
User Partitioning Hybrid for Tag Recommendation

Jonathan Gemmell, Bamshad Mobasher, and Robin Burke

Center for Web Intelligence
School of Computing, DePaul University

Chicago, Illinois, USA
{jgemmell,mobasher,rburke}@cdm.depaul.edu

Abstract. Tag recommendation is a fundamental service in today’s social anno-
tation systems, assisting users as they collect and annotate resources. Our pre-
vious work has demonstrated the strengths of a linear weighted hybrid, which
weights and combines the results of simple components into a final recommen-
dation. However, these previous efforts treated each user the same. In this work,
we extend our approach by automatically discovering partitions of users. The user
partitioning hybrid learns a different set of weights for these user partitions. Our
rigorous experimental results show a marked improvement. Moreover, analysis
of the partitions within a dataset offers interesting insights into how users interact
with social annotations systems.

Keywords: User Partitioning, Personalization, Social Annotation Systems, Tag
Recommendation, Hybrid Recommendation.

1 Introduction

Social annotation systems allow users to collect online resources such as music, videos,
products or journal articles. The defining characteristic of these systems is the ability of
users to assign tags to resources. The complex interaction of these users, resources and
tags form a large multidimensional information space, often called a folksonomy. While
these information spaces connect users to content in interesting and complex ways, they
are also inherently difficult to navigate and benefit from recommender technologies.

Many forms of recommendation are possible in social annotation systems. Resources,
tags or even users are all potential outputs for a recommender. In many cases, additional
constraints can be applied. For example, a user may desire a resource recommendation
based upon a tag they have clicked on or a resource they have recently consumed. In
tag recommendation, the subject of this paper, the system recommends a set of tags to
a user as she is annotating a resource. This recommendation reduces user effort, helps
the user avoid misspellings or errors, and maintains a cleaner tag space.

Our previous work in tag recommendation for social annotation systems has focused
on the use of linear weighted hybrids that relies on the combined efforts of several
simple component recommenders. A key step is the generation of weights for each
component, indicating how much influence a component will have in the recommenda-
tion. Experimental work has shown that different folksonomies require different sets of
weights to produce optimal results.

V. Dimitrova et al. (Eds.): UMAP 2014, LNCS 8538, pp. 74–85, 2014.
c© Springer International Publishing Switzerland 2014

User Partitioning Hybrid for Tag Recommendation 75

This observation has led us to infer that users employ these systems in different
ways. For example, in a social annotation system where users annotate journal articles,
approaches that model users or resources as tags do well and get higher weights. It
seems that scientists are careful about the tags they select and often draw tags from
their domain of expertise. In contrast, models representing users as a vector of tags tend
to do poorly in a system where users annotate music. These users appear more likely to
use generic tags like ”rock” and idiosyncratic tags such as ”sawAtConcertWithSuzy.”
Yet, these inferences appear overly broad. Not every scientist is careful about the use of
tags and not every music fan is careless.

In this work, we partition users and learn a separate set of weights for each partition.
One approach may be to partition users based on some metric such as the size of the user
profile or the variability of the user’s resources. However, a preconceived metric may
not produce optimal results. Instead, we attempt to automatically discover the partitions
using an approach similar to the one in K-means clustering.

We first assign users to a random partition. Weights are trained for each partition, and
users are then reassigned to the partition in which they best perform. This procedure is
repeated until the system reaches equilibrium.

Our experimental findings show that a user partitioning hybrid outperforms previous
approaches. The technique has the added benefits of being efficient, scalable and exten-
sible. Finally, the partitions and their trained weights offer insights into how different
segments of users interact with social annotation systems.

The rest of this paper is organized as follows. In Section 2 we discuss related work.
Section 3 describes our data model and how we partition users for the user partition-
ing hybrid. Our experimental evaluation is presented in Section 4. Section 5 offers
conclusions.

2 Related Work

A common thread found in research focusing on tag recommendation is the need for an
integrative approach. FolkRank [9] is a variant of the well-known PageRank algorithm.
The graph it induces from the folksonomy connects users, resources and tags. While
known to be accurate, it suffers from the fact that it is computationally expensive to
run.

Tucker decomposition has been used to factor the three dimensional tagging data
into three feature spaces and a core residual tensor [18]. Once computed the matrices
can be used to quickly recommend tags. However, the calculation of the matrices is
prohibitive.

Pair-wise interaction tensor factorization [14, 15] formed the basis for the winning
submission of the PKDD 2009 Tag Recommendation Challenge [12]. It is a model-
based approach that generates factor matrices using a set of positive and negative ex-
amples. An iterative gradient-descent algorithm is used to optimize a ranking function
that prefers positive examples over negative ones. We include PITF in our experimen-
tal work as a means of comparison.

Our previous work in tag recommendation has demonstrated the benefits of hybrid
recommenders [3–5]. In this paper, we extend those efforts.

76 J. Gemmell, B. Mobasher, and R. Burke

3 Tag Recommendation Based on User Partitioning

This section first describes the data model used to represent social annotation systems.
Our user partitioning hybrid is then presented. So too are the the component recom-
menders that make up the hybrid.

3.1 Data Model

A social annotation system can be modeled with four sets. The first set, U, includes the
set of users that employ the system. The second set, R, includes the all resources that
any of the users have collected. The third set, T, includes every tag any user has ever
applied to a resource. The final set, A, is the set of annotations. An annotation includes
a single user, a single resource, and all tags that user has applied to that resource.

This model can be translated to a three-dimensional matrix, which we call URT. An
entry URT(u,r,t) is 1 if u annotated r with t, and is otherwise 0. This three-dimensional
matrix offers the convenience of generating aggregate projections. Aggregate projec-
tions reduce the dimensionality of the data making it easier to work with but sacrifices
some information [6, 13].

One such projection is RT. In this projection, an entry RT(r,t) is calculated as the
number of users that have assigned t to r. Two other aggregate projections are possible,
UR and UT. In these projections, an entry can be calculated as the number of times u
has tagged a resource r or the number of times he has employed a tag t respectively.
Given these projection we are able to model a user by drawing a row from either UR
or UT. In the first case, the user is being modeled as a vector over the resource space,
where the weight w(ri) in dimension i corresponds to the importance of resource, ri:
ur = 〈w(r1), w(r2)...w(r|R|)〉.

Likewise, a user could be modeled over the tag space to produce ut. Analogous
models can be created for resources (ru,rt) and tags (tu,tr) by drawing either a row or
a column from one the projections. Previous experimentation has shown that a binary
version of UR yields better results and we continue to use the binary version in this
work.

3.2 User Partitioning Hybrid

The motivation behind our approach to automatic user partitioning stems from the ob-
servation that users exhibit complex patterns in how they interact with social annotation
systems. For example, some users may consistently employ popular tags, while others
prefer idiosyncratic tags. If we could identify or predict a user’s behavior, we might be
able to select a recommendation strategy that best suits that behavior.

One possible approach would be to partition users based on some preconceived no-
tion and then independently design a recommendation strategy for each partition. How-
ever, there is no guarantee that these partitions would be optimal or that the partitioning
strategy would generalize across all social annotation systems. In this work, we instead
opt to automatically identify optimal partitions through an iterative process similar to
K-means clustering [7].

User Partitioning Hybrid for Tag Recommendation 77

First, users are randomly placed into one of k partitions. A recommendation strategy
is optimized for each partition of users. Then using a holdout set, each user is evaluated
against the optimized strategies. User are reassigned to the partition in which they per-
form best. The recommenders are once again optimized against their new collection of
users. This process iteratively repeats until the partitions stabilize.

While the approach is similar to K-means clustering, notice that users are not
assigned to partitions based on a similarity metric between themselves or to a partition-
mean. Users are instead assigned to a partition based on their performance in the
partition. In this manner, users are partitioned based on their affinity to an optimized
recommendation strategy.

More specifically, we begin by evaluating the function ψ : U × R × T → R where
a user u ∈ U , a resource r ∈ R and a tag t ∈ T results in a real-valued result p. This
value represents the prediction of how well the tag is suited for that particular user-
resource pair: ψ(u, r, t) = p. In order to generate a recommendation list, a ranked list
of suggested tags for a particular user and resource is generated. Given a user u and
resource r, we iterate over all tags and calculate their relevance. Finally, we sort the tag
by this results and return the top n tags: rec(u, r) = TOPn

t∈Tψ(u, r, t).
Our user partitioning hybrid is built from simple components that focus on specific

dimensions of the data [1]. The results are then aggregated to form the final recom-
mendation. If each component is able to generate its own score for a user-resource-tag
triple, then the hybrid can combine these scores.

More specifically, the hybrid takes a collection of tag recommenders C. When asked
to make a recommendation for a user u and resource r, it will iterate over all tags
querying each of its component recommenders, c ∈ C, for a tag, t, and combine the
results in the linear model: ψh(u, r, t) =

∑
c∈C αcψc(u, r, t) where ψh(u, r, t) is the

linear weighted relevance score of the tag and αc is the weight given to the component,
c. Scores from the components are not guaranteed to be on the same scale. We therefore
normalize the scores so that each ψc(u, r, t) falls in the interval [0,1].

The linear weighted hybrid can include any number of components. In order to max-
imize its accuracy, we train their weights using a hill climbing technique. At first, the α
vector is initialized with random positive numbers such that the sum of the vector is 1.
A holdout set is used to evaluate the performance of the hybrid with those weights. We
rely on recall (see Section 4.2).

The α vector is then randomly modified and tested against the holdout set again. If
the performance is improved, we keep the change; otherwise, we reject it. Two small
modifications ensure we are not trapped in a local maxima. First, we occasionally accept
a change to the α vector even when it does not improve the performance. Second, we
randomly restart, so that we may thoroughly examine the α space.

The α vectors in our previous work on linear weighted hybrids were trained against
all users in the dataset. As a result, recommendations for users were drawn from the
same combination of component recommenders. Our user partitioning hybrid segments
the users and trains a unique α vector for each partition of users. After optimizing the
α vectors for each partition, we reassign the users. Using the same holdout set, we
calculate a user’s recall for each partition and reassign the user to the partition in which

78 J. Gemmell, B. Mobasher, and R. Burke

he performs best. The optimization-reassignment procedure is repeated until the users
no longer move from partition to partition.

3.3 Component Recommenders

Any number of components can be included in the user partitioning hybrid. We have
purposely chosen simple components that exploit only a few dimensions of the data.
Our goal is to create an integrative recommender by combining these components rather
than building a single complex recommender. We now describe those components.

Popularity Models. Given the user-resource pair, the component may recommend the
most popular tags for that particular resource. This strategy ignores the user and is
strictly resource dependent. We define ψ(u, r, t) for the resource based popularity rec-
ommender, popr, as ψ(u, r, t) =

∑
v∈U θ(v, r, t) where θ(v, r, t) is 1 if v tagged r with

t and 0 otherwise. Likewise, a component may merely recommend the most popular
tags for a particular user. This approach does not consider the resource and conse-
quently may recommend some irrelevant tags. We define ψ(u, r, t) for the user based
popularity recommender, popu, as ψ(u, r, t) =

∑
s∈R θ(u, s, t).

User-Based Collaborative Modeling. Collaborative filtering works under the premise
that patterns exist in how users interact with the system. User-based collaborative filter-
ing [8, 11, 17] looks for similarities among users. For our work in tag recommendation,
a neighborhood, Nr, of the k most similar users to u is identified through a similarity
metric such that all the neighbors have tagged r. For any given resource the weighted
sum can then be calculated as ψ(u, r, t) =

∑
v∈Nr

σ(u, v)θ(v, r, t) where σ(u, v) is
the similarity between the users u and v.

Previous experiments have looked at many types of similarity metrics; we have found
cosine similarity to most consistently produce the best results. When users are modeled
as resources we call this approach KNNur. When users are modeled as tags we call
this technique KNNut.

Item-Based Collaborative Modeling. Another form of collaborative filtering is item-
based collaborative filtering [2, 16]. Rather than finding similarities among users, this
approach creates a neighborhood of similar resources. As before, we notice that there
are two ways in which we might model resources.

The model KNNru treats resources as a vector over the user space. The model
KNNrt treats resources as a vector over the tag space. We define Nu as the k nearest
resources to r drawn from the user profile, u, and then define the relevance score of a
tag for a user-resource pair as ψ(u, r, t) =

∑
s∈Nu

σ(r, s)θ(u, s, t).

4 Experimental Evaluation

In this section, we provide information about our three real world datasets, includ-
ing how we collected and preprocessed the data. We then describe our experimental
methodology. We first limit our analysis to the individual datasets and then draw larger
conclusions.

User Partitioning Hybrid for Tag Recommendation 79

4.1 Datasets

Our exhaustive experimental analysis was conducted on three data sets: Citeulike,
MovieLens and LastFM. After collecting the data, we generated p-cores [10]. A subset
of the data was selected such that each remaining user, resource and tag is guaranteed
to occur in at least p annotations, where an annotation represents a user, a resource and
all tags applied by that user to that resource.

Extracting p-cores from the data discards information – it eliminates infrequent
users, resources and tags – but it also yields some benefits. It reduces noise and en-
ables algorithms than might otherwise be computationally expensive. Infrequent items
are necessary when experimenting on the “long tail” or when investigating the cold
start problem. This paper, however, is focused on the complex interactions between
users, resources and tags. To this end, we are focused on the denser part of the graph.

Citeulike is used to manage and organize journal articles. It is mainly used by scien-
tists and researchers. Data is available to download directly from the site. In this paper,
we use a snapshot taken from 17 February 2009. While newer datasets are available, we
opted to use the same dataset as in our previous work in order to maintain consistency.
After we computed a 5-core, the dataset contained 2,051 users, 5,376 resources, 3,343
tags and a total of 105,873 annotations.

MovieLens is a movie recommendation website run by the GroupLens research lab
at the University of Minnesota. They collect several datasets from their users and make
these datasets available to researchers. In particular, one of those datasets contains tag-
ging information. We created a 5-core from this data. The result was 35,366 annotations
with 819 users, 2,445 resources and 2,309 tags.

LastFM provides many services for their users. User can upload playlists, share
their tastes and connect to fans with similar interests. It also allows users to annotate
songs, albums and artists. After selected 100 random users, and recursively crawling the
“friend” network we were able to download user profiles for thousands of users. This
data was denser than the previous datasets and permitted a p-core of 20. It contains
2,368 users, 2,350 resources, 1,141 tags and 172,177 annotations. These experiments
focus on the album data, but parallel experiments show similar trends on the artist and
song datasets.

4.2 Methodology

In order to train and evaluate our techniques we divide each of the user’s annotations
among five folds. We use four of these folds to build our recommenders. The fifth is
used as training data. We use this fifth tune the model parameters; for example when
selecting the number of neighbors for our collaborative filtering components. Moreover,
we use this fifth fold during the training of the component weights and the reassignment
of users to new partitions. We then discard the fifth folded, performing four fold cross
validation on the remaining folds with the discovered parameters.

Given a testing annotation, we can submit the user u and resource r to a recommen-
dation engine to produce set of recommended tags, Tr. Comparing these tags to the
holdout set, Th, we can evaluate our recommender with on recall and precision.

80 J. Gemmell, B. Mobasher, and R. Burke

Recall is a common metric for evaluating the utility of recommendation algorithms.
It measures the percentage of items in the holdout set that appear in the recommendation
set. Recall is a measure of completeness and is defined as recall = |Th ∩ Tr|/|Th|.

Precision is another common metric for measuring the usefulness of recommenda-
tion algorithms. It measures the percentage of items in the recommendation set that
appear in the holdout set. Precision measures the exactness of the recommendation al-
gorithm and is defined as precision = |Tr ∩ Tr|/|Tr|.

The recall and precision will vary depending on the size on the recommendation set.
In the following experiments we present the metrics with recommendation sets of size
one through ten.

4.3 Experimental Results

Table 1 shows relative contribution of the component recommenders as learned through
the hill climbing approach for Citeulike, MovieLens and LastFM. The first line, la-
beled “all”, describes the contributions when all users are used to train the α vectors. In
this approach, there are no partitions. For example, we see that the linear weighted hy-
brid has little use for Popu or Popr in Citeulike, but instead relies mostly on KNNrt

(50.9%). There are 2051 users in total.
The next five lines, labeled “1” through “5”, describe the contribution of the compo-

nent recommenders for five partitions. In this case, the α vectors were trained only on
the users in the partitions. As described above, users were then reassigned to the parti-
tion in which they best performed. This process repeated until the partitions stabilized.
We can see that partition 1 contains 264 users and that these users rely more strongly
on Popu and Popr, 19.1% and 16.7% respectively.

Figures 1 through 3 present the performance of the algorithms. Recommendation
sets were generated of size one through ten. These sets were then evaluated in terms
of recall and precision. Each line in the graphs represents a particular recommenda-
tion technique. For example, we see that the worst performing approach in Citeulike is
KNNur.

Citeulike. In Citeulike, we see that the three leading approaches are the interaction
technique (PITF), the linear weighted hybrid (Hybrid) and the user partitioning hy-
brid (UPH). These results confirm our supposition that an integrative approach is
needed which draws upon multiple dimensions of the data. When looking at their recall
for ten tags, they all achieve nearly identical results.

In this dataset, it seems there is little advantage in partitioning users. The reason can
be seen when inspecting the α vectors. Notice that when the hybrid is trained for all
users, KNNrt dominates the other components (50.9%). The next strongest contribu-
tor is KNNut (26.5%). In this domain, it seems that modeling resources and users in
the tag space is to be preferred. This is not surprising since the users of Citeulike are
researchers that are usually careful about how they apply their tags, often drawing on
keywords from their area of expertise.

If we turn our attention to the user partitioning hybrid, we see that four of the five
partitions have α vectors quite similar to that of the linear weighted hybrid. Partitions

User Partitioning Hybrid for Tag Recommendation 81

Table 1. Contributions of the component recommenders to the the linear weighted hybrid and the
user partitioning hybrid

Citeulike
n Popu Popr KNNur KNNut KNNru KNNrt

All 2051 0.007 0.034 0.066 0.265 0.109 0.509

1 264 0.191 0.167 0.049 0.208 0.253 0.133
2 591 0.017 0.043 0.058 0.173 0.110 0.600
3 304 0.099 0.036 0.143 0.081 0.206 0.435
4 541 0.026 0.101 0.044 0.366 0.029 0.433
5 351 0.098 0.061 0.009 0.098 0.155 0.602

MovieLens
n Popu Popr KNNur KNNut KNNru KNNrt

All 819 0.028 0.023 0.063 0.407 0.048 0.431

1 241 0.126 0.028 0.067 0.177 0.185 0.418
2 142 0.040 0.083 0.063 0.436 0.106 0.273
3 120 0.162 0.106 0.137 0.156 0.214 0.226
4 94 0.153 0.177 0.208 0.082 0.152 0.228
5 222 0.053 0.086 0.008 0.160 0.101 0.597

LastFM
n Popu Popr KNNur KNNut KNNru KNNrt

All 2368 0.017 0.032 0.011 0.471 0.430 0.038

1 347 0.187 0.083 0.383 0.304 0.216 0.173
2 465 0.036 0.035 0.125 0.039 0.403 0.362
3 401 0.179 0.205 0.019 0.340 0.162 0.094
4 750 0.011 0.047 0.024 0.425 0.383 0.110
5 405 0.061 0.158 0.060 0.340 0.335 0.047

2 through 4 all largely rely on KNNrt and KNNut. It is only the first partition – and
the smallest – that appears to require a uniquely different combination of components,
relying more strongly on the popularity based techniques than any of the other parti-
tions. These observations suggest not only that modeling users and resource as a vector
of tags is preferred, but also that users are relatively uniform in how they interact with
the system. The result is that a partitioning of users, offers little additional benefit.

MovieLens. Figure 2 show the performance of the recommendation techniques on
the MovieLens dataset. Again, PITF , Hybrid and UPH lead the pack. In this case,
Hybrid lags behind and UPH improves upon it enough to match PITF . Again, ex-
amination of the α vectors offer insights.

As in before, the linear weighted hybrid trained on all 819 MovieLens users is largely
influenced byKNNrt and KNNut. It seems that users are annotating movies with key-
words drawn from the domain such as “drama” or using the names of actors. However,

82 J. Gemmell, B. Mobasher, and R. Burke

Fig. 1. Citeulike: recall versus precision

unlike Citeulike, when we inspect the α vectors for the user partitioning hybrid we see
more variation.

Users in the first partition appear be influenced by KNNrt and KNNut, but also
tend reuse tags as evidenced by the weights in Popu and KNNru. Users in the third
and fourth partitions rely on a combination of all the component recommenders. It is
the second and fifth partitions that are most similar to the linear weighted hybrid. These
two partitions account the plurality of the users but not to the degree we saw above.
Consequently, there is a greater benefit for automatically partitioning users and training
the component weights for each one. In short, it seems that there is more variance in
how these users are interacting with the social annotation system.

LastFM. In our final dataset, we see that UPH outperforms PITF and Hybrid.
It would seem that users annotating resources in LastFM exhibit a greater variety of
patterns than we observed above. The linear weighted hybrid is composed largely of
KNNut and KNNru. The other components contribute very little.

It is the fourth partition of the user partitioning hybrid that most closely resembles
the linear weighted hybrid. We see that 750 users were assigned to this partition, the
largest allocation by far. This large crowd of users was likely influencing the linear
weighted hybrid, which trains the model on all users.

However, when users are separated into partitions, these users consolidate around
other combinations of component recommenders. We see users in the first partition

User Partitioning Hybrid for Tag Recommendation 83

Fig. 2. MovieLens: recall versus precision

Fig. 3. LastFM: recall versus precision

84 J. Gemmell, B. Mobasher, and R. Burke

taking advantage of KNNur, users in the second relying KNNrt, users in the third
partition benefiting from almost all the components except KNNur, and users in par-
tition five putting more emphasis on Popr. This variation among the α vectors and the
corresponding improvement of the user partitioning hybrid over the linear weighted hy-
brid support the notion that automatic user partitioning can improve recommenders by
catering to the needs of groups of users rather than trying to build a single model to
satisfy them all.

5 Conclusion

In this paper, we introduced a framework for tag recommendation based on automati-
cally partitioning users. A user partitioning hybrid was constructed from several simple
component recommenders. A vector of weights controlled the contribution of the com-
ponents to the hybrid. When users are partitioned, a vector is trained for each partition.
Users were then reassigned to the partition in which they performed best. The pro-
cess repeated until the partitions stabilized. Our experimental evaluation on three real
world datasets shows that automatic user partitioning can improve performance of a
linear weighted hybrid. Moreover, examination of the components and their contribu-
tion can lead to valuable insights with regard to how users are interacting with differ-
ent social annotation systems. Our future work aims to generalize this approach and
apply it to other recommendation tasks in social annotation systems such as resource
recommendation.

References

1. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-
Adapted Interaction 12(4), 331–370 (2002)

2. Deshpande, M., Karypis, G.: Item-Based Top-N Recommendation Algorithms. ACM Trans-
actions on Information Systems 22(1), 143–177 (2004)

3. Gemmell, J., Ramezani, M., Schimoler, T., Christiansen, L., Mobasher, B.: A fast effec-
tive multi-channeled tag recommender. In: European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases Discovery Challenge, Bled,
Slovenia (2009)

4. Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Improving folkrank with item-based
collaborative filtering. In: Recommender Systems & the Social Web, New York (2009)

5. Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: Hybrid tag recommendation for social
annotation systems. In: 19th ACM International Conference on Information and Knowledge
Management, Toronto, Canada (2010)

6. Gemmell, J., Schimoler, T., Ramezani, M., Mobasher, B.: Adapting K-Nearest Neighbor for
Tag Recommendation in Folksonomies. In: 7th Workshop on Intelligent Techniques for Web
Personalization and Recommender Systems, Chicago, Illinois (2009)

7. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. Journal of
the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–108 (1979)

8. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An Algorithmic Framework for Performing
Collaborative Filtering. In: 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Berkeley, California. ACM (1999)

User Partitioning Hybrid for Tag Recommendation 85

9. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies:
Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 411–426. Springer, Heidelberg (2006)

10. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag Recommenda-
tions in Folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S.,
Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514.
Springer, Heidelberg (2007)

11. Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., Riedl, J.: GroupLens: Applying
Collaborative Filtering to Usenet News. Communications of the ACM 40(3), 87 (1997)

12. Marinho, L., Preisach, C., Schmidt-Thieme, L., Cantador, I., Vallet, D., Jose, J., Cao, H., Xie,
M., Xue, L., Liu, C., et al.: ECML PKDD Discovery Challenge 2009-DC09 (2009)

13. Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Seman-
tics: Science, Services and Agents on the World Wide Web 5(1), 5–15 (2007)

14. Rendle, S., Schmidt-Thieme, L.: Factor Models for Tag Recommendation in BibSonomy. In:
ECML/PKDD 2008 Discovery Challenge Workshop, part of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Bled,
Slovenia (2009)

15. Rendle, S., Schmidt-Thieme, L.: Pairwise Interaction Tensor Factorization for Personalized
Tag Recommendation. In: Proceedings of the Third ACM International Conference on Web
Search and Data Mining, New York (2010)

16. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-Based Collaborative Filtering Recom-
mendation Algorithms. In: 10th International Conference on World Wide Web, Hong Kong,
China (2001)

17. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating “Word
of Mouth”. In: SIGCHI Conference on Human Factors in Computing Systems, Denver, Col-
orado (1995)

18. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor
dimensionality reduction. In: Proceedings of the 2008 ACM Conference on Recommender
Systems, Lausanne, Switzerland (2008)

	User Partitioning Hybrid for Tag Recommendation
	1 Introduction
	2 Related Work
	3 Tag Recommendation Based on User Partitioning
	3.1 DataModel
	3.2 User Partitioning Hybrid
	3.3 Component Recommenders

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Methodology
	4.3 Experimental Results

	5 Conclusion
	References

