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Abstract. In this paper, we present a diffusion model developed by en-
riching the generalized random graph (a.k.a. configuration model), mo-
tivated by the phenomenon of viral marketing in social networks. The
main results on this model are rigorously proved in [3], and in this pa-
per we focus on applications. Specifically, we consider random networks
having Poisson and Power Law degree distributions where the nodes are
assumed to have varying attitudes towards influence propagation, which
we encode in the model by their transmitter degrees. We link a condi-
tion involving total degree and transmitter degree distributions to the
effectiveness of a marketing campaign. This suggests a novel approach to
decision-making by a firm in the context of viral marketing which does
not depend on the detailed information of the network structure.

1 Introduction

The penetration of internet and the emergence of huge online social networks in
the last decade has lead to a decline of the conventional channels of communi-
cation and consequently, marketing through them. This has given the firms an
opportunity to reach a large subset of their customers through innovative viral
marketing campaigns. But the wild uncertainty inherent in whether a market-
ing campaign goes viral or not, makes it markedly different from conventional
marketing and calls for a fundamentally different approach to decision-making.

1.1 Results

In this paper, we introduce a generalized diffusion dynamic on configuration
model. Configuration model, while lacking the community structure of real-world
social networks, approximates the degree distribution of these networks quite
well. The diffusion dynamic that we consider can be intuitively described in
the following way: an influenced individual in the network influences a random
subset of its neighbours, the distribution of which depends on the effectiveness
of the marketing campaign.
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We illustrate large-network-limit results on this model, rigorously proved in
[3]. We present a condition involving the total degree and transmitter degree
distribution of a uniformly chosen node which, if satisfied, will allow, with a
non-negligible probability, the campaign to go viral when started from this par-
ticular node. Given this condition, we present an estimate of the fraction of the
population that is reached when the campaign does go viral. We then state that
under the same condition, the fraction of good pioneers in the network, i.e.,
the individuals who if targeted initially will lead the campaign to go viral, is
non-negligible as well, and we give an estimate of this fraction. We analyze in
detail the process of influence propagation on configuration model having two
types of degree-distribution: Poisson and Power Law. Three examples illustrat-
ing the dynamic of influence propagation on these two networks are considered:
(1) Bernoulli transmissions; (2) Node percolation; (3) Coupon-collector trans-
missions.

Based on the above analysis, we suggest what statistical data a firm should
collect from the pioneers of its marketing campaign, and based on these, how to
estimate the effectiveness of the campaign and make a cost-benefit analysis.

1.2 Related Work

The diffusion-on-random-graph models have been previously studied in the con-
text of the spread of epidemics in population ([1]), and more recently, to under-
stand the propagation of social and economic behavior through a social network
([7], [2], [9]).

In the context of viral marketing, one approach is to use the detailed informa-
tion about the network structure and the past instances of influence propagation
to come up with a predictor of the most influential individuals who should be
targeted for future campaigns ([6]). Another approach is to take into account the
current campaign’s effectiveness based on the detailed temporal and structural
information regarding the ongoing diffusion in the network ([4]). Our analysis
follows the latter approach, but differs in that we require much less information
regarding the network and the ongoing diffusion in it.

2 Model and Theoretical Claims

In this section, we introduce our model and informally describe the results which
are rigorously proved in [3].

2.1 Model

Consider that the only information available to you about an online social net-
work is the number of friends that a subset of network members have. We will
work with a uniform random network which agrees with the statistics that you
can obtain from the available information. Such a uniform random network is
obtained by constructing what is known as configuration model (CM); cf [8]. This
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random network is realized by attaching half-edges to each vertex corresponding
to its degree (which represents here, the number of friends) and then uniformly
pair-wise matching them to create edges. We assume this model of the social
network throughout the paper and will use interchangeably the terms “social
graph” and “random network” meaning precisely the CM. We call the vertices
of this graph “nodes” or “users” and graph neighbours “friends”.

We consider a marketing campaign started from some initial target called
pioneer in this network. A person influences a subset of its friends who further
propagate the campaign in the same manner. The number of friends that a
person influences depends on a particular campaign. To model this dynamic, we
enhance the configuration model by partitioning the half-edges into transmitter
half-edges, those through which the influence can flow and receiver half-edges
which can only receive influence. So, if a person A influences his friend B in the
network, then in our representation, A has a transmitter half-edge matched to
the transmitter or receiver half-edge of B.

Let D and D(t) denote the random variables corresponding to the empiri-
cally observed distributions of total degree and transmitter degree respectively.
For notational convenience, we will interchangeably use random variables and
their distributions to mean the same thing. Empirical receiver degree distribu-
tion, D(r), is D −D(t). Then we have the following large-network-limit results,
rigorously proved in [3], but only informally stated here.

2.2 Theoretical Claims

Claim 1. Starting from a randomly selected pioneer, the campaign can go viral,
i.e., reach a strictly positive fraction of the population, with a strictly positive
probability if and only if

E[D(t)D] > E[D(t) +D]. (1)

Note that E[D(t)D] > E[D(t) +D] implies

E[D(D − 2)] > 0 (2)

and recall that this latter condition is necessary and sufficient 1 for the existence
of a (unique) connected component of the underlying social graph, called big
component, encompassing a strictly positive fraction of its population; cf [5].
Obviously, our campaign can go viral only within this big component.

Call good pioneers the pioneers from which the campaign can go viral.

Claim 2. If (1) is satisfied, then the population reached is, more or less, the
same, irrespective of the good pioneer chosen initially.

Let C∗ denote the population reached by the campaign when started from a
good pioneer and C

∗
the set of good pioneers.

1 Under a few additional technical assumptions, as 0 < E[D] < ∞, P{D = 1} > 0,
which we tacitly assume throughout the paper.
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Claim 3. If (1) is satisfied, then the set of good pioneers C
∗
also forms a strictly

positive fraction of the population.

The next claim gives the estimates on the size of C∗ and C
∗
. Let

H(x) := E[D]x2 − E[D(r)]x− E[D(t)xD] (3)

and

H(x) := E[D]x2 − E[D(t)xD(t)

]− E[D(r)xD(t)

]x. (4)

If condition (1) is satisfied, then H(x) and H(x) have unique zeros in (0, 1).
Call them ξ and ξ respectively. Denote also by GD(x) = E[xD] and GD(t)(x) =

E[xD(t)

], the probability generating function (pgf) of D and D(t), respectively.

Claim 4. If (1) is satisfied and n denotes the size of network population, then
for n large,

|C∗|
n

≈ 1−GD(ξ) =: α > 0 (5)

and
∣
∣
∣C

∗∣∣
∣

n
≈ 1−GD(t)(ξ̄) =: α > 0. (6)

Note that α can be interpreted as the probability that the campaign goes viral
when started from a randomly chosen pioneer.

See [3] for formal statements and proofs of the above claims. Recall also
from [5] that under assumption (2), the size, |C0|, of the big network component,

C0, satisfies for n large, |C0|
n ≈ 1 − GD(ξ0) =: α0 > 0, where ξ0 is the unique

zero of H0(x) := E[D]x2 −xG′
D(x) in (0, 1), with G′

D(x) denoting the derivative
of the pgf of D.

3 Examples

Let us consider the results of Section 2 in the context of a few illustrative network
examples.

3.1 Bernoulli Transmissions

Let us assume some arbitrary distribution of the degree D satisfying (2) (to
guarantee the existence of the big component of the social graph). Suppose that
each user decides independently for each of its friends with probability p ∈ [0, 1]
whether to transmit the influence to him or not. We call this model, CM with
Bernoulli transmissions, and p, the transmission probability. Note that given the
total degree D, the transmitter degree Dt is Binomial(D, p) random variable.
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Proposition 1. In the CM with a general degree distribution D satisfying (2)
and Bernoulli transmissions, the campaign can go viral if and only if the trans-
mission probability p satisfies

p >
E[D]

E[D2]− E[D]
. (7)

In this latter case, the fraction of the influenced population and the fraction of
good pioneers are approximately equal to each other, i.e., |C∗|/n ≈ |C̄∗|/n =: α,
for large n, and satisfy

α = 1−GD(ξ) , (8)

where ξ is the unique zero of the function E[D]((x− 1)/p+1)−G′
D(x) in (0, 1).

Proof. Bernoulli transmissions with (3) and (4) imply H(x) = E[D]x2 − (1 −
p)E[D]x−pxG′

D(x) and H(x) = E[D]x2−G′
D(1−p(1−x)). MoreoverGD(t)(x) =

GD(1 − p(1 − x)). Dividing H(x) by px and substituting y := 1 − p(1 − x) in
H(x) and GD(t)(x) completes the proof.

Consider two specific network degree examples.

Example 1 (Poisson degree). When D has Poisson distribution of parameter λ
(in which case the CM is asymptotically equivalent to the Erdös-Rényi model)
the condition (7) reduces to λp > 1 and the fraction of the influenced population
and good pioneers (8) is equal to α = (1 − ξ)/p, where ξ is the unique zero of
the function (x− 1)/p+ 1− exp(λ(x− 1) in (0, 1).

More commonly observed degree-distributions in social networks have power-
law tails.

Example 2 (Power-Law (“zipf”) degree). Assume D having distribution P{D =
k} = k−β/ζ(β) k = 1, 2, . . ., with β > 2, where ζ(β) is the zeta function. Recall
that the pgf of D is equal to GD(x) = Liβ(x)/ζ(β), where Liβ(x) =

∑∞
k=1 k

−βxk

is the so-called poly-logarithmic function. Condition (2) for the existence of the
big component is equivalent to ζ(β− 2)− 2ζ(β− 1) > 0, which is approximately
β < 3.48. Condition (7) reduces to p > ζ(β − 1)/(ζ(β − 2) − ζ(β − 1)) and
the fraction of the influenced population and good pioneers (8) is equal to α =
1−Liβ(ξ), where ξ is the unique zero of the function xζ(β − 1)((x− 1)/p+1)−
Liβ−1(x) in (0, 1).

Recall from Proposition 1, that Bernoulli transmissions lead to the model
where the fraction of the influenced population and the fraction of good pioneers
are asymptotically equal to each other. In what follows we present two scenarios
where the set of good pioneers and the influenced population have different size.

3.2 Enthusiastic and Apathetic Users or Node Percolation

Consider CM with a general degree distribution D satisfying (1), whose nodes
either transmit the influence to all their friends (these are “enthusiastic” nodes)
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or do not transmit to any of their friends (“apathetic” ones). Let p denote the
fraction of nodes in the network which are enthusiastic. Note that this model
corresponds to the node-percolation 2 on the CM. Thus, in this model, given D,
D(t) = D with probability p and D(t) = 0 with probability 1− p.

Proposition 2. Consider node-percolation on the CM with a general degree dis-
tribution D satisfying (2). The campaign can go viral if and only if the fraction p
of enthusiastic users satisfies condition (1); the same as for the Bernoulli model.
Moreover, in this case, the fraction α of reached population is also the same as in
the network with Bernoulli transmissions, i.e., equal to (8) with ξ as in Claim 1.
However, the fraction α of good pioneers is equal to α = pα.

The proof follows easily from the general results of Section 2.2. Note that the
campaign on the network with enthusiastic and apathetic users can reach the
same population as in the Bernoulli transmissions, however there are less good
pioneers.

3.3 Absentminded Users or Coupon-Collector Transmissions

Consider again CM with a general degree distribution D satisfying (1). Suppose
that each user is willing (or allowed) to transmit K messages of influence. In this
regard, it randomly selects, K times, one of his friends with replacement (as if it
forgets its previous choices). An equivalent dynamic of the influence propagation
can be formulated as follows: every influenced user, at all times, keeps choosing
one of its friends uniformly at random and transmits the influence to him; it
stops forwarding the influence after K transmissions.

In this model, the transmission degree, D(t), corresponds to the number of
collected coupons in the classical coupon collector problem with the number of
coupons being the vertex degree,D, and the number of trials,K. The conditional
distribution of D(t), given D, can be expressed as follows: P{D(t) = k |D } =

D!
(D−k)!D−K

{
K
k

}

, where {K
k } = 1/k!

∑K
i=0(−1)i

(
k
i

)

(k−i)K is the Stirling number

of the second kind.
Calculating the pgf for this distribution is tedious and we do not present

analytical results regarding this model but only simulations and estimation. As
we shall see in Section 3.4, in this model, the influenced population is smaller
than the population of good pioneers.

3.4 Numerical Examples

We will present now a few numerical examples of networks and diffusion models
presented above.

2 Different than edge-percolation.
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Simulations. In all our examples, we simulate the enhanced configuration
model on N = 1000 nodes assuming some particular node degree distribution,
D, and influence propagation mechanism modeled by the conditional distribu-
tion of the transmitter degree, D(t). More precisely, we sample the individual

node degrees and transmitter degrees (Di, D
(t)
i ) i = 1 ... N independently from

the joint distribution of (D,D(t)) and use these values to construct an instance
of our enhanced CM by uniform pairwise matching of the half-edges. We calcu-
late the relative size of the influenced population and the set of good pioneers
through the exploration of the influenced components for all nodes. 3

Estimation. We adopt also the following “semi-analytic” approach: Using the

sample (Di, D
(t)
i ), i = 1, . . . , N used to construct the CM, we consider estima-

tors, ĜD(x) := 1
N

∑N
i=1 x

Di , Ĝ
(t)
D (x) := 1

N

∑N
i=1 x

D
(t)
i , Ĥ(x) := 1

N

∑N
i=1

(

Dix
2−

(Di−D
(t)
i )x−D

(t)
i xDi

)

, Ĥ(x) :=
∑N

i=1

(

Dix
2−D

(t)
i xD

(t)
i −(Di−D

(t)
i )xD

(t)
i +1

)

,

of the functions, GD(x), GD(t)(x), H(x) and H(x), respectively. We calculate
estimators α̂ and α̂ of the fraction of the influenced population, α, and of good
pioneers, α, using Claim 5 and the estimated functions, ĜD(x), ĜD(t)(x), Ĥ(x)

and Ĥ(x). (That is, we find numerically, zeros, ξ̂ and ξ̂ of Ĥ(x) and Ĥ(x), re-
spectively, and plug them into (5) and (6), with ĜD(x) and ĜD(t)(x) replacing
GD(x) and GD(t) (x).)

Note that in the semi-analytic approach, we do not need to know/construct
the realization of the underlying model. This observation is a basis of a campaign
evaluation method that we propose in Section 4. In fact, in reality one usually
does not have the complete insight into the network structure and needs to rely
on statistics collected from the initially contacted pioneers.

Analytic Evaluation. Finally, for all models, except the “coupon-collector”
one of Section 3.3, we calculate numerically, the values of α and α using the
explicit forms of all the involved functions. (For the coupon-collector model, we

obtained the “true” values of α and α from a sample of (Di, D
(t)
i ) of a larger

size N .)
When comparing these analytic solutions to the simulation and semi-analytic

estimates, we see that in some cases, N = 1000 is not big enough to match the
theoretical values. One can easily consider larger samples, however, we decided
to stay with N = 1000 to show how the quality of the estimation varies over
different model assumptions. Also, N = 1000 seems to be near the lower range
of the number of initial pioneers one needs to contact to produce a reasonable
prognosis for the development of the campaign.

3 The simulations are run in python by modifying code from the networkx package.
Remark that the directed configuration model in networkx package is a completely
different model despite superficial similarity.
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Fig. 1. CM with Poisson degree of mean λ = 4 and Power-Law degree of parameter β =
2.180 (corresponding to E[D] ≈ 4), both with Bernoulli transmissions with probability
p. The set of good pioneers and the influenced population are of the same size. In the
Poisson case their fraction is strictly positive for p > 1/λ while in the Power-Law case
it is so for all p > 0 whenever β ≤ 3.
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Fig. 2. CM with Poisson and Power-Law degree of mean E[D] ≈ 1.35 (λ = 1.35 and
β = 3.035) and Bernoulli transmissions. The set of good pioneers and the influenced
population are of the same size for each model. One observes the phase transition in
both models, at p = 1/λ and p = ζ(β − 1)/(ζ(β − 2)− ζ(β − 1), respectively.

Case Study. Figure 1 presents Bernoulli influence propagation on the CM
with Poisson and Power-Law degree distribution of mean E[D] = 2. Bernoulli
transmissions imply that the sets of good pioneers and influenced population are
of the same size. The Power-Law degree with β < 3 leads to a positive fraction
of good pioneers and influenced component for all p > 0, while for the Poisson
degree distribution one observes the phase transition at p = 1/λ. That is, the
fractions of good pioneers and the influenced component are strictly positive, if
and only if, p > 1/λ.

Figure 2 shows again the model with Bernoulli transmissions on CM with
Poisson and Power-Law degree distribution, this time for E[D] ≈ 1.35 for which
both models exhibit the phase transition in p.

A general observation is that the Power-Law degree distribution gives smaller
critical values of p for the existence of a positive fraction of influenced popula-
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Fig. 3. Node percolation (“apathetic and enthusiastic users”) on CM with Poisson and
Power-Law degree of mean E[D] ≈ 2 (λ = 2 and β = 2.45). The influenced component
and the critical values for p are equal to these for the CM with Bernoulli transmissions.
The set of good pioneers is smaller than the influenced population. We do not observe
the phase transition for the Power-Law model since β < 3.
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Fig. 4. Coupon collector dynamics “absentminded users”) on CM with Poisson and
Power-Law degree of mean E[D] ≈ 2 (λ = 2 and β = 2.45). The set of good pioneers is
bigger than the influenced population.

tion and good pioneers, however for these, the size of these sets increase more
slowly with the transmission probability, p, in the Bernoulli model. Obviously,
the values of α = α at p = 1 correspond to the size of the biggest connected
component of the underlying CM.

Figure 3 shows the node percolation (or the case of “apathetic and enthusiastic
users”) on CM with Poisson and Power-Law degree distribution of mean E[D] ≈
4. Note that the influenced components have the same size as for Bernoulli
transmissions, however good components are smaller. The critical values of p for
the phase transition are also the same as for Bernoulli transitions. Note that
the estimation of the node percolation model is more difficult than the Bernoulli
transmissions because of higher variance of the estimators.

Finally, Figure 4 shows that the coupon collector dynamic (the case of “absent-
minded users”) on CM produces bigger sets of good pioneers than the influenced
population.
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4 Application to Viral Campaign Evaluation

From the point of view of a firm which has no prior information about the
network structure and the campaign effectiveness, it could be useful to assume
that the network is a uniform random network, with the total degree and trans-
mitter degree distributions estimated using the information collected from the

initial set of pioneers targeted. The collected information, denote it by (Di, D
(t)
i ),

i = 1, . . . , N , allows to estimate various quantities relevant to the potential de-
velopment of the ongoing campaign, as we did in 3.4. Particularly relevant are
the estimates for the following.

Network fragmentation If the value of the estimator, E[D2−2D] ≈ 1
N

∑N
i=1

(

D2
i−

2Di

)

, is not sharply larger than zero, then the firm must assume that the network

is too fragmented to allow for viral marketing (condition (2)).

Effectiveness of the campaign If one estimates that the network is not too frag-
mented, then the firm can evaluate the effectiveness of the ongoing campaign

using an estimate of E[DD(t) −D(t) −D] ≈ 1
N

∑N
i=1

(

DiD
(t)
i −Di −D

(t)
i

)

(con-

dition (1)). If the value of this estimator is sharply larger than zero, then the
firm can assume that there is a realistic chance of picking a good pioneer via
random sampling and make the campaign go viral.

The estimates of the fraction of good pioneers and the vulnerable population
can also be considered to make a cost-benefit analysis of the marketing campaign.

5 Conclusion

Diffusion studies on networks generally tend to focus on the component that
can be reached starting from an initial target. Our work in [3], over and above,
focuses on the set of good pioneers based on a new approach which consists of
identifying this subset as the big component of a reverse dynamic in which an
“acknowledgment” message is sent in the reversed direction on every edge thus
allowing to trace all the possible sources of influence of a given vertex.

In this paper, we consider what insight the graph-theoretical results obtained
through this approach provide about the phenomenon of viral marketing on
online social networks, particularly to a firm trying to decide how much to spend
on a marketing campaign which might go viral or not.
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