by a set of transformation rules, where all the above-
mentioned systems use some sorts of rewriting rules, which are specified in a
textual syntax.

While these systems aim at providing integrated systems, we are using sepa-
rate building blocks that are already available in the EMF ecosystem – Xtext for
parsing and serialising and Henshin for transformation. Parsers and/or serialis-
ers can also be generated from XML Schema Definition (XSD) files by the core
EMF system if the language is an XML dialect. Source and/or target language
can also be visual languages implemented by EMF-based tools like the Graphical
Modeling Framework (GMF). This provides for a seamless integration of hetero-
geneous languages. Moreover, the basic language definitions – Xtext grammars,
XSD files, GMF projects – and the resulting plugins are reusable for all transla-
tion, refactoring and model transformation projects involving the same language.

The textual programming of a specific term rewriting language has quite a
steep learning curve [5], while we experienced that the visual specification of

Triple Graph Grammars in the Large for Translating Satellite Procedures 135

pattern-based graph transformation rules on EMF models provides more in-
tuitive access. Our division of the conversion by graph transformation into the
three phases – initialisation, forward translation based on triple graph grammars,
and refactoring of the result – yields a separation of concerns that additionally
helps in keeping the solution comprehensible. Our example from Sec. 4 already
shows non-trivial structural differences between the abstract syntax structures
of source and target language. In our industrial case study, the visual represen-
tation provided a more intuitive access to those structural differences than a
textual, tree-oriented representation.

Several performance improvements for TGGs have been proposed for re-
stricted kinds of TGGs using dependency information on nodes only [22,11].
The present paper provides a general technique for arbitrary TGGs and yields a
layered transformation system, where functional input/output behaviour avoids
the need for backtracking of already executed layers. We use the general notion
of rule conflicts and dependencies - in particular, we take into account dependen-
cies on edges, attributes and application conditions. We are confident that the
existing approaches can be integrated in the new one by applying them locally
to each layer.

Regarding performance of model transformations in general, Mészáros et
al. [23] have proposed manual and automatic optimizations based on overlap-
ping of matches. Specifically for Henshin, Tichy et al. [29] have identified several
“bad smells”, i. e., features of transformation rules that possibly result in poor
transformation performance and should be avoided if possible. During the de-
velopment of the PIL2SPELL translation, in addition to our dependency-based
strategy, we followed the guidelines from [29].

8 Conclusion

In this article, we presented a formal and fully automated approach to industrial
software source code translation. We provided a general concept for efficiency
improvement of graph transformation systems (Thms. 1 and 2). In our main
result (Thm. 3), we have shown the correctness of the approach. We evaluated
the approach within a safety critical industrial application: the translation of
satellite control procedures. In particular, we evaluated the industrial require-
ments, including reliability, efficiency and code readability. Our approach consid-
erably improves the rewriting efficiency of the used triple graph transformation
approach while guaranteeing the correctness. As an effective result, six commu-
nication satellites are running on the generated procedures.

Regarding the Henshin tool, work is in progress to implement the critical
pair analysis directly instead of using AGG. The performance results achieved
by our proposed approach shall be further evaluated by making use of recently
developed benchmarks [17,1].

In future work, we will employ the rich formal foundation of TGGs and apply
them for the synchronisation between source code and possible visualisations of
software. We also plan to apply graph transformation techniques for analysing
test coverage and generating valid test cases.

136 F. Hermann et al.

Acknowledgments. This project is part of the Efficient Automation of Satellite
Operations (EASO) project supported by the European Space Agency (ESA)5.

Supported by the Fonds National de la Recherche,
Luxembourg (3968135, 4895603).

References

1. Anjorin, A., Cunha, A., Giese, H., Hermann, F., Rensink, A., Schürr, A.: Bench-
marx. In: Bidirectional Model Transformations 2014. CEUR-Workshop Proceed-
ings, vol. 1133, pp. 82–86. CEUR (2014)

2. Baxter, I., Pidgeon, P., Mehlich, M.: DMS: Program transformations for practical
scalable software evolution. In: Software Engineering (ICSE 2004). IEEE Press
(2004)

3. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. a
language and toolset for program transformation. Science of Computer Program-
ming 72(1-2), 52–70 (2008)

4. Cordy, J.R.: The TXL source transformation language. Science of Computer Pro-
gramming 61(3), 190–210 (2006)

5. Cordy, J.R.: Excerpts from the TXL cookbook. In: Fernandes, J.M., Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 27–91. Springer,
Heidelberg (2011)

6. The Eclipse Foundation: Xtext – Language Development Framework – Version
2.2.1 (2012),
http://www.eclipse.org/Xtext/

7. The Eclipse Foundation: EMF Henshin – Version 0.9.4 (2013),
http://www.eclipse.org/modeling/emft/henshin/

8. Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration
based on the algebraic approach to triple graph grammars. ECEASST 10, 14 (2008)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

10. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

11. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1), 21–43 (2009)

12. Hegedüs, Á., Horváth, Á., Varró, D.: Towards guided trajectory exploration of
graph transformation systems. ECEASST 40 (2010)

13. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Model Driven Interoperability (MDI 2010), pp. 22–31. ACM (2010)

14. Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal analysis of functional be-
haviour of model transformations based on triple graph grammars. In: Ehrig,
H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372,
pp. 155–170. Springer, Heidelberg (2010)

15. Hermann, F., Gottmann, S., Nachtigall, N., Braatz, B., Morelli, G., Pierre, A.,
Engel, T.: On an Automated Translation of Satellite Procedures Using Triple
Graph Grammars. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909,
pp. 50–51. Springer, Heidelberg (2013)

5 http://www.esa.int/ESA

http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/emft/henshin/
http://www.esa.int/ESA

Triple Graph Grammars in the Large for Translating Satellite Procedures 137

16. Hermann, F., Gottmann, S., Nachtigall, N., Ehrig, H., Braatz, B., Morelli, G.,
Pierre, A., Engel, T., Ermel, C.: Triple Graph Grammars in the Large for Translat-
ing Satellite Procedures – Extended Version. Tech. rep. TR-SnT-2014-7, University
of Luxembourg, SnT (2014), http://orbilu.uni.lu/

17. Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schäfer, W.,
Lauder, M., Anjorin, A., Schürr, A.: A survey of triple graph grammar tools. In:
Stevens, P., Terwilliger, J.F. (eds.) Bidirectional Transformations 2013. ECEASST,
vol. 57. European Association of Software Science and Technology (2013)

18. Kats, L.C.L., Visser, E.: The Spoofax language workbench. rules for declarative
specification of languages and IDEs. In: Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010 (2010)

19. Klint, P., Vinju, J.J., van der Storm, T.: RASCAL: A domain specific language for
source code analysis and manipulation. In: Source Code Analysis and Manipula-
tion. pp. 168–177. IEEE Computer Society (2009)

20. Klint, P., van der Storm, T., Vinju, J.: EASY meta-programming with Rascal. In:
Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

21. Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis, Technische Universität Berlin (2009)

22. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Bidirectional model transformation
with precedence triple graph grammars. In: Vallecillo, A., Tolvanen, J.-P., Kindler,
E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 287–302.
Springer, Heidelberg (2012)

23. Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated
performance optimization of model transformation systems. International Journal
on Software Tools for Technology Transfer 12(3-4), 231–243 (2010)

24. Parr, T., Fisher, K.: LL(*): the foundation of the ANTLR parser generator. ACM
SIGPLAN Notices 46(6), 425–436 (2011)

25. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

26. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425.
Springer, Heidelberg (2008)

27. SES Engineering: SPELL - Satellite Procedure Execution Language & Library –
Version 2.3.13 (2013), http://code.google.com/p/spell-sat/

28. TFS-Group, TU Berlin: AGG (2014), http://www.tfs.tu-berlin.de/agg
29. Tichy, M., Krause, C., Liebel, G.: Detecting performance bad smells for Henshin

model transformations. In: Proc. Analysis of Model Transformations (AMT 2013).
CEUR-Workshop Proceedings, vol. 1077, pp. 82–86. CEUR (2013)

http://orbilu.uni.lu/
http://code.google.com/p/spell-sat/
http://www.tfs.tu-berlin.de/agg

Developing eMoflon with eMoflon

Erhan Leblebici1,�, Anthony Anjorin1,��, and Andy Schürr2

1 Graduate School of Computational Engineering, Technische Universität Darmstadt
{leblebici,anjorin}@gsc.tu-darmstadt.de

2 Real-Time Systems Lab., Technische Universität Darmstadt
andy.schuerr@es.tu-darmstadt.de

Abstract. eMoflon is a Model-Driven Engineering (MDE) tool that sup-
ports rule-based unidirectional and bidirectional model transformation.
eMoflon is not only being used successfully for both industrial case stud-
ies and in academic research projects, but is also consequently used to
develop itself. This is known as bootstrapping and has become an im-
portant test, proof-of-concept, and success story for us. Interestingly,
although MDE technologies are inherently self-descriptive and higher-
order, very few actively developed MDE tools are bootstrapped. In this
paper, we (i) report on the current state and focus of eMoflon, (ii) share
our experience with bootstrapping in an MDE context, and (iii) provide a
scalability analysis of a core component in eMoflon implemented as both
a unidirectional and bidirectional model transformation with eMoflon.

Keywords: eMoflon, MDE, model transformation, bootstrapping.

1 Introduction and Motivation

eMoflon1 is a graph transformation tool that supports the rule-based specifica-
tion of model transformations, which play a central role in Model-Driven Engi-
neering (MDE). eMoflon builds upon the Eclipse Modelling Framework (EMF),
using Ecore for metamodelling, Story Driven Modelling (SDM) [3] (a dialect
of programmed graph transformations) for unidirectional model transformation,
and Triple Graph Grammars (TGGs) [6] for bidirectional model transforma-
tion. eMoflon consists of an Eclipse plugin as backend, and two frontends: a set
of Eclipse-based editors supporting a textual syntax, and a plugin for Enterprise
Architect (EA), a professional UML tool, supporting a visual syntax.

Besides industrial case studies and academic research projects, an important
proof-of-concept for eMoflon is its own self-development. This is often referred
to as bootstrapping and will be used in the rest of this paper to present the main
features supported by eMoflon. Figure 1 depicts a schematic overview of the
chain of model transformations employed internally by eMoflon.

� Supported by the ‘Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

�� The project on which this paper is based was funded by the German Federal Ministry
of Education and Research, funding code 01IS12054. The authors are responsible for
all contents.

1 www.emoflon.org

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 138–145, 2014.
c© Springer International Publishing Switzerland 2014

www.emoflon.org

Developing eMoflon with eMoflon 139

XML

I.a

Ecore

TGG

II.b

II.c

II.a

III
SDM

SDM

injection

IV.a

IV.b
Java

Frontend

(visual)

I.b
Frontend

(textual)

Fig. 1. An overview of the main model transformations used in eMoflon

Ecore, SDM and TGG models are specified in either a visual or textual con-
crete syntax using the respective frontend. The first step in the chain (marked
as I.a, I.b in Fig. 1) maps the frontend-specific representation to and from a
common, frontend-independent XML tree structure. This is realized with C#
code in the case of EA, and with standard (un)parsers in the case of our textual
syntax. The tree structure is used as a generic exchange format decoupling the
backend from its different frontends. It is kept as simple as possible to shift the
complexity of the transformation to the subsequent steps in the chain.

The second step (marked as II.a, II.b, and II.c. in Fig. 1) is to transform the
generic tree structure to actual instances of our Ecore, SDM, and TGG meta-
models. These transformations are bootstrapped (depicted as bold white arrows)
meaning that they are implemented with eMoflon itself. The transformation II.a
is bidirectional to enable importing external Ecore instance models (e.g., as pro-
vided by the Transformation Tool Contest2). A unidirectional version of II.a is
also available in the XML-Ecore direction with SDM, as support for SDM in
eMoflon was implemented before TGGs. The two versions of II.a provide for
an interesting qualitative and quantitative comparison of SDM and TGGs, and
we shall use excerpts of transformation II.a as our running example throughout
the paper. The transformations II.b and II.c transform a tree structure to SDM
and TGGs, respectively. These transformations are currently unidirectional, but
bidirectionalizing them is work in progress as it would, for example, enable trans-
forming generated models (result of III) back into the respective concrete syntax.

TGGs are operationalized by compiling them to SDM with the transformation
III, which is bootstrapped with SDMs as a unidirectional model transformation.
Bidirectionality is not absolutely necessary in this case as the SDM generated
from a TGG represents low-level operationalization details and is not an artifact
meant for further user adjustments. Finally, unidirectional model-to-text trans-
formations IV.a and IV.b generate Java projects from Ecore and SDM, with the
option of injecting hand-crafted (Java) code into the generated files.

In this paper, our contribution is to share and discuss our experience of boot-
strapping in an MDE context. For this, we use excerpts from the import/export
mechanism of eMoflon as our running example, which is developed with SDMs

2 http://www.transformation-tool-contest.eu/

http://www.transformation-tool-contest.eu/

140 E. Leblebici, A. Anjorin, and A. Schürr

and TGGs in two different versions. We also provide a scalability comparison
of these two versions. That is of particular interest in the context of bootstrap-
ping eMoflon. The rest of the paper is structured as follows: Section 2 intro-
duces eMoflon’s support for metamodelling with Ecore. Support for unidirec-
tional (SDMs) and bidirectional (TGGs) model transformation is presented in
Sect. 3 and 4, respectively, together with an evaluation of runtime scalability in
Sect. 5. Bootstrapping transformation tools in general, and eMoflon in particu-
lar, is discussed in Sect. 6 together with related work. Sect. 7 states our future
focus and concludes the paper.

2 Metamodelling with Ecore

eMoflon supports Ecore-conform metamodelling used to specify the data struc-
tures to be manipulated with model transformations. An excerpt of the meta-
model used to represent the generic exchange format in eMoflon is depicted as
a class diagram to the left of Fig. 2, consisting basically of labelled Nodes with
children and Attributes. To demonstrate how this tree structure is used, the tree
metamodel itself is represented as a generic tree to the right of Fig. 2 (as an object
diagram). Only the tree structure for representing EClasses and EReferences

is shown, i.e., EAttributes as well as multiplicities and containment are omit-
ted. The EClasses “Node” and “Attribute” are represented as nodes in the tree
labelled as “EClass” with attributes for their names and a global ID used for
cross references in the tree. EReferences are represented analogously, placed in
the tree as children of a “references” node of the respective “EClass” node.

«EClass»

Node

name :EString

«EClass»

Attribute

name :EString

value :EString

:Node

name = "EClass"

:Attribute

name = "name"

value = "Node"

:Attribute

name = "id"

value = "001"

:Node

name = "EReference"

:Node

name = "EReference"

:Node

name = "references"

:Attribute

name = "name"

value = "childen"

:Attribute

name = "typeID"

value = "001"

:Attribute

name = "name"

value = "attribute"

:Attribute

name = "typeID"

value = "002"

:Node

name = "EClass"

:Attribute

name = "name"

value = "Attribute"

:Attribute

name = "id"

value = "002"

:Node

name = "references"

attribute

0..*

children

0..*

Fig. 2. Metamodel used as an exchange format and its representation as a generic tree

3 Unidirectional Model Transformations with SDM

Story Driven Modelling (SDM) [3] is used in eMoflon to specify unidirectional
model transformation. SDM combines graph patterns with control flow struc-
tures consisting of a start node, connected activity nodes, and stop nodes. Fig-
ure 3 depicts the SDM handleReferences that transforms the tree structure
representing a reference to an actual instance of EReference in Ecore. The SDM,
simplified for presentation purposes, takes a related node and class (classNode
and eClass) as parameters, and consists of two activity nodes.

Developing eMoflon with eMoflon 141

Exporter::handleReferences (eClass: EClass, classNode: Node): void

for_all_reference_nodes

classNode :
Node

references : Node

name == "references"

reference : Node

name == "EReference"

name : A ttribute
name == "name"

typeID : A ttribute

name == "typeID"

create_reference
eClass :
EClass

referencedEClass : EClass :=
findEClass(typeID)

eReference : EReference

name := name.value

++

++
eType++

eReferences

attribute

attribute
children

children

[End]

[Each Time]

Fig. 3. SDM for exporting references of an EClass

Starting with a for-each activity node (for all reference nodes) that de-
termines all occurrences of the specified pattern in the tree, the SDM iter-
ates over all subtree structures that represent references in the given root node
classNode. Fixed elements in the pattern such as classNode (bound to the given
parameter) are depicted with a bold frame, while all other elements are deter-
mined via pattern matching, such that all constraints are satisfied (e.g., name
== "typeID"). For each occurrence of the pattern, the SDM executes the second
activity create reference. This activity creates a new EReference (depicted
green with a “++” markup) between eClass, fixed to the given parameter, and
referencedEClass, determined by invoking a helper method that returns the
class referenced by typeID. Binding an object over a method call (possibly with
parameters as in our case) is a standard language feature in SDM as defined
in [4]. Such helper methods can be implemented again with SDM or with plain
Java (e.g., using a pre-filled hash table for efficiency reasons). This enables re-
cursion and the integration of hand-crafted code in SDM.

4 Bidirectional Model Transformations with TGGs

Triple Graph Grammars (TGGs) [6] are a declarative, rule-based technique to
specify bidirectional model transformation. A TGG is a set of rules that describe
how consistent triples of source and target models (graphs), connected by a cor-
respondence model, are built up simultaneously. All operational transformations
such as forward, backward and update propagation, are automatically derived
from the single specification. In the following, the same transformation imple-
mented with SDMs in Fig. 3, i.e., handling references in the tree, is presented as
a TGG rule (depicted in Fig. 4). Black elements represent the pre-condition of
the rule, i.e., an occurrence of these elements must be found in order to apply the

142 E. Leblebici, A. Anjorin, and A. Schürr

references : Node
name == "references"

classNode :
Node

eClass :
EClass

eReference :
EReference

++

referencedEClass :
EClass

referencedClassNode :
Node

referenceNode :
Node

++

typeID : A ttribute

name := "typeID"

++
name : A ttribute

name := "name"

++

id : A ttribute

name == "id"

c2e : NodeToEClass

r2e : NodeToEReference
++

r2r : NodeToEClass

{eq(name.value, eReference.name)}

{eq(typeID.value, id.value)}

targetchildren

++
eReferences

++

eType

attribute

++attribute ++attribute

++
children

source

value

++

source

++
target

source target

value name

value

Fig. 4. TGG rule for handling references

rule. Green elements with a ++ markup state the post-condition that must hold
after the rule has been applied. The rule, therefore, states that an EReference

is created together with the depicted subtree structure. TGGs are declarative
in the sense that no explicit control structure or rule dependencies are speci-
fied. The underlying algorithm figures out automatically the correct choice and
sequence of rules to apply for each operational scenario. Attribute constraints
such as eq(name.value, eReference.name) are specified with a bidirectional
extensible textual constraint language, and ensure that eReference is named cor-
rectly using the appropriate attribute in the tree, and that referenceNode has
the correct typeID value corresponding to the referenced class node in the tree.

In case of a forward transformation, the TGG rule in Fig. 4 is modified by
adding all source elements to its context. This means that the required tree struc-
ture is “parsed” and only the correspondence link and the target elements are
created when applying the rule. Unfortunately, finding the referenced class node
might be very time-consuming as no direct connection exists from the reference
node to the referenced class node in the tree. In the worst case, one must iterate
over all class nodes in the tree to find the correct one. As an optimization tech-
nique for such cases, we propose binding expressions to bind an element directly
from another via an auxiliary method, which can be implemented with SDM or
plain Java. In our example, the binding expression (depicted as a dashed arrow
in the rule) takes the type id attribute of the reference node as input and returns
the referenced class node, which should have the same type id. Analogously to
the helper method for the SDM (Fig. 3), this is realized in constant time as a
table lookup in a lazy cache. Integrating such hand-crafted components seems
to contradict the declarative nature of TGG rules, but they serve as a crucial
and pragmatic means of dealing with performance issues at critical points.

In our example, a second rule is required to handle self-references and would
only differ slightly from the rule depicted in Fig. 4. For such cases, eMoflon sup-
ports rule refinements, a modularity concept for TGGs. Using refinements, an
abstract rule covering the commonalities of both rules can be specified and refined

Developing eMoflon with eMoflon 143

appropriately in the concrete rules. Rule refinement avoids pattern duplication
and greatly improves the readability and maintainability of TGG specifications.

5 Scalability

The plots on the left and right side of Fig. 5 show our runtime measurements
in linear and logarithmic scale, respectively, for the import with TGGs and the
export with TGGs and SDM. The y-axis shows the time in seconds, the x-axis
the number of elements of randomly generated Ecore models. Vertical dashed
lines indicate a change in step size in the x-axis. The logarithmic plot shows two
additional measurement points for very large models containing up to 300.000
elements. All measurements were repeated 10 times (the median is plotted) and
executed on an Intel i5-3550 (3.30 GHz) processor with 8 GB RAM running
Windows 7 and Eclipse 4.3.

0

20

40

60

80

100

120

140

160

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
10

00
00

ti
n
s

of Ecore elements

TGG Import

TGG Export

SDM Export

0,1

1

10

100

1000

10000
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0
90

00
0

10
00

00
20

00
00

30
00

00

ti
n
s

of Ecore elements

TGG Import

TGG Export

SDM Export

Fig. 5. Runtime measurements in linear and logarithmic scale

Our TGG algorithm is in theory polynomial with respect to model size, and
our results back this claim (showing even almost linear behaviour for up to 10.000
elements). Our results also show that both directions (import and export) exhibit
very similar runtime behaviour, reflecting the bidirectional and symmetrical na-
ture of TGGs. On the other hand, the TGG-based transformations are 10-15
times slower than the SDM implementation and run out of memory as from
200.000 elements for the export, and 300.000 for the import (this difference is
due to the tree being much larger than the corresponding Ecore model).

6 Discussion and Related Work

MDE technologies are inherently self-descriptive and higher-order but, to the
best of our knowledge, very few model transformation tools are actually de-
veloped with bootstrapping. ATL [5] and FUJABA [3], however, are examples
for tools/toolsuites that do practice bootstrapping. Although the bootstrapped
FUJABA code generator CodeGen2 is actually reused in eMoflon to generate

144 E. Leblebici, A. Anjorin, and A. Schürr

Java code from SDMs, it is only used as a well-tested black-box component and
is no longer bootstrapped. Figure 1 in the introduction reflects our pragmatic
decision on what is to be bootstrapped in eMoflon after considering our current
research foci and the advantages/challenges of bootstrapping.

Bootstrapping is a common technique in compiler construction for General
Purpose Languages (GPLs) such as C++. SDM and TGGs, however, are Do-
main Specific Languages (DSLs) for model transformation, and cannot replace a
GPL. Nevertheless, we are convinced that it is just as advantageous to use such
transformation languages for defining suitable parts of their compilers. Barzdins
et al. [1] demonstrate this by obtaining model transformation languages from
existing ones via bootstrapping. A transformation language Li is compiled to
a lower-level language Li−1 with a compiler written in Li−1. This corresponds
to TGGs being compiled to SDMs with SDMs (cf. Fig. 1). In addition to their
arguments for usability and efficiency of bootstrapped languages, our experi-
ence shows the following advantages: (i) the tool itself is a non-trivial test that
cannot be skipped, (ii) a proof-of-concept is established regarding the capabil-
ities of the developed transformation languages, and (iii) both functional and
non-functional requirements are equally considered due to intensive self-usage.
Regarding the last point, language-related features such as binding expressions
and modularity concepts (cf. Sect. 4), as well as non-functional qualities such as
user-friendliness and performance are constantly being improved on the basis of
our self-usage experience.

Buchmann et al. [2] challenge the added value of graph-based model trans-
formations in general and SDMs in particular, referring to the bootstrapping
of CodeGen2. Some of the drawbacks they identify are indeed relevant for our
bootstrapping, including a lack of means for low-level details such as exception
handling, and missing modularity concepts for patterns. Moreover, our experi-
ence reveals further challenges of bootstrapping with SDMs: (i) increased com-
plexity when making changes as they must be tested before and after building a
new version of the tool, (ii) an increased dependency on underlying code genera-
tors and their shortcomings, and (iii) redundant implementations of components
(initial versions with Java, later versions with SDMs, and in some cases finally
with TGGs).

7 Conclusion and Future Focus

In this paper, we have reported on the current state of eMoflon, conducted a
scalability analysis of a core component in eMoflon implemented with eMoflon,
and shared our experience with bootstrapping. For the future, the focus of TGGs
in eMoflon will be synchronization of concurrently changed models, a special
case of model transformation where models are no longer created from scratch,
but are updated incrementally to reflect the changes. Moreover, work on a new
pattern matching engine is in progress to replace CodeGen2 and improve the code
generation capabilities of eMoflon and, therefore, our development experience.

Developing eMoflon with eMoflon 145

References

1. Barzdins, J., Kalnins, A., Rencis, E., Rikacovs, S.: Model Transformation Languages
and their Implementation by Bootstrapping Method. In: Avron, A., Dershowitz, N.,
Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 130–145.
Springer, Heidelberg (2008)

2. Buchmann, T., Westfechtel, B., Winetzhammer, S.: The Added Value of Pro-
grammed Graph Transformations A Case Study from Software Configuration Man-
agement. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233,
pp. 198–209. Springer, Heidelberg (2012)

3. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In: Ehrig,
H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Transformations. LNCS,
vol. 1764, pp. 296–309. Springer, Heidelberg (2000)

4. Heinzemann, C., Rieke, J., Detten, M.V., Travkin, D., Lauder, M.: A new Meta-
Model for Story Diagrams. In: 8th International Fujaba Days, pp. 2–6 (2011)

5. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

6. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Com-
puter Science. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)

ChainTracker, a Model-Transformation Trace

Analysis Tool for Code-Generation
Environments

Victor Guana and Eleni Stroulia

Department of Computing Science
University of Alberta
Edmonton, Canada

{guana,stroulia}@ualberta.ca

Abstract. Model-driven engineering is advocated as an effective method
for developing families of software systems that systematically differ
across well defined dimensions. Yet, this software construction paradigm
is rather brittle at the face of evolution. Particularly, when building code-
generation environments, platform evolution scenarios force developers to
modify the generated code of individual generation instances in an ad-hoc
manner. Thus violating the systematicity of the original construction pro-
cess. In order to maintain the code-generation environment synchronized,
code refinements have to be traced and backwardly propagated to gener-
ation infrastructure, so as to make these changes systematically possible
for all systems that can be generated. This paper presents ChainTracker,
a general conceptual framework, and model-transformation composition
analysis tool, that supports developers when maintaining and synchroniz-
ing evolving code-generation environments. ChainTracker gathers and
visualizes model-to-model, and model-to-text traceability information for
ATL and Acceleo model-transformation compositions.

1 Introduction

Code-generation environments automate and systematize the process of building
families of software systems. They typically rely on one or more domain-specific
languages, and a set of model transformations that reify the abstractions ex-
pressed in the domain models and generate executable code [1]. The transforma-
tions work by injecting execution semantics into the initial problem specification,
through a composition of model-to-model and model-to-text transformation mod-
ules.

Like all software, code-generation environments are bound to evolve [2]. Re-
cent empirical studies revealed that practitioners face challenges when new re-
quirements arise, and changes have to be introduced in either the source code
of a generated application, or the domain-specific languages and the model-
transformation compositions involved in the code-generation process [3].

Although, in principle, developers avoid modifying the code of a system after
it is generated, approximately 40% end up having to do so [3][2] and, when
they do, they have to spend copious amounts of time inspecting how changes

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 146–153, 2014.
c© Springer International Publishing Switzerland 2014

ChainTracker, a Model-Transformation Trace Analysis Tool 147

impact models and transformations, so changes can be backwardly propagated
to the generation environments, and later reused in the generation of future
systems. So far, little progress has been made towards supporting developers
when performing these modifications during the construction and maintenance
of code-generation environments.

The work we describe in this paper makes two novel contributions. The first is
a general conceptual framework that formalizes how to model and collect trace-
ability information in code-generation environments with model-transformation
compositions that use (i) rule-based transformation languages to implement
models-to-model transformations, an (ii) template-based languages to implement
model-to-text transformations, distinguishing between explicit and implicit trace-
ability links. The second contribution of our work is ChainTracker, a model-
transformation composition analysis tool that supports developers when main-
taining and synchronizing evolving code-generation environments. ChainTracker
gathers and visualizesmodel-to-model, andmodel-to-text traceability information
for ATL [4] and Acceleo [5] model-transformation compositions (as examples of
the above rule-based model-to-model and template-based model-to-code transfor-
mation languages).

2 Background and Related Work

In principle, traceability information can be used in multiple ways, including to
assess metamodel coverage in a code-generation environment, to verify model-
transformation correctness, and to reduce the cognitive challenges when under-
standing a model-transformation chain [6][7]. However, most of the time, trace-
ability information is collected manually or through experimental tools. More
importantly, all current tools are unable to examine the model-to-text transfor-
mations, ignoring the last step in the model-transformation composition and
effectively relying on developers for mapping code changes to their upstream
dependent generation infrastructure.

Let us now review in some detail current approaches to traceability in model-
driven engineering. Falleri, et al. [8] propose an imperative language in order to
create trace models inside individual model-transformation modules. In this pro-
posal, developers have to insert traceability constructs inside the transformation
code to gather the traceability information of a transformation module. Similarly,
Jouault [9] presents a strategy to keep track of ATL trace links by extendingmodel-
transformation rules with ATL constructs that build a traceability model con-
forming to a traceability metamodel proposed by the same author.

Van Amstel et al. [10] present a tool that gathers and visualizes traceability
information of transformation compositions. In this case, the implemented tool
makes explicit the mappings between source and target elements of a transfor-
mation, highlighting the hierarchical structure of both metamodels and ATL
transformation modules. Jouault’s proposal does not provide insights on possi-
ble visualization mechanisms to reduce the cognitive challenges of coping with
massive amounts of information derived from complex model-transformation

148 V. Guana and E. Stroulia

compositions. Furthermore, none of the proposals presented above provide any
type of support to collect or visualize traceability information for model-to-text
transformations.

In Section 3 we present ChainTracker’s implementation architecture and vi-
sualization mechanisms. ChainTracker works as a third-party tool that analyses
model-transformation compositions (that include model-to-textmappings), keep-
ing the semantics of transformation rules intact, and providing an orthogonal
set of metamodels that contain traceability information by statically interpret-
ing a set of transformation rules that have been composed in order to generate
code. In Section 3, we also introduce the concept of implicit traceability links
(not covered by the current proposals). Implicit traceability links augment the
traceability analysis by identifying indirect relations between source and target
metamodels. This information provides additional support to developers when
analysing the impact of changes in metamodels and transformations, that need
to be synchronized after generated code refinements.

3 The ChainTracker Architecture

As shown in Figure 1, the architecture of ChainTracker consists of four main
components: the ATL Parser, the Tuple Extractor, the Acceleo Parser, and the
Tuple Visualizer. ChainTracker receives as input all the relevant transformations
of a model-transformation composition to be analysed (ATL scripts for model-
to-model and Acceleo scripts in the case of model-to-text transformations).

4.

3.

2.

1.

Tuple Visualizer
«Input»

Acceleo Scripts

Model-to-Text

Traceability Links
Acceleo Parser

«conformingTo»

Implicit

Traceability

Links

«Input»

Source and Target

Metamodels

«Input»

ATL

Implicit Tuple

Solver

MarcoPolo Tuple
Metamodel
(Figure 4)

«conformingTo»

Explicit Tuple

Solver

Explicit

Traceability

Links

«conformingTo»

MarcoPolo Core Metamodel
(Figure 4)

Transformation

Models
ATL Parser

2.

Implicit

Traceability

Links

Implicit Tuple

Solver

Explicit Tuple

Solver

Explicit

Traceability

Links

Tuple Extractor

Fig. 1. ChainTracker Implementation Architecture

3.1 A Transformation Composition Example

We will illustrate the ChainTracker process using a simple model-transformation
composition example. The goal of the composition is to refactor the elements of
a model conforming to the MetamodelA, and produce a model conforming to
MetamodelB, both portrayed in Figure 2. Then, the composition generates a

ChainTracker, a Model-Transformation Trace Analysis Tool 149

Java class that contains attributes initialized using elements of the latter model.
Listings 1.1 and 1.2 present our model-to-model andmodel-to-text transformation
examples respectively.

element2element1

Metamodel B

element2element1

Metamodel A
Y

name:String

description1:String

description2:String
11

X2

description2:String

X1

description1:String

X

name:String

Fig. 2. Metamodel A (source) and Metamodel B (target) examples

3.2 The ATL Parser

The main functionality of the ATL Parser is to read, parse, and simplify a set
of ATL transformation scripts. ChainTracker uses the reflexive capabilities of
ATL’s virtual machine to obtain the XMI-AST representation of a set of ATL
scripts. ChainTracker implements a programmatic transformation that takes
the XMI model of an ATL script, and produces a simplified representation that
contains all the information relevant for the traceability link recollection. The
resulting model conforms to MarcoPolo, a metamodel that we have designed
in order to highlight transformation mappings in rule-based and template-based
transformation languages (Figure 3). MarcoPolo is composed by two main pack-
ages, MarcoPolo Core and MarcoPolo Tuple. In this particular case, MarcoPolo
Core is conceived to manage the complexity of transformation tuples that rep-
resent ATL transformation mappings. Effectively, we use MarcoPolo“to find our
way” through the traceability links of a model-transformation composition.

MarcoPolo Tuple MetamodelMarcoPolo Core Metamodel

0..n

implicitSources1
target

1

source

ImplicitSourceConcept

type

relationName

SourceConcept

modelURI

modelName

elementID

attributeID

TranformationTuple

tansformationURI

tansformationID

ruleID

TargetConcept

modelURI

modelName

elementID

attributeID

1

sourceElement source

1

1 owner
0..n

attributes

1
originates

1 owner

0..n

targetAttributes

0..n
 targetElements

SourceElement

sourceModel

sourceModelVariable

sourceElementType

SourceAttribute

implicitSources

TargetAttribute

compositeName

TargetElement

targetModel

targetModelVariable

targetElementType

TransformationMap

name

type

ownerModule

uri

Fig. 3. MarcoPolo Metamodel

In MarcoPolo Core, we see each transformation module as a 3-tuple (TM, TE,
se), where TM is the set of transformation rules, and TE a collection of its
target-model elements. TE is defined as a tuple (TA, se) in which TA is a set of

150 V. Guana and E. Stroulia

target attributes ta, and se a unique source-model element. Furthermore each
source-model element se contains a set, namely SA, that represent multiple
source attributes sa. Finally, ta is modelled as a nested tuple (ta, sa) establish-
ing a one-to-one mapping from a target attribute to a source attribute. Following
this definition, it can be seen that in MarcoPolo the origins of a target attribute
come from one, and only one, source attribute. However, the attribute’s implicit
source concept could have pointers to other intermediate source elements that
participate in the creation of a target element as explained below.

1 module A2B;
2 create OUT : B from IN : A;
3 rule X2Y {
4 from
5 x : A!X
6 to
7 y : B!Y (
8 name <− x.name,
9 description1 <− x.element1.description1,

10 description2 <− x.element1.element2.description2)}

Listing 1.1. ATL - A2B Transformation Module Example

In our example, after the X2Y matched rule is parsed (Listing 1.1), a model
conforming to MarcoPolo Core is produced with the following (ta, sa) tuples:

– (Y : name, (X : name))
– (Y : description1, (X : element1/description1))
– (Y : description2, (X : element1/elenment2/description2/))

On cursory examination, these tuples would be identified as all the trace-
ability links that map the elements of the MetamodelA into elements in of the
MetamodelB. However, even though there are one-to-one mappings between
the target and source attributes in the transformation, there are many more
dependency links between the source and target metamodels. For example, the
creation of the Y : description2 attribute in the MetamodelB, depends not
only on the attribute X2 : description2 of the MetamodelA, but also on the
model associations element1 and element2, and the element X1 as well. If any
of the associations changes, or if the element X1 disappears, the transformation
X2Y will be broken. In effect, there are two types of traceability links that need
to be preserved and made visible: explicit and implicit traceability links. The
former type reflects the dependencies between the endpoints of the mappings
in a transformation rule (as shown above); the latter type includes the depen-
dencies between metamodel elements and associations used to navigate or query
the source metamodel, and select information relevant during the creation of a
target attribute.

In order to be able to detect implicit traceability links, MarcoPolo Core in-
cludes the implicit source attribute as a part of the source attribute concept. The
implicit source represents the relative path that a mapping rule follows when nav-
igating source model concepts in order to create a target attribute (see Figure
3). After the ATL modules are parsed, the implicit source contains a chain of
meta-associations and meta-attributes, often extracted from OCL expressions.

ChainTracker, a Model-Transformation Trace Analysis Tool 151

For example, in the context of the X2Y rule, the implicit source value for the
source attribute X2 : description2 is X : element1/element2/description2/.
Notice how the implicit source does not include information about where the
element1 and element2 associations come from, and if there is an intermedi-
ate element that binds them, in this case X1. Given that both OCL and ATL
model-navigation expressions are solved in execution time, this information is
not explicitly available in the ATL abstract syntax model. ChainTracker’s Tuple
Extractor implements an ATL interpreter that takes the source attribute con-
text together with its implicit source, in order to identify where the intermediate
associations and intermediate attributes come from.

3.3 The Tuple Extractor

The main functionality of the Tuple Extractor component is to analyze every
source-to-target mapping and identify sets of explicit and implicit traceability
links. For that purpose, the Tuple Extractor takes as input a set of models
conforming to MarcoPolo Core that represent all the mappings between source
and target models implemented in a transformation script. It also takes all the
intermediate metamodels used in the composition as input and output patterns.

The Tuple Extractor consists of two sub-modules (Figure 1). While the ex-
plicit tuple solver takes a set of MarcoPolo instances and extracts all the ex-
plicit transformation links for a given transformation mapping. The implicit
tuple solver finds the intermediate or navigated concepts involved in a given
transformation rule. These concepts can be either metamodel elements or asso-
ciations. In our example, the implicit tuple solver will take a (ta, sa) tuple such
as (Y : description2, (X : element1/elenment2/description2/)), and through a
recursive exploration of the A2B source metamodel, it will discover the three
implicit traceability links:

– (Y : description2, X : element1) Association element1 that belongs to X
– (Y : description2− > X1 : element2) Association element2 that belongs to X1
– (Y : description2− > X2 : description2) Element X2 and description2 attribute

The final result of the Tuple Extractor module is a set of MarcoPolo Tu-
ple instances that portray the explicit and implicit traceability links of a given
set of ATL transformation scripts.

3.4 The Acceleo Parser

So far we have described how ChainTracker collects traceability information
from model-to-model transformations. The Acceleo Parser identifies transfor-
mation tuples that map model elements into text artifacts. It takes an Ac-
celeo script together with the metamodel that the script uses as input, and
statically analyses its code-injection statements. Model-to-text traceability links
are modelled in the form of tuples with the following structure ((startLineID,
endLineID), (moduleID, fileID, sourceModelID, source ElementID)). In

152 V. Guana and E. Stroulia

the tuples, startLineID and endLineID specify the initial and final code line
identifiers where a specific source element is queried for a code injection state-
ment, or used in an Acceleo model navigation construct.

1 [module B2Java(’http://ualberta.edu.cs.ssrg.cge.b’)]
2 [template public generateElement(yB : Y)]
3 [comment @main/]
4 [file (’Generated.java’, false , ’UTF−8’)]
5 public class Generated {
6 [for (it : Y | yB)]
7 private Y [it .name/];
8 [/for]
9 public Generated (){

10 [for (it : Y | yB)]
11 [it .name/] = new Y([it.description1/], [it .description2 /]);
12 [/for]}}
13 [/ file]
14 [/template]

Listing 1.2. Acceleo 3.0 - B2Java Transformation Module Example

After analysing the Acceleo model-to-text transformation script presented in
Listing 1.2, the Acceleo Parser identifies traceability links such as ((13, 13),
(B2Java,Generated.java,MetamodelB, Y : description1))

3.5 The Tuple Visualizer

In order to communicate the traceability information to developers, Chain-
Tracker includes a web-based traceability-visualization tool implemented in the
Tuple Visualizer. Figure 4 presents the visualization of the traceability link tu-
ples obtained using ChainTracker’s Tuple Extractor, and the Acceleo Parser for
our A2B (model-to-model) and B2Java (model-to-text) composition example.

Fig. 4. Model-Transformation Composition Traceability Visualization

In Figure 4, red lines represent explicit traceability links according to Mar-
coPolo’s definition, and blue lines represent implicit traceability information of
the composition. The details of the transformation tuples behind the links can
be obtained by hovering the cursor over a link.

ChainTracker, a Model-Transformation Trace Analysis Tool 153

4 Conclusions and Future Work

In this paper we described ChainTracker, a tool designed to support the main-
tenance and evolution of code-generation environments. In the face of an en-
vironment’s platform evolution, ChainTracker can support developers to trace
ad-hoc modifications, from the generated code to is generation environment,
thus enabling corresponding changes to the generation infrastructure so as to
make these changes systematically possible for all systems that can be gener-
ated. ChainTracker is currently aware of the ATL and Acceleo transformation
syntaxes, which it parses to extract traceability information in its syntactically
simpler MarcoPolo metamodel. The second contribution of our work, beyond
ChainTracker itself, is the conceptual framework underlying the design of the
tool that formalizes how we model, and collect traceability information in code-
generation environments, distinguishing between explicit and implicit links and
capturing both in MarcoPolo. We believe that this framework is general and
can support the extension of ChainTracker to deal with other transformation
technologies, beyond ATL and Acceleo.

References

1. Czarnecki, K.: Overview of generative software development. In: Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 326–
341. Springer, Heidelberg (2005)

2. Van Deursen, A., Visser, E., Warmer, J.: Model-driven software evolution: A re-
search agenda. In: Proceedings 1st International Workshop on Model-Driven Soft-
ware Evolution, pp. 41–49 (2007)

3. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of mde in industry. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 471–480. ACM (2011)

4. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

5. Musset, J., Juliot, É., Lacrampe, S., Piers, W., Brun, C., Goubet, L., Lussaud, Y.,
Allilaire, F.: Acceleo user guide (2006)

6. Guana, V.: Supporting maintenance tasks on transformational code generation
environments. In: Proceedings of the 2013 International Conference on Software
Engineering, pp. 1369–1372. IEEE Press (2013)

7. Guana, V., Stroulia, E.: Backward propagation of code refinements on transforma-
tional code generation environments. In: 2013 International Workshop on Trace-
ability in Emerging Forms of Software Engineering (TEFSE), pp. 55–60 (2013)

8. Falleri, J., Huchard, M., Nebut, C., et al.: Towards a traceability framework for
model transformations in kermeta (2006)

9. Jouault, F.: Loosely coupled traceability for atl. In: Proceedings of the European
Conference on Model Driven Architecture (ECMDA) Workshop on Traceability,
Nuremberg, Germany, vol. 91. Citeseer (2005)

10. van Amstel, M., Serebrenik, A., van den Brand, M.: Visualizing traceability in
model transformation compositions. In: Pre-Proceedings of the First Workshop on
Composition and Evolution of Model Transformations (2011)

Tracing Program Transformations with String Origins�

Pablo Inostroza1, Tijs van der Storm1,2, and Sebastian Erdweg3

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 INRIA Lille, France

3 TU Darmstadt, Germany
{Pablo.Inostroza.Valdera,Tijs.van.der.Storm}@cwi.nl,

erdweg@informatik.tu-darmstadt.de

Abstract. Program transformations play an important role in domain-specific
languages and model-driven development. Tracing the execution of such transfor-
mations has well-known benefits for debugging, visualization and error reporting.
In this paper, we introduce string origins, a lightweight, generic and portable
technique to establish a tracing relation between the textual fragments in the in-
put and output of a program transformation. We discuss the semantics and the
implementation of string origins using the Rascal meta programming language
as an example. We illustrate the utility of string origins by presenting data struc-
tures and operations for tracing generated code, implementing protected regions,
performing name resolution and fixing inadvertent name capture in generated
code.

1 Introduction

Program transformations play an important role in domain-specific language (DSL) en-
gineering and model-driven development (MDD). In particular, DSL compilers are of-
ten structured as a sequence of transformations, starting with an input program and
eventually generating code. It is well-known that origin tracking [16] and model trace-
ability [1,8,12,13,14] provide valuable information for debugging, error reporting and
visualization.

In this paper, we focus on traceability for transformations that generate (fragments
of) text. We propose string origins, a lightweight technique that links each character
in the generated text to its origin. A string either originates directly from the input
model, occurs as a string literal in the transformation definition, or is synthesized by
the transformation (e.g., by string concatenation or substitution). We represent string
origins using a combination of unique resource identifiers (URIs) and offset and length
values that identify specific text fragments in a resource. We propagate string origins
through augmented versions of standard string operators, such that the propagation is
fully transparent to transformation writers. In particular, parsing and unparsing retains
string origins for text fragments that appear in the AST, such as variable names.

Through applications of string origins we further confirm the usefulness of
model traceability by realizing generic solutions to common problems in program-
transformation design. First, string origins allow us to link generated elements back
� This research was supported by the Netherlands Organisation for Scientific Research (NWO)

Jacquard Grant “Next Generation Auditing: Data-Assurance as a service” (638.001.214).

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 154–169, 2014.
c© Springer International Publishing Switzerland 2014

Tracing Program Transformations with String Origins 155

to their origin. In Section 3.1, we show how this enables the construction of editors
with embedded hyperlinks to inspect generated code. Second, we present an example
of attaching additional information to generated code via string origins. Section 3.2
describes how this enables protected regions in generated code. Third, string origins
can be interpreted as unique pointers that identify subterms. In Section 3.3, we use the
origins of symbolic names (variables, type names, method names, etc.) to implement
name resolution. Finally, string origins can be used to systematically replace fragments
of the generated code that have the same origin. In Section 3.4, we show a generic so-
lution for circumventing accidental variable capture (hygiene) by systematic renaming
of generated names.

In Section 4, we discuss the implementation of string origins in the context of Ras-
cal [9]. Overall, we found that string origins have a number of important benefits that
can improve the design of program transformations and transformation engines:

• Totality: Unlike existing work in origin tracking and model traceability [12], string
origins induce an origin relation which is total. That is, the origin relation maps
every character in the output text of a transformation back to its origin.

• Portability: Since the origin relation is based on string values and string operations
instead of inferred from transformation code, the structure or style of the transfor-
mation language is largely irrelevant. As a result, string origins are portable across
transformation systems, transformation styles, and technological spaces. Even in
the case of graphical modeling languages, embedded strings (e.g., names, labels,
etc.) could be annotated with their location in the serialization format used to store
such models.

• Universality: String origins are independent of the source or target language, since
they only apply to the primitive type string. In particular, origin propagation is
independent of the AST structure or meta model.

• Extensibility: String origins are automatically propagated as annotations of sub-
strings. As such, string origins can serve as general carriers of additional, domain-
specific information. Marking certain subsstrings as protected (Section 3.2) is an
example of this.

• Non-invasiveness: Transformation languages that support string manipulation dur-
ing program transformation can support string origins by modifying the internal
representation of strings, without changing the programming interface of strings.
The only visible change is at input boundaries where strings are constructed.

We have implemented string origins as an experimental feature of Rascal, a meta pro-
gramming language for source code analysis and transformation [9]. The applications
and example code of this paper have all been prototyped in Rascal. The full code of the
examples can be found online at https://github.com/cwi-swat/string-
origins.

2 String Origins

We illustrate the basic idea of string origins in Figure 1. The code in the middle shows
a simple transformation which converts name and email address specifications to the

https://github.com/cwi-swat/string-origins
https://github.com/cwi-swat/string-origins

156 P. Inostroza, T. van der Storm, and S. Erdweg

BEGIN:VCARD
VERSION:4.0
N:Pablo Inostroza
EMAIL:pvaldera@cwi.nl
END:VCARD

str toVCARD(str input) =
 "BEGIN:VCARD
 'VERSION:4.0
 'N:<name>
 'EMAIL:<email>
 'END:VCARD"
 when [name, email] :=
 split("\n", input);

Pablo Inostroza
pvaldera@cwi.nl

Input model
pablo.txt

Transformation
ToVCARD.rsc

Output model
pablo.vcard

origin

origin

Fig. 1. Example of a simple Rascal transformation with trace links

VCARD format. Arrows and shading indicate the origin relation. The white-on-black
substrings in the output are introduced by the transformation; their origins point to the
string template in the transformation code in the middle. In contrast, the substrings with
gray backgrounds (name and email) are copied over from the input to the output, and
hence point back to the input model. The substrings in the result are partitioned accord-
ing to the origin relation: a fragment originates in either the input, or the transformation.

Note that the transformation processes the input by splitting the string. It is important
to realize that this does not break the origin relation, but instead makes it more fine-
grained: the output fragments “Pablo Inostroza” and “pvaldera@cwi.nl” have distinct
origins pointers to the exact corresponding substrings in the input.

2.1 Representing String Origins

Many transformations take text files as input and, eventually, produce text files as out-
put. Moreover, the transformations themselves are expressed often as transformation
code that is stored in text files as well. String origins exploit this fact by representing
origins as source locations. Conceptually, a source location is a tuple consisting of a
URI identifying a particular resource and an area identifying a text fragment within the
resource. We represent an area by its start offset and length.

In the context of Rascal, source locations are represented by the built-in loc data type.
To give an example, |file:///etc/passwd|(0, 50) identifies the first 50 characters in the file
/etc/passwd, starting at offset 0. Rascal’s source locations also represent begin and end
line and column numbers, but for the remainder of this paper we will abstract from
this technical detail. Although source locations are built into Rascal, they are easily
implemented in any other transformation system.

The propagation of string origins is transparent: The transformation writer can fully
ignore their presence and simply uses standard string operations such as concatenation
or substitution. We discuss the details of the propagation in Section 4. Here, we want
to highlight how to build generic tools on top of origin information. To this end, we
provide an API for accessing locations and origins of substrings. First, we provide a
function for decomposing a string into its atomic substrings (called chunks):

alias Index = rel[loc pos, str chunk];
Index index(str x, loc output);

Tracing Program Transformations with String Origins 157

Function index constructs an Index by collecting the atomic substrings of a string at a
given location (e.g., a file path). The type Index is defined as a binary relation from the
location of a substring to the corresponding chunk. The relation type rel is native in
Rascal and is equivalent to a set of tuples. Second, each of the chunks in an Index has
an associated origin which can be retrieved with the function origin.

loc origin(str x); // require: x is a chunk

For example, we can call index on the generated VCARD shown in Fig. 1. Assuming
the output location is |file:///pablo.vcard|, we get the following index:

{<|file:///pablo.vcard|(0,28), "BEGIN:VCARD\nVERSION:4.0\nN:">,
<|file:///pablo.vcard|(28,14), "Pablo Inostroza">,
<|file:///pablo.vcard|(42,7), "\nEMAIL:">,
<|file:///pablo.vcard|(49,14), "pvaldera@cwi.nl">,
<|file:///pablo.vcard|(63,9), "\nEND:VCARD">}

Applying the origin function on any of the chunks retrieves the location where that
particular chunk of text was introduced. Combining both functions gives us the origin
relation, modeled by the Trace data type, which relates output locations to their corre-
sponding origins:

alias Trace = rel[loc pos, loc org];
Trace trace(str s, loc out) = {<l, origin(chunk)> | <l, chunk> ← index(s, out)}

Function trace maps function origin over all chunks of the index. Considering again the
example of Fig. 1, the trace relation of the generated VCARD looks as follows:

{<|file:///pablo.vcard|(0,28), |file:///ToVCARD.rsc|(28, 28)>,
<|file:///pablo.vcard|(28,14), |file:///pablo.txt|(0,14)>,
<|file:///pablo.vcard|(42,7), |file:///ToVCARD.rsc|(66, 7)>,
<|file:///pablo.vcard|(49,14), |file:///pablo.txt|(15,14)>,
<|file:///pablo.vcard|(63,9), |file:///ToVCARD.rsc|(86, 9)>}

Note that the URIs in the origins distinguishes chunks originating in the input (pablo.txt)
from chunks introduced by the transformation (ToVCARD.rsc). Both the index and trace
relations are the stepping stones for the generic tools developed in the subsequent sec-
tion.

2.2 String Origins in M2T and M2M Transformations

The previous example illustrates the use of string origins for text-to-text transformations.
However, string origins are also useful in model-to-text and model-to-model transfor-
mations. More specifically, when parsing text into an AST, the string fragments that
appear as leaves of the AST have string origins attached, pointing to the corresponding
text fragment in the input file. Model-to-model transformations preserve the origins of
strings copied from the input model and generate new origins for synthesized string
fragments. Similarly, unparsing and other model-to-text transformations preserve the
origins of strings in the AST. Again, the origin propagation is transparent to transfor-
mation writers, parsing and unparsing because origins are propagated through standard
string operators.

158 P. Inostroza, T. van der Storm, and S. Erdweg

state opened
close => closed

end
state closed
open => opened
lock => locked

end
state locked
unlock => closed

end

(a) An example state machine

controller(
[... /∗ event declarations ∗/ ...],
[state("opened"@{|input|(62,6)}, [],

[transition("close"@{|input|(70,5)},
"closed"@{|input|(79,6)})]),

state("closed"@{|input|(100,6)},[],
[transition("open"@{|input|(108,4)},

"opened"@{|input|(116,6)}),
transition("lock"@{|input|(124,4)},

"locked"@{|input|(132,6)})]),
state("locked"@{|input|(152,6)},[],

[transition("unlock"@{|input|(160,6)},
"closed"@{|input|(170,6)})])])

(b) Parsed AST of the state machine

prog([
fdef("opened"@{|input|(62,6)},[],val(nat(0))),
fdef("closed"@{|input|(100,6)},[],val(nat(1))),
fdef("locked"@{|input|(152,6)},[],val(nat(2))),
... // dispatch functions per state
fdef(// main dispatch
"main"@{|meta|(1280,13)},
["state"@{|meta|(1307,5)},
"event"@{|meta|(1316,5)}],

cond(equ(var("state"@{|meta|(1515,5)}),
call("opened"@{|input|(62,6)}, [])),

call("opened-dispatch"
@{|meta|(1565,9),|input|(62,6)},

[var("event"@{|meta|(1583,5)})]),
cond(equ(var("state"@{|meta|(1515,5)}),

call("closed"@{|input|(100,6)},[])),
call("closed-dispatch"

@{|input|(100,6),|meta|(1565,9)},
[var("event"@{|meta|(1583,5)})]),

cond(equ(var("state"@{|meta|(1515,5)}),
call("locked"@{|input|(152,6)},[])),

call("locked-dispatch"
{|meta|(1565,9),|input|(152,6)},

[var("event"@{|meta|(1583,5)})]),
val(error("UnsupportedState"

@{|meta|(1375,16)}))))))], [])

(c) Generated AST of the compiled state machine

Fig. 2. The names in the state machine code (a) end up as strings in the AST (b), the origins of
which are propagated to the compiled AST (c). State machine input is represented by URI input,
the transformation definition by URI meta.

Tracing origin information for string fragments in an AST is often useful. For exam-
ple, variable names typically occur as string fragments in an AST. Figure 2 illustrates
tracing of variable names in the context of a DSL for state machines. Figure 2a shows
the source code of a state machine. Parsing the state machine produces an abstract
syntax tree (AST), which is shown in Figure 2b. Note that all strings in this AST are
annotated with their origin, using the pseudo-notation “@”. The AST is then translated
to an imperative program which is shown in Figure 2c. Some strings have input origins
(e.g., “opened”), some are introduced by the transformation and have meta origins (e.g.,
“main”), and some strings have origins in both the input and transformation because of
concatenation (e.g., “opened-dispatch”).

3 Applications of String Origins

3.1 Hyperlinking Generated Artifacts

One of the foremost applications of string origins is relating (sub)strings of the output
back to the input of a transformation [10,12]. Applications of this information include
embedding links back to the source program in generated code, inspectors, debuggers
(e.g., using SourceMaps [15]), or translating back errors produced by further transfor-
mations (e.g., general-purpose language compiler errors). In this section we show an

Tracing Program Transformations with String Origins 159

Fig. 3. Three editors showing (1) generated code with embedded hyperlinks (2) the input state
machine model and (3) the transformation code. Fragments of the generated code that originate
from the input are in bold red.

example of inspecting the result of a program transformation where the output is shown
in an editor with embedded hyperlinks to the input or transformation code.

To display hyperlinks for parts of the generated code, the offsets of the chunks in the
generated code must be mapped back to the origin associated with each corresponding
chunk. Fortunately, the trace relation introduced in Section 2.1 contains exactly this
information. The hyperlinks are created by finding the location of a click in the Trace
mapping and moving the focus and cursor to the corresponding editor.

A demonstration of this feature is shown in Fig. 3. The screenshot shows three editors
in Rascal Eclipse IDE. The first column shows generated Java code. The substrings
highlighted in red are the substrings originating from the input, a textual model for
state machines (shown in the middle). The other substrings (in black) are introduced by
the code generator, which is shown in the right column. Clicking anywhere in the first
column will take you to the exact location where the clicked substring originated.

3.2 Protecting Regions of Generated Code

In many cases, a model-to-text transformation is intended to generate just a partial im-
plementation that has to be completed by the programmer. Normally, if the transfor-
mation is re-run, the manually edited code is overwritten. In general, this problem is
addressed by explicitly marking certain zones of the generated text as editable. The
MOF Models to Text Standard [11], for instance, introduces the unprotected keyword
at the transformation level to specify whether a region can be editable by the end pro-
grammer or not. Another traditional solution is the generation gap pattern [6], in which
the generated code and the code that is expected to be handwritten are related by in-
heritance. This, however, demands that the generated code is written in a language that

160 P. Inostroza, T. van der Storm, and S. Erdweg

features inheritance and also that the writer of the transformation encodes this design
pattern in the transformation.

String origins allow us to tackle this problem in a language and transformation
design agnostic way. Since locations correspond to extended URIs, they can be en-
riched with meta data in the form of query string parameters. We provide three func-
tions tagString(key,value), getTagValue(key) and isTagged(key), as an abstract interface
to these query strings. The tagString function could be used in a transformation to tag
regions of text as editable. For instance, the following code snippet marks a substring
as being editable in the code generator for a state machine language:

str command2java(Command command) =
"private void <command.name>(Writer output) {

’ output.write(\"<command.token>\\n\");
’ <tagString("// Add more code here", "editable", command.name)>
’}";

The function tagString transparently marks the origin of the inserted string ("// Add

more code here") to be an editable region and names it as the name of the command
input to command2java.

To provide editor support for editable regions, the marked substrings need to be
extracted from the generated code. The function extract constructs a map from output
location to region name using the index function introduced in section 2.1.

alias Regions = map[loc pos, str name];
Regions extract(str s, loc l) =

(l: getTagValue(x, "editable") | <l, x> ← index(s, l), isTagged(x, "editable"));

From the index computed on the generated code s and the target location l, the function
extract collects all locations which have an associated string value that is tagged as
editable. An editor for s can then use the locations in the domain of this map to allow
changes to the regions identified by the locations. In fact, it maintains another map, this
time from region name (range of the result of extract) to the contents of each region.

When the code is regenerated, the edited contents of the regions need to be plugged
back into the newly generated code, to restore the manual modifications. The function
plug performs this task:

alias Contents = map[str name, str contents];
str plug(str s, loc l, Contents c) = substitute(s, extract(s, l) o c);

The Contents type captures the edits made in the editable regions. The function plug
uses a generic substitution function (substitute) which receives a map from location
to string and performs substitution based on the locations. To obtain this map, plug
composes the map returned by extract with the contents c, where the map composition
operator o is similar to relational composition.

As a proof of concept, we have added a feature to the Rascal editor framework that
uses the presented infrastructure in order to provide consistent editing of generated
artifacts with editable areas. When a transformation that produces editable regions is
executed, a file with information about the editable offsets is generated as well. When
the user opens a generated file, the editor checks if the region information is available. If
so, the editor restricts the editing of text just to the regions marked as editable, ensuring

Tracing Program Transformations with String Origins 161

Fig. 4. Editor featuring highlighted editable regions

that the fixed generated code stays as it is. Fig. 4 shows a screenshot of the editor with
highlighted editable regions.

3.3 Resolving Symbolic Names

Textual DSLs or modeling languages employ symbolic names to encode references, for
instance from variables to declarations. As a result, DSL compilers and type checkers
require name analysis to resolve references to referenced entities, in fact imposing a
graph structure on top of the abstract syntax tree (AST) of the DSL. The names them-
selves cannot be used as nodes in this graph, since then different occurrences of the
same name will be indistinguishable. A solution to this problem is to assign unique la-
bels to each name occurrence in the source code. Since no two names can occupy the
same location in the source code, string origins are excellent candidates to play the role
of such labels.

Figure 5a shows the abstract syntax of the state machine language used in Fig. 2.
Note that states, events and transitions contain strings. Each of these strings will be an-
notated with an origin by the state machine parser as in Fig. 2b. Figure 5b shows the
generic type Ref for reference graphs: a tuple consisting of the set of all name occur-
rences (names), and a relation mapping uses of names to declarations. The function
resolve computes a reference graph by first constructing two relations mapping names
of states and events to declarations of states and events, respectively (sds resp. eds).
The last comprehension uses the deep matching feature of Rascal (/) to find transitions
arbitrarily deep in the controller ctl. Each transition then contributes two edges to the
relation e.

Reference graphs such as returned by resolve have numerous generic applications in
the context of DSL engineering. For instance, reference graphs can be used to imple-
ment jump-to-definition hyperlinking of editors: when the user clicks on the use of a
name, the reference graph can be used to find the location of its declaration. Another
application is rename refactoring: given a reference graph, and the locations of a name
occurrence, it is possible to track other names that reference it or are referenced by it and
consistently rename them. Finally, if Ref is slightly modified to distinguish uses from

162 P. Inostroza, T. van der Storm, and S. Erdweg

data Controller
= controller(list[Event] events,

list[State] states);
data State
= state(str name,

list[Transition] trans);

data Event
= event(str name, str token);

data Transition
= transition(str event, str state)

(a) AST data type of state machines

alias Ref = tuple[set[loc] names,
rel[loc use, loc def] refs];

Ref resolve(Controller ctl) {
sds = { <x, origin(x)> | state(x, _) ← ctl.states };
eds = { <x, origin(x)> | event(x, _) ← ctl.events };
v = range(sds) + range(eds);
e = { <origin(e),ed>, <origin(s),sd>

| /transition(e, s) := ctl,
<e, ed> ← eds, <s, sd> ← sds};

return <v, e>;
}

(b) Name resolution for state machines

Fig. 5. Implementing name resolution for state machines

declarations in the names component, reference graphs can be used to report unbound
names or unused declarations.

3.4 Enforcing a Same Origin Policy for References

A common problem with code generation is that names used in the input (source names)
which pass through a transformation and end up in the output might interact with names
introduced by the transformation (introduced names). For instance, the declaration of
a name introduced by the transformation might capture a reference to a source name,
or vice versa. This is the problem that is traditionally solved in the work on macro
hygiene [3].

The problem of inadvertent name capture is best illustrated using an example. Fig-
ure 6a shows the simple state machine used earlier in Fig. 2a, but this time the last state
is named current. The code generator of state machines – partially shown in Fig. 6b – in-
troduces another instance of the name current to store the current state in the generated
Java implementation of the state machine. As a result, the declaration of this current
captures the reference to the state constant current.

The reference arrows in Fig. 6c show that both current variables in the if-condition
are bound by the current state variable declaration. However, the right-hand side of
the equals expression should be bound by the constant declaration corresponding to the
state current. Moreover, the Java compiler will not signal an error: even though the code
is statically correct, it is still wrong.

To avoid name capture, the algorithm described below renames the source names in
the output of a transformation if they are also in the set of non-source names. The result
can be seen in Fig. 6d: the source occurrences of current are renamed to current0, and
inadvertent capture is avoided. Effectively, the technique amounts to enforcing a same
origin policy for names, similar to how a same origin policy avoids cross-site scripting

Tracing Program Transformations with String Origins 163

state opened
close => closed

end

state closed
open => opened
lock => current

end

state current
unlock => closed

end

(a) Input

str controller2run(Controller ctl) =
"void run(Scanner input, Writer output) {
’ int current = <ctl.states[0]>;
’ while (true) {
’ String tk = input.nextLine();
’ <for (s ← ctl.states) {>
’ <state2if(s)>
’ <}>
’ }
’}";

str state2if(State s) =
"if (current == <s.name>) {
’ <for (transition(e, s2) ← s.transitions) {>
’ if (<e>(tk)) current = <s2>;
’ <}>
’ continue;
’}";

(b) Excerpt of state machine compiler

static final int current = 2;
void run(...) {
int current = opened;
...
if (current == current) {

if (unlock(tk)) current = closed;
continue;

}
...

} (c) Incorrect output

static final int current0 = 2;
void run(...) {
int current = opened;
...
if (current == current0) {

if (unlock(tk)) current = closed;
continue;

}
...

} (d) Repaired output

Fig. 6. Example of repairing name capture: the input (a) contains the name current, but this
name is introduced in the transformation as well (b). Consequently, the introduced variable in the
output shadows the constant declaration (c). The fix function renames all occurrences of current
originating in the input to current0 so that capture is avoided (d). The arrows in (c) and (d) link
variable uses to their declarations.

attacks in Web application security1: names originating from different artifacts should
not reference each other.

In [5] the authors showed how string origins proved to be instrumental in automati-
cally repairing the problem of unintended variable capture. In this section we present a
technique that is simpler but also more conservative: it might rename more identifiers
than is actually needed. Whereas the method of [5] is parameterized in the scoping rules
of both source and target language, the technique of this section is language agnostic,
and does not require name analysis of the source or target language.

The key observation is that whenever name capture occurs it involves a source name
and a name introduced by the transformation. This difference is reflected in the origins
of the name occurrences in the output: the origins’ source locations will have different
URIs. The same origin policy then requires that for every reference in the generated
code from x to y, both x and y originate from the input or neither. The same origin
policy is enforced by ensuring that the set of source names is disjoint from the set of
names introduced by the transformation. This can be realized by consistently renaming
source names in the generated code when they collide with non-source names.

To formalize the same origin policy, let t = f (s) be the result of some transformation
f on input program s, inducing a trace relation τ ∈ Trace, and let Gs = 〈Vs,Es〉, Gt =
〈Vt ,Et〉 be the reference graphs of the source s and target t, respectively. The same origin
policy then requires that

∀〈l1, l2〉 ∈ Et ,〈l1,o1〉 ∈ τ,〈l2,o2〉 ∈ τ : o1 ∈Vs ⇔ o2 ∈Vs

1 http://en.wikipedia.org/wiki/Same-origin_policy

http://en.wikipedia.org/wiki/Same-origin_policy

164 P. Inostroza, T. van der Storm, and S. Erdweg

str fix(str gen, Index names, loc inp) {
bool isSrc(str x) = origin(x).path == inp.path;
set[str] other = { x | <_, x> ← names, !isSrc(x) };
set[str] allNames = { x | <_, x> ← names };
map[loc,str] subst = ();
map[str,str] renaming = ();
for (<l, x> ← names, isSrc(x), x in other) {

if (x notin renaming) {
<y, allNames> = fresh(x, allNames);
renaming[x] = y;

}
subst[l] = renaming[x];

}
return substitute(gen, subst);

}

Fig. 7. Restoring disjointness by fixing source names

To enforce the same origin policy, one more assumption on reference graphs is needed,
namely that the locations in every reference edge point to the same textual name. In
other words: every use is bound by a declaration with the same name. For instance, the
reference edges drawn in Fig. 6c and Fig. 6d satisfy this invariant since variable uses
l1, l2, l3 point to occurrences of the name current, which is also the name used in the
declaration l0.

If we assume that the same name invariant is true for Et , then the same origin policy
is satisfied if the set of source names is disjoint from the set of names introduced by the
transformation. The same name invariant ensures that for every 〈l1, l2〉 ∈ Et , we have
that l1 and l2 point to the same name. Consequently, it is not possible that one name
originates from the input (e.g., through o1) but the other does not (e.g., through o2)
because that would contradict disjointness of names.

The code for restoring disjointness is shown in Fig. 7. The function fix has three
parameters: the generated code gen, the index names capturing the names occurring in
gen, and a source location identifying the input program inp. The latter is used by the
predicate isSrc to determine whether a name x is a source name by checking if the path
in the origin of x is the input path.

The for-loop iterates over the index names that represents all names in the generated
string gen. If such a name x originates in the source and is also used as an other name,
an entry is created in the substitution subst, mapping location l to a new name. The new
name is retrieved from the renaming map which records which source names should
be renamed to which new name. The function fresh produces a name that is not used
anywhere (i.e., it is not in allNames). The variable allNames is updated by fresh to
ensure that consecutive renames do not introduce new problems.

Note that fix could also be parameterized with an additional set of external names
which might capture or be captured by source names. External names could include the
reserved identifiers (keywords) of the target language or (global) names that are always
in scope (e.g., everything in java.lang). The only required change is to add the external
names to other.

Tracing Program Transformations with String Origins 165

4 Implementation

The implementation of string origins requires changes to the internal representation of
strings used by the transformation engine. In this section we discuss the implementation
of string origins in Rascal.

As Rascal is implemented in Java, we have implemented string origins in Java as
well. Rascal string values (of type str) are internally represented as objects conforming
to the interface IString. We have reimplemented this interface to support string origins,
changing only the internal representation. Instances of IString are constructed through
a factory method IString string(java.lang.String) in the Rascal factory interface for creat-
ing values (IValueFactory).

To ensure that the propagation of string origins is complete, every created string now
needs a location to capture its origin. We have extended IValueFactory with another fac-
tory method IString string(java.lang.String, ISourceLocation) to support this. Calls to the
original string(...) method were changed to the new one, everywhere in the Rascal imple-
mentation. The locations where changes have been made correspond to the following
three categories:

• Input: any function that reads a resource into a string must be modified to install
origins on the result. In Rascal, these are built-in library functions like readFile(loc),
readLines(loc), parse(loc), etc.

• String literals: constant string values that are created as part of a Rascal program
get the origin of the string literal in the Rascal file. Whenever a string literal is
evaluated, its location is looked up in its AST and passed to the factory method.
This category also covers interpolated string templates.

• Conversions: converting a value to a string in Rascal is achieved through string in-
terpolation. For instance, "<x>" returns the string representation of x. If x evaluates
to a string, the result of the conversion is that string itself (including origin); other-
wise, the newly created string gets the locations of the expression x in the Rascal
source.

String origins are propagated through all string operations. As a result, all opera-
tions provided in the IString interface have been reimplemented. The two most im-
portant operations are concat and substring. Their semantics is illustrated in Fig. 8.
The top two string values are annotated with source locations |file:///foo.txt|(0,5) and
|file:///bar.txt|(0,5). Concatenating both strings (middle row) produces a new, composite
string, where the original arguments to concat are still distinguishable, and have their
respective origins. Finally, the substring operation computes a new composite string
with the origin of each component updated to reflect which part of the original input is
covered. Besides concat and substring, all common string operations such as indexOf,
replaceAll, split etc. can be defined on strings with origins, with full propagation.

Internally, Rascal strings with origins are represented as binary trees. A string is
either a chunk object which has a source location attached to it, or it is a concat object
which represents two concatenated strings. A string represented as a binary tree can
be flattened to a list containing elements with a string value and source location for
each chunk object at the leaves. This list is the basis for the functions index and origin
introduced in Section 2.1.

166 P. Inostroza, T. van der Storm, and S. Erdweg

|file:///foo.txt|(0,5) |file:///bar.txt|(0,4)

|file:///foo.txt|(2,3) |file:///bar.txt|(0,2)

|file:///foo.txt|(0,5) |file:///bar.txt|(0,4)

substring (, 2, 7)

concat (,)

C : E U R N L 0 3

C : E U R N L 0 3

E U R N L

Fig. 8. The concat and substring operations defined on origin strings

Although in our experience the performance penalty introduced by representing
strings as binary trees is acceptable in practice, further benchmarking is needed to assess
the overall impact. In particular, it will be interesting to see how the choice of represen-
tation affects different use cases. For instance, when generating code, concatenation is
one of the most frequently executed string operations. The binary tree representation
is optimized for that: concatenation is an O(1) operation. On the other hand, analyzing
strings (e.g., substring, parsing, matching) is much more expensive if a string is a bi-
nary tree. But then again, the penalty will be most significant if these operations apply
to strings resulting from concatenation in the first place. We consider investigating these
and other aspects of performance an important area for further research.

5 Related Work

String origins are related to previous work in origin tracking, taint propagation and
model traceability in model-driven engineering. Below we discuss each of these areas
in turn.

Origin Tracking. The main inspiration of string origins is origin tracking [16]. In the
context of term-rewriting systems, this technique relates intermediate subterms matched
and constructed during a rewriting process. Origin tracking was proposed as a technique
to construct automatic error reporting, generic debuggers and visualization in program
transformation scenarios. String origins are related in that the result is a relation be-
tween input and output terms. However, for string origins, only string valued elements
are in this relation. Furthermore, the origin relation of [16] is derived from analyzing
rewrite rules. As a result the transformation writer is restricted to this paradigm. With
string origins, a transformation can be arbitrary code.

Taint Propagation. In Web applications, untrusted user input might potentially end up
as part of a database query, a command-line script execution or web page. Malicious
input could thus compromise the system security in the form of code injection attacks.
Taint propagation [7] is a mechanism to raise the level of security in such systems by

Tracing Program Transformations with String Origins 167

tracking potentially risky strings at runtime. It consists of three main phases: mark cer-
tain sources of strings as tainted, propagating taint markers across the execution of the
program, and disallowing the use of tainted strings at certain specific points called sinks.
The propagation is achieved by annotating the string values themselves and making sure
that string operations propagate taintedness.

Although in general the taint information is coarse-grained: any string that is com-
puted from any number of tainted strings is tainted as well. A finer granularity is em-
ployed in character-based taint propagation [2]. String origins are very similar to this
approach in that the origin is known for each character in a string. On the other hand,
string origins can be considered more general, because origins capture more informa-
tion than just taintedness. In fact, taint propagation could easily be realized using string
origins by considering certain input locations as tainted.

In [4], the authors present an application of taint propagation to the domain of model-
to-text transformations, specifically, to support debugging of failures introduced in a
transformation. Their approach consists in instrumenting the transformation in order to
add so-called tainted marks to each identifiable element of the input. On the other hand,
the user of the transformation has to identify erroneous sections in the output. Since the
taints from the input are consistently propagated by the instrumented transformation, it
is possible to relate the errors in the output to specific elements of the input. In this work,
the input is an XML document and the transformation, an XSLT file. The granularity of
this technique is at the level of XML nodes, which provides quite precise information
for the error tracking analysis.

Traceability in Model-Driven Engineering. In model-driven engineering, models are
refined through transformations to produce executable artifacts. In [1], the authors ar-
gue for the need for automatic generation of trace information in such a setting. Several
endeavors towards this goal have been reported in the context of different model trans-
formation systems, such as ATL, MOF, and Epsilon.

For instance, ATL transformations can be manually enriched with traceability rules
that conform to a traceability metamodel [8]. Besides the target models, the enriched
transformations will also automatically produce trace models when executed. In order
to avoid the manual work of adding these specifications to existing transformations, the
authors present a technique for automatically weaving the trace rules into the transfor-
mation. Unlike string origins, this approach relies on the structure of the ATL rules to
derive the trace links, and such links just relate a subset of the elements in the target
model to certain elements in the source model, but not to the transformation itself.

Another approach to address traceability is the MOF Models to Text Transformation
Language standard [11]. In this specification, transformations can be decorated with a
trace annotation so when the transformation is executed, a relation between its output
and its input is constructed. As in the case of [8], the transformation conveys the trace-
ability information explicitly. To overcome this, [12] and [13] introduce an alternative
technique for managing traceability in MOFScript, a language for defining model to
text transformations based on the MOF standard. In this case, “any reference to a model
element that is used to produce text output results in a trace between that element and
the target file”. Like string origins, this technique provides implicit propagation and fine-
grained tracing. However, no relation between the output and the text fragments coming

168 P. Inostroza, T. van der Storm, and S. Erdweg

from the transformation is created. Just as in the case of ATL, MOFScript depends on
the structure of the rules to analyze the transformation and generate trace information.

Finally, The Epsilon Generation Language (EGL) is a model-to-text transformation
language defined at the core of the Epsilon Platform [14]. EGL provides an API to
construct a transformation trace. However, this API is coarse-grained (file-level).

6 Conclusion

String origins identify the exact origin of a fragment of text. By annotating string values
with their origins, the origins are automatically propagated through program transfor-
mations, independent of transformation style or paradigm. The result is that for every
string valued element in the output of a transformation, we know where it came from,
originating in the input program or introduced by the transformation itself.

String origins have diverse applications. They address traditional model traceability
concerns by linking output elements to where they were introduced. We have shown two
applications in this space, namely hyperlinked editors for generated code and protected
regions. Moreover, string origins can be used to uniquely identify sub terms, which is
instrumental for implementing name resolution, rename refactoring, jump-to-definition
services and error marking. Finally, we have shown that by distinguishing source names
from introduced names, accidental name capture in generated code can be avoided in a
reliable and language agnostic way.

The implementation of string origins is simple and independent of any specific meta-
model, transformation engine or technological space. Any transformation system or pro-
gramming language that manipulates string values during execution can support string
origins by changing the internal representation of strings. The standard programming
interface on strings remains the same. As a result, code that manipulates strings does not
have to be changed, except for the code that creates strings in the first place. Although
conceptually simple, we have shown that string origins, nevertheless, provide a power-
ful tool to improve the understandability and reliability of program transformations.

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Syst. J. 45(3), 515–526 (2006)

2. Chin, E., Wagner, D.: Efficient character-level taint tracking for Java. In: Proceedings of the
2009 ACM Workshop on Secure Web Services, pp. 3–12. ACM (2009)

3. Clinger, W., Rees, J.: Macros that work. In: Proceedings of Symposium on Principles of
Programming Languages (POPL), pp. 155–162. ACM (1991)

4. Dhoolia, P., Mani, S., Sinha, V.S., Sinha, S.: Debugging model-transformation failures using
dynamic tainting. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 26–51. Springer,
Heidelberg (2010)

5. Erdweg, S., van der Storm, T., Dai, Y.: Capture-avoiding and hygienic program transforma-
tions. In: Proceedings of European Conference on Object-Oriented Programming (ECOOP).
Springer (to appear, 2014)

6. Fowler, M.: Domain-Specific Languages. Addison Wesley (2010)

Tracing Program Transformations with String Origins 169

7. Haldar, V., Chandra, D., Franz, M.: Dynamic taint propagation for Java. In: 21st Annual
Computer Security Applications Conference, p. 9. IEEE (2005)

8. Jouault, F.: Loosely coupled traceability for ATL. In: Proceedings of the European Confer-
ence on Model Driven Architecture (ECMDA) Workshop on Traceability, pp. 29–37 (2005)

9. Klint, P., van der Storm, T., Vinju, J.: Rascal: A domain-specific language for source code
analysis and manipulation. In: Proceedings of Conference on Source Code Analysis and
Manipulation (SCAM), pp. 168–177 (2009)

10. Kolovos, D.S., Rose, L., Paige, R., García-Domínguez, A.: The Epsilon book,
http://www.eclipse.org/epsilon/doc/book/ (accessed November 13, 2012)

11. Object Management Group (OMG). MOF Model to Text Transformation Language 1.0.
formal/2008-01-16 (January 2008)

12. Oldevik, J., Neple, T.: Traceability in model to text transformations. In: 2nd ECMDA Trace-
ability Workshop (ECMDA-TW), pp. 17–26 (2006)

13. Olsen, G.K., Oldevik, J.: Scenarios of traceability in model to text transformations. In:
Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 144–156.
Springer, Heidelberg (2007)

14. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The Epsilon generation language.
In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 1–16.
Springer, Heidelberg (2008)

15. Seddon, R.: Introduction to JavaScript source maps (2012),
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

16. van Deursen, A., Klint, P., Tip, F.: Origin tracking. Symbolic Computation 15, 523–545
(1993)

http://www.eclipse.org/epsilon/doc/book/
http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/

Transformation of UML and OCL Models
into Filmstrip Models�

Frank Hilken, Lars Hamann, and Martin Gogolla

University of Bremen
{fhilken,lhamann,gogolla}@informatik.uni-bremen.de

Abstract. This contribution presents an automatic transformation from
UML and OCL models into enriched UML and OCL models, so-called
filmstrip models, which embody temporal information when employing
OCL while maintaining the same functionality as the original model.
The approach uses a combination of object and sequence diagrams that
allows for a wide range of possible OCL constraints about sequences of
operation calls and their temporal properties. The modeler does not need
to account for such properties while creating the original model. Errors
found by constraints for the filmstrip model can easily be related back to
the original model, as the elements of the filmstrip model are synchro-
nized with the original model and the backwards calculation is generally
simple. The approach is implemented in a UML and OCL modeling tool.

1 Introduction

In recent years, the Unified Modeling Language (UML) has become the standard
language for modeling IT systems. Among the various UML diagram forms,
UML class diagrams are the most frequently used ones. One way (among other
possibilities) to completely specify structure and behavior of an application is to
enrich class diagrams with class invariants and operation pre- and postconditions
expressed in the Object Constraint Language (OCL). The starting point for this
contribution is an application model solely described by a class diagram and
OCL constraints. In the development process, it is essential to validate and
verify that such an application model meets the informal and formal postulated
requirements.

For structural models with class diagrams and invariants, a number of ef-
ficient validation and verification techniques [2,13,4,11,17] are available. These
techniques partly transform UML models including OCL invariants into vali-
dation and verification platforms (like SAT or SMT solvers or relational logic)
allowing an efficient check of relevant structural properties of the UML model in
terms of the target platform. However, less attention has been paid to behavioral
model properties, in particular to operation pre- and postconditions.

This contribution proposes a transformation from a UML and OCL applica-
tion model with pre- and postconditions and invariants into a UML model with
� This work was partially funded by the German Research Foundation (DFG) under

grant GO 454/19-1.

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 170–185, 2014.
c© Springer International Publishing Switzerland 2014

Transformation of UML and OCL Models into Filmstrip Models 171

:input

UML model:
classes, attributes,
associations,
class invariants,
operation definitions,
operation contracts

Model
transformation

:output

UML model:
classes := classesinput ∪ classesfilmstrip

attributes :=
attributesinput ∪ attributesfilmstrip

associations :=
associationsinput ∪ associationsfilmstrip

class invariants :=
class invariantsinput
∪ class invariantsfilmstrip

∪ operation contractsinput
operation definitions :=

operation definitionsinput
operation contracts := ∅

The classesfilmstrip contain, in particular, classes induced by
operation definitions. The attributesfilmstrip contain operation
parameters. The associationsfilmstrip are responsible for the
ordering in the filmstrip model. The operation contractsinput
(i.e. pre- and postconditions) become invariants, but the
operation definitions (i.e. method signatures) also remain in
the output.

Fig. 1. Inputs and outputs of the filmstrip transformation

OCL invariants only (thus without pre- and postconditions). The intention is
that this filmstrip model can then be handled by one of the efficient techniques
available for structural models. All behavioral aspects of the original application
model are equivalently expressed in a so-called filmstrip model in form of struc-
tural constraints, i.e., invariants. Figure 1 gives an overview of the inputs and
outputs of the transformation.

There are a number of reasons for us to study the proposed transformation.
Alloy [13], for example, has to model temporal system development with explicit
relations for objects representing points in time, and these relations have to be
described by the developer. Our approach comprises an automatic way to handle
temporal system development on the basis of pre- and postconditions. On the
other hand, Alloy nicely demonstrates that design flaws concerning dynamics can
be successfully detected by structural techniques. A further motivation for us to
study the current transformation is a fundamental question about the relation-
ship between structure and behavior and to find out to what extent structural
techniques can encode dynamic problems. We also expect that structural auto-
matic validation and verification techniques will show major advances in coming
years, as they have shown in recent years.

The challenge of building the filmstrip model is to create a model that does
not change the behavior and expressiveness of the application model, but offers
more possibilities for validation and verification by employing OCL for check-
ing behavioral properties on the filmstrip model and to automatically trans-
late the detected properties back to the application model: The filmstrip model
captures several application model states in one object diagram; it keeps infor-
mation about successive operation calls and changes between the application
model states; pre- and postconditions are transformed into invariants and make
behavioral properties from application model sequence diagrams detectable in
a single filmstrip model object diagram. The approach allows to give feedback
on the application model in form of scenarios and test cases that are directly

172 F. Hilken, L. Hamann, and M. Gogolla

understandable and analyzable by the application model developer. The filmstrip
model also enables the use of temporal logic properties formulated using an
extension of standard OCL [20,3,18].

Another feature of our approach is that it can be used for checking properties
of model transformations themselves. Let us assume that a model transformation
consists of separate operations described with pre- and postconditions (for exam-
ple, given a graph transformation system, each rule becomes an operation), the
filmstripped model transformation can be checked for confluence of rules: within
a finite search space our approach can build scenarios for rule applications.

Our work is related to several other papers using filmstrip models for various
different tasks. The first known notion of the idea is in [8]. The authors of [10]
take the filmstrip idea and employ it as part of three-dimensional visualizations
within software design. [19,1] define a different approach for a filmstrip model
(called snapshot model or snapshot transition model), which changes more of
the original model elements instead of using abstract interface elements. In [5]
filmstrips are used as a device for functional testing. [12] shows a less generic
approach, with less separation between application model and filmstrip model.

Multiple approaches of an extension of OCL with temporal logic exist in order
to verify temporal properties in UML and OCL models, but only a few keep the
verification task on the UML and OCL layer. [18] and [14] give a comparison of the
different approaches. [6] concentrated on temporal business rules without giving
a full semantic definition. [20] gives a semantic definition of linear temporal logic
operators. [9] focused on the integration of time bounds in connection with tempo-
ral constructs. In [1] temporal OCL expressions are evaluated in state transition
systems – a similar form of filmstrip models using a more relational database-like
approach.

The rest of this paper is structured as follows. In Sect. 2 the example model
for this paper is described, its properties are explained and an example system
state is shown. Section 3 covers the transformation of the UML part of the model
transformation and Sect. 4 covers the OCL part respectively. Section 5 completes
the example and shows further examples of use for the filmstrip model. Section 6
describes the implementation of the transformation and Section 7 finishes the
paper with a conclusion and discusses future work.

2 Running Example

The input for the transformation is a UML and OCL model consisting of a class
diagram describing an application completely with classes, attributes, associa-
tions, operations and invariants. The operations – with their pre- and postcon-
ditions – describe the model dynamics, which can be visualized in sequence dia-
grams. The other characteristics of the model, e.g. invariants and multiplicities
describe the allowed system states, which are represented by object diagrams.
We call this model the application model.

As an example for this paper, the transformation of a classic process sched-
uler application model [16,7] into its filmstrip counterpart is demonstrated. Fig-
ure 2 shows the class diagram of the transformed model. The original application

Transformation of UML and OCL Models into Filmstrip Models 173

Filmstrip
Snapshot

pred() : Snapshot
succ() : Snapshot

Ready_SchedulerOpC
p : Process

New_SchedulerOpC
p : ProcessSnapshotItem

Init_SchedulerOpC
Scheduler

Init()
New(p : Process)
Ready(p : Process)
Swap()

Process
pid : Integer Swap_SchedulerOpC

SchedulerOpC
aSelf : Scheduler

OpC

pred() : Snapshot
succ() : Snapshot

0..1

Active

0..1

0..1
PredSucc

0..1

*

Ready

0..1

1

SnapElement

*

*

Waiting

0..1

0..1
0..1

0..1

Fig. 2. Scheduler filmstrip model with the contained application model highlighted

model, consisting of the two classes Scheduler and Process and three associa-
tions Active, Ready and Waiting, is completely contained in the filmstrip model
and displayed in the dashed box in the left part of the picture. The structure of
such model is unchanged.

The class Process represents the processes of the system and has one attribute
pid to distinguish them. The class Scheduler represents a scheduler which is
connected to the processes via three associations. They link the currently active
process, which may be none, the ones that are ready to be scheduled and the
ones waiting for an action to become ready again.

Additional constraints, not expressible in UML, are specified using OCL. The
OCL constraints marks the sets of ready and waiting processes of a scheduler
to always be disjoint, the active process is not simultaneously ready or waiting
and when there is no active process, there may not be a ready process. Lastly
the process identifiers (pid) of the class Process must be unique.

The scheduler class has all the functionality of the system. The first operation
initializes the scheduler into a defined start state. The second operation New
registers a process to the scheduler and puts it in the list of waiting processes.
The third operation moves a process from the list of waiting processes into the
list of ready processes, unless there is no active process, in which case the process
will immediately become the active one. The fourth and last operation swaps the
active process, putting it into the list of waiting processes and schedules another
ready process, if there is any. The general flow of a process therefore is as follows:

Unassigned New−−−−→
(
Waiting Ready−−−−−→ Ready Swap∗

−−−−−→ Active Swap−−−−→ Waiting
)∗

The states represent how a process is connected to the scheduler and the ar-
rows describe operation calls on the scheduler between the state changes. The
sequence is focusing on one process. An Unassigned process is not connected to
any scheduler, yet. It gets assigned to a scheduler by a New operation call and
is then permanently assigned to this scheduler, where it continues Waiting. Here
it waits for a Ready operation call to get into a Ready state. When the scheduler
now issues a Swap operation call and this process is chosen, it will become the

174 F. Hilken, L. Hamann, and M. Gogolla

Active process. The next Swap operation call will then bring the process back
into the Waiting state and the cycle repeats. The notation “Swap∗” suggests,
that several swap operation calls might be necessary before a specific process
becomes the active one. Also the flow of a process might vary slightly depending
on the number of ready processes, e.g. a process can become the active process
as soon as it is ready, if there is no other active process.

The rest of Fig. 2 shows the model parts specific to the filmstrip model. The
classes of the application model are modified to inherit from the abstract class
SnapshotItem. This abstract class provides the connection to the class Snapshot
to link each object to a certain snapshot and the aggregation PredSucc to de-
scribe a temporal connection between two object instances. To represent progres-
sion of objects during operation calls, multiple objects are used in the filmstrip
model with the delta being the changes applied in the course of an operation
invocation. Thus an association is required to guarantee that every object of an
application model class is linked to a unique snapshot. The association PredSucc
connects objects that represent one instance.

The next class added to the model is the Snapshot class which represents a
reference point for a system state in the application model. With the abstract
class for representing operation calls (OpC), the snapshot is also linked to its
predecessor and successor in the same way as the application model classes are.
This ternary association is called Filmstrip and links two snapshot objects and
an operation call object together, representing one operation call. The resulting
object diagrams of this structure involve a sequence of snapshots (system states)
with operation calls linked in between them, like a filmstrip consists of many
consecutive pictures that change from frame to frame.

The possible operation calls of the application model are added to the film-
strip model as classes derived from the interface OpC. In the example in Fig. 2
the abstract class SchedulerOpC has an attribute aSelf which saves the object,
this operation is invoked on. This is the base class for every concrete class rep-
resenting an operation of the class Scheduler. These classes store the dynamic
information, e.g. parameter values, that occur during an operation call.

An example system state of the filmstrip model is shown in Fig. 3. A scenario
in the application model can be represented with an object diagram sequence
to show the different states and a sequence diagram to represent the operation
calls. The filmstrip model combines this information into a single system state.
The main problem is to find a transformation that can reproduce the complete
behavior of the application model and nothing more.

Further challenges of the transformation include the consistent handling of: (1)
the insertion of new root elements for filmstrip models into the existing model;
(2) the change of model classes and operations; and (3) the correct adaptation
of OCL constraints.

3 UML Transformation

The process of a filmstrip transformation is an endogenous model transforma-
tion. The changes take place solely in the class diagram. This section explains the

Transformation of UML and OCL Models into Filmstrip Models 175

sched2:Scheduler

s1:Snapshot

swap2:Swap_SchedulerOpC
aSelf=sched3

sched4:Scheduler

p5:Process
p id=1

p3:Process
p id=1

p6:Process
p id=2

sched1:Scheduler

p7:Process
p id=1

p1:Process
p id=1

p2:Process
p id=2

p8:Process
p id=2

ready1:Ready_SchedulerOpC
p = p 3
aSelf=sched2

s2:Snapshot

sched3:Scheduler

s4:Snapshot

s3:Snapshot

swap1:Swap_SchedulerOpC
aSelf=sched1

p4:Process
p id=2

Active

Active

Active

Active

Ready

Ready

Waiting

Waiting

Fig. 3. Example system state of the scheduler filmstrip model with elements from the
application model highlighted

steps required to transform an application model into a filmstrip model regard-
ing the UML elements. Further constraints on these elements that are required
for a correct behavior, but are not expressible in UML, i.e. OCL invariants, are
discussed in Section 4. UML model elements that are not mentioned, e.g. asso-
ciations and operations, remain the same in the filmstrip model. Figure 4 gives
an overview for the steps of the whole transformation process.

3.1 Filmstrip Core Elements

First the core of the filmstrip model is included into the application model. These
elements are shown in Fig. 5 and are the same in every filmstrip model. They
consist of three classes and three associations and define the functionality of the
filmstrip model. They also provide an interface for elements of the application
model classes to enable interaction with them (SnapshotItem).

The class Snapshot represents a system state of the application model where
any object linked to a snapshot belongs to the system state represented by it.
To represent multiple system states in one object diagram multiple snapshot
instances are used. An object diagram may contain several snapshots that rep-
resent the same system state, i.e. the properties of the linked objects are equal
and the system state would be identical in the application model. This is required

176 F. Hilken, L. Hamann, and M. Gogolla

UML Transformation

(1) Add filmstrip core elements

(2) Transform application class diagram

(3) Connect application filmstrip core class diagram

with application class diagram

OCL Transformation

(4) Transform application invariants

(5) Transform application pre- and postconditions

(6) Add OCL invariants for filmstrip part

Handle special OCL features,

e.g. allInstances() and @pre

Fig. 4. Activity diagram of the filmstrip transformation process

Snapshot

pred() : Snapshot

succ() : Snapshot

SnapshotItem OpC

pred() : Snapshot

succ() : Snapshot

Filmstrip

0..1 PredSucc

0..1

1

SnapElement

* 0..1
0..1

0..1

Fig. 5. Static elements of the filmstrip model which are added to the application model

as the filmstrip model shows a linear filmstrip and each snapshot has at most
one predecessor and one successor. The intention of the class SnapshotItem is
similar to the class LocalSnapshot from the OCL standard [15], however the
handling of the ordering is different there.

Another core element is the abstract class OpC. This interface represents the
operation calls that occur between two snapshots and is later extended with the
specific information from the application model operations. This information
includes the object that the operation is called on, the name of the operation,
which is called and the parameters. The operations pred() and succ() of the
classes Snapshot and OpC are query operations navigating to the predecessor
snapshot or successor snapshot respectively, returning a single object instead of
a Set, which the association end for this navigation indicates. For the class OpC
these are the pre and post states of an operation call.

The next element of the filmstrip core is the abstract class SnapshotItem. It
is an interface for the classes of the application model and lists functions that
every class has to provide, so the filmstrip elements can work with them. The
first functionality is specified by the association SnapElement, being a connec-
tion to the snapshot to assign objects to it. The second functionality is specified
by the aggregation PredSucc, which connects two objects of the same type with
each other. An aggregation is used to keep the connections cycle free. It de-
fines the successors and predecessors of each object to easily navigate between
different incarnations. These incarnations describe one object from the appli-
cation model that can change its state during operation calls, whereas in the
filmstrip model each incarnation is a new object in the object diagram. Without
an explicit connection between these objects, another identifier would be neces-
sary to navigate between incarnations, e.g. a key attribute. In contrast with the

Transformation of UML and OCL Models into Filmstrip Models 177

alternatives the association provides easier access, which is in particular useful
when transforming the OCL expression @pre.

Finally, the ternary association Filmstrip connects two Snapshot objects
and an OpC object, to represent the predecessor state and the successor state
of an operation call. A ternary association is chosen to provide direct access
between the objects and still keep a maximum level of compatibility. An al-
ternative is replacing the abstract class OpC with an abstract association class
between two Snapshot classes, which would make the query operations pred()
and succ() unnecessary. For an even better compatibility, especially with vali-
dation and verification tools in mind, the ternary association OpC can be replaced
with two binary associations. One leading from the Snapshot class to the OpC
class and one association back to the Snapshot class. These associations can also
be represented by aggregations or compositions to inherit their traits, i.e. cycle
freeness. All options are interchangeable with minor differences in their usage
which affects the transformation process. The constraints on the filmstrip asso-
ciation also need to be adapted. This work concentrates on the transformation
using a ternary association, as shown in the class diagram in Fig. 5.

3.2 Application Model Classes

The next step in the transformation process handles the application model
classes. These classes remain mostly the same, i.e. the name, attributes and op-
eration definitions are kept. The classes are modified to inherit from the abstract
class SnapshotItem to define a connection to the filmstrip core elements. Since
the associations of the interface are defined on the abstract class SnapshotItem,
the inherited type of the association ends is SnapshotItem. To replace these
with the actual type of the transformed class, both associations are refined us-
ing the redefines keyword. With this UML feature, association ends can over-
ride other existing association ends of the class hierarchy, e.g. it is possible to
specify a more precise end type for the navigation. The results are a type-safe ac-
cess of the properties and another advantageous side-effect, which prevents links
between objects of different types, e.g. between Scheduler and Process. In ad-
dition, the properties become well-defined even when using multiple inheritance.
The refinement of the association SnapElement creates a property to access all
objects of a specific class from the snapshot object, instead of all objects that
inherit from SnapshotItem, which will be useful when transforming the OCL
expression allInstances(). An example of a transformed class with all UML
features visible is shown in Fig. 6. Association classes of the application model
are included in this transformation step. These refinements were omitted in the
class diagram in Fig. 2 for better clarity.

Lastly for every class that has operations with side-effects, a new abstract
class inheriting from the abstract class OpC is created. This new class represents
the base class for all concrete operation classes of this class and has an attribute
aSelf of the type of the application model class to represent an object, that
an operation call is invoked on. In the example from Sect. 2 this class is called
SchedulerOpC.

178 F. Hilken, L. Hamann, and M. Gogolla

Process
pid : Integer

SnapshotItem Snapshot
succ 0..1

PredSucc

pred
0..1

succProcess {redefines succ} 0..1

PredSuccProcess

predProcess {redefines pred}

0..1

snapshot 1
SnapElement

snapshotItem*

snapshotProcess {redefines snapshot}

1SnapshotProcess
process*

Fig. 6. Redefined association ends for class Process

3.3 Application Model Operations

The expressions of query operations remain with the application model class
and can be used in the filmstrip model as well, since other elements probably
depend on it. Only some OCL expressions, e.g. allInstances(), are transformed
according to Sect. 4, since their effect is different in the filmstrip model.

Operations with side-effects are transformed differently. In the application
model, the parameter values of these operation calls is only required at the time
when the operation is invoked. On the contrary, in the filmstrip model, these
operation calls are modelled statically with the class OpC and it is desired to val-
idate the operation calls statically as well. Thus a new class is created for each
operation with side-effects. It inherits the abstract operation call class of the op-
erations owner class introduced earlier. The operation parameters are replicated
as attributes of this class. The only variable left is self which is saved in the
attribute aSelf inherited in the class (see class SchedulerOpC in Fig. 2). As a
result, all variables required for the pre- and postconditions are provided by the
concrete operation call class. These attribute values must point to the predeces-
sor snapshot. Successor values can be accessed with the association PredSucc.

The pre- and postconditions are transformed into invariants and assigned to
the concrete operation call class as well. The class is only instantiated when such
operation call occurs. Therefore the invariants representing the operation pre-
and postconditions only trigger once for every operation call invocation. This
matches the exact behavior of the pre- and postconditions.

The OCL expressions of the pre- and postconditions need to be adjusted, when
transforming them into invariants, because the variables inherently available in
such expressions, e.g. self and parameters, have become class attributes. In
addition, postconditions may contain unique expressions that are not available
in invariants, i.e. @pre and oclIsNew(). These special expressions need to be
transformed along with the other expressions that change their behavior in the
filmstrip model. The details on these transformations are described in the next
section. Finally the pre- and postconditions are removed from the operation as
they are fully covered by the invariants and no longer needed.

4 OCL Transformation

In the filmstrip model, a clear separation exists between the filmstrip core el-
ements and the application model elements. Therefore both parts are mostly

Transformation of UML and OCL Models into Filmstrip Models 179

functioning on their own after the transformation. As a result, most OCL ex-
pressions of the application model can be reused after the transformation. How
the remaining aspects of the OCL elements are transformed, is described in this
section.

4.1 Variables

Certain OCL expressions like operation pre- and postconditions have predefined
variables, i.e. self and operation parameters, accessible in the expression. When
transforming these pre- and postconditions into invariants, the parameters are
lost. Also the variable self has a different value, since the OCL expression
moves from the owner class of the operation to the operation call class of the
filmstrip model. Thus each access of a variable is changed to point to the proper
attribute of the operation call class. This includes the variable self, which is
replaced with the expression self.aSelf. For postconditions, the values of the
post state are required, which are accessed using the association PredSucc. For
the application model invariants this is not necessary, as they remain at their
corresponding class and the value of self does not change.

4.2 Expression Transformation

When transforming OCL expressions for the filmstrip model most of the OCL
elements can be kept. As stated before, the expressions of the application model
do not include filmstrip elements. Therefore, they will not use elements from
outside of its originating snapshot.

However, the OCL expression allInstances() with its global property rep-
resents an exception to this rule. In the application model it is used to access all
objects from one state, i.e. all objects in a single object diagram. In the filmstrip
model a whole state is represented as one snapshot and multiple snapshots may
be part of a single object diagram. Therefore the expression allInstances()
needs a special treatment when being transformed. To replicate the functional-
ity of the expression all objects of the requested type, that are assigned to one
snapshot need to be accessed. The refinements of the association SnapElement
are used for this task. To determine the correct snapshot the value of the vari-
able self (self.aSelf for transformed pre- and postconditions) is used, again
because the original expressions do not cross snapshots. As an example in the
transformation process the OCL invariant expression Process.allInstances()
becomes self.snapshot.process.

Other elements that need alternative representations in the filmstrip model
are the expression oclIsNew() and the keyword @pre. oclIsNew() is a special
expression only available in postconditions. Because the expressions of postcon-
ditions become invariants, the expression is unusable. It checks whether an object
is created during an operation call, which equals to the statement: It was not ex-
istent in the predecessor state. In the filmstrip model this property is replicated
by checking for the predecessor of the object using the association PredSucc.

180 F. Hilken, L. Hamann, and M. Gogolla

context Scheduler::New(p:Process)
post: waiting = waiting@pre→including(p) and

ready = ready@pre and active = active@pre

Fig. 7. Postcondition of the scheduler New() operation in the application model

context New_SchedulerOpC
inv: aSelf.succ.waiting = aSelf.waiting→collectNested(p1 |

p1.succ)→asSet()→including(p.succ)
and aSelf.succ.ready = aSelf.ready→collectNested(p1 |

p1.succ)→asSet()
and aSelf.succ.active = aSelf.active.succ

Fig. 8. Transformed postcondition of the scheduler New() operation

Thus an OCL expression p.oclIsNew(), where p is a process object, becomes
p.pred.oclIsUndefined() in the filmstrip model.

The keyword @pre is also only available in postconditions. If an expression
is postfixed by this keyword, the expression is evaluated in the pre state of the
operation call. The keyword only affects one expression and can be used multiple
times in an OCL query. In the filmstrip model the pre state is explicitly available
for every operation call. To evaluate the expression in the filmstrip model, the
association PredSucc is used. The expression switches to the predecessor snap-
shot of the current object, executes the postfixed expression and switches back
to the original snapshot.

However there are a few pitfalls depending on the actual type of the cur-
rent objects. Basic types, i.e. Boolean, Real, Integer and String, are stateless
and do not need to be switched. For collection and tuple types the contents
have to be switched to the predecessor state. Particularly collection types re-
quire caution, as the OCL operation collectNested, which is used to switch
to the predecessor state, changes the type of collections from Set to Bag or
from OrderedSet to Sequence. To counteract these changes, the OCL expres-
sions asSet() and asOrderedSet() have to be added, to keep the original
behavior. Also the types when switching to and from the predecessor state
may differ, depending on the evaluated expression. Let sched1 be a scheduler
object of the filmstrip model, the expression sched1.waiting@pre in a post-
condition to access the waiting processes in the pre state, is transformed into
sched1.pred.waiting→collectNested(succ)→asSet(). Note the type of
the evaluated value: it goes from Scheduler to Set{Process} to Bag{Process}
(during the collectNested() evaluation) and back to Set{Process} again.

To give an example for the OCL transformations, Fig. 7 shows the postcon-
dition of the operation New in the scheduler application model. After the trans-
formation the expression has become an invariant of the operation call class,
the variable access changes and the keyword @pre is transformed. The result is
shown in Fig. 8.

Transformation of UML and OCL Models into Filmstrip Models 181

context Snapshot inv cycleFree: (a)
Set{ self }→closure(s | s.succ())→excludes(self)

context Snapshot inv oneFilmstrip: (b)
Snapshot.allInstances()→select(s |

s.pred().oclIsUndefined())→size() = 1
and Snapshot.allInstances()→select(s |

s.succ().oclIsUndefined())→size() = 1
context OpC inv assocClassBehavior: (c)

self.pred()→size() = 1 and self.succ()→size() = 1
and OpC.allInstances()→forAll(op |

(self.pred() = op.pred() and self.succ() = op.succ()) implies
self = op)

context SchedulerOpC inv aSelfDefined: (d)
not self.aSelf.oclIsUndefined()

context SchedulerOpC inv aSelfInPred: (e)
self.aSelf.snapshot = self.pred()

context New_SchedulerOpC inv paramPInPred: (f)
not self.p.oclIsUndefined() implies

self.p.snapshot = self.pred()
context Scheduler inv validSnapshotLinking: (g)

not self.succ.oclIsUndefined() implies
self.succ.snapshot = self.snapshot.succ()

context Scheduler inv validLinkingActive: (h)
not self.active.oclIsUndefined() implies

self.snapshot = self.active.snapshot
context Scheduler inv validLinkingReady: (i)

self.ready→forAll(c | c.snapshot = self.snapshot)

Fig. 9. Various invariants of the filmstrip model to ensure correct usage and behavior

4.3 Filmstrip Model Constraints

To complete the filmstrip transformation, additional invariants are added to
the resulting model, in order to force correct interaction of the filmstrip model
elements and being able to reproduce the application model behavior correctly.
In a first step three invariants are added to the filmstrip core elements. The
definitions are shown in Fig. 9(a)–(c). The first invariant is called cycleFree
and ensures, that the filmstrip line is free of cycles. The second invariant is
called oneFilmstrip which prohibits the existence of more than one filmstrip
per object diagram. And the last definition is called assocClassBehavior and
makes sure that two snapshots are linked with at most one operation call.

The next invariants are applied to the operation call classes generated during
the filmstrip transformation. These ensure correct values for the attributes. At
first the attribute aSelf must be defined, since it is the object, the operation is
called on. Furthermore it must point to an object in the pre state of the operation
call, i.e. it must be assigned to the snapshot accessible by the query operation
pred(). The definitions are shown in Fig. 9(d)–(e).

Additionally the attributes covering the operation parameters need similar
constraints depending on the type of the attribute. For those attributes, the

182 F. Hilken, L. Hamann, and M. Gogolla

value must be in the pre state of the operation call, the same as the value of
aSelf. Unlike the attribute aSelf the parameters may have undefined values.
An example definition of such invariant for the parameter p of the operation New
of the class Scheduler is shown in Fig. 9(f). Collection and tuple type attributes
must be covered accordingly. Types other than classes of the application model,
like String and Integer, are stateless as they cannot be assigned to a snapshot
and therefore do not need restrictions. This includes enumerations.

Lastly, a few invariants are added to the classes from the application model.
The first of these is called validSnapshotLinking and is added to all classes
transformed from the application model. It assures, that links of the association
PredSucc are only established between objects from consecutive snapshots in
the right order. An example for the class Scheduler is shown in Fig 9(g). This
invariant only checks objects, that have a successor instead of every object of a
snapshot, because objects may be deleted during an operation call and therefore
do not necessarily have a successor. Furthermore objects without a predecessor
are created during the operation call leading to its snapshot.

The next invariants affect associations from the application model. To repre-
sent a single state from the application model, objects of one snapshot may only
be linked with objects from the same snapshot. The invariant validLinking does
this by comparing the snapshot objects of the association ends. Figures 9(h)–(i)
show examples for 0..1 and * multiplicity association ends. N-ary associations
and association classes must be covered accordingly.

5 Examples of Use

This section uses the object diagram from Fig. 3 to detail some of the benefits
of the filmstrip model. The state in the object diagram demonstrates a sequence
of operation calls of the transformed scheduler as modelled by the filmstrip
model. The object diagram contains a total of four snapshots connected with
three operation calls. Thick lines indicate elements from the application model
(compare Fig. 2). The other objects and links are elements of the filmstrip model.
The order of the operation invocation is from top to bottom.

The object diagram shows a whole process cycle (as introduced in Sect. 2) of
the process with pid 1 starting from the Active state. Since all information is
available in the object diagram and therefore accessible with OCL, it is possible
to create an OCL query, which checks the order in which the process passes the
states and whether it hits every state or leaves any of them out. Other queries
can e.g. list Ready processes of certain snapshots:

Sequence{ s1, s2, s3, s4 }→collect(s | s.scheduler.ready)

→ Sequence{ Set{p2}, Set{}, Set{p5}, Set{} }
: Sequence(Set(Process))

The query lists all Ready processes for every scheduler of the given input snap-
shots. Compared to this example, starting from the snapshot objects, it is also
possible to find snapshots, in which a given process is ready next:

Transformation of UML and OCL Models into Filmstrip Models 183

Set{ p1, p2 }→collect(p | Tuple{ idProcess=p,
snapshots=Set{p}→closure(succ)→select(pp |

pp.schedulerReady <> null })

→ Set{ Tuple{ idProcess=p1, snapshots=Set{s3} },
Tuple{ idProcess=p2, snapshots=Set{} } }

: Set(Tuple(idProcess:Process, snapshots:Set(Snapshot)))

This query uses the order of the objects given by the association PredSucc to
find all future incarnations of the processes and selects those snapshots, where
the process is in the Ready state. A better overview of the resulting map is given
in the following table:

idProcess p1 p2
snapshots Set{s3} Set{}

The result shows that in this particular operation sequence the process p1 is
next Ready only in snapshot s3, whereas the process p2 is never Ready again
after the first snapshot.

Further test objectives include, whether an operation sequence exists, so that
a certain process is never scheduled or if deadlocks exist in the system. These
objectives can be expressed with OCL invariants. Some constraints can be ex-
pressed easier using OCL extended with linear temporal logic (LTL) [18]. For
example, the temporal expression

Unassigned ∧ (Unassigned until Waiting)

on processes asserts that every process begins in the unassigned state and re-
mains in that state until it finally gets into the waiting state after being assigned
to a scheduler. In the filmstrip model this property is expressible with plain OCL.
For the resulting expression it does not matter how many processes are part of
the system state and in what order they are processed. Another test scenario
is the reachability of a certain state from a given start state, which is done by
constraining the last snapshot to the desired final state.

The example system state of the filmstrip model is built up without actually
invoking any operation call. Those are only modelled using the new elements
of the filmstrip model. All invariants of the transformed model are fulfilled by
the system state. Extracting object diagrams, as they appear in the application
model, can be done by removing all but the elements with a thick border in
the state. Four distinct states remain that equal to four object diagrams from
the application model. Sequence diagrams can be extracted by looking at the
operation call objects and comparing the two snapshots linked with it. The delta
between the objects linked to the snapshots are the actions taken place during
the operation call.

Since no operation needs to be invoked to create these system states, verifica-
tion and validation tools for UML and OCL models without support for model
dynamics can be utilized to generate system states like the one in Fig 3. When
enriching the model with further constraints, e.g. test objectives using temporal
logic, those tools can be used to verify such dynamic properties in a bounded
environment.

184 F. Hilken, L. Hamann, and M. Gogolla

6 Implementation

The whole transformation process is implemented in Java as a plugin for the
USE tool [11]. This particular transformation is intended to be an integral part
of our validation and verification framework and therefore we have decided to
implement the transformation in Java. Alternatively, we could provide a pro-
gramming language-independent formulation in transformation languages like
QVT-R or ATL.

The implementation follows the definitions of the transformation in this paper
closely and has a high compatibility to different models. The plugin uses the
setup described in this paper and therefore does not require a configuration. It
transforms all UML and OCL features supported by USE and is compatible to
all models, loadable in USE. The transformation is a linear process, which results
in fast transformation times1. The plugin is available for download on the USE
website2.

7 Conclusion and Future Work

We have provided a widely applicable and automated way of transforming UML
and OCL application models into filmstrip models and presented a fully func-
tional implementation on the basis of the USE tool. Transformed models can,
however, also be processed and validated with other tools. The approach forms
a baseline for further verification and validation processes on the filmstrip model
by being compatible to a maximum number of application models with only one
generic transformation. Basic ideas of test objectives have been provided.

Future work should study automated test generation on the basis of the film-
strip model. Furthermore, the verification times of the approach needs to be
analysed in a detailed case study. Improvements to the filmstrip model include
compatibility to nested operation calls to allows for an even wider range of ap-
plication models to be transformed and more detailed tests on them. Another
field of study is the comparability of snapshot objects and the possibility to
allow multiple operation calls from one snapshot. This introduces the reusabil-
ity of snapshots to create snapshot graphs instead of linear filmstrips, similar
to Kripke structures. Thus getting closer to the specification of CTL formulas
instead of LTL formulas.

Acknowledgements. Thanks to the reviewers and Dániel Varró for their con-
structive comments.

References

1. Al-Lail, M., Abdunabi, R., France, R.B., Ray, I.: Rigorous Analysis of Temporal
Access Control Properties in Mobile Systems. In: ICECCS. IEEE (2013)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of Model Trans-
formation from UML to Alloy. Software and System Modeling 9(1), 69–86 (2010)

1 The scheduler example is transformed in less than a second.
2 http://sourceforge.net/projects/useocl/

http://sourceforge.net/projects/useocl/

Transformation of UML and OCL Models into Filmstrip Models 185

3. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: OCL meets CTL: Towards
CTL-Extended OCL Model Checking. In: Proceedings of the MODELS 2013 OCL
Workshop, vol. 1092, pp. 13–22 (2013)

4. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification of
UML/OCL Models using Constraint Programming. In: Stirewalt, R.E.K., Egyed,
A., Fischer, B. (eds.) ASE 2007, pp. 547–548. ACM (2007)

5. Clark, T.: Model Based Functional Testing using Pattern Directed Filmstrips. In:
Proceedings of the 4th International Workshop on the Automation of Software
Test, pp. 53–61. IEEE (2009)

6. Conrad, S., Turowski, K.: Temporal OCL Meeting Specification Demands for Busi-
ness Components. In: Unified Modeling Language: Systems Analysis, Design and
Development Issues, pp. 151–165. IGI Publishing (2001)

7. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specifications. In: Larsen, P.G., Wing, J.M. (eds.) FME 1993. LNCS,
vol. 670, pp. 268–284. Springer, Heidelberg (1993)

8. D’Souza, D., Wills, A.: Catalysis. Practical Rigor and Refinement: Extending
OMT, Fusion, and Objectory. Tech. rep. (1995), http://catalysis.org

9. Flake, S., Müller, W.: Past- and Future-Oriented Time-Bounded Temporal Prop-
erties with OCL. In: SEFM 2004. pp. 154–163. IEEE Computer Society (2004)

10. Gil, J., Kent, S.: Three Dimensional Software Modeling. In: Torii, K., Futatsugi, K.,
Kemmerer, R.A. (eds.) ICSE 1998. pp. 105–114. IEEE Computer Society (1998)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming 69 (2007)

12. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From Applica-
tion Models to Filmstrip Models: An Approach to Automatic Validation of Model
Dynamics. In: Fill, H.G., Karagiannis, D., Reimer, U. (eds.) Modellierung (2014)

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press,
Cambridge (2006)

14. Kanso, B., Taha, S.: Temporal Constraint Support for OCL. In: Czarnecki, K.,
Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 83–103. Springer, Heidelberg
(2013)

15. OMG (ed.): Object Constraint Language, Version 2.3.1. OMG, OMG Document
(2012), www.omg.org

16. Salas, P.A.P., Aichernig, B.K.: Automatic Test Case Generation for OCL: A Mu-
tation Approach. Tech. Rep. 321, The United Nations University – International
Institute for Software Technology (2005)

17. Snook, C., Butler, M.: UML-B: A Plug-in for the Event-B Tool Set. In: Börger, E.,
Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 344. Springer,
Heidelberg (2008)

18. Soden, M., Eichler, H.: Temporal Extensions of OCL Revisited. In: Paige, R.F.,
Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 190–205.
Springer, Heidelberg (2009)

19. Yu, L., France, R.B., Ray, I.: Scenario-Based Static Analysis of UML Class Models.
In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008.
LNCS, vol. 5301, pp. 234–248. Springer, Heidelberg (2008)

20. Ziemann, P., Gogolla, M.: OCL Extended with Temporal Logic. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 351–357. Springer, Heidelberg
(2004)

http://catalysis.org
www.omg.org

Reverse Engineering of Model Transformations

for Reusability

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

Modelling and Software Engineering Research Group
Universidad Autónoma de Madrid, Spain

http://www.miso.es

Abstract. Reuse techniques are key for the industrial adoption of
Model-Driven Engineering (MDE). However, while reusability has been
successfully applied to programming languages, its use is scarce in MDE
and, in particular, in model transformations.

In previous works, we developed an approach that enables the reuse
of model transformations for different meta-models. This is achieved by
defining reusable components that encapsulate a generic transformation
template and expose an interface called concept declaring the structural
requirements that any meta-model using the component should fulfil.
Binding the concept to one of such meta-models induces an adaptation of
the template, which becomes applicable to the meta-model. To facilitate
reuse, concepts need to be concise, reflecting only the minimal set of
requirements demanded by the transformation.

In this paper, we automate the reverse engineering of existing transfor-
mations into reusable transformation components. To make a transfor-
mation reusable, we use the information obtained from its static analysis
to derive a concept that is minimal with respect to the transformation
and maximizes its reuse opportunities, and then evolve the transforma-
tion accordingly. The paper describes a prototype implementation and
an evaluation using transformations from the ATL zoo.

Keywords: Model transformation, Reusability, Reverse engineering,
Re-engineering.

1 Introduction

Reusability is a key enabler for the industrial adoption of Model-Driven Engi-
neering (MDE). Some techniques have been proposed to reuse complete transfor-
mations, such as superimposition [19], phases [14] and genericity [13], but their
use is still an exception. As noted by [1], one reason for this situation is the lack
of repositories for selecting and effectively reusing transformations. Even the
ATL Transformation Zoo [2], which is the closest relative to a transformation
repository, consists of a collection of transformations not designed for reuse. This
contrasts with the rich ecosystems of libraries in e.g., object-oriented languages
like Java or C#, which successfully promote development with reuse.

D. Di Ruscio and D. Varró (Eds.): ICMT 2014, LNCS 8568, pp. 186–201, 2014.
c© Springer International Publishing Switzerland 2014

http://www.miso.es

Reverse Engineering of Transformations for Reusability 187

In previous works [13], we proposed a technique for transformation reuse
based on generic programming. In our approach, reusable transformation com-
ponents encapsulate a transformation template developed against so-called con-
cepts, which resemble meta-models but their elements are variables. Binding
these variables to concrete meta-model elements induces a rewriting of the tem-
plate to make it compatible with the meta-model. Thus, we obtain reusability
because the transformation component can be used with any meta-model that
can be bound to its concepts. However, this technique implies developing trans-
formations with reusability up-front, by designing suitable concepts for the input
and output domains and then writing the transformation template accordingly.
Thus, it is not possible to profit from existing transformations beyond their use
as a reference to manually implement a generic, reusable transformation. While
concepts need to be concise to facilitate reuse and include only the elements
accessed by a template, transformations are developed for concrete meta-models
(e.g. UML) which reflect the complexity of a domain and may include accidental
complexity from the transformation point of view. Hence, making an existing
transformation reusable requires both a simplification of the meta-model into a
truly reusable concept, and an according reorganization of the transformation.

In this work, we propose a semi-automatic process to reverse engineer existing
transformations into generic, reusable transformations. It has been implemented
for ATL as this is one of the most widely used transformation languages. Our
aim is to foster reuse by facilitating the transition from existing, non-reusable
transformations into reusable components that can be offered as transformation
libraries in a repository. The process starts by extracting the effective meta-
model of a transformation, which implies its static analysis to derive typing
information. Then, the effective meta-model is evolved towards a concise concept
through a series of refactorings, and the transformation is co-evolved accordingly
if needed. The approach is supported by a prototype tool, and has been evaluated
using transformations of the ATL zoo.

Organization. Section 2 presents our previous work on reusable transforma-
tions. Then, Section 3 overviews our proposal to the reverse engineering of exist-
ing transformations into reusable components, which is detailed in the following
two sections: static analysis of ATL transformations (Section 4), and extrac-
tion and customization of concepts (Section 5). We evaluate our approach in
Section 6, review related work in Section 7, and draw conclusions in Section 8.

2 Reusable Transformations

In order to build a reusable transformation, in previous work [13] we proposed
the notion of transformation components with a well-defined interface called
concept. Fig. 1 shows a generic transformation component to calculate metrics for
object-oriented languages, as well as its instantiation for a specific meta-model.
The component (label 1) includes a transformation template from a hand-made
concept characterising object-oriented languages to a metrics meta-model. We
only show an excerpt of the template, which calculates the Depth of Inheritance

188 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

rule Class2MeasureSet {
 from class: OOconcept!Class
 to set: MetricsMM!MetricsSet
 do {
 set.name <- 'class ' + class.name;
 set.metrics <- thisModule.Metric('DIT', class.DIT());
 ...
 }
}
helper context OOconcept!Class def : DIT() : Real =
 if (self.super->isEmpty())
 then 0
 else
 let dits:Set(Integer) = self.super->collect(s | s.DIT()) in
 1 + dits->select(v | dits->forAll(v2 | v>=v2))->first()
 endif;
...

TRANSFORMATION COMPONENT 1

HOT
3

to

from

BINDING

4

Metrics
MM

OO
concept

Class
super *

atts
* Attribute

Element
name : String

metrics *

MetricsSet
name : String

Metric
name : String
value: Double

2

transformation
template

concept

this instantiated template
is applicable to instances
of the UML2 meta-model

UML2
meta-model

(excerpt)

general

Generalization

Class generalization

Structural
Feature

*

Property ownedAttribute
*

NamedElement
name : String

Classifier specific

Namespace
Feature

Element NamedElement
Element.name NamedElement.name
Class Class
Class.super Class.generalization->collect(g|g.general)->excluding(self)->asSet()
Class.atts Class.ownedAttribute
Attribute Property

...
helper context UML!Class def : DIT() : Real =
 if (self.super->isEmpty())
 then 0
 else
 let dits:Set(Integer) = self.super->collect(s | s.DIT()) in
 1 + dits->select(v | dits->forAll(v2 | v>=v2))->first()
 endif;
...
helper context UML!Class def: super : Set(UML!Classifier) =
 self.generalization->collect(g | g.general)
 ->excluding(self)->asSet();
...

Fig. 1. Example of definition and usage of transformation components

Tree (DIT) metric. The concept, which is the component interface, gathers the
structural requirements that a meta-model needs to fulfil to qualify as input
meta-model for the transformation. The concept should be as simple as possible
to facilitate reuse, excluding elements that are not needed by the transformation.
In the example, the concept includes class Attribute even if it is not used in the
excerpt of the ATL template, because other rules do it.

The way to reuse a component is to bind its concepts to meta-models (label
2). While it is possible to have concepts as source and target of a transformation
template, binding only the source is more common in practice [13]. If a concept
is not bound, it is simply treated as a meta-model. By default, each element in
the concept must be bound to one meta-model element. This can be adjusted for
each concept element by attaching a cardinality that indicates how many times
it may be bound. By space constraints, we do not discuss this feature further.

In the figure, the source concept is bound to the UML2 meta-model. The
binding is performed through a dedicated domain-specific language which allows
defining correspondences. The left of each correspondence refers to a concept el-
ement, like Element, Class or Class.super. The right may include either elements
of the bound meta-model or OCL expressions defined over the meta-model.
For example, Element is bound to NamedElement, Class to Class, and reference
Class.super is bound to a collection of Class obtained through the OCL expression
Class.generalization->collect(...). We use a structural approach, so that abstract
classes in the concept may not need to be bound, in which case, any feature

Reverse Engineering of Transformations for Reusability 189

defined in it should be bound in its concrete subclasses. Thus, if Element were not
bound in the example, then name should be bound in both Class and Attribute.

The binding induces an adaptation to the transformation template (label 3),
yielding an ATL transformation applicable to the instances of the bound UML2
meta-model. In this case, the adaptation modifies the context of the helper, and
adds a new helper that calculates the superclasses of a given one (relation super

in the original concept), as given by the binding of Class.super.
Altogether, building a reusable component involves the development of a

transformation template and its associated concepts from scratch. In the ex-
ample, we developed a transformation to calculate metrics and a concept for
object-oriented languages. However, the ATL zoo already contains two trans-
formations that calculate object-oriented metrics for KM3 and UML2. Unfortu-
nately, these meta-models (especially UML2) contain a lot more elements than
the transformation needs, thus not being suitable to be used as concepts. If we
would have been able to make reusable one of these transformations, we would
have saved a lot of effort, as the resulting component would be applicable to any
object-oriented modelling language. Thus, in the rest of the paper, we present
a proposal to automate the reverse engineering of existing transformations into
reusable components. As running example, we will reverse-engineer the trans-
formation excerpt of Fig. 1, defined over the UML2 meta-model.

3 Making Existing Transformations Reusable

Promoting existing transformations into reusable components poses several chal-
lenges. First, we need to simplify the used meta-models (e.g. UML2) into con-
cepts. This process can be automated by calculating the effective meta-models of
the transformation (i.e. the classes and features accessed by the transformation
code). However, the effective meta-model might not be the ideal concept, as we
may like e.g., to merge classes or reorganize the inheritance hierarchy. Doing this
manually can be cumbersome, since it must be checked if the change breaks the
transformation behaviour (i.e., adapting the transformation would imply remov-
ing a rule), and then changing the transformation accordingly if needed. In this
section, we introduce our proposal to automate this process.

Fig. 2 shows the steps in our approach. First, the transformation to be made
reusable is selected. This implies looking up potential sources of interesting trans-
formations, such as in-house developed transformations, transformation reposi-
tories (e.g. the ATL zoo) and open source MDE tools that include model trans-
formations (e.g. MoDisco and Fornax). However, not any transformation is ad-
equate to be generalised into a generic transformation (although they still can
profit from the process to improve its quality and be deployed in a repository).
For example, the Ant to Maven transformation fully depends on the Ant and
Maven semantics, and thus it cannot be generalized to other build systems. Intu-
itively, we say that a transformation is amenable to reuse when there are variants
of the meta-models it uses (e.g. variants of UML class diagrams, different versions
of it, or meta-models for related notations, like Ecore).

190 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

static
analysis

2 extract
effective

meta-model

4

fix
errors

3

errors?

document &
package

transformation

6

deploy into
repository

7 yes

no
create

concept

5 legend

Automatic

Manual

Semi-Automatic

1

customize
concept

select
transformation

Fig. 2. Main steps in the reverse engineering of transformations into reusable units

The second step performs a static analysis of the transformation. This is
particularly needed in ATL because ATL does not enforce type correctness,
hence transformations may be ill-typed. Moreover, the creation of a suitable
concept for the transformation requires precise type information. If the analysis
detects errors, the developer is required to fix them (step 3), otherwise, the
effective meta-model of the transformation is automatically extracted (step 4).

Starting from the effective meta-model, a concept is derived, which includes
the minimum structural requirements that a meta-model should fulfil to be used
with the transformation (step 5). The concept is more concise than the effec-
tive meta-model, as it is refactored taking into account the static analysis of
the transformation, e.g., to remove unused features and intermediate abstract
classes, or to move features up or down class hierarchies. The aim is having a
concept as simple as possible to facilitate its reuse. The suitable refactorings are
automatically computed and the user is only requested to approve them. For
example, if we start from a transformation defined over the UML2 meta-model,
the system may suggest replacing class Generalization by a reference parents, as
this will facilitate future bindings. Additionally, it is possible to customize the
concept through user-selected refactorings allowing, e.g., merging two classes
into one, or changing an enumerate attribute by a set of subclasses (step 6). In
this way, designers can include tacit knowledge of the domain in the design of
the concept. A common example is the renaming of classes to assign names more
akin to the domain. Both the creation and the customization of concepts may
imply the automatic rewriting of the transformation to keep it consistent, and
they are iterative since the application of a refactoring may enable another one.

The final step (label 7) is to document and package the concepts and trans-
formation template. This can be done using a variety of formats, including text-
and contract-based documentation. Currently, we use the PaMoMo language to
describe the transformation contract via pre/post-conditions and invariants [6],
enriching the transformation with documentation and an automatically gener-
ated test suite. For space constraints, we leave out this step of the process.

4 Static Analysis of ATL Transformations

Our reverse engineering procedure needs to extract the static meta-model foot-
print of a transformation. This requires static type information regarding the
classes and features used by the transformation. In strongly typed languages

Reverse Engineering of Transformations for Reusability 191

Fig. 3. Analysis of a helper

like Kermeta [15], the type information is available in the abstract syntax tree,
but other languages, like ATL, do not provide this information. Hence, as a pre-
requisite to apply our approach, we introduce a static analysis stage to gather as
much type information as possible from the ATL transformation. This section
presents the static analyser that we have built for this purpose.

In the simplest setting, our analyser performs a bottom-up traversal of the
abstract syntax tree, propagating types from leaf nodes to the root of the ex-
pressions (i.e. using synthesized attributes). In some cases, particularly for pa-
rameters, types also need to be passed top-down (i.e. using inherited attributes).

Fig. 3 shows the analysis of an ATL helper which gathers the “active” direct
superclasses of a class. Each node of the abstract syntax tree is annotated with
its type (boxes to the right linked with dashed lines to the nodes). These types
are propagated along the nodes, as depicted by the red, curved lines (we only
show some of them). For nodes corresponding to a property access or operation
invocation, the existence of the property or operation is checked.

Even though the helper is accepted by the ATL engine, the analyser reports
a warning because the isActive property is defined in Class but not in Classifier,
which is the type of the variable c. At runtime, this expression will fail if the
model includes classifiers different from classes, like Interface objects.

Reporting these issues is important to help improving the quality of the trans-
formation and understand its constraints if they are not documented. Moreover,
the analyser should avoid raising false warnings and errors which may lead to
low-quality type information. To this end, we have enhanced the basic analysis
with the following features:

– Multiple Type Collections. In OCL, it is possible to mix objects of differ-
ent, unrelated types in the same collection, typically through the use of union

192 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

and including operations. Our analyser keeps track of these operations in order
to: (a) infer common supertypes, or (b) assign multiple potential types to
the same expression node. This provides more accurate typing information
for the effective meta-model extraction and concept creation phases.

– Implicit Casting. ATL does not support the oclAsType operation, which
complicates the analysis as there is no explicit way for downcasting. Thus,
our analysis looks for oclIsKind/oclIsTypeOf expressions that implicitly down-
cast a reference. For instance, the following variants of the expression in
Fig. 3 are deemed correct by our analyser, because the usages of oclIsKindOf

ensure that the type of c will be Class when used in the c.isActive expression.

self.generalization−>collect(g | g.general)−>
select(c | c.oclIsKindOf(UML!Class))−>
select(c | c.isActive)

self.generalization−>collect(g | g.general)−>
select(c | if c.oclIsKindOf(UML!Class) then

c.isActive else false endif)

– Structural Type Inference. As explained above, a property access may
not be resolved due to the lack of downcasting (either explicit or implicit).
In such a case, our analyser looks for the property in the subclasses of the
receptor’s type. If it is found in one or more subclasses, they are tentatively
assigned to the expression, and a warning is raised.

This list is not exhaustive, and we aim at improving the analyser since, the
better it gets, the more accurate the reverse engineering process will be. Indeed,
any other ATL analyser could be used instead of ours, whenever it provides the
meta-model footprint of the transformation. The meta-model footprint refers to
the meta-model elements involved in the transformation. This corresponds to
the set of used types, in the example {Class, Classifier, Generalization}, and the
set of used features, in the example {Classifier.generalization, Generalization.general,
Class.isActive} (see Fig. 3). For practical purposes, we distinguish two kinds of
used types: explicit types if they are explicitly mentioned in the transformation,
and implicit types if they are indirectly reached through navigation expressions.

Additionally, our analyser outputs information about call sites, which are
the locations where an operation or feature is accessed. This is the concrete
class that receives the feature access, which may be different from the class
defining the feature. Thus, for each call site, we store a pair of concrete class
and feature. In the example, the set of call sites is {〈Class, Classifier.generalization〉,
〈Generalization, Generalization.general〉, 〈Class, Class.isActive〉}. This provides more in-
formation than just the accessed features, since it is possible to know that the
Classifier.generalization feature is only accessed by Class objects.

5 Creation and Customization of Concepts

From the information extracted in the static analysis phase, we infer a concept
that will act as interface for the reusable component. For this purpose, first we
prune the meta-model to keep only the elements needed by the transformation.

Reverse Engineering of Transformations for Reusability 193

rule Class2MeasureSet {
from class: UML!Class
to set: MetricsMM!MetricsSet
do {
set.name <− ’class ’ + class.name;
set.metrics <− thisModule.Metric(’DIT’, class.DIT());

}}

helper context UML!Class def : DIT() : Real =
if (self.super−>isEmpty())
then 0
else
let dits:Set(Integer) = self.super−>collect(s | s.DIT()) in
1 + dits−>select(v | dits−>forAll(v2 | v>=v2))−>first()

endif;

helper context UML!Class def: super : Set(Classifier) =
self.generalization−>collect(g | g.general)
−>excluding(self)−>asSet();

Meta-model Footprint

Explicit types:
- Class

Implicit types:
- Classifier
- Generalization

Features:
- NamedElement.name
- Classifier.generalization
- Generalization.general

Call sites:
- 〈Class, NamedElement.name〉
- 〈Class, Classifier.generalization〉
- 〈Generalization, Generalization.general〉

Fig. 4. ATL transformation over UML2 meta-model (left). Source meta-model foot-
print obtained after the static analysis (right).

Then, we convert the pruned meta-model into a concept which may be simpli-
fied through the application of several refactorings, and customised to take into
account specific knowledge of the domain.

5.1 Extraction of Effective Meta-model

To calculate the effective meta-model, we use a pruning algorithm like the one
presented in [15], using the meta-model footprint obtained in the static analysis
as input. The algorithm keeps in the meta-model the implicit and explicit types,
and respects the inheritance hierarchies.

As an example, Fig. 4 shows a transformation defined over the UML2 meta-
model, and the footprint that our static analysis returns. This footprint is used
to extract the effective meta-model of the transformation. In particular, Fig. 5(a)
shows an excerpt of UML2, while Fig. 5(b) shows the effective meta-model that
results from applying the pruning algorithm to the transformation in Fig. 4.

5.2 Concept Creation

The effective meta-model is refactored into a more compact concept by removing
or simplifying non-essential elements for the transformation, for which we take
into account the call site information. On the one hand, the concept is the
interface for reusability, and hence large inheritance hierarchies are discouraged
because they affect comprehensibility [3]. On the other hand, concepts should
be as simple as possible to facilitate their binding to meta-models. For example,
the effective meta-model in Fig. 5(b) is not a suitable concept yet, because
it contains some classes (like NamedElement) which may be not found in every
object-oriented notation. This class appears in the effective meta-model because
it is a container for name, which is only used by Class in the transformation.

194 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

UML2 meta-
model
(excerpt)

Structural
F t

NamedElement
name : String

Classifier

NamespaceFeature

Effective
meta-
model

NamedElement
name : String

Namespace

general

Generalization

Class generalization

Feature
*

Property
ownedAttribute

*

general

GeneralizationClass

generalization
*

Classifier

Concept:
Push down
feature

general

Generalization

Class generalization
*

Named
Element

name : String

Classifier

Concept:
Remove empty class

Generalization

Class

name : String

Classifier

generalization
*

general

Concept:
Remove
assoc. class

Class

name : String

Classifier
*

generali

zation_

general

Namespace

Fig. 5. Sequence of operations to convert the UML2 meta-model into a concept

To help creating the concept, we make available a number of refactorings au-
tomating the identification of simplification opportunities, their application, and
the co-evolution of the transformation whenever it is needed. The system auto-
matically suggests refactoring opportunities to the user, along with an explana-
tion of the rationale of the proposal and its consequences (e.g. the transformation
must be co-evolved). The user only needs to approve their application, since the
refactoring locations are automatically gathered. Some of the refactorings are
likely to be always accepted, such as removing empty classes. Hence, our tooling
allows the user to configure which refactoring opportunities should be applied
automatically. Moreover, the refactorings are applied in an iterative fashion,
since the application of a refactoring may yield new refactoring opportunities.

– Push Down Feature. It moves a feature defined in a class to one or more
of its subclasses, if only the instances of such subclasses use the feature.
This information is taken from the call sites computed in the analysis phase.
The refactoring is parameterized with the maximum number of subclasses to
which the feature can be moved, in order to prevent duplication of the same
feature in too many subclasses. For example, according to the call sites, the
NamedElement.name and the Classifier.generalization features are only used by
Class instances, thus they are moved to Class (see result in Fig. 5(c)).

– Remove Empty Class. Classes without features are removed if they do
not belong to the explicit types set (i.e. they are only used in navigation

Reverse Engineering of Transformations for Reusability 195

expressions). If the removed class is both a subtype and a supertype, the
inheritance relationships are rearranged (this is called pull-up inheritance
in [4]). The goal of this refactoring is to collapse inheritance hierarchies to
enhance the comprehensibility of the concept and facilitate future bindings.
In the running example, Namespace is removed, as well as NamedElement be-
cause the previous refactoring “pushed down” its only feature (see Fig. 5(d)).

– Remove Unused Feature. Any feature appearing in the effective meta-
model but not in the footprint is removed. This is needed because the pruning
algorithm [15] leaves opposite references even when they do not appear in the
effective meta-model. Thus, this refactoring refines the pruning algorithm.

– Make Leaf Abstract Class Concrete. The effective meta-model may
include leaf abstract classes, if their subclasses do not belong to the set of
explicit types. In such a case, this refactoring makes such classes concrete,
thus enforcing their binding to some class in the bound meta-models.

– Pull Up Feature. If several subclasses with a common parent share fea-
tures, these are pulled up to the parent. This situation can arise initially in
the effective meta-model, or due to the application of other refactorings. The
refactoring can be parameterized with the minimum number of classes that
should define the feature in order to pull it up.

– Remove Association Class. An association class acts as a reference that
is able to carry properties. A typical example is Generalization in the UML2
meta-model. If a transformation does not use the properties of an associa-
tion class (except the reference to the target class, like general in UML2),
and the class does not appear in the explicit types set (except when used
in allInstances operation), then the association class can be replaced by a
simple reference in the concept. In such a case, the transformation needs
to be co-evolved, replacing the navigations through the association class by
references. The benefit of this refactoring is two-fold. Firstly, the concept
becomes simpler. Secondly, the binding will be simpler if the meta-model
also represents the same element as a reference, whereas if not, binding a
reference in a concept to a class in a meta-model is easier than the other
way round (we just need an expression like the one in Fig. 1 for Class.super).
Fig. 5(e) shows its application to the concept, which implies co-evolving
the transformation template. The details of the transformation rewriting are
left out due to space constraints. In the running example, the expression
self.generalization->collect(g | g.general)->excluding(self)->asSet() gets rewritten
into self.generalization general->excluding(self)->asSet().

5.3 Concept Customization

The previous process yields a concept, simplified to make it concise and reusable.
However, this concept still retains the nomenclature and some design decisions
from the meta-model from which it was derived. At this point, domain expertise
can be used to customise the concept so that it reflects tacit knowledge of the
domain. A typical example is the renaming of classes and features using the
terms most frequently used in the domain. Similarly, some design options may
be more common in a particular domain than others.

196 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

Next, we enumerate the domain-specific customizations currently supported,
some of them inspired by standard object-oriented refactorings [5]. Some refac-
torings induce an adaptation of the transformation template, or use the infor-
mation extracted from the static analysis of the transformation:

– Renaming of Classes and Features. It changes the name of classes and
features, rewriting the transformation to accommodate the new names.

– Extract Sub/Superclass. This is a pair of related refactorings. Extract
subclass splits a class into a superclass/subclass pair, the former optionally
abstract. Extract superclass creates a new abstract superclass for a given set
of classes, pulling up their common features. In both cases, the transforma-
tion does not need to be adapted.

– Collapse Hierarchy. This refactoring merges a class and a child class. It
can only be applied if the parent class is not an explicit type, and it has just
one child. This refactoring does not rewrite the transformation. However,
if the concept includes some reference to the superclass, then the user is
warned that if the superclass is bounded to a meta-model class with several
children, collapsing the hierarchy excludes those children from the reference.
For example, this refactoring is applicable in Fig. 5(e) because Classifer is not
an explicit type and has a unique child Class. The result is a concept with
a single node Class and a self-reference generalization general. In this case, a
warning is issued because Classifier received a reference. This means that if
the resulting concept is bound back to the UML2 meta-model, mapping Class

in the concept to Class in the meta-model, the reference generalization general

will only contain Class objects. Instead, if we keep the concept in Fig. 5(e) and
map both Classifiers in the concept and the meta-model, then the reference
may hold any subclass of Classifier (Class objects but also Interface objects).

– Replace Enumerate with Inheritance. An enumeration attribute used
to distinguish several class types is replaced by a set of subclasses, one for
each possible value. This refactoring is applicable if the enumeration literals
are only present in comparisons, getting substituted by oclIsKindOf(...).

This list is not exhaustive, as we are working on additional ones, taken from [5].
As a difference from the refactorings presented in the previous section, the iden-
tification of the customization opportunities is not automated as it is difficult
to deduce, e.g., whether the name of a class is appropriate in a domain or if
a certain notion is better represented using two classes instead of one. Thus,
users must select the locations where a customization should be performed, and
then the concept is changed accordingly and the transformation is automatically
adapted when possible.

6 Evaluation and Tool Support

We have evaluated our approach along two dimensions, described by the following
two questions. First, can we obtain a reusable component from a transformation
not designed to be reused?. Second, to what extent is the effective meta-model

Reverse Engineering of Transformations for Reusability 197

Process DSC NOH ANA ADI NAC
U
M

L

Initial meta-model 247 246 6.91 5.60 48
Compute effective meta-model 31 30 0.77 0.47 23
Ref. remove empty class (14) 17 15 0.59 0.36 9
Ref. make abstract class concrete (1) 17 15 0.59 0.36 8
Ref. push down feature (5) 17 15 0.59 0.36 8
Ref. remove empty class (2) 15 13 0.53 0.27 6
Ref. remove association class (1) 14 13 0.57 0.29 6

K
M

3

Initial meta-model 16 16 0.31 0.07 2
Compute effective meta-model 11 10 0.45 0.01 2
Ref. remove empty class (1) 10 9 0.4 0.01 1
Ref. push down feature (1) 10 9 0.4 0.01 1

DSC: design size in classes
NOH: number of hierarchies
ANA: average number of ancestors
ADI: average depth of inheritance
NAC: number of abstract classes

Fig. 6. Metrics taken at each step of the process, for UML2 and KM3. The number of
applications of each refactoring is shown between parentheses.

simpler than the original one, and the concept simpler than the effective meta-
model?. To answer these questions, we have made an experiment based on two
transformations from the ATL zoo, which calculate object-oriented metrics, one
for UML2 (UML2Measure) and the other one for KM3 (KM32Measure).

To answer the first question, we applied our reverse engineering process to
UML2Measure. We obtained a concept which we were able to bind to other object-
oriented notations like KM3, Ecore, Java/Jamopp and MetaDepth. The bind-
ings have less than 40 LOC, whereas the original transformation has about 370
LOC. This shows that our technique is effective, and yields reusable transforma-
tion components with concise concepts as interface for reuse.

To answer the second question, we reverse engineered both transformations
and measured the effective meta-models/concepts obtained along the process.
We used the object-oriented metrics proposed in [3], related to understandability
and functionality quality attributes. High values of these metrics influence neg-
atively the understandability. Fig. 6 summarizes the results. For UML2Measure,
computing the effective meta-model removes all classes not related to class dia-
grams; however, the metrics relative to hierarchies and abstract classes indicate
that the effective meta-model still has complex hierarchies. Our refactorings re-
duce this complexity to the half, obtaining a concept significantly simpler than
the meta-model. In the case of KM32Measure, the computation of the effective
meta-model and the refactorings have less impact because KM3 is a very simple
meta-modelling core, almost a concept.

We also evaluated the gain from using the final, refactored concept as interface
for reuse, w.r.t. using the effective meta-model for that purpose. Thus, we reused
UML2Measure for Ecore, KM3, Java/Jamopp and MetaDepth. In all cases, the
bindings from the concept were simpler than from the effective meta-model. For
instance, abstract classes can be left unbound in our approach; but since the
effective meta-model contained lots of them, the burden to decide what to bind
to what was much lower for the concept. The push down feature refactorings
improved the comprehensibility of the concept, because features were no longer
hidden in the middle of hierarchies. The remove association class refactoring
was particularly useful, as none of the bound meta-models had the notion of
Generalization present in UML2. Thus, we had to define fairly complex bindings
from the effective meta-model to emulate the Generalization class, but the bindings

198 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

from the concept were straightforward. Altogether, this experiment shows that
the obtained concept favours reuse more than the effective meta-model. A more
extensive evaluation to confirm this intuition is left for future work.

Additionally, we validated the correctness of our implementation, binding the
concept obtained from the UML2Measure transformation to the original UML2
meta-model. Then, we executed the original transformation and the adapted
template using several third-party UML models as input, checking with EMF
Compare that the results were in fact the same.

To support our reverse engineering process, we have built an Eclipse plug-in
integrated in the Bentō1 tool. The tool is interactive. As an example, Fig. 7 shows
part of the interaction for the KM32Measure case: (1) the original transformation
and the component information is configured, (2) the analysis phase detects
warnings and errors in the transformation, (3) the refactoring opportunities are
listed and can be easily applied, displaying the result in a tree-based visualiza-
tion. Step (3) can be repeated if the system finds new refactoring proposals due
to the application of a previous refactoring, or to apply domain customizations.
To support this step, the tool allows computing metrics and showing informa-
tion about the use of the concept in the transformation (4). Interestingly, the
metrics facility has been included by reusing the oo2measure component obtained
in the evaluation, and binding it to Ecore. Finally, the component is packaged
by generating meta-information for our Bentō tool (5).

7 Related Work

Proposals on model transformation reuse can be type-centric or type-
independent. The former include reuse mechanisms for single rules, like rule
inheritance [11], and for whole transformations, like superimposition [19] and
phases [14]. Regarding type-independent approaches, there are fine-grained tech-
niques like parameterized rules [8,10,17], and coarse-grained ones aimed at
reusing complete transformations [16]. Among these proposals, only [16] sup-
ports the reuse of transformations for arbitrary meta-models, as in our case. For
this purpose, the authors extract the effective meta-model of the transformation
as-is, and adapt the meta-model where the transformation is to be reused by
making it a subtype of the effective meta-model. In contrast, we use concepts
as reuse interface, we simplify the effective meta-model to facilitate its binding,
and we do not modify the models/meta-models to be transformed but we adapt
the transformation.

Our approach performs a static analysis of the original transformation. Even
though the ATL IDE includes a static analysis engine that proposes feature
completions, this only provides basic information which is not very accurate. The
static analyser presented in [18] allows navigating ATL transformation models.
The analyser, which is a facade to the ATL meta-model provided as a Java API,
does not provide type information or advanced analysis support.

1 The tool and a screencast are available at http://www.miso.es/tools/bento.html

http://www.miso.es/tools/bento.html

Reverse Engineering of Transformations for Reusability 199

Config.
transform.

Analysis

Refactorings 3

Analysis
of the
concept

Packaged component 5

1

2

4

Fig. 7. Process followed to reverse engineer the KM32Measure transformation

Our meta-model extraction procedure relates to works on meta-model slicing
and shrinking, though our goal is to simplify a meta-model to make an associated
transformation easier to reuse. This poses additional challenges, like the need to
identify whether a meta-model refactoring does not break the transformation.

Meta-model pruning is usually structure-preserving. For instance, the algo-
rithm presented in [15] takes a set of elements of interest of a meta-model (in
our case the meta-model footprint of the transformation) and returns a pruned
version of the meta-model containing the minimum set of elements required for
the new version to be a subtype of the original. Our approach is similar, but we
simplify the resulting meta-model, e.g., by flattening hierarchies and removing
opposite features unless both ends belong to the meta-model footprint. In [7],
static meta-model footprints are obtained from Kermeta code in order to esti-
mate model footprints. Kermeta includes type information in the syntax tree,
hence no explicit static analysis is needed. The meta-model pruning phase is in
line with [15], except that it includes all subclasses of every selected class.

A few works propose simplification techniques for meta-models, mostly based
on refactorings for object oriented systems [5]. For instance, in [4], the au-
thors present some type-safe meta-model reduction operations which guarantee
extensional equivalence between the original and the reduced meta-model

200 J. Sánchez Cuadrado, E. Guerra, and J. de Lara

(i.e. the set of models conforming to both meta-models is the same). Their
approach computes the meta-model snippet needed to represent a selection of
classifiers and features from a set of initial models, and then applies several
type-safe reduction operations to the meta-model snippet. As reduction oper-
ations, they support the flattening of hierarchies and the removal of features
declared by classifiers which were not explicit in the initial models. Type-safety
is achieved through the pull-up inheritance, push-down feature and specialize
feature type refactorings [5]. In our case, we obtain the meta-model footprint
through the static analysis of the transformation, which is more challenging.
While we support the same reduction operations (among others), their appli-
cability is restricted by the transformation, which may prevent some changes.
Moreover, we provide further refactorings whose goal is to facilitate the binding
of the concept, and may induce the transformation adaptation.

Some of our concept refactorings require adapting the transformation, like in
meta-model/transformation co-evolution [9,12]. These works distinguish three
kinds of transformation changes: fully automated, partially automated and fully
semantic. In our case, we only consider meta-model changes that lead to fully au-
tomated transformation changes, as we aim at an automated process. In contrast
to [9,12], we use typing information derived from the transformation.

Altogether, to the best of our knowledge, this work is the first attempt to
reverse-engineering model transformations for enhancing their reusability.

8 Conclusions

In this paper, we have presented our approach to reverse engineer existing trans-
formations into reusable components that can be applied to different meta-
models. For this purpose, we first perform a static analysis of the candidate
transformation to extract typing information and identify type errors. Then,
we use this information to build a concept, that is, an interface optimised and
customised to facilitate the reuse of the transformation. In this process, the
transformation may need to be adapted to make it conformant to the concept.

We have demonstrated our approach and supporting tool by performing the
reverse engineering of an existing ATL transformation to calculate object-
oriented metrics. The results show that the obtained concepts tend to be more
concise than meta-models, and therefore suitable for our purposes.

In the future, we foresee having a repository of reusable components that
can be navigated and integrated with other components, thus speeding up the
development of MDE projects. In addition to support reusability of whole trans-
formations, we will also consider extracting slices of an existing transformation,
and its subsequent re-engineering into a reusable component. We would like to
consider other kinds of components, like components for code generation or in-
place transformation, as well as further transformation languages in addition to
ATL. While we support the manual definition of PaMoMo specifications for
documenting transformation components, we plan to work on their automatic
derivation from existing transformations. Such specifications could be used as
composability criteria for components and for testing.

Reverse Engineering of Transformations for Reusability 201

Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).

References

1. Kusel, A., et al.: Reuse in model-to-model transformation languages: Are we there
yet? SoSyM, 1–36 (2013)

2. AtlanMod. Atl zoo, http://www.eclipse.org/atl/atlTransformations/
3. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality

assessment. IEEE Trans. Software Eng. 28(1), 4–17 (2002)
4. Bergmayr, A., Wimmer, M., Retschitzegger, W., Zdun, U.: Taking the pick out of

the bunch - type-safe shrinking of metamodels. In: SE 2013, pp. 85–98 (2013)
5. Fowler, M.: Refactoring. Improving the Design of Existing Code. Ad.-Wesley (1999)
6. Guerra, E., Soeken, M.: Specification-driven model transformation testing. SoSyM,

1–22 (2013)
7. Jeanneret, C., Glinz, M., Baudry, B.: Estimating footprints of model operations.

In: ICSE 2011, pp. 601–610. ACM (2011)
8. Kalnina, E., Kalnins, A., Celms, E., Sostaks, A.: Graphical template language for

transformation synthesis. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE
2009. LNCS, vol. 5969, pp. 244–253. Springer, Heidelberg (2010)

9. Levendovszky, T., Balasubramanian, D., Narayanan, A., Karsai, G.: A novel ap-
proach to semi-automated evolution of dsml model transformation. In: van den
Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 23–41.
Springer, Heidelberg (2010)

10. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W.: Surviving the heterogeneity jungle with composite mapping oper-
ators. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275.
Springer, Heidelberg (2010)

11. Wimmer, M., et al.: Surveying rule inheritance in model-to-model transformation
languages. JOT 11(2), 3:1–3:46 (2012)

12. Di Ruscio, D., Iovino, L., Pierantonio, A.: A methodological approach for the cou-
pled evolution of metamodels and atl transformations. In: Duddy, K., Kappel, G.
(eds.) ICMT 2013. LNCS, vol. 7909, pp. 60–75. Springer, Heidelberg (2013)

13. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Flexible model-to-model transfor-
mation templates: An application to ATL. JOT 11(2), 4:1–4:28 (2012)

14. Sánchez Cuadrado, J., Molina, J.G.: Modularization of model transformations
through a phasing mechanism. SoSyM 8(3), 325–345 (2009)

15. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg
(2009)

16. Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.-M.: Reusable
model transformations. SoSyM 11(1), 111–125 (2010)

17. Varró, D., Pataricza, A.: Generic and meta-transformations for model transforma-
tion engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

18. Vieira, A., Ramalho, F.: A static analyzer for model transformations. In: 3rd In-
ternational Workshop on Model Transformation with ATL (2011)

19. Wagelaar, D., Straeten, R.V.D., Deridder, D.: Module superimposition: A com-
position technique for rule-based model transformation languages. SoSyM 9(3),
285–309 (2010)

http://www.eclipse.org/atl/atlTransformations/

Author Index

Anjorin, Anthony 1, 138
Azanza, Maider 42

Blouin, Dominique 106
Braatz, Benjamin 122

Cabot, Jordi 25
Czarnecki, Krzysztof 57

de Lara, Juan 186
Dı́az, Oscar 42
Diguet, Jean-Philippe 106
Diskin, Zinovy 57
Dissaux, Pierre 106

Ehrig, Hartmut 122
Engel, Thomas 122
Erdweg, Sebastian 154
Ergin, Hüseyin 91
Ermel, Claudia 122

Garćıa, Jokin 42
Gholizadeh, Hamid 57
Gogolla, Martin 170
González, Carlos A. 25
Gottmann, Susann 122
Guana, Victor 146
Guerra, Esther 186

Hamann, Lars 170
Hermann, Frank 122
Hilken, Frank 170

Inostroza, Pablo 154
Iqbal, Muhammad Zohaib 17
Irastorza, Arantza 42

Jilani, Atif Aftab 17

Khan, Muhammad Uzair 17

Leblebici, Erhan 138

Morelli, Gianluigi 122

Nachtigall, Nico 122

Orejas, Fernando 74

Pierre, Alain 122
Pino, Elvira 74
Plantec, Alain 106

Sánchez Cuadrado, Jesús 186
Schürr, Andy 1, 138
Singhoff, Frank 106
Stroulia, Eleni 146
Syriani, Eugene 91

van der Storm, Tijs 154

Wider, Arif 57
Wieber, Martin 1

	Foreword
	Preface
	Organization
	Software Modeling and the Future of
Engineering

	Table of Contents
	Model Transformation Testing
	On the Usage of TGGs for Automated Model
Transformation Testing

	1 Introduction
	2 A TGG-Centric Test Approach
	3 Design Choices and Variability in the Approach
	3.1 Variability Regarding the Setup
	3.2 Variability Regarding the Framework

	4 A Concrete Instantiation with eMoflon
	4.1 Running Example
	4.2 Design Rationale

	5 Evaluation and Case Study
	5.1 Assessing Test Suite Quality
	5.2 Mutation Analysis Results

	6 Related Work
	7 Conclusion and Future Work
	References

	A Search Based Test Data Generation Approach for Model Transformations
	1 Introduction
	2 Related Work
	3 Automated Test Data Generation for MT
	3.1 Test Case Representation
	3.2 Problem Representation
	3.3 Test Data Generation

	4 Tool Support
	5 Case Study
	6 Conclusion
	References

	Test Data Generation for Model Transformations
Combining Partition and Constraint Analysis

	1 Introduction
	2 Overview of Our Approach
	3 OCL Analysis
	3.1 OCL Constructs Supported
	3.2 Analyzing OCL expressions

	4 Partition Identification and Test Models Generation
	4.1 Simple Mode
	4.2 Multiple-Partition Mode
	4.3 Unique-Partition Mode
	4.4 Creating Test Models

	5 Implementation and Usage Scenarios
	6 Related Work
	7 Conclusions
	References

	Testing MOFScript Transformations with HandyMOF
	1 Introduction
	2 Setting the Requirements
	3 The HandyMOF Tool
	4 The HandyMOF Architecture
	4.1 Trace Generator
	4.2 The Minimal Model Suite Finder

	5 Related Work
	6 Conclusions
	References

	Foundations of Model Synchronization

	Towards a Rational Taxonomy for Increasingly
Symmetric Model Synchronization

	1 Introduction
	2 Organizational and Informational Perspectives on Model Synchronization
	2.1 Organizational Symmetry
	2.2 Informational Symmetry
	2.3 Organizational and Informational Symmetries Together

	3 Incrementality: From the Plane of Symmetries to a 3D-Space of Synchronization Types
	3.1 Incrementality and Delta Propagation
	3.2 A 3D-Space of Model Synchronization Types

	4 Symmetrization and Its Challenges
	4.1 Symmetrization: A Tour of Synchronization Types
	4.2 Challenges of Symmetrization: Discussion

	5 Related Work
	6 Conclusion
	References

	Correctness of Incremental Model Synchronization with Triple Graph Grammars

	1 Introduction
	2 Preliminaries
	2.1 Model Synchronization with Triple Graph Grammars
	2.2 Model Transformation with Triple Graph Grammars
	2.3 Example

	3 Incremental Model Synchronization and Incremental Consistency

	4 Derivation Dependencies
	5 A Procedure for Incremental Model Synchronization
	6 Related Work and Conclusion
	References

	Towards a Language for Graph-Based Model Transformation Design Patterns

	1 Introduction
	2 Design Pattern Language for Graph-Based Model Transformation

	2.1 Abstract Syntax
	2.2 Concrete Syntax
	2.3 Informal Semantics

	3 Model Transformation Design Patterns
	3.1 Entity Relation Mapping

	3.2 Transitive Closure
	3.3 Visitor
	3.4 Fixed Point Iteration

	4 Related Work
	5 Conclusion
	References

	Applications of Model Synchronization

	Synchronization of Models of Rich Languages with Triple Graph Grammars: An Experience Report*
	1 Introduction
	2 Case Study
	2.1 AADL
	2.2 AADL Editors
	2.3 The OSATE Meta- model
	2.4 The Adele Meta-model

	3 Model Synchronization Tool Selection
	3.1 Approaches for Model Synchronization
	3.2 Tool Selection

	4 Overview of the Implemented Solution
	5 The Adele-OSATE TGG
	5.1 TGG Language Improvements
	5.2 Tooling Improvements

	6 Discussion
	6.1 Implemented Synchronization Layer
	6.2 Suggestions for Further Improvements

	7 Related Work
	8 Conclusion and Perspectives
	References

	Triple Graph Grammars in the Large
for Translating Satellite Procedures

	1 Introduction
	2 Case Study PIL2SPELL

	3 Concept for Software Translation
	4 Triple Graph Grammars with Henshin
	5 Leveraging TGGs for Software Translations in Industry
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Developing eMoflon with eMoflon
	1 Introduction and Motivation
	2 Metamodelling with Ecore
	3 Unidirectional Model Transformations with SDM
	4 Bidirectional Model Transformations with TGGs
	5 Scalability
	6 Discussion and Related Work
	7 Conclusion and Future Focus
	References

	Tracing and Reverse Engineering of Transformations
	ChainTracker, a Model-Transformation Trace
Analysis Tool for Code-Generation
Environments

	1 Introduction
	2 Background and Related Work
	3 The ChainTracker Architecture
	3.1 A Transformation Composition Example
	3.2 The ATL Parser
	3.3 The Tuple Extractor
	3.4 The Acceleo Parser
	3.5 The Tuple Visualizer

	4 Conclusions and Future Work
	References

	Tracing Program Transformations with String Origins

	1 Introduction
	2 String Origins

	2.1 Representing String Origins
	2.2 String Origins in M2T and M2M Transformations

	3 Applications of String Origins
	3.1 Hyperlinking Generated Artifacts
	3.2 Protecting Regions of Generated Code
	3.3 Resolving Symbolic Names
	3.4 Enforcing a Same Origin Policy for References

	4 Implementation
	5 Related Work
	6 Conclusion
	References

	Transformation of UML and OCL Models into Filmstrip Models
	1 Introduction
	2 Running Example
	3 UML Transformation
	3.1 Filmstrip Core Elements
	3.2 Application Model Classes
	3.3 Application Model Operations

	4 OCL Transformation
	4.1 Variables
	4.2 Expression Transformation
	4.3 Filmstrip Model Constraints

	5 Examples of Use
	6 Implementation
	7 Conclusion and Future Work
	References

	Reverse Engineering of Model Transformations
for Reusability

	1 Introduction
	2 Reusable Transformations
	3 Making Existing Transformations Reusable
	4 Static Analysis of ATL Transformations
	5 Creation and Customization of Concepts
	5.1 Extraction of Effective Meta-model
	5.2 Concept Creation
	5.3 Concept Customization

	6 Evaluation and Tool Support
	7 Related Work
	8 Conclusions
	References

	Author Index

