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Preface

The 20th International Computing and Combinatorics Conference (COCOON
2014) was held during August 4–6, 2014 in Atlanta, Georgia, USA. COCOON
2014 provided a forum for researchers working in the area of theoretical computer
science and combinatorics.

The technical program of the conference includes 51 contributed papers se-
lected by the Program Committee from 110 full submissions received in response
to the call for papers. All the papers were peer reviewed by at least three Program
Committee members or external reviewers. The papers cover various topics, in-
cluding algorithms and data structures, algorithmic game theory, approximation
algorithms and online algorithms, automata, languages, logic, and computabil-
ity, complexity theory, computational learning theory, cryptography, reliability
and security, database theory, computational biology and bioinformatics, com-
putational algebra, geometry, number theory, graph drawing and information
visualization, graph theory, communication networks, optimization, and parallel
and distributed computing. Some of the papers will be selected for publication in
special issues of Algorithmica, Theoretical Computer Science (TCS), and Journal
of Combinatorial Optimization (JOCO). It is expected that the journal version
papers will appear in a more complete form.

The proceeding also includes 8 papers selected from a workshop on compu-
tational social networks (CSoNet 2014) co-located with COCOON 2014, held
on August 6th, 2014. An independent Program Committee was chaired by Dr.
Yingshu Li and Dr. Yu Wang. We appreciate the work by the CSoNet Program
Committee that helped with enriching the conference topics.

We would like to thank the Program Committee members and external re-
viewers for volunteering their time to review conference papers. We would like to
extend special thanks to the publication, publicity, and local organization chairs
for their hard work in making COCOON 2014 a successful event. Last but not
least, we would like to thank all the authors for presenting their works at the
conference.

August 2014 Zhipeng Cai
Alex Zelikovsky
Anu Bourgeois
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Building above Read-once Polynomials:

Identity Testing and Hardness of Representation

Meena Mahajan1, B.V. Raghavendra Rao2, and Karteek Sreenivasaiah1

1 The Institute of Mathematical Sciences, Chennai, India
{meena,karteek}@imsc.res.in

2 Indian Institute of Technology Madras, Chennai, India
bvrr@cse.iitm.ac.in

Abstract. Polynomial Identity Testing (PIT) algorithms have focussed
on polynomials computed either by small alternation-depth arithmetic
circuits, or by read-restricted formulas. Read-once polynomials (ROPs)
are computed by read-once formulas (ROFs) and are the simplest of
read-restricted polynomials. Building structures above these, we show:

1. A deterministic polynomial-time non-black-box PIT algorithm for∑(2) ·∏ ·ROF.
2. Weak hardness of representation theorems for sums of powers of

constant-free ROPs and for 0-justified alternation-depth-3 ROPs.

1 Introduction

The Polynomial Identity Testing (PIT) problem is the most fundamental com-
putational question that can be asked about polynomials: is the polynomial
given by some implicit representation identically zero? The implicit representa-
tions of the polynomials can be arithmetic circuits, branching programs etc., or
the polynomial could be presented as a black-box, where the black-box takes
a query in the form of an assignment to the variables and outputs the evalu-
ation of the polynomial on the assignment. PIT has a randomized polynomial
time algorithm on almost all input representations, independently discovered by
Schwartz and Zippel [Sch80, Zip79]. However, obtaining deterministic polyno-
mial time algorithms for PIT remained open since then. In 2004, Impagliazzo
and Kabanets [KI04] showed that a deterministic polynomial time algorithm for
PIT implies lower bounds (either NEXP →⊂ P/poly or permanent does not have
polynomial size arithmetic circuits), thus making it one of the central problems
in algebraic complexity. Following [KI04], intense efforts over the last decade
have been directed towards de-randomizing PIT (see for instance [SY10, Sax14]).
The attempts fall into two categories: considering special cases ([Sax14]), and
optimizing the random bits used in the Schwartz-Zippel test [BHS08, BE11].

The recent progress on PIT mainly focusses on special cases where the poly-
nomials are computed by restricted forms of arithmetic circuits. They can be
seen as following one of the two main lines of restrictions: 1. Shallow circuits
based on alternation depth of circuits computing the polynomial. 2. Restriction

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 1–12, 2014.
c∞ Springer International Publishing Switzerland 2014



2 M. Mahajan, B.V.R. Rao, and K. Sreenivasaiah

on the number of times a variable is read by formulas (circuits with fanout 1)
computing the polynomial.

The study of PIT on shallow circuits began with depth two circuits, where
deterministic polynomial time algorithms are known even when the polynomial
is given as a black-box [BOT88, KS01]. Further, there were several interesting
approaches that lead to deterministic PIT algorithms on depth three circuits
with bounded top fan-in [DS07, KS07]. However, progressing from bounded fan-
in depth three circuits seemed to be a big challenge. In 2008, Agrawal and
Vinay [AV08] explained this difficulty, showing that deterministic polynomial
time algorithms for PIT on depth four circuits implies sub-exponential time de-
terministic algorithms for general circuits. There have been several interesting
approaches towards obtaining black-box algorithms for PIT on restricted classes
of depth three and four circuits, see [Sax14, SY10] for further details. Recently,
Kamath, Kayal and Saptharishi [GKKS13] showed that, over infinite fields, de-
terministic polynomial time algorithms for PIT on depth three circuits would
also imply lower bounds for the permanent.

A formula computing a polynomial that depends on all of its variables must
read each variable at least once (count each leaf labeled x as reading the vari-
able x). The simplest such formulas read each variable exactly once; these are
Read-Once Formulas ROFs, and the polynomials computed by such formulas
are known as read-once polynomials (ROP). In the case of an ROP f presented
by a read-once formula computing it, a simple reachability algorithm on for-
mulas can be applied to test if f ≡ 0. Shpilka and Volkovich [SV08] gave a
deterministic polynomial time algorithm for PIT on ROPs given as a black-box.
Generalizing this to formulas that read a variable more than once, they obtained
a deterministic polynomial time algorithm for polynomials presented as a sum
of O(1) ROFs. Anderson et. al [AvMV11] showed that if a read-k formula, with
k ∈ O(1), is additionally restricted to compute multilinear polynomials at every
gate, then PIT on such formulas can be done in deterministic polynomial time.
The result by [AvMV11] subsumes the result in [SV08] since a k-sum of read-
once formulas is read-k and computes multilinear polynomials at every gate.
However, both [SV08] and [AvMV11] crucially exploit the multilinearity prop-
erty of the polynomials computed under the respective models. In [MRS14], the
authors explored eliminating the multilinear-at-each-gate restriction, and gave a
non-blackbox deterministic polynomial time algorithm for read-3 formulas. How-
ever for the case of Read-k formulas for k ≥ 4, even the non-blackbox version
of the problem is open. Note that multilinearity checking itself is equivalent to
PIT on general circuits [FMM12].

Our Results: In this paper, we explore further structural properties of ROPs
and polynomials that can be expressed as polynomial functions of a small num-
ber of ROPs. Our structural observations lead to efficient algorithms on special
classes of bounded-read formulas.

We attempt to extend the class considered in [SV08] (namely, formulas of
the form

∑
i fi where each fi is an ROF) to the class of polynomials of the

form
∑k

i=1 figi where the fis and gis are presented as ROFs and k is some
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constant. These are read-2k polynomials, not necessarily multilinear. Over the
ring of integers and the field of rationals, we can give an efficient deterministic
non-blackbox PIT algorithm for the case k = 2; the polynomial is f1f2 + g1g2
where f1, f2, g1, g2 are all read-once polynomials presented by ROFs. This class
can also be seen as a special case of read-4 polynomials. Our algorithm exploits
the structural decomposition properties of ROPs and combines this with an algo-
rithm that extracts greatest common divisors of the coefficients in an ROP. The
algorithm easily generalises to polynomials of the form f1f2f3 · · · fm+g1g2 · · · gs
where fis and gis are presented as ROFs, butm, s can be unbounded; that is, the

class
∑(2) ·

∏
·ROF. Note that this class of polynomials includes non-multilinear

polynomials and also polynomials with no bound on the number of times vari-
ables are read. Thus it is incomparable with the classes considered in [SV08],
[AvMV11] and [MRS14]. This result is presented in Section 3, Theorem 1.

(At a recent Dasgtuhl seminar 14121, Amir Shpilka pointed out to the first
author that this method can be adapted to work over any field. That is, over

any field, identity testing for polynomials of the form
∑(2) ·

∏
·ROF can be done

deterministically and efficiently. Details will appear in the full version.)
Central to the PIT algorithm in [SV08] is a “hardness of representation”

lemma showing that the polynomial Mn = x1x2 · · ·xn, consisting of just a single
monomial, cannot be represented as a sum of less than n/3 ROPs of a particular
form (weakly 0-justified). More recently, a similar hardness of representation
result appeared in [Kay12]: if Mn is represented as a sum of powers of low-
degree (at most d) polynomials, then the number of summands is exp(Ω(n/d)).
As is implicit in [Kay12], such a hardness of representation statement can be
used to give a PIT algorithm. We analyze this connection explicitly, and show
that the results in [Kay12] lead to a deterministic sub-exponential time algorithm
for black-box PIT for sums of powers of polynomials with appropriate size and
degree (Section 4, Theorem 2).

A minor drawback of both these statements is that they consider a model that
cannot even individually compute all monomials. One would expect any reason-
able model of representing polynomials to be able to compute Mn. In Section 5,
we consider the restriction of read-once formulas to constant-free formulas that
are only allowed leaf labels ax, where x is a variable and a is a field element.
This model can compute any single monomial. We show (Theorem 3) that the
elementary symmetric polynomial Symn,d of degree d cannot be written as a sum
of powers of such formulas unless the number of summands is Ω(log(n/d)). This
appears weak compared to the n/3 bound from [SV08], but this is to be expected
since unlike in [SV08] where the ROPs could only be added, we allow sums of
powers. We also consider 0− justified read-once formulas with alternation depth
(between + and ×) 3, and obtain a similar hardness-of-representation result for
the polynomial Mn against sums of powers of polynomials computed by such
formulas, showing that n

1
2−Θ summands are needed (Theorem 4). Again, this

appears weak compared to the exp(Ω(n/d)) bound from [Kay12], but unlike in
[Kay12] where the degree of the inner functions is a parameter, our inner ROPs
could have arbitrarily high degree.
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2 Preliminaries

An arithmetic formula on n variables X = {x1, . . . , xn} is a rooted binary tree
with leaves labeled from F ∪X and internal nodes labeled by ◦ ∈ {+,×}. Each
node computes a polynomial in the obvious way, and the formula computes the
polynomial computed at the root gate. An arithmetic formula is said to be read-
once (ROF) if each x ∈ X appears at most once at a leaf. Polynomials computed
by ROFs are called read-once polynomials ROPs.

It is more convenient for us to allow leaf labels ax + b for some x ∈ X and
some a, b ∈ F. This does not change the class of polynomials computed, even
when restricted to ROFs. Henceforth we assume that ROFs are of this form.

The alternation depth of the formula is the maximum number of maximal
blocks of + and × gates on any root-to-leaf path in the formula.

We say that an ROF is constant-free (denoted CF-ROF) if the labels at the
leaves are of the form ax for x ∈ X and a ∈ F \ {0}. We call polynomials
computed by such formulas constant-free ROPs, denoted CF-ROP.

For a polynomial f ∈ F[x1, x2, · · · , xn], a set S ⊆ [n] and an assignment a,
let fS→aS denote the polynomial on variables {xi : i →∈ S} obtained from f
by setting xj = aj for j ∈ S. Using notation from [SV08], for a polynomial f ,
var(f) denotes the set of variables that f depends on non-trivially. We say that
f is 0-justified if for all S ⊆ var(f), var(f |S→0) = var(f) \ S. Equivalently, f is
0-justified if and only if ∀x ∈ var(f), the monomial x has a non-zero coefficient.

3 Identity Testing for
∑(2) ·∏ ·ROPs over Z or Q

In this section we show that PIT can be solved efficiently for formulas of the form
f1f2 . . . fm + g1g2 . . . gs, where each fi, gj is an ROF over the field of rationals.

Theorem 1. Given Read-Once Formulas computing each of the polynomials
f1, f2, · · · , fr, g1, g2, . . . , gs ∈ Q[x1, . . . , xn], checking if f1 ·f2 · · · fr ≡ g1 ·g2 · · · gs
can be done in deterministic polynomial time.

A crucial ingredient in our proof is the following structural characterization
from [RS11, RS13] and its constructive version; this is a direct consequence of
the characterisation of ROPs given in [SV08].

Lemma 1 ([RS13], follows from [SV08]). Let f be an ROP. Then exactly
one of the following holds:

1. k ≥ 1, there exist ROPs f1, . . . , fk, with var(fi) ∩ var(fj) = ∅ for all distinct
i, j ∈ [k], such that f = a + f1 + · · · + fk, for some a ∈ F, and each fi is
either uni-variate or decomposes into variable-disjoint factors.

2. k ≥ 2, there exist ROPs f1, . . . , fk, with var(fi) ∩ var(fj) = ∅ for all distinct
i, j ∈ [k], such that f = a× f1× f2× · · ·× fk for some a ∈ F \ {0}, and none
of the fis can be factorised into variable-disjoint factors.

Furthermore, ROFs computing such fis can be constructed from an ROF com-
puting f in polynomial time.
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Given an ROF over Q, we can clear all denominators to get an ROF over Z,
without changing the status of the ? ≡ 0? question. So we now assume that all the
numbers a, b appearing in the ROF (recall, leaf labels are of the form ax+ b) are
integers. For a polynomial p(X), let content(p(X)) denote the greatest common
divisor (gcd) of the non-zero coefficients of p. The next crucial ingredient in our
proof is that for an ROF f , we can efficiently compute its content.

Lemma 2. There is a polynomial-time algorithm that, given an ROF f in
Z[X ], computes content(f) and constructs an ROF f ≥ in Q[X ] such that f =
content(f) · f ≥.
Proof. It suffices to show how to compute content(f); then the ROF f ≥ is just

1
content(f) ×f . We proceed bottom-up, or alternatively, we prove this by induction

on the structure of f .
For a polynomial p ∈ Z[X ], let p̂ = p− p(0), where p(0) = p(0, . . . , 0), and let

p̂≥ be the polynomial such that p̂ = content(p̂)p̂≥.

If f is a single leaf node, then computing content(f) and content(f̂) is trivial.
Otherwise, say f = g ◦ h. Since f is an ROF, var(g) ∩ var(h) = ∅.
Case f = g + h: Then f̂ = ĝ + ĥ, and f(0) = g(0) + h(0). So

content(f) := gcd(content(ĝ), content(ĥ), g(0) + h(0)),

content(f̂) := gcd(content(ĝ), content(ĥ)).

Case f = g × h: Then f̂ = ĝĥ + h(0)ĝ + g(0)ĥ, and f(0) = g(0)h(0). We can
show that

Claim. For any two variable-disjoint polynomials p, q ∈ Z[X ], content(pq) =
content(p)content(q).

Proof. Let p = content(p)(a1M1+a2M2+· · ·+akMk) and q = content(q)(b1N1+
b2N2 + · · · + bΣNΣ), where Mi, Nj are monomials. By definition of content,
gcd(. . . , ai, . . .) = gcd(. . . , bj , . . .) = 1. Since p and q are variable-disjoint, every
monomial of the form content(p)content(q)(aibjMiNj) appears in the polynomial
p×q, and there are no other monomials. Hence content(p)content(q)|content(p×
q). For the converse, we need to show that gcd(S) = 1, where S = {aibj | i ∈
[k], j ∈ [σ]}. Suppose not. Let c be the largest prime that divides all numbers in
S. Then, ∀i ∈ [k],

c|aib1 and c|aib2 and . . . and c|aibk.
Hence c|ai or (c|b1, c|b2, · · · , c|bΣ) .
Hence c|ai or c = 1, since gcd(b1, . . . , bΣ) = 1.

Thus we conclude that c divides gcd(a1, . . . , ak) = 1, a contradiction. ↓∨
Using this claim, we see that

content(f) := content(g)× content(h),

content(f̂) := gcd(content(ĝ)content(ĥ), h(0)content(ĝ), g(0)content(ĥ)).

↓∨
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Now we have all the ingredients for proving Theorem 1.

Proof (of Theorem 1). Let f = f1 · f2 · · · fr and g = g1 · g2 · · · gs As discussed
above, without loss of generality, each fi, gi is in Z[X ]. Using Lemma 1 and 2,
we can compute the irreducible variable-disjoint factors of each fi and each gi,
and also pull out the content for each factor. That is, we express each fi as
αifi,1 · · · fi,ki , and each gi as βigi,1 · · · gi,Σi where the fi,js, gi,js are irreducible
and have content 1. We obtain ROFs in Q[X ] for each of the fi,js and gi,js. Note
that if

∑
i ki →=

∑
j σj, then there cannot be a component-wise matching between

the factors of f and g, and hence we conclude f →≡ g. Otherwise,
∑

i ki =
∑

j σj .
We now form multisets of the factors of f and of g, and we knock off equivalent
factors one by one. (See Algorithm 1.) Detecting equivalent factors (the condition

Algorithm 1. Test if
∏r

i=1 αi

∏ki

j=1 fi,j ≡
∏s

i=1 βi
∏Σi

j=1 gi,j

1: S ← {f1,1, · · · , f1,k1 , f2,1, · · · , f2,k2 , . . . , fr,1, · · · , fr,kr}
2: T ← {g1,1, · · · , g1,α1 , g2,1, · · · , g2,α2 , . . . , gs,1, · · · , gs,αs}
3: (Both S and T are multisets; repeated factors are retained with multiplicity.)
4: for p ∈ S do
5: for q ∈ T do
6: if p ≡ q then
7: if S and T have unequal number of copies of p and q then
8: Return No
9: else
10: S ← S \ {p}. (Remove all copies).
11: T ← T \ {q}. (Remove all copies).
12: end if
13: end if
14: end for
15: end for
16: if (α1α2 · · ·αr = β1β2 · · ·βs) ∧ (S = T = ∅) then
17: Return Yes
18: else
19: Return No
20: end if

in Step 6) requires an identity test p ≡ q?, or p−q ≡ 0?, for ROFs in Q[X ]. Since
we have explicit ROFs computing p and q, this can be done using [SV08]. ↓∨

4 PIT for Sums of Powers of Low Degree Polynomials

In this section, we give a blackbox identity testing algorithm for multilinear sums
of powers of low-degree polynomials.

We say that a polynomial f has a sum-powers representation of degree d
and size s if there are polynomials fi each of degree at most d, and a set of
positive integers ei, such that f = fe11 + . . . + fess . In [Kay12], it is shown that
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computing the full multilinear monomial Mn = x1x2 · · ·xn using sums of powers
of low-degree polynomials requires exponentially many summands:

Proposition 1. [Kay12] There is a constant c such that for the polynomial
x1x2 · · ·xn, any sum-powers representation of degree d requires size s ≥ 2

cn
d .

Shpilka and Volkovich [SV08] proved that sum of less than n/3 0-justified
ROPs cannot equal Mn, and used it to obtain a black-box PIT algorithm for
bounded sums of ROPs. Using these ideas along with Proposition 1, we note that
such a hardness of representation for sums of powers of low-degree polynomials,
where the final sum is multilinear, gives sub-exponential time algorithms for
black-box PIT for this class.

Let R = {0, 1} ⊆ F be a finite set that contains 0. For any k > 0, define

Wn
k (R) � {a ∈ Rn| a has at most k non-zero coordinates}.

In Theorem 7.4 of [SV10], it is shown that for a certain kind of formula F (k-
sum of degree-d 0-justified preprocessed ROP), and for any R ⊆ F containing
0 and of size at least d + 1, F ≡ 0 if and only if F |Wn

3k(R)≡ 0. The proof uses
the Combinatorial Nullstellensatz [Alo99], see also Lemma 2.13 in [SV10]. We
re-state it here for convenience:

Proposition 2 (Combinatorial Nullstellensatz, [Alo99]). Let P ∈
F[x1, . . . , xn] be a polynomial where for every i ∈ [n], the degree of xi is bounded
by t. Let R ⊆ F have size at least t+ 1, and S = Rn. Then P ≡ 0 ⇔ P |S ≡ 0.

Along similar lines, using Propositions 1,2, we show that

Lemma 3. Let C(n, s, d) be the class of all n-variate multilinear polynomials
that have a sum-powers representation of degree d and size s. Let c be the con-
stant from Proposition 1. For f ∈ C(n, s, d), R = {0, 1}, and k = (d log s)/c,
f |Wn

k (R) ≡ 0 ⇐⇒ f ≡ 0.

Proof. The ⇐ direction in the claim is trivial. To prove the ⇒ direction, we
proceed by induction on n.

Base Case: n ≤ k. Then Wn
k (R) = Rn. Using Proposition 2 (since f is multi-

linear, R is large enough), we conclude that f ≡ 0.

Induction Step: n > k. Suppose f →≡ 0. Consider any i ∈ [n], and let f ≥ =
f |xi=0. Then f

≥ ∈ C(n − 1, s, d). Since f |Wn
k (R) ≡ 0, we have f ≥|Wn−1

k (R) ≡ 0.

So by the induction hypothesis, f ≥ ≡ 0. Hence xi|f . Since this holds for every
i ∈ [n], the monomial x1 · · ·xn must divide f . Since f is multilinear, it must
be that f = x1 · · ·xn. But n > k = (d log s)/c, so s < 2cn/d. This contradicts
Proposition 1. Hence we conclude f ≡ 0. ↓∨

This gives the required black-box PIT algorithm, since for our choice of k in
the above lemma, |Wn

k ({0, 1})| ∈ nO(k) ∈ 2O(d log s logn). Thus

Theorem 2. Let C(n, s, d) be the class of all n-variate multilinear polynomials
that have a sum-powers representation of degree d and size s. There is a deter-
ministic black-box PIT algorithm for C(n, s, d) running in time 2O(d logn log s).
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Remark 1. Though f is multilinear in Lemma 3 (and hence Theorem 2), the
polynomials fi in the sum-powers representation of f need not be multilinear.

5 Hardness of Representation for Sum of Powers of
CF-ROPs

The hardness of representation result from [Kay12], stated in Proposition 1, and
its precursor from [SV08],[SV10], are both for Mn, the former using low-degree
polynomials and the latter using a kind of ROPs called 0-justified ROPs. Note
that ROPs, even when 0-justified, can have high degree, so these results are
incomparable. Here we extend such a hardness result in two ways.

Our first hardness result is for elementary symmetric polynomials Symn,d, not
just for d = n. It works against another subclass of ROPs, CF-ROF; as is the case
in [SV08, SV10], this class too can have high-degree polynomials. Recall that this
class consists of polynomials computed by read-once formulas that have + and ×
gates, and labels ax at leaves (a →= 0). Hence for any f in this class, f(0) = 0. We
show that powers of such polynomials cannot add up to elementary symmetric
polynomials of arbitrary degree d ≤ n unless there are many such summands.
First, we establish a useful property of this class.

Lemma 4. For every CF-ROP f ∈ F[x1, . . . , xn], there is a set S ⊆ [n] with
|S| ≤ |var(f)|/2 such that deg(f |S→0) ≤ 1.

Proof. Consider a CF-ROF F computing f . If F has a single node, then f is
already linear, so S = ∅. Otherwise, F = G1 ◦ G2, where G1, G2 are variable-
disjoint CF-ROFs computing CF-ROPs g1, g2, respectively.
Case 1: ◦ = ×. Without loss of generality, assume |var(g1)| ≤ |var(f)|/2. For
S = {i : xi ∈ var(g1)}, g1|S→0 ≡ f |S→0 ≡ 0.
Case 2: ◦ = +. Inductively, we can find sets Si of at most half the variables of
each gi, such that gi|Si→0 has degree at most 1. Define S = S1∪S2. Since G1, G2

are variable-disjoint, |S| ≤ |var(f)|/2, and f |S→0 has degree at most 1. ↓∨
We use this to get our hardness-of-representation result for CF-ROPs, irrespective
of degree.

Theorem 3. Fix any d ∈ [n]. Suppose there are CF-ROPs f1, . . . , fk, and pos-
itive integers e1, . . . , ek such that

k∑

i=1

feii = Symn,d.

Then k ≥ min{log n
d , 2

Ω(d)}.
Proof. Let f = Symn,d.

We repeatedly apply Lemma 4 to restrictions of the fi’s obtain a formula of
degree at most 1. Let S0 = T0 = ∅, and let Si+1 be the set obtained by applying
the Lemma to fi+1|Ti→0, where each Ti = S1 ∪ . . . ∪ Si. Define S = Tk. Since
at least half the variables survive at each stage, we see that r � |var(f |S→0)| ≥
|var(f)|/2k = n/2k.
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– If r ≥ d, then f |S→0 = Symr,d →≡ 0. Add any r − d surviving variables to

the set S to obtain the expression Symd,d = f |S→0 =
∑k

i=1(fi|S→0)
ei where

each fi is either linear or identically 0. Let k≥ be the number of non-zero
polynomials fi|S→0. By Proposition 1, k≥ ∈ 2Ω(d), and k ≥ k≥.

– If r < d, then n/2k ≤ r < d. So k > log(nd ).

Thus if k ≤ log n
d , then k ∈ 2Ω(d). ↓∨

What this tells us is that there is a threshold r ∼ log logn such that any
sum-powers representation of Symn,d using CF-ROPs needs size 2Ω(d) for d ≤ r,
and size ≥ log n

d for d ≥ r.
Our secondhardness result is forMn, butworks against adifferent class ofROFs.

These ROFs may not be constant-free, but they have bounded alternation-depth,
and are also 0-justified. Again, first we establish a useful property of the class.

Lemma 5. Let f ∈ F[x1, . . . , xn] be computed by an ROF with alternation depth
3. For any degree bound 1 ≤ d ≤ n, there is an S ⊆ [n] of size at most
|var(f)|/d, and an assignment of values AS to the variables xi for i ∈ S, such
that deg(f |S→A) ≤ d. Moreover, if f is 0-justified, then we can find an AS with
all non-zero values.

Proof. Let f be computed by the ROF F with alternation depth 3, where no
gate computes the 0 polynomial.

If the top gate in F is a +, then F =
∑r

i=1 fi, where each summand fi is

of the form
∏ti

j=1 σi,j and the factors σi,j ’s are linear forms on disjoint variable
sets. We find a partial assignment that kills all summand of degree more than d.
For each such summand fi, identify the factor with fewest variables, and assign
values to the variables in it to make it 0. We assign values to at most |var(fi)|/d
variables, so overall no more than |var(f)|/d variables are set.

Further, if f is 0-justified and read-once, then each fi is also a 0-justified ROF.
Hence no factor of fi vanishes at 0; each factor σi,j is of the form

∑p
k=1 ai,j,kxi,j,k−

ci,j where ci,j →= 0. We can kill such a factor with an assignment avoiding 0s (eg
set xi,j,k = ci,j/pai,j,k.)

If the top gate in F is a ×, then F =
∏r

i=1 Fi, where the Fi have alternation
depth 2 and are on disjoint variables. If f has degree more than d, it suffices to
kill any one factor Fi to make the polynomial 0. Choosing the factor with fewest
variables, and proceeding as above, we set no more than |var(f)|/d variables.
Again, since F is an ROF, if F is 0-justified, then so are the Fi. So AS can be
chosen avoiding 0s. ↓∨

Using this, we get a hardness of representation result for 0-justified alternation-
depth 3 ROPs.
Theorem 4. Let θ ∈ (0, 12 ). If there are 0-justified, alternation-depth-3 ROPs
f1, . . . , fs, and non-negative integers e1, . . . , es such that

s∑

i=1

feii = x1 · · ·xn

then s ≥ n
1
2−Θ.
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Proof. Let d be a parameter to be chosen later. We identify a subset of variables
S and an assignment A avoiding zeroes to variables of S, such that under this
partial assignment, all the fi’s are reduced to degree at most d. We show that

for any d ∈ [n], this is possible with |S| = t ≤ s2n
d . This gives a sum-powers

representation of degree d and size s for
∏

xi ∪∈S xi = Mn−t. Invoking Kayal’s

result from Proposition 1, we see that s ≥ 2c(n−t)/d, and hence log s+ cns2

d2 ≥ cn
d .

Choosing d = 4n1−2Θ, we conclude that s ≥ n
1
2−Θ.

The construction of S proceeds in stages. At the kth stage, polynomials
f1, . . . , fi−1 have already been reduced to low-degree polynomials, and we con-
sider fi. We want to use Lemma 5 at each stage. This requires that each poly-
nomial fi, after all the substitutions from the previous stages, is still a
0-justified ROF with alternation-depth 3. The alternation-depth-3 ROF is ob-
vious; it is only maintaining 0-justified that is a bit tricky. We describe the
construction for stage 1; the other stages are similar.

Applying Lemma 5 to f1 with d as the parameter, we obtain a set R1

of variables with |R1| ≤ n/d and an assignment AR1 avoiding 0, such that
deg(f1|R1→AR1

) ≤ d. It may be the case that for some i > 1, the polynomial
fi|R1→AR1

is no longer 0-justified. We fix this by augmenting R1 as follows.
Assume first that the ROFs for all the fi’s have top-gate +; we will discuss

top-gate × later. So, as discussed in the proof of Lemma 5, each fi has the form∑∏
σj,k where each σj,k is a linear form. If fi|R1→AR1

is not 0-justified, then
some of the linear forms in it are homogeneous linear (no constant term). We
identify such linear forms in each fi, i ≥ 2. Call this set L1. That is,

L1 =

{

σ |
σ is a linear form at level-2 of some fi;
σ|R1→AR1

is homogeneous linear but not
identically 0.

}

Since each fi is a ROF, it contributes at most |R1| linear forms to L1. Hence
|L1| ≤ (s − 1)|R1|. Now pick a minimal set T1 of variables from X \ R1 that
intersects each of the linear forms in L1. By minimality, |T| ≤ |L1| ≤ (s−1)|R1|.
We want to assign non-zero values AT1 to variables in T1 in such a way that for
all i ≥ 2, the fi|R1→AR1 ;T1→AT1

are 0-justified. We must ensure that the linear
forms in L1 become homogeneous (or vanish altogether), and we must also ensure
that previously non-homogeneous forms do not become homogeneous. To achieve
this, consider

L2 =

{

σ | σ is a linear form at level-2 of some fi;
σ|R1→AR1

→≡ 0; σ|R1→AR1
contains a variable from T1.

}

Clearly, L1 ⊆ L2. It suffices to find an assignment AT1 to variables in T1,
avoiding zeroes, such that for each σ ∈ L2, either σ|R1→AR1 ;T1→AT1

≡ 0 or
σ|R1→AR1 ;T1→AT1

(0) →= 0. For sufficiently large fields, such an assignment can
always be found.

If some of the fi’s have top-gate ×, we need only a minor modification. We
use this fact:
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Observation 1. If F =
∏
Fr is a read-once formula, then F is 0-justified if

and only if for each r, Fr is 0-justified and satisfies Fr(0) →= 0.

Treat each factor of the polynomials with top-gate × exactly as we dealt with
the other polynomials. Add their level-2 linear factors to L1. Note that each such
fi can have many factors, but since it is read-once, any one variable can occur in
at most one of these factors. So fi still contributes no more than R1 linear forms
to L1. Also modify the definition of L2 to include also all linear forms at level
3 of such fi’s, containing a variable of T1. Finally, look for an assignment also
satisfying the additional condition that the factors do not vanish at 0. Again,
over sufficiently large fields, it is possible to find such an assignment.

Now we set S1 = R1∪T1, and A1 = AR1 ∪AT1 . We have ensured the following:

1. deg(f1|S1→A1) ≤ d; and
2. for i ≥ 2, fi|S1→A1 is 0-justified.

Furthermore, |S1| = |R1|+ |T1| ≤ |R1|(1 + (s− 1)) ≤ sn/d.
Other stages are identical, working on the polynomials restricted by the

already-chosen assignments. Finally, S = S1 ∪ . . . ∪ Ss, and so |S| ≤ s2n/d,
as required. ↓∨

6 Further Questions

– Can the results of [SV08] be extended to the case
∑k

i=1 f
ri
i , where f ≥is are

ROFs?
– Can a hardness of representation for Symn,d be transformed into a polyno-

mial identity test for a related model?
– Can the bound given by Theorem 3 be improved? We conjecture:

Conjecture 1. There is a constant θ > 0 such that if there are CF-ROPs
f1, . . . , fk, and integers e1, . . . ek ≥ 0 satisfying

k∑

i=1

feii = Symn,n/2,

then k = Ω(nΘ).

– Do the results of [AvMV11] extend to read-k-multilinear branching pro-
grams?
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Abstract. We investigate the ability to sample relatively small amounts of data
from a stream and approximately calculate statistics on the original stream. Mc-
Gregor et al. [29] provide worst case theoretical bounds that show space costs for
sampling that are inversely correlated with the sampling rate. Indeed, while the
lower bound of McGregor et al. cannot be improved in the general case, we show
it is possible to improve the space bound for stream D of domain n, when the av-
erage positive frequency µ = F1/F0 is sufficiently large. We consider the follow-
ing range of parameters: µ ≥ log(n) and sample rate p ≥ Ckµ

−1 log(n), where
Ck is a constant. On these streams we improve the bound from Õ( 1

p
n1−2/k) to

Õ(n1−2/k) thus giving polynomial improvement in space for sufficiently large µ
and p−1.

Keywords: Streaming Algorithms, Sampling, Frequency Moments, Heavy Hit-
ters.

1 Introduction

An exciting topic of current algorithms research is evaluating the ability to sample rel-
atively small amounts of data from a stream and to be able to approximately calculate
statistics on the stream as a whole. In a recent paper [29], McGregor, Pavan, Tithrapura,
and Woodruff provided worst case theoretical bounds that show space costs for sam-
pling that are inversely correlated with the sampling rate. 1 This implies it is not possible
to sample effectively on the stream without a cost tradeoff. However, experimental work
has shown that sampling can be performed on the stream without sacrificing additional
space for accuracy [30]. Let us define the following terms:

Definition 1. Let m,n be positive integers. A stream D = D(n,m) is a sequence of size
m of integers a1, a2, . . . , am, where ai ∈ {1, . . . , n}. A frequency vector is a vector of
dimensionality n with non-negative entries fi, i ∈ [n] defined as:

α This work was supported in part by DARPA grant N660001-1-2-4014. Its contents are solely
the responsibility of the authors and do not represent the official view of DARPA or the De-
partment of Defense.

1 We have recently learned from an anonymous reviewer that these lower bounds may not hold.
We stress that our techniques are independent of this result, and thus they hold regardless of
the correctness of this work.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014
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fi = |{j : 1 ≤ j ≤ m, aj = i}|

Definition 2. A k-th frequency moment of a stream D is defined byFk(D) =
∑

i∞[n] f
k
i .

F0 is the number of distinct elements in the stream and F→ = maxi∞[n]fi.

Definition 3. A dense stream is any stream D s.t F1(D)/F0(D) ≥ log(n)

While the lower bound of McGregor et al. cannot be improved in the general case, we
show it is possible to improve the space bound for a stream D of domain n and length
m, when the the average positive frequency μ = F1/F0 is sufficiently large. Specif-
ically, we consider the following range of parameters: μ ≥ log(n) and p ≥ Ckμ

−1

log(n), where Ck is a constant (defined in (6)).
As our main technical claim, we show in Theorem 1 that the frequency moment on

the sampled stream,Dp, is a 1+Ω approximation for the frequency moment on the entire
stream with high probability. As a result, we show the problem of computingFk onD is
reducible to the problem of computing Fk on Dp and the reduction preserves the space
bounds up to a constant factor. In particular, the space bounds are independent of the
sample rate, p. We stress that for our range of parameters the problem of approximating
Fk is as hard as the problem of approximating Fk on the set of all streams. In this case,
the lower bound from [15] still applies. However, the lower bound from [29] does not
apply, as this bound is proven for streams with average frequency bounded by a con-
stant. On these streams we improve the bound2 from Õ( 1pn

1−2/k) to Õ(n1−2/k) thus

giving polynomial improvement in space for sufficiently large μ and p−1. Additionally,
we provide proof that the same result is applicable for finding heavy elements (heavy
hitters) in the stream. Specifically, we show that heavy elements in the original stream
are heavy elements in the sampled stream. Thus, techniques to analyze heavy elements
are also unaffected by the sampling rate. We also describe several practical applications
where streams have high average frequency.

1.1 Related Work

For many applications it is practical to consider sampling data instead of attempting to
process the entire data set. This is especially true as data sets grow larger and larger.
The concept of accurately calculating statistics using small portions of a stream is not
new, and sampling algorithms in the streaming setting have been studied for a long time.
Sampling algorithms in the streaming setting have been studied for a long time [2], [3],
[12], [13, 14], [16], [32].

Calculating frequency moments is one of the central problems for streaming algo-
rithms, see, e.g., [1], [4], [5], [7,8], [10,11], [15], [17,18,19,20,21], [24,25], [27], and
the references therein.

Further, computing frequency moments and other functions using sampling has been
an intriguing question for a long time [9]. For example, Bar-Yossef showed3 [3] that

2 The Õ notation suppresses factors polynomial to 1
γ

and factors logarithmic in m and n.
3 While Bar-Yossef showed his results in a slightly different model the lower bounds are appli-

cable for the sampled streams as well. See also Theorem 3.1 from [29].
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the complexity of sampling from streams differs from the complexity of sketching by a
polynomial factor in the worst case. Specifically computing F2 is possible using Õ(1)
bits, but σ̃(n0.5) samples are still needed.

In 2007 Bhattacharyya, Madeira, Muthukrishnan, and Ye [6] considered skipping
certain portions of the stream and only examining every Nth item deterministically.

Following this, in [28] Problem 13, Matias asked about the effects of subsampling
on the streaming data. His question addresses the issue of very fast streams, ones that
cannot be analyzed effectively even if each element can be processed in O(1) time. In
addition to asking questions regarding [6], he also asked about how subsampling effects
the accuracy of standard calculations, such as frequency moments.

Recent work provided by McGregor, Pavan, Tirthapura, and Woodruff [29]
considered sampling streams and addressed several fundamental problems, including
frequency moments, heavy hitters, entropy, and distinct elements. In particular, they
provide a matching (up to a polylogarithmic factor) upper and lower bound for the
problem of frequency moments for k > 2 with lower bound of σ̃( 1pn

1−2/k). However,
if we can observe the entire stream, then we can apply the well known upper bound of
Õ(n1−2/k) from Indyk and Woodruff [22]. Thus, the bound of [29] shows that it is not
possible to obtain approximations without increasing the space required by a factor of
p−1, in the worst case.

However, in 2009, Rusu and Dobra [30] experimentally showed that when 10% of
the original stream is sampled then the second frequency moment is still preserved. This
provides intuition that there may be certain inputs that allow for an improvement over
the bound from [29].

1.2 Relation to Existing Work on Lower Bounds

We now explain why the lower bound of σ̃( 1pn
1−2/k) does not apply to our analysis.

The lower bound in question only applies when n = α(m). Consider streams such
that F0 = σ(n) and for all i either fi = 0 or fi > n. Clearly in this case n = o(m)
and thus the lower bound of [29] do not necessarily apply. Indeed, if we sample with
probability p = n−0.5 then, with high probability, all sampled frequencies will be in the
range [(1 − Ω)n−0.5fi, (1 + Ω)n−0.5fi] for constant Ω and sufficiently large n. Thus, it
is not hard to show that Fk on the entire stream can be approximated by computing the
frequency moment on the sampled stream, F̃k . In this paper we investigate the range of
parameters for which sampled streams possess these properties.

Consider Theorem 4.33 from [3]. Let us consider the case when k = 2. To prove
the lower bound of Bar-Yossef considers the following example. Either (1) the stream
represents a frequency vector with all frequencies bounded by 1 or (2) the stream rep-
resents a frequency vector with all frequencies bounded by 1 and one frequency is
O(n1/2). Observe that in both cases the average non-zero frequency μ = O(1). Since
we require μ = σ(Ck log(n)) the lower bound from [3] is not applicable directly to our
range of parameters. Is it possible to increase μ by repeating the same element many
times. However, the bound from [3] is for algorithms that are based solely on sampled
data. In our model, we first sample and then we can apply an arbitrary algorithm, in-
cluding the sketching algorithm for F2 from [1]. In this case the lower bound on the
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number of samples from [3] becomes the lower bound on the length of the sampled
stream Dp which is F̃1.

In the same way consider Section 3.3 from [29]. The authors explicitly state that
their bound is for the case when m = α(n). (It is important to note that the implicit
(and standard) assumption in [29] is that F0 = α(n). Otherwise, better bounds are
possible, even on the original stream. E.g., if F0 = O(1) then we can compute any Fk

precisely). In the proof of Theorem 3.3 in [29] the construction requires each element
to be included at most once in the stream (except for one special element).

We give polynomial improvements over previous methods for the case when the non-
zero average frequency is polynomial. Consider the stream where the average non-zero
frequency is n3. For sampling rate p = 1

n2 the bound [29] is σ̃(min(n, 1pn
1−2/k)) =

σ̃(n). Our improvement for such streams can be as large as σ̃(n2/k). Consider streams
with the average frequencynΣ where 0 < β < 1. If the sampling rate is p = Ck log(n)

1
nζ

then our improvement is of order σ̃( 1p ).

1.3 Results

We show in this paper that the space requirement bound in [29] can be improved on a
sufficiently long stream, given input with specific characteristics such that the stream is
a dense stream. Specifically, we improve these results for stream D of domain n, when
the average frequency of all elements in D is greater than Ck log(n).

To the best of our knowledge, this is the first theoretical bound that shows strict im-
provement for sampling (no time/space trade-off) and thus gives justification for prac-
tical observations such as [30]. Note that our results do not contradict the lower bounds
of [29]. In [29], the lower bound is given for the case when F1 = α(F0); this is not
the case for the streams we analyze, and thus does not effect correctness of the upper
bounds in this paper.

All of our results are applicable for the following range of parameters: μ ≥ log(n)
and p ≥ Ckμ

−1 log(n), where Ck is a constant defined in (6). Our contributions are:

– As our main technical claim, we show in Theorem 1 that the frequency moment on
the sampled stream is a 1+Ω approximation for the frequency moment on the entire
stream with high probability.

– As a result, we show the problem of computing Fk on D is reducible to the prob-
lem of computing Fk on Dp and the reduction preserves the space bounds up to a
constant factor. In particular, the space bounds are independent of the sample rate,
p.

– We provide the bound of Õ(n1−2/k) for k > 2. On our range of parameters we
improve the bounds of [29] by a factor of 1/p. In fact, our recent result [7] implies
a bound of O(n1−2/k) bits.

– We provide the bound of Õ(1) for 1 ≤ k < 2 for Fk approximation. To the best
of our knowledge this is the first theoretical bound for this range of k on sampled
streams.

– We provide proof that our result is also applicable for finding heavy elements
(heavy hitters) in a stream. See Section 4. To the best of our knowledge this is
the first theoretical bound for heavy hitters in sampled streams.
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– We give a concenatration bound on the sum of k-th powers of binomial random
variables using inequalities for Sterling numbers of the 2nd kind, Bell numbers,
and the Hölder Inequality.

It is important to note that the space lower bound σ̃(n1−2/k) holds for streams with
arbitrary large μ. To see this, consider a stream D with the average non-zero frequency
smaller than some parameter t. Replace streamD with streamD≥, where every element
of D is repeated exactly t times. In this case the average non-zero frequency in D≥ is
increased exactly by factor of t. Since the μ is always at least one, we conclude that
μ(D≥) ≥ t. It is not hard to see that the lower bound from [15] will be applicable for
such D≥. Thus, our restrictions do not make the problem of approximating Fk easier.

1.4 Intuition

Given a stream D, of length m with domain n, we assume that m = θ(n). However,
as datasets get large, it is often the case that the expected frequency of a given element
increases significantly. If this is the case then we can sample the stream without losing
much precision (at least for the Fk approximation). As a result, we can improve the
space bounds for frequency moments on sampled streams.

Our main claim is that F̃k is approximately p−kFk if the expected frequency μ is
sufficiently large and p ≥ μ−1 log(n). Specifically, we prove that the value of the fre-
quency moment will be preserved (up to a multiplicative error) with high probability.
It is easy to see4 that the sampled frequency f̃i is a random variable with binomial dis-
tribution. Thus, the frequency moment on the sampled stream is F̃k =

∑n
i=1 f̃

k
i where

f̃i ∼ B(fi, p).5 Note that f̃is are independent but not identically distributed since the
numbers of trials are different.6 To obtain our result, we use the relation between the
the moments of f̃i, the Stirling numbers of the second kind and the Bell numbers.

Intuitively, when sampling datasets with large average frequency, we can divide all
elements into one of three categories: A1, the category of all elements with frequency
greater than the sampling rate multiplied by anO(log(n)) factor,A2, elements with fre-
quency greater than the sampling rate but less thanA1, andA3, elements with frequency
smaller than the sampling rate. With this, we can prove that the group of elements inA1

dominates the frequency moment of a dense stream. In this paper, we prove that the con-
tribution of the sampled frequencies from the second two groups is negligible, with high
probability. This allows us to accurately estimate the frequency moment of the sampled
stream using only elements in A1. We also prove that the frequency of each element fi
in A1 is preserved within 1 ± α(Ω), while sampling with rate p ≥ Ckμ

−1 log(n), for
sufficiently large constant Ck. Thus, F̃k is a (1 ± Ω)-approximation of Fk, and we can
accurately perform our computations on Dp instead of D.

4 Similar observation has been made in [29].
5 We denote B(0, p) as the degenerate distribution concentrated at 0.
6 A slightly different case is well studied, when Y =

∑n
i=1 Y

k
i where Yi ∼ B(n, pi), i.e., the

number of trials is the same, but success probabilities are different. See e.g., [23] for more
details.
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2 Definitions and Facts

The average positive frequency is defined as

μ = μ(D) = F1/F0. (1)

Note that μ ≥ 1. Let us prove the following simple fact.

Fact 1. μkF0 ≤ Fk

Proof. By Hölder inequality F1 ≤ F
1−1/k
0 F

1/k
k . Thus, μkF0 = (F1/F0)

kF0 ≤ Fk.

Definition 4. Given data stream D = {a1, a2, . . . , am} and a fixed real p ∈ (0, 1), let
Dp be a random sub-stream of D obtained as follows. Let Z1, . . . , Zm be independent
random variables such that Zi = ai with probability p and Zi = −1 with probability
(1 − p). Denote D≥ to be the sequence Z1, . . . , Zm. Next let Dp be the subsequence of
D≥ obtained by deleting all −1s. Define7

f̃i = frequency of i in Dp. (2)

F̃k =
n∑

i=1

f̃ki . (3)

B(N, p) is the binomial distribution withN trials and success probability p, whereN
is a positive integer and p ∈ [0, 1]. For completeness, defineB(0, p) to be the degenerate
distribution concentrated at 0.

3 Frequency Moments on Sampled Streams

Define:
πk = 64(k/Ω)2, (4)

εk = (k + 1)Bk, (5)

where Bk is the k-th Bell number (see [26] for the definition).

Ck = Ω−1/k(10εk)
1/kπk. (6)

Consider stream D such that:
μ ≥ Ck log(n). (7)

Let p be such that:
1 ≥ p ≥ μ−1Ck log(n). (8)

Let k > 1 and Ω be arbitrary constants. We now divide elements by frequency. Define:

S1 = {i : fi ≥ πkp
−1 log(n)}, (9)

7 Note that we make “two passes” on D to define Dp but our algorithms will only need one pass
on Dp.
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S2 = {i : p−1 ≤ fi < πkp
−1 log(n)}, (10)

S3 = {i : fi < p−1}, (11)

Denote random variablesXj , j ∈ {1, 2, 3}:

Xj = p−k
∑

i∞Sj

f̃ki . (12)

Denote numbersAj , j ∈ {1, 2, 3}:

Aj =
∑

i∞Sj

fki . (13)

For completeness define Aj = Xj = 0 if Sj = ∅ for j = 1, 2, 3. It follows that
p−kF̃k = X1 + X2 + X3 and Fk = A1 + A2 + A3. We will show that, with high
probability:A1 is very close toX1,A3+A2 is negligible in terms of Fk, andX2+X3 is
bounded by c(A3+A2) for some constant c. As a result, we will prove thatX1 ≈ p−kF̃k

is a good approximation of Fk . Define

γ = Ω/2k (14)

Fact 2. For any i the following is true. If

|p−1f̃i − fi| ≤ γfi (15)

then
|p−kf̃ki − fki | ≤ Ωfki . (16)

Lemma 1. A2 +A3 ≤ 0.1ε−1
k ΩFk < ΩFk.

Proof. Recall that i ∈ (S2 ∪ S3) implies fi < πkp
−1 log(n). Thus,

A2 +A3 =
∑

i∞S2∪S3

fki ≤ (πkp
−1 log(n))kF0. (17)

Recall that p ≥ Ckμ
−1 log(n). Thus,

A2 +A3 ≤ F0(πkC
−1
k μ)k. (18)

Equation (6) yields
A2 +A3 ≤ Fk(πkC

−1
k )k. (19)

The first inequality of the lemma follows from the definition (6) of Ck . The second
inequality follows since εk > 1.

Lemma 2. Let X ∼ B(N, p). There exists a constant εk that depends only on k and
such that if Np ≥ 1 then

E(Xk) ≤ εk(Np)
k, (20)

and if Np < 1 then
E(Xk) ≤ εk. (21)
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Due to a lack of space, we omit the proof. The proof is included in the full version of
the paper.

Lemma 3. P (X2 ≥ ΩFk) ≤ 0.1

Proof. To boundX2 we observe that f̃i ∼ B(fi, p). Also i ∈ S2 implies that 1/p ≤ fi.
Thus, we can apply Lemma 2. In particular, the case (20) gives:

E(f̃ki ) ≤ εk(fip)
k, (22)

which in turn gives

E(X2) =
1

pk

∑

i∞S2

E(f̃ki ) ≤ εk
∑

i∞S2

fki = εkA2. (23)

Combining (23) with Lemma (1) we obtain E(X2) ≤ 0.1ΩFk. Note that X2 is non-
negative. Thus, the lemma follows from Markov inequality.

Lemma 4. P (X3 ≥ ΩFk) ≤ 0.1

Proof. To bound X3 we observe that i ∈ S3 implies 1/p > fi. Thus we can apply
Lemma 2. In particular (21) gives us:

E(X3) =
1

pk

∑

i∞S3

E(f̃ki ) ≤
1

pk
εkF0. (24)

Recall that p ≥ Ckμ
−1 log(n) (see (8)). Thus, Fact 1 gives us:

E(X3) ≤
1

pk
εkF0 ≤ C−k

k εkμ
kF0

logk(n)
≤ 0.1ΩFk. (25)

The lemma follows.

Lemma 5. If i ∈ {2, 3} and |Xi −Ai| > ΩFk then Xi > ΩFk.

Proof. If |Xi −Ai| > ΩFk then either

Xi > Ai + ΩFk (26)

or

Xi < Ai − ΩFk. (27)

Note that 0 ≤ Ai < ΩFk (by the definition and Lemma 1) and Xi ≥ 0 (by the defini-
tion). Thus (27) is not possible and (26) implies Xi > ΩFk.

Lemma 6. P (|X1 −A1| > ΩFk) ≤ 0.1.
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Proof. Note that if S1 = ∅ thenX1 = A1 = 0 and thus the lemma is correct. Otherwise,
let i ∈ S1 be fixed. First, we will show that

P (|f̃i − pfi| > γpfi) ≤
1

10n
. (28)

Indeed, f̃i =
∑fi

j=1 Yi,j where Yi,j are i.i.d. indicators with mean p. ThusE(f̃i) = pfi,
and by Chernoff bound (see e.g., [31], B.2) we have:

P (|f̃i − pfi|) > γpfi) ≤ 2e(−Ω2pfi)/4. (29)

Direct computations and the definitions (4) and (14) imply that γ2πk = 16. Since
i ∈ S1, it follows that fi ≥ p−1πk log(n). Thus, γ2pfi ≥ γ2πk log(n) = 16 log(n).
Substituting this bound into (29) we obtain (for sufficiently large n):

P (|f̃i − pfi|) > γpfi) ≤ 2e−4 log(n) ≤ 1

10n
,

and thus (28) holds. Further, Fact 2 and (28) imply

P (|p−kf̃ki − fki | > Ωfki ) ≤
1

10n
. (30)

If we apply (30) to every i ∈ S1 and use the union bound and the fact that |S1| ≤ n
then the lemma follows immediately. Indeed,

P (|X1 −A1| > ΩFk) ≤ P (|X1 −A1| > ΩA1) = (31)

P (|
∑

i∞S1

p−kf̃ki −
∑

i∞S1

fki | > Ω(
∑

i∞S1

fki )) ≤

P (∪i∞S1(|p−kf̃ki − fki | > Ωfki )) ≤
∑

i∞S1

P (|p−kf̃ki − fki | > Ωfki ) ≤ 0.1.

Theorem 1. LetD be a stream such that μ = μ(D) ≥ Ck log(n) and let p be a number
such that 1 ≥ p ≥ μ−1Ck log(n). Let Dp be the sampled stream (see Definition 4). Let
k > 1 and Ω be constants. Then the following bound holds for sufficiently large n.

P (|F̃k − Fk| > 3ΩFk) ≤ 0.3.

Proof. Indeed,
P (|F̃k − Fk| > 3ΩFk) ≤ (32)

P (|X1 −A1| > ΩFk) + P (|X2 −A2| > ΩFk) + P (|X3 −A3| > ΩFk).

Applying Lemma 5 we obtain:

P (|F̃k − Fk| > 3ΩFk) ≤ (33)

P (|X1 −A1| > ΩFk) + P (X2 > ΩFk) + P (X3 > ΩFk).

The theorem follows from the union bound and Lemmas 6, 4, 3.
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Theorem 2. LetD be a stream such that μ = μ(D) ≥ Ck log(n) and let p be a number
such that 1 ≥ p ≥ μ−1Ck log(n). Let Dp be the sampled stream. Let k > 1 and Ω be
constants. Then it is possible to output the (1 ± Ω)-approximation of Fk by making a
single pass over Dp and computing F̃k . Thus, the problem of computing Fk on D is
reducible to the problem of computing Fk on Dp and the reduction preserves the space
bounds. In particular, the space bounds are independent of p. Current best bounds for
Fk include:

1. Õ(n1−2/k) memory bits for k > 2.
2. Õ(1) memory bits for 1 ≤ k < 2.

4 Finding Heavy Elements

Definition 5. Let D be a stream and ρ be a parameter. The index i ∈ [n] is a ρ-heavy
element if fki ≥ ρFk.

In this section, we show that a heavy element in the original stream remains a heavy
element in the sampled stream, and therefore we can apply existing techniques for heavy
hitters. The frequency of the found heavy element is (1 ± Ω)pfi, with high probability,
by Chernoff bound.

Theorem 3. Let D be a stream and i be a heavy element w.r.t. Fk on D. Let k ≥ 1
and let p ≥ μ−1 = F0/F1. Then there exists a constant ck such that with a constant
probability, i is a ck-heavy element w.r.t. Fk on Dp.

Proof. By Chernoff bound, the frequency of i inDp is at least (1−Ω)pfi with high prob-
ability. By Fact 3, the k-th frequency moment of Dp is bounded by πkμ

−k
∑n

i=1 v
k
i .

Thus, i is a heavy element.

Fact 3. Let V ∈ (Z+)
n

be a vector with strictly positive integer entries vi. Let μ =
1
n

∑n
i=1 vi. Note that μ ≥ 1. Let Xi ∼ B(vi, μ

−1) and X =
∑n

i=1X
k
i . Then there

exists a constant πk that depends only on k such that P (X > πkμ
−k

∑n
i=1 v

k
i ) < 0.1.

Proof. By Lemma 2
E(Xk

i ) ≤ εk((μ
−1vi)

k + 1)

Thus,

E(X) < εk(μ
−k

n∑

i=1

vki ) + εkn.

Also, by the Hölder inequality
∑n

i=1 vi
n1−1/k

≤ (

n∑

i=1

vki )
1/k

Thus,

n1/k = μ−1

∑n
i=1 vi

n1−1/k
≤ μ−1(

n∑

i=1

vki )
1/k

Finally, n < (μ−k
∑n

i=1 v
k
i ). We conclude the proof by putting πk = 200εk and

applying Markov’s inequality.
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5 Discussion, Open Questions, and Appendix

Due to space constraints, we have omitted the discussion, open questions, and appendix.
These are available in the full version of our paper on arXiv.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

2. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over streaming data.
In: SODA, pp. 633–634 (2002)

3. Bar-Yossef, Z.: The complexity of massive data set computations. PhD thesis, Berkeley, CA,
USA, AAI3183783 (2002)

4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci. 68(4), 702–732 (2004)

5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting distinct el-
ements in a data stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS,
vol. 2483, pp. 1–10. Springer, Heidelberg (2002)

6. Bhattacharyya, S., Madeira, A., Muthukrishnan, S., Ye, T.: How to scalably and accurately
skip past streams. In: Proceedings of the 2007 IEEE 23rd International Conference on Data
Engineering Workshop, ICDEW 2007, pp. 654–663. IEEE Computer Society, Washington,
DC (2007)

7. Braverman, V., Katzman, J., Seidell, C., Vorsanger, G.: Approximating large frequency mo-
ments with o(n1−2/k) bits. CoRR, abs/1401.1763 (2014)

8. Braverman, V., Ostrovsky, R.: Smooth histograms for sliding windows. In: Proceedings of
the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp.
283–293. IEEE Computer Society, Washington, DC (2007)

9. Braverman, V., Ostrovsky, R.: Zero-one frequency laws. In: Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, pp. 281–290. ACM, New York (2010)

10. Braverman, V., Ostrovsky, R.: Approximating large frequency moments with pick-and-drop
sampling. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) AP-
PROX/RANDOM 2013. LNCS, vol. 8096, pp. 42–57. Springer, Heidelberg (2013)

11. Braverman, V., Ostrovsky, R.: Generalizing the layering method of Indyk and Woodruff:
Recursive sketches for frequency-based vectors on streams. In: Raghavendra, P., Raskhod-
nikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM 2013. LNCS, vol. 8096, pp.
58–70. Springer, Heidelberg (2013)

12. Braverman, V., Ostrovsky, R., Vilenchik, D.: How hard is counting triangles in the streaming
model? In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
I. LNCS, vol. 7965, pp. 244–254. Springer, Heidelberg (2013)

13. Braverman, V., Ostrovsky, R., Vorsanger, G.: Weighted sampling without replacement from
data streams (2013) (submitted)

14. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling from sliding windows. In:
PODS, pp. 147–156 (2009)

15. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party commu-
nication complexity of set disjointness. In: IEEE Conference on Computational Complexity,
pp. 107–117 (2003)

16. Chaudhuri, S., Motwani, R., Narasayya, V.: On random sampling over joins. In: Proceedings
of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD
1999, pp. 263–274. ACM, New York (1999)



24 V. Braverman and G. Vorsanger

17. Coppersmith, D., Kumar, R.: An improved data stream algorithm for frequency moments. In:
SODA, pp. 151–156 (2004)

18. Cormode, G., Datar, M., Indyk, P., Muthukrishnan, S.: Comparing data streams using ham-
ming norms (how to zero in). IEEE Trans. on Knowl. and Data Eng. 15(3), 529–540 (2003)

19. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: An approximate l1-difference
algorithm for massive data streams. In: FOCS 1999: Proceedings of the 40th Annual Sym-
posium on Foundations of Computer Science, FOCS 1999, p. 501. IEEE Computer Society,
Washington, DC (1999)

20. Ganguly, S.: Estimating frequency moments of data streams using random linear combina-
tions. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX and RANDOM
2004. LNCS, vol. 3122, pp. 369–380. Springer, Heidelberg (2004)

21. Ganguly, S., Cormode, G.: On estimating frequency moments of data streams. In: Charikar,
M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX and RANDOM. LNCS,
vol. 4627, pp. 479–493. Springer, Heidelberg (2007)

22. Indyk, P., Woodruff, D.: Optimal approximations of the frequency moments of data streams.
In: STOC 2005: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, pp. 202–208. ACM, New York (2005)

23. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate discrete distributions. Wiley-Interscience
(2005)

24. Kane, D.M., Nelson, J., Woodruff, D.P.: On the exact space complexity of sketching and
streaming small norms. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2010 (2010)

25. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct elements prob-
lem. In: PODS 2010: Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems of Data, pp. 41–52. ACM, New York (2010)

26. Knuth, D.E.: The art of computer programming, fundamental algorithms, 3rd edn., vol. 1.
Addison Wesley Longman Publishing Co., Inc., Redwood City (1997)

27. Li, P.: Compressed counting. In: SODA 2009: Proceedings of the Nineteenth Annual ACM
-SIAM Symposium on Discrete Algorithms, pp. 412–421. Society for Industrial and Applied
Mathematics, Philadelphia (2009)

28. McGregor, A.: Open problems in data streams and related topics. In: IITK Workshop on
Algorithms for Data Streams (2006), http://www.cse.iitk.ac.in/
users/sganguly/data-stream-probs.pdf (2007)

29. McGregor, A., Pavan, A., Tirthapura, S., Woodruff, D.: Space-efficient estimation of statistics
over sub-sampled streams. In: Proceedings of the 31st Symposium on Principles of Database
Systems, PODS 2012, pp. 273–282. ACM, New York (2012)

30. Rusu, F., Dobra, A.: Sketching sampled data streams. In: Proceedings of the 2009 IEEE
International Conference on Data Engineering, ICDE 2009, pp. 381–392. IEEE Computer
Society, Washington, DC (2009)

31. Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., New York (2001)
32. Vitter, J.S.: ACM Transactions on Mathematical Software, 11(1), 37–57

http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf
http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf


L∞-Discrepancy Analysis

of Polynomial-Time Deterministic Samplers
Emulating Rapidly Mixing Chainsα

Takeharu Shiraga, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Japan

{takeharu.shiraga,yamauchi,kijima,mak}@inf.kyushu-u.ac.jp

Abstract. Markov chain Monte Carlo (MCMC ) is a standard technique
to sample from a target distribution by simulating Markov chains. In an
analogous fashion to MCMC, this paper proposes a deterministic sam-
pling algorithm based on deterministic random walk, such as the rotor-
router model (a.k.a. Propp machine). For the algorithm, we give an upper
bound of the point-wise distance (i.e., infinity norm) between the “distri-
butions” of a deterministic random walk and its corresponding Markov
chain in terms of the mixing time of the Markov chain. As a result, for
uniform sampling of #P-complete problems, such as 0-1 knapsack solu-
tions, linear extensions, matchings, etc., for which rapidly mixing chains
are known, our deterministic algorithm provides samples with a “distri-
bution” with a point-wise distance at most ε from the target distribution,
in time polynomial in the input size and ε−1.

Keywords: rotor-router model, #P-complete, Markov chain Monte
Carlo, mixing time.

1 Introduction

Motivated by a new general scheme for a derandomization of randomized algo-
rithms, this paper proposes a deterministic sampling algorithm, that is a deter-
ministic algorithm to provide samples. Our approach is an analogy of Markov
chain Monte Carlo (MCMC ), and uses the idea of deterministic random walk.

Background: Sampling and approximate counting. Counting is a fundamental
topic in Combinatorics, and it is highly related to sampling, a fundamental topic
in Probability Theory. #P, a computational class of the counting version of NP,
is an important class of polynomial-time complexity theory. Several counting
problems are known to be #P-complete.

A number of randomized approximate counting (cf. FPRAS1) based on MCMC
sampling are devised for #P complete problems, such as knapsack solutions [17],

� This manuscript is an extended abstract version of [19].
1 An algorithm (for counting, for simplicity) is called fully polynomial-time approxima-
tion scheme (FPRAS) if the output approximate value Z ∈ R for the exact number
A ∈ Z satisfies that Pr(|Z −A|/A ≤ ε) ≥ 1− δ for any ε ∈ (0, 1) and δ ∈ (0, 1), and
the algorithm terminates in time polynomial in the input size, ε−1 and log(δ−1).

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 25–36, 2014.
c∞ Springer International Publishing Switzerland 2014
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linear extensions [14,3], matchings [12,13], etc. (see Section 5). The idea of
MCMC is simple; design an ergodic Markov chain with a desired limit distribu-
tion, and sample from the limit distribution simulating the chain (see Section 2).
It is easy to design Markov chain with a desired limit distribution based on re-
versible chains, and a major issue is mixing time of chains; “How long shall we
simulate the chain to obtain samples from an approximately limit distribution?”
Several techniques are developed for estimating mixing times concerning total
variation distance or relative point-wise distance (see e.g., [20,16]).

Recently, deterministic approximation for #P-hard problems is a major chal-
lenge. For instance, deterministic approximation algorithm based on the dynamic
programing was proposed for counting knapsack solutions [9].

Deterministic random walk. The rotor-router model, also known as the Propp
machine, is a deterministic process analogous to random walk on a graph [6,15].
Instead of distributing tokens to randomly chosen neighbors, the rotor-router
model deterministically serves the neighbors in a fixed order by associating to
each vertex a “rotor-router” pointing to one of its neighbors. Doerr et al. [5,7]
first called the rotor-router model deterministic random walk, meaning a “de-
randomized, hence deterministic, version of a random walk.”

The first remarkable result on the rotor-router model is due to Cooper and
Spencer [6]. They are concerned with the model of multiple tokens (multiple-
walk) on Z

n, and investigated the discrepancy on a single vertex: they gave a

bound that |Ω(t)
v − μ

(t)
v | → cn where Ω

(t)
v (resp. μ

(t)
v ) denotes the number (resp.

expected number) of tokens on vertex v ⊂ Z
n in a rotor-router model (resp.

corresponding random walk) at time t on the condition that μ
(0)
v = Ω

(0)
v for

any v, and cn is a constant depending only on n but independent of the total
number of tokens in the system. Cooper et al. [5] showed c1 ≡ 2.29, and Doerr
and Friedrich [7] showed that c2 is 7.29 or 7.83 depending on the routing rules.

On the other hand, Cooper et al. [4] gave an example of |Ω(t)
v − μ

(t)
v | = σ(

∈
kt)

on infinite k-regular trees, the example implies that the discrepancy can get
infinitely large as increasing the total number of tokens.

Motivated by a derandomization of Markov chains, Kijima et al. [15] are con-
cerned with the multiple-walks on general finite multidigraphs (V,A), and gave

a bound |Ω(t)
v −μ(t)v | = O(|V ||A|) in case that corresponding Markov chain is er-

godic, reversible and lazy. They also gave some examples of |Ω(t)
v −μ(t)v | = σ(|A|).

In the context of load balancing, Rabani et al. [18] are concerned with a determin-
istic algorithm similar to the rotor-router model corresponding to Markov chains
with symmetric transition matrices, and gave a bound O(α log(|V |)/(1 − β→))
where α denotes the maximum degree of the transition diagram and β→ denotes
the second largest eigenvalue of the transition matrix.

For some specific finite graphs, namely hypercubes and tori, some bounds in
terms of logarithm of the size of transition diagram are known [15,8,1]. For in-
stance, Akbari and Berenbrink [1] gave a bound O(n1.5) for n-dimensional hyper-
cube. Those analyses highly depend on the structures of the specific graphs, and
it is difficult to extend the technique to other combinatorial graphs.
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Kijima et al. [15] gave rise to a question if there is a deterministic random walk
for #P-complete problems, such as 0-1 knapsack solutions, bipartite matchings,

etc., such that |Ω(t)
v − μ

(t)
v | is bounded by a polynomial in the input size.

There are a number of results related to deterministic random walk. Here, we
briefly refer some of them. Holroyd and Propp [10] analyzed “hitting time” of the
rotor-router machine with a single token (single-walk) on finite simple graphs,

and gave a bound |θ(t)v − tπv| = O(|V ||A|) where θ
(t)
v denotes the frequency of

visits of the token at vertex v in t steps, and π denotes the stationary distribu-
tion of the corresponding random walk. Holroyd and Propp [10] also proposed a
generalized model called stack walk, which is the first model of deterministic ran-
dom walk for irrational transition probabilities, as far as we know. While Holroyd
and Propp [10] showed the existence of routers which approximates irrational
transition probabilities well, Angel et al. [2] gave a simple routing algorithm,
which serves tokens in a greedy manner based on the “shortest remaining time”
strategy.

Our Results. This paper proposes a deterministic algorithm for sampling from
a finite set V = {1, . . . , N}. Our algorithm is based on a version of deterministic
random walk which emulates a Markov chain with a transition matrix P . In the
algorithm, a configuration of M tokens over V is deterministically updated; let

Ω(t) = (Ω
(t)
1 , . . . , Ω

(t)
N ) ⊂ Z

N
≥0 denote the configuration at time t = 0, 1, 2, . . ., i.e.,

Ω
(t)
v denotes the number of tokens on v ⊂ V , and hence

∑
v∪V Ω

(t)
v = M . For

comparison, let μ(0) = Ω(0), and let μ(t) = μ(0)P t, then μ(t) ⊂ R
N
≥0 denotes the

expected configuration of M tokens independently according to P for t steps. A

main contribution of the paper is to show that |Ω(t)
v − μ

(t)
v | → 3(πmax/πmin)t

→α
holds for any v ⊂ V at any time t in case that P is ergodic and reversible, where
πmax and πmin are maximum/minimum values of π respectively, t→ is the mixing
rate of the corresponding Markov chain, and α is the maximum degree of the
transition diagram.

This result suggests polynomial-time deterministic algorithms (with polyno-
mial space) for uniform sampling for #P-complete problems, such as knapsack
solutions, linear extensions, matchings, etc., for which rapidly mixing chains ex-
ist. Thus, our result affirmatively answers the question by Kijima et al. [15].
Setting the number of tokens M ≥ 3ε−1t→α for an arbitrary ε (0 < ε < 1), our
algorithm provides M samples with a “distribution” Ω̃(t) := Ω(t)/M , of which
the point-wise distance ∪Ω̃(t) − π∪∈ is at most ε from the uniform distribution
π over the target set. For instance, our algorithm runs in O→(n11.1ε−1) time for
n-dimensional 0-1 knapsack solutions, in O→(n8ε−1) time for linear extensions of
n elements poset, in O→(m4n4ε−1) time for all matchings in a graph with n ver-
tices andm edges, where O→ notation ignores poly(log(ε−1), logm, logn) factors.
Note that those orders of magnitude are not optimized, for simplicity of the main
arguments. Unfortunately, these running times are the best possible in terms of
ε−1 for any deterministic sampler, because of the integrality gap concerning the
number of tokens. See also the full-paper version [19] for a relationship to the
previous deterministic random walks.
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Organization. This paper is organized as follows. In Section 2, we briefly reviews
MCMC, as a preliminary of our algorithm and analysis. In Section 3, we describe
out algorithm, and explain a summary of our main result. In Section 4, we prove
the main theorem. In Section 5, we show examples of polynomial-time uniform
samplers, namely for knapsack solutions, linear extensions, and matchings.

2 Preliminaries: Markov Chain Monte Carlo

As a preliminary step of our deterministic sampling, this section briefly reviews
the Markov chain Monte Carlo (MCMC). See e.g., [20,16] for detail of MCMC.

Let V
def.
= {1, . . . , N} be a finite set, and suppose that we wish to sample from

V with a probability proportional to a given positive vector f = (f1, . . . , fN ) ⊂
R

N
≥0; for example, we are concerned with uniform sampling of 0-1 knapsack

solutions in Section 5.1, where V denotes the set of 0-1 knapsack solutions and
fv = 1 for each v ⊂ V . The idea of a Markov chain Monte Carlo (MCMC) is to
sample from a limit distribution of a Markov chain which is equal to the target
distribution f/∪f∪1 where ∪f∪1 =

∑
v∪V fv is the normalizing constant.

Let P ⊂ R
N×N
≥0 be a transition matrix of a Markov chain with the state

space V , where Pu,v denotes the transition probability from u to v (u, v ⊂ V ).
A transition matrix P is irreducible if P t

u,v > 0 for any u and v in V , and is
aperiodic if GCD{t ⊂ Z>0 | P t

x,x > 0} = 1 holds for any x ⊂ V , where P t
u,v

denotes the (u, v) entry of P t, the t-th power of P . An irreducible and aperiodic
transition matrix is called ergodic. It is well-known for a ergodic P , there is a
unique stationary distribution π ⊂ R

N
≥0, i.e., πP = π, and the limit distribution

is π, i.e., γP∈ = π for any probability distribution γ ⊂ R
N
≥0 on V .

An ergodic Markov chain defined by a transition matrix P ⊂ R
N×N
≥0 is re-

versible if the detailed balance equation

fuPu,v = fvPv,u (1)

holds for any u, v ⊂ V . When P satisfies the detailed balance equation, it is not
difficult to see that fP = f holds, meaning that f/∪f∪1 is the limit distribution
(see e.g., [16]). Let γ and ρ be a distribution on V , then the total variation
distance Dtv between γ and ρ is defined by

Dtv(γ, ρ)
def.
= max

A⊆V

∑

v∪A

(γv − ρv) =
1

2
∪γ − ρ∪1 . (2)

Note that Dtv(γ, ρ) → 1, since ∪γ∪1 and ∪ρ∪1 are equal to one, respectively. The
mixing time of a Markov chain is defined by

τ(ε)
def.
= max

v∪V
min

{
t ⊂ Z≥0 | Dtv(P

t
v,·, π) → ε

}
(3)

for any ε > 0, where P t
v,· denotes the v-th row vector of P t; i.e., P t

v,· denotes
the distribution of a Markov chain at time t stating from the initial state v ⊂ V .
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In other words, the distribution P t
v,· of the Markov chain after τ(ε) transition

satisfies Dtv(P
t
v,·, π) → ε, meaning that we obtain an approximate sample from

the target distribution.

For convenience, let h(t)
def.
= maxw∪V Dtv

(
P t
w,·, π

)
for t ≥ 0, then it is well-

known that h satisfies a kind of submultiplicativity. We will use the following
proposition in the analysis of our algorithm in Section 4.2. See [16] or [19] for
the proof.

Proposition 1. For any integers � (� ≥ 1) and k (0 → k < τ(Λ)),

h (�· τ(Λ) + k) → 1

2
(2Λ)Θ

holds for any Λ (0 < Λ < 1/2). �

By the submultiplicativity, t→
def.
= τ(1/4), called mixing rate, is often used as a

characterization of P .

3 Deterministic Sampling Algorithm

Now, we explain our algorithm in Section 3.1, and exhibit a summary of our
main theorem in Section 3.2. Our algorithm is based on the idea of determinis-
tic random walks, such as the rotor-router model (see e.g., [6,15]) or the stack
walk (greedy-routing) [10,2,21], but a major difference is that our algorithm is
oblivious; while the rotor-router model and greedy-routing model memorizes the
configurations of tokens and routers, our algorithm memorizes the configuration
of tokens only. It makes the description of the algorithm simple, compared with
other deterministic random walks.

See Section 5 for the detailed description of deterministic sampling algorithms
for particular applications, such as 0-1 knapsack solutions (Section 5.1), linear
extensions (Section 5.2), and matchings (Section 5.3), where we also discusses
the computational complexities of our algorithm for the applications. See also
the full paper version [19] for a relationship to other deterministic random walk,
including the rotor-router model [6,15], greedy-routing [10,2,21], etc.

3.1 Algorithm

Let P ⊂ R
N×N
≥0 be a transition matrix of an ergodic Markov chain with the

state space V . Let μ(0) = (μ
(0)
1 , . . . , μ

(0)
N ) ⊂ Z

N
≥0 denote an initial configuration

of M tokens over V , and let μ(t) ⊂ R
N
≥0 denote the expected configuration of

tokens independently according to P at time t ⊂ Z≥0, i.e., ∪μ(t)∪1 = M and
μ(t) = μ(0)P t. Let μ̃(t) = μ(t)/M , for simplicity, then clearly μ̃(∈) = π holds,
since P is ergodic (see Section 2).

The idea of our algorithm is to simulate μ(t) in a deterministic way. Let G =
(V, E) be the transition digram of P , meaning that E = {(u, v) ⊂ V 2 | Pu,v > 0}.
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Note that E may contain self-loop edges such as (v, v). Let N+(v) and N−(v)
respectively denote the out-neighborhood and in-neighborhood of v ⊂ V , i.e.,
N+(v) = {u ⊂ V | Pv,u > 0} and N−(v) = {u ⊂ V | Pu,v > 0}. Note that v is
a member of both N+(v) and N−(v) if (v, v) ⊂ E . For convenience, let δ+(v) =
|N+(v)| and δ−(v) = |N−(v)|. In case that P is reversible, N+(v) = N−(v)
holds, and let N (v) denote them and let δ(v) = |N (v)|, for simplicity.

Let Ω(0) = μ(0), and let Ω(t) ⊂ Z
N
≥0 denote the configuration of tokens at

time t ⊂ Z≥0 in our algorithm. A configuration Ω(t) is updated, imitating Pv,u,
as follows. Without loss of generality, we may assume that an arbitrary ordering
u1, . . . , uΣ+(v) is defined on N+(v) for each v ⊂ V . Then, we define the number

of tokens Z
(t)
v,u sent from v to u during the time interval from t to t+ 1 by

Z(t)
v,ui

=

⎧
⎪⎨

⎪⎩

⌊
Ω
(t)
v Pv,ui

⎛
+ 1 (i → i→)

⌊
Ω
(t)
v Pv,ui

⎛
(otherwise)

(4)

where

i→ = Ω
(t)
v −

∑Σ+(v)
i=1

⌊
Ω
(t)
v Pv,ui

⎛

denoting the number of “surplus” tokens. Then, Ω(t+1) is defined by

Ω
(t+1)
u

def.
=
∑

v∪V Z
(t)
v,u (5)

for each u ⊂ V .
Remark that μ

(t+1)
u =

∑
v∪V μ

(t)
v Pv,u holds for each u ⊂ V and t ≥ 0, in

the multiple random walk, meaning that if Ω(t) approximates μ(t) well, then we

can expect that Z
(t)
v,u approximates the “expected flow of tokens” μ

(t)
v Pv,u and

hence that Ω(t+1) approximates μ(t+1) well. In fact, it is not difficult to see the
following observation, which we will use in the analysis in Section 4.2.

Lemma 2. For the above algorithm,
⎝
⎝
⎝Z(t)

v,u − Ω(t)
v Pv,u

⎝
⎝
⎝ → 1

holds for any u, v,⊂ V and t ≥ 0.

3.2 Main Results

By the definition of the mixing time, Dtv(μ̃
(Ω(ν)), π) → ε holds where τ(ε) denotes

the mixing time of P , meaning that μ̃ approximates the target distribution π

well. Thus, we hope our deterministic sampler that the “distribution” Ω̃(T ) def.
=

Ω(T )/M approximates the target distribution π well. We define a point-wise
distance Dpw(γ, ρ) between γ ⊂ R

N
≥0 and ρ ⊂ R

N
≥0 satisfying ∪γ∪1 = ∪ρ∪1 = 1 by

Dpw(γ, ρ)
def.
= max

v∪V
|γv − ρv| = ∪γ − ρ∪∈. (6)
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Theorem 3. Let P ⊂ R
N×N
≥0 be a reversible transition matrix with a stationary

distribution π, then

Dpw

⎞
Ω̃(T ), μ̃(T )

⎣
→ πmax

πmin
· 3t

→α

M

holds for any T ≥ 0, where πmax = max{πv | v ⊂ V } and πmin = min{πv | v ⊂
V }.

In a special case that the stationary distribution is uniform, we obtain the
following.

Corollary 4. Let P ⊂ R
N×N
≥0 be an ergodic and reversible transition matrix

with a uniform stationary stationary distribution π. Set M ≥ 6ε−1t→α, then the
“distribution” Ω̃(T ) of the deterministic sampler after T ≥ τ(ε/2) steps satisfies
that Dpw

(
Ω̃(T ), π

)
→ ε.

4 Analysis of the Point-Wise Distance

This section proves Theorem 3. Some of basic techniques in our proof are based
on or similar to previous works [6,15,18].

4.1 Framework

To begin with, we establish the following key lemma. See [19] for the proof.

Lemma 5. Let P ⊂ R
N×N
≥0 be a transition matrix of an ergodic Markov chain

with a state space V , and let π be the stationary distribution of P . Then, the
configurations Ω(T ) and μ(T ) of tokens in the algorithm and in corresponding
random walk satisfy

Ω(T )
w − μ(T )

w =
T−1∑

t=0

∑

u∪V

∑

v∪N−(u)

⎞
Z(t)
v,u − Ω(t)

v Pv,u

⎣ (
PT−t−1
u,w − πw

)

for any w ⊂ V and for any T ≥ 0. �

4.2 Analysis for Reversible Chains

Now, we are concerned with reversible Markov chains, and show the following
theorem.

Theorem 6. Let P ⊂ R
N×N
≥0 be a transition matrix of a reversible and ergodic

Markov chain with a state space V , and let π be the stationary distribution of P .
Then, the configurations Ω(T ) and μ(T ) of tokens in the algorithm and in its
corresponding random walk satisfy

⎝
⎝
⎝Ω(T )

w − μ(T )
w

⎝
⎝
⎝ →

2(1− Λ)

1− 2Λ
τ(Λ)

πw
πmin

α (7)

for any w ⊂ V , T ≥ 0 and Λ (0 < Λ < 1/2).
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Remark that our main Theorem 3 is immediate from Theorem 6 by setting
Λ = 1/4 and dividing (7) by the total number of tokens M .

Proof. By Lemma 5 and Observation 2, we obtain that

⎝
⎝
⎝Ω(T )

w − μ(T )
w

⎝
⎝
⎝ →

T−1∑

t=0

∑

u∪V

∑

v∪N (u)

⎝
⎝
⎝Z(t)

v,u − Ω(t)
v Pv,u

⎝
⎝
⎝
⎝
⎝PT−t−1

u,w − πw
⎝
⎝

→
T−1∑

t=0

∑

u∪V

∑

v∪N (u)

⎝
⎝PT−t−1

u,w − πw
⎝
⎝ =

T−1∑

t=0

∑

u∪V

δ(u)
⎝
⎝P t

u,w − πw
⎝
⎝ (8)

holds. Since P is reversible, P t
u,w = θw

θu
P t
w,u holds for any w and u in V . Thus

(8) =
T−1∑

t=0

∑

u∪V

δ(u)

⎝
⎝
⎝
⎝
πw
πu

(
P t
w,u − πu

)
⎝
⎝
⎝
⎝

→ α
πw
πmin

T−1∑

t=0

∑

u∪V

⎝
⎝P t

w,u − πu
⎝
⎝ = 2α

πw
πmin

T−1∑

t=0

Dtv

(
P t
w,·, π

)
(9)

where the last equality follows the fact that
∑

u∪V |P t
w,u − πu| = 2Dtv

(
P t
w,·, π

)
,

by the definition of the total variation distance (2). By Proposition 1, we obtain
the following.

Lemma 7. For any v ⊂ V and for any T > 0,

T−1∑

t=0

Dtv

(
P t
v,·, π

)
→ 1− Λ

1− 2Λ
τ(Λ)

holds for any Λ (0 < Λ < 1/2).

Proof. Let h(t) = Dtv

(
P t
w,·, π

)
, for convenience. Then, h(t) is at most 1 for any

t ≥ 0, by the definition of the total variation distance (2). By Proposition 1,

T−1∑

t=0

Dtv

(
P t
w,·, π

)
=

T−1∑

t=0

h(t) →
∈∑

t=0

h(t) =

∈∑

Θ=0

Ω(Δ)−1∑

k=0

h(�· τ(Λ) + k)

=

Ω(Δ)−1∑

k=0

h(k) +

∈∑

Θ=1

Ω(Δ)−1∑

k=0

h(�· τ(Λ) + k) →
Ω(Δ)−1∑

k=0

1 +

∈∑

Θ=1

Ω(Δ)−1∑

k=0

1

2
(2Λ)

Θ

= τ(Λ) +

∈∑

Θ=1

τ(Λ)
1

2
(2Λ)

Θ
= τ(Λ) +

Λ

1− 2Λ
τ(Λ) =

1− Λ

1− 2Λ
τ(Λ)

holds, and we obtain the claim. ◦⊆

Now we obtain Theorem 6 from (9) and Lemma 7. ◦⊆
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5 Applications to Rapidly Mixing Chains

In this section, we show some examples of polynomial-time deterministic sam-
plers for uniform sampling of combinatorial objects, whose counting is known to
be #P-complete.

5.1 0-1 Knapsack Solutions

Given a ⊂ R
n
>0 and b ⊂ R>0, the set of the 0-1 knapsack solutions is defined by

σKna = {x ⊂ {0, 1}n |
∑n

i=1 aixi → b}. We define a transition matrix PKna ⊂
R

|χKna|×|χKna| by

PKna(x,y) =

⎧
⎨

⎩

1/2n (if y ⊂ NKna(x))
1− |NKna(x)|/2n (if y = x)
0 (otherwise)

for x,y ⊂ σKna, where NKna(x) = {y ⊂ σKna | ∪x − y∪1 = 1}. Note that the
stationary distribution of PKna is uniform on σKna since PKna is symmetric. The
following theorem is due to Morris and Sinclair [17].

Theorem 8. [17] The mixing time τ(Λ) of PKna is O(n
9
2+α log Λ−1) for any

α > 0 and for any Λ > 0.

For the Markov chain defined by PKna, our deterministic sampler is described
as follows. Note that the following implementation does not optimize the time
and space complexity, for simplicity of the arguments.

Algorithm 1
Step 0. Set W 0[i] := 0 for each i = 1, . . . ,M .

/* W t[i] stores a solution in σKna, where token i is. */
Step 1. For (t = 0 to T − 1){

(a). Set list S
(t)
x := {i ⊂ {1, . . . ,M} |W t[i] = x} for each x ⊂ σKna as

long as S
(t)
x ∀= ∩.

(b). Serve tokens in S
(t)
x to neighboring vertices according to (4) for

each x ⊂ σKna satisfying that S
(t)
x ∀= ∩, and set W t+1[i] be the

solution in σKna at which token i arrived.
}

Step 2. Output WT [i] for each i = 1, . . . ,M .

Theorem 9. For an arbitrary ε (0 < ε < 1), set M := c1 n
11
2 +αε−1 and T :=

c2 n
9
2+α log ε−1 with appropriate constants c1, c2 and α, then Algorithm 1 outputs

M samples over σKna satisfying that

Dpw

⎞
Ω̃(T ), π

⎣
→ ε (10)

where π is the uniform distribution over σKna. The running time of Algorithm 1
is

O(TM log(M)n poly(log a, log b)) = O→(n11+2αε−1)

where O→ ignores poly log term.
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Proof. We check the complexity of Algorithm 1 for each Step. Step 0 sets all M
tokens on 0 ⊂ σKna, which takes O(Mn) time. Step 1(a) constructs the configu-
ration Ω(t) of M tokens over σKna. Note that the number of lists is at most M ,
since Step 1(a) constructs a list for v ⊂ σKna only when at least one token exists
on v. Step 1(a) takes O(M log(M)n) time, by heapifying W t[i] (i = 1, . . . ,M)
with the lexicographic order on σKna. Step 1(b) updates a configuration accord-
ing to our deterministic sampling algorithm described in Section 3.1. It takes
O(n poly(log a, log b)) time to find all feasible solutions neighboring to x. Once
the algorithm finds all feasible solutions neighboring to x, then it is easy to let

every token of Ω
(t)
x go to the neighboring vertex according to (4), in O(nΩ

(t)
x )

time, like the rotor-router. Since we repeat Step 1 T times, then we obtain the
time complexity O(TM log(M)n poly(log a, log b)).

Now, (10) is clear from Corollary 4, since Algorithm 1 is an implementation
of the deterministic sampler described in Section 3.1. ◦⊆

5.2 Linear Extensions of a Poset

Let S = {1, 2, . . . , n}, and Q = (S,∅) be a partial order. A linear extension
of Q is a total order X = (S,↓) which respects Q, i.e., for all i, j ⊂ S, i ∅ j
implies i ↓ j. Let σLin denote the set of all linear extensions of Q. We define a
relationship X ∨p X

∅ (p ⊂ {1, . . . , n}) for a pair of linear extensions X and X ∅

⊂ σLin satisfying that xp = x∅p+1, xp+1 = x∅p, and xi = x∅i for all i ∀= p, p+1, i.e.,

X = (x1, x2, . . . , xp−1, xp, xp+1, xp+2, . . . , xn)

X ∅ = (x1, x2, . . . , xp−1, xp+1, xp, xp+2, . . . , xn)

holds. Then, we define a transition matrix PLin ⊂ R
|χLin|×|χLin| by

PLin(X,X
∅) =

⎧
⎨

⎩

F (p)/2 (if X ∅ ∨p X)
1−

∑
I∪NLin(X) PLin(X, I) (if X

∅ = X)

0 (otherwise)

for X,X ∅ ⊂ σLin, where NLin(X) = {Y ⊂ σLin | X ∨p Y (p ⊂ {1, . . . , n − 1})}
and F (p) = p(n−p)

1
6 (n

3−n)
. Note that PLin is ergodic and reversible, and its stationary

distribution is uniform on σLin [3]. The following theorem is due to Bubley and
Dyer [3].

Theorem 10. [3] The mixing time τ(Λ) of PLin is O
(
n3 lognΛ−1

)
for any Λ > 0.

Thus, we obtain a deterministic algorithm running in O→(n8ε−1) time, in a sim-
ilar way as 0-1 knapsack in Section 5.1. See [19] for detail.

5.3 Matchings in a Graph

Counting all matchings in a graph, related to the Hosoya index [11], is known
to be #P-complete [22]. Jerrum and Sinclair [12] gave a rapidly mixing chain.
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This Section is concerned with sampling of all matchings in a graph. Remark that
counting all perfect matchings in a bipartite graph, related to the permanent,
is also well-known #P-complete problem, and Jerrum, Sinclair, and Vigoda [13]
gave a celebrated FPRAS based on an MCMC method using annealing. To apply
our algorithm to sampling perfect matchings, we need some assumptions on the
input graph (see e.g., [20,12,13]).

Let H = (U, F ) be an undirected graph. A matching in H is a subset M ⇔ F
such that no edges in M share an endpoint. Let NC(M) = {e = {u, v} | e /⊂
M, both u and v are matched in M} and let NMat(M) = {e | e /⊂ NC(M)}.
Then, for e = {u, v} ⊂ NMat(M), we define M(e) by

M(e) =

⎧
⎪⎪⎨

⎪⎪⎩

M− e (if e ⊂ M)
M+ e (if u and v are unmatched in M)
M+ e − e∅ (if exactly one of u and v is matched in M , and

e∅ is the matching edge).

Let σMat denote the set of all possible matchings of H . The we define the
transition matrix PMat ⊂ R

|χMat|×|χMat| by

PMat(M,M∅) =

⎧
⎨

⎩

1/2m (if M∅ = M(e))
1− |NMat(M)|/2m (if M∅ = M)
0 (otherwise)

for any M,M∅ ⊂ σMat, wherem = |F |. Note that PMat is ergodic and reversible,
and its stationary distribution is uniform on σMat [12]. The following theorem
is due to Jerrum and Sinclar [12].

Theorem 11. [12] The mixing time τ(Λ) of PMat is O
(
mn2 lognΛ−1

)
for any

Λ > 0.

Thus, we obtain a deterministic algorithm running in O→(m4n4ε−1) time, in a
similar way as 0-1 knapsack in Section 5.1. See [19] for detail.

6 Concluding Remarks

This paper proposed an algorithm for deterministic sampling, and gave an upper
bound of the point-wise distance Dpw(Ω̃

(t), μ̃(t)). Using the algorithm, we obtain
polynomial-time deterministic algorithms for uniform sampling of #P-complete
problems, such as knapsack solutions, linear extensions and matchings. A bound
of the point-wise distance independent of πmax/πmin is a future work. Develop-
ment of deterministic approximation algorithms based on a deterministic sampler
for #P-hard problems is a challenge.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Num-
ber 25700002, 24650008, and MEXT Grant-in-Aid for Scientific Research on
Innovative Areas “Molecular Robotics” (No. 25104519).
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Abstract. An inconsistent database is a database instance violating in-
tegrity constraints. A repair of an inconsistent database is a maximal
consistent subset. Sampling from the repair space is an alternative ap-
proach meeting the needs of many applications. In this paper, we intro-
duce a new class of repair, query feedback restricted repair, based on the
feedback on user’s witness query. We first map out a complete picture of
both data and combined complexities of repair existence problems under
different cases to identify the intractable cases. Especially, we show that
if the query is a projection or a union query, then the decision problem is
NP-complete; Even worse, if the query is a conjunctive query, the deci-
sion problem becomes ΣP

2 -complete. At last, we provide a random repair
sampling algorithm when the witness query is a selection-join query, and
it is still polynomial even under the combined complexity.

Keywords: repair sampling, database, complexity.

1 Introduction

In many novel database applications, violations of integrity constrains cannot
be avoided. For example, two consistent data sources will contribute conflicting
information in data integration [1]. Integrity constrains (such as FDs [2]/CFDs
[3]) can be used to identify conflicts in the database. A resolution of a conflict
is the deletion of one of the tuples resulting in the conflict. Generally, there
are many nondeterministic choices to resolve the conflicts when repairing the
database, because integrity constrains can not be able to further determine which
tuple should be deleted. Due to the exponential space of possible subset-repairs,
we may not be able to, or may not want to, generate all repairs. Therefore,
repair sampling is proposed as an alternative approach which aims to provide
repairs sampled from the original data to user in some strategies in order to help
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user find a more reasonable repair. This approach will meet the needs of some
applications such as interactive data cleaning, data integration and uncertain
query answering, see [4].

Consider an example about the cargo information of a retail store. Suppose
a schema R(Item: string, Type: string, Brand: string, Origin: string, Price: nu-
merical), an database instance I0 over schema R is shown as follow,

{t1(Tea, Green, China, 100), t2(Tea, Red, India, 110),
t3(Tea, Green, China, 120), t4(Tea, Red, India, 130)}
Additionally, an FD ϕ is defined over R as follow, ϕ: Item, Type, Origin

→ Price. The semantic of ϕ is that if two tuples have the same value on the
attributes “Item”, “Type”, “Origin”, the values of attribute “Price” must be the
same. According to such FD, tuple “t1” is inconsistent with “t2”, and tuple “t3”
is inconsistent with “t4”. Usually, inconsistencies imply that the data has errors.
However, ϕ cannot further guide how to repair such two inconsistencies in order
to recover the correct information. A subset-repair is the maximal consistent
subset of the inconsistent database, thus there are exponential possible repairs
with respect to the number of inconsistencies such as the repair set of I0 includes
four possible subset-repairs as follow,
I →1: {(Tea, Green, China, 100), (Tea, Red, India, 110)}
I →2: {(Tea, Green, China, 100), (Tea, Red, India, 130)}
I →3: {(Tea, Green, China, 120), (Tea, Red, India, 110)}
I →4: {(Tea, Green, China, 120), (Tea, Red, India, 130)}
Sampling algorithm is to generate a sample of possible repairs of the input

database under some repair semantic, moreover, it will return empty when no
repairs are found.

In real life, there are many users having useful knowledge which can be used
to guide how to resolve the conflicts, for example, they are able to provide a
preference on how conflicts should be resolved which has been investigated in
[1]. In this paper, we consider another way of exploiting users’ knowledge, in
which user will give a feedback on a witness query result to guide how to resolve
the conflicts. Comparing with preference on conflicts in [1], query feedback has a
stronger expression ability, and this implies that user knowledge can be exploited
as more as possible. Often, users have the knowledge about the result of his
witness query, but they may not be permitted to modify the database directly
due to some reasons, since they may not have the complete knowledge about the
whole database.We restrict that the feedback can be only specified on the witness
query result, rather than the modifications directly on the original database.
Obviously, the guide from user’s feedback on the witness query will narrow down
the set of repairs to a set of repairs consistent with the users’ knowledge at least.

Continue the example above, user A wants to know “the information of all
the tea produced in China that this retail store sailed”. Motivated by this, user
A submits a witness database query Q : σItem=Tea,Origin=China (I0).

1 And an
result of Q is returned as {(Tea, Green, China, 100), (Tea, Green, China, 120)}.
In fact, user A has the useful knowledge about the cargo information of this

1 Selection symbol σ. See [2]
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retail store, and make sure that “The prices of green tea this store sailed are
no more than 100 !” Consequently, for Q, user A will provide a feedback that
Δ =(Tea, Green, China, 120) should be eliminated. Then, these feedbacks are
the belief that we are allowed to eliminate tuple t2 and t5 from I0. Because user
query feedback can be used to eliminate incorrect repairs, the sampling space
of possible repairs gets even better and smaller as follows, and we call the two
repairs query feedback restricted repair,
I →→1 : {(Tea, Green, China, 100), (Tea, Red, India, 110)},
I →→2 : {(Tea, Green, China, 100), (Tea, Red, India, 130)}.
In this paper, we want to make a theoretical and algorithmic study on sam-

pling query feedback restricted repair. We first investigate the repair existence
problem. This is motivated that the repair existence problem is the fundamental
problem of repair sampling. We set the integrity constrain as the simple case and
set the witness query as a single relation algebraic query (not multiple queries),
then give the complexity analysis of the decision problems under different query
classes. After identifying all the intractable cases, we will provide polynomial
sampling algorithm for the tractable case.

Contributions. We summarize our contributions as follows. First, we formally
introduce query feedback restricted repair. Second, we give the thorough com-
plexity analysis of its existence decision problem, qfr -RE. On data complexity
aspect, qfr -RE is at least NP-hard if the witness query includes projection or
union; On combined complexity aspect, qfr -RE is also intractable if projection
or union included, and it turns to ΣP

2 -complete if the witness query is a SPJ
(selection-projection-join) query (i.e., conjunctive query) or a SPJU (selection-
projection-join-union) query. In brief, we map out a complete picture of the data
and combined complexities of the three problems. Finally, we provide a random
repair sampling algorithm when the witness query is a selection-join query and
user has the complete knowledge about the witness query, the algorithm is still
polynomial even under the combined complexity.

2 Related Works

Optimal data repairing and consistent query answer are the most popular ap-
proaches to deal with violations of FDs and other integrity constraints. The for-
mer aim to find a repair with a minimum modifications on the given database,
including minimally differs from the original one (e.g., [5], [6], [7], [8]), mini-
mize the description length (e.g., [9]) and so on. The limitation of them is that
there may be many different optimal repairs. The latter aims to find answer
of a query that are true in every possible repair. It usually employ techniques
of condensed representation of possible repairs(e.g., [10], [11]) or query rewrit-
ing (e.g., [12], [13]) to obtain consistent answer. Unfortunately, there are lots of
classes of queries have to be answered approximately. Sampling repairs is an al-
ternative approach proposed to overcome several drawbacks of optimal repairing
and consistent query answering. It is to generate a sample of possible repairs of
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the input database under some repair semantic, moreover, it will return empty
query results when no consistent answers are found, such as [4] proposed three
classes of repairs and the corresponding sampling algorithm.

Different from the existing work, this paper consider using user query feed-
back to guide how to resolve conflicts so that a more reasonable sampling space
could be obtained. Comparing with the preferred repair in [1], query feedback
restricted repair defined in this paper has a stronger expressive ability. More-
over, we focus on sampling repairs, not the consistent query answering. We study
the complexity of repair existence problem not the repair checking problem that
whether a given instance is a repair of the input instance, see [14].

Another related problems is view update problem that given a view and an up-
date against a view, the problem is to translate the update into a corresponding
update against the base data, see [2]. There are several complexity bounds are
known on relational view updates, [15], [16], [17], and [18] give out the tractabil-
ity and intractability results of finding a minimal view complement for relational
views. [19] gave out the complexity of view update analysis under key preserv-
ing condition which can not be extended to ours. There are lots of works on the
algorithms for translating view update to base table update, such as [20], [21],
[22] and so on. Especially, [23] and [18] both considered the presence of certain
functional dependencies and provided algorithms for translating restricted view
updates to base table updates without side effects or with minimum side effects.
Their goal was to define correctness properties of these translations and to char-
acterize precisely the conditions for the existence of translations possessing these
properties. Different from our work, the database they considered is a consistent
one not a inconsistent database so that the presence of FD and other integrity
constrains simplifies view update problem which it is in contrary to this paper.

Dependency propagation is another related problem, it is to determine that
given a view defined on data sources and a set of dependencies on the sources,
whether another dependency is guaranteed to hold on the view, e.g., [24], [25]
which are the first to investigate dependency propagation. [26] extended [24],
[25] by providing complexity bounds for FD propagation in the general setting,
and for CFD propagation. However, this is a problem different from ours.

3 Notations and Definitions

A schema is a finite sequence R = ⊂R1, . . . , Rm≡ of distinct relation symbols,
where each Ri has an arity ri > 0 and includes several attributes, denoted by
Ri = (A1, . . . , Ari). Each attribute Aj has a corresponding set dom(Aj) which
is the domain of values appearing in Aj . An database instance I (over R) is a
sequence ⊂RI

1, ..., R
I
m≡, such that each RI

i is a finite set of tuples {t1, . . . , tN}, each
tuple tk belongs to the set dom(A1)× · · · × dom(Ari). We use I[Ri] to represent
the relationRi in database I. If I and J are two instances overR = ⊂R1, . . . , Rm≡,
then J is a sub-instance of I denoted J ∈ I if RJ

i ∈ RI
i , for all i = 1, ...,m.

An FD (Functional Dependency[2]) ϕ over a relation R can be represented
by ϕ : (X → A), where both X and A are a set of attributes from R. Such
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dependency means the values of any two tuples’ attributes A should be same if
they have same value in attributes X . Given a database instance I and an FD
ϕ, if there is no tuple pair violate the FD rule, we denote that I |= ϕ. Usually,
we use Σ to denote the set of FDs. Given a database I and an FD set Σ, for
every FD ϕ ≥ Σ, if I |= ϕ, we call I consistent, denoted as I |= Σ. Otherwise,
we call it inconsistent.

In this paper, we suppose that the user has complete knowledge about the
answer of his witness query, he is able to guarantee what should be preserved
in the result and what should not be. Therefore, we define the query feedback
restricted repair as follow.

Definition 1 (Query feedback restricted repair). Given a database I, FD
set Σ, a query Q, its result Q(I) and a subset of result need to delete specified
by users Δ (i.e., Δ ∈ Q (I)), for any instance Ir, it is called a subset-repair
of I such that (1) Ir |= Σ, and (2) Q (Ir) = Q (I) \Δ, (3) Ir is a maximal
sub-instance of I.

Before we give the sampling algorithm, we first study the complexity of the basic
decision problem of repair existence, called qfr-RE . Here, the feedbackΔ speci-
fied by user is a subset of the query resultQ(I) where the witness queryQ is writ-
ten by operations in relational algebra including S (selection), P (projection), J
(join), U (union), RA (Relation algebra). Recall the example in section 1, both
I →→1 and I →→2 are repairs restricted by the feedbackΔ = {(Tea,Green, China, 120)}.

4 Intractable Cases

In this section, we list the intractable cases on two aspects including both data
and combined complexity. We remark that data complexity is the complexity
expressed in terms of the size of the database only, while combined complexity
is the complexity expressed in terms of both the size of the database and the
query expression [27].

4.1 Data Complexity Aspect

Theorem 1. qfr-RE is NP-hard for P query.

Proof Sketch: We construct a PTime reduction from 3SAT to this problem.
Given a boolean variable set X = {x1, . . . , xn}, the input of 3SAT problem is
a formula φ = C1 ∪ ... ∪ Cm where Ci = {l1, l2, l3} and lj is either xk or xk
for k ≥ 1, ..., n, reduction can be described as follows. (1)Base instance. Let I
contains only one relation R including three attributes (L,X,C). For each clause
Ci ≥ φ and each literal lj ≥ Ci (j ≥ {1, 2, 3}), a tuple tij is built and inserted
into R as follows. If lj is xk, let tij = (+, Xk, ci). If lj is xk, let tij = (−, Xk, ci).
(2)FD set. Let Σ be {X → L}. (3) Witness query. Let Q be πC(R). (4)Query
result. Let Q(I) = {(c1), . . . , (cm)}. (5)Feedback. Let Δ be ◦. One can verify the
φ is satisfied if and only if there is a valid repair of I.
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Theorem 2. qfr-RE is NP-hard for U query.

Proof Sketch: We construct a PTime reduction from Monotone 3SAT problem.
Similar with 3SAT problem, an instance of Monotone 3SAT problem is a formula
φ = C1∪· · ·∪Cm, where each clause Ci includes only positive or negative literals.
The reduction can be made as follows. (1) Base relations. First, suppose there are
n variables x1, . . . , xn, then let I contains n relations R1, . . . , Rn. Each relation
Ri has attribute set {X,C}. Second, for each Cj , if xi ≥ Cj , add (+, Cj) to Ri, if
xi ≥ Cj , add (−, Cj) to Ri; (2) FD set. For each Ri, add rule ◦ → X to the rule
set Σ; (3) Witness query. Let Q be R1⊆· · ·⊆Rn; (4) Query result. Initially, Q(I)
includes m tuples where tuple ti is (+, Cj) if Cj contains positive; otherwise, it
is (−, Cj); (5) Feedback. Let Δ be ◦. One can verify that φ is satisfied if and only
if there is a valid repair of I.

Theorem 3. qfr-RE is NP for RA query.

4.2 Combined Complexity Aspect

To analyze the SPJ query, we will use the term fact. Given a database instance
I and a SPJ query Q in a form of πA (σcon(R1 × · · · ×Rq)). A fact μ of I
is a tuple sequence (t1, t2, . . . , tq) ≥ R1 × · · · × Rq, where ti ≥ RI

i for each
1 ∀ i ∀ q. If (t1, t2, . . . , tq) satisfies the selection condition con, then we denote
it as Q (μ) ≥ Q (I).

Theorem 4. qfr-RE is ΣP
2 -complete for SPJ query and SPJU query.

Proof. We will prove the following two statements to show the correctness of
the theorem. (i) We prove the upper bound of qfr -RE for SPJU query is ΣP

2 by
giving a ΣP

2 algorithm as follows. First, guess a sub-instance Ir of I satisfying
Σ. Then, determining whether Q(Ir)∩Δ = ◦ and Q(I)\Δ ∈ Q (Ir). The former
question is in coNP, because any SPJU query has a form of q1

⋃
· · ·

⋃
qz where

each qi is a SPJ query, so that its complement can be solved by determining
whether for there is a fact μ of Ir such that Q (μ) ≥ Q (Ir) and Q (μ) ≥ Δ.
The latter question is also in coNP, because its complement can be solved by
determining whether there is a fact μ of I such that Q (μ) ≥ Q (I) \Δ but μ is
not a fact of Ir (then it must be Q (μ) /≥ Q(Ir), because Q(μ) ≥ Q(I)).

(ii) We prove the lower bound of qfr -RE for SPJ query is ΣP
2 -hard by a

reduction from QSAT2 problem. An instance of QSAT2 problem includes two
variable sets X1 = {x1, ..., xn′} and X2 = {xn′+1, ..., xn′+n′′}, and a 3-DNF
boolean expression φ with m clauses {C1, . . . , Cm}, the task is to determine
whether there is an assignment τ forX1 such that φ is satisfied by all assignments
for X2. Let n = n→+n→→, that is |X1|+ |X2| = n, we show the reduction as follows.
(An example of the reduction for a QSAT2 instance φ = ∅x1x2↓x3x4(x1 ∪ x2 ∪
x3) ∨ (x1 ∪ x2 ∪ x3) ∨ (x1 ∪ x3 ∪ x4) is shown in Fig. 1.)
Base instance I. We build I including n+m+ 3 relations {Si, i = 1, . . . , n} ⊆
{Rk, k = 1, . . . ,m}⊆{Gp, p = 1, 2, 3}, where Si simulates xi, Rk simulates clause
Ck and G1, G2, G3 are three auxiliary relations. Concretely, (1) For each variable
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xi (1 ∀ i ∀ n), construct relation Si = {A1, A2} and add three tuples (X, 1) and
(X, 0) and (Y,B) to Si. (2) For each clause Ci (1 ∀ i < m), build a quintuple
relation Ri (A1, A2, A3, A4, A5). We add 8 tuples into I[Ri]. In the first 7 tuples,
values of A1, A2, A3 refer to the 7 false value assignments of the 3 variables,
values of A4 are always ‘−’, and the values of A5 are the ids of these 7 tuples.
The last two tuples are auxiliary tuples (Z,Z, Z,−, 8) and (B,B,B,B, 9). (3)
G1 includes two tuples (X · · ·X︸ ︷︷ ︸

n′

), (Y · · ·Y︸ ︷︷ ︸
n′

); G2 includes three tuples (0 · · · 0︸ ︷︷ ︸
n′′

),

(1 · · · 1︸ ︷︷ ︸
n′′

), (B · · ·B︸ ︷︷ ︸
n′′

); G3 includes eight tuples (1 · · · 1︸ ︷︷ ︸
m

), (2 · · · 2︸ ︷︷ ︸
m

), ..., (9 · · · 9︸ ︷︷ ︸
m

).

FD set Σ. For each relation Si, i ≥ [1, n→], add FD: Si.A1 → Si.A2 into Σ.
Witness query Q. Construct the query Q as follows. We denote R1×· · ·×Rm,
S1×· · ·×Sn′ and Sn′+1×· · ·×Sn as R, S1, S2. For each clause Ck ≥ φ, without
loss of generality, it is assumed that Ck = xk1 ∪ xk2 ∪ xk3, let the condition
conk be (Sk1.A2 = Rk.A1) ∪ (Sk2.A2 = Rk.A2) ∪ (Sk3.A2 = Rk.A3). Let the
condition conA4 be R1.A4 = R2.A4 = · · · = Rm.A4. Then, let the witness query
Q = Q0 ×Q1 ×Q2 ×Q3, where
Q0 = πR1.A4,...,Rm.A4(σcon1≥···≥conm≥conA4S

1 × S2 ×R),
Q1 = πG1.A1,...,G1.An′ (σS1.A1=G1.A1≥···≥Sn′ .A1=G1.An′ (S

1 ×G1)),
Q2 = πG2.A1,...,G2.An′′ (σSn′+1.A2=G2.A1≥···≥Sn.A2=G2.An′′ (S

2 ×G2)),
Q3 = πG3.A1,...,G3.Am(σR1.A5=G3.A1≥···≥Rm.A5=G3.Am(R×G3)).

Query result Q(I). Initially, let Q(I) = {t, t→} × G1 × G2 × G3, where t =
(−, . . . ,−
︸ ︷︷ ︸

m

), t→ = (B, . . . , B
︸ ︷︷ ︸

m

).

Feedback Δ. Let Δ = {t} ×G1 ×G2 ×G3.

Si

A1 A2

X 1
X 0
Y B
Z Z

G1

A1 A2 . . . An′

X X . . . X
Y Y . . . Y

G2

A1 A2 . . . An′′

1 1 . . . 1
0 0 . . . 0
B B . . . B

G3

A1 A2 . . . Am

1 1 . . . 1
...

... . . .
...

9 9 . . . 9

R1

A1A2A3A4A5

1 1 0 − 1
1 0 1 − 2
1 0 0 − 3
0 1 1 − 4
0 1 0 − 5
0 0 1 − 6
0 0 0 − 7
Z Z Z − 8
B B B B 9

R2

A1A2A3A4A5

1 1 1 − 1
1 1 0 − 2
1 0 0 − 3
0 1 1 − 4
0 1 0 − 5
0 0 1 − 6
0 0 0 − 7
Z Z Z − 8
B B B B 9

R3

A1A2A3A4A5

1 1 1 − 1
1 1 0 − 2
1 0 1 − 3
1 0 0 − 4
0 1 1 − 5
0 1 0 − 6
0 0 0 − 7
Z Z Z − 8
B B B B 9

Fig. 1. Example for the reduction of Theorem 4

Some key properties are introduced before the correctness proof.
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P1. A solution Ir, Q(Ir) = Q(I)\Δ if and only if, Q0(Ir) = {t→}, Q1(Ir) = G1,
Q2(Ir) = G2 and Q3(Ir) = G3.
P2. Q1(Ir) = G1 where Ir |= Σ if and only if, either Si = {(X, 0), (Y,B)} or
Si = {(X, 1), (Y,B)} holds, for each Si of Ir where 1 ∀ i ∀ n→. It simulates that
each variable in X1 has one and only one assignments.
P3. Q2(Ir) = G2 if and only if each Si of Ir is the same as it is in I where
n→ +1 ∀ i ∀ n. It simulates that each variable in X2 can be assigned arbitrarily.
P4. Q3(Ir) = G3 if and only if each Ri of Ir is the same as it is in I where
1 ∀ i ∀ m.

Next, we show the correctness of the reduction by following two statements.
⇔ If the answer of QSAT2 instance φ is ‘yes ’, there must be a sub-instance Ir
obtained from I by deleting some tuples such that Ir |= Σ and Q(Ir) = Q(I)\Δ.
Suppose φ is satisfiable for all assignments of X2 under the assignment τ (X1).
Given τ , we will construct a repair Ir satisfying the conditions of qfr -RE. First,
delete (Z,Z) from each Si (1 ∀ i ∀ n); Second, for each relation Si satisfying
1 ∀ i ∀ n→ of Ir , let the corresponding variable of Si is xi ≥ X1. If τ(xi) = 1, the
tuple (X, 0) will be deleted, otherwise, the tuple (X, 1) will be deleted. Obviously,
Ir |= Σ and Qi(Ir) = Gi (1 ∀ i ∀ 3), since the RHS of P2, P3, P4 are satisfied.
One can verify that Q0(Ir) = t→ since that φ is a tautology under τ (X1).
⇐ One the other hand, if there is a sub-instance Ir |= Σ and Q(Ir) = Q(I)\Δ,
then we can construct an assignment τ (X1) such that φ is true under any assign-
ment of X2. In Ir, each Rk related with clause Ck is the same as it is in I where
1 ∀ k ∀ m, each Si related with variable in X2 is the same as it is in I where
n→ + 1 ∀ i ∀ n, and each Si related with variable in X1 excludes either {(X, 0)}
or {(X, 1)}, because of Si should satisfy Si.A1 → Si.A2, where 1 ∀ i ∀ n→. Note
that, in Ir , we do not care about that whether (Z,Z) is preserved in each Si.
For each variable xi ≥ X1, let Si be the corresponding relation in Ir, then the
assignment τ can be built as follows,

τ(xi) =

{
1, if (X, 1) is in Si; (1)

0, otherwise. (2)

To show that τ is a valid assignment for φ, consider any tuple t̃ ≥ S1×S2×R1

in Ir such that t̃[Si.A2] = τ(x) (1 ∀ i ∀ n→), t̃[Si.A2] ⇒= B (n→ + 1 ∀ i ∀ n). It
is not hard to verify that such t̃ always violates at least one condition defined
in Q0 due to P1 where Q0(Ir) = {t→}. That is, some condition conk such that t
does not satisfy conk. Because t̃ satisfies the conditions t[Rk.A4]=‘−’, then we
have that t̃ refer to the assignments on {A1, A2, A3} which does not appear in
Rk, it means that clause Ck is satisfied under such assignment. Because for each
assignment on X2, there is at least one clause is true, we have that φ is tautology
under assignment τ .

Theorem 5. qfr-RE is PSPACE-complete for RA query.

Proof. qfr -RE is in PSPACE obviously, since the Relation algebraic Query Eval-
uation problem for RA is in PSPACE-complete [2]. We next prove that qfr -RE
is PSPACE-hard by reduction from query evaluation problem. Given an instance
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of Query Evaluation problem ⊂I, q, t≡ where q is a relational algebraic query, it
is to decide if tuple t ≥ q(I). Without loss of generality, we assume that I con-
sists of n relations, R1, . . . , Rn, each relation Ri contains ci columns, and t is a
d-dimension tuple. Then, by means of the technique similar with the previous
proof, an instance of qfr -RE can be built as follows.
Base instance. Let I → contain relations R→

1, . . . , R
→
n and two auxiliary relations

R→
x, R

→
y. Each R

→
i (1 ∀ i ∀ n) is obtained by adding an addition column ci+1 to

Ri and filling the additional column using integer numbers in [Σ1∪j∪i−1|Rj | +
1, Σ1∪j∪i|Rj |] to identify each tuple uniquely in I →. For convenience, let N =
|R1|+ · · ·+ |Rn|. Then let R→

x = {t} and R→
y = {(t→,−), (t→→,+)} where t→ and t→→

are two different d-dimension tuples as long as they are different from t.
Witness query Q.We denote q (πI(I

→)) as Aq, construct the query Q as follows,
Qa(I

→) = πAc1+1(R
→
1)
⋃

· · ·
⋃
πAcn+1(R

→
n),

Q(I →) =
[
Qa(I

→)× {(−), (+)} − πQa(Qa(I
→)× ((R→

x −Aq)
⋃
R→

y))
]
×R→

x.
Here, the operator πQa extracts all attributes in the scheme of Qa, and the

operator πI extracts all attributes in I.
Query result Q(I). Initially, Q(I) = {(1), . . . , (N)} × {(−), (+)} × {t}.
Feedback Δ. Let Δ = {(1,−), . . . , (N,−)} × {t}.

Obviously, the reduction described above can be finished in polynomial time.
The correctness of the reduction can be obtained by observing that Q(Ir) =
Q(I)\Δ if and only if (1) no tuple in I → disappears in Ir since Q(I)\Δ includes
every unique identification number, and (2) t ≥ q(I).

5 Repair Sampling Algorithm for FD and SJ Query

In the previous section, we conclude that there is no polynomial sampling algo-
rithm if the witness query include Projection or Union operation. In this section,
we propose a polynomial algorithm 1 to sample the subset-repair restricted by
SJ query. We first give a overview of the sampling algorithm and its intuitive
idea, then we show its polynomial implementation.

Given any SJ query Q, an equivalent standard form σC(R1 × · · · × Rm) can
be built in PTime. Here, each Ri (1 ∀ i ∀ m) is a relation included in I, and
two relations in {R1, . . . , Rm} may be same relation in the database. Next, we
provide a polynomial repair sampling algorithm only considering the self-join-
free case, i.e. each relation is allowed to appear at most once in the query Q.
Then, we extend such algorithm with general setting.

Algorithm works as follows. Build an anchor Ir which is a sub-instance of the
instance I. Specifically, for each relation Ri ≥ I, Ir[Ri] is set to be πRi(Q(I)\Δ),
if Ri appears in the query Q; Let Ir[Ri] be empty, otherwise. Once Ir is obtained,
we first test that whether Ir |= Σ. If not, return ; else, we should test if Q(Ir) =
Q(I)\Δ. If Q(Ir) ⇒= Q(I)\Δ, return ◦, which means that there is no repair
satisfying the user feedback restriction. Pick a tuple a ≥ I\Ir randomly, let
a ≥ Ri, if there is a result t ≥ Δ such that t[Ri] = a and each t[Rj ] ≥ Δ (i ⇒= j),
then discard a. Otherwise if Ir ⊆ {a} |= Σ, add a into Ir . Loop this step until
there is no new tuple can be added into Ir. At last, output Ir as a sample repair.
The pseudo-code is given as below.
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Algorithm 1. Sampling Algorithm

1. for all i such that 1 ≥ i ≥ m do
2. if Ri appears in the query Q then
3. Ir[Ri] ≤ πRi(Q(I)\Δ)
4. else
5. Ir[Ri] ≤ ∗
6. if Ir � Σ or Q(Ir) ⊆= Q(I)\Δ then
7. return ∗
8. while there is no new tuple can be added into Ir do
9. Pick a tuple a ∅ I\Ir randomly where a ∅ Ri

10. if ≺t of Δ, t[Ri] = a and →j ⊆= i, t[Rj ] ∅ Δ then
11. discard a
12. else if Ir ∪ {a} |= Σ then
13. add a into Ir

14. return Ir

The intuitive idea behind such algorithm as follows. All valid repair for I must
be a superset of the anchor Ir, since that in order to guarantee that Q(I)\Δ is
part of Q(Ir), the tuples in Ir must be preserved when deleting tuples. An
important observation about FD is that if database instance I does not satisfy
some FD rule and I ∈ J , we have J will not satisfy the rule also. Therefore,
Ir is the only candidate solution needed to be considered for the given qfr -RE
problem, since there will be no valid repair if Ir is invalid.

Now, we give a polynomial implementation of line 6 in algorithm 1. Obvi-
ously, whether Ir satisfies the Σ can be determined polynomially trivially. It is
a little complicated to determine whether Q(Ir) = Q(I)\Δ, since a trivial solu-
tion will take exponential time cost. A polynomial implementation for deciding
whether or not Q(Ir) = Q(I)\Δ can be designed as follows.

First, in Ir , compute the transitive closure of attributes in the database as
follows. Build a node for each attribute and constant appearing in the condition,
then, build an edge between attribute A and constant c if A = c is in the
condition, and an edge between two attributes A and A→ if A = A→ is in the
condition. For each connected component in the graph, build a group, if there
is a group containing two different constants, then return false, since such query
condition is unsatisfiable. Otherwise, there must be two kinds of groups, one is
that containing one constant, the other one is that containing all variables. We
call each group with some constant c is ‘constant group’ and use [c] to denote
it, and call each group without constant is ‘variable group’. Then, all attributes
in

⋃
{Ri} can be divided into three parts, first part is the constant group, the

second part is the variable group, and the last part is others.
Then, partition tuples in each relation Ri into several equivalent classes ac-

cording to the following steps. (i) For attributes in ‘constant group’, obviously,
only the corresponding constant value can appear in the table. (ii) For the at-
tributes in the ‘variable group’, partition the tuples according to different value
combinations. Therefore, all tuples in each Ri are divided into several equivalent
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classes {qi1, . . . , qiy}, each class represents a unique value combination for the
‘variable’ attributes. We use |qij | to represent the size of the class.

For each variable group g, let g∩Ri be the ‘variable’ attributes inRi. LetRi[g∩
Ri] be the corresponding value set. Compute the intersections of all such value
set, Vg =

⋂
{Ri[g ∩ Ri]}. Delete those tuples of Ri whose values on attributes

g ∩Ri are not in Vg.
Compute join result R� of all Ri relations as follows. For each two relations

Ri and Rj , compute the join and filter the conditions C. Notice that there are
at most m − 1 joins needed to be computed. Each join operation involves two
relations Ri and a temporal result. The size of each temporal result will not
exceed |Q(I)\Δ|. It should be noticed that the join operations are executed on
the equivalent classes and the ‘free’ attributes are not included in the result.

If R� contains a tuple not included by Q(I)\Δ, returns false. Otherwise, for
each tuple t in R�, compute size size(t) as follows. For each relation Ri, let
[t[Ri]] be the class in Ri containing the same values as t, size(t) is ×Ri |[t[Ri]]|.

Compare Σt∈R�
size(t) with |Q(I)\Δ|, if they are not equal, return false, else

return true.
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18. Kimelfeld, B., Vondrák, J., Woodruff, D.P.: Multi-tuple deletion propagation: Ap-
proximations and complexity. Proc. VLDB Endow., pp. 1558–1569 (2013)

19. Cong, G., Fan, W., Geerts, F., Li, J., Luo, J.: On the complexity of view update
analysis and its application to annotation propagation. IEEE Trans. on Knowl.
and Data Eng. 24(3), 506–519 (2012)

20. Keller, A.M.: Algorithms for translating view updates to database updates for
views involving selections, projections, and joins. In: Proceedings of the Fourth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS
1985, pp. 154–163. ACM, New York (1985)

21. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: A language for
updatable views. In: Proceedings of the Twenty-fifth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2006, pp. 338–347.
ACM, New York (2006)

22. Cui, Y., Widom, J.: Run-time translation of view tuple deletions using data lineage.
Technique report (2001)

23. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on
relational views. ACM Trans. Database Syst. 7(3), 381–416 (1982)

24. Klug, A.C.: Calculating constraints on relational expression. ACM Trans. Database
Syst. 5(3), 260–290 (1980)

25. Klug, A.C., Price, R.: Determining view dependencies using tableaux. ACM Trans.
Database Syst. 7(3), 361–380 (1982)

26. Fan, W., Ma, S., Hu, Y., Liu, J., Wu, Y.: Propagating functional dependencies
with conditions. Proc. VLDB Endow. 1(1), 391–407 (2008)

27. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC 1982, pp. 137–146. ACM, New York (1982)



Online Prediction Problems with Variation

Chia-Jung Lee, Shi-Chun Tsai, and Ming-Chuan Yang

Department of Computer Science,
National Chiao-Tung University, Hsinchu, Taiwan

leecj@nctu.edu.tw, sctsai@cs.nctu.edu.tw, mingchuan.cs96g@g2.nctu.edu.tw

Abstract. We study the prediction with expert advice problem, where
in each round, the player selects one of N actions and incurs the corre-
sponding loss according to an N-dimensional linear loss vector, and aim
to minimize the regret. In this paper, we consider a new measure of the
loss functions, which we call L⊕-variation. Consider the loss functions
with small L⊕-variation, if the player is allowed to have some information
related to the variation in each round, we can obtain an online bandit
algorithm for the problem without using the self-concordance methodol-
ogy, which conditionally answers an open problem in [8]. Another related
problem is the combinatorial prediction game, in which the set of actions
is a subset of {0, 1}d, and the loss function is in [−1, 1]d. We provide an
online algorithm in the semi-bandit setting when the loss functions have
small L⊕-variation.

Keywords: prediction with expert advice problem, combinational pre-
diction game, semi-bandit setting, bandit setting, variation.

1 Introduction

We study the prediction with expert advice problem, in which the player has
to make repeated decisions for T rounds in the following way. Suppose that
there are N actions. In each round t, the adversary chooses a loss vector ft =
(ft,1, · · · , ft,N ) → [−1, 1]

N
, and simultaneously, the player chooses an action It to

play. After the choice, the player suffers the corresponding loss ft,It and obtains
some feedback. In the full information setting, the player obtains the entire loss
function ft, while in the bandit setting, the player only knows the corresponding
loss ft,It . The goal of the player is to minimize the expected regret :

E

[
T∑

t=1

ft,It

]

− min
i∞{1,··· ,N}

T∑

t=1

ft,i,

which is the difference between the expected total loss of the player and the total
loss of the best fixed action.

In the full information setting, one can achieve a regret of O
(⊂
T logN

)
using

the multiplicative update algorithm [9,6]. Note that they considered arbitrary
sequence of loss functions, that is, they only considered the worst case scenario.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 49–60, 2014.
© Springer International Publishing Switzerland 2014
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When the loss functions have some restriction, a smaller regret can be achieved.
Hazan and Kale [7] considered the measure of the loss functions, called variation
VARmax

T , which is defined to be

VARmax
T = max

t→T
{VARt (Ωt)} ,

where Ωt is the best action till the t-th round, and VARt(i) =
∑t

τ=1 (fτ,i − ut,i)
2

with ut =
1
t

∑t
τ=1 fτ = (ut,1, . . . , ut,N ), and they provided an online algorithm

with a regret bound of O
(⎧

VARmax
T logN

⎪
. Note that since VARmax

T ≡ O (T ),

this result recovers that in [9,6]. Chiang et al. considered another measure of the
loss functions, called L≥-deviation, which is defined as

D≥ =

T∑

t=1

∈ft − ft−1∈2≥ ,

where f0 is the all-0 function, and showed that a regret bound of O
(⊂
D≥ logN

)

can be achieved [4]. Note that since D≥ ≡ O (T ), this result also recovers that
in [9,6], but it is incomparable to that of [7].

In the bandit setting, one can obtain a regret bound of O(
⊂
NT ) [2,3]. When

the loss functions have the quadratic variation Q =
∑T

t=1 ∈ft − μ∈22, where μ =
1
T

∑T
t=1 ft is the mean of the loss functions, Hazan and Kale [8] achieved a

regret of Õ
(
N2

⊂
Q
)
1. However, this algorithm used some methodology based

on self-concordant barrier functions, which were first used in online learning by
Abernethy et al. [1]. Besides, no bound is known for the loss functions with a
small L≥-deviation.

Another related problem is the combinatorial prediction game. Suppose that
the set of actions is A = {A1, · · · , AN}, where Ai → {0, 1}d. In each round t,

the adversary secretely chooses a loss function ft → [−1, 1]
d
. Simultaneously,

the player chooses an action AIt and suffers a loss of ≥ft, AIt∪, where ≥x, y∪ is
the inner product of x, y → R

d. In the combinatorial prediction game, there are
three kinds of feedback. (1) In the full information setting, the player knows
the entire loss function ft. (2) In the bandit setting, the player only obtains the
corresponding loss value ≥ft, AIt∪. (3) In the semi-bandit setting, the player can
know the loss values ft,j for any j → [d] satisfying AIt,j = 1. The target of the
player is also to minimize the expected regret :

E

[
T∑

t=1

≥ft, AIt∪
]

−min
i→N

T∑

t=1

≥ft, Ai∪ .

In the full information setting and the semi-bandit setting, Audibert et al.

obtained a regret bound of O
(
d
⊂
T
⎪

[3]. In the bandit setting, a regret of

O
(
d5/2

⊂
T
⎪
can be achieved [5].

1 We use the notation Õ (·) to hide the dependence on poly(log T ) factor.
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In this paper, we consider a new measure of the loss functions, which we call
L≥-variation, defined to be

V≥ =

T∑

t=1

∈ft − μ∈2≥ .

It is easy to see that the L≥-variation V≥ is bounded by O(T ), and the L≥-
deviation D≥ in [4] is bounded by O (V≥)2, but the L≥-variation is incompa-
rable to the variation VARmax

T in [7]. However, our definition of L≥-variation
is simple and more intuitive. Besides, in each round, after the player makes his
choice, he is allowed to receive some information related to ∈ft − μ∈≥. Note that
he may not know the true value of ∈ft − μ∈≥, and he is not able to know which
choice has the biggest difference from the mean. Consider the loss functions with
a small L≥-variation, we can obtain an online bandit algorithm for prediction
with expert advice problem without using the self-concordance methodology,
which conditionally answers an open problem in [8]. Nevertheless, there is an ad-
ditional factor

⊂
logT in our regret bound in the full information setting. More

precisely, when the loss functions have L≥-variation V≥, we can prove a regret of
Õ
(⊂
V≥ logN

)
in the full information setting, and a regret of Õ

(⊂
NV≥ logN

)

in the bandit setting.
We also consider the combinatorial prediction game in which the loss functions

have a small L≥-variation. Note that many situations in daily life can be modeled
as a combinatorial prediction game, for example, the commuting problem. Each
morning, one has to choose one ofN routes to work where each route may contain
several roads. The environment will decide the commuting time for each road.
Observe that for each road, the commuting time between different days may
be very similar, which implies that in this problem, the L≥-variation of the loss
functions may be small. Since the combinatorial prediction game is a special case
of the online linear optimization problem3, when the loss functions are with the
quadratic variation Q =

∑T
t=1 ∈ft − μ∈22, one can achieve a regret of O

(⊂
Q
)
in

the full information setting [7], and a regret of Õ
(
d3/2

⊂
Q
)
in the bandit setting

[8]. For loss functions with L2-deviation D2 =
∑T

t=1 ∈ft − ft−1∈22, Chiang et al.
showed a regret bound of O

(⊂
D2

)
in the full information setting [4]. However,

no result exists for the loss functions with a small variation in the semi-bandit
setting. None is known either for loss functions with a small deviation in the
semi-bandit setting and the bandit setting. Our final contribution is to provide
an online algorithm and obtain a regret bound of Õ

(
d
⊂
V≥ logN

)
in the semi-

bandit setting, when the loss functions have the L≥-variation V≥.

2 By the triangle inequality and the fact that for any two real numbers a, b, (a+ b)2 ≥
2a2 + 2b2, we have D⊕ =

∑
t ≤ft − ft−1≤2⊕ ≥

∑
t

(≤ft − μ≤⊕ + ≤μ− ft−1≤⊕
)2 ≥

4V⊕.
3 In the online linear optimization problem, the set of actions can be arbitrary subset
of Rd, while in the combinatorial prediction game, the set of actions is a subset of
{0, 1}d.
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2 Preliminaries

Let N be the set of positive integers and R the set of real numbers. For n → N, let
R

n be the set of n-dimensional vectors over R and [n] be {1, 2, · · · , n}. We denote
the inner product of x, y → R

n by ≥x, y∪ and the infinity norm of x by ∈x∈≥.

Let RE (x∈y) =
∑N

i=1 xi ln (xi/yi) be the relative entropy of x with respect to
y for non-negative x, y → R

N . For some event A, � [A] is the indicator variable
of A. Let Et denote the expectation conditioned on the randomness up to round
t − 1. Let {e1, · · · , eN} be the set of standard basis of RN . We denote 1 to be
the all-1 vector.

2.1 Problems

In this work, we address two categories of prediction problems; one is a prediction
with expert advice and another is a combinatorial prediction game. Generally,
in a prediction game a player makes repeated decisions and then suffers the
corresponding loss, and the goal is to minimize the player’s total loss of T rounds
with respect to an optimal fixed decision. We formally define the problems as
follows:

Prediction with Expert Advice: In round t = 1, 2, · · · , T

– The player chooses It → [N ] and reveals his estimator ũt−1 of μ
– Simultaneously, the adversary chooses a loss function
ft = (ft,1, · · · , ft,N) → [−1, 1]N

– The player incurs the loss ft,It , and observes ∈ft − ũt−1∈≥ 4 and either
• the whole loss function ft [the full information version], or
• the loss value ft,It [the bandit version]

Target: minimize the expected regret: E
⎨∑T

t=1 ft,It

⎩
−mini∞[N ] E

⎨∑T
t=1 ft,i

⎩

Combinatorial Prediction Game: Let A = {A1, · · · , AN} ◦ {0, 1}d be a set of
actions.
In round t = 1, 2, · · · , T

– The player chooses It → [N ] and reveals his estimator ũt−1 of μ
– Simultaneously, the adversary chooses a loss function
ft = (ft,1, · · · , ft,d) → [−1, 1]d

– The player incurs the loss ≥ft, AIt∪, and observes ∈ft − ũt−1∈≥ and either
• the whole loss function ft [the full information version],
• the coordinates ft,j� [AIt,j = 1] [the semi-bandit version], or
• the loss ≥ft, AIt∪ [the bandit version]

Target: minimize the expected regret: E
[∑T

t=1 ∗ft, AIt⊆
]
−mini∈[N] E

[∑T
t=1 ∗ft, Ai⊆

]

4 In fact, the player only needs the information ≤ft − ũt−1≤⊕ + ε for some 0 ≥ ε ≥
O(1/

∅
T ).
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2.2 Tools

We need the following simple fact, whose proof is omitted.

Proposition 1. Let f1, · · · , fn be a sequence of bounded d-dimensional vectors

over R. Then we have ∈f1 + · · ·+ fn∈2≥ ≡ n ·
(
∈f1∈2≥ + · · ·+ ∈fn∈2≥

⎪

Reservoir Sampling is a procedure that can obtain an unbiased estimator of the
mean of a stream of data [10]. Consider a situation that the data in the stream
can only be seen in one pass and can not be visited again. The problem is how
to sample this stream such that in any time the empirical mean is good enough?
The idea of Reservoir Sampling is to maintain a randomly chosen subset S of
size k, without replacement, from the stream of real numbers l1, l2, · · · , and the
average of the sample is used as an estimator of the current mean ut =

1
t

∑t
τ=1 lτ .

Algorithm 1 [8] is a formal statements of this sampling method.

Algorithm 1. Reservoir Sampling

1. Initialize S by including the first k elements l1, l2, · · · in the stream.
2. for t = k + 1, k + 2, · · · do
3. include lt in S with probability k/t;
4. if decide to include lt, then a random element of S is replaced by lt.
5. end for

2.3 Meta Algorithm

All of our algorithms in this paper is based on the Meta algorithm, as shown in
Algorithm 2. The parameter m in the Meta algorithm is the dimension of the
loss functions, and for different types of problems, we will choose different vi’s.

The Meta algorithm is inspired by the full information algorithm modified
from the multiplicative update algorithm in [4] for the loss functions with a small

deviation D≥ =
∑

t∞[T ] ∈ft − ft−1∈2≥. In round t, the multiplicative update
algorithm suggests the player should choose the action according to a distribution
pt. It can be shown that if one can select the action according to pt+1 in round t,
then the regret will be small. However, to compute pt+1, we need the loss function
ft, which is not available before the round t. Nevertheless, since the loss functions
have a small deviation, ft−1 may be close to ft. Hence, in round t, it may be
a good idea to choose the action according to the distribution computed by
ft−1 instead of ft, and this indeed obtains a small regret in terms of deviation.
Here, we consider the measure L≥-variation V≥ =

∑
t∞[T ] ∈ft − μ∈2≥, where

μ = 1
T

∑
t∞[T ] ft. Similarly, when the loss functions have a small variation, μ

may be a good approximation of ft. However, we do not know μ in round t.
In the full information setting, it is natural to use ut−1 = 1

t−1

∑t−1
τ=1 fτ as an

approximation of μ in round t. Therefore, we choose the action according to the
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distribution p̂t computed by ut−1 instead of ft. While in the semi-bandit setting
and the bandit setting, we cannot know ut−1, so we borrow the idea of [8] to
compute an estimator ũt−1 of ut−1 by reservoir sampling, and choose the action
according to the distribution p̂t computed by ũt−1 instead of ft. In the Meta
algorithm, the SAMPLE STEP is used to maintain a good estimator ũt of ut,
and the UPDATE STEP is used to update the distributions pt and p̂t. Note
that in the full information setting, the Meta algorithm always executes the
UPDATE STEP.

Algorithm 2. Meta algorithm

1. Initially, let p1 = p̂1 be the uniform distribution over [N ], S = (0)i,j ≺ R
m×k, and

S→ = (0)i,j ≺ R
m×Nk

2. Let π : [Nk]→ [Nk] be a random permutation
3. for t = 1 to T do
4. Toss the biased coin whose outcome is rt ≺ {0, 1} with rt = 0 for the full-

information setting; otherwise, Pr [rt = 1] = min
{

Nk
t
, 1
}

5. if rt = 1 then
6. // SAMPLE STEP to maintain S
7. if t ≥ Nk then
8. Choose It = (π(t) mod N) + 1, and reveal ũt−1

9. For each j ≺ [m], if we observe ft,j , then put it into an empty bucket in the
jth row of S→

10. If t = Nk, for each j ≺ [m], randomly select k elements without replacement
from the nonempty buckets in the jth row of S→, and put them into the jth
row of S

11. else {// i.e. t > Nk}
12. Choose It ≺ [N ] uniformly at random, and reveal ũt−1

13. Update S by an additional rule // defined in later sections
14. end if
15. Estimate ũt,i =

1
k

∑k
j=1 Si,j

16. Let pt+1 = pt, and p̂t+1 = p̂t
17. else {// i.e. rt = 0}
18. // UPDATE STEP
19. Choose It according to the distribution p̂t, and reveal ũt−1

20. Compute the estimated loss f̃t = g̃t + ũt−1 // defined in later sections
21. Compute ũt // defined in later sections
22. Update ∪i ≺ [N ],

23. pt+1,i =
pt,i exp(−η∗f̃t,vi⊆)

Zt+1
, where Zt+1 =

∑N
j=1 pt,je

(−η∗f̃t,vj⊆)
24. p̂t+1,i =

pt+1,i exp(−η〈ũt,vi∗)
Ẑt+1

, where Ẑt+1 =
∑N

j=1 pt+1,je(
−η∗ũt,vj⊆)

25. end if
26. end for

Next, we bound the regret of Meta algorithm. Let p∪ be the distribution over
[N ] such that p∪i∗ = 1 for the best fixed action i∪ → [N ] and p∪j = 0 ⊆j → [N ]\{i∪}.
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Moreover, let F̃t,i =
〈
f̃t, vi

⎛
, Ũt,i = ≥ũt, vi∪, and G̃t,i = F̃t,i − Ũt−1,i = ≥g̃t, vi∪.

We will need the following lemma, whose proof is omitted due to the page limit.

Lemma 1. Let Tu include the rounds that run the UPDATE STEP. Then,

for any σ > 0, if G̃t,i ∀ 0 for all t → Tu, and i → [N ], we have E

⎨∑
t∞Tu

F̃t,It

⎩
−

E

⎨∑
t∞Tu

F̃t,i∗
⎩
≡ 2σE

⎨∑
t∞Tu

⎝
⎝
⎝G̃t

⎝
⎝
⎝
≥

Ei∈p̂t

⎨
G̃t,i

⎩⎩
+ logN

η .

3 Prediction with Expert Advice

In this section, we consider the prediction with expert advice problem when the
loss functions have small L≥-variation, defined to be V≥ =

∑T
t=1 ∈ft − μ∈2≥ ,

where μ = 1
T

∑T
t=1 ft is the mean of ft’s.

3.1 Full Information Setting

In this subsection, we consider the full information setting. As mentioned, the
UPDATE STEP of Meta algorithm can deal with the full information game.
Therefore, we do not need to choose the parameter k. We instantiate the Meta
algorithm with vi = ei for each i → [N ], and:

– (step 20) Compute f̃t = g̃t + ũt−1, with ũt−1 = ut−1, and g̃t = ft − ut−1 +
∈ft − ũt−1∈≥ · 1.

– (step 21) Compute ut =
1
t

∑t
τ=1 fτ .

Then, the updates in step 23 and 24 of Meta algorithm are:

– pt+1,i = pt,i · exp
(
−σf̃t,i

⎪
/Zt+1, where Zt+1 =

∑
j∞[N ] pt,j · exp

(
−σf̃t,j

⎪
;

– p̂t+1,i = pt+1,i ·exp (−σut,i) /Ẑt+1, where Ẑt+1 =
∑

j∞[N ] pt+1,j ·exp (−σut,j).

The following theorem shows the regret bound of our algorithm.

Theorem 1. When the L≥-variation of the loss functions is V≥, the regret of
our algorithm is at most O

(⊂
V≥ logT logN

)
.

Proof. By the choices of vi = ei for each i → [N ], and the fact that f̃t =
ft + ∈ft − ũt−1∈≥ · 1, the expected regret of our algorithm is at most

2σE

⎞

⎣
∑

t∞[T ]

∈g̃t∈≥ Ei∈p̂t [g̃t,i]

⎤

⎦+
logN

σ
≡ 2σE

⎞

⎣
∑

t∞[T ]

∈g̃t∈2≥

⎤

⎦+
logN

σ
,

by Lemma 1. It remains to bound the term ∈g̃t∈2≥, which is at most 4 ∈ft − ut−1∈2≥
by Proposition 1. Let f ⊆t = ft − μ, which implies u⊆t =

1
t

∑t
τ=1 f

⊆
τ = ut − μ and

∈ft − ut−1∈2≥ =
⎝
⎝f ⊆t − u⊆t−1

⎝
⎝2
≥. By Proposition 1 and the definition of V≥, we

have
∑

t

⎝
⎝f ⊆t − u⊆t−1

⎝
⎝2
≥ ≡ O(1) +

∑T
t=2

⎝
⎝f ⊆t − u⊆t−1

⎝
⎝2
≥ is at most
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O(1) +

T∑

t=2

(
2 ∈f ⊆t∈

2
≥ + 2

⎝
⎝u⊆t−1

⎝
⎝2

≥

⎪
≡ O(V≥) + 2

T∑

t=2

⎝
⎝u⊆t−1

⎝
⎝2
≥ .

Note that by Proposition 1,
∑T

t=2

⎝
⎝u⊆t−1

⎝
⎝2
≥ is

T∑

t=2

⎝
⎝
⎝
⎝
⎝

1

t− 1

t−1∑

τ=1

f ⊆τ

⎝
⎝
⎝
⎝
⎝

2

≥

≡
T∑

t=2

1

t− 1

t−1∑

τ=1

∈f ⊆τ∈
2
≥ =

T−1∑

t=1

∈f ⊆t∈
2
≥ ·

⎟
T−1∑

τ=t

1

α

)

,

which implies
∑T

t=2

⎝
⎝u⊆t−1

⎝
⎝2
≥ ≡

∑T
t=1 ∈f ⊆t∈

2
≥ · logT = V≥ · log T .

Combining these bounds together, the expected regret of our algorithm is at
most

O (σV≥ · logT ) + logN

σ
≡ O

(⎧
V≥ logT logN

⎪
,

by setting σ =
√

logN
V∞ log T .

3.2 Bandit Setting

In this subsection, we consider the bandit setting. Recall that in the bandit
setting, we can only obtain the corresponding loss value and ∈ft − ũt−1∈≥. To
obtain a small regret in terms of L≥-variation, we instantiate the Meta algo-
rithm with parameters m = N , k = logT , vi = ei for each i → [N ], and:

– (step 13) Choose j uniformly from [k], and update SIt,j = ft,It .

– (step 20) Compute f̃t = g̃t + ũt−1, where
g̃t =

1
p̂t,It

(ft,It − ũt−1,It + ∈ft − ũt−1∈≥) eIt .

– (step 21) Compute ũt = ũt−1.

Then, the updates in step 23 and 24 of Meta algorithm are:

– pt+1,i = pt,i · exp
(
−σf̃t,i

⎪
/Zt+1, where Zt+1 =

∑
j∞[N ] pt,j · exp

(
−σf̃t,j

⎪
;

– p̂t+1,i = pt+1,i ·exp (−σũt,i) /Ẑt+1, where Ẑt+1 =
∑

j∞[N ] pt+1,j ·exp (−σũt,j).

It is easy to verify that for each UPDATE STEP t,

Et

⎨
f̃t

⎩
= Et [g̃t] + ũt−1

=
∑

It∞[N ]

p̂t,It
1

p̂t,It
(ft,It − ũt−1,It + ∈ft − ũt−1∈≥) eIt + ũt−1

= ft + ∈ft − ũt−1∈≥ · 1,

where the first equality is due to the fact that ũt−1 is fixed when conditioned on
the randomness up to round t− 1. Moreover, for each i → [N ], g̃t,i ∀ 0.

In the bandit setting, we need to estimate the function ut. The following
lemma shows that ũt is an unbiased estimator of ut, for any t ∀ Nk. We omit
the proof due to the page limit.
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Lemma 2. For each t ∀ Nk, E [ũt] = ut, and E

⎨
∈ut − ũt∈2≥

⎩
≡ V∞

kt .

The main result of this subsection is the following.

Theorem 2. Let k = logT . When the L≥-variation of the loss functions is V≥,
the regret of our algorithm is at most O

(
N log2 T +

⊂
NV≥ logN logT

)
.

Proof. Let Ts include the rounds that run the SAMPLE STEP, that is, Ts =
{t → [T ] : rt = 1}, and Tu include the rounds that run the UPDATE STEP,
that is, Tu = [T ] \Ts. Note that E [Ts] ≡ O(N log2 T ). Since for any distribution
q over [N ], ≥ft, q − p∪∪ ≡ 2, the expected regret of our algorithm is at most

O(N log2 T ) + E

[
∑

t∞Tu

≥ft, p̂t − p∪∪
]

= O(N log2 T ) + E

[
∑

t∞Tu

〈
f̃t, p̂t − p∪

⎛
]

,

≡ O(N log2 T ) + E

[

2σ
∑

t∞Tu

(∈g̃t∈≥ · Ei∈p̂t [g̃t,i])

]

+
logN

σ
(1)

where the equality is due to the fact that Et

⎨
f̃t

⎩
= ft + ∈ft − ũt−1∈≥ · 1, and

the last inequality follows from Lemma 1.
It remains to bound the second term of (1). First, note that by the definition

of g̃t, we have

Ei∈p̂t [g̃t,i] = ft,It − ũt−1,It + ∈ft − ũt−1∈≥ ≡ 2 ∈ft − ũt−1∈≥ . (2)

On the other hand, since for each t → Tu, when conditioned on the randomness
up to round t− 1, ũt−1 is fixed, we obtain

Et [∈g̃t∈≥] = Et

⎫⎝
⎝
⎝
⎝

1

p̂t,It
(ft,It − ũt−1,It + ∈ft − ũt−1∈≥) eIt

⎝
⎝
⎝
⎝
≥

⎬

=
∑

It∞[N ]

p̂t,It

⎝
⎝
⎝
⎝

1

p̂t,It
(ft,It − ũt−1,It + ∈ft − ũt−1∈≥) eIt

⎝
⎝
⎝
⎝
≥

≡ 2N ∈ft − ũt−1∈≥ (3)

Therefore, using (2), (3), and Proposition 1, the second term of (1) is at most

8σN · E
[
∑

t∞Tu

∈ft − ũt−1∈2≥

]

≡ 24σN ·
⎟
∑

t∞Tu

∈ft − μ∈2≥ +
∑

t∞Tu

∈μ− ut−1∈2≥ + E

[
∑

t∞Tu

∈ut−1 − ũt−1∈2≥

])
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where the first term in the parenthesis is bounded by V≥, and the second term
is at most V≥ logT as in the proof of Theorem 1. Moreover, the last term is at
most

∑
t V≥/(kt) ≡ V≥ logT/k by Lemma 2. Therefore, we can bound

E

[

2σ
∑

t∞Tu

(∈g̃t∈≥ · Ei∈p̂t [g̃t,i])

]

≡ O (σNV≥ logT ) . (4)

Finally, by plugging (4) into (1) and setting σ =
√

logN
NV∞ log T , the expected

regret of our algorithm is at most

O(N log2 T ) +O (σNV≥ logT ) +
logN

σ
≡ O

(
N log2 T +

⎧
NV≥ logN logT

⎪
.

4 Combinatorial Prediction Game

In this section, we consider the combinatorial prediction game in which the set
of actions is A = {A1, · · · , AN} ◦ {0, 1}d, and the loss function ft → [−1, 1]

d
.

Moreover, we consider the semi-bandit setting, that is, in round t, we can receive
the values ft,j for any j → [d] satisfying AIt,j = 1 and ∈ft − ũt−1∈≥. To obtain a
small regret in terms of L≥-variation, we instantiate the Meta algorithm with
parameters m = d, k = logT , vi = Ai, and:

– (step 13) For each j → [d] satisfying AIt,j = 1, update, with probability 1/nj,
where nj =

∑
i∞[N ]Ai,j , Sj,a = ft,j for a random index a → [k].

– (step 20) Compute f̃t = g̃t + ũt−1, where
g̃t,j =

1∑
i;Ai,j=1 p̂t,i

(ft,j − ũt−1,j + ∈ft − ũt−1∈≥)AIt,j.

– (step 21) Compute ũt = ũt−1.

Then, with the choice of vi = Ai, the updates in step 23 and 24 are

– pt+1,i =
pt,i·exp(−η≥f̃t,Ai∪)

Zt+1
, where Zt+1 =

∑
j∞[N ] pt,j · exp

(
−σ

〈
f̃t, Aj

⎛⎪
;

– p̂t+1,i =
pt+1,i·exp(−η∅ũt,Ai∨)

Ẑt+1
, where Ẑt+1 =

∑
j∞[N ] pt+1,j · exp (−σ ≥ũt, Aj∪).

Note that for each UPDATE STEP t, and for each j → [d], g̃t,j ∀ 0, and

Et [g̃t,j ] =
∑

i;Ai,j=1

p̂t,i
1

∑
i;Ai,j=1 p̂t,i

(ft,j − ũt−1,j + ∈ft − ũt−1∈≥)

= ft,j − ũt−1,j + ∈ft − ũt−1∈≥ ,

which implies that Et

⎨
f̃t

⎩
= ft + ∈ft − ũt−1∈≥ · 1.

Moreover, ũt is an unbiased estimator of ut, whose proof is omitted.

Lemma 3. For each t ∀ Nk, E [ũt] = ut.

The regret bound of our algorithm is guaranteed by the following.
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Theorem 3. When the L≥-variation of the loss functions is V≥, the regret of
our algorithm is at most O

(
N log2 T + d

⊂
V≥ logN logT

)
.

Proof. As in the proof of Theorem 2, let Ts include the rounds that run the
SAMPLE STEP, and Tu include the rounds that run the UPDATE STEP.
Note that E [Ts] = O(N log2 T ).

By the choices of vi = Ai for each i → [N ] and Lemma 1, the expected regret

of algorithm E

⎨∑
t∞[T ]

〈
F̃t, p̂t − p∪

⎛⎩
is at most

O(N log2 T ) + E

[
∑

t∞Tu

2σ
⎝
⎝
⎝G̃t

⎝
⎝
⎝
≥

Ei∈p̂t

⎨
G̃t,i

⎩
]

+
logN

σ
(5)

Next, we bound the second term of (5). For convenience, let qt,j =
∑

i;Ai,j=1 p̂t,i =

Ei∈p̂t [Ai,j ]. Then, since Ai,j → {0, 1}, the term Ei∈p̂t

⎨
G̃t,i

⎩
is

Ei∈p̂t

⎞

⎣
∑

j∞[d]

g̃t,jAi,j

⎤

⎦ ≡
∑

j∞[d]

1

qt,j
(ft,j − ũt−1,j + ∈ft − ũt−1∈≥)Ei∈p̂t [Ai,j ]

≡ 2d ∈ft − ũt−1∈≥ . (6)

On the other hand, observe that for each t → Tu,

Et

⎨⎝
⎝
⎝G̃t

⎝
⎝
⎝
≥

⎩
≡ Et

⎞

⎣
∑

j∞[d]

2

qt,j
∈ft − ũt−1∈≥AIt,j

⎤

⎦

≡
∑

j∞[d]

2

qt,j
∈ft − ũt−1∈≥ EIt∈p̂t [AIt,j ]

= 2d ∈ft − ũt−1∈≥ , (7)

where the first inequality is due to the fact that for each i → [N ], G̃t,i =∑
j∞[d] g̃t,jAi,j ≡

∑
j∞[d]

2
qt,j

∈ft − ũt−1∈≥AIt,j .

Therefore, the second term in (5) is at most 8σd2E
⎨∑

t∞Tu
∈ft − ũt−1∈2≥

⎩
by

(6) and (7). By Lemma 3, ũt is an unbiased estimator of ut, and hence, we can
follow the same argument in the proof of Theorem 2 to bound

8σd2E

[
∑

t∞Tu

∈ft − ũt−1∈2≥

]

≡ O
(
σd2V≥ logT

)
. (8)

Finally, by plugging (8) into (5), the regret bound is at most

O(N log2 T ) +O
(
σd2V≥ logT

)
+

logN

σ

≡ O
(
N log2 T + d

⎧
V≥ logT logN

⎪

when σ =
⎧
logN/d2V≥ logT .
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5 Conclusion and Open Problems

By introducing a new measure of the loss functions and with the help of some
additional information related to the variation, we obtain a new bound for the
prediction with expert advice problem on the bandit setting without using the
self-concordance methodology and thus conditionally answer an open problem
raised by Hazan and Kale [8]. We also prove a new regret bound for the combi-
natorial prediction game under the semi-bandit setting.

For future work, we provide the following open problems. (1) Obtain the regret
bounds without the additional information. (2) Remove the terms poly(log T )
in the regret bounds of this paper. (3) Obtain the regret bounds in terms of the
deviation for the prediction problems in the bandit setting.
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2 University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA

kkhyde@hawaii.edu

http://math.hawaii.edu/wordpress/graduate-alumni/kkhyde/

Abstract. Shallit and Wang studied deterministic automatic complex-
ity of words. They showed that the automatic Hausdorff dimension I(t)
of the infinite Thue word satisfies 1/3 ≥ I(t) ≥ 2/3. We improve that
result by showing that I(t) ≤ 1/2. For nondeterministic automatic com-
plexity we show I(t) = 1/2. We prove that such complexity AN of a
word x of length n satisfies AN(x) ≥ b(n) := ∗n/2⊆ + 1. This enables us
to define the complexity deficiency D(x) = b(n)−AN(x). If x is square-
free then D(x) = 0. If x almost square-free in the sense of Fraenkel and
Simpson, or if x is a strongly cube-free binary word such as the infinite
Thue word, then D(x) ≥ 1. On the other hand, there is no constant
upper bound on D for strongly cube-free words in a ternary alphabet,
nor for cube-free words in a binary alphabet.

The decision problem whether D(x) ≤ d for given x, d belongs to
NP ∅ E.

1 Introduction

The Kolmogorov complexity of a finite word w is roughly speaking the length
of the shortest description w∞ of w in a fixed formal language. The description
w∞ can be thought of as an optimally compressed version of w. Motivated by
the non-computability of Kolmogorov complexity, Shallit and Wang studied a
deterministic finite automaton analogue.

Definition 1 (Shallit and Wang [3]). The automatic complexity of a finite
binary string x = x1 . . . xn is the least number AD(x) of states of a deterministic
finite automaton M such that x is the only string of length n in the language
accepted by M .

This complexity notion has two minor deficiencies:

1. Most of the relevant automata end up having a “dead state” whose sole
purpose is to absorb any irrelevant or unacceptable transitions.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 61–70, 2014.
c→ Springer International Publishing Switzerland 2014

http://math.hawaii.edu/wordpress/bjoern/
http://math.hawaii.edu/wordpress/graduate-alumni/kkhyde/
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2. The complexity of a string can be changed by reversing it. For instance,

AD(011100) = 4 < 5 = AD(001110).

If we replace deterministic finite automata by nondeterministic ones, these defi-
ciencies disappear. The NFA complexity turns out to have other pleasant prop-
erties, such as a sharp computable upper bound.

Technical Ideas and Results. In this paper we develop some of the properties of
NFA complexity. As a corollary we get a strengthening of a result of Shallit and
Wang on the complexity of the infinite Thue word t. Moreover, viewed through
an NFA lens we can, in a sense, characterize exactly the complexity of t. A main
technical idea is to extend Shallit and Wang’s Theorem 9 which said that not
only do squares, cubes and higher powers of a word have low complexity, but a
word completely free of such powers must conversely have high complexity. The
way we strengthen their results is by considering a variation on square-freeness
and cube-freeness, strong cube-freeness. This notion also goes by the names of
irreducibility and overlap-freeness in the combinatorial literature. We also take
up an idea from Shallit andWang’s Theorem 8 and use it to show that the natural
decision problem associated with NFA complexity is in E = DTIME(2O(n)). This
result is a theoretical complement to the practical fact that the NFA complexity
can be computed reasonably fast; to see it in action, for strings of length up to
23 one can view automaton witnesses and check complexity using the following
URL format

http://math.hawaii.edu/wordpress/bjoern/complexity-of-110101101/

and check one’s comprehension by playing a Complexity Guessing Game at

http://math.hawaii.edu/wordpress/bjoern/software/web/

complexity-guessing-game/

Let us now define our central notion and get started on developing its prop-
erties.

Definition 2. The nondeterministic automatic complexity AN (w) of a word w
is the minimum number of states of an NFA M , having no Ω-transitions, accept-
ing w such that there is only one accepting path in M of length |w|.
The minimum complexity AN (w) = 1 is only achieved by words of the form an

where a is a single letter.

Theorem 3 (Hyde [2]). The nondeterministic automatic complexity AN (x) of
a string x of length n satisfies

AN (x) → b(n) := ⊂n/2≡+ 1.

Proof (Proof sketch.). If x has odd length, it suffices to carefully consider the
automaton in Figure 1. If x has even length, a slightly modified automaton can
be used.

http://math.hawaii.edu/wordpress/bjoern/complexity-of-110101101/
http://math.hawaii.edu/wordpress/bjoern/software/web/complexity-guessing-game/
http://math.hawaii.edu/wordpress/bjoern/software/web/complexity-guessing-game/
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q1start q2 q3 q4 . . . qm qm+1

x1 x2 x3 x4 xm−1 xm

xm+1

xm+2xm+3xn−3xn−2xn−1xn

Fig. 1. A nondeterministic finite automaton that only accepts one string x =
x1x2x3x4 . . . xn of length n = 2m+ 1

Definition 4. The complexity deficiency of a word x of length n is

Dn(x) = D(x) = b(n)−AN (x).

Table 1. Probability of strings of having positive complexity deficiency Dn, truncated
to 3 decimal digits

Length n P(Dn > 0)

0 0.000
2 0.500
4 0.500
6 0.531
8 0.617
10 0.664
12 0.600
14 0.687
16 0.657
18 0.658
20 0.641
22 0.633
24 0.593

(a) Even lengths.

Length n P(Dn > 0)

1 0.000
3 0.250
5 0.250
7 0.234
9 0.207
11 0.317
13 0.295
15 0.297
17 0.342
19 0.330
21 0.303
23 0.322
25 0.283

(b) Odd lengths.

The notion of deficiency is motivated by the experimental observation that about
half of all strings have deficiency 0; see Table 1.

2 Time Complexity

Definition 5. Let DEFICIENCY be the following decision problem.
Given a binary word w and an integer d ∈ 0, is D(w) > d?

2.1 NP

Theorem 6 is not surprising; we do not know whether DEFICIENCY is NP-
complete.
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Theorem 6. DEFICIENCY is in NP.

Proof. Shallit and Wang’s Theorem 2 showed that one can efficiently determine
whether a given DFA uniquely accepts w among string of length |w|. Hyde [2],
Theorem 2.2, extended that result to NFAs, from which the result easily follows.

2.2 E

Definition 7. Suppose M is an NFA with q states that uniquely accepts a word
x of length n. Throughout this paper we may assume that M contains no edges
except those traversed on input x. Consider the almost unlabeled transition di-
agram of M , which is a directed graph whose vertices are the states of M and
whose edges correspond to transitions. Each edge is labeled with a 0 except for
an edge entering the initial state as described below.

We define the accepting path P for x to be the sequence of n+1 edges traversed
in this graph, where we include as first element an edge labeled with the empty
string σ that enters the initial state q0 of M .

We define the abbreviated accepting path P ≥ to be the sequence of edges ob-
tained from P by considering each edge in order and deleting it if it has previously
been traversed.

Lemma 8. Let v be a vertex visited by an abbreviated accepting path P ≥ =
(e0, . . . , et). Then v is of one of the following five types.

1. In-degree 1 (edge ei), out-degree 1 (edge ei+1).
2. In-degree 2 (edges ei and ej with j > i), out-degree 1 (ei+1).
3. In-degree 1 (edge ei), out-degree 2 (edges ei+1 and ej, j > i+ 1).
4. In-degree 2 (edges ei and ej with j > i), out-degree 2 (ei+1 and ej+1).
5. In-degree 1 (edge et), out-degree 0.1

Proof. The out-degree and in-degree of each vertex encountered along P ≥ are
both → 2, since failure of this would imply non-uniqueness of accepting path.
Since all the edges of M are included in P , the list includes all the possible
in-degree, out-degree combinations. We can define i by the rule that ei is the
first edge in P ≥ entering v. Again, since all the edges of M are included in P ,
ei+1 must be one of the edges contributing to the out-degree of v, if any, and ej
must also be as specified in the types.

Lemma 8 implies that Definition 9 makes sense.

Definition 9. For 0 → i → t + 1 and 0 → n → t + 1 we let E(i, n) be a string
representing the edges (ei, . . . , en). The meaning of the symbols is as follows: 0
represents an edge. A left bracket [ represents a vertex that is the target of a
backedge. A right bracket ] represents a backedge. The symbol + represents a
vertex of out-degree 2. When i > n, we set E(i, n) = σ. Next, assuming we have
defined E(j,m) for all m and all j > i, we can define E(i, n) by considering the
type of the vertex reached by the edge ei. Let ai ≥ {0, σ} be the label of ei.

1 This type was omitted by Shallit and Wang.
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1. E(i, n) := aiE(i + 1, n).
2. E(i, n) := ai[E(i + 1, j − 1)]E(j + 1, n).
3. E(i, n) := ai + E(i+ 1, n).
4. E(i, n) := ai[+E(i+ 1, j − 1)]E(j + 1, n).
5. E(i, n) := aiE(i + 1, n).

Lemma 10. The abbreviated accepting path P ≥ can be reconstructed from E(0, t).

Lemma 11
|E(a, b)| → 2(b− a+ 1).

Theorem 12. DEFICIENCY is in E.

Proof. Let w be a word of a length n, and let d ∈ 0. To determine whether
D(w) > d, we must determine whether there exists an NFA M with at most
⊂n
2 ≡ − d states which accepts w, and accepts no other word of length n. Since

there are prima facie more than single-exponentially many automata to consider,
we consider instead codes E(0, t) as in Definition 9. By Lemma 10 we can recover
the abbreviated accepting path P ≥ and hence M from such a code. The number
of edges t is bounded by the string length n, so by Lemma 11

|E(0, t)| → 2(t+ 1) → 2(n+ 1);

since there are four symbols this gives

42(n+1) = O(16n)

many codes to consider. Finally, to check whether a given M accepts uniquely
takes only polynomially many steps, as in Theorem 6.

Remark 13. The bound 16n counts many automata that are not uniquely ac-
cepting; the actual number may be closer to 3n based on computational evidence.

3 Powers and Complexity

In this section we shall exhibit infinite words all of whose prefixes have complexity
deficiency bounded by 1. We say that such a word has a hereditary deficiency
bound of 1.

3.1 Square-Free Words

Lemma 14. Let a and b be strings in an arbitrary alphabet with ab = ba. Then
there is a string c and integers k and α such that a = ck and b = cΘ.

We will use the following simple strengthening from DFAs to NFAs of a fact
used in Shallit and Wang’s Theorem 9 [3].

Theorem 15. If an NFA M uniquely accepts w of length n, and visits a state
p as many as k+1 times, where k ∈ 2, during its computation on input w, then
w contains a kth power.
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Proof. Let w = w0w1 · · ·wkwk+1 where wi is the portion of w read between
visits number i and i + 1 to the state p. Since one bit must be read in one unit
of automaton time, |wi| ∈ 1 for each 1 → i → k (w0 and/or wk+1 may be empty
since the initial and/or final state of M may be p). For any permutation β on
1, . . . , k, M accepts w0wΣ(1) · · ·wΣ(k)wk+1. Let 1 → j → k be such that wj has
minimal length and let ŵj = w1 · · ·wj−1wj+1 · · ·wk. Then M also accepts

w0wjŵjwk+1 and w0ŵjwjwk+1.

By uniqueness,
w0wjŵjwk+1 = w = w0ŵjwjwk+1

and so
wjŵj = ŵjwj

By Lemma 14, wj and ŵj are both powers of a string c. Since |ŵj | ∈ (k−1)|wj |,
wjŵj is at least a kth power of c, so w contains a kth power of c.

We next strengthen a particular case of Shallit and Wang’s Theorem 9 to NFAs.

Theorem 16. A square-free word has deficiency 0.

Corollary 17. There exists an infinite word of hereditary deficiency 0.

Proof. There is an infinite square-free word over the alphabet {0, 1, 2} as shown
by Thue [5][6]. The result follows from Theorem 16.

3.2 Cube-Free Words

Definition 18. For a word u, let first(u) and last(u) denote the first and last
letters of u, respectively. A weak cube is a word of the form uu first(u) (or
equivalently, last(u)uu). A word w is strongly cube-free if it does not contain
any weak cubes.

Theorem 19 (Shelton and Soni [4]). The set of all numbers that occur as
lengths of squares within strongly cube-free binary words is equal to

{2a : a ∈ 1} ∪ {3 · 2a : a ∈ 1}.

Lemma 20. If a cube www contains another cube xxx then either |x| = |w|, or
xxfirst(x) is contained in the first two consecutive occurrences of w, or last(x)xx
is contained in the last two occurrences of w.

Theorem 21. The deficiency of cube-free binary words is unbounded.

Proof. Given k, we shall find a cube-free word x with D(x) ∈ k. Pick a number n
such that 2n ∈ 2k+1. By Theorem 19, there is a strongly cube-free binary word
that contains a square of length 2n+1; equivalently, there is a strongly cube-free
square of length 2n+1. Thus, we may choose w of length α = 2n such that ww
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is strongly cube-free. Let x = wwŵ where ŵ is the proper prefix of w of length
|w| − 1. By Lemma 20, x is cube-free. The complexity of x is at most |w| as we
can just make one loop of length w, with code (Theorem 12)

[w1 . . . wΘ−1]wδ
.

And so

D(x) ∈ ⊂|x|/2 + 1≡ − |w| ∈ |x|/2− |w| = 3|w| − 1

2
− |w|

= |w|/2 − 1/2 ∈ k.

3.3 Strongly Cube-Free Words

Theorem 22 (Thue [5][6]). The infinite Thue word

t = t0t1 . . . = 0110 1001 1001 0110 . . .

given by

b =
∑

bi2
i, bi ≥ {0, 1} =◦ tb =

∑
bi mod 2,

is strongly cube-free.

Lemma 23. For each k ∈ 1 there is a sequence x1,k, . . . , xk,k of positive integers
such that

k∑

i=1

aixi,k = 2

k∑

i=1

xi,k =◦ a1 = · · · = ak = 2

Let tj denote bit j of the infinite Thue word. Then we can ensure that

1. xi,k + 1 < xi+1,k and
2. txi,k

⊆= txi+1,k
for each 1 → i < k.

Theorem 24. For an alphabet of size three, the complexity deficiency of strongly
cube-free words is unbounded.

Proof. Let d ∈ 1. We will show that there is a word w of deficiency D(w) ∈ d.
Let k = 2d − 1. For each 1 → i → k let xi = xk+1−i,k where the xj,k are as in
Lemma 23. Note that since xi,k + 1 < xi+1,k, we have xi > xi+1 + 1. Let

w =

(

2

x1−1∏

i=1

ti

)2

tx1

(

2

x2−1∏

i=1

ti

)2

tx2

(

2

x3−1∏

i=1

ti

)2

· · · txk−1

(

2

xk−1∏

i=1

ti

)2

= θ1tx1θ2 · · · txk−1
θk

where θi = (2πi)
2
, πi =

∏xi−1
j=1 tj , and where ti is the ith bit of the infinite Thue

word on {0, 1}, which is strongly cube-free (Theorem 22). Let M be the NFA
with code (Theorem 12)

[+0x1−1]0[+0x2−1]0 · · · 0 ∀ [+0xk−1]
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(where ∀ indicates the accept state). Let X =
∑k

i=1 xi. Then M has k − 1 +X
many edges but only q = X many states; and w has length

n = k − 1 + 2X = 2(d− 1) + 2X

giving n/2 + 1 = d+X .
Suppose v is a word accepted by M . Then M on input v goes through each

loop of length xi some number of times ai ∈ 0, where

k − 1 +

k∑

i=1

aixi = |v|.

If additionally |v| = |w|, then by Lemma 23 we have a1 = a2 = · · · = ak, and
hence v = w. Thus

D(w) ∈ ⊂n/2 + 1≡ − q = d+X −X = d.

We omit the proof that w is strongly cube-free in this version of the paper.

Definition 2 yields the following lemma.

Lemma 25. Let (q0, q1, . . .) be the sequence of states visited by an NFAM given
an input word w. For any t, t1, t2, and ri, si with

(p1, r1, . . . , rt−2, p2) = (qt1 , . . . , qt1+t)

and
(p1, s1, . . . , st−2, p2) = (qt2 , . . . , qt2+t),

we have ri = si for each i.

Note that in Lemma 25, it may very well be that t1 ⊆= t2.

Theorem 26. Strongly cube-free binary words have deficiency bound 1.

Proof. Suppose w is a word satisfying D(w) ∈ 2 and consider the sequence of
states visited in a witnessing computation. As in the proof of Theorem 32, either
there is a state that is visited four times, and hence there is a cube in w, or there
are three state cubes (states that are visited three times each), and hence there
are three squares in w. By Theorem 19, a strongly cube-free binary word can
only contain squares of length 2a, 3 · 2a, and hence can only contain powers ui

where |u| is of the form 2a, 3 · 2a, and i → 2.
In particular, the length of one of the squares in the three state cubes must

divide the length of another. So if these two state cubes are disjoint then the
shorter one repeated can replace one occurrence of the longer one, contradicting
Lemma 25.

So suppose we have two state cubes, at states p1 and p2, that overlap. At p1
then we read consecutive words ab that are powers a = ui, b = uj of a word u,
and since there are no cubes in w it must be that i = j = 1 and so actually
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a = b. And at p2 we have words c, d that are powers of a word v and again the
exponents are 1 and c = d.

The overlap means that in one of the two excursions of the same length
starting and ending at p1, we visit p2. By uniqueness of the accepting path we
then visit p2 in both of these excursions. If we suppose the state cubes are chosen
to be of minimal length then we only visit p2 once in each excursion. If we write
a = rs where r is the word read when going from p1 to p2, and s is the word
going from p2 to p1, then c = sr and w contains rsrsr. In particular, w contains
a weak cube.

Definition 27. For an infinite word u define the deterministic automatic Haus-
dorff dimension of u by

I(u) = lim inf
u prefix of u

AD(u)/|u|.

and the deterministic automatic packing dimension of u by2

S(u) = lim sup
u prefix of u

AD(u)/|u|.

For nondeterministic complexity, in light of Theorem 3 it is natural to make the
following definition.

Definition 28. Define the nondeterministic automatic Hausdorff dimension of
u by

IN (u) = lim inf
u prefix of u

AN (u)

|u|/2
and define SN analogously.

Theorem 29 (Shallit and Wang’s Theorem 18). 1
3 → I(t) → 2

3 .

Here we strengthen Theorem 29.

Theorem 30. I(t) ∈ 1
2 . Moreover IN (t) = SN (t) = 1.

Proof. This follows from the observation that the proof of Theorem 26 applies
equally for deterministic complexity.

3.4 Almost Square-Free Words

Definition 31 (Fraenkel and Simpson [1]). A word all of whose contained
squares belong to {00, 11, 0101} is called almost square-free.

Theorem 32. A word that is almost square-free has a deficiency bound of 1.

2 There is some connection with Hausdorff dimension and packing dimension. For
instance, if the effective Hausdorff dimension of an infinite word x is positive then
so is its automatic Hausdorff dimension, by a Kolmogorov complexity calculation in
Shallit and Wang’s Theorem 9.
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Corollary 33. There is an infinite binary word having hereditary deficiency
bound of 1.

Proof. We have two distinct proofs. On the one hand, Fraenkel and Simpson [1]
show there is an infinite almost square-free binary word, and the result follows
from Theorem 32. On the other hand, the infinite Thue word is strongly cube-free
(Theorem 22) and the result follows from Theorem 26.

Conjecture 34. There is an infinite binary word having hereditary deficiency
0.

We have some numerical evidence for Conjecture 34, for instance there are 108
strings of length 18 with this property.
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Abstract. To model and verify multi-core parallel programs, the paper proposes
an axiom system for Propositional Projection Temporal Logic with Cylinder Com-
putation Model (CCM-PPTL). To do so, the syntax and semantics of CCM-PPTL
are presented. Further, based on the logical laws of PPTL, some algebraic laws
of sequence expressions and logical laws regarding CCM operators are proved.
Moreover, the axiom system of CCM-PPTL is established by extending that of
PPTL with some axioms and inference rules of CCM operators. In addition, the
soundness and completeness of the system are proved.

Keywords: Axiom System, Multi-core, Parallel, Formal Method.

1 Introduction

With the rapid development of integrated circuits technology and the demand for higher
performance, on-chip multi-core processors (CMP) have been brought into being. The
reality of multi-core processor has made parallel programs pervasive. Creating a correct
parallel program is not a straightforward process even for a considerable small system,
because programmers are forced to consider that the program will always yield to a cor-
rect result no matter what order the instructions are executed in. To improve the reliabil-
ity of parallel programs, formal verification is an important viable approach. Modeling
multi-core parallel programs is a crucial step for formal verification of correctness and
reliability of many core parallel programs.

Model checking and theorem proving are two key verification methods. With model
checking, the system is often modeled as a finite transition system or automaton M ,
and the property is specified using a temporal logic formula P . Then a model checking
procedure is employed to check whether or not M |= P . If so, the property is ver-
ified otherwise a counterexample can be found. The advantage of model checking is
that the verification can be done automatically. However, model checking suffers from
the state explosion problem [10]. Further, most of web applications are data-intensive
which are not suitable to be verified by means of model checking since the treatment
of the data usually leads to a huge, even infinite state space. Some successful model
checking tools are SPIN [9], SMV [10] and so on. By contrast, theorem proving can
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handle many complex structures abstractly without state space explosion but requires
more human intervention and are often time-consuming. With theorem proving, both
the system behavior and the desired property are specified as formulas, say S and P , in
some appropriate logic. To demonstrate that the system satisfies the property amounts
to proving that → S ⊂ P is a theorem within the proof system of the logic. Some
famous theorem prover are PVS [11], ACL2 [2], Coq [1], Isabella [12], HOL [8] and
so on. Verification of multi-core parallel programs raises a great challenge for theorem
proving since it requires that the logic for modeling multi-core systems and specify-
ing the expected properties has a powerful expressiveness. However, the widely used
Propositional Linear Temporal Logic (PLTL) and Computational Tree Logic (CTL) are
not powerful enough. In fact, they are not full regular. Further, Quantified Linear time
Temporal Logic (QLTL) [13], Extended Temporal Logic (ETL) [16] and Linear mu-
Calculus [15] have a more powerful expressiveness of full regular language. However,
these logics are not practical since they are not intuitive or too complicated. Proposi-
tional Projection Temporal Logic (PPTL) [3] allows us to specify Ω full regular proper-
ties [14]. Further, a decision procedure [4,7] and a complete proof system for PPTL [6]
have been established. A model checker based on SPIN [5] and a theorem prover based
on PVS have also been developed. Cylinder Computation Model (CCM) [17] is a con-
current semantic model which is defined based on PPTL and has been implemented in
the interpreter of MSVL, which is an executable subset of Projection Temporal Logic.
CCM can be employed to model multi-core parallel programs since the sequence ex-
pressions in it have the nature of regular expressions. With CCM, the autonomy and
parallelism of the processes occupying different cores on one chip can be described
neatly and concisely. In [6], we have proposed an axiom system for PPTL, and proved
its soundness and completeness. To specify and verify multi-core parallel programs
in a uniform framework, this paper proposes an axiom system for CCM-PPTL which
extends that of PPTL by including transformation rules for sequence expressions and
axioms and inference rules on CCM operators. Furthermore, the soundness and com-
pleteness of the extended axiom system are also proved.

The paper is organized as follows. In the next section, the underlying logic PPTL and
the semantic model CCM are reviewed, including their syntax, semantics and PPTL
axiom system. Based on PPTL, CCM-PPTL is proposed in Section 3, including its
syntax and semantics. In Section 3, we further give an axiom system for CCM-PPTL
and prove the soundness and completeness of the system. Finally, conclusions are drawn
in Section 4.

2 Preliminaries

2.1 Propositional Projection Temporal Logic

Our underlying logic is Propositional Projection Temporal Logic. The formula P of
PPTL is given by the following grammar.

P ::= p | ≥ P | ¬P | P1 ≤ P2 | (P1, . . . , Pm) prj P
| (P1, . . . , (Pi, . . . , Pl)

⊕, . . . , Pm) prj P
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where p ≡ Prop, Pi(1 ∈ i ∈ m) and P are well-formed PPTL formulas, and ≥,
prj and prj∪ (projection-plus) are primitive temporal operators. A formula is a state
formula if it contains no temporal operators, otherwise it is a temporal formula.

We define a state s over Prop to be a mapping from Prop toB. s[p] denotes the val-
uation of p at state s. An interval σ is a non-empty finite or infinite sequence of states.
The length, |σ|, of σ is Ω if σ is infinite, and the number of states minus 1 if σ is finite.
We consider the set N0 of non-negative integers and Ω, NΣ = N0 ◦ {Ω} and extend
the comparison operators, =, <, ∈, to NΣ by considering Ω = Ω, and for all i ≡ N0,
i < Ω. Furthermore, we define ⊆ as ∈ −{(Ω, Ω)}. σ is often denoted by ∀s0, . . . , s|Ω|∩,
where s|Ω| is undefined if σ is infinite. With such a notation, σ(i...j) (0 ∈ i ⊆ j ∈ |σ|)
denotes the sub-interval ∀si, . . . , sj∩ and σi (0 ∈ i ∈ |σ|) denotes the prefix interval
∀s0, . . . , si∩. The concatenation of a finite σ with another interval (or empty string) σ

∗
is

denoted by σ · σ∗
(not sharing any states). Let σ = ∀s0, s1, . . . , s|Ω|∩ be an interval and

r1, . . . , rh be integers (h ∅ 1) such that 0 ∈ r1 ∈ r2 ∈ . . . ∈ rh ⊆ |σ|. The projec-
tion of σ onto r1, . . . , rh is the interval (called projected interval) σ ↓ (r1, . . . , rh) =
∀st1 , st2 , . . . , stl∩ where t1, . . . , tl are obtained from r1, . . . , rh by deleting all dupli-
cates. That is, t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. An
interpretation is a triple I = (σ, k, j), where σ is an interval, k an integer, and j an
integer or Ω such that 0 ∈ k ⊆ j ∈ |σ|. We use the notation (σ, k, j) |= P to indicate
that some formula P is interpreted and satisfied over the subinterval ∀sk, . . . , sj∩ of σ
with the current state being sk. The satisfaction relation (|=) is inductively defined as
follows.

I |= p iff sk[p] = true, for any atomic proposition p.
I |= ¬P iff I ∗|= P.
I |= ≥P iff k < j and (Θ, k + 1, j) |= P.
I |= P ≤Q iff I |= P or I |= Q.
I |= (P1, . . . , Pm) prj Q iff there exist integers k = r0 ⊆ · · · ⊆ rm−1 ∅ rm ⊆ j; for all

1 ⊆ l ⊆ m, (Θ, rl−1, rl) |= Pl; (Θ∈, 0, |Θ∈|) |= Q for one of the following Θ∈:
• rm < j and Θ∈ = Θ ≺ (r0, . . . , rm) · Θ(rm+1..j), or
• rm = j and Θ∈ = Θ ≺ (r0, . . . , rh) for some 0 ⊆ h ⊆ m.

I |= (P1, . . . , (Pu, . . . , Pl)
⊕, . . . , Pm) prj Q iff one of following cases holds:

• 1 ⊆ u ⊆ l ⊆ m and there exists an integer n → 1 and I |=
(P1, . . . , (Pu, . . . , Pl)

(n), . . . , Pm) prj Q, or
• 1 ⊆ u ⊆ l = m, j = Ω and there exist infinitely many integers k = r0 ⊆ r1 ⊆
· · · ⊆ rn ∅ Ω and lim

n→∞
rn = Ω such that for all 1 ⊆ x ⊆ u− 1, (Θ, rx−1, rx) |= Px,

and (Θ, ru+t(l−u+1)+n−1, ru+t(l−u+1)+n) |= Pu+n, for all t → 0 and 0 ⊆ n ⊆ l−u,
and Θ ≺ (r0, r1, . . . , rh, Ω) |= Q for some h ∪ Nγ .

The axiom system for CCM-PPTL presented later is based on that of PPTL, which
has been proved to be sound and complete. For more detail, please refer to [6].

2.2 Cylinder Computation Model

In this section, Cylinder Computation Model (CCM) is reviewed [17], including its
syntax and semantics which are based on sequence expressions. Then the logical laws
on CCM are drawn. First, sequence expressions are defined as follows.
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l ::= ∅ | ζ | n | l1, l2 | l1 ⊗ l2 | l∗
From the syntax of the sequence expression given above, we see that it is an analogue
of regular expressions where ∨ denotes empty set, α empty sequence expression and n
any non-negative integer. The concatenation (,), sum (⇔) or Kleene closure (⇐) of any
two sequence expressions is also a sequence expression. The semantics is also defined
by a satisfaction relation, �, by means of interpretation I = (σ, k, j).

1. I ∗� ∅ for all I.
2. I � ζ iff j = k.
3. I � n iff j − k = n.
4. I � l1 ⊗ l2 iff I � l1 or I � l2.
5. I � l1, l2 iff there exists r, k ⊆ r ∅ j, such that I1 = (Θ, k, r) � l1 and I2 =

(Θ, r, j) � l2.
6. I � l∗ iff j = k or there exist finitely many integers k = r0 ⊆ r1 ⊆ . . . ∅ rn = j

such that for all h, 1 ⊆ h ⊆ n, (Θ, rh−1, rh) � l.

In the semantics of sequence expressions, ∨ cannot be satisfied by any interpretation.
The empty sequence expression α is equivalent to the sequence expression 0. In order
to avoid an excessive number of parentheses, the precedence rules are given from high
to low: (1) ⇐ (iteration); (2) , (concatenation); (3) ⇔ (selection). Some algebraic laws of
sequence expressions are summarized in [17]. Then, the syntax of CCM is defined as
follows.

CCM ::= P ov (l) | CCM1 ‖ CCM2

where P is a PPTL formula, l a sequence expression and the parallel (⇒) composition
of any two CCM formulas is also a CCM formula. CCM operators “ ov ” and “ ⇒
” are temporal. So all the CCM formulas are temporal formulas. With CCM formu-
las, the interpretation of P is controlled by the sequence expression l. The beginning
and ending points generated by the interpretation of l make up of the coarse-grained
interval of P . Therefore, to give the semantics of CCM formulas, it is necessary to
define the set of ending point lists denoted by SI

l . First, some notations are defined.

For any two strings X
def
= (x1, . . . , xm) and Y

def
= (y1, . . . , yn), the concatenation of

X and Y is defined as: X,Y
def
= (x1, . . . , xm), (y1, . . . , yn)

def
= (x1, . . . , xm, y1, . . . , yn).

For any two sets S1 and S2, of strings , the concatenation of S1 and S2 is defined as:
S1, S2

def
= {X,Y |X ∪ S1 and Y ∪ S2}.

Definition 1 (set of ending point lists SI
l ) LetI be an arbitrary interpretation (σ, i, k, j).

SI
l is inductively defined as follows:

1. SI
∅ = ∅.

2. If I � ζ, then SI
ε = {(k, j)}.

3. If I � n, then SI
n = {(k, j)}.

4. If I � l1, l2, then SI
l1,l2

=

⎧
⎨

⎩
Δ

∣
∣
∣
∣
∣
∣

there exists r, k ⊆ r ∅ j, such that I1 =
(Θ, k, r) � l1 and I2 = (Θ, r, j) � l2 and
Δ ∪ SI1

l1
, SI2

l2

⎫
⎬

⎭

5. If I � l1 ⊗ l2, then SI
l1⊗ l2

= SI
l1

⋃
SI
l2
.
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6. If I � l∗, then SI
l∞ = SI

ε ∪
⎧
⎨

⎩
Δ

∣
∣
∣
∣
∣
∣

there exist finitely many integers k = r0 ⊆ r1 . . . ∅
rn = j such that for all 1 ⊆ h ⊆ n, Ih =
(Θ, rh−1, rh) � l and Δ ∪ SI1

l , SI2
l , . . . , SIn

l

⎫
⎬

⎭

Then, the semantics of Cylinder Computation Model is defined by a satisfaction
relation |= by means of the interpretation I = (σ, k, j).

I |= P ov (l) iff one of the following cases holds:
(a) I � l and there exists (r0, r1, . . . , rn) ∪ SI

l , n ∪ N0 such that P is satisfied by
Θ ≺ (r0, r1, . . . , rh) for some 0 ⊆ h ⊆ n;
(b) there exists r, k ⊆ r ∅ j such that I1 = (Θ, k, r) � l and there exists (r0, r1, . . . , rn) ∪
SI1
l , n ∪ N0 and P is satisfied by Θ ≺ (r0, r1, . . . , rn) · Θ(rn+1..j).

I |= CCM1 ‖ CCM2 iff one of the following cases holds:
(a) I |= CCM1 and there exists r, k ⊆ r ∅ j, (Θ, k, r) |= CCM2

(b) I |= CCM2 and there exists r, k ⊆ r ∅ j, (Θ, k, r) |= CCM1

In fact, an element in SI
l is a sequence of non-negative integers, and a sequence ex-

pression can be satisfied by an interpretation in more than one way. Each element in
SI
l records one particular way in which I satisfies l, containing all the beginning and

ending points. The definition of SI
l is necessary since the PPTL formula P in CCM

is interpreted over a coarse-grained interval composed of the points from one of the
elements in SI

l .

3 CCM-PPTL and Axiom System

To model and verify multi-core parallel programs, CCM is included in PPTL. Then
an axiom system is proposed in this section. The syntax of CCM-PPTL is inductively
defined as follows:

β ::= p | ¬β | ≥ β | β1 ≤ β2 | (β1, . . . , βm) prj β
| (β1, . . . , (βu, . . . , βl)

⊕, . . . , βm) prj β | CCM

where p is an arbitrary atomic proposition; β, βi are arbitrary CCM-PPTL formulas;
CCM an arbitrary CCM formula defined in section 2. The semantics of CCM-PPTL is
also defined as a satisfaction relation |= by means of the interpretation I = (σ, k, j).

I |= p iff sk[p] = true for any atomic proposition p.
I |= ¬β iff I ∗|= β.
I |=≥β iff (Θ, k + 1, j) |= β.
I |= β1 ≤ β2 iff I |= β1 or I |= β2.
I |= (β1, . . . , βm) prj β iff

there exist k = r0 ⊆ r1 ⊆ . . . ⊆ rm−1 ∅ rm ⊆ j such that for all1 ⊆ l ⊆ m,
(Θ, rl−1, rl) |= βl, and one of the following cases holds:
(a) rm < j and β is satisfied by Θ ≺ (r0, . . . , rm) · Θ(rm+1..j);
(b) rm = j and β is satisfied by Θ ≺ (r0, . . . , rh) for some 0 ⊆ h ⊆ m.

I |= (β1, . . . , (βu, . . . , βl)
⊕, . . . , βm) prj β iff one of the following cases holds:

(a) I |= (β1, . . . , (βu, . . . , βl)
(n), . . . , βm) prj β for some n → 1 and n ∪ N0;

(b) l = m and j = Ω and there exist infinitely many integers k = r0 ⊆ r1 ⊆ · · · and
lim

x→∞
rx = Ω, such that
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− (Θ, rx−1, rx) |= βx for 1 ⊆ x ⊆ u− 1, and
− (Θ, ru+t(l−u+1)+n−1, ru+t(l−u+1)+n) |= βu+n, for t → 0 and 0 ⊆ n ⊆ l − u, and
− β is satisfied by Θ ≺ (r0, r1, . . . , rh) for some h ∪ Nγ .

I |= CCM see the semantics of CCM in Section 2.

It should be noted that the formula P appearing in P ov (l) is a PPTL formula and
doesn’t contain the ov operator. That is why the syntax and semantics of PPTL and
CCM-PPTL have to be separated to define. CCM is of a typical form of P1 ov (l1) ⇒
· · · ⇒ Pm ov (lm) where each Pi is a PPTL formula and each li is a sequence ex-
pression. With this parallelism, a main time interval is the sequence of fine-grained
unit subintervals with length one while several coarse-grained projected intervals over
which processes are interpreted are in parallel with the main time interval. This com-
putation model can be viewed as m processes that share one processor and each oc-
cupies an execution core cooperating to complete their tasks in a parallel way. Each
process progresses in its own speed and communicates with each other at some global
states which indicates the coordination among these processes. Sequence expression li
is used to control and determine the execution points (states) of Pi. ⇒ is the main op-
erator in CCM. Thus P1 ov (l1) ⇒ · · · ⇒ Pm ov (lm) is endowned with the semantics
of many-core parallel computing. For example, the interval satisfying CCM formula
P1 ov (2, 3, 3, 4) ⇒ P2 ov (3, 5, 3, 6) ⇒ P3 ov (2, 1, 2, 3, 3, 1, 5) is given in Fig.1.

P1

P3

P2

Fig. 1. P1 ov (2, 3, 3, 4) ‖ P2 ov (3, 5, 3, 6) ‖ P3 ov (2, 1, 2, 3, 3, 1, 5)

All the logical laws in PPTL also hold in CCM-PPTL. In addition, we also prove some
logical laws on CCM, for more details, refer to [3]. Some of these laws are chosen to be
axioms later and are used to transform any CCM formula into its normal form. Now we
introduce a normal form for CCM-PPTL formulas upon which the completeness proof
of the axiom system is based.

Definition 2 (normal form of CCM-PPTL). A CCM-PPTL formula β is in normal
form if it conforms to the following syntax: θe ≤ π ∼

∨r
i=1(θi ≤ ≥βi), where r ∅ 1,

θe and the θi’s are state formulas, whereas the βi’s are general CCM-PPTL formulas.
Moreover, β is in complete normal form if ∼r

i=1θi ≡ true and ∼i∞=j(θi≤θj) ≡ false.

Now, an axiom system for CCM-PPTL is formalized based on that of PPTL. Ax-
ioms and inference rules on CCM operators are included. Since the deduction of CCM
formulas depends on the nature of sequence expressions, some essential transformation
rules on sequence expressions need to be included in the proof system.
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S1 ζ � ζ∗ � 0 � 0∗ S7 l∗, l∗ � l∗

S2 0, l � l, 0 � l S8 (l∗)∗ � l∗

S3 l1, (l2, l3) � (l1, l2), l3 � l1, l2, l3 S9 l1, (l2, l1)
∗ � (l1, l2)

∗, l1
S4 l1, (l2 ⊗ l3), l4 � (l1, l2, l4)⊗ (l1, l3, l4) S10 (0⊗ l)∗ � l∗

S5 l∗ � ζ ⊗ (l, l∗) � (ζ⊗ l)∗ S11 l1 � l2 =⇒ l � l[l2/l1]
S6 l, l∗ � l∗, l S12 l � (l1, l)⊗ l2 =⇒ l � l∗1 , l2

Then, the axioms on CCM formulas are given as follows based on the transformation
rules of sequence expressions.

A1 P ov (l1, ∅, l2) ∼= false
A2 P ov (0) ∼= P
A3 ε ov (m, l) ∼=≥(ε ov (m− 1, l)) (m > 0)
A4 ≥P ov (m, l) ∼=≥mε; (P ov (l)) (m > 0)
A5 (w ∧ P ) ov (l) ∼= w ∧ (P ov (l))
A6 P ov (l1 ⊗ l2) ∼= (P ov (l1)) ≤ (P ov (l2))
A7 (P1 ≤ P2) ov (l) ⊃ (P1 ov (l)) ≤ (P2 ov (l))
A8 CCM1 ‖ CCM2

∼= (CCM1; true) ∧ CCM2 ≤ (CCM2; true) ∧ CCM1

The inference rules are presented in the following:

I1 P ⊃ P ∈ =⇒ P ov (l) ⊃ P ∈ ov (l)
I2 l1 � l2 =⇒ P ov (l1) ∼= P ov (l2)

Some explanations are needed. A1 means that any CCM formula P ov (l) with an
unsatisfiable sequence expression l is also unsatisfiable. A2 means that CCM formula
P ov (0) is deduced to the PPTL formula P . A3 means that if a sequence expression
begins with a positive integerm and the PPTL formula is π, we can extract one next op-
erator directly withm decreasing by one. A4 means that if a sequence expression begins
with a positive integer m and the major operator of the PPTL formula is the next oper-
ator (≥), we can extract m next operators directly with deleting m from the sequence
expression and the next operator from ≥P . A5 means that if the PPTL formula contains
a conjunction being a state formula w, then w can be extracted from the PPTL formula
and treated as a conjunction of the whole formula. A6 indicates the distributivity of the
sum operator ⇔ over the ov operator. A7 describes the distributivity of disjunction over
the ov operator. A8 presents the semantics of the parallel operator, that is, CCM1 and
CCM2 are interpreted in parallel and may specify their own lengths. I1 means that the
implication between any two PPTL formulas is preserved by the ov operator. I2 means
that if l1 is deduced to be the equivalent of l2, the two CCM formulas with l1 and l2
being sequence expressions respectively are also deduced to be equivalent. Then the
soundness and completeness of the axiom system of CCM-PPTL are demonstrated.

Theorem 1 (Soundness). For any CCM-PPTL formula β, if → β, then |= β.

Proof. We need to prove that each axiom in the proof system of CCM-PPTL is valid
in the model theory of CCM-PPTL and each inference rule preserves the validity of
premises. Since the proof system of PPTL is sound, we only need to consider the axioms
and inference rules on CCM operators. We can prove that each transformation rule of
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sequence expressions is an algebraic law, each axiom on CCM is also a logical law.
Two inference rules I1 and I2 are also easy to understand, which formalize the idea of
substitution. All the above ensures the soundness of the axiom system of CCM-PPTL.
Since the proof is not difficult, we omit it here.

To prove the completeness of the axiom system given in Theorem 3, ten lemmas are
proved in advance. In general, the set of CCM-PPTL formulas are partitioned into ter-
minable and non-terminable formulas. We will prove that any terminable formula is
satisfiable (Lemma 7), and that for any non-terminable formula β, if �→ β ⊂ false,
then β is satisfiable (Lemma 10). Lemma 10 is based on a fact that any CCM-PPTL
formula can be deduced into a normal form which is proved in Theorem 2. The proof
of Theorem 2 depends on Lemma 1-6. Because of space limitations, most of the details
of proofs is omitted here.

Lemma 1. For any CCM-PPTL formula β, if β ∼= β→ where β→ is in normal form, there
exists a CCM-PPTL formula βc in complete normal form satisfying β ∼= βc.

Lemma 2. Let θ1, . . . , θn be state formulas, and βi a general CCM-PPTL formula. If∨n
i=1 θi

∼= true and
∨

i∞=j θi ≤θj
∼= false, then ¬(

∨n
i=1 θi ≤βi) ∼=

∨n
i=1(θi ≤¬βi).

Lemma 1 indicates that any normal form can be deduced into a complete normal form.
In the deduction of ¬β into a normal form as we will see later on in Theorem 2, β is
deduced into its normal form first, then further deduced into its complete normal form
by means of Lemma 1. Finally, we deduce ¬β into its normal form using Lemma 2
based on β’s complete normal form.

Lemma 3. If βi ∼= β→
i (0 ∈ i ∈ m), where β→

i’s are CCM-PPTL formulas in normal
form, then there exists a formula β in normal form such that (β1, . . . , βm) prj β0 ∼= β.

Lemma 4. If βi ∼= β→
i (0 ∈ i ∈ m), where β→

i’s are CCM-PPTL formulas in normal
form, then (1) there exists a formula β in normal form such that

((β1, . . . , βl)
≥, . . . , βm) prj β0 ∼= β (1 ∈ l ∈ m);

(2) there exists a formula β in normal form such that
(β1, . . . , (βi, . . . , βl)

≥, . . . , βm) prj β0 ∼= β (1 < i ∈ l ∈ m).

Lemma 3 and 4 show that the projection and projection plus operators can be deduced
into normal forms. They are integral parts of the proof of Theorem 2. To deduce CCM
formulas into their normal forms, first we need to deduce the sequence expression into
one of the three following forms using transformation rules, which are formalized in
the following lemma.

Lemma 5. For any sequence expression l, l can be deduced using the transformation
rules into one of the following forms:
(Form 1) ∨
(Form 2) 0⇔

⊗m
i=1(ni, li) where m ∅ 0 and ni ≡ N for all 1 ∈ i ∈ m.

(Form 3)
⊗m

i=1(ni, li) where m ∅ 1 and ni ≡ N for all 1 ∈ i ∈ m.
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Proof. The proof proceeds by induction on the structure of sequence expressions.
Base:
(1) l is ∨, then it is already in Form 1.
(2) l is α, then l � 0 according to the algebraic laws of sequence expressions, which is
in Form 2 under the conditionm = 0.
(3) l is n, if n is zero, it is the same as case (2); if n is a positive integer, according to
the algebraic laws we have n � (n, 0), which is in Form 3 under the condition m = 1,
n1 = n and l1 = 0.
Induction:
(4) l is (l1, l2), with the hypothesis that both of l1 and l2 can be transformed into one of
the three forms, then there are 3× 3 possible combinations.
If l1 or l2 is transformed into ∨, which covers 5 possible combinations, l can be equiva-
lently transformed into ∨ which is in Form 1.
If both of the transformations of l1 and l2 are in Form 2, l is transformed into Form 2.

l � (l1, l2)
� (0 ⊗⊗m

i=1(ni, li), 0⊗
⊗n

j=1(n
∈
j , l

∈
j)) Hypothesis

� (0, 0⊗⊗n
j=1(n

∈
j , l

∈
j)) ⊗ (

⊗m
i=1(ni, li), 0⊗

⊗n
j=1(n

∈
j , l

∈
j)) S4

� (0, 0) ⊗ (0,
⊗n

j=1(n
∈
j , l

∈
j)) ⊗ (

⊗m
i=1(ni, li), 0)⊗ (

⊗m
i=1(ni, li),

⊗n
j=1(n

∈
j , l

∈
j)) S4

� 0⊗⊗n
j=1(n

∈
j , l

∈
j) ⊗

⊗m
i=1(ni, li)⊗

⊗m
i=1

⊗n
j=1(ni, li, n

∈
j , l

∈
j) S2, S4

If l1 is in Form 2 and l2 Form 3, then l is in Form 3.

l � (l1, l2) � (0⊗⊗m
i=1(ni, li),

⊗n
j=1(n

∈
j , l

∈
j)) Hypothesis

� (0,
⊗n

j=1(n
∈
j , l

∈
j))⊗ (

⊗m
i=1(ni, li),

⊗n
j=1(n

∈
j , l

∈
j)) S4

�⊗n
j=1(n

∈
j , l

∈
j)⊗

⊗m
i=1

⊗n
j=1(ni, li, n

∈
j , l

∈
j) S2, S4

If l1 is in Form 3 and l2 Form 2, then l will be transformed into Form 3, and if both l1
and l2 are in Form 3, then l will be in Form 3. The proofs of these two cases are similar
as the proof given above, so they are omitted here.
(5) l is l1 ⇔ l2, with the hypothesis that l1 and l2 are transformed into l→1 and l→2, then
l→1 ⇔ l→2 is already in one of the three forms.
(6) l is (l→)∪, using the transformation rule S5, we have l � α ⇔ (l→, (l→)∪); then using
S1, we have l � 0⇔ (l→, (l→)∪). Suppose that l→ has been transformed into l→→. If l→→ � ∨,
then l = 0 which is in Form 2. If l→→ � 0⇔

⊗m
i=1(ni, li), then l is in Form 2.

l � (l∈)∗

� (0⊗⊗m
i=1(ni, li))

∗ Hypothesis
� (

⊗m
i=1(ni, li))

∗ S10
� 0⊗ (

⊗m
i=1(ni, li), (

⊗m
i=1(ni, li))

∗) S5
� 0⊗⊗m

i=1(ni, li, (
⊗m

j=1(nj , lj))
∗) S4

If l→→ is in Form 3, that is, l→→ �
⊗m

i=1(ni, li), then l is in Form 2.

l � (l∈)∗

� 0⊗ (l∈, (l∈)∗) S5, S1
� 0⊗ (

⊗m
i=1(ni, li), (l

∈)∗) Hypothesis
� 0⊗⊗m

i=1(ni, li, (l
∈)∗) S4
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Lemma 6. For any CCM formula β, there exists a formula β→ in normal form such that
β ∼= β→.

Proof. The proof proceeds by induction on the syntax of CCM.
Base: For P ov (l), by Lemma 5, if l � ∨, then P ov (l) ∼= false (A1).
If l � 0⇔

⊗m
i=1(ni, li), by the theorem that any PPTL formula P can be deduced into

its normal form, we have

P ov (l)
∼= P ov (0⊗⊗m

i=1(ni, li)) I2
∼= P ov (0) ∨∨m

i=1 P ov (ni, li) A6
∼= P ∨∨m

i=1 P ov (ni, li) A2
∼= Pe ∧ ε ∨∨n

j=1(Pcj ∧←P ∈
cj) ∨

∨m
i=1(Pe ∧ ε ∨∨n

j=1(Pcj ∧←P ∈
cj)) ov (ni, li) Hypothesis

∼= Pe ∧ ε ∨∨n
j=1(Pcj ∧←P ∈

cj) ∨
∨m

i=1

∨n
j=1(Pcj ∧←P ∈

cj) ov (ni, li) A7
∼= Pe ∧ ε ∨∨n

j=1(Pcj ∧←P ∈
cj)

∨∨m
i=1 Pe ∧ (ε ov (ni, li)) ∨

∨m
i=1

∨n
j=1 Pcj ∧ (←P ∈

cj ov (ni, li)) A5
∼= Pe ∧ ε ∨∨n

j=1(Pcj ∧←P ∈
cj)

∨∨m
i=1 Pe ∧←(ε ov (ni − 1, li)) ∨

∨m
i=1

∨n
j=1 Pcj ∧←ni (P ∈

cj ov (li)) A3, A4

If l �
⊗m

i=1(ni, li), P ov (l) also can be deduced into its normal form in a similar way.
Induction: For CCM1 ⇒ CCM2, suppose that CCM1 and CCM2 have been deduced
into their normals, then

CCM1 ∈ CCM2

⊆= (CCM1; true) ∅ CCM2 ∨ (CCM2; true) ∅ CCM1 A8
⊆= ((ν1e ∅ θ ∨

∨m
i=1 ν1i ∅ ©Δ1i); true) ∅ (ν2e ∅ θ ∨

∨n
j=1 ν2j ∅ ©Δ2j)

∨((ν2e ∅ θ ∨
∨n

j=1 ν2j ∅©Δ2j); true) ∅ (ν1e ∅ θ ∨
∨m

i=1 ν1i ∅ ©Δ1i) Hypothesis
⊆= ((ν1e ∅ θ; true) ∨

∨m
i=1(ν1i ∅ ©Δ1i; true)) ∅ (ν2e ∅ θ ∨

∨n
j=1 ν2j ∅ ©Δ2j)

∨((ν2e ∅ θ; true) ∨
∨n

j=1(ν2j ∅ ©Δ2j ; true)) ∅ (ν1e ∅ θ ∨
∨m

i=1 ν1i ∅ ©Δ1i) PDF, PEB
⊆= (ν1e ∅ θ; true) ∅ (ν2e ∅ θ)

∨
∨n

j=1(ν1e ∅ θ; true) ∅ (ν2j ∅ ©Δ2j) ∨
∨m

i=1

∨n
j=1(ν1i ∅ ©Δ1i; true) ∅ (ν2j ∅ ©Δ2j)

∨
∨

i=1(ν2e ∅ θ; true) ∅ (ν1i ∅©Δ1i) ∨
∨n

j=1

∨m
i=1(ν2j ∅ ©Δ2j ; true) ∅ (ν1i ∅ ©Δ1i) TAU

⊆= ν1e ∅ ν2e ∅ θ

∨
∨n

j=1 ν1e ∅ ν2j ∅©Δ2j ∨
∨m

i=1 ν2e ∅ ν1i ∅ ©Δ1i

∨
∨m

i=1

∨n
j=1 ν1i ∅ ν2j ∅ ©((Δ1i; true) ∅ Δ2j ∨ (Δ2j ; true) ∅ Δ1i) PSM, PEB

Lemma 6 tells us that any CCM formula can be deduced into a normal form after its
sequence expression having been deduced into one of three forms, which is also an
integral part of the proof of Theorem 2.

Theorem 2. For any CCM-PPTL formula β, there exists a formula β→ in normal form
such that β ∼= β→.

Proof. The proof proceeds by induction on the syntax of CCM-PPTL.
Base:
(1) For any atomic proposition p, p ∼= p ≤ π ∼ p ≤ ≥true.
(2) For ≥β, ≥β ∼= true ≤≥β.
Induction:
(3) For ¬β, suppose that β can be deduced into its normal form, from Lemma 1, β
also can be deduced into its complete normal form θe ≤ π ∼ ∼r

i=1(θi ≤ ≥βi) where
∼r
i=1θi

∼= true and ∼i∞=jθi ≤ θj
∼= false. Then we have
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¬β ∼= ¬(θe ≤ π ∼ ∼r
i=1(θi ≤ ≥βi)) ∼= ¬θe ≤ π ∼ ∼r

i=1(θi ≤ ≥¬βi)
(4) For β1 ∼ β2, suppose β1 and β2 have been transformed into their normal form, then

β1 ≤ β2
∼= α1e ∧ ε ≤ ≤m

i=1α1i ∧≥β1i ≤ α2e ∧ ε ≤ ≤n
j=1α2j ∧≥β2j∼= (α1e ≤ α2e) ∧ ε ≤ ≤m

i=1α1i ∧≥β1i ≤ ≤n
j=1α2j ∧≥β2j

(5) For (β1, . . . , βm) prj β0, refer to the proof of Lemma 3.
(6) For (β1, . . . , (βi, . . . , βl)≥, . . . , βm) prj β0, refer to the proof of Lemma 4.
(7) For CCM , refer to the proof of Lemma 6.

Definition 3 (terminable formula and non-terminable formula) For any CCM-PPTL
formula β, if β ≤ �π �≡ false, then β is a terminable formula. Otherwise, it is a non-
terminable formula.

We can easily prove that any terminable CCM-PPTL formula β, β is satisfiable.
Since β is terminable, by Definition 3, β ≤�π �≡ false, which means that there exists
a model σ satisfies β ≤�π. Then σ is also a model of β and so β is satisfiable. Then we
derive the following conclusion.

Lemma 7. For any terminable CCM-PPTL formula β, if �→ β ⊂ false, then β is
satisfiable.

We can prove by contradiction that for any CCM-PPTL formulas β and β→, if β ≡ β→

where β is non-terminable and β→ in normal form, then β→ is of the form
∨n

i=1 θi≤≥βi
with each θi being a state formula and each βi being non-terminable. From hypothesis,
we can derive a contradiction to the premise that β is non-terminable. Then we have the
following conclusion.

Lemma 8. For any CCM-PPTL formula β, if β ≡ β→ where β→ is in normal form of
θe ≤ π ∼

∨n
i=1 θi ≤ ≥βi, then

(1) If θe �≡ false, then β is terminable.
(2) If there exists some βi being terminable, then β is terminable.

With Lemma 8 which is a conclusion on model theory of CCM-PPTL, we can derive a
similar conclusion on the axiom system by using contradiction proof.

Lemma 9. For any CCM-PPTL formula β and β→, if β ∼= β→ where β is non-terminable
and β→ in normal form, then β→ must be of the form

∨n
i=1 βi ≤ ≥βi with each βi being

non-terminable.

Lemma 9 means that if a non-terminable formula β has been deduced into its normal
form β→ using the axiom system, then we can infer that there is no terminal product
θe≤π in β→, and each future product in normal form be also non-terminable. Otherwise,
there will be a contradiction to the premise that β is non-terminable.

Lemma 10. For any non-terminable CCM-PPTL formula β, if �→ β ⊂ false, then β is
satisfiable.

The proof of Lemma 10 is with intricacy. It involves constructing an interval for β and
then prove the interval is indeed a model of β. Two famous theorems on fix-point are
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used in the proof, one is Taski’s fix-point theorem and the other is Scott’s fix-point
induction. The proof is omitted here. From Lemma 7 and Lemma 10, we can derive
that any CCM-PPTL formula β, no matter whether it is terminable or non-terminable,
if �→ β ⊂ false, then β is satisfiable. Then we have the following corollary.

Corollary 1. For any CCM-PPTL formula β, if β is unsatisfiable, then → β ⊂ false.

Theorem 3 (Completeness). For any CCM-PPTL formula β, if |= β, then → β.

Proof. From the premise of β is valid, we can derive the duality that ¬β is unsatisfiable.
By Corollary 1, we have ¬β ⊂ false is a theorem in the proof system of CCM-PPTL,
which means that β is a theorem in the proof system.

4 Conclusion

We introduce a Cylinder Computation Model into Propositional Projection Temporal
Logic and propose an axiom system for CCM-PPTL, which can be employed to model
and verify many-core computation systems. In the future, we need to do some further
case studies for more complex many-core computation. Further, to provide a highly
automatical verification approach, the existing tool for PPTL theorem proving will be
extended to support CCM operators. Moreover, we will explore the verification method-
ology which combines model checking and theorem proving.
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Abstract. This paper presents normal form expressions of Propositional Pro-
jection Temporal Logic (PPTL). For doing so, a PPTL formula is represented
as the disjunction of formulas in form of ek

ε =
∧

0≤i≤k∈N0
©iS i ∧ ©kε or e(k,l)

ω =
∧

0≤i≤k∈N0
©iS i∧∧k≤ j∈Nω © j(©S k+1∧©2S k+2∧· · ·∧©lS k+l), 1 ≤ l ∈ N0. Here ek

ε

denotes a finite model with length being k while e(k,l)
ω indicates an infinite model.

We show that any PPTL formula can be expressed as a normal form expression.
As a consequence, satisfiability of PPTL formulas can easily be achieved.
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1 Introduction

Temporal logics are popular formalisations that can express properties about the tem-
poral order of events. They are widely used in model checking for specifying desired
properties of a system to be verified. The family of temporal logics has grown over the
years, containing linear [9] and branching time logics [4,2], and, more recently, game,
alternating time, and coordination logics [1,10]. While linear time temporal logics are
concerned with properties of paths, branching time logics describe properties that de-
pend on the branching of computational tree structures.

Interval-based temporal logics such as Interval Temporal Logic (ITL) [11] and Pro-
jection Temporal Logic (PTL) [5,6,7] which extends ITL with infinite models and a new
projection construct, (P1, . . . , Pm) prj Q, are a more recent branch of temporal logics
with their own niche of interesting applications. Propositional PTL (PPTL) is a proposi-
tional subset of PTL with a usual next construct and the projection construct that is able

to express chop construct, often denoted by the symbol ‘ ; ’, by P ; Q
def
= (P,Q) prj ε.

Compared with classic temporal logics, interval-based temporal logics greatly simplify
the formulation of certain correctness properties [12], which underlines the useful-
ness of these logics for specification and formal reasoning about concurrent systems.
Interval-based temporal logics lend themselves particularly well to reasoning about
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properties with a ‘scope’; such properties are quite common in most programming lan-
guages. Further, with chop operators, sequential behaviours can be described elegantly
and succinctly; and full regular expressiveness is achieved by projection construct.

In this paper, we present normal form expression that represents a PPTL formula as
the disjunction of formulas in form of

ek
ε =

∧

0≤i≤k∈N0

©iS i ∧©kε

or
e(k,l)
ω =

∧

0≤i≤k∈N0

©iS i ∧
∧

k≤ j∈Nω
© j(©S k+1 ∧©2S k+2 ∧ · · · ∧ ©lS k+l)

1 ≤ l ∈ N0, that implicitly depicts a finite or an infinite model of the corresponding
PPTL formula, respectively. We prove that any PPTL formula can be expressed in a
normal form expression. As a consequence, satisfiability of PPTL formulas can easily
be achieved.

The rest of the paper is organized as follows. The following section presents syntax
and semantics of PPTL. Normal form expressions are defined in Section 3. We then
show that any PPTL formula can be represented as a normal form expression in Section
4. As a consequence, a decision procedure for checking the satisfiability of PPTL for-
mulas based on normal form expressions is presented in Section 5. Finally, conclusions
are drawn in Section 6.

2 Propositional Projection Temporal Logic

Propositional Projection Temporal Logic (PPTL) [5,13] is an extension of Propositional
ITL (PITL) [14] with infinite models and a new projection construct [6,15].

Let Prop be a countable set of atomic propositions and B = {true, f alse} the boolean
domain. We use small letters, possibly with subscripts, like p,q,r to denote atomic
propositions, and capital letters, possibly with subscripts, for instance P, Q, R to indicate
general PPTL formulas. Formulas of PPTL are defined by the following grammar:

P ::= p | ¬P | P1 ∨ P2 | © P | (P1, . . . , Pm) prj P

where p ∈ Prop,© (next), and prj (projection) are temporal operations.
We define a state s over Prop to be a mapping from Prop to B, s : Prop → B.

We write s[p] to denote the valuation of p at state s. An interval σ = 〈s0, s1, ...〉 is
a non-empty sequence of states, which can be finite or infinite. The length of σ, |σ|,
is the number of states in σ minus one if σ is finite; otherwise it is ω. Let N0 denote
the set of non-negative integers. To have a uniform notation for both finite and infinite
intervals, we will use extended integers as indices, that is Nω = N0 ∪ {ω}, and extend
the comparison operators, =, <,≤, to Nω by consideringω = ω and for all i ∈ N0, i < ω.
Moreover, we write � as ≤ −{(ω,ω)}.

To formalize the semantics of the projection construct, we need an auxiliary oper-
ator ↓. Let σ = 〈s0, s1, . . .〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that
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0 ≤ r1 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is the projected inter-

val, σ ↓ (r1, . . . , rh)
def
= 〈st1 , st2 , . . . , stl〉, where t1, . . . , tl are attained from r1, . . . , rh

by deleting all duplicates. In other words, t1, . . . , tl is the longest strictly increasing
subsequence of r1, . . . , rh. For instance, 〈s0, s1, s2, s3〉 ↓ (0, 2, 2, 2, 3) = 〈s0, s2, s3〉.
The concatenation(·) of an interval σ = 〈s0, s1, . . . , s|σ|〉 with another interval σ′ =
〈s′0, s′1, . . . , s′|σ|〉 is represented by σ · σ′ = 〈s0, s1, ..., s|σ|, s′0, s

′
1, . . . , s

′
|σ|〉 (not sharing

any states).
An interpretation is a tuple I = (σ, k, j), where σ = 〈s0, s1, . . .〉 is an interval, k

is a non-negative integer, and j is an integer or ω, such that 0 ≤ k � j ≤ |σ|. We
write (σ, k, j) to mean that a formula is interpreted over a subinterval σk,···, j with the
current state being sk. We utilize Ik

prop to stand for the state interpretation at state sk.
The satisfaction relation |= for formulas is given as follows:

I = (σ, k, j) |= p iff sk[p] = Ik
prop[p] = true

I = (σ, k, j) |= ¬P iff I �|= P
I = (σ, k, j) |= P1 ∧ P2 iff I |= P1 and I |= P2

I = (σ, k, j) |= ©P iff k < j and (σ, k + 1, j) |= P
I = (σ, k, j) |= (P1, . . . , Pm) prj P iff there exist integers r0, . . . , rm, and k = r0 ≤ . . . ≤

rm−1 � rm ≤ j such that (σ, rl−1, rl) |= Pl for all
1 ≤ l ≤ m and (σ′, 0, |σ′|) |= P for σ′ given by :
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1,..., j)

(2) rm= j and σ′=σ ↓ (r0, . . . , rh) for some 0≤h≤m

For convenience, some derived formulas from elementary PPTL formulas are pre-
sented below. The abbreviations true, false,∨,→ and↔ are defined as usual.

ε
def
= ¬© true more

def
= ¬ ε

�P
def
= (true, P) prj ε �P

def
= ¬ �¬ P

fin(P)
def
= �(ε→ P) halt(P)

def
= �(ε↔ P)

keep(P)
def
= �(¬ε→ P) rem(P)

def
= �(more→ ©P)

P ; Q
def
= (P,Q) prj ε P ;wQ

def
= (P ; Q) ∨ (P ∧ �more)

fin
def
= �ε inf

def
= �more

len(0)
def
= ε len(n)

def
= ©len(n − 1), n ≥ 1

⊙
P

def
= ε ∨©P skip

def
= len(1)

A PPTL formula containing no temporal operators is called a state formula.
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Further, we have the following useful logic laws, whose proofs can be found in [13]:

(L1) �P ≡ P ∨©�P (L2) �P ≡ P ∧ ε ∨ P ∧©�P
(L3) ¬ © P ≡⊙¬P (L4) Q ; (P1 ∨ P2) ≡ (Q ; P1) ∨ (Q ; P2)
(L5) �¬Q ≡ ¬�Q (L6) keep(P) ≡ ε ∨ P ∧©keep(P)
(L7) �P ∨ �Q ⊃ �(P ∨ Q) (L8) halt(P) ≡ P ∧ ε ∨ ¬P ∧©halt(P)
(L9) �(P ∧ Q) ≡ �P ∧ �Q (L10) fin(P) ≡ P ∧ ε ∨©fin(P)
(L11) true ≡ �ε ∨ �more (L12) P1 ; (P2 ; P3) ≡ (P1 ; P2) ; P3

(L13) © (P ∨ Q) ≡ ©P ∨©Q (L14) �(P ∧more) ≡ P ∧©�(P ∧more)
(L15) © (P ∧ Q) ≡ ©P ∧©Q (L16) �(P→ Q) ⊃ (�P→ �Q)
(L17) true ≡ ε ∨©true (L18) more ∧©¬P ≡ more ∧ ¬© P

3 Normal Form Expressions

Now we define normal form expressions that implicitly express models of temporal
logic formulas.

Definition 1 (Normal Form Expressions). Let

Eε ::= {ek
ε | ek

ε =
∧

0≤i≤k∈N0

©iS i ∧©kε}
Eω ::= {e(k,l)

ω | e(k,l)
ω =

∧

0≤i≤k∈N0

©iS i ∧ ∧

k≤ j∈Nω
© j(©S k+1 ∧©2S k+2 ∧ · · · ∧ ©lS k+l), 1 ≤ l ∈ N0}

Here, each S (possibly with subscripts) is a state formula. The set of normal form ex-
pressions are defined by:

E ::= {e | e = ∨

1≤m∈N0

em, em ∈ Eε ∪ Eω}

Every e ∈ E is a normal form expression. �

Intuitively, in a normal form expression, each

ek
ε =

∧

0≤i≤k∈N0

©iS i ∧©kε

in Eε denotes a finite interval with length being k, where for each 0 ≤ i ≤ k, state
formula S i holds at state i as illustrated in Fig. 1 (1). Whereas each

e(k,l)
ω =

∧

0≤i≤k∈N0

©iS i ∧
∧

k≤ j∈Nω
© j(©S k+1 ∧©2S k+2 ∧ · · · ∧ ©lS k+l)

in Eω depicts an infinite model with a loop suffix where S i holds at state i in case
0 ≤ i ≤ k, and S k+ j, 1 ≤ j ≤ l, holds at state k + m × j for all m ≥ 1 as shown in Fig.
1 (2). Further, let E be the set of all normal form expressions, true (or T ) and f alse (or

F) can be expressed by true
def
= E and f alse

def
= ∅, respectively.

The merits of normal form expressions are twofold: (1) compared with temporal
logic formulas, they are much more intuitive in acquiring the underlying meaning of
the formula; (2) in contrast to graphical models of temporal logic formulas, they are
more compact and convenient in logic operations. In the following, we show two simple
examples of normal form expressions.
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· · ·S0 S1 S2 S3 S4 Sk−1Sk

1 2 3 4 5 k-1 k

· · ·S0 S1 S2 S3 S4 Sk−1Sk

1 2 3 4 5 k-1 k

Sk+1

k+1

Sk+l

k+l

· · ·

(1)

(2)

Fig. 1. Intervals expressed by ek
ε and e(k,l)

ω

Example 1. Examples of normal form expressions:

(1) Normal form expression of a proposition p:

p ≡
∨

0≤i∈N0

p ∧©iε ∨ p ∧©ωtrue

It hints that two kinds of models will satisfy p. The first kind of models contains the
finite ones with an arbitrary length such that p holds at the first state as shown in Fig.
2 (1), while the second kind includes only one infinite model where p holds at the first
states as illustrated in Fig. 2 (2), here T denotes true.

· · ·p

k-1 k

p

0

T

1

(1)

(2)

T T T

0 1

T

2

Fig. 2. Models of proposition p

(2) Normal form expression of formula �p:

�p ≡
∧

0≤i<k∈N0,0≤ j

©itrue ∧©k p ∧©k+ jε ∨
∧

0≤i<k∈N0

©itrue ∧©k p ∧©ωtrue

It indicates that the models that satisfy �p are finite or infinite ones where p holds at
some state throughout the intervals as shown in Fig. 3 (1) and (2), respectively.

4 Normal Form Expressions of PPTL

In this section, we show that any PPTL formula can be equivalently transformed to a
normal form expression. We first show some results useful in the transformation.

Lemma 1 shows that the negation of a normal form expression will still be a normal
form expression.
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· · · p

k k+1
(1)

(2)

T

0 1

T · · · T

k+j

T

· · · p

k k+1

T

0 1

T T

Fig. 3. Models of �p

Lemma 1. For any e ∈ Eε ∪ Eω, ¬e can be transformed to normal form expression.

Proof: In case e =
∧

0≤i≤k∈N0

©iS i ∧©kε. We have:

¬e ≡ ¬(
∧

0≤i≤k∈N0

©iS i ∧©kε)

≡ ∨

0≤i≤k∈N0

¬ ©i S i ∨ ¬©k ε

≡ ∨

0≤i≤k∈N0

⊙i ¬S i ∨
⊙k ¬ε

≡ ∨

0≤i≤k∈N0

⊙i ¬S i ∨
⊙k more

≡ ∨

0≤i≤k∈N0

©i¬S i ∨©kmore ∨ ∨

0≤i≤k−1∈N0

©iε

≡ ∨

0≤i≤k∈N0

©i( ∨

0≤ j∈N0

¬S i ∧© jε ∨ ¬S i ∧©ωtrue
) ∨©kmore ∨ ∨

0≤i≤k−1∈N0

©iε

≡ ∨

0≤i≤k∈N0

∨

0≤ j∈N0

©i¬S i ∧©i+ jε ∨©i¬S i ∧©ωtrue ∨©kmore ∨ ∨

0≤i≤k−1∈N0

©iε

So in this case ¬e has been represented as a normal form expression. Further, if e =
∧

0≤i≤k∈N0

©iS i ∧ ∧

k≤ j∈Nω
© j(©S k+1 ∧©2S k+2 ∧ · · · ∧ ©lS k+l), 1 ≤ l ∈ N0. We have:

¬e ≡ ¬( ∧

0≤i≤k∈N0

©iS i ∧ ∧

k≤ j∈Nω
© j(©S k+1 ∧©2S k+2 ∧ · · · ∧ ©lS k+l)

)

≡ ∨

0≤i≤k∈N0

©i¬S i ∨ ∨

k≤ j∈Nω
© j(©¬S k+1 ∨©2¬S k+2 ∨ · · · ∨ ©l¬S k+l) ∨ ∨

0≤i∈Nω
©iε

≡ ∨

0≤i∈Nω
©i¬S i ∨ ∨

0≤i∈Nω
©iε

≡ ∨

0≤i∈Nω
©i( ∨

0≤ j∈N0

¬S i ∧© jε ∨ ¬S i ∧©ωtrue
) ∨ ∨

0≤i∈Nω
©iε

≡ ∨

0≤i≤ j∈Nω
©i¬S i ∧©i+ jε ∨ ∨

0≤i∈Nω
©i¬S i ∧©i+ωtrue ∨ ∨

0≤i∈Nω
©iε

≡ ∨

0≤i≤ j∈N0

©i¬S i ∧©i+ jε ∨ ∨

0≤i∈N0

©i¬S i ∧©ωtrue ∨ ∨

0≤i∈N0

©iε

Hence the lemma holds. �

Lemma 2 indicates that the conjunction of normal form expressions is still a normal
form expression.
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Lemma 2. Let e1 and e2 be normal form expressions. e1 ∧ e2 can be expressed by a
normal form expression.

Proof: Suppose e1 ≡ ∨

0≤k1∈N0

ek1
ε ∨ ∨

0≤k′1∈N0

e
(k′1,l1)
ω , 1 ≤ l1 ∈ N0, and e2 ≡ ∨

0≤k2∈N0

ek2
ε ∨

∨

0≤k′2∈N0

e
(k′2,l2)
ω , 1 ≤ l2 ∈ N0. We have,

e1 ∧ e2 ≡ ( ∨
0≤k1∈N0

ek1
ε ∨ ∨

0≤k′1∈N0

e
(k′1,l1)
ω

) ∧ ( ∨
0≤k2∈N0

ek2
ε ∨ ∨

0≤k′2∈N0

e
(k′2,l2)
ω

)

≡ ∨

0≤k1∈N0

∨

0≤k2∈N0

ek1
ε ∧ ek2

ε ∨ e
(k′1,l1)
ω ∧ e

(k′2,l2)
ω

It is ready that e1 ∧ e2 can be expressed by a normal form expression. �

Lemma 3 presents how normal form expression of a chop construct is obtained.

Lemma 3. ek1
ε ; ek2

ε and ek1
ε ; ek,l

ω can be expressed by normal form expressions.

Proof: Suppose,

ek1
ε ≡ ∧

0≤i≤k1∈N0

©iS i ∧©k1ε

ek2
ε ≡ ∧

0≤i≤k2∈N0

©iS i ∧©k2ε

e(k,l)
ω ≡ ∧

0≤i≤k∈N0

©iS i ∧ ∧

k≤ j∈Nω
© j(©S k+1 ∧©2S k+2 ∧ · · · ∧ ©lS k+l)

We have,

ek1
ε ; ek2

ε ≡ ( ∧

0≤i≤k1∈N0

©iS i ∧©k1ε
)

;
( ∧

0≤i≤k2∈N0

©iS i ∧©k2ε
)

≡ ∧

0≤i≤k1+k2∈N0

©iS i ∧©k1+k2ε

ek1
ε ; ek,l

ω ≡ ( ∧

0≤i≤k1∈N0

©iS i ∧©k1ε
)

;
( ∧

0≤i≤k∈N0

©iS i ∧ ∧

k≤ j∈Nω
© j(©S k+1 ∧ ©2S k+2 ∧ · · · ∧ ©lS k+l)

)

≡ ∧

0≤i≤k1+k∈N0

©iS i ∧ ∧

k1+k≤ j∈Nω
© j(©S k+1 ∧©2S k+2 ∧ · · · ∧ ©lS k+l)

Thus, the lemma holds. �

Lemma 4 shows that projection construct can be expressed by a normal form expres-
sion.

Lemma 4. If P0, · · ·, Pm, and Q can be expressed by normal form expressions, so does
(P0, · · · , Pm) prj Q.

Proof: Without loss of generality, suppose

EQ ≡ ek
ε ∨ e(k′ ,l)

ω

EP0 ≡ ek0
ε ∨ e

(k′0,l0)
ω

· · ·
EPm ≡ ekm

ε ∨ e(k′m,lm)
ω
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Here for convenience, we represent EQ as
∧

0≤i∈Nω
©iS i. It has:

(P0, · · · , Pm) prj Q ≡ (EP0 , · · · , EPm ) prj EQ

By the semantics of projection construction, P1, · · ·, and Pm−1 are confined to finite
models. In case i ≤ m, we have:

(EP0 , · · · , EPm) prj EQ ≡ ek0
ε ∧ fin(S 0) ; · · · ; eki

ε ∧ fin(S i) ; eki+1
ε · · · ; ekm−1

ε ; (ekm
ε ∨ e(k′m,lm)

ω )

In case i > m, we have:

(EP0 , · · · , EPm ) prj EQ ≡ ek0
ε ∧ fin(S 0) ; · · · ; ekm

ε ∧ fin(S m) ;
∧

m<i
©iS i

Note that each eki
ε ∧ fin(S i) means that S i is conjuncted with the state formula holding

at the last state of the interval specified by eki
ε . Thus, by Lemma 3, the lemma is already

proved. �
Now the main theorem is presented.

Theorem 5. Any PPTL formula can be equivalently expressed by a normal form ex-
pression.

Proof: The proof proceeds by induction on the structure of PPTL formulas. As the base
case, we have shown that a proposition p can be expressed as a normal form expression.
Suppose PPTL formulas P (or P with subscripts) and Q have been expressed as normal
form expressions EP and EQ, respectively.

1. Formula ¬P can be expressed as normal form expression by:

¬P ≡ ¬Ep

≡ ¬(
∨

1≤i∈N0

ei), ei ∈ Eε ∪ Eω

≡ ∧

1≤i∈N0

¬ei

By Lemma 1 and 2, ¬P ≡ ∧

1≤i∈N0

¬ei can be further expressed in a normal form

expression.
2. Formula P1 ∨ P2 can be expressed as a normal form expression by:

P1 ∨ P2 ≡ EP1 ∨ EP2

3. Formula©P can be expressed as a normal form expression by:

©P ≡ ©EP

©EP is already in normal form expression.
4. Formula P ; Q can be expressed as a normal form expression by:
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P1 ; P2 ≡ EP1 ; EP2

≡ ( ∨
0≤k1∈N0

ek1
ε ∨ ∨

0≤k′1∈N0

e
(k′1,l1)
ω

)
;
( ∨

0≤k2∈N0

ek2
ε ∨ ∨

0≤k′2∈N0

e
(k′2,l2)
ω

)

≡ ( ∨
0≤k1∈N0

ek1
ε

)
;
( ∨

0≤k2∈N0

ek2
ε ∨ ∨

0≤k′2∈N0

e
(k′2,l2)
ω

)

≡ ∨

0≤k1∈N0

∨

0≤k2∈N0

(
ek1
ε ; ek2

ε ∨ ek1
ε ; e

(k′2,l2)
ω

)

By Lemma 3, P1 ; P2 ≡ ∨

0≤k1∈N0

∨

0≤k2∈N0

(
ek1
ε ; ek2

ε ∨ek1
ε ; e

(k′2,l2)
ω

)
can be further expressed

in a normal form expression.
5. By Lemma 4, formula (P1, · · · , Pm) prj Q can be expressed in a normal form ex-

pression.

Accordingly, any PPTL formula can be equivalently expressed by a normal form
expression. �

The above proofs also provide an approach for transforming a PPTL formula to a
normal form expression.

5 Decision Procedure of PPTL

Based on normal form expressions, how to check the satisfiability of PPTL formulas
becomes simple. Give a PPTL formula P, we first transform P to its normal form ex-
pression:

P ≡
∨

0≤k∈N0

ek
ε ∨

∨

0≤k′∈N0

e(k′ ,l)
ω

where

ek
ε =

∧

0≤i≤k∈N0

©iS i ∧©kε

e(k′ ,l)
ω =

∧

0≤i≤k′∈N0

©iS i ∧ ∧

k′≤ j∈Nω
© j(©S k′+1 ∧©2S k′+2 ∧ · · · ∧ ©lS k′+l)

1 ≤ l ∈ N0. Then for all k and k′, if there exists an S (or with subscript) such that S
is unsatisfiable, P is unsatisfiable; otherwise, P is satisfiable. As a matter of fact, each
S (or with subscript) is a state formula without any temporal operators, i.e. a typical
propositional logic formula, a SAT solver can be employed to check its satisfiability
automatically.

Example 2. Satisfiability of PPTL formula (p ∧ �© p) ; q.

We first present p ∧ �© p and q in normal form expressions:

p ∧ �© p ≡ p ∧ ∧

0≤ j∈Nω
© j(©p)

q ≡ ∨

0≤i∈N0

q ∧©iε ∨ q ∧©ωtrue
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There are no e ∈ Eε occuring in the normal form expression of p ∧ �© p. Thus,

p ∧ �© p ; q ≡ p ∧ ∧

0≤ j∈Nω
© j(©p) ; (

∨

0≤i∈N0

q ∧©iε ∨ q ∧©ωtrue)

≡ f alse

So, PPTL formula (p ∧ �© p) ; q is unsatisfiable.

6 Conclusion

In this paper, we present normal form expressions and show that any PPTL formula
can be represented as a normal form expression. When presented as a normal form
expression, the underlying models of a PPTL formula is easy to be acquired that leads
to a simple decision procedure for checking the satisfiability of PPTL formulas.
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Abstract. Two of the most popular data structures for storing strings
are the Trie and the Patricia index trees. Let Hn denote the height
of the Trie (the Patricia, respectively) on a set of n strings. It is well
known that under the uniform distribution model on the strings, for
Trie Hn/ log n → 2 and for Patricia Hn/ log n → 1, when n approaches
infinity. Nevertheless, in the worst case, the height of the Trie on n strings
is unbounded, and the height of the Patricia on n strings is in Θ(n).
To better understand the practical performance of both the Trie and
Patricia index trees, we investigate these two classical data structures in
a smoothed analysis model. Given a set S = {s1, s2, . . . , sn} of n binary
strings, we perturb the set by adding an i.i.d Bernoulli random noise to
each bit of every string. We show that the resulting smoothed heights of
Trie and Patricia trees are both Θ(log n).

1 Introduction

A Trie, also known as a digital tree, is an ordered tree data structure for storing
strings over an alphabet Ω. It was initially developed and analyzed by Fredkin [6]
in 1960, and is one of the first collected in “The art of computer programming”
by Knuth [7] in 1973. Such a data structure is used for storing a dynamic set
to be exploited as an associative array, where keys are strings. There has been
much recent exploitation of such index trees for processing genomic data.

In the simplest form, let the alphabet be Ω = {0, 1} and consider a set
S = {s1, s2, . . . , sn} of n binary strings over Ω, where each si is a countable
string of 0’s and 1’s. The Trie for storing these n binary strings is an ordered
binary tree TS : first, each si defines a path (infinite if its length |si| is infinite)
in the tree, starting from the root, such that a 0 forces a move to the left and a 1
indicates a move to the right; if one node is the highest in the tree that is passed
through by only one string si → S, then the path defined by si is truncated at
this node, which becomes a leaf in the tree and is associated (i.e., labelled) with
si. The height of the Trie TS built over S is defined as the number of edges on
the longest root-to-leaf path. Fig. 1 shows the Trie constructed for a set of six
strings. The strings can be long or even infinite, but only the first 5 bits are
shown, which are those used in the example construction.

α Correspondence author.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 94–103, 2014.
c∞ Springer International Publishing Switzerland 2014
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0 1

0 1 1

0 1 1 0 1

0 1s1 s2

s3 s4

s5 s6

Fig. 1. The Trie constructed for {s1 = 00001 . . . , s2 = 00111 . . . , s3 = 01100 . . . , s4 =
01111 . . . , s5 = 11010 . . . , s6 = 11111 . . .}

Let Hn denote the height of the Trie on a set of n binary strings. It is not hard
to see that in the worst case Hn is unbounded, because any two of the strings can
have an arbitrary long common prefix. In the uniform distribution model, bits of
si are independent and identically distributed (i.i.d.) Bernoulli random variables
each of which takes 1 with probability p = 0.5. The asymptotic behavior of Trie
height Hn under the uniform distribution model had been well studied in the
1980s [13,8,5,4,3,11,12,15,16], and it is known that asymptotically almost surely
(a.a.s.)

Hn/ log2 n ⊂ 2, when n ⊂ ≡.

s1 s2 s3 s4

s5 s6

Fig. 2. The Patricia constructed for {s1 = 00001 . . . , s2 = 00111 . . . , s3 =
01100 . . . , s4 = 01111 . . . , s5 = 11010 . . . , s6 = 11111 . . .}

A Patricia index tree is a space-optimized variant of the Trie data structure,
in which every node with only one child is merged with its child. Such a data
structure was firstly discovered by Morrison [9] in 1968, and then well analyzed
in “The art of computer programming” by Knuth [7] in 1973. Fig. 2 shows the
Patricia tree constructed for the same set of six strings used in Fig. 1. Again let
Hn denote the height of the Patricia tree on a set of n binary strings. In the
worst case, Hn → σ(n). Under the same uniform distribution model assumed for
an average case analysis on Trie height, Pittel showed that a.a.s. the height of
Patricia is only 50% of the height of Trie [11], that is,
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Hn/ log2 n ⊂ 1, when n ⊂ ≡.

The average case analysis is intended to provide insight on the practical per-
formance as a string indexing structure. Recently, Nilsson and Tikkanen experi-
mentally investigated the height of Patricia trees and other search structures [10].
In particular, they showed that the heights of the Patricia trees on sets of 50, 000
random uniformly distributed strings are 15.9 on average and 20 at most. For
real datasets consisting of 19, 461 strings from geometric data on drill holes,
16, 542 ASCII character strings from a book, and 38, 367 strings from Internet
routing tables, the heights of the Patricia trees are on average 20.8, 20.2, 18.6,
respectively, and at most 30, 41, 24, respectively.

Theoretically speaking, these experimental results suggest that worst-case in-
stances are perhaps only isolated peaks in the instance space. This hypothesis is
partially supported by the average case analysis on the heights of Trie and Patri-
cia structures, under the uniform distribution model, that suggests the heights
are a.a.s. logarithmic. Nevertheless, these average case analysis results on the
specific random instances generated under the uniform distribution model could
be inconclusive, because the specific random instances have very special prop-
erties inherited from the model, and thus would distinguish themselves from
real-world instances. To overcome the fact that real-world instances are not cap-
tured by a single probabilistic distribution, Spielman and Teng introduced the
idea of smoothed analysis [14], which can be considered as a hybrid of the worst-
case and the average-case analyses, and inherits the advantages of both. In brief,
an given string instance is perturbed by adding a slight random noise to gener-
ate an instance neighborhood and the average performance on this neighbor is
evaluated; the smoothed performance is then taken as the worst among all these
local average performances. One can image that when the magnitude of random
noise approaches 0, the smoothed analysis becomes the worst case analysis; when
the magnitude of random noise approaches infinity, the smoothed analysis be-
comes the average case analysis under the probabilistic distribution assumed on
the random noise. In practice, such a magnitude is set to be small; then a good
smoothed analysis result under certain reasonable probabilistic distribution as-
sumed on the random noise generally implies a good practical performance in
real world applications. One key reason underlying this hypothesis is that real
world instances are often subject to a slight amount of noise, especially when they
are obtained from measurements of real world phenomena. The classic example
is the Simplex method for solving linear programming. The Simplex method is
one kind of practical algorithm for solving linear programming, all of which have
worst case exponential running time. Spielman and Teng showed that Simplex
algorithms have polynomial smoothed running time [14], which explained their
practical performance.

In this paper, we conduct the smoothed analysis on the height of Trie and
Patricia structures, to reveal certain essential properties of these two data struc-
tures. In the next section, we first introduce the string perturbation model, and
we show an a.a.s. upper bound O(log n) and an a.a.s. lower bound α(log n) on
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the Trie height Hn. The consequence is that the smoothed height of the Trie on
n strings is in σ(log n). In Section 3, we achieve similar results for the smoothed
height of the Patricia tree on n strings.

2 The Smoothed Height of Trie

We consider an arbitrary set S = {s1, s2, . . . , sn} of n strings over alphabet
{0, 1}, where each string may be infinitely long. Let si(β) denote the β-th bit in
string si, for i = 1, 2, . . . , n and β = 1, 2, 3, . . .. Every string si is perturbed by
adding a noise string θi, giving rise to the perturbed string s̃i = si + θi, where
s̃i(β) = si(β) if and only if θi(β) = 0. The noise string θi is independently gener-
ated by a memoryless source, which assigns 1 to every bit of string θi indepen-
dently and with a small probability π → [0, 0.5]. More formally, Pr{θi(β) = 1} = π
for each β = 1, 2, 3, . . .. Essentially the perturbation flips each bit of every string
independently and with a probability π. Let S̃ = {s̃1, s̃2, . . . , s̃n} denote the set
of perturbed strings.

Let pΣij be the probability of the event {s̃i(β) = s̃j(β)}. We have

pΣij =

{
2π(1− π)

→
= p, if si(β) ∈= sj(β),

π2 + (1− π)2 = 1− p
→
= q, if si(β) = sj(β).

(1)

We can clearly note that q ≥ p, since π ∪ 0.5. Let Cij denote the length of
the longest common prefix between s̃i and s̃j. Since Cij = k if and only if
s̃i(β) = s̃j(β) for β = 1, 2, . . . , k but not for β = k+1, the probability of {Cij = k}
for any k ≥ 0 is

Pr{Cij = k} =

(
k∏

Σ=1

pΣij

)

(1− pk+1
ij ).

From the fact that {Cij = k} and {Cij = m} are disjoint events when k ∈= m,
we have for any k ≥ 1

Pr{Cij < k} =

k−1∑

m=0

(
m∏

Σ=1

pΣij −
m+1∏

Σ=1

pΣij

)

= 1−
k∏

Σ=1

pΣij .

Consequently, the probability that the longest common prefix between s̃i and s̃j
is at least k long is

Pr{Cij ≥ k} = 1− Pr{Cij < k} =

k∏

Σ=1

pΣij . (2)

2.1 An a.a.s. Upper Bound

We use a slight abuse of notation Hn to also denote the height of the Trie
constructed for S̃. We can express Hn in terms of Cij as

Hn = max
1≥i<j≥n

Cij + 1.
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By Boole inequality [2], we have

Pr{Hn > k} = Pr{ max
1≥i<j≥n

Cij ≥ k} ∪
(
n

2

) k∏

Σ=1

pΣij ∪
(
n

2

)

qk,

where the last equality holds when all the n strings {s1, s2, . . . , sn} have the
same prefix of length k. By setting k = 2(1+ ε) log1/q n for a constant ε > 0, we
have

Pr{Hn > k} ∪
(
n

2

)

q2(1+Ω) log1/q n ∪ n−2Ω ⊂ 0,

as n ⊂ ≡. Therefore, Hn ∪ 2 log1/q n with high probability, when n approaches
infinity.

2.2 An a.a.s. Lower Bound

To estimate a lower bound, we will use the following Chunge-Erdös formulation
of the second moment method on a set of events:

Lemma 1. (Chunge-Erdös) [1] For any set of events E1, E2, . . . , En,

Pr{◦n
i=1Ei} ≥ (

⎧n
i=1 Pr{Ei})2⎧n

i=1 Pr{Ei}+
⎧

i∪=j Pr{Ei ⊆ Ej}
.

Let Aij denote the event {Cij ≥ k}, for every pair {i, j} such that 1 ∪ i <
j ∪ n; also define the following two sums:

S1
→
=

∑

1≥i<j≥n

Pr{Aij}, and S2
→
=

∑

{i,j}∪={s,t}
Pr{Aij ⊆ Ast}.

Then by Chunge-Erdös formulation (Lemma 1), we have

Pr{Hn > k} = Pr{◦1≥i<j≥nAij} ≥ S2
1

S1 + S2
. (3)

Let’s first estimate S1. From Eq. (2), one clearly sees that

S1 =
∑

1≥i<j≥n

Pr{Aij} =
∑

1≥i<j≥n

k∏

Σ=1

pΣij . (4)

Recall the definition of pΣij and its value in Eq. (1). The following Lemma 2
is then straight-forward:

Lemma 2. For any β ≥ 1 and any three perturbed strings s̃i, s̃j , s̃t, if p
Σ
ij = pΣit,

then pΣjt = q.
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Lemma 3. For any three perturbed strings s̃i, s̃j, s̃t,

S0
→
=

k∏

Σ=1

pΣij +
k∏

Σ=1

pΣit +
k∏

Σ=1

pΣjt ≥ 3p
2
3kq

1
3k.

Proof. For the string pair (si, sj), let Zij denote the number of (0, 1)-pairs and
(1, 0)-pairs in {(si(β), sj(β)), 1 ∪ β ∪ k}, that is, the number of bits where si and
sj have different values among the first k bits. Clearly from Eq. (1),

k∏

Σ=1

pΣij = pZijqk−Zij .

For the string triple (si, sj , st), let xij denote the number of (0, 0, 1)-triples
and (1, 1, 0)-triples in {(si(β), sj(β), st(β)), 1 ∪ β ∪ k}; likewise, xit and xjt are
similarly defined. Also let y denote the number of (0, 0, 0)-triples and (1, 1, 1)-
triples in {(si(β), sj(β), st(β)), 1 ∪ β ∪ k}. The following relationships are direct
consequences of the definitions:

Zij = xit + xjt,
Zit = xij + xjt,
Zjt = xij + xit,
k = xij + xit + xjt + y.

It follows that

S0
→
=

k∏

Σ=1

pΣij +

k∏

Σ=1

pΣit +

k∏

Σ=1

pΣjt

= pxit+xjtqxij+y + pxij+xjtqxit+y + pxij+xitqxjt+y

= pk

⎪(
q

p

)xij+y

+

(
q

p

)xit+y

+

(
q

p

)xjt+y
⎨

.

One can check that, since q ≥ p, the quantity in the last line reaches the minimum
when xij = xit = xjt = k/3 and y = 0. That is,

S0
→
=

k∏

Σ=1

pΣij +

k∏

Σ=1

pΣit +

k∏

Σ=1

pΣjt ≥ 3p
2
3kq

1
3k.

This proves the lemma. ∀∩

Note that each string pair (si, sj) is involved in exactly n − 2 string triples
(si, sj , st), for t ∈= i, j. By Lemma 3, Eq. (4) becomes

S1 =
∑

1≥i<j≥n

k∏

Σ=1

pΣij ≥ 1

n− 2

(
n

3

)

3p
2
3kq

1
3k =

(
n

2

)

p
2
3kq

1
3 k. (5)
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We next estimate S2, which is a bit harder because two events Aij and Ast

may not be independent. We split S2 into two parts: S2 = S∈
2 + S∈∈

2 , where

S∈
2

→
=

∑

{i,j}⊆{s,t}=∅
Pr{Aij ⊆Ast}, and

S∈∈
2

→
=

∑

{i,j}⊆{s,t}∪=∅
Pr{Aij ⊆ Ast}.

Since two events Cij and Cst are independent when {i, j}⊆ {s, t} = ∅, we can
estimate S∈

2 as follows:

S∈
2 =

∑

{i,j}⊆{s,t}=∅

⎩
Pr{Aij}Pr{Ast}

)
∪

⎛

⎝
∑

{i,j}
Pr{Aij}

⎞

⎣

2

= S2
1 .

Event {Aij ⊆ Ait} is equivalent to the event in which the first k bits of all
three perturbed strings s̃i, s̃j , and s̃t are identical. Using π ∪ 0.5, we have

Pr{Aij ⊆ Ait} = Pr{s̃i(β) = s̃j(β) = s̃t(β), 1 ∪ β ∪ k} ∪
⎩
π3 + (1− π)3

)k

.

It follows that

S∈∈
2 =

∑

{i,j}⊆{s,t}∪=∅
Pr{Aij ⊆ Ast} ∪ 3

(
n

3

)⎩
π3 + (1− π)3

)k

∪ 3

(
n

3

)

,

where the factor 3 arises because a string triple {s̃i, s̃j , s̃t} gives rise to three
events {Aij ⊆ Ait}, {Aij ⊆ Ajt}, and {Ait ⊆ Ajt}.

Putting S∈
2 and S∈∈

2 together, we can upper bound S2 by

S2 = S∈
2 + S∈∈

2 ∪ S2
1 + 3

(
n

3

)

. (6)

Using the estimates of S1 and S2 in Eqs. (5) and (6) respectively, Eq. (3)
becomes

Pr{Hn > k} ≥ S2
1

S1 + S2

=
1

1/S1 + (S∈
2 + S∈∈

2 )/S
2
1

≥ 1

1/S1 + 1 + S∈∈
2 /S

2
1

≥ 1

1 + 1

(n2)p
2
3
kq

1
3
k
+

3(n3)
(
(n2)p

2
3
kq

1
3
k
)2

≥ 1

1 + 4n−2p−
2
3kq−

1
3k + 2n−1p−

4
3kq−

2
3k
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≥ 1

1 + 4n−2n2(1−Ω) + 2n−1n1−Ω
(7)

=
1

1 + 4n−2Ω + 2n−Ω

≥ 1−O(n−Ω) ⊂ 1,

where the inequality Eq. (7) is achieved by setting

k = 2(1− ε) logp−2/3q−1/3 n, that is, p−
2
3kq−

1
3k = n2(1−Ω),

for a constant ε > 0. Therefore, Hn is larger than 2 logp−2/3q−1/3 n with a high
probability when n approaches infinity.

Theorem 1. The smoothed height of the Trie on n strings is in σ(log n), where
the bit perturbation model is i.i.d. Bernoulli distribution.

3 The Smoothed Height of Patricia

Here we briefly do the smoothed analysis on the height of the Patricia tree on
a set of n binary strings. We adopt the same i.i.d. Bernoulli bit perturbation
model as in the last section. Again, we present an a.a.s. upper bound and an
a.a.s. lower bound for the smoothed height.

3.1 An a.a.s. Upper Bound

Following Pittel [11], on the set of n perturbed strings S̃ = {s̃1, s̃2, . . . , s̃n}, we
claim that for any fixed integers k ≥ 0 and b ≥ 2, the event {Hn ≥ k + b − 1}
implies the event that there exist b strings s̃i1 , s̃i2 , . . . , s̃ib such that their common
prefix is of length at least k (denoted as Ci1i2...ib ≥ k). The correctness of the
above claim follows from because, in Patricia trees, there are no degree-2 nodes
(except for the root), and thus a path of length k + b− 1 hints at least b leaves
in the subtree rooted at the node at distance k from the Patricia root.

Similar to the definition of pΣij in Eq. (1), pΣi1i2...ib denotes the probability of

the event {s̃Σi1 = s̃Σi2 = . . . = s̃Σib}, for any b ≥ 2, which is calculated as follows:

pΣi1i2...ib = (1− π)k0πk1 + (1− π)k1πk0 ,

where k0 and k1 are the number of 0’s and 1’s among the b bit values
s̃i1(β), s̃i2(β), . . . , s̃ib(β), respectively. By a similar argument as presented for
Pr{Aij} in Section 2, we have

Pr{Ci1i2...ib ≥ k} =

k∏

Σ=1

pΣi1i2...ib .

For a fixed b ≥ 2, let qb = πb + (1 − π)b and k = kb = b(1 + ε/2) log1/qb n. We
have

k = b(1 + ε/2) log1/qb n
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= (1 + ε/2)
lnn

ln q
−1/b
b

= (1 + ε/2)
lnn

ln (πb + (1− π)b)
−1/b

∪ (1 + ε/2)
lnn

ln (π2 + (1− π)2)
−1/2

(8)

= 2(1 + ε/2) log1/q n,

where the inequality in Eq. (8) holds for any b ≥ 2. Setting b = ε log1/q n, it
follows that

Pr{Hn ≥ 2(1 + ε) log1/q n} ∪ Pr{Hn ≥ k + b− 1}
∪ Pr{ max

i1,i2,...,ib
Ci1i2...ib ≥ k}

∪ nb
k∏

Σ=1

pΣi1i2...ib

∪ nbqkb

→ O(n−bΩ) ⊂ 0,

when n ⊂ ≡.
In summary, for any ε > 0, we have

Pr{Hn ≥ 2(1 + ε) log1/q n} → O(n−bΩ) ⊂ 0,

when n approaches infinity, and thus a.a.s. Hn ∪ 2(1 + ε) log1/q n.

3.2 An a.a.s. Lower Bound

Let Di be the depth of node labelled s̃i in the Patricia tree.
Clearly, Hn = maxni=1Di and the s̃i∗ reaching the maximum depth must be a

leaf node. It follows that if Hn < k, then at least one of the 2k possible length-k
strings does not appear as a prefix of any perturbed strings s̃1, s̃2, . . . , s̃n.

Let Ln = log1/ν n and k = L
n

L lnn . We have

Pr{Hn < k} ∪ 2kPr{no s̃i starts with k 0’s}
∪ 2k(1 − πk)n

∪ 2ke−νkn

= exp{k ln 2− πkn}
= exp{ln 2 · L n

L lnn
− L lnn} ⊂ 0,

when n approaches infinity, and thus a.a.s. Hn ≥ L
n

L lnn .
In summary, we have the following theorem.

Theorem 2. The smoothed height of the Patricia on n strings is in σ(log n),
where the bit perturbation model is i.i.d. Bernoulli distribution.
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4 Conclusion

Under the i.i.d. Bernoulli bit perturbation model, we have shown that the
smoothed heights of both Trie and Patricia index trees on n strings are in the
order of logn. These theoretical results explain the typical probabilistic behavior
of these two important data structures on real-world applications.

Acknowledgement. This research was supported in part by NSERC, AITF
and iCORE.
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Abstract. Problems on uncertain data have attracted significant at-
tention due to the imprecise nature of many measurement data. In this
paper, we consider the k-center problem on one-dimensional uncertain
data. The input is a set P of (weighted) uncertain points on a real line,
and each uncertain point is specified by its probability density function
(pdf) which is a piecewise-uniform function (i.e., a histogram). The goal
is to find a set of Q of k points on the line to minimize the maximum ex-
pected distance from the uncertain points of P to their expected closest
points in Q. We present efficient algorithms for this uncertain k-center
problem and their running times almost match those for the “determin-
istic” k-center problem. The techniques proposed in the paper may also
be useful for solving other related problems on uncertain data.

1 Introduction

A large amount of work has been done on deterministic data, e.g., points with
exact positions. Recently, due to the observation that many real-world mea-
surements are inherently accompanied with uncertainty, problems on uncertain
data have attracted dramatically increasing amount of attention. Two models
are commonly used for data uncertainty: the existential model (or tuple model)
[23,24,37] and the locational model (or attribute model) [1,2,16,34]. In the exis-
tential model, each uncertain point has a specific location but its existence is un-
certain, following a given probability density function. In the locational model,
each uncertain point always exists but its location is uncertain and follows a
probability density function. In this paper, we consider the k-center problem on
one-dimensional uncertain data under the locational model.

1.1 Problem Definitions and Our Results

Let P = {P1, P2, . . . , Pn} be a set of n uncertain points on the x-axis, where
each uncertain point Pi is specified by its probability density function (pdf)
fi: R → R

+ ∪ {0}, which is a piecewise-uniform function (i.e., a histogram),
consisting of at most m + 1 pieces (e.g., see Fig. 1). More specifically, for each
uncertain point Pi, there are m x-coordinates xi1 < xi2 < . . . < xim and m− 1

α This research was supported in part by NSF under Grant CCF-1317143.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 104–115, 2014.
c∞ Springer International Publishing Switzerland 2014
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fi(x)

xxi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8

Fig. 1. Illustrating the pdf fi of an uncertain point Pi with m = 8

nonnegative values yi1, yi2, . . . , yi,m−1 such that fi(x) = yij (yij = 0 is possible)
for xij ≤ x < xi,j+1 with 0 ≤ j ≤ m, and we set xi0 = −∞, xi,m+1 = +∞, and
yi0 = yim = 0. In addition, the uncertain points of P are independent.

Note that in some applications each uncertain point has a discrete pdf, that is,
it could appear at one of a few locations, each with a probability. This discrete
case can also be represented by the above histogram model using infinitesimal
pieces around these locations, and thus the histogram model also incorporate
the discrete case. In other words, the discrete case is a special case of our model.

Let L denote the x-axis. For any certain point p ∈ L, we let xp denote its
x-coordinate. The expected distance between p and any uncertain point Pi is
defined as

Ed(p, Pi) =

∫ +→

−→
fi(x)|x − xp|dx.

Let Q be a set of (certain) points on L, called facilities. For any uncertain
point Pi, we use Ed(Q,Pi) to denote the smallest expected distance from Pi to
all points of Q, i.e., Ed(Q,Pi) = minq≥Q Ed(q, Pi). The facility q with Ed(q, Pi) =
Ed(Q,Pi) is called the expected closest facility of Pi in Q, and we also say Pi is
“served” by the facility q or Pi is “assigned” to q. The k-center problem is to
find a set Q of k points on L to minimize the maximum expected distance from
the uncertain points of P to their expected closest facilities in Q, i.e., the value
maxPi≥P Ed(Q,Pi).

In a realization, each uncertain point will appear at a deterministic location
abiding by its pdf. We should point out that our problem definitions imply that
we always assign each uncertain point Pi to its expected closest facility and we
never change the assignment in any realization even through the actual location
of Pi in a realization may be closer to a different facility.

For differentiation, we refer to the traditional k-center problem where each
point is given in an exact position as the deterministic version.

In this paper, we present an algorithm for the uncertain k-center problem
and the running time is O(mn logmn + n log k log n logmn). Further, for the
discrete case where the pdf of each uncertain point of P is discrete, i.e., each
uncertain point Pi has m possible locations, each with a probability, we have a
more efficient algorithm with running time O(mn logmn + n log k logn). Since
mn is the input size, as will be seen soon, our results almost match those for the
corresponding deterministic k-center problems.
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Note that our algorithms can also solve the weighted case where each uncertain
point Pi has a nonnegative weight wi and we consider the weighted expected
distance, i.e., wi ·Ed(q, Pi), from Pi to each facility q in Q. To solve the weighted
problems (for both the general and the discrete cases), we only need to change
each value yij to wi ·yij for 1 ≤ j ≤ m−1, and then simply apply our algorithms
for the corresponding unweighted problems. The time complexities do not change
asymptotically.

1.2 Related Work

The deterministic k-center (and k-median) problems are classical problems that
have been extensively studied. It is well-known that the k-center problem is NP-
hard even in the plane [28] and approximation algorithms have been proposed
(e.g., see [3,5,8,22]). Efficient algorithm were also given for some special cases,
e.g., the smallest enclosing circle [27], k-center on trees [10,20,29]. Refer to [19]
for other variations of facility location problems. The deterministic k-center in
one-dimensional space is solvable in O(n log n) time [14,15,20,30].

The k-center problems on uncertain data in high-dimensional space have been
proposed. For example, approximation algorithms were given in [18] for different
problem models, e.g., the assigned model that is similar to our problem model
and the unassigned model which was relatively easy because it can be reduced
to the corresponding deterministic problem, as shown in [18]. Other problems
on clustering uncertain data were also studied and heuristic algorithms were
proposed [4,11,31]. Other facility location problems on uncertain data under
various models, e.g., the minmax regret [6,7,36,38], have also been studied (see
[33] for a survey).

To the best of our knowledge, the uncertain k-center problem proposed in this
paper has not been particularly studied before.

1.3 Our Approach

For the deterministic one-dimensional k-center problem, there is an observation
that there exists an optimal facility set Q such that the input points served
by each facility are consecutive if we order them from left to right on L; this
observation is crucial for designing the algorithms [14,15,17,30]. In our uncertain
problem, however, since the input points of P are uncertain, it is not clear how
to “sort” them; consequently, the algorithmic techniques used before for solving
the deterministic problems are not applicable here.

As explained above, one main difficulty for solving the uncertain k-center
problem is that we do not have an “order” for the uncertain points of P to
help us design algorithms. Instead, we use the following approach. We first
solve the decision problem which is to determine whether the minimized value
maxPi≥P Ed(Q,Pi) in the optimal solution is less than or equal to a given value
Ω, and if yes, Ω is called a feasible value. We solve the decision problem with
the following result: with O(mn) time preprocessing, for any given Ω, we can
determine whether Ω is a feasible value in O(logm+ n log k) time.
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By using the above result for the decision problem, we solve the k-center
problem by using parametric search [17,26]; however, there are some issues that
do not allow us to use the parametric search in [17,26] directly and we have to
make certain modifications. A useful observation discovered in the paper is that
the expected distance Ed(p, Pi) is a unimodal function (i.e., first monotonically
decreasing and then increasing) as p moves from left to right on L.

For the discrete case, we reduce the problem to finding a particular vertex in
a line arrangement. By using the arrangement searching technique in [13], we
can solve the discrete case in a faster way, in O(mn logmn+ n log k logn) time.

The rest of the paper is organized as follows. Section 2 introduces some ob-
servations. In Section 3, we present our results for the decision algorithms. In
Section 4, we solve the k-center problem, which is referred to as the optimization
problem. Section 5 presents our algorithm for the discrete case.

2 Observations

Consider any uncertain point Pi of P . For any point p, its expected distance
to Pi is Ed(p, Pi) =

∫ +→
−→ fi(x)|x − xp|dx. With a little abuse of notation, we

also use Ed(xp, Pi) to denote Ed(p, Pi), but we normally consider Ed(xp, Pi) as
a function of xp for xp ∈ R = (−∞,+∞) as p moves on L.

A function g : R → R is a unimodal function if there exists a value x∪ such that
g(x) is monotonically decreasing on x ∈ (−∞, x∪] and monotonically increasing
on x ∈ [x∪,+∞), i.e., for any x1 < x2, g(x1) ≥ g(x2) holds if x2 ≤ x∪ and
g(x1) ≤ g(x2) holds if x

∪ ≤ x1.
We assume the m coordinates xi1, . . . , xim of Pi are given sorted. We have

the following lemma, which is crucial to our algorithm. The proof is omitted.

Lemma 1. The function Ed(xp, Pi) for xp ∈ R is a unimodal function and can
be explicitly computed in O(m). More specifically, Ed(xp, Pi) is a parabola (of
constant complexity) on the interval [xk, xk+1) for each 0 ≤ k ≤ m.

By using Lemma 1, we can obtain the following corollary.

Corollary 1. For each uncertain point Pi, with O(m) time preprocessing, we
can compute the value Ed(xp, Pi) in O(logm) time for any query point p on L.

Consider any uncertain point Pi ∈ P . According to Lemma 1, there is a point
p ∈ L that minimizes the value Ed(p, Pi) and let pi denote such a point; note
that such a point may not be unique, in which case we let pi denote any such
point. We refer to pi as the centroid of Pi. By Lemma 1, we can compute the
centroids for all uncertain points of P in O(nm) time, by explicitly computing
the functions Ed(xp, Pi) for all uncertain points Pi of P .

3 The Decision k-Center Problem

In order to solve our k-center problem, we first solve the decision version of the
problem in this section.
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Recall that our goal for the k-center problem is to find a set Q of k points
such that maxPi≥P Ed(Q,Pi) is minimized, where Ed(Q,Pi) = minq≥Q Ed(q, Pi).
Below, for any set Q of points on L, let σ(Q) = maxPi≥P Ed(Q,Pi). Denote by
Ω∈ the value σ(Q) in an optimal solution for the k-center problem.

Given any real value Ω, the decision k-center problem is to determine whether
there exist a set Q of k points on L such that σ(Q) ≤ Ω (i.e., determine whether
Ω∈ ≤ Ω), and if yes, then we say the decision problem is feasible and Ω is a feasible
value. To distinguish from the decision problem, we refer to our original k-center
problem the optimization problem. Clearly, Ω∈ is the smallest feasible value.

Consider any value Ω and any uncertain point Pi ∈ P . Let Q be any set of
k points on L. If Ed(Q,Pi) ≤ Ω, then there is at least one point q in Q with
Ed(q, Pi) ≤ Ω. Let α(Pi, Ω) be the set of points p of L such that Ed(xp, Pi) ≤ Ω. A
line segment on L is also called an interval of L. By using Lemma 1, we obtain
the following result, whose proof is omitted.

Lemma 2. For any uncertain point Pi and any value Ω, α(Pi, Ω) is an interval
of L (α(Pi, Ω) = ∅ is possible); with O(m) time preprocessing, we can compute
α(Pi, Ω) in O(logm) time for any given Ω.

We say that a point on L covers an interval of L if the interval contains the
point. Let α(P , Ω) is the set of all intervals α(Pi, Ω) for i = 1 . . . n. We have the
following observation.

Observation 1 The value Ω is a feasible value if and only if there exist a set
Q of k points on L such that each interval of α(P , Ω) is covered by at least one
point in Q.

Hence, to determine whether Ω is feasible, it is sufficient to solve the following
interval covering problem: determine whether there exist a set Q of k points on
L such that each interval of α(P , Ω) is covered by at least one point in Q.

To solve the interval covering problem, we can compute the minimum number
k∈ of points that can cover all intervals of α(P , Ω), and the problem can be solved
in O(n) time by a simple greedy algorithm after the endpoints of all intervals of
α(P , Ω) are sorted [21]. Specifically, we scan the sorted endpoints of intervals of
α(P , Ω) from left to right until we first encounter a right endpoint of an interval.
We add this right endpoint into Q and removes all intervals that contain this
point. This process is repeated until no intervals remain. However, due to the
sorting procedure, the total time for computing k∈ is O(n log n).

Snoeyink [32] gave an O(n log k∈) time algorithm for computing k∈ without
sorting. If k∈ ≤ k, then we have n log k∈ = O(n log k), which means that we can
solve the interval covering problem in O(n log k) time. However, if k∈ > k, since
it is possible that n log k = o(n log k∈) (e.g., k = O(1) and k∈ = β(n)), we cannot
bound the time by O(n log k). To ensure that the interval covering algorithm can
still be solved in O(n log k) time even if k∈ > k, we modify Snoeyink’s algorithm
[32] in the following way.

Observe that to solve the interval covering algorithm, it is sufficient to know
whether k∈ ≥ k holds. Snoeyink’s algorithm finds a set Q of points one by one
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in O(n log k∈) time, with k∈ = |Q|. Since the points of Q are computed one by
one, when we run the algorithm, we simply stop the algorithm when there are
k + 1 points in the current Q. In this way, the recursion tree of the algorithm
has k + 1 leaves (instead of k∈ leaves) and thus the running time is O(n log k)
according to Lemma 1 in [32].

As a summary, given any Ω, we solve the decision k-center as follows. First,
we compute all intervals α(P , Ω), in O(n logm) time by Lemma 2. Then, by
modifying the algorithm in [32] as discussed above, we can solve the interval
covering problem in O(n log k) time. The decision problem is thus solved. The
total time is O(n logm+n log k), after the O(mn) time preprocessing in Lemma
2 for all uncertain points. By using fractional cascading [12], we further reduce
the running time in Lemma 3, whose proof is omitted.

Lemma 3. With O(mn) time preprocessing, we can determine whether Ω is a
feasible value in O(logm+ n log k) time for any given Ω.

4 The Optimization Problem

In this section, we present our algorithm for the original k-center problem, which
we refer to as the optimization problem, and our goal is to find the smallest
feasible value Ω∈ and the corresponding optimal facility set Q. Based on some
observations and our decision algorithm in Lemma 3, we finally compute Ω∈ by
modifying the parametric search technique [17,26].

For any Ω > 0, for each 1 ≤ i ≤ n, let α(Pi, Ω) = [li(Ω), ri(Ω)], i.e., li(Ω) is the
x-coordinate of the left endpoint of α(Pi, Ω) and ri(Ω) is the x-coordinate of the
right endpoint of α(Pi, Ω); below we will consider li(Ω) and ri(Ω) as functions of
Ω. With a little abuse of notation, we also use li(Ω) and ri(Ω) to denote the left
and right endpoints of α(Pi, Ω), respectively. Define E(Ω) to be the set of the
endpoints of all intervals in α(P , Ω). Notice that if we know the sorted order of
the endpoints of E(Ω∈) at the value Ω∈, we can easily find an optimal facility set
Q, e.g., by using the greedy algorithm mentioned before. Although we do not
know Ω∈, but we can still sort the values in E(Ω∈) by making use of our decision
algorithm to resolve comparisons, which is the key idea of parametric search
[17,26]. However, our problem does not allow us to apply the parametric search
approaches in [17,26] directly, because in our problem we cannot resolve each
“comparison” by a single call on the decision algorithm (since a comparison may
have multiple “roots”). The details are given below.

Suppose in our sorting algorithm we want to resolve a comparison between
two values in E(Ω∈). Depending on whether the two values are left endpoints or
right endpoints, there are two cases.

1. If a value is a left endpoint, say li(Ω
∈), and the other value is a right endpoint,

say rj(Ω
∈), then the comparison between them is called a type-1 comparison.

We resolve this type of comparison in the following way.
Recall that pk is the centroid for each uncertain point Pk ∈ P . We denote the
function Ed(xp, Pk) on xp ∈ (−∞, xpk

] by EdL(xp, Pk) and denote Ed(xp, Pk)
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x

y

y1 = y2

EdL(xp, Pi)

EdR(xp, Pj)

pipj

Fig. 2. Illustrating the intersection of
EdL(xp, Pi) and EdR(xp, Pj), where the in-
tersection is a single point and thus y1 =
y2. li(Θ

∗) ≥ rj(Θ
∗) if and only if Θ∗ ≤ y1.

x

y

y1

EdR(xp, Pi)

EdR(xp, Pj)

pi pj

y2

Fig. 3. Illustrating two intersections of
EdR(xp, Pi) and EdR(xp, Pj). For example,
if Θ∗ ∈ [y1, y2], then ri(Θ

∗) ≥ rj(Θ
∗).

on x ∈ [xpk
,+∞) by EdR(xp, Pk). By Lemma 1, EdL(xp, Pk) is monotonically

decreasing and EdR(xp, Pk) is monotonically increasing. Further, lk(Ω) ≤
xpk

≤ rk(Ω) holds. To simplify the discussion below, for each Pk ∈ P , we add
a vertical half-line on the function EdL(xp, Pk) from the point pk downwards
to −∞ and we also add the same half-line to EdR(xp, Pk). Note that each
new EdL(xp, Pk) is still monotonically decreasing and each new EdR(xp, Pk)
is still monotonically increasing.

To resolve the comparison between li(Ω
∈) and rj(Ω

∈), our goal is to deter-
mine whether li(Ω

∈) ≤ rj(Ω
∈) or li(Ω

∈) ≥ rj(Ω
∈) holds. To this end, we first

determine whether EdL(xp, Pi) intersects EdR(xp, Pj).
If xpi < xpj , then since EdL(xp, Pi) is to the left of pi and EdR(xp, Pj)

is to the right of pj , the two functions do not intersect and li(Ω
∈) ≤ rj(Ω

∈)
always holds.

Otherwise, since EdL(xp, Pi) is monotonically decreasing and EdR(xp, Pj)
is monotonically increasing, EdL(xp, Pi) must intersect EdR(xp, Pj) and the
intersection is a line segment (may be degenerated into a single point) that
spans an interval [y1, y2] on y-coordinates (e.g., see Fig. 2). Observe that
li(Ω

∈) < rj(Ω
∈) if Ω∈ > y2, li(Ω

∈) = rj(Ω
∈) if Ω∈ ∈ [y1, y2], and li(Ω

∈) > rj(Ω
∈) if

Ω∈ < y1.
Hence, to resolve the comparison between li(Ω

∈) and rj(Ω
∈), it sufficient

to resolve the comparisons among Ω∈, y1, and y2, which can be done by
calling the decision algorithm to determine whether y1 and y2 are feasible
values. Specifically, if Ω = y2 is not feasible, then Ω∈ > y2 and we obtain
li(Ω

∈) < rj(Ω
∈). If Ω = y2 is feasible, then Ω∈ ≤ y2. We further check whether

Ω = y1 is feasible. If y1 is not feasible, then we have Ω∈ ∈ (y1, y2] and thus
obtain li(Ω

∈) = rj(Ω
∈); otherwise, we have Ω∈ ≤ y1 and obtain li(Ω

∈) ≥ rj(Ω
∈).

In summary, we can resolve the comparison between li(Ω
∈) and rj(Ω

∈) by first
finding the intersection of EdL(xp, Pi) and EdR(xp, Pj) and subsequently at
most two calls on the decision algorithm. The intersection of EdL(xp, Pi)
and EdR(xp, Pj) can be found by binary search in O(logm) time and the
two calls on the decision algorithm takes O(logm+ n log k) time.

Hence, we can resolve each type-1 comparison in O(logm+ n log k) time.
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2. If the two values involved in the comparison are both left endpoints or both
right endpoints, then we call it a type-2 comparison. It becomes more com-
plex to resolve this type of comparison. Assume both values are two right
endpoints, say ri(Ω

∈) and rj(Ω
∈), and the case where both values are two left

endpoints can be handled similarly. In the sequel, we resolve the comparison
in the following way.

As in the type-1 case, we first compute the intersections between the two
functions EdR(xp, Pi) and EdR(s, Pj). Although both functions are mono-
tonically increasing, there may be β(m) intersections as their complexities
are β(m) in the worst case (e.g., see Fig. 3). All intersections can be com-
puted in O(m) time. If there is no intersection, then ri(Ω

∈) ≤ rj(Ω
∈) if and

only if xpi ≤ xpj , where pi and pj are the centroids.
Otherwise, let y1, y2, . . . , yh be the y-coordinates of all intersections, sorted

in ascending order, with h = O(m). We can compute this sorted list in
O(m) time as we compute the intersections. Using our decision algorithm,
we can determine an interval (yk, yk+1] that contains Ω∈, by binary search
with O(logm) calls on the decision algorithm. After finding the interval
(yk, yk+1], we can easily determine whether ri(Ω

∈) ≤ rj(Ω
∈) or ri(Ω

∈) ≥ rj(Ω
∈)

in the similar way as in the type-1 case (e.g., see Fig. 3).
Hence, we can resolve each type-2 comparison in O(m + n log k logm)

time.

The above shows that we can resolve each comparison in O(m+n log k logm)
time, which is dominated by the type-2 comparisons.

Now we apply the parametric search scheme to our problem by resolving
comparisons in the above ways. We first consider Megiddo’s approach [26]. We
can use n processors to do the soring in O(log n) parallel steps. For each parallel
step, we need to resolve n “independent” comparisons. Our problem is different
from other problems in the sense that each type-2 comparison can have O(m)
“roots” (i.e., the y-coordinates of the intersections). Nevertheless, we can still
be able to resolve all these comparisons in a simultaneous way, as follows.

First, for each comparison, we compute the coordinates of the O(m) intersec-
tions as discussed above. The intersections of all n comparisons can be computed
in O(mn) time. Then, we have O(mn) roots. Suppose y1, y2, . . . , yh are the list
of all O(mn) roots sorted in ascending order, with h = O(mn). Note that we
only use this sorted list to explain our approach and our algorithm do not com-
pute this sorted list. By using our decision algorithm, we determine the interval
(yk, yk+1] that contains Ω, which can be done in O(mn) time plus O(logmn) calls
on the decision algorithm by using the linear time selection algorithm and binary
search (without computing the above sorted list). Further, all n comparisons are
resolved on the interval (yk, yk+1]. Therefore, we can resolve all these n inde-
pendent comparisons in O(mn + n log k logmn) time. Since there are O(log n)
parallel steps, we can resolve all comparisons and compute the order for E(Ω∈)
in O(mn logn+ n log k logn logmn) time.

Once the order for E(Ω∈) is determined, we can easily compute Ω∈ and obtain
an optimal facility set Q by using the greedy algorithm discussed in Section 3.
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In fact, we can immediately determine Ω∈ after the above parametric search fin-
ishes. Specifically, after the parametric search finishes, the algorithm also gives
us an interval (yk, yk+1] that contains Ω

∈. We claim that Ω∈ = yk+1. Indeed, an
observation is that Ω∈ is always equal to the y-coordinate of an intersection of
two functions Ed(xp, Pi) and Ed(xp, Pj) since otherwise we would always make
Ω∈ smaller without changing the order of E(Ω∈). On the other hand, the para-
metric search essentially finds yk+1 as the smallest y-coordinate of such function
intersections that is feasible. Therefore, Ω∈ = yk+1.

In summary, we solve the k-center problem inO(mn log n+n log k logn logmn)
time. Note that this result is based on the assumption that xij for j = 1, . . . ,m
are given sorted for each uncertain point Pi ∈ P . If they are not given sorted,
then we need an extra step to sort them first, which takes O(mn logm) time in
total. Therefore, we have the following lemma.

Theorem 1. The optimization version of the k-center problem can be solved in
O(mn logmn+ n log k logn logmn) time.

One may wonder that Cole’s parametric search [17] can be used to further
reduce the time complexity by a logarithmic factor, i.e., reduce the time to
O(mn logmn + n log k logmn). However this is not the case because resolving
each type-2 comparison needs to consider O(m) roots. Specifically, in Cole’s
parametric search, calling the decision algorithm on the weighted median root
of all roots in each comparison level can resolve a weighted-half comparisons
in the level. However, in our problem, to resolve the each type-2 comparison,
calling the decision algorithm once is not enough. Therefore, Cole’s approach is
not applicable to our problem.

Since even Megiddo’s parametric search may not be quite practical, Van
Oostrum and Veltkamp [35] showed that one can replace the parallel sorting
scheme in Megiddo’s parametric search by the randomized quicksort to obtain
a practical solution with the same expected running time. By using the ran-
domized quicksort, our algorithm can solve the k-center problem in expected
O(mn lognm+ n log k logn logmn) time and the algorithm is practical.

5 The Discrete k-Center Problem

In this section, we present an algorithm for the discrete version of the k-center
problem, and due to some special properties of the discrete case, the algorithm
is faster than the one in Theorem 1 for the general case.

In the discrete k-center problem, each uncertain point Pi has m possible lo-
cations, denoted by pi1, pi2, . . . , pim, each having a probability. Since this is a
special case of the general k-center problem, the previous results on the general
k-center problem (e.g., Lemma 3 and Theorem 1) are still applicable.

By Lemma 1, the function Ed(xp, Pi) for xp ∈ R is still a unimodal function,
but in the discrete version, Ed(xp, Pi) is a piecewise linear function. After the
locations pi1, pi2, . . . , pim are sorted in O(m logm) time, the function Ed(xp, Pi)
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can be computed in additional O(m) time by Lemma 1. In the following, we
assume all functions Ed(xp, Pi) for i = 1, 2, . . . , n have been computed.

We define the decision problem in the same way as before. Our goal is to find
the smallest feasible value Ω∈. As we discussed in the general k-center problem, Ω∈

is the y-coordinate of the intersection of two functions Ed(xp, Pi) and Ed(xp, Pj)
for some i and j. Let I be the set of intersections of all functions Ed(xp, Pi) for
i = 1, 2, . . . , n, and for simplicity of discussion, we assume each such intersection
is a single point (the general case can be solved by the same techniques with
more tedious discussion). Then, Ω∈ is the smallest feasible value among the y-
coordinates of all points of I. The algorithm of Theorem 1 uses parametric search
to find Ω∈. In the discrete version, due to the property that each Ed(xp, Pi) is a
piecewise linear function, we compute Ω∈ by using a technique for searching line
arrangement [13], as follows.

We first define an arrangement A. For each 1 ≤ i ≤ n, since Ed(xp, Pi) is a
piecewise linear function, it consists of O(m) line segments and two half-lines,
and we let Ai denote the set of lines containing all line segments and half-lines of
Ed(xp, Pi). Hence, |Ai| = O(m) for each 1 ≤ i ≤ n. We explicitly compute each
Ai in O(m) time. Let A be the arrangement of the lines in

⋃n
i=1Ai. Note that our

algorithm does not compute A explicitly. With a little abuse of notation, we also
use A to denote the set of all vertices of A (i.e., all line intersections). Clearly,
I ⊆ A. Hence, Ω∈ is also the smallest feasible value among the y-coordinates
of the vertices of A, and in other words, Ω∈ is the y-coordinate of the lowest
vertex v∈ of A whose y-coordinate is a feasible value for the decision problem.
To search the particular vertex v∈, we use the decision algorithm in Lemma 3
and the following arrangement searching technique given in [13].

Suppose there is a function g : R → {0, 1}, such that the description of g is
unknown but it is known that g is monotonically increasing. Further, given any
value y, we have a “black-box” that can evaluate g(y) (i.e., determine whether
g(y) is 1 or 0) in O(G) time, which we call the g-oracle. Let B be a set of
n lines in the plane and let B denote their arrangement. Note that B is not
computed explicitly. For any vertex v of B, let yv be the y-coordinate of v.
The arrangement searching is to find the lowest vertex vertex v of B such that
g(yv) = 1. An O((n + G) logn) time algorithm is given in [13] to solve the
arrangement searching problem by modifying the slope selection algorithm [9,25],
without using parametric search.

In our problem, we are searching the vertex v∈ in the arrangement A. We can
define such a function g as follows. For any value y, g(y) = 1 if and only if y is a
feasible value. Clearly, g is monotonically increasing since for any feasible value
y, any value larger than y is also feasible. Hence, v∈ is the lowest point in A
with g(yv∗) = 1. We use our decision algorithm in Lemma 3 as the g-oracle with
G = O(logm + n log k). By the result in [13], after the O(mn) lines of

⋃n
i=1 Ai

are computed, we can compute v∈ in O((mn + logm+ n log k) logmn) time. It
can be verified that (mn+logm+n logk) logmn = O(mn logmn+n logk logn).
Consequently, we can obtain Ω∈. An optimal solution set Q can be found by using
the decision algorithm on Ω∈ in additional O(logm+ n log k logn) time.
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Theorem 2. The optimization version of the discrete k-center problem can be
solved in O(mn logmn+ n log k logn) time.
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Abstract. We define the range 1 query (R1Q) problem as follows. Given
a d-dimensional (d ≥ 1) input bit matrix A, preprocess A so that for any
given region R of A, one can efficiently answer queries asking if R con-
tains a 1 or not. We consider both orthogonal and non-orthogonal shapes
for R including rectangles, axis-parallel right-triangles, certain types of
polygons, and spheres. We provide space-efficient deterministic and ran-
domized algorithms with constant query times (in constant dimensions)
for solving the problem in the word RAM model. The space usage in
bits is sublinear, linear, or near linear in the size of A, depending on the
algorithm.

Keywords: R1Q, range query, range emptiness, randomized, rectangu-
lar, orthogonal, non-orthogonal, triangular, polygonal, circular, spheri-
cal.

1 Introduction

Range searching is one of the fundamental problems in computational geometry
[1,19]. It arises in application areas including geographical information systems,
computer graphics, computer aided design, spatial databases, and time series
databases. Range searching encompasses different types of problems, such as
range counting, range reporting, emptiness queries, and optimization queries.

The range 1 query (R1Q) problem is defined as follows. Given a d-dimensional
(d → 1) input bit matrix A (consisting of 0’s and 1’s), preprocess A so that one
can efficiently answer queries asking if any given range R of A is empty (does
not contain a 1) or not, denoted by R1QA(R) or simply R1Q(R). In 2-D, the
range R can be a rectangle, a right triangle, a polygon or a circle.

In this paper, we investigate solutions in the word RAM model sharing the
following characteristics. First of all, we want queries to run in constant time,
even for d → 2 dimensions. Second, we are interested in solutions that have space
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linear or sublinear in the number of bits in the input grid. Note that while our
sublinear bounds are parameterized by the number of 1s in the grid, this is still
larger than the information-theoretic lower bounds. For our motivating appli-
cations, information-theoretically optimal space is less important than constant
query times. Third, we are interested in grid inputs [15,16], viewing the problem
in terms of pixels/voxels rather than a set of spatial points. This grid perspec-
tive enables constant-time operations such as table lookup and hashing. Finally,
we are interested in both orthogonal and nonorthogonal queries, and we require
solutions that are concise enough to be implementable.

Previous Results. The R1Q problem can be solved using data structures such
as balanced binary search trees, kd-trees, quad trees, range trees, partition trees,
and cutting trees (see [9]), which take the positions of the 1-bits as input. It can
also be solved using a data structure of Overmars [16], which uses priority search
trees, y-fast tries, and q-fast tries and takes the entire grid as input. However, in
d-D (d → 2), in the worst case these data structures have a query time at least
polylogarithmic and occupy a near-linear number of bits.

The R1Q problem can also be solved via range partial sum [7, 21] and the
range minimum query (RMQ) [2–6, 10–12, 17, 18, 22] problems. Though several
efficient algorithms have been developed to solve the problem in 1-D and 2-D,
their generalizations to 3-D and higher dimensions occupying a linear number of
bits are not known yet. Also, there is little work on space-efficient constant-time
RMQ solutions for non-orthogonal ranges.

The R1Q problem can also be solved using rank queries [13, 14]. Again, its
generalization to 2-D and higher dimensions has not yet been studied.

Motivation. We encountered the R1Q and R0Q (whether a range contains a
0) problems while trying to optimize stencil computations in the Pochoir stencil
compiler [20], where we had to answer octagonal R1Q and octagonal R0Q on
a static 2-D property grid. Stencil computations have applications in physics,
computational biology, computational finance, mechanical engineering, adaptive
statistical design, weather forecasting, clinical medicine, image processing, quan-
tum dynamics, oceanic circulation modeling, electromagnetics, multigrid solvers,
and many other areas (see the references in [20]).

In Fig. 1, we provide a simplified exposition of the problem encountered in
Pochoir. There are two grids of the same size: a static property grid and a
dynamic value grid. Each property grid cell is set to 1 if it satisfies property P
and 0 otherwise. When Pochoir needs to update a range R in the value grid (see
Alg. 1), its runtime system checks whether all or none of the points in R satisfy
P in the property grid, and based on the query result it uses an appropriate
precompiled optimized version of the original code (see Algs. 3, 4) to update
the range in the value grid. To check if all points in R satisfy P , Pochoir uses
R0Q(R), and to check if no points in R satisfy P , it uses R1Q(R).

Pochoir needs time-, space-, and cache-efficient data structures to answer R1Q.
It can also tolerate some false-positive errors. The solutions should achieve con-
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Algorithm 1. : UpdateRange(R)

1. if !R0Q(R) then
2. {all points in R satisfy P.}
3. funcptr ← PUpdatePoint
4. else if !R1Q(R) then
5. {no points in R satisfy P.}
6. funcptr ← NUpdatePoint
7. else
8. {not all points in R satisfy P.}
9. funcptr ← UpdatePoint

10. for each grid point p in R do
11. funcptr(p)

Algorithm 2. : UpdatePoint(p)

1. {update p only if it satisfies P.}
2. if p.property = 1 then
3. p.value ← new value
4. do some stuff

Algorithm 3. : PUpdatePoint(p)

1. {p satisfies P. update p.}
2. p.value ← new value
3. do some stuff

Algorithm 4. : NUpdatePoint(p)

1. {p doesn’t satisfy P. don’t update p.}
2. do some stuff

Fig. 1. Examples of the procedures in Pochoir that make use of R1Q and R0Q

stant query time and work in all dimensions. Although it is worth trading off
space to achieve constant query times, space is still a scarce resource.

Our Contributions. We solve the R1Q problem for orthogonal and
non-orthogonal ranges. Our major contributions as shown in Table 1 are as
follows:

1. [Orthogonal Deterministic.] We present a deterministic data structure to an-
swer R1Q for orthogonal ranges in all dimensions and for any data distribu-
tion. It occupies linear space in bits and answers queries in constant time for
any constant dimension.

2. [Orthogonal Randomized.] We present randomized data structures to answer
R1Q for orthogonal ranges. The structures occupy sublinear space in bits
and provide a tradeoff between query time and error probability.

3. [Non-Orthogonal Deterministic.] We present deterministic data structures to
answer R1Q for non-orthogonal shapes such as axis-parallel right-triangles
(for 2-D) and spheres (for all dimensions). The structures occupy near-linear
space in bits and answer queries in constant time.

We use techniques such as power hyperrectangles, power right-triangles, sketches,
sampling, the four Russians trick, and compression in our data structures. A
careful combination of these techniques allows us to solve a large class of R1Q prob-
lems. Techniques such as power hyperrectangles, table lookup, and the four Rus-
sians trick are already common in RMQ-style operations, while sketches, power
right-triangles, and compression are not.

Organization of the Paper. Section 2 presents deterministic and randomized
algorithms to answer orthogonal R1Qs on a grid in constant time for constant di-
mensions. Section 3 presents deterministic algorithms to answer non-orthogonal
R1Qs on a grid, for axis-parallel right triangles, some polygons, and spheres.
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Table 1. R1Q algorithms in this paper. Here, N = total #bits, N1 = #nonzero bits,
and N0 = #zero bits in the input bit matrix A, and d = #dimensions. If |A| appears in
the space complexity, it means that A must be retained, otherwise it can be discarded.

Shape Space (in bits) Time Comments

Orthogonal (Deterministic)

d-D O
(
(d+ 1)!

(
2

ln 2

)d N
)
+ |A| O

(
4dd

)
for d dimensions

Orthogonal (Randomized)

1-D (Sketch) O
(→

NN1 logN log 1
δ

)
O

(
ln 1

δ

)
δ ≥

(
0, 1

4

)
; correct for range size ∪

√
N/N1, otherwise correct with prob ∪

1 − 4δ; extendible to ∪ 2-D

1-D (Sketch) O
(
N1 log3 N log1+γ

1
δ

+N
1
c log logN

)

O
(
log c

δ

)
γ, δ ≥

(
0, 1

4

)
, integer c > 1; with prob

∪ 1− 4δ at most 4γ fraction of all query
results will be wrong; extendible to ∪ 2-
D

1-D (Sampling) O (s) + |A| O
(

1
ε ln 1

δ

)
ε, δ ≥ (0, 1), s = Ω (logN); always cor-
rect for range size ∪ (N logN)/s, oth-
erwise correct with prob ∪ 1 − δ when
∪ ε fraction of all range entries are 1;
extendible to ∪ 2-D

Non-Orthogonal (Deterministic)

Right Triangles O
(
N logN + N0 log3 N

)
O (1) not extendible to ∪ 3-D

2-D Spheres O
(
N

→
logN

)
O (1) extendible to ∪ 3-D

2 Orthogonal Range 1 Queries (R1Q)

In this section, we present deterministic and randomized algorithms for answer-
ing orthogonal R1Qs in constant time and up to linear space.

The algorithms in this paper rely on finding the most significant bit (MSB)
of positive integers in constant time and sublinear space as follows:

Theorem 1. Given integers N ⊂ [1, 2w) and r ⊂ [1, w] in the word-RAM model
with w-bit words, one can construct a table occupying O

(
N1/r log logN

)
bits of

space to answer MSB queries for integers in [1, N ] in O (1 + log r) time.

2.1 Preliminaries: Deterministic 1-D Algorithm

The input is a bit vector A[0 . . . N − 1], where N ⊂ [1, 2w) and w is the word
size. The query R1QA(i, j), where i ≡ j, asks if there exists a 1 in the subarray
A[i . . . j]. For simplicity, assume N is an even power of 2.

Preprocessing. Array A has M = N
w words. For each p ⊂ [0, logM ], we con-

struct arrays: Lp and Rp, of size
M
2p each. LetW (i) denote the ith (i ⊂ [0,M−1])

word in A. Then, Lp is defined as follows: L0[i] is 0, if W (i) has a 1, 1 otherwise.

Lp(∪1)[i] =

{
Lp−1[2i] if Lp−1[2i] < 2p−1.

2p−1 + Lp−1[2i+ 1] otherwise.
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The Rp array can be computed similarly. The array element Lp[i] (and Rp[i])
stores the distance of the leftmost (respectively, rightmost) word that contains
a 1 in the ith block of 2p contiguous words of A, measured from the start (and
end) of the block. The value Lp[i] = 2p (Rp[i] = 2p) means that the ith block of
2p contiguous words of A does not contain a 1.

Query Execution. To answer R1QA(i, j), we consider two cases: (1) Intra-word
queries: If (i, j) lies inside one word, we answer R1Q using bit shifts. (2) Inter-
word queries: If (i, j) spans multiple words, then the query gets split into three
subqueries: (a) R1Q from i to the end of its word, (b) R1Q of the words between
i’s and j’s word (both exclusive), and (c) R1Q from the start of j’s word to j.

The answer to an inter-word query is 1 if and only if the R1Q for at least one
of the three subqueries is 1. The first and third subqueries are intra-word queries
and can be answered using bit shifts. Let the words containing indices i and j be
I and J , respectively. Then, the second subquery, denoted by R1QL0(I+1, J−1),
is answered as follows. Using the MSB of J − I − 1, we find the largest integer
p such that 2p ≡ J − I − 1. The query R1QL0(I + 1, J − 1) is then decomposed
into the following two overlapping queries of size 2p each: R1QL0(I + 1, I + 2p)
and R1QL0(J − 2p, J − 1). If either of those two ranges contains a 1 then the
answer to the original query will be 1, and 0 otherwise. We show below how to
answer R1QL0(I + 1, I + 2p). Query R1QL0(J − 2p, J − 1) is answered similarly.

Split L0 into blocks of size 2p. Then, the range R1QL0(I + 1, I + 2p) can be
covered by one or two consecutive blocks. Let I + 1 be in the kth block. If the
range lies in one block, we find whether a 1 exists in that block by checking
whether Lp[k] < 2p is true. If the range is split across two consecutive blocks,
we find whether a 1 exists in at least one of the two blocks by checking whether
at least one of Rp[k] ≡ (k + 1)2p − I or Lp[k + 1] ≡ I + 2p − (k + 1)2p is true.

2.2 Deterministic d-D Algorithm

For d-D (d → 2) R1Q, the input is a bit matrix A of size N = nd. Here we give
an algorithm for a 2-D matrix of size N = n × n, but the algorithm extends
to higher dimensions. For simplicity, we assume n is a power of 2. The query
R1Q([i1, j1][i2, j2]) asks if there exists a 1 in the submatrix A[i1 . . . j1][i2 . . . j2].

Preprocessing. For each p, q ⊂ [0, logn], we partition A into n
2p × n

2q blocks,
each of size 2p × 2q called a (p, q)-block. For each (p, q) pair, we construct four
tables of size N

2p+q ×min(2p, 2q) each:
(i) TLp,q: if p ≡ q, TLp,q[i, j][k] indicates that any rectangle of height k ⊂ [0, 2p)
starting from the top-left corner of the current block must have width at least
TLp,q[i, j][k] in order to include at least one 1-bit.
(ii) BL, TR,BR: similar to TL but starts from the bottom-left, top-right and
bottom-right corners, respectively.
In all cases, a stored value of max(2p, 2q) indicates that the block has no 1.



The Range 1 Query (R1Q) Problem 121

2p

2q

2q

2p

(i1, i2)

(j1, j2)

(a) (b)

Fig. 2. Rectangles: (a) Query rectangle split into four possibly overlapping power rect-
angles. (b) Power rectangle divided into four regions by four split rectangles.

Query Execution. Given a query [i1, j1][i2, j2], we find the largest integers p
and q such that 2p ≡ j1 − i1 + 1 and 2q ≡ j2 − i2 + 1. The original query range
can then be decomposed into four overlapping (p, q)-blocks, which we call power
rectangles, each with a corner at one of the four corners of the original rectangle,
as in Fig. 2(a). If any of these four rectangles contains a 1, the answer to the
original query will be 1, and 0 otherwise. We show below how to answer an R1Q
for a power rectangle.

We consider the partition of A into preprocessed (p, q)-blocks. It is easy to see
that each of the four power rectangles of size 2p × 2q will intersect at most four
preprocessed (p, q)-blocks. We call each rectangle contained in both the power
rectangle and a (p, q)-block a split rectangle (see Fig. 2(b)). The R1Q for a split
rectangle can be answered using a table lookup, checking if the table values of
the appropriate (p, q)-blocks are inside the power rectangle boundary, as shown
in Fig. 2(b). The proof of the following theorem will be given in the full paper.

Theorem 2. Given a d-D input grid of size N = nd, each orthogonal R1Q on
the grid can be answered deterministically in O

(
4dd

)
time after preprocessing

the grid in Θ (N) time using O
(
(d+ 1)! (2/ ln 2)dN

)
bits of space. In 1-D, the

space can be reduced to O (N/ logN) bits.

2.3 Randomized Algorithms

In this section, we present randomized algorithms that build on the deterministic
algorithms given in Sections 2.1 and 2.2. We describe the algorithms for one
dimension only. Extensions to higher dimensions are straightforward.

Sketch Based Algorithms. Our algorithms provide probabilistic guarantees
based on the Count-Min (CM) sketch data structure proposed in [8]. Let N1 be
the number of 1-bits in the input bit arrayA[0 . . .N−1] for any data distribution.
Then, the (preprocessing) time and space complexities depend on N1 while the
query time remains constant.

A CM sketch with parameters ε ⊂ (0, 1] and δ ⊂ (0, 1) can store a summary
of any given vector a = ∈a0, a1, . . . , an−1≥ with ai → 0 in only ∪ e

ε◦∪ln
1
δ ◦ log ||a||1

bits of space, where ||a||1 (or ||a||) =
∑n−1

i=0 ai, and can provide an estimate âi
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of any ai with the following guarantees: ai ≡ âi, and with probability at least
1−δ, âi ≡ ai+ε||a||1. It uses t = ∪ln 1

δ ◦ hash functions h1 . . . ht : {0 . . . n− 1} ⊆
{1 . . . b} chosen uniformly at random from a pairwise-independent family, where
bucket size b = ∪ e

ε◦. These hash functions are used to update a 2-D matrix
c[1 : t][1 : b] of bt counters initialized to 0. For each i ⊂ [0, n − 1] and each
j ⊂ [1, t] one then updates c[j][hj(i)] to c[j][hj(i)] + ai. After the updates, an
estimate âi for any given query point ai is obtained as min1∈j∈t c[j][hj(i)].

Preprocessing. In the deterministic algorithms we first compressed the input
array by converting each word into a single bit, and then constructed L0 and R0

arrays from the compressed array. In the current algorithm we build the L0 and
R0 arrays directly from the uncompressed input. For p ⊂

[
0, 12 log (N/N1)

]
, the

Lp and Rp arrays are stored as CM sketches while p ⊂
[
1
2 log (N/N1) + 1, logN

]

the arrays are stored directly as in the deterministic case. Each Lp[i] is added as
(Lp[i] + 1) mod (2p + 1) to the CM sketch (similarly for Rp[i]). Thus a nonzero
entry (of value at most 2p) is added to the CM sketch provided the correspond-
ing block contains a 1, otherwise nothing is added. As a result for any given Lp

summation of all entries added to the CM sketch is at most N1 × 2p, and we set
ε = 1

2×N1×2p for that sketch.

Query Execution. Given a query R1QA(i, j), we use the MSB of j − i + 1 to
find the largest value of p with 2p ≡ j − i+ 1, and then follow the approach for
answering case (b) of inter-word queries described in Section 2.1. If 2p >

√
N/N1,

we use Lp and Rp arrays to answer the query correctly, otherwise we use the Lp

and Rp values obtained from the corresponding CM sketches.

Error Bound. If the query range is larger than
√
N/N1, the answer is al-

ways correct. For smaller queries we use CM sketches. Recall that for p ⊂[
0, 12 ln(N/N1)

]
, we store each Lp (and Rp) as a CM sketch with parameter

ε = 1
2×N1×2p . Hence, the estimated value L̂p[i] of an entry Lp[i] returned by the

CM sketch is between Lp[i] and Lp[i] + ε||Lp|| ≡ Lp[i] + 0.5 with probability at
least 1−δ. In other words, with probability at least 1−δ, the CM sketch returns
the correct value. In order to answer an R1Q we need to access at most four CM
sketches. Hence, with probability at least (1− δ)4 → 1−4δ, the query will return
the correct answer.

Theorem 3. Given a 1-D bit array of length N containing N1 nonzero en-
tries, and a parameter δ ⊂

(
0, 14

)
, one can construct a data structure occupying

O
(∀
NN1 logN log

(
1
δ

))
bits (and discard the input array) to answer each R1Q

correctly in O
(
ln 1

δ

)
worst-case time with probability at least 1 − 4δ. For query

ranges larger than
√
N/N1 the query result is always correct.

By tweaking the algorithm described above slightly, we can reduce the space
complexity even further at the cost of providing a weaker correctness guarantee.
We assume that we are given an additional parameter γ ⊂

(
0, 14

)
. The required

modification is described below.
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For each p ⊂ [0, logN ], we store the Lp and Rp arrays as CM sketches. How-
ever, instead of adding a value v directly to a CM sketch, we now add a (1 + γ)
approximation of v. More precisely, we add ∪log1+γ (1 + v)◦ instead of v. Hence,
for a given Lp, the summation of all entries added to its CM sketch is at most
N1∪log1+γ (1 + 2p)◦, and so we set the parameter ε to 1/

(
2N1∪log1+γ (1 + 2p)◦

)

for that sketch. The total space used by all CM sketches can be shown to be
O
(
N1 log

3N log1+γ (1/δ)
)
. We store a lookup table of size O

(
log2N

)
for con-

versions from ∪log1+γ (1 + v)◦ to v, and an MSB table of size O
(
N1/c log logN

)

for some given integer constant c > 1.
We first show that for any given p ⊂ [0, logN ] at most 2γ fraction of the

queries of size 2p can return incorrect answers. Consider any two consecutive
blocks of size 2p, say, blocks i ⊂ [0, N

2p − 1) and i+1. Exactly 2p different queries
of size 2p will cross the boundary between these two blocks. The answer to each
of these queries will depend on the estimates of Rp[i] and Lp[i+1] obtained from

the CM sketches. Under our construction the estimates are R̂p[i] ≡ (1+γ)Rp[i] ≡
Rp[i]+γ ·2p and L̂p[i+1] ≡ (1+γ)Lp[i+1] ≡ Lp[i+1]+γ ·2p. Hence, at most γ ·2p
of those 2p queries will produce incorrect results due to the error in estimating
Rp[i], and at most γ · 2p more because of the error in estimating Lp[i+1]. Thus
with probability at least (1 − δ)2, at most 2γ fraction of those 2p queries will
return wrong results. Recall from Section 2.1 that we answer given queries by
decomposing the query range into two overlapping query ranges. Hence, with
probability at least (1−δ)4 → 1−4δ, at most 2γ+2γ = 4γ fraction of all queries
can produce wrong answers.

Theorem 4. Given a 1-D bit array of lengthN containingN1 nonzero entries, and
two parameters γ ⊂

(
0, 14

)
and δ ⊂

(
0, 14

)
, and an integer constant c > 1, one can

construct adata structureoccupyingO
(
N1 log

3N log1+γ

(
1
δ

)
+N1/c log logN

)
bits

(and discard the input array) to answer each R1Q inO
(
log c

δ

)
worst-case time such

that with probability at least 1 − 4δ at most 4γ fraction of all query results will be
wrong.

Sampling Based Algorithm. Suppose we are allowed to use only O (s) bits
of space (in addition to the input array A), and s = Ω (log2N). We are also
given two constants ε ⊂ (0, 1) and δ ⊂ (0, 1). We build Lp and Rp arrays for each
p ⊂

[
log N

s + log logN, logN
]
, and an MSB lookup table to support constant

time MSB queries for integers in [1, s/ logN ]. Consider the query R1QA(i, j). If
j − i + 1 ≡ w, we answer the query correctly in constant time by reading at
most 2 words from A and using bit shifts. If j− i+1 → 2log

N
s +log logN = N logN

s ,
we use the Lp and Rp arrays to correctly answer the query in constant time. If

w < j − i+ 1 < N logN
s , we sample ∪ 1

ε ln
(
1
δ

)
◦ entries uniformly at random from

A[i . . . j], and return their bitwise OR. It is easy to show that the Lp and Rp

tables use O (s) bits in total, and the MSB table uses o (s) bits of space. The
query time is clearly O

(
1
ε ln

(
1
δ

))
.
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Error Bound. If at least an ε fraction of the entries in A[i . . . j] are nonzero
then the probability that a sample of size ∪ 1

ε ln
(
1
δ

)
◦ chosen uniformly at random

from the range will pick at least one nonzero entry is → 1−(1− ε)
1
ε ln ( 1

δ ) ∩ 1−δ.

Theorem 5. Given a 1-D bit array of length N , a space bound s = Ω (logN),
and two parameters ε ⊂ (0, 1) and δ ⊂ (0, 1), one can construct a data struc-
ture occupying only O (s) bits of space (in addition to the input array) that in
O
(
1
ε ln

(
1
δ

))
time can answer each R1QA(i, j) correctly with probability at least

1 − δ provided at least an ε fraction of the entries in A[i . . . j] are nonzero. If
j − i+ 1 ≡ w or j − i + 1 → N logN

s , the query result is always correct.

3 Non-Orthogonal Range 1 Queries (R1Q)

In this section, we show how to answer R1Q for non-orthogonal ranges, such as
axis-parallel right triangles, spheres and certain type of polygons, given an input
matrix of size N = n× n.

3.1 Right Triangular R1Q

A right triangular query R1Q(ABC) asks if there exists a 1 in an axis-parallel
right triangle ABC defined by three grid points A, B, and C. In the rest of the
paper, right triangles will mean axis-aligned right triangles.

Preprocessing. For every grid point (x, y) containing a 0, for each p ⊂
[
0, logN

2

]
,

we store the coordinates of 8 other grid points for 8 different orientations. For
example, consider Fig. 3(a) in which each black grid point corresponds to a 1,
and each white point corresponds to a 0. For the point P = (x, y) in the figure,
we show the eight black points (i.e., LC , LCC , RC , RCC , UC , UCC , DC and
DCC) we store for a given p. For example, LC is a black point that lies to the
left of P within a horizontal distance of 2p from it (in terms of the number of
grid points including P ) such that PLC makes the smallest angle θLC in the
clockwise direction with the horizontal line passing through P . The significance
of LC is that no right triangle with a horizontal base of length 2p that has one
endpoint at (x, y), another endpoint to the left of (x, y), and whose hypotenuse
makes a smaller nonnegative angle than θLC in the clockwise direction with the
horizontal line can contain a 1. Similarly, other points are identified.

Query Execution.We show how to answer a right triangular R1Q inΘ (1) time.
Say, we want to answer R1Q(ABC) (see Fig. 3(b)). Let 2p be the largest power
of 2 not larger than |AB|, and 2q be the largest power of 2 not larger than |CB|.
Find grid points D and E on AB and CB, respectively, such that |AD| = 2p and
|CE| = 2q. Suppose the horizontal line passing through D intersects BC at G,
and the vertical line passing through E intersects BC at H . Observe that G and
H are not necessarily grid points. We assume w.l.o.g. that none of the vertices
A, B and C contains a 1 (as otherwise we can answer the query trivially in
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Fig. 3. Right Triangular R1Q. (a) Preprocessing. (b) Query Execution. Each black grid
point contains a 1 while each white grid point contains a 0.

constant time). Observe that we can answer R1Q(ABC) if we can answer R1Q
for triangles ADG and CEH , and the rectangle BDFE. R1Q for the rectangle
can be answered using our deterministic algorithm described in Section 2.2. R1Q
for a right triangle of a particular orientation with height or base length equal
to a power of two can be answered in constant time. This is done by checking
whether the point stored (from preprocessing) with the appropriate endpoint of
the hypotenuse for that specific orientation is inside the triangle or not.

Theorem 6. Given a 2-D bit matrix of size N =
∀
N ×

∀
N containing N0

zero bits, one can construct a data structure occupying O
(
N logN +N0 log

2N
)

bits in O
(
N1.5

)
time (and discard the input matrix) to answer each axis-aligned

right triangular R1Q with the three vertices on the grid points in O (1) time.

3.2 Polygonal R1Q

Consider a simple polygon with its vertices on grid points satisfying the following.

Property 1. For every two adjacent vertices (a, b) and (c, d), one of the two right
triangles with the third vertex being either (a, d) or (c, b) is completely inside
the polygon.

It can be shown that such a polygon can be decomposed into a set of possibly
overlapping right triangles and rectangles with only grid points as vertices that
completely covers the polygon (see Fig. 4(a)). Examples of polygons that do not
satisfy the constraint are given in Fig. 4(b, c), but we can still answer R1Q for
the polygon in (c). A simple polygon with k vertices satisfying propery 1 can be
decomposed into O (k) right triangles and rectangles and hence can be answered
in O (k) time.

3.3 Spherical R1Q

The spherical R1Q problem is defined as follows. Given a d-dimensional (d → 2)
input bit matrix A, preprocess A such that given any grid point p in A and a
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(a, b)
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Fig. 4. Black grid points contain 1’s and white grid points contain 0’s. Polygon in (a)
satisfies Prop. 1. Polygons in (b) and (c) do not satisfy Prop. 1. Still, R1Q can be
answered for (c).

radius r ⊂ R
+, find efficiently if there exists a 1 in the d-sphere centered at p of

radius r. Here, we present the algorithm for 2-D. The approach can be extended
to higher dimensions.

A nearest 1-bit of a grid point p is called a nearest neighbor (NN) of p. We pre-
process A by computing and compresssing the NNs of all grid points in A (only
one NN per grid point). We then answer a spherical R1Q by checking whether
a NN of the given center point is inside the circle of given radius.

Preprocessing. We store the locations of the NNs of the grid points of A in a
temporary NN matrix that occupies O (N logN) bits, but can be compressed to
occupy O

(
N

∀
logN

)
bits as follows.

We divide the grid into
√
(logN)/6 ×

√
(logN)/6 blocks. We store the NN

position for all points on the boundary of each block. The interior points will
be replaced with arrows (⊆,∅, ↓, ∨) and bullets (•) as follows. If a grid point
p contains a 1 then p is replaced with a •. An arrow at a grid point gives the
direction of its NN. If we follow the arrows from any interior point, we end up
in either a boundary point or an interior point containing a 1. For any given
block the matrix created as above will be called a symbol matrix representing
the block.

Two blocks are of the same type if they have the same symbol matrix. Each
symbol can be represented using only three bits. Since each block has (logN)/6

symbols, there are 2
3 log N

6 =
∀
N possible block types. For each block type we

create a position matrix that stores, for each grid point within a block, the pointer
to its NN if the NN is an interior point, or a pointer to a boundary point if the
NN is an exterior or boundary point. The boundary point will have stored its
own NN position in the input array.

We can now discard the original input matrix, and replace it with the following
compressed representation. For each block in the input matrix we store its block
type (i.e., a pointer to the corresponding block type) followed by the NN positions
of its boundary points. For each block type we retain its position matrix.

Query Execution. We can answer a spherical R1Q by checking whether the
NN position of the center point is inside the query sphere. The approach of
finding the NN position is as follows. We find the block to which the given point
belongs and follow the pointer to its block type. We check the position stored
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at the given point in the position matrix. If it points to an internal point, then
that point is the correct NN. If it points to a boundary point, we again follow
the pointer stored at the boundary point to get the correct NN.

Theorem 7. Given a 2-D bit array of size N , one can construct a data struc-
ture occupying O

(
N

∀
logN

)
bits (and discard the input array) to answer each

spherical R1Q in O (1) time.
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Abstract. In Continuous Data Analytics and in monitoring applications, hun-
dreds of similar Aggregate Continuous Queries (ACQs) are registered at the Data
Stream Management System (DSMS) to continuously monitor the infinite input
stream of data tuples. Optimizing the processing of these ACQs is crucial in order
for the DSMS to operate at the adequate required scalability. One optimization
technique is to share the results of partial aggregation operations between differ-
ent ACQs on the same data stream. However, finding the query execution plan
that attains maximum reduction in total plan cost is computationally expensive.
Weave Share, a multiple ACQs optimizer that computes query plans in a greedy
fashion, was recently shown in experiments to achieve more than an order of mag-
nitude improvement over the best existing alternatives. Maximizing the benefit of
sharing, i.e., maximizing the cost-savings achieved by sharing partial aggregation
results, is the goal of Weave Share. In this paper we prove that Weave Share ap-
proximates the optimal cost-savings to within a factor of 4 for a practical variant
of the problem. To the best of our knowledge, this is the first theoretical guarantee
provided for this problem. We also provide exact solutions for two natural special
cases.

1 Introduction

In Continuous Data Analytics, such as pay-per-click applications, and in monitoring
applications, such as network, financial, health and military monitoring, hundreds of
similar Aggregate Continuous Queries (ACQs) are typically registered to continuously
monitor unbounded input streams of data updates [6, 12]. For example, a stock market
monitoring application allows each of its numerous users to register several monitor-
ing queries. Traders interested in a certain stock might register ACQs to monitor the
average or maximum trade volume in a certain period of time, e.g., the last 1, 8, or
24 hours. Meanwhile, decision makers might register monitoring queries for analysis
purposes with coarse time granularity over the same data stream, e.g., the average
trade volume in last week or month. Given the high data arrival rates, optimizing the
processing of ACQs is crucial for scalability of the system. Data Stream Management
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Systems (DSMSs) were developed to be at the heart of every monitoring application,
(e.g., [1–3, 8, 13, 14]). DSMSs must efficiently handle the unbounded streams with
large volumes of data and large numbers of continuous queries. Thus, devising ways
to optimize the processing of multiple continuous queries is imperative for DSMSs to
exhibit the scalability required. The commonality of many of the ACQs is what makes
optimization possible.

An ACQ is typically defined over a certain window of the input data stream, to bound
its computations. (For example, an ACQ that monitors the average trade volume of a
stock index could report every hour the average trade volume in the past 24 hours).
Partial aggregation has been proposed to optimize the processing of an ACQ [4, 10, 11]
by minimizing the repeated processing of overlapping windows. Partial aggregation
has also been utilized to share the processing of multiple similar ACQs with different
windows [6, 7, 9, 12]. Recently, the concept of Weaveability of two sets of ACQs was
introduced as an indicator of the potential benefits of sharing their processing [6]. By
exploiting weavability, the algorithm Weave Share optimizes the shared processing of
ACQs. Weave Share considers all factors that affect the cost of the shared query plan. It
selectively groups ACQs into multiple "execution trees" to minimize the total plan cost.
It was shown experimentally that Weave Share generates up to 40 times better quality
plans compared to the best alternative sharing scheme [6].

Contributions. In this paper we provide formal guarantees on the performance of the
Weave Share algorithm. The total cost of a query plan can be represented as the cost
of the no-share query plan, in which all partial aggregations are independent, minus
the cost-savings achieved by sharing some partial aggregation operations. We provide
a lower bound for the cost-savings achieved by Weave Share. Specifically, we show
that for a widely applicable variant of the problem, in the worst case, Weave Share is
guaranteed to achieve a cost-savings of at least 1

4 of the maximum possible cost-savings.
In contrast with total cost of the query plan, cost-savings is actually a more incisive
measure that removes the distraction of the minimum "base-cost" that exists for any
given instance, even under the most optimal sharing arrangement. We also remark on
two practical special cases of the problem.

2 Background and Definitions

We set the stage by providing the necessary background on ACQ semantics, the paired
window technique for partial aggregation [9], and the procedure for "composing" mul-
tiple ACQs together [9] so that the results of their partial aggregation can be "shared."
We then give a formal definition of the optimization problem at hand and an overview
of an efficient practical algorithm for the problem.

2.1 Partial Aggregation for One ACQ

Each ACQ (or query) comprises an aggregation operator (sum, max, count, etc.)
along with two parameters: the range r, the length (in time) of the window of data
being aggregated, and the slide s, which indicates how frequently the results should be
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Fig. 1. (a) The paired window technique. (b) Creation of a composite slide for 2 ACQs, a and b,
with respective ranges of 12 and 10 seconds.

reported. For example, an ACQ may request that the maximum price of a particular
stock over the last hour (r = 60 min) be reported every 10 minutes (s = 10 min). If
r > s, as is the case in this example, we have a sliding or overlapping window, where
a single data tuple belongs to more than one window. If a new stock price value is
generated every minute, then this tuple participates in six aggregation operations.

Rather than aggregate the entire window of tuples from scratch each time, partial ag-
gregation [9, 10] first computes sub-aggregations of successive pieces of the window,
then applies a final aggregation function over these sub-aggregates. For example an ag-
gregate count would be computed by first using a count on each part of the window,
then using a sum over the partial counts. This technique can be used over all the dis-
tributive functions widely used in database systems. It reduces query processing cost by
preventing tuples from having to be aggregated repeatedly. Instead, each input tuple is
processed once by the sub-aggregation operator, the result of the sub-aggregation gets
buffered, and the final aggregate is assembled from those partial aggregates.

To capitalize on the idea of partial aggregation, Krishnamurthy et al. [9] proposed
the paired window technique, whereby each slide is partitioned into at most two slices
or fragments g1 and g2. See Figure 1a for an illustration. As pictured, g1 = r mod s,
and g2 = s− g1. Thus, since r/s is the number of slides per window, computing each
final aggregation uses at most →2r/s⊂ operations. This paired window approach allows
for effective sharing of the partial aggregation results for different queries on the same
data, the details of which we describe in the following section.

2.2 Merging Multiple ACQs

To process multiple ACQs with different range and slide parameters, there are two basic
strategies [9]: unshared partial aggregation (also referred to as no-sharing), or shared
partial aggregation. When unshared partial aggregation is used, each query is simply
processed separately using the paired window technique described above. This requires
storing multiple copies of the input tuples, as each query is answered using its own
individual sub-aggregation results.
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For the shared partial aggregation strategy for k > 1 ACQs, we need to compute
the fragments on which partial aggregation is applied in a different manner, so that
the sub-aggregation results can be reused in computing a different final aggregation
for each query. These fragments are computed as follows. For k ACQs with slides
s1, s2, . . . , sk, we create a composite slide of length s∞ equal to the least common mul-
tiple of (s1, s2, . . . , sk). Copy and repeat each slide i = 1 . . . k along with its corre-
sponding paired fragments s∞/si times, to fit the full length of the composite slide s∞

(see Figure 1b). The end of each fragment is referred to as an edge, and it serves as
a demarcation of the boundary between two fragments. (We use the term edge in this
paper to ensure consistency with previous work on query planning).

The fragments (and edges) of the final composite slide are determined by the distinct
edges that remain after all k slides have been overlayed. After these new fragments
are computed, partial aggregation can be applied on each fragment, and the results can
be shared between different ACQs. While shared partial aggregation certainly reduces
processing costs at the sub-aggregation level, it increases costs at final aggregation level.
Depending on the queries, the overall total cost may be higher than in case of no sharing
at all (Example 2 in [6]).

2.3 The Objective Function

An input instance for our optimization problem is comprised of a set of n ACQs. We
will say that two or more ACQs are shared if their partial aggregation was shared via
the shared partial aggregation strategy described above. We define an execution tree to
be a subset of the n ACQs in which all the ACQs in the subset are shared. A query plan
Q is then a grouping of the n ACQs into m execution trees, t1, t2, . . . , tm.

For each tree ti, let Eti (or, more simply, Ei) be the number of fragments generated
per second (also referred to as the edge rate). Let Ωi denote the total number of final-
aggregation operations performed on each fragment, which is termed the tree overlap
factor. If tree i consists of k shared queries, we can compute

Ωi =

k∑

j=1

rj
sj
.

The cost of processing a single tree ti, in terms of the total number of aggregate
operations per second, is thus

C(ti) = λ+ EiΩi (1)

where λ is the number of tuples arriving per second (tuple input rate) that represents the
cost at sub-aggregation level. The total cost of a query plan Q with m trees is simply
the sum of the costs of the individual trees:

C(Q) = mλ+

m∑

i=1

EiΩi (2)

C(Q) represents here the total number of aggregations per second for all ACQs. The
formal problem statement is then as follows.
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Given a set of n ACQs, find a query plan (a partitioning of the ACQs) that
minimizes total cost.

To recap, the cost of one execution tree comprises two parts: the cost of the sub-
aggregations at the intermediate aggregation step (first term in (2)) plus the cost of
final aggregations at the final aggregation step (second term in (2)). When queries in
two trees are merged into one execution tree, the number of necessary intermediate
(sub) aggregations decreases, because partial aggregates, which previously needed to
be computed for both trees independently, now can be computed just once and reused in
answering both queries. However, the number of final aggregation operations increases:
first, because the number of edges per second (edge rate) in the resulting execution tree
is at least the maximum edge rate of individual trees, and second, because now the
final aggregations need to be performed for each edge, for each query. The goal of
sharing query processing is to maximize savings during the sub-aggregation step while
minimizing the costs at the final-aggregation step.

2.4 Weave Share

Weave Share (WS) is a recently proposed greedy heuristic algorithm for computing
query plans [6]. Guirguis et al. first formalized the notion of weavability of multiple
queries as the ratio of the number of edges common to multiple ACQs to the total
number of edges in the composite slide. When several queries share partial aggregation
operations, the more common edges between ACQs that exist in their composite slide,
the more weavable they are. Naturally, to maximize the benefit of sharing ACQs, either
the shared ACQs should exhibit a high degree of weavability or the total overlap factor
(number of total final aggregation operations performed on shared fragments) should be
low, or both. Weave Share considers both of these factors in optimizing the processing
of ACQs. Each iteration of WS involves one merge step, where the queries of two
separate execution trees are combined into one tree, so that the two previously separate
groups of shared queries are now all shared together in one execution tree. There may
be up to n − 1 iterations, and the total time required by the WS algorithm is O(n2),
where n is the number of ACQs.

Weave Share Algorithm. The input to the algorithm is the original set of n ACQs, and
the output is a query plan, or a partition of the ACQs into m ≡ n disjoint groups
(execution trees).

1. Create n trees, one ACQ per tree.
2. Consider all possible pairs of trees. For each pair of trees, compute the reduction in

cost that would be achieved if queries belonging to both trees were merged.
3. Find the maximum reduction in cost over all possible pairs of trees. Ties may be

broken arbitrarily.
4. If this value is positive (i.e. it is indeed a cost-reduction), merge these trees and

repeat from step 2. Otherwise (the value is not positive), terminate the algorithm.
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Experimental Performance of Weave Share. Experimental results by Guirguis et al. [6]
demonstrate that the query plans produced by Weave Share outperform query plans
generated by other common algorithms, such as No Share (in which partial aggregation
results are not shared), Random (in which random trees are iteratively merged until
there is no longer an improvement), Local Search (that explores the solution subspace
by starting with a random partition of ACQs into trees and iteratively moving single
ACQs between trees), Shared (in which all queries constitute a single execution tree)
and Insert-then-Weave (in which each individual query is inserted one-by-one into the
tree that it weaves best with). For different input parameters (λ and n) the Weave Share
plan had a cost as much as 40 times better than other plans. For small problem instances,
exhaustive search was used to find the optimal query plan; Weave Share was able to find
these plans in all but one instance.

The evaluation of Weave Share’s performance was conducted on a synthetic data
stream, to allow control over input parameters and to cover the most likely real scenar-
ios. Although Weave Share is shown to outperform other strategies on a synthetic data
stream, there is no guarantee on the quality of the solution produced by the algorithm.
Extensive comparison of Weave Share with an optimal solution produced by exhaustive
search is not feasible for any practical number of ACQs. In short, Weave Share performs
better than the alternative heuristic algorithms but not much is understood about how
many more aggregations per second the query plan produced by Weave Share requires
compared to the number of aggregations per second in an optimal query plan.

3 A Cost-Savings Approximation

In this section, we give a guarantee on the amount of cost-savings achieved by Weave
Share. The outcome of the Weave Share algorithm features a decrease in the total cost
of the query plan compared to the no-share query plan in which each query is executed
by itself. It is this improvement, or savings, achieved by the Weave Share algorithm
that we seek to bound. We find this measure of maximizing cost-savings appealing,
as it focuses on the achievements of the algorithm compared with that of the optimal
solution. In contrast, under the umbrella of the objective of minimizing total cost, we
would include costs that are inherent and unavoidable, to both WS and OPT.

We first introduce some notation. Recall that a query plan is a partitioning of the
queries into execution trees. We refer to an execution tree that consists of more than one
query as a multi-tree. We will indicate an execution tree by listing its ACQs in square
brackets, for example: [q1, q2, . . . , qk] refers to the multi-tree composed of queries
q1, . . . , qk merged together, and [qi] refers to an execution tree with a single stand-
alone query qi. We can indicate a query plan using a set of such lists. For example,
{[q1], [q2, q3], [q4]} is a query plan with three execution trees, one with only query q1,
another with two merged queries q2 and q3, and another with only query q4.

Let Q denote the query plan produced by the Weave Share algorithm, and m denote
the number of execution trees in Q. Let Q→ denote an optimal query plan (one that
minimizes total cost over all query plans), and m→ denote the number of its execution
trees. Let N denote the no-share query plan, which has n execution trees, one for each
stand-alone ACQ. Let μ be the number of merges made by WS to reach Q, and μ→ be
the number of merges required to reach Q→ from N . Note that
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n = m+ μ = m→ + μ→, (3)

since each separate tree represents a potential merge that did not take place.
For any query plan X we denote the difference between the cost of the no-share

plan and the cost of X by R(X) = C(N) − C(X). Note that if R(X) is positive, it
represents a reduction, or savings, in cost compared to the no-share plan.

We are now ready to state the central theorem of this work.

Theorem 1. The amount of savings achieved by the Weave Share query plan is at least
a quarter of the savings achieved by an optimal query plan, i.e.,

R(Q) ∈ R(Q→)/4,

under the following three conditions:

– the range and slide of each query coincide (i.e., ri = si for each query qi)
– the tuple input rate λ exceeds twice the edge rate of any tree comprised of exactly

two ACQs (i.e., λ ∈ 2E[qi,qj ] for any i, j ≥ {1, . . . , n}, i ∪= j)
– the number of merges made by WS in Q is at least half the number of merges made

in Q→ (i.e., μ ∈ μ→/2)

We note that the special case of the problem enforced by the above three conditions is
quite natural and applicable to practical settings. It is common in real-world applications
for query windows to "tumble" [9], with disjoint windows that cover the entire input.
The assumption on the size of λ is very modest in practice. After applying equation (3),
the third condition is equivalent tom ≡ n/2+m→/2, which has held in all previous WS
experiments [5, 6]. In fact, a stronger conditionm ≡ n/2 easily held in all experiments
involving medium or high tuple input rate λ. For example, for the input rates equal
to or exceeding 50 tuples per second, the number of resulting multi-trees produced by
WS was at most 0.06n. In the special case when input rate was set to be ten thousand
tuples per second,m did not even exceed 0.01n [5]. Problem instances that involve such
medium or high tuple input rates appear in the majority of data stream applications and
in nearly all monitoring applications (network and stock price monitoring, pay-per-click
applications).

To prove this theorem, we first establish two useful lemmas, both of which provide
interesting insight into the nature of sharing and merging.

3.1 Savings Dilution

Our first lemma demonstrates that under some practical assumptions, there is some
degree of "dilution" in cost-savings when merging a query into a multi-tree compared
with merging two stand-alone queries. Specifically, we consider the restricted version
of the problem where for each query its range and slide coincide (r = s). Moreover,
assume that the tuple input rate λ exceeds twice the edge rate of any tree comprised of
exactly two individual queries, i.e. λ ∈ 2E[a,b] for any two queries a and b. Under these
circumstances, we show that the savings achieved by merging two individual queries
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together is at least half the savings achieved by merging an individual query into a
multi-tree.

Let C([a], [b]) denote the total cost of processing the two queries a and b separately,
with no sharing. Let C([a, b]) denote the total cost when processing the two queries a
and b as one, merged, execution tree (sharing their partial aggregates). Let r([a], [b]) =
C([a], [b])−C([a, b]), the cost-savings, or reduction in cost, from merging the two trees
[a] and [b]. More generally, let r(t1, t2) denote the cost-savings from merging the two
trees t1 and t2, either or both of which may be a multi-tree.

Lemma 1. Consider an execution tree of k queries [q1, q2, . . . , qk]. Assume ri = si for
all queries i = 1 . . . k. Further assume λ ∈ 2E[qi,qj ] for any i, j ≥ {1, . . . , k}, i ∪= j.
Let S be any subset of {1, . . . , k}. For any a, b, c ≥ S,

2r([qa], [qb]) ∈ r([qS−c], [qc]),

where qS−c denotes the multi-tree comprised of all queries in S other than c.

Proof. To improve readability, we will write Ea for E[qa] and Eab for E[qa,qb]. We will
similarly simplify the Ω terms. Since ri = si for all i, we have Ωa = Ωb = Ωc = 1.
We begin by noting that the savings achieved by merging qa and qb is r([qa], [qb]) =
λ+Ea+Eb−2Eab. The savings achieved by merging qc and qS−c is r([qS−c], [qc]) =
λ+(|S| − 1)ES−c +Ec − |S| ·ES . Using our assumption about λ, we have λ+ES ∈
Ec+2Eab.Hence, sinceEa+Eb ∈ Eab, we can say λ+2(Ea+Eb)−4Eab ∈ Ec−ES .
From this we can conclude, using ES ∈ ES−c, that 2(λ + Ea + Eb − 2Eab) ∈ λ +
(|S| − 1)ES−c + Ec − |S|ES , or equivalently, that 2r([qa], [qb]) ∈ r([qS−c], [qc]).

3.2 The OPT-Sequence

Our second lemma will involve a careful WS-based specification of Q→, our optimal
query plan, which will ultimately allow us to map the merges made by WS to increments
of savings in cost achieved by Q→. We begin with a helpful observation.

Observation 2. Consider an execution tree consisting of several ACQs. The total cost
of this tree, and thus the savings achieved by merging the constituent queries together
into the tree, does not depend on the order in which queries are merged into the tree.

Construction of OPT-lists. Based on the above observation, any valid query plan, in-
cluding Q→, can be represented as a specific sequence of steps whereby each step con-
stitutes merging an individual query either with another individual query or into a tree
of queries. In other words, each tree of Q→ can be represented as an ordered list of
constituent queries, and the order of list elements (from right to left) defines a specific
order of merges for that tree. For instance, for four queries a, b, c, and d, we can use
the ordered list [qa, qb, qc, qd] to denote the execution tree that is comprised of all four
queries, as well as to indicate the ordered steps of first merging qc with qd, then merging
qb with the tree [qc, qd], then merging qa with [qb, qc, qd].

Below, we describe a procedure for constructing an ordered query list for each tree
of Q→. We will refer to each ordered list of queries as an OPT-list, and the execution
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tree to which it refers as an OPT-tree. We will refer to them collectively as the set of
OPT-lists, or just OPT for short. This representation ofQ→ will allow us to compare the
savings earned by the Weave Share solutionQ to that ofQ→. Recall thatm (respectively,
m→) is the number of trees in the final Weave Share plan Q (respectively,Q→).

1. initialize all m∗ OPT-lists (one list for each tree of Q∗) to empty
{now consider the steps of Weave Share algorithm on the set of queries, one by one}

2. for each merge i of the Weave Share algorithm, i = 1 . . . µ do
3. if merge i is between two individual queries then
4. let the two queries be called x and y
5. add query x to the end of the OPT-list it belongs to
6. add query y to the end of the OPT-list it belongs to
7. else if merge i is between a multi-tree and a single query then
8. add that query to the end of the OPT-list it belongs to
9. else {merge i is between 2 multi-trees}

10. the queries involved have already been added in a previous iteration
11. end if
12. end for

Note that by following this procedure, the OPT-lists may get fully populated before
Weave Share finishes (if the final merges of WS are between existing multi-trees). And
conversely, Weave Share may finish before the OPT-lists get fully populated, if WS
leaves many queries as stand-alone queries. In the latter case, the incomplete OPT-lists
may be populated in an arbitrary order.

Construction of OPT-sequence. The sought-after final sequence of merges leading to
Q→ can be attained by considering the OPT-lists in arbitrary order and walking through
each tree-list from right to left, merging one query at a time into its corresponding final
OPT-tree. Recall that μ→ denotes the number of merges in OPT. In executing this OPT
sequence of merges, we are effectively starting at the query plan N where there is no
sharing—all queries are in their own individual execution trees—and proceeding step
by step to the optimal query plan Q→. After each merge, we are at an intermediary
query plan, where some queries that OPT will eventually merge are still individual
queries, and some of the final OPT-trees are not complete. We denote this sequence
of intermediate query plans (N = Q0, Q1, . . . , Qµ∗ = Q→), numbered in the order
specified by the procedure above, and we refer to it as the OPT-sequence. We will
abuse this term and also use it to refer to the sequence of merges made by OPT in
proceeding from N = Q0 to Q→.

Consider the change in cost between each adjacent pair of query plans in the OPT-
sequence. Let us define for j = 1 . . . μ→, each change in cost r→j = C(Qj−1)− C(Qj).
We now sort the r→j ’s in non-increasing order and renumber them so that

r→1 ∈ r→2 ∈ r→3 ∈ . . . ∈ r→µ∗ . (4)

A given WS merge (either between two individual queries, a query and a tree, or two
trees) is said to map to a query in an OPT-list if, upon executing the merge, that query
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is added to an OPT-list in the above procedure. The following lemma is implicit in the
construction procedure of the OPT-lists. For completeness we give a proof.

Lemma 2. Each merge of Weave Share maps to at most two queries in the OPT-lists
defined above. And each query in an OPT-list is only mapped to once.

Proof. If at merge i, Weave Share merges two existing multi-trees, then merge i of
Weave Share adds no new queries to the OPT-lists. If merge i involves one stand-alone
query (in the case of merging a stand-alone query into a multi-tree), then it adds one
query to an OPT-list. If merge i involves two stand-alone queries then it adds two
queries to one or two OPT-lists. Hence each Weave Share merge maps to at most 2
of OPT’s merges. Each query is only added once because the procedure specifies that
queries are added to an OPT-list only the first time they are "touched" by Weave Share:
when they are still stand-alone queries.

Loosely speaking, the construction procedure of the OPT-sequence above accounts
for each r→j using a WS merge. It effectively ensures that each WS merge precludes at
most two of OPT’s merges in the OPT-sequence defined above.

3.3 Proof of Main Theorem

We are now ready to prove Theorem 1. The idea of the proof is to break both OPT
and Weave Share down into a sequence of merge-steps and then compare the savings
achieved by Weave Share at each step to some corresponding savings achieved by OPT.
This allows us to compare the total savings achieved by Weave Share with the total
savings achieved by OPT.

Proof. First we handle a formality of bookkeeping. Recall that by assumption we have:

μ ∈ (1/2)μ→ (5)

Further recall that each merge of WS may map to 2 queries in OPT, which means WS
may be making more merges after all of the queries in OPT have been mapped. Hence
we simply define r→j = 0 for all j = μ→ + 1 . . . 2μ.

We now proceed with our main argument. We denote the reductions in cost of each
WS merge to be r1, . . . , rµ, indexed by the order of merges executed by the Weave
Share algorithm. That is, ri is the savings earned from the ith merge of the Weave Share
algorithm. The bulk of the proof will be dedicated to showing that for any i = 1 . . . μ,
we have 2ri ∈ r→2i−1.

Savings at the first iteration of Weave Share. We begin with i = 1, when Weave Share
merges two individual queries. The savings achieved at this step is at least half of the
maximum individual savings achieved by OPT, i.e. 2r1 ∈ r→1 . Indeed, if r→1 is achieved
by merging an individual query into a multi-tree, the inequality follows from Lemma 1
in Section 3.1. If r→1 is achieved by merging two stand-alone queries, then from the
greedy nature of Weave Share it follows that r1 ∈ r→1 . Note that by definition of the
OPT-sequence, r→j was not achieved by merging two multi-trees, for any j = 1 . . . μ→.
Hence, we obtain 2r1 ∈ r→1 . This also implies 2r1 ∈ r→2 , due to the re-numbering in (4).
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Savings at ith iteration of Weave Share We now generalize the argument for savings ri
that is obtained at the ith merge of Weave Share. We will demonstrate that 2ri ∈ r→2i−1,
and hence that also 2ri ∈ r→2i (since r→2i−1 ∈ r→2i). Note that if 2i − 1 > μ→ then the
claim is trivially true, since then r2i−1 = 0. Hence we restrict our attention to the case
that 2i− 1 ≡ μ→. Recall that each reduction in cost r→j is derived from merging a single
query into an existing OPT-tree. We will refer to this query as xj , and the last query that
was added to the same OPT-list before xj will be referred to as yj . I.e., xj and yj are
adjacent in some OPT-list. We will call xj and yj the queries of r→j .

Since Weave Share is greedy, ri is at least the savings that we can get from any
merge of two stand-alone queries that are still available just before the ith merge of
Weave Share. So let us consider the quality of the merges that are still available to WS
at this juncture. Currently, at merge i of Weave Share, either:

1. x2i−1 and y2i−1 are still stand-alone queries, available to be merged by Weave
Share, or

2. Weave Share has already used either x2i−1 or y2i−1 in one of its earlier i−1merges.
In this case another pair of queries (x1 and y1, x2 and y2,. . ., or x2i−2 and y2i−2)
are still available to be merged. We know this because by Lemma 2, a total of at
most 2(i− 1) OPT queries have been mapped by the first i− 1 WS merges. By the
pigeon hole principle, we must still have at least one pair of queries (x1 and y1, x2
and y2, . . . , or xj−1 and yj−1) that are unmapped, i.e., stand-alone queries thus far
untouched by WS.

Let us use x and y to denote the pair of queries that are still available to be merged
of these possibilities. By Lemma 1, we know that merging x and y achieves at least as
much reduction in cost as half of the reduction achieved when OPT merged x into the
OPT-tree that x and y are a part of. Therefore, we know that

r(x, y) ∈ 1

2
min(r→1 , . . . , r

→
2i−1) ∈

1

2
(r→2i−1).

We also know by definition of WS that ri ∈ r(x, y). Hence, for i = 1 . . . μ we have:

2ri ∈ r→2i−1, and (6)

2ri ∈ r→2i

We sum up the inequalities in (6) to get 2 · 2(r1 + r2 + . . . + rµ) ∈ (r→1 + r→2 +
r→3 + . . .+ r→2µ). And then, using inequality (5), we have (r→1 + r→2 + r→3 + . . .+ r→2µ) ∈
(r→1 + r→2 + r→3 + . . .+ r→µ→). Hence we obtain 4R(Q) ∈ R(Q→).

4 Summary and Open Problems

In this paper we have studied an important optimization problem for efficient sharing of
ACQs for DSMSs. We analyzed a previously proposed greedy algorithm, Weave Share,
which performed extremely well in an experimental study. We show that under some
practical assumptions this algorithm guarantees a 4-approximation to the optimal cost-
savings. Our analysis technique allowed us to elucidate some properties of the effect
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of sharing partial aggregates on total cost, and also required an exploration into the
structural properties of an optimal solution. We remark that a restricted version of the
problem, in which each tree of the resulting query plan is allowed to have at most two
queries in it, can be solved exactly and in polynomial time by reducing it to maximum
weighted matching in a graph, in which the vertices represent the ACQs and the edges
represent the reduction in cost achieved by sharing the two queries. Another interesting
variation that occurs when the ACQs are ordered (say, by expiration time) and the trees
in the query plan are formed by contiguous queries in order, can be solved exactly and
in polynomial time via a dynamic programming solution.

Several open questions remain. Determining whether there is a tighter analysis of
WS, or an algorithm with a better approximation, are probably two the most immedi-
ate. Removing the assumptions required for proving our approximation may also be
possible. An analysis of a follow-up Tri-Weave [7] algorithm would also be interesting.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.-H., Lind-
ner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design
of the Borealis stream processing engine. In: CIDR (2005)

2. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data stream management.
VLDB Journal (2003)

3. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom,
J.: STREAM: The Stanford stream data manager. In: SIGMOD (2003)

4. Ghanem, T.M., Hammad, M.A., Mokbel, M.F., Aref, W.G., Elmagarmid, A.K.: Incremental
evaluation of sliding-window queries over data streams. IEEE TKDE (2007)

5. Guirguis, S.: Scalable Processing of Multiple Aggregate Continuous Queries. PhD thesis.
University of Pittsburgh (2011)

6. Guirguis, S., Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A.: Optimized processing of mul-
tiple aggregate continuous queries. In: CIKM (2011)

7. Guirguis, S., Sharaf, M.A., Chrysanthis, P.K., Labrinidis, A.: Three-level processing of mul-
tiple aggregate continuous queries. In: ICDE, pp. 929–940 (2012)

8. Hammad, M.A., Mokbel, M.F., Ali, M.H., Aref, W.G., Catlin, A.C., Elmagarmid, A.K.,
Eltabakh, M.Y., Elfeky, M.G., Ghanem, T.M., Gwadera, R., Ilyas, I.F., Marzouk, M.S.,
Xiong, X.: Nile: A query processing engine for data streams. In: ICDE (2004)

9. Krishnamurthy, S., Wu, C., Franklin, M.: On-the-fly sharing for streamed aggregation. In:
SIGMOD (2006)

10. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: Efficient evalua-
tion of sliding-window aggregates over data streams. SIGMOD Record (2005)

11. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: Semantics and evaluation techniques
for window aggregates in data streams. In: SIGMOD (2005)

12. Naidu, K.V.M., Rastogi, R., Satkin, S., Srinivasan, A.: Memory-constrained aggregate com-
putation over data streams. In: ICDE (2011)

13. Streambase (2006), http://www.streambase.com
14. System S (2008), http://domino.research.ibm.com

http://www.streambase.com
http://domino.research.ibm.com


On the Kernelization Complexity

of String Problems

Manu Basavaraju, Fahad Panolan, Ashutosh Rai, M.S. Ramanujan,
and Saket Saurabh

The Institute of Mathematical Sciences, Chennai, India
{manub,fahad,ashutosh,msramanujan,saket}@imsc.res.in

Abstract. In Closest String problem we are given an alphabet Σ,
a set of strings S = {s1, s2, . . . , sk} over Σ such that |si| = n and an
integer d. The objective is to check whether there exists a string s over
Σ such that dH(s, si) ≤ d, i ∈ {1, . . . , k}, where dH(x, y) denotes the
number of places strings x and y differ at. Closest String is a proto-
type string problem. This problem together with several of its variants
such as Distinguishing String Selection and Closest Substring
have been extensively studied from parameterized complexity perspec-
tive. These problems have been studied with respect to parameters that
are combinations of k, d, |Σ| and n. However, surprisingly the kernel-
ization question for these problems (for the versions when they admit
fixed parameter tractable algorithms) is not studied at all. In this paper
we fill this gap in the literature and do a comprehensive study of these
problems from kernelization complexity perspective. We almost settle all
the problems by either obtaining a polynomial kernel or showing that
the problem does not admit a polynomial kernel assuming a complexity
theoretic assumption.

Keywords: Closest String, Kernelization, Cross-Composition.

1 Introduction

String matching problems generally involve finding a string which is at a small
(or large) distance from given set(s) of strings. The distance here is measured
in terms of Hamming distance. These problems arise in a variety of fields in-
cluding computational biology [6, 19] and linguistics. These are also interesting
combinatorial and algorithmic problems. String problems have been an active
area of research in algorithmics and as always most of the interesting problems
in the area are NP-complete [12, 14, 15]. Thus, these problems have been stud-
ied extensively from algorithmic approaches that cope with NP-hardness, like
approximation [1, 14–17] and parameterized complexity [5, 9, 10, 13, 18]. In this
paper we study a variety of string problems from kernelization perspective – a
subarea in parmeterized complexity – which is the first such approach towards
these problems to the best of our knowledge.

In the parameterized complexity setting, an instance comes with an integer
parameter k – formally, a parameterized problem Q is a subset of Σ∞×N for some
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finite alphabet Σ. We say that the problem is fixed parameter tractable (FPT)
if there exists an algorithm solving any instance (x, k) in time f(k)(|x|O(1)) for
some computable function f . It is known that a decidable problem is FPT if
and only if it is kernelizable: a kernelization algorithm for a problem Q takes
an instance (x, k) and in time polynomial in |x| + k produces an equivalent
instance (x≥, k≥) (i.e., (x, k) → Q iff (x≥, k≥) → Q) such that |x≥| + k≥ ⊂ g(k) for
some computable function g. The function g is the size of the kernel, and if it is
polynomial, we say thatQ admits a polynomial kernel. The study of kernelization
is a major research frontier of parameterized complexity and many important
recent advances in the area are on kernelization. The recent development of a
framework for ruling out polynomial kernels under certain complexity-theoretic
assumptions [2, 7, 11] has added a new dimension to the field and strengthened
its connections to classical complexity.

In what follows, we formally define the problems we study in this paper, give
a short overview of previous work on each of them and describe our results. For
an ease of presentation we also give our results in Table 1.

Closest String and Distinguishing String Selection. The first problem we
look at is the following Closest String problem.

Closest String
Input: An alphabet Σ, a set of strings S = {s1, s2, . . . , sk} over Σ such

that |si| = n, i → [k] = {1, . . . , k} and an integer d.
Question: Does there exist a string s, |s| = n such that ≡i → [k], dH(s, si) ⊂ d?

The problem is NP-complete because of results of Frances and Litman [12].
Another related problem, which is a generalization of Closest String is Dis-
tinguishing String Selection (DSS).

Distinguishing String Selection (DSS)
Input: An alphabet Σ, two sets of strings S1 = {s1, s2, . . . , sk1}, S2 =

{s≥1, s≥2, . . . , s≥k2
} over Σ such that |si| = |s≥j | = n ≡i → [k1] and

≡j → [k2] and integers d1 and d2.
Question: Does there exist a string s, |s| = n such that dH(s, si) ⊂ d1 ≡i → [k1]

and dH(s, s≥j) ∈ n− d2 ≡j → [k2]?

Clearly, DSS is also NP-complete via a trivial reduction from Closest String.
Gramm et al. [13] studied both of these problems and proved that the problems
are FPT when parameterized by the distance d (in case of DSS, we take d =
d1 + d2). They also show that Closest String is FPT when parameterized by
the number of strings k.

We show that both these problems are not likely to have polynomial ker-
nels when parameterized by the distance d. We arrive at the results by showing
a polynomial parameter transformation from CNF-SAT parameterized by the
number of variables. Our reduction also shows as a by-product that both the
problems do not have polynomial kernels when parameterized by both the dis-
tance d and the length of the strings n. We also obtain a simple kernel for DSS
when parameterized by d1, d2 and k1, k2 together.
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Table 1. A catalogue of string problems and their polynomial kernelization status. For
DSS, we take k = k1 + k2 and d = d1 + d2. All the no polynomial kernel results and
the O(k2d log k) kernel for DSS are new.

Parameters
d k (d, k) (d, n) l (k, l, d)

Closest String None open O(k2d log k) [13] None - -
DSS None FPT not

known
O(k2d log k) None - -

Closest Substring W[1]-hard W[1]-hard W[1]-hard - None None

Closest Substring. Another problem, which we study is a generalization of
Closest String, namely Closest Substring.

Closest Substring
Input: An alphabet Σ, a set of strings S = {s1, s2, . . . , sk} (where si’s can

have different lengths) over Σ, and integers l and d.
Question: Does there exist strings s, s≥1, s

≥
2, . . . , s

≥
k, |s| = |s≥i| = l ≡i → [k] such

that dH(s, s≥i) ⊂ d and s≥i is a substring of si ≡i → [k]?

Clearly, when |si| = n = l ≡i → [k], the above problem is equivalent to
Closest String. Fellows et al. [10] proved that this problem is strictly harder
than Closest String in the sense that even for constant alphabet size, the
problem is W[1]-hard when parameterized by the number of strings k. Marx [18]
showed that the problem is W[1]-hard parameterized by the distance d, even
when the alphabet is of a constant size. He also proved that the problem is FPT
when parameterized by the target string length l and hence when parameterized
by a combination of all three parameters, d, k and l. We prove that Closest
Substring does not have a polynomial kernel when parameterized by k, l and
d together unless coNP ≥ NP/poly. We arrive at the result by giving a cross-
composition from a restricted version of the same problem [3].

2 Preliminaries

In this section we define some concepts and mention some theorems which will
be used to derive results in the later sections.

Strings. For a string s, we use s[i] to denote the symbol occurring at the ith

position for 1 ⊂ i ⊂ |s|, where |s| denotes the size of the string s. A substring of a
string s is a continuous sequence of symbols from a string, while a subsequence of
a string is a sequence of symbols which appear in the same order (not necessarily
consecutively) in the original string. We denote the Hamming distance between
two equal length strings si and sj by dH(si, sj). Formally, dH(si, sj) = |{p →
[|si|] | si[p] ∪= sj [p]}|. We use [k] for denoting the set {1, 2, 3, . . . , k}.
Kernelization Hardness Framework. The two main ways of showing kernel-
ization lower bounds are to either give some variant of composition or to transfer
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a lower bound from another problem to the target problem by an appropriate
reduction. Next we provide the essential definitions for both strategies.

Definition 1 (polynomial equivalence relation [3]). An equivalence rela-
tion R on Σ∞ is called a polynomial equivalence relation if the following holds:
(i) Equivalence of any x, y → Σ∞ can be checked in time polynomial in |x|+ |y|.
(ii) Any finite set S ≥ Σ∞ has at most (maxx∪S |x|)O(1) R-equivalence classes.

The idea behind polynomial equivalence relations is that it suffices to give cross-
compositions that work for any single equivalence class.

Definition 2 (cross-composition [3]). Let L ≥ Σ∞ and let Q ≥ Σ∞ × N be a
parameterized problem. We say that L cross-composes into Q if there is a polyno-
mial equivalence relation R and an algorithm which, given t strings x1, x2, . . . , xt
belonging to the same equivalence class of R, computes an instance (x∞, k∞) →
Σ∞ ×N in time polynomial in

∑t
i=1 |xi| such that: (i) (x∞, k∞) → Q◦ xi → L for

some 1 ⊂ i ⊂ t and (ii) k∞ is bounded by a polynomial in (max1∈i∈t |xi|+ log t).

This definition of cross composition can be generalized to accommodate multiple
parameters. In that case, we require each of them to be bounded by a polynomial
in (max1∈i∈t |xi| + log t). The following theorem relates cross composition to
kernelization lower bounds and holds true for multiple parameterizations.

Theorem 1 ([3]). If an NP-hard problem L ≥ Σ∞ has a cross-composition into
a parameterized problem Q and Q has a polynomial kernel then coNP ≥ NP/poly.

The second lower bound strategy, instead of a direct proof via compositions, is
to provide a polynomial parameter transformation from a hard problem.

Definition 3 ([4]). Let P,Q ≥ Σ∞ × N be parameterized problems. We say
that a polynomially computable function f : Σ∞ × N ⊆ Σ∞ × N is a polynomial
parameter transformation (PPT) from P to Q if for all (x, k) → Σ∞ × N the
following holds: (x, k) → P if and only if (x≥, k≥) = f(x, k) → Q and k≥ ⊂ kO(1).

Again, to have a PPT reduction from a problem P having multiple parameters
to another problem Q, we require each of the parameters of Q to be polynomial
in parameters of P . The following theorem holds true for this case also.

Theorem 2 ([4, 8]). Let P and Q be parameterized problems and P̃ and Q̃ be
the unparameterized versions of P and Q respectively. Suppose that P̃ is NP-hard
and Q̃ is in NP. Assume that there is a polynomial parameter transformation
from P to Q. Then if Q admits a polynomial kernel, so does P . (Hence if P
admits no polynomial kernel under some assumption then neither does Q.)

For all the parameterized problems considered, we precede the problem name
with respective parameters. For an example, (d, n)Closest String is Closest
String parameterized by the distance d and the length of the strings n.

3 Kernel Lower Bounds for Closest String

We prove that (d, n)Closest String does not admit a polynomial kernel unless
coNP≥NP/poly through a PPT reduction from CNF-SAT parameterized by the
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number of variables, following an approach which is an extension of the proof
on NP-completeness of Closest String by Frances and Litman [12]. Given
a CNF-SAT formula F = C1 ∀ C2 ∀ . . . ∀ Cm with variables x1, x2 . . . , xn, we
obtain an instance of (d, n)Closest String as follows.
Step 1. We first transform the formula F to F ≥ with 2n variables such that
each of the clauses in F ≥ have length either n or 1. We do so by adding n new
variables, namely y1, y2, . . . , yn. We first add n clauses to the formula which are
all single literals and contain negation of the new variables. Also, for any clause
having less than n (say k) variables in F , we add (n − k) new literals, namely
y1, y2, . . . , yn−k to it. Formally,

F ≥ = C≥
1 ∀ C≥

2 ∀ . . . ∀ C≥
m ∀ ¬y1 ∀ ¬y2 ∀ . . . ∀ ¬yn

C≥
i = Ci ∩ y1 ∩ y2 ∩ . . . ∩ yn−k where |Ci| = k

It is easy to see that F is satisfiable if and only if F ≥ is satisfiable. We name each
singleton clause ¬yi as C≥

m+i for all i ⊂ n for the sake of clarity.
Step 2. In this step, we obtain an instance of (d, n)Closest String from F ≥.
The instance has m+13n−8 strings each of length 6n−4. The set S is a disjoint
union of sets S1 and S2. In S1, there is a string corresponding to each of the
clauses in F ≥ accounting for a total of (m+n) strings. S2 will consists of 12n− 8
strings, four for each i → [3n− 2]. For a variable xj (or yj) and a clause C≥

i, we
define a two bit string Xi,j (or Yi,j) as follows.

Xi,j(or Yi,j) =






11, if xj(or yj) occurs positively in C≥
i

00, if xj(or yj) occurs negatively in C≥
i

10, if xj(or yj) does not occur in C
≥
i

1. For each of the C≥
i’s, 1 ⊂ i ⊂ m, we define a string si and add it to S1, where

si = Xi,1Xi,2 . . .Xi,nYi,1Yi,2 . . . Yi,n0
2n−4.

2. For C≥
m+i’s, 1 ⊂ i ⊂ n, we define a string sm+i = {10}n+i−100{10}2n−2−i

and add them to S1.
3. We add the following four strings to S2 for all i → [3n− 2]:

(a) {10}i−101{10}3n−2−i, (b) {10}i−110{10}3n−2−i,
(c) {01}i−101{01}3n−2−i and (d) {01}i−110{01}3n−2−i.

So, we get an instance (S, d) of (d, n)Closest String by putting S = S1 ∅ S2

and d = 3n− 2. Here, the length n≥ of each of the strings is equal to 6n− 4 and
the number of strings k is equal to m+ 13n− 8 where m and n are the number
of clauses and the number of variables respectively in F .

Lemma 1. Let s be a string of length 6n − 4. If dH(s, x) ⊂ 3n − 2 ≡ x → S2

then s[2i] = s[2i− 1] ≡i → [3n− 2].

Proof. For any i → [3n−2], we look at the four strings corresponding to it in S2.
Then we look at two strings of length 6n− 6, which are {10}i−1{10}3n−2−i and
{01}i−1{01}3n−2−i. The first is present as a subsequence in (a) and (b), and the
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second is present as a subsequence in (c) and (d). These subsequences occupy
the same positions in the strings and are complements of each other, hence any
string has to be at a distance at least 3n− 3 from (a) and (b) or a distance at
least 3n − 3 from (c) and (d). Now, let us assume that there exists a string s
such that dH(s, x) ⊂ 3n − 2 ≡ x → S2. As argued earlier, it is at a distance at
least 3n− 3 from (a) and (b) or at distance at least 3n− 3 from (c) and (d). Let
us look at the case when it is at a distance 3n− 3 from (a) and (b). The strings
(a) and (b) differ at just two positions, 2i− 1 and 2i. In these two positions, (a)
has 01 and (b) has 10. So, s will have to have 00 or 11 at these two positions.
Otherwise, it will differ at these two positions with one of the strings, which,
in addition to already differing 3n− 3 positions will result in a total Hamming
distance of 3n− 1, which is a contradiction. Similarly we can argue that s will
have to have 00 or 11 at these positions if it is at distance at least 3n− 3 from
(c) and (d). In this way, we have shown that if dH(s, x) ⊂ 3n− 2 ≡x → S2, then
s[2i] = s[2i− 1] ≡i → [3n− 2]. We call such a string a “doubled” string. ↓∨
Lemma 2. (S, d) is a YES instance of (d, n)Closest String if and only if F ≥

is satisfiable.

Proof. (⇔) Let f be a satisfying assignment for F ≥. Now, we have to show that
there exists a string s, which is at a distance at most 3n− 2 from all the strings
in S. For that, we first define a two bit string tz for each variable, where z = xi
or yi for i → [n]. We define tz to be 00 if z is set to be 0 by f , 11 otherwise.
We take s = tx1tx2 . . . txnty1ty2 . . . tyn0

2n−4, which is doubled. All the strings
in S2 will differ at exactly 3n − 2 places with a doubled string. In the set S1,
each string comes from a clause. For 1 ⊂ i ⊂ m, each clause C≥

i has exactly
n variables. By the definition of si, it matches at the trailing 2n − 4 zeroes
with s. Now, in the remaining 4n positions, let us first look at the 2n positions
corresponding to n variables which are not present in the clause. Clearly, s being
a doubled string matches at n positions and differs at n positions of these 2n
positions. Of the remaining 2n positions, s has to match si at at least two
places, precisely at the variable which satisfies the clause. In the worst case, it
differs at all the remaining 2n − 2 places and we get dH(s, si) ⊂ 3n − 2. For
(m + 1) ⊂ i ⊂ (m + n), each clause C≥

i has only one variable, and the string s
has to match the string si at the positions corresponding to that variable. In the
remaining 6n− 6 positions, it differs at exactly half the positions, i.e. at 3n− 3
places. So, dH(s, si) = 3n− 3 ⊂ 3n− 2.

(⇐) From Lemma 1, it is clear that the target string s, which makes (S, d) a
YES instance of (d, n)Closest String, has to be doubled. To get an assignment
for F ≥, we assign a variable xi to 0 if s[2i− 1] = s[2i] = 0, 1 otherwise. Similarly,
we assign yi to 0 if s[2n+ 2i− 1] = s[2n+ 2i] = 0, 1 otherwise. Since the string
s is doubled, each of the variables get unique assignments.

Now, to prove that this assignment is a satisfying assignment for F ≥, we have
to prove that each clause contains at least one literal that is assigned to be true by
this assignment. To see that, we look at the string si corresponding to the clause
C≥

i. If i ⊂ m, then the clause has n variables. On the 2n positions corresponding
to the variables absent in the clause, the string s, which is doubled, differs
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at exactly n places. On the positions corresponding to the remaining variables
(variables present in the clause C≥

i), bits assigned in si are either 00 or 11. Since
s is a doubled string, s can not differ with exactly one bit out of the two bits
corresponding to each of these variables. Now, we claim that s matches at at
least two places corresponding to a variable in C≥

i. If not, then s differs at two
positions for each of the variables present in the clause, in addition to differing
at n positions for the variables not present in the clause. So, s differs si at at
least 3n positions, which is a contradiction. The variable corresponding to the
matching position satisfies the clause. For (m + 1) ⊂ i ⊂ (m + n), each clause
contains only one literal. The doubled string s differs with si at exactly 3n− 3
positions, which is half of the locations filled with 10’s. The only places left are
where si has 00. If s has 11 in that place, the distance between s and si becomes
3n − 1, which is not possible. Hence, s has 00 at positions corresponding to
variable yi, and the variable is assigned 0, which satisfies the clause. ↓∨

We proved that (S, d) is a YES instance of (d, n)Closest String if and only
if F ≥ is satisfiable. We know that F ≥ is satisfiable if and only if F is. Hence,
we have obtained an instance of (d, n)Closest String from an instance of
CNF-SAT, where the parameters n≥ and d are polynomial in the number of
variables (n) in the original CNF-SAT instance. It is easy to see that the above
procedure can be carried out in polynomial time. So essentially, we have shown
a Polynomial Parameter Transformation from CNF-SAT parameterized by the
number of variables to (d, n)Closest String. We also know the following.

Theorem 3 ([11]). CNF-SAT does not admit a polynomial kernel when pa-
rameterized by the number of variables unless coNP ≥ NP/poly.

Combining theorems 2 and 3, we get the following.

Theorem 4. (d, n)Closest String does not admit a polynomial kernel unless
coNP ≥ NP/poly.

We observe that the kernelization lower bound for (d, n)Closest String also
works for any fixed alphabet Σ of size at least two. Also, we can give an easy PPT
reduction from (d, n)Closest String to (d1, d2, n)DSS and get the following.

Theorem 5. (⇒)1 (d1, d2, n)DSS does not admit a polynomial kernel unless
coNP ≥ NP/poly.

4 Kernel Lower Bounds for Closest Substring

In an instance of Closest Substring, we call the s≥i’s target strings and s the
solution string. We prove that the problem does not have a polynomial kernel
by giving a cross-composition from a mild restriction of the same problem. For
the restricted version, we take an instance of Closest Substring and assume
that l > 2d+ 1. We call this problem Restricted Closest Substring.

1 Proofs of theorems marked with (∗) will be provided in the full version.
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Theorem 6. (⇒) Restricted Closest Substring is NP-complete.

For giving the cross-composition, we start with t instances of Restricted
Closest Substring belonging to the same equivalence class and produce an
instance of the (k, l, d)Closest Substring, which is a YES instance if and only
if at least one of the original t instances of Restricted Closest Substring
was a YES instance.

For that, we first divide the input into equivalence classes. We say that two
instances (S1, l1, d1) and (S2, l2, d2) are in the same equivalence class if and only
if |S1| = |S2|, l1 = l2 and d1 = d2. Clearly, the number of such equivalence
classes is at most polynomial in the size of the largest input instance. Also,
given two instances as input, it can be checked in polynomial time whether they
belong to the same equivalence class. Let (S1, l, d), (S2, l, d), . . . , (St, l, d) be the
instances in the same equivalence class. Now, for arriving at the new instance
of (k, l, d)Closest Substring, we first extend the alphabet Σ by four new
symbols. We take Σ≥ = Σ ≤ {0, 1, ⇒,�} and we assume that the new symbols
were not already present in Σ. We call the jth string from the ith instance si,j
for the sake of simplicity. Also, let us define x = max(∼log t�, ∼log k�). Now, for
the composition, we go through the following steps.
Step 1. For each si,j we put ⇒B4d+2

i between each of the consecutive symbols
in that string as well as at the start and the end of the string. Here Bi is the
standard binary representation of i with so many preceding 0’s added that the
total length is x. We call these strings ri,j and the substrings ⇒B4d+2

i “codes”.
This increases the size of each string by a factor of O(dx).
Step 2. In this step, we first define sets Qj = {ri,j | i → [t]} for j → [k]. For
each Qj , we construct the string pj by putting the strings in Qj in ascending
order of the instance number (the first index i) separated by a delimiter. The
delimiter between two strings ri,j and ri+1,j is represented by Di,j and is defined
as follows.

Di,j =

{
� ⇒ {BiBj}2d+1�, if i < j

� ⇒ {Bi+1Bj}2d+1�, if i ∈ j

We call the substrings {BiBj}2d+1 or {Bi+1Bj}2d+1 “special codes”, which have
length (4d+ 2)x each. So, after the second step, we get k strings, which are

pj = r1,jD1,jr2,jD2,j . . . ri,jDi,j . . . rt−1,jDt−1,jrt,j ≡j → [k]

The distance between two consecutive ⇒’s or two symbols of Σ in any pj is
(4d + 2)x + 1. We call this quantity y. Now, to get an instance (S≥, l≥, d≥) of
(k, l, d)Closest Substring, we set l≥ = l+(l+1)y, d≥ = d and S≥ = {pi |i → [k]}.
Now we have to show that (S≥, l≥, d≥) is a YES instance if and only if there exists
an i, such that (Si, l, d) is a YES instance. For that, we first prove the following
lemma.

Lemma 3. (⇒) Let s1 and s2 be two strings of the same length (say n) such that
dH(s1, s2) ∈ 2d + 1, then there does not exist a string s of length n such that
dH(s, s1) ⊂ d and dH(s, s2) ⊂ d.
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Lemma 4. (⇒) If (S≥, l≥, d≥) is a YES instance, then the ⇒’s are at the same place
in all the target strings.

Lemma 5. If (S≥, l≥, d≥) is a YES instance, at most (4d+ 2)x− 1 bits from any
special code are part of any of the target strings.

Proof. Let A be the k × l≥ matrix corresponding to the target strings when
(S≥, l≥, d≥) is a YES instance. From the Lemma 3, we know that the ⇒’s match,
and they are equidistant. In the matrix A, they constitute of columns which have
⇒’s at all the positions. This implies that all the rows of the matrix are aligned
in the sense that the codes or the special codes in every row occupy the same
columns. In other words, any code or special code “lies above” another code or
special code. Let us take a special code {BuBv}2d+1. It can come from delimiter
Du,v when u < v, or it can come from a delimiter Du−1,v, when u − 1 ∈ v. In
any case, we see that u ∪= v. So, the special code {BuBv}2d+1 differs at at least
2d+1 positions with any code B4d+2

z . Now, we look at a special code lying above
another special code. Let us say they come from delimiters Dw,u and Dv,z. The
first special code will have a bit representation of u and the second will have a
bit representation of z. Also, u and z can not be the same for any two delimiters
coming from different strings pi and pj . Hence any two special codes differ at at
least 2d+ 1 positions. Now, if we assume that all (4d + 2)x bits from a special
code are part of some target string, then this string differs with all other target
strings at at least 2d+1 positions among the (4d+ 2)x positions corresponding
to columns occupied by the special code. Hence, by using Lemma 3, we have
that (S≥, l≥, d≥) a NO instance, which is a contradiction. ↓∨

Lemma 6. (S≥, l≥, d≥) is a YES instance of (k, l, d)Closest Substring if and
only if (Si, l, d) is a YES instance of Restricted Closest Substring for
some i.

Proof. (⇔) Let the solution string be s and the target strings be s≥i,1, s
≥
i,2, . . . , s

≥
i,k

which make (Si, l, d) a YES instance. Now, for S≥, we transform the solution
string by inserting ⇒B4d+2

i between any consecutive pair of symbols as well as
at start and end of the string. We call this string s≥≥. For the substrings, we look
at ri,j for all j → [k] and take the substrings corresponding to s≥i,j with codes
on either side. We call them r≥i,j for all j → [k]. Clearly, these k + 1 strings all
match on the codes, i.e. at all the places which hold symbols which are not from
Σ. Also, |s≥≥| = |r≥i,j | = l + (l + 1)y. Now, if the target string s≥≥ differs at more
than d places with some substring r≥i,j , then s differs at more than d places with
s≥i,j making (Si, l, d) a NO instance which is a contradiction. Hence (S≥, l≥, d≥) is
a YES instance.

(⇐) If (S≥, l≥, d≥) is a YES instance, then by Lemma 5, at most (4d+ 2)x− 1
bits from any special code are part of any of the target strings. This means that
the target string coming from pj, for all j → [k], will not contain substrings of
ri1,j and ri2,j for i1 ∪= i2 because otherwise it will contain one special code fully.
Now we look at target strings coming from different pj ’s, say pj1 and pj2 . We
want to show that if the target strings contain substrings of ri1,j1 and ri2,j2 for
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j1 ∪= j2, then i1 = i2 for all j1, j2 → [k]. By Lemma 4, we know that the ⇒’s are
at the same place in all the target strings, so the codes are occupying the same
positions in all target strings. If i1 is not equal to i2, then each of the codes in
ri1,j1 will differ with any code in ri2,j2 in at least 4d+2 positions. This will make
ri1,j1 and ri2,j2 differ at at least 4d+2 places, making (S≥, l≥, d≥) a NO instance.
Hence, there exists an i, such that for all j → [k] the target string coming from
pj is a substrings of ri,j , which corresponds to a unique instance, namely Si.

Let us denote Σ ≤ {�} by Σ≥≥. Since, we know that the strings match at the
⇒’s, so they will have a symbol from Σ≥≥ at the same positions. Since d≥ = d, we
just need to show that all the target strings will contain at least l symbols from
Σ, which are lying above each other. We know that two consecutive symbols of
Σ≥≥ are separated by a distance y = (4d + 2)x + 1 in S≥. Also, we have chosen
l≥ = l + (l + 1)y. Hence, any target string will have at least l and at most l + 1
symbols from Σ≥≥.

Case 1: There are l symbols from Σ≥≥ in some target string. In this case,
any codes or special codes on either side of a symbol from Σ≥≥ must be part of
the target string. We also know that all the �’s have special codes on at least
one side, which can not be part of any target string. Hence, we conclude that
�’s can not be part of target string in this case and hence the target string will
contain at least l symbols from Σ.

Case 2: There are l + 1 symbols from Σ≥≥ in some target string. Any
target string can contain at most one �, because otherwise it will either contain
a special code fully or we have that ∃i, j such that |si,j | < l. So, the target string
contains at least l symbols from Σ even in this case.

We have proved that all the target strings contain at least l symbols from
Σ and they correspond to strings from a single instance Si. Also, since d

≥ = d,
these strings can differ by at most distance d and this makes (Si, l, d) a YES
instance. ↓∨

We have given a cross-composition for (k, l, d)Closest Substring from Re-
stricted Closest Substring, since all the parameters in the new instance
are polynomial in size of the maximum sized instance and log t. We also have
that Restricted Closest Substring is NP-complete. Hence, by application
of theorem 1, we get the following.

Theorem 7. (k, l, d)Closest Substring does not admit a polynomial kernel
unless coNP ≥ NP/poly.

5 Kernels

In this section, we reproduce the result of Gramm et al. [13] which implies a
kernel of size O(k2d log k) for (d, k)Closest String. We also give a polynomial
kernel for (d1, d2, k1, k2)DSS which is based on ideas similar to those of Gramm
et al. [13]. For reproducing the result, we first apply the lemma stated in (Lemma
3 of [13]), which reduces the number of symbols in the alphabet Σ to at most k,
the number of strings, in an instance of Closest String.
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Then we look at the set of strings of the instance of (d, k)Closest String
as an k × n matrix. We use the term columns for the columns of this matrix.
We call a column dirty if it has at least two different symbols from Σ. We call a
column full if it has all symbols from Σ. We first consider the following lemma.

Lemma 7. [13] Given a Closest String instance with k strings s1, . . . , sk
of length n and a positive integer d. If the resulting k× n matrix has more than
kd dirty columns, then there is no string s with dH(s, si) ⊂ d ≡i → [k].

Proof. Let the number of dirty columns be more than kd. Let us assume that
there exists a solution string s such that dH(s, si) ⊂ d ≡i → [k]. We first observe
that the solution string has to differ with at least one of the strings in each dirty
column. By pigeonhole principle, the solution strings has to differ with at least
one string at more than d columns. This means that s is not a solution string,
which is a contradiction. ↓∨

Theorem 8. (⇒) (d, k)Closest String has a kernel of size O(k2d log k).

Now we consider (d1, d2, k1, k2)DSS. We first state a lemma similar to (Lemma
3 of [13]), which reduces the alphabet size to k1 + k2.

Lemma 8. (⇒) A DSS instance with arbitrary alphabet Σ, |Σ| > k1 + k2, is
isomorphic to a DSS instance with alphabet Σ≥, |Σ≥| = k1 + k2.

Let k = k1 + k2. Now, we look at the k × n matrix corresponding to sets S1

and S2 put together. We say a column is “hit” by the solution string s if either
s mismatches with at least one of the first k1 entries in the column or it matches
with at least one of the last k2 entries in the column.

Lemma 9. (⇒) At most k1d1 + k2d2 columns are hit by a solution string s in
the k × n matrix corresponding to S = S1 ≤ S2.

Next, we say a column is “inconsistent” if at least one of the following happens:

1. If the first k1 entries are not all same.
2. If the last k2 entries have all the symbols from Σ.
3. None of 1 and 2 happen, but the symbol occurring in the first k1 entries is

also present at at least one place in the last k2 entries.

Lemma 10. For an instance (S1, S2, d1, d2) of DSS, if the number of inconsis-
tent columns is more than k1d1 + k2d2, then it is a NO instance.

Proof. We first show that a solution string smust hit all the inconsistent columns.
This fact, combined with Lemma 9 that a solution string can hit at most
k1d1 + k2d2 columns gives the desired result.

Case 1. When the first k1 entries of the inconsistent column are not all the same
then s must mismatch with at least one of the entries. Hence, the column is hit.
Case 2. If last k2 entries of the inconsistent column have all the symbols from
Σ, then s must match with at least one of the entries. Hence, the column is hit.
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Case 3. In this case, first k1 entries are the same symbol (say a) and last k2
entries contain at least one a. Then, in s, if we don’t put a at the index of the
column, it mismatches with first k1 entries. If we put a, it matches with at least
one of the last k2 entries. In any case, the column is hit. ↓∨

Theorem 9. (⇒) (d1, d2, k1, k2)DSS has a kernel of size O((k1 + k2)(k1d1 +
k2d2)(log(k1 + k2))).

6 Conclusions

In this paper we study several string problems from kernelization complexity. We
were able to settle most of the problems except a few. The most important open
problem that remains open from this work is Closest String parameterized
by k, the number of strings in the input.
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Abstract. Given a density measure Π , an undirected graph G and a
nonnegative integer k, a Π-CLUSTER EDITING problem is to decide
whether G can be modified into a graph where all connected compo-
nents are Π-cliques, by at most k edge modifications. Previous studies
have been conducted on the complexity and fixed-parameter tractabil-
ity (FPT) of Π-CLUSTER EDITING based on several different density
measures. However, whether these conclusions hold on bipartite graphs
is yet to be examined. In this paper, we focus on three different den-
sity measures for bipartite graphs: (1) having at most s missing edges
for each vertex (s-biplex), (2) having average degree at least |V | − s
(average-s-biplex) and (3) having at most s missing edges within a single
disjoint component (s-defective bicliques). First, the NP-completeness of
the three problems is discussed and afterwards we show all these prob-
lems are fixed-parameter tractable with respect to the parameter (s, k).

Keywords: Bicluster editing, Parameterized complexity, Data reduc-
tion, NP-hardness.

1 Introduction

Graph-based data clustering methodologies have been of great importance in
the scientific analyses of the real-world data, ranging from biological to social
network data. In most scenarios, data entities are modeled as vertices and a
certain function is defined to quantify the “relationship” between two vertices
(e.g. similarities). Thresholds specified by systems or users are then used to
model the edges of the graph. The clustering problem is usually defined math-
ematically as a “partition” of the whole vertex set into different dense subsets,
so-called clusters, such that there are as few edges as possible between different
clusters and as few missing edges as possible within clusters. The problem could
also be viewed from the graph modification angle, i.e., to modify the graph by
edge insertions and deletions into a Π-cluster graph, the so-called Π-CLUSTER
EDITING problems. Here, a graph is a Π-cluster graph, if each of its connected
components satisfies Π , where Π is a certain density measure.
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c∞ Springer International Publishing Switzerland 2014
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The most famous problem among the Π-CLUSTER EDITING is CLUSTER
EDITING, where Π is “being a clique”. CLUSTER EDITING has been exten-
sively studied and proved as NP-complete among the earliest NP-complete prob-
lems [18,3]. Successful applications of the algorithms for CLUSTER EDITING
could be found in the field of computational biology [22] and machine learning
[3]. In terms of parameterized complexity, CLUSTER EDITING is proved to be
solved in O(1.83k + |E|) time [4] and several different data reduction schemes
have been derived [5,6,8,11,1]. Furthermore, the current best approximation fac-
tor fors CLUSTER EDITING is 2.5 [20]. In computational biology, a number of
applicable heuristic algorithms have also been designed [21,23].

In some real-world applications, “being a clique” is increasingly criticized as
over-restrictive [17]. Thus some relaxed models might be more advantageous
in a variety of application scenarios. Theoretical studies have also been con-
ducted on relaxed versions of CLUSTER EDITING. Guo et al.[14] studied the
fixed-parameter tractability of s-PLEX EDITING. In another study, Guo et
al. extended their research further to several other relaxed models: s-defective
cliques, average-s-plexes and μ-cliques [13], in which the NP-completeness and
the fixed-parameter tractability are proved.

In some real-world scenarios which data contains information in more than
one dimension, the standard clustering model is not so powerful. For instance,
the microarray data analysis requires a simultaneous clustering on rows (genes)
and columns (conditions) to find consistent behaviors for groups of genes under
a certain number of conditions. The traditional clustering model, which clusters
data of one dimension, is not feasible for such scenarios where data from different
sources must be clustered together simultaneously. The concept of “biclustering”
was thus introduced by Cheng and Church [7]. Biclustering allows to simultane-
ously partition both rows and columns, which is particularly useful in capturing
biologically meaningful genes and conditions in one run [7]. The major reason is
that the expression of gene subjects may be correlated only under some condi-
tions while being independent under other conditions. Biclustering approaches
are generally capable of discovering such local patterns and have been widely
used for various types of genes expression analysis [10]. Note that biclustering
problems can be easily modeled as clustering problems on bipartite graphs by
forming similarities between two different sets of vertices, described as follows:

BICLUSTER EDITING
Input: A bipartite graph G = (U, V,E) and an integer k > 0
Question: Can G be converted into a bicluster graph where every
connected component is a biclique, by at most k edge insertions
and deletions?

A biclique is a bipartite graph with all possible edges. Though not so exten-
sively studied as CLUSTER EDITING, several theoretical conclusions of biclus-
ter editing have been published regarding parameterized tractability [12] and
approximation results [2]. Applications other than microarray data analysis can
be found mostly in the computational biology field, for instance, biomedical data
analysis [19], drug adverse events prediction [15] and etc.. Similarly, by relaxing
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the criteria of “biclique” in different directions, Π-BICLUSTER EDITING can
be yielded:

Input: A bipartite graph G = (U, V,E) and an integer k > 0
Question: Can G be converted into a Π-bicluster graph, where
every connected component is a Π-biclique, by at most k edge
insertions and deletions?

Here in our study, we focus on the three cases of Π-BICLUSTER EDIT-
ING:(1) s-biplex, (2) average-s-biplex and (3) s-defective biclique, and provide
both NP-complete and FPT results.

2 Problem Definitions and Results

An undirected graph G = (U, V,E), where U and V are two sets of vertices
and E is the set of edges, is a bipartite graph if →e ⊂ E, edge e has exactly
one end vertex in U and the other end vertex in V . Let W = U ≡ V . For
an arbitrary W → ∈ W , the induced subgraph G[W →] is the subgraph over the
vertex set W → with the edge set {{u, v} ⊂ E|u, v ⊂ W →}. An induced subgraph
G[W →] = (U →, V →, E→) is a biclique if →u ⊂ U → and →v ⊂ V →, we have {u, v} ⊂ E.
The open neighborhood N(v) of v ⊂ W is the set of vertices that are adjacent to v
inG. The degree of a given vertex v is denoted by d(v), referring to the cardinality
ofN(v). The closed neighborhood of v is denoted by N [v], i.e., N [v] = N(v)≡{v}.
The open and closed neighborhoods of a set of vertices W → ∈ W are defined
as N(W →) =

⋃
u≥W ′ N(u)\W → and N [W →] = N(W →) ≡ W →, respectively. Let

W → ∈ W , we use G − W → as the abbreviation for G[W\W →] and for a vertex
v ⊂ W , let G − v denote G − {v}. If G − v has more connected components
than G, then we call v as a cut vertex. Similarly, let E→ be a set of edges,
then G − E→ denotes the graph G→ = (U, V,E\E→). For a graph G = (U, V,E),
denote E = {{u, v}|u ⊂ U ≥ v ⊂ V ≥ {u, v} /⊂ E} as the set of missing edges.
A pair of vertices {u, v} is called a missing edge if {u, v} ⊂ E. For two sets
of vertices X and Y , let E(X,Y ) be the set of edges between X and Y , i.e.,
E(X,Y ) = {{u, v} | u ⊂ X ≥ v ⊂ Y ≥ {u, v} ⊂ E}. For a vertex set X , denote
E(X) as the abbreviation for E(X,X). For a set of vertex X → and a bipartite
graph H = (X,Y,E), denote the intersection between X → and H as the set of
common vertices, i.e., X → ∪H = (X → ∪X) ≡ (X → ∪ Y ).

An s-biplex is a connected bipartite graph G = (U, V,E) with d(u) ◦ |V | − s
for all u ⊂ U and d(v) ◦ |U |−s for all v ⊂ V . Note that a normal biclique is thus a
0-biplex. A bipartite graphG is called an s-biplex cluster graph if all its connected
components are s-biplexes. Therefore, s-BIPLEX EDITING is the special case of
bicluster editing with Π equal to “s-biplex”. In this paper, the NP-completeness
of s-BIPLEX EDITING is shown. Then the sizes of minimal forbidden induced
subgraphs are upper-bounded by O(s) and a branching strategy can be derived
which indicates the FPT of s-BIPLEX EDITING.

In general graphs, average-s-plex is proposed as a “density measure”, defined
as the mean of the degrees of all vertices in a given graph [14]. In a bipartite
graph, we define the average degree for two vertex sets separately: dU = |E|/|U |
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and dV = |E|/|V |. A connected graph G = (U, V,E) is thus an average-s-biplex
if dU ◦ |V | − s and dV ◦ |U | − s, with 1 ⊆ s ⊆ min{|U |, |V |}. This density
measure can be considered as a further relaxation of s-biplex, with no require-
ment on the minimum degree. In this work, we show the NP-completeness of
AVERAGE-s-BIPLEX EDITING. Afterwards, a reduction to a more general
problem is conducted, followed by a polynomial-time kernelization procedure
which produces a graph with at most 2k((s + 1)(4k + 6s) + 1) vertices. This
implies FPT for AVERAGE-s-BIPLEX EDITING.

The concept of defective clique has been reported previously to be useful in
biological network analysis [24]. NP-completeness and FPT of s-DEFECTIVE
CLIQUE EDITING and DELETION are already known [13]. A connected bipar-
tite graph G = (U, V,E) is an s-defective biclique if |E| ◦ |U | · |V |− s. We prove
that s-DEFECTIVE BICLUSTER EDITING is NP-complete. Then, the sizes of
minimal fobidden induced subgraphs of s-defective bicluster graphs are shown
to be bounded by 2s + 3, which leads directly to the FPT of s-DEFECTIVE
BICLUSTER EDITING with respect to the parameter (s, k). For more informa-
tion on parameterized complexity, we refer to [9] and [16]. Due to limited space,
some proofs are deferred to Appendix.

3 s-Biplexes

3.1 NP-Completeness

In this section, we show the of NP-completeness of s-BIPLEX EDITING by a
reduction from 3-EXACT-3-COVER.

Theorem 1. For every constant s ◦ 0, s-BIPLEX EDITING is NP-complete.

Proof. If s=0, then the problem is equivalent to BICLUSTER EDITING and
thus is NP-complete. For any s ◦ 1, we reduce the NP-complete 3-EXACT-
3-COVER (3X3C), where given a collection C of triplets (a set of 3 elements
is called a triplet) from an element set A = {a1, a2, a3, ..., a3n} such that each
element of A is a member of at most three triplets, one asks to find out a sub-
collection I ∈ C of size n that covers A, i.e., every element of A appears in some
triplet in I. The set I is called an “exact cover”.

We construct an s-BIPLEX EDITING instance as follows: Let m = (72+s)n.
A bipartite graph G = (U, V,E) is then constructed, based on the following pro-
cedure: For each element in A, one corresponding vertex is created in U , and
for each triplet S ⊂ C, a set of m vertices is added to U . The same construc-
tion is performed to create vertices in V , that is: U = U1 ≡ U2, V = V1 ≡ V2,
U1 = {u1, u2, ..., u3n}, V1 = {v1, v2, ..., v3n}, U2 =

⋃
S≥C{uS1, uS2 , ..., uSm},

V2 =
⋃

S≥C{vS1 , vS2 , ..., vSm}.
The edge set E in G consists of five subsets: First, we connect every ui ⊂ U1

to its corresponding vi ⊂ V1, 1 ⊆ i ⊆ 3n. Second, for each triplet S ⊂ C, let
S = {ax, ay, az}, (1 ⊆ x, y, z ⊆ 3n). We connect ui ⊂ U1 and vj ⊂ V1 for all
i, j ⊂ {x, y, z} with i ∀= j. Third, between U2 and V2, for each S ⊂ C, denote
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Um
S = {uS1, uS2 , , ..., uSm} and V m

S = {vS1 , vS2 , ..., vSm}. We connect uSi ⊂ Um
S

to vSj ⊂ V m
S for all 1 ⊆ i, j ⊆ m. Finally, for each S = {ax, ay, az} ⊂ C, (1 ⊆

x, y, z ⊆ 3n), every ui ⊂ U1(i ⊂ {x, y, z}) is connected to all vertices in V m
S ∈ V2,

and every vi ⊂ V1 (i ⊂ {x, y, z}) is connected to all vertices in Um
S ∈ U2. More

precisely: E =
⋃5

i=1 Ei, E1 = {{ui, vi}| i = 1, ..., 3n}, E2 = {{ui, vj}| ∩S =
{ax, ay, az} ⊂ C ≥ i, j ⊂ {x, y, z} ≥ i ∀= j}, E3 = {{uSi, vSj}| ∩S ⊂ C ≥ uSi ⊂
Um
S ≥ vSj ⊂ V m

S }, E4 = {{ui, vSj}| ∩S = {ax, ay, az} ⊂ C ≥ i ⊂ {x, y, z} ≥ vSj ⊂
V m
S }, E5 = {{vi, uSj}| ∩S = {ax, ay, az} ⊂ C ≥ i ⊂ {x, y, z} ≥ uSj ⊂ Um

S }.
For each triplet set S ⊂ C, we denote: US = {ux, uy, uz|{ax, ay, az} ⊂ S},

VS = {vx, vy, vz |{ax, ay, az} ⊂ S}, WS = US ≡ VS , Um
S = {uS1, ..., uSm}, V m

S =
{vS1 , ..., vSm}, Wm

S = Um
S ≡ V m

S .
Obviously, the construction can be carried out in polynomial time. Let M =

2m(3|C| − 3n) and N = |E2| − 6n. The parameter k is equal to M +N . For the
rest of the proof, please refer to Appendix. ∅↓

3.2 Forbidden Induced Subgraphs

In this section, we describe a set of forbidden induced subgraphs GF , that a graph
G is an s-biplex cluster graph if and only if G does not contain any induced
subgraphs in GF . If s = 0, then we have BICLUSTER EDITING problem and
the forbidden subgrah is a path of four vertices. If s ◦ 1, the structures of
forbidden induced subgraphs are much more complex and we are faced with an
exponentially increasing number of different possibilities. To solve the problem,
we show in the following that the sizes of forbidden induced graphs are bounded
by O(s) vertices. Based on this characterization, a branching strategy solving
s-BIPLEX EDITING can be established.

We startwith somepreliminaries.Aconnected induced subgraphH = (R, T,E→)
is minimal forbidden induced subgraph if H is not an s-biplex but every induced
proper subgraph of H is an s-biplex cluster graph. We call a vertex v in H
“forbidden” if v is incident to more than s missing edges. A subset of vertices R→

is called “forbidden subset” if R→ contains at least one forbidden vertex. To show
the upper-bound for minimal forbidden induced subgraphs, two distinct cases are
studied separately: (1) subgraphH contains forbidden vertex (vertices) only in R
(or T ), and (2)H contains forbidden vertices in both R and T . We first prove four
claims regarding the properties of a minimal forbidden induced subgraph. Next, as
a summary, we show that every minimal forbidden induced subgraph of biplexes
contains atmost 3s+3vertices in both the two casesmentioned above, for all s ◦ 1.

Lemma 1. Let H = (R, T,E→) be a minimal forbidden induced subgraph. If R
is a forbidden subset, then min

u≥R
{d(u)} = |T | − s− 1

Lemma 2. Let H = (R, T,E→) be a minimal forbidden induced subgraph. If H
has forbidden vertices both in R and T , then H can only be a path of length
2s+ 3, and only the two endpoints of the path are forbidden vertices.

Proof. First we prove the claim that H contains no more than two forbidden
vertices if H has forbidden vertices both in R and T . By contradiction, assume
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there are > 2 forbidden vertices in H . Since we know that in every graph, there
are at least 2 non-cut vertices. Let u, v be the 2 non-cut vertices. We have 6
cases with respect to u and v:

Case i: u, v are both forbidden vertices, and u, v ⊂ R. Then we can remove u
without separating H . In the subgraph H−u, we have dH−u(v) = |T |−s−1 and
H−u is also forbidden, contradicting with minimal forbidden induced subgraph.
If u, v ⊂ T , same proof applies.

Case ii: u, v are both non-forbidden vertices, and u, v ⊂ R. Since R, T are
both forbidden subsets, there exists a forbidden vertex w ⊂ R, such that d(w) =
|T | − s− 1. The subgraph H − u is also forbidden since dH−u(w) = |T | − s− 1.
If u, v ⊂ T , the same proof applies.

Case iii: u is a forbidden vertex, v is a non-forbidden vertex and u, v ⊂ R.
Then just remove v and H − v is still forbidden.

Case iv: u is a forbidden vertex in R, v is a non-forbidden vertex in T . Since
R, T are both forbidden subsets, there exists a vertex w ⊂ T , such that d(w) =
|R| − s− 1. We remove v from T . Then dH−v(w) = |R| − s− 1 and thus H − v
is still forbidden.

Case v: u is a non-forbidden vertex in U and v is a non-forbidden vertex in
V . A proof similar to Case iv applies.

Case vi: u is a forbidden vertex in R, v is a forbidden vertex in T . Let w be a
forbidden vertex in H and w ∀= u, w ∀= v. Without loss of generality, we assume
w ⊂ R. Then we can remove u from H . Then dH−v(w) = |T | − s − 1 and thus
H − v is still forbidden.

To summarize the six cases, since we have two non-cut vertices and at least
three forbidden vertices with at least one forbidden vertex in R and at least one
in T , we can always find a forbidden vertex x and a non-cut vertex y in the
same vertex set (in R or in T ). Clearly, removing y does not affect the property
of the forbidden vertex x and thus the subgraph H − y is still forbidden. This
contradicts with the assumption. Hence, if H is a minimal forbidden induced
subgraph with forbidden vertices in both R and T , then H cannot contain more
than two forbidden vertices.

Next, we prove that H can only be a path of 2s + 2 vertices. Let u∪ and v∪

be the two forbidden vertices in H . Suppose u∪ ⊂ R and v∪ ⊂ T . Consider a
third vertex w∪, w∪ ∀= u∪ and w∪ ∀= v∪. Clearly, such vertex w∪ exists. If w∪ is a
non-cut vertex, then consider the subgraph H −w∪. If w∪ ⊂ R, in H −w∪, u∪ is
still a forbidden vertex; if w∪ ⊂ T , then in H −w∪, v∪ is still a forbidden vertex.
In either case, H is not minimal. Therefore, we know that in H , all vertices
other than u∪ and v∪ must be cut vertices. Thus in H , we have |R| + |T | − 2
cut vertices. Obviously, H can only be a path and u∪, v∪ can only be the two
endpoints of the path in R and T . ∅↓

Lemma 3. Let H = (R, T,E→) be a minimal forbidden induced subgraph with
forbidden vertices only in R. Let R0 ∈ R be the subset of all forbidden vertices
and R1 = R\R0. Let T0 = N(R0) and T1 = T \T0. Then we have:
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1. →u ⊂ R1, u is a cut vertex.
2. →v ⊂ T0, v is a cut vertex.
3. If |R0| > 1, then →u ⊂ R0, u is a cut vertex.
4. If |T0| > 1, then for an arbitrary vertex v∪ ⊂ T0 , let H = {H1, H2, ..., Hl}

be the set of disjoint components after removing v∪. Then for each Hi =
(Xi, Yi, Ei), 1 ⊆ i ⊆ l, we have Xi ∪R1 ∀= ∨.

5. There exists at least one vertex v ⊂ T1 with d(v) = 1.

Lemma 4. Let H = (R, T,E→) be a minimal forbidden induced subgraph with
forbidden vertices only in R. Let R0 ∈ R be the subset of all forbidden vertices,
R1 = R\R0. Let T0 = N(R0) and T1 = T \T0. Then we have |R|+ |T | ⊆ 3s+ 3.

Proof. Consider an arbitrary vertex v∪ ⊂ T0. By Lemma 3, v∪ is a cut vertex. Let
H = {H1, H2, ..., Hr}, r > 1, Hi = (Xi, Yi, Ei) be the set of disjoint connected
components after removing v∪. Without loss of generality, let {H1, H2, ..., Hl}
be the subset of H, l ⊆ r, such that Xi ∪R0 ∀= ∨, for all 1 ⊆ i ⊆ l. We have the
following two cases:

Case i. If l ◦ 2, we know there is at least two disjoint components that
intersect with R0. Hence consider →u ⊂ X1 and →v ⊂ Yj (1 < j ⊆ l), we have
{u, v} /⊂ E→. Similarly, we have {u→, v→} /⊂ E→, for all u→ ⊂ Xj (1 < j ⊆ l) and

all v→ ⊂ Y1. Thus, we have |Y1| ⊆ s+ 1 and
l∑

j=2

|Yj | ⊆ s+ 1, since otherwise we

would have a u ⊂ R incident to more than s + 1 missing edges, contradicting
with Lemma 1. Because the number of missing edges incident to any vertex in

R cannot be larger than s+ 1, we have |Y1|+ |T1| ⊆ s+ 1 and
l∑

j=2

|Yj |+ |T1| ⊆

s + 1. Thus we have |T | = |Y1| +
l∑

j=2

|Yj | + |T1| ⊆ s + 1 + s + 1 = 2s + 2.

Moreover, since we know min
w≥T

d(w) = 1 and T does not contain forbidden vertex,

we have |R| ⊆ s+1. Thus the total size of the forbidden induced subgraph H is
|R|+ |T | ⊆ 2s+ 2 + s+ 1 = 3s+ 3.

Case ii. if →v ⊂ T0, we have l = 1, then for all v ⊂ T0, the removal of v will
not separate R0. For an arbitrary vertex v∪ in T0, let H = {H1, H2, ...Hr}, Hi =
(Xi, Yi, Ei) be the disjoint connected components after removing v∪. Without
loss of generality, let R0 ∈ X1. Then T0 ∈ Y1 and we can find at least one u∪

with u∪ ⊂ (N(v∪) ∪ R1), such that u∪ /⊂ N(v→) for v→ ⊂ T0, v
→ ∀= v∪. Therefore,

each vertex v∪ in T0 has at least one “unique” neighbor in R1. Thus |T0| ⊆
|R1| ⊆ s + 1 − |R0| ⊆ s. Moreover, we have |T1| ⊆ s + 1, since otherwise the
vertices in R0 are incident to more than s+1 missing edges. Then the total size
of the forbidden induced subgraph H is |R|+ |T | ⊆ s+ 1 + s+ s+ 1 ⊆ 3s+ 2.
In summary, the claim is proved. ∅↓

Combining Lemma 2 and Lemma 4, we have the following theorem:

Theorem 2. If a graph G is not an s-biplex cluster graph, then we can find a
forbidden subgraph in G in polynomial time with the size bounded by 3s+3.
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Finally, we have:

Corollary 1. S-BIPLEX CLUSTER EDITING is fixed-parameter tractable with
respect to (s,k).

4 Average-s-Plexes

In this section, we consider the AVERAGE-s-BIPLEX EDITING, proving its
NP-completeness and its FPT with respect to parameters (s, k). To show its NP-
hardness, a two-step reduction is demonstrated: First, we reduce a well-known
NP-complete MAXIMUM BALANCED BICLIQUE (MBB) to EQUAL-SIZE
BICLUSTER EDITING, afterwards, a reduction from EQUAL-SIZE BICLUS-
TER EDITING to AVERAGE-s-BIPLEXEDITING is conducted. The EQUAL-
SIZE BICLUSTER EDITING (ESBE) is defined as follows:

Input: An undirected bipartite graph G = (U, V,E) and two inte-
gers k, d ◦ 0.
Question: Can G be transformed by editing at most k edges into
d disjoint bicliques {C1, C2, C3, ...Cd}, Ci = (Ui, Vi, Ei), 1 ⊆ i ⊆ d,
such that |Ui| = |Uj | and |Vi| = |Vj | for all 1 ⊆ i, j ⊆ d?

The edge deletion version of this problem requires only edge deletions.

Theorem 3. EQUAL-SIZE BICLUSTER EDITING is NP-complete.

Theorem 4. For every constant s ◦ 1, AVERAGE-s-BIPLEX EDITING is
NP-complete.

We present a kernalization procedure for AVERAGE-s-BIPLEX EDITING
with respect to the parameter (s, k). In order to show this, first we reduce the
problem into an integer-weighted version and afterwards we describe three re-
duction rules that can be carried out within polynomial time.

We introduce two types of weights to describe the weighted version of
AVERAGE-s-BIPLEX EDITING: Vertex weights and edge weights, inspired
by the idea of the reduction of the weighted version of CLUSTER EDITING,
i.e. for any pair of vertices that cannot be separated by k edge modifications,
we merge them into one “multi-vertex”. Obviously, for all vertices merged, they
end up in the same average-s-biplex in all optimal solutions.

We denote the vertex weight as σ(u) which keeps track of the number of
vertices merged into u. The vertex weight of a set of vertices S is defined as:
σ(S) =

∑

v≥S

σ(v). Moreover, let δ(u) be the subset of vertices {u1, u2, ..., ur},

r ◦ 1 that merged into u, i.e., σ(u) = |δ(u)|. The edge weight, ω(u, v), is defined
between two arbitrary entities (The concept “entity” represents vertices, multi-
vertices and sets of vertices), storing the number of edges between them. The
degree of a vertex u is defined as: d→(u) = ω(u,N(u)). Thus, for a weighted
bipartite graph G = (U, V,E), the average degree of the vertices in U is defined

as: dU = ω(U,V )
σ(U) .
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Hence a bipartite graph G = (U, V,E) is a weighted average-s-biplex, if dU ◦
σ(V )−s and dV ◦ σ(U)−s. The weighted version of the problem can be defined
as:

Input: A graph G = (U, V,E), with vertex weight σ(u) as a func-
tion:

σ(u) :

{
U ⇔ [ 1, |U | ]
V ⇔ [ 1, |V | ]

and edge weight ω(u, v) as a function:

ω(u, v) : E ⇔ [ 1, |U ||V | ]

and a nonnegative integer k.
Question: With edge modifications whose total weight is at most
k, can G be edited into a weighted average-s-biplex cluster graph?

Note that if we set σ(u) := 1, δ(u) := {u} and for each {u, v} ⊂ E, ω(u, v) := 1,
an instance of AVERAGE-s-BIPLEX EDITING can be easily reduced to an
instance of WEIGHTED AVERAGE-s-BIPLEX EDITING. In this reduction,
parameters k and s are not changed.

The following three reduction rules are designed for WEIGHTED AVERAGE-
s-BIPLEX EDITING, which lead to a problem kernel with no more than 2k((s+
1)(4k + 6s) + 1) vertices.

– Rule 1. Remove all connected components in G that are already weighted
average-s-biplexes.

– Rule 2. For two vertex u, v ⊂ U or u, v ⊂ V , let S(u, v) := N(u) ∪N(v). If
min{ω(u, S(u, v)), ω(v, S(u, v))} > k, then we merge u and v, by replacing
u and v with a new vertex v→, such that v→ satisfies:
- σ(v→) = σ(u) + σ(v)
- ω(v→, x) = ω(u, x) + ω(v, x) for every x with {u, x} ⊂ E, {v, x} ⊂ E

Lemma 5. Rule 2. is correct.

The function of Rule 2. is to merge (or replace) the vertices that we cannot
afford separating. Based on the same idea, we consider another scenario: If a
vertex u has a large set of neighbors that only connects to u but no other
vertex, then we cannot possibly deleted the edges between u and all its “unique”
neighbors. Let N∪(u) ∈ N(u) be a set of vertices such that →v ⊂ N∪(u), v
satisfies: (1) N(v) = {u} and (2) σ(v) = 1. Rule 3. is then presented to reduce
the size of N∪(u):

– Rule 3 For each u ⊂ G, if |N∪(u)| > k, then we replace N∪(u) with a
subset of vertex containing (k + 1) vertices: {v0, v1, v2, ..., vk}, such that
ω(u, v0) = ω(u,N∪(u))− k and ω(u, vi) = 1 for all 1 ⊆ i ⊆ k.

Lemma 6. Rule 3 is correct.

Theorem 5. (WEIGHTED) AVERAGE-s-BIPLEX EDITING is fixed-
parameter tractable with respect to parameter (s, k) and admits a kernel of at most
2k((s+ 1)(4k + 6s) + 1) vertices.
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5 Defective Bicliques

We prove now the NP-completeness of s-DEFECTIVE BICLUSTER EDITING

Theorem 6. For every s ◦ 0, s-DEFECTIVE BICLUSTER EDITING is NP-
complete.

Next, we show the FPT of s-DEFECTIVE BICLUSTER EDITING by prov-
ing that for every s ◦ 1, all minimal forbidden induced subgraphs contain at
most 2s+3 vertices and hence we are able to find a minimal forbidden subgraph
in polynomial time.

Lemma 7. For every s ◦ 1, every minimal forbidden induced subgraph of s-
defective bicluster graphs contains at most 2s+3 vertices. Given a graph that is
not an s-defective bicluster graph, a minimal forbidden induced subgraph can be
found in O((|U |+ |V |) · |E|) time.

Proof. Denote H = (R, T,E→) as a minimal forbidden induced subgraph of s-
defective bicluster graph. Clearly, H is connected. Towards contradiction we
assume H contains more than 2s+ 3 vertices. We distinguish 2 cases:

Case i. There exists a cut vertex in H . Let u∪ ⊂ R be a cut vertex. Obviously,
by s+ 4 ⊆ 2s+ 3 for s ◦ 1, we can always find in H a connected subgraph H →

such that H → contains u∪ and other s+ 3 vertices and u∪ is a cut vertex in H →.
Let H → = (R→, T →, E→→) We prove that H → is forbidden. By removing u∪, we obtain
a set of disjoint connected components H = {H1, H2, ..., Hl}, Hi = (Ri, Ti, Ei).
Thus, we have the number of missing edges em in H → is at least:

em ◦ 1

2

l∑

i=1

(|Ri|(|T →| − |Ti|) + |Ti|(|R→| − 1− |Ri|))

=
1

2

l∑

i=1

|Ri||T →|+ 1

2

l∑

i=1

|Ti|(|R→| − 1)−
l∑

i=1

|Ri||Ti|

= (|R→| − 1)|T →| − (|R1||T1|+
l∑

i=2

|Ri||Ti|)

◦ (|R→| − 1)|T →| − (|R1||T1|+ (
l∑

i=2

|Ri|)(
l∑

i=2

|Ti|)) (⇐)

= (|R→| − 1)|T →| − (|R1||T1|+ (|R→| − 1− |R1|)(|T →| − |T1|))
= |T1|(|R→| − 1− |R1|) + |R1|(|T →| − |T1|)
◦ |R→|+ |T →| − 3 (⇐⇐)

Inequality (*) holds because for any integer a1, b1, a2, b2 > 0, we have a1 · b1+
a2 · b2 ⊆ (a1 + b1)(a2 + b2). Inequality (**) is the minimum value of the function
f(|T1|, |R1|) = |T1|(|R→| − 1 − |R1|) + |R1|(|T →| − |T1|), with 1 ⊆ |R1| ⊆ |R→| − 1
and 1 ⊆ |T1| ⊆ |T →|. Thus, we have em ◦ s+1. Since |R→|+ |T →| = s+4, we have
H → being a forbidden subgraph, thus contradicts the assumption.
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Case ii. If there is no cut vertex in H , then we know that →v ⊂ H , v must
be incident to missing edge(s), otherwise we can just remove v from H without
changing the forbidden subgraph property. Let n = |U |+|V |,m0 be the minimum
“anti-degree” ( “anti-degree” is the number of missing edges incident to a given
vertex) in H and mt be the total number of missing edges in H . Hence we have
the inequalities: (1) 1

2 · n ·m0 ⊆ mt and (2) mt −m0 ⊆ s.
Inequality (1) holds because each vertex is incident to at least m0 missing

edges and altogether we have no more than mt missing edges. Inequality (2)
holds because H is a minimal forbidden subgraph and the removal of vertex
v will decrease the number of total missing edges by at least m0. Since H is
minimal, →u ⊂ H , H − u is not forbidden and thus has no more than s missing
edges. Solving the inequalities, we have: n ⊆ 2s+2m0

m0
= 2

m0
s+ 2 ⊆ 2s+ 3.

Thus if n > 2s+3, then at least one inequality above is not satisfied and hence
H is not a minimal forbidden induced subgraph. To locate a minimal forbidden
induced subgraph, we first check if the given connected graph G is an s-defective
bicluster. If not, we check for each v ⊂ G, the subgraph G − v. If G − v is still
not an s-defective biclique, then we remove v from G. Thus to find a minimal
forbidden induced subgraph takes at most O((|U | + |V |)|E|) time. ∅↓

Theorem 7. s-DEFECTIVE BICLUSTER EDITING is fixed-parameter
tractable with respect to (s,k).

6 Outlook

We point out some further directions of this research topic. For all the three
problems, further algorithmic improvements are necessary: For s-BIPLEX and
s-DEFECTIVE BICLUSTER EDITING, a more elegant and efficient problem
kernel is needed, and for average-s-BIPLEX EDITING, an efficient branching
strategy other than brute-force is beneficial to be applied on the reduced problem
kernel. Moreover, in many practical applications, for example in computational
biology, high-quality heuristic algorithms should always be taken into account.
Finally, it is also interesting to consider other meaningful density measurements
and study their classical and parameterized complexity.
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10. Gonçalves, J.P., Madeira, S.C., Oliveira, A.L.: Biggests: Integrated environment for

biclustering analysis of time series gene expression data. BMC Research Notes 2(1),
124 (2009)

11. Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Com-
puter Science 410(8), 718–726 (2009)
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Abstract. For an optimization problem on edge-weighted graphs, the
corresponding interdiction problem can be formulated as a game consist-
ing of two players, namely, an interdictor and an evader, who compete
on an objective with opposing interests. In an edge interdiction problem,
every edge of the input graph is associated with an interdiction cost. The
interdictor interdicts the graph by modifying the edges in the graph and
the number of such modifications is bounded by the interdictor’s budget.
The evader then solves the given optimization problem on the modified
graph. The action of the interdictor must impede the evader as much as
possible.

We study the parameterized complexity of edge interdiction problems
related to minimum spanning tree, maximum matching, maximum flow
and minimum maximal matching problems. These problems arise in dif-
ferent real world scenarios. We derive several fixed-parameter tractability
and W[1]-hardness results for these interdiction problems with respect
to various parameters. Hereby, we reveal close relation between edge in-
terdiction problems and partial covering problems on bipartite graphs.

1 Introduction

For an optimization problem on graphs, the corresponding interdiction problem
can be formulated as a game consisting of two players, namely, an interdictor
and an evader, who compete on an objective with opposite interests. In an edge
interdiction problem, every edge of the input graph has an interdiction cost as-
sociated with it and the interdictor interdicts the network by modifying edges in
the graph, and the number of such modifications are constrained by the inter-
dictor’s budget. The evader then solves the given optimization problem on the
modified graph. The action of the interdictor must impede the evader as much
as possible.

In this paper, we focus on edge interdiction problems related to minimum
spanning tree, maximum matching, maximum flow and minimum maximal match-
ing problems. These interdiction problems arise in different real world scenarios,
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e.g., detecting drug smuggling [22,20], military planning [21], analyzing power
grid vulnerability [19] and hospital infection control [3].

A spanning tree of a connected and edge-weighted graph G is a tree composed
of all the vertices and some of the edges of G. The minimum spanning tree (MST)
problem is to find a spanning tree whose total weight is minimum. Let η(G) be
the weight of MST of G. A matching in a graph is a set of edges such that no
two edges share an endpoint. Let ν(G) be the weight of maximum matching in
G. We say a matching M saturates a set U → V if for each vertex u ⊂ U , there
exists one edge in M with u as its endpoint. For G = (V,E), G− I is the graph
resulting by removing a set of edges I from G. A set of edges M of G = (V,E)
is called an edge dominating set if every edge of E \M is adjacent to at least
one edge in M . An independent edge dominating set is an edge dominating set
in which no two edges are adjacent. A minimum maximal matching in a graph
G is a maximal matching of the minimum size, denoted by λ(G). A smallest
independent edge dominating set is a minimum maximal matching [9].

We start with the definition of the edge interdiction problem related to the
minimum spanning tree problem, which is also known as t-Most Vital Edges

in MST (t-MVE) in literature:

Input: An edge-weighted graph G = (V,E) with weight function w : E ≡ Z→0,
two positive integers t and r.

Output: A subset I → E with |I| ∈ t such that η(G− I) ≥ r.

Frederickson and Solis-Oba [10] proved that t-MVE is NP-hard even if the
weights of the edges are either 0 or 1. They also gave anΩ(1\log t)-approximation
algorithm for t-MVE. This problem has also been studied from the view point
of exact algorithms and randomized algorithms [14,15].

The Maximum Matching Edge Interdiction (MMEI) problem, intro-
duced by Zenklusen [25], is defined as follows:

Input: A edge-weighted graph G = (V,E) with weight function w : E ≡ Z→0,
an interdiction cost function c : E ≡ Z→1, and two positive integers b and
m.

Output: A subset I → E with c(I) ∈ b such that ν(G− I) ∈ m.

MMEI is NP-hard on bipartite graphs, even with unit edge weights and unit
interdiction costs [25]. Zenklusen [25] introduced a constant factor approxima-
tion algorithm for MMEI on graphs with unit edge weights. Recently, Dinitz and
Gupta provided a constant-factor approximation for a generalization of match-
ing interdiction called packing interdiction [6]. Zenklusen [25] also showed that
MMEI is solvable in pseudo-polynomial time on graphs with bounded treewidth.
Pan and Schild [17] proved that weighted MMEI remains NP-hard even on planar
graphs.

The s-t Flow Edge Interdiction (s-t FEI) is defined as follows [21]:

Input: A directed graph G = (N,A) with distinguished vertices s and t, a
positive integer capacity uij for each arc (i, j) ⊂ A, an interdiction cost
function c : A ≡ Z→0, two positive integers l and f .
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Output: A set of arcs A≥ with c(A≥) ∈ l such that the maximum s-t flow
in G−A≥ has value at most f .

The s-t FEI was shown to be strongly NP-complete on general graphs and
weakly NP-complete when restricted to planar graphs [18,22]. Different algo-
rithms for finding exact algorithms were proposed [21,22] and Burch et al. [5]
gave a pseudo-approximation algorithm.

We study the parameterized complexity of the three edge interdiction problems
defined above. Parameterized complexity is a two-dimensional framework for
studying the computational complexity of hard problems [16] . A problem is fixed
parameter tractable (FPT) with respect to parameter k (e.g. solution size) if for
any instance of size n it can be solved in time O(f(k)nc) for some constant c. A
core tool in the development of fixed-parameter algorithms is polynomial-time
preprocessing by applying data reduction rules, often yielding a reduction to
a problem kernel (kernelization). Herein, the goal is, given a problem instance
x with parameter k, to transform it in polynomial time into an new instance
x≥ with parameter k≥ such that the size of x≥ is bounded from above by some
function only depending on k, k≥ ∈ k, and (x, k) is a yes-instance iff (x≥, k≥) is a
yes-instance. In prameterized complexity, the principal analogue of the classical
intractability class NP is called W[1].

First, we show that t-MVE is W[1]-hard with respect to r. In graphs with
edge weights of only 0 or 1, t-MVE is FPT with respect to t. The reduction from
Clique to MMEI by Zenklusen [24] already shows that MMEI on bipartite
input graphs with unit edge weights and interdiction costs is W[1]-hard with
respect to b. Complementing this result, we prove that MMEI on graphs with
unit edge weights and unit interdiction costs is also W[1]-hard with respect to
m as parameter. In contrast to parameter b, MMEI becomes FPT with respect
to m, if further restricted to bipartite input graphs. Moreover, taking both b
and m as parameters leads also to FPT when restricted to instances with unit
edge weights. Concerning s-t FEI, we prove that the parameterization with l is
W[1]-hard, complementing the result by Wood [22], that s-t FEI is W[1]-hard
with respect to f .

We observe some close relation between partial covering problems on bipartite
graphs and edge interdiction problems. The goal of a partial covering problem
is not to cover all elements but to minimize/maximize the number of covered
elements with a specific number of sets. For instance, the Partial Vertex

Cover (k-PVC) problem asks for k vertices maximizing the number of covered
edges. Partial covering problems have been studied intensively not only because
they generalize classical covering problems, but also because of many real life
applications, see for example [2,4,1,8].

Our findings about the relation between partial covering problems and edge
interdiction problems can be summarized as follows: First, we give a parame-
terized reduction from the W[1]-hard k-PVC problem to MMEI, leading to the
W[1]-hardness of MMEI with respect to m. Then, we prove an equivalent re-
lation between a special version of MMEI and k-PVC on bipartite graphs and
thus derive the FPT result of this special case of MMEI. Moverover, we prove
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the W[1]-hardness of k-PVC on bipartite graphs with the number of uncovered
edges as parameter by a reduction from MMEI with respect to parameter b.
Further, we introduce the following edge interdiction problem called Minimum

Maximal Matching Edge Interdiction which turns out to be equivalent
to the Partial Edge Dominating Set problem and prove W[1]-hardness for
both.

Minimum Maximal Matching Edge Interdiction (MMMEI)

Input: A simple graph G = (V,E), and an integer interdiction budget p ≥ 0
and an integer q.

Output: Is there a subset I → E with |I| ∈ p such that λ(G− I) ∈ q ?

k-Partial Edge Dominating Set (k-PEDS)

Input: A graph G = (V,E) and two positive integers k and x.
Output: Is there a subset S → E with |S| ∈ k such that at least x edges are

dominated by S?

Preliminary. For a vertex v, the vertices which are adjacent to v in G form the
neighborhood N(v) of v. For U → V , let N(U) denote the set of all vertices not
in U but adjacent to those in U . We denote the size of the neighborhood of v in
G as degG(v). A degree-1 vertex is a vertex with degG(v) = 1. A path from vertex
a to vertex b is an ordered sequence a = v0, v1, . . . , vm = b of distinct vertices
in which each adjacent pair (vj−1, vj) is linked by an edge. The distance between
two vertices is the number of edges on the shortest path between them, while the
distance between two edges e1 and e2 is the minimum of the distances of their
endpoints. A subgraph H = (V ≥, E≥) of a graph G = (V,E) is a pair V ≥ → V and
E≥ → E. We say that H = (V ≥, E≥) is an induced subgraph of G if V ≥ → V and
E≥ = {{u, v} ⊂ E|u, v ⊂ V ≥} and we denote H = G[V ≥]. For a set of edges S, let
V (S) denote the set of endpoints of S. An edge e is dominated by another edge
e≥ if they share one endpoint. An edge e is covered by a vertex v if v is one of
the endpoints of e. A set of edges F is called disconnecting, if G − F has more
connected components than G does. A connected graph G is k-edge-connected if
every disconnecting edge set has at least k edges.

2 t-Most Vital Edges in MST

We consider two parameterizations for t-MVE. Firstly, we define Minimum k-
way Edge Cut which is vital in the proofs of the following two results.

Minimum k-way Edge cut
Input: An undirected connected graph G = (V,E) with unit edge weights and

non-negative integers k and s.
Question: Is there a set S → E with |S| ∈ s such that, G − S has at least k

connected components?

Theorem 1. t-Most Vital Edges is W[1]-hard with respect to the weight r
of the MST in G− I.
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Proof. We give a parameterized reduction from Minimum k-Way Edge Cut.
Downey et al. [7] proved that Minimum k-Way Edge Cut is W[1]-hard with
parameter k. Given an instance G = (V,E) for Minimum k-Way Edge Cut,
we create an instance G≥ = (V ≥, E≥) for t-MVE as follows: For each vertex v ⊂ V ,
we create a vertex v ⊂ V ≥. For each edge {u, v} ⊂ E, create an edge {u, v} ⊂ E≥

with weight 0. For each pair of vertices u, v in V ≥ such that {u, v} /⊂ E, we add
a connection gadget M between u and v in the following way: Create a clique
with t + 1 vertices as gadget M such that all edges in M have weight 0. Now,
connect u to all vertices in M with edges of weight 1 and v to all vertices in M
with edges of weight 0. Let X ≥ be the set of all vertices in connection gadgets
and Y ≥ be the set of edges in G≥ with at least one endpoint in X ≥. Now we show
that G has a k-way edge cut of size s iff at most t = s edges can be deleted from
G≥ such that MST of the remaining graph is at least r = k − 1.

(∪) Let S be the solution for Minimum k-way Edge Cut on G. Now,
G − S consists of at least k connected components. We take the edges in G≥

corresponding to those in S as the solution S≥ for t-MVE. Observe that G≥[V ≥ \
X ≥]−S≥ consists of at least k connected components. Hence, every spanning tree
of G≥ − S≥ must pass through at least k − 1 connection gadgets M . Let M ≥ be
one connection gadget through which the MST in G≥ − S≥ passes. Let M ≥ be
connected to u ⊂ V ≥ \X ≥ with edges of weight 0 and to v ⊂ V ≥ \X ≥ with edges of
weight 1. The MST can span all vertices in M ≥ by using t+ 1 edges between u
and M ≥ and connect u to v by taking exactly one edge between M ≥ and v. The
MST must pass through at least k − 1 such connection gadgets. Moreover, each
connected component of G≥[V ≥ \X ≥]−S≥ has a MST of weight 0 and the vertices
in the remaining connection gadgets can be included in the MST by taking only
weight-0 edges. This gives a MST of G≥ of weight at least k − 1.

(◦) Let S≥ be the solution for t-MVE on G≥ and the MST of G≥ − S≥ has
weight at least k − 1. We first prove that S≥ ⊆ Y ≥ = ∀. Let M be the connection
gadget between u and v. We can observe that the minimum weight of a MST of
G[M∩{u, v}] is 1. Since M is a clique of size t+1 and both u and v are connected
to all vertices in M , the removal of arbitrary t edges from G[M ∩ {u, v}] cannot
increase the weight of a MST of G[M ∩{u, v}]. Hence, S≥⊆Y ≥ = ∀. Now, in order
to increase the weight of MST of G≥−S≥, the interdictor must force the maximum
usage of weight-1 edges (which are available only in connection gadgets) of the
MST. To this end, we need to maximize the number of connected components
in G≥ − Y ≥. Hence, S≥ is chosen in such a way that G≥ − {Y ≥ ∩ S≥} has the
maximum number of connected components. This corresponds to a Minimum

k-Way Edge Cut in G, which completes the proof. ∅↓

Theorem 2. Given an instance with edge weights only 0 and 1, t-Most Vital
Edges is fixed-parameter tractable (FPT) with respect to t.

Proof. Kawarabayashi and Thorup [13] proved that Minimum k-Way Edge

Cut is FPT with respect to s. Here, we use their algorithm as a black box. If
the input graph G is d-edge-connected with d ∈ t, we can find an edge cut S of
size at most t for G. Since G − S is disconnected, we take S as a solution for
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t-MVE and the weight of any MST of disconnected graphs is ∨. On the other
hand, if G is (t+ 1)-edge-connected, we need the following claim:

Claim. Given a (t+ 1)-edge-connected graph, there exists a solution of t-MVE

that contains no weight-1 edges.

Proof. Let V1 and V2 be an arbitrary partition of vertices ofG such that V1⊆V2 =
∀ and S be a solution of t-MVE. Let T be a minimum spanning tree of G − S.
Now, we show that if G is (t+1)-edge-connected, S does not contain any weight-
1 edge between vertices in V1 and V2. Since G is (t + 1)-edge-connected, there
is at least one edge between V1 and V2 in G − S. Hence, the worst-case cost of
connecting V1 and V2 in T is 1. So, it is never profitable to delete any edge of
weight 1 between V1 and V2. ∅↓

By this claim, if a (t+1)-edge-connected graph has only weight-1 edges, then
S = ∀ is the the solution . Let G be an instance of t-MVE, we run the following:

Step 1. Delete all weight-1 edges from G. Let G − X be the resulting graph
where X is the set of all weight-1 edges in G.
Step 2. In each connected component of G − X , we run the FPT-algorithm
from [13] with s ranging from 1 to t. For each connected component C of G−X
we maintain a table A, where for each integer 1 ∈ i ∈ t, we store the maximal
number of connected components that can be achieved by deleting i edges in C.
This table is of size t for each connected component of G − X and can clearly
be filled in FPT time with respect to t.
Step 3. For each integer 1 ∈ i ∈ t, we sort the connected components of G−X
according to the decreasing order of the number of resulting components with i
edge deletions as returned by Step 2. For each i we save the top t entries in this
sorted list, resulting in a table B of size t× t.
Step 4. Now, we enumerate all additive partitions of t. The partition func-
tion p(t) gives the number of different additive partitions of t without respect
to order which is clearly bounded by 2t−1. Such a partition can be computed in
time polynomial in t. Let, P1, P2, · · · , Pp(t) be the additive partitions of t.
Step 5. For each additive partition Pi we do the following: Assume that Pi

consists of j ∈ t integers. Now for each integer x ⊂ Pi, we branch on the first j
entries corresponding to x from Table B, each branch assigning exactly one entry
to x, that is, one connected component for x from G−X . This will take O∪(tt)
time for each Pi. Since there are at most n connected components in G − X ,
Step 5 runs in O∪(tt) time.
Correctness. Correctness of Step 1 follows directly from the above claim. We
prove now in Step 5 it is sufficient to branch only on the first j entries cor-
responding to x from Table B. For each integer x ⊂ Pi exactly one connected
component from G−X is assigned. Now, the top candidate for x in Table B will
not be assigned to x if and only if it is assigned to another integer y ⊂ Pi. There
can be at most j − 1 such integers y ⊂ Pi. Hence, it is sufficient to consider only
the first j ∈ t entries corresponding to x from Table B. Steps 1 and 3 can be
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achieved in time polynomial in n. Steps 2, 4 and 5 are FPT with respect to t.
Hence we have an overall running time exponentially depending on t. ∅↓

3 Maximum Matching and S-T Flow Interdiction

In this section, we study the edge interdiction problems for maximum matching
and s-t flow from parameterized complexity point of view. The reduction from
Clique to MMEI in [24] is also a parameterized one, proving that MMEI on
bipartite graphs with unit edge weight and unit interdiction cost is W[1]-hard
with respect to b. Now, we prove a similar result for the parameter m.

Theorem 3. MMEI with unit edge weights and interdiction costs is W[1]-hard
with respect to m.

Proof. We give a parameterized reduction from the W[1]-hard Partial Vertex

Cover (k-PVC) problem with parameter k [11]. Given an instance G = (V,E)
for k-PVC, we create an instance G≥ = (V ≥, E≥) for MMEI in the following: We
initialize G≥ with G. Now, for each vertex in G≥, we add |E| degree-1 neighbors.
Let Y be the set of degree-1 neighbors added in this way. Next, we show that G
has a set S of size k which covers at least x edges in G iff G≥ has a solution I
with b ∈ |E|(|V | − k) + (|E| − x) and ν(G≥ − I) ∈ m = k.

(∪) Given a solution S of k-PVC on G, we construct the MMEI solution I
for G≥ as follows: We add all edges in G≥ which are not incident to any vertex in
S to I. Since S covers at least x edges in G, we add at most |E| − x edges from
E and |E|(|V | − k) edges between Y and V to I. In the subgraph G≥ − I, every
edge is incident to vertices in S. Hence ν(G≥ − I) is at most k.

(◦) Let I be the given solution of MMEI for G≥ with b ∈ |E|(|V | − m) +
(|E| − x) and ν(G≥ − I) ∈ m. Since ν(G≥ − I) is at most m, at most m vertices
in G≥[V ≥ \ Y ]− I can have degree-1 vertices attached to them. Let X denote the
set of vertices in G≥[V ≥ \ Y ] − I which have degree-1 neighbors. To remove all
degree-1 neighbors of the vertices in V ≥ \ X requires addition of |E|(|V | − m)
edges to I. Hence, the vertices in X must cover at least x edges in G and X is
solution for k-PVC for G. ∅↓

However, unlike for the parameter b, the parameterization of MMEI with m
becomes tractable, if we restrict the input graphs to be bipartite.

Theorem 4. MMEI is fixed-parameter tractable (FPT) with respect to m when
restricted to bipartite graphs with unit edge weights and interdiction costs.

Proof. We prove the theorem by showing that, for a bipartite graphG = (X,Y,E),
there is a partial vertex cover S with |S| ∈ k covering at least x edges, if and only
if there is a set I → E with |I| ∈ |E| − x and ν(G− I) ∈ m = k. Note that k-PVC
on bipartite graphs is solvable in O∪(2k(2k)) time [1], proving the theorem.

Let S be a size-k partial vertex cover of G and I be the set of edges not
incident to the vertices in S. Then, |I| ∈ |E| − x. Since, all edges in G − I are
incident to vertices in S and each vertex in S must have an incident edge whose
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other endpoint is not in S, ν(G − I) ∈ k. This is true because, if each vertex
in S does not have an incident edge whose other endpoint is not in S, then the
cover can be smaller. The reverse direction can be shown in similar way. ∅↓

Using both b andm as parameters, we can achieve another FPT result for MMEI.

Theorem 5. MMEI in graphs with unit edge weights is fixed-parameter tractable
(FPT ) with respect to both b and m.

Proof. We show that in the instances with unit edge weights MMEI with both
b and m as parameters admits a kernel. We apply the following reduction rules:
Reduction Rule 1: If a vertex v has more than b degree-1 neighbors, then keep
arbitrary b of them and remove other degree-1 neighbors of v.

The correctness of Rule 1 can be shown as follows: Assume that a vertex v
has more than b degree-1 neighbors. Let X be the set of all degree-1 neighbors
of v. It is not possible to remove all edges between v and X with at most b
edge deletions allowed. Then, one of the edges between v and X can be in the
matching. Now, keeping b of them obviously does not omit any optimal solution.
Reduction Rule 2: If U → V and W → V with U ⊆W ⇔= ∀ satisfy: 1) W is
an independent set, 2) N(W ) = U and there are all possible edges between U
and W , and 3) |W | ≥ max{|U |, b + 1}, then keep only max{|U |, b+ 1} vertices
in W and remove the rest.

We prove now the correctness of Rule 2. Let H be the bipartite graph G[U ∩
W ] − E(G[U ]). Notice that we have ν(H) = |U | and there are at least |W |
disjoint matchings in H which saturate U . Now we show that removing any b
edges from H does not decrease the cardinality of a maximum matching in G.
This property is obtained by observing that since in H there are at least b + 1
disjoint matchings which saturate U , we have after removing up to b edges in G
there is at least one matching of H which saturates U . We therefore have the
desired property that H is immune to “edge removals”. Hence, removing all but
max{b+ 1, |U |} vertices from |U | still maintains this property.

Rule 2 runs in polynomial time, since W is clearly a module and all modules
of a graph can be found in linear time [12].

Claim. MMEI admits a kernel with respect to both b and m as parameters.

Proof. Let B be the set of edges which form the solution of MMEI and let M be
the maximum matching of the remaining graph. Since the costs of edges are pos-
itive integers, |B| ∈ b and |M | = m. Moreover, |V (B)| ∈ 2b and |V (M)| = 2m.
As M is the maximum matching in G − B, each edge in G − B must have at
least one endpoint in V (M). Hence, there exist at most b edges in G which do
not have its endpoints in V (M).

Now, we bound the number of edges with its endpoints in V (M). There are at
most 4m2 edges in G[V (M)]. Let X be the set of degree-1 neighbors of V (M).
Rule 1 bounds the number of degree-1 neighbors of each vertex by b; hence, there
are at most 2bm edges between V (M) and X . The number of edges between
V (B) and V (M), is clearly bounded by 4bm. Now, the remaining edges are
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between V (M) and Y := V \(X∩V (B)∩V (M). We can observe that the vertices
in Y have degree at least two and N(Y ) → V (M). For each edge {m1,m2} ⊂M ,
there exists at most one vertex in Y which is adjacent to both m1 and m2. We
have m edges in M , hence there are at most m vertices in Y which are adjacent
to both endpoints of an edge in M . Next, we bound the number of vertices
in Y , which are adjacent to several edges in M . By Rule 2, for a size-i subset
of vertices I ⇐ V (M) such that no two vertices in I are connected by an edge
in M , there can be at most max{i, b+ 1} vertices y in Y , such that N(y) = I.
There can be at most

∑
i 2

i ·
(
m
i

)
such subsets I in V (M). Hence we have at

most l =
∑

i 2
i ·
(
m
i

)
·max{i, b+1} + m vertices in Y . Hence, there are at most

lm edges between Y and M . In total we have lm + 4bm + 4m2 edges which is
a function depending only on m and b. Hence we have a kernel for MMEI with
both b and m as parameters. ∅↓

Wood [22] proved the NP-hardness of s-t FEI by a reduction from Clique,
which sets the flow amount in the resulting graph f equal to k. This implies
that s-t Flow Edge Interdiction with unit edge costs and the edge capacities
being 1 or 2 is W[1]-hard with respect to f . Complementing this result, we
achieve the W[1]-hardness of s-t FEI with respect to parameter l.

Theorem 6. s-t Flow Edge Interdiction in bipartite graphs with unit flow
capacity is W[1]-hard with respect to l.

Proof. We give a parameterized reduction from W[1]-hard MMEI with b as pa-
rameter. Note that this parametrization remains W[1]-hard on bipartite graphs.
Let a bipartite graph G = (X,Y,E) be an instance of MMEI. We create an in-
stance G≥ for s-t Flow Edge Interdiction in the following way: Initialize G≥

with G such that each edge has unit interdiction cost and flow capacity and each
arc is directed from vertex in X to the one in Y . Add two new vertices s and t
to G≥. Now, we add arcs with interdiction cost l+1 from s to each vertex in X .
Similarly, arcs with interdiction cost l + 1 directed from each vertex in Y to t
are added. Let the set of the arcs added in this way to G be Q and each arc in
Q has unit flow capacity. With this construction we can show that G has a yes
answer to MMEI with b total budget and maximum matching with weight at
most m allowed in the resulting graph iff G≥ has yes answer to the s-t FEI with
total budget l and maximum flow allowed in the resulting graph at most f = m.

The key argument is that only the arcs in G≥ − Q will belong to an optimal
solution of s-t FEI. Hence, the amount of the s-t flow in the resulting graph is
equivalent to the corresponding matching in G≥ −Q. ∅↓

4 Minimum Maximal Matching Edge Interdiction

From the proof of Theorem 4, we can already observe some equivalent relation
between edge interdiction problems and partial covering problems. In the fol-
lowing, we prove that MMMEI is W[1]-hard with respect to j by relating it to
k-PEDS. Firstly, we prove the following lemma:
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Lemma 1. k-PEDS on bipartite graphs is W[1]-hard with respect to k.

Proof. We give a parameterized reduction from W[1]-hard k-Independent Set

[16] to k-PEDS. Given a graph G = (V,E) as an instance of k-Independent
Set, we create an instance G≥ := (V1, V2, E

≥) for k-PEDS in the following way:
For each vertex v ⊂ G, we create two vertices v1 and v2 and an edge {v1, v2}
in G≥. For each edge {u, v} ⊂ G, we create two edges {u1, v2} and {u2, v1} in
G≥. Moreover, for every vertex vi ⊂ G≥, we add n− degG(v) degree-1 neighbors
where n = |V |. Now, we show that k edges in G≥ dominate at least 2kn edges iff
there exists an independent set of size k in G.

(◦) Let S be an independent set of size k in G. For each vertex v ⊂ S, we
add the corresponding edge {v1, v2} ⊂ E≥ to the solution set S≥ for k-PEDS
in G≥. Given that S is an independent set, for any pair of vertices u, v in S,
the corresponding edges {u1, u2} ⊂ E≥ and {v1, v2} ⊂ E≥ do not dominate any
common edge. Hence, since each edge e ⊂ S≥ dominates exactly 2n edges, the
set S≥ dominates 2kn edges.

(∪) Now, let S≥ be a set of k edges in G≥ which dominate 2kn edges. Each
edge in G≥ can dominate at most 2n edges; hence, no two edges in S≥ share
a dominated edge. This ensures that the shortest distance between every two
edges in S≥ is at least two. Now, we present an algorithm to convert a given
solution S≥ for PEDS in G≥ to a size-k independent set in G. For this purpose,
first we define a conflict cycle. Let S≥ be a solution of PEDS in G≥ = (V1, V2, E

≥)
and let T → S≥. We say that T forms a conflict cycle C in G≥ if we can construct
a cycle in G≥ containing T and a set U of |T | vertices from G≥ − S≥ such that in
cycle C, between any two edges from T there exists exactly one vertex from U .
A vertex tj can be in U only if t3−j is contained in S≥ for j = {1, 2}.

Assume that there exists no conflict cycle with respect to S≥. Then it is easy
to get the size-k independent set corresponding to S≥ in G. Construct a graph Y
that represents the connectivity relation of edges in S≥: For each edge i ⊂ S≥,
we create a vertex yi in Y . We create an edge between two vertices yi and yj
in Y iff their corresponding edges i and j are separated by distance exactly 2
in G≥. Observe that in the absence of conflict cycles in G≥, Y is a tree. Now,
we give a procedure to get S from S≥, given Y is a tree. We start in bottom-up
fashion from leaves. Consider a leaf of Y , if {x1, x2} is the edge corresponding to
the leaf, then we add the corresponding vertex x to S. Let {x1, y2} be the edge
corresponding to the leaf and vi be the vertex connecting the leaf to its parent
in T . If vi ⊂ V1, we add x to S, else we add y to S. Now, we remove this leave
and proceed iteratively for every leaf. We can observe that, since T is a tree, no
conflict will arise during this procedure. The obtained solution after all vertices
in T are processed is an independent set in G. In the scenario when there exist
conflict cycles in G≥, we first prove the following claim:

Claim. If there exist conflict cycles in G≥, the corresponding graph Y is bipartite.

Proof. Firstly, we observe that T → S≥ forms a conflict cycle, only if there exists
no edge {x1, x2} in T . If {x1, x2} ⊂ T , no vertex vi with i ⊂ {1, 2} adjacent
to x1 or x2 can be in U as v(3−i) /⊂ V (S≥). We can further observe that since G≥
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is bipartite, in the conflict cycle, the vertices will alternate between V1 and V2.
Moreover, in the cycle, every two consecutive vertices from U will also alternate
between V1 and V2. Now, as the edges in Y are analogous to vertices in U , each
cycle in Y corresponding to a conflict cycle in S≥ is of even length. ∅↓

For vertices in T not belong to any cycle, we can obtain the corresponding
vertices in S in a bottom-up fashion recursively as for the case that T is tree.
After all vertices not belonging to any cycles are dealt with, let the resulting T
be T ≥, where only even cycles remain. Since T ≥ is bipartite, it is 2-colorable. We
color T ≥ with two colors, say black and white. If a vertex in T ≥ corresponding to
{x1, y2} is black, we add x to S, else y. Since the vertices in U alternate between
V1 and V2, this resolves all conflicts and gives a valid independent set S. ∅↓

Theorem 7. Minimum Maximal Matching Edge Interdiction on bipar-
tite graphs is W[1]-hard with respect to parameter p.

Proof. For a bipartite graph G = (X,Y,E), we show that there is a set S → E
with |S| ∈ k that dominates at least x edges in G, iff there is a set I → E with
|I| ∈ |E|−x and λ(G−I) ∈ q = k. The theorem then follows from Lemma 1. Let
I be the set of edges not dominated by S, |I| ∈ |E|−x. Clearly, S is the minimum
edge dominating set of G−I. It is well-known that the size of the minimum edge
dominating set of a graph is equal to the size of its minimum independent edge
dominating set. In fact, given a minimum edge dominating set F of G − I we
can construct in polynomial time a minimum independent edge dominating set
of G − I [23]. Moreover, a minimum independent edge dominating set is also a
minimum maximal matching of G − I. Hence, G − I has a minimum maximal
matching of size at most q. The reverse direction can be shown similarly. ∅↓

Finally, we use the equivalence relation between edge interdiction problems
and partial covering problems to prove the following hardness result, whose proof
is in deferred to the full-version of the paper.

Corollary 1. k-PVC on bipartite graphs is W[1]-hard with respect to the number
of uncovered edges.

5 Outlook

We proved that t-MVE on the instances of edge weights 0 or 1 is FPT with
respect to t. The case with integer positive weights remains open. Another open
question is the complexity of MMEI on integer edge weights with respect to
b and m. Moreover, structural parameters like treewidth could be a promising
alternative for parameterizing interdiction problems. Finally, the vertex inter-
diction problems have been studied from the viewpoints of classical complexity
and approximation algorithms, but seem unexplored from the parameterized
complexity perspective.
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Abstract. The problem of finding an optimal vertex cover in a graph
is a classic NP-complete problem, and is a special case of the hitting
set question. On the other hand, the hitting set problem, when asked in
the context of induced geometric objects, often turns out to be exactly
the vertex cover problem on restricted classes of graphs. In this work
we explore a particular instance of such a phenomenon. We consider the
problem of hitting all axis-parallel slabs induced by a point set P , and
show that it is equivalent to the problem of finding a vertex cover on a
graph whose edge set is the union of two Hamiltonian Paths. We show
the latter problem to be NP-complete, and also give an algorithm to find
a vertex cover of size at most k, on graphs of maximum degree four,
whose running time is 1.2637knO(1).

1 Introduction

Let P be a set of n points in R
2 and let R be the family of all distinct objects of a

particular kind (disks, rectangles, triangles, . . . ), such that each object in R has
a distinct tuple of points from P on its boundary. For example, R could be the
family of

(
n
2

)
axis parallel rectangles such that each rectangle has a distinct pair

of points of P as its diagonal corners. R is called the set of all objects induced
(spanned) by P .

Various questions related to geometric objects induced by a point set have
been studied in the last few decades. A classical result in discrete geometry is the
First Selection Lemma [1] which shows that there exists a point that is present
in a constant fraction of triangles induced by P . Another interesting question is
to compute the minimum set of points in P that “hits” all the induced objects
in R. This is a special case of the classical Hitting Set problem, which we will
refer to as Hitting Set for Induced Objects.

For most geometric objects, it is not known if the Hitting Set for induced
objects problem is polynomial time solvable. It is known to be polynomially
solvable for skyline rectangles (3-sided rectangles) and halfspaces [2]. Recently,
Rajgopal et al [10] showed that this problem is NP-complete for lines.

The problem of finding an optimal vertex cover in a graph is a classic NP-
complete problem, and is a special case of the Hitting Set problem. On the other
hand, the hitting set for induced objects problem often turns out to be exactly

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 179–190, 2014.
c∞ Springer International Publishing Switzerland 2014
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the vertex cover problem, even on restricted classes of graphs. For example, the
problem of hitting set for induced axis-parallel rectangles is equivalent to the
vertex cover on the Delaunay graph of the point set with respect to axis-parallel
rectangles.

We study a particular phenomenon of this type, where the hitting set question
in the geometric setting boils down to a vertex cover problem on a structured
graph class. We consider the problem of hitting set for induced axis-parallel slabs
(rectangles whose horizontal or vertical sides are unbounded). Note that this is
even more structured than general axis-parallel rectangles, and indeed, it turns
out that the corresponding Delaunay graph has a very special property — its
edge set is the union of two Hamiltonian paths. Since any hitting set for the class
of axis-parallel slabs induced by a point set P is exactly the vertex cover of the
Delaunay graph with respect to axis-parallel slabs for P , our problem reduces
to solving vertex cover on the class of graphs whose edge set is simply the union
of two Hamiltonian Paths.

Despite the appealing structure, we show that – surprisingly – deciding k-

vertex cover on this class of graphs is NP-complete.1 This involves a rather
intricate reduction from the problem of finding a vertex cover on cubic graphs.
We also appeal to the fact that the edge set of four-regular graphs can be par-
titioned into two two-factors, and the main challenge in the reduction involves
stitching the components of the two-factors into two Hamiltonian paths while
preserving the size of the vertex cover in an appropriate manner.

Having established the NP-hardness of the problem, we pursue the question
of improved fixed-parameter algorithms on this special case. Vertex Cover is one
of the most well-studied problems in the context of fixed-parameter algorithm
design, it enjoys a long list of improvements even on special graph classes. We
note that for Vertex Cover, the goal is to find a vertex cover of size at most
k in time O(ck), and the “race” involves exploring algorithms that reduce the
value of the best known constant c.

In particular, even for sub-cubic graphs (where the maximum degree is at
most three, and the problem remains NP-complete), Xiao [12] proposed an al-
gorithm with running time OΘ(1.1616k), improving on the previous best record
of OΘ(1.1864k) by Razgon [11] and OΘ(1.1940k) by Chen, Kanj and Xia [6]. The
best-known algorithm for Vertex Cover [5] on general graphs has a running time
of OΘ(1.2738k) and uses polynomial-space.

Typically, these algorithms involve extensive case analysis on a cleverly de-

signed search tree. In the second part of this work1, we propose a branching algo-
rithm with running time OΘ(1.2637k) for graphs with maximum degree bounded
by at most four. This improves the best known algorithm for this class, which
surprisingly has been no better than the algorithm for general graphs. We note
that this implies faster algorithms for the case of graphs that can be decomposed
into the union of two Hamiltonian Paths (since they have maximum degree at

1 Due to space constraints, some proofs have been omitted. We refer the reader to
http://arxiv.org/abs/1404.5566 for the full version of this paper.

http://arxiv.org/abs/1404.5566
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most four), however, whether they admit additional structure that can be ex-
ploited for even better algorithms remains an open direction.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from
graph theory and algorithms. We also establish some of the notation that will
be used throughout.

We denote the set of natural numbers by N and set of real numbers by R .
For a natural number n, we use [n] to denote the set {1, 2, . . . , n}. For a finite
set A we denote by SA the set of all permutations of the elements of set A.
To describe the running times of our algorithms, we will use the OΘ notation.
Given f : N → N, we define OΘ(f(n)) to be O(f(n) · p(n)), where p(·) is some
polynomial function. That is, the OΘ notation suppresses polynomial factors in
the running-time expression.

Graphs. In the following, let G = (V,E) be a graph. For any non-empty subset
W ⊂ V , the subgraph of G induced by W is denoted by G[W ]; its vertex set is
W and its edge set consists of all those edges of E with both endpoints in W .
For W ⊂ V , by G \W we denote the graph obtained by deleting the vertices in
W and all edges which are incident to at least one vertex in W .

A vertex cover is a subset of vertices S such that G \ S has no edges. For
v ≡ V we denote the open-neighborhood of v by N(v) = {u ≡ V |(u, v) ≡ E},
closed-neighborhood of v by N [v] = N(v) ∈ {v}, second-open neighborhood by
N2(v) = {u ≡ V |≥u→ ≡ N(v) s.t. (u, u→) ≡ E} second-closed neighborhood by
N2[v] = N2(v) ∈N [v].

When we are discussing a pair of vertices u, v, then the common neighborhood
of u and v is the set of vertices that are adjacent to both u and v. In this context,
a vertex w is called a private neighbor of u if (w, u) is an edge and (w, v) is not
an edge. We denote the degree of a vertex v ≡ V by d(v).

A path in a graph is a sequence of distinct vertices v0, v1, . . . , vk such that
(vi, vi+1) is an edge for all 0 ∪ i ∪ (k− 1). A Hamiltonian path of a graph G is a
path featuring every vertex of G. The following class of graphs will be of special
interest to us.

Definition 1 (Braid graphs). A graph G on the vertex set [n] is a braid graph
if the edges of the graph can be covered by two Hamiltonian paths. In other words,
there exist permutations σ, τ of the vertex set for which E(G) = {(σ(i), σ(i +
1)) | 1 ∪ i ∪ n− 1} ∈ {(τ(i), τ(i + 1)) | 1 ∪ i ∪ n− 1}.

Induced axis-parallel slabs: Axis-parallel slabs are a special class of axis-parallel
rectangles where two horizontal or two vertical sides are unbounded. Each pair of
points p(x1, y1) and q(x2, y2) induces two axis-parallel slabs of the form [x1, x2]×
(−◦,+◦) and (−◦,+◦) × [y1, y2]. Let R represent the family of 2

(
n
2

)
axis-

parallel slabs induced by P .
We refer the reader to [7] for details on standard graph theoretic notation and

terminology we use in the paper.
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Parameterized Complexity. A parameterized problem Π is a subset of Γ ≥ × N,
where Γ is a finite alphabet. An instance of a parameterized problem is a tuple
(x, k), where x is a classical problem instance, and k is called the parameter. A
central notion in parameterized complexity is fixed-parameter tractability (FPT)
which means, for a given instance (x, k), decidability in time f(k) · p(|x|), where
f is an arbitrary function of k and p is a polynomial in the input size.

3 Hitting Set for Induced Axis-Parallel Slabs

We show here that the problem of finding a hitting set of size at most k for
the family of all axis-parallel slabs induced by a point set is equivalent to the
problem of finding a vertex cover of a graph whose edges can be partitioned into
two Hamiltonian Paths. In subsequent sections, we establish the NP-hardness of
the latter problem, and also provide better FPT algorithms. Due the equivalence
of these problems, we note that both the hardness and the algorithmic results
apply to the problem of finding a hitting set for induced axis parallel slabs.

Lemma 1. Let G = (V,E) be an instance of k-vertex cover, where G is a braid
graph with V = [n] and associated permutations σ, τ . Then we can compute, in
polynomial time, an equivalent instance of hitting set for the collection of all
axis-parallel slabs induced by a point set.

Proof (Sketch). Given an instance of vertex cover on a braid graph G, with
V (G) = [n] and permutations σ and τ , we create n points in R

2 in an (n× n)-
grid as follows. We assume, by renaming if necessary, that σ is the identity
permutation. For every 1 ∪ i ∪ n, we let pi = (i, τ−1(i)). Since we only need to
hit empty vertical and horizontal slabs, in the induced setting this amounts to
hitting all consecutive slabs in the horizontal and vertical directions. It is easy
to check that a hitting set for such slabs would exactly correspond to a vertex
cover of G. ⊆∀
Lemma 2. The problem of finding a hitting set for all induced axis-parallel slabs
by a point set P can be reduced to the problem of finding a vertex cover in a braid
graph.

Proof. From the given point set P , we sort the points in P according to their
x-coordinates to obtain a permutation of the point set σ. Similarly, we sort with
respect to y-coordinate to get a permutation τ . Note that there exists a empty
axis-parallel slab between two points if and only if they are adjacent with respect
to at least one of the x- or y-coordinates, These are, on the other hand, precisely
the edges in the braid graph with σ and τ as the permutations, which shows the
equivalence. ⊆∀

4 NP-completenes of Vertex Cover on Braids

In this section, we show that the problem of determining a vertex cover on the
class of braids is hard even when the permutations of the braid are given as
input.
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The intuition for the hardness is the following. Consider a four-regular graph.
By a theorem of Peterson, we know that the edges of such a graph can be
partitioned into two sets, each of which would be a two-factor in the graph G.
In other words, every four-regular graph can be thought of as a union of two
collections of disjoint cycles, defined on same vertex set. It is conceivable that
these cycles can be patched together into paths, leading us to a braid graph. As
it turns out, for such a patching, we need to have some control over the cycles in
the decomposition to begin with. So we start with an instance of Vertex Cover
on a cubic 2-connected planar graphs, morph such an instance to a four-regular
graph while keeping track of a special cycle decomposition, which we later exploit
for the “stitching” of cycles into Hamiltonian paths.

Formally, therefore, the proof is by a reduction from Vertex Cover on a cubic
2-connected planar graph to an instance of k-vertex cover on a braid graph, not-
ing that [8] shows the NP-hardness of Vertex Cover for cubic planar 2-connected
graphs. We describe the construction in two stages, first showing the transforma-
tion to a four-regular graph and then proceeding to illustrate the transformation
to a braid graph.

Due to space constraints, we only provide the highlights of the reduction.
One of the main tasks is to merge the cycles in each decomposition. Let us first
illustrate a gadget that combines two cycles into a longer one.2 Note that the
gadget itself must be a braid, and of course, we need to ensure equivalence.

For the purpose of this brief discussion, our starting point is a four-regular
graph G. Recall that the edge set of G can be decomposed into two collections
of cycles. Note that every vertex v participates in two cycles, say Cv and C→

v —
these would be cycles from different collections. Now let the neighbors of v in
Cv be v1, v2, and let the neighbors in C→

v be v3 and v4.
We are now ready to describe the gadget Wv. This gadget has four entry

points, namely v→, v→→, and a, b. The gadget is shown in Figure 1(b). It is easy
to check that the gadget induces a braid. Now, in G, to insert this gadget, we
remove v from G, and make v1, v3 adjacent to a and v2, v4 adjacent to b. Let us
denote this graph by G→. Note that there is a path from v1 to v2 along the cycle
Cv and there is a path from v3 to v4 along the cycle C→

v.
For equivalence, we need to be sure that if even one of v1, v2, v3, v4 is not

picked in a vertex cover of G→, then we have enough room for the vertex v in
the reverse direction. To this end, we show the following crucial property of the
gadget Wv.

Lemma 3. Let S→ be any vertex cover of G. If one of a or b belongs to S→, then
|S→ ∩ V (Wv)| = 10. On the other hand, there exists a vertex cover S→ of G→, that
contains neither a nor b, for which |S→ ∩ V (Wv)| = 9.

Proof. The vertices {v→, x, x→}, {v→→, y, y→}, {w1, w2, w3}, {w4, w5, w6} form trian-
gles, and (w, a) is an edge disjoint from these triangles. Therefore, we clearly

2 At this point, we are not concerned that this is leading us to, eventually, a Hamilto-
nian cycle rather than a path, because it is quite easy to convert the former to the
latter.
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Fig. 1. Stitching together one pair of cycles with a common vertex v using Wv

.

require minimum of 9 vertices to cover edges of Wv alone. If we have S→ =
{x, x→, y, y→, w1, w2, w4, w6, w} then we can cover all edges of Wv with 9 vertices.
This proves the second part of the claim.

Now, let S→ be a vertex cover such that a ≡ S→. Then apart from the K3’s
present we have an edge (w, b), so including a we need at least 10 vertices.
An analogous argument holds when b is present (edge (w, a) left). If we have
V → = {x, x→, y, y→, w1, w2, w4, w6, a, b} then we can cover all edges of Wv with 10
vertices. ⊆∀

Corollary 1. We have a vertex cover of size k in G if and only if G→ admits a
vertex cover of size k + 9.

Proof. Let S be a vertex cover ofG. If v /≡ S, then {v1, v2, v3, v4} ⊂ S. Therefore,
we may cover the edges of Wv using the vertices {x, x→, y, y→, w1, w2, w4, w6, w}
since there is no external obligation to pick either a or b, and this would be
an extension of S with at most nine additional vertices. If v ≡ S, then let
SΘ := S \ {v}. We extend SΘ by the set {x, x→, y, y→, w1, w2, w4, w6, a, b}, which
also adds up to k+9. In the reverse direction, given a vertex cover of size k+9, we
know that at least nine vertices of S→ are from Wv. Let S

† denote the remaining
vertices of S→. If all of {v1, v2, v3, v4} ≡ S→, then note that SΘ is a vertex cover of
size k for G. If one of {v1, v2, v3, v4} /≡ S→, then S† ∈ {v} is a vertex cover of size
at most k in G. The size bound comes from Lemma 3 and the fact that either a
or b belongs to S→ due to the case we are considering.

We should be able to use this gadget repeatedly to stitch all cycles into two
single long cycles. However, the iterative process involves several challenges. For
instance, if some gadgets are already inserted, the paths along the cycles that we
had before may not be so readily available. Also, while the process of breaking
the cycle at a vertex v is clear, it is not obvious as to how one would mimic this
construction for a neighbor of v after v has been suitably replaced. The concern
here is that a straightforward application of the gadget will cause vertices from
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two different gadgets to become adjacent, which we would like to avoid if we are
to maintain the braid structure of the gadget itself.

To address the former problem we create a slightly different gadget that cre-
ates artificial paths that can be used if the original cycle is broken by some
previously inserted gadget. For the second problem, we start our reduction from
cubic graphs and proceed in a manner so as to ensure that the cycle decom-
positions of the reduced graph are somewhat special. This allows us to choose
mutually non-adjacent breakpoints v.

Finally, these gadgets must be tied together into a path, which we organize
with the help of connection gadgets. The reader is referred to the full version of
this work for the complete details.

Theorem 1. The problem of finding a vertex cover of size at most k in a braid
graph is NP-complete.

5 An Improved Branching Algorithm

In this section we describe an improved FPT algorithm for the vertex cover prob-
lem on graphs with maximum degree at most four. The algorithm is essentially
a search tree, and the analysis is based on the branch-and-bound technique. We
use standard notation with regards to branching vectors as described in [9].The
input to the algorithm is denoted by a pair (G, k), where G is a graph, and the
question is whether G admits a vertex cover of size at most k.

We work with k, the size of the vertex cover sought, as the measure — some-
times referred to as the budget. When we say that we branch on a vertex v, we
mean that we recursively generate two instances, one where v belongs to the
vertex cover, the other where v does not belong to the vertex cover. This is
a standard method of exhaustive branching, where the measure drops, respec-
tively, by one and d(v) in the two branches (since the neighbors of v are forced
to be in the vertex cover when v does not belong to the vertex cover).

Preprocessing. We begin by eliminating simplicial vertices, that is, vertices whose
neighborhoods form a clique. If the graph induced by N [v] is a clique, then it
is easy to see that there is a minimum vertex cover containing N(v) and not
containing v (by a standard shifting argument). We therefore preprocess the
graph in such a situation by deleting N [v] and reducing the budget to k−|N(v)|.

Our algorithm makes extensive use of the folding technique, as described in
past work [3, 4]. This allows us to preprocess vertices of degree two in polynomial
time, while also reducing the size of the vertex cover sought by one. We briefly
describe how we might handle degree-2 vertices in polynomial time. Suppose v is
a degree-2 vertex in the graph G with two neighbors u and w such that u and w
are not adjacent to each other. We construct a new graph G→ as follows: remove
the vertices v, u, and w and introduce a new vertex vΘ that is adjacent to all
neighbors of the vertices u and w in G (other than v). We say that the graph G→

is obtained from the graph G by “folding” the vertex v, and we say that vΘ is the
vertex generated by folding v, or simply that vΘ is the folded vertex (when the



186 A. Agrawal, S. Govindarajan, and N. Misra

context is clear). It turns out that the folding operation preserves equivalence,
as shown below.

Proposition 1. [3, Lemma 2.3] Let G be a graph obtained by folding a degree-2
vertex v in a graph G, where the two neighbors of v are not adjacent to each
other. Then the graph G has a vertex cover of size bounded by k if and only if
the graph G→ has a vertex cover of size bounded by (k − 1).

Note that the new vertex generated by the folding operation can have more
than four neighbors, especially if the vertices adjacent to the degree-2 vertex
have, for example, degree four to begin with. The branching algorithm that we
will propose assumes that we will always find a vertex whose degree is bounded
by 3 to branch on, therefore it is important to avoid the situation where the
graph obtained after folding all available degree two vertices is completely devoid
of vertices of degree bounded by three (which is conceivable if all degree three
vertices are adjacent to degree two vertices that in turn get affected by the folding
operation). Therefore, we apply the folding operation somewhat tactfully− we
apply it only when we are sure that the folded vertex has degree at most four. We
call such a vertex a foldable vertex. Further, a vertex is said to be easily foldable
if, after folding, it has degree at most 3. We avert the danger of leading ourselves
to a four-regular graph recursively by explicitly ensuring that vertices of degree
at most three are created whenever a folded vertex has degree four. Note that
in the preprocessing step we will be folding only easily foldable vertices.

Typically, we ensure a reasonable drop on all branches by creating the follow-
ing win-win situation: if a vertex is foldable, then we fold it, if it is not, then this
is the case since there are sufficiently many neighbors in the second neighbor-
hood of the vertex, and in many situations, this would lead to a good branching
vector. Also, during the course of the branching, we appeal to a couple of simple
facts about the structure of a vertex cover, which we state below.

Lemma 4. [3, First part of Lemma 3.2] Let v be a vertex of degree 3 in a graph
G. Then there is a minimum vertex cover of G that contains either all three
neighbors of v or at most one neighbor of v.

This follows from the fact that a vertex cover that contains v (where d(v) = 3)
and two of its neighbors can be easily transformed into one, of the same size,
that omits v and contains all of its neighbors.

Proposition 2. If x, a, y, b form a cycle of length four in G (in that order), and
the degree of a and b in G is two, then there exists an optimal vertex cover that
does not pick a or b and contains both x and y.

Overall Algorithm. To begin with, the branching algorithm tries to branch
mainly on a vertex of degree three or two. If the input graph is four-regular,
then we simply branch on an arbitrary vertex to create two instances both of
which have at least one vertex of degree at most three. We note that this is an
off-branching step, in the future, the algorithm maintains the invariant that at
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each step, the smaller graph produced has at least one vertex whose degree is at
most three.

After this, we remove all the simplicial vertices and then fold all easily-foldable
vertices. If a degree two vertex v with neighbors u and w is not easily-foldable,
then note that there exists an optimal vertex cover that either contains v or does
not contain v and includes both its neighbors. Indeed, if an optimal vertex cover
S contains, say v and u, then note that (S \ {v}) ∈ {w} is a vertex cover of the
same size. So we branch on the vertex v:

– when v does not belong to the vertex cover, we pick u,w in the vertex cover,
leading to a drop of two in the measure,

– when v does belong to the vertex cover, we have that N(u) ∈ N(w) must
belong to the vertex cover, and we know that |N(u) ∈ N(w) \ {v}| ↓ 4
(otherwise, v would be easily-foldable), and this leads to a drop of five in
the measure.

So we either preprocess degree two vertices in polynomial time, or branch on
them with a branching vector of (2, 5). At the leaves of this branching tree, if
we have a sub-cubic graph, then we employ the algorithm of [12]. Otherwise, we
have at least one degree three vertex which is adjacent to at least one degree
four vertex. We branch on these vertices next. The case analysis is based on
the neighborhood of the vertex — broadly, we distinguish between when the
neighborhood has at least one edge, and when it has no edges. The latter case
is the most demanding in terms of a case analysis. For the rest of this section,
we describe all the scenarios that arise in this context.

Degree three vertices with edges in their neighborhood. For this part of the al-
gorithm, we can always assume that we are given a degree three vertex with a
degree four neighbor. Let v be a degree three vertex, and let N(v) := {u,w, x},
where we let u denote a degree four vertex. Note that u,w, x does not form a
triangle, otherwise v would be a simplicial vertex and we would have handled it
earlier. So, we deal with the case when N(v) is not a triangle, but has at least
one edge. If (w, x) is an edge, then we branch on u:

– when u does not belong to the vertex cover, we pick four of its neighbors in
the vertex cover, leading to a drop of four in the measure,

– when u does belong to the vertex cover, we delete u from the graph, and
we are left with v, w, x being a triangle where v is a degree two vertex, and
therefore we may pick w, x in the vertex cover — together, this leads to a
drop of three in the measure.

On the other hand, if (w, x) is not an edge, then there is an edge incident to
u. Suppose the edge is (u,w) (the case when the edge is (u, x) is symmetric).
In this case, we branch on x exactly as above. The measure may drop by three
when x does not belong to the vertex cover, if x happens to be a degree three
vertex. Therefore, our worst-case branching vector in the situation when N(v)
is not a triangle, but has at least one edge is (3, 3).
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Degree three vertices whose neighborhoods are independent. Here we consider
several cases. Broadly, we have two situations based on whether u,w, x have any
common neighbors or not.

Before embarking on the case analysis, we describe a branching strategy for
some specific situations — these mostly involve two non-adjacent vertices that
have more than two neighbhors in common, with at least one of them of degree
4. This will be useful in scenarios that arise later.

We consider the case when a degree four vertex p non-adjacent to a vertex
q has at least three neighbhors in commmon, say a, b, c and let x be the other
neighbhor of p that may or may not be adjacent to q. Notice that there always
exists an optimal vertex cover that either contains both p and q or omits both p
and q. To see this, consider an optimal vertex cover S that contains p and omits
q. Then, S clearly contains a, b, c. Notice now that T := (S \ {p}) ∈ {x} is also
a vertex cover, and T contains neither p or q, and has the same size as S. This
suggests the following branching strategy:

1. If p and q both belong to the vertex cover, then the measure clearly drops
by two. We proceed by deleting p and q from G. Now note that the degree
of the vertices {a, b, c} reduces by two, and they become vertices of degree
one or two (note that they cannot be isolated because we always begin by
eliminating vertices of degree two by preprocessing or branching). If any
one of these vertices is simplicial or foldable then we process it or fold it
respectively. Otherwise, we branch on a:

(a) when a does not belong to the vertex cover, we pick its neighbhors in
the vertex cover, leading to a drop of two in the measure.

(b) when a does belong to the vertex cover, we have that its second neigh-
borhood must belong to the vertex cover, and this leads to a drop of six
in the measure.

2. If p and q are both omitted from the vertex cover, then we pick a, b, c, x in
the vertex cover and the measure drops by four.

Note that if a is foldable in G \ {p, q}, then we have the branch vector (3, 4),
otherwise, we have the branch vector (4, 8, 4). We refer to the branching strate-
gies outlined above as the CommonNeighborBranch strategy.

A broad overview of all the other cases is as follows.

1. Scenario A. There exists a vertex t that is adjacent to at least two vertices
in N(v). Further, t is adjacent to u and one other vertex.

– The vertex t has degree four.
– The vertex t has degree three, u,w, x have degree four, and (t, x) /≡ E.

We let u→ and u→→ denote the neighbors of u other than t and v.
• The degree of both u→ and u→→ is four.
• At least one of u→ and u→→ has degree three.

2. Scenario B. There exists a vertex t that is adjacent to at least two vertices
in N(v). The vertex t is not adjacent to u and is therefore adjacent to w and
x.
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3. Scenario C. The vertices u, v, w have no common neighbors other than v.
We have the following cases based on degree of w, x.
– The degree of both w and x is three.
– The degree of both w and x is four.
– The degree of w is four and x is three.

Theorem 2. There is an algorithm that determines if a graph with maximum
degree at most four has a vertex cover of size at most k in O≥(1.2637k) worst-case
running time.

Scenario Cases Branch Vector c

Scenario A

Case 1

(2, 5) 1.2365
(7, 4, 5) 1.2365
(7, 9, 5, 5) 1.2498
(2, 10, 6) 1.2530
(7, 4, 10, 6) 1.2475
(7, 9, 5, 10, 6) 1.2575

Case 2 (I)

(4, 7, 5) 1.2365
(9, 5, 7, 5) 1.2498
(4, 7, 10, 6) 1.2475
(9, 5, 7, 10, 6) 1.2575

Case 2 (II)
(4, 5, 6) 1.2498
(4, 10, 6, 6) 1.2590

Scenario Cases Branch Vector c

CNB
(2, 5) 1.2365
(3, 4) 1.2207
(4, 8, 4) 1.2465

Degree Two (2, 6) 1.2365
Edge in N(v) (3, 3) 1.2599

Scenario B
(2, 5) 1.2365
(2, 6, 10) 1.2530

Scenario C

Case 1 (2, 10, 6) 1.2530
Case 2 (8, 3, 8, 7) 1.2631

Case 3
(7, 3, 5) 1.2637
(5, 7, 7, 6) 1.2519
(10, 6, 7, 7, 6) 1.2592

Fig. 2. The branch vectors and the corresponding running times across various scenar-
ios and cases. (This table is a truncated version due to lack of space.)

6 Conclusions

In this work we showed that the problem of hitting all axis-parallel slabs induced
by a point set P is equivalent to the problem of finding a vertex cover on a graph
whose edge set is the union of two Hamiltonian Paths. We established that this
problem is NP-complete. Finally, we also gave an algorithm for Vertex Cover on
graphs of maximum degree four whose running time is OΘ(1.2637k). It would be
interesting to know if there are better algorithms for braid graphs in particular.
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Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)



190 A. Agrawal, S. Govindarajan, and N. Misra

[5] Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40-42), 3736–3756 (2010)

[6] Chen, J., Kanj, I.A., Xia, G.: Labeled Search Trees and Amortized Analysis: Im-
proved Upper Bounds for NP-Hard Problems. Algorithmica 43(4), 245–273 (2005)

[7] Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
[8] Mohar, B.: Face Covers and the Genus Problem for Apex Graphs. Journal of

Combinatorial Theory, Series B 82(1), 102–117 (2001)
[9] Niedermeier, R.: Invitation to Fixed Parameter Algorithms (Oxford Lecture Series

in Mathematics and Its Applications). Oxford University Press, USA (2006)
[10] Rajgopal, N., Ashok, P., Govindarajan, S., Khopkar, A., Misra, N.: Hitting and

Piercing Rectangles Induced by a Point Set. In: Du, D.-Z., Zhang, G. (eds.)
COCOON 2013. LNCS, vol. 7936, pp. 221–232. Springer, Heidelberg (2013)

[11] Razgon, I.: Faster computation of maximum independent set and parameterized
vertex cover for graphs with maximum degree 3. J. Discrete Algorithms 7(2),
191–212 (2009)

[12] Xiao, M.: A Note on Vertex Cover in Graphs with Maximum Degree 3. In: Thai,
M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 150–159. Springer,
Heidelberg (2010)



A Protocol for Generating Random Elements

with Their Probabilities

Thomas Holenstein and Robin Künzler

ETH Zurich, Department of Computer Science, 8092 Zurich, Switzerland
{thomas.holenstein,robink}@inf.ethz.ch

Abstract. We give an AM protocol that allows the verifier to sample
elements x from a probability distribution P, which is held by the prover.
If the prover is honest, the verifier outputs (x,P(x)) with probability close
to P(x).

In case the prover is dishonest, one may hope for the following guar-
antee: if the verifier outputs (x, p), then the probability that the veri-
fier outputs x is close to p. Simple examples show that this cannot be
achieved. Instead, we show that the following weaker condition holds (in
a well defined sense) on average: If (x, p) is output, then p is an upper
bound on the probability that x is output.

Our protocol yields a new transformation to turn interactive proofs
where the verifier uses private random coins into proofs with public
coins. The verifier has better running time compared to the well-known
Goldwasser-Sipser transformation (STOC, 1986). For constant-round pro-
tocols, we only lose an arbitrarily small constant in soundness and com-
pleteness, while our public-coin verifier calls the private-coin verifier only
once.

1 Introduction

In an interactive proof [GMR89, Bab85, BM88], an all-powerful prover tries to
convince a computationally bounded verifier that some statement is true. The
study of such proofs has a rich history, and has lead to numerous important and
surprising results.

We are interested in interactive protocols that allow the verifier to sample
elements from a probability distribution. Such protocols have proved to be very
useful, and their applications include the study of private versus public coins in
interactive proof systems [GS86], perfect zero knowledge [For87], basing average-
case hardness or cryptographic security on worst-case hardness [FF93, BT06,
AGGM06, HMX10], and many more.

We consider constant-round protocols that allow the verifier to sample an
element x from a probability distribution P together with an approximation p
of the probability P(x). The verifier outputs pairs (x, p), and for a fixed prover
we let (X,P ) be the random variables corresponding to the verifier’s output,
PXP is their joint distribution, and PX is the marginal distribution defined as
PX(x) =

∑
p PXP (x, p). We would like to achieve the following properties:

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 191–202, 2014.
c∞ Springer International Publishing Switzerland 2014
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Property 1: For every x we have PX(x) → P(x).

Property 2: If the verifier outputs (x, p), then p → PX(x).

Recently, Haitner et al. [HMX10] gave such a protocol for sampling a dis-
tribution P on bit strings, which is given as P = f(PU ) for an efficiently com-
putable function f , where PU is the uniform distribution on n-bit strings. For
any (possibly cheating) prover their protocol achieves property 1 with equal-
ity (i.e. PX(x) = P(x)), and property 2 for polynomially small error (i.e. p =
(1 ± Ω)P(x) for Ω polynomially small in n). The protocol extends to distribu-
tions f(PS), where PS is the uniform distribution on an efficiently decidable set
S ⊂ {0, 1}n.

1.1 Contributions of this Paper

We give a sampling protocol that is similar to the one of [HMX10]. However, in
our protocol only the prover gets as input the distribution P. This distribution
can be arbitrary, and in particular does not have to be efficiently samplable. The
verifier does not get P as input, and in particular does not have the ability to
sample from P.

We obtain the following completeness guarantee:

Completeness: If the prover is honest, then both properties 1 and 2
are satisfied.
More precisely, property 1 is satisfied with polynomially small error
(i.e. PX(x) = (1± Ω)P(x) for polynomially small Ω), and instead of prop-
erty 2 we even guarantee that the verifier only outputs pairs (x,P(x)).

In case the prover is not honest, since the verifier does not know P, we cannot
hope to satisfy property 1. However, one could hope that property 2 is satisfied
for any (possibly cheating) prover. Unfortunately, simple examples show that
this cannot be achieved. Instead, we prove the following weaker guarantee:

Soundness: The following condition holds (in a well defined sense) on
average: If (x, p) is output, then PX(x) ≡ p.

To illustrate the usefulness of our protocol, we apply it to obtain a private-coin
to public-coin transformation for interactive proofs in Section 3. Compared to the
original transformation by Goldwasser and Sipser [GS86], our transformation is
more efficient in terms of the verifier’s running time. In particular, for constant-
round protocols we only lose an arbitrarily small constant in soundness and
completeness, while executing the private-coin verifier exactly once. We show
that this transformation can be viewed as an interactive sampling process, where
the public-coin verifier iteratively samples messages for the private-coin verifier
and requests the corresponding answers from the prover.

We remark that the soundness guarantee of our protocol is weaker than
the one of the [HMX10] protocol. However, as mentioned above, the guaran-
tee of [HMX10] cannot be achieved in the more general setting we consider.
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Furthermore, to achieve a private-coin to public-coin transformation, it is also
possible to employ the [HMX10] sampling protocol. However, this yields a less
efficient public-coin verifier, as the private coin-verifier must be executed many
times when running the sampling protocol.

1.2 Related Work

Interactive protocols. Interactive proof systems were introduced by Goldwasser
et al. [GMR89]. Independently, Babai and Moran [Bab85, BM88] defined the
public-coin version. As mentioned above, Goldwasser and Sipser [GS86] showed
that the two definitions are equivalent with respect to language recognition (for
a nice exposition of the proof, we also refer to the book of Goldreich [Gol08]).
The study of interactive proofs has a long and rich history, influencing the study
of zero knowledge and probabilistic checkable proofs, and has lead to numerous
important and surprising results such as IP = PSPACE [LFKN92, Sha92]. For
historical overviews we refer for example to [Bab90, Gol08, AB09].

Interactive sampling protocols. Goldwasser and Sipser [GS86] show that pri-
vate coins in interactive proofs can be made public. A constant-round set lower
bound protocol is introduced which can be viewed as a sampling process: the
verifier uses pairwise independent hashing to randomly select a few elements
in a large set. This protocol is used in many subsequent works such as [For87,
AH91, GVW02, BT06, AGGM06, HMX10]. To study the complexity of perfect
zero knowledge, Fortnow [For87] introduces a constant-round protocol that al-
lows to prove set upper bounds assuming that the verifier is given a uniform
random element in the set, which is not known to the prover. The same proto-
col is used in a similar context by Aiello and H̊astad [AH91]. As in the lower
bound protocol, hashing is used to sample a small number of elements from the
set. To prove that any interactive proof system can have perfect completeness,
Goldreich et al. [GMS87] give a protocol that allows to sample a perfectly uni-
form random element from a decidable set. Their protocol requires a polynomial
number of rounds (depending on the set size), and they show that no constant-
round protocol can achieve this task. The upper and lower bound protocols of
[GS86, For87, AH91] are used by Bogdanov and Trevisan [BT06] in their proof
that the worst-case hardness of an NP-complete problem cannot be used to show
the average-case hardness of an NP problem via non-adaptive reductions, unless
the polynomial hierarchy collapses. The ideas used in the set lower and upper
bound protocols can be employed to sample a single element from an NP set in
case the verifier knows the set size. This is done in [GVW02] in the context of
studying interactive proofs with bounded communication. This protocol is re-
fined by Akavia et al. [AGGM06], where it is used to give protocols for proving
the size of a set (both upper and lower bound) under the assumption that the
verifier knows some approximate statistics about the size of the set. These proto-
cols are then used to study the question whether one-way functions can be based
on NP-hardness. The ideas behing the sampling protocol by Akavia et al. are
refined and extended by Haitner et al. [HMX10] in order to give a protocol that
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allows to sample an element x ∈ P of a given distribution, which is specified
as P = f(PU ) for an efficiently computable function f , where PU is the uniform
distribution on {0, 1}n. The verifier outputs (x, p), where x is sampled from P,
and p = (1±Ω)P(x) for polynomially small Ω. Their protocol extends to distribu-
tions f(PS), where PS is the uniform distribution on an efficiently decidable set
S ⊂ {0, 1}n. It is shown that this sampling protocol can be employed to allow
the verifier to verify the shape of the distribution P, in terms of its histogram.
These protocols are used to prove that a number of cryptographic primitives,
such as statistically hiding commitment, cannot be based on NP-hardness via
certain classes of reductions (unless the polynomial hierarchy collapses).

2 The Sampling Protocol

2.1 Informal Theorem Statement and Discussion

In our sampling protocol, the verifier will output pairs (x, p) ≥ {0, 1}n × (0, 1].
For a fixed prover, we let (X,P ) be the random variables corresponding to the
verifier’s output, and we denote their joint distribution by PXP . Also, PX is
defined by PX(x) =

∑
p PXP (x, p). Informally, our sampling theorem can be

stated as follows.

Theorem 1 (The Sampling Protocol, informal). There exists a constant-
round public-coin interactive protocol such that the following holds. The verifier
and the prover take as input n ≥ N, Ω, σ ≥ (0, 1), and the prover additionally
gets as input a probability distribution P over {0, 1}n. The verifier runs in time

poly
(
n
(
1
Θ

)1/Σ
)
and we have:

Completeness: If the prover is honest, then the verifier outputs (x,P(x)) with
probability (1± Ω)P(x).

Soundness: Fix any (possibly cheating) prover. Then for all x ≥ {0, 1}n we

have
∑

p
PXP (x,p)

p ≡ 1 + Ω+ σ.

The soundness condition may not be very intuitive at first sight. We therefore
discuss it in detail below.

To keep the discussion simple, the above theorem statement is only almost
true: in fact, the completeness only holds with probability 1− Ω over the choice
of x from P, and the soundness condition only holds if we condition on good
protocol executions (where an execution is bad with probability at most Ω). We
omit this here, and refer to the full version of this paper for the exact statement.

We will prove soundness only for deterministic provers, but the same state-
ment holds in case the prover is probabilistic: this follows easily by conditioning
on the prover’s random choices, and applying the result for the deterministic
prover.1

1 We remark that typical definitions of interactive protocols does not allow the prover
to use randomness. This is because when considering decision problems, the prover
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In the sampling protocol of [HMX10] (as described above) the verifier gets
access to the distribution P, in the sense that a circuit computing a function f
is provided as input to the protocol, where P = f(PU ) and PU is the uniform
distribution. During the execution of the sampling protocol, the function f needs
to be evaluated many times. In contrast, in our protocol the verifier does not get
access to the distribution, and never needs to evaluate such a circuit.

We note that the verifier runs in polynomial time for any polynomially small
Ω and constant σ. It is an interesting open problem if it is possible to improve
the protocol to allow both polynomially small σ and Ω and an efficient verifier.

Discussion of the soundness condition. The main motivation for the soundness
condition is that it is actually sufficient for applying the sampling protocol to
obtain the private-coin to public-coin transformation in Section 3.

However, there are several remarks we would like to discuss. We give an
overview of these remarks, and discuss them in detail in the full version of the
paper.

– Remark 1: Fix any (possibly cheating) prover and recall property 2 as
described in the introduction: If the verifier outputs (x, p), then p → PX(x).
One may hope to give a protocol that satisfies this property. However, we
show below that this cannot be achieved in our setting.

– Remark 2: It is possible to interpret the soundness condition as follows:
The situation PX(x) ∪ p cannot occur too often. In that sense, the protocol
provides an upper bound on PX(x) “on average”.

– Remark 3: Assume the completeness condition is satisfied. Then the sound-
ness condition actually holds if the prover behaves like a convex combination
of honest provers, i.e. it first chooses a distribution P from a set of distribu-
tions, and then behaves honestly for P.

– Remark 4: It is natural to ask if the converse of the statement in remark 3 is
also true. That is, we ask the following. Suppose we have some protocol that
satisfies both our completeness and soundness conditions. Fix any prover and
consider the verifier’s output distribution PXP . Is there a convex combination
of probability distributions, such that if the prover first chooses P and then
behaves honestly for P, the verifier’s output distribution equals PXP ? We
show below that this is not the case in general.

Proving the soundness condition that any cheating prover can be seen as a convex
combination of honest provers would imply that the protocol is optimal, since
for any protocol a probabilistic prover actually can first choose some distribution
and then behave honestly for it. Remark 4 implies that our soundness condition
does not imply this in general.

can always be assumed to be deterministic. However, since our theorem does not con-
sider a decision problem, and the sampling protocol might be used as a subprotocol
of some other protocol, we do not assume that the prover is deterministic.
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2.2 Technical Overview

We informally describe a simplified version of the sampling protocol of Theo-
rem 1, and sketch how correctness and soundness can be proved. Then we discuss
how to get rid of the simplifying assumptions.

Histograms. LetP be a distribution over {0, 1}n, and consider the (1, n)-histogram
of P, which is defined as the vector h = (h0, . . . , hn), where hi := Pry→P[y ≥ Bi]
for Bi :=

{
x : P(x) ≥ (2−(i+1), 2−i]

}
. For simplicity we assume that for all x either

P(x) = 0 or P(x) ◦ 2−n, which implies that
∑

i≥(n) hi = 1.

A simplified sampling protocol with an inefficient verifier. If efficiency were not
an issue, the honest prover could just send all pairs (x,P(x)) to the verifier,
who then outputs (x,P(x)) with probability P(x). It is clear that this protocol
achieves even stronger completeness and soundness guarantees than stated in our
theorem. We now change this protocol, still leaving the verifier inefficient. But,
using hashing, the verifier of this modified protocol can later be made efficient.

To describe the intuition, we make the following simplifications: we let the
verifier output probabilities of the form 2−j, and when interacting with the
honest prover, the verifier will output pairs (x, p) where p is a 2-approximation
of P(x). We will also make an assumption on P, but it is the easiest to state it
while describing the protocol.

The protocol. The honest prover sends the histogram h of P to the verifier. The
verifier splits the interval [0, n] into intervals Jj of length log2(n). We denote
by Ii := J2i the even intervals, and we will call the odd intervals gaps. For
simplicity we assume log2(n) is an even integer, and that

∑
k

∑
i≥Ik

hi = 1,
i.e. that P is such that h has no probability mass in the gaps. Now the verifier
selects an interval Ik at random, where the probability of Ik corresponds to its
weight according to h, i.e. the probability of Ik is wk :=

∑
j≥Ik

hj . The prover
sends sets Xi for i ≥ Ik to the verifier, where the honest prover lets Xi = Bi.
The verifier checks that the Xi are disjoint, and that |Xi| ≥ 2±1hi2

i.2 It then

randomly chooses one of the sets Xj , where Xj has probability
hj∑

i∗Ik
hj
. Finally,

the verifier chooses a uniform random element x from Xj , and outputs (x, 2−j).

Completeness: It is not hard to see that if the prover is honest, then for any x
and j the following holds. If x ≥ Bj , then PXP (x, 2

−j) ≥ 2±1P(x). Otherwise,
PXP (x, 2

−j) = 0.

Soundness: We sketch a proof for the following soundness guarantee: for any
(possibly dishonest) prover there is an event Bad such that Pr[Bad] ≡ 50/

⊆
n,

and for all x we have
∑

p
Pr[(X,P )=(x,p)|¬Bad]

p ≡ 2 + 50/
⊆
n.

2 Actually, the verifier can check the stronger condition |Xi| ∈ [1/2, 1]hi2
i, but to

simplify our statements we use 2±1.
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We let k(j) be the function that outputs the interval of j (i.e. k such that
j ≥ Ik). We first observe that3

PXP (x, 2
−j) ≥ 2±1 · Pr[x ≥ Xj |k = k(j)] · 2−j, (1)

where Pr[x ≥ Xj |k = k(j)] is the probability that the prover puts x into Xj given
that k(j) was chosen by the verifier. To see this, note that PXP (x, 2

−j) = Pr[x ≥
Xj |k = k(j)] · wk · hj∑

i∗Ik
hi

· 1
|Xj| , where wk is the probability of choosing k, the

third factor is the probability of choosing j given k was chosen, and 1/|Xj | is the
probability of choosing x, given k, j were chosen and x is in Xj . Indeed, by the
definition of wk and using the verifier’s check |Xj | ≥ 2±1hj2

j, this implies (1).
To prove our soundness claims, we consider the following sets representing

small, medium and large probabilities, respectively.

S(x) =
⎧

j : 2−j ≡ PX(x)⊆
n

⎪

= {j : j ◦ log2(1/PX(x)) + 1/2 log2(n)} ,

M(x) =

⎧

j : 2−j >
PX(x)⊆

n
∀ 2−j <

⊆
nPX(x)

⎪

= {j : log2(1/PX(x)) − 1/2 log2(n) < j < log2(1/PX(x)) + 1/2 log2(n)} ,
L(x) =

{
j : 2−j ◦

⊆
nPX(x)} = {j : j ≡ log2(1/PX(x)) − 1/2 log2(n)

}
.

We define the event Bad to occur if the verifier outputs a probability that is
much too small, i.e. it outputs some (x, 2−j) where j ≥ S(x). We find

Pr[Bad] =
⎨

x

⎨

j≥S(x)

PXP (x, 2
−j)

(1)

≡
⎨

x

⎨

j≥S(x)

2 · Pr[x ≥ Xj |k = k(j)] · 2−j

≡ 2
⎨

x

⎨

j≥S(x)

2−j ≡ 2
⎨

x

PX(x)⊆
n

∪⎨

i=0

1

2i
≡ 4⊆

n
,

where the third inequality follows by definition of S.
To prove the second soundness claim, we find

∑
p

Pr[(X,P )=(x,p)∈¬Bad]
p =

∑
j≥M(x)

PXP (x,2−j)
2−j +

∑
j≥L(x)

PXP (x,2−j)
2−j . Now

⎨

j≥L(x)

PXP (x, 2
−j)

2−j
≡ 1⊆

nPX(x)

⎨

j≥L(x)

PXP (x, 2
−j)

⎩ ︷⎛ ⎝
⊆PX (x)

≡ 1⊆
n
,

⎨

j≥M(x)

PXP (x, 2
−j)

2−j

(1)

≡ 2
⎨

j≥M(x)

Pr[x ≥ Xj |k = k(j)] ≡ 2,

3 In Eqn. (1) we implicitly assume that the prover always sends disjoint sets Xj that
are of appropriate size. Removing this assumption is a minor technicality that is
dealt with in the full proof.
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where the last inequality again follows since the prover must send disjoint sets
Xi, and by definition of M(x) we have |M(x)| < log2(n) and thus M(x) ∩ Ik
is non-empty for at most one Ik. (This is one reason for defining the intervals,

gaps and the sets S,M,L as we did!) Thus we have
∑

p
Pr[(X,P )=(x,p)|¬Bad]

p =
1

Pr[¬Bad]

∑
p

Pr[(X,P )=(x,p)∈¬Bad]
p ≡ (1 + 8/

⊆
n)(2 + 1/

⊆
n) ≡ 2 + 17/

⊆
n+ 8/n.

We refine this protocol to obtain our main result. In particular, we make the
verifier efficient, use a more accurate histogram, handle general distributions and
finally make the protocol output exact probabilities instead of 2-approximations.
A technical overview of these refinements can be found in the full version of this
paper.

Due to space constrains, the formal theorem statement, the protocol, and the
analysis can all be found in the full version of this paper.

3 Private Coins versus Public Coins in Interactive Proofs

3.1 Theorem Statement and Discussion

We state our theorem for the case where the public-coin verifier calls the private-
coin verifier exactly once. This highlights the overhead in the verifier’s running
time, and allows to compare our transformation to the one of [GS86] in a natural
way. We remark that before applying the transformation as given in the theorem,
one can repeat the private-coin protocol in parallel to amplify completeness and
soundness. However, this requires that the original private-coin verifier is called
several times. Our main result can be stated as follows:

Theorem 2. For any functions c, s, Ω, σ : N ∅ (0, 1), and k, t,m, α : N ∅ N, if
1/Ω, 1/σ, k, t,m, α are time-constructible, then

IP

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = k
time = t
msg size = m
coins = α
compl ◦ c
sound ≡ s

⎦

⎟
⎟
⎟
⎟
⎟
⎟


⊂ AM

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = 4k + 3

time = t+ k · poly
(
(m+ α) ·

(
1
Θ

)1/Σ
)

msg size = poly
(
(m+ α) ·

(
1
Θ

)1/Σ
)

coins = poly
(
(m+ α) ·

(
1
Θ

)1/Σ
)

compl ◦ c− 2(k + 1)Ω
sound ≡ (1 + Ω+ σ)k+1s+ (k + 1)Ω

⎦

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


Moreover, in the protocol that achieves this transformation, the public-coin ver-
ifier calls the private-coin verifier exactly once.

We state the following corollary that shows two interesting special cases for
specific parameter choices.

Corollary 1. The following inclusions hold:

(i) For any functions t,m, α : N ∅ N, polynomial k(n) and inverse polynomial
β(n) < 1/5, if t,m, α, k and 1/β are time-constructible, we have
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IP

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = k
time = t
msg size = m
coins = α
compl ◦ 2/3 + β

sound ≡ 2−(k+5)

⎦

⎟
⎟
⎟
⎟
⎟
⎟


⊂ AM

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = 4k + 3
time = t+ poly((m+ α) kΩ )

msg size = poly((m+ α) kΩ )

coins = poly((m+ α) kΩ )

compl ◦ 2/3
sound ≡ 1/3

⎦

⎟
⎟
⎟
⎟
⎟
⎟


(ii) For any functions k, t,m, α : N ∅ N, and β, θ : N ∅ (0, 1), β ≡ θ, if
k, t,m, α, 1/β, 1/θ are time-constructible, then

IP

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = k
time = t
msg size = m
coins = α
compl ◦ 2/3 + β
sound ≡ 1/3− θ

⎦

⎟
⎟
⎟
⎟
⎟
⎟


⊂ AM

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = 4k + 3

time = t+ poly
(
(m+ α) · ( kΩ )k/ν

)

msg size = poly
(
(m+ α) · ( kΩ )k/ν

)

coins = poly
(
(m+ α) · ( kΩ )k/ν

)

compl ◦ 2/3
sound ≡ 1/3

⎦

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟


Moreover, in the protocols that achieve the transformations in (i) and (ii), the
public-coin verifier calls the private coin verifier exactly once.

The proof can be found in the full version of this paper. Note that part (i)
implies IP(rounds = k) ⊂ AM(rounds = 4k + 3) (where time = poly(n), compl ◦
2/3, sound ≡ 1/3), as the error probabilities of the IP protocol can be decreased
by repeating it in parallel. As mentioned above, due to the repetition, the private
coin verifier needs to be called multiple times in the resulting protocol.

Next, we would like to compare our result to the [GS86] transformation. For
this comparison, the theorem below states what their transformation achieves
after repeating the private-coin protocol in parallel, i.e. we again consider the
setting where the private-coin verifier is called exactly once by the public-coin
verifier.

Theorem 3 ([GS86]). For any time-constructible polynomials k(n), t(n),m(n),
and α(n) we have

IP

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = k
time = t
msg size = m
coins = α

compl ◦ 1− α−12k2

sound ≡ α−12k2

⎦

⎟
⎟
⎟
⎟
⎟
⎟


⊂ AM

⎞

⎣
⎣
⎣
⎣
⎣
⎣
⎤

rounds = k + 2
time = t+ poly((m+ α)k)
msg size = poly(m+ α)
coins = poly(m+ α)
compl ◦ 2/3
sound ≡ 1/3

⎦

⎟
⎟
⎟
⎟
⎟
⎟


Moreover, in the protocol that achieves this transformation, the public-coin ver-
ifier calls the private coin verifier exactly once.

By first repeating the IP protocol in parallel, this implies IP(rounds = k) ⊂
AM(rounds = k + 2). Comparing this theorem to our Corollary 1 (i), we see
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that our result only loses a polynomially small fraction β in completeness, and
both losses in soundness and completeness are independent of α. If we apply
Corollary 1 (ii) for constant k, polynomial t(n), any β that is inverse polynomial
in n, and any constant θ > 0, we obtain a verifier that runs in polynomial time.
This is stronger than [GS86] in all parameters except the number of rounds.

If there exists a constant-round sampling protocol that achieves the guarantees
of our theorem, but the verifier runs in time poly( n

ΘΣ ), then we would get the
transformation

IP

⎞

⎣
⎣
⎤

rounds = k
time = t
compl ◦ 2/3 + β
sound ≡ 1/3− β

⎦

⎟
⎟
 ⊂ AM

⎞

⎣
⎣
⎤

rounds = π(k)
time = poly(k·tΩ )

compl ◦ 2/3
sound ≡ 1/3

⎦

⎟
⎟


for any polynomially small β and polynomial k (where the private-coin verifier
is called exactly once). It is an interesting open problem if this can be achieved.

3.2 The Protocol

Let (V, P ) be the IP (i.e. private-coin) protocol for some language L, as given in
the theorem. We assume that on input x, V chooses randomness r ≥ {0, 1}θ(|x|).
For a fixed input x ≥ {0, 1}n we let α = α(n), andM0, . . . ,Mk−1, andA0, . . . , Ak−1

be the random variables over the choice of r that correspond to V ’s messages
m0, . . .mk−1 and P ’s answers a0, . . . , ak−1 in the protocol execution (V, P )(x).
Furthermore, we let εi := (M0, A0, . . . ,Mi, Ai) be the random variable over the
entire communication. We now describe the protocol (V ∅, P ∅) that achieves the
transformation described by Theorem 2. The protocol will use our sampling pro-
tocol several times, always using parameters σ and Ω. (V ∅, P ∅)(x) is defined as
follows:

For i = 0, . . . , k − 1 do
Prover and Verifier: Use the sampling protocol to sample (mi, pi).
If the prover is honest, it honestly executes the sampling protocol for the
distribution P defined by

P(mi) := Pr
r
[Mi = mi|εi−1 = (m0, a0, . . . ,mi−1, ai−1)].

Prover: Send ai to the verifier.
If the prover is honest, it sends ai := P (x, i,m0, . . . ,mi).

4

Prover and Verifier: Use the sampling protocol to sample (r∨, pk).
If the prover is honest, it honestly executes the sampling protocol for the
distribution P defined by

P(r∨) := Pr
r
[r∨ = r|εk−1 = (m0, a0, . . . ,mk−1, ak−1)].

Verifier: Accept if and only if all of the following conditions hold:
(a) V (x, k, r∨,m0, a0, . . . ,mk−1, ak−1) = accept

(b)
∏k

i=0 pi =
1
2δ

4 Recall that P (x, i,m0, . . . ,mi) is the prover’s answer in round i given input x and
the previous verifier messages mi.
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3.3 High Level Proof Sketch

We give a brief sketch of how the sampling protocol is used to prove soundness.
Suppose x /≥ L and let P ∨ be any prover that satisfies the above assumption. We
denote the randomness of V ∅ by r∅, let M ∅

i , P
∅
i , A

∅
i, R

∨ be the random variables
over the choice of r∅ corresponding to mi, pi, ai, r

∨ in the protocol (V ∅, P ∨)(x),
and define ε ∅

i := (M ∅
0, P

∅
0, A

∅
0, . . . ,M

∅
i , P

∅
i , A

∅
i). Soundness is proved by induction,

and one first shows that for any β∅k−1 = (m0, p0, a0, . . . ,mk−1, pk−1, ak−1), let-

ting βk−1 = (m0, a0, . . . ,mk−1, ak−1), we have Prr∞
⎫
(V ∅(r∅), P ∨)(x) = accept |

ε ∅
k−1 = β∅k−1

⎬
= 1+Θ+Σ∏k−1

i=0 pi
·Prr≥{0,1}δ [V (x, k, r, βk−1) = accept]. Using this, we can

proceed to bound the acceptance probability conditioned on any fixed β∅k−2 =
(m0, p0, a0, . . . ,mk−2, pk−2, ak−2) as follows:

Pr
r∞

⎫
(V ∅(r∅), P ∨)(x) = accept|ε ∅

k−2 = β∅k−2

⎬

=
⎨

mk−1,pk−1

Pr
r∞

⎫
(V ∅(r∅), P ∨)(x) = accept

⎭
⎭(ε ∅

k−2,M
∅
k−1, P

∅
k−1) = (β∅k−2,mk−1, pk−1)

⎬
·

Pr
r∞

⎫
(M ∅

k−1, P
∅
k−1) = (mk−1, pk−1)|ε ∅

k−2 = β∅k−2

⎬

=
⎨

mk−1,pk−1

Pr
r∞

⎫
(V ∅(r∅), P ∨)(x) = accept

⎭
⎭(ε ∅

k−1) = (β∅k−2,mk−1, pk−1, a
∨
k−1)

⎬

· Pr
r∞

⎫
(M ∅

k−1, P
∅
k−1) = (mk−1, pk−1)|ε ∅

k−2 = β∅k−2

⎬

≡
⎨

mk−1,pk−1

1 + Ω+ σ
∏k−1

i=0 pi
· Pr

r

⎫
V (x, k, r, βk−2,mk−1, a

∨
k−1) = accept

⎬

· Pr
r∞

⎫
(M ∅

k−1, P
∅
k−1) = (mk−1, pk−1)|ε ∅

k−2 = β∅k−2

⎬

=
1 + Ω+ σ
∏k−2

i=0 pi

⎨

mk−1

Pr
r

⎫
V (x, k, r, βk−2,mk−1, a

∨
k−1) = accept

⎬

·
⎨

pk−1

Prr∞
⎫
(M ∅

k−1, P
∅
k−1) = (mk−1, pk−1)|ε ∅

k−2 = β∅k−2

⎬

pk−1

≡ (1 + Ω+ σ)2
∏k−2

i=0 pi

⎨

mk−1

Pr
r

⎫
V (x, k, r, βk−2,mk−1, a

∨
k−1) = accept

⎬

The second equality above follows by the simplifying assumption that for fixed
values β∅k−2,mk−1, pk−1, the prover’s answer Ak−1 is also fixed, and denoted by
a∨k−1. This assumption can be easily removed. The first inequality follows from
the base case, and the final inequality follows from the soundness guarantee of
the sampling protocol. Iterating this step yields the final result. We refer to the
full version of the paper for more details.
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to Average-Case Reductions for NP Problems
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Abstract. We study the result by Bogdanov and Trevisan (FOCS, 2003),
who show that under reasonable assumptions, there is no non-adaptive
reduction that bases the average-case hardness of an NP-problem on the
worst-case complexity of an NP-complete problem. We replace the hid-
ing and the heavy samples protocol in [BT03] by employing the his-
togram verification protocol of Haitner, Mahmoody and Xiao (CCC,
2010), which proves to be very useful in this context. Once the histogram
is verified, our hiding protocol is directly public-coin, whereas the intu-
ition behind the original protocol inherently relies on private coins.

1 Introduction

One-way functions are functions that are easy to compute on any instance,
and hard to invert on average. Assuming their existence allows the construction
of a wide variety of secure cryptographic schemes. Unfortunately, it seems we
are far from proving that one-way functions indeed exist, as this would imply
BPP →= NP. Thus, the assumption that NP � BPP, which states that there
exists a worst-case hard problem in NP, is weaker. The following question is
natural: Question 1: Does NP � BPP imply that one-way functions (or other
cryptographic primitives) exist? A positive answer to this question implies that
the security of the aforementioned cryptographic schemes can be based solely on
the worst-case assumption NP � BPP.

Given a one-way function f and an image y, the problem of finding a preimage
x ⊂ f−1(y) is an NP-problem: provided a candidate solution x, one can efficiently
verify it by checking if f(x) = y. In this sense, a one-way function provides an NP
problem that is hard to solve on average, and Question 1 asks whether it can be
based on worst-case hardness. Thus, the question is closely related to the study
of average-case complexity, and in particular to the set distNP of distributional
problems (L,D), where L ⊂ NP, and D is an ensemble of efficiently samplable
distributions over problem instances. We say that a distNP problem (L,D) is hard
if there is no efficient algorithm that solves the problem (with high probability)
on instances sampled from D. In this setting, analogously to Question 1, we ask:
Question 2: Does NP � BPP imply that there exists a hard problem in distNP?

A natural approach to answer Question 2 affirmatively is to give a so-called
worst-case to average-case reduction from some NP-complete L to (L∞,D) ⊂
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distNP: such a reduction RO is a polynomial time algorithm with black-box
access to an oracle O that solves (L∞,D) on average, such that PrR[R

O(x) =
L(x)] ≡ 2/3. We say a reduction is non-adaptive if the algorithm R fixes all its
queries to O in the beginning. Bogdanov and Trevisan [BT06b] (building on work
by Feigenbaum and Fortnow [FF93]) show that it is unlikely that a non-adaptive
worst-to-average-case reduction exists:

Main Result of [BT06b] (informal): If there exists a non-adaptive
worst-case to average-case reduction from an NP-complete problem to a
problem in distNP, then NP ∈ coNP/poly.

The consequence NP ∈ coNP/poly implies a collapse of the polynomial hierarchy
to the third level [Yap83], which is believed to be unlikely.

The work of Impagliazzo and Levin [IL90] and Ben-David et al. [BDCGL92]
shows that an algorithm that solves a problem in distNP can be turned (via a
non-adaptive reduction) into an algorithm that solves the search version of the
same problem. Thus, as inverting a one-way function well on average corresponds
to solving a distNP search problem well on average, the result of [BT06b] also im-
plies that Question 1 cannot be answered positively by employing non-adaptive
reductions, unless the polynomial hierarchy collapses.

1.1 Contributions of this Paper

The proof of the main result in [BT06b] proceeds as follows. Assuming that
there exists a non-adaptive worst-case to average-case reduction R from an NP-
complete language L to (L∞,D) ⊂ distNP, it is shown that L and its comple-
ment both have a constant-round interactive proof with advice (i.e. L and L
are in AM/poly. As AM/poly = NP/poly, this gives coNP ∈ NP/poly. The final
AM/poly protocol consists of three sub-protocols: the heavy samples protocol,
the hiding protocol, and the simulation protocol. Using the protocol to verify
the histogram of a probability distribution by Haitner et al. [HMX10], we re-
place the heavy samples protocol and the hiding protocol. Our protocols have
several advantages. The heavy samples protocol becomes quite simple, as one
only needs to read a probability from the verified histogram. Furthermore, once
the histogram is verified, our hiding protocol is directly public-coin, whereas
the intuition behind the original hiding protocol crucially uses that the verifier
can hide its randomness from the prover. Our protocol is based on a new and
different intuition and achieves the same goal. Clearly, one can obtain a public-
coin version of the original hiding protocol by applying the Goldwasser-Sipser
transformation [GS86], but this might not provide a different intuition. Finally,
our protocols show that the histogram verification protocol of [HMX10] is a very
useful primitive to approximate probabilities using AM-protocols.
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1.2 Related Work

Recall that our Question 2 above asked if average-case hardness can be based
on the worst-case hardness of an NP-complete problem. The question if crypto-
graphic primitives can be based on NP-hardness was stated as Question 1.

Average-case complexity. We use the definition of distNP and average-case hard-
ness from [BT06b]. The hardness definition is essentially equivalent to Impagli-
azzo’s notion of heuristic polynomial-time algorithms [Imp95]. We refer to the
surveys of Impagliazzo [Imp95], Goldreich [Gol97], and Bogdanov and Trevisan
[BT06a] on average-case complexity.

Negative results on Question 2. Feigenbaum and Fortnow [FF93] study a spe-
cial case of worst-case to average-case reductions, called random self-reductions.
Such a reduction is non-adaptive, and reduces L to itself, such that the queries
are distributed uniformly at random (but not necessarily independently). They
showed that the existence of a random self-reduction for an NP-complete problem
is unlikely, as it implies coNP ∈ NP/poly and the polynomial hierarchy collapses
to the third level. This result generalizes to the case of non-adaptive reductions
from L ⊂ NP to L∞ ⊂ distNP where the queries are distributed according to a
distribution P that does not depend on the input x to the reduction, but only
on the length of x.

The study of random self-reductions was motivated by their use to design
interactive proof systems and (program-) checkers1. Checkers are introduced
by Blum and Blum and Kannan [Blu88, BK95]. Rubinfeld [Rub90] shows that
problems that have a random self-reduction and are downward self-reducible
(i.e. they can be reduced to solving the same problem on smaller instances)
have a program checker. Random self-reductions can be used to prove the worst-
case to average-case equivalence of certain PSPACE-complete and EXP-complete
problems [STV01]. A long-standing open question is whether SAT is checkable.
In this context, Mahmoody and Xiao [MX10] show that if one-way functions can
be based on NP-hardness via a randomized, possibly adaptive reduction, then
SAT is checkable.

In the context of program checking, Blum et al. [BLR93] introduce the notion
of self-correctors. A self-corrector is simply a worst-case to average-case reduction
from L to (L∞,D), where L = L∞. Clearly, a random self-reduction is also a self-
corrector.

As discussed earlier, based on [FF93], Bogdanov and Trevisan [BT06b] show
that the average-case hardness of a problem in distNP cannot be based on the
worst-case hardness of an NP-complete problem via non-adaptive reductions
(unless the polynomial hierarchy collapses). In particular, this implies that SAT
does not have a non-adaptive self-corrector (unless the polynomial hierarchy

1 Checkers allow to ensure the correctness of a given program on an input-by-input
basis. Formally, a checker is an efficient algorithm C that, given oracle access to a
program P which is supposed to decide a language L, has the following properties
for any instance x. Correctness: If P is always correct, then CP (x) = L(x) with high
probability. Soundness: CP (x) ≥ {L(x),≤} with high probability.
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collapses). It is an important open question if the same or a similar result can
be proved for adaptive reductions.

Watson [Wat12] shows that there exists an oracle O such that there is no
worst-case to average-case reduction for NP relative to O. Impagliazzo [Imp11]
then gives the following more general result: any proof that gives a positive
answer to Question 2 must use non-relativizing techniques. More precisely, it
is shown that there exists an oracle O such that NPO

� BPPO, and there is

no hard problem in distNPO. Note that this does not rule out the existence of
a worst-case to average-case reduction, as such reductions do not necessarily
relativize. In particular, the result of Bogdanov and Trevisan [BT06b] also ap-
plies to reductions that are non-adaptive and do not relativize: there is no such
reduction, unless the polynomial hierarchy collapses.

Negative results on Question 1. This question goes back to the work of Diffie and
Hellman [DH76]. Even and Yacobi [EY80] give a cryptosystem that is NP-hard
to break. However, their notion of security requires that the adversary can break
the system in the worst-case (i.e. for every key). Their cryptosystem can in fact
be broken on most keys, as shown by Lempel [Lem79]. It is now understood
that breaking a cryptosystem should be hard on average, which is, for example,
reflected in the definition of one-way functions.

Brassard [Bra83] shows that public-key encryption cannot be based on NP-
hardness in the following sense: under certain assumptions on the scheme, if
breaking the encryption can be reduced to deciding L, then L ⊂ NP ≥ coNP.
In particular, if L is NP-hard this implies that NP = coNP. Goldreich and
Goldwasser [GG98] show the same result under relaxed assumptions.

To give a positive answer to Question 1, one can aim for a reduction from
an NP-complete problem to inverting a one-way function well on average (see
for example [AGGM06] for a formal definition). As discussed earlier, the work
of Impagliazzo and Levin [IL90] and Ben-David et al. [BDCGL92] allows to
translate the results of [FF93] and [BT06b] to this setting. That is, there is no
non-adaptive reduction from an NP-complete problem L to inverting a one-way
function, unless the polynomial hierarchy collapses to the third level. Akavia et
al. [AGGM06] directly use the additional structure of the one-way function to
prove that the same assumption allows the stronger conclusion coNP ∈ AM,
which implies a collapse of the polynomial hierarchy to the second level.

Haitner et al. [HMX10] show that if constant-round statistically hiding com-
mitment can be based on an NP-complete problem via O(1)-adaptive reductions
(i.e. the reduction makes a constant number of query rounds), then coNP ∈ AM,
and the polynomial hierarchy collapses to the second level. In fact, they ob-
tain the same conclusion for any cryptographic primitive that can be broken by
a constant-depth collision finding oracle (such as variants of collision resistant
hash functions and oblivious transfer). They also obtain non-trivial, but weaker
consequences for poly(n)-adaptive reductions.

Bogdanov and Lee [BL13] explore the plausibility of basing homomorphic
encryption on NP-hardness. They show that if there is a (randomized, adaptive)
reduction from some L to breaking a homomorphic bit encryption scheme (that
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supports the evaluation of any sufficiently “sensitive” collection of functions),
then L ⊂ AM ≥ coAM. In particular, if L is NP-complete this implies a collapse
of the polynomial hierarchy to the second level.

Positive results. We only know few problems in distNP that have worst-case to
average-case reductions where the worst-case problem is believed to be hard.
Most such problems are based on lattices, and the most important two are
the short integer solution problem (SIS), and the learning with errors problem
(LWE).

The SIS problem goes back to the breakthrough work of Ajtai [Ajt96]. He
gives a reduction from an approximate worst-case version of the shortest vector
problem to an average-case version of the same problem, and his results were
subsequently improved [Mic04, MR07]. Many cryptographic primitives, such as
one-way functions, collision-resistant hash functions, identification schemes, and
digital signatures have been based on the SIS problem, and we refer to [BLP+13]
for an overview. He gives a reduction from an approximate worst-case version
of the shortest vector problem to an average-case version of the same problem,
and his results were subsequently improved [Mic04, MR07]. Many cryptographic
primitives, such as one-way functions, collision-resistant hash functions, identifi-
cation schemes, and digital signatures have been based on the SIS problem, and
we refer to [BLP+13] for an overview. He gives a reduction from an approximate
worst-case version of the shortest vector problem to an average-case version of
the same problem, and his results were subsequently improved [Mic04, MR07].
Many cryptographic primitives, such as one-way functions, collision-resistant
hash functions, identification schemes, and digital signatures have been based
on the SIS problem, and we refer to [BLP+13] for an overview.

Regev [Reg09] gives a worst- to average-case reduction for the LWE problem in
the quantum setting. That is, an algorithm for solving LWE implies the existence
of a quantum algorithm to solve the lattice problem. The work of Peikert [Pei09]
and Lyubashevsky and Micciancio [LM09] makes progress towards getting a
reduction that yields a classical worst-case algorithm. The first classical hardness
reduction for LWE (with polynomial modulus) is then given by Brakerski et
al. [BLP+13]. A large number of cryptographic schemes are based on LWE, and
we refer to Regev’s survey [Reg10], and to [BLP+13] for an overview.

Unfortunately, for all lattice-based worst-case to average-case reductions, the
worst-case problem one reduces to is contained in NP≥ coNP, and thus unlikely
to be NP-hard. We note that several of these reductions (such as the ones of
[Ajt96, Mic04, MR07]) are adaptive.

Gutfreund et al. [GSTS07] make progress towards a positive answer to Ques-
tion 2: they give a worst-case to average-case reduction for NP, but sampling
an input from the distribution they give requires quasi-polynomial time. Fur-
thermore, for any fixed BPP algorithm that tries to decide SAT, they give a
distribution that is hard for that specific algorithm. Note that this latter state-
ment does not give a polynomial time samplable distribution that is hard for any
algorithm. Unlike in [FF93, BT06b], where the reductions under consideration
get black-box access to the average-case oracle, the reduction given by [GSTS07]
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is not black-box, i.e. it requires access to the code of an efficient average-case
algorithm. Such reductions (even non-adaptive ones) are not ruled out by the re-
sults of [FF93, BT06b]. Gutfreund and Ta-Shma [GTS07] show that even though
the techniques of [GSTS07] do not yield an average-case hard problem in distNP,
they bypass the negative results of [BT06b]. Furthermore, under a certain deran-
domization assumption for BPP, they give a worst-case to average-case reduction
from NP to an average-case hard problem in NTIME(nO(log n)).

2 Technical Overview

For a formal definition of non-adaptive worst-case to average-case reductions, we
refer to the full version of the paper. In the introduction we stated an informal
version of the result of [BT06b]. We now state their main theorem formally. Let
U be the set {Pn}n≥N where Pn is the uniform distribution on {0, 1}n.

Theorem 1 ([BT06b]). For any L and L∞ and every constant c the following
holds. If L is NP-hard, L∞ ⊂ NP, and there exists a non-adaptive 1/nc-worst-to-
average reduction from L to (L∞,U), then coNP ∈ NP/poly.

As discussed earlier, the conclusion implies a collapse of the polynomial hi-
erarchy to the third level. The theorem is stated for the set of uniform distri-
butions U . Using the results of Ben-David et al. [BDCGL92] and Impagliazzo
and Levin [IL90], the theorem can be shown to hold for any polynomial time
samplable set of distributions D. This is nicely explained in [BT06b] (Section 5).
We first give an overview of the original proof, and then describe how our new
protocols fit in.

2.1 The Proof of Bogdanov and Trevisan

Suppose R reduces the NP-complete language L to (L∞,U) ⊂ distNP. The goal
is to give a (constant-round) AM/poly protocol for L and its complement. As
NP/poly = AM/poly, this will give the result. The idea is to simulate an execu-
tion of the reduction R on input x with the help of the prover. The verifier then
uses the output of R as its guess for L(x). R takes as input the instance x, ran-
domness r ⊂ {0, 1}n, and produces (non-adaptively) queries y1, . . . , yk ⊂ {0, 1}m
for the average-case oracle. The reduction is guaranteed to guess L(x) correctly
with high probability, provided the oracle answers are correct with high probabil-
ity. We may assume that the queries y1, . . . , yk are identically (but not necessar-
ily independently) distributed. We denote the resulting distribution of individual
queries by PR,x, i.e. PR,x(y) = Prr[R(x, r) = y] (where R(x, r) simply outputs
the first query of the reduction on randomness r).

Handling uniform queries: the Feigenbaum-Fortnow protocol. The proof of
[BT06b] relies on the following protocol by Feigenbaum and Fortnow [FF93]. The
protocol assumes that the queries are uniformly distributed, i.e. PR,x(y) = 2−m

for all y. The advice for the AM/poly protocol is gUY = Pry∪{0,1}m [y ⊂ L∞],
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i.e. the probability of a uniform sample being a yes-instance. The protocol pro-
ceeds as follows. First, the verifier chooses random strings r1, . . . , rΘ and sends
them to the prover. The honest prover defines (yi1, . . . , yik) := R(x, ri) for all i,
and indicates to the verifier which yij are in L

∞ (we call them yes-instances), and
provides the corresponding NP-witnesses. The verifier checks the witnesses, ex-
pects to see approximately a gUY fraction of yes-answers, and rejects if this is not
the case. The verifier then chooses a random i and outputs R(x, ri, yi1, . . . , yik)
as its guess for L(x).

To see completeness, one uses a concentration bound to show that the fraction
of yes-answers sent by the prover is approximately correct with high probability
(one must be careful at this point, because the outputs of the reduction for a
fixed ri are not independent). Finally, the reduction decides L(x) correctly with
high probability.

To argue that the protocol is sound, we note that the prover cannot increase
the number of yes-answers at all, as it must provide correct witnesses. Further-
more, the prover cannot decrease the number of yes-answers too much, as the
verifier wants to see approximately a gUY fraction. This gives that most answers
provided by the prover are correct, and thus with high probability the reduction
gets good oracle answers, in which case it outputs 0 with high probability.

We note that the Feigenbaum-Fortnow simulation protocol is public-coin.
The case of smooth distributions: the Hiding Protocol. Bogdanov and Trevisan

[BT06b] generalize the above protocol so that it works for distributions that are
α-smooth, i.e. where PR,x(y) ∪ α2−m for all y and some threshold parameter α =
poly(n) (we say all samples are α-light). If the verifier knew the probability gY :=
Pry∪PR,x [y ⊂ L∞], it is easy to see that the Feigenbaum-Fortnow protocol (using
gY instead of gUY as above) can be used to simulate the reduction. Unfortunately,
gY cannot be handed to the verifier as advice, as it may depend on the instance
x. Thus, [BT06b] give a protocol, named the Hiding Protocol, that allows the
verifier to obtain an approximation of gY, given gUY as advice.

The idea of the protocol is as follows: the verifier hides a 1/α-fraction of
samples from PR,x among uniform random samples (i.e. it permutes all samples
randomly). The honest prover again indicates the yes-instances and provides
witnesses for them. The verifier checks the witnesses and that the fraction of yes-
answers among the uniform samples is approximately gUY. If this is true, it uses
the fraction of yes-answers among the samples from PR,x as an approximation
of gY.

Completeness Follows Easily. The intuition to see soundness is that since the
distribution is α-smooth, and as the verifier hides only a 1/α fraction of PR,x

samples among the uniform ones, the prover cannot distinguish them.
We note that the intuition behind this protocol crucially relies on the fact

that the verifier can keep some of its random coins private: the prover is not
allowed to know where the distribution samples are hidden.

General distributions and the Heavy Samples Protocol. Finally, [BT06b] remove
the restriction that PR,x is α-smooth as follows. We say y is α-heavy if PR,x(y) ≡
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α2−m, and let gH := Pry∪PR,x [PR,x(y) ≡ α2−m] be the probability of a distri-
bution sample being heavy, and gYL := Pry∪PR,x [y ⊂ L∞ ◦ PR,x(y) < α2−m] the
probability of a distribution sample being a yes-instance and light.

We first note that if the verifier knows (an approximation of) both gH and
gYL, it can use the Feigenbaum-Fortnow approach to simulate the reduction: the
verifier simply uses gYL instead of gUY in the protocol, and ignores the heavy
samples. It can do this by having the prover indicate the α-heavy instances,
and checking that their fraction is close to gH. Using the lower bound protocol
of Goldwasser and Sipser [GS86], the prover must prove that these samples are
indeed heavy. Finally, for the heavy samples the verifier can simply set the oracle
answers to 0: this changes the oracle answers on at most a polynomially small
(i.e. a 1/α) fraction of the inputs, as by definition at most a 1/α fraction of the y’s
can be α-heavy. Completeness is not hard to see, and soundness follows because
a cheating prover cannot claim light samples to be heavy (by the soundness of
the lower bound protocol), and thus, by the verifier’s check, cannot lie much
about which samples are heavy.

If the verifier knows (an approximation of) gH, then it can use the hiding
protocol to approximate gYL: the verifier simply ignores the heavy samples. This
is again done by having the prover additionally tell which samples are α-heavy
(and prove this fact using the lower bound protocol). The verifier additionally
checks that the fraction of heavy samples among the distribution samples is
approximately gH, and finally uses the fraction of light distribution samples as
approximation for gYL.

It only remains to approximate gH. This is done using the Heavy Samples
Protocol as follows: the verifier samples y1, . . . , yk from PR,x by choosing random
r1, . . . , rk and letting yi := R(x, ri). It sends the yi to the prover. The honest
prover indicates which of them are heavy, and proves to the verifier using the
lower bound protocol of [GS86] that the heavy samples are indeed heavy and
using the upper bound protocol of Aiello and H̊astad [AH91] that the light
samples are indeed light. The verifier then uses the fraction of heavy samples as
its approximation for gH. It is intuitive that this protocol is complete and sound.
The upper bound protocol requires that the verifier knows a uniform random
element (which is unknown to the prover) in the set on which the upper bound
is proved. In our case, the verifier indeed knows the value ri, which satisfies this
condition. We note that this protocol relies on private-coins, as the verifier must
keep the ri secret for the upper bound proofs.

2.2 Our Proof

We give two new protocols to approximate the probabilities gH and gYL, as
defined in the previous section. These protocols can be used to replace the Hiding
Protocol and the Heavy Samples Protocol of [BT06b], respectively. Together with
the Feigenbaum-Fortnow based simulation protocol of [BT06b], this then yields
a different proof of coNP ∈ AM/poly under the given assumptions.
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Verifying histograms. We are going to employ the VerifyHist protocol by Hait-
ner et al. [HMX10] to verify the histogram of a probability distribution. The
(ε, t)-histogram h = (h0, . . . , ht) of a distribution P is defined by letting hi :=
Pry∪P[y ⊂ Bi], where Bi :=

{
x : P(x) ⊂ (2−(i+1)Σ, 2−iΣ]

}
. We will use the Verify-

Hist protocol for the distribution PR,x, as defined by the reduction R(x, ·) under
consideration, i.e. PR,x(y) = Prr[R(x, r) = y]. Intuitively, this protocol allows
to prove that some given histogram h is close to the true histogram of PR,x in
terms of the 1st Wasserstein distance (also known as Earth Mover’s distance).
This distance between h and h∞ measures the minimal amount of work that is
needed to push the configuration of earth given by h to get the configuration
given by h∞: moving earth over a large distance is more expensive than mov-
ing it over a short distance. For formal definitions of histograms and the 1st
Wasserstein distance we refer to the full version of the paper.

Lemma 1 (VerifyHist protocol of [HMX10], informal). There is a
constant-round public-coin protocol VerifyHist where the prover and the verifier
get as input the circuit R(x, ·) and a histogram h, and we have: Completeness:
If h is the histogram of PR,x, then the verifier accepts with high probability.
Soundness: If h is far from the histogram of PR,x in the 1st Wasserstein dis-
tance, then the verifier rejects with high probability.

The new Heavy Samples Protocol. The idea to approximate the probability gH
is very simple. The honest prover sends the histogram of PR,x, and the verifier
uses the VerifyHist protocol to verify it. Finally, the verifier simply reads the
probability gH from the histogram.

There is a technical issue that comes with this approach. For example, it
may be that all y’s with nonzero probability have the property that PR,x(y)
is very close, but just below α2−m. In this case, a cheating prover can send a
histogram claiming that these y’s have probability slightly above this threshold.
This histogram has small Wasserstein distance from the true histogram, as the
probability mass is moved only over a short distance. Clearly, the verifier’s guess
for gH is very far from the true value in this case.

We note that the same issue appears in the proof of [BT06b], and we deal
with it in exactly the same way as they do: we choose the threshold α randomly,
such that with high probability Pry∪PR,x [PR,x(y) is close to α2−m] is small.

A public-coin Hiding Protocol for smooth distributions. We would like the verifier
to only send uniform random samples to the prover (as opposed to the original
hiding protocol, where a few samples from the distribution are hidden among
uniform samples). We first describe the main idea in the special and simpler case
where PR,x is α-smooth. In this case, we can give the following protocol, which
uses gUY as advice:

The verifier sends uniform random samples y1, . . . , yk. The prover indicates
for each sample whether it is a yes-instance, and provides witnesses. Further-
more, the prover tells PR,x(yi) to the verifier, and proves a lower bound on this
probability. The verifier checks the witnesses and if the fraction of yes-instances
is approximately gUY, and considers the histogram h induced by the probabili-
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ties PR,x(yi), and in particular checks if the probability mass of h is 1. Finally,
the verifier considers the histogram hY induced by only considering the yes-
instances, and uses the total mass in hY as its approximation of gYL.

To see completeness, the crucial point is that the smoothness assumption
implies that the verifier can get a good approximation of the true histogram.

Soundness follows because the prover cannot claim the probabilities to be
too large (as otherwise the lower bound protocol rejects), and it cannot claim
many probabilities to be too small, as otherwise the mass of h gets significantly
smaller than 1. As it cannot lie much about yes-instances, this implies a good
approximation of gYL.

Dealing with general distributions. The above idea can be applied even to
general distributions, assuming that the verifier knows the probability gUH :=
Pry∪{0,1}m [PR,x(y) ≡ α2−m] of a uniform random sample being heavy. The
prover still provides the same information. The verifier only considers the part
of the induced histogram h below the α2−m threshold, and checks that the mass
of h below the threshold is close to 1−gUH. As in the heavy samples protocol, we
again encounter the technical issue that many y’s could have probability close
to the threshold, in which case the prover can cheat. But, as discussed earlier,
this situation occurs with small probability over the choice of α.

Approximating the probability of a uniform sample being heavy. Thus, it re-
mains to give a protocol to approximate gUH. We do this in exactly the same way
as the Heavy Samples protocol approximates gH. That is, given the histogram
that was verified using VerifyHist, the verifier simply reads the approximation
of gUH from the histogram. The proof that this works is rather technical, as we
must show that small Wasserstein distance between the true and the claimed
histogram implies a small difference of the probability gUH and its approxima-
tion read from the claimed histogram. We note that we include the protocol for
approximating gUH directly into our Heavy Samples protocol.
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Abstract. In this paper we define the Dupled abstract Tile Assembly
Model (DaTAM), which is a slight extension to the abstract Tile Assem-
bly Model (aTAM) that allows for not only the standard square tiles,
but also “duple” tiles which are rectangles pre-formed by the joining of
two square tiles. We show that the addition of duples allows for powerful
behaviors of self-assembling systems at temperature 1, meaning systems
which exclude the requirement of cooperative binding by tiles (i.e., the
requirement that a tile must be able to bind to at least 2 tiles in an exist-
ing assembly if it is to attach). Cooperative binding is conjectured to be
required in the standard aTAM for Turing universal computation and the
efficient self-assembly of shapes, but we show that in the DaTAM these
behaviors can in fact be exhibited at temperature 1. We then show that
the DaTAM doesn’t provide asymptotic improvements over the aTAM in
its ability to efficiently build thin rectangles. Finally, we present a series
of results which prove that the temperature-2 aTAM and temperature-1
DaTAM have mutually exclusive powers. That is, each is able to self-
assemble shapes that the other can’t, and each has systems which cannot
be simulated by the other. Beyond being of purely theoretical interest,
these results have practical motivation as duples have already proven to
be useful in laboratory implementations of DNA-based tiles.

1 Introduction

The abstract Tile Assembly Model (aTAM) [30] is a simple yet elegant math-
ematical model of self-assembling systems. Despite the simplicity of its formu-
lation, theoretical results within the aTAM have provided great insights into
many fundamental properties of self-assembling systems. These include results
showing the power of these systems to perform computations [15, 21, 30], the
ability to build shapes efficiently (in terms of the number of unique types of
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components, i.e. tiles, needed) [1, 25, 29], limitations to what can be built and
computed [15, 16], and many other important properties (see [11, 22] for more
comprehensive surveys). From this broad collection of results in the aTAM, one
property of systems that has been shown to yield enormous power is cooperation.
Cooperation is the term used to specify the situation where the attachment of a
new tile to a growing assembly requires it to bind to more than one tile (usually
2) already in the assembly. The requirement for cooperation is determined by a
system parameter known as the temperature, and when the temperature is equal
to 1 (a.k.a. temperature-1 systems), there is no requirement for cooperation. A
long-standing conjecture is that temperature-1 systems are in fact not capable
of universal computation or efficient shape building (although temperature ≥ 2
systems are) [9, 13, 18, 20]. However, in actual laboratory implementations of
DNA-based tiles [2, 17, 24, 26, 32], the self-assembly performed by temperature-
2 systems does not match the error-free behavior dictated by the aTAM, but
instead, a frequent source of errors is the binding of tiles using only a single
bond. Thus, temperature-1 behavior erroneously occurs and can’t be completely
prevented. This has led to the development of a number of error-correction and
error-prevention techniques [5, 23, 26, 28, 31] for use in temperature-2 systems.

Despite the conjectured weakness of temperature-1 systems, an alternative
approach has been to try to find ways of modifying them in the hope of de-
veloping systems which can operate at temperature-1 while exhibiting powers
of temperature-2 systems but without the associated errors. Research along this
path has resulted in an impressive variety of alternatives in which temperature-1
systems are capable of Turing universal computation: using 3-D tiles [9], allow-
ing probabilistic computations with potential for error [9], including glues with
repulsive forces [20], and using a model of staged assembly [3]. While these are
theoretically very interesting results, the promise for use in the laboratory of
each is limited by current technologies. Therefore, in this paper we introduce
another technique for improving the power of temperature-1 systems, but one
which makes use of building blocks which are already in use in laboratory im-
plementations: duples (a.k.a. “double tiles” [2, 6, 26, 27]).

We first introduce the Dupled abstract Tile Assembly Model (DaTAM), which
is essentially the aTAM extended to allow both square and rectangular, duple,
tile types. We then show a series of results within the DaTAM which prove that
at temperature 1 it is quite powerful: it is computationally universal and able to
build N×N squares using O(logN) tile types. We next demonstrate that, while
the addition of duples does provide significant power to temperature-1 systems,
it doesn’t allow for asymptotic gains over the aTAM in terms of the tile com-
plexity required to self-assemble thin rectangles, with the lower bound for an

N × k rectangle being Ω
(

N1/k

k

)
. We then provide a series of results which show

that the neither the aTAM at temperature-2 nor the DaTAM at temperature-1
is strictly more powerful than the other, namely that in each there are shapes
which can be self-assembled which are impossible to self-assemble in the other,
and that there are also systems in each which cannot be simulated by the other.
These mutually exclusive powers provide a very interesting framework for fur-
ther study of the unique abilities provided by the incorporation of duples into
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self-assembling systems. Furthermore, as previously mentioned, the use of duples
has already been proven possible in laboratory experiments, providing even fur-
ther motivation for the model. Please note that the online version of this paper
contains color images.

2 Preliminaries

In this version of the paper, we provide only high-level sketches of the definitions
used in this paper.

2.1 Informal Description of the Dupled Abstract Tile Assembly
Model

In this section, we give a very brief, informal description of the abstract Tile As-
sembly Model (aTAM) and the Dupled abstract Tile Assembly Model (DaTAM).

The abstract Tile Assembly Model (aTAM) was introduced byWinfree [30]. In
the aTAM, the basic components are translatable but non-rotatable tiles which
are unit squares with glues on their edges. Each glue consists of a string label value
and an integer strength value. A tile type is a unique mapping of glues (including
possibly the null glue) to 4 sides, and a tile is an instance of a tile type. Assembly
begins froma specially designated seed which is usually a single tile butmaybe be a
pre-formed collection of tiles, and continues by the addition of a single tile at a time
until no more tiles can attach. A tile is able to bind to an adjacent tile if the glues
on their adjacent edges match in label and strength, and can attach to an assembly
if the sum of the strengths of binding glues meets or exceeds a system parameter
called the temperature (which is typically set to either 1 or 2).A tile assembly system
(TAS) is an ordered 3-tuple (T, σ, τ) where T is the set of tile types (i.e. tile set), σ
is the seed configuration, and τ is the temperature.

The Dupled abstract Tile Assembly Model (DaTAM) is an extension of the
aTAM which allows for systems with square tiles as well as rectangular tiles. The
rectangular tiles are 2× 1 or 1 × 2 rectangles which can logically be thought of
as two square tiles which begin pre-attached to each other along an edge, hence
the name duples. A dupled tile assembly system (DTAS) is an ordered 5-tuple
(T, S,D, σ, τ) where T , σ, and τ are as for a TAS, and S is the set of singleton
(i.e. square) tiles which are available for assembly, and D is the set of duple tiles.
The tile types which make up S and D all belong to T , with those in D each
being a combination of two tile types from T .

2.2 Zig-Zag Tile Assembly Systems

Originally defined in [8], we define zig-zag tile assembly systems and compact
zig-zag tile assembly systems in the same manner as [20]. In [20] they called a
system T = (T, σ, τ) a zig-zag tile assembly system provided that T is directed
with a single assembly sequence, and for any producible assembly α of T , α
does not contain a tile with an exposed south glue. More intuitively, a zig-zag
tile assembly system is a system which grows to the left or right, grows up some
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amount, and then continues growth again to the left or right. Moreover, we call a
zig-zag tile assembly system T = (T, σ, τ) a compact zig-zag tile assembly system
if and only if for every tile t in any assembly α of T , the sum of the strengths of
the north and south glues of t is less than 2τ . Informally, this can be thought of
as a zig-zag tile assembly system which is only able to travel upwards one tile
at a time before being required to zig-zag again.

2.3 Simulation

In this section, we present a high-level sketch of what we mean when saying that
one system simulates another (our definitions are based on those of [19]).

For one system S to simulate another system T , we allow S to use square (or
rectangular when simulating duples) blocks of tiles called macrotiles to repre-
sent the simulated tiles from T . The simulator must provide a scaling factor c
which specifies how large each macrotile is, and it must provide a representation
function, which is a function mapping each macrotile assembled in S to a tile in
T . Since a macrotile may have to grow to some critical size (e.g. when gathering
information from adjacent macrotiles about the simulated glues adjacent to its
location) before being able to compute its identity (i.e. which tile from T it rep-
resents), it’s possible for non-empty macrotile locations in S to map to empty
locations in T , and we call such growth fuzz. In standard simulation definitions
(e.g. those in [10,12,14,19]), fuzz is restricted to being laterally or vertically ad-
jacent to macrotile positions in S which map to non-empty tiles in T . We follow
this convention for the definition of simulation of aTAM systems by DaTAM
systems. However, since duples occupy more than a unit square of space, for our
definition of aTAM systems simulating DaTAM systems, we allow fuzz to extend
to a Manhattan distance of 2 from a macrotile which maps to a non-empty tile
in T . As a further concession to the size of duples, for that simulation definition
we also allow empty macrotile locations in S to map to tiles in T , provided
they are half of a duple for which the other half has sufficiently grown. Thus,
while our result for aTAM systems simulating DaTAM systems (Theorem 5)
shows its impossibility in general, our intent with the simulation definitions is
to relax them sufficiently that, if simulation equivalent to the standard notions
of simulation were possible, these definitions would allow it.

Given the notion of block representations, we say that S simulates T if and
only if (1) for every producible assembly in T , there is an equivalent producible
assembly in S when the representation function is applied, and vice versa (thus
we say the systems have equivalent productions), and (2) for every assembly
sequence in T , the exactly equivalent assembly sequence can be followed in S
(modulo the application of the representation function), and vice versa (thus
we say the systems have equivalent dynamics). Thus, equivalent production and
equivalent dynamics yield a valid simulation.

3 The Dupled aTAM is Computationally Universal

In this section, we show constructively that for every compact zig-zag tile assem-
bly system, there exists a DTAS which simulates it. It will then follow from [8]
that the DaTAM can simulate an arbitrary Turing machine.
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Theorem 1. Let T = (T, σ, 2) be a compact zig-zag TAS and let GN be the set
consisting of all glues that appear on the north side of a tile in T . Then there
exists an DTAS T → = (T →, S,D, γ, 1) such that S simulates T at scale factor
O(log |GN |) with |S|+ |D| = O(|T ||GN |).

In this version of the paper, we only provide a brief sketch of our construction.
Suppose that T = (T, σ, 2) is a compact zig-zag TAS. We construct a τ = 1
DTAS which simulates T using macrotiles. Since T is a compact zig-zag TAS, we
need to only consider the assembly of a handful of different genres of macrotiles.
In Figure 1 we see all of the genres of macrotiles up to reflection which we will
need to be able to assemble in order to simulate a compact zig-zag TAS. We can
separate these macrotiles into two categories: macrotiles which are simulating tile
types in T that bind with strength 2 glues and macrotiles which are simulating
tile types in T which require cooperation to bind.

North Geometry North Geometry

Bit Reader

SA

B C E

SA

B C E

Fig. 1. (Left) A simple assembly produced by a compact zig-zag system. (Right) A
system consisting of macrotiles which simulates the system on the left and demonstrates
the genres of macrotiles involved in simulating compact zig-zag TASes up to rotation.
The dashed boxes represent the boundaries of the macrotiles and the solid lines through
the macrotiles represent single-tile wide paths which build the macrotiles.

Assembling the macrotiles which are simulating tile types in T that bind with a
single strength 2 glue is straight forward. The interesting part of the construction
is the assembly of macrotiles which are simulating tile types in T which require
cooperation to bind. Thesemacrotiles consist of two parts: 1) a north geometry and
2)abit reader.Thenorthgeometry sectionof themacrotile encodes the information
about the north glue of the tile which it is simulating. This is done by assigning
each glue in T a palindromic binary string (assigning 0 to the null glue) and then
encoding the glue’s binary representation using the bit encoding scheme shown in
Figure 2. Our use of the palindrome is just a convention so that the bits encode the
same value from east to west that they do from west to east.

1 0

Q1Q

0Q 0Q

Q1Q

0Q

1Q

Fig. 2. A single bit example of how the assembly is able to read geometry to gain
information about a north glue and still retain information about the west glue. We
use the following conventions. The small black rectangles represent glues which allow
singletons to bind. The longer black rectangles represent glues that can potentially bind
to a duple (note that these glues are the same types of glues as the others, just drawn
differently for extra clarity). The red rectangles represent glues that have mismatched.
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The bit reader is able to “read” bits by means of the bit reading gadget shown
in Figure 2 and works by trying to place a singleton and a duple. By way of our
construction, it is the case that only one of them can be placed, and this allows
the bit reader to distinguish between bits. Together, the north geometry and the
bit reader of the macrotiles allow them to recreate the cooperation that takes
place in T by passing information about the east and west glues of the simulated
tiles through the glues of the tile wide paths while encoding information about
the north glues as geometry. The overall growth pattern of these macrotiles
follows the same assembly sequence as C in Figure 1.

Notice that the scale factor of simulation will depend on the number of bits
required to represent the number of north glues in T . Also, for each tile in T we
must have a tile in our simulator, say t, which has |GN | tiles associated with it
so that t may grow a path and read the north geometry of the next tile. Hence,
|S|+ |D| = |T ||GN |.

Corollary 1. For every standard Turing Machine M and input w, there exists
an DTAS that simulates M on w.

This follows directly from Lemma 7 of [8] and Theorem 1.

Corollary 2. For every N ∈ N, there exists a DTAS which assembles an N×N
square with O(logN) tile complexity and constant scale factor.

4 Self-assembly of Thin Rectangles in the DaTAM

In this section, we study the self-assembly of thin rectangles in the DaTAM. As
in [7], we say that anN×k rectangle RN,k = {0, . . . , k−1}×{0, . . . , N−1} is thin
if k < logN

log logN−log log logN . We say that the temperature τ ∈ N tile complexity

of a shape X ⊆ Z
2 in the DaTAM is the minimum number of unique (duple)

tile types required to strictly self-assemble X , i.e., KΣ
DSA(X) = min{|S ∪ D| |

X strictly self-assembles in D = (T, S,D, σ, τ)}. In the aTAM, the lower bound

for the tile complexity of an N × k rectangle is Ω
(

N1/k

k

)
[7]. Perhaps not too

surprisingly, duple tile types do not offer any asymptotic advantage when it
comes to the self-assembly of thin rectangles, i.e., we have the following lower
bound for the tile complexity of thin rectangles in the DaTAM.

Theorem 2. Let N, k, τ ∈ N. If RN,k is thin, then KΣ
DSA (RN,k) = Ω

(
N1/k

k

)
.

The proof of Theorem 2, omitted from this version of the paper, uses a straight-
forward counting argument similar the proof of Theorem 3.1 of [7].

5 Mutually Exclusive Powers

In this section, we demonstrate a variety of shapes and systems in the DaTAM
at τ = 1 and the aTAM at τ = 2 which can be self-assembled and simulated,
respectively, by only one of the models.



The Power of Duples (in Self-Assembly): It’s Not So Hip to Be Square 221

5.1 A Shape in the DaTAM But not the aTAM

Fig. 3. A high-level sketch of a portion of
the infinite shape which can self-assemble in
the DaTAM at τ = 1 but not in the aTAM
at τ = 2. (Modules not to scale.)

In this section, we show that there ex-
ists an infinite shape which can self-
assemble in the DaTAM at τ = 1 but
not in the aTAM at τ = 2. Figure 3
shows a high-level sketch of a portion
of this shape.

Theorem 3. There exists a shape
W ⊂ Z

2 such that there exists DTAS
D = (TD, S,D, σ, 1) in the DaTAM
which self-assembles W , but no TAS
T = (T, σ→, 2) in the aTAM which self-
assembles W .

Here we give an intuitive overview
of why the aTAM cannot simulate the
shape depicted in Figure 3. First, we call the shape in Figure 3 W .

Since, by Theorem 1, DaTAM systems are capable of simulating compact zig-
zag systems, W assembles in the DaTAM as follows. A horizontal counter called
the planter begins growth from a single tile seed and continues to grow indef-
initely. The topmost tiles of the planter expose glues that allow vertical coun-
ters to grow. Each of these vertical counters is a finite subassembly whose height
is an even number of tile locations and, from left to right, each successive coun-
ters grows to a height that is greater than the previous counter. When a vertical
counter finishes upward grow, a single tile wide path of 6 tiles binds to the left
of the counter. The leftmost tile of this single tile wide path exposes a south glue
that allows for duples to attach. Equipped with matching north and south glues,
these duples form a single tile wide path of duples, called a finger, that grows
downward toward the planter. Since the height of each vertical counter is even
and the first duple of a finger is placed 1 tile location below this height, there are
an odd number of tile locations for the duples of a finger to occupy. As a result,
each finger is forced to cease growth exactly 1 tile location away from the planter.

Fig. 4. Left: A finger containing two oc-
currences of a tile of type T0. Right: A valid
producible assembly that results in a shape
that differs from W .

Since in an aTAM system, any tile
of an assembly takes up a single loca-
tion of the infinite grid-graph, it is im-
possible to grow the finger compo-
nent of the shape W . This essentially
follows from the fact that for a single
tile wide line of length l assembled in
a TAS, if the number of tiles in l is
greater than the number of tile types
in the TAS, then at least two tiles of
l must have the same type. Therefore,
by repeating the tiles between these

two tiles of the same type, we can attempt to grow a line indefinitely. Hence, when
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a TAS attempts to grow a finger that is longer than the number of tile types
in the TAS, we can always find an assembly sequence such that the line forming
this finger places a tile one tile location above the tiles forming the planter.
Figure 4 depicts this invalid assembly. Therefore, no TAS can assemble W .

5.2 A Shape in the aTAM But Not the DaTAM

In this section, we give a high-level sketch of the proof that there exists a shape
which can self-assemble in the aTAM at τ = 2 but not in the DaTAM at τ = 1.

Theorem 4. There exists a shape S ⊂ Z
2 such that there exists a TAS T =

(T, σ, 2) in the aTAMwhich self-assemblesS, but noDTASD = (TD, SD, DD, σ
→, 1)

in the DaTAM which self-assembles S.

rays

planter
seed 1 2 3

M(1)

M(2)

M(3)

accept paths

Fig. 5. Schematic depiction of a portion of
the infinite shape which can self-assemble in
the aTAM at τ = 2 but not in the DaTAM
at τ = 1.

See Figure 5 for a high-level sketch
of a portion of the infinite shape,
which is based on the shape used in
the proof of Theorem 4.1 of [4] (which
in turn is based on that of Theorem
4.1 of [15]). Essentially, T assembles S
in the following way. Beginning from
the seed, it grows a module called
the planter eastward. The planter

is a modified log-height counter which
counts from 1 to ∞, and for each
number - at a well-defined location -
places a binary representation of that
number on its north side. From each
such location, modules called rays

and Turing machine simulations be-
gin. Each ray grows at a unique and
carefully defined slope so that it can
direct the growth of its adjacent Tur-
ing machine simulation in such a way the no Turing machine simulation will
collide with another ray, but it also potentially has infinite tape space for its
computation. The infinite series of Turing machine computations each run the
same machine, M , on input n where n is the value presented by the planter at
that location. If and only if each computation halts and accepts, a path of tiles
grows down along the right side of the computation until it reaches a position
from which it grows a vertical path of tiles directly downward to crash into the
planter (blue in Figure 5). It’s important that the height of the vertical portions
(blue) of the paths increase for each. If and when a path places a tile adjacent to
the planter, glue cooperation between the final tile of the path and a planter

tile allow for the placement of a final tile (yellow in Figure 5). S is the infinite
shape resulting from the growth of all portions.

The reason that S cannot assemble in the DaTAM at τ = 1 is that glue
cooperation cannot be used to place the yellow tiles, so each must be able to
attach to just a tile in the blue portion of a path or the planter tile in a green
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location. It is impossible for all yellow tiles to be placed correctly because if
they attach to 1) the blue portions of paths, since those get arbitrarily long,
they must have repeating tile types which could be used to grow blue paths of
the wrong height which allow yellow tiles to attach too far above the planter,
or 2) the planter tiles, then the planter would have to be able to allow yellow
tiles to attach exactly in all positions corresponding to halting and accepting
computations, but the Turing machine being simulated accepts a language which
is computably enumerable but not decidable, thus that is impossible. Thus, no
DaTAM system can assemble S.

5.3 A DaTAM System Which Cannot Be Simulated by the aTAM

In this section, we give a single directed DaTAM system D at τ = 1 which
cannot be simulated by any aTAM system at τ = 2. The fact that the aTAM at
temperature 2 is incapable of simulating a single directed temperature 1 DTAS
shows that the addition of duples fundamentally changes the aTAM model. The
DTAS constructed in this section is similar to the system given in Section 5.1.
See Figure 6 for a depiction of a producible assembly of D. In order to show
that the aTAM cannot simulate this DTAS, we use a technique used in [19].
This technique relies on the notion of a window movie (we modify some of the
definitions given in [19]).

Theorem 5. There exists a single directed DaTAM system D = (TD, S,D, σ, τ)
such that D cannot be simulated by any temperature 2 aTAM system.

Fig. 6. A portion of a producible assembly
of the temperature 1 DaTAM system which
cannot be simulated in the aTAM at τ = 2.

To prove Theorem 5, we prove that
there is no TAS that can simulate the
DTAS, D, described as follows. First,
the system is identical to the DTAS
described in Section 5.1 with one ex-
ception. Just as with the DTAS in
Section 5.1, D grows a planter, ver-
tical counters and fingers. In addi-
tion to these subassemblies, D grows
an 8 tile long, single tile wide line, l,
of tiles from the base of each vertical
counter. As seen in Figure 6, l, con-
sisting of tiles S1, S2, . . . , S8, grows
to the left of each vertical counter and
extends past the single tile wide gap between a finger and the planter. The
intuitive idea behind the proof of Theorem 5 is that for any aTAM system, T ,
that attempts to simulate D, it must be able to simulate the growth of fingers.
Therefore, for any n > 0, T must be able to grow a subassembly that simulates
a finger consisting of n duples. This subassembly must have a constant width
based on the block replacement scheme used in the simulation with block size
m say, and a length of roughly 2nm. We show that any such system T capable
of such growth must also grow a simulated finger that crashes into the simu-
lation of the planter. To show this, we use a window movie lemma (similar to
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Lemma 3.1 in [19]). The lemma shown here holds for closed rectangular windows
(in this version of the paper, we omit the details and a formal statement of the
window movie lemma used here). Then, since the simulated planter, finger,
and vertical counter separate the infinite grid-graph into two disjoint sets, there
is no way to ensure that a subassembly representing the tile labeled S8 of T
grows only after the subassemblies representing the tiles labeled S1, S2, . . . , S5

grow. In other words, there is no way to ensure that T and D have equivalent
dynamics, and therefore T does not simulate D.

5.4 An aTAM System Which Cannot Be Simulated by the DaTAM

In Section 5.3 we showed the aTAM can’t simulate every DaTAM system. Here
we show the converse; the DaTAM can’t simulate all aTAM systems. The partic-
ular aTAM system that we show can’t be simulated by the DaTAM is the same
given in [19] that is used to show that temperature 1 aTAM systems cannot
simulate every temperature 2 aTAM system. Intuitively, this shows that cooper-
ation, which is possible for temperature 2 aTAM systems, cannot be simulated
using duples when temperature is restricted to 1. (See Figure 7 for the tile set.)

Theorem 6. There exists a temperature 2 aTAM system T = (T, σ, 2) such that
T cannot be simulated by any temperature 1 DaTAM system.

Here we give a brief overview of the TAS, T , that we show cannot be simulated
by any DTAS and provide a sketch of the proof.

g1

g4

g2

g3
g4 g4 g4

g5

g4

g6

g7

g11

g10

g9

g8 g8 g8 g8 g8
g12

g13

g14
g15 g16

(b)(a)

top arm

bottom arm

seed

keystone

flagpole

flag

top finger

bottom finger

(c) (d)

Fig. 7. (Figure taken from [19]) (a) An overview of the tile assembly system T =
(T, σ, 2). T runs at temperature 2 and its tile set T consists of 18 tiles. (b) The glues
used in the tileset T . Glues g11 and g14 are strength 1, all other glues are strength 2.
Thus the keystone tile binds with two “cooperative” strength 1 glues. Growth begins
from the pink seed tile σ: the top and bottom arms are one tile wide and grow to
arbitrary, nondeterministically chosen, lengths. Two blue figures grow as shown. (c) If
the fingers happen to meet then the keystone, flagpole and flag tiles are placed, (d) if
the fingers do not meet then growth terminates at the finger “tips”.

See Figure 7 for an overview of the TAS T . The proof that there is no DTAS
that simulates T is briefly described as follows. For any DTAS, D, that attempts
to simulate T , it is shown that D is capable of an invalid assembly sequence.
Intuitively, the idea is that when an arm (the bottom arm say) is sufficiently



The Power of Duples (in Self-Assembly): It’s Not So Hip to Be Square 225

long, an assembly sequence in D of a subassembly α that represents this arm
must contain repetition. Using a window movie lemma similar to Lemma 3.3
in [19], this repetition is removed to produce an assembly in D that is essentially
equivalent to removing a section of tiles from α and splicing together the exposed
ends along matching glues. This results in a shorter arm α→ that still attempts
to grow a keystone and flagpole, and hence leads to an invalid simulation of T .
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Abstract. In this paper, we designed a distance metric as DCJ-Indel-
Exemplar distance to estimate the dissimilarity between two genomes
with unequal contents (with gene insertions/deletions (Indels) and du-
plications). Based on the aforementioned distance metric, we proposed
the DCJ-Indel-Exemplar median problem, to find a median genome that
minimize the DCJ-Indel-Exemplar distance between this genome and
the given three genomes. We adapted Lin-Kernighan (LK ) heuristic to
calculate the median quickly by utilizing the features of adequate sub-
graph decomposition and search space reduction technologies. Experi-
mental results on simulated gene order data indicate that our distance
estimator can closely estimate the real number of rearrangement events;
while compared with the exact solver using equal content genomes, our
median solver can get very accurate results as well. More importantly,
our median solver can deal with Indels and duplications and generates
results very close to the synthetic cumulative number of evolutionary
events.

Keywords: Genome Rearrangement, Double-cut and Join (DCJ), Lin-
Kernighan Heuristic.

1 Introduction

Inferring phylogenies (evolutionary history) of a set of given species is a fun-
damental problem in computational biology [23]. For decades, biologists and
computer scientists have studied how to infer phylogenies by the measurement
of genome rearrangement events using gene order data [13]. While evolution is
not an inherently parsimonious process, maximum parsimony (MP) phyloge-
netic analysis has been widely applied to the phylogeny inference to study the
evolutionary patterns of genome rearrangements. Given the input of gene order
data with unequal contents (with gene insertions/deletions and duplications of
genes), even the computation of distance between two genomes with only dupli-
cations is NP-hard [7,9,10] and APX-hard [1,11] by various distance measure-
ment methods. There are attempts to perform phylogenetic reconstruction from
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genome rearrangement data with unequal gene content, which can be roughly
divided into distance-based methods [28], MP methods [29] and adjacency-based
methods [17]. However, the first two approaches are generally quite limited by
methods in distance and median computation.

Various distance metrics have been proposed to calculate the dissimilarity be-
tween two genomes, such as breakpoint distance [4], signed reversal distance [2],
translocation distance [15], and Double-cut-and-join (DCJ ) distance [34], which
is currently the most extensively studied. However, there are still a lot of un-
clear subjects in distance computation between unequal content genomes, and
computational biologists tried multiple ways to surpass this limit. Traditional
approaches are based on breakpoint or reversal distances, such as efforts of em-
ploying exemplar distance [21, 25] to keep only one copy of duplicated gene
families, or the methods by extending polynomial time reversal distance algo-
rithm introduced by Hannenhalli Pevzner (HP), to handle Indels as well as
duplications [18]. Contemporary research focusing on unequal contents are more
concerned on DCJ model: For genomes with Indels only, there are exact algo-
rithms to compute their DCJ distance [6, 12]; For genomes with duplications,
there are several very useful methods to approximate or compute the exact DCJ
distance [26, 27]. However, there are few efforts to combine these methods to
measure distance of genomes with gene orders that contain both Indels and
duplications.

The median problem is defined as to find a genome that minimizes sum of
distances from itself to the three input genomes [5,19]; it’s NP-hard under most
distance metrics [3, 8, 22, 31]. Several exact algorithms have been implemented
to solve the DCJ median problems on both circular [31, 33] and linear chromo-
somes [30, 32]. Some heuristics are introduced to improve the speed of median
computation, such as linear programming (LP) [8], local search [16], evolution-
ary programming [14], or simply searching on one promising direction [24]. As
all these algorithms are intended for solving the median problems with equal
content genomes, their usage is limited in practice.

2 Background

2.1 Genome Rearrangement Events and Their Graph
Representations

Genome Rearrangement Events. The content of the DNA molecules are of-
ten similar, but their organizations often differ dramatically. The mutation that
affect the organization of genes are called genome rearrangements. Fig 1 shows
examples of different rearrangement events of a single chromosome. In the exam-
ples, we use signed numbers to represent different genes and their orientation in
the genome strand. Genome rearrangements events involve with multiple com-
binatorial optimization problems, and graph representation is a very common
way to abstract these problems. In this part, we will address the foundations of
using breakpoint graph to model the genome rearrangement events.
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Fig. 2. Examples of BPG; and DCJ operations

Breakpoint Graph. Given an alphabet A, and two genomes Γ and Π are
represented by two strings of signed (+ or −) symbols (representing genes) from
A. Each gene a ∈ A is represented by a pair of vertices head ah and tail at, if
a is positive ah is putted in front of at, otherwise at is putted in front of ah.
For a ∈ A and b ∈ A, if a ∈ Γ (or Π) and b ∈ Γ (or Π), and in Γ (or Π) a
and b are adjacent to each other, their adjacent vertices will be connected by
an edge. As for telomere genes, if they exist in a circular chromosome, two end
vertices will be connected by an edge, and if they exist in a linear chromosome,
two end vertices will be connected to a special vertex called CAP vertex. If we
use one type of edges to represent adjacencies of Γ and another type of edges to
represent adjacencies of Π, the resulting graph with two types of edges is called
breakpoint graph (BPG). Fig 2(a) shows the BPG for gene order Γ (1,-2,3,-6,5)
(solid edges) which is a genome with one circular chromosome and Π (1,2,3,7,4)
(dashed edges) which is a genome with one linear chromosome.

DCJ Operation. Double-cut and join (DCJ ) operations are able to simulate
all aforementioned rearrangement events applying BPG. The operations cut two
edges (within one genome) and rejoin them using two possible combinations
of end vertices (shown in Fig 2(b)). DCJ distance of genomes with the same
content can be easily calculated by enumerating the number of cycles/paths in
the BPG, which is linear [34]. Comparing with the complex model based on
reversal operations, DCJ operations are simple and powerful.
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2.2 Distance Computation
In the BPG with two genomes Γ and Π, the vertices and the edges of a closed
walk form a cycle. In Fig 2(a), the walk (1t, (1t; 2h), 2h, (2h; 3h), 3h, (3h; 2t), 2t,
(2t; 1t), 1t) is a cycle. A vertex v is π-open (γ-open) if v �∈ Γ (v �∈ Π). An
unclosed walk in BPG is a path. Based on different kinds of end points of the
paths, we can classify paths into different types. If the two ends of a path are
CAP vertices, we simply denote this path as p0. If a path is ended by one
open vertex and one CAP, we denote it as pπ (pγ). If a path is ended by two
open vertices, it is denoted by the type of its two open vertices, for example,
pπ,γ represent a path that ends with a π-open vertex and a γ-open vertex. In
Fig 2(a), the walk (5t, (5t; 1h), 1h, (1h; CAP ), CAP ) is a pγ path, and the walk
(6t, (6t; 3t), 3t, (3t; 7h), 7h) is a pγ,π path. A path is even (odd), if it contains
even (odd) number of edges. In [12], the DCJ distance between two genomes
with Indels but without duplications is calculated by equation (1). We call this
distance DCJ-Indel distance. From this equation, we can easily get the DCJ-
Indel distance between Γ and Π in Fig 2(a) as 4.

(1)
distanceindel(Γ, Π) = N − [c + pπ,π + pγ,γ + �pπ,γ�]

+ 1
2

(p0even + min(pπ
odd, pπ

even) + min(pγ
odd, pγ

even) + δ)

Where δ = 1 only if pπ,γ is odd and either pπ
odd > pγ

even, pγ
odd > pγ

even or
pπ

odd < pγ
even, pγ

odd < pγ
even; Otherwise, δ = 0.

There are in general two approaches to cope with duplicated genes. One is
by removing all but keeping one copy of duplications in gene family to gener-
ate an exemplar pair [25] and another is by relabling duplicates such that all
duplicated genes will have an unique label [26,27]. Lastly, mathematically opti-
mized distance might not reflect the true number of biological events, distance
estimation methods such as EDE or IEBP are used to rescale these computed
distances [20].

2.3 Median Computation
If there are three given genomes, the graph constructed by borrowing the pre-
vious defined rule in BPG is called Multiple Breakpoint Graph (MBG). Fig-
ure 3(a) shows an example of MBG, With the input of three genomes: (1,2,3,4)
(solid edges); (1,2,-3,4) (dashed edges) and (2,3,1,-4) (dotted edges). The DCJ
median algorithm can be briefly described by a branch and bound (BnB) pro-
cess [30,31,33] on MBG, which is to find a maximum matching (which is called
0-matching) in MBG. Figure 3(b) shows an example of 0-matching which is
represented by gray edges. In [30, 31, 33], it’s been proved that a type of sub-
graph called adequate sub-graph (AS) could be used to decompose the graph
with edge shrinking operations. Figure 3(c) shows an example of AS and edge
shrinking. The BnB algorithm is served to solve the DCJ median problem with
equal content genomes. Unfortunately, there is no BnB based algorithm that
deals with unequal content cases, and we will show that it’s actually hard to
design such algorithm in the following section.
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3 Approaches

3.1 Applying DCJ-Indel-Exemplar Distance to Evaluate
Dissimilarity

The DCJ-Indel distance can handle genomes which only have Indels, while the
exemplar distance can only handle duplications. To process genomes with both
Indels and duplications, a new distance metric named DCJ-Indel-Exemplar dis-
tance is designed by combining these two distances together. For gene families
with duplicated genes, only one gene copy of a gene family in each genome is
selected, and the rest of the gene copies in the gene family are deleted from both
of the genomes. The resulting genomes are called ‘exemplar’ genomes. Of all
possible selection of exemplar genomes, the one with the minimum DCJ-Indel
distance is the DCJ-Indel-Exemplar distance for the original two genomes.

The DCJ-Indel-Exemplar distance does not reflect the true number of evo-
lutionary events. For one thing, the number of duplications are not counted;
furthermore, when there are large number of mutations, DCJ distance will un-
derestimate the distance. Therefore, two steps are followed to adjust the DCJ-
Indel-Exemplar distance. The first step is to use EDE [20] to rescale the distance.
The second step is to add the count of duplicated genes by comparing the differ-
ence of the count of the same gene family in two genomes, if they are different, a
duplication count is added. The DCJ-Indel-Exemplar distance after the adjust-
ment of EDE distance and the addition of number of duplications is the final
distance.

3.2 Adapting Lin-Kernighan Heuristic to Find Median

Problem Statement. Not surprisingly, finding the median genome that mini-
mize the DCJ-Indel-Exemplar distance, is challenging. To begin with, given three
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input genomes, there are multiple choices of possible gene content selections for
a median genome. Therefore, to make the problem easier, we can define a relaxed
version of the median problem by providing known gene contents.

DCJ-Indel-Exemplar median
Instance. Given the gene content of a median genome, and gene orders of three
modern genomes.
Question. Find an adjacency of the genes of the median genome that minimize
the DCJ-Indel-Exemplar distance between the median genome and the three
input genomes.

The DCJ-Indel-Exemplar median problem is not even in the class of NP be-
cause there is no polynomial time algorithm to verify the results. Furthermore,
it’s hard to design an exact BnB algorithm for DCJ-Indel-Exemplar median
problem mainly because: To begin with, distance under DCJ does not hold
when considering Indels [35]. when a 0-matching edge is selected, edge shrinking
is performed to generate the new MBG. The question is, when there are dupli-
cated genes in a genome, it’s possible that there are multiple edges of the same
type connecting to the same vertex of a 0-matching. This leads to ambiguity
in the edge shrinking step, which makes the followed BnB search process very
complicated and extremely hard to implement. Hence, we provided an adaption
of Lin-Kernighan (LK ) heuristic to help solving this challenging problem.

Design of Lin-Kernighan Heuristic. The LK heuristic can generally be
divided into two steps: initialization of 0-matching for the median genome, and
LK search to get the result.

The initialization problem can be described as: given gene contents of three
genomes, find a median genome gene content that minimizes the sum of the
number of Indels and duplications operations that transfer the median gene
content to gene contents of other three genomes. In this paper, we designed a
very simple rule to initialize the gene content of the median genome, which is,
given the counts of one gene family of three genomes. If two or three counts
are the same, we simply select this count as the number of occurence of the
gene family in the median genome. If all three counts are different, we select
the median count as the number of occurence of the gene family in the median
genome.

After fixing the gene content for median genome, the next step is to set up
the 0-matching in the MBG and perform the LK heuristic. In this paper, we
randomly set up the 0-matching. As for the LK strategy, by selecting two 0-
matching edges on MBG of a given search node, and perform a DCJ operation,
we can get the MBG of a neighbor search node. We expand the search frontier
by keeping all neighboring search nodes to up until the search level L1. Then
we only examine and add the most promising neighbors to the search list until
level L2. The search is continued by the time when there is a neighbor solution
yielding a better median score. This solution is then accepted and with it a new
search is initiated from the scratch. The search will be terminated if there are
no improvement on the result as the search level limit has been reached and
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all possible neighbors has been enumerated. If L1 = L2 = K, the algorithm is
called K-OPT algorithm.

Adopting Adequate Subgraphs to Simplify Problem Space. There are
two categories of vertices in the MBG. One connected with exactly one edge
of each edge type, is called “regular” vertices; another connected with less or
more than one edges of each edge type, is classified as “irregular” vertices. A
subgraph in the MBG that only contains regular vertices, is defined as regular
subgraph [30]. By using the adequate subgraphs [30,33], we can prove that they
are still applicable for decomposing the graph in DCJ-Indel-Exemplar median
problem.

Lemma 1. As long as the irregular vertices do not involve, regular subgraphs
are applicable to decompose MBG.

Proof. If there are d number of vertices that contain duplicated edges in MBG,
then we can disambiguate the MBG by generating different subgraphs that con-
tain only one of the duplicate edges (we call these subgraphs disambiguate MBG,
d-MBG). And there are O(

∏
i<d deg(i)) number of d-MBGs. Suppose a regular

adequate subgraph exists in the MBG, then it must also exist in every d-MBG.
Based on the 0-matching solution, we can transform every d-MBG into com-
pleted d-MBG (cd-MBG) by constructing the optimal completion [12] between
0-matching and all the other 3 types of edges. After this step, the adequate sub-
graphs exist in every d-MBG still exist in every cd-MBG. Which means, we can
use these adequate subgraphs to decompose cd-MBG for each median problem
without losing accuracy. �

Search Space Reduction Methods. The performance bottleneck with the
median computation is in the exhaustive search step, because for each search level
we need to consider O(2g)2 possible number of edge pairs, which is O((2g)2L1) in
total. In traveling salesman problem (TSP), it’s cheap to find the best neighbor,
but for DCJ operations, to evaluate a neighbor, we need to compute NP-hard
DCJ-Indel-Exemplar distance, which makes this step extremely expensive to
conclude. Noticing that if we search neighbors on edges that are on the same
0-i color altered connected component (0-i-comp), the DCJ-Indel-Exemplar dis-
tance for genome 0 and genome i is more likely to reduce [36]. We can sort each
edge pair by how many 0-i-comp they share. Suppose the number of 0-i-comp
that an edge pair x share is num_pair(x). When the algorithm is in the ex-
haustive search step (currentLevel < L1), we set a threshold δ and select the
edge pairs that satisfy: num_pair(x) > δ to be added into the search list. When
it comes to the recursive deepening step; we select the edge pair that satisfy
argmax

x
num_pair(x) to be added into the search list. This strategy has two

merits, 1) some of the non-promising neighbor solution is eliminated to reduce
the search space. 2) the expensive evaluation step which make a function call
to DCJ-Indel-Exemplar distance is postponed to the time when a solution is
retrieved from the search list.
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4 Experimental Results

Distance Estimation. We simulated the data sets using genomes with 200
genes. To show how Indels and duplications affect the estimation of the distance,
we divide the data set into multiple groups with varied Indels rate (γ, which
varies from 5% to 10%), and duplication rate (φ, which varies from 5% to 10%
as well). For each Indels or duplication event, only one gene is inserted/deleted
or duplicated. We compare the change of distance estimation with the change
of mutation rate (θ, which varies from 10% to 100%, we used reversal operation
to simulate the mutation mainly because DCJ distance and reversal distance
are quite similar when using genome data of same contents), with each specific
setting of γ and φ. With two genomes (one is called target and the other is called
subject) we conduct experiments on two sets of data. One set of data that set
target genome as identity genome (for example (1, 2, 3, ..., i, j, ..., n)), and the
subject genome is evolved from the identity genome with full ratio of θ, γ, φ, we
call this set ‘identity’. Another set of data assigns half ratio of θ, γ, φ to both
of target and subject genomes to let them evolve from identity genome, we call
this set ‘dual’.

The result for DCJ-Indel-Exemplar distance and DCJ-Indel-Exemplar dis-
tance corrected by EDE are shown in Fig 4. As for the impact of different
evolution operation rates, the main factor that affects the accuracy of distance
estimation is the change of rate γ and φ. This is mainly because an Indel after
a duplication can cancel the count of both Indel and duplication and makes the
distance underestimated. As for the effect of two different data sets, it seems
that the ‘dual’ set underestimates the result more than ‘identity’ set, which is
mainly because both of two genomes will delete a common set of genes, which
makes the actual size of alphabet A shrunk.

Median Computation. We simulate the median data of three genomes using
the same simulation strategy as in the distance simulation. In our experiments,
each genome is “evolved” from a seed genome, which is identity, and they all
have the same evolution rate (θ, γ and φ). We compare the result of using LK
algorithm with L1 = 2 and L2 = 3, and the K-OPT algorithm of K = 2. We
use the search space reduction methods and set δ = 2 and δ = 3 respectively.

To test the accuracy of our LK and K-OPT methods, we first set both γ and
φ to 0 and increased the mutation rate θ from 10% to 100%, so that each of
the three genomes has the same gene content. We run the exact DCJ median
solver (we use the one in [36]) to compare the exact result with our heuristic. In
Fig 5(a), it shows the accuracy of our heuristic compared with the exact result.
It is shown that when θ ≤ 60%, all results of the LK and K-OPT methods are
quite close to the exact solver. For parameter of δ = 2, both LK and K-OPT
methods can generate exact results for most of the cases.

As for the median results for unequal contents, we set both γ and φ to 5%
and increase the mutation (inversion) rate θ from 10% to 60%. We compare our
result with the accumulated distance of three genomes to their simulation seed.
Although it can not show the accuracy of our method (since we do not have an
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identity, γ = 0.05, φ = 0.05 identity, γ = 0.1, φ = 0.1

dual, γ = 0.05, φ = 0.05 dual, γ = 0.1, φ = 0.1

Fig. 4. Distance computation results, the x-axis represents the actual number of DCJ
operations and the y-axis represent the computed distance for the methods using DCJ-
Indel-Exemplar distance, DCJ-Indel-Exemplar distance rectified by EDE, and the true
estimator. γ is the rate of Indels and φ is the rate of duplications. The results are
grouped by two sets of data, which are identity and dual.

(a) γ = φ = 0% and θ varies from 10% to
100%.

(b) γ = φ = 5% and θ varies from 10% to
60%.

Fig. 5. Experimental results for median computation
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exact solver), it can be used as an indicator of how close of our method was to
the real evolution. Fig 5(b) shows the median results for unequal gene contents.
It indicates that when δ = 3, both LK and K-OPT algorithms get results quite
close to the real evolutionary distance.

5 Conclusion

In this paper, we proposed a new way to compute the distance and median
between genomes with unequal contents (with Indels and duplications). Never-
theless, there are still a lot of aspects to be improved. For example, we need
to design a scheme to better estimate the gene contents. A way to deal with
ambiguation when shrinking an edge is needed; therefore, a branch and bound
algorithm could be designed to infer the exact median genome. Last but not
least, since the LK algorithm can only process hundreds of genes, algorithm
engineering and high performance computing methods are required to provide a
way helping us to design faster algorithms to deal with high resolution data.
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fer).
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Abstract. Light reflecting diffusely off of a surface leaves in all direc-
tions. It is shown that every simple polygon with n vertices can be il-
luminated from a single point light source s after at most ≥(n − 2)/4≤
diffuse reflections, and this bound is the best possible. A point s with
this property can be computed in O(n log n) time.

1 Introduction

When light diffusely reflects off of a surface, it scatters in all directions. This is
in contrast to specular reflection, where the angle of incidence equals the angle
of reflection. We are interested in the minimum number of diffuse reflections
needed to illuminate all points in the interior of a simple polygon P with n
vertices from a single light source s in the interior of P . A diffuse reflection path
is a polygonal path Ω contained in P such that every interior vertex of Ω lies in
the relative interior of some edge of P , and the relative interior of every edge
of Ω is in the interior of P (see Fig. 1 for an example). Our main result is the
following.

Theorem 1. For every simple polygon P with n → 3 vertices, there is a point
s ⊂ int(P ) such that for all t ⊂ int(P ), there is an s-to-t diffuse reflection path
with at most ≡(n− 2)/4∈ internal vertices. This upper bound is the best possible.
A point s ⊂ int(P ) with this property can be computed in O(n log n) time.

Our main result is, in fact, a tight bound on the diffuse reflection radius
(defined below) for simple polygons. Denote by Vk(s) ≥ P the part of the polygon
illuminated by a light source s after at most k diffuse reflections. Formally, Vk(s)
is the set of points t ⊂ P such that there is a diffuse reflection path from s to
t with at most k interior vertices. Hence V0(s) is the visibility polygon of point
s within the polygon P . The diffuse reflection depth of a point s ⊂ int(P ) is
the minimum r → 0 such that int(P ) ≥ Vr(s). The diffuse reflection radius
R(P ) of a simple polygon P is the minimum diffuse reflection depth over all

α A full version of this paper can be found at http://arxiv.org/abs/1402.5303

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 239–250, 2014.
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s s s

V0(s)

V1(s)

V2(s) = P
P

s

P

t

(a) (b) (c) (d)

Fig. 1. (a) A diffuse reflection path between s to t in a simple polygon P . (b)–(d) The
regions of a polygon illuminated by a light source s after 0, 1, and 2 diffuse reflections.
The diffuse reflection radius of a zig-zag polygon with n vertices is ≥(n− 2)/4≤.

points s ⊂ int(P ). The set of points s ⊂ int(P ) that attain this minimum is the
diffuse reflection center of P . With this terminology, Theorem 1 implies that
R(P ) ∪ ≡(n− 2)/4∈ for every simple polygon P with n → 3 vertices. A family of
zig-zag polygons (see such polygon in Fig. 1) shows that this bound is the best
possible for all n → 3. The diffuse reflection diameter D(P ) of P is the maximum
diffuse reflection depth over all s ⊂ int(P ). Barequet et al. [6] recently proved,
confirming a conjecture by Aanjaneya et al. [1], that D(P ) ∪ ≡n/2∈ − 1 for all
simple polygons with n vertices, and this bound is the best possible.

Proof Technique. The regions Vk(s) are notoriously difficult to handle. Brahma
et al. [7] constructed examples where V2(s) is not simply connected, and where
V3(s) has σ(n) holes. In general, the maximum complexity of Vk(s) is known to
be σ(n2) and O(n9) [2]. Rather than consider Vk(s), we use the simply connected
regions Rk(s) ≥ Vk(s) defined by Barequet et al. [6] (reviewed in Section 2.1)
and prove that int(P ) ≥ R→(n−2)/4≥(s) for some point s ⊂ int(P ).

In Section 2, we establish a simple sufficient condition (Lemma 1) for a point
s to determine if int(P ) ≥ R→(n−2)/4≥(s). We use a generalization of the kernel of
a simple polygon (Section 3.1) and the weak visibility polygon for a line segment
(Section 3.2) to prove that there exists a point satisfying these considitions,
with the exception of two extremal cases that are resolved directly (Section 2.2).
The existential proof is turned into an efficient algorithm by computing the
generalized kernel in O(n log n) time, and maintaining the visibility of a point
moving along a line segment with a persistent data structure undergoing O(n)
updates in O(log n) time each.

Motivation and Related Work. The diffuse reflection path is a special case of
a link path, which has been studied extensively due to its applications in motion
planning, robotics, and curve compression [13,17]. The link distance between
two points, s and t, in a simple polygon P is the minimum number of edges in
a polygonal path between s and t that lies entirely in P . In a polygon P with n
vertices, the link distance between two points can be computed in O(n) time [20].
The link diameter of P , the maximum link distance between two points in P , can
be computed in O(n log n) time [21]. The link depth of a point s is the smallest
number d such that all other points in P are within link distance d of s. The
link radius is the minimum over all link depths, and the link center is the set
of points with minimum link depth. It is known that the link center is a convex
region, and can be computed in O(n logn) time [12].
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The geodesic center of a simple polygon is a point inside the polygon which
minimizes the maximum internal (geodesic) distance to any point in the polygon.
Pollack et al. [18] show how to compute the geodesic center of a simple polygon
with n vertices in O(n logn) time. Hershberger and Suri [15] give an O(n) time
algorithm for computing the geodesic diameter. Bae et al. [5] show that the
geodesic diameter and center under the L1 metric can be computed in O(n)
time in every simple polygon with n vertices.

Note that the link distance, geodesic distance and the L1-geodesic distance are
all metrics, while the minimum number of reflections on a diffuse reflection path
between two points is not a metric (the triangle inequality fails). This partly
explains the difficulty of handling diffuse reflections.

In contrast to link paths, the currently known algorithm for computing a
minimum diffuse reflection path (one with the minimum number of reflections)
between two points in a simple polygon with n vertices takes O(n9) time [2,13];
and no polynomial time algorithm is known for computing the diffuse reflection
diameter or radius of a polygon.

2 Preliminaries

For a planar set U ≥ R
2, we denote the interior by int(U), the boundary by αU ,

and the closure by cl(U). Let P be a simply connected closed polygonal domain
(for short, simple polygon) with n vertices. A chord of P is a closed line segment
ab such that a, b ⊂ αP , and the relative interior of ab is in int(P ).

We assume that the vertices of P are in general position, and we only consider
light sources s ⊂ int(P ) that do not lie on any line spanned by two vertices of
P . Recall that V0(s) is the visibility polygon of the point s ⊂ P with respect
to P . The pockets of V0(s) are the connected components of P \ cl(V0(s)). See
Fig. 2(a) for examples. The common boundary of V0(s) and a pocket is a chord
ab of P (called a window) such that a is a reflex vertex of P that lies in the
relative interior of segment sb. We say that a pocket with a window ab is induced
by the reflex vertex a. Note that every reflex vertex induces at most one pocket
of V0(s). We define the size of a pocket as the number of vertices of P on the
boundary of the pocket. Since the pockets of V0(s) are pairwise disjoint, the sum
of the sizes of the pockets is at most n, the number of vertices of P .

A pocket is a left (resp., right) pocket if it lies on the left (resp., right) side

of the directed line
−◦
ab. Two pockets of V0(s) are dependent if some chord of P

crosses the window of both pockets; otherwise they are independent. One pocket
is called independent if it is independent of all other pockets.

Proposition 1. All left (resp., right) pockets of V0(s) are pairwise independent.

The main result of this section is a sufficient condition (Lemma 1) for a
point s ⊂ int(P ) to fully illuminate int(P ) within ≡(n− 2)/4∈ diffuse reflections.
A proof of the lemma is offered in the full version of the paper. It relies on
the following subsection, techniques developed in [6], and the bound D(P ) ∪
≡n/2∈ − 1 on the diffuse reflection diameter.



242 E. Fox-Epstein, C.D. Tóth, and A. Winslow
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Fig. 2. (a) A polygon P where V0(s) has three pockets U1, U2 and U3, of size 4, 3, and
5, respectively. The left pockets are U1 and U2, the only right pocket is U3. Pocket U1

is independent of both U2 and U3; but U2 and U3 are dependent. (b) The construction
of region R1 from R0 = V0(s) in [6]. Pocket U1 is saturated, and pockets U2 and U3

are unsaturated.

Lemma 1. We have int(P ) ≥ V→(n−2)/4≥(s) for a point s ⊂ int(P ) if the pockets
of V0(s) satisfy these conditions:

C1 every pocket has size at most ≡n/2∈ − 1; and
C2 the sum of the sizes of any two dependent pockets is at most ≡n/2∈ − 1.

2.1 Review of Regions Rk

We briefly review the necessary tools from [6]. Let s ⊂ int(P ) be a point in
general position. Recall that Vk(s), the set of points reachable from s with at
most k diffuse reflections, is not necessarily simply connected when k → 1 [7].
Instead of tackling Vk(s) directly, Barequet et al. [6] recursively define simply
connected subsets Rk = Rk(s) ≥ Vk(s) for all k ⊂ N0, starting with R0 = V0(s).
We review how Rk+1 is constructed from Rk. Each region Rk is bounded by
chords of P and segments along the boundary αP . The connected components
of P \ cl(Rk) are the pockets of Rk. Each pocket Uab of Rk is bounded by a
chord ab such that a is a reflex vertex of P , b is an interior point of an edge
of P , and the two edges of P incident to a are on the same side of the line ab
(these properties are maintained in the recursive definition). A pocket Uab of
Rk is saturated if every chord of P that crosses ab has one endpoint in Rk and
the other endpoint in Uab. Otherwise, Uab is unsaturated. Recall that for a point
s∪ ⊂ P , V0(s

∪) is the set of points in P visible from s∪; and for a line segment
pq ≥ P , V0(pq) is the set of points in P visible from any point in pq.

The regions Rk are defined as follows (refer to Fig. 2(b)). Let R0 = V0(s). If
int(P ) ≥ Rk, then let Rk+1 = cl(Rk) = P . If int(P ) ∀≥ Rk, then Rk has at least
one pocket. For each pocket Uab, define a set Wab ≥ Uab: If ab is saturated, then
let Wab = V0(ab) ∩ Uab. If ab is unsaturated, then let pab ⊂ Rk ∩ αP be a point
infinitely close to b such that no line determined by two vertices of P separates b
and pab; and then let Wab = V0(pab)∩Uab. Let Rk+1 be the union of cl(Rk) and
the sets Wab for all pockets Uab of Rk. Barequet et al. [6] prove that Rk ≥ Vk(s)
for all k ⊂ N0.
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We say that a region Rk weakly covers an edge of P if the boundary αRk

intersects the relative interior of that edge. On the boundary of every pocket
Uab of Rk, there is an edge of P that Rk does not weakly cover, namely, the
edge of P incident to a. We call this edge the lead edge of Uab. The following
observation follows from the way the regions Rk are constructed in [6].

Proposition 2 ([6]). For every pocket U of region Rk, k ⊂ N0, the lead edge
of U is weakly covered by region Rk+1 and is not weakly covered by Rk.

Proposition 3. If a pocket Uab of V0(s) has size m, then Rk weakly covers at
least min(k + 1,m) edges of P on the boundary of U .

The following lemma is a direct consequence of Proposition 3. It will be used
for unsaturated pockets of V0(s).

Lemma 2. If U is a size-m pocket of V0(s), then int(U) ≥ Rm−1.

For saturated pockets, the diameter bound allows a significantly better result.

Lemma 3. If U is a size-m saturated pocket of Rk, then int(U) ≥ Rk+→m/2≥.

Lemmas 2 and 3 combined yield the following for dependent pockets of V0(s).

Lemma 4. Let U be a pocket of V0(s) of size m. If each pocket dependent on U
has size at most m∪ < m, then int(U) ≥ R→(m+m′)/2≥.

2.2 Double Violators

Recall that the sum of sizes of the pockets of V0(s) is at most n, the number of
vertices of P . Therefore, it is possible that several pockets or dependent pairs of
pockets violate conditions C1 or C2 in Lemma 1. We say that a point s ⊂ int(P )
is a double violator if V0(s) has either (i) two disjoint pairs of dependent pockets,
each pair with total size at least ≡n/2∈, or (ii) a pair of dependent pockets of
total size at least ≡n/2∈ and an independent pocket of size at least ≡n/2∈. (We do
not worry about the possibility of two independent pockets, each of size at least
≡n/2∈.) In this section, we show that if there is a double violator s ⊂ int(P ), then
there is a point s∪ ⊂ int(P ) (possibly s∪ = s) for which int(P ) ≥ V→(n−2)/4≥(s

∪),
and such an s∪ can be found in O(n) time.

The key technical tool is the following variant of Lemma 4 for a pair of de-
pendent pockets that are adjacent to a common edge (i.e., share an edge).

Lemma 5. Let Uab and Ua′b′ be two dependent pockets of V0(s) such that neither
is dependent on any other pocket, and points b and b∪ lie in the same edge of
P . Let the size of Uab be m and Ua′b′ be m∪. Then R→(m+m′−1)/2≥ contains the
interior of both Uab and Ua′b′ .

Lemma 6. Suppose that V0(s) has two disjoint pairs of dependent pockets, each
pair with total size ≡n/2∈. Then there is a point s∪ ⊂ int(P ) such that int(P ) ≥
V→(n−2)/4≥(s

∪), and s∪ can be computed in O(n) time.

Lemma 7. Suppose that V0(s) has a pair of dependent pockets of total size ∅n/2↓
and an independent pocket of size ≡n/2∈. Then there is a point s∪ ⊂ int(P ) with
int(P ) ≥ V→(n−2)/4≥(s

∪), and s∪ can be computed in O(n) time.
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Fig. 3. Two instances of a double violator point s. (a) A polygon P with n = 13
vertices where V0(s) has four pockets: two pairs of dependent pockets, the sum of sizes
of each pair is ≥n/2≤ = 6. (b) A polygon P with n = 13 vertices where V0(s) has three
pockets: two dependent pockets of total size ≥n/2≤ = 6 and an independent pocket of
size ≥n/2≤ = 6.

3 Finding a Witness Point

In Section 3.1, we show that in every simple polygon P , there is a point s ⊂ int(P )
that satisfies conditionC1 In Section 3.2, we pick a point s ⊂ int(P ) that satisfies
conditionC1, and move it continuously until either (i) it satisfies both conditions
C1 and C2, or (ii) it becomes a double violator. In both cases, we find a witness
point for Theorem 1 (by Lemmas 1, 6, and 7).

3.1 Generalized Kernel

Let P be a simple polygon with n vertices. Recall that the set of points from
which the entire polygon P is visible is the kernel, denoted K(P ), which is
the intersection of all halfplanes bounded by a supporting line of an edge of
P and facing towards the interior of P . Lee and Preparata [16] designed an
optimal O(n) time algorithm for computing the kernel of a simple polygon with
n vertices. We now define a generalization of the kernel. For an integer q ⊂ N0,
let Kq(P ) denote the set of points s ⊂ P such that every pocket of V0(s) has
size at most q. Clearly, K(P ) = K0(P ) = K1(P ), and Kq(P ) ≥ Kq+1(P ) for
all q ⊂ N0. The set of points that satisfy condition C1 is K→n/2≥(P ). For every
reflex vertex v, we define two polygons Lq(v) ≥ P and Mq(v) ≥ P : Let Lq(v)
(resp.Mq(v)) be the set of points s ⊂ P such that v does not induce a left (resp.,
right) pocket of size more than q in V0(s). We have

Kq(P ) =
⋂

v reflex

(Lq(v) ∩Mq(v)) .

We show how to compute the polygons Lq(v) and Mq(v). Refer to Fig. 4.
Denote the vertices of P by (v0, v1, . . . , vn−1), and use arithmetic modulo n
on the indices. For a reflex vertex vi, let viai be the first edge of the shortest
(geodesic) path from vi to vi−q in P . If the chord viai and vivi+1 meet at a
reflex angle, then viai is on the boundary of the smallest left pocket of size at
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vi−1 vi−1
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Fig. 4. (a) Polygon L4(vi). (b) Polygon M4(vi). (c) Polygon K4(P ).

least q induced by vi (for any source s ⊂ P ). In this case, the ray −−◦aivi enters
the interior of P , and we denote by βi the first point hit on αP . The polygon

Lq(vi) is the part of P lying on the left of the chord
−−◦
viβi. However, if the chord

viai and vivi+1 meet at convex angle, then every left pocket induced by vi has
size less than q, and we have Lq(vi) = P . Similarly, let vibi be the first edge of
the shortest path from vi to vi+q . Vertex vi can induce a right pocket of size
more than q only if bivi and vivi−1 make a reflex angle. In this case, vibi is the

boundary of the largest right pocket of size at most q induced by vi, the ray
−−◦
bivi

enters the interior of P , and hits αP at a point mi, and Mq(vi) is the part of P
lying on the right of the chord −−◦vimi. if bivi and vivi−1 meet at a convex angle,
then Mq(vi) = P .

Note that every set Lq(vi) (resp., Mq(vi)) is P -convex (a.k.a. geodesically
convex ), that is, Li(vi) contains the shortest path between any two points in
Lq(vi) with respect to P [5,11,22]. Since the intersection of P -convex polygons
is P -convex, Kq(P ) is also P -convex for every q ⊂ N0. There exists a point s ⊂
int(P ) satisfying condition C1 iff K→n/2≥(P ) is nonempty. We proveK→n/2≥(P ) ∀=
∨ using a Helly-type result by Breen [8].

Theorem 2 ([8]). Let P be a family of simple polygons in the plane. If every
three (not necessarily distinct) members of P have a simply connected union and
every two members of P have a nonempty intersection, then

⋂
{P : P ⊂ P} ∀= ∨.

Lemma 8. For every simple polygon P with n → 3 vertices, K→n/2≥(P ) ∀= ∨.

Proof. We apply Theorem 2 for the polygons L→n/2≥(vi) and M→n/2≥(vi) for all
reflex vertices vi of P . By definition, L→n/2≥(vi) (resp., M→n/2≥(vi)) is incident to
at least ≡n/2∈+ 1 vertices of P , namely vi−→n/2≥, . . . , vi (resp., vi, . . . , vi+→n/2≥).
Hence the intersection of any two sets is incident to at least at most 2(≡n/2∈+
1)−n > n vertices of P . It remains to show that the union of any three of them
is simply connected.

Suppose, to the contrary, that there are three sets whose union has a hole.
Since each set is bounded by a chord of P , the hole must be a triangle bounded by
the three chords on the boundary of the three polygons. Each chord is incident
to a reflex vertex of P and is collinear with another chord of P that weakly
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Fig. 5. (a) A simple polygon P with n = 13 vertices, and the generalized kernel
K�n/2�(P ) = K6(P ). (b) A schematic picture of a triangular hole in the union of
three polygons in P .

separates the vertices {vi, vi+1, . . . , vi+→n/2≥} or {vi, vi−1, . . . , vi−→n/2≥} from the
hole. Figure 5(b) shows a schematic image. The three chords together weakly
separate disjoint sets of vertices of total size at least 3≡n/2∈+ 3 > n from the
hole, contradicting the fact that P has n vertices altogether. ⇔⇐

Lemma 9. For every q ⊂ N0, Kq(P ) can be computed in O(n log n) time.

3.2 Finding a Witness

In this section, we present an algorithm that, given a simple polygon P with
n vertices in general position, finds a witness s ⊂ int(P ) such that int(P ) ≥
V→(n−2)/4≥(s).

Let s0 be an arbitrary point in int(K→n/2≥(P )). By Lemma 8, such a point
exists. We can compute the visibility polygon V0(s0) and its pockets in O(n)
time [14]. The definition of K→n/2≥(P ) ensures that s0 satisfies condition C1 of
Lemma 1. If it also satisfies C2, then s = s0 is a desired witness.

Assume that s0 does not satisfy C2, that is, V0(s0) has two dependent pockets
of total size at least ≡n/2∈, say a left pocket Uab and (by Proposition 1) a right
pocket Ua′b′ . We may assume that Uab is at least as large as Ua′b′ , by applying a
reflection if necessary, and so the size of Uab is at least ≡n/4∈. Refer to Fig. 6(a).
Let c ⊂ αP be a point sufficiently close to b such that segment bc is disjoint
from all lines spanned by the vertices of P , segment s0c is disjoint from the
intersection of any two lines spanned by the vertices of P , and s0c ≥ P . In
Lemma 10 (below), we find a point on segment s0c that is a witness, or double
violator, or improves a parameter (spread) that we introduce now.

For a pair of dependent pockets, a left pocket Uab and (by Proposition 1) a
right pocket Ua′b′ , let spread(a, a∪) be the number of vertices on αP clockwise
from a to a∪ (inclusive). Note that the spread is always at least the sum of the
sizes of the two dependent pockets, as all vertices incident to the two pockets
are counted. For a pair of pockets of total size at least ≡n/2∈, we have ≡n/2∈ ∪
spread(a, a∪) ∪ n.

The visibility polygons of two points are combinatorially equivalent if there is
a bijection between their pockets such that corresponding pockets are incident to
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the same sets of vertices of P . The combinatorial changes incurred by a moving
point s have been thoroughly analysed in [3,4,10]. The set of points s ⊂ P
that induces combinatorially equivalent visibility polygons V0(s) is a cell in the
visibility decomposition V D(P ) of polygon P . It is known that each cell is convex
and there are O(n3) cells, but a line segment in P intersects only O(n) cells [4,9].
A combinatorial change in V0(s) occurs if s crosses a critical line spanned by
two vertices of P , and the circular order of the rays from s to the two vertices
is reversed. The possible changes are: a pocket of size 2 appears or disappears;
(2) the size of a pocket increases or decreases by one; (3) two pockets merge into
one pocket or a pocket splits into two pockets. Importantly, the combinatorics
of V0(s) does not include the dependence between pockets: Proposition 1 will
prove critical for tracking when two dependent pockets become independent.

Proposition 4. Let s1s2 be a line segment in int(P ). Then

(i) Every left (resp., right) pocket of V0(s2) induced by a vertex on the left
(right) of −−◦s1s2 is contained in a left (right) pocket of V0(s1).

(ii) Let Uleft and Uright be independent pockets of V0(s1). Then every two pock-
ets of V0(s2) contained in Uleft and Uright, respectively, are independent.

Lemma 10. There is a point s ⊂ s0c such that one of the following holds.

• s satisfies both C1 and C2;
• s is a double violator;
• s satisfies C1 but violates C2 due to two pockets of spread ∪ spread(a, a∪)−

≡n/4∈.

Proof. We move a point s ⊂ s0c from s0 to c and trace the combinatorial changes
of the pockets of V0(s), and their dependencies. Initially, when s = s0, all pockets
have size at most ≡n/2∈− 1; and there are two dependent pockets, a left pocket
Uab on the left of −◦s0c and, by Proposition 1, a right pocket Ua′b′ on the right of
−◦s0c, of total size at least ≡n/2∈. When s = c, every left pocket of V0(s) on the
left of −◦s0c is independent of any right pocket on the right of −◦s0c.

Consequently, when s moves from s0 to c, there is a critical change from
s = s1 to s = s2 such that V0(s1) still has two dependent pockets of size at least
≡n/2∈ where the left (resp., right) pocket is on the left (right) of −◦s0c; but V0(s2)
has no two such pockets. (See Fig. 6 for examples.) Let Uleft and Uright denote
the two violator pockets of V0(s1). The critical point is either a combinatorial
change (i.e., the size of one of these pockets drops), or the two pockets become
independent. By Proposition 4, we have Uleft ≥ Uab and Uright ≥ P \ Uab, and
the spread of Uleft and Uright is at most spread(a, a∪). We show that one of the
statements in Lemma 10 holds for s1 or s2.

If s2 satisfies both C1 and C2, the our proof is complete (Fig. 6(a-b)). If s2
violates C1, i.e., V0(s2) has a pocket of size → ≡n/2∈, then V0(s1) also has a
combinatorially equivalent pocket independent of Uleft and Uright, and so s1 is a
double violator. Finally, if s2 violates C2, i.e., V0(s2) has two dependent pockets
of total size ≡n/2∈, then the left pocket of this pair is not contained in Uab.
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Fig. 6. (a) A polygon with n = 21 vertices where s0 violates C2 a pair of dependent
pockets Uab and Ua′b′ . (b) Point s2 ∗ s0c satisfies both C1 and C2. (c) A polygon with
n = 21 vertices where s0 violates C2 with a pair of pockets Uab and Ua′b′ of spread 19.
(d) Point s2 also violates C2 with a pair of pockets of spread 13.

We have two subcases to consider: (i) If the right pocket of this new pair is
contained in Uright, then their spread is at most spread(a, a∪)− ≡n/4∈ (Fig. 6(c-
d)). (ii) If the right pocket of the new pair is disjoint from Uright, then V0(s1)
also has a combinatorially equivalent pair of pockets, which is different from Uleft

and Uright, and so s1 is a double violator. ⇔⇐

Lemma 11. A point s ⊂ s0c described in Lemma 10 can be found in O(n log n)
time.

Proof. It is enough to show that the critical positions, s1 and s2, in the proof
of Lemma 10 can be computed in O(n logn) time. We use the data structure
of Chen and Daescu [9], which is constructed by decomposing s0c into a set of
O(n) intervals with combinatorially distinct region and recording the changing
region in a persistent search tree.

However, the data structure of [9] only stores the visible region, not whether
the region induces dependent pockets. The main technical difficulty is that σ(n2)
dependent pairs might become independent as s moves along s0s (even if we
consider only pairs of total size at least ≡n/2∈), in contrast to only O(n) com-
binatorial changes of the visibility region. We reduce the number of relevant
events by focusing on only the “large” pockets (pockets of size at least ≡n/4∈),
and maintaining at most one pair that violates C2 for each large pocket. (In a
dependent pair of size → ≡n/2∈, one of the pockets has size → ≡n/4∈.)

We augment the data structure of [9] as follows. We maintain the list of all
left (resp., right) pockets of V0(s) lying on the left (right) of −◦s0c, sorted in coun-
terclockwise order along αP . We also maintain the set of large pockets of size
at least ≡n/4∈ from these two lists. There are at most 4 large pockets for any
s ⊂ s0c. For a large pocket Uαβ of s ⊂ s0c, we maintain one possible other
pocket Uα′β′ of V0(s) such that they together violate C2. If there are several
such pockets Uα′β′ , we maintain only the one where θ∪ (the reflex vertex that
induces Uα′β′) is farthest from c along αP . Thus, we maintain a set U(s) of at
most 4 pairs (Uαβ , Uα′β′). Finally, for each of pair (Uαβ , Uα′β′) ⊂ U , we maintain
the positions s∪ = sc ∩ θθ∪ where the pair (Uαβ , Uα′β′) becomes independent
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assuming that neither Uαβ nor Uα′β′ goes through combinatorially before s
reaches s∪. We use [9], combined with these supplemental structures, to find
critical points s1, s2 ⊂ s0c such that U(s1) ∀= ∨ but U(s2) = ∨.

We still need to show that U(s) can be maintained in O(n log n) time as s
moves from s0 to c. A pair (Uαβ , Uα′β′) has to be updated if Uαβ or Uα′β′ un-
dergoes a combinatorial change, or if they become independent (i.e., s ⊂ θθ∪).
Each large pocket undergoes O(n) combinatorial changes affect them by Propo-
sition 4, and there are O(n) reflex vertices along αP between a and a∪ (these
are the candidates for θ∪). No update is necessary when π or π∪ changes but
Uαβ remains large and the total size of the pair is at least ≡n/2∈. If the size of
Uαβ drops below ≡n/4∈, we can permanently eliminate the pair from U . In all
other cases, we search for a new vertex θ∪, by testing the reflex vertices that
induce pockets from the current θ∪ towards c along αP until we either find a
new pocket Uα′β′ or determine that Uαβ is not dependent of any other pocket
with joint size → ≡n/2∈. We can test dependence between Uαβ and a candidate
for Uα′β′ in O(log n) time (test θθ∪ ≥ P by a ray shooting query). Each update
of (Uαβ , Uα′β′) decreases the size of the large pocket Uαβ or moves the vertex θ∪

closer to c. Therefore, we need to test dependence between only O(n) candidate
pairs of pockets. Overall, the updates to U(s) take O(n log n) time. ⇔⇐

We are now ready to prove Theorem 1.

Proof (of Theorem 1). Let P be a simple polygon with n → 3 vertices. Compute
the generalized kernelK→n/2≥(P ), and pick an arbitrary point s0 ⊂ int(K→n/2≥(P )),
which satisfiesC1. If s0 also satisfiesC2, then int(P ) ≥ V→(n−2)/4≥(s0) by Lemma1.
Otherwise, there is a pair of dependent pockets, Uab and Ua′b′ , of total size at least
≡n/2∈ and ≡n/2∈ ∪ spread(a, a∪) ∪ n. Invoke Lemma 10 up to four times to find
a point s ⊂ int(P ) that either satisfies both C1 and C2, or is a double violator. If
s satisfiesC1 andC2 then Lemma 1 completes the proof. If s is a double violator,
apply Lemma 6 or Lemma 7 as appropriate to complete the proof. The overall run-
ning time of the algorithm is O(n logn) from the combination of Lemmas 6, 7, 9,
and 11.

For every k → 1, the diffuse reflection diameter of the zig-zag polygon (cf.
Fig. 1) with n = 4k + 2 vertices is k = ≡(n− 2)/4∈. Adding up to 3 dummy
vertices on the boundary of a zig-zag polygon gives n-vertex polygons Pn with
R(Pn) = ≡(n− 2)/4∈ for all n → 6. Finally, every simple polygon with 3 ∪ n ∪ 5
vertices is star-shaped, and so its diffuse reflection radius is 0 = ≡(n− 2)/4∈. ⇔⇐

References

1. Aanjaneya, M., Bishnu, A., Pal, S.P.: Directly visible pairs and illumination by
reflections in orthogonal polygons. In: Abstracts of 24th European Workshop on
Comput. Geom., pp. 241–244 (2008)

2. Aronov, B., Davis, A.R., Iacono, J., Yu, A.S.C.: The complexity of diffuse reflec-
tions in a simple polygon. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 93–104. Springer, Heidelberg (2006)



250 E. Fox-Epstein, C.D. Tóth, and A. Winslow
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Abstract. An edge-unfolding of a polyhedron is a cutting of the polyhe-
dron’s surface along its edges so that its surface can be flattened into a
single connected flat patch on the plane without any self-overlapping. A
one-layer lattice polyhedron is a polyhedron of height one, whose surface
faces are grid squares. We consider the edge-unfolding problem on several
classes of one-layer lattice polyhedra with cubic holes. We propose linear-
time algorithms for one-layer lattice polyhedra with rectangular external
boundary and cubic holes, one-layer lattice polyhedra with cubic holes
strictly enclosed by an orthogonally convex polygon, and one-layer lat-
tice polyhedra with sparse cubic holes, respectively. The algorithms use
two different novel techniques to cut the edges of cubic holes of the given
polyhedron so that no self-overlapping can occur in the flattened patch.
Our algorithms are the first algorithms especially designed to edge-unfold
a polyhedron of genus greater than zero to a single connected flattened
patch. We leave open the question whether any of these edge-cutting
methods can be extended to edge-unfold general one-layer lattice poly-
hedra with cubic holes.

1 Introduction

Folding and unfolding problems are classical problems in geometry and math-
ematics. They were studied as early as the year 1525 by Dürer [8], and have
been studied extensively in discrete and computational geometry in recent years.
This research area finds applications in various applied fields. For instance, one
industrial application of unfolding methods is the automated process planning
for a robotic sheet metal bending operations [14,9].

A polyhedron is a closed surface, each of whose edges is adjacent to two polyg-
onal plane faces. In general, an unfolding of a polyhedron is a cutting along
the polyhedron’s surface so that its surface can be flattened into a single con-
nected flat patch on the plane without any self-overlapping. In particular, an
edge-unfolding of a polyhedron is a cutting of the polyhedron’s surface along its
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edges. A polyhedron is orthogonal if all of its faces meet at right angles, and all
of its edges are parallel to coordinate axes. Furthermore, a lattice polyhedron is
an orthogonal polyhedron whose faces are unit grid squares.

In computer graphics, there are heuristic algorithms to edge-unfold a
3-dimensional object mesh into several non-self-overlapping flattened patches
[12,13], which can then be used to reconstruct the original object model. Taka-
hashi et al. [13] recently designed an algorithm based on the genetic algorithm
approach.

In computational geometry, there are two long-standing unsolved open prob-
lems, which are the questions ofwhether a convex polyhedron can be edge-unfolded
[11], and whether a nonconvex polyhedron can be unfolded [3]. Here we focus on
the survey of the edge-unfolding results and some related unfolding results for or-
thogonal polyhedra. O’Rourke [10] proposed an edge-unfolding algorithm for or-
thogonal terrains. Biedl et al. [4] proposed an edge-unfolding algorithm for lattice
orthotubes and anunfolding algorithm for orthostacks.Damian andMeijer [7] later
gives an edge-unfolding algorithm for lattice orthostacks with orthogonally con-
vex slabs. However, the question whether a general lattice orthostack can be edge-
unfolded remains open. Furthermore, Damian et al. [5] showed that well-separated
lattice orthotrees can be edge-folded. However, the question whether a general lat-
tice orthotree canbe edge-unfoldedagain remains open.Moreover,Damianet al. [6]
present anunfolding algorithmforManhattan towers, but thequestionofwhether a
general lattice Manhattan tower can be edge-unfolded is still open. Recently, Abel
and Demaine [1] showed that the decision question whether an orthogonal poly-
hedron can be edge-unfolded is strongly NP-complete. The orthogonal polyhedra
concerned in the above related work are all of genus zero.

In this paper, we study the edge-unfolding problem on several classes of lattice
polyhedra of genus greater than zero. To the best of our knowledge, our algo-
rithms are the first algorithms especially designed for edge-unfolding polyhedra
of non-zero genus.

2 Definitions

In this section, we define some terminologies used in this paper. A one-layer
lattice polyhedron is a polyhedron of height one, whose surface faces are unit grid
squares. See Fig. 1 for an example. In this paper, we consider the problem of
edge-unfolding one-layer lattice polyhedra with cubic holes, say P , into a single
connected flat patch Q on the xy-plane without any self-overlapping.

X x

yz X
x

y

(a) (b)

Fig. 1. (a) Side view of P ; (b) Top view
of P
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Fig. 2. Unfold hole faces of hi: (a) in clock-
wise orientation; (b) in counterclockwise ori-
entation
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The faces on the upper horizontal surface T of P are called its top faces, and
those on the bottom horizontal surface B of P its bottom faces. The outer cyclic
strip of height one around P is called the external boundary (or simply boundary)
of P , and is denoted by X . See Fig. 1(a) for an example of the boundary X of P .
Note that the top view of the boundary X of P is a simple orthogonal polygon—
see Fig. 1(b). A continuous segment from face X1 to face X2 along boundary X
is denoted as the boundary strip [X1,X2]. A column is a vertical square prism
space with unit square base along the whole y-axis, which includes its top faces,
its bottom faces, boundary faces in the column, the holes in this column and
their corresponding hole faces. Let C = {c1, c2, ..., cw} be the set of all columns
ordered from left to right, where w is the total number of columns.

In the following terminology, we assume that each column cj of P is a con-
nected component. Column cj contains the front and rear boundary faces, de-

noted by Xf
j and Xr

j , respectively. A vertical strip (resp. horizontal strip) of
faces is a sequence of consecutive faces along the y-axis (resp. x-axis). A strip is
called extremal if one of its two end edges is attached to a boundary face, and
the other end edge is attached to a hole face or a boundary face. The length of
a strip is the number of faces in the strip. A k-strip is a strip of length k. In
column cj , X

f
j is attached to two extremal vertical strips, the top front strip

sfTj on T and the bottom front strip sfTj on B; and Xr
j is also attached to two

extremal vertical strips, the top rear strip sfTj on T and the bottom rear strip

sfTj on B.
Let hi and hi+1 be two consecutive holes along a column, and let the unfolding

connection path π be a path going from hi to hi+1. Then the two vertical strips
between hi and hi+1 are called a double bridge, denoted by ei. ei consists of its
top bridge eTi and bottom bridge eBi , which are opposite to each other in P . The
bridge which is used by the unfolding connection path π from hi to hi+1 is called
the connecting bridge; and the other bridge is called the redundant bridge.

In a flattened patch, the space along a column below or above a face f is
called a half column; the space along a row on the left or right of a face f is
called a half row. A half row or column is said to be free if it does not contain
any other face in the current flattened patch.

We define the vertical distance dUV (s1, s2) (resp. horizontal distance d
U
H(s1, s2))

as the y- (resp. x-) coordinate difference between the center point of two entities
s1 and s2, where s1 and s2 belong to object U .

3 One-Layer Lattice Polyhedra with Cubic Holes and
Special Boundary

3.1 One-Layer Lattice Polyhedra with Rectangular Boundary and
Cubic Holes

First in this subsection, we consider the edge-unfolding of a one-layer lattice
polyhedron P , which possesses an external boundary of rectangular shape and
internal cubic holes. See Fig. 3(a) for an example. In the following, we propose
a linear-time algorithm to edge-unfold such a polyhedron.
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Fig. 3. (a) One-layer lattice polyhedron P with rectangular boundary and cubic holes;
(b) The flattened patch Q of (a) contains two pieces, separated by a dividing line

Our algorithm consists of two execution phases. The first phase is called the
hole unfolding phase, in which the holes are unfolded incrementally from left to
right and consecutive holes are connected by strip paths on the top or bottom
surface of P so that the unfolded hole strips and the connecting strip paths all run
either rightward or upward consistently in the flattened patch Q. The flattened
patch obtained from the hole unfolding phase is called the staircase patch. The
second phase is called the boundary unfolding phase, in which the remaining front
and rear vertical strips are attached to their corresponding boundary faces Xf

j

and Xr
j respectively and the external boundary X is straightened as a horizontal

strip on the plane. The flattened patch obtained from the boundary unfolding
phase is called the boundary patch. The staircase patch and the boundary patch
are connected together to form the final flattened patch Q. See Fig.3(b) for an
example. The details of the two phases are described as follows.

Hole Unfolding Phase. First we describe the hole unfolding phase. Let cstart
be the column where the first hole h1 is located, and cend the column where the
last hole hm is located. The hole unfolding procedure starts by first placing the
strip front top sfTstart at cstart to run in upward direction in the flattened patch Q.
From there, we start to unfold first hole h1, and then make a connection path to
reach the second hole h2. During this process, we force the unfolded 4-strip for
h1 and the path strip connecting h1 and h2 to only run in the right or upward
direction so that no overlapping can occur. Repeatedly using the same step, we
proceed to unfold hole h2, and other holes up to last hole hm, which locates
in column cend. This is the overall hole unfolding procedure, whose details are
further described as follows.

For the purpose that the unfolded strips of hi, connection path π and hi+1

always extend either rightward or upward consistently in the flattened patch Q,
the running direction of the straight connection paths between the holes in the
same column has to go consistently in one direction, which is either upward or
downward, and the relationship of running directions of columns are described
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as follows. At the starting column cstart, since the starting connection path runs
from the front boundary face to hole h1 in the upward direction, the running di-
rection of column cstart is upward. Then whenever the unfolding process reaches
a new column with some hole, the running direction of this new column switches
to the direction opposite to the running direction of the former column with
some hole. This traversal order of the holes results in an ordering for all holes,
h1, h2, . . . , hm, where hm is the rightmost hole. Such specific running directions
of the columns are essential for the purpose of correctly unfolding the holes and
the connection paths into strips in Q running upward or rightward consistently.

In the hole unfolding process, we need to unfold the holes and need to se-
lect an appropriate connection path for each pair of consecutive holes. The four
faces of a hole hi can be unfolded in two hole unfolding orientations, clock-
wise or counterclockwise. A face of hi connected by incoming unfolding path
belongs to T or B is called h1i , and the following unfolded faces h2i , h

3
i , and

h4i are labeled sequentially according to the hole unfolding orientation—see
Fig. 2. Such an operation is called a basic hole unfolding operation. On the
other hand, the connection path between two consecutive holes hi and hi+1

can be very different under specific conditions. The connection path can be
straight or non-straight. If hi and hi+1 lie in the same column, then we call
the unfolding step between hi and hi+1 as a straight path unfolding operation.
Without loss of generality we assume hi+1 is above hi and hi is unfolded as
a horizontal 4-strip running rightward. The case that hi+1 is below hi can
be handled similarly. If the incoming connection path of hi lies on T , then
we need to select eBi as the connecting bridge from hi to hi+1—see Fig. 4.
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Fig. 4. (a) The holes in the same
column; (b) The unfolding result of
(a) where eTi−1 runs in the increas-
ing y-direction

If the incoming connection path of hi lies on
B, then we need to select eTi as the connecting
bridge from hi to hi+1. Moreover, in order to
force the unfolded strips of both hi and hi+1

to extend rightward, we have to set the hole
unfolding orientation of hi+1 to be the reverse
of the hole unfolding orientation of hi. By ap-
plying basic hole unfolding operation to both
hi and hi+1, it is clear that the connecting
bridge between hi and hi+1 connects face h3i
to face h1i+1 and runs upward. Since the half
column below h3i+1 is free—see Fig. 4(b), the
redundant bridge between hi and hi+1 can be
safely attached to the bottom edge of h3i+1. This last operation is called a re-
dundant bridge placement operation. In this manner, the corresponding unfolded
strips can run either upward or rightward consistently. Otherwise if hi and hi+1

lie in different columns, then we call the unfolding step between hi and hi+1 as
a non-straight path unfolding operation.

We use the non-straight path unfolding operation to select an appropriate
specific connection path between the highest (resp. lowest) hole hi on cj and
the highest (resp. lowest) hole hi+1 on cj+p, where p ≥ 1. There are two main
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Fig. 6. (a) L1-path unfolding operation; (b) L3-path
unfolding operation; (c) Z1-path unfolding opera-
tion; (d) Z3-path unfolding operation

classes of non-straight paths, L-paths and Z-paths, and each class of paths has
four subclasses—see Fig. 5. For L-paths, depending on different cases, the hole
unfolding orientations of hi and hi+1 may be the same or different. For Z-paths,
no matter in which case, the hole unfolding orientations of hi and hi+1 are always
different. The restrictions are in order to force the flattened patch to extend
rightward or upward. The selection of a suitable connection path is affected by
three entities: (i) the incoming unfolding direction of hi (upward or downward);
(ii) hi is higher or lower than hi+1; and (iii) the connecting bridge of ei belongs
to T or B (on top or bottom surface). For any set of values of these three
entities, we show that there exists one suitable connection path to use so that the
corresponding unfolded patch extends in upward or rightward direction. However,
due to lack of space, the details for selecting suitable connection paths for all
different situations are omitted. Now, we suppose that we have selected the
suitable connection path for any possible situation. Then we proceed to consider
how to prevent the unfolding result of any non-straight path unfolding operation
from overlapping any redundant bridge. The case analysis is as follows.

First, we consider that hi and hi+1 are connected by an L-path. Fig. 6 illus-
trates the unfolding results of different kinds of connection L-paths shown in
Fig. 5. Fig. 6(a) shows the two possible unfolding results of the L1-path shown
in Fig. 5(a). The L2-path in Fig. 5(b) has the two similar unfolding results as
the L1-path. Fig. 6(b) shows the two possible unfolding results of the L3-path
shown in Fig. 5(c). The L4-path in Fig. 5(d) has the two similar unfolding struc-
tures as the L3-path. If we use an L-path unfolding operation, and hi is unfolded
as a horizontal (resp. vertical) 4-strip, then hi+1 is unfolded as a vertical (resp.
horizontal) 4-strip. Suppose that hi is unfolded as a horizontal 4-strip and hi+1

as a vertical 4-strip. The half row on the left of h3i+1 is free; so the redundant
bridge originally opposite to ei+1 can be attached to the left of h3i+1. Hence,
the unfolding patch of hi, hi+1, and their connection L-path cannot have any
overlap with any redundant bridge appeared up to hi+1 is unfolded.
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Next, we consider that hi and hi+1 are connected by a Z-path. Fig. 6(c) shows
the possible unfolding result of the Z1-path shown in Fig. 5(e). The Z2-path in
Fig. 5(f) has the similar unfolding result as the Z1-path. Fig. 6(d) shows the
possible unfolding result of the Z3-path shown in Fig. 5(g). The Z4-path in
Fig. 5(h) has the similar unfolding result as the Z3-path. If we use a Z-path
unfolding operation, hi and hi+1 are both unfolded as horizontal or vertical 4-
strips. Suppose that hi and hi+1 are both unfolded as horizontal 4-strips. For a
Z1- or Z2-path unfolding operation, the corresponding path starts at h2i or h4i ;

so the half column below h3i+1 is free since dQH(h4i , h
3
i+1) ≥ 1. Thus the unfolding

patch of hi, hi+1, and their connection Z1- or Z2-path cannot have any overlap
with any redundant bridge appeared up to hi+1 is unfolded.
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Fig. 7. (a) Problematic case; (b) Redun-
dant bridge eBi+1 overlaps with h4

i ; (c) Hole
face displacement operation is performed,
and the overlap is avoided

We proceed to consider a Z3-
and Z4-path unfolding operation. For
these two operations, the correspond-
ing path starts at either h1i or h3i . If
it starts at h3i , the half column be-

low h3i+1 is free since dQH(h4i , h
3
i+1) ≥

1. Otherwise, if it starts at h1i , the
half column below h3i+1 is free when
dPH(hi, hi+1) ≥ 2. The only possible
trouble case is that the Z3 or Z4-path
starts at h1i and dPH(hi, hi+1) = 1. In
such situation, h3i+1 is vertically above
h4i in Q. If hi+2 is not in the same col-
umn as hi+1, then hi+2 is connected from hi+1 via a non-straight path, and thus
there is no redundant bridge between holes hi+1 and hi+2 and thus the unfolded
strip of hi needs no further modification. But if hi+2 is in the same column as
hi+1, the redundant bridge originally opposite to ei+1 may penetrate through h4i
when the redundant bridge placement operation is applied—see Fig. 7(b). Thus
we have to apply the hole face displacement operation, which we will described
below. In such an operation, h4i is moved and attached to the left of h1i so that
the half column below h3i+1 becomes free. See Fig. 7 for an example. Thus we can
directly attach the redundant bridge originally opposite to ei+1 to the bottom
edge of h3i+1—see Fig. 7(c). In all, by applying the hole face displacement oper-
ation on the unfolded 4-strip of hi in the unfolding patch of hi, hi+1, and their
connection Z3- or Z4-path has no overlap with any redundant bridge appeared
up to hi+1 is unfolded.

Using the straight path unfolding operation and the non-straight path unfold-
ing operation together, we unfold the holes h1, h2, . . ., and hm. When we have
done the unfolding of the last hole hm, the hole unfolding phase completes, and
the flattened staircase patch is thus obtained.

Boundary Unfolding Phase. After the hole unfolding phase is executed, we
obtain the staircase patch, which contains all the double bridges and the faces
of all the holes in P . The remaining faces constitute the external boundary X
and the extremal vertical strips. In the boundary unfolding phase, we continue
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to unfold these remaining faces on P to become the flattened boundary patch.
We then describe the boundary unfolding phase as follows. If the incoming con-
nection path of hm in the hole unfolding phase lies on T (resp. B), then we take
extremal strip sBend on B (resp. sTend on T ) in column cend to reach the boundary
face Xend. Then we take a ride on the external boundary cycle X , and straighten
out the whole boundary X such that the remaining extremal vertical strips re-
main attached to their corresponding front or rear boundary faces. In order to
force the unfolded strip of boundary X extend upward or rightward in the flat-
tened patch, the unfolding orientation of X is determined by the following rule:
if the initial extremal strip used is sBend, then we unfold X in counterclockwise
orientation; otherwise if the initial extremal strip used is sTend, then we unfold X
in clockwise orientation. It is clear that the flattened boundary patch obtained
from the above procedure does not have any self-overlapping.

Now we will stitch the boundary patch together with the staircase patch
obtained from the hole unfolding phase. At the beginning of this phase, we
starts from an edge on hm and go straight to reach the external boundary via
an extremal strip send in column cend. The starting edge is the connection edge
e between the boundary patch and the staircase patch. We have two cases to
consider depending on which face of hm the connection edge e belongs to. We first
consider the case that e belongs to h4m. This case happens when the incoming
direction of the connection path reaching hm is rightward. In this situation, since
the overall shape of boundary patch is like a strip backbone with all extremal
strips sticking out and face h4m is just one more grid face extending from one
extremal strip on one side of boundary face Xend. Thus there is no overlap
between the staircase and boundary patches. Next we consider the other case
that e belongs to h3m. This case happens when the incoming direction of the
connection path reaching hm is upward or downward. Let X2 be the boundary
face next toXend in the boundary patch, and let s2 be the extremal strip attached
toX2 adjacent to send. Then it is easy to see that if the extremal strip s2 is longer
than send, then s2 penetrates through the hole face h4m in the staircase patch.
To present such an overlap situation, we perform the hole face displacement
operation of the unfolded strip of hm so that h4m is moved to the other end of
the strip next to the hole face h1m. See Fig. 3(b) for an illustration of the result.
Thus such an overlap situation is prevented. Finally, we obtain a connected
flattened patch Q, which does not contain any self-overlap. This completes the
whole unfolding algorithm. Hence, we obtain the following theorem.

Theorem 1. There is an O(n)-time algorithm to edge-unfold one-layer lattice
polyhedra with rectangular boundary and cubic holes.

3.2 One-Layer Lattice Polyhedra with Cubic Holes Strictly
Enclosed by an Orthogonally Convex Polygon

The algorithm in the previous subsection can be extended to handle more general
one-layer lattice polyhedra with cubic holes, as stated in the following theorem.

Theorem 2. There is an O(n)-time algorithm to edge-unfold a one-layer lattice
polyhedron with cubic holes strictly enclosed by an orthogonally convex polygon.
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4 One-Layer Lattice Polyhedra with Sparse Cubic Holes

4.1 One Column with One Cubic Hole

In this subsection, we first consider one-layer lattice polyhedra such that there
is at most one connected component in each column and there is at most one
hole in such a connected component. Then we present the algorithm for general
one-layer lattice polyhedra with sparse cubic holes in Section 4.2.

Suppose that we are going to unfold column cj . Let hj be the only hole in

column cj. Hole hj consists of four faces parallel to the z-axis, its front face hfj ,

rear face hrj , left face hLj and right face hRj . Column cj contains two boundary

faces, its front boundary face Xf
j and rear boundary face Xr

j . If column cj

contains a hole, Xf
j is attached to two extremal vertical strips, the front top

strip sfTj on T and the front bottom strip sfBj on B, which have equal length;

and Xr
j is also attached to two extremal vertical strips, the rear top strip srTj on

T and the rear bottom strip srBj on B, which have equal length. If any cj does
not contain a hole, then we treat the top and bottom vertical strips of column
cj as sfTj and sfBj respectively, which are both attached to Xf

j . In this manner,
it seems that there is a virtual hole at the position of the rear end Xr

j of column
cj . By treating virtual holes as real holes, we suppose that each column contains
a hole in the following description.

hj−2

hj−1

hj

Xf
1

Connector

hfj−2

hRj−2

hfj−1

hLj hfj hRj

hLj−2 hrj−1

hRj−1 hLj−1

hrj−2

hrj

sfTj−2

sfBj−2

sfTj−1

sfBj−1

srBj−1

srTj−1

sfTj

sfBj

srTj−2

srBj−2

srTj

srBj
Xf

1

X X

Front piece Rear piece

Connector

(a) (b)

Fig. 8. (a) A special case; (b) The unfolding result of (a)

Our algorithm runs as follows. First, we take boundary faceXf
1 as the first face,

and then straighten out the whole boundaryX in counterclockwise order as a hor-
izontal strip. All the extremal vertical strips are flattened and remain attached to
their corresponding front or rear boundary faces. Thus the extremal vertical strip
lies vertically on either side of the flattened boundaryX . For each column cj , s

fT
j

and srTj lie vertically aboveX , and sfBj and srBj lie belowX—see Fig. 8(b). Then
we unfold the holes in the columns from left to right in the order of column sequence
c1, c2, . . . , cw using the algorithmic procedure described below. More precisely, for
each column cj , h

f
j is attached to sfTj or sfBj , and hrj is attached to srTj or srBj de-

pending on different cases. Moreover, hLj (resp. hRj ) will be attached to hfj or hrj
depending on different cases. Finally, we obtain the flattened patchQ.
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The output patch Q contains two pieces as follows—see Fig. 8(b). The front
strips and the part of corresponding boundary attaching to them are unfolded
to become front piece. The rear strips and the part of corresponding boundary
attaching to them are unfolded to become rear piece. In Q, front piece and rear
piece are connected by a boundary segment, which is the boundary strip on X
attached to the right wall of the rightmost column. When we unfold each column
from left to right in P , the front piece extends rightward in Q and the rear piece
extends leftward.

Before the introduction of the detailed procedure to edge-unfold the hole hj
in column cj , we suppose that by applying the following procedure, columns ck
for 1 ≤ k ≤ j − 1 have been edge-unfolded into current flattened patch Qi−1

which does not have any self-overlapping. Moreover, after applying the following
procedure for columns c1, . . . , cj−1, we obtain that each hLk may be attached

to the left of hfk or the right of hrk in Qi−1, and each hRk may be attached to

the right of hfk or the left of hrk in Qi−1; h
f
k is attached to just above sfTj or

just below sfBj , and hrj is attached to just above srTj or just below srBj . After
we unfold column cj , we obtain a new flattened patch Qi. In our algorithmic
procedure to unfold hj in column cj , we maintain the current unfolded patch Qi

to satisfy two properties: (i) Qi has no self-overlapping; (ii) hRj does not overlap

with hfj+1 ∪ sfTj+1 and hrj+1 ∪ srTj+1.
Now, we assume that Qi−1 satisfies properties (i) and (ii). Under this precon-

dition, we can proceed to describe the procedure to edge-unfold the hole hj in
column cj so that after the procedure, there is no self-overlap introduced and
the above two properties are still satisfied. The procedure consists of two main
steps, which will be described below in details.

Column Unfolding Step. First, we consider how to unfold cj so that it cannot
overlap with the unfolded patch of adjacent column cj−1. We have three main

cases. Initially, we set Q = Qi−1 and attach hfj to sfTj and hrj to srTj , then we

determine whether hLj (resp. hRj ) is to be attached to hfj or hrj .

Case 1 : dPV (X
f
j−1, X

f
j ) ≥ 1, i.e., the boundary strip [Xf

j−1,X
f
j ] is not flat.

We first place hLj to the left of hfj in Q. If hRj−1 is attached on the left of
hrj−1 in Q, then by the precondition there is no self-overlap in Q. Now as

dQH(Xf
j−1, X

f
j ) ≥ 2, we can safely attach hLj to the left of hfj in Q without caus-

ing any self-overlap. If hRj−1 is attached on the right of hfj−1 in Qi−1, we have

two cases. If dPV (X
f
j−1, X

f
j ) = 1, i.e., dQH(Xf

j−1, X
f
j ) = 2, then dQV (h

R
j−1, h

L
j ) ≥ 1

since dPV (hj−1, hj) ≥ 2. If dPV (X
f
j−1, X

f
j ) ≥ 2, i.e., dQH(Xf

j−1, X
f
j ) ≥ 3, then

dQH(hRj−1, h
L
j ) ≥ 1 since dQH(sfTj−1, s

fT
j ) ≥ 3. In these conditions, hLj cannot over-

lap with hRj−1 according to the above arguments, and hLj also cannot overlap

with sfTj−1 ∪h
f
j−1 because dQH(sfTj−1, s

fT
j ) ≥ 3 when dPV (X

f
j−1, X

f
j ) ≥ 1. According

to the precondition, the rear piece also has no overlapping. Thus again we can
attach hLj directly to the left of hfj in Q.
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Case 2 : dPV (X
r
j−1, X

r
j ) ≥ 1, i.e., the boundary strip [Xr

j−1,X
r
j ] is not flat. This

is symmetrical to Case 1 since it is the same as Case 1 when we look from the
rear. Thus we can directly attach hLj to the right of hrj in Q.

Case 3 : dPV (X
f
j−1, X

f
j ) = 0 and dPV (X

r
j−1, X

r
j ) = 0, i.e., the boundary strip

[Xf
j−1,X

f
j ] and [Xr

j−1,X
r
j ] are both flat. Then hfj ∪s

fT
j is adjacent to hfj−1∪s

fT
j−1,

and hrj∪srTj is adjacent to hrj−1∪srTj−1 in Q. We need to avoid hLj from overlapping

with hfj−1 ∪ sfTj−1 or hrj−1 ∪ srTj−1. As columns cj−1 and cj are adjacent, we have
that hj−1 and hj lie in different rows. Thus we have two subcases depending on
which of the two holes is higher.

Subcase 3-1 : hj−1 is lower than hj. Then the length of sfTj−1 is shorter than

sfTj . Thus hfj is higher than hfj−1 in Q. We then attach hLj to the left of hfj , and

hLj does not overlap with sfTj−1 ∪ hfj−1 in Q.

Subcase 3-2 : hj−1 is higher than hj . Then the length of sfTj−1 is longer than

sfTj . Thus, hLj cannot be attached to the left of hfj . Now suppose that we view
the scene from the rear end. Then the situation is similar to Subcase 3-1. The
strip srTj−1 is shorter than srTj . Thus hrj is higher than hrj−1 in Q. We then attach

hLj to the right of hrj , and h
L
j does not cause any overlap with srTj−1 ∪ hrj−1 in Q.

For the case of attaching hRj to hfj or hrj in order to maintain the property

(ii) for Qi, i.e., h
R
j does not overlap hfj+1 ∪ sfTj+1 and hrj+1 ∪ srTj+1, we perform

the similar procedure as we have just done for attaching hLj to hfj or hrj in order

that hLj does not overlap with hfj−1 ∪ sfTj−1 and hrj−1 ∪ srTj−1. This completes the
description of the column unfolding step for column cj .

OverlapRepairingStep. The unfolding of cj in the previous step does not cause
any overlapping with the unfolded patch of cj−1. However, it may cause some over-
lapping with the unfolded patch of cj−2. In fact, hRj−2 and h

L
j may possibly overlap

each other when dQH(hfj−2, h
f
j ) and d

Q
H(hrj−2, h

r
j) equals 2 and h

L
j is unfolded under

Case 3 in the column unfolding step. Hence, we have to proceed to the second step,
overlap repairing step, tomodify the unfolding result of column cj so that such over-
lap is avoided. Note that the unfolded patch Qi−1 obtained in the previous round
is not modified during the execution of our repairing step. However due to lack of
space, the details of the overlap repairing step are omitted.

By repeatedly applying the above two steps to unfold all the holes in the
columns of polyhedron P from left to right, we finally obtain a flattened patch
Q without self-overlapping. Hence, we obtain the following theorem.

Theorem 3. There is an O(n)-time algorithm to edge-unfold a one-layer lattice
polyhedron with at most one hole in each column.

4.2 Extending to Polyhedra with Sparse Cubic Holes

The algorithm in the previous subsection can be extended to handle one-layer
lattice polyhedra with sparse cubic holes, which are polyhedra such that each
connected component in a column contains at most one hole. The result is stated
in the following theorem.
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Theorem 4. There is an O(n)-time algorithm to edge-unfold one-layer lattice
polyhedra with sparse cubic holes.

5 Conclusions

Wedesign three linear time edge-unfolding algorithms tounfold three special classes
of one-layer lattice polyhedra with cubic holes. However, the edge-unfolding prob-
lemongeneral one-layer lattice polyhedrawith arbitrary boundary andholes is still
open. For such general polyhedra, even the problem of grid-unfolding which allows
cutting along not only the original edges but also the edges of the refined grid inside
any lattice polyhedron face is also open.
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Abstract. Given a directed weighted graph G, a root r and k terminals,
the k-Directed Steiner Tree problem is to find a minimum cost tree rooted
at r and spanning all terminals. If this problem has several applications
in multicast routing in packet switching networks, the modeling is not
adapted anymore in networks based upon the circuit switching principle
in which some nodes, called non diffusing nodes, are not able to duplicate
packets. We define a more general problem, named Directed Steiner Tree
with Limited number of Diffusing nodes (DSTLD), able to model the
multicast in a network containing at most d diffusing nodes. We show
that DSTLD is XP with respect to d, and use this result to build a
≥ k−1

d
≤-approximation XP in d for DST. Finally, we prove that, under

the assumption that NP ∗⊆ DTIME[nO(log log n)], there is no polynomial
approximation algorithm for DSTLD with ratio 1+( 1

e
−ε) · k

d−1
for every

constant ε > 0.

Keywords: Directed Steiner Tree, Approximation, Diffusing node.

1 Introduction

Givent a directed weighted graph, the Directed Steiner Tree problem (DST)
asks for a minimum cost tree rooted at a specific node r and spanning a specific
set X of k nodes called terminals. This problem is known to have applications
essentially in multicast routing where one wants to minimize the bandwidth
consumption [1–4]. DST is used, instead of the undirected version [5], when the
model of a symmetric network is not sufficient.

Contrary to the undirected problem which can be polynomially approximated
within a constant ratio [6, 7], it was proved in [5] that DST is a generalization of
the Set Cover problem and therefore is inapproximable within a O(log(k)) ratio
unless NP → DTIME [nO(log logn)], where k is the number of terminals [8]. It was
later proved under the same assumption that for ε > 0 there is no O(log2−Θ(k))
approximation algorithm [9]. The best known approximation ratio for DST is
O(kΘ) for any ε > 0 [10]. This approximation uses the following result: a tree
of fixed height l with minimum cost is a O(k

1
l )-approximation [11, 12]. Note

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 263–275, 2014.
c∞ Springer International Publishing Switzerland 2014
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that this last approximation is neither polynomial nor XP in the parameter l.
The two Steiner problems are FPT in k as it exists an exact algorithm in time
O(3kn+ 2k(k + log(n))n+ n2) and in space O(2kn) [13, 14], but are W[2]-hard
with respect to the parameter "Optimal solution cost" [15, 16].

Nevertheless, the DST model assumes that when a branching node (with at
least 2 successors) of the tree receives a data, it can transmit it to its multiple
successors. This is the case in classical packet switching networks. However, pre-
vious works emphasize the fact that in optical networks, this assumption does
not hold anymore as most of the nodes, called non diffusing nodes, can not copy
any data but only send it to one of its children. As a consequence, a non diffusing
branching node has to receive p copies of the data to transmit it to p children.
Fortunately, some routers, called diffusing nodes, can duplicate data and thus
need to receive it only once. The DST model assumes every node is diffusing.
This new constraint was first introduced in undirected wavelength division mul-
tiplexing networks [17]. The optimal placement of diffusing nodes considering
given multicast trees was then studied in [18]. Polynomial and approximability
results can be found considering the undirected case where the diffusing nodes
are already placed [19–21] or where a multicast tree is given [22].

We previously studied a restricted model in the directed and undirected cases
where no arc could be used twice to send the same data: every branching node of
the solution must be a diffusing node [23]. This problem is equivalent to finding
a minimum cost Steiner Tree with Limited number of Branching nodes [23, 24].
When reducing the number of authorized branching nodes, the Directed Steiner
problem become much harder to solve and approximate, even if the number of
authorized branching nodes and terminals are fixed. This is due to instances
where it is NP-Complete to build a feasible solution.

If no node is diffusing, including the root, the solution can not contain any
branching node. This problem is equivalent to the Steiner Cycle problem [25, 26]
where one wants to find a cycle of minimum cost containing the root and the
terminals. As for DST with a limited number of branching nodes, it may be hard
to find a feasible solution for instances of this problem.

In DST, every node is diffusing and thus there is no need to use the same arc
more than once. As DST solutions are trees with at most k leaves, note that
there is no need to select more than k − 1 diffusing nodes: the at most k − 1
branching nodes of the tree.

This new constraint defines a new cost for feasible solutions, previously intro-
duced in [21, 22]: the load of an arc in a solution is the number of data transiting
through it to transfer information from the root to terminals, and the cost of
that arc is equal to its weight multiplied by its load. In the undirected model
defined in [21, 22], the feasible solutions returned were trees, because it was sup-
posed that the best solution for the network was a tree. Such a model allows to
define recursively the load as 1 for an arc entering a diffusing node or a terminal,
and the sum of the load of its outgoing arcs for any other node. If this definition
can be generalized to directed acyclic graphs, it can not be applied to general
digraphs.
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Our Results. We define the Directed Steiner Tree problem with Limited num-
ber of Diffusing nodes (DSTLD), improving the models defined in [19–22], and
compensating the difficulties encountered in [23–26]. In DSTLD, we do not im-
pose the optimal solution to be a tree. This is a more accurate model for asym-
metric network applications with diffusing routers. We prove this problem is XP
but W[2]-Hard in the number of authorized diffusing routers d, and NP-Complete
even if k − d is fixed.

We finally prove two approximation results. 1) As explained, computing the
tree of best cost with a fixed height l is a O(k 1

l )-approximation [11, 12] but this
approximation is neither polynomial nor XP in the parameter l. We are here
not interested in the height of the tree, but in the number of diffusing nodes it
contains. We claim that one can transform any instance of DST to get an instance
of DSTLD with d < k authorized diffusing routers, solve that instance to get
a solution Td, and build from Td a ⊂k−1

d ≡-approximation for the DST instance.
As DSTLD is XP in d, this approximation for DST is also XP in d. 2) There
is a strong inapproximability result for DSTLD. For every ε > 0 it cannot be
approximated within 1 + (1− ε) k

e·d (where e denotes the Euler constant) unless
NP → DTIME [nO(log log n)].

The next section gives an example where returning a graph containing a cycle
is a better answer than returning a tree. Then, Section 3 details some notations
useful for this paper and Section 4 defines the new model. Finally, Sections 5 and
6 study the parameterized complexity of this problem and its approximability.

2 The Optimal Solution Is Not Always a Tree

The undirected model developed in [21, 22] assumes that optimal routings are
always trees. This property cannot be claimed for directed cases. Figure 1 illus-
trates a case where returning a graph containing a cycle is a better answer.

r u v

t1 t2

t3

t4

1 1

Fig. 1. In this example, the maximal number of allowed diffusing node is 1. Every non
specified weight is 0. v is here chosen as a diffusing node.

We assume only one node can be selected as a diffusing node, including r. If
r is selected, then it sends the data once per terminal. The arc (r, u) is used 4
times, and (u, v) 3 times, for a total cost of 7. If u is diffusing, then the root sends
the data to u, and u dispatches it to each terminal, for a total cost of 4. Finally,
if v is selected, the data is transmitted only once over the path {(r, u), (u, v)},
the node v is able to send one data to t1 using the {(v, u), (u, t1)} path. The
number of data per arc is one for every arc, and the total cost is 2. This optimal
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routing is not a tree but it is always possible to describe the routing as a tree. For
example, this solution can be described as {(r, v), (v, t1), (v, t2), (v, t3), (v, t4)}, a
tree where each arc describes a shortest path in the original graph.

3 Notations

We define as n the number of nodes, m the number of arcs, k the number of
terminals and d the maximum number of diffusing nodes in the returned solution.

Let u and v be two nodes in a directed graph G weighted over its arcs with
function ω. We define P (u, v) as the shortest path linking u and v and ωΣ(u, v) as
the weight of this path. If P (u, v) does not exist, then ωΣ(u, v) = +∈. If multiple
shortest paths exist, one is arbitrary chosen as P (u, v). If G→ is a subgraph of G,
then ω(G→) =

∑

a≥G∗
ω(a), and similarly ωΣ(G→) =

∑

(u,v)≥G∗
ωΣ(u, v).

We assume the root has not any predecessor and only one successor. We also
assume the terminals to be leaves. If not, we first preprocess the graph to ensure
those properties. For instance, if the root r has a predecessor or two successors,
we simply replace it by a copy r→ and add an arc (r→, r) with weight 0.

Definition 1. Let I = (G = (V,A), r,X, ω) be an instance of the DST problem.
Then the shortest paths instance IΣ = (GΣ = (V,AΣ), r,X, ωΣ) defines the in-
stance where GΣ is a complete graph weighted by the lengths of the shortest paths
in G.

ωΣ satisfies the triangle inequality. As we assume that the root has no prede-
cessor and that the terminals are all leaves, then each arc entering r and each
arc leaving a terminal has infinite weight in the shortest paths instance.

Definition 2. A branching node is a node with at least two successors.

4 The Directed Steiner Tree with Limited Number of
Diffusing Nodes

In this section, we define our model and explain its relation with the optical
network problem with diffusing nodes.

Problem 1. Given a DST instance I = (G, r,X, ω) and an integer d ≥ [0; k −
1], the Directed Steiner Tree problem with Limited number of Diffusing nodes
(DSTLD) consists, in the shortest paths instance IΣ, in the search of a tree T
rooted at r, spanning X , with at most d branching nodes minimizing the cost
ωΣ(T ) =

∑

a≥T

ωΣ(a).
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4.1 Link with DST

When d = k−1, the instance of DSTLD, and the instance of DST are equivalent:

– From a feasible solution T for DST, one can build a feasible solution T Σ for
DSTLD by replacing each arc (u, v) of T by the equivalent arc (u, v) in GΣ.
As GΣ is weighted with shortest paths, ωΣ(T Σ) ∪ ω(T )

– Conversely, from a feasible solution T Σ for DSTLD, one can build a feasible
solution T for DST by returning

⋃
(u,v)≥T� P (u, v). The two solutions satisfy,

ω(T ) ∪ ωΣ(T Σ).

As a consequence, any approximation algorithm for DSTLD with a ratio α(k)
implies an approximation algorithm within α(k) for DST. As, in this particular
case, d = k − 1, this results holds for an α(d)-approximation for DSTLD.

Theorem 1. DSTLD is NP-Complete and any approximation algorithm for
DSTLD with ratio α(d) or α(k) implies an approximation algorithm with ra-
tio α(k) for DST.

4.2 Application of DSTLD to Multicast in an Optical Network

From a feasible solution of DSTLD, we can determine the diffusing nodes of the
network and the load inside each arc necessary to transmit the data from the
root to all terminals. Let T be a feasible solution of an instance of DSTLD.

– Each branching node in T is a diffusing node in G.
– The load l(a) of an arc a in G is the number of time it appears in path
P (u, v) for every (u, v) ≥ T .

We now suppose the data is transmitted from the root to each terminal using
T . It is copied at each diffusing node in the original graph. As a consequence, the
data goes through each path P (u, v) for (u, v) ≥ T exactly once, thus through
each arc a number of times equal to its load. Note that some diffusing nodes
in G can be non branching nodes, and some branching nodes in G can be non
diffusing. The cost of T is, as defined in the previous model of [21, 22], the sum,
over all the arcs, of the weights of each arcs multiplied by its load.

Lemma 1. ωΣ(T ) =
∑

a≥A

l(a)ω(a)

Remark 1. The DSTLD model does not allow a non diffusing root to send the
data more than once although the root has no such limitation in a real network.
This permits us to simplify the proofs of this paper by reducing the number of
different types of node: diffusing or not.

Remark 2. Unlike in [23–26], we can decide in polynomial time whether or not an
instance contains a feasible solution. Indeed, if the original graph contains a path
from the root to every terminals, we can return the star (with one branching
node) in IΣ centered at the root and containing every terminal. And if some
terminal is unreachable, then the instance has no solution of finite cost.
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4.3 Application of DSTLD to Multicast in an Optical Network
Where the Diffusing Nodes are Already Chosen

DSTLD assumes every node in the network is able to diffuse or not, but at most
d branching nodes will actually diffuse in order to limit, for example, energy
consumption or signal loss quality. We can assume, as in [19–21] on the contrary
that the possible diffusing nodes D are already placed in the graph, for instance
because the technology for diffusing routers is specific. We set d to |D|.

Note that any data sent from the root or a diffusing node either joins with a
shortest path another diffusing node or a terminal. Consequently, we can search,
as it is done in [19, 20], a solution in the shortest paths instance IΣ

r restricted
to {r} ◦X ◦D, instead of the complete instance IΣ.

Because d = |D|, no tree in IΣ
r rooted at r spanning X can have more than

d branching nodes. As a consequence, an optimal multicast is then described
by an optimal directed steiner tree T ∪ in IΣ

r . Moreover, any α-approximation
algorithm for DST gives an α-approximation algorithm for this problem.

5 Parameterized Complexity

In this section, we establish three parameterized complexity results over DSTLD.
The two first ones claim that DSTLD parameterized with d belongs to the class
XP although it is W[2]-Hard. The last one studies DSTLD parameterized by
k − d and shows it is an NP-Complete problem.

In order to show the first result, we firstly prove that any tree with internal
non branching nodes can be reduced to a smaller tree.

Lemma 2. Let T be a feasible solution of an instance I of DSTLD. A directed
tree with cost at most that of T , rooted at r, containing only all the terminals X
and the branching nodes B of T can be obtained in polynomial time from T .

Proof. We delete all the cycles and leaves not in X ◦B. We get a directed tree
rooted at r with lower cost, with less branching nodes, where all the leaves are in
X ◦B. Let E be the set {r} ◦X ◦B. We now replace each path with endpoints
in E and internal nodes not in E by a single arc of GΣ. As the weights satisfy
the triangular inequality, the cost of the tree does not increase. The obtained
tree is a feasible solution and contains only r, X and B.

By Lemma 2, one of the optimal solutions is such a tree. As any terminal in
the original graph is a leaf, it is also a leaf in any optimal solution. Thus, we can
reduce the search space to the trees with k leaves and at most d internal nodes.

Theorem 2. The DSTLD problem, when parameterized by d, is XP.

Proof. We prove there is an exact polynomial algorithm for DSTLD when d is
fixed. Let I be an instance of DSTLD. Let κ = (u1, u2, . . . , uj) be j distinct
nodes of V , with j ∪ d. We now search a minimum cost feasible solution TΩ
containing every nodes of κ and where each branching node is in κ. Obviously,
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if κ is exactly the set of branching nodes of an optimal solution T ∪ of I, then
TΩ is also an optimal solution: by iterating over all possible sets κ, we return an
optimal solution.

By Lemma 2, if TΩ has a finite cost, it can be searched among all the trees
rooted at r containing only κ and X . We now point out that TΩ is a spanning
tree of the shortest paths graph GΣ rooted at r restricted to r, κ and X . We
then search for a minimum spanning tree in that graph. Every branching node
of T is in κ. Indeed, every terminal is a leaf in G, then, unless the cost of TΩ
is infinite, a minimum spanning tree does not use any terminal as a branching
node. Similarly, the root is not used as a branching node.

A minimum directed spanning tree can be find in time O((1 + k + d)2) [27],
then this algorithm runs in time O(nd(1 + k + d)2).

Theorem 3. The DSTLD problem, when parameterized by d, is W[2]-Hard.

Sketch of proof. An FPT reduction from the problem Set Cover parameterized
with the cost of an optimal solution can be obtained by adapting the classical
reduction from Set Cover to DST. A similar proof is given in [23].

Theorem 4. Even ifk−d is afixedparameter, theDSTLDproblem isNP-Complete
and any α(d)-approximation for DSTLD implies an α(k→)-approximation for DST
where k→ is the number of terminals in an instance of DST.

Sketch of proof. This theorem extends Theorem 1. Let p be a fixed integer.
From an instance I for DST with k→ terminals, one can build an instance Id for
DSTLD with k terminals satisfying k − d = p by adding to I a star of weight
0 centered at r and with p terminals. Thus, k→ = k − p = d. Obviously, from
any feasible solution for Id, one can build a solution with same cost for I in
polynomial time and vice versa. Consequently, any α(d)-approximation for Id is
an α(k→)-approximation for I.

6 Approximability

In this section we are interested in approximation results over DSTLD. The first
subsection establishes an approximation ratio between an optimum solution of a
DSTLD instance and an optimum solution of the associated DST instance. The
second subsection shows an inapproximability result for DSTLD.

6.1 How DST Can be Approximated by DSTLD

It was previously proved that restricting the search space to trees with fixed
height l gives a O(k 1

l )-approximation for DST [11, 12]. However, this approxi-
mation is neither polynomial nor XP in l. We are interested here in reducing the
number of authorized diffusing nodes instead of the height of the tree.

Any DST instance I = (G, r,X, ω) can be transformed into a DSTLD instance
Id by adding a parameter d ∪ k − 1. We now prove that computing an optimal
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solution for Id gives an approximated solution for I. As DSTLD is XP with
respect to the parameter d, this is possible to compute this solution for small
values of d. We now assume that k > 1.

Let T ∪ be an optimal solution for I and T ∪
d be an optimal solution for Id.

Lemma 3. ν�(T∞
d )

ν(T∞) ∪ ⊂k−1
d ≡.

Proof. We will transform T ∪ into a feasible solution Td of Id by replacing d
subtrees of T ∪ by stars. We first build the equivalent tree T ∪ in GΣ: each arc
(u, v) of T ∪ is replaced by the arc (u, v) in GΣ. As (u, v) is weighted by the length
ωΣ(u, v) of shortest path between u and v, its cost does not increase.

We define for a node u of T ∪ the subtree rooted at u by T ∪(u) and the
terminals it reaches by X(u). Let v be a node such that:

{
|X(v)| ⊆ 1 + ⊂k−1

d ≡
|X(w)| < 1 + ⊂k−1

d ≡ for each successor w of v.

If no node can satisfy those properties, then |X(u)| < 1 + ⊂k−1
d ≡ for every node

u. In that case, we choose v as the first branching node reached by r in T (or r
itself if it is a branching node).
S(v) is the star containing the arc (v, t) for all t ≥ X(v). The cost ωΣ(S(v))

of S(v) is at most
∑

t≥X(v)

∑

a≥PT∞ (v,t)
ωΣ(a) where PT∞(v, t) is the path from v to t

in T ∪. Moreover, for an arc a in T ∪(v), the number of distinct paths PT∞(v, t)
containing a cannot be more than ⊂k−1

d ≡. Indeed, each successor of v reaches at
most ⊂k−1

d ≡ terminals.

ωΣ(S(v)) ∪ ⊂k − 1

d
≡ · ωΣ(T ∪(v)) (1)

We temporary replace in T ∪ the subtree T ∪(v) by a terminal t(1). The obtained
tree T (1) contains at most k − |X(v)|+ 1 ∪ k − ⊂k−1

d ≡ ∪ k − k−1
d terminals. We

repeat this operation and build the trees T ∪(2), T ∪(3), . . . until it remains only
one terminal. As each operation removes at least k−1

d terminals, this operation
is repeated at most d times.

We now expand all the stars in reverse order. The resulting graph is a tree
Td containing all the terminals in X and at most d branching nodes (the root of
each star). By equation (1), ωΣ(Td) ∪ ⊂k−1

d ≡ωΣ(T ∪) ∪ ⊂k−1
d ≡ω(T ∪).

Remark 3. There is no ⊂d2

d1
≡ approximation ratio between two optimal solutions

of Id1 and Id2 , because the Steiner tree can have less than k−1 branching nodes.
The only known result is ω(T ∪) = ωΣ(T ∪

k−1) ∪ · · · ∪ ωΣ(T ∪
2 ) ∪ ωΣ(T ∪

1 ).

Theorem 5. For any α-approximation algorithm for DSTLD, one can build an
approximation algorithm of ratio α⊂k−1

d ≡ for DST.
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Proof. If we compute our α-approximation algorithm over Id, we get a tree Td
satisfying ωΣ(Td) ∪ α · ωΣ(T ∪

d ). The tree T =
⋃

(u,v)≥Td
P (u, v) is a feasible

solution for I and costs at most ωΣ(Td).
By Lemma 3, ω(T ) ∪ α⊂k−1

d ≡ · ω(T ∪)

With this technique, one can either choose a fixed parameter d to get a ⊂k−1
d ≡

polynomial approximation for DST (to be more exact, this approximation is XP
with respect to d), or choose a variable parameter d, for instance d = log(k), and
compute an α(d, k) polynomial approximation for DSTLD to get an α(d, k)⊂k−1

d ≡
polynomial approximation for DST. Unfortunately, this second approximation
seems pointless as the next part proves a strong inapproximability result for
DSTLD.

6.2 A Strong Inapproximability Result for DSTLD

In this section, we build a reduction from the Maximum Coverage problem in
order to prove, under the assumption P ∀= NP there is no polynomial approxi-
mation for DSTLD of ratio better than 1+ k

e·(d−1) where e is the Euler constant.

Problem 2. Given a universe X of elements, a cover S of X , and an integer
d ≥ N

∪, the maximum Coverage problem (max-SC) asks for a cover C ∩ S with
at most d sets maximizing the number of covered elements.

Theorem 6. [8]: Unless NP → DTIME[nO(log logn)], for every constant ε > 0,
there is no polynomial approximation algorithm with ratio 1− 1

e + ε for max-SC,
even restricted to instances where every optimal solution covers all the universe
with exactly d sets.

We now describe the reduction. Let d ⊆ 2 and let I = (X,S, d− 1) be a max-
SC instance where every optimal solution covers all the elements with exactly
d− 1 sets. Let k be the number of elements.

We remove from I each set included in another set. Any feasible solution with
strictly less than d − 1 sets can be completed to get a strictly better solution.
We will now only consider inclusion-wise maximal feasible solutions.

We will define an instance I → = (G = (V,A), r,X →, ω, d) of DSTLD. The nodes
V consist of the root r, one node for each set of S and one terminal for each
element of X . Each set and element is identified with its corresponding node in
V . Let B > 0 be a constant we will fix later. The root is linked to each set with
an arc of weight B. Each set s is linked to the elements it covers. Finally, the
root is linked to each terminal with an arc of weight B + 1. Note that to obtain
GΣ, we complete G with infinite cost arcs. As a result, any feasible solution of
finite cost can be described by a tree using only arcs of G. An example is given
in Figure 2.

We now define how to build a feasible solution of I from a feasible solution
of I → and vice versa.

The main idea of the reduction is that the sets in an optimal solution for
I are the diffusing nodes in an optimal solution for I →. In order to prove the
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r

S1 S2

1 2 3 4 5

B B

Fig. 2. An example of reduction from the instance I of max-SC with X = {1, 2, 3, 4, 5}
and S = {S1 = {1, 2, 3}, S2 = {3, 4, 5}}. Each dashed arc is weighted with B + 1.

inapproximation result, we will set the value of B to a sufficiently big value.
This will ensure that a terminal not covered by a set costs a lot more than the
other terminals.

Build a solution T (C) for I → from a solution C for I.
Let C be an inclusion-wise maximal feasible solution of I. Then we define

T (C) as a tree of I → containing the root, each set in C and all the terminals.
For each element t not covered by C, we add the arc (r, t) to T (C), and for each
other element t, we add the arc (s, t) where s is chosen among the sets in C
covering t. As C is inclusion-wise maximal, it contains exactly d− 1 sets. Then
the number of branching nodes in T (C) is at most d, and T (C) is a feasible
solution. The cost of T (C) is

ωΣ(T (C)) = B(d− 1 + k − |X(C)|) + k (2)

where X(C) are the terminals covered by C. As an optimal solution C∪ covers
all the terminals with exactly d− 1 sets, then ωΣ(T (C∪)) = B(d− 1) + k.

Build a solution C(T ) for I from a solution T for I →.
Let T be a feasible solution of I → with finite cost. We define C(T ) as a feasible

solution of I with all the sets corresponding to branching nodes of T . If C(T )
is not inclusion-wise maximal, we add new sets covering non covered elements
until it reaches d− 1 sets.

As d ⊆ 2, any feasible solution T of I → with finite cost contains at most d− 1
branching nodes corresponding to sets. Indeed, a tree with d such sets would not
use r as a branching node, and some sets would be linked together with arcs of
infinite weight. Then C(T ) contains at most d− 1 sets.

Lemma 4. Let T be a tree feasible solution of I → with finite cost then we have
ωΣ(T (C(T ))) ∪ ωΣ(T ).

Proof. Let S = {s1, s2, . . . , sp} be the sets branching nodes of T , and let XS

be the terminals covered by those nodes in T . The cost of T is then ωΣ(T ) =
B(p+k−|XS |)+k. By equation (2), ωΣ(T (C(T ))) = B(d−1+k−|X(C(T ))|)+k.
We recall B > 0. We want to prove that ωΣ(T ) − ωΣ(T (C(T ))) ⊆ 0, equivalent
to the following equations:

B · (p− |XS | − (d− 1) + |X(C(T ))|) ⊆ 0

|X(C(T ))| − |XS | ⊆ (d− 1)− p
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Each set in C(T ) not in S was added to get an inclusion-wise maximal solution.
Each time such a set is added in C(T ), it covers at least one element that was not
yet covered because all optimal solutions contain d − 1 sets. Then the number
of terminals in X(C(T )) not in XS is at least (d− 1)− p.

Lemma 5. If C∪ is an optimal solution of I, then T (C∪) is optimal for I →.

Proof. Assume it exists a feasible solution T for I → of cost strictly better than
T (C∪). By Lemma 4, ωΣ(T (C(T ))) ∪ ωΣ(T ) < ωΣ(T (C∪)). We recall B > 0. By
Equation (2): B(d−1+k−|X(C(T ))|)+k < B(d−1+k−|X(C∪)|)+k and then
|X(C(T ))| > |X(C∪)|. This is a contradiction, hence the lemma is proved.

Theorem 7. Under the assumption that NP ∀→ DTIME[nO(log logn)], for every
constant ε > 0, there is no polynomial-time approximation algorithm for DSTLD
with ratio 1 + (1e − ε) · k

d−1 .

Proof. Let ε > 0. We assume there is an approximation algorithm with ratio
ρ = 1 + (1e − ε) · k

d−1 for DSTLD. Then, by Lemma 5, the algorithm returns
a feasible solution T with cost at most ρ · ωΣ(T (C∪)) where C∪ is an optimal
solution for I.

We recall that, by Lemma 4, ωΣ(T (C(T ))) ∪ ωΣ(T ). Moreover, any optimal
solution of I spans all elements in X : |X(C∪)| = k.

ωΣ(T (C(T )))
ωΣ(T (C∪))

∪ ωΣ(T )

ωΣ(T (C∪))
∪ ρ

∅ B(d − 1 + k − |X(C(T ))|) + k

B · (d− 1) + k
∪ ρ

∅ d− 1 + k − |X(C(T ))|+ k

B
∪ (d− 1 +

k

B
) · ρ

∅ d− 1 + k − |X(C(T ))|+ k

B
∪ (d− 1) · (1 + (

1

e
− ε) · k

d− 1
) +

k

B
· ρ

∅ k · (1− 1

e
+ ε+

1− ρ

B
) ∪ |X(C(T ))|

∅ |X(C∪)| · (1− 1

e
+ ε+

1− ρ

B
) ∪ |X(C(T ))|

We now fix B = 2 · θ−1
Θ > 0. Then 1 − 1

e + Θ
2 ∪ X(C(T ))

X(C∞) , which implies a
contradiction with Theorem 6, thus this theorem is proved.

7 Conclusion and Perspectives

We proposed a generalization of the Directed Steiner Tree problem in order to
model multicast in network containing at most d diffusing nodes. We have proved
that this problem is XP in d by providing an algorithm to solve it. We have used
this algorithm to design an approximation which runs in time XP in d. However,
we have also shown a strong inapproximability result for DSTLD.

Even so, the only polynomial approximation algorithm considered for DSTLD
has a ratio depending only on k. It would be interesting to build new approxi-
mation algorithms for BO with better ratios, depending on k and d.
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Abstract. The Labelled Correlation Clustering problem, a variant of Cor-
relation Clustering problem, is defined and studied in this paper. Since the
problem is NP-complete, we consider the parameterized complexities.
Three different parameterizations are considered, and the corresponding
parameterized complexities are studied.

1 Introduction

A general graph1 G is composed of a node set VG and an edge set EG → VG × VG,
denoted by G = (VG, EG). A graph G is clustered if every connected component
of G is a clique. An edge labelled graph, el-graph for short, can be denoted by
G̃ = (VG̃, EG̃, fG̃) where VG̃ and EG̃ define a general graph and fG̃ is a mapping

EG̃ ⊂≡ {0, 1}. Graph G disagrees with a el-graph G̃, if there is some edge e ∈ EG̃
such that fG̃(e) = 1 ≥ e /∈ EG or fG̃(e) = 0 ≥ e ∈ EG, and such edges are called

disagreed edges between G and G̃. G agrees with G̃, if there are no disagreed
edges between them. Given an el-graph set G̃ = {G̃1, . . . , G̃m} and a graph G,

let Disagree be a function such that Disagree(G, G̃) is the number of graphs

in G̃ with which G disagrees.
In the classic Correlation Clustering problem (CC for short) [1], given a el-

graph G̃, the goal is to find a clustered graph G such that the size of disagreed
edges between G and G̃ is minimum. It has many applications, such as entity
identification [2], coreference resolution [3] and so on. The CC problem is NP-
hard , and there have been lots of works focusing on it, for example [1,4,5,6].

In this paper, a variant of Correlation Clustering is studied, which is called
Labelled Correlation Clustering (LCC for short) and can be defined as follows. The

input of a LCC instance is a el-graph set G̃ = {G̃1, . . . , G̃m}, the goal is to find

a clustered graph G such that the size Disagree(G, G̃) is minimum.
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This problem formulation can be motivated by the following example in en-
tity identification problem. Suppose there are a set of records, each of them con-
tains the values of several attributes about one person. For example, the record
{name=“Bob”, age=“12”, ...} represents one person named Bob is 12-year-old.
There may be several records describing the same person, and the entity identi-
fication problem is to find a clustering way for the records such that each cluster
exactly contains all records of one person. To solve entity identification problem
directly is difficult, previous works usually focus on entity matching problem.
Given two records, an entity matching algorithm will determine whether they
represent the same person. Treating each record as a node in graph and using
the edge between nodes to represent the two corresponding records belong to
the same person, the output of an entity matching algorithm can be a general
graph, while the output of entity identification problem is required to be a clus-
tered graph. To fill the gap between the output of entity matching and entity
identification, intuitively, the CC problem is to transform the entity matching
result to the entity identification result while minimizing the difference between
them. Given the same records, different matching algorithms may output differ-
ent results, combining the results of multiple matching algorithms brings oppor-
tunities to improve the accuracy of identification result[7]. Given the results of
several matching algorithms, the LCC problem is to generate the identification
result such that it is compatible to as many matching algorithms as possible.

Obviously, the LCC problem is NP-hard , because, treating each labelled edge
in CC as a el-graph, CC is indeed a special case of LCC. Therefore, we analyze the
LCC problem from the point of view of parameterized complexity [8], to study
whether there are efficient algorithms when some parameters of the input are
small. According to [9], a parameterized problem is a set L → Σ→ × N, where
Σ is a fixed alphabet and N is the positive integer set. For (x, k) ∈ Σ→ × N,
x is the input and k is the parameter. A parameterized problem P is fixed-
parameter tractable if there is a computable function f : N ≡ N, a con-
stant c ∈ N, and an algorithm that, given a pair (x, k) ∈ Σ→ × N, decides if
(x, k) ∈ P in at most f(k) · |x|c steps. The class of all the fixed-parameter
tractable problems is FPT. Beyond FPT, a hierarchy of parameterized complex-
ity classes FPT → W[1] → W[2] → · · · → W[P] have been defined by [10,11,12],
which play a central role in identifying parameterized intractable problems. For
example, the standard parameterization version of classic Clique problem is
W[1]-complete , and the standard parameterization version of Dominating Set
problem is W[2]-complete, which implies that Dominating Set is intuitively
harder than Clique. To study the LCC problem from the perspective of param-
eterized complexity, we consider different parameterization methods for LCC and
study which class of W -hierarchy each parameterized LCC belongs to.

In this paper, the parameterized versions of the LCC problem, denoted by
p-LCC, are defined on the following three parameters.
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Problem: p-LCC

Instance: A el-graph set G̃ = {G̃1, . . . , G̃m} and a positive integer k.

Question: Is there a clustered graph G such that Disagree(G, G̃) is not
larger than k?

Parameter 1: m = |G̃|, the size of the el-graph set.

Parameter 2: n = |
⋃
{VG̃i

}|, the size of node set of graphs in G̃.
Parameter 3: k.

The three parameterized problems are denoted by p-LCCm, p-LCCn, and p-LCCk
respectively.

Our Results. Because the LCC problem is NP-hard , a natural question is
whether it is fixed-parameter tractable. That is, when some parameter of the
instances of LCC is small, whether or not there are efficient algorithms. Three
parameterization methods are considered. When the LCC problem is parameter-
ized with m and n, we give the positive answers. Specifically, the corresponding
problems p-LCCm and p-LCCn are shown to be fixed-parameter tractable. When
it is parameterized with k, negative answer is given. By means of checking bad
circles which will be introduced later, it is shown that the p-LCCk problem is
W[t]-hard for any t > 0 and in W[P]. It means that, unless for any t > 0 we have
FPT = W[t], the p-LCCk problem is not fixed-parameter tractable.

1.1 Related Work

To the best of our knowledge, there are no previous works focusing on the Labelled
Correlation Clustering problem. The most related one is the classic Correlation
Clustering problem. Treating each edge e labelled 1 (resp. 0) as a requirement for
the existence (resp. inexistence) of e, the similarity of that two problems is to
seek to find a clustered graph G, which represents a solution of clustering nodes
in G, to satisfy the requirements as many as possible. Additionally, treating a el-
graph G̃ as the requirements of one user, the difference is that the CC problem
seeks a clustered G satisfying as many requirements as possible of one user,
while the LCC problem considers the requirements of several users and seeks a
G satisfying as many users as possible. The main results of the previous works
on CC problem can be summarized as follows. For the case that G̃ is defined
over a complete graph, CC is proved to be NP-complete in [1], and a series of
approximation algorithms with best constant factor 3 are designed by [1,4,5].

For the case that G̃ is defined over a general graph, the CC problem is proved
to be APX-hard by [6], and two O(log n) approximation algorithms are designed
independently by [5] and [6]. Weighted variants of CC are also considered by
[1,4,6].

The LCC problem is also motivated by several recent works on the minimum
label graph problems, whose definition is given in [13]. In that problem, the
edges in a graph are associated with labels, and the goal is to find the minimum
label set consisting of edges satisfying some property. Such problems include



On the Parameterized Complexity of Labelled CC Problem 279

Algorithm p-LCCm-Solver

Input: A set of el-graphs G̃ = {G̃1, . . . , G̃m},
and a positive integer k.

Output: true or false.
1. if k ≥ m then
2. return true;

3. for each el-graph set G̃′ ⊆ G̃ satisfying |G̃′| = k do
4. Initialize an empty graph G;

5. for each G̃i ∈ G̃ \ G̃′ do
6. Add all edges labelled 1 of G̃i to G;

7. if there is an edge (u, v) labelled 0 in G̃ \ G̃′
s.t. u and v are connected in G then

8. continue;
9. else
10. return true;
11.return false;

Fig. 1. Algorithm p-LCCm-Solver

the Minimum Label Spanning Tree problem [14,15], the Minimum Label Path
problem [16,17], and the Minimum Label Cut problem [18,19].

Parameterized complexity is a method of identifying ‘easy’ fragments of NP-
hard problems. Traditionally, if multiple paramters are involved in the input of
one problem, they are treated equally when considering the complexity. However,
in real applications, if some parameter is always very small, there may be efficient
algorithms. In parameterized complexity, it is studied whether or not there are
algorithms with time cost O(f(k)p(n)), where f is a computable function, p is
a polynomial function, k is the small parameter, and n is input length. The
parameterized complexity is introduced by Downey and Fellows in a series of
works [10,11,12]. Some recent results and new perspectives can be found in the
monograph [9].

2 The p-LCCm and p-LCCn Problem

Before further discussions, a useful concept is introduced. An el-graph set G̃ is
consistent, iff there exists a clustered graph G such that G agrees with every
el-graph in G̃, otherwise, it is inconsistent.

The p-LCCm problem is shown to be fixed-parameter tractable by giving the
FPT-algorithm p-LCCm-Solver in Fig. 1. The idea of p-LCCm-Solver can be sum-
marized as follows. First, if k is not smaller than m, any clustered graph G
satisfies Disagree(G, G̃) ∪ k, therefore, true is returned (line 1-2). Then, if

there exists some subset G̃≥ of G̃ with size k such that G̃ \ G̃≥ is consistent, true
is returned, otherwise, false is returned (line 3-11).

Theorem 1. The p-LCCm problem is fixed-parameter tractable.
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Proof. First, the correctness of p-LCCm-Solver can be implied immediately, if
it can be proved that, for each G̃≥, the iteration (line 4-10) determines whether

G̃ \ G̃≥ is consistent correctly. We show that by following two claims. (1) If true is
returned by line 10, a graph G≥ built based on G by transforming each connected
component to a clique will satisfy Disagree(G≥, G̃) ∪ k, and G̃ \ G̃≥ is consistent.

(2) If G̃ \ G̃≥ is consistent, let G≥ be a clustered graph agreeing all ones in G̃ \ G̃≥.

Then, in G̃ \ G̃≥, all edges labelled 1 belong to G≥, and all edges labelled 0 do
not belong to G≥. Therefore, G is a subgraph of G≥, and it is obvious that the
condition in line 7 is not satisfied and true will be returned.

Second, the cost of p-LCCm-Solver can be analyzed as follows. Obviously,
there are at most mk iterations of line 3. The cost of line 4-10 can be bounded
by some polynomial function p. Therefore, the total cost of p-LCCm-Solver can
be bounded by mk · p(|x|) ∪ mm · p(|x|), where |x| is the length of input.

Finally, p-LCCm-Solver is an FPT algorithm for p-LCCm, and the problem
p-LCCm is in FPT.

The p-LCCn problem can be verified to be fixed-parameter tractable by follow-
ing simple solution. The idea is simple and obviously correct. For each possible
graph G defined over the node set V =

⋃
{VG̃i

}, it is checked whether the

conditions (a) G is clustered and (b) Disagree(G, G̃) ∪ k are satisfied. It is
also easy to check that the time cost of the above solution can be bounded by
O(2n

2 ·p(|x|)), where p is a polynomial function. Therefore, we have the following
theorem.

Theorem 2. The problem p-LCCn is fixed-parameter tractable.

3 The p-LCCk Problem

In this section, first, a concept of bad circles is introduced, then, based on the
technique of checking bad circles, the p-LCCk is shown to be W[t]-hard for any
t > 0 and belong to W[P].

3.1 Bad Circle

Before showing the proof, an important observation is introduced first. Given
a el-graph set G̃, G̃ is canonical, if there does not exist an edge e such that
fG̃i

(e) = 1 and fG̃j
(e) = 0 for some G̃i, G̃j ∈ G̃, that is there are no edges

labelled differently in G̃. Then, for a canonical el-graph set G̃ = {G̃i}, a new el-

graph G̃ = Merge(G̃) can be defined by letting VG̃ =
⋃
{VG̃i

}, EG̃ =
⋃
{EG̃i

},
and fG̃(e) = fG̃i

(e) for each e ∈ EG̃i
. Because there are no edges having different

labels in G̃, obviously, Merge(G̃) is well-defined. Here, it should be noticed that
because the graphG required is clustered, a canonical set can still be inconsistent.
In a el-graph G̃, a circle is bad, if it contains exactly one edge labelled 0. Then,
we have the following observation.

Proposition 1. A canonical el-graph set G̃ is consistent, if and only if there are
no bad circles in Merge(G̃).
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3.2 Parameterized Complexity Results

For the lower bound, it is shown that, for any t > 0, p-LCCk is W[t]-hard , and
for the upper bound, it is shown that p-LCCk is in W[P]. Therefore, unless W[t]
equals to FPT, there are no algorithms in time O(f(k) · nc) solving problem
p-LCCk, where f(k) is arbitrary computable function and c is some positive
constant.
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Fig. 2. Example for the reduction in Lemma 2

First, a problem utilized in the proof, Weighted Monotone t-Normalized Satis-
fiability, is introduced. Let X be the propositional variables set, and Γ+

t,1 be the
class of propositional formulas from [9].

• Γ+
0,1 := {x|x ∈ X},

• Δ+
0,1 := Γ+

0,1,

• Γ+
t+1,1 := {

∧
i∪I δi | I finite nonempty index set,

and δi ∈ Δt,1 for all i ∈ I},
• Δ+

t+1,1 := {
∨

i∪I γi | I finite nonempty index set,
and γi ∈ Γt,1 for all i ∈ I}.

A truth assignment τ for X is a mapping from X to {1, 0}, and the weight of
τ is the number of variables mapped to 1 by τ . Then, the Weighted Monotone
t-Normalized Satisfiability problem, p-WSat(Γ+

t,1) for short, can be defined as
follows.

Problem: p-WSat(Γ+
t,1)

Instance: A Γ+
t,1 formula Φ over variable set X , and a positive integer k.

Question: Does Φ have a satisfying truth assignment τ of weight k?

Parameter: k.

The problem on Γ+
2,1 is also denoted by p-Wcnf+, since Γ+

2,1 is indeed a con-
junctive normal form (CNF) formula.

Lemma 1. (From [9]). For every t > 1, if t is even, p-WSat(Γ+
t,1) is

W[t]-complete under FPT-reduction. Specially, p-Wcnf+ is W[2]-complete.

To show the lower bound of p-LCCk, an inductive proof is introduced here.
First, basically, the p-LCCk problem is shown to be W[2]-hard by a reduction
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from p-Wcnf+ in Lemma 2. Then, inductively, for even t, the p-LCCk problem is
shown to be W[t]-hard by a reduction from p-WSat(Γ+

t,1) in Lemma 3. Finally,
based on those two lemmas, Theorem 3 for the lower bound is given.

Lemma 2. The p-LCCk problem is W[2]-hard.

Proof. It is proved by making an FPT reduction from p-Wcnf+ to p-LCCk.
Given an instance (Φ, k) of problem p-Wcnf+, an instance (G̃, k≥) of p-LCCk

problem will be constructed. The idea of the construction is to first build a el-
graph H̃ and a function h : EH̃ ⊂≡ 2X and then build G̃ according to H̃ and h.

Intuitively, H̃ is the graph Merge(G̃) (it will be seen that G̃ is canonical), and

h indicates which graphs in G̃ each edge of H̃ comes from.

1) Let Φ = C1 ≥ · · · ≥CI , each Ci (i ∈ [1, I]) is in the form li1 ◦ li2 ◦ · · · ◦ liJi

where each lij (j ∈ [1, Ji]) is a variable in X .

2) H̃ and h can be built by following steps. For each Ci, a set of nodes

VCi = {vi1, . . . , vi(Ji+1)} is added to H̃ first. Then, for each j ∈ [1, Ji], the

edge eij = (vij , vi(j+1)) is labelled 1 and added to H̃, and let h(eij) = {lij}.
Finally, the edge ei(Ji+1) = (vi(Ji+1), vi1) is labelled 0 and added to H̃, and
let h(ei(Ji+1)) = X .

3) Then, based on H̃ and h, G̃ can be built as follows. First, for each xi ∈ X ,

a el-graph G̃i = {VH̃ , ⊆, ⊆} is initialized and added to G̃. Then, for each edge

e ∈ EH̃ and each xi ∈ X , if xi ∈ h(e), e is added to G̃i and let fG̃i
(e) = fH̃(e).

4) Finally, let k≥ = k.

A reduction example is given in Fig. 2, where the solid edges are labelled 1
and dash edges are labelled 0, and, in H̃ , the values of h function are marked on
the corresponding edges.

According to [9], to show the correctness of the reduction, we must prove that
(1) there is an assignment τ weighted k satisfying Φ, iff there is a clustered graph

G satisfying Disagree(G, G̃) ∪ k≥, (2) the reduction is computable by an FPT

algorithm, and (3) there is a computable function g : N ≡ N such that k≥ ∪ g(k).
Obviously, the reduction satisfies the last two conditions. In the following, we
will prove the first condition.

First, assume that there is an assignment τ weighted k satisfying Φ. According
to the reduction, each xi ∈ X has a corresponding graph G̃i in G̃. Let G̃≥ be
the graph set {G̃i|τ(xi) = 1 and G̃i ∈ G̃}. According to the definition of the

reduction, obviously, there are exactly I bad circles in H̃ , which are the sources
of inconsistencies of G̃. Consider the graph Merge(G̃ \ G̃≥). For arbitrary Ci in
Φ, since τ satisfies Ci, there is one literal lij of Ci is set to 1 by τ , and, thus,

it is known G̃lij ∈ G̃≥ and the edge eij = (vij , vi(j+1)) is in G̃≥. According to an

observation that, during the reduction, each edge labelled 1 in H̃ is distributed
to only one graph of G̃, we know that eij is not in G̃ \ G̃≥. Therefore, there are no

bad circles in Merge(G̃ \ G̃≥). Since G̃ is canonical, by Proposition 1, the graph

set G̃ \ G̃≥ is consistent, which implies that there exists a clustered graph G such

that Disagree(G, G̃) ∪ |G̃≥| = k = k≥.
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Second, assume that there is a graph G such that Disagree(G, G̃) ∪ k≥. An

assignment τ can be built as follows. For each G̃i ∈ G̃, if G agrees with G̃i, let
xi = 0, otherwise, let xi = 1. Then, consider τ for each clause Ci of Φ. Let the
induced subgraph of VCi on H̃ be H̃Ci , according to the reduction, obviously,

H̃Ci is a bad circle. Since G is clustered, there is at least one edge e in H̃Ci on

which G does not agree with H̃Ci .

(a) If e is ei(Ji+1), because h(e) = X , G must disagree with every G̃i in G̃.
Then, we have k = k≥ ∀ |X |, and we can extend τ trivially to τ ≥ by setting
all variables of X to be 1. Obviously, τ ≥ satisfy Φ.

(b) If e is eij for some j ∈ [1, Ji], because h(e) = {lij}, G must disagree with

G̃lij . According to definition of τ , we have τ(lij) = 1, and τ satisfies Ci.

Therefore, τ satisfies Φ. Finally, if the weight wΣ of τ is smaller than k, we can
extend τ to τ ≥≥ by setting arbitrary additional k − wΣ variables in X to be 1.
Because all literals in Φ are positive, τ ≥≥ still satisfy Φ.

Finally, in conclusion, an FPT reduction from p-Wcnf+ to p-LCCk has been
given, and p-LCCk is W[2]-hard .
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Fig. 3. Example for the reduction in Lemma 3

Lemma 3. The p-LCCk problem is W[t]-hard for any even t > 0.

Proof. Based on the result in Lemma 2, for any even t > 0, we give an FPT re-
duction from p-WSat(Γ+

t,1) to p-LCCk. Then, according to Lemma 1, the lemma
can be proved.

Given an instance (Φ, k) of p-WSat(Γ+
t,1), an instance (G̃, k≥) of problem

p-LCCk will be constructed. Similar with the proof of Lemma 2, we also con-
struct graph H̃ and function h first, and then build G̃ based on them.

1) Given Φ in Γ+
t,1, H̃ and h will be built by an induction on t. It is satisfied

that, in each induction step, each connected component of the outputted el-
graph H̃ contains exactly one edge labelled 0.

- Basically, if t = 2, H̃ and h can be built as the reduction in Lemma 2.
Additionally, it is obvious that each connected component of H̃ is a bad
circle which contains exactly one edge labelled 0.
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- Inductively, it is assumed that, for each even t ∪ 2k (k > 0), if Φ is in

Γ+
t,1, H̃ and h can be well defined such that each connected component of

H̃ contains only one edge labelled 0. Then, for t = 2k + 2, given the Γ+
t,1

formula
Φ =

∧

i∪I

(
∨

j∪Ji

λij)

where each λij ∈ Γ+
t−2,1, the construction can be defined as follows.

Let the graph built for λij is H̃ij . According to the assumption, it is known

that H̃ij consists of several connected components each of which has exactly

one edge labelled 0. Assume there are L edges labelled 0 in H̃ij , which are
denoted by E0

ij = {(u1, v1) . . . (uL, vL)}. First, delete the edges of E0
ij from

H̃ij . Then, two nodes uij and vij are added, and, for each node uy (resp.
vy) for y ∈ [1, L], an edge eu = (uy, uij) (resp. ev = (vy, vij)) is added and
let h(eu) = X (resp. h(ev) = X).

Then, for each i ∈ I, H̃i is built by linking the graphs H̃ij for all j ∈ [1, Ji]
together as follows. (a) For each j ∈ [1, Ji−1], an edge (vij , ui(j+1)) labelled
1 is added, and its h value is set to be X . (b) An edge (viJi , ui1) labelled 0
is added, and the h value is also set to be X .

Finally, H̃ can be obtained by taking a union of {H̃i|i ∈ I}. Obviously, H̃
contains I connected components, and each component has only one edge
labelled 0.

2) Then, based on H̃ and h, the graph set G̃ containing |X | el-graphs can be
built in the same way of Lemma 2.

3) Finally, let k≥ = k.

An example for this reduction is shown in Fig. 3, where solid edges are labelled
1 and dash edges are labelled 0, and if h value of some edge is not X , it is marked.

Similar with the proof in Lemma 2, to show the correctness, we only need to
prove that there is an assignment τ weighted k satisfying Φ iff there is a clustered
graph G satisfying Disagree(G, G̃) ∪ k≥.

First, assume that there is an assignment τ weighted k satisfying Φ. Without
loss of generality, it is assumed that k < |X | in the follow, because if k ∀
|X | arbitrary clustered graph G will satisfy the conditions. Let G̃≥ be the set

{G̃i|τ(xi) = 1 and G̃i ∈ G̃} again. It will be proved that the set G̃\G̃≥ is consistent
by an induction on t. (a) Basically, for t = 2, the proof in Lemma 2 can be applied
here. (b) Inductively, it is assumed that, for formula Φ in Γ+

t,1 where t is even

and t ∪ 2k (k > 0), if τ satisfies Φ, the set G̃ \ G̃≥ will be consistent. Then,

for t = 2k + 2, given the formula Φ ∈ Γ+
t,1, let G̃ be the el-graph set produced

by the reduction. Consider the graph H̃ which G̃ is built on. According to the
reduction, there are I connected components in H̃ , and each of them has only
one edge labelled 0. For clause Ci (i ∈ I), its corresponding component is H̃i,

all bad circles in H̃i follows the following form.

viJi − ui1 ∩ vi1 − ui2 ∩ vi2 − ui3 · · · · · · vi(Ji−1) − uiJi ∩ viJi
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Here, ‘−’ means an edge, and ‘∩’ is a path. Then, because τ satisfies Φ, for
each i ∈ I, the formula

∨
j∪Ji

λij must be satisfied by τ . Therefore, there must

exist j ∈ Ji such that λij is satisfied by τ . Obviously, λij is in Γ+
2k,1. Let G̃ij be

the graph produced by the reduction for λij , and G̃≥
ij be the set {G̃z|τ(xz) =

1 and G̃z ∈ G̃ij}. According to the assumption for the induction, obviously, G̃ij \
G̃≥
ij is consistent. Then, for each edge (u, v) labelled 0 in G̃ij , we have (u, v) exists

in Merge(G̃ij \ G̃≥
ij), because (u, v) is labelled X in G̃ij and |G̃≥

ij)| ∪ k < |X |.
Therefore, there is no path from u to v such that all edges on the path are labelled
1 in Merge(G̃ij \ G̃≥

ij). Then, it can be implied that in Merge(G̃ \ G̃≥) there is

no path with all edges labelled 1 from uij to vij . Therefore, in Merge(G̃ \ G̃≥),

the bad circles in H̃i are broken, and G̃ \ G̃≥ is consistent. Finally, there must be

a graph G such that Disagree(G, G̃) ∪ |G̃≥| = k = k≥.

Second, assume that there is a clustered graphG satisfyingDisagree(G, G̃) ∪
k≥. If k≥ ∀ |X |, a trivial assignment setting all variables to 1 will satisfies Φ. In
the following, we only consider the case that k≥ < |X |. An assignment τ can be

built by setting xi = 0 if and only if G agrees with G̃i. We prove that τ satisfies
Φ also by an induction on t. (a) Basically, for t = 2, the proof in Lemma 2 can be
applied again. (b) Inductively, assume that if the formula Φ is in Γ+

t,1 for even t

satisfying t ∪ 2k (k > 0), if G satisfies Disagree(G, G̃) ∪ k≥, the corresponding

τ satisfies Φ. Then, for t = 2k + 2, consider each Ci in Φ for i ∈ I. For H̃i, we
have Disagree(G, H̃i) ∪ k≥ < |X | since Disagree(G, G̃) ∪ k≥. Therefore, the
edges {(vij , ui(j+1))|j ∈ [1, Ji − 1]} are in G and the edge (viJi , ui1) is not in

G, otherwise, we will have the contradiction that Disagree(G, G̃) ∀ |X | > k≥.
Then, it is known that there must exist a j ∈ [1, Ji] such that the edges in

E0
ij = {(u1, v1) . . . (uL, vL)} which are labelled 0 in H̃ij do not appear in G.

Otherwise, we will have the contradiction that there is a bad circle in G. Then,
we have Disagree(G, G̃ij) ∪ k≥, because all edges labelled 1 in G̃ij belong to G̃
too. According to the assumption, it is known that τ satisfies λij . Obviously, for
each i ∈ I, there exists such a j. Therefore, τ satisfies Φ.

Finally, in conclusion, an FPT reduction from p-WSat(Γ+
t,1) to p-LCCk has

been given, and p-LCCk is W[t]-hard for any t > 0.

Theorem 3. The p-LCCk problem is W[t]-hard for any t > 0.

Proof. It should be noticed that, different from the p-WSat(Γ+
t,1) problem, the

definition of the p-LCCk problem does not depend on t, therefore, the W[t]-hard
results of p-LCCk for even t implies its W[t]-hard results for all t > 0. Therefore,
the theorem can be obtained by Lemma 2 and 3 easily.

The upper bound of p-LCCk is shown in the following theorem.

Theorem 4. The problem p-LCCk is in W[P].

Proof. According to [20], we prove that the problem can be solved by a
k-restricted nondeterministic Turing machine, which, for each input x and
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parameter k, makes decisions by at most f(k) · p(|x|) steps and h(k) · log |x|
nondeterministic steps where f , h : N ≡ N are two computable functions and p
is a polynomial function.

Then, p-LCCk problem can be determined by the following nondeterministic
algorithm.

• First, guess a subset G̃≥ of G̃ such that |G̃≥| = k.

• Then, return true if and only if G̃ \ G̃≥ is consistent.

To represent G̃≥, at most k·log |G̃| ∪ k·log |x| bits are needed. Therefore, the num-
ber of nondeterministic steps can be bounded by k ·log |x|. To determine whether

G̃ \ G̃≥ is consistent, we can use the method in the Algorithm p-LCCm-Solver in
Fig. 1 (line 4-10) which can be implemented in polynomial time cost.

Obviously, the algorithm above can be computed by a k-restricted nondeter-
ministic Turing machine, and the p-LCCk problem is in W[P].

4 Conclusion

In this paper, the paremeterized complexity of LCC is studied. For parameters
m (the size of graph set) and n (the size of node set), the corresponding parame-
terized LCC problems are shown to be fixed-parameter tractable. For parameter
k, the parameterized LCC problem is in W[P] and W[t]-hard for any t > 0.
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Abstract. Given a set of n points on a line, where each point has one
of k colors, and given an integer si ≥ 1 for each color i, 1 ≤ i ≤ k,
the problem Shortest Color-Spanning t Intervals (SCSI-t) aims at
finding t intervals to cover at least si points of each color i, such that
the maximum length of the intervals is minimized. Chen and Misiolek
introduced the problem SCSI-1, and presented an algorithm running in
O(n) time if the input points are sorted. Khanteimouri et al. gave an
O(n2 log n) time algorithm for the special case of SCSI-2 with si = 1 for
all colors i. In this paper, we present an improved algorithm with running
time of O(n2) for SCSI-2 with arbitrary si ≥ 1. We also obtain some
interesting results for the general problem SCSI-t. From the negative
direction, we show that approximating SCSI-t within any ratio is NP-
hard when t is part of the input, is W[2]-hard when t is the parameter,
and is W[1]-hard with both t and k as parameters. Moreover, the NP-
hardness and the W[2]-hardness with parameter t hold even if si = 1 for
all i. From the positive direction, we show that SCSI-t with si = 1 for
all i is fixed-parameter tractable with k as the parameter, and admits an
exact algorithm running in O(2kn ·max{k, log n}) time.

1 Introduction

Given a set of n points on a line, where each point has one of k colors, and
given an integer si → 1 for each color i, 1 ⊂ i ⊂ k, the problem Shortest
Color-Spanning t Intervals (SCSI-t) aims at finding t intervals to cover at
least si points of each color i, such that the maximum length of the intervals is
minimized.

Chen and Misiolek [3] introduced the problem SCSI-1, and presented an algo-
rithm running inO(n) time if the input points are sorted. Khanteimouri et al. [13]
gave an O(n2 logn) time algorithm for the special case of SCSI-2 with si = 1 for
all colors i. Our first result in this paper is an improved algorithm for SCSI-2
with arbitrary si → 1:

Theorem 1. SCSI-2 admits an exact algorithm running in O(n2) time.

The problems SCSI-1 and SCSI-2 naturally generalize to SCSI-t for t → 1.
Our next theorem shows that SCSI-t is intractable in a very strong sense:
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Theorem 2. Approximating SCSI-t within any ratio is NP-hard when t is part
of the input, is W[2]-hard when t is the parameter, and is W[1]-hard with both
t and k as parameters. Moreover, the NP-hardness and the W[2]-hardness with
parameter t hold even if si = 1 for all i.

Optimization problems that are hard to approximate within any ratio are no
longer a novelty. A recent example is the exemplar distance problem in compar-
ative genomics; see [11] and the references therein. The study of intractability
combining both parameterized complexity and approximation hardness is not
new either; see e.g. [15]. But to our best knowledge, SCSI-t is the first natural
problem that is known to be intractable in the special way that obtaining any
approximation is W[2]-hard.

In contrast to the very negative result in Theorem 2, our following theorem
shows that the special case of SCSI-t with si = 1 for all i is fixed-parameter
tractable when the parameter is the number k of colors:

Theorem 3. The special case of SCSI-t with si = 1 for all i admits an exact
algorithm running in O(2kn ·max{k, logn}) time.

In particular, we can solve SCSI-t with si = 1 for all i in O(n logn) time if
k is a constant, and in O(n2 logn) time if k ⊂ logn. Thus the problem SCSI-t
may still be manageable in practice.

1.1 Related Work

Instead of finding t intervals to cover at least si → 1 points of each color i as in
SCSI-t, another generalization of the problem SCSI-1 aims at finding one geo-
metric object to cover at least si → 1 points of each color i in the plane rather
than on a line. This planar problem is typically studied with si = 1 for all colors
i. Abellanas et al. [1] proposed an O(n(n − k) log2 k) time algorithm for com-
puting the smallest (by perimeter or area) axis-parallel rectangle that contains
at least one point of each color. Das et al. [6] gave an improved algorithm with
O(n(n− k) log k) time for this problem, and moreover gave an O(n3 log k) time
algorithm for computing the smallest color-spanning rectangle of arbitrary orien-
tation. Khanteimouri et al. [14] gave anO(n log2 n) time algorithm for computing
the smallest color-spanning axis-parallel square. Algorithms for computing the
smallest color-spanning strips were also given in [1,6]. Recently, Barba et al. [2]
considered the related problem of computing a region (e.g., rectangle, square, or
disc) that contains exactly si points of each color i.

Given a set of colored points, a color-spanning set is a subset of the input
points including at least one point of each color. The various color-spanning
problems can be viewed as finding a color-spanning set such that certain geo-
metric property of the set is optimized. In this framework, Fleischer and Xu [9,10]
gave polynomial time algorithms for finding a minimum-diameter color-spanning
set under the L1 or L→ metric, and proved that the problem is NP-hard for all
Lp with 1 < p < ≡. Ju et al. [12] gave an efficient algorithm for computing a
color-spanning set with the maximum diameter, and proved that several other
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problems are NP-hard, e.g., finding the color-spanning set with the largest clos-
est pair. Fan et al. [7] studied the problem of finding a color-spanning set with
the minimum connection radius in the corresponding disk intersection graph.

2 An O(n2)-Time Exact Algorithm for SCSI-2

In this section we prove Theorem 1. We present an O(n2) time algorithm for solv-
ing the problem SCSI-2, which improves the O(n2 log n) time algorithm in [13].

Let P = {p1, p2, . . . , pn} be a set of n points given on a line L, say, the x-axis,
sorted from left to right. Each point pi has one of k colors. A line segment on
L is also called an interval of L. We say an interval of L covers a point if the
point is on the interval. The problem SCSI-2 is to find two intervals on L to
cover at least si points of each color i with 1 ⊂ i ⊂ k such that the maximum
length of the intervals is minimized. In the following, we assume that for any i,
the number of points of color i in P is at least si, since otherwise there would
be no solution for the problem.

If two intervals of L together cover at least si points of each color i in P , then
we say the two intervals form a feasible solution for SCSI-2. For any interval I,
let d(I) denote the length of I. An interval I1 is said to be longer than another
interval I2 if and only if d(I1) → d(I2). We first prove the following lemma:

Lemma 1. There must exist an optimal solution for the problem SCSI-2 that
consists of two intervals such that the longer interval have both left and right
endpoints in P .

Proof. Consider any optimal solution for SCSI-2 that consists of two intervals I1
and I2. If both the left and right endpoints of both I1 and I2 are in P , then we
are done with the proof. Otherwise, without loss of generality, assume the left
endpoint of I1 is not at any point of P . Then, we can shrink I1 by moving its
left endpoint rightwards for an infinitesimal distance such that the new interval
I ≥1 covers the same subset of points of P as I1 does (e.g., see Fig. 1). Clearly, I ≥1
and I2 together still form a feasible solution.

I1

I ∈
1

L

Fig. 1. Illustrating an example for the proof of Lemma 1: the left endpoint of interval
I1 is not at any point of P . We can obtain another interval I ⊕1 by moving the left
endpoint of I1 rightwards for an infinitesimal distance such that I ⊕1 and I1 cover the
same subset of points of P .

If some endpoints of I ≥1 and I2 are not in P , then we use the same technique as
above to shrink them. Eventually, we can obtain two intervals I ≥≥1 and I ≥≥2 whose
endpoints are all in P and they form a feasible solution. Since d(I ≥≥1 ) ⊂ d(I1),
d(I ≥≥2 ) ⊂ d(I2), and I1 and I2 form an optimal solution, the two new intervals I ≥≥1
and I ≥≥2 must also form an optimal solution. The lemma thus follows. ≥∪
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Definition 1. For any interval I on L, I is a candidate interval if there is
another interval I ≥ such that

1. d(I ≥) ⊂ d(I),
2. I and I ≥ form a feasible solution for SCSI-2.

Given any interval I, we can determine whether I is a candidate interval in
O(n) time in the following way. First, we discard all points from P whose colors
have already been covered by I. Let s≥i be the number of points covered by I for
each color i. Second, we find a shortest interval I ≥ that covers at lease si − s≥i
points of each color i among the remaining points of P . Finally, I is a candidate
interval if and only if d(I ≥) ⊂ d(I). The first step and computing s≥i for all i can
be easily done in O(n) time. The second step is essentially the problem SCSI-1,
which can be done in O(n) time [3].

Let I denote the set of all intervals each of which has its two endpoints in P .
Clearly, |I| = Θ(n2). Lemma 1 implies that we can solve the problem SCSI-2 by
finding the shortest candidate interval in I. Let I∪ denote the shortest candidate
interval in I. Since |I| = Θ(n2), if we check every interval of I, then we can
solve the problem SCSI-2 in O(n3) time. In the following we present an O(n2)
time algorithm for finding I∪.

For any 1 ⊂ i ⊂ j ⊂ n, denote by Iij the interval with left endpoint at pi and
right endpoint at pj. For any 1 ⊂ i ⊂ n, let Ii = {Iij | i ⊂ j ⊂ n}. Therefore,
the sets Ii for i = 1, . . . , n form a partition of I. For each 1 ⊂ i ⊂ n, let I∪i be the
shortest candidate interval in Ii. Hence, I∪ is the shortest interval among the
intervals I∪1 , I

∪
2 , . . . , I

∪
n. In the sequel we compute these intervals I∪1 , I

∪
2 , . . . , I

∪
n in

O(n2) time.
For each 1 ⊂ i ⊂ n, let h(i) be the smallest index j such that I∪i = Iij . Note

that since d(Iij) is monotonically increasing as j increases from i to n, h(i) is
also the smallest index j such that Iij is a candidate interval. The following
lemma, which is crucial to our algorithm, shows a monotonicity property of the
indices h(i):

Lemma 2. It holds that h(1) ⊂ h(2) ⊂ · · · ⊂ h(n).

Proof. Consider any i with 1 ⊂ i ⊂ n− 1. Below we show that h(i) ⊂ h(i + 1),
which will prove the lemma. Let j = h(i). Note that i ⊂ j holds. If i = j, then
h(i+1) → h(i) simply follows since h(i+1) → i+1. In the following, we assume
i+ 1 ⊂ j.

To prove h(i + 1) → j, it is sufficient to show that Ii+1,m for any m < j
is not a candidate interval. Assume to the contrary that Ii+1,m is a candidate
interval for some m with m < j, which implies that i+2 ⊂ j because i+1 ⊂ m.
According to the definition of the candidate interval, there is another interval I
such that d(I) ⊂ d(Ii+1,m) and I and Ii+1,m together form a feasible solution.

Consider the interval Iim, which covers one more point that Ii+1,m does, i.e.,
the point pi. Therefore, I and Iim also form a feasible solution. Since d(I) ⊂
d(Ii+1,m) and d(Ii+1,m) ⊂ d(Iim), we have d(I) ⊂ d(Iim). This implies that the
interval Iim is also a candidate interval. But since m < j, it contradicts with
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the definition of j = h(i) (i.e., h(i) is the smallest index such that Ii,h(i) is a
candidate interval).

The lemma thus follows. ≥∪
Based on the preceding lemma, our algorithm works as follows.
For convenience of discussion, we let h(0) = 1. For any 0 ⊂ i ⊂ n− 1, suppose

h(i) has already been computed. According to Lemma 2, to compute h(i+1), we
only need to check the intervals Ii+1,j in Ii+1 for j = h(i), h(i) + 1, · · · , to find
the smallest index j such that Ii+1,j is a candidate interval, and the above index
j is h(i+1) and the above candidate interval is I∪i+1. Therefore, we can find the
n intervals I∪i for i = 1, 2, . . . , n by checking only O(n) intervals of I in total and
for each such interval, we can check whether it is a candidate interval in O(n)
time, as discussed earlier. Hence, we can find all intervals I∪i for i = 1, 2, . . . , n
in a total of O(n2) time. Consequently, the shortest candidate interval I∪ of I
and an optimal solution for SCSI-2 can be computed in additional O(n) time.
Theorem 1 is thus proved.

3 Intractability of SCSI-t

In this section we prove Theorem 2.

3.1 W[2]-hardness with Parameter t

We show that approximating SCSI-t within any ratio is NP-hard when t is part
of the input, and moreover is W[2]-hard when t is the parameter, even for the
special case of SCSI-t with si = 1 for all i. This is achieved by a polynomial
FPT reduction from the NP-hard andW[2]-hard problemColorful Red-Blue
Dominating Set [5].

Given a bipartite graph G = (R ◦ B,E) where each vertex in R has one of
κ̂ colors, Colorful Red-Blue Dominating Set is the problem of deciding
whether there exists a colorful dominating set D of κ̂ vertices in R, including
exactly one vertex of each color, such that each vertex in B is adjacent to at least
one vertex in D. Put n̂r = |R|, n̂b = |B|, and m̂ = |E|. Our reduction constructs
a colored point set of n = n̂r + m̂ points with k = κ̂ + n̂b colors, including one
r-color i for each color i of the vertices in R, and one b-color v for each vertex
v in B.

Place n points in n̂r clusters, one cluster for each vertex in R. For each vertex
u of color i in R, the cluster for u contains one point of r-color i, and contains
one point of b-color v for each vertex v in B that is adjacent to u. Arrange the
clusters of points such that the maximum distance between two points in each
cluster is 1, and that the minimum distance between two points from different
clusters is γ > 1. Set t = κ̂. Refer to Figure 2 for an example.

The reduction can be easily made polynomial; it is also an FPT reduction
with parameter t since t is a function of κ̂ only. The following two lemmas imply
that it is both NP-hard and W[2]-hard (with parameter t) to approximate SCSI-
t for the special case when si = 1 for all i within γ for any approximation ratio
γ > 1:
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Fig. 2. A graph with κ̂ = 2, n̂r = 3, n̂b = 5, and m̂ = 9. The corresponding three
clusters are {1, v, w, x}, {1, w, x, y, z}, and {2, y, z}. The two vertices for {1, v, w, x}
and {2, y, z} are a colorful dominating set.

Lemma 3. There is a colorful dominating set of size κ̂ in the graph only if there
is a color-spanning set of t intervals for the colored points with maximum length
1.

Proof. Given a colorful dominating set in the graph, the κ̂ clusters corresponding
to the κ̂ vertices in the dominating set clearly span all colors of the points, and
each cluster can be covered with an interval of length 1. ≥∪

Lemma 4. There is a colorful dominating set of size κ̂ in the graph if there is
a color-spanning set of t intervals for the colored points with maximum length
less than γ.

Proof. Given a color-spanning set of t = κ̂ intervals with maximum length less
than γ, each interval can cover points from at most one cluster due to the
restriction on the maximum interval length. Thus to span all κ̂ r-colors of the
points, each of the κ̂ intervals must cover a point of a distinct r-color in a distinct
cluster. Since all n̂b b-colors of the points are spanned by the κ̂ intervals, the κ̂
vertices in R corresponding to the κ̂ clusters must dominate all n̂b vertices in
B. ≥∪

Note that the approximation lower bound γ can be arbitrarily large: it can
even be a function of the instance size for the SCSI-t problem; indeed with
suitable (say, binary) encoding of the interval coordinates as rational numbers,
the lower bound can be exponential in the size of the problem instance. Moreover,
if the colored points are allowed to coincide, or equivalently, if each point can
have more than one color, then each cluster in our reduction can be compressed
into a single point, and consequently the problem cannot be approximated at
all.

3.2 W[1]-hardness with Parameters t and k

We show that approximating SCSI-t within any ratio is W[1]-hard with pa-
rameters t and k by an FPT reduction from the W[1]-hard problem Colored
Clique [8]. Given a graph G = (V,E) where each vertex has one of κ̂ colors,
Colored Clique is the problem of deciding whether there exists in G a colored
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Fig. 3. A graph with κ̂ = 3, n̂ = 5, and m̂ = 6. The five vertices v11 ,
v12 , v13 , v21 , v22 correspond to the five vertex clusters (here jip1 and jip2 mean p
points of colors ji1 and ji2, respectively) {1, 2111, 2142, 3111, 3142}, {2, 1211, 1242, 3211, 3242},
{3, 1311, 1342, 2311, 2342}, {1, 2121, 2132, 3121, 3132}, {2, 1221, 1232, 3221, 3232}. The six edges
{v11 , v12}, {v11 , v13}, {v12 , v13}, {v12 , v21}, {v13 , v22}, {v21 , v22} correspond to the six
edge clusters {12, 2141, 2112, 1241, 1212}, {13, 3141, 3112, 1341, 1312}, {23, 3241, 3212, 2341, 2312},
{12, 2131, 2122, 1241, 1212}, {23, 3231, 3222, 2341, 2312}, {12, 2131, 2122, 1231, 1222}, The colored
clique consisting of the three vertices v11 , v

1
2 , v

1
3 and the three edges {v11 , v12}, {v11 , v13},

{v12 , v13} correspond to three vertex clusters and three edge clusters whose union is
{1, 2, 3, 12, 13, 23, 1251, 1252, 2151, 2152, 1351, 1352, 3151, 3152, 2351, 2352, 3251, 3252}.

clique of κ̂ pairwise-adjacent vertices including exactly one vertex of each color.
Put n̂ = |V | and m̂ = |E|. For each i, 1 ⊂ i ⊂ κ̂, let n̂i denote the number of
vertices of color i, and let v1i , . . . , v

n̂i

i denote these vertices.

Our reduction constructs a colored point set with k = κ̂+
(
Σ̂
2

)
+ 4 ·

(
Σ̂
2

)
colors

of three types (i.e., vertex type, edge type, and consistency type):

– one vertex color i for each color i of the vertices in V ;
– one edge color ij with i < j for each unordered pair of colors {i, j} of the

edges in E;
– four consistency colors ji1, ji2, ij1, ij2 for each unordered pair of colors

{i, j} of the edges in E.

Place n = n̂ + m̂ + (κ̂ − 1)n̂ · n̂ + 2n̂ · m̂ points in n̂ + m̂ clusters, including
exactly one vertex cluster for each vertex in V , and exactly one edge cluster for
each edge in E:

– For each vertex of color i in V , put a point of vertex color i in the corre-
sponding vertex cluster.

– For each edge of color pair {i, j} in E, put a point of edge color ij in the
corresponding edge cluster.

– For each vertex vpi in V , and for each color j ⊆= i, put p points of consistency
color ji1 and n̂ − p points of consistency color ji2 in the vertex cluster for
vpi .

– For each edge e = {vpi , v
q
j } in E, put n̂− p points of consistency color ji1, p

points of consistency color ji2, n̂ − q points of consistency color ij1, and q
points of consistency color ij2 in the edge cluster for e.

Arrange the clusters of points such that the maximum distance between two
points in each cluster is 1, and that the minimum distance between two points
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from different clusters is γ > 1. Set t = κ̂+
(
Σ̂
2

)
, then set the required number of

points to be covered to 1 for each vertex color and for each edge color, and to n̂
for each consistency color. Refer to Figure 3 for an example.

The reduction is FPT with both t and k as parameters since they are functions
of κ̂ only. The following two lemmas, analogous to Lemmas 3 and 4, imply that it
is W[1]-hard to approximate SCSI-t within γ for any approximation ratio γ > 1:

Lemma 5. There is a colored clique of size κ̂ in the graph only if there is a
color-spanning set of t intervals for the colored points with maximum length 1.

Proof. Given a colored clique in the graph, it is straightforward to verify that
the t = κ̂ +

(
Σ̂
2

)
clusters, including the κ̂ vertex clusters for the κ̂ vertices and

the
(
Σ̂
2

)
edge clusters for the

(
Σ̂
2

)
edges in the clique, span all colors of the points,

and moreover each cluster can be covered with an interval of length 1. ≥∪

Lemma 6. There is a colored clique of size κ̂ in the graph if there is a color-
spanning set of t intervals for the colored points with maximum length less than
γ.

Proof. Given a color-spanning set of t = κ̂+
(
Σ̂
2

)
intervals with maximum length

less than γ, each interval can cover points from at most one cluster due to the
restriction on the maximum interval length. Thus to span the κ̂ vertex colors
and the

(
Σ̂
2

)
edge colors of the points, each of the κ̂+

(
Σ̂
2

)
intervals must cover a

point of a distinct vertex color or a distinct edge color in a distinct cluster.
To show that the set V ≥ of κ̂ vertices and the set E≥ of

(
Σ̂
2

)
edges corresponding

to these κ̂+
(
Σ̂
2

)
clusters form a colored clique of size κ̂, it remains to prove that

they are consistent, that is, for each edge e = {vpi , v
q
j } in E≥, the two vertices vpi

and vqj must be in V ≥. But this property is clearly ensured by our requirement
that at least n̂ points of each of the four consistency colors ji1, ji2, ij1, ij2 must
be covered. ≥∪

4 An FPT Algorithm for SCSI-t with si = 1 for All i

In this section we prove Theorem 3. We show that the special case of SCSI-t with
si = 1 for all i is fixed-parameter tractable when the parameter is the number
k of colors, and admits an exact algorithm running in O(2kn · max{k, logn})
time. In the following of this section, unless otherwise stated, SCSI-t refers to
the special case when si = 1 for all i.

Let P = {p1, p2, . . . , pn} be a set of n points on a line, say, the x-axis, sorted
from left to right. Each point pi has one of k colors.

We first have the following lemma, which generalizes Lemma 1:

Lemma 7. There must exist an optimal solution for the problem SCSI-t that
consists of t intervals such that a longest interval have both left and right end-
points in P .
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For any two indices i and j with 1 ⊂ i ⊂ j ⊂ n, let dij be the distance between
the points pi and pj . Let D be the set of the distances dij for all 1 ⊂ i ⊂ j ⊂ n.
Let λ∪ be the maximum length of the intervals in any optimal solution of the
problem SCSI-t. By Lemma 7, λ∪ ∀ D holds.

To solve SCSI-t, we will first give a decision algorithm to determine whether
d → λ∪ for any given distance d, without knowing λ∪. With the decision al-
gorithm, we can find λ∪ by doing binary search after sorting the values of D.
However, since |D| = Θ(n2), to avoid the quadratic time, we represent D im-
plicitly in such a way that λ∪ can be found by calling the decision algorithm
O(log n) times, and we achieve this by using a technique called binary search on
sorted arrays [4].

We define the decision problem of SCSI-t as follows: Given a distance value
d, determine whether d → λ∪, which is equivalent to determining whether there
exists a color-spanning set of t intervals with uniform length d. In the sequel,
we present an algorithm for solving the decision problem, and we refer to the
algorithm as the decision algorithm.

Our decision algorithm consists of two main steps. The second step is a dy-
namic programming procedure, and the first step can be considered as a prepro-
cessing for the second step. Let d be any given distance value.

In the first step, for each i with 1 ⊂ i ⊂ n, we compute the following in-
formation: (1) an index g(i), which is smallest index j such that the points
pj , pj+1, . . . , pi are covered by Iri , where I

r
i is the interval of length d with right

endpoint at pi (e.g., see Fig. 4), and (2) a color set Ci that consists of the colors
of the points covered by the interval Iri .

pipjpj−1

Iri

Fig. 4. Illustrating the definition of the index g(i). Iri is an interval of length d with
right endpoint at pi and its left endpoint is between pj−1 and pj . The index g(i) is j
in this example.

The indices g(i) for all i = 1, 2, . . . , n can be easily computed in O(n) time
by scanning all points from right to left. Below we focus on computing the color
sets Ci for all i = 1, 2, . . . , n .

The first issue is how to maintain the color set Ci. For simplicity, we use a
k-sized array Ci[1, 2, . . . , k] to represent Ci in the way that Ci[j] = 1 if and only
if the j-th color is in Ci. To compute Ci, we sweep the points of P from right
to left by using an interval I of length d. During the sweeping, for each color we
maintain the number of points of that color covered by the current interval I.
Suppose we have just computed the set Ci and the right endpoint of I is now
at pi. To compute Ci−1, we first copy all values of the array Ci to Ci−1. Then,
we keep sweeping I leftwards. Since pi will not be in I, we decrease the number
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for the color of pi by 1 and if this number becomes zero, we set the value for
that color in Ci−1 to zero. During the sweeping, if the left endpoint point of I
encounters a point p of P , then we increase the number for the color of p by
1 and if this number was originally zero (and now becomes 1), then we set the
value for that color in Ci−1 to 1. We keep sweeping I until the right endpoint of
I encounters a point, which is pi−1. At this moment, we have obtained Ci−1. In
this way, we can compute all color sets Ci for i = 1, 2, . . . , n in O(nk) time and
space.

Note that one may wonder that there may be other better implementations for
the first step. We should point out that here we only want to give an algorithm
that is simple because the running time and the space of the entire decision
algorithm is dominated by the second step anyway.

Hence, in the first step, we compute the index g(i) and the color set Ci for all
i = 1, 2, . . . , n, which takes O(nk) time and space.

The second step of our decision algorithm is a dynamic programming proce-
dure. Let C be the set of all k colors. For each subset S of C, for any 1 ⊂ i ⊂ n,
denote by N [S, i] the minimum number of intervals of length d for covering at
least one point of each color in S among the points p1, p2, . . . , pi. Note that
d → λ∪ if and only if N [C, n] ⊂ t. We have the following recurrence

N [S, i] = min{N [S, i− 1], N [S \ Ci, g(i)− 1] + 1}

with the base case N [∩, i] = 0. The recurrence distinguishes two cases: either
the point pi is not covered, or it is the last point covered by (without loss of
generality it is the right endpoint of) an interval of length d, which covers points
from pg(i) to pi with color set Ci, according to the definitions of g(i) and Ci.

By representing the color set S as an array of size k as in the first step,
the running time of the dynamic programming procedure is O(2kk n): the table
N [S, i] has 2kn entries; each entry takes O(k) time to compute since g(i) and
Ci have been computed in the first step and the set minus operation S \ Ci

takes O(k) time. In addition, with standard techniques, the actual intervals
in the corresponding solution can be computed in the same amount of time
asymptotically.

In summary, we can solve the decision problem in O(2kk n) time.
By exploring the power of RAM, we can further improve the running time

of our above decision algorithm to O(2kn∅k/ logn↓). Specifically, suppose we
work in a standard word RAM model with word size w → logn, such that each
bitwise logical operation on computer words can be done in constant time. Then
we represent a color set by a sequence of k bits, which can be stored in ∅k/ logn↓
words. In this way, the first step of the algorithm can be done in O(n∅k/ logn↓)
time because each update on any color set takes O(∅k/ logn↓) time (and there
are O(n) updates in total). For the second step, we claim that each set minus
operation on S \Ci can be done in O(∅k/ logn↓) time. Indeed, suppose we want
to do a set minus operation A \ B on two computer words A and B (e.g., if
A = 10011 and B = 01001, then A \ B = 10010); one can easily verify that
we can obtain A \ B by first doing a bitwise complement operation on B and
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then doing a bitwise AND operation on A and the new B. Since each bitwise
operation takes constant time, we can obtain A \ B in constant time. Hence,
since the set minus operation S \ Ci in our problem is on ∅k/ logn↓ words, we
can perform each such operation in O(∅k/ logn↓) time. Thus, the second step of
our decision algorithm takes O(2kn∅k/ logn↓) time.

Therefore, we obtain the following lemma:

Lemma 8. For any given distance d, we can determine whether d → λ∪ in
O(2kn∅k/ logn↓) time.

In the following, we solve the problem SCSI-t by using the above decision
algorithm. As mentioned above, a straightforward approach is to compute the
set D and sort all values in D; the value λ∪ can be computed by using bi-
nary search and our decision algorithm. The total running time is O(n2 logn+
2kn∅k/ logn↓ logn). Below, we present a faster algorithm by using the technique
binary search on sorted arrays [4], without computing the set D explicitly.

The technique binary search on sorted arrays is used for solving the following
problem. Suppose there is a “black-box” decision procedure Π available, such
that given any value a, Π can report whether a is a feasible value (with respect
to a certain problem) in O(T ) time, and further, if a is a feasible value, then
any value larger than a is a feasible value. Given M arrays Ai, 1 ⊂ i ⊂M , each
containing O(N) values in sorted order, the goal is to find the smallest feasible
value δ in ◦M

i=1Ai. An algorithm is given in [4] that can compute the value δ in
O((M + T ) log(MN)) time. The algorithm is similar in spirit to the linear time
selection algorithm; refer to Lemma 13 in [4] for the details.

In our problem, we consider our decision algorithm as the decision procedure
Π , with T = O(2kn∅k/ logn↓). A value d is considered as a feasible value if
and only if d → λ∪. Hence, if d is a feasible value, any value larger than d is
also feasible. Note that λ∪ is the smallest feasible value in D. For each 1 ⊂
i ⊂ n, we define the set Di as {dij | i ⊂ j ⊂ n}. Hence, the sets Di for all
i = 1, 2, . . . , n form a partition of D. Note that each set Di can be considered
as a sorted array of size O(n) since for any two indices j1 ⊂ j2, it holds that
di,j1 ⊂ di,j2 ; further, given any index j, the value dij can be obtained in constant
time. Our goal is to compute λ∪, which is the smallest feasible value in D =
◦n
i=1Di. Hence, by using the algorithm in [4], we can compute λ∪ in O(n log n+

2kn∅k/ logn↓ logn) = O(2kn∅k/ logn↓ logn) time. After having λ∪, an actual
solution set of color-spanning intervals can be found by applying the decision
algorithm on d = λ∪, in additional O(2kn∅k/ logn↓) time. Hence, the overall
running time for solving SCSI-t is O(2kn∅k/ logn↓ logn). Note that if k → logn,
then O(2kn∅k/ logn↓ logn) is O(2kk n); otherwise, it is O(2kn logn). Therefore,
the overall running time is O(2kn ·max{k, logn}). Theorem 3 is thus proved.

Note that in a pointer machine model, the decision algorithm runs in O(2kk n)
time, and therefore, by using the above technique of binary search on sorted
arrays, we can solve the problem SCSI-t in O(2kk n logn) time.
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Abstract. To enumerate 3-manifold triangulations with a given prop-
erty, one typically begins with a set of potential face pairing graphs (also
known as dual 1-skeletons), and then attempts to flesh each graph out
into full triangulations using an exponential-time enumeration. However,
asymptotically most graphs do not result in any 3-manifold triangula-
tion, which leads to significant “wasted time” in topological enumeration
algorithms. Here we give a new algorithm to determine whether a given
face pairing graph supports any 3-manifold triangulation, and show this
to be fixed parameter tractable in the treewidth of the graph.

We extend this result to a “meta-theorem” by defining a broad class of
properties of triangulations, each with a corresponding fixed parameter
tractable existence algorithm. We explicitly implement this algorithm in
the most generic setting, and we identify heuristics that in practice are
seen to mitigate the large constants that so often occur in parameterised
complexity, highlighting the practicality of our techniques.

1 Introduction

In combinatorial topology, a triangulated 3-manifold involves abstract tetrahedra
whose faces are identified or “glued” in pairs. Many research questions involve
looking for a triangulated manifold which fits certain requirements, or is patho-
logically bad for certain algorithms, or breaks some conjecture. One invaluable
tool for such tasks is an exhaustive census of triangulated 3-manifolds.

The first of these was the census of cusped hyperbolic 3-manifold triangula-
tions on → 5 tetrahedra by Hildebrand and Weeks [18] in 1989, later extended
to → 9 tetrahedra [8,12,27]. Another much-used example is the census of closed
orientable prime minimal triangulations of → 6 tetrahedra by Matveev [24], later
extended to → 12 tetrahedra [22,23].

In all of these prior works, the authors enumerate all triangulated manifolds
on n tetrahedra by first enumerating all 4-regular multigraphs on n nodes (very
fast), and then for each graph G essentially modelling every possible triangula-
tion with G as its dual graph (very slow). If any such triangulation built from
G is the triangulation of a 3-manifold, we say that G is admissible. If G admits
a 3-manifold triangulation with some particular property p, we say that G is
p-admissible.

� Supported by the Australian Research Council (DP1094516, DP110101104).
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Using state-of-the-art public software [9], generating such a census on 12 tetra-
hedra takes 1967 CPU-days, of which over 1588 CPU-days is spent analysing
non-admissible graphs. Indeed, for a typical census on → 10 tetrahedra, less than
1% of 4-regular graphs are admissible [7]. Moreover, Dunfield and Thurston [17]
show that the probability of a random 4-regular graph being admissible tends
toward zero as the size of the graph increases. Clearly an efficient method of
determining whether a given graph is admissible could have significant effect on
the (often enormous) running time required to generating such a census.

We use parameterized complexity [16] to address this issue. A problem is fixed
parameter tractable if, when some parameter of the input is fixed, the problem
can be solved in polynomial time in the input size. In Theorem 14 we show that
to test whether a graph G is admissible is fixed parameter tractable, where the
parameter is the treewidth of G. Specifically, if the treewidth is fixed at → k and
G has size n, we can determine whether G is admissible in O(n · f(k)) time.

Courcelle showed [14,13] that for graphs of bounded treewidth, an entire class
of problems have fixed parameter tractable algorithms. However, employing this
result for our problem of testing admissibility looks to be highly non-trivial. In
particular, it is not clear how the topological constraints of our problem can be
expressed in monadic second-order logic, as Courcelle’s theorem requires. Even
if Courcelle’s theorem could be used, our results here provide significantly better
constants than a direct application of Courcelle’s theorem would.

Following the example of Courcelle’s theorem, however, we generalise our re-
sult to a larger class of problems (Theorem 18). Specifically, we introduce the
concept of a simple property, and give a fixed parameter tractable algorithm
which, for any simple property p, determines whether a graph admits a triangu-
lated 3-manifold with property p (again the parameter is treewidth).

We show that these results are practical through an explicit implementation,
and identify some simple heuristics which improve the running time and memory
requirements. To finish the paper, we identify a clear potential for how these ideas
can be extended to the more difficult enumeration problem, in those cases where
a graph is admissible and a complete list of triangulations is required.

Parameterised complexity is very new to the field of 3-manifold topology
[10,11], and this paper marks the first exploration of parameterised complex-
ity in 3-manifold enumeration problems. Given that 3-manifold algorithms are
often extremely slow and complex, our work here highlights a growing poten-
tial for parameterised complexity to offer practical alternative algorithms in this
field.

2 Background

To avoid ambiguity with the words “vertex” and “edge”, we use the terms node
and arc instead for graphs, and vertex and edge in the context of triangulations.

Many NP-hard problems on graphs are fixed parameter tractable in the
treewidth of the graph (e.g., [1,2,4,5,13]). Introduced by Robertson and Seymour
[26], the treewidth measures precisely how “tree-like” a graph is:
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Definition 1 (Tree decomposition and treewidth). Given a graph G, a
tree decomposition of G is a tree H with the following additional properties:

– Each node of H, also called a bag, is associated with a set of nodes of G;
– For every arc a of G, some bag of H contains both endpoints of a;
– For any node v of G, the subforest in H of bags containing v is connected.

If the largest bag of H contains k nodes of G, we say that the tree decomposition
has width k + 1. The treewidth of G, denoted tw(G), is the minimum width of
any tree decomposition of G.

Bodlaender [4] gave a linear time algorithm for determining if a graph has
treewidth → k for fixed k, and for finding such a tree decomposition, and Kloks
[21] demonstrated algorithms for finding “nice” tree decompositions.

A closed 3-manifold is essentially a topological space in which every point
has some small neighbourhood homeomorphic to R

3. We first define general
triangulations, and then give conditions under which they represent 3-manifolds.

Definition 2 (General triangulation). A general triangulation is a set of
abstract tetrahedra {Δ1, Δ2, . . . , Δn} and a set of face identifications or “gluings”
{π1, π2, . . . , πm}, such that each πi is an affine identification between two distinct
faces of tetrahedra, and each face is a part of at most one such identification.

Note that this is more general than a simplicial complex (e.g., we allow an
identification between two distinct faces of the same tetrahedron), and it need not
represent a 3-manifold. Any face which is not identified to another face is called
a boundary face of the triangulation. If a triangulation has no such boundary
faces, we say it is closed. We also note that there are six ways to identify two
faces, given by the six symmetries of a regular triangle.

We can partially represent a triangulation by its face pairing graph, which
describes which faces are identified together, but not how they are identified.

Definition 3 (Face pairing graph). The face pairing graph of a triangulation
T is the multigraph Γ (T ) constructed as follows. Start with an empty graph G,
and insert one node for every tetrahedron in T . For every face identification
between two tetrahedra Ti and Tj, insert the arc {i, j} into the graph G.

Note that a face pairing graph will have parallel arcs if there are two distinct
face identifications between Ti and Tj, and loops if two faces of the same tetra-
hedron are identified together. T is connected if and only if Γ (T ) is connected.

Some edges of tetrahedra will be identified together as a result of these face
identifications (and likewise for vertices). Some edges may be identified directly
via a single face identification, while others may be identified indirectly through
a series of face identifications.

We assign an arbitrary orientation to each edge of each tetrahedron. Given two
tetrahedron edges e and e→ that are identified together via the face identifications,
we write e ⊂ e→ if the orientations agree, and e ⊂ e→ if the orientations are
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Fig. 1. A triangulation of a 3-ball with 6 tetrahedra meeting along an internal edge

reversed. In settings where we are not interested in orientation, we write e ≡ e→

if the two edges are identified (i.e. one of e ⊂ e→ or e ⊂ e→ holds).
This leads to the natural notation [e] = {e→ : e ≡ e→} as an equivalence

class of identified edges (ignoring orientation). We refer to [e] as an edge of the
triangulation. Likewise, we use the notation v ≡ v→ for vertices of tetrahedra that
are identified together via the face identifications, and we call an equivalence class
[v] of identified vertices a vertex of the triangulation.

A boundary edge / vertex of a triangulation is an edge / vertex of the triangu-
lation whose equivalence class contains some edge / vertex of a boundary face.

The link of a vertex [v] is the (2-dimensional) frontier of a small regular
neighbourhood of [v]. Figure 1 shows the link of the top vertex shaded in grey;
in this figure, the link is homeomorphic (topologically equivalent) to a disc. The
link is a 2-dimensional triangulation (in the example it has six triangles), and we
use the term arc to denote an edge in this triangulation. In this paper, whether
“arc” refers to a graph or a vertex link is always clear from context.

Definition 4 (Closed 3-manifold triangulation). A closed 3-manifold tri-
angulation T is a general triangulation for which (i) T is connected; (ii) for any
vertex v in T , the link of v is homeomorphic to a 2-sphere; and (ii) no edge e
in T is identified with itself in reverse (i.e. e ∈⊂ e).

These properties are necessary and sufficient for the underlying topological space
to be a 3-manifold. We say that a graph G is admissible if it is the face pairing
graph for any closed 3-manifold triangulation T .

Definition 5 (Partial-3-manifold triangulation). A partial-3-manifold tri-
angulation T is a general triangulation for which (i) for any vertex v in T , the
link of v is homeomorphic to a 2-sphere with zero or more punctures; and (ii)
no edge e in T is identified with itself in reverse (i.e. e ∈⊂ e).

These are in essence “partially constructed” 3-manifold triangulations; the
algorithms of Section 4.1 build these up into full 3-manifold triangulations. Note
that the underlying space of T might not even be a 3-manifold with boundary:
there may be “pinched vertices” whose links have many punctures.

We can make some simple observations: (i) the boundary vertices of a partial
3-manifold triangulation are precisely those whose links have at least one punc-
ture; (ii) a connected partial-3-manifold triangulation with no boundary faces is
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a closed 3-manifold triangulation, and vice-versa; (iii) a partial-3-manifold tri-
angulation with a face identification removed, or an entire tetrahedron removed,
is still a partial-3-manifold triangulation.

3 Configurations

The algorithms in Section 4.1 build up 3-manifold triangulations one tetrahedron
at a time. As we add tetrahedra, we must track what happens on the boundary of
the triangulation, but we can forget about the parts of the triangulation not on
the boundary—this is key to showing fixed parameter tractability. In this section
we define and analyse edge and vertex configurations of general triangulations,
which encode exactly those details on the boundary that we must retain.

Definition 6 (Edge configuration). The edge configuration of a triangulation
T is a set Ce of triples detailing how the edges of the boundary faces are identified
together. Each triple is of the form ((f, e), (f →, e→), o), where: f and f → are
boundary faces; e and e→ are tetrahedron edges that lie in f and f → respectively;
e and e→ are identified in T ; and o is a boolean “orientation indicator” that is
true if e ⊂ e→ and false if e ⊂ e→.

This mostly encodes the 2-dimensional triangulation of the boundary, though
additional information describing “pinched vertices” is still required.

Example 7 (2-tetrahedra pinched pyramid). In all examples, we use the notation
ti : a to denote vertex a of tetrahedron ti, and ti : abc to denote face abc of
tetrahedron ti. Face identifications are denoted as ti :abc ≥ tj :def, which means
that face abc of ti is mapped to face def of tj such that a ≥ d, b≥ e and c ≥ f .

Take two tetrahedra t0 and t1, each with vertices labelled 0, 1, 2, 3, and apply
the face identifications t0 :012 ≥ t1 :012 and t0 :023 ≥ t1 :321.

The resulting triangulation is a square based pyramid with one pair of oppos-
ing faces identified (see Figure 2(a)). The final space resembles a hockey puck
with a pinch in the centre, as seen in Figure 2(b). Note that the vertex at top of
the pyramid, which becomes the pinched centre of the puck, has a link homeo-
morphic to a 2-sphere with two punctures. Therefore, although this is a partial
3-manifold triangulation, the underlying space is not a 3-manifold.

The edge configuration of this triangulation is:

{((t0 :013, 03), (t1 :013, 13), f), ((t0 :013, 01), (t1 :013, 01), t),

((t0 :013, 13), (t0 :123, 13), t), ((t0 :123, 12), (t0 :123, 23), f),

((t1 :013, 03), (t1 :023, 03), t), ((t1 :023, 02), (t1 :023, 23), f)};

here t and f represent true and false respectively.

Definition 8 (Vertex configuration). The vertex configuration Cv of a trian-
gulation T is a partitioning of those tetrahedron vertices that belong to boundary
faces, where vertices v and v→ are in the same partition if and only if v ≡ v→.
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{t0 : 1, t1 : 1}{t0 : 3}

{t0 : 0, t1 : 0} {t1 : 3}

{t0 : 2, t1 : 2}

t1
t0

(a) (b)

Fig. 2. The triangulation from Example 7. The grey shaded tetrahedron is t0. Edges are
marked with their orientations, and the double-ended arrow indicates the identification
of two opposing faces of the pyramid. The resulting space resembles a hockey puck with
the centre pinched into a point. This pinch is the vertex {t0 :2, t1 :2}.

In partial-3-manifold triangulations, vertex links may have multiple punc-
tures; the vertex configuration then allows us to deduce which punctures belong
to the same link. In essence, the vertex configuration describes how the trian-
gulation is “pinched” inside the manifold at vertices whose links have too many
punctures.

For instance, the vertex configuration of Example 7 is given by

{{t0 :0, t1 :0, t1 :3}, {t0 :1, t0 :3, t1 :1}, {t0 :2, t1 :2}}.

The partition {t0 : 2, t1 : 2} represents the pinch at the center of the “hockey
puck”.

Definition 9 (Boundary configuration). The boundary configuration C of
a triangulation T is the pair (Ce, Cv) where Ce is the edge configuration and Cv

is the vertex configuration.

Lemma 10. For b boundary faces, there are (3b)!
(3b/2)! possible edge configurations.

Proof Note that b must be even; let b = 2m. Each boundary face has three
edges, so there are 6m possible pairs (f, e) where e is an edge on a boundary
face f . Each such pair must be identified with exactly one other pair, with either
e ⊂ e→ or e ⊂ e→, and so the number of possible edge configurations is

2 · (6m− 1) · 2 · (6m− 3) · . . . · 2 · 3 · 2 · 1 =
(6m)!

(3m)!
=

(3b)!

(3b/2)!
. ∪◦

Lemma 11. For b boundary faces, the number of possible boundary configura-
tions is bounded from above by

(3b)!

(3b/2)!
·
(

2.376b

ln(3b+ 1)

)3b

.
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f
e2

e1

e3

a1

v1
a2

e4

e5

v2

Fig. 3. Part of the boundary of a triangulation. The link of the top vertex is shaded
grey; this link does not contain the vertex, but instead cradles the vertex from below.

Proof There are 3b tetrahedron vertices on boundary faces, and so the number
of possible vertex configurations is the Bell number B3b. The result now follows
from Lemma 10 and the following inequality of Berend [3]:

B3b =
1

e

≥∑

i=0

i3b

i!
<

(
2.376b

ln(3b+ 1)

)3b

. ∪◦

Corollary 12. The number of possible boundary configurations for a triangula-
tion on n tetrahedra with b boundary faces depends on b, but not on n.

The boundary configuration can be used to partially reconstruct the links of
vertices on the boundary of the triangulation. In particular:

– The edge configuration allows us to follow the arcs around each puncture of
a vertex link—in Figure 3 for instance, we can follow the sequence of arcs
a1, a2, . . . that surround the puncture in the link of the top vertex.

– The vertex configuration tells us whether two sequences of arcs describe
punctures in the same vertex link, versus different vertex links.

In this way, we can reconstruct all information about punctures in the vertex
links, even though we cannot access the full (2-dimensional) triangulations of the
links themselves. As the next result shows, this means that the boundary config-
uration retains all data required to build up a partial-3-manifold triangulation,
without knowledge of the full triangulation of the underlying space.

Lemma 13. Let T be a partial 3-manifold triangulation with b boundary faces,
and let T → be formed by introducing a new identification between two boundary
faces of T . Given the boundary configuration of T and the new face identification,
we can test whether T → is also a partial-3-manifold triangulation in O(b) time.

A full proof appears in the full version of this paper. The basic idea is to
check whether the conditions in Definition 5 are preserved. The edge configura-
tion allows us to easily test for edges identified together in reverse, and the partial
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reconstruction of the vertex links (as described above) allows us to test whether
all vertex links are still 2-spheres with zero or more punctures.

4 Algorithms and Simple Properties

Recall that the motivating problem for our work was to quickly detect whether
a given graph admits a closed 3-manifold triangulation. To this end we show:

Theorem 14. Given a connected 4-regular multigraph G, the problem of de-
termining whether there exists a closed 3-manifold triangulation T such that
Γ (T ) = G is fixed parameter tractable in the treewidth of G.

This is a special case of our more general Theorem 18, and so we do not prove
it in detail here. The basic idea is as follows.

We say that a boundary configuration C is viable for a graph G if there
exists some partial-3-manifold triangulation T with Γ (T ) = G and with C as
its boundary configuration. Our algorithm starts with an empty triangulation,
and then introduces tetrahedra and face identifications in a way that essentially
works from the leaves up to the root of the tree decomposition of G. For each
subtree in the tree decomposition we compute which configurations are viable
for the corresponding subgraph of G, and then propagate these configurations
further up the tree. The running time at each node depends only on the number
of boundary faces, which is bounded in terms of the bag size and thereby tw(G).

4.1 A Generalisation to Simple Properties

Here we generalise Theorem 14 to many other settings. For this we define a
simple property of a partial 3-manifold triangulation (see below).

We extend boundary configurations to include an extra piece of data φ based
on the partial triangulation that helps test our property. For instance, if p is
the simple property that the triangulation contains → 3 internal vertices, then φ
might encode the number of internal vertices thus far in the partial 3-manifold
triangulation (here φ takes one of the values 0, 1, 2, 3, too many).

As before: for a simple property p, we say that a boundary configuration C
is p-viable for a graph G if there exists some partial-3-manifold triangulation T
with property p, with Γ (T ) = G and with C as its boundary configuration.

Shortly we solve the problem of testing whether a graph G admits any closed
3-manifold triangulation with property p, for any simple property p. The basic
idea is as before: for each subtree of our tree decomposition of G, we compute
all viable configurations and propagate this information up the tree.

Definition 15 (Simple property). A boolean property p of a partial-3-mani-
fold triangulation is called simple if all of the following hold. Here all configura-
tions have → b boundary faces, and f, g, h are some computable functions.

1. The extra data φ in the boundary configuration satisfies φ ⊆ P for some
universal set P with |P | → f(b).
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2. We can determine whether a triangulation satisfies p based only on its bound-
ary configuration (including the extra data φ).

3. Given any viable configuration and a new face identification π between two
of its boundary faces, we can in O(g(b)) time test whether introducing this
identification yields another viable configuration and, if so, calculate the cor-
responding value of φ.

4. Given viable configurations for two disjoint triangulations, we can in O(h(b))
time test whether the configuration for their union is also viable and, if so,
calculate the corresponding value of φ.

The four conditions above can be respectively interpreted as meaning:

1. the upper bound on the number of viable configurations (including the data
φ) still depends on b but not the number of tetrahedra;

2. we can still test property p without examining the full triangulation;
3. new face identifications can still be checked for p-viability in O(g(b)) time;
4. configurations for disjoint triangulations can be combined in O(h(b)) time.

Example 16. Let p be the property that a triangulation contains at most x in-
ternal vertices (i.e., vertices with links homeomorphic to a 2-sphere), for some
fixed integer x. Then p is simple.

Here we define φ ⊆ P = {0, 1, . . . , x, too many} to be the number of vertices
in our partial 3-manifold triangulation with 2-sphere links. This clearly satisfies
conditions 1 and 2. For condition 3: when identifying two faces together, a new
vertex acquires a 2-sphere link if and only if the identification closes off all
punctures in the link (which we can test from the edge and vertex configurations).
Condition 4 is easily satisfied by summing φ over the disjoint configurations.

The case when x = 1 is highly relevant: much theoretical and computational
work has gone into 1-vertex triangulations of 3-manifolds [19,23], and these are
of particular use when searching for 0-efficient triangulations [20].

We can now state the main result of this paper:

Problem 17 p-admissibility(G) Let p be a simple property. Given a connected
4-regular multigraph G, determine whether there exists a closed 3-manifold tri-
angulation T with property p such that Γ (T ) = G.

Theorem 18. Let p be a simple property. Given a connected 4-regular multi-
graph G on n nodes with treewidth → k, and a corresponding tree decomposi-
tion with O(n) nodes where each bag has at most two children, we can solve
p-admissibility(G) in O(n · f(k)) time for some computable function f .

Our requirement for such a tree decomposition is not restrictive: Bodlaender
[4] gives a fixed parameter tractable algorithm to find a tree decomposition of
width → k for fixed k, and Kloks [21] gives an O(n) time algorithm to transform
this into a tree decomposition where each bag has at most two children. The “two
children” constraint can be relaxed; we use it here to keep the proof simple.
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A full proof appears in the full version of this paper; the main ideas are as
follows. For each bag ν of the tree decomposition we define a corresponding
subgraph GΣ of G, which contains precisely those nodes of G that do not appear
in bags outside the subtree rooted at ν. As before we use a dynamic programming
approach, working from the leaves of the tree decomposition up to the root: for
each ν we construct all viable configurations for GΣ , by combining the viable
configurations at the child nodes of ν and analysing any new face identifications
that might appear. We bound the running time at each ν by a function of the bag
size, using the properties of Definition 15 and the observation that any partial
triangulation admitted by GΣ must have → 4(tw(G) + 1) boundary faces.

Once we reach the root node of the tree decomposition, the final list contains
a p-viable configuration if and only if G admits a closed 3-manifold triangulation
with property p.

5 Implementation and Experimentation

The algorithm was implemented Java, using the treewidth library from [15]. Al-
though our theoretical bound on the number of configurations is extremely large
(Lemma 11), we store all configurations using hash maps to exploit situations
where in practice the number of viable configurations is much smaller. As seen
below, we find that such a discrepancy does indeed arise (and significantly so).

We also introduce another modification that yields significant speed improve-
ments in practice. The algorithm builds up a complete list of all viable config-
urations at each bag ν of the tree decomposition. However, for an affirmative
answer to the problem, only a small subset of these may be required. We take
advantage of this as follows.

For any bag ν with no children, configurations are computed as normal. Once
a viable configuration is found, it is immediately propagated up the tree in
a depth-first manner. This means that, rather than calculating every possible
viable configuration for every subgraph GΣ , the improved algorithm can identify
a full triangulation with property p quickly and allow early termination.

We implemented the program with p defined to be one-vertex and possibly
minimal, using criteria on the degrees of edges from [6]. This allowed us to com-
pare both correctness and timing with the existing software Regina [9]. We ran
our algorithm on all 4-regular graphs on 4, 5 or 6 nodes to verify correctness.
We see that the average time to process a graph increases with treewidth, as
expected. We also see that the number of viable configurations is indeed signifi-
cantly lower than the upper bound of Lemma 11, as we had hoped.

Regina significantly outperforms our algorithm on all of these graphs, though
these are small problems for which asymptotic behaviour plays a less important
role. What matters more is performance on larger graphs, where existing software
begins to break down.

We therefore ran a sample of 12-node graphs through our algorithm, selected
randomly from graphs which cause significant slowdown in existing software.
This “biased” sampling was deliberate—our aim is not for our algorithm to al-
ways outperform existing software, but instead to seek new ways of solving those
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difficult cases that existing software cannot handle. Here we do find success:
our algorithm was at times 600% faster at identifying non-admissible graphs
than Regina, though this improvement was not consistent across all trials. More
detailed experiments will appear in the full version of this paper.

In summary: for larger problems, our proof-of-concept code already exhibits
far superior performance for some cases that Regina struggles with. With more
careful optimisation (e.g., for dealing with combinatorial isomorphism), we be-
lieve that this algorithm would be an important tool that complements existing
software for topological enumeration.

The full source code for the implementation of this algorithm is available at
http://www.github.com/WPettersson/AdmissibleFPG.

6 Applications and Extensions

We first note that our meta-theorem is useful: here we list several simple prop-
erties p that are important in practice, with a brief motivation for each.

1. One-vertex triangulations are crucial for computation: they typically use
very few tetrahedra, and have desirable combinatorial properties. This is
especially evident with 0-efficient triangulations [20].

2. Likewise, minimal triangulations (which use the fewest possible tetrahedra)
are important for both combinatorics and computation [6,7]. Although min-
imality is not a simple property, it has many simple necessary conditions,
which are used in practical enumeration software [7,23].

3. Ideal triangulation of hyperbolic manifolds play a key role in 3-manifold
topology. An extension of Theorem 18 allows us to support several necessary
conditions for hyperbolicity, which again are used in real software [12,18].

Finally: a major limitation of all existing 3-manifold enumeration algorithms
is that they cannot “piggyback” on prior results for fewer tetrahedra, a technique
that has been remarkably successful in other areas such as graph enumeration
[25]. This is not a simple oversight: it is well known that we cannot build all
“larger” 3-manifold triangulations from smaller 3-manifold triangulations. The
techniques presented here, however, may allow us to overcome this issue—we can
modify the algorithm of Theorem 18 to store entire families of triangulations at
each bag of the tree decomposition. We would lose fixed parameter tractabil-
ity, but for the first time we would be able to cache and reuse partial results
across different graphs and even different numbers of tetrahedra, offering a real
potential to extend census data well beyond its current limitations.
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Abstract. We study the Stackelberg/bilevel knapsack problem as pro-
posed by Chen and Zhang [4]: Consider two agents, a leader and a fol-
lower. Each has his own knapsack. (Knapsack capacities are possibly
different). As usual, there is a set of items i = 1, ..., n of given weight wi

and profits pi. It is allowed to pack item i into both knapsacks, but in
this case the corresponding profit for each player becomes pi + ai, where
ai is a given (positive or negative) number. The objective is to find a
packing for the leader such that the total profit of the two knapsacks is
maximized, assuming that the follower acts selfishly. We present tight
approximation algorithms for all settings considered in [4].

1 Introduction

The standard knapsack problem is one of the most fundamental and well-studied
problems in combinatorial optimization: There is a knapsack of prescribed ca-
pacityW and n items with given size wi and profit pi. The task is to select a set
of items of total size at mostW and maximum total profit. A first bilevel variant
(in the form of a Stackelberg game) was introduced by Dempe and Richter [7]:
There are two decision makers (players) – a leader and a follower – as well as a
(universal) knapsack with flexible capacity and a set of items with given sizes as
above, yet item profits may vary w.r.t the leader and the follower, respectively.
The leader first determines the capacity of the knapsack, and afterwards the fol-
lower, assumed to be selfish, packs items to the knapsack, maximizing his own
profit. The (leader’s bilevel) problem is to compute the knapsack capacity such
that the leader’s profit – defined by a linear function of the knapsack capacity
plus his total profit of packed items – is maximized.

Several other bilevel variants of knapsack have been proposed as well. For
example, Mansi et al. [13] study a setting in which both the leader and the
follower pack items into a knapsack (of fixed capacity). DeNegre [8] investigates
a bilevel version where both players own a private knapsack each and pack items
from a common item set. Again, the leader acts first, selecting a set of items
for his own knapsack, then the follower packs items from the remaining item
set into his own knapsack, seeking to maximize his total profit. The objective of

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 312–323, 2014.
c∞ Springer International Publishing Switzerland 2014
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the (hostile) leader is to choose his set of items such that the follower’s profit is
minimized.

In this paper we consider yet another variant of the bilevel knapsack problem,
due to Chen and Zhang [4]. In this setting, again, each player has his own
knapsack of fixed capacity W1 and W2, respectively. Items 1, . . . , n have fixed
weights wi and profits pi. The characteristic feature of the model in [4] is that
items may be double-packed, i.e. packed by both players. In case item i is packed
only by one player, it accounts for a profit of pi, as usual, however, if i is packed
by both players, its profit (for both players) is modified to pi + ai for given
profit modifier ai → R. Again, the setting is that of a Stackelberg game, and the
objective is to exhibit an optimal packing for the leader, i.e., one that maximizes
the total profit assuming that the second player (the follower) acts selfishly
(disregarding the impact any double packing may have on the items packed
by the leader). As a motivating example, Chen and Zhang mention the case of
two investors, say, the government and a company with budgets W1 and W2,
respectively. Items correspond to potential projects of cost wi and reward pi,
resp. pi + ai with ai > 0 if both players invest in project i . Depending on the
application, the numbers ai may be positive or negative (“double booking”). In
case all ai are positive, Chen and Zhang [4] call it the beneficial model and if all
ai are negative, it is referred to as the competitive model.

Bilevel optimization is often computationally difficult and likely to extend be-
yond NP. In the last decades, bilevel and multilevel optimization have received
much attention in the literature (cf. books by Migdalas, Pardalos & Värbrand
[14] and Dempe [6], a survey by Colson et al. [5]). Dempe and Richter [7] intro-
duced a mixed integer bilevel program for their problem variant and proposed
an algorithm based on branch and bound. Afterwards, a dynamic programming
algorithm for this problem was given by Brotcorne et al. [1]. Recently, Caprara
et al. [2] proved that the first three problem variants mentioned above are ΩP

2 -
hard (probably the fourth one is as well), i.e., there is no way of formulating
them as single-level integer programs of polynomial size unless the polynomial
hierarchy collapses (cf. [2] for more details). In particular, they showed that the
first two variants (cf. Dempe and Richter [7], Mansi et al. [13]) do not possess
a polynomial approximation algorithm with finite worst case guarantee unless
P = NP and proposed a polynomial time approximation scheme for the third
variant (cf. DeNegre [8]), which is known as the first approximation scheme for
a ΩP

2 -hard problem. For other variants and related problems, cf. [12,18,17,9,13].
Regarding the problem to be considered in this paper, Chen and Zhang [4]

proposed a (2+ σ)-approximation algorithm for the competitive model (ai ⊂ 0),
and, for the beneficial model (ai ≡ 0), a (1+

∈
2+ σ)-approximation for the case

W1 > W2 and a (2 + σ)-approximation for the case W1 ⊂ W2.
In this paper, we present better approximation algorithms for the beneficial

model as well as the competitive model and show that the approximation ratios
are tight in each case, i.e., the approximation ratios can be made arbitrarily close
to the known lower bounds (cf. Fig. 1). The main ingredients of our approach
are: An σ-approximation of the maximum profit problem in case both players
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cases approx. ratios [4] lower bounds

ai ≤ 0 2 + Θ 1.5

ai ≥ 0
W1 > W2

W1 < W2

1 +
√
2 + Θ

2 + Θ

1.5

2

Fig. 1. Known lower bounds

cooperate – which may be of independent interest, cf. (P3) in section 2 – and a
factor revealing LP for estimating the quality of our approximation algorithms
(cf. Jain et al. [11]).

The rest of the paper is organized as follows: In the section below, we for-
mally introduce the bilevel problem (cf. (P1) in Section 2) and its “cooperative”
counterpart (cf. (P3)). In Section 3, we describe a polynomial time approxima-
tion scheme (PTAS) for the cooperative problem version (P3). In Section 4, we
present new approximation algorithms and analyze their approximation ratios.
Finally, in Section 5, we mention some open problems.

2 Bilevel Knapsack with Independent Knapsacks

LetW1,W2 be capacities of the knapsacks owned by player 1 (leader) and player
2 (follower), respectively. Let A = {1, 2, . . . , n} be a set of items of weight wi,
profit pi and “double packing modifier” ai for all i → A. Let xi, yi → {0, 1}
indicate whether item i is packed by player 1 and player 2, respectively.

Recall that the profit of item i is modified to pi + ai if i is packed by both
players. Thus the leader’s problem can be formulated as a bilevel integer program
as follows:

max
x

n∑

i=1

pi(xi + yi) + 2

n∑

i=1

aixiyi (P1)

s.t.
n∑

i=1

wixi ⊂ W1,

xi → {0, 1} , i = 1, 2, . . . , n,

y is an optimal solution of (P2) below.

max
y

n∑

i=1

piyi +

n∑

i=1

aixiyi (P2)

s.t.
n∑

i=1

wiyi ⊂ W2,

yi → {0, 1} , i = 1, 2, . . . , n.

Note that for fixed x there may exist multiple corresponding optimal solutions
y for player 2. In our analysis, we always assume a worst case scenario, i.e. we
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focus on a “pessimistic” version of the above bilevel problem, where player 2
chooses an optimal solution y of (P2) minimizing the objective of (P1). We call
the outcome of this pessimistic version the competitive optimum and – as in the
paper by Chen and Zhang [4] – compare it to the so-called cooperative optimum,
i.e., the maximum total profit the two players could achieve. The latter can be
expressed by a (single level) integer program

max

n∑

i=1

pi(xi + yi) + 2

n∑

i=1

aixiyi (P3)

s.t.

n∑

i=1

wixi ⊂W1,

n∑

i=1

wiyi ⊂ W2,

xi, yi → {0, 1} .

Example. Consider two knapsacks of capacity W1 = 1 (for the leader) and ca-
pacity W2 = 2 (for the follower). The item set contains two items of weights
w1 = 1, w2 = 2, profits p1 = 2, p2 = 1 and modifiers a1 = −1 (a2 is arbitrary).

Observe that player 1 only has two options: Packing item 1 or packing nothing.
If player 1 packs item 1, then player 2 gets a maximal profit 1 by either packing
item 1 or item 2, resulting in a total profit 2 or 3 respectively. If player 1 packs
nothing, then player 2 packs item 1, resulting in a total profit 2. Thus, the
cooperative optimum may be as large as 1.5 times the competitive optimum. We
aim at showing that this example is a worst case example in the sense that if all
modifiers ai are negative, then the ratio between the cooperative and competitive
optimum is bounded by 1.5 and that solutions x for the leader’s problem ensuring
a ratio of 1.5 + σ can be found in polynomial time. Similarly, we present tight
bounds for the case of non-negative ai and, eventually, the mixed case with both
positive and negative double packing modifiers.

As a first step, we compute approximately optimal cooperative solutions.

3 Polynomial Time Approximation Scheme for (P3)

It is well known that knapsack can be solved by a fully polynomial time ap-
proximation scheme (FPTAS) (cf. [10,16]). As (P3) with ai ≥ −∪ becomes a
multiple knapsack problem with two knapsacks, we can not expect an FPTAS
for (P3) unless P = NP (cf. [3]). In the following, we seek for a polynomial time
approximation scheme (PTAS) for (P3).

We start with some notations. For any set S of items, let w(S) and p(S)
denote the total weight and the total profit of items in S, respectively, i.e.,
w(S) =

∑
i→S wi and p(S) =

∑
i→S pi. Since the profits of items may be modified

due to double-packing, p(S) may also denote the modified total profit of items
in S if no misunderstanding is possible.



316 X. Qiu and W. Kern

As it turns out, negative items, i.e., those with ai < 0, and non-negative
items (those with ai ≡ 0) can be treated independently. Therefore, we simplify
matters by first assuming that all items are negative (non-negative items will
be dealt afterwards). For technical reasons (to be explained in the proof) we
slightly generalize our problem, assuming that certain items, say, items in the
set N1 ◦ N , are not allowed to be double-packed. We let n1 = |N1| denote the
number of items that are prescribed to be single, and n2 is the number of items
in N2 = N\N1 that may be double-packed. Thus n1+n2 = n. Our proof for the
approximation ratio will be by induction on n1 + 2n2.

We describe an O(1−1/k)-approximation algorithm – again denoted by ALG
– proceeding in a similar way to that of Sahni [15]. One difference is that for
a double-packable item i we distinguish between its primary copy i with an
associated profit pi and its secondary copy i with profit pi + 2ai < pi. Let
S≥ = S≥

1 ⊆ S≥
2 = supp x≥ ⊆ supp y≥ be an optimal solution of (P3). Observe

that – as we distinguish primary and secondary copies – the set S≥ may be
understood as a set rather than a multiset. In phase I, ALG seeks to “guess”
the k most profitable items from the optimum solution S≥

1 ⊆ S≥
2 to include them

in the initial packing. In case an item i is double-packed in S≥, and (the primary
copy of) i belongs to the k most profitable items, we want ALG to include also
the secondary copy into the initial packing. For this reason, we let ALG start
from all initial packings with up to k primary items plus some of their secondary
copies and let S = S1 ⊆S2 be this set of items, with S1, S2 packed on knapsacks
1 and 2, respectively.

The second phase, again, considers the remaining items in order of non-
increasing profit rates. As in the single knapsack case, it proceeds in a true
online manner as explained below. In particular, whenever ALG checks an item
i, it immediately decides upon packing or not packing i, but does not yet decide
whether i should be double-packed. Note that, as we stick to the case of negative
items here, we have pi+2ai < pi, so that primary items come with higher profit
rates and are checked for inclusion before their corresponding secondary copies
arrive.

Summarizing, in phase II, ALG considers the (copies of) items in {1, . . . , n} \S
in order of non-increasing profit rates

ri1 ≡ ri2 ≡ . . . ≡ rim (m = n1 + 2n2 − |S|)

defined as explained above.
Whenever ALG checks a primary item i = it, the item is packed wherever

it fits. In case it does not fit anywhere, the item is skipped. Whenever ALG
checks a secondary item i = it, it is perfectly clear on which knapsack i should
be packed and ALG seeks to accommodate item i there, say, on knapsack 1,
by “switching” single items from knapsack 1 to knapsack 2 if necessary. More
precisely, ALG considers all single (primary) items from {1, ..., n}\S currently
packed on knapsack 1 in some order and switches them onto knapsack 2 whenever
they fit there, until either item i can eventually be accommodated on knapsack 1
or no further single item can be switched to knapsack 2 while item i still cannot
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be added to knapsack 1. In the latter case, item i = it is skipped. The order in
which items are considered for switching from knapsack 1 to knapsack 2 is not
relevant, but it is convenient to use a “last in first out” order as switching rule.

Note that any packed item remains packed, only the assignment to a particular
knapsack may be revised (possibly even several times), due to switching.

Lemma 1. ALG as described above yields a (1 − 2/k)-approximation for (P3)
(assuming that all items are negative).

It is an easy exercise to bound the running time: There are O(nk+1) sets S
of size |S| ⊂ k to choose for the primary items. Given S, we are left to fix for
each i → S whether to double-pack i or not, and, in the latter case, where to
pack it (knapsack 1 or 2). Thus in total the number of “guesses”is bounded by
O(nk+13k).

Next let us turn to the beneficial model, which turns out to be easier: Assume
that all items in N are non-negative, i.e., ai ≡ 0. Our approximation algorithm –
denoted by ALG – in this case, will again have a “guessing” phase I, followed by a
phase II, where items are processed in order of non-increasing profit rates. Note
that this time, however, double-packing yields higher profit rates than single
packing, so ALG will first decide about double-packing item i (at profit rate
ri = (pi+a1)/wi) and then – in case of non-acceptance consider single-packing i
at a later stage. Correspondingly, in the beneficial model, it does not make sense
to distinguish between a primary and secondary copy of item i (as both arrive
at the same time). Thus, in what follows we will interpret an optimal solution of
(P3) as a multiset S≥ = S≥

1 ⊆S≥
2 , where D

≥ = S≥
1 ∀S≥

2 is the set of double-packed
items.

In phase I, ALG guesses a set D ◦ {1, ..., n} of size |D| ⊂ k (as a candidate
for a set of most profitable double-packed items in an optimal solution) as well
as a set S ◦ {1, ..., n}\D, |S| ⊂ k of most profitable single-packed items. In
addition, it guesses a number l ⊂ n indicating the total number of items that
should be double-packed by ALG (on top of the already chosen set D). In phase
II, ALG processes the remaining items in order of non-increasing profit rates as
usual. More precisely, let

ri1 =
pi1 + ai1
wi1

≡ ... ≡ ril =
pil + ail
wil

be the l highest double-packing profit rates in N2\D. Then ALG double-
packs as much as possible of i1, . . . , il (on top of D) and then continues (after
packing S1 and S2) with single packing of the remaining items (i.e.,items in
(N1 ⊆N2)\(D ⊆ S ⊆ {i1, . . . , il})) in order of non-increasing profit rates.

There are O(n2(k+1)) possible choices for D and S, and O(2k) bipartitions
of S. Together with the different choices for l, there are O(n2k+32k) different
choices of parameters.

Lemma 2. For suitable choice of parameters D,S1, S2 and l, ALG yields an
approximation ratio (1− 4/k).
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Remark 1. We like to point out that negative items cannot be treated in such
an easy way: Consider, for example a list of 2n items with pi = 10, ai = −5
plus 2n items with pi = 5, ai = −σ and wi = 1 for all 4n items. An optimum
packing for two knapsacks of capacity 3n each would single-pack all items with
pi = 10 and double-pack all remaining items. Yet, a simple greedy heuristic like
the “positive item variant”of ALG would always start double-packing the “high
profit” items – at least we cannot prevent it from doing so by prescribing the
number l of items to be double-packed.

We are left to combine the two algorithms for negative and non-negative items
in order to deal with “mixed” sets of items. The only way we found works in
a sense by “brute force”: We guess the amount W+

1 and W+
2 of capacity an

optimum solution uses on knapsack 1 and 2 for non-negative items respectively
and then split the problem accordingly into one with negative and one with
non-negative items. In our case, it is sufficient to approximate W+

1 and W+
2 up

to a factor 1/k, so we actually guess mi := ∩log1+1/kWi∅ and run the algorithm

with W̃+
i = (1 + 1/k)mi instead of W+

i . The total number of guesses we need is
O(klogWi) for i = 1, 2, thus O(k2(logW1)(logW2)) in total.

This introduces another possible loss of order 1/k on the total profit gained
with positive items, so that after all, the combined algorithm ALG will yield a
total profit P with P ≡ (1 − 1/k)(1− 4/k)P ≥, where P ≥ is the optimum profit.
Thus we have shown

Theorem 1. For fixed k, there exists a polynomial time algorithm ALG that
approximates (P3) up to a factor (1− 5/k) in time O(n2k+52klogW1logW2).

4 Approximation Algorithms for the Leader

Let S1 and S2 be optimal solutions for the standard single knapsack instances
with knapsack capacities W1 and W2, resp., and profits pi for all items. In other
words, S1 and S2 denote the support of optimal solutions of the following problem
with W =W1 and W =W2, resp.:

max

n∑

i=1

pixi (P4)

s.t.
n∑

i=1

wixi ⊂W,

xi → {0, 1} , i = 1, 2, . . . , n.

Let (S≥
1 , S

≥
2) be an optimal solution of the cooperative relaxation (P3). We first

note that the value OPT of (P3) satisfies

OPT = p(S≥
1 ) + p(S≥

2 ) + 2h≥, where h≥ :=
∑

i→S∗
1∪S∗

2

ai. (4.1)
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Furthermore, we trivially have

p(S≥
1 ) ⊂ p(S1) and p(S≥

2) ⊂ p(S2). (4.2)

As (S≥
1 , S

≥
2 ) can be found by a straightforward dynamic programming and can

be approximated arbitrarily closely by a PTAS (cf. Section 3), we first present
an algorithm by assuming that S≥

1 , S
≥
2 , S1 and S2) can be found exactly. It turns

out that we lose a factor of σ if these solutions are approximated correspondingly
by PTAS. We (first) treat the beneficial and the competitive model separately.

4.1 The Beneficial Model: ai ≥ 0

We present a very simple algorithm and show that the approximation ratios are
tight in both cases (W1 ≡W2 and W1 < W2).

Algorithm 1: Pack one of S≥
1 and S1 (whichever results in a maximum total

profit 1).

Assume first that player 1 packs S≥
1 and player 2 packs some set Ŝ. Let ĥ =

∑
i→S∗

1∪Ŝ2
ai. Then p(Ŝ2) + ĥ ≡ p(S≥

2) + h≥. Denote by ALG the value obtained

by the algorithm. Thus

ALG = p(S≥
1 ) + p(Ŝ2) + 2ĥ

≡ p(S≥
1 ) + p(S≥

2 ) + h≥ + ĥ.

Since p(Ŝ2) ⊂ p(S2), we have

ĥ ≡ p(S≥
2)− p(Ŝ2) + h≥ ≡ p(S≥

2 )− p(S2) + h≥,

implying

ALG ≡ p(S≥
1 ) + 2p(S≥

2 )− p(S2) + 2h≥. (4.3)

Now assume that player 1 packs S1. Then player 2 will get at least p(S2) by
packing S2, implying

ALG ≡ p(S1) + p(S2).

Besides, we observe the following “knapsack constraints”:

p(S1) ≡ p(S2) if W1 ≡W2, (4.4)

p(S1) ⊂ p(S2) if W1 ⊂W2. (4.5)

Let α = ALG/OPT . We derive the following linear program for estimating the
approximation ratio:

minimize α (4.6)

1 cf. Remark 2 at the end of Section 4.2 explaining how this decision can be taken.
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subject to p(S≥
1 ) + p(S≥

2 ) + 2h≥ = 1,

α ≡ p(S≥
1 ) + 2p(S≥

2)− p(S2) + 2h≥,

α ≡ p(S1) + p(S2),

p(S1) ≡ p(S≥
1 ),

p(S2) ≡ p(S≥
2 ),

p(S1), p(S2), p(S
≥
1 ), p(S

≥
2 ), h

≥ ≡ 0

and the knapsack constraints hold.

The minimum value equals 2/3 if W1 ≡ W2 and 1/2 if W1 < W2, proving that
OPT/ALG is at most 3/2 resp. 2, matching the lower bounds (cf. [4]).

4.2 Th Competitive Model: ai ≤ 0

In principle, we could also apply Algorithm 1 to this case: If player 1 packs S≥
1 ,

similar to the above argument, we have

ALG ≡ p(S≥
1 ) + 2p(S≥

2 )− p(S2) + 2h≥.

In case of packing S1, we want to show that ALG ≡ p(S1)+p(S2)+2h, where
h =

∑
i→S1∪S2

ai. This is clearly true if player 2 packs S2. Otherwise, player 2

packs a set, say, Ŝ2, with ĥ =
∑

i→S1∪Ŝ2
ai, such that p(Ŝ2) + ĥ ≡ p(S2) + h. As

p(Ŝ2) ⊂ p(S2), this implies ĥ ≡ h. Thus,

ALG ≡ p(S1) + p(Ŝ2) + 2ĥ

≡ p(S1) + p(S2) + h+ ĥ

≡ p(S1) + p(S2) + 2h,

as claimed.
Now we obtain the following linear program bounding the approximation ratio

of Algorithm 1.

min α (4.7)

s.t. p(S≥
1 ) + p(S≥

2 ) + 2h≥ = 1,

α ≡ p(S≥
1 ) + 2p(S≥

2)− p(S2) + 2h≥,

α ≡ p(S1) + p(S2) + 2h,

p(S1) ≡ p(S≥
1 ),

p(S2) ≡ p(S≥
2 ),

p(S1), p(S2), p(S
≥
1 ), p(S

≥
2 ) ≡ 0, h, h≥ ⊂ 0

and the knapsack constraints hold.

Letting p(S≥
1 ) = p(S1) = p(S2) = 1, h = −1 and h≥ = p(S≥

2 ) = 0, we can
easily see that the optimal objective value is 0. We observe that in this worst-
case instance the penalty h is too large: A better choice for player 1 is to pack
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nothing. Then player 2 must pack S2, implying ALG ≡ p(S2). Adding this simple
constraint to the above program yields an optimal objective value 0.5.

Thus, excluding items with large penalty from S1 can improve the performance
of ALG, however, it does not yield a tight approximation yet. The idea for further
improvement is not only to avoid packing items with large penalties but also to
pack items with small penalties. We define the following sets:

S+
2 =

{
i → S2 | |ai| >

pi
2

}
, S−

2 = S2\S+
2 , (4.8)

where S+
2 , S

−
2 are sets of items having large penalties and small penalties respec-

tively. Our algorithm can now be described as follows.

Algorithm 2: Pack one of S≥
1 , S1\S+

2 and ↓ (whichever results in a maximum
total profit).

To analyze its performance, we distinguish three cases:
Case 1. Player 1 packs S≥

1 . This is already considered in the above analysis
and yields ALG ≡ p(S≥

1 ) + 2p(S≥
2 )− p(S2) + 2h≥.

Case 2. Player 1 packs S1\S+
2 . We prove that ALG ≡ p(S1) + p(S−

2 ) + 2h−,
where h− =

∑
i→S−

2
ai. Clearly, this is true when player 2 packs S2. If player 2

packs some other set, say Ŝ2 ∨= S2, with ĥ =
∑

i→(S1\S+
2 )∪Ŝ2

ai, then p(Ŝ2)+ ĥ ≡
p(S2) + h−, implying ĥ ≡ h− (recall that p(Ŝ2) ⊂ p(S2)). Hence,

ALG ≡ p(S1)− p(S+
2 ) + p(Ŝ2) + 2ĥ

≡ p(S1)− p(S+
2 ) + p(S2) + h− + ĥ

≡ p(S1)− p(S+
2 ) + p(S2) + 2h−

= p(S1) + p(S−
2 ) + 2h−.

Case 3. Player 1 packs nothing. Then player 2 can guarantee a total profit
p(S2) by packing S2. Thus, ALG ≡ p(S2).

Furthermore, in addition to the knapsack constraints (4.4), (4.5) we have the
following constraints:

p(S2) = p(S+
2 ) + p(S−

2 ) and h− ≡ −p(S
−
2 )

2
.

This finally yields the following linear program with an optimal value of 2/3
(for both W1 ≡ W2 and W1 < W2).

minimize α (4.9)

subject to p(S≥
1 ) + p(S≥

2 ) + 2h≥ = 1,

α ≡ p(S≥
1) + 2p(S≥

2 )− p(S2) + 2h≥,

α ≡ p(S1) + p(S−
2 ) + 2h−,

α ≡ p(S2),

p(S2) = p(S+
2 ) + p(S−

2 ),
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h− ≡ −p(S
−
2 )

2
,

p(S1) ≡ p(S≥
1 ),

p(S2) ≡ p(S≥
2 ),

p(S1), p(S2), p(S
+
2 ), p(S−

2 ), p(S≥
1 ), p(S

≥
2 ) ≡ 0, h≥, h− ⊂ 0

and the knapsack constraints hold.

Hence OPT/ALG ⊂ 1.5, which is tight (cf. the example in Section 2).

Remark 2. Since player 2 acts after player 1, the reader may wonder how to
find the maximal total profit over all cases (in Algorithm 1 and 2). This can be
done by checking the inequalities “α ≡ . . .” in (4.6) and (4.9) respectively: If
any of these inequalities gets tight, the algorithm may pick the associated set
(for player 1).

4.3 The Mixed Case

Finally, let us turn to the case where the item set contains both positive and
negative items. This case is easily reduced to the two cases (beneficial and com-
petitive model resp.) considered above: All we have to do is to split the item set
A into the set A+ and A− of non-negative and negative items, resp. and to guess
– again, up to a certain factor, say, 1/k – the associated parts of knapsacks 1 and
2 that are filled with non-negative and negative items, resp., in an optimal solu-
tion S≥

1 ⊆ S≥
2 of (P3). Solving the “pure” (beneficial resp. competitive) cases for

the approximately correct choice of corresponding knapsack capacities will then
give solutions for the leader’s problem that differ from the cooperative value by
at most a factor of (2 + σ) at the expense of an additional O((logW1)(logW2))
factor in the running time.

5 Remarks

We have presented a unified approach for computing solutions to the leader’s
problem with approximately optimal ratio, if compared to the outcome of the
cooperative version of the problem. Without further going into details, we men-
tion that in the lower bound examples (cf. the example in section 2 and the
examples in [4], the maximum cooperative value equals the maximum value of
(the optimistic version of) the bilevel problem. Thus our results also provide
tight bounds for the ratio between the optimistic and pessimistic version of the
bilevel problem itself.

A natural question to ask is about side payments: Player 1 can certainly
enforce the optimistic value of the bilevel problem with arbitrarily small side
payments. Thus, it seems natural to also investigate approximation algorithms
in the optimistic setting.
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Abstract. In this paper, we consider the balanced Max-3-Uncut prob-
lem which has several applications in the design of VLSI circuits. We
propose a complex discrete linear program for the balanced Max-3-Uncut
problem. Applying the complex semidefinite programming rounding tech-
nique, we present a 0.3456-approximation algorithm by further integrat-
ing a greedy swapping process after the rounding step. One ingredient in
our analysis different from previous work for the traditional Max-3-Cut
is the introduction and analysis of a bivariate function rather than a
univariate function.

Keywords: Complex semidefinite programming, Approximation algo-
rithm, Rounding, Balanced Max-3-Uncut.

1 Introduction

Graph partition problems have been investigated extensively in combinatorial
optimization. In the Max-k-Cut problem (cf. [7]) on a weighted graph, we want
to find a partition of the vertex set into k subsets such that the total weight
of the edges from different subsets is maximized. If the subsets are required to
have equal cardinality, the problem is then called the Max-k-Section (cf. [1]).
When k = 2, the above two problems become the well-known Max-Cut and
Max-Bisection problems respectively.

The capacitated Max-k-Uncut problem (a.k.a. the k-general partition prob-
lem [17]) is to partition the vertices of the graph into k subsets of prescribed sizes
such that the total weight of the edges from the same subset is maximized. When
we impose the equal cardinality constraint, the capacitated Max-k-Uncut prob-
lem becomes the balanced Max-k-Uncut problem (a.k.a. the k-partition problem
[6], or when k = 2, the Max-n2 -Uncut problem). These graph partition prob-
lems are all NP-hard, and have applications in the design of VLSI circuits (cf.
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[6],[9],[17]). In this paper, we are particularly interested in the balanced Max-3-
Uncut
problem.

Semidefinite programming (SDP) relaxation is a powerful tool in designing
approximation algorithm for graph partition problems. In their influential work,
Goemans and Williamson [9] propose a 0.87856-approximation algorithm for
the Max-Cut problem by integrating SDP relaxation and hyperplane rounding.
Their techniques are later applied to many graph partition problems (cf. [4, 5],
[11–13],[19–21]). Using SDP rounding together with greedy swap, Frieze and Jer-
rum [7] propose a 0.6514-approximation algorithm for the Max-Bisection prob-
lem, followed by further improvements to 0.699 [20], 0.7016 [11], and 0.7028 [5],
respectively. Raghavendra and Tan [16] propose a semidefinite programming hi-
erarchies (SDPH) rounding 0.85-approximation algorithm for the Max-Bisection
problem, which is further improved to the currently best ratio 0.8776 by Austrin
et al. [2]. For the balanced Max-2-Uncut problem, we only mention two results:
one is the 0.6436-approximation algorithm by the standard SDP rounding [11];
and the other is the 0.8776-approximation algorithm by the SDPH rounding
[18]. Each of them gives the currently best known approximation ratios by using
SDP/SDPH rounding techniques respectively. We note that SDPH, which has
many applications in the area of complexity and approximation algorithm, is
first introduced by Lasserre [14].

In a subsequent work, Goemans and Williamson [10] use the three cubic roots
(1, Ω, Ω2) of unity (i.e., each of the roots satisfies the equation z3 = 1) to
represent ternary decision variables, leading to a complex discrete program for
the Max-3-Cut problem. They extend their earlier SDP relaxation and hyper-
plane rounding technique [9] to the complex case with complex semidefinite
programming (CSDP) relaxation and complex hyperplane rounding [10], resul-
ing in an approaximation algorithm with ratio

(
7
12 + 3

4Σ2 arccos
2(−1/4)− σ

)
→

(0.8360 − σ), for any given σ > 0. This result improves an earlier 0.800217-
approximation algorithm due to Frieze and Jerrum [7]. Further work along
this line include a Σ

4 -approximation algorithm for a class of discrete complex
quadratic optimization problems when the coefficient matrix of the objective
is a positive semidefinite Hermitian matrix [22], and a 0.6733-approximation
algorithm for the Max-3-Section problem [15].

In this paper, we formulate the balanced Max-3-Uncut problem as a complex
discrete program and provide an approximation algorithm based on the tech-
nique of CSDP relaxation and rounding. After the random rounding, the ob-
tained solution is infeasible. We then modify the solution by adopting a greedy
adjustment of the size of the subsets to obtain a 0.3456-approximation algo-
rithm. This approximation ratio improves previous ratio 1/3 by Choudhury et
al. [3] who propose a local search (1/(d(k − 1) + 1))-approximation algorithm
for the capacitated Max-k-Uncut problem, where d is the ratio of the largest
cardinality to the smallest cardinality in the partition. One ingredient in our
analysis different from previous work for the Max-3-Cut is the introduction and
analysis of a bivariate function rather than a univariate function.
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In the remaining of this paper, we use W (A) =
∑

i→A wi to denote the weight
summation of the set A. Moreover, we use W (A,B) to denote W (A) +W (B)
for any two sets A and B, and this notation can be analogously defined for more
than two sets. The inner product of any two complex vectors a, b ⊂ C

n is defined
as a · b = b≥a, where b≥ is the conjugation transpose of b.

The organization of this paper is as follows. In Section 2, we present a com-
plex discrete program along with its CSDP relaxation for the balanced Max-3-
Uncut problem. We offer a CSDP rounding approximation algorithm in Section
3, followed by the analysis in Section 4. Finally, some discussions are given in
Section 5.

2 Formulation

In this section, we first introduce a complex discrete program for the balanced
Max-3-Uncut problem. Then, we relax this program to obtain a CSDP relax-
ation, whose optimal solution will be rounded to obtain a discrete (complex)
solution. For any given complex number z, we adopt the standard notations
Re(z) and Im(z) to represent the real and imaginary parts of z, respectively.

Formally, in the balanced Max-3-Uncut problem, we are given a graph G =
(V,E) with vertex set V whose size n := |V | is a multiple of 3 and edge set
E. There is also a weight function w : E ≡ R+ defined on E. The goal is to
partition V into three subsets S1, S2, and S3 with equal cardinality such that
the total weight of the edges from the same subsets is maximized; that is,

max
(S1, S2, S3) ∗ P(V )
|S1| = |S2| = |S3|

∑

i,j→S1

wij +
∑

i,j→S2

wij +
∑

i,j→S3

wij ,

where

P(V ) := {(S1, S2, S3) : S1 ∈ S2 ∈ S3 = V, and Sk ≥ Sl = ∪ for all k ◦= l}

and we define wij = 0 if (i, j) /⊂ E for completeness. We remark that if |V | is
not divisible by 3, one can add isolated vertices if necessary to guarantee this
divisibility.

The balanced Max-3-Uncut problem can be formulated as the following.

max
1

3

∑

i<j

wij(1 + 2Re(yi · yj))

s. t.
∑

i→V

yi = 0, (1)

yi ⊂ {1, Ω, Ω2}, ⊆i ⊂ V.

Recall that (1, Ω, Ω2) are the three distinct complex cubic roots of unity, where

Ω = ei
2δ
3 = −1

2
+ i

∀
3

2
, Ω2 = ei

4δ
3 = −1

2
− i

∀
3

2
.
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In the above program, the variable yi represents the subset to which vertex i is
assigned: If yi = 1, vertex i is assigned to S1; if yi = Ω, vertex i is assigned to
S2; and finally if yi = Ω2, vertex i is assigned to S3.

Lemma 1. The program (1) is a valid representation of the balanced Max-3-
Uncut problem.

Proof. We prove this lemma by the following two steps.
First, we consider two cases by showing that the weight of (i, j) is counted

only when vertices i and j are in the same subset.

Case 1. Vertices i and j are in the same subset. We obtain the desired result
from the following three subcases.

1

3
(1 + 2Re(yi · yj)) =

1

3
(1 + 2) = 1, when yi = yj = 1;

1

3
(1 + 2Re(yi · yj)) =

1

3
(1 + 2Re(Ω · Ω)) = 1, when yi = yj = Ω;

1

3
(1 + 2Re(yi · yj)) =

1

3
(1 + 2Re(Ω2 · Ω2)) = 1, when yi = yj = Ω2.

Case 2. Vertices i and j are in different subsets. Due to symmetry of i and j,
we consider the following three subcases.

1

3
(1 + 2Re(yi · yj)) =

1

3
(1 + 2Re(1 · Ω)) = 0, when yi = 1, yj = Ω;

1

3
(1 + 2Re(yi · yj)) =

1

3
(1 + 2Re(1 · Ω2)) = 0, when yi = 1, yj = Ω2;

1

3
(1 + 2Re(yi · yj)) =

1

3
(1 + 2Re(Ω · Ω2)) = 0, when yi = Ω, yj = Ω2.

Second, we will show that the first constraint of (1) is equivalent to

|{i : yi = 1}| = |{j : yj = Ω}| = |{k : yk = Ω2}| (2)

under the condition yi ⊂ {1, Ω, Ω2} for all i ⊂ V . Although this fact is already
used in [15], we give a formal proof for completeness. Note that Ω and Ω2 are
conjugate to each other. On one hand, suppose that {yi} satisfies (2). We have

∑

j:yj=Ω

yj +
∑

k:yk=Ω2

yk = −|{j : yj = Ω}| = −|{k : yk = Ω2}|.

The above equalities indicate

∑

i→V

yi =
∑

i:yi=1

yi +
∑

j:yj=Ω

yj +
∑

k:yk=Ω2

yk

= |{i : yi = 1}| − |{j : yj = Ω}|
= 0.



328 C. Wu et al.

On the other hand, assume that {yi} satisfies the first constraint of (1). Since
the summation of yi is 0 which is a real number, we must have |{j : yj = Ω}| =
|{k : yk = Ω2}|. Then,

∑

j:yj=Ω

yj +
∑

k:yk=Ω2

yk = −|{j : yj = Ω}| = −|{k : yk = Ω2}|.

Again from the first constraint of (1), we have

0 =
∑

i:yi=1

yi +
∑

j:yj=Ω

yj +
∑

k:yk=Ω2

yk = |{i : yi = 1}| − |{j : yj = Ω}|.

The above two equalities indicate that {yi} satisfies (2). ∩∅

Since yi ⊂ {1, Ω, Ω2} for all i ⊂ V , we must have

yi · yj + yj · yi ↓ −1, ⊆i, j ⊂ V,

Ω · (yi · yj) + Ω2 · (yj · yi) ↓ −1, ⊆i, j ⊂ V,

Ω2 · (yi · yj) + Ω · (yj · yi) ↓ −1, ⊆i, j ⊂ V,

which can be rewritten as

Re(yi · yj) ↓ −1

2
, ⊆i, j ⊂ V,

Re(Ω · (yi · yj)) ↓ −1

2
, ⊆i, j ⊂ V,

Re(Ω2 · (yi · yj)) ↓ −1

2
, ⊆i, j ⊂ V.

By adding the above extra inequalities into (1) (cf. [10]), we get the CSDP
relaxation as follows.

max
1

3

∑

i<j

wij(1 + 2Re(vi · vj))

s. t. Re(vi · vj) ↓ −1

2
, ⊆i, j ⊂ V,

Re(Ω · (vi · vj)) ↓ −1

2
, ⊆i, j ⊂ V, (3)

Re(Ω2 · (vi · vj)) ↓ −1

2
, ⊆i, j ⊂ V,

∑

i,j

vi · vj = 0,

∨ vi ∨= 1, ⊆i ⊂ V,

vi ⊂ C
n, ⊆i ⊂ V.

The above CSDP is polynomially solvable as it is equivalent to an SDP with
double size comparing with (3) (cf. [10]).
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3 Algorithm

Based on the CSDP relaxation (3), we propose the following algorithm for the
balanced Max-3-Uncut problem.

Algorithm 1

Step 1. Solve the CSDP (3) to obtain an optimal solution {vi}, leading to a
complex semidefinite matrix V := (vi · vj).

Step 2. For a given parameter α ⊂ [0, 1], choose a random vector β ⇔ N(0, αV +
(1− α)I), where I is the n× n identity matrix.

Step 3. Define

ŷi =






1, Arg(βi) ⊂ [0, 23θ);
Ω, Arg(βi) ⊂ [ 23θ,

4
3θ);

Ω2, Arg(βi) ⊂ [ 43θ, 2θ).

Let S1 := {i : ŷi = 1}, S2 := {i : ŷi = Ω}, and S3 := {i : ŷi = Ω2}.
Step 4. Assume, without loss of generality, |S1| ↓ |S2| ↓ |S3|. In this step, we

will perform a size-adjustment operation to equalize the cardinality of the
three sets dependening on two cases. Initialize Ŝν = Sν (π = 1, 2, 3). Denote
the final partition with equal cardinality as S̃1, S̃2, and S̃3.
Case 4.1. If |S1| ↓ |S2| ↓ n

3 ↓ |S3|, then iteratively, perform the following

operations (i)-(ii) until |Ŝν| = n
3 for each π = 1, 2:

(i) Sort the vertices in Ŝν such that ε(i1) ↓ . . . ↓ ε(i|ŜΔ|) where ε(i) =
∑

i∞→ŜΔ
wi∞i (i ⊂ Ŝν).

(ii) Move the point i|ŜΔ| from Ŝν to Ŝ3; namely, Ŝν = Ŝν\{i|Ŝ1|}, and

Ŝ3 = Ŝ3 ∈
⎧
i|ŜΔ|

⎪
.

Case 4.2. If |S1| ↓ n
3 ↓ |S2| ↓ |S3|, then iteratively, perform the following

operations (i)-(ii) until |Ŝν| = n
3 for each π = 2, 3:

(i) Sort the vertices in Ŝ1 such that ε(i1) ↓ . . . ↓ ε(i|Ŝ1|) where ε(i) =
∑

i∞→Ŝ1
wi∞i (i ⊂ Ŝ1).

(ii) Move the point i|Ŝ1| from Ŝ1 to Ŝν; namely, Ŝ1 = Ŝ1\{i|Ŝ1|}, and
Ŝν = Ŝν ∈

⎧
i|Ŝ1|

⎪
.

4 Analysis

To establish the approximation ratio of Algorithm 1 in Theorem 9, we need sev-
eral lemmas (Lemmas 2-8) whose proofs are omitted in this conference version.

First, based on Step 2 of Algorithm 1, we consider two cases (Lemmas 2-3)
to estimate the relationship of the weights before and after the size-adjustment.

Lemma 2. In Case 4.1. at Step 4 of Algorithm 1, we have

W
⎨
S̃1, S̃2, S̃3

⎩

W (S1, S2, S3)
↓ 1

81x21x
2
2

,
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where x = (x1, x2, x3) =
⎨

|S1|
n , |S2|

n , |S3|
n

⎩
.

∩∅
Similar to the analysis in Lemma 2, we have the following result for Case 4.2 in
Algorithm 1.

Lemma 3. In Case 4.2. at Step 4 of Algorithm 1, we have

W
⎨
S̃1, S̃2, S̃3

⎩

W (S1, S2, S3)
↓ 1

9x21
,

where x = (x1, x2, x3) =
⎨

|S1|
n , |S2|

n , |S3|
n

⎩
. ∩∅

Second, we estimate the quality for (S1, S2, S3) (Lemmas 4-5). Denote W ≥ as
the optimal value of (3). The following lemma is given in [10] (see also [22]),
which estimates the real part of the expected value of ŷi · ŷj for each i, j.

Lemma 4. ([10, 22]) The real part of the expected value of ŷi · ŷj is

9

8θ2

[

arccos2 (−Re(αvi · vj))−
1

2
arccos2(−Re(Ω · (αvi · vj)))

−1

2
arccos2(−Re(Ω2 · (αvi · vj)))

⎛

.

∩∅

By Lemma 4, we can obtain the following lemma.

Lemma 5. For a given α ⊂ [0, 1], the ratio of the expected weight of (S1, S2, S3)
and W ≥ is no less than γ(α), where γ(α) is

min g(α, z1, z2)

s. t. −1

2
⇐ z1 ⇐ 1,

−1

2
⇐ −1

2
z1 +

∀
3

2
z2 ⇐ 1,

−1

2
⇐ −1

2
z1 −

∀
3

2
z2 ⇐ 1,

z21 + z22 ⇐ 1.

In the above,

g(α, z1, z2) :=
1

1 + 2z1

⎝

1 +
9

4θ2

⎞

arccos2(−αz1)−
1

2
arccos2

⎣
1

2
αz1 −

∀
3

2
αz2

⎤

−1

2
arccos2

⎣
1

2
αz1 +

∀
3

2
αz2

⎤⎦⎟

.

∩∅



Approximation Algorithm for Balanced Max-3-Uncut 331

Third, we will estimate the violation of the equal cardinality constraint
(Lemma 6). We need some notations first. Introduce a new random variable
C such that

C := |S1||S2|+ |S1||S3|+ |S2||S3|.

From |S1|+ |S2|+ |S3| = n and the AM-GM inequality, we have that C ⇐ n2

3 .
Let e = (1, 1, . . . , 1)T be the all-one vector. Noting that ŷ is an discrete (not
necessarily feasible) solution before the adjustment, we obtain

eT ŷ = |S1|+ Ω|S2|+ Ω2|S3|.

Then, we have

|S1||S2|+ |S1||S3|+ |S2||S3|
= |S1|2 + |S2|2 + |S3|2 −

(
eT ŷ
)≥

(eT ŷ)

= (|S1|+ |S2|+ |S3|)2 −
(
eT ŷ
)≥

(eT ŷ)− 2 (|S1||S2|+ |S1||S3|+ |S2||S3|)
= n2 −

(
eT ŷ
)≥

(eT ŷ)− 2 (|S1||S2|+ |S1||S3|+ |S2||S3|) ,

which implies

C = |S1||S2|+ |S1||S3|+ |S2||S3| =
1

3
n2 − 1

3

(
eT ŷ
)≥

(eT ŷ).

Lemma 6 below is given in [15].

Lemma 6. ([15]) Define

– f(x) := 9
8Σ2

(
arccos2(−x)− arccos2

(
1
2x
))
.

– c(α) := min
− 1

2∪x∪1

f(θ)−f(θx)
1−x .

– ρ(α) :=
(
1− 1

n

)
(1− f(α) + c(α)).

– C≥ := n2

3 .

For a given α ⊂ (0, 1), we can estimate the ratio between C and C≥ as follows:

E

[
C

C≥

⎛

↓ ρ(α).

∩∅

Fourth, in Lemmas 7-8 below, we solve the optimization problem
minx→ΔR(x; α, τ), where

– μ(x) :=
C

C≥ = 3 (x1x2 + (x1 + x2)(1− x1 − x2)).

– r(x) :=






1

81x21x
2
2

, if x2 ↓ 1

3
;

1

9x21
, if x2 <

1

3
.
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– ∆ :=





x = (x1, x2, x3)

∣
∣
∣
∣
∣
∣
∣

3∑

i=1

xi = 1

x1 ↓ x2 ↓ x3 ↓ 0

⎫
⎬

⎭
.

– R(x; α, τ) := r(x)(γ(α) + τρ(α)− τμ(x)), τ > 0.

Lemma 7. When τ ⊂
[

8χ(θ)
9−8α(θ) ,

χ(θ)
1−α(θ)

]
, the minimum of R(x; α, τ) for all x ⊂

{x ⊂ ∆|x2 ↓ 1
3} is

R1(α, τ) :=
27

256
τ4




1 +
√
1− 8(χ(θ)+γα(θ))

9γ

γ(α) + τρ(α)





3⎣

1− 3

√

1− 8(γ(α) + τρ(α))

9τ

⎤

.

∩∅

Lemma 8. When τ ⊂
[

8χ(θ)
9−8α(θ) ,

χ(θ)
1−α(θ)

]
, the minimum of R(x; α, τ) for all x ⊂

{x ⊂ ∆|x2 ⇐ 1
3} is

R2(α, τ) := τ
γ(α) + τρ(α)− τ

4(γ(α) + τρ(α))− 3τ
.

∩∅

Finally, we are ready to present the main result in this section.

Theorem 9. The approximation ratio of Algorithm 1 is

max
θ→(0,1)

max
γ→[ 8α(θ)

9−8β(θ)
, α(θ)
1−β(θ) ]

min {R1(α, τ), R2(α, τ)} .

Proof. Define

z(τ) :=
W (S1, S2, S3)

W ≥ + τ
C

C≥ .

From Lemmas 5-6, we have

E

[
W (S1, S2, S3)

W ≥

⎛

↓ γ(α),

and

E

[
C

C≥

⎛

↓ ρ(α).

The above two inequalities indicate

E[z(τ)] = E

[
W (S1, S2, S3)

W ≥ + τ
C

C≥

⎛

↓ γ(α) + τρ(α), ⊆τ > 0.

For any σ > 0, we can run Algorithm 1 independently T = O
(
1
ε log

(
1
ε

))

times to output the maximum value of z(τ) by zT (τ). We may assume that
zT (τ) ↓ γ(α) + τρ(α) almost surely (cf. [12]). Then, we have

W (S1, S2, S3)

W ≥ ↓ γ(α) + τρ(α)− τ
C

C≥ .
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Recall the definitions of μ(x), r(x), and R(x; α, τ). From the last inequality and
Lemmas 2-3, we have

W (S̃1, S̃2, S̃3)

W ≥ ↓ r(x)
W (S1, S2, S3)

W ≥

↓ r(x)(γ(α) + τρ(α)− τμ(x))

= R(x; α, τ).

Thus, the approximation ratio of Algorithm 1 is

max
γ,θ

min
x→Δ

R(x; α, τ).

Now Lemmas 7-8 imply the desired result. ∩∅

Setting α := 0.3115 and τ = 12.1855, then, we obtain the approximation ratio
of Algorithm 1 is 0.3456. In this case, γ(α) = 0.4521 and ρ(α) = 0.9952.

5 Discussions

In this paper, we propose a CSDP rounding approximation algorithm for the
balanced Max-3-Uncut problem with the approximation ratio 0.3456. There are
several directions for future research.

– It will be very interesting to develop a complex SDPH and its corresponding
rounding technique, extending the real case in [14]. We believe that this
technique should significantly improve the approximation ratios for the Max-
3-Section and balanced Max-3-Uncut problems.

– We believe that our technique for the balanced Max-3-Uncut problem can
be extended to the general capacitated Max-3-Uncut problem by extending
the greedy adjustment and the corresponding analysis.

– It is also of interest to consider other NP-hard problems using the CSDP
rounding and investigate the inapproximability of the CSDP relaxation.
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Abstract. In this paper, we introduce two variants of the submodular
vertex cover problem, namely, the submodular vertex cover problems
with linear and submodular penalties, for which we present two primal-
dual approximation algorithms with approximation ratios of 2 and 4,
respectively. Implementing the primal-dual framework directly on the
dual programs of the linear program relaxations for these two variants
cannot guarantee the dual ascending process terminates in polynomial
time. To overcome this difficulty, we relax the two dual programs to
slightly weaker versions which lead to two primal-dual approximation
algorithms with the aforeclaimed approximation ratios.

Keywords: Primal-dual, Approximation algorithm, Submodular func-
tion, Vertex cover problem.

1 Introduction

1.1 Vertex Cover and Submodular Function

The vertex cover problem is a fundamental and widely investigated problem
in combinatorial optimization (cf. [17]). It is well-known that the vertex cover
problem is NP -hard (cf. [23]), and cannot be solved in polynomial time unless
P = NP . The vertex cover problem is defined on an undirected graph G =
(V,E) with vertex set V and edge set E. Each vertex i → V has an associated
nonnegative cost c(i). A vertex subset S ⊂ V is called a vertex cover in G if
every edge in E is incident to vertex in S —that is, the vertex subset covers all
the edges. The objective is to find a vertex cover with the minimum cost.

A submodular function f is defined on a collection of subsets, and satisfies
f(X ≡ Y ) + f(X ∈ Y ) ≥ f(X) + f(Y ), for any two subsets X and Y . Sub-
modular functions arise naturally in the fields of operations research, computer
science, and economics (cf. [11]) due to the decreasing marginal return prop-
erty. There have been extensive work on submodular function optimization (cf.
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Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 336–345, 2014.
c∞ Springer International Publishing Switzerland 2014
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[10, 11],[13],[19],[26]). Lovász [25] establishes a direct connection between sub-
modularity and convexity: the submodularity of a set function can be charac-
terized by the convexity of a continuous function obtained by extending the set
function in an appropriate manner.

Many combinatorial optimization problems have their submodular counter-
parts. The classical vertex cover problem was extended to the submodular case
by Iwata and Nagano [20], where, given a nonnegative submodular function
C : 2V ∪ R+, the objective is to find a vertex cover S ⊂ V that minimizes
the cost C(S). The notion of penalty has been considered earlier in the context
of the Steiner tree, TSP, and Facility location (see [6–8],[14],[24] and references
therein). In this paper, we relax further the requirement that a vertex cover has
to cover all the edges by penalizing the uncovered edges, resulting in the submod-
ular vertex cover problem with penalties (SVCWP). We consider two variants
depending on whether the penalty cost function is linear or submodular, namely
the submodular vertex cover problem with linear penalties (SVCLP) and the
submodular vertex cover problem with submodular penalties (SVCSP).

1.2 Related Work

Over the last decades, the vertex cover problem has received a particular atten-
tion. There are a number of approximation algorithms that have been proposed
for this problem and many variants exist with various performance guarantees
(cf. [17]).

Several techniques have been developed in designing approximation algo-
rithms for the vertex cover problem, including LP-rounding, primal-dual, and
greedy techniques. Hochbaum [16] give an LP-rounding 2-approximation algo-
rithm which is the first constant approximation algorithm for this problem. Bar-
Yehuda and Even [2] propose a primal-dual 2-approximation algorithm. Depend-
ing on the number of the vertices or the maximum degree of the graph, there
are some approximation algorithms that achieve 2− o(1) ratio (cf. [3],[15],[21]).
On the other hand, Knote and Segev [22] prove that the lower bound is 2− Ω for
any Ω > 0 under the unique game conjecture.

Various generalizations and variants of the vertex cover problem have been
studied (cf. [1],[12]). We only review some results related to the SVCWP.
Hochbaum [18] introduces the generalized vertex cover problem and presents
an LP-rounding 2-approximation algorithm. This problem (a.k.a. the prize-
collecting vertex cover problem [4]) is essentially the vertex cover problem with
linear penalties in our terminology. Using primal-dual technique, Bar-Yehuda
and Rawitz [5] propose a 2-approximation algorithm. Taking the maximum de-
gree d of the given graph into consideration, Bar-Yehuda et al. [4] give a local-
ratio (2 − 2/d)-approximation algorithm. Iwata and Nagano [20] introduce the
submodular vertex cover problem and propose a convex programming rounding
2-approximation algorithm.



338 D. Xu et al.

1.3 Our Contribution

The main contributions of this paper are summarized as follows.

– We firstly introduce the SVCWP which generalizes the classic vertex cover
problem, submodular vertex cover problem [20], and generalized vertex cover
problem [18].

– We present two primal-dual approximation algorithms with 2 and 4 ratios for
the SVCLP and SVCSP respectively. Implementing the primal-dual frame-
work directly on the dual programs of the linear program relaxations for the
SVCLP and SVCSP cannot control the dual ascending process in polyno-
mial time. To overcome this difficulty, we relax these two dual programs to
slightly weaker versions which lead to two primal-dual approximation algo-
rithms with the claimed approximation ratios.

1.4 Organization

The paper is organized as follows. We offer two primal-dual approximation al-
gorithms with ratios of 2 and 4 for the SVCLP and SVCSP in Sections 2 and 3
respectively. We conclude the paper in Section 4. All proofs are deferred to the
Appendix.

2 Primal-dual Approximation Algorithm for the SVCLP

2.1 Formulation

In the SVCLP, we are given an undirected graph G = (V,E) with vertex set
V and edge set E, and a nonnegative submodular function C : 2V ∪ R+ with
C(◦) = 0. Each subset S ⊂ V has a covering cost C(S) and each edge e → E has
a penalty cost pe. The objective is to select a vertex subset to cover some edges
and penalize the uncovered edges such that the total cost including covering and
penalty is minimized. Let us denote e := (i, j) for each edge e → E such that i
and j are the two adjacent vertices of edge e. When there is no confusion, we
abuse e = (i, j) to denote a vertex subset consisting of the two adjacent vertices
i and j.

To formulate the SVCLP as an integer linear program, we introduce two types
of binary variables: XS for each subset S ⊂ V and ze for each edge e → E. For
an arbitrarily subset S ⊂ V , XS indicates whether S is selected to cover some
edges. For an arbitrarily e → E, ze indicates whether e is penalized. Then, we
have the following integer linear program for the SVCLP.

OPTSV CLP := min
∑

S→V

C(S)XS +
∑

e≥E

peze

s. t.
∑

S→V :S∪e∈=⊆
XS + ze ⊆ 1, ∀e = (i, j) → E, (1)

XS , ze → {0, 1}, ∀S ⊂ V, e → E.
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The first constraint of (1) guarantees that each edge e → E is either covered
by some vertex subset S or penalized. Due to the submodularity of C(·), there
must exist exactly one S ⊂ V such that XS = 1 in the optimal solution of (1).
Relaxing the integer constraints, we obtain

min
∑

S→V

C(S)XS +
∑

e≥E

peze

s. t.
∑

S→V :S∪e∈=⊆
XS + ze ⊆ 1, ∀e = (i, j) → E, (2)

XS , ze ⊆ 0, ∀S ⊂ V, e → E.

The dual program of (2) is

max
∑

e≥E

ye

s. t.
∑

e≥E:e∪S ∈=⊆
ye ≥ C(S), ∀S ⊂ V, (3)

ye ≥ pe, ∀e → E,
ye ⊆ 0, ∀e → E.

If we adopt the standard primal-dual framework to ascend the dual variables,
we will deal with the ratio between two submodular functions which cannot be
computed in polynomial time in general. Instead of (3), we propose the following
weak dual program.

max
∑

e≥E

ye

s. t.
∑

e≥E:|e∪S|=1

1

2
ye +

∑

e≥E:e→S

ye ≥ C(S), ∀S ⊂ V, (4)

ye ≥ pe, ∀e → E,
ye ⊆ 0, ∀e → E.

We present the relationship among (2)-(4) in the following lemma.

Lemma 1. Given any feasible solution {y} for (4), { 1
2y} is feasible for (3).

Furthermore, 1
2

∑
e≥E ye is a lower bound for the primal linear program (2).

2.2 Algorithm

Based on the weak dual program (4), we give a primal-dual algorithm for the
SVCLP as follows.



340 D. Xu et al.

Algorithm 1

STEP 0. Introduce a notion of time t, and start the algorithm at time t = 0. Let
S̃ denote the vertex subset which is used to cover edges, along with its edge
set E(S̃) covered by S̃. Let Q̃ denote the temporarily penalized edge subset.
Moreover, denote F as the edge set in which the corresponding dual variables
stop increasing, that is F = Ẽ(S̃) ≡ Q̃. We say that an edge is frozen if it
belongs to F ; otherwise the edge is unfrozen. Initially, all dual variables ye
are set to 0 and all edges are unfrozen. Initialize S̃ := ◦, E(S̃) := ◦, Q̃ := ◦,
and F := ◦.

STEP 1. Increase the dual variables ye’s for all unfrozen edges e → E uniformly
at unit rate with time t. One of the following events may occur:

Event 1. There exists a vertex subset S ⊂ V such that




∑

e≥E\F :|e∪S|=1

1

2
t+

∑

e≥E\F :e→S

t





+




∑

e≥F :|e∪S|=1

1

2
ye +

∑

e≥F :e→S

ye





= C(S).

In this case, freeze those unfrozen edges in S by setting F := F ≡
{e → E \ F : e ∈ S ∩= ◦}. Update S̃ := S̃≡S, and E(S̃) := E(S̃)≡{e → E :
e ∈ S ∩= ◦}.

Event 2. There exists an edge e → E \ F such that t = pe. Freeze and
temporarily penalize this edge by setting F := F ≡{e} and Q̃ := Q̃≡{e}.

If several events occur simultaneously, the algorithm executes them in an
arbitrary order. Repeat the above process until all edges are frozen.

STEP 2. Let Ŝ and Q̂ denote the final vertex subset used to cover edges and
the final penalized edge set respectively. Set Ŝ := S̃ and Q̂ := Q̃ \ E(S̃).

2.3 Analysis

Lemma 2. Algorithm 1 can be implemented in polynomial time.

Lemma 3. Consider any given time t during the implementation of Algorithm
1. Let ye(t) be the dual value of edge e at time t which will increase with time t
until edge e is frozen. Then for the set S̃, we always have

∑

e≥E:|e∪S̃|=1

1

2
ye(t) +

∑

e≥E:e→S̃

ye(t) = C(S̃).

Theorem 4. Algorithm 1 is a primal-dual 2-approximation algorithm for the
SVCLP.
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We remark that the framework of our analysis for the SVCLP (also for the
SVCSP in Section 3) follows the work of Du et al. [8] for the facility location
problem with submodular penalties. But we need to pay more attention to the
vertex cover structure. Particularly, Event 1 of Algorithm is quite different com-
paring with the situation for the facility location problem.

3 Primal-dual Approximation Algorithm for the SVCSP

3.1 Formulation

Given a nonnegative monotonically increasing submodular function P (·) : 2E ∪
R+ with P (◦) = 0. The SVCSP is the same as SVCLP except that the linear
penalty pe for each edge e → E is replaced with a submodular penalty function
P (Q) for each edge subset Q ⊂ E.

Let us introduce two types of binary variables XS for each vertex subset
S ⊂ V and ZQ for each edge subset Q ⊂ E. For an arbitrarily subset S ⊂ V , XS

indicates whether S is selected to cover some edges. For an arbitrarily subset
Q ⊂ E, ZQ indicates whether Q is selected to be penalized. Then, we have the
following integer linear program for the SVCSP.

OPTSV CSP := min
∑

S→V

C(S)XS +
∑

Q→E

P (Q)ZQ

s. t.
∑

S→V :S∪e∈=⊆
XS +

∑

Q→E:e≥Q

ZQ ⊆ 1, ∀e = (i, j) → E, (5)

XS , ZQ → {0, 1}, ∀S ⊂ V,Q ⊂ E.

The first constraint of (5) guarantees that each edge e → E is either covered by
some vertex subset S or penalized in some edge subset Q. Due to the submod-
ularity of C(·) and P (·), there must exist exactly a pair of subsets S ⊂ V and
Q ⊂ E such that XS = 1 and ZQ = 1 in the optimal solution of (5). Relaxing
the integer constraints, we obtain

min
∑

S→V

C(S)XS +
∑

Q→E

P (Q)ZQ

s. t.
∑

S→V :S∪e∈=⊆
XS +

∑

Q→E:e≥Q

ZQ ⊆ 1, ∀e = (i, j) → E, (6)

XS , ZQ ⊆ 0, ∀S ⊂ V,Q ⊂ E.

The dual program of (6) is

max
∑

e≥E

ye

s. t.
∑

e≥E:e∪S ∈=⊆
ye ≥ C(S), ∀S ⊂ V, (7)

∑

e≥Q

ye ≥ P (Q), ∀Q ⊂ E,

ye ⊆ 0, ∀e → E.
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We propose the following weak dual program to approximate (7).

max
∑

e≥E

ye

s. t.
∑

e≥E:|e∪S|=1

1

2
ye +

∑

e≥E:e→S

ye ≥ C(S), ∀S ⊂ V, (8)

∑

e≥Q

ye ≥ P (Q), ∀Q ⊂ E,

ye ⊆ 0, ∀e → E.

Similar to Lemma 1, we have the following lemma to describe the relationship
among the last three linear programs.

Lemma 5. Given any feasible solution y for (8), 1
2y is feasible for (7). Further-

more, 1
2

∑
e≥E ye is a lower bound for the primal linear program (6).

3.2 Algorithm

Based on the weak dual program (8), we give a primal-dual algorithm for the
SVCSP as follows. Since Algorithm 2 is almost the same as Algorithm 1, we only
address Event 2 which is the only difference between the two.

Algorithm 2

Event 2. There exists an edge set Q ⊂ E such that
∑

e≥Q\F
t+

∑

e≥Q∪F

ye = P (Q).

Freeze those unfrozen edges in Q and temporarily penalize all edges in Q by
setting F := F ≡Q and Q̃ := Q̃ ≡Q.

We remark that some edges covered by S̃ may be included in Q̃ in Event 2.
Moreover, some temporarily penalized edges may be covered by S̃ in Event 1.
These two situations may occur if Q̃ ∈ E(S̃) ∩= ◦ (see Figure 1).

3.3 Analysis

Lemma 6. Algorithm 2 can be implemented in polynomial time.

Lemma 7. Consider any given time t during the implementation of Algorithm
2. Let ye(t) be the dual value of edge e at time t which will increase with time t
until edge e is frozen. Then for the set S̃ and Q̃, we always have

∑

e≥E:|e∪S̃|=1

1

2
ye(t) +

∑

e≥E:e→S̃

ye(t) = C(S̃),

and ∑

e≥Q̃

ye(t) = P (Q̃).
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SS QQ

Fig. 1.

Theorem 8. Algorithm 2 is a primal-dual 4-approximation algorithm for the
SVCSP.

4 Discussion

In this paper, we introduce the SVCWP with two variants, namely, the SVCLP
and SVCSP, for which we present two primal-dual approximation algorithms.

We point out that the approximation ratio 4 for the SVCSP can be improved.
Based on the double Lovász extensions for C(·) and P (·), one can obtain an
integer convex programming for the SVCSP. The corresponding convex pro-
gramming relaxation can be solved in polynomial time by the ellipsoid method.
Recall that there is a convex programming rounding 2-approximation algorithm
for the submodular vertex cover problem [20]. Applying the general rounding
framework for covering problems with submodular penalties [24], we can obtain
a convex programming rounding (non-combinatorial) approximation algorithm
with the ratio (1 − e−1/2)−1 ≥ 2.542 for the SVCSP. However, our primal-dual
4-approximation algorithm for the SVCSP is combinatorial and easily adaptable
to other problems.

There are several directions for future research. First, what is the approxima-
bility of the SVCSP? Since the best constant ratio we can hope for the vertex
cover problem is 2 under the unique game conjecture, the proposed primal-dual
2-approximation algorithm for the SVCLP is unlikely to be improved. It will be
interesting to improve the 2.542 approximation ratio for the SVCSP. Second,
what is the approximability of the problem if the edge penalties are arbitrary
functions rather than submodular functions? Third, is it possible to extend our
approach to study other variants of the vertex cover problem explained in the
introduction section.
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Abstract. Let k be an input parameter. An s-t cut is of k-size if its
s-side has size at most k. The Min k-Size s-t Cut problem asks to find
a k-size s-t cut with the minimum capacity. Being the unbalanced ver-
sion of the famous Min s-t Cut problem, this problem is fundamental
and has extensive applications, especially in community identification in
social and information networks. In this paper, we give a new k+1

k+1−k∗ -
approximation algorithm for the Min k-Size s-t Cut problem, where k∗

is the size of s-side of an optimal solution.

1 Introduction

Let G = (V,E) be an undirected graph with nonnegative edge capacities {ce}.
Given a partition (A,B) of the vertex set V (that is, B = A and A,B →= ⊂), a
cut (A,B) of graph G is the set of edges having one endpoint in A and the other
endpoint in B. The capacity Ω(A,B) of a cut (A,B) is the sum of capacities of
edges in the cut, i.e, Ω(A,B) =

∑
e∞(A,B) ce. If every edge in the graph has unit

capacity, the capacity of a cut is simply the number of edges in the cut.
Let k be an input parameter. Given two distinguished vertices s and t of

graph G, known as the source and the sink respectively, an s-t cut (S, T ) is a
cut separating s and t. A k-size s-t cut of G is an s-t cut whose s-side has size
at most k. Given an s-t cut (S, T ), we always assume that s ≡ S. In this paper,
we study the Min k-Size s-t Cut problem. It is the unbalanced version of the Min
s-t Cut problem, in the sense that a k-size s-t cut has its s-side size-bounded.

Definition 1. The Min k-Size s-t Cut Problem.
(Instance) An undirected graph G = (V,E) with nonnegative edge capacities

{ce}, a source-sink pair (s, t), and a positive integer k.
(Goal) Find a k-size s-t cut with the minimum capacity.

Motivations. From the viewpoint of combinatorial optimization, the Min k-
Size s-t Cut problem is just a natural generalization of the classic Min s-t Cut

α This work was done when the author was visiting University of California, Riverside,
USA. Supported by the State Scholarship Fund of China, Natural Science Founda-
tion of Shandong Province (ZR2012Z002 and ZR2011FM021), and the Independent
Innovation Foundation of Shandong University (2012TS072).

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 346–356, 2014.
c→ Springer International Publishing Switzerland 2014
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problem. While Min s-t Cut was known to be polynomial-time solvable several
decades ago, it is surprising that only recently starts the algorithmic research
of the unbalanced Min s-t Cut problem (i.e., Min k-Size s-t Cut). This may be
partially because new applications desiring unbalanced cuts arise only recently.

In applications, the unbalanced cut problems are closely related to the cluster-
ing and classification problems, especially in community identification in social
and information networks [1,2]. A community in a social network is thought of
as a set of vertices such that there are many connections between its members.
Sometimes we want to make clear which community a given node belongs to.
Identifying community containing a given node with a given size just leads to
the Min k-Size s-t Cut problem.

1.1 Related Work and Our Results

Li and Zhang [2] introduced the Min k-Size s-t Cut problem. They proved the
problem is NP-hard and gave an O(log n)-approximation algorithm for the prob-
lem, where n is the number of vertices in the input graph. The strategy is via a
series of reductions finally to the Min Ek-Size Cut problem (find a minimum ca-
pacity cut with the small side having exactly k vertices), which is approximately
solved by Räcke’s elegant tree decomposition method [3].

Hayrapetyan et al. [4] study the Min-Size Bounded-Capacity Cut problem
(MinSBCC, for short), which asks to find an s-t cut in a graph such that the
capacity of the cut does not exceed a given budget B ∈ 0 and the size of the s-
side of the cut is minimized. For this problem, the authors [4] gave a bi-criteria
( 1Σ ,

1
1−Σ )-approximation algorithm for any 0 < σ < 1; that is, the algorithm

outputs a cut with its s-side having size at most 1
1−Σ times that of an optimal

cut (i.e., 1
1−Σ is the approximation ratio), and with its capacity being at most 1

ΣB

(i.e., 1
Σ is the violation of the budget). The strategy is based on the parametric

push-relabel max flow algorithm due to Gallo et al. [5].
The Min k-Size s-t Cut problem and the MinSBCC problem are closely re-

lated in the sense that for the cut to be found, the former applies budget k on the
size of the s-side and minimizes the capacity, while the latter applies budget B
on the cut capacity and minimizes the size of its s-side. Motivated by the strat-
egy of parametric flow used in [4], we design a new true k+1

k+1−k∗ -approximation
algorithm for the Min k-Size s-t Cut problem, where k≥ is the size of s-side of
an optimal solution. In the worst case, k≥ could be equal to k and the approx-
imation ratio k+1

k+1−k∗ could degenerate into O(k). We get this result by deep
analysis of the structure of a series of s-t cuts, and thus extend the parametric
flow technique to the Min k-Size s-t Cut problem. While the algorithm itself has
nothing to do with linear programming, its analysis is based on a natural linear
programming relaxation to the Min k-Size s-t Cut problem. We also prove that
the integrality gap of this relaxation is at least k/2.

Feige et al. [6] studied the problem of cutting exactly k vertices from a graph
that separates a given source-sink pair s and t. Let us denote this problem by Min
Ek-size s-t Cut. By extending Karger’s random edge-contraction technique [7]



348 P. Zhang

for the Global Min Cut problem, the authors [6] gave a randomized O(k/ logn)-
approximation algorithm for the Min Ek-size s-t Cut problem, where n is the
number of vertices in the input graph. The approximation ratio is guaranteed
with high probability. However, it is not known how to derandomize this al-
gorithm (as well as Karger’s algorithm for Global Min Cut [7]). Although not
mentioned by the authors, the work of Feige et al. [6] implies that the Min k-Size
s-t Cut problem studied in this paper can be approximated within O(k/ log n)
with high probability by reducing it to Min Ek-Size s-t Cut. In contrast, our
approximation ratio for the Min k-Size s-t Cut problem, in the worst case being
O(k), is guaranteed deterministically.

1.2 More Related Work

The Min k-Size Cut problem asks to find a k-size cut with minimum capacity,
where a k-size cut means that the smaller side of the cut has size at most k.
Based on the approximation results of Min k-Size s-t Cut, one may easily try
to approximate Min k-Size Cut by trying Min k-Size s-t Cut for all possible
source-sink pairs. Surprisingly, Armon and Zwick [8] showed that the Min k-Size
Cut problem can be optimally solved in O(n6 logn) time, where n is the number
of vertices in the input graph. Their strategy is a series of reductions finally to
the enumeration of all the 2-approximate min cuts, where a 2-approximate min
cut is a cut whose capacity is at most two times that of the min cut. By the
work of Nagamochi et al. [9], the enumeration can be done in O(n6) time. The
optimal solution to Min k-Size Cut can be found in this enumeration.

By extending Räcke’s tree decomposition method [3], Li and Zhang [2] gave
O(log n)-approximation algorithms for the Min Ek-Size Cut problem and the
Min Ek-Size s-t Cut problem (find a minimum capacity s-t cut with the s-side
having exactly k vertices), where n is the number of vertices in the input graph.

Fomin et al. [10] considered the parameterized complexity for several unbal-
anced edge-cut and vertex-cut problems. Specifically, they showed that the Min
k-Size s-t Cut problem is fixed-parameter tractable when parameterized by k and
the cut capacity. Chuzhoy et al. [11] gave some approximation algorithms for the
k-Route Cut problem, which is shown by the authors to be a generalization of
the MinSBCC problem and the Min k-Size s-t Cut problem.

Svitkina and Tardos [12] studied the Max-Size Bounded-Capacity Cut prob-
lem (MaxSBCC, for short), which is the maximization version of the MinSBCC
problem. The MaxSBCC problem asks to find an s-t cut in a graph such that
the capacity of the cut does not exceed a given budget and the size of the s-side
of the cut is maximized. For both MinSBCC and MaxSBCC, only bi-criteria
approximation algorithms are currently known [4,12].

2 Preliminaries

Notations. For convenience, when we talk about an s-t cut (S, T ), we always
mean that s ≡ S and t ≡ T . Since once one side of a cut is given, the other side
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is accordingly determined, a cut (S, T ) is also abbreviated to just S. That is,
when we talk about cut S, we mean the cut (S, T ) where T = S.

Let (A1, A2, · · · ) be a sequence (of numbers, sets, etc.). We use (Ai) as its
succinct expression.

As usual, given a graph G, let n denote the number of its vertices, and m
denote the number of its edges. Given an instance of some optimization problem,
let OPT denote the optimal value of the instance.

The Parametric Flow Technique. Hayrapetyan et al. [4] defined the following
parametric networkGΩ, which is an instance of a class of more general parametric
networks defined by Gallo et al. [5]. Given graph G and sink t, add an edge of
capacity α ∈ 0 from every vertex v →= t to the sink t, introducing parallel edges
if necessary. Denote by GΩ the resulting parametric network.

Noticing that in GΩ the capacity of an s-t cut (S, S) is α|S| + ΩG(S), it is
easy to see that the larger α, the smaller s-side of a min s-t cut of GΩ. Let S0

be a min s-t cut of GΩ when α = 0. As α increases, the s-side of the min s-t
cut of GΩ will contain fewer and fewer vertices, until eventually the last cut,
denoted by Sν for some β, contains only the source vertex s. It is well known
[13,14,5] that there are at most n − 1 distinct cuts S0, S1, · · · , Sν produced in
the above procedure. By extending the famous push-relabel max flow algorithm
of Goldberg and Tarjan [15], Gallo et al. [5, Section 3.3] gave an elaborated and
efficient algorithm which finds in O(nm log(n2/m)) time all these cuts and their
corresponding α values, denoted by α0, α1, · · · , αν.

Let ki = |Si| for 0 ≥ i ≥ β. By the above description, Properties 1 and 2 are
obvious.

Property 1. α0 < α1 < · · · < αν.

Property 2. k0 > k1 > · · · > kν.

In fact, [5] shows that the cuts {Si} form a nested family S0 ∪ S1 ∪ · · · ∪ Sν.
Let Ωi be the capacity of cut (Si, Si) with respect to graph G, that is, Ωi =

ΩG(Si). Hayrapetyan et al. [4] showed that Property 3 holds. Its proof is given
here for completeness.

Property 3. Ω0 < Ω1 < · · · < Ων.

Proof. Suppose not and for some pair i, j that i < j we have Ωi ∈ Ωj . By Property
2, |Si| > |Sj |. So we have α|Si| + ΩG(Si) > α|Sj | + ΩG(Sj) for any α > 0. This
means Sj can not be after Si, contradicting the fact i < j. ◦⊆

3 Approximation Algorithm

In this section we present the approximation algorithm for the Min k-Size s-t Cut
problem. Before doing this, we first state some lemmas which help to understand
the design of the algorithm.

Let S≥ be a min k-size s-t cut, and k≥ = |S≥|.
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Lemma 1 (Assumption). By the guess skill we can assume that the value of
k≥ is known.

Proof. The guess skill is a folklore in the design of approximation algorithms. It
actually means that we try the algorithm (for the Min k-Size s-t Cut problem)
for each possible value of k≥ and output the best solution ever found. ◦⊆

Lemma 2 (Assumption). In general we can assume that k0 > k ∈ k≥.

Proof. Obviously we always have k ∈ k≥. Consider the case k ∈ k0. Since S0

(with |S0| = k0) is a min s-t cut of G, S0 is also a min k-size s-t cut of G. So, in
this case we simply output S0 and we are done. This means that we need only
to focus on the case k0 > k, giving the assumption. ◦⊆

Lemma 3. If k≥ is in the sequence (ki), then (i) the first entry in sequence (ki)
that is at most k, kj to say, is just k≥, and (ii) the corresponding cut Sj is a
min k-size s-t cut.

Proof. (i) Prove by contradiction and suppose kj →= k≥. Since k≥ ≥ k and k≥ is
in (ki), k

≥ must be after kj in the sequence (i.e., kj > k≥). Since Sj is a k-size
s-t cut, we have ΩG(S

≥) ≥ ΩG(Sj). Therefore,

α|S≥|+ ΩG(S
≥) < α|Sj |+ ΩG(Sj)

for any α > 0. This means S≥ should be in the sequence and at least before Sj ,
contradicting the fact that kj > k≥.

(ii) Since Sj is a min s-t cut of graph GΩj , and S≥ is an s-t cut of GΩj ,
obviously we have αj |Sj | + ΩG(Sj) ≥ αj |S≥| + ΩG(S

≥). Since kj = k≥, we get
ΩG(Sj) ≥ ΩG(S

≥).
On the other hand, S≥ is a min k-size s-t cut of graph G, and Sj is a k-size

s-t cut of G. So ΩG(S
≥) ≥ ΩG(Sj). As a consequence, we have ΩG(Sj) = ΩG(S

≥),
that is, Sj is also a min k-size s-t cut of G. ◦⊆

Lemma 4. If k≥ is not in the sequence (ki), then all the entries in [k, k −
1, · · · , k≥] are not in (ki).

Proof. Take any k∪ ≡ [k, k − 1, · · · , k≥ + 1]. Suppose k∪ is in (ki). Let S
∪ be the

cut corresponding to k∪, and α∪ be the corresponding α value.
By Lemma 2, k0 > k∪ and hence α∪ > 0. Since S∪ is a min s-t cut of graph

GΩ∞
, and S≥ is an s-t cut of GΩ∞

, we have α∪|S∪| + ΩG(S
∪) ≥ α∪|S≥| + ΩG(S

≥).
Since k∪ > k≥, that is, |S∪| > |S≥|, we have ΩG(S

∪) < ΩG(S
≥), contradicting the

fact that S≥ is a min k-size s-t cut of G. ◦⊆

Based on the observations in Lemmas 1-4, we design Algorithm A for the Min
k-Size s-t Cut problem.

Algorithm A for Min k-Size s-t Cut
Input: Instance I = (G, c, k, s, t).
Output: A k-size s-t cut (S, T ).
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1 By calling the push-relabel parametric flow algorithm, compute a sequence
of cuts S0, S1, · · · , Sν. For each 0 ≥ i ≥ β, ki ∀ |Si|.

2 If k ∈ k0 then return S0 and stop.
3 Guess the size of the smaller side of an optimal cut (S≥, S≥). Denote it by

k≥.
4 Find k≥ in {k0, k1, · · · , kν}.
5 If found, say kj = k≥, then return Sj .
6 Otherwise find a j such that kj > k ∈ k≥ > kj+1, return Sj+1.

Algorithm A is a purely combinatorial and efficient algorithm. The running
time of step 1 dominates the time of other steps. So, the total running time of
Algorithm A is O(nm log(n2/m)).

4 Analysis

While Algorithm A itself has nothing to do with linear programming, its anal-
ysis is based on the linear programming relaxation (LP1) for the Min k-Size
s-t Cut problem, and its Lagrangian relaxation (LP2) (which is just the linear
programming relaxation for the Min s-t Cut problem on graph GΩ∞

).
The following linear program (LP1) is an LP-relaxation for the Min k-Size s-t

Cut problem. To see this, just consider its integer version, that is, the integer
program obtained by replacing constraint (3) with xv, ye ≡ {0, 1}, ∩v, ∩e. In the
program, for a vertex v, the value of xv being 1 means vertex v is in the s-side
and the value being 0 means the t-side. For an edge e, the value of ye being 1
means edge e is cut and the value being 0 means not. In order to minimize the
objective function, a cut has to assign 1 to all vertices in its s-side and 0 to all
vertices in its t-side. Constraint (2) requires the number of vertices in the s-side
of a cut is at most k.

min
∑

e∞E

ceye (LP1)

s.t. xs = 1,

xt = 0,

ye ∈ |xu − xv|, ∩e = (u, v) ≡ E, (1)
∑

v∞V

xv ≥ k, (2)

xv, ye ∈ 0, ∩v ≡ V, ∩e ≡ E. (3)

Linear program (LP1) has a parameter k in its constraint (2). We use (LP1(k))
to denote the linear program with a specified parameter k. By the way, (LP1) is
really a linear program since the inequality in constraint (1) can be replaced by
ye ∈ xu − xv and ye ∈ xv − xu.
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By applying the Lagrangian relaxation technique on (LP1), we can move to
the objective function the left hand side of constraint (2) with a multiplier α∪,
resulting in the linear program (LP2).

min α∪
∑

v∞V (G)

xv +
∑

e∞E(G)

ceye (LP2)

s.t. xs = 1,

xt = 0,

ye ∈ |xu − xv|, ∩e = (u, v) ≡ E(G),

xv, ye ∈ 0, ∩v ≡ V (G), ∩e ≡ E(G).

Hayrapetyan et al. [4] proved Lemma 5 by rounding a fractional optimal so-
lution to (LP2) to an integer solution without increasing the objective function
value. Here, we give a new, simple proof for Lemma 5 using the total unimodu-
larity of a matrix.

Lemma 5. Linear program (LP2) has integer optimal solutions.

Proof. Consider the parametric network GΩ∞
. Define ce = α∪ for each edge e =

(v, t) (v →= t) added to graph G when we construct GΩ∞
. Then the objective

function of (LP2) can be written as
∑

e∞E(Gα∞) ceye, if we define ye = xv for

each edge e = (v, t) ≡ E(GΩ∞
) \ E(G). In this way, we get the linear program

(LP3) shown below. For an optimal solution to (LP3), we actually have ye =
|xv − xt| = xv for each edge e = (v, t) ≡ E(GΩ∞

) \ E(G). Therefore, (LP2) is
equivalent to (LP3) in the sense that they have the same optimal solutions.

min
∑

e∞E(Gα∞ )

ceye (LP3)

s.t. xs = 1,

xt = 0,

ye ∈ |xu − xv|, ∩e = (u, v) ≡ E(GΩ∞
),

xv, ye ∈ 0, ∩v ≡ V (GΩ∞
), ∩e ≡ E(GΩ∞

).

Linear program (LP3) is nothing but the LP-relaxation of the famous Min s-t
Cut problem. It is well-known that the constraint matrix of (LP3) is totally uni-
modular [16, Theorem 13.3]. Given that the right hand sides of the constraints
in (LP3) are all integers, all basic feasible solutions to (LP3) are integral [16,
Theorem 13.2], implying that (LP3), and hence (LP2), has integer optimal solu-
tions. ◦⊆

Now we are ready to give the analysis for Algorithm A.

Lemma 6. Let j be the index found in step 6 of Algorithm A. Suppose |Sj | ∈
1

1−Σk
≥ for some σ > 0. Then ΩG(Sj+1) ≥ 1

ΣΩG(S
≥).



A New Approximation Algorithm for the Unbalanced Min s-t Cut Problem 353

Proof. Since the cuts Sj and Sj+1 are neighbors, there exists a value α∪ (α∪ =
(Ωj+1 − Ωj)/(kj − kj+1)), such that both Sj and Sj+1 are min s-t cuts of graph

GΩ∞
.
By Lemma 5, (LP2) has integer optimal solutions. By the formulation of

(LP2), an integer optimal solution corresponds to a min s-t cut of GΩ∞
. Therefore,

Sj and Sj+1 leads to two integer optimal solutions to (LP2), denoted by (x−, y−)
and (x+, y+), respectively. Therefore, the linear combination

(1− θ)(x−, y−) + θ(x+, y+) = (x≥, y≥) (4)

for some θ ≡ (0, 1) is a (fractional) optimal solution to (LP2), where we choose
θ such that

(1− θ)
∑

v

x−v + θ
∑

v

x+v = k≥. (5)

Since
∑

v x
−
v = kj > k≥, we know that such θ exists.

Claim. (x≥, y≥) is a fractional optimal solution to (LP1(k
≥)).

Proof. Suppose not and (x∪, y∪) is an optimal solution. So, we have
∑

e cey
∪
e <∑

e cey
≥
e . Since

∑
v x

∪
v ≥ k≥ and

∑
v x

≥
v = k≥, we have

α∪
∑

v

x∪v +
∑

e

cey
∪
e < α∪

∑

v

x≥v +
∑

e

cey
≥
e .

This means (x∪, y∪) is a solution to (LP2) better than (x≥, y≥), contradicting the
optimality of (x≥, y≥). ◦⊆

By the above claim and the fact that the cut S≥ is a feasible solution to
(LP1(k

≥)), we get ∑

e∞E(G)

cey
≥
e ≥ ΩG(S

≥). (6)

By equation (5),
∑

v x
−
v ≥ k∗

1−θ . By the condition given in the lemma,
∑

v x
−
v =

|Sj | ∈ k∗
1−Σ . So, we have

1

1− σ
≥ 1

1− θ
∅↓ σ ≥ θ. (7)

By the linear combination (4), we have

y≥e ∈ θ · y+e (8)

for any e ≡ E(GΩ∞
). So, finally we have

ΩG(Sj+1) =
∑

e∞E(G)

cey
+
e ≥

(8)

1

θ

∑

e∞E(G)

cey
≥
e ≥
(7)

1

σ

∑

e∞E(G)

cey
≥
e ≥
(6)

1

σ
ΩG(S

≥),

proving the lemma. ◦⊆
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Theorem 1. Algorithm A is a k+1
k+1−k∗ -approximation algorithm for the Min

k-Size s-t Cut problem, where k≥ is the size of the s-side of an optimal solution.

Proof. By Lemma 2 and Lemma 3, if Algorithm A terminates in step 2 or step
5, the algorithm returns an optimal solution.

By Lemma 4, if k≥ is not in the sequence (ki), the algorithm must find a j in
step 6 such that |Sj | > k ∈ k≥ > |Sj+1|. In this case, Sj+1 is a feasible solution.

So, if we set σ = 1 − k∗
k+1 , then we have |Sj | ∈ k + 1 = 1

1−Σk
≥. Therefore, by

Lemma 6, we have

ΩG(Sj+1) ≥
1

σ
ΩG(S

≥) =
1

σ
OPT.

The approximation ratio is

1

σ
=

1

1− k∗
k+1

=
k + 1

k + 1− k≥
.

Finally, the algorithm obviously runs in polynomial time. The theorem follows.
◦⊆

5 Integrality Gap

Given a minimization problem and its linear programming relaxation, recall
that the integrality gap of the linear program is the supremum of the ratio
OPT/OPTf over all instances of the problem, where OPTf is the fractional
optimal value of the linear program, and OPT, as before, is the optimal value
of the problem instance, that is, the optimal value of the corresponding integer
program.

We can show that the integrality gap of linear program (LP1) for the Min
k-Size s-t Cut problem has integrality gap at least k/2. This means that any
approach (e.g., LP-rounding) of designing approximation algorithm for the Min
k-Size s-t Cut problem by using OPTf of (LP1) as the lower bound of OPT, can
not beat our approximation ratio in Theorem 1 up to a constant factor.

Theorem 2. The integrality gap of (LP1) is at least k/2.

Proof. Consider the instance of Min k-Size s-t Cut shown in Figure 1. The
vertices {s, v1, · · · , vk} constitute a (k + 1)-clique. Besides this, there is an edge
between vj and the sink t, where vj is an arbitrary vertex in {v1, · · · , vk}. Each
edge in the graph has unit capacity.

Since any feasible cut can contain at most k vertices in its s-side and the
instance contain a (k + 1)-clique, S≥

1 = {s} and S≥
2 = {s, v1, · · · , vk} \ {vj} are

the only two optimal solutions both with OPT = k.
Then consider a fractional solution to (LP1). Set xs = 1, xt = 0, and xi =

k−1
k

for every 1 ≥ i ≥ k. For each edge e of the k edges ending at s, set ye = 1− k−1
k =

1
k ; for edge e = (vj , t), set ye = k−1

k ; and for all the other edges e set ye = 0.

Since
∑

v xv = 1+ k · k−1
k = k, and ye ∈ |xu − xv| for every edge e, the solution
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s t

1v

kv

2v

jv

1kv

Fig. 1. An example to show the integrality gap of (LP1)

(x, y) defined above is a feasible solution to (LP1) on the instance in Figure 1.
The objective value of this solution is

∑

e ends at s

ye + y(vj ,t) = k · 1
k
+
k − 1

k
= 2− 1

k
.

Summing up, the integrality gap of (LP1) is ∈ OPT
OPTf

∈ k
2−1/k >

k
2 . ◦⊆

6 Conclusions

In this paper, we present a new k+1
k+1−k∗ -approximation algorithm for the Min

k-Size s-t Cut problem, where k≥ is the size of s-side of an optimal solution. In
the worst case, the approximation ratio degenerates into O(k). An immediate
research problem is how to improve the ratio O(k). As we have already given
an instance to show the integrality gap of (LP1) is at least k/2, it is hopeless to
do this improvement by using the pure linear programming technique based on
(LP1). On the other hand, there is yet no approximation hardness result known
for the Min k-Size s-t Cut problem. To prove its approximation hardness also
remains a good open problem.

Acknowledgements. The author is grateful to one of the anonymous reviewers
for his/her suggestions which make the results in the paper more clear.
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Abstract. Locating source of diffusion in networks is crucial for con-
trolling and preventing epidemic risks. It has been studied under various
probabilistic models. In this paper, we study source location from a de-
terministic point of view by modeling it as the minimum weighted doubly
resolving set problem, which is a strengthening of the well-known metric
dimension problem.

Let G be a vertex weighted undirected graph on n vertices. A vertex
subset S of G is a doubly resolving set (DRS) of G if for every pair of
vertices u, v in G, there exist x, y ≥ S such that the difference of dis-
tances (in terms of number of edges) between u and x, y is not equal to
the difference of distances between v and x, y. The minimum weighted
drs problem consists of finding a DRS in G with minimum total weight.
We establish Θ(ln n) approximability of the minimum drs problem on
general graphs for both weighted and unweighted versions. This is the
first work providing explicit approximation lower and upper bounds for
minimum (weighted) drs problem, which are nearly tight. Moreover, we
design first known strongly polynomial time algorithms for the mini-
mum weighted drs problem on general wheels and trees with additional
constant k ≤ 0 edges.

Keywords: Source location, Doubly resolving set, Approximation algo-
rithms, Polynomial-time solvability, Metric dimension.

1 Introduction

Locating the source of a diffusion in complex networks is an intriguing challenge,
and finds diverse applications in controlling and preventing network epidemic
risks [17]. In particular, it is often financially and technically impossible to ob-
serve the state of all vertices in a large-scale network, and, on the other hand, it
is desirable to find the location of the source (who initiates the diffusion) from
measurements collected by sparsely placed observers [16]. Placing an observer
at vertex v incurs a cost, and the observer with a clock can record the time at

α Research supported in part by NNSF of China under Grant No. 11222109, 11021161
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which the state of v is changed (e.g., knowing a rumor, being infected or con-
taminated). Typically, the time when the single source originates an information
is unknown [16]. The observers can only report the times they receive the infor-
mation, but the senders of the information [9]. The information is diffused from
the source to any vertex through shortest paths in the network, i.e., as soon as
a vertex receives the information, it sends the information to all its neighbors
simultaneously, which takes one time unit. Our goal is to select a subset S of
vertices with minimum total cost such that the source can be uniquely located
by the “infected” times of vertices in S. This problem is equivalent to finding a
minimum weighted doubly resolving set in networks defined as follows.

DRS model. Networks are modeled as undirected connected graphs without
parallel edges nor loops. Let G = (V,E) be a graph on n → 2 vertices, and
each vertex v ⊂ V has a nonnegative weight w(v), representing its cost. For any
S ≡ V , the weight of S is defined to be w(S) :=

∑
v→S w(v). For any u, v ⊂ V ,

we use dG(u, v) to denote the distance between u and v in G, i.e., the number of
edges in a shortest path between u and v. Let u, v, x, y be four distinct vertices
of G. Following Cáceres et al. [2], we say that {u, v} doubly resolves {x, y}, or
{u, v} doubly resolves x and y, if

dG(u, x)− dG(u, y) ∈= dG(v, x) − dG(v, y).

Clearly {u, v} doubly resolves {x, y} if and only if {x, y} doubly resolves {u, v}.
For any subsets S, T of vertices, S doubly resolves T if every pair of vertices in T
is doubly resolved by some pair of vertices in S. In particular, S is called a doubly
resolving set (DRS) of G if S doubly resolves V . Trivially, V is a DRS of G. The
minimum weighted doubly resolving set (mwdrs) problem is to find a DRS of G
that has a minimum weight (i.e. a minimum weighted DRS of G). In the special
case where all vertex weights are equal to 1, the problem is referred to as the
minimum doubly resolving set (mdrs) problem [15], and it concerns with the
minimum cardinality dr(G) of DRS of G.

Consider arbitrary S ≡ V . It is easy to see that S fails to locate the diffusion
source in G at some case if and only if there exist distinct vertices u, v ⊂ V such
that S cannot distinguish between the case of u being the source and that of v
being the source, i.e., dG(u, x)− dG(u, y) = dG(v, x)− dG(v, y) for any x, y ⊂ S;
equivalently, S is not a DRS of G (see [5]). Hence, the mwdrs problem models
exactly the problem of finding cost-effective observer placements for locating
source, as mentioned in our opening paragraph.

Related work. Epidemic diffusion and information cascade in networks has been
extensively studied for decades in efforts to understand the diffusion dynamics
and its dependence on various factors. However, the inverse problem of inferring
the source of diffusion based on limited observations is far less studied, and was
first tackled by Shah and Zaman [17] for identifying the source of rumor, where
the rumor flows on edges according to independent exponentially distributed ran-
dom times. A maximum likelihood (ML) estimator was proposed for maximizing
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the correct localizing probability, and the notion of rumor-centrality was devel-
oped for approximately tracing back the source from the configuration of infected
vertices at a given moment. The accuracy of estimations heavily depended on
the structural properties of the networks. Along a different line, Pinto et al. [16]
proposed other ML estimators that perform source detection via sparsely dis-
tributed observers who measure from which neighbors and at what time they
received the information. The ML estimators were shown to be optimal for trees,
and suboptimal for general networks under the assumption that the propagation
delays associated with edges are i.i.d. random variables with known Gaussian
distribution. In contrast to previous probabilistic model for estimating the lo-
cation of the source, we study the problem from a combinatorial optimization’s
point of view; our goal is to find an observer set of minimum cost that guarantees
deterministic determination of the accurate location of the source, i.e., to find a
minimum weighted DRS.

The double resolvability is a strengthening of the well-studied resolvability,
where a vertex x resolves two vertices u, v if and only if dG(u, x) ∈= dG(v, x). A
subset S of V is a resolving set (RS) of G if every pair of vertices is resolved
by some vertex of S. The minimum cardinality of a RS of G is known as the
metric dimension md(G) of G, which has been extensively studied due to its
theoretical importance and diverse applications (see e.g., [2,4,8,10] and references
therein). Most literature on finding minimum resolving sets, known as the metric
dimension problem, considered the unweighted case. The unweighted problem
is NP -hard even for planar graphs, split graphs, bipartite graphs and bounded
degree graphs [7,8,10]. On general graphs, Hauptmann et al. [10] showed that the
unweighted problem is not approximable within (1− Ω) lnn for any Ω > 0, unless
NP ≥ DTIME(nlog logn); moreover, the authors [10] gave a (1 + o(1)) lnn-
approximation algorithm based on approximability results of the test set problem
in bioinformatics [1]. A lot of research efforts have been devoted to obtaining
the exact values or upper bounds of the metric dimensions of special graphic
classes [2]. Recently, Epstein et al [8] studied the weighted version of the problem,
and developed polynomial time exact algorithms for finding a minimum weighted
RS, when the underlying graph G is a cograph, a k-edge-augmented tree (a tree
with additional k edges) for constant k → 0, or a (un)complete wheel.

Compared with nearly four decade research and vast literatures on resolving
sets (metric dimension), the study on DRS has a relatively short history and its
results have been very limited. The concept of DRS was introduced in 2007 by
Cáceres et al. [2], who proved that the minimum RS of the Cartesian product
of graphs is tied in a strong sense to minimum DRS of the graphs: the metric
dimension of the Cartesian product of graphs G1 and G2 is upper bounded by
md(G1)+dr(G2). When restricted to the same graph, it is easy to see that a DRS
must be a RS, but the reverse is not necessarily true. Thus md(G) ∪ dr(G). The
ratio dr(G)/md(G) can be arbitrarily large. This can be seen from the tree graph
G depicted in Fig. 1. On the one hand, it is easily checked that {r1, r2} is a RS
of G, giving dr(G) ∪ 2. On the other hand, md(G) = n/2 since {s1, s2, . . . , sh}
is the unique minimum DRS of G, as proved later in Lemma 4 of this paper.
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Fig. 1. The graph tree G with dr(G) = n/2 and md(G) = 2

In view of the large gap, algorithmic study on DRS deserves good efforts, and it is
interesting to explore the algorithmic relation between the minimum (weighted)
drs problem and its resolving set counterpart.

Previous research on DRS considered only the unweighted case. As far as
general graphs are concerned, the mdrs problem has been proved to be NP -
hard [14], and solved experimentally by metaheuristic approaches that use binary
encoding and standard genetic operators [14] and that use variable neighborhood
search [15]. To date, no efficient general-purpose algorithms with theoretically
provable performance guarantees have been developed for the mdrs problem, let
alone the mwdrs problem. Despite the NP-hardness, the approximability status
of either problem has been unknown in literature. For special graphs, it is known
that every RS of Hamming graph is also a DRS [12]. Recently, Čangalović et al.
showed that dr(G) ⊂ {3, 4} when G is a prism graph [3] or belongs to one of two
classes of convex polytopes [13].

Our contributions. As far as we know, our opening example of cost-effective
source location is the first real-world application of DRS explicitly addressed.
Motivated by the application, we study and provide a thorough treatment of the
mwdrs problem in terms of algorithmic approximability. Broadly speaking, we
show that the mdrs and mwdrs problems have similar approximability to their
resolving set counterparts.

Based on the construction of Hauptmann et al. [10], we prove that there is an
approximation preserving reduction from the minimum dominating set problem
to the mdrs problem, showing the mdrs problem does not admit (1− Ω) lnn-
approximation algorithm for any Ω > 0 unless NP ≥ DTIME(nlog logn). The
strong inapproximability improves the NP -completeness established in [14]. Be-
sides, we develop a (lnn + ln log2 n + 1)-approximation algorithm for solving
the mwdrs problem in O(n4) time, based on a modified version of the approx-
imation algorithms used in [1,10]. To the best of our knowledge, this paper is
the first work providing explicit approximation lower and upper bounds for the
mdrs and mwdrs problems, which are nearly tight (for large n). A byproduct of
our algorithm gives the first logarithmic approximation for the weighted metric
dimension problem on general graphs.

Despite many significant technical differences between handling DRS and RS,
we establish the polynomial time solvability of the mwdrs problem for all these
graph classes, with one exception of cographs, where the weighted metric di-
mension problem is known to admit efficient exact algorithms [8]. Our results
are first known strong polynomial time algorithms for the mdrs problem on
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k-edge-augmented trees and general wheels, including paths, trees and cycles.
Using the fact that every minimum weighted DRS is minimal (with respect to
the inclusion relation), our algorithms make use of the graphic properties to clev-
erly “enumerate” minimal doubly resolving sets that are potentially minimum
weighted, and select the best one among them.

The paper is organized as follows: The inapproximability is proved in Sec-
tion 2, The approximation algorithm for general graphs and exact algorithms
for special graphs are presented in Sections 3 and 4, respectively. Future re-
search directions are discussed in Section 5. The omitted details can be found in
the full version [5].

2 Approximation Lower Bound

In this section, we establish a logarithmic lower bound for approximation the
mdrs problem under the assumption that NP ∈≥ DTIME(nlog logn). Haupt-
mann et al. [10] constructed a reduction from theminimum dominating set (mds)
problem to the metric dimension problem. Although their proof does not work
for DRS, we show that their construction actually provides an approximation
preserving reduction from the mds problem to the mdrs problem.

A vertex subset S of graph G is a dominating set of G if every vertex outside
S has a neighbor in S. The mds problem is to find a dominating set of G that
has the minimum cardinality ds(G). Unless NP ≥ DTIME(nlog logn), the mds
problem cannot be approximated within (1 − Ω) lnn for any Ω > 0 [6].

Lemma 1. There exists a polynomial time transformation that transfers graph
G = (V,E) to graph G≥ = (V ≥, E≥) such that dr(G≥) ∪ ds(G) + ◦log2 n⊆+ 3. ∀∩

Let graphs G and G≥ be as in Lemma 1. It has been shown that, given any RS
(in particular DRS) S of G≥, a dominating set of G with cardinality at most |S|
can be found in polynomial time [10]. This, in combination with Lemma 1 and
the logarithmic inapproximability of the mds problem [6], gives the following
lower bound for approximating minimum DRS.

Theorem 1. Unless NP ≥ DTIME(nlog(logn)), the mdrs problem cannot be
approximated in polynomial time within a factor of (1−σ) lnn, for any σ > 0. ∀∩

3 Approximation Algorithm

In this section, we present an O(n4) time approximation algorithm for the mw-
drs problem in general graphs that achieves approximation ratio (1+ o(1)) lnn,
nearly matching the lower bound lnn established in Theorem 1.

Our algorithm uses similar idea to that of Hauptmann et al. [10] for approxi-
mating minimum resolving sets in the metric dimension (md) problem. The md
problem is a direct “projection” of the unweighted test set problem studied by
Berman et al. [1] in the sense that a vertex in the md problem can be seen as a
“test” in the test set problem, which allows Hauptmann et al. to apply Berman-
DasGupta-Kao algorithm [1] directly. However, in the drs problem, one cannot
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simply view two vertices as a “test”, because such a “test” would fail the al-
gorithm in some situation. Besides, the algorithm deals with only unweighted
cases. Thus we need conduct certain transformation that transforms the drs
problem to a series of weighted test set problems. Furthermore, we need mod-
ify Berman-DasGupta-Kao algorithm to solve these weighted problems within
logarithmic approximation ratios.

Transformation. For any x ⊂ V , let Ux = {{x, v} : v ⊂ V \ {x}}. As seen later,
each element of Ux can be viewed as a test or a certain combination of tests in
the test set problem studied in [1]. From this point of view, we call each element
of Ux a super test, and consider the minimum weighted super test set (mwsts)
problem on (V, Ux) as follows: For each super test T = {x, v} ⊂ Ux, let its weight
be w(T ) = w(v), The problem is to find a set of super tests T ≡ Ux such that
each pair of vertices in G is doubly resolved by some super test in T and the
weight w(T ) =

∑
T→T w(T ) of T is minimized. The following lemma establishes

the relation between the mwdrs problem and the mwsts problem.

Lemma 2. Let S be a DRS of G and s ⊂ S. Then every pair of vertices in G
is doubly resolved by at least one element of {{s, v} : v ⊂ S \ {s}}.

Proof. Let u, v be any two distinct vertices of G. There exist s1, s2 ⊂ S such that
dG(u, s1) − dG(v, s1) ∈= dG(u, s2) − dG(v, s2). It follows that either dG(u, s1) −
dG(v, s1) ∈= dG(u, s) − dG(v, s) or dG(u, s) − dG(v, s) ∈= dG(u, s2) − dG(v, s2),
saying that u and v are doubly resolved by either {s, s1} or {s, s2}. ∀∩

Since V is a DRS of G, Lemma 2 implies that Ux doubly resolves V . More
importantly, Lemma 2 provides the following immediate corollary that is crucial
to our algorithm design.

Corollary 1. Let S∪ be a minimum weighted DRS of G and α ⊂ S∪. Then
the minimum weight of a solution to the mwsts problem on (V, Uα) is at most
w(S∪)− w(α). ∀∩

Approximation. To solve the mwsts problem, we adapt Berman-DasGupta-Kao
algorithm [1] to augment a set T (≡ Ux) of super tests to be a feasible solution
step by step. We define equivalence relation ∅T on V by: two vertices u, v ⊂ V
are equivalent under ∅T if and only if {u, v} is not doubly resolved by any
test of T . Clearly, the number of equivalence classes is non-decreasing with the
size of T . Let E1, . . . , Ek be the equivalence classes of ∅T . The value HT :=
log2(

∏k
i=1 |Ei|!) is called the entropy of T . Note that

HT = 0 ↓ every equivalent class of ∅T is a singleton
↓ ∨T→T T is a DRS of G.

(3.1)

Hence our task is reduced to finding a set T of super tests with zero entropy HT
and weight w(T ) as small as possible.

For any super test T ⊂ Ux, an equivalence class of ∅T is either an equivalence
class of ∅T ∈T or it is partitioned into several (possibly more than two) equiv-
alence classes of ∅T ∈T . (If T partitions each equivalent class into at most two
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equivalent classes, then T works as a test in the test set problem.) Therefore
HT → HT ∈T , and IC(T, T ) := HT −HT ∈T → 0 equals the decreasing amount
of the entropy when adding T to T . It is clear that

IC(T, ⇔) ∪ log2 n!− log21 < n log2 n. (3.2)

We now give a (1+o(1)) lnn-approximation algorithm for the mwsts problem
on (V, Ux). The algorithm adopts the greedy heuristic to decrease the entropy
of the current set of super tests at a minimum cost (weight).

Algorithm 1. Finding minimum weighted set T of super sets.

1. T ∗ ⊆
2. while HT ∅= 0 do
3. Select a super test T ≥ Ux − T that maximizes IC(T,T )

w(T )

4. T ∗ T ≺ T
5. end-while

The major difference between Algorithm 1 and the algorithms in [1,10] is the
criterion used in Step 3 for selecting T . It generalizes the previous unweighted
setting. The following lemma extends the result on test set [1] to super test set.

Lemma 3. IC(T, T0) → IC(T, T1) for any sets T0 and T1 of super tests with
T0 ≡ T1. ∀∩

Using (3.2) and Lemma 3, the proof of performance ratio (cf. [5]) goes almost
verbatim as the argument of Berman et al. [1].

Theorem 2. Algorithm 1 is an O(n3) time algorithm for the mwsts problem

on (V, Ux) with approximation ratio ln

�
max
T→Ux

IC(T, ⇔)
�
+1∪ lnn+ln log2 n+1.�

Suppose that given the mwsts problem on (V, Ux), Algorithm 1 outputs a
super test set Tx. By (3.1), Running Algorithm 1 for n times, we obtain n
doubly resolving sets Sx, x ⊂ V of G, from which we select the one, say Sv, that
has the minimum weight, i.e. w(Sv) = min{w(Sx) : x ⊂ V }.
Theorem 3. The mwdrs problem can be approximated in O(n4) time within a

ratio ln

�
max
u,v→V

IC({u, v}, ⇔)
�
+ 1 ∪ lnn+ ln log2 n+ 1 = (1 + o(1)) lnn.

Proof. Let S∪ be an optimal solution to the mwdrs problem. It suffices to show
w(Sv)/w(S

∪) ∪ (1 + o(1)) lnn. Take α ⊂ S∪, and let T ∪
α be an optimal solution

to the mwsts problem on (V, Uα). It follows from the choice of Sv, Theorem 2
and Corollary 1 that w(Sv) ∪ w(Sα) = w(α)+w(Tα) ∪ w(α)+(ln n+ln log2 n+
1)w(T ∪

α ) < (lnn+ ln log2 n+ 1)w(S∪). ∀∩

Our algorithm and analysis show that the algorithm of [1] can be extended to
solve the weighted test set problem, where each test has a nonnegative weight, by
changing the selection criterion to be maximizing IC(T, T ) divided by the weight
of T . A similar extension applied to the algorithm of Hauptmann et al. [10] gives
a (1+o(1)) lnn-approximate solution to the weighted metric dimension problem.
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4 Exact Algorithms

Let k → 0 be a constant. A connected graph is called a k-edge-augmented tree if
the removal of at most k edges from the graph leaves a spanning tree. Trees and
cycles are 0-edge- and 1-edge-augmented trees, respectively. We design efficient
algorithms for solving the mwdrs problem exactly on k-edge-augmented trees.
Our algorithms run in linear time for k = 0, 1, and in O(n12k) time for k → 2.

A graph is called a general wheel if it is formed from a cycle by adding a
vertex and joining it to some (not necessarily all) vertices on the cycle. We solve
the mwdrs problem on general wheels in cubic time by dynamic programming.

4.1 k-edge-augmented Trees

Let G = (V,E) be a k-edge-augmented tree, and let L be the set of leaves (degree
one vertices) in G. For simplicity, we often use d(u, v) instead of dG(u, v) to
denote the distance between vertices u, v ⊂ V in the underlying graph G of the
mwdrs problem.

Trees: The Case of k = 0. When k = 0, graph G = (V,E) is a tree. There is
a fundamental difference between DRS and RS of G in terms of minimal sets. In
general, Gmay have multiple minimal RSs and even multiple minimum weighted
RSs. Nevertheless, in any case G has only one minimal DRS, which consists of
all its leaves. In particular, we have dr(G) = |L|.
Lemma 4. L is the unique minimal DRS of G.

Proof. For any two vertices u, v ⊂ V , there exist leaves l1, l2 ⊂ L such that the
path between l1 and l2 goes through u and v. It is easy to see that d(u, l1) −
d(u, l2) ∈= d(v, l1)− d(v, l2). So L is a DRS. On the other hand, consider any leaf
l ⊂ L and its neighbor p ⊂ V . Since d(l, v)− d(p, v) = 1 for any v ⊂ V − {l}, we
see that each DRS of G contains l, and thus L. The conclusion follows. ∀∩

Cycles: A Special Case of k = 1. LetG = v1v2 · · · vnv1 be a cycle, where V =
{v1, v2, . . . , vn}. Suppose without loss of generality that w(vp) = minni=1 w(vi),
where p := ◦n/2⊆. It was known that any pair of vertices whose distance is not
exactly n/2 is a minimal RS of G, and vice versa [8]. As the next lemma shows,
the characterization of DRS turns out to be more complex. Each nonempty
subset S of V cuts G into a set PS of edge-disjoint paths such that they are
internally disjoint from S and their union is G.

Lemma 5. Given a cycle G = (V,E), let S be a nonempty subset of V . Then
S is a DRS of G if and only if no path in PS has length longer than ◦n/2⊆ and
at least one path in PS has length shorter than n/2. ∀∩
An instant corollary reads: The size of a minimal DRS of cycle G is 2 or 3 when
n is odd, and is 3 when n is even; In particular, dr(G) = 2 when n is odd, and
dr(G) = 3 when n is even. These properties together with the next one lead to
our algorithm for solving the mwdrs problem on cycles.
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Corollary 2. If some minimum weighted DRS has cardinality 3, then there ex-
ists a minimum weighted DRS of G that contains vertex vp. ∀∩

Algorithm 2. Finding minimum weighted DRS S in cycle G.

1. ω ∗ w(v1), i[1] ∗ 1, j ∗ 1, W ∗ w(V )
2. for h = 1 to p do
3. if w(vh) < ω then j ∗ j + 1, i[j] ∗ h, ω ∗ w(vh)
4. end-for
5. if j > 1 then k ∗ j else k ∗ 2, i[k] ∗ p
6. if n is odd then S ∗ argminn

i=1 w({vi, vi+p−1}), W ∗ w(S)
7. for j = 1 to k − 1 do
8. let uj be a vertex in {vh : i[j]+p→h→ i[j+1]+p} with w(uj) = min

i[j+1]+p

h=i[j]+p
w(vh)

9. if w(vp) + w(vi[j]) +w(uj) < W then S ∗ {vp, vi[j], uj}, W ∗ w(S)
10. end-for

Note that Vj := {vh : i[j] + p ∪ h ∪ i[j + 1] + p}, j = 1, . . . , k − 1 induce k − 1
internally disjoint paths in G. It is thus clear that Algorithm 2 runs in O(n)
time. The vertices indices 1 = i[1] < i[2] < · · · < i[k] = p found by the algorithm

satisfy w(vi[j]) = min
i[j+1]−1
h=i[j] w(vh) = min

i[j+1]−1
h=1 w(vh) for every j = 1, . . . , k−1

and w(vi[k]) = w(vp) = minph=1 w(vh). Moreover, either w(v1) = w(vp) and
k = 2, or w(vi[j]) > w(vi[j+1]) for every j = 1, . . . , k − 1. These facts together
with the properties mentioned above verify the correctness of the algorithm.

Theorem 4. Algorithm 2 finds in O(n) time a minimum weighted DRS of
cycle G. ∀∩

The Case of General k. Our approach resembles at a high level the one
used by Epstein et al. [8]. However, double resolvablity imposes more strict
restrictions, and requires extra care to overcome technical difficulties. Let Gb =
(Vb, Eb) be the graph obtained fromG = (V,E) by repeatedly deleting leaves. We
call Gb the base graph of G. We reduce the mwdrs problem on G to the mwdrs
problem on Gb (see Lemma 6). The latter problem can be solved in polynomial
time by exhaustive enumeration, since, as proved in the sequel, every minimal
DRS of Gb has cardinality at most 12(k − 1) for k → 2

Clearly, Gb is connected and has minimum degree at least 2. A vertex in Vb is
called a root if in G it is adjacent to some vertex in V \Vb. Let R denote the set
of roots. Clearly, R ⇐ L = ⇔. In Gb, we change the weights of all roots to zero,
while the weights of other vertices remain the same as in G.

Lemma 6. Suppose that Sb is a minimum weighted DRS of Gb. Then (Sb\R)∨L
is a minimum weighted DRS of G. ∀∩
Therefore, for solving the mwdrs problem on a weighted k-edge-augmented tree
G, we only need to find a minimum weighted DRS of base graph Gb with the
weights of all roots modified to be 0.

For 1-edge-augmented tree G, its base graph Gb is a cycle, whose minimum
weighted DRS can be found in O(n) time (recall Algorithm 2). Combining this
with Lemmas 4 and 6, we have the following linear time solvability.



366 X. Chen and C. Wang

Theorem 5. There is an O(n) time exact algorithm for solving the mwdrs
problem on k-edge-augmented trees, for k = 0, 1, including trees and cycles.

In the remaining discussion for k-edge-augmented tree, we assume k → 2. A
vertex is called a branching vertex of a graph if it has degree at least 3 in the
graph. Recall that every vertex of the base graph Gb = (Vb, Eb) has degree at
least 2. It can be shown that (see [5])

– In O(|Eb|) = O(n2) time, Gb can be decomposed into at most 3k − 3 edge-
disjoint paths whose ends are branching vertices of Gb and internal vertices
have degree 2 in Gb.

– For any minimal DRS set S of Gb, and any path P in the above path de-
composition of Gb, at most four vertices of S are contained in P .

It follows that every minimal DRS of Gb contains at most 12(k − 1) vertices.
Our algorithm for finding the minimum weighted DRS of Gb examines all pos-
sible subsets of Vb with cardinality at most 12(k − 1) by taking at most four
vertices from each path in the path decomposition of Gb; among these sets, the
algorithm selects a DRS of Gb with minimum weight. Have a table that stores
the distances between each pair of vertices in Gb, it takes O(n

2) time to test the
double resolvability of a set. Recalling Lemma 6, we obtain the following strong
polynomial time solvability for the general k-edge-augmented trees.

Theorem 6. The mwdrs problem on k-edge-augmented trees can be solved in
O(n12k) time. ∀∩

4.2 Wheels

A general wheel G = (V,E) on n (→ 6) vertices v1, v2, . . . , vn is formed by the
hub vertex vn and a cycle C = (Vc, Ec) over the vertices v1, v2, . . . , vn−1, called
rim vertices, where the hub is adjacent to some (not necessarily all) rim vertices.
We develop dynamic programming algorithm to solve the mwdrs problem on
general wheels in O(n3) time.

We start with complete wheels whose DRS has a very nice characterization
that is related to the consecutive one property. A general wheel is complete if its
hub is adjacent to every rim vertex.

The distance in G between any two vertices in G is either 1 or 2. (4.1)

Lemma 7. Given a complete wheel G = (V,E), let S be a proper nonempty
subset of V . Then S is a doubly resolving set if and only if S ⇐ V (C) is a
dominating set of C and any pair of rim vertices outside S has at least two
neighbors in S ⇐ V (C).

Proof. If S ⇐ V (C) is not a dominating set of C, then there exists a vertex
vi ⊂ V (C)−S such that vi is not adjacent to any vertex of S⇐V (C). In this case,
S cannot doubly resolve {vn, vi} because for any s1, s2 ⊂ S, d(s1, vn)−d(s1, vi) =
−1 = d(s2, vn)− d(s2, vi).
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If S ⇐V (C) is a dominating set of C but there exist two cycle vertices vi, vj ⊂
V (C)−S such that vi, vj are uniquely dominated by the same cycle vertex v ⊂ S,
then for any two vertices s1, s2 ⊂ S, d(s1, vi)−d(s1, vj) = 0 = d(s2, vi)−d(s2, vj),
saying that S is not a doubly resolving set.

Suppose that S satisfies the condition stated in the lemma. We prove that S
can resolve every pair of vertices x, y in G. When one of x and y, say x, is a
rim vertex in S, since n → 6, there exists another rim vertex z ⊂ S − {x} that
is not adjacent to x. It follows from (4.1) that {x, y} is resolved by {x, z} as
d(x, x) − d(x, z) = −2 < −1 ∪ d(y, x) − d(y, z). When both x and y are rim
vertices outside S, there are two rim vertices x≥ and y≥ in S dominating x and y,
respectively. It follows that {x, y} is resolved by {x≥, y≥}. When one of x and y,
say x is the hub, we only need consider the case of y is a rim vertex outside S.
Take rim vertices z, z≥ from S such that z dominates y and z≥ does not dominate
y. It follows that {x, y} is resolved by {z, z≥} as d(x, z) − d(x, z≥) = 0 < −1 =
d(y, z)− d(y, z≥). ∀∩

The characterization in Lemma 7 can be rephrased as follows: A subset S ≡ V
is a DRS of G if and only if every set of three consecutive vertices on C contains
at least one vertex of S, and every set of five consecutive vertices on C contains
at least two vertices of S. This enables us to formulate the mwdrs problem on a
complete wheel as an integer programming with consecutive 1’s and circular 1’s
constraints, which can be solved in O(n3 log2 n) time by Hochbaum and Levin’s
algorithm [11]. (To the best of our knowledge, there is no such a concise way
to formulate the metric dimension problem on complete wheels as an integer
programming with consecutive one matrix.) Moreover, it is not hard to see from
the characterization that linear time efficiency can be achieved by dynamic pro-
gramming approach. Furthermore, we elaborate on the idea to solve the mwdrs
problem on more complex general wheels.

Theorem 7. The mwdrs problem on complete wheels can be solved in O(n)
time. The mwdrs problem on general wheels can be solved in O(n3) time. ∀∩

5 Conclusion

In this paper, we have established β(lnn) approximability of the mdrs and
mwdrs problems on general graphs. There is still a gap of 1+ln log2 n hidden in
the big theta (see Theorems 1 and 2). It deserves good research efforts to obtain
even tighter upper bounds for the approximability. The k-edge-augmented trees,
general wheels and cographs are known graph classes on which the weighted
metric dimension problem is polynomial time solvable. In this paper, we have
extended the polynomial time solvability to the mwdrs problem for the first two
graph classes. It would be interesting to see whether the problem on cographs
and other graphs also admits efficient algorithms.
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Abstract. While k-nearest neighbor queries are becoming increasingly
common due to mobile and geospatial applications, orthogonal range
queries in high-dimensional data are extremely important in scientific
and web-based applications. For efficient querying, data is typically stored
in an index optimized for either kNN or range queries. This can be prob-
lematic when data is optimized for kNN retrieval and a user needs a range
query or vice versa. Here, we address the issue of using a kNN-based index
for range queries, as well as outline the general computational geometry
problem of adapting these systems to range queries. We refer to these
methods as space-based decompositions and provide a straightforward
heuristic for this problem. Using iDistance as our applied kNN indexing
technique, we also develop an optimal (data-based) algorithm designed
specifically for its indexing scheme. We compare this method to the sug-
gested näıve approach using real world datasets and results show that
our data-based algorithm consistently performs better.

1 Introduction

Modern society has grown dependent upon large-scale data mining applications.
This reliance is only increasing as our ability to record and store vast quantities
of rich data improves due to new technologies and new applications. Often this
data is high-dimensional in nature, which can be challenging for efficient use and
data mining. For a user interacting with the data, two types of queries are often
necessary: orthogonal range and k-nearest neighbor (kNN).

The use of nearest neighbor queries is essential in many types of applications
such as geospatial, consumer, and mobile. These queries allow a user to search
for the nearest stores of interest to their location, or to find a song, image,
etc. with similar qualities to something they already know. Thus, many modern
systems focus on this query methodology – especially within mobile and web-
based applications. Orthogonal range queries differ in that they require a min
and max range to be selected for every dimension of the query. This is often
used more in scientific, user-defined, exploratory, and web search applications.
Allowing the user to specify each dimensional range is important for capturing
critical values or removing specificity entirely, i.e., a wildcard search with some
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set of unrestricted dimensions. This is also useful for data with non-numeric
attributes where distance is meaningless.

Indexing methods allow large volumes of data to be stored in a way that is op-
timized to decrease retrieval time for their intended application. However, there
may be times when another type of application (or query) is desired, but the data
is stored in an inconvenient (and unoptimized) manner for this request. Here,
we look at the situation where data is optimized for kNN retrieval, but range
queries are also necessary. This assumes that we will not modify the current
index, and our methods must use the inherent functionality of the existing in-
dexing and retrieval mechanisms. We will focus on the state-of-the-art iDistance
kNN index [1, 2], which has been used in a number of demanding applications,
including: large-scale image retrieval [3], video indexing [4], mobile computing
[5], peer-to-peer systems [6], and video surveillance retrieval [7].

(a) Näıve (b) Space-based (c) Data-based

Fig. 1. Three different methods of retrieving range queries using iDistance. In (a) we
näıvely encircle the range query. For (b) we cover the query space with overlapping
smaller query spheres. In (c) we calculate the specific intersected iDistance partitions.

This work explores three methods for satisfying range queries within a kNN
indexing technique, shown as 2D examples in Figure 1. The first is the näıve
method, suggested by many authors including those of iDistance [1], but this has
drawbacks. In higher dimensions, only a few poorly chosen dimensional ranges
(or wildcards) can lead to the pessimal case as seen in Figure 3(d). Another
possibility comes from the field of computational geometry. Since kNN queries
are hyperspheres, we attempt to use a number of them to cover the hyperrectan-
gle space of the range query. Unfortunately, this method breaks down in higher
dimensions because it is an NP-hard problem to optimally cover the space. We
provide a heuristic to accomplish this based on the ranges needed in each di-
mension. We assume that overlap between the query spheres is acceptable, and
we are able to skirt the theoretical optimization problems based on minimum
overlap, minimum number of queries, etc. These are rich and important areas of
research [8], but are not critical for this work and are therefore kept brief.

These first two methods can be classified as space-based decompositions be-
cause we seek to use one geometric object to cover the same space as another.
While these methods will work with any kNN system, the last method we de-
velop is a novel data-based approach specific to iDistance. We refer to this as
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a data-based method because it uses the underlying indexing data structure
rather than solely the coverage space of the range query. It is designed for the
iDistance index, and therefore other indexing schemes would require their own
specific data-based range query algorithm.

Results highlight retrieval performance of range queries over three
high-dimensional real-world datasets with existing kNN indices. We find great
variability in results over the various datasets which implies a certain degree of
difficulty in performing useful range queries in high dimensional spaces, as well
as a general lack of ability to anticipate results in practice. Regardless, we show
the data-based method is the preferred choice for facilitating range queries as it
out-performs the näıve method in almost all situations.

This paper is organized as follows. Section 2 will briefly overview background
and related work. Sections 3 and 4 will then cover the space-based methods,
followed by the data-based method in Section 5. Then we present empirical
evaluations and discussion in Section 6, and the paper concludes in Section 7.

2 Preliminaries

2.1 Indexing

For our study we focus on iDistance, which is a modern kNN-based indexing
method for high-dimensional data first proposed in 2001 [1]. It uses a filter-and-
refine strategy based on a lossy transformation into an efficient one-dimensional
B+-tree for indexing and retrieval. iDistance is based on a Voronoi tessellation
of the space [9], but for speed it approximates each of these areas with a hyper-
sphere. These partitions P = {P1, . . . , PM} are stored by their central reference
point, O = {O1, . . . , OM}. The number of partitions, M , can be arbitrarily set,
as can the location of the reference points (and thereby resultant partitions).
The data points are assigned to the closest partition by reference point distance.
The radius of each partition is stored as distmax, which is the distance of the
farthest point in that partition. Figure 2 shows an example of these elements as
well as a query sphere and the areas of each partition to search.

Prior studies have shown that poor placement or an insufficient (or abundant)
number of partitions can greatly reduce the effectiveness of the algorithm [2,
10–12]. The general practice is to use a clustering algorithm, such as k-means
which has similar spherical characteristics, to derive cluster centers to be used
as reference points. It is also good practice to use a number of clusters directly
related to the size and dimensionality (D) of the dataset to be indexed, with 2D
partitions serving as a general rule of thumb [10].

For efficiency, the points are indexed in a one-dimensional B+-tree [13], which
allows iDistance to be incorporated into modern databases. This lossy transfor-
mation separates partitions by a spacing constant c, which can be safely set to→
D since no two data points can be farther apart than this value in a normalized

dataspace. Then, for any point p assigned to a partition Pi, it is mapped in the
B+-tree to the value yp = c · i+ dist(Oi, p). This mapping can be seen in Figure
2. Note that concentric rings of data points share the same index value.
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Fig. 2. A basic example of iDistance indexing partitions with a sample query q of
radius r. Partitions Pi, Pj with reference points Oi, Oj , respectively.

A kNN query using iDistance involves three basic steps. Note that the query
is given an initial radius to create a query hypersphere in the dataspace. First,
the filter step finds all intersecting partitions and retrieves the points in the B+-
tree corresponding to this overlap. Since several points may have the same value
in the B+-tree, iDistance then refines the results to ensure they are within the
query hypersphere. Lastly, if k results were not yet found, the algorithm iterates
by increasing the query radius and searching the partitions again. Only when
the farthest item in the full set of k items is closer than the current query radius
can the search be successfully terminated with the guaranteed exact results.

2.2 Geometric Queries

Formally, we will assume that any query is in a D dimensional space such that
the set of dimensions is D = {d1, . . . , dD}. A point kNN query is defined as a
query point q with a radius r, which returns the k nearest elements within the
ball B(q, r) based on a specified distance metric dist().

An orthogonal (or axis-aligned) range query in a D dimensional space is the
set R = {Rd1 , . . . RdD}. Each range Rdi is a tuple of the minimum and maximum
values that define the range over that dimension, i.e., Rdi = ⊂vmin, vmax≡, so the
range of dimension i is [vmin, vmax]. For convenience, we will also use the notation
min(Rdi) for vmin in dimension i, and similarly for vmax. We will assume these
definitions in the subsequent sections.

Orthogonal range queries, also known as window queries, are a well-studied
problem that has spawned a lot of research for new data structures and al-
gorithms for efficient retrieval [8]. Some of the more notable methods include
kd-trees, multi-layered range trees, and R-trees [14]. Optimal retrieval time is
provable with a tree construction, but requires greater storage than O(N) [15].
Many of these methods achieve better time efficiency through additional space
usage [8]. In large high-dimensional datasets, many of these methods can be
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too space inefficient to be practical. We focus on iDistance since it is a modern
high-dimensional method, which is currently used widely in practice.

3 A Näıve Approach

The basic idea of the näıve method is to encompass the desired range query
within a query sphere, retrieve all points inside this sphere, and then prune the
results outside of the original ranges. Figure 1(a) shows an example of this. What
is immediately obvious is that the number of bad results returned grows quickly
as the difference between the lengths of the hyperrectangle edges grows. This is
especially problematic for wildcard-capable queries or several dimensions with
wide ranges which can expand the query sphere to nearly the size of the entire
dataspace, as shown in Figure 3(d).

The näıve method is a straight-forward approach that easily adapts a range
query to a kNN system. The query point is the average of all the ranges, and
the radius is from the center to a corner of the hyperrectangle. The value of each
dimension i for the center point c of the circumscribed sphere is calculated by
Equation 1, and the radius from the center to the corner by Equation 2.

ci =
min(Rdi) + max(Rdi)

2
(1)

r2 =

D∑

i=1

(max(Rdi)− ci)
2 (2)

In the above equations, ci is the coordinate value of the query center point in
the ith dimension (0 ∈ ci ∈ 1 in a normalized space). After we have calculated
the query sphere, the kNN algorithm works the same except we do not bound our
return set to only the k closest items and instead return everything found within
the query sphere. An additional refinement step is then required to prune away
all points returned from the kNN query that are outside of the original range
query. Although this method is cited as an easy extension [1], its drawbacks
often make it an impractical choice.

4 Space-Based Decomposition

Encircling a hyperrectangle can be inefficient with respect to the amount of area
included outside the hyperrectangle. The optimal shape, resulting in minimal
area included outside the hyperrectangle, is when the sides are equal and we
have a hypercube. Our goal is to give a heuristic to decompose a range query
into a set of smaller range queries that are closer to hypercubes, and thereby
individually more efficient. Then each of these queries can be encircled and
searched with any kNN system like the näıve method. An example is shown in
Figure 1(b). This decomposition will result in less area searched overall, although
the complexity will be higher due to the algorithm overhead and combination of
multiple partially overlapping (and unbounded) kNN queries.

Sphere packing is a well-studied problem, but many problems related to pack-
ing and covering with overlapping spheres are still open, such as the optimal
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1-density above two dimensions [16]. The 1-density, δ1D in D dimensions, is the
volume covered by a single sphere in a space covered with unit spheres as shown
in Figure 3(a). In 2D, the optimal is opt(δ12) = (3

√
(3) − π)/π ≥ 0.6539, and

it is believed that in 3D the optimal is opt(δ13) ≥ 0.315, which was determined
by empirical methods [16]. It is also known that as D increases, the optimal
1-density decreases, and the limit is zero as the dimensionality goes to infinity.
This becomes important in our application. We briefly outline the space-based
decomposition problem in relation to range queries and give our heuristic which
may be a polynomial-time approximation scheme (PTAS) while halI(δ

1
D) > 0,

where halI(δ
1
D) gives the 1-density of a single sphere I from our heuristic algo-

rithm (hal) in D dimensions.

Definition 1. Space-based Decomposition:
Instance: Given an orthogonal range query R = {Rd1 , . . . RdD} in D dimen-
sions where Rdi = ⊂vmin, vmax≡ is the minimum and maximum value allowed in
the ith dimension, and a K ∪ R

+.
Problem: Find a set of spheres S = {s1, . . . , sS} of equal radius such that

VS = ◦|S|
i=1V ol(si) covers VR = ◦|R|

i=1V ol(Rdi), where VS − VR ∈ K and the
1-density hals(δ

1
D) > 0 ⊆s ∪ S.

Essentially, we want to cover the range hyperrectangle with hyperspheres
while guaranteeing that each sphere covers some volume (Vol) which no other
sphere covers, and that the total volume queried outside the hyperrectangle is
less than K. Our method attempts to partition each dimension such that the
resulting subrectangles are close to hypercubes. This guarantees that for each
sphere, we can bound the 1-density based on knowing the number of neighboring
spheres and the amount of intersection. We note that all our spheres have the
same radius, which is necessary in order to avoid a bin-packing problem. Thus,
the spheres can be regarded as unit-spheres.

A D-cube has 2D sides, and thus 2D D-spheres which may intersect the
hypersphere covering the hyperrectangle. If we let each side be represented by
x, then we can calculate the 1-density for each sphere. The diameter of every
sphere is d =

→
Dx2. From this we can calculate the intersecting volume of the

2D-spheres and subtract it from the volume of the hypercube Vc = xD.
The overlap of a single sphere from one side is 1

2D (Vs − Vc) where Vs is
the volume of a single sphere. Thus, the 1-density of our heuristic algorithm
is hal(δ12) = 2Vc − Vs + DOs where Os is the overlap volume of a sphere
onto a neighboring sphere, which is zero in 2D. The 1-density shrinks drasti-

cally in higher dimensions. For 2D the value is 2x2 − x2π
2 and if x = 1 then

hal(δ12) = 2−π/2 ≥ .4292 and is shown in Figure 3(a). Our heuristic is less than
the optimal opt(δ12) ≥ 0.6539, which means we have more overlap in our query
spheres. The optimal value requires a difficult partitioning of the space in 2D,
and the optimal partitioning is unknown above 2D.

The heuristic algorithm tries to find the most economical way to split each
dimension such that the resulting hyperrectangles are as close to hypercubes as
possible. Based on an ε > 0, we can find the optimal number of divisions. We
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find the appropriate number of divisions, Xi, for a given dimensional range, Ri

where 1 ∈ i ∈ D, with Equation 3. We can see in Figures 3(b) and 3(c) how
this number of sections created in a given dimension grows exponentially. For
the sake of discussion, we ignore the real world implications of retrieving and
combining multiple overlapping queries in an indexing system such as iDistance.

(a) (b) (c) (d)

Fig. 3. (a) A 2D example of the 1-density in our heuristic. The shaded region is the
1-density of the circle around the center cube. (b) A range query with a base-3 split
once into three sections and then (c) split once again creating nine total sections. (d)
A normalized dataspace with a range query resulting in a poor näıve solution that
queries most of the dataspace even though only a small area is necessary.

In order to find the best practical ratio with respect to ε, we look at several

logarithmic bases b. This means bX
b
i is the number of resulting sections in a

dimension i. Further, we will find different values for Xi depending on which
base we use, and we therefore add a superscript to denote the base. We limit our
algorithm to the first few unique bases to ensure that there are only a constant
number of calculations each time while still satisfying ε. Given the splits, we
want to choose the ratio that is closest to one for each dimension. The ratio for
base b in dimension i is given in Equation 4. Note that we can use a different ε
for each dimension to achieve the best ratio nearest to one.

Xb
i =

⌊

logb

(
Ri

ε

)⌋

, b = 2, 3, 5, . . . (3)
rib =

Ri

ε · (bXb
i )

(4)

The ε term allows us to increase the number of spheres used and as we make
them smaller we decrease the volume covered outside the range query. We can
make this volume as small as desirable, but our running time is dependent on
how many spheres there are. Thus, this may be a PTAS that is still exponential
in ε. For a more practical heuristic we limit b = {2, 3, 5} and set ε = min(R).
The value min(R) is the smallest length of any side of the hyperrectangle, and
thus a good basis for finding the closest dimensions to approximate a hypercube.

Although this method is straightforward and constant to calculate, the num-
ber of query spheres grows exponentially with respect to the number of dimen-
sional splits. This makes the general algorithm infeasible in any high-dimensional
space when there is a lot of variation between the query ranges in each dimension.
One could consider bounding the algorithm to only a few splits or dimensions,
but this is non-trivial and changes the desired results. Further, we know that
as the dimensionality increases, the overlap of the spheres also increases, which
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means it becomes less effective in higher dimensions because we are repeatedly
re-searching parts of the dataspace. To be efficient, the indexing method would
need to track searched space across all spheres. This requires non-trivial modi-
fications to the indexing system, which is beyond our scope of purpose.

5 Data-Based Method

Sections 3 and 4 focused on methods for ensuring that the same range query
volume in the dataspace is covered. We now want to ignore the underlying space
of the range query, and simply focus on the data that exists within this space.
As you can see in Figure 1(c), given clustered data in the space, we only need
to search where data exists. Since iDistance is an exact retrieval algorithm that
indexes all data based on spherical partitions, we only need to identify which
partitions the range query intersects, and to what extent they intersect.

Since our range queries are orthogonal, the closest point p in the axis aligned
range R to an outside reference point Oi (of partition Pi) is given on a per
dimension (d) comparison. That is, we can calculate the closest possible point to
Oi that is still in the range by looking at each dimension individually. We drop
the i subscript here for clarity since we are using the dimension as the subscript
when calculating the location of the point in relation to a single partition.

pd(Rd, Od) =


⎧⎪

⎧⎨

min(Rd), if Od < min(Rd)

max(Rd), if Od > max(Rd)

Od, if min(Rd) ∈ Od ∈ max(Rd)

(5)

The closest point in R is also the closest point to the reference point Oi

in partition Pi that any data may be within the range. We can then take the
distance m = dist(Oi, p) and search the interval of [distmax − m, distmax]
for that partition in the B+-tree – partition boundaries often further limit this
interval. Ifm is greater than the distmax, then the range query does not intersect
that partition. If it does, then we immediately know the exact amount and a
single query will retrieve all the results.

There are a few special cases, such as if the partition completely encapsulates the
range. In this case we can default to the näıve method to search (which would be
equivalent here), but to be consistent with our algorithm we calculate the farthest
point and the closest point within our range to the reference point. Equation 5 is
the closest, but the farthest point can also easily be deduced in a similar manner.

To enable this data-based range query feature, we had to modify one crit-
ical function from the original iDistance implementation. By modifying the
SearchO function previously presented in [2], we use iDistance as a state-of-the-
art kNN indexing algorithm to optimally facilitate and retrieve high-dimensional
range queries. Presented in Algorithm 1, RangeSearchO is now used instead of
SearchO for all range queries. This procedure assumes a global variable S which
contains the retrieved set of candidates from the filter step. Note this does not
change any of the underlying indexing mechanisms or data structures.
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Algorithm 1. Find all points within a specified range

Input: R is the set of ranges in each dimension.

1: procedure RangeSearchO (R)
2: for each Pi ∈ P do Θ Filter Step
3: closest-point ← ClosestPoint(R,Oi) Θ Equation 5
4: m ← dist(Oi, closest-point)
5: if m ≤ distmaxi then
6: farthest-point ← FarthestPoint(R, Oi)
7: if distmaxi < farthest-point then
8: farthest-point ← distmaxi

9: SearchInward((c · i) + farthest-point,m)

10: for each p ∈ S do Θ Refine Step
11: if p /∈ R then
12: S ← S\p

6 Empirical Evaluation

We now test our three methods of kNN-based range query retrieval through
general performance comparisons on real world data. Using best practices, we
setup an iDistance index on each normalized dataset using k-means to derive
2D cluster centers for reference points. Results are presented for three commonly
used public datasets of varying dimensionality and size. Synthetic datasets and
other types (and amounts) of reference points were also researched here, but due
to limited space and similar results, we exclude these from discussion.

To explicitly investigate the functionality of the methods, we performed range
queries with a varying number of wide dimensions, defined as the entire [0, 1]
range. We randomly select 100 data points as queries to ensure that our query
point distribution follows the underlying dataset distribution. For each experi-
ment we show the number of candidate points returned during the filter step and
the final result set size as a percentage of the dataset, as well as the total time
taken (in milliseconds) to perform the query and return the final exact results.
For space, we omit results for B+-tree nodes accessed, as they directly mimic
candidates accessed for all tests performed, which is typical behavoir. We also
omit results for the space-based decomposition method because while reasonably
effective in low dimensions, or with only a few wide dimensions, it (as expected)
quickly becomes inefficient and impractical to run in higher dimensions.

Sequential scan (SS) is often used as a benchmark comparison for worst-case
performance because it checks every data point in a brute force fashion. Note
that all data fits in main memory, so all experiments are compared without
depending on the behaviors of specific hardware-based disk-caching routines. In
real-life however, disk-based I/O bottlenecks are a common concern for inefficient
retrieval methods. Therefore, in these experiments it is more important that the
index properly filters out data points (fewer candidates) so that they do not have
to be accessed whatsoever.
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Fig. 4. Range queries with increasing number of wide dimensions for the Color dataset

We begin with the popular University of California Irvine (UCI) Corel Image
Features dataset1 (referred to herein as Color). This is the smallest of the three,
containing 68,040 points in 32 dimensions derived from color histograms. Results
are shown in Figure 4 for the näıve and data-based (Data) methods compared
to SS. We also include the return set size (Set) in 4(a), which indicates the
percentage of the dataset returned by the range query. Notice that even the initial
hypercube is retrieved much more efficiently by the data-based method, whereby
the näıve method starts poorly and immediately degrades to searching almost
the entire dataset. Once that happens, sequential scan is a better choice because
it does not have the algorithmic overhead, which is evident by the query time for
each method. We also see that less time is required when the entire space is forced
to be searched upfront (all wide dims), rather than methodically determining to
search most of the space anyway (e.g., 28 dims). The most important factor here
is the filter capability, and we see the data-based method gracefully degrades to
the näıve (and SS) performance as the number of wide dimensions increases.
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Fig. 5. Range queries with increasing number of wide dimensions for the Music dataset

Figure 5 presents results from the UCI YearPredictionMSD dataset2 (Music),
which has 90 dimensions and 515,345 data points representing musical character-
istics of songs. Here we see the data-based method only performs slightly better
than the näıve method. Notice in 5(a) that the initial query already returns
about 20% of the dataset, which could be affecting relative performance com-
parisons. For each dataset we pick the query points and wide dimensions in the
same random manner, so it seems to imply a difference in dataset characteristics.

1 http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
2 http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD

http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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The ANN SIFT1M dataset3 (Sift) contains one million points and was specif-
ically created for nearest neighbor retrieval on 128-dimensional SIFT feature
vectors extracted from images. The results, presented in Figure 6, are quite
different than the Music dataset, rejecting any purely “high-dimensional” per-
formance factors in favor of more rich factors tied closely to the dataset charac-
teristics. Here we see exceptional performance for the data-based method with
both statistics. However, it is likely in part due to the extremely small result set
size, which on average is only the data point the query is centered on. To our
surprise, this holds true even with almost all wide dimensions in the query. This
explains why the time taken increases with all wide dimensions (the opposite of
other datasets), because it finally incurs a higher cost during the refinement step.
By maintaining relatively high performance in retrieving a small set from a large
and high dimensional dataset, this suggests a promising use case for application
of retrieving highly selective high-dimensional range queries.
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Fig. 6. Range queries with increasing number of wide dimensions for the Sift dataset

We find varying results over all three datasets, but it is clear that the data-
based method is superior to the trivial näıve approach. We believe further in-
vestigation and analysis of these datasets could shed light on the results we
found, which will be true of any real world dataset. The Color dataset provides
reasonable results one would expect to see, while the Music and Sift datasets
show varying possible outcomes. The Music dataset seems to contain relatively
congested areas in the dataspace given the poor filtering ability on all queries,
while the Sift dataset appears extremely sparse, allowing the query search to
avoid most of the dataset and return very few results.

7 Conclusions

This paper presented solutions for approximating orthogonal range (window)
queries in kNN indexing systems. We discussed the general computational
geometry problem surrounding this adaptation process, and introduced a heuris-
tic guided space-based decomposition algorithm. Using iDistance for the high-
dimensional kNN indexing algorithm, we developed an optimal data-based range
query retrieval algorithm that requires no modifications to the underlying index
or data structures and no additional storage costs. While providing an ideal
graceful degradation towards the näıve solution in worst-case scenarios, results

3 http://corpus-texmex.irisa.fr/

http://corpus-texmex.irisa.fr/
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show our novel data-based method generally performs superior and provides ex-
ceptional filtering of the dataset even when many wide dimensions are specified,
satisfying any practical wildcard searching.

Future work surrounds the nature and usage of range queries in practice.
For example, preliminary results in selectivity-based range queries yield drasti-
cally different results for different real world datasets, much like the return set
sizes presented here. Other considerations include weighted range queries (hyper-
ellipses), exploratory (or fuzzy boundary) range queries, and rank (distance-
based) results, all of which could be performed from an existing kNN index.
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Abstract. Given a collection of phylogenetic trees with identical leaf
label-set, the Maximum Agreement Forest problem (maf) asks for a
largest common subforest of these input trees. The maf problem on two
binary phylogenetic trees has been studied extensively in the literature.
In this paper, we will be focused on the maf problem on multiple (i.e.,
two or more) binary phylogenetic trees and present two polynomial-time
approximation algorithms, one for the maf problem on multiple rooted
trees, and the other for the maf problem on multiple unrooted trees. The
ratio of our algorithm for the maf problem on multiple rooted trees is 3,
which is an improvement over the previously best ratio 8 for the prob-
lem. Our 4-approximation algorithm for the maf problem on multiple
unrooted trees is the first approximation algorithm for the problem.

1 Introduction

Phylogenetic trees have been widely used in the study of evolutionary biology to
represent the tree-like evolution of a collection of species. However, different data
sets and different building methods may lead to different phylogenetic trees. In
order to facilitate the comparison of these different trees, several distance metrics
have been proposed, such as Robinson-Foulds [1], NNI [2], TBR and SPR [3, 4].

A graph theoretical model, the maximum agreement forest (MAF) of two
phylogenetic trees, has been formulated for the TBR distance and the SPR
distance [5] for phylogenetic trees. Define the order of a forest to be the number
of connected components in the forest.1 Allen and Steel [6] proved that the TBR
distance between two unrooted binary phylogenetic trees is equal to the order
of their MAF minus 1, and Bordewich and Semple [7] proved that the rSPR
distance between two rooted binary phylogenetic trees is equal to the order of
their rooted version of MAF minus 1. In terms of computational complexity, it
is known that computing the order of an MAF is NP-hard and MAX SNP-hard
for two unrooted binary phylogenetic trees [5], as well as for two rooted binary
phylogenetic trees [7].

α This work is supported by the National Natural Science Foundation of China under
Grants (61103033, 61173051, 61232001).

1 The definitions for the study of maximum agreement forests have been kind of con-
fusing. If size denotes the number of edges in a forest, then for a forest, the size is
equal to the number of vertices minus the order. In particular, when the number of
vertices is fixed, a forest of a large size means a small order of the forest.
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Approximation algorithms have been studied for the maf problem, mainly
on two trees. For the maf problem on two rooted binary trees, approximation
algorithms have been studied extensively [5, 8–11]. The best known approxima-
tion algorithm for the maf problem on two rooted binary trees is a linear-time
3-approximation algorithm, which is developed by Whidden et al. [12, 13]. For
the maf problem on two unrooted binary trees, the best known approximation
algorithm is also due to Whidden et al. [12, 13], who presented a linear-time
approximation algorithm of ratio 3.

The maf problem on multiple phylogenetic trees has not been studied as ex-
tensively as that on two trees. To our best knowledge, there is currently no known
approximation algorithm for the maf problem on multiple unrooted binary phy-
logenetic trees. The only approximation algorithm for the problem on multiple
phylogenetic trees is a 8-approximation algorithm developed by Chataigner [15],
which is for the problem on two or more rooted binary trees.

Note that it makes perfect sense to investigate the maf problem on more than
two trees: we may construct two or more different phylogenetic trees for the
same collection of species according to different data sets and different building
methods. However, it seems much more difficult to construct an MAF for more
than two trees than that for two trees. For example, while there have been several
polynomial-time approximation algorithms of ratio 3 for the maf problem on two
rooted binary trees [10–13], the best polynomial-time approximation algorithm
[15] for the maf problem on more than two rooted binary trees has a ratio
8. Also, to our best knowledge, there are currently no known approximation
algorithms for the maf problem on multiple unrooted binary trees.

In the current paper, we will be focused on the approximation algorithms for
the maf problem on multiple (i.e., two or more) binary phylogenetic trees, for
both the version of rooted trees and the version of unrooted trees. Our algorithms
are based on careful analysis of the graph structures that takes advantage of
special relations among leaves in the trees. Our main contributions include a 3-
approximation algorithm for the maf problem on multiple rooted binary trees,
which is an improvement over the previously best 8-approximation algorithm
for the problem, and its ratio matches the best known approximation ratio for
the problem on two rooted binary trees. We also present a 4-approximation
algorithm for the maf problem on multiple unrooted binary trees, which is the
first approximation algorithm for the problem.

2 Definitions and the Problem Formulations

A tree is a single-vertex tree if it consists of a single vertex, which is the leaf of the
tree. A tree is binary if either it is a single-vertex tree or each of its vertices has
degree either 1 or 3. The degree-1 vertices are leaves and the degree-3 vertices
are non-leaves of the tree. There are two versions in our discussion, one is on
unrooted trees and the other is on rooted trees. In the following, we first give
the terminologies on the unrooted version, then remark on the differences for
the rooted version. Let X be a fixed label-set.
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Unrooted X-trees and X-forests
A binary tree is unrooted if no root is specified in the tree – in this case no
ancestor-descendant relation is defined in the tree. For the label-set X , an un-
rooted binary phylogenetic X-tree, or simply an unrooted X-tree, is an unrooted
binary tree whose leaves are labeled bijectively by the label-set X (all non-leaves
are unlabeled). An unrooted X-tree will also be called an (unrooted) leaf-labeled
tree if the label-set X is irrelevant. A subforest of an unrooted X-tree T is a sub-
graph of T , and a subtree of T is a connected subgraph of T . An unrooted
X-forest F is a subforest of an unrooted X-tree T that contains all leaves of T
such that each connected component of F contains at least one leaf in T . Thus,
an unrooted X-forest F is a collection of leaf-labeled trees whose label-sets are
disjoint such that the union of the label-sets is equal to X . Define the order of
the X-forest F , denoted Ord(F ), to be the number of connected components in
F . For a subset X → of the label-set X , if all leaves with labels in X → are in the
same connected component of an unrooted X-forest F , then denote the subtree
induced by X → in F by F [X →], which is the minimal subtree of F that contains
all leaves with labels in X →.

A subtree T → of an unrooted X-tree may contain unlabeled vertices of degree
less than 3. In this case we apply the forced contraction operation on T →, which
replaces each degree-2 vertex v and its incident edges with a single edge connect-
ing the two neighbors of v, and removes each unlabeled vertex that has degree
smaller than 2. Note that the forced contraction does not change the order of
an X-forest. It has been well-known that the forced contraction operation does
not affect the construction of an MAF for X-trees. Therefore, we will assume
that the forced contraction is applied immediately whenever it is applicable. An
X-forest F is strongly reduced if the forced contraction can not apply to F . Thus,
the X-forests in our discussion are always assumed to be strongly reduced. With
this assumption, a unlabeled vertex in an unrooted X-forest has degree 3.

Two leaf-labeled forests F1 and F2 are isomorphic if there is a graph isomor-
phism between F1 and F2 in which each leaf of F1 is mapped to a leaf of F2 with
the same label. We will simply say that a leaf-labeled forest F → is a subforest of
another leaf-labeled forest F if, up to the forced contraction, F → is isomorphic
to a subforest of F .

Rooted X-trees and X-forests
A binary tree is rooted if a particular leaf is designated as the root (so it is
both a root and a leaf), which specifies a unique ancestor-descendant relation
in the tree. A rooted X-tree is a rooted binary tree whose leaves are labeled
bijectively by the label-set X . The root of a rooted X-tree will always be labeled
by a special label ρ in X . A subtree T → of a rooted X-tree T is a connected
subgraph of T which contains at least one leaf in T . In order to preserve the
ancestor-descendant relation in T , we should define the root of the subtree T →. If
T → contains the leaf labeled ρ, certainly, it is the root of the subtree; otherwise,
the node in T → that is in T the least common ancestor of all the labeled leaves
in T → is defined to be the root of T →. A subforest of a rooted X-tree T is defined
to be a subgraph of T . A (rooted) X-forest F is a subforest of a rooted X-tree
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T that contains a collection of subtrees whose label-sets are disjoint such that
the union of the label-sets is equal to X . Thus, one of the subtrees in a rooted
X-forest F must have the leaf labeled ρ as its root.

We also assume that the forced contraction is applied immediately whenever
it is applicable. However, if the root r of a subtree T → is of degree 2, then the
operation will not be applied on r, in order to preserve the ancestor-descendant
relation in T →. Thus, all unlabeled vertices in T → that are not the root of T → have
degree 3.

Agreement Forests
The following terminologies are used for both rooted and unrooted versions.

Let E0 be a subset of edges in an X-forest F , and let F → be the forest that
obtained by removing the edges in E0 from F , without the forced contraction
applied. If each connected component of F → contains at least one leaf in F ,
then E0 is an essential edge-set (abbr. EES) of F , and we denote the forest
that obtained by applying the forced contraction on F → by F \ E0. Obviously,
the order of F \ E0 is equal to Ord(F ) + |E0|. For any X-forest F → that is a
subforest of another X-forest F , it is easy to see that there is an EES E→ of
Ord(F →)−Ord(F ) edges in F such that F → = F \ E→.

An X-forest F is an agreement forest for a collection {F1, F2, . . . , Fm} of X-
forests if F is a subforest of Fi, for all i. A maximum agreement forest (abbr.
MAF) F ≥ for {F1, F2, . . . , Fm} is an agreement forest for {F1, F2, . . . , Fm} with
a minimum Ord(F ≥) over all agreement forests for {F1, F2, . . . , Fm}.

Both the rooted version and the unrooted version of the maf problem on
multiple X-forests studied in the current paper, are formally given as follows.

rooted maximum agreement forest (rooted-maf)
Input: A set {F1, . . . , Fm} of rooted X-forests
Output: a maximum agreement forest F ≥ for {F1, . . . , Fm}

unrooted maximum agreement forest (unrooted-maf)
Input: A set {F1, . . . , Fm} of unrooted X-forests
Output: a maximum agreement forest F ≥ for {F1, . . . , Fm}

3 Edge-Removal Meta-Step

The maf problem (either rooted or unrooted) on the instance (F1, F2, . . . , Fm)
looks for an MAF for the instance. Define the order of the MAF to be the optimal
order for the instance, denoted Opt(F1, F2, . . . , Fm).

Our approximation algorithm for maf consists of a sequence of “meta-steps”.
An edge-removal meta-step (or simply meta-step) of an algorithm is a collec-
tion of consecutive computational steps in the algorithm that on an instance
(F1, F2, . . . , Fm) of maf problem (either rooted or unrooted) removes an EES of
Fi, 1 → i → m (and applies the forced contraction).

The performance of our approximation algorithm for maf heavily depends on
the quality of the meta-steps we employ in the algorithm. For this, we introduce
the following concept that measures the quality of a meta-step, where r ⊂ 1 is
an arbitrary real number.
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Definition 1. Let (F1, F2, . . . , Fm) be an instance of maf problem (either rooted
or unrooted), and let M be an edge-removal meta-step that removes an EES EM

of Fi, 1 → i → m. Meta-Step M keeps ratio r if (c→−c) → (r−1)
r |EM |, where c and

c→ are Opt(F1, . . . , Fi, . . . , Fm) and Opt(F1, . . . , Fi \ EM , . . . , Fm), respectively.

Remark 1. By definition, if an edge-removal meta-step does not change the op-
timal order for the instance, then it keeps ratio r for any r ⊂ 1. Define an
edge-removal meta-step is safe if it does not change the optimal order for the
instance, thus it keeps ratio r for any r ⊂ 1.

If any meta-step in the approximation algorithm keeps ratio not greater than
a constant t, then we can get that the order of the agreement forest which the
algorithm get for (F1, . . . , Fi, . . . , Fm) is at most t times Opt(F1, . . . , Fi, . . . , Fm),
thus, the ratio of the algorithm is at most t. Therefore, performing low-ratio
meta-steps in the algorithm is critical to maintain the performance guarantee of
the algorithm.

The following lemma will play an important role in our discussion.

Lemma 1. Let (F1, F2, . . . , Fm) be an instance of maf problem (either rooted or
unrooted), and let {e} be an EES of Fi, 1 → i → m. Opt(F1, . . . , Fi \{e}, . . . , Fm)
is at most one more than Opt(F1, . . . , Fi, . . . , Fm).

4 MAF for Multiple X-forests

Fix a label-set X . Because of the bijection between the leaves in an X-forest F
and the labels in the label-set X , sometimes we will use, without confusion, a
label in X to refer to the corresponding leaf in F , or vice versa.

Let F1, F2, . . . , Fm be m X-forests, either all are rooted or all are unrooted.
Let F ≥ be a fixed MAF for the instance (F1, F2, . . . , Fm). Note that F ≥ must
be an agreement forest for F1 and F2. Therefore, in the section, we first discuss
how to construct an agreement forest for F1 and F2. The discussion is divided
into the case for the rooted version and the case for the unrooted version.

4.1 Agreement Forest for Two Rooted X-forests

In this case, both F1 and F2 are rooted X-forests. Two vertices v1 and v2 in a
rooted X-forest are siblings if they have the common parent. By the definition,
v1 and v2 can not be the leaf ρ.

During the construction of an agreement forest for F1 and F2, not only the
relation between two leaves but also the relation between two non-leaf vertices
in the X-forests will be analyzed. For convenience, we will mark each non-leaf
vertex in the X-forest with a unique symbol which is just used for identifying
the unique vertex in the X-forest such that we can use a symbol to refer to the
corresponding non-leaf vertex in the forest, or vice versa. For a non-leaf vertex
in the X-forest that marked with a symbol, it is still unlabeled and the forced
contraction can be applied on this vertex when it is applicable. For each vertex
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v in the X-forest that either marked with a symbol or labeled by a label, we
maintain a label set L(v) for it. If v is a leaf in the X-forest, then L(v) = {v}.

At the beginning of the construction of an agreement forest for F1 and F2, we
maintain a set Ns. For each element s in Ns, it is either a label or a symbol that
the structure of F1[L(s)] is isomorphic to that of F2[L(s)]. Initially, let Ns = X .

Then, we proceed the construction by repeatedly removing edges from F1 and
F2 until there do not exist two elements of Ns that are siblings in F2. Therefore,
in the following, we will assume that there exist two elements a and b of Ns that
are siblings in F2, and consider all possible cases for a and b in F1.

Case 1. Elements a and b are also siblings in F1.

In this case, the structures of F1[L(a) ≡ L(b)] and F2[L(a) ≡ L(b)] are iso-
morphic. Thus, the structures in both forests could remain unchanged when we
construct an agreement forest for F1 and F2, and we can treat the structure as
a single vertex that marked with symbol ab in both F1 and F2.

Mark Meta-Step. Mark the parent of a and b with symbol ab in both forests
and let L(ab) = L(a) ≡ L(b). And replace Ns with (Ns \ {a, b}) ≡ {ab}.

This meta-step does not change the structures of F1 and F2, and it is safe.

Case 2. Element a or b is the root of a connected component in F1.

W.l.o.g., we assume that a is the root of a connected component in F1. Thus,
L(a) contains all labels which are in the same connected component with a in
F1. Since the MAF F ≥ for (F1, F2, . . . , Fm) is a subforest of F1, any label of L(a)
can not be in the same connected component with any label of X \ L(a) in F ≥.
Let ea be the edge between a and a’s parent in F2.

Meta-Step 2. Remove EES {ea} of F2.

Lemma 2. Let F1 and F be two rooted X-forests that F is a subforest of F1.
If there exists an element v in F1 that any label of L(v) is not in the same
connected component with any label of X \L(v) in F , then F is also a subforest
of F1 \ {e}, where e is the edge (if exists) between v and v’s parent in F1.

By Lemma 2, F ≥ is also a subforest of F2\{ea}. Therefore, F ≥ is also an MAF
for (F1, F2 \ {ea}, . . . , Fm), Meta-Step 2 is safe.

Case 3. Elements a and b are in different connected components in F1.

In this case, any label of L(a) can not be in the same connected component
with any label of L(b) in F ≥. Since a and b are siblings in F2, thus, either any
label of L(a) is not in the same connected component with any label of X \L(a)
in F ≥ or any label of L(b) is not in the same connected component with any
label of X \L(b) in F ≥. Let ea be the edge between a and a’s parent in F1, and
let eb be the edge between b and b’s parent in F1.

Meta-Step 3. Remove EES {ea, eb} of F1.

Lemma 3. Meta-Step 3 keeps ratio 2.

Case 4. Elements a and b are in the same connected component in F1.
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Let P = {a, c1, c2, . . . , cr, b} be the path in F1 that connects a and b, in which
ch is the least common ancestor of a and b, 1 → h → r, r ⊂ 2. See Figure 1(a) for
an illustration. Since a and b are siblings in F2, there are only three situations
for L(a) and L(b) in F ≥ in this case: (1) any label of L(a) is not in the same
connected component with any label of X \ L(a) in F ≥; (2) any label of L(b) is
not in the same connected component with any label of X \L(b) in F ≥; (3) there
exist some labels of L(a) that are in the same connected component with some
labels of L(b) in F ≥.

The analysis for Situation (3) is given as follows. Suppose that u ∈ L(a)
and v ∈ L(b) are in the same connected component in F ≥. Since the path that
connects a and b in F2 contains only one internal vertex (the common parent of
a and b), but the path P contains at least two internal vertices, thus, in order to
construct an agreement forest for F1 and F2 by removing edges from F1 and F2,
only one internal vertex in P can be kept, and the other r − 1 internal vertices
in P should be removed by the forced contraction (in this situation, all edges on
P cannot be removed, these internal vertices only can be removed by the forced
contraction). Because the subtrees in a rooted X-forest preserve the ancestor-
descendant relation, so the least common ancestor of u and v in F ≥ corresponds
to the common parent of a and b in F2, and the least common ancestor ch of a
and b in F1. Thus, the internal vertex ch should be kept, all the other internal
vertices in P should be removed. That is, all the edges that incident to a vertex
ci in P but not on P , 1 → i → r, i ≥= h, should be removed. If c1 is not the least
common ancestor of a and b, then let e be the edge that incident to c1 but not
on P ; otherwise, let e be the edge that incident to cr but not on P . Let ea be
the edge between a and c1 in F1, and let eb be the edge between b and cr in F1.

Meta-Step 4. If vertex ch is the root of the connected component and path
P contains only two internal vertices, r = 2, then remove EES {ea, e} of F1;
otherwise, remove EES {ea, eb, e} of F1.

Note that if vertex ch is the root of the connected component and P contains
only two internal vertices, r = 2, then {ea, eb, e} is not an EES of F1 and F1 \
{ea, e} = F1 \ {eb, e}. In this special case, we just remove EES {ea, e} of F1.

Lemma 4. Meta-Step 4 keeps ratio 3.

For F1 and F2, if we iteratively apply the above process, then the process will
be ended up with that any two elements of Ns are not siblings in F2. When this
occurs, we apply the following two meta-steps if possible.

If there exists an element v of Ns that is the root of a connected component
in F2 (F1), but is not the root of a connected component in F1 (F2). Let e be
the edge between v and v’s parent in F1 (F2). Then, we apply Meta-Step 5
(Meta-Step 6) which removes the EES {e} of F1 (F2). By Lemma 2, Meta-Step
5 (Meta-Step 6) is safe.

Lemma 5. Let F1 and F2 be two rooted X-forests. If there do not exist two
elements of Ns that are siblings in F2, then after series of Meta-Step 5 operations
and Meta-Step 6 operations in linear time, F1 is a subforest of F2.
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Unmark Meta-Step. Remove the symbols of non-leaf vertices in F1 and F2.
The construction of an agreement forest for F1 and F2 is finished, F1 itself is

an agreement forest for F1 and F2. Therefore, the symbols of non-leaf vertices
in F1 and F2 can be removed (note that the non-leaf vertices are not removed).
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Fig. 1. The path connecting a and b in F1 when F1 is (a) rooted; (b) unrooted

4.2 Agreement Forest for Two Unrooted X-forests

The analysis for the construction of an agreement forest for two unrooted X-
forests proceeds in a similar manner. However, since an unrooted tree enforces no
ancestor-descendant relation in the tree, subtrees in the tree have no requirement
of preserving such a relation. This fact induces certain subtle differences.

In this case, F1 and F2 are two unrooted X-forests. Two vertices v1 and v2 in
an unrooted X-forest are siblings if either they are connected by an edge (edge-
siblings), or they are adjacent to the same non-leaf vertex (vertex-siblings), which
will be called the “parent” of v1 and v2.

We also maintain a set Ns for the construction of an agreement forest for F1

and F2, and initially let Ns = X . We proceed by repeatedly removing edges in
F1 and F2 until certain condition is met. The certain condition for the unrooted
version is that for any two elements of Ns, if they are siblings in F2, then they
are edge-siblings in both F1 and F2. Therefore, in the following, we will assume
that there exist two elements a and b of Ns that are siblings (edge-siblings or
vertex-siblings) in F2, but are not edge-siblings in both F1 and F2. And we will
consider all possible cases for a and b in F1.

Case 1. Elements a and b are also siblings in F1.

Since the definition of siblings in unrooted X-forests is subtle different from
that in rooted X-forests. There are three subcases.

Subcase 1.1. a and b are vertex-siblings in both F1 and F2.

Mark Meta-Step. Mark the parent of a and b with symbol ab in both forests
and let L(ab) = L(a) ≡ L(b). And replace Ns with (Ns \ {a, b}) ≡ {ab}.
Subcase 1.2. a and b are vertex-siblings in F1, but are edge-siblings in F2.

In this subcase, L(a)≡L(b) contains all labels which are in the same connected
component with a and b in F2. Therefore, any label of L(a)≡L(b) can not be in
the same connected component with any label of X \ (L(a) ≡ L(b)) in F ≥.
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Lemma 6. Let F1 and F be two unrooted X-forests that F is a subforest of F1.
If there exist two elements a and b in F1 that are vertex-siblings in F1 and any
label of L(a) ≡ L(b) is not in the same connected component with any label of
X \ (L(a)≡L(b)) in F , then F is also a subforest of F1 \ {e}, where e is the edge
that incident to the parent of a and b but not incident to a and b in F1.

Let p be the parent of a and b in F1, and let v be the neighbor of p different
from a and b. Let ev be the edge between p and v.

Meta-Step 1.2. Remove EES {ev} of F1.

Note that if v is a non-leaf vertex that marked with a symbol of Ns, once the
edge ev is removed, v would be a vertex of degree 2 which will be removed by
the forced contraction, and the two children c1 and c2 of v in F1 will be edge-
siblings. Therefore, there will exist a symbol v of Ns that there does not exist a
vertex in F1 that marked with the symbol v, but there exists a vertex in F2 that
marked with the symbol v. In order to keep the bijection between the elements
in Ns and the vertices in X-forests, we will replace Ns with (Ns \ {v})≡{c1, c2},
and remove the symbol of the vertex in F2 which is marked with v. Therefore,
there will exist two elements c1 and c2 of Ns that are edge-siblings in F1, but are
vertex-siblings in F2, which satisfies the condition of Subcase 1.3. Summarizing
the above analysis, we apply the following step:

Symbol-Removal Meta-Step. If there exists a symbol v of Ns that there
only exists one vertex that marked with v in F1 and F2, then we replace Ns with
(Ns \ {v})≡{c1, c2}, where c1 and c2 are the two children of v in the forest, and
remove the symbol v of the vertex in the forest.

Note again that we will apply the Symbol-Removal Meta-Step after an edge-
removal meta-step to keep the bijection between the elements in Ns and the
vertices in X-forests.

Subcase 1.3. a and b are edge-siblings in F1, but are vertex-siblings in F2.

Let p be the parent of a and b in F2, and let v be the neighbor of p different
from a and b. Let ev be the edge between p and v.

Meta-Step 1.3. Remove EES {ev} of F2.

By Lemma 6, both Meta-Step 1.2 and Meta-Step 1.3 are safe.

Case 2. Element a or b is a single-vertex tree in F1.

W.l.o.g., we assume that a is a single-vertex tree in F1. Obviously, the label
a is also a single-vertex tree in F ≥. Let ea be the edge incident to a in F2.

Meta-Step 2. Remove EES {ea} of F2.

Obviously, Meta-Step 2 is safe.

Case 3. Elements a and b are in different connected components in F1.

In this case, again either any label of L(a) can not be in the same connected
component with any label of X \ L(a) in F ≥ or any label of L(b) can not be in
the same connected component with any label of X \ L(b) in F ≥. Let ea be the
edge that incident to a and on the path from a to an arbitrary label of X \L(a)
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in F1, and let eb be the edge that incident to b and on the path from b to an
arbitrary label of X \ L(b) in F1.

Meta-Step 3. Remove EES {ea, eb} of F1.

Lemma 7. Let F1 and F be two unrooted X-forests that F is a subforest of
F1. If there exists an element v in F1 that any label of L(v) is not in the same
connected component with any label of X \L(v) in F , then F is also a subforest
of F1 \{e}, where e is the edge (if exists) that incident to v and on the path from
v to an arbitrary label of X \ L(v) in F1.

Lemma 8. Meta-Step 3 keeps ratio 2.

Case 4. Elements a and b are in the same connected component in F1.

Let P = {a, c1, c2, . . . , cr, b} be the path in F1 that connects a and b, where
r ⊂ 2. See Figure 1(b) for an illustration. There are also three possible situations
for L(a) and L(b) in F ≥ in this case, which are the same as that for Case 4 of
the rooted version.

The analysis for Situation (3) is given as follows. Because the path connects
a and b in F2 contains at most one internal vertex, but the path P contains at
least two internal vertices, thus, in order to construct an agreement forest for
F1 and F2 by removing edges from F1 and F2, at most one internal vertex on
P can be kept, and all the other internal vertices should be removed by forced
contraction. However, since the subtrees in an unrooted X-forest do not preserve
any ancestor-descendant relation, we cannot decide which one of these internal
vertices in P should be kept. On the other hand, since r ⊂ 2, we know that at
least one of c1 and cr should be removed. That is, at least one of ec1 and ecr ,
which are not on the path P but are incident to c1 and cr, respectively, should
be removed.

Let ea be the edge that incident to a and on the path from a to an arbitrary
label of X \L(a) in F1, and let eb be the edge that incident to b and on the path
from b to an arbitrary label of X \ L(b) in F1.

Meta-Step 4. If P contains only two internal vertices, r = 2, then remove EES
{ea, ec1 , ecr} of F1; otherwise, remove EES {ea, eb, ec1, ecr} of F1.

Lemma 9. Meta-Step 4 keeps ratio 4.

For F1 and F2, if we iteratively apply the above process, then the process will
be ended up with that for any two elements of Ns, if they are siblings in F2, then
they are edge-siblings in both forests. When this occurs, we apply the following
meta-step if possible.

If there is an element v of Ns that is a single-vertex tree in F2, but is not a
single-vertex tree in F1. Let ev be the edge incident to v in F1. Then, we apply
Meta-Step 5 which removes the EES {ev} of F1. This meta-step is safe.

Lemma 10. Let F1 and F2 be two unrooted X-forests. If for any two elements
of Ns that are siblings in F2, they are edge-siblings in both F1 and F2, then after
series of Meta-Step 5 operations in linear time, F1 is a subforest of F2.

Unmark Meta-Step. Remove the symbols of non-leaf vertices in F1 and F2.
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5 Approximation Algorithm for the maf Problem

At first, we give the outline of our approximation algorithm for the maf problem
(either rooted or unrooted). Let F1, F2, . . . , Fm be m X-forests, either all are
rooted or all are unrooted.

Main-Algorithm:
for i = 2 to m

do meta-steps on F1 and Fi until F1 is a subforest of Fi.
return F1.

Theorem 1. The Main-Algorithm correctly returns an agreement forest for the
instance (F1, F2, . . . , Fm) of maf problem (either rooted or unrooted).

Approximation Algorithm for unrooted-maf
Now we are ready for presenting the approximation algorithm for the unrooted-
maf problem. The algorithm is a combination of the analysis given in Subsection
4.2 and the Main-Algorithm, which is given in Figure 2.

Algorithm Unrooted Apx-MAF(F1, F2, . . . , Fm)
Input: a collection {F1, F2, . . . , Fm} of unrooted X-trees, m ≥ 1
Output: an agreement forest F for {F1, F2, . . . , Fm}
1. if (m = 1) then return F1;
2. for i from 2 to m
2.1. let Ns = X;
2.2. while there exist two elements a and b of Ns that are siblings in Fi,

but are not edge-siblings in both F1 and Fi.
2.2.1. switch

case 1.1: apply Mark Meta-Step;
case 1.2: apply Meta-Step 1.2;
case 1.3: apply Meta-Step 1.3;
case 2: apply Meta-Step 2;
case 3: apply Meta-Step 3;
case 4: apply Meta-Step 4;

2.2.2. apply Symbol-Removal Meta-Step if possible;
2.3. apply Meta-Step 5 if possible;
2.4. apply Unmark Meta-Step;
3. return F1;

Fig. 2. An approximation algorithm for the unrooted-maf problem

Theorem 2. Algorithm Unrooted Apx-MAF is a 4-approximation algorithm for
the unrooted-maf problem that runs in time O(n log n), where n is the number
of vertices in the input instance.

The approximation algorithm for rooted-maf proceeds in a similar way, based
on the corresponding analysis given in Subsection 4.1. Due to the space limit,
we only present its main result below. The entire discussion for this problem will
be given in the complete version.
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Theorem 3. Algorithm Rooted Apx-MAF is a 3-approximation algorithm for
the rooted-maf problem that runs in time O(n log n), where n is the number of
vertices in the input instance.

6 Conclusion

In this paper, we presented two approximation algorithms for the maf problem
on multiple binary phylogenetic trees: one for rooted trees with ratio 3, which
is an improvement over the previously best 8-approximation algorithm for the
problem; and the other one for unrooted trees with ratio 4, which is the first
constant ratio approximation algorithm for the problem.
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Abstract. In this paper, we study the Optimal Inspection Points (OIP)
problem, which asks us to find a subset of vertices in a given network
to perform the Deep Packet Inspection so as to maximize the number
of scanned packets while satisfying the delay constraints. This problem
finds many applications for malicious attack detection, especially those
where packet scanning is a must. Accordingly, we prove OIP is NP-
complete and provide an FPTAS in the case of single path routing. For
the multiple path routings, we design an FPTAS when the routing graph
takes a form of series-parallel graphs, which is commonly used to model
electric networks.

Keywords: Malicious Attacks Detection, Smart Grids, Optimization.

1 Introduction

A key concern for the computer dependent systems is the threat from the ma-
licious attacks which execute almost perfectly legitimate operations to compro-
mise the whole system security. For example, in case of Distributed Denial of
Service attacks in the Internet, the intrusion detection system needs to monitor
the entire network traffic [1–3]. Another notable example is the Smart Grid [4],
where many new classes of cyber attacks have emerged [5–8].

A common type of attack in Smart Grid is to alter the network dynamics by
valid yet malicious commands [4]. To guard against this type of attack, Deep
Packet Inspection (DPI) is essential to search for malicious packets. However,
DPI leads to significant delays in the throughput hence increasing the latency for
packets to arrive at the central monitoring node. Control messages not satisfying
time constraints are discarded, which includes the risk of dropping important
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control messages leading to serious physical and/or financial damage, therefore
inspection cannot be performed at all points and on all packets.

Based on the above motivation, we introduce and study a new optimization
problem, namely Optimal Inspection Points (OIP). Given a network represented
by a graph G = (V,E), the goal is to find a subset D → V which represents
the optimal inspection points, such that the number of scanned packets at the
center node is maximized without violating the latency constraint. Clearly this
problem helps to inspect the packets as much as possible to search for malicious
ones while ensuring all packets arrive on time.

The routing schemes in different networks together with the strict latency
constraints make this problem challenging and interesting. The time constraint
in IEC 61850 [9–12], for example, could be as low as 3ms for the critical fault
isolation and protection control messages [4]. Also the number of the scanned
packets, which in turn increases the probability of catching a malicious packet,
has to be as high as possible. Therefore, it would be nice if we can devise a Fully
Polynomial Time Approximation Scheme (FPTAS) [14] for the OIP. Indeed, we
have developed such a solution for the single path routing scenario. As for the
multiple path routing, we devised an another FPTAS to OIP when the network
can be transformed to a series-parallel graph.

The remainder of this paper is organized as follows. Section 2 presents the
network model and our problem definition. The complexity and FPTAS are
discussed in Section 3 and 4, respectively. We introduce the FPTAS for multiple-
path routing in series-parallel graphs in Section 5 and provide more discussion
with different scanning scenarios in Section 6.

2 Model and Problem Definitions

We use the Smart Grid as an example to illustrate the network model for our
problem. A smart grid is modeled as a directed graph G = (V,E) where the
vertices in V = {r}⊂O⊂S represent the set of nodes in the grid and E represents
the set of communication links among the nodes.

Fig. 1. A Smart Grid Structure
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The set of vertices V includes the following:

– The center node r which represents the Supervisory Control And Data Ac-
quisition (SCADA) center. All the state estimations and corresponding ac-
tions based on the message received from S are done by r. All the request
packets in the smart grid communication network are routed towards r.

– S is the set of the nodes that can act as a source of malicious packets and
hence can be under the control of attackers. These nodes are the Intelligent
Electronic Devices (IEDs) or the Remote Terminal Units (RTUs).

– O = V \{S⊂r} is the set of intermediate nodes where DPI can be performed.
If a node in O does not have DPI scanner, then equivalently the capacity of
the scanner at that node is 0. We assume that there is no queueing effect
and packets arrive continuously that scanners do not have to wait for packets
unless the scanner capacity exceeds the amount of arrived packets.

For each u ≡ V , let N−(u) and N+(u) represent the set of incoming and out-
going neighbors of u respectively. Also let the flow f(u, v) represent the network
traffic from u ∈ v (measured as the number of packets going from u to v within
a time unit). Note that f(, ) contains the information about the routing and
data forwarding in the smart grid network as follows. At a node u ≡ V \ {r}, a
packet can be forwarded to any of its neighbor v ≡ N+(u) unless f(u, v) = 0.
Also the probability that a packet is forwarded from u to v is proportional to

f(u, v), i.e., the probability is given by f(u,v)
f(u) , where

f(v) =






∑
u→N+v f(v, u) =

∑
w→N−v f(w, v) v ≡ O∑

u→N+v f(v, u) v ≡ S∑
u→N−v f(u, v) v = r.

(1)

For single path routing protocols, the out degree of every vertex in G is at
most one. Thus G is a directed tree rooted at r. For multiple path routing
protocols, a vertex in G may have multiple out going edges. In that case, we
restrict our attention to the case when G is acyclic, i.e., there will be no routing
loop problem in G.

We now formally define the following optimization problem:

Definition 1 (Optimal Inspection Points (OIP) problem). Given a smart
grid represented by a graph G = (V,E), the center node r, the set of terminal
nodes S, the set of intermediate nodes O, the capacity mu of scanner at u ≡ O,
the average traffic flow f(u, v) for (u, v) ≡ E, the delay Ωu caused by DPI at
u ≡ O, and the maximum delay Ωmax for a packet. Find a subset D → V to place
scanners so that the total delay of any packet arriving at r, on any path is at
most Ωmax and the number of inspected packets is maximized.

3 Complexity

In this section we show that OIP is NP-complete and the NP-hardness even
holds for the simple path network.

Theorem 1. The Optimal Inspection Points problem is NP-complete.
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Proof. We prove the NP-completeness of the problem even when the graph is a
simple path. The decision version of OIP is defined as follows.

Decision version of OIP. Given an acyclic graph G = (V,E), capacities mu

for u ≡ V , flow values f(u, v), (u, v) ≡ E, and maximum latency Ωmax of a packet,
is there a subset D → V such that for any path Pv starting from a terminal node
v ≡ S to r, ∑

u→D≥Pv

Ωu ≥ Ωmax,

and the number of scanned packets is at least P for some P ∪ 0?
Given a set of inspection points D, it is easy to verify in polynomial time if

the total inspection time is less than the maximum delay allowed in the given
system and the number of packets scanned is at least P . Hence, OIP is in NP.

To show the NP-hardness, we reduce from the 0− 1 Knapsack problem which
is defined as follows. Given an instance of 0− 1 Knapsack problem with n items
a1, a2, . . . , an where ai has value vi and weight wi, and the bag can carry a
maximum weight W . The decision version of the 0 − 1 Knapsack problem asks
if we can select a subset of items with total weight at most W and total value
at least B, for some B ∪ 0.

Construction. We reduce the Knapsack instance to the following instance of OIP.
Construct a graph G = (V = S ⊂ O ⊂ {r}, E) where S = {u0}, O = {u1, u2, . . . ,
un−1}, r = {un}. There is an edge (ui, ui+1) for all i = 1 . . . n (see Fig. 2). The
scanner at ui has capacity vi and a scanning time Ωi = wi for i = 1 . . . n. The traffic
flow f(ui, ui+1) = ◦ for i = 0 . . . n− 1. Set Ωmax =W and P = B.

    … 

Fig. 2. Reduction from 0− 1 Knapsack

(∈)Suppose we have a solution K → {a1, a2, ..., an} for the 0-1 Knapsack
problem. Now with our construction we see that, K corresponds to a subset D
of vertices O. Since, Ωmax = W ,

∑
ai→K wi ≥ W which implies it also satisfies

the delay constraint in OIP and the number of scanned packets is at least P .
(⊆) Let say D → O is a solution for OIP. The above solution satisfies the

delay constraint Ωmax which satisfies Ωmax = W , based on our construction,
Hence D → O is also a solution which satisfies the weight constraint and total
value B =

∑
ui→D vi.

4 One Time Scan in Single Path Routing

4.1 IP Formulation

In this section, we discuss the formulation for the given problem assuming single-
path-routing protocols, e.g., packets are routed following the shortest path. First,
we define the binary variable xv for each vertex v ≡ V as follows:
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xv =

{
1 if v is selected as an inspection point
0 otherwise

(2)

For each node u ≡ S, let Pu denote the set of nodes on the unique path from
u to r. The delay constraint is given by:

∑

v→Pu

Ωv · xv ≥ Ωmax, u ≡ S (3)

Our objective is to maximize the total number of scanned packets. The number
of packets scanned at v ≡ O is min{mv, #unscanned packets that arrived at v}.
Let yu denote the number of scanned packets going out from u, which include
the packets scanned before arriving to u and also the packets scanned at u. We
have

yv = min{f(v), xvmv +
∑

u→N−(v)

yu}.

The problem can be formulated as

maximize yr

s.t.
∑

v→Pu

Ωv · xv ≥ Ωmax u ≡ S

yv ≥ f(v) v /≡ S

yv ≥ xvmv +
∑

u→N−(v)

yu v /≡ S

yu = 0 u ≡ S

xv ≡ {0, 1} v ≡ V

4.2 FPTAS for Single-path Routing One-time Scanning

We give an (1 − σ)-approximation algorithm that has an O(σ−2n5) time com-
plexity for σ > 0.

 

 

 
 

 

 

.  .  .  .  .  .  .  .  .  

   ...           ...  

Fig. 3. In single-path-routing, the graph is a directed tree, rooted at r

Our algorithm consists of two phases: 1) First, we standardize the capacities of
the deep packet inspectors as well as the flow values so that all values are bounded
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by a polynomial in n and 1
Σ ; 2) Second, we use the dynamic programming to

find the solution in polynomial time. The algorithm is summarized in Algorithm
1. In the first phase, the scanners’ capacities mu are standardized as shown in
step 2 in Algorithm 1; then both mu and the flow values f(u) are scaled down
by a factor M as defined in step 3 and rounded down. This preprocessing step
ensures that all m∪

u are integers between 0 and ∀n
Σ ∩.

Dynamic Programming. In the second phase, we use dynamic programming
to find an optimal solution for the OIP problem instance (G,m∪, f ∪). In the case
of single-path-routing, there is at most one path from each node to root node r.
For simplicity, we remove nodes that have no paths to r. The remaining graph
is a directed tree rooted at r as shown in Fig. 3.

Now, given the tree T = (V,E) with |V | = n, and the SCADA center r ≡ V
serving as the root. In order to describe the dynamic algorithm, we use the
following the notations:

– T u: The subtree rooted at u in T with the set of vertices V u and the set of
edges Eu is denoted by T u = (V u, Eu).

– c(u): is the in-degree of u. Note that when referring to T u, we disregard the
edge that connect u to its parent (i.e., only consider the in-degree); thus the
degree of u within T u is one less than that in T unless u = r.

– u1, u2, . . . , uc(u) : represent the children of u.
– du: the latency is defined as du = maxv→N−

(u)
{dv}+ xuΩu.

– yu: is the number of scanned packets outgoing from u and is given yu =
min{f ∪(u), xum∪

u +
∑

v→N−(u) yv}, where xu indicates whether the scanner

at u is switched on (xu = 1) or not(xu = 0).

We define the following recursion functions :

– T u(p): The minimum value of latency du among all possible ways to deploy
inspectors in the T u rooted at u so that number of packets scanned yu is at
least p i.e. yu ∪ p.

– T u
i (p): The minimum value of latency du among the maximum value of

latency among {du1 , du2 , . . . , dui} among all possible ways of deploying in-
spectors in the subtrees {T u1, T u2 , . . . , T ui} correspondingly, so that number
of packets scanned yu is at least p, i.e., yu ∪ p., where i = 1 . . . c(u).

The core of the dynamic algorithm is to compute T u
c(u)(p) and T

u(p) through
the following recursions.

T u(p) = min{Ωu +max{T u
c(u)(p−m∪

u)}, T u
c(u)(p)}, ∅p = 1 . . . ∀n2/σ∩ (4)

T u
i (p) = min

q=0..p
{max{T u

i−1(p− q) + T u(q)}}, ∅p = 1 . . . ∀n2/σ∩, i = 1 . . . c(u) (5)

The basis cases are as follows.

T u(p) =

{
0 p ≥ 0
◦ p > ∀n2/σ∩ , T

u
i (p) =

{
0 p ≥ 0
◦ p > ∀n2/σ∩ (6)
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T u
i (p) =

{
0 if u ≡ S
du if u1, u2, . . . , uc(u) ≡ S

(7)

Finally, the maximum objective for the OIP instance (G,m∪, f ∪) is given at
the root r by max{p | T r(p) ≥ Ωmax}.

Algorithm 1. FPTAS for Single-path-routing OIP

Phase 1: Preprosessing

1. Remove all nodes that have no paths to r.

2. For all u ≡ V , if Ωu > Ωmax, set mu ⊆ 0; else set mu = min{mu, f(u)}.
3. Given σ > 0, let K = ΣM

n , where M = maxu→V {mu}.

4. Let f ∪(u) = ↓ f(u)
K ∨ and m∪

u = ↓mu

K ∨

Phase 2: Dynamic programming algorithm

5. Compute T u(p) and T u
i (p) using the recursions in Eqs. 4 and 5.

6. Find an optimal solution, say S∪, by tracing from max{p| T r(p) ≥ Ωmax}
7. Return S∪.

Lemma 1. Algorithm 1 finds an optimal solution for the single-path-routing
OIP instance (G,m∪, f ∪) in an O(σ−2n5) time.

Proof. The correctness of the dynamic programming algorithm comes from the
sub-optimal structure of the problem.

As for the running time, the major portion of running time is to compute
T u
i (p). Since we have at most n− 1 possible pairs of u and i (the total number

of children), and q ≥ p ≥ ∀n2/σ∩. The running time to compute T u
i (p) is O(n×

∀n2/σ∩ × ∀n2/σ∩) = O(σ−2n5).

Theorem 2. For any σ > 0, there is an (1− σ)-approximation algorithm for the
OIP problem, single-path-routing with a time complexity O( 1

Σ2n
5).

Proof. Let S∈ ⇔ V be an optimal solution of the OIP instance (G,m, f) with
the objective value OPT = yr(S

∈) (the total number of scanned packets at any
nodes).

Given 1 > σ > 0, we apply Algorithm 1 to find an optimal solution S∪ ⇔ V
for the instance (G,m∪, f ∪) with an objective value OPT ∪ = y∪r(S

∪). By Lemma
1, this takes a (polynomial) running time O(σ−2n5).

First, S∪ is also a feasible solution for the instance (G,m, f), since it satisfies
the condition that the latency at r is at most Ωmax. Let yr(S

∪) be the objective
value associated with S∪ w.r.t. the instance (G,m, f). We will show that

yr(S
∪) ∪ (1− σ)OPT.
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The dynamic programming must return a solution at least as good as S∈ (for
the OIP instance (G,m∪, f ∪)). Thus y∪r(S

∈), the objective value associated with
S∈ w.r.t. the instance (G,m∪, f ∪), is at most OPT ∪. Due to the rounding down,
Mm∪

u can be smaller than mu, but by not more than K. Hence,

yr(S
∈)−My∪r(S

∈) ≥ nK.

Therefore

yr(S
∪) ∪ Ky∪r(S

∪) ∪ Ky∪r(S
∈) ∪ yr(S

∈)− nK = OPT − σM.

Since we filtered out nodes u with Ωu > Ωmax, we have OPT ∪ M . Therefore,

yr(S
∪) ∪ OPT − σM ∪ (1− σ)OPT.

Thus the objective of S∪ is within a factor 1 − σ of OPT , i.e., Algorithm 1 is a
(1− σ) approximation algorithm for the single-path-routing OIP problem.

5 One Time Scan in Multiple Paths Routing

In this section, we study the OIP problem in which packets can be routed using
different paths to the SCADA center. We present an IP formulation for the
problem in Section 5.1. We study the special case when the network has form of a
series-parallel graph, which is often used to model electric networks. Accordingly,
we present the definition of series-parallel graphs (SP-graphs) in Section 5.2 and
describe an FPTAS for Multi-path routing OIP in SP-graphs in Section 5.3.

5.1 IP Formulation

We present the formulation for the given problem when multi-path routing pro-
tocols are in use. Let xu = 1 if node u is selected as an inspection point and
0, otherwise. Also, let lu denote the latency, the maximum possible delay of a
packet, at node u. Then lu is given by

lu = max
v→N−(u)

{lv}+ xuΩu ∅u /≡ S (8)

Thus the total delay constraint is lr ≥ Ωmax.
Since the probability that a packet is forwarded from u to v is proportional

to f(u, v), the number of scanned packets going out from v is given by

yv = min{f(v), xvmv +
∑

u→N−v

yu
f(u, v)

f(u)
}.

The OIP problem with multi-path routing can be formulated as follows.
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maximize yr

s.t. lr ≥ Ωmax

lv ∪ lu + xvΩv v /≡ S, u ≡ N−(v)

yv ≥ f(v) v /≡ S

yv ≥ xvmv +
∑

u→N−v

yu
f(u, v)

f(u)
v /≡ S

yu = 0, lu = 0 u ≡ S

xv ≡ {0, 1} v ≡ V

It is common that the network traffic is much higher than the capacities of
scanners, thus if we choose to activate the scanner at u, we can scan exactly mu

additional packets. Thus the above formulation can be simplified to

maximize xumu

s.t. lr ≥ Ωmax

lu = 0 ∅u ≡ S
lv ∪ lu + xvmv ∅v /≡ S, u ≡ N−(v)

xv ≡ {0, 1} ∅v /≡ S.

5.2 Series-Parallel Graphs (SP-graphs)

Given two graphs G1 and G2 together with pairs of source-sink nodes (s1, t1) in
G1 and (s2, t2) in G2, a series composition creates a new graph by merging the
sink t1 and the source s2 and (s1, t2) becomes the source-sink of the composed
graph. A parallel composition creates a new graph by merging two sources s1
and s2 into the new source, and two sinks t1 and t2 into the new sink node.
A series-parallel graph (SP-graph) is a graph that is constructed by a sequence
of series and parallel compositions starting from a set of single-edge graphs, i.e.
cliques of size two.

An SP-graph G with a source-sink pair (s, t) can be decomposed into several
single-edge base graphs. The decomposition is specified by a binary decompo-
sition tree T (G) whose nodes represent subgraphs of G. Each non-leaf node of
the tree has two child subgraphs and an associated operation (either series or
parallel). The parent subgraph can be constructed by applying the operation
on two children subgraphs. Construction of T (G∪) can be done in a linear time
complexity [13].

5.3 FPTAS for Multi-path Routing One-time Scanning in GSP

We present an FPTAS for the OIP problem when the graph has form of an
SP-graph. Specifically, let G∪ be an augment of G by adding a source node s and
connecting s to all nodes in S. We set f(s, u) = f(u) for each u ≡ S and ms = 0
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 s

S 

Fig. 4. A series-parallel network. Bold nodes are intermediate nodes in O.

(Fig. 4). The OIP problems G∪ with source-sink pair (s, r) is then equivalent to
the OIP problem on G.

We present an FPTAS for the OIP problem under the following assumptions.

– Multi-path routing is possible and the augmented graph G∪ is an SP-graph.
– Single scanning mechanism is employed.
– The scanner capacities are relatively small to the number of arriving packets

so that even when all scanners are in use, there are still unscanned packets
at every node.

The last assumptions simplify the calculation of the number of scanned packets
to the total capacities of deployed scanners.

We summarize the FPTAS in Algorithm 2. We begin by constructing the de-
composition tree T (G∪) [13]. Also, the scanners’ capacities are scaled and rounded
to the nearest integers in [0...∀n

Σ ]∩. Then we solve the problem in each subgraph
of G∪ starting from the leaf nodes of T (G∪) up to the root via a set of series and
parallel merging operations.

For any subgraph Ḡ with a source-sink pair (s̄, t̄), we define a function hḠ(p)
as the minimum latency among all possible way to deploy scanners on Ḡ so that
the total capacities of deployed scanners is at least p. We enforce that no scanner
is deployed at s̄ to avoid duplicate scanner deployment for the series operation.

The Basis. When Ḡ is a base graph with a single edge (s̄, t̄), we have

hḠ(p) =






0 p = 0
Ωt̄ p = 1...mt̄

◦ p > mt̄

The Series Operation. Assume that the subgraph Ḡ with source-sink pair
(s̄, t̄) is obtained by applying series operation on the subgraph G1 with the
source-sink pair (s1, t1) and the subgraph G2 with the source-sink pair (s2, t2).
For a series operation, both the latency and the number of scanned packets in
Ḡ are equal to those of G1 and G2. Thus

hḠ(p) = min
p∗=0...p

{hG1(p
∪) + hG2(p− p∪)}, 0 ≥ p ≥

∑

u→Ḡ

m∪
u

Parallel Operation. For a parallel operation, the latency in Ḡ is equal to the
maximum of the latency in G1 and G2 and the number of scanned packets in Ḡ
is the sum of those in G1 and G2. Hence
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hḠ(p) = min
p∗=0...p

max{hG1(p
∪), hG2(p− p∪)}, 0 ≥ p ≥

∑

u→Ḡ

m∪
u

Algorithm 2. FPTAS for Multi-path-routing OIP in SP-graphs

1. Construct G∪ = (V ∪, E∪) by adding a node s to G and setting f(s, u) =
f(u), u ≡ S,ms = 0.

2. Scale mu: Let K = ΣM
n , where M = maxu→V {mu}. Set m∪

u = ↓mu

K ∨.

3. Construct the decomposition tree T (G∪).

4. Starting from leaf-node in T (G∪) up to the root, compute the hS̄(p) for
each subgraph Ḡ in T (G∪) using the formulations for series and parallel
operations.

5. At the root node of T (G∪), choose a solution with the maximum p value
that hG∗(p) ≥ Ωmax.

Time Complexity Analysis. There are no more than n operations (either
series or parallel). Since

∑
m∗

u
≥ n × ∀n/σ∩, we need to compute hḠ(p) for at

most O(n2/σ) different values of p, which, in turn, requires an O(n2/σ) time.
Therefore, the total time complexity is O(n5/σ2).

Theorem 3. For σ > 0, Algorithm 2 is a (1−σ)-approximation algorithm for the
multi-path routing OIP problem when the augmented graph G∪ is an SP-graph.

Proof. Let S∈ ⇔ V be an optimal solution of the OIP instance (G,m, f) with
the objective value OPT =

∑
u→S∞ mu and S∪ be the optimal solution of the

OIP instance (G,m∪, f ∪) found in Algorithm 2.
Since S∈ satisfies the latency constraint, it is also a feasible solution for the

instance (G,m∪, f ∪). From the optimality of S∪, we have
∑

u→S∞
m∪

u ≥
∑

v→S∗
m∪

v.

Let OPT ∪ =
∑

v→S∗ mv, we will show that OPT ∪ ∪ (1 − σ)OPT . Thus the
objective value given by S∪ is at least a (1− σ) times the optimal objective value.

We have

OPT ∪ =
∑

v→S∗
mv ∪

∑

v→S∗
Km∪

v ∪ K
∑

u→S∞
m∪

u

∪
∑

v→S∗
(mv −K) ∪ OPT − nM ∪ (1− σ)OPT

Thus Algorithm 2 gives an (1− σ) approximation algorithm for the OIP problem
when G∪ is an SP-graph.
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6 Discussion

In this paper we assume that each packet will not be scanned multiple times.
This can be implemented by altering the packet header to add one flag to check
whether the packet has been scanned. This approach requires updating either
the hardware/firmware components at the network core.

We can also relax this scanning requirement and do not check for multiple
scanning of packets. This approach provides greater compatibility for legacy
devices with a cost in efficacy (due to redundant scanning). Using this approach
we can also formulate two new optimization problems depending on whether
single path or multiple path routing is in use. These alternative formulations are
more difficult than their one time scanning counterparts and are subjects of our
further studies.
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09-1-0061.
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Abstract. We explore a reconfiguration version of the dominating set
problem, where a dominating set in a graph G is a set S of vertices such
that each vertex is either in S or has a neighbour in S. In a reconfigu-
ration problem, the goal is to determine whether there exists a sequence
of feasible solutions connecting given feasible solutions s and t such that
each pair of consecutive solutions is adjacent according to a specified ad-
jacency relation. Two dominating sets are adjacent if one can be formed
from the other by the addition or deletion of a single vertex.

For various values of k, we consider properties of Dk(G), the graph
consisting of a vertex for each dominating set of size at most k and
edges specified by the adjacency relation. Addressing an open question
posed by Haas and Seyffarth, we demonstrate that Dα (G)+1(G) is not
necessarily connected, for Γ (G) the maximum cardinality of a minimal
dominating set in G. The result holds even when graphs are constrained
to be planar, of bounded tree-width, or b-partite for b ≥ 3. Moreover, we
construct an infinite family of graphs such that Dγ(G)+1(G) has expo-
nential diameter, for γ(G) the minimum size of a dominating set. On the
positive side, we show that Dn−μ(G) is connected and of linear diameter
for any graph G on n vertices with a matching of size at least μ+ 1.

1 Introduction

The reconfiguration version of a problem determines whether it is possible to
transform one feasible solution s into a target feasible solution t in a step-by-
step manner (a reconfiguration) such that each intermediate solution is also fea-
sible. The study of such problems has received considerable attention in recent
literature [8,9,13,15,16] and is interesting for a variety of reasons. From an algo-
rithmic standpoint, reconfiguration models dynamic situations in which we seek
to transform a solution into a more desirable one, maintaining feasibility during
the process. Reconfiguration also models questions of evolution; it can represent
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the evolution of a genotype where only individual mutations are allowed and all
genotypes must satisfy a certain fitness threshold, i.e. be feasible. Moreover, the
study of reconfiguration yields insights into the structure of the solution space of
the underlying problem, crucial for the design of efficient algorithms. In fact, one
of the initial motivations behind such questions was to study the performance of
heuristics [9] and random sampling methods [4], where connectivity and other
properties of the solution space play a crucial role. Even though reconfiguration
gained popularity in the last decade or so, the notion of exploring the solution
space of a given problem has been previously considered in numerous settings.
One such example is the work of Mayr and Plaxton [18], where the authors
consider the problem of transforming one minimum spanning tree of a weighted
graph into another by a sequence of edge swaps.

Some of the problems for which the reconfiguration version has been studied
include vertex colouring [1,3,4,6,5], list edge-colouring [14], list L(2,1)-labeling [15],
block puzzles [11], independent set [11,13], clique, set cover, integer programming,
matching, spanning tree, matroid bases [13], satisfiability [9], shortest path [2,16],
subset sum [12], dominating set [10,19], odd cycle transversal, feedback vertex set,
and hitting set [19]. For mostNP-complete problems, the reconfiguration version
has been shown to be PSPACE-complete [13,14,17], while for some problems in
P, the reconfiguration question could be either in P [13] or PSPACE-complete
[2].

The problem of transforming input s into input t can be viewed as the problem
of determining if there is a path from s to t in a graph representing feasible
solutions. Such a path is called a reconfiguration sequence. For the problem of
dominating set, the k-dominating graph, defined formally in Section 2, consists
of a node for each feasible solution and an edge for each pair of solutions that
differ by a single vertex. Finding an s-t path in this graph (not included in the
input) has been shown to be W[2]-hard [19], and hence not likely to yield even
a fixed-parameter tractable algorithm [7].

Although having received less attention than the s-t path problem, other
characteristics of the solution graph have been studied. Determining the diameter
of the reconfiguration graph will result in an upper bound on the length of any
reconfiguration sequence. For a problem such as colouring, one can determine
the mixing number, the minimum number of colours needed to ensure that the
entire graph is connected; such a number has been obtained for the problem of
list edge-colouring on trees [14].

In previous work on reconfiguration of dominating sets, Haas and Seyffarth [10]
considered the connectivity of the graph of solutions of size at most k, for vari-
ous values of k relative to n, the number of vertices in the input graph G. They
demonstrated that the graph is connected when k = n−1 and G has at least two
non-adjacent edges, or when k is one greater than the maximum cardinality of
a minimal dominating set and G is non-trivially bipartite or chordal. They left
as an open question, answered negatively here, whether the latter results could
be extended to all graphs.
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In this paper we extend previous work by showing in Section 3 that the
solution graph is connected and of linear diameter for k = n − μ for any input
graph with a matching of size least μ + 1, for any nonnegative integer μ. In
Section 4, we give a series of counterexamples demonstrating that DΣ (G)+1(G) is
not guaranteed to be connected for planar graphs, graphs of bounded treewidth,
or b-partite graphs for b → 3. In Section 5, we pose and answer a question about
the diameter of DΩ(G)+1(G) by showing that there is an infinite family of graphs
of exponential diameter.

2 Preliminaries

We assume that each G is a simple, undirected graph on n vertices with vertex
set V (G) and edge set E(G). The diameter of G is the maximum over all pairs
of vertices u and v in V (G) of the length of the shortest path between u and v.

A set S ⊂ V (G) is a dominating set of G if and only if every vertex in V (G)\S
is adjacent to a vertex in S. The minimum cardinality of any dominating set of G
is denoted by Ω(G). Similarly, σ (G) is the maximum cardinality of any minimal
dominating set in G.

For a vertex u ≡ V (G) and a dominating set S of G, we say u is dominated
by v ≡ S if u /≡ S and u is adjacent to v. For a vertex v in a dominating set S,
a private neighbour of v is a vertex dominated by v and not dominated by any
other vertex in S; the private neighbourhood of v is the set of private neighbours
of v. A vertex v in a dominating set S is deletable if S \ {v} is also a dominating
set of G.

Fact 1. A vertex v is deletable if and only if v has at least one neighbour in S
and v has no private neighbour.

Given a graph G and a positive integer k, we consider the k-dominating graph
of G, Dk(G), such that each vertex in V (Dk(G)) corresponds to a dominating
set of G of cardinality at most k. Two vertices are adjacent in Dk(G) if and only
if the corresponding dominating sets differ by either the addition or the deletion
of a single vertex; each such operation is a reconfiguration step. Formally, if A
and B are dominating sets of G of cardinality at most k, then there exists an
edge between A and B if and only if there exists a vertex u ≡ V (G) such that
(A \B) ∈ (B \A) = {u}. We refer to vertices in G using lower case letters (e.g.
u, v) and to the vertices in Dk(G), and by extension their associated dominating
sets, using upper case letters (e.g. A,B). We write A≥ B if there exists a path
in Dk(G) joining A and B. The following fact is a consequence of our ability to
add vertices as needed to form B from A.

Fact 2. For dominating sets A and B, if A ⊂ B, then A≥ B and B ≥ A.

3 Graphs with a Matching of Size µ + 1

Theorem 1. For any nonnegative integer μ, if G has a matching of size at least
μ+ 1, then Dn−μ(G) is connected for n = |V (G)|.
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Proof. For G a graph with matching M = {{ui, wi} | 0 ∪ i ∪ μ}, we define
U = {ui | 0 ∪ i ∪ μ}, W = {wi | 0 ∪ i ∪ μ}, and the set of outsiders
R = V (G) \ (U ∈W ).

Using any dominating set S of G, we classify edges in M as follows: edge
{ui, wi}, 0 ∪ i ∪ μ, is clean if neither ui nor wi is in S, u-odd if ui ≡ S but
wi /≡ S, w-odd if wi ≡ S but ui /≡ S, odd if {ui, wi} is u-odd or w-odd, and even if
{ui, wi} ⊂ S. We use clean(S) and odd(S), respectively, to denote the numbers
of clean and odd edges for S. Similarly, we let u-odd(S) and w-odd(S) denote
the numbers of u-odd and w-odd edges for S. In the example graph shown in
Figure 1, μ + 1 = 7 and R = ◦. There is a single clean edge, namely {u1, w1},
three w-odd edges, two u-odd edges, and a single even edge.

u1 u2 u3 u4 u5 u6

w1 w2 w3 w4 w5 w6

u0

w0

Fig. 1. Vertices in S are marked with squares

It suffices to show that for S an arbitrary dominating set of G such that
|S| ∪ n − μ, S ≥ N for N = V (G) \W ; N is clearly a dominating set as each
vertex wi ≡ W = V (G) \N is dominated by ui. By Fact 2, for S→ a dominating
set of G such that S→ ⊆ S and |S→| = n − μ, since S→ is a superset of S, then
S ≥ S→. The reconfiguration from S→ to N can be broken into three stages. In
the first stage, for a dominating set S0 with no clean edges, we show S→ ≥ S0

by repeatedly decrementing the number of clean edges (ui or wi is added to the
dominating set for some 0 ∪ i ∪ μ). In the second stage, for Tμ with μ u-odd
edges and one even edge, we show S0 ≥ Tμ by repeatedly incrementing the
number of u-odd edges. Finally, we observe that deleting the single remaining
element in Tμ ∀W yields Tμ ≥ N .

In stage 1, for x = clean(S→), we show that S→ = Sx ≥ Sx−1 ≥ Sx−2 ≥ . . .≥
S0 where for each 0 ∪ j ∪ x, Sj is a dominating set of G such that |Sj | = n− μ
and clean(Sj) = j. To show that Sa ≥ Sa−1 for arbitrary 1 ∪ a ∪ x, we prove
that there is a deletable vertex in some even edge and hence a vertex in a clean
edge can be added in the next reconfiguration step. For b = odd(Sa), the set E
of vertices in even edges is of size 2((μ+ 1)− a− b). Since each vertex in E has
a neighbour in Sa, if at least one vertex in E does not have a private neighbour,
then E contains a deletable vertex (Fact 1).

The μ vertices in V (G) \ Sa are the only possible candidates to be private
neighbours. Of these, the b vertices of V (G) \Sa in odd edges cannot be private
neighbours of vertices in E, as each is the neighbour of a vertex in Sa \ E (the
other endpoint of the edge). The number of remaining candidates, μ−b, is smaller
than the number of vertices in E; μ → 2a+ b as the vertices of V (G) \ Sa must
contain both endpoints of any clean edge and one endpoint for any odd edge.
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Hence, there exists at least one deletable vertex in E. When we delete such a
vertex and add an arbitrary endpoint of a clean edge, the clean edge becomes an
odd edge and the number of clean edges decreases. We can therefore reconfigure
from Sa to the desired dominating set, and by applying the same argument a
times, to S0.

In the second stage we show that for y = u-odd(S0), S0 = Ty ≥ Ty+1 ≥
Ty+2 ≥ . . . ≥ Tμ where for each y ∪ j ∪ μ, Tj is a dominating set of G such
that |Tj| = n − μ, clean(Tj) = 0, and u-odd(Tj) = j. To show that Tc ≥ Tc+1

for arbitrary y ∪ c ∪ μ − 1, we use a counting argument to find a vertex in an
even edge that is in W and deletable; in one reconfiguration step the vertex is
deleted, increasing the number of u-odd edges, and in the next reconfiguration
step an arbitrary vertex in R or in a w-odd edge is added to the dominating set.
We let d = w-odd(Tc) (i.e. the number of w-odd edges for Tc) and observe that
since there are c u-odd edges, d w-odd edges, and no clean edges, there exist
(μ+ 1)− c− d even edges. We define Ew to be the set of vertices in W that are
in the even edges, and observe that each has a neighbour in Tc; a vertex in Ew

will be deletable if it does not have a private neighbour.
Of the μ vertices in V (G)\Tc, only those in R are candidates to be private

neighbours of vertices in Ew, as each vertex in an odd edge has a neighbour in
Tc. As there are c u-odd edges and d w-odd edges, the total number of vertices
in R∀ V (G)\Tc is μ− c− d. Since this is smaller than the number of vertices in
Ew, at least one vertex in Ew must be deletable. When we delete such a vertex
from Tc and in the next step add an arbitrary vertex from the outsiders or w-
odd edges, the even edge becomes a u-odd edge and the number of u-odd edges
increases. Note that we can always find such a vertex since there are μ − c− d
outsiders, d w-odd edges, and c ∪ μ − 1. Hence, we can reconfigure from Tc to
Tc+1, and by μ− c repetitions, to Tμ. ∩∅

Corollary 1 results from the length of the reconfiguration sequence formed in
Theorem 1; reconfiguring to S→ can be achieved in at most n−μ steps, and stages
1 and 2 require at most 2μ steps each, as μ ≡ O(n) is at most the numbers of
clean and u-odd edges. Theorem 2 shows that Theorem 1 is tight.

Corollary 1. The diameter of Dn−μ(G) is in O(n) for G a graph with a match-
ing of size μ+ 1.

Theorem 2. For any nonnegative integer μ, there exists a graph Gμ with a
matching of size μ such that Dn−μ(Gμ) is not connected.

Proof. Let Gμ be a path on n = 2μ vertices. Clearly, Gμ has μ disjoint edges,
n−μ = 2μ−μ = μ, and Dn−μ(Gμ) = Dμ(Gμ). We let S be a dominating set of
Gμ such that |S| → μ+1. At least one vertex in S must have all its neighbors in S
and is therefore deletable. It follows that σ (Gμ) = μ andDn−μ(Gμ) = Dμ(Gμ) =
DΣ (Gµ)(Gμ) which is not connected by the result of Haas and Seyffarth [10,
Lemma 3]. ∩∅
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4 DΓ (G)+1(G) May Not Be Connected

In this section we demonstrate that DΣ (G)+1(G) is not connected for an infinite
family of graphs G(d,b) for all positive integers b → 3 and d → 2, where graph
G(d,b) is constructed from d+1 cliques of size b. We demonstrate using the graph
G(4,3) as shown in part (a) of Figure 2, consisting of fifteen vertices partitioned
into five cliques of size 3: the outer clique C0, consisting of the top, left, and
right outer vertices o1, o2, and o3, and the four inner cliques C1 through C4,
ordered from left to right. We use v(i,1), v(i,2), and v(i,3) to denote the top, left,
and right vertices in clique Ci, 1 ∪ i ∪ 4. More generally, a graph G(d,b) has
d + 1 b-cliques Ci for 0 ∪ i ∪ d. The clique C0 consists of outer vertices oj for
1 ∪ j ∪ b, and for each inner clique Ci, 1 ∪ i ∪ d and each 1 ∪ j ∪ b, there
exists an edge {oj, v(i,j)}.

o1

o2 o3
C1 C2 C3 C4

o1

o2

o3
C1 C2

(a) (b)

Fig. 2. Counterexamples for (a) general and (b) planar graphs

For any 1 ∪ j ∪ b a dominating set does not contain oj , then the vertices v(i,j)
of the inner cliques must be dominated by vertices in the inner cliques (hence
Fact 3). In addition, the outer vertex oj can be dominated only by another outer
vertex or some vertex v(i,j), 1 ∪ i ∪ d (hence Fact 4).

Fact 3. Any dominating set that does not contain all of the outer vertices must
contain at least one vertex from each of the inner cliques.

Fact 4. Any dominating set that does not contain any outer vertex must contain
at least one vertex of the form v(·,j) for each 1 ∪ j ∪ b.

Lemma 1. For each graph G(d,b) as defined above, σ (G(d,b)) = d+ b− 2.

Proof. We first demonstrate that there is a minimal dominating set of size d+
b − 2, consisting of {v(1,j) | 2 ∪ j ∪ b} ∈ {v(i,1) | 2 ∪ i ∪ d}. The first set
dominates b−1 of the outer vertices and the first inner clique and the second set
dominates o1 and the rest of the inner cliques. The dominating set is minimal,
as the removal of any vertex v(1,j), 2 ∪ j ∪ b, would leave vertex oj with no
neighbour in the dominating set and the removal of any v(i,1), 2 ∪ i ∪ d, would
leave {v(i,j) | 1 ∪ j ∪ b} with no neighbour in the dominating set.

By Fact 3, any dominating set that does not contain all outer vertices must
contain at least one vertex in each of the d inner cliques. Since the outer vertices
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form a minimal dominating set, any other minimal dominating set must contain
at least one vertex from each of the inner cliques.

We now consider any dominating set S of size at least d + b − 1 containing
one vertex for each inner clique and show that it is not minimal. If S contains
at least one outer vertex, we can find a smaller dominating set by removing all
but the outer vertex and one vertex for each inner clique, yielding a total of
d+ 1 < d+ b− 1 vertices (since b → 3). Now suppose that S consists entirely of
inner vertices. By Fact 4, S contains at least one vertex of the form v(·,j) for each
1 ∪ j ∪ b. Moreover, for at least one value 1 ∪ j→ ∪ b, there exists more than one
vertex of the form v(·,j′) as d + b − 1 > b. This allows us to choose b vertices of
the form v(·,j) for each 1 ∪ j ∪ b that dominate at least two inner cliques as well
as all outer vertices. By selecting one member of S from each of the remaining
d−2 inner cliques, we form a dominating set of size d+b−2 < d+b−1, proving
that S is not minimal. ∩∅

Theorem 3. There exists an infinite family of graphs such that for each G in
the family, DΣ (G)+1(G) is not connected.

Proof. For any positive integers b → 3 and d → 2, we show that there is no
path between dominating sets A to B in Dd+b−1(G(d,b)), where A consists of the
vertices in the outer clique and B consists of {v(i,ν) | 1 ∪ i ∪ d, 1 ∪ α ∪ b, i ↓
α (mod b)}.

By Fact 3, before we can delete any of the vertices in A, we need to add
one vertex from each of the inner cliques, resulting in a dominating set of size
d + b = σ (G(d,b)) + 2. As there is no such vertex in our graph, there is no way
to connect A and B. ∩∅

Each graph G(d,b) constructed for Theorem 3 is a b-partite graph; we can
partition the vertices into b independent sets, where the jth set, 1 ∪ j ∪ b is
defined as {v(i,j) | 1 ∪ i ∪ d} ∈ {oi | 1 ∪ i ∪ d, i ↓ j + 1 (mod b)}. Moreover, we
can form a tree decomposition of width 2b− 1 of G(d,b), for all positive integers
b → 3 and d → b, by creating bags with the vertices of the inner cliques and
adding all outer vertices to each bag.

Corollary 2. For every positive integer b → 3, there exists an infinite family of
graphs of tree-width 2b − 1 such that for each G in the family, DΣ (G)+1(G) is
not connected, and an infinite family of b-partite graphs such that for each G in
the family, DΣ (G)+1(G) is not connected.

Theorem 3 does not preclude the possibility that when restricted to planar
graphs or any other graph class that excludes G(d,b), DΣ (G)+1(G) is connected.
However, the next corollary follows directly from the fact that G(2,3) is planar
(part (b) of Figure 2).

Corollary 3. There exists a planar graph G for which DΣ (G)+1(G) is not con-
nected.
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5 On the Diameter of Dk(G)

In this section, we obtain a lower bound on the diameter of the k-dominating
graph of a family of graphs Gn. We describe Gn in terms of several component
subgraphs, each playing a role in forcing the reconfiguration of dominating sets.

A linkage gadget (part (a), Figure 3) consists of five vertices, the external
vertices (or endpoints) e1 and e2, and the internal vertices i1, i2, and i3. The
external vertices are adjacent to each internal vertex as well as to each other;
the following results from the internal vertices having degree two:

Fact 5. In a linkage gadget, the minimum dominating sets of size one are {e1}
and {e2}. Any dominating set containing an internal vertex must contain at least
two vertices. Any dominating set in a graph containing m vertex-disjoint linkage
gadgets with all internal vertices having degree exactly two must contain at least
one vertex in each linkage gadget.

e1 e2

i2

i1

i3

�1

�2

�3

�4

�5

�6

r1

r2

r3

r4

r5

r6

Lj Lj+1

gj,1

gj,2

gj,3

gj,4

gj,5

gj,6 G5

L1 L2 L3 L4 L5

(a) (b) (c) (d)

Fig. 3. Parts of the construction

A ladder (part (b) of Figure 3, linkages shown as double edges) is a graph
consisting of twelve ladder vertices paired into six rungs, where rung i consists
of the vertices αi and ri for 1 ∪ i ∪ 6, as well as the 45 internal vertices of
fifteen linkage gadgets. Each linkage gadget is associated with a pair of ladder
vertices, where the ladder vertices are the external vertices in the linkage gadget.
The fifteen pairs are as follows: ten vertical pairs {αi, αi+1} and {ri, ri+1} for
1 ∪ i ∪ 5, and five cross pairs {αi+1, ri} for 1 ∪ i ∪ 5. For convenience, we refer
to vertices αi, 1 ∪ i ∪ 6 and the associated linkage gadgets as the left side of the
ladder and to vertices ri, 1 ∪ i ∪ 6 and the associated linkage gadgets as the
right side of the ladder, or collectively as the sides of the ladder.

The graph Gn consists of n ladders L1 through Ln and n − 1 sets of gluing
vertices, where each set consists of three clusters of two vertices each. For αj,i
and rj,i, 1 ∪ i ∪ 6, the ladder vertices of ladder Lj , and gj,1 through gj,6 the
gluing vertices that join ladders Lj and Lj+1, we have the following connections
for 1 ∪ j ∪ n− 1:
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– Edges connecting the bottom cluster to the bottom two rungs of ladder Lj and
the top rung of ladder Lj+1: {αj,1, gj,1}, {αj,1, gj,2}, {rj,2, gj,1}, {rj,2, gj,2},
{αj+1,6, gj,1}, {rj+1,6, gj,2}.

– Edges connecting the middle cluster to the middle two rungs of ladder
Lj and the bottom rung of ladder Lj+1: {αj,3, gj,3}, {αj,3, gj,4}, {rj,4, gj,3},
{rj,4, gj,4}, {αj+1,1, gj,3}, {rj+1,1, gj,4}.

– Edges connecting the top cluster to the top two rungs of ladder Lj and
the top rung of ladder Lj+1: {αj,5, gj,5}, {αj,5, gj,6}, {rj,6, gj,5}, {rj,6, gj,6},
{αj+1,6, gj,5}, {rj+1,6, gj,6}.

Figure 3 parts (c) and (d) show details of the construction of Gn; they depict,
respectively, two consecutive ladders and G5, both with linkages represented
as double edges. When clear from context, we sometimes use single subscripts
instead of double subscripts to refer to the vertices of a single ladder.

We let D = {{α(j,2i−1), α(j,2i)}, {r(j,2i−1), r(j,2i)} | 1 ∪ i ∪ 3, 1 ∪ j ∪ n}
denote a set of 6n pairs in Gn; the corresponding linkage gadgets are vertex-
disjoint. Then Fact 5 implies the following:

Fact 6. Any dominating set S of Gn must contain at least one vertex of each
of the linkage gadgets for vertical pairs in the set D and hence is of size at least
6n; if S contains an internal vertex, then |S| > 6n.

Choosing an arbitrary external vertex for each vertical pair does not guarantee
that all vertices on the side of a ladder are dominated; for example, the set
{αi | i ≡ {1, 4, 5}} does not dominate the internal vertices in the vertical pair
{α2, α3}. Choices that do not leave such gaps form the set C = {Ci | 1 ∪ i ∪ 4}
where C1 = {1, 3, 5}, C2 = {2, 3, 5}, C3 = {2, 4, 5}, and C4 = {2, 4, 6}.

Fact 7. In any dominating set S of size 6n and in any ladder L in Gn, the
restriction of S to L must be of the form Si for some 1 ∪ i ∪ 7, as illustrated
in Figure 4.

S1 S2 S3 S4 S5 S6 S7

Fig. 4. Minimum dominating sets for G1

Proof. Fact 6 implies that the only choices for the left (right) vertices are {αi |
i ≡ Cj} ({ri | i ≡ Cj}) for 1 ∪ j ∪ 4. The sets Si, 1 ∪ i ∪ 7, are the only
combinations of these choices that dominate all the internal vertices in the cross
pairs. ∩∅



414 A. Suzuki, A.E. Mouawad, and N. Nishimura

We say that ladder Lj is in state Si if the restriction of the dominating set to
Lj is of the form Si, for 1 ∪ j ∪ n and 1 ∪ i ∪ 7.

The exponential lower bound in Theorem 4 is based on counting how many
times each ladder is modified from S1 to S7 or vice versa; we say ladder Lj

undergoes a switch for each such modification. We first focus on a single ladder.

Fact 8. For S a dominating set of G1, a vertex v ≡ S is deletable if and only if
either v is the internal vertex of a linkage gadget one of whose external vertices
is in S, or for every linkage gadget containing v as an external vertex, either the
other external vertex is also in S or all internal vertices are in S.

Lemma 2. In DΩ(G1)+1(G1) there is a single reconfiguration sequence between
S1 and S7, of length 12.

Proof. We define P to be the path in the graph corresponding to the reconfigu-
ration sequence S1 ≥ S1 ∈ {α2} ≥ S2 ≥ S2 ∈ {r2} ≥ S3 ≥ S3 ∈ {α4} ≥ S4 ≥
S4 ∈ {r4} ≥ S5 ≥ S5 ∈ {α6} ≥ S6 ≥ S6 ∈ {r6} ≥ S7 and demonstrate that
there is no shorter path between S1 and S7.

By Facts 7 and 6, G1 has exactly seven dominating sets of size six, and any
dominating set S of size seven contains two vertices from one vertical pair d in D
and one from each of the remaining five. The neighbours of S in DΩ(G1)+1(G1)
are the vertices corresponding to the sets Si, 1 ∪ i ∪ 7, obtained by deleting a
single vertex of S. The number of neighbours is thus at most two, depending on
which, if any, vertices in d are deletable.

If at least one of the vertices of S in d is an internal vertex, then at most one
vertex satisfies the first condition in Fact 8. Thus, for S to have two neighbours,
there must be a ladder vertex that satisfies the second condition of Fact 8, which
by inspection of Figure 4 can be seen to be false.

If instead d contains two ladder vertices, in order for S to have two neighbours,
the four ladder vertices on the side containing d must correspond to the union
of two of the sets in C. There are only three such unions, C1 ∈ C2, C2 ∈ C3, and
C3∈C4, which implies that the only pairs with common neighbours are {Si, Si+1}
for 1 ∪ i ∪ 6, as needed to complete the proof. ∩∅

For n > 2, we cannot reconfigure ladders independently from each other, as
we need to ensure that all gluing vertices are dominated. For consecutive ladders
Lj and Lj+1, any cluster that is not dominated by Lj must be dominated by
Lj+1; the bottom, middle, and top clusters are not dominated by any vertex in
S2, S4, and S6, respectively.

Fact 9. In any dominating set S of Gn, for any 1 ∪ j < n, if Lj is in state S2,
then Lj+1 is in state S7; if Lj is in state S4, then Lj+1 is in state S1; and if Lj

is in state S6, then Lj+1 is in state S7.

Lemma 3. For any reconfiguration sequence in which Lj and Lj+1 are initially
both in state S1, if Lj undergoes p switches then Lj+1 must undergo at least
2p+ 1 switches.
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Proof. We use a simple counting argument. When p = 1, the result follows
immediately from Fact 9 since Lj can only reach state S7 if Lj+1 is reconfigured
from S1 to S7 to S1 and finally back to S7. After the first switch of Lj, both
ladders are in state S7.

For any subsequent switch of Lj, Lj starts in state S7 because for Lj to reach
S1 from S2 or to reach S7 from S6, by Fact 9 Lj+1 must have been in S7. Since
by definition Lj starts in S1 or S7, to enable Lj to undergo a switch, Lj+1 will
have to undergo at least two switches, namely S7 to S1 and back to S7. ∩∅

Theorem 4. For S a dominating set of Gn such that every ladder of Gn is
in state S1 and T a dominating set of Gn such that every ladder of Gn is in
state S7, the length of any reconfiguration sequence between S and T is at least
12(2n+1 − n− 2).

Proof. We first observe that Lemma 2 implies that the switch of any ladder
requires at least twelve reconfiguration steps; since the vertex associated with a
dominating set containing a gluing vertex will have degree at most one in the
k-dominating graph, there are no shortcuts formed.

To reconfigure from S to T , ladder L1 must undergo at least one switch. By
Lemma 3, ladder L2 will undergo at least 3 = 22 − 1 switches, hence 2j − 1
switches for ladder Lj, 1 ∪ j ∪ n. Since each switch requires twelve steps, the
total number of steps is thus at least 12

∑n
i=1 (2

i − 1) = 12(2n+1 − n− 2). ∩∅

Corollary 4. There exists an infinite family of graphs such that for each graph
Gn in the family, DΩ(Gn)+1(Gn) has diameter β(2n).

6 Conclusions and Future Work

In answering Haas and Seyffarth’s question concerning the connectivity ofDk(G)
for general graphs and k = σ (G) + 1, we have demonstrated infinite families of
planar, bounded treewidth, and b-partite graphs for which the k-dominating
graph is not connected. It remains to be seen whether k-dominating graphs are
connected for graphs more general than non-trivially bipartite graphs or chordal
graphs, and whether DΣ (G)+2(G) is connected for all graphs. It would also be
useful to know if there is a value of k for which Dk(G) is guaranteed not to have
exponential diameter. Interestingly, for our connectivity and diameter examples,
incrementing the size of the sets by one is sufficient to break the proofs.
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Abstract. This paper addresses the problem of locating two facilities
in vertex-weighted path/tree/cycle/unicyclic networks, where each fa-
cility can fail with a given probability [16]. It is assumed that the two
facilities do not fail simultaneously, and when a facility fails, the other
facility is required to service all the vertices. We show that the weighted
back-up 2-center on a path (resp. tree, cycle, unicyclic) network can be
computed in O(n) (resp. O(n log n), O(n2), O(n2 log n)) time, where n
is the number of vertices, and the centers need not be at vertices. This is
the first sub-quadratic time result for vertex-weighted tree networks. For
vertex-unweighted trees, it runs in O(n) time, matching the best known
result [19]. The algorithm remains linear when there are only a constant
number of distinct weights.

1 Introduction

The p-center and p-median problems in networks are the two most important
problems in facility location optimization. Both problems are known to be NP-
hard for general networks [9, 10]. Therefore, many researchers have focussed on
simple networks such as trees, cactus, etc. [2, 3, 12, 14, 17].

Any decision-making environments can be classified into three categories: (i)
certainty, (ii) risk, and (iii) uncertainty [13]. Environment (i) is deterministic and
doesn’t randomly change over time, whereas in Environments (ii) and (iii), the
change over time is random. The problems under risk and uncertainty situations
have been modeled as stochastic optimization problems and robust optimization
problems, respectively [11, 15]. For Environment (iii), Snyder and Daskin [16]
proposed another reliability model, in which facilities are located to minimize
the cost, while also taking into account the expected cost after the failure of facil-
ities. Based on the reliability model, Wang et al. [18, 19] introduced the backup
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2-center problem, whereby they locate two facilities at vertices such that the
expected weighted distance from any vertex to the closest functioning facility is
minimized. They assume that the two facilities fail independently with constant
probability ρ, but they don’t fail at the same time. They solve the back-up 2-
center problem on a tree with equal vertex weight and the two centers restricted
to vertices in O(n) time. They also proposed a näıve O(n3) time algorithm for
the backup 2-center problem on vertex-weighted tree networks, and posed an
open problem for improving the complexity. They then considered the back-up
2-median problems in weighted tree networks and proposed an O(n log n) time
algorithm for the problem. Very recently, Hong and Kang [8] considered the
back-up 2-center problem on interval graphs. In this paper, based on the relia-
bility model, we consider the back-up 2-center problem in vertex-weighted tree,
cycle, and unicyclic networks, such that the center locations are not restricted
to vertices.

This paper is organized as follows. In Sec. 2, we define the terms that are
used throughout the paper, and review relevant facts. Secs. 3 and 4 show that
a backup 2-center on a path and a tree can be found in O(n) and O(n log n)
time, respectively. The backup 2-center problem in a cycle network turns out
to be more difficult, because a path from a vertex to a center is not unique. In
Sec. 5, we present a somewhat complicated algorithm to solve this problem in
O(n2) time. A unicyclic network, containing just one cycle is the most general
network that we discuss in this paper. Drawing on the results in the preceding
sections, Sec. 6 presents an algorithm that finds a backup 2-center in a unicycle
in O(n2 log n) time. Sec.7 concludes the paper. Due to lack of space, most proofs
are omitted from this extended abstract.

2 Preliminaries

2.1 Definitions

Let G = (V,E) denote a network with vertex set V and edge set E, where each
vertex v → V has a weight wv (⊂ 0) and each edge in E has a non-negative
length. Let X = {x1, x2} be a pair of points on G, not necessarily vertices. We
define the distance d(v,X) between a vertex v and X by

d(v,X) � min
1→i→2

{d(v, xi)},

where d(v, xi) is the length of a shortest path in G between vertex v and point
xi. Let us introduce the cost of X by

φ(X,V ) � max
v≥V

{d(v,X)wv}. (1)

We say that a set X of points r-covers V (and G) if r ⊂ φ(X,V ). The (classical)
weighted 1-center, or just 1-center for short, c of G is defined as a point that
r-covers V with the minimum r. The (classical) weighted 2-center C of G, or
just 2-center for short, is defined as a pair of points that r-covers V with the
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minimum r. WhenX contains just one point x, then we write φ(X,V ) = φ(x, V ).
We define the cost function of a single point x with respect to a single vertex v
by

fv(x) � φ(x, {v}) = d(v, x)wv . (2)

Let c be a 1-center of network G = (V,E), and let {c1, c2} be any 2-center of
G. Given a pair of points {x1, x2}, we partition V into V1(x1, x2) and V2(x1, x2)
such that

≡v → V1(x1, x2) : d(v, x1) ∈ d(v, x2); ≡v → V2(x1, x2) : d(v, x1) > d(v, x2). (3)

Without loss of generality, we may assume that the subnetwork G1 (resp. G2)
defined by V1(x1, x2) (resp. V2(x1, x2)) is connected. The objective function of
a back-up 2-center is

ψρ(x1, x2) �(1− ρ)max{φ(x1, V1(x1, x2)), φ(x2, V2(x1, x2))}
+ ρ(φ(x1, V ) + φ(x2, V )), (4)

where ρ (0 ∈ ρ < 1) is given [19]. The motivation for this objective function
is given in [19], and is related to the expected value of the maximum cost,
when each center fails independently with probability ρ. We want to minimize
ψρ(x1, x2) by varying x1 → G1 and x2 → G2. The pair (x1 = cρ1, x2 = cρ2) that
minimizes ψρ(x1, x2) is called the back-up 2-center. For a (classical) 1-center c,
any vertex v → V satisfying φ(c, V ) = d(v, x)wv is called a critical vertex for c,
and is denoted by γ(c).1 When ρ = 0, (4) becomes

ψ0(x1, x2) = max{φ(x1, V1(x1, x2)), φ(x2, V2(x1, x2))},

which is obviously minimized by x1=c1 and x2=c2, where {c1, c2} is a 2-center
of G. Given a subnetwork G∪ = (V ∪, E∪) of network G, we call φ(x, V ∪) for x /→G∪

the upper envelope (of cost functions) for G∪. A network is said to be trivial
if max{φ(c1, V1(x1, x2)), φ(c2, V2(x1, x2))} = φ(c, V ). In this paper, we discuss
only nontrivial networks.

2.2 Basic Facts

Let c be a 1-center of G = (V,E). The weighted radius of G is given by rG �
maxv≥V d(v, c)wv .

Fact 1 Let c be a 1-center of G. Then there are two critical vertices for c in G,
u and u∪, u ≥= u∪, satisfying d(u, c)wu = d(u∪, c)wu′ = rG, such that c lies on the
path between u and u∪. ∪◦

Lemma 1. [1] The 2-center of a tree can be computed in O(n) time. ∪◦
1 Whether the argument of γ(·) is a 1-center of one of the centers of a 2-center will be
clear from the context.
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2.3 Observations

Lemma 2. [19] Let {c1, c2} be any 2-center of a network G. Then there is a
1-center c that lies on a path between c1 and c2. ∪◦

Lemma 3. Let {c1, c2} be any 2-center of G. Then there is a backup 2-center
{cρ1, c

ρ
2} such that cρ1 (resp. cρ2) lies on a path between c1 (resp. c2) and a 1-center

c. ∪◦

3 Path Network

3.1 Preparation

We consider a path P =(V,E), whose vertices are named v1, v2, . . . , vn from left
to right. The cost function of a vertex vi, fvi(x)=φ(x, {vi}), consists of two linear
segments. We first consider the right half of each such V-shaped function, and
construct their upper envelope EL(x), starting from v1.

2 It is clear that EL(x)
can be constructed in O(n) time, by processing the cost functions in the left-
to-right order. Similarly, we consider the left halves of the V-shaped functions,
whose upper envelope is denoted by ER(x). It is easy to see that EL(x) (resp.
ER(x)) is monotonically increasing (resp. decreasing) with respect to point x
that moves from v1 to vn. We clearly have

φ(x, V ) = E(x) � max{EL(x), ER(x)}, (5)

i.e., φ(x, V ) can be obtained as the upper envelope of EL(x) and ER(x), and it
is a convex function. See Fig. 1. We can find the lowest point of E(x), which is
the 1-center c, very easily by computing the intersection of EL(x) and ER(x).
See Fig. 1.

v1 vn

EL(x)

x1 x2

fvj(x2)fvi(x1)

fvl(x2)
fvk(x1)

c

ER(x)

Fig. 1. fvi(x1) = fvj (x2)

As long as φ(x1, V1) > φ(x2, V2), moving x2 towards c to x∪2 does not affect
max{φ(x1, V1), φ(x2, V2)}, but reduces φ(x2, V ). The reduction in φ(x2, V ) is
Δ=φ(x2, V )− φ(x∪2, V ), and the saving is ψρ(x1, x2)− ψρ(x1, x

∪
2) = ρΔ. This is

a positive gain as long as ρ>0. We thus have

Lemma 4. If ρ>0, then there is a back-up 2-center {cρ1, c
ρ
2} on a path such that

φ(cρ1, V1)=φ(c
ρ
2, V2) holds. ∪◦

2 The subscript “L” means “due to the vertices on the Left.”
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3.2 Path Algorithm

Based on Lemmas 3 and 4, we now design an algorithm for computing the opti-
mal back-up 2-center for a path. Given x1, suppose that EL(x1)=fvi(x1) lies on
a segment on EL(x). We find x2 and vj such that fvj (x2)=ER(x2) = fvi(x1). In
Fig. 1, fvi(x) and fvj (x) are indicated by red and purple line segments, respec-
tively. We do this because Lemma 4 asserts that if {x1, x2} is to be an optimal
solution, then fvj (x2) = fvi(x1) holds. Suppose that ER(x1) (resp. EL(x2)) is
on the blue (resp. green) line segment, which is fvk(x) (resp. fvl(x)). Then (4)
becomes

ψρ(x1, x2) = (1− ρ)fvi(x1) + ρ(fvk(x1) + fvl(x2)). (6)

We know that fvi(x) is a linear function of the form y = aiz + bi, where z is
the distance from v1. Therefore, (6) is a piece-wise linear function in z, and it is
minimized at an end of a linear segment, i.e., a bending point on EL(x) or ER(x).
Let {c1, c2} be a 2-center of the path. We project these bending points onto the
horizontal axis, and name those lying between c1 and c as z1(= c1), z2, . . . , zm(=
c) from left to right.

Algorithm 1 BU2Center-Path

1. Compute EL(x), ER(x), a center c, and a 2-center (c1, c2).
2. For k=1, 2, . . . ,m, carry out Steps 3 to 5.
3. Let x1=zk and find vi such that fvi(x1)=EL(x1).
4. Determine vj and x2 such that fvj (x2)= ER(x2) =fvi(x1).
5. Evaluate (6).
6. Find the minimum value among those computed for all k. The corresponding

{x1, x2} gives a candidate for a back-up 2-center {cρ1, c
ρ
2}. ∪◦

As we move x1 to the right (i.e., as distance z increases), the corresponding x2
moves monotonically to the left. Steps 3 and 4 can be carried out in amortized
constant time per zk. We repeat BU2Center-Path on the given path with the left
and right ends reversed, and pick the less costly one between the two candidates
for {cρ1, c

ρ
2} generated in Step 6. Each step can be carried out in linear time.

Theorem 1. The back-up 2-center of a path can be found in O(n) time.

4 Tree Network

4.1 Observation

We assume that a given tree T is balanced and binary, so that any path from
a leaf vertex to the root has length O(log n). If not, we can perform spine tree
decomposition [3–5] to convert it into a structure that has the properties of a
balanced binary tree. Similarly to Lemma 4 for a path, we also have

Lemma 5. If ρ>0, then there is a back-up 2-center {cρ1, c
ρ
2} in a tree such that

φ(cρ1, V1)=φ(c
ρ
2, V2) holds. ∪◦
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4.2 Tree Algorithm

Based on Lemma 3, we design an algorithm for a tree. Let ⊆u1, u2, . . . , ut∀ be
the sequence of vertices on the path π(c1, c2), where {c1, c2} is a 2-center of T .
We consider π(c1, c2) to be a horizontal path from c1 to c2. For x → π(c1, c2) we
define two upper envelopes. EL(x) (resp. ER(x)) is the upper envelope of the
cost functions of the vertices of T that lie to the left (resp. right) of x. See Fig. 2.
Jumps in EL(x) and ER(x) may occur at vertices from which subtrees hang.

u1 ut

EL(x)

x1 x2c

ER(x)

Fig. 2. EL(x) and ER(x)

Algorithm 2 BU2Center-Tree.

1. Compute a 2-center {c1, c2} of T . Let π(c1, c2) = ⊆u1(=c1), u2, . . . , ut(=c2)∀.
2. Compute the two upper envelopes EL(x) and ER(x).
3. Apply Algorithm BU2Center-Path to π(c1, c2). ∪◦

Step 1 takes O(n) time [1] by Lemma 1. We can compute EL(x) and ER(x) in
Step 2 in O(n log n) time [7].

Theorem 2. The back-up 2-center of a tree can be found in O(n logn) time. ∪◦

As mentioned earlier, Wang et al. [19] solved the back-up 2-center problem
on a tree with equal vertex weight and the two centers restricted to vertices in
O(n) time. Without the latter constraint, Algorithm BU2Center-Tree also runs
in linear time, since EL(x) and ER(x) each consist of just one line segment. If
the weight of each vertex is from a set of a fixed number of weights, then the
back-up 2-center can be found in O(n) time, since EL(x) and ER(x) each consist
of a constant number of line segments.

5 Cycle Network

5.1 Observation

We consider a cycle C = (V,E) with circumference lC . For points a, b → C let
C(a, b) denote the clockwise section of C from a to b, and let d(a, b) denote the
length of the shortest path between a to b either clockwise or counterclockwise.
Let {cρ1, c

ρ
2} be a back-up 2-center of C. See Fig. 3(a). The point α(p) that is at

distance lC/2 from p → C is called the antipode of p. We construct an augmented
cycle C∪(V ∪, E∪) from C(V,E) by adding a vertex at the antipode α(v) of each
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x1 x2
cρ1 cρ2

C1
C2

c

o

α(o)

(a)

vj vj−1

E(x)

x1 x2

fvj(x2)fvi(x1)

fvl(x2)
fvk(x1)

c

(b)

Fig. 3. (a) Critical vertex γ(cρ1) (resp. γ(c
ρ
2)) for c

ρ
1 (resp. cρ2); (b) fvi(x1) > fvj (x2)

v → V , and assign weight 0 to it. We also add the center c of C and α(c).
Let V ∪ = {v1, v2, . . . , vn}. Thus each edge and its antipodal edge determine a
partition of V ∪ into V1 and V2.

Recall from Sec. 2.1 that, given a pair of points {x1, x2}, where x1 ≥= x2,
we partitioned V into V1(x1, x2) and V2(x1, x2) based on (3). Similarly, we can
partition V ∪ into V1(x1, x2) and V2(x1, x2) by removing an edge and its antipodal
edge. We make the following obvious observation in terms of Fig. 3(a):

Proposition 1. Let o and α(o) be the mid points between cρ1 and cρ2 such that
o → C(cρ2, c

ρ
1) and α(o) → C(cρ1, c

ρ
2). For any point x → C∪(o, α(o)), such that

x ≥= o, α(o), we have d(x, cρ1) < d(x, cρ2). Similarly, for any point x→C∪(α(o), o),
such that x ≥=o, α(o), we have d(x, cρ1) > d(x, cρ2). ∪◦

For each v → V ∪, let f cwv (x) = fv(x) = φ(x, {v}) for x → C∪(v, α(v)) and
f cwv (x) = 0 for x → C∪(α(v), v). Similarly, let f ccwv (x) = fv(x) = φ(x, {v}) for
x → C∪(α(v), v) and f ccwv (x) = 0 for x → C∪(v, α(v)). We also define upper
envelopes for these functions, Ecw(x) � max{f cwvi (x) | i = 1, 2, . . . , n} and

Eccw(x) � max{f ccwvi (x) | i = 1, 2, . . . , n}. We can compute Ecw(x), Eccw(x),

and E(x) � max{Ecw(x), Eccw(x)} = φ(x, V ∪) in O(n logn) time [7]. Analo-
gously to Fig. 1, here we have Fig. 3(b), when C∪ was converted into a path by
removing the edge (vj−1, vj).

5.2 Cycle Algorithm

Removing an edge (vj−1, vj) → E∪ and its antipodal edge (vk−1, vk) → E∪ from
C∪ partitions V ∪ into V1 and V2. We assume that both V1 and V2 contain at
least one vertex of V . Let c∪1 (resp. c∪2) be a 1-center of V1 (resp. V2). We thus
have φ(x1, V1) ⊂ φ(c∪1, V1) for x1 → π(vj , vk−1) and φ(x2, V2) ⊂ φ(c∪2, V2) for
x2 → π(vk, vj−1). Then by Proposition 1, one such partition will correspond to
the partition by cρ1 and c

ρ
2, shown in Fig. 3(a). Removing just edge (vj−1, vj) → E∪

transforms C∪ into a path, and the left (resp. right) half of this path consists
of vertices in V1 (resp. V2). With respect to this path, let EL(x) (resp. ER(x))
denote the upper envelopes of V1 (resp. V2) defined byEL(x) � max{f cwv (x) | v →
V1} and ER(x) � max{f ccwv (x) | v → V2}, which can be computed in O(n) time.
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a1
a2 a3

a4

E(x)

ER(x)

EL(x)

a5
a6
a7
a8

a9

V1 V2p

Fig. 4. Illustration for Steps 1 to 3 of Procedure Map-Bending-Pts

See Fig. 4. Suppose we have precomputed the upper envelope E(x) = φ(x, V ∪)
for C∪. Note that E(x) is different from max{EL(x), ER(x)} here, unlike (5). Let
us map the bending points of ER(x) (resp. EL(x)) and E(x) onto EL(x) (resp.
ER(x)) as follows.

Procedure 1 Map-Bending-Pts

1. Map the bending points of E(x) downwards onto EL(x) and ER(x), as shown
by the vertical dashed arrows in Fig. 4.

2. Map the points on ER(x) that are either a bending point of ER(x) or a
projected point resulting from Step 1 horizontally to EL(x).

3. The points on EL(x) that are either a bending point of EL(x) or a projected
point resulting from Step 1 or 2, are named a1, a2, . . . , at, clockwise from v1.

4. Map the points on EL(x) that are either a bending point of EL(x) or a
projected point resulting from Step 1 horizontally to ER(x).

5. The points on ER(x) that are either a bending point of ER(x) or a projected
point resulting from Step 1 or 4, are named b1, b2, . . . , bt, counterclockwise
from vn. ∪◦

Lemma 6. Procedure Map-Bending-Pts runs in O(n) time. ∪◦

We now mark the point corresponding to c∪1 (resp. c∪2) on EL(x) (resp. ER(x)).
We insert c∪1 (resp. c∪2) there, map it to ER(x) (resp. EL(x)), and rename the
resulting sequence ⊆a1, a2, . . . , at′∀ (resp. ⊆b1, b2, . . . , bt′∀), where t∪ = t+2. There
is a linear segment between any adjacent pair of ai

∪s, and bi
∪s. Let p(ai) → C∪

(resp. p(bi) → C∪) be the point corresponding to ai (resp. bi). Consider a pair of
points {x1, x2} such that x1 → C∪(p(ai), p(ai+1)) and x2 → C∪(p(bi), c

∪
2). For any

such x1 and x2, we have φ(x1, V1) ⊂ φ(x2, V2), and therefore,

ψρ(x1, x2) = (1 − ρ)max{φ(x1, V1), φ(x2, V2)}+ ρ(φ(x1, V
∪) + φ(x2, V

∪)) (7)

= (1 − ρ)φ(x1, V1) + ρ(φ(x1, V
∪) + φ(x2, V

∪)). (8)

The part (1− ρ)φ(x1, V1) + ρφ(x1, V
∪) in (8) takes its minimum value at either

x1 = p(ai) or x1 = p(ai+1). The minimum value of the last term ρφ(x2, V
∪)

for x2 → C∪(p(bi), c
∪
2) can be obtained easily from E(x). Similarly, if x1 →
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C∪(c∪1, p(ai)) and x2 → C∪(p(bi+1), p(bi)), then we have φ(x1, V1) ∈ φ(x2, V2).
In this case, we can minimize

ψρ(x1, x2) = (1− ρ)φ(x2, V2) + ρ(φ(x1, V
∪) + φ(x2, V

∪)) (9)

for each i in amortized constant time. If x1 → C∪(p(ai), p(ai+1)) and x2 →
C∪(p(bi+1), p(bi)), then (7) involves only linear functions in x1 and x2, and
the pair {x1, x2} minimizing (7) can be computed in constant time. The pair
{x1, x2} that corresponds to the minimum of all the minimum values we have
computed for a particular edge (vj−1, vj) → E∪ that was removed gives a can-
didate for a back-up 2-center. One such edge should lead to the partition,
{V1(cρ1, c

ρ
2), V2(c

ρ
1, c

ρ
2)} (see (3)). Let e1, e2, . . . , en be the edges of C∪.

Algorithm 3 BU2Center-Cycle(C∪)

1. Compute E(x).
2. For j = 1, 2, . . . , n, remove edge ej and carry out Steps 3 and 4.
3. Compute EL(x) and ER(x) for the resulting path (as in Fig. 1).
4. Invoke Procedure Map-Bending-Pts. For i = 1, 2, . . . , t∪ − 1, find three pairs

{x1, x2}, if any, such that
(a) {x1, x2} minimizes (8) within the constraits x1 → C∪(p(ai), p(ai+1)) and

x2 → C∪(p(bi), c
∪
2).

3

(b) {x1, x2} minimizes (9) within the constraits x1 → C∪(c∪1, p(ai)) and x2 →
C∪(p(bi+1), p(bi)).

4

(c) {x1, x2} minimizes (7) within the constraits x1 → C∪(p(ai), p(ai+1)) and
x2 → C∪(p(bi+1), p(bi)).

5. From among the pairs found in Step 5, pick the one with minimum cost as
a back-up 2-center {cρ1, c

ρ
2}. ∪◦

The most time-consuming step is Step 4, and we argued after Lemma 6 that
it runs in O(n) time per removed edge ej .

Theorem 3. Algorithm BU2Center-Cycle computes a back-up 2-center of a cy-
cle network in O(n2) time. ∪◦

6 Unicyclic Network

A unicyclic network, G = (V,E), contains just one cycle C. We can assume
without loss of generality that the degree of each cycle vertex is at most 3.
Otherwise, we can insert dummy vertices of weight 0 and dummy edges of length
0. A tree that hangs from vertex u→C, excluding u and the edge to u, is called
a graft,5 and is denoted by Γ (u). See Fig. 5. We first find a 1-center c of G,
using the O(n log n) time algorithm of Ben-Moshe et al. [2]. We can also find a

3 {x1, x2} doesn’t exist if p(bi) lies to the right of c′2.
4 {x1, x2} doesn’t exist if c′1 lies to the left of p(ai).
5 The definition of graft in [6] includes u.



426 B. Bhattacharya et al.

p

Γ(p)

Γ(ui)uiuj

Γ(uk)

uk

Γ(uj)

c

c1

G1

G2

cρ1

Fig. 5. Unicyclic network;

(classical) 2-center {c1, c2} in O(n logn) time [1, 2]. Let p→C be the vertex such
that either Γ (p) or the edge connecting Γ (p) and p (including p) contains c. We
call Γ (p) the parent graft of C. Let p (= u0), u1, u2, . . . , ug−1 be the g vertices
of C, clockwise along C. By our assumption, for each k, uk is connected to at
most one graft.

We assume that each graft is a balanced binary tree. If not, we can perform
spine tree decomposition [3–5]. We preprocess G to construct the cycle envelope
tree [5] for C. Using it, we can thus compute the upper envelope for all the grafts
at their roots in O(n log n) time during preprocessing. Lemma 3 implies

Lemma 7. Suppose that c1 → Γ (uj). Then c
ρ
1 → Γ (uj) ∩ Γ (p) ∩ C. ∪◦

Table 1. Six possible cases

(i) (ii) (iii)
cρ1, c

ρ
2 ∈ C cρ1 ∈ Γ (uj); c

ρ
2 ∈ Γ (uk) c

ρ
1 ∈ Γ (uj); c

ρ
2 ∈ C

I c1, c2 ∈ C A − −
II c1 ∈ Γ (uj); c2 ∈ Γ (uk) B D E

III c1 ∈ Γ (uj); c2 ∈ C C − F

The three possibilities regarding the locations of c1 and c2 are shown as rows
I, II, and III in Table 1.6 In the table, c1 → Γ (uj), for example, means that c1
is in Γ (uj) or on the edge connecting Γ (uj) and uj. The columns of Table 1
represent the possible locations of cρ1 and cρ2. An entry marked by “−” indicates
that the corresponding row-column combination, such as I-(ii), cannot occur,
according to Lemma 3. Thus there are six cases to consider.

Cases A, B, C: These cases are similar to a cycle, since cρ1, c
ρ
2 → C. Note, how-

ever, that in the case of a cycle, φ(x1, V1) and φ(x2, V2) are both continuous, as
shown in Fig. 4, whereas here they are monotone but may not be continuous. As

6 The case where c1 ∈ C and c2 ∈ Γ (uk) is not shown, because it becomes case III, if
we interchange c1 and c2.
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in BU2Center-Cycle, we remove one edge at a time to to convert C into a path.
Since grafts hang from this path, it take O(n log n) time [7] to compute EL(x)
and ER(x). Therefore, (the modified) BU2Center-Cycle runs in O(n2 logn) time
in these cases.

Case D: The path π(c1, c2) obviously goes through uj and uk, and we have
cρ1 → π(c1, uj) and cρ2 → π(c2, uk). Thus this case is similar to a tree. We
construct the upper envelope EL(x1) (resp. ER(x2)) for x1 → π(c1, uj) (resp.
x2 → π(c2, uk)). To construct the upper envelope E(x1) for the entire network,
we remove the edge on which α(uj) lies. E(x1) is the upper envelope for the
resulting tree, and is monotone for x1 → π(c1, uj). E(x2) can be constructed
similarly for x2 → π(c2, uk) by removing the edge on which α(uk) lies. It is mono-
tone for x2 → π(c2, uk). Thus the time required is the same as BU2Center-Tree,
which is O(n log n). (Theorem 2)

Cases E and F: In these cases, EL(x1) and E(x1) are the same as in Case D.
The 1-center cρ1 may cover a part of C, so that cρ2 needs to cover the rest of C.
If we remove an edge e → C, a tree results. The back-up 2-center of this tree is
of course different from the back-up 2-center of the unicyclic network.

Let us look at it backward as follows. Consider a back-up 2-center {cρ1, c
ρ
2}

such that cρ1 → Γ (uj) and cρ2 → C. It partitions G into two subgraphs G1 and
G2. If a part of C belongs to G1, then two edges, e and e∪, separate G1 from
G2. If we remove just e from G, then a tree results, and {cρ1, c

ρ
2} is a back-up

2-center of the tree, provided we use φ(x1, V ) = E(x1) and φ(x2, V ) = E(x2)
in (4), where E(x) is the upper envelope for x → C, not the upper envelope of
the tree. Therefore, there must be the “right” edge whose removal leads to the
back-up 2-center of G. If we test all edges, then we will hit this right edge. The
true back-up 2-center of G will be given by the one with the minimum cost.

If C is totally contained in G2, then we test each edge on π(c1, uj) at a time
to partition G into G1 and G2. We can compute a backup 2-center {cρ1, c

ρ
2} in

O(n log n) time per removed edge. Among all the candidates for {cρ1, c
ρ
2} com-

puted so far, we pick the one with the least cost. (Details are omitted due to
space limitations.) All this takes O(n2 logn) time.

Theorem 4. The back-up 2-center of a unicyclic network can be computed in
O(n2 logn) time. ∪◦

7 Conclusion

We have shown that the back-up 2-center on a path (resp. tree, cycle, unicyclic)
network can be computed in O(n) (resp. O(n log n), O(n2), O(n2 logn)) time.
Our model assumes that the two centers fail with the same probability. But it
should be easy to extend it to the case where the probabilities are different.
Another possible extension is to the back-up p-center problem, where p (> 2),
about which nothing appears to be known. Snyder and Daskin [16] discussed the
construction of the objective function for the p-median problem. Similar formu-
lation should be possible for the p-center problem as well. New characterizations
are needed for the back-up p-center problem.
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Abstract. We develop a general framework to construct quantum algo-
rithms that detect if a 3-uniform hypergraph given as input contains a
sub-hypergraph isomorphic to a prespecified constant-sized hypergraph.
This framework is based on the concept of nested quantum walks recently
proposed by Jeffiery, Kothari and Magniez, and extends the methodology
designed by Lee, Magniez and Santha for similar problems over graphs.
As applications, we obtain a quantum algorithm for finding a 4-clique in
a 3-uniform hypergraph on n vertices with query complexity O(n1.883),
and a quantum algorithm for determining if a ternary operator over a
set of size n is associative with query complexity O(n2.113).

1 Introduction

Quantum query complexity is a model of quantum computation, in which the
cost of computing a function is measured by the number of queries that are made
to the input given as a black-box. In this model, it was exhibited in the early
stage of quantum computing research that there exist quantum algorithms supe-
rior to the classical counterparts, such as Deutsch and Jozsa’s algorithm, Simon
and Shor’s period finding algorithms, and Grover’s search algorithm. Extensive
studies following them have invented a lot of powerful upper bound (i.e., algorith-
mic) techniques such as variations/generalizations of Grover’s search algorithm
or quantum walks. Although these techniques give tight bounds for many prob-
lems, there are still quite a few cases for which no tight bounds are known.
Intensively studied problems among them are the k-distinctness problem [1,4,5]
and the triangle finding problem [3,7,9,13,15].

A recent breakthrough is the concept of the learning graph introduced by
Belovs [3], who used it to improve the long-standing O(n13/10) upper bound [15]
of the triangle finding problem to O(n35/27). His idea was generalized by Lee,
Magniez and Santha [12] and Zhu [20] to obtain a quantum algorithm that
finds a constant-sized subgraph with complexity o(n2−2/k), improving the pre-
vious best bound O(n2−2/k) [15], where k is the size of the subgraph. Subse-
quently, Lee, Magniez and Santha [13] constructed a triangle finding algorithm
with quantum query complexity O(n9/7). This bound was later shown by Belovs
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and Rosmanis [6] to be the best possible bound attained by the family of quan-
tum algorithms whose complexities depend only on the index set of 1-certificates.
Ref. [13] also gave a framework of quantum algorithms for finding a constant-
sized subgraph, based on which they showed that associativity testing (testing
if a binary operator over a domain of size n is associative) has quantum query
complexity O(n10/7).

Recently, Jeffery, Kothari and Magniez [9] cast the idea of the above triangle
finding algorithms into the framework of quantum walks (called nested quantum
walks) by recursively performing the quantum walk algorithm given by Magniez,
Nayak, Roland and Santha [14]. Indeed, they presented two quantum-walk-based
triangle finding algorithms of complexities Õ(n35/27) and Õ(n9/7), respectively.
The nested quantum walk framework was further employed in [5] (but in a dif-
ferent way from [9]) to obtain Õ(n5/7) complexity for the 3-distinctness problem.
This achieves the best known upper bound (up to poly-logarithmic factors),
which was first obtained with the learning-graph-based approach [4].

The triangle finding problem also plays a central role in several areas beside
query complexity, and it has been recently discovered that faster algorithms for
(weighted versions of) triangle finding would lead to faster algorithms for ma-
trix multiplication [10,17], the 3SUM problem [16], and for Max-2SAT [18,19].
In particular, Max-2SAT over n variables is reducible to finding a triangle with
maximum weight over O(2n/3) vertices; in this context, although the final goal
is a time-efficient classical or quantum algorithm that finds a triangle with max-
imum weight, studying triangle finding in the query complexity model is a first
step toward this goal.

Our Results. Along this line of research, this paper studies the problem of
finding a 4-clique (i.e., the complete 3-uniform hypergraph with 4 vertices) in
a 3-uniform hypergraph, a natural generalization of finding a triangle in an
ordinary graph (i.e., a 2-uniform hypergraph). Our initial motivation comes from
the complexity-theoretic importance of the problem. Indeed, while it is now well-
known that Max-3SAT over n variables is reducible to finding a 4-clique with
maximum weight in a 3-uniform hypergraph of O(2n/4) vertices (the reduction
is similar to the reduction from Max-2SAT to triangle finding mentioned above;
we refer to [19] for details), no efficient classical algorithm for 4-clique finding has
been discovered so far. Constructing query-efficient algorithms for this problem
can be seen as a first step to investigate the possibility of faster (in the time
complexity setting) classical or quantum algorithms for Max-3SAT.

Concretely, and more generally, this paper gives a framework based on quan-
tum walks for finding any constant-sized sub-hypergraph in a 3-uniform hyper-
graph (Theorem 1). This is an extension of the learning-graph-based algorithm
in [13] to the hypergraph case in terms of the nested quantum walk [9]. We
illustrate this methodology by constructing a quantum algorithm that finds a 4-
clique in a 3-uniform hypergraph with query complexity Õ(n241/128) = O(n1.883),
while näıve Grover search over the

(
n
4

)
combinations of vertices only gives O(n2).

As another application, we also construct a quantum algorithm that determines
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if a ternary operator is associative using Õ(n169/80) = O(n2.113) queries, while
näıve Grover search needs O(n2.5) queries.

In the course of designing the quantum walk framework, we introduce several
new technical ideas (outlined below) for analyzing nested quantum walks to cope
with difficulties that do not arise in the 2-uniform case (i.e., ordinary graphs),
such as the fact that the size of the random subset taken in an inner walk
may vary depending on the random subsets taken in outer walks. We believe
that these ideas may be applicable to various problems beyond sub-hypergraph
finding.

Technical Contribution. Roughly speaking, the subgraph finding algorithm
by Lee, Magniez and Santha [13] works as follows. First, for each vertex i in the
subgraph H that we want to find, a random subset Vi of vertices of the input
graph is taken. This subset Vi represents a set of candidates for the vertex i. Next,
for each edge (i, j) in the subgraphH , a random subset of pairs in Vi×Vj is taken,
representing a set of candidates for the edge (i, j). The most effective feature of
their algorithm is to introduce a parameter for each ordered pair (Vi, Vj) that
controls the average degree of a vertex in the bipartite graph between Vi and Vj .
To make the algorithm efficient, it is crucial to keep the degree of every vertex in
Vi almost equal to the value specified by the parameter. For this, they carefully
devise a procedure for taking pairs from Vi × Vj .

Our basic idea is similar in that we first, for each vertex i in the sub-hypergraph
H that we want to find, take a random subset Vi of vertices in the input 3-uniform
hypergraph as a set of candidates for the vertex i and then, for each hyperedge
{i, j, k} of H , take a random subset of triples in Vi×Vj×Vk. One may think that
the remaining task is to fit the pair-taking procedure into the hypergraph case.
It, however, turns out to be technically very complicated to generalize the pair-
taking procedure from [13] to an efficient triple-taking procedure. Instead we
cast the idea into the nested quantum walk of Jeffery, Kothari and Magniez [9]
and employ probabilistic arguments. More concretely, we introduce a parameter
that specifies the number eijk of triples to be taken from Vi×Vj ×Vk for each hy-
peredge {i, j, k} of H . We then argue that, for randomly chosen eijk triples, the
degree of each vertex sharply concentrates around its average, where the degree
means the number of triples including the vertex. This makes it substantially
easier to analyze the complexity of all involved quantum walks, and enables us
to completely analyze the complexity of our approach. Unfortunately, it turns
out that this approach (taking the sets Vi first, and then eijk triples from each
Vi × Vj × Vk) does not lead to any improvement over the näıve O(n2)-query
quantum algorithm.

Our key idea is to introduce, for each unordered pair {i, j} of vertices in H ,
a parameter fij , and modify the approach as follows. After randomly choosing
Vi, Vj , Vk, we take three random subsets Fij → Vi × Vj , Fjk → Vj × Vk, and
Fik → Vi×Vk of size fij , fjk and fik, respectively. We then randomly choose eijk
triples from the set Ωijk = {(u, v, w) | (u, v) ⊂ Fij , (u,w) ⊂ Fik and (v, w) ⊂ Fjk}.
The difficulty here is that the size of Ωijk varies depending on the sets Fij , Fjk,
Fik. Another problem is that, after taking many quantum-walks (i.e., performing
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the update operation many times), the distribution of the set of pairs can change.
To overcome these difficulties, we carefully define the “marked states” (i.e., “ab-
sorbing states”) of each level of the nested quantum walk: besides requiring, as
usual, that the set (of the form Vi, Fij or Ωijk) associated to a marked state
should contain a part (i.e., a vertex, a pair of vertices or a triple of vertices) of
a copy of H , we also require that this set should satisfy certain regularity condi-
tions. We then show that the associated sets almost always satisfy the regularity
conditions, by using the concentration theorems for hypergeometric distribu-
tions. This regularity enables us to effectively bound the complexity of our new
approach, giving in particular the claimed Õ(n241/128)-query upper bound when
H is a 4-clique.

The proofs of some of our results are omitted in this version due to space
constraints. We refer to the full version of the present work [11] for all details.

2 Preliminaries

For any k ≡ 2, an undirected k-uniform hypergraph is a pair (V,E), where V is
a finite set (the set of vertices), and E is a set of unordered k-tuples of elements
in V (the set of hyperedges). An undirected 2-uniform hypergraph is simply an
undirected graph.

In this paper, we use the standard quantum query complexity model formu-
lated in Ref. [2]. We deal with (undirected) 3-uniform hypergraphs G = (V,E)
as input, given as a black-box. The operation of the black-box is given as the
unitary mapping |{u, v, w}, b∈ ≥∪ |{u, v, w}, b◦σ({u, v, w})∈ for b ⊂ {0, 1}, where
the triple {u, v, w} is the query to the black-box and σ({u, v, w}) is the answer on
whether the triple is a hyperedge of G, namely, σ({u, v, w}) = 1 if {u, v, w} ⊂ E
and σ({u, v, w}) = 0 otherwise.

Our algorithmic framework is based on the concept of the nested quantum
walk introduced by Jeffery, Kothari and Magniez [9]. In the nested quantum
walk, for each positive integer t, the walk at level t checks whether the current
state is marked or not by invoking the walk at level t + 1, and this is iterated
recursively until some fixed level m. The data structure of the walk at level t
is defined so that it includes the initial state of the walk at level t + 1, which
means that the setup cost of the walk at level t ≡ 2 is zero. Jeffery, Kothari and
Magniez have shown (in Section 4.1 of [9]) that the overall complexity of such a
walk is

Õ

(

S+
m∑

t=1

(
t∏

r=1

1
⊆
αr

)
1⊆
βt
Ut

)

if the checking cost at level m is zero, which will be our case. Here S denotes the
setup cost of the whole nested walk, Ut denotes the cost of updating the database
of the walk at level t, βt denotes the spectral gap of the walk at level t, and αr
denotes the fraction of marked states for the walk at level r. As in most quantum
walk papers, we only consider quantum walks on the Johnson graphs, where the
Johnson graph J(N,K) is a graph such that each vertex is a subset with size K
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of a set with size N and two vertices corresponding to subsets S and S→ are
adjacent if and only if |SθS→| = 2 (we denote by SθS→ the symmetric difference
between S and S→). If the walk at level t is on J(N,K), then its spectral gap βt
is known to be π(1/K).

Consider the update operation of the walk at any level. The update cost may
vary depending on the states of the walk we want to update. Assume without
loss of generality that the update operation is of the form U =

∑
i |i∈∀i| ∩ Ui,

where each Ui can be implemented using qi queries, and the quantum state to
be updated is of the form |s∈ =

∑
i εi|i∈|si∈. Then the following lemma, used

in [9], shows that if the magnitude of the states |i∈|si∈ that cost much to update
(i.e., such that qi is large) is small enough, we can approximate the update
operator U with good precision by replacing all Ui acting on such costly states
with the identity operator.

Lemma 1 ([9]). Let U =
∑

i |i∈∀i| ∩Ui be a controlled unitary operator and let
qi be the query complexity of exactly implementing Ui. For any fixed integer T ,
define Ũ as

∑
i:qi≥T |i∈∀i|∩Ui+

∑
i:qi>T |i∈∀i|∩I, where I is the identity operator

on the space on which Ui acts. Then, for any quantum state |s∈ =
∑

i εi|i∈|si∈,
the inequality

∣
∣
∣∀s|ŨU |s∈

∣
∣
∣ ≡ 1− γT holds whenever γT ≡

∑
i:qi>T |εi|2.

3 Statement of Our Main Result

Let H be a 3-uniform hypergraph with ρ vertices. We identify the set of vertices
of H with the set τ1 = {1, . . . , ρ}. We identify the set of hyperedges of H with
the set τ3 → {{1, 2, 3}, {1, 2, 4}, . . . , {ρ − 2, ρ − 1, ρ}}. We identify the set of
(unordered) pairs of vertices included in at least one hyperedge of H with the
set τ2 = {{i, j} | {i, j, k} ⊂ τ3 for some k}. By generalizing the definition in
[13,9], we define a loading schedule for H as follows.

Definition 1. A loading schedule for H of length m is a list S = (s1, . . . , sm) of
m elements such that the following three properties hold for all t ⊂ {1, . . . ,m}: (i)
st ⊂ τ1∅τ2∅τ3; (ii) if st = {i, j}, then there exist t1, t2 ⊂ {1, . . . , t−1} such that
st1 = i and st2 = j; (iii) if st = {i, j, k}, then there exist t1, t2, t3 ⊂ {1, . . . , t−1}
such that st1 = {i, j}, st2 = {i, k} and st3 = {j, k}. A loading schedule S is valid
if no element of τ1∅τ2∅τ3 appears more than once and, for any {i, j, k} ⊂ τ3,
there exists an index t ⊂ {1, . . . ,m} such that st = {i, j, k}.

We now introduce the concept of parameters associated to a loading sched-
ule. Formally, these parameters are functions of the variable n representing the
number of vertices of the input 3-uniform hypergraphs G = (V,E). We will nev-
ertheless, in a slight abuse of notation, consider that n is fixed, and define them
as integers (implicitly depending on n).

Definition 2. Let S = (s1, . . . , sm) be a loading schedule for H of length m.
A set of parameters for S is a set of m integers defined as follows: for each
t ⊂ {1, . . . ,m},
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– if st = i, then the associated parameter is denoted by ri and satisfies ri ⊂
{1, . . . , n};

– if st = {i, j}, then the associated parameter is denoted by fij and satisfies
fij ⊂ {1, . . . , rirj};

– if st = {i, j, k}, then the associated parameter is denoted by eijk and satisfies
eijk ⊂ {1, . . . , rirjrk}.

The set of parameters is admissible if ri≡1, eijk≡1,
rirj
fij

≡ 1,
fijfikfjk/(rirjrk)

eijk
≡

1, and the terms n
ri
,

fij
ri
,

fij
rj
,

fijfik
rirjrk

are larger than nγ for some constant γ > 0.

Now we state the main result in terms of loading schedules.

Theorem 1. Let H be a constant-sized 3-uniform hypergraph. Let S = (s1, . . . ,
sm) be a valid loading schedule for H with an admissible set of parameters. There
exists a quantum algorithm that, given as input a 3-uniform hypergraph G with n
vertices, finds a sub-hypergraph of G isomorphic to H (and returns “no” if there
are no such sub-hypergraphs) with probability at least some constant, and has
query complexity

Õ

(

S+

m∑

t=1

(
t∏

r=1

1
⊆
αr

)
1⊆
βt
Ut

)

,

where S, Ut, βt and αr are evaluated as follows:

– S =
∑

{i,j,k}∪Σ3
eijk;

– for t ⊂ {1, . . . ,m}, (i) if st = {i}, then βt = π( 1
ri
), αt = π( rin ) and Ut =

Õ
(
1 +

∑
{j,k}:{i,j,k}∪Σ3

eijk
ri

)
; (ii) if st = {i, j}, then βt = π( 1

fij
), αt =

π(
fij
rirj

) and Ut = Õ

(

1 +
∑

k:{i,j,k}∪Σ3

eijk
fij

)

; (iii) if st = {i, j, k}, then

βt = π( 1
eijk

), αt = π(
eijkrirjrk
fijfikfjk

) and Ut = O(1).

4 Proof of Theorem 1

In this section, we prove Theorem 1 by constructing an algorithm based on the
concept of nested quantum walks, in which the walk at level t will correspond to
the element st of the loading schedule for each t ⊂ {1, . . . ,m}. For convenience,
we will write Mijk = 11

fijfikfjk
rirjrk

for each {i, j, k} ⊂ τ3.

4.1 Definition of the Walks

At level t ⊂ {1, . . . ,m}, the quantum walk will differ according to the nature
of st, so there are three cases to consider.

Case 1 [st = i]: The quantum walk will be over the Johnson graph J(n, ri).
The space of the quantum walk will then be πt = {T → {1, . . . , n} | |T | = ri} .
A state of this walk is an element Rt ⊂ πt.
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Case 2 [st = {i, j}]: The quantum walk will be over J(rirj , fij). The space of
the quantum walk will then be πt = {T → {1, . . . , rirj} | |T | = fij} . A state of
this walk is an element Rt ⊂ πt.

Case 3 [st = {i, j, k}]: The quantum walk will be over J(Mijk, eijk). The
space of the quantum walk will then be πt = {T → {1, . . . ,Mijk} | |T | = eijk} .
A state of this walk is an element Rt ⊂ πt.

4.2 Definition of the Data Structures of the Walks

Let us fix an arbitrary ordering on the set V ×V ×V of triples of vertices. For any
set Ω → V ×V ×V and any R → {1, . . . , |V |3}, define the set Y(R,Ω ) consisting
of at most |R| triples of vertices which are taken from Ω by the process below.

– Construct a list Λ of all the triples in V ×V ×V as follows: first, all the triples
in Ω are listed in increasing order and, then, all the triples in (V ×V ×V )\Ω
are listed in increasing order.

– For any a ⊂ {1, . . . , |V |3}, let Λ[a] denote the a-th triple of the list.
– Define Y(R,Ω ) = {Λ[a] | a ⊂ R} ↓ Ω .

The following lemma will be useful later in this section.

Lemma 2. Let Ω and Ω → be two subsets of V × V × V . Let p and r be any pa-
rameters such that 1 ∨ r ∨ p ∨ |V |3. There exists a permutation δ of {1, . . . , p}
such that, if R is a subset of {1, . . . , p} of size r taken uniformly at random, then

Pr
R

[

|Y(R,Ω )θY(δ(R), Ω →)| ∨ 22r|ΩθΩ →|
p

+100 logn

]

≡1−2

(
1

2

)11r|ΓΔΓ ∗|
p +50 logn

.

Suppose that the states of the walks at levels 1, . . . ,m are R1, . . . , Rm, re-
spectively. Assume that the set of vertices of G is V = {v1, . . . , vn}. We first
interpret the states R1, . . . , Rm as sets of vertices, sets of pairs of vertices or sets
of triples of vertices in V , as follows. For each t ⊂ {1, . . . ,m}, there are three
cases to consider.

Case 1 [st = i]: In this case, Rt = {a1, . . . , ari} → {1, . . . , n}. We associate to
Rt the set Vi = {va1 , . . . , vari

}. For further reference, we will rename the vertices

in this set as Vi = {vi1, . . . , viri}.
Case 2 [st = {i, j} with i < j]: We know that, in this case, there exist
t1, t2 ⊂ {1, . . . , t − 1} such that st1 = i and st2 = j. The state Rt represents a
set {(a1, b1), . . . , (afij , bfij )} of fij pairs in Rt1 ×Rt2 . We associate to it the set

Fij = {(via1
, vjb1), . . . , (v

i
afij

, vjbfij
)} of pairs of vertices.

Case 3 [st = {i, j, k} with i < j < k]: We know that there exist t1, t2, t3 ⊂
{1, . . . , t − 1} such that st1 = {i, j}, st2 = {i, k} and st3 = {j, k}, and Rt is a
subset of {1, . . . ,Mijk} with |Rt| = eijk. Let us define the set

Ωijk = {(u, v, w) ⊂ Vi × Vj × Vk | (u, v) ⊂ Fij , (u,w) ⊂ Fik and (v, w) ⊂ Fjk} .

We associate to Rt the set Eijk = Y(Rt, Ωijk).
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We are now ready to define the data structures involved in the walks. When
the states of the walks at levels 1, . . . , (m − 1) are R1, . . . , Rm−1, respectively,
and the state of the most inner walk is Rm, the data structure associated with
the most inner walk is denoted by D(R1, . . . , Rm) and defined as:

D(R1, . . . , Rm) =

{

({u, v, w}, σ({u, v, w})) | (u, v, w) ⊂
⋃

{i,j,k}∪Σ3 : i<j<k

Eijk

}

.

The data structure associated with the walk at level t, for each t ⊂ {1, . . . ,m−
1}, is defined as:

∑
Rt+1∪Ωt+1

· · ·
∑

Rm∪Ωm
|Rt+1∈ · · · |Rm∈|D(R1, . . . , Rm)∈ (here

and hereafter we omit normalization factors).

4.3 Marked States of the Walks

For any t ⊂ {1, . . . ,m−1}, the purpose of the walk at level t+1 is to check if the
state of the walk t is marked (for the most inner walk, the state can be checked
without running another walk, since all the information necessary is already in
the database). In this subsection we define the set of marked states for each
walk.

Assume that the hypergraph G contains a (without loss of generality, unique)
sub-hypergraph isomorphic to H . Let {u1, . . . , uκ} denote the vertex set of this
sub-hypergraph. For the most outer walk, s1 = j for some j ⊂ {1, . . . , ρ} and we
say that R1 is marked if and only if uj ⊂ Vj . Consider a state Rt of the walk at
level t > 1, and suppose that the states R1, . . . , Rt−1 are all marked. We have
again three cases to consider.

Case 1 [st = i]: Rt corresponds to Vi. We say that Rt is marked if and only if
ui ⊂ Vi.
Case 2 [st = {i, j} with i < j]: Rt corresponds to Fij , and we say that Rt

is marked if and only if the following four conditions hold: (a) (ui, uj) ⊂ Fij ;

(b) for all u ⊂ Vi,
fij
2ri

∨ |{v ⊂ Vj | (u, v) ⊂ Fij}| ∨ 2
fij
ri
; (c) for all v ⊂ Vj ,

fij
2rj

∨ |{u ⊂ Vi | (u, v) ⊂ Fij}| ∨ 2
fij
rj
; (d) for any k such that there exists

t1 ⊂ {1, . . . , t − 1} for which st1 = {i, k}, and any (v, w) ⊂ Vj × Vk, |{u ⊂
Vi | (u, v) ⊂ Fij and (u,w) ⊂ Fik}| ∨ 11

fijfik
rirjrk

.

Case 3 [st = {i, j, k} with i < j < k]: Rt corresponds to Eijk, and we say
that Rt is marked if and only if (ui, uj, uk) ⊂ Eijk .

4.4 Analysis of the Algorithm

Our nested quantum walk algorithm finds a marked state in the most inner walk
and thus a sub-hypergraph isomorphic to H , with high probability, since, as will
be shown below, the ideal nested quantum walks can be approximated with high
accuracy. As explained in Section 2, the overall query complexity of the walk is

Õ

(

S+

m∑

t=1

(
t∏

r=1

1⊆
αr

)
1⊆
βt
Ut

)

.
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We will show below that the values of the terms S, Ut, βt and αt are as claimed
in the statement of Theorem 1.

We first make the following simple observation: when computing Ut and αt,
we can assume that the state Rt−1 of the immediately outer walk is marked (and
thus, by applying this argument recursively, that the states R1,. . . , Rt−1 of all
the outer walks are marked). Indeed, remember that the purpose of the walk at
level t is to check if the state Rt−1 is marked. We first evaluate its complexity
under the assumption that Rt−1 is marked, giving some upper bound T on the
complexity. Now, since the checking procedure in our framework has one-sided
error, in the case where Rt−1 is not marked the checking procedure may not
terminate after T queries, but we can stop it after T queries anyway and simply
output that Rt−1 is not marked.

The setup cost S for the algorithm is the number of queries needed to construct
the superposition

∑
R1

· · ·
∑

Rm
|R1∈ · · · |Rm∈|D(R1, . . . , Rm)∈, where each sum∑

Ri
is taken over πi. This value is at most

∑
{i,j,k}∪Σ3

eijk.
We next evaluate βt and αt. The analysis is again divided into three cases.

Case 1 [st = i]: Since the quantum walk is over J(n, ri) by the definition in
Section 4.1, we have βt = π( 1

ri
) and αt = π( rin ).

Case 2 [st = {i, j} with i < j]: Since the quantum walk is over J(rirj , fij),

we have βt = π( 1
fij

). The fraction of states Fij such that (ui, uj) ⊂ Fij is π(
fij
rirj

).

While all those states may not be marked, it can be proved (see [11]) that the
fraction of those states that are not marked is exponentially small when the set
of parameters is admissible. Thus αt = π(

fij
rirj

).

Case 3 [st = {i, j, k} with i < j < k]: In this case βt = π( 1
eijk

). Since all

the states R1, . . . , Rt−1 of the outer walks are assumed to be marked, by item
(d) of the definition of the marked states in Section 4.3, we can upper-bound

|Ωijk| =
∑

(v,w)∪Fjk
|{u ⊂ Vi | (u, v) ⊂ Fij and (u,w) ⊂ Fik}| by |Fjk| 11fijfikrirjrk

=

Mijk. Thus, we have αt = π(
eijk
Mijk

).

Finally, we evaluate the cost Ut, which is the cost of transforming the quantum
state

∑

Rt+1

· · ·
∑

Rm

|Rt+1∈ · · · |Rm∈|D(R1, . . . , Rt−1, Rt, Rt+1, . . . , Rm)∈,

to the quantum state

∑

Rt+1

· · ·
∑

Rm

|Rt+1∈ · · · |Rm∈|D(R1, . . . , Rt−1, R
→
t, Rt+1, . . . , Rm)∈,

for any two states Rt and R
→
t adjacent in the corresponding Johnson graph. We

again divide the analysis into three cases.

Case 1 [st = i]: In this case Rt and R
→
t are two subsets of {1, . . . , n}, both of

size ri, differing by exactly one element. The corresponding subsets Vi and V →
i

also differ by exactly one element: let us write V →
i = (Vi\{u}) ∅ {u→}. For any
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{i, j, k} ⊂ τ3, there exist some t1, t2, t3 ⊂ {t + 1, . . . ,m} such that st1 = {i, j},
st2 = {i, k} and st3 = {i, j, k}. There also exist some t4, t5, t6 ⊂ {1, . . . ,m}
such that st4 = j, st5 = k and st6 = {j, k}. Note that t4, t5, t6 can be smaller
than t, but we will assume here that they are all larger than t (the other cases
are omitted, but they are actually easier to analyze). A state Rt4 defines a set
Vj of rj vertices and, for any Rt1 ⊂ πt1 , the state (Rt, Rt1 , Rt4) defines a set
of fij pairs in Vi × Vj , as described in Section 4.3. In the same way, for any
R→

t1 ⊂ πt1 , the state (R→
t, R

→
t1 , Rt4) defines a set of fij pairs in V →

i × Vj . There
exists a permutation δ1 of the elements of πt1 such that, for any Rt1 ⊂ πt1 , the
set Fij defined by (Rt, Rt1 , Rt4) and the set F →

ij defined by (R→
t, δ1(Rt1), Rt4) are

related in the following way:

F →
ij = (Fij\{(u, v) ⊂ {u}×Vj | (u, v) ⊂ Fij})∅ {(u→, v) ⊂ {u→}×Vj | (u, v) ⊂ Fij},

which means that each pair of the form (u, v) in Fij is replaced by the pair (u→, v)
in F →

ij , while the other pairs are the same in Fij and in F →
ij .

Similarly, there exists a permutation δ2 of the elements of πt2 such that, for
any Rt2 ⊂ πt2 , the set Fik defined by (Rt, Rt2 , Rt5) and the set F →

ik defined by
(R→

t, δ2(Rt2), Rt5) are related in the following way:

F →
ik = (Fik\{(u,w) ⊂ {u}×Vk |(u,w) ⊂ Fik})∅{(u→, w) ⊂ {u→}×Vk |(u,w) ⊂ Fik}.

The states (Rt, Rt1 , Rt2 , Rt4 , Rt5 , Rt6) define sets Vi, Fij , Fik, Vj , Vk, Fjk, Ωijk,
while the states (R→

t, δ1(Rt1), δ2(Rt2), Rt4 , Rt5 , Rt6) define sets V
→
i , F

→
ij , F

→
ik, Vj , Vk,

Fjk, Ω
→
ijk. Given any state Rt3 , let Eijk(Rt, Rt1 , Rt2 , Rt3 , Rt4 , Rt5 , Rt6) denote

the set of hyperedges to be queried associated with Ωijk and Rt3 , and
Eijk(R

→
t, δ1(Rt1), δ2(Rt2), Rt3 , Rt4 , Rt5 , Rt6) denote the set of hyperedges to be

queried associated with Ω →
ijk and Rt3 . By Lemmas 1 and 2, the mapping

|Rt1∈|Rt2∈|Rt4∈|Rt5∈|Rt6∈
∑

Rt3

|Rt3∈|Eijk(Rt, Rt1 , Rt2 , Rt3 , . . . , Rt6)∈ ≥∪

|δ1(Rt1)∈|δ2(Rt2)∈|Rt4∈|Rt5∈|Rt6 ∈
∑

Rt3

|Rt3∈|Eijk(R
→
t, δ1(Rt1), δ2(Rt2), Rt3 , . . . , Rt6)∈,

where the sum is over all Rt3 in πt3 , can be approximated within inverse polyno-

mial precision using Õ
(

eijk|ΓijkΔΓ ∗
ijk |

Mijk
+ logn

)
= Õ

(
eijk |ΓijkΔΓ ∗

ijk |
Mijk

+ 1
)
queries.

We will use the following lemma.

Lemma 3. When Rt1 , Rt2 and Rt6 are taken uniformly at random,

Pr

[

|ΩijkθΩ
→
ijk| ≡ 44× fijfikfjk

r2i rjrk

]

= O

(
1

n100

)

.

Lemmas 1 and 3 then show that the mapping

|Rt4∈|Rt5∈
∑

Rt1

∑

Rt2

∑

Rt6

∑

Rt3

|Rt1∈|Rt2∈|Rt6∈|Rt3∈|Eijk(Rt, Rt1 , · · · , Rt6)∈ ≥∪

|Rt4∈|Rt5∈
∑

Rt1

∑

Rt2

∑

Rt6

∑

Rt3

|Rt1∈|Rt2∈|Rt6∈|Rt3∈|Eijk(R
→
t, Rt1 , · · · , Rt6)∈
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can be approximated within inverse polynomial precision using Õ(eijk/ri + 1)
queries. This argument is true for all {i, j, k} ⊂ τ3, so the update cost is

Ut = Õ

(

1 +
∑

{j,k} such that {i,j,k}∪Σ3

eijk
ri

)

.

Case 2 [st = {i, j} with i < j]: In this case Rt and R→
t correspond to two

subsets Fij and F →
ij that also differ by exactly one element. Using an analysis

similar to what has been done for Case 1, we can show that the update cost is
Ut = Õ

(
1 +

∑
k such that {i,j,k}∪Σ3

eijk
fij

)
.

Case 3 [st = {i, j, k} with i < j < k]: Rt and R→
t are two subsets of

{1, . . . ,Mijk}, both of size eijk, differing by exactly one element. The correspond-
ing Eijk and E→

ijk are subsets of the same Ωijk, and have symmetric difference
|EijkθE

→
ijk | ∨ 2, so Ut ∨ 2.

Now the proof of Theorem 1 is completed.

5 Applications: 4-clique Detection and Associativity

In this section we describe how to use our method to construct efficient quantum
algorithms for 4-clique detection and ternary associativity testing.

First, by applying Theorem 1 to the case whereH is a 4-clique, and optimizing
both the loading schedule and the parameters, we obtain the following result.

Theorem 2. There exists a quantum algorithm that detects if a 3-uniform hy-
pergraph on n vertices has a 4-clique, with high probability, using Õ(n241/128) =
O(n1.883) queries.

Next, we consider ternary associativity testing. Let X be a finite set with
|X | = n. A ternary operator F from X ×X ×X to X is said to be associative if
F(F(a, b, c), d, e) = F(a,F(b, c, d), e) = F(a, b,F(c, d, e)) holds for every 5-tuple
(a, b, c, d, e) ⊂ X5. The function F is given as a black-box: when we make a query
(a, b, c) to F , the answer F(a, b, c) is returned. We can show that that the prop-
erty “F is not associative” has a certificate corresponding to a sub-hypergraph of
seven vertices in a 3-uniform directed hypergraph with each edge weighted by an
element in X . By applying Theorem 1 with adaptations to directed hypergraphs
with non-binary hyperedge weights, we obtain the following result.

Theorem 3. There exists a quantum algorithm that determines if F is associa-
tive with high probability using Õ(n169/80) = Õ(n2.1125) queries.
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Abstract. For two positive integers m, k and a connected graph G =
(V,E) with a nonnegative vertex weight function w, the balanced m-
connected k-partition problem, denoted as BCmPk, is to find a parti-
tion of V into k disjoint nonempty vertex subsets (V1, V2, . . . , Vk) such
that each G[Vi] (the subgraph of G induced by Vi) is m-connected, and
min1≤i≤k{w(Vi)} is maximized. In this paper, we study the BC2P2

problem on 4-connected interval graphs. First, a 3/2-approximation al-
gorithm is given. Then, assuming that w is integral, a fully polynomial
time approximation scheme (FPTAS) is obtained. As far as we known,
this is the first paper studying balanced connected partition problem
with higher connectivity requirement on each part.

Keywords: balanced m-connected k-partition, interval graph, pseudo-
polynomial time algorithm, FPTAS.

1 Introduction

Let G = (V,E,w) be an undirected graph, in which w is a nonnegative weight
function on vertices. For a vertex subset U → V , denote by G[U ] the subgraph
of G induced by U , and w(U) =

∑
v∞U w(v) the weight of U . For an integer

k ⊂ 2, suppose V = V1 ≡ V2 ≡ . . . Vk such that each Vi is a non-empty subset of
V and Vi ∈ Vj = ≥ for i ∪= j. Then, (V1, V2, . . . , Vk) is called a k-partition of V .
It is a connected k-partition of G if every G[Vi] is connected for 1 ◦ i ◦ k. In
many applications such as image processing [9] and clustering [10], it is desirable
to find a connected partition whose parts are as balanced as possible. Such a
setting can be modeled as a balanced connected k-partition (BCPk) problem, in
which one looks for a connected k-partition (V1, V2, . . . , Vk) with min1→i→k w(Vi)
being maximized.

If one is looking for a clustering in which the communities are more compact,
then each part should have higher connectivity. As far as we know, we have not
seen any work on balanced partition with higher requirement on connectivity,
which motivates us to study BCmPk problem defined as follows.
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Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 441–452, 2014.
c≥ Springer International Publishing Switzerland 2014
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For a connected graph G = (V,E), a vertex cut of G is a vertex set C → V
such that G − C is disconnected. In particular, if G − v is disconnected, then
vertex v is a cut vertex of G. In this paper, we adopt the convention that a
connected graph G is m-connected if there is no vertex cut of cardinality less
than m in G. In particular, a graph G is 2-connected if and only if there is no
cut vertex in G. Under this convention, a complete graph on n vertices, denoted
as Kn, is regarded as m-connected for any integer m. Furthermore, a graph on
n vertices with n ◦ m is m-connected if and only if it is Kn.

Definition 1. A k-partition (V1, V2, . . . , Vk) of V is an m-connected k-partition
of G if every G[Vi] is m-connected for 1 ◦ i ◦ k. The balanced m-connected k-
partition problem (BCmPk) looks for anm-connected k-partition (V1, V2, . . . , Vk)
of G such that min1→iw(Vi) is maximized.

In particular, BC1Pk is exactly BCPk. In this paper, we study BC2P2 on
interval graphs, which is denoted as IBCmPk. It has been shown in [11] that
the BCPk problem is NP-hard, even when the graph is complete. Under our
assumption that a complete graph is m-connected for any m, a k-partition of
a complete graph is also an m-connected k-partition. Then, by observing that
complete graphs are special interval graphs, the computation of the IBCmPk

problem is NP-hard.
The contributions of this paper are:
1) As far as we know, this paper is the first one to study BCmPk problem

for m ⊂ 2. Because of the difficulties brought by the higher connectivity re-
quirement, as a starting point, this paper studies approximation algorithms for
BC2P2 in interval graphs.

2) A 3/2-approximation algorithm is give for BC2P2 on 4-connected interval
graphs. As a consequence, a lower bound for the optimal value is obtained. It
should be noted that connectivity 4 is necessary because there exists 3-connected
interval graph which has no 2-connected bipartition.

3) For the special situation when the weight function is integral, an FPTAS for
BC2P2 on 4-connected interval graphs is given, which achieves approximation
ratio (1 + ε) in time O((1 + 1

Σ )n
5), where ε is an arbitrary positive real number.

Although the FPTAS is obtained through the classic dynamic programming
method and the classic scaling technique, adapted to suit the new setting, a
prerequisite to obtain the desired approximation ratio is a lower bound for the
optimal value. For the BCP2 problem without higher connectivity requirement,
it is not difficult to obtain such a lower bound [3], even for a general 2-connected
graph. However, with the requirement on higher connectivity of each part, this
task becomes much more difficult. We managed to derive such a lower bound for
4-connected interval graphs, which is a corollary of our constant approximation
algorithm for this problem.

The paper is organized as follows. In Section 2, we introduce some relatedworks.
Notations and preliminary results are presented in Section 3. Section 4 presents a
3/2-approximation algorithm for BC2P2 on 4-connected interval graphs. In Sec-
tion 5, under the assumption that the weight function w is integral, an FPTAS
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for BC2P2 on 4-connected interval graphs is given. Section 6 concludes the paper
and proposes some problems for future researches.

2 Related Works

A classic result on partition problem is due to Lovász [8] and Györi [7], say-
ing that for any k-connected graph G and any integers n1, n2, . . . , nk with∑k

i=1 ni = |V (G)|, graph G can be partition into k connected subgraphs of
orders n1, n2, . . . , nk. The proof used in [8] is topological and the proof used in
[7] is graph theoretical. But neither of them imply a polynomial time algorithm
for finding such a partition.

In [4], it was shown that the unweighted BCPk problem is NP-hard for any
fixed k ⊂ 2. Polynomial-time algorithms exist for the unweighted BCPk problem
in the special case when the graph has at most two articulation vertices in each
block [3,5].

Considering weight, Cheb́ıková showed in [3] that BCP2 is NP-hard in the
strong sense and can not be approximated within an absolute error guaran-
tee of V 1−Σ, for any ε > 0 unless NP=P. A 4/3-approximation algorithm was
given in [3]. For BCP3 and BCP4 on 3-connected and 4-connected graphs, 2-
approximation algorithms were proposed by Chataigner et al. [2].

The BCPk problem on interval graphs is denoted as IBCPk. For the special
case that G is a complete graph, the BCP2 is at least as hard as PARTITION
problem ([SP12] in [6]) and is therefore NP-hard. Since the class of interval
graphs includes complete graphs, the IBCPk problem is also NP-hard for any
fixed k ⊂ 2 [11].

In [11], Wu first gave a pseudo-polynomial time algorithm for IBCP2. Then
by a scaling technique, a fully polynomial time approximation scheme (FPTAS)
was obtained. For any ε > 0, the FPTAS finds a (1 + ε)-approximation in time
O((1 + 1

Σ )n
3), where n is the number of vertices. He also generalized the results

to the case k > 2, requiring that the interval graph is k-connected.
As far as we know, our paper is the first work on BCmPk problem for m ⊂ 2.

3 Preliminaries

Let G = (V,E,w) be the graph with vertex set V , edge set E, and nonnegative
vertex weight function w. For convenience, n and W are used to denote |V |
and w(V ), respectively. The optimum value of BC2Pk on graph G is denoted
as β∪

2 (G, k), i.e., β
∪
2 (G, k) = maxmin1→i→k w(Vi), where the maximum is taken

over all 2-connected k-partitions of G.
In an interval graph, vertices can be represented by intervals on the real hor-

izontal axis such that there is an edge between two vertices if and only if the
two intervals intersect. An interval on the real horizontal axis is typically de-
fined by its left endpoint l and right endpoint r. Hence we use [l, r] to repre-
sent the interval and use terminologies “vertex” and “interval” interchangeably.
Assume, without loss of generality, that the endpoints of the intervals are all
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distinct. For a vertex v of an interval graph, denote by l(v) and r(v) the left
and the right endpoints of interval v, respectively. For a vertex set U , define
l(U) = min{l(v) : v ⊆ U} and r(U) = max{r(v) : v ⊆ U}.

For a vertex subset U , denote by vl,j(U) the vertex of U with the j-th leftmost
left endpoint, and by vr,j(U) the vertex of U with the j-th rightmost right
endpoint. That is, if |U | = m, then vertices in U can be ordered according to the
increasing order of their left endpoints such that l(vl,1(U)) < l(vl,2(U)) < . . . <
l(vl,m(U)). Vertices in U can also be ordered according to the decreasing order
of their right endpoints such that r(vr,1(U)) > r(vr,2(U)) > . . . > r(vr,m(U)).
Denote by lj(U) = l(vl,j(U)) the j-th leftmost endpoint, and rj(U) = r(vr,j(U))
the j-th rightmost endpoint. In particular, l1(U) = l(U) and rm(U) = r(U).
Using Menger’s theorem (see [1]), we can obtain the following results.

Lemma 1. Let G = (V,E) be an m-connected interval graph, and v be the
vertex of V such that either

(i) r(v) = min{r(u) : u ⊆ V }, or
(ii) l(v) = max{l(u) : u ⊆ V }.

Then, graph G− v is still m-connected.

Lemma 1 says that removing the interval with the leftmost right endpoint (or
the rightmost left endpoint) keeps the m-connectedness. The following corollary
says that removing the set of intervals with the leftmost right endpoints (or the
rightmost left endpoints) keeps the m-connectedness.

Corollary 1. Suppose G = (V,E) is an m-connected interval graph, U is a
subset of V such that r(U) < min{r(v) : v ⊆ V \ U} or l(U) > max{l(v) : v ⊆
V \ U}. Then G− U is still m-connected.

Lemma 2. Let G be an m-connected graph on n vertices. Suppose graph G∈ is
obtained from G by adding a vertex v and joining v to at least min{n,m} distinct
vertices of G. Then G∈ is also m-connected.

4 A 3/2-Approximation for IBC2P2

In this section, we present a 3/2-approximation algorithm for the IBC2Pk prob-
lem on 4-connected interval graphs.

Let G = (V,E) be a connected interval graph. For a vertex v ⊆ V , denote by
I(v) the interval of v, i.e., I(v) = [l(v), r(v)]. For a vertex subset U → V , denote
by I(U) =

⋃
v∞U I(v). Since G is connected, I(V ) is a continuous interval on

the real horizontal axis. Let I1 = [l1(V ), l2(V )) and I2 = (r2(V ), r1(V )]. Set
MI(V ) = I(V ) \ (I1 ≡ I2). For |V | ⊂ 2, MI(V ) ∪= ≥. If a point p ⊆ MI(V )
belongs to at most one interval of V , say p ⊆ I(u), then u is a cut vertex of G
(see Fig.1). Thus, we have the following observation.

Observation 1. For any 2-connected interval graph G = (V,E) on at least two
vertices, any point in MI(V ) belongs to at least two intervals of V .
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�

p
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MI(V )

Fig. 1. The definition of MI(V ) and an illutration of Observation 1

Theorem 1. Let G = (V,E) be a 4-connected interval graph, and (V1, V2) be a
2-connected bipartition of G with |V2| ⊂ 2. Then there is a vertex u ⊆ V2 such
that (V1≡{u}, V2\{u}) is still a 2-connected bipartition of G. Furthermore, there
are at least two distinct vertices in V2 which can serve as u.

Proof. For simplicity, denote G1 = G[V1] and G2 = G[V2].
If |V | ◦ 4, then G is a complete graph, and the result holds trivially. So,

suppose |V | ⊂ 5. If |V1| = 1, let v be the only vertex in V1. Then G2 = G − v
is 3-connected, and thus removing any vertex from G2 results in a 2-connected
subgraph. Since a 4-connected graph on at least five vertices has minimum degree
at least four, vertex v has at least four neighbors in V2, any of such a neighbor can
serve as u satisfying the condition of this theorem. In the following, we assume
|V1| ⊂ 2.

MI(V1)

V1

V2

U1 U2

U3

Fig. 2. An illustration for the proof of Theorem 1

Let U1 = {v ⊆ V2 : r(v) < l(MI(V1))}, U2 = {v ⊆ V2 : l(v) > r(MI(V1))}, and
U3 = V2\(U1≡U2) (see Fig.2). Since |V1| ⊂ 2, we haveMI(V1) ∪= ≥. It follows that
U1 and U2 are well-defined (they might be empty sets) and I(U1) ∈ I(U2) = ≥.
As a consequence,

if U1 ∪= ≥ and U2 ∪= ≥, then G[U1 ≡ U2] = G2 − U3 is disconnected. (1)
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By the definition of U1 and U2, every vertex in U1 ≡U2 is adjacent with at most
one vertex of V1. To be more concrete, vl,1(V1) is the only vertex in V1 which
might be adjacent with vertices in U1, and vr,1(V1) is the only vertex in V1 which
might be adjacent with vertices in U2.

For any vertex v ⊆ U3, since l(v) ◦ r(MI(V1)) and r(v) ⊂ l(MI(V1)), interval
I(v) contains some point in MI(V1). By the 2-connectedness of G[V1] and by
Observation 1, this point belongs to at least two intervals of V1, and thus vertex
v is adjacent with at least two vertices of V1. So, G1 + v = G[V1 ≡ {v}] is 2-
connected by Lemma 2. To prove the theorem, we are to find a vertex u ⊆ U3

such that G2 − u = G[V2 \ {u}] is 2-connected.
If both U1 = U2 = ≥ and |U3| = 2, then G[V2] is a complete graph on two

vertices, the removal of any one vertex leaves a complete graph on one vertex,
which is 2-connected. In the following, we consider the remaining cases.

Claim 1. |U3| ⊂ 3.
If U1 = U2 = ≥, then by the remark before this claim, we may assume |U3| ⊂ 3.

If U1 ≡ U2 ∪= ≥, suppose, without loss of generality, that U1 ∪= ≥. Recall that
vl,1(V1) is the only vertex in V1 which may be adjacent with vertices in U1. Since
|V1| ⊂ 2, we have V1 \ {vl,1(V1)} ∪= ≥. Thus U3 ≡ {vl,1(V1)} is a vertex cut of
G, the deletion of which separates U1 and V1 \ {vl,1(V1)} (property (1) is used
here). Since G is 4-connected, we have |U3 ≡ {vl,1(V1)}| ⊂ 4, and thus |U3| ⊂ 3.
Claim 1 is proved.

Claim 2. Suppose u is a vertex in U3 such that graph H = G[U3 \ {u}] is
2-connected. Then G2 − u is also 2-connected.

Notice that H = G2 − u − U1 − U2. To prove this claim, the idea is to show
that enlarging H by adding vertices of U1 ≡U2 one by one, the 2-connectedness
is kept.

Recall that vertices in U1 can be ordered as vr,1(U1), vr,2(U1), . . . , vr,|U1|(U1)
such that vr,i(U1) is the vertex of U1 with the i-th rightmost endpoint. For 1 ◦
i ◦ |U1|, denote U (i)

1 = {vr,1(U1), . . . , vr,i(U1)} and Ũ (i)
1 = U1\U (i)

1 . Let U
(0)
1 = ≥.

By the definition of U1 and Ũ
(i−1)
1 , we have r(Ũ

(i−1)
1 ) ◦ r(U1) < min{r(v) : v ⊆

V1} and r(Ũ
(i−1)
1 ) < min{r(v) : v ⊆ V2 \ Ũ (i−1)

1 }. Hence r(Ũ (i−1)
1 ) < min{r(v) :

v ⊆ V \ Ũ (i−1)
1 }. By Corollary 1, Claim 1, and the assumption that |V1| ⊂ 2,

G− Ũ
(i−1)
1 is a 4-connected graph on at least five vertices. (2)

Next, we shall show that expanding H by adding vertices of U1 sequentially in
the order of vr,1(U1), vr,2(U1), . . . , vr,|U1|(U1) keeps the 2-connectedness. For this

purpose, denote H(i) = H + U
(i)
1 . We shall show by induction on i that H(i) is

2-connected. This is true for H(0) = H . Suppose H(i−1) is 2-connected. We claim
that vertex vr,i(U1) is adjacent with at least two vertices of H(i−1). In fact, by

property (2), vertex vr,i(U1) has degree at least four in G−Ũ (i−1)
1 = G[V1≡(V2−

Ũ
(i−1)
1 )]. Since vr,i(U1), being a vertex of U1, is adjacent with at most one vertex

of V1, it is adjacent with at least three vertices of V2− Ũ (i−1)
1 = U2≡U3≡U (i−1)

1 .
By property (1), vr,i(U1) is not adjacent with any vertex of U2. Hence, vr,i(U1) is
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adjacent with at least three vertices of U3≡U (i−1)
1 , and thus at least two vertices

of H(i−1) (notice that V (H(i−1)) = U3 ≡U (i−1)
1 − u). Then by Lemma 2, H(i) is

2-connected. The induction proof is completed. In particular, H + U1 = H(|U1|)

is 2-connected.
By a symmetric argument, it can be shown that expanding H+U1 by adding

vertices of U2 in the order of vl,1(U2), vl,2(U2), . . . , vl,|U2|(U2) preserves the 2-
connectedness. Thus G2 − u = H + U1 + U2 is 2-connected. Claim 2 is proved.

Claim 3. Let û and ũ be the vertices in U3 such that r(û) = min{r(v) : v ⊆ U3}
and l(ũ) = max{l(v) : v ⊆ U3}. Then G2 − û and G2 − ũ are both 2-connected.

Since r(U1) < min{r(v) : v ⊆ V2 \ U1} and l(U2) > max{l(v) : v ⊆ V2 \ U2},
by Corollary 1, graph G2 − U1 − U2 = G[U3] is 2-connected. Since r(û) =
min{r(v) : v ⊆ U3}, graph H = G[U3 \ {û}] is also 2-connected by Lemma 1.
Then by Claim 2, G2 − û is 2-connected. The 2-connectedness of G2 − ũ can be
proved symmetrically. Claim 3 is proved.

If û ∪= ũ, then we are done. Now, suppose û = ũ. In this case, every vertex
u ⊆ U3 \ {û} has l(u) < l(û) and r(u) > r(û). Then, G[U3] is a complete
graph. So, for any vertex u ⊆ U3, G[U3 \ {u}] is 2-connected, and thus G2 − u
is 2-connected by Claim 2. That is, any vertex in U3 − û can play the role of
u required by the theorem. Notice that there are at least two of such u, since
|U3| ⊂ 3 by Claim 1. The theorem is proved. �

Based on Theorem 1, we now present Algorithm 1 which returns a 2-connected
bipartition of a 4-connected interval graph.

Algorithm 1. A 3/2-approximation algorithm for IBC2P2 on 4-
connected interval graph

Input: A 4-connected interval graph G and a nonnegative vertex-weight function w.
Output: A 2-connected bipartition (V1, V2) of G.

1: Let v1 be the vertex with the maximum weight. Initialize V1 = {v1} and V2 = V \V1.
2: while w(V1) <

1
2
W , do

3: Let V0 = {u ∈ V2 : (V1∪{u}, V2\{u}) is a 2-connected bipartition of G}. Choose
u ∈ V0 such that w(u) = minv∈V0 w(v).

4: if w(u) < W − 2w(V1) then,
5: V1 = V1 ∪ {u}, V2 = V2 \ {u};
6: else
7: Return (V1, V2);
8: end if
9: end while
10: Return (V1, V2).

Theorem 2. For any 4-connected interval graph G = (V,E) with nonnegative
vertex weight function w, suppose v1 is the vertex with the maximum weight.
Algorithm 1 returns a 2-connected bipartition (V1, V2) of G with the following
property:
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(a) If w(v1) ⊂ 1
2W , then (V1, V2) is an optmal solution.

(b) If w(v1) <
1
2W , then min{w(V1), w(V2)} ⊂ W/3, where W = w(V ) is the

total weight of the graph.

Proof. When w(v1) ⊂W/2, the optimal solution is clearly (v1, V \ v1), thus (a)
is proved. In the following, suppose w(v1) < W/2.

First, notice that since v1 ∪⊆ V2 and |V0| ⊂ 2 by Theorem 1, the vertex u
chosen in Line 3 has at most the third largest weight. So, w(u) ◦ W/3.

The algorithm terminates either in Line 7 with w(V1) <
1
2W and vertex u cur-

rently chosen in Line 3 satisfies w(u) ⊂ W − 2w(V1), or in Line 10 with w(V1) ⊂
1
2W . In the former case, 1

2W > w(V1) ⊂ 1
2

(
W−w(u)

)
and w(V2) =W−w(V1) >

1
2W . In the latter case, by Line 4, the last vertex u chosen into V1 satisfies
w(u) < W−2w(V1\{u}) =W−2w(V1)+2w(u). So, 1

2W ◦ w(V1) <
1
2

(
W+w(u)

)

and thus 1
2W ⊂ w(V2) >

1
2

(
W − w(u)

)
. In both cases, min{w(V1), w(V2)} ⊂

1
2 (W − w(u)). By w(u) ◦W/3, we have min{w(V1), w(V2)} ⊂ W/3. �

As a corollary of Theorem 2, we have the following lower bound for β∪
2(G, 2).

Corollary 2. For any 4-connected interval graph G in which max{w(v) : v ⊆
V } ◦ W/2, β∪

2(G, 2) ⊂W/3.

Since W/2 is a trivial upper bound for β∪
2 (G, 2), Algorithm 1 is in fact a

constant approximation for the IBC2P2 problem on 4-connected interval graphs.

Corollary 3. Algorithm 1 is a polynomial-time 3
2 -approximation for the IBC2P2

problem on 4-connected interval graphs.

5 An FPTAS for the IBC2P2 Problem

In this section we assume that the vertex weight function w is integral, and give
an FPTAS for the IBC2P2 problem on 4-connected interval graphs.

5.1 A Pseudo-polynomial Time Algorithm

For the pseudo-polynomial time algorithm in this subsection, it suffices to require
the interval graph to be 2-connected instead of 4-connected.

Order the vertices of the interval graph as V = {v1, v2, . . . , vn} such that vi =
[li, ri] and 0 < l1 < l2 < · · · < ln. Let Ui = {vj : 1 ◦ j ◦ i} and Gi = G[Ui]. By
Corollary 1, Gi is 2-connected for i = 1, 2, . . . , n. The algorithm will iteratively
find 2-connected bipartitions of Gi based on 2-connected bipartitions of Gi−1. In
our algorithm, (≥, Ui) is also regarded as a 2-connected bipartition of Gi. Notice
that an optimal solution (V1, V2) must have min{w(V1), w(V2)} > 0, and thus
no part is empty. So, trivial partitions (≥, Ui) only play an auxiliary role in the
algorithm and will not affect the correctness of the algorithm.

The next lemma provides a condition under which a 2-connected bipartition
of Gi−1 can be extended to a 2-connected bipartition of Gi.
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Lemma 3. Suppose (U,Ui−1 \ U) is a 2-connected bipartition of Gi−1. Then
(U ≡ {vi}, Ui−1 \ U) is a 2-connected bipartition of Gi if and only if

(i) either U = ≥, or
(ii) |U | = 1 and l(vi) < r1(U), or
(iii) |U | ⊂ 2 and l(vi) < r2(U).

Proof. To prove the necessity, it suffices to show that G[U ≡{vi}] is 2-connected.
If Case (i) occurs, then G[U ≡ {vi}] = K1. If Case (ii) occurs, suppose U = {v}.
Since l(v) ◦ l(Ui−1) < l(vi) < r1(U) = r(v), vertex vi is adjacent with vertex
v, and thus G[U ≡ {vi}] = K2. In both cases, G[U ≡ {vi}] is 2-connected. If
Case (iii) occurs, by max{l(vr,2(U)), l(vr,1(U))} ◦ l(Ui−1) < l(vi) < r2(U) =
r(vr,2(U)) < r(vr,1(U)), we see that vertex vi is adjacent with both vr,2(U) and
vr,1(U). Hence G[U ≡ {vi}] is 2-connected by Lemma 2.

Conversely, if |U | ⊂ 1 and l(vi) > r1(U), then vi is an isolated vertex of
G[U ≡{vi}]. If |U | ⊂ 2 and r2(U) < l(vi) < r1(U), then vr,1(U) is the only vertex
of U which is adjacent with vi, and thus G[U ≡ {vi}]− vr,1(U) is disconnected.
In any case, G[U ≡ {vi}] is not 2-connected. �

By Lemma 3, we can iteratively generate all possible 2-connected bipartitions
of Gi based on those 2-connected bipartitions of Gi−1. The optimal solution can
be found when the iteration reaches Gn. Notice that such an operation needs
exponential time. However, since we only want to find one optimal bipartition,
it is unnecessary to enumerate all of them. The following is our strategy.

For a 2-connected bipartition (V1, V2) of Gi, we only need to record the six
parameters (r1(V1), r2(V1), w(V1), r1(V2), r2(V2), w(V2)). Since w(V1) +w(V2) =
w(Ui) and max{r1(V1), r2(V2)} = r(Ui), six parameters can be further reduced
to four parameters. Define a configuration of a 2-connected bipartition (V1, V2)
of Gi as a quadruple of integers (x1, x2, x3, y), where x1 = r1(V1), x2 = r2(V1),
x3 = r2(V2), and y = w(V1). This notion implicitly assumes that r1(V2) = r(Ui)
and w(V2) = w(Ui) − y. If |V1| = 0, then x1 = x2 = 0. If |V1| = 1, then
x1 ∪= 0, and x2 = 0. A configuration (x1, x2, x3, y) is feasible for Gi if there

exists a 2-connected bipartition (V
(i)
1 , V

(i)
2 ) of Gi whose configuration is exactly

(x1, x2, x3, y).
For the sake of the simplicity, in the following we only show how to compute

β∪
2(G, 2). If an optimal solution is required instead of just the optimal value, then

for each configuration, a corresponding set V1 is recorded. The time complexity
remains the same but more space is needed. Notice that there might be different
2-connected bipartitions corresponding to a same configuration, but only one of
them is stored. This is why the time complexity can be lowered.

The algorithm is presented in Algorithm 2. Initially, set Q1 = {(0, 0, 0, 0)} in
Line 1, which is the configuration of the only 2-connected bipartition (≥, {v1})
of G1. Each configuration (x1, x2, x3, y) ⊆ Qi−1 corresponds to a 2-connected
bipartition (V1, V2) of Gi−1. If G[V2≡{vi}] is 2-connected, then the configuration
corresponding to (V1, V2 ≡ {vi}) is inserted into Qi in Line 6. If G[V1 ≡ {vi}] is
2-connected, then the configuration corresponding to (V1 ≡ {vi}, V2) or (V2, V1 ≡
{vi}) is inserted into Qi in Line 10 or in Line 12, respectively, depending on
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Algorithm 2. WIBC2P2

Input: A 2-connected interval graph G with vertex set V = {vi = [li, ri] : 1 ≤ i ≤ n}
such that 0 < l1 < l2 < . . . < ln.
Output: β∗

2 (G, 2).

1: Q1 ← {(0, 0, 0, 0)}.
2: for i = 2 to n, do
3: Qi ← ∅;
4: for each (x1, x2, x3, y) ∈ Qi−1, do
5: if [l(vi) < x3] or [x3 = 0 and l(vi) < r(Ui−1)], then
6: insert (x1, x2,min{max{r(vi), x3}, r(Ui−1)}, y) into Qi;
7: end if
8: if [l(vi) < x2] or [x2 = 0 and l(vi) < x1] or [x1 = 0], then
9: if r(vi) < r(Ui−1), then
10: insert (max{x1, r(vi)},max{min{x1, r(vi)}, x2}, x3, y+w(vi)) into Qi;
11: else
12: insert (r(Ui−1), x3, x1, w(Ui)− y − w(vi)) into Qi;
13: end if
14: end if
15: end for
16: end for
17: return the maximum of min{y,W − y} for all (x1, x2, x3, y) in Qn.

whether r(vi) < r(Ui−1) or r(vi) > r(Ui−1) (recall that the two parts are ordered
such that the second part has the rightmost endpoint r(Ui)).

Theorem 3. Algorithm 2 computes the optimal value of the IBC2P2 problem
in O(n4W ) time.

Proof. Suppose Qi−1 has enumerated all feasible configurations of Gi−1. We
shall show that all feasible configurations of Gi can be inserted into Qi by Al-

gorithm 2. Suppose (V
(i)
1 , V

(i)
2 ) is a 2-connected bipartition of Gi. In the case

that vi ⊆ V
(i)
1 , let V

(i−1)
1 = V

(i)
1 \ {vi} and V

(i−1)
2 = V

(i)
2 . If G[V

(i−1)
1 ] has a

cut vertex vj , let R be the rightmost component of G[V
(i−1)
1 ] − vj and let L

be the remaining components of G[V
(i−1)
1 ] − vj . Then r(L) < l(R) < l(vi). It

follows that vi is not adjacent with any vertex in L, and thus vj is also a cut

vertex of G[V
(i)
1 ], contradicting that G[V

(i)
1 ] is 2-connected. So (V

(i−1)
1 , V

(i−1)
2 )

is a 2-connected bipartition of Gi−1, whose configuration is in Qi−1 by the induc-
tion hypothesis. It should be noted that such a configuration may perhaps come

from a 2-connected bipartition of Gi−1 which is different from (V
(i−1)
1 , V

(i−1)
2 )

but has the same configuration with (V
(i−1)
1 , V

(i−1)
2 ). Nevertheless, when such

a configuration is considered in Line 4 of Algorithm 2, by Lemma 3, the con-

figuration corresponding to (V
(i)
1 , V

(i)
2 ) is inserted into Qi. The case vi ⊆ V

(i)
2

can be argued similarly. Iteratively using this argument for i = 1, 2, . . . , n, Qn

enumerates all feasible configurations of Gn = G, and thus the value output by
Line 17 is β∪

2(G, 2).
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The configuration set Qi can be implemented by an n×n×n×W table, and
the computation of Qi takes |Qi−1| = O(n3W ) time. Since there are n iterations,
the total time complexity is O(n4W ). �

5.2 A Fully Polynomial Time Approximation Scheme

In this section, we develop an FPTAS for IBC2P2 on 4-connected interval graphs.
By Theorem 2 (a), if max{w(v) : v ⊆ V } ⊂ 1

2w(V ), then the problem can be
solved trivially. Hence, assume max{w(v) : v ⊆ V } ◦W/2 in the following.

The FPTAS is obtained by the classic scaling method. For the completeness
of this paper, and in order to get some feeling about the importance of a lower
bound for β∪

2(G, k), we include the proof in the following.
Scaling down the weight function w by a factor f = ρW/(3n), where ρ is

a constant, we obtain an instance of IBC2P2 problem on interval graph G∈ =
(V,E,w∈), where w∈(v) = ∀w(v)/f∩ for all v ⊆ V .

Lemma 4. Let (V ∈
1 , V

∈
2) be the optimal solution of instance G∈ output by Algo-

rithm 2. Then, min{w(V ∈
1), w(V

∈
2 )} ⊂ (1− ρ)β∪

2 (G, 2).

Proof. Let (V1, V2) be an optimal solution of G. Then β∪
2 (G, 2) = min{w(V1),

w(V2)}. Since (V ∈
1 , V

∈
2) is an optimal solution of G∈, we have

min{w∈(V1), w
∈(V2)} ◦ min{w∈(V ∈

1), w
∈(V ∈

2)}.

By the definition of w∈, for i = 1, 2, we have

fw∈(Vi) ◦ w(Vi) < fw∈(Vi) + f |Vi| < fw∈(Vi) + fn.

So,

min{w(V ∈
1 ), w(V

∈
2 )} ⊂ f min{w∈(V ∈

1), w
∈(V ∈

2)} ⊂ f min{w∈(V1), w
∈(V2)}

> min{w(V1), w(V2)} − nf = β∪
2 (G, 2)− nf.

By Corollary 2, β∪
2(G, 2) ⊂ W/3. So,

β∪
2(G, 2)

min{w(V ∈
1 ), w(V

∈
2 )}

<
β∪
2 (G, 2)

β∪
2(G, 2)− nf

◦ 1

1− (nf)/(W/3)
=

1

1− ρ
.

The lemma is proved. �

Theorem 4. Suppose G = (V,E,w) is a 4-connected interval graph and w is an
integral vertex weight function. For any ε > 0, there is a (1 + ε)-approximation
algorithm for the IBC2P2 problem on G which runs in time O((1 + 1

Σ )n
5).

Proof. For any ε > 0, let ρ = Σ
1+Σ . By lemma 4, the approximation ratio is

1
1−Ω = 1 + ε. Let W ∈ =

∑
v∞V w

∈(v). Then W ∈ ◦ W/f = 3n/ρ. By Theorem 3,

the time complexity is O(n4W ∈) = O((1 + 1
Σ )n

5). �
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6 Conclusion

In this paper, we studied the balanced 2-connected bipartition problem (BC2P2).
A pseudo-polynomial time algorithm, a constant-approximation algorithm, and
an FPTAS is given for BC2P2 on interval graphs, where the first one requires the
graph to be 2-connected, and the latter two require the graph to be 4-connected.
Recently, we have found a way to generalize this work to BC2Pk for k > 2. Due
to the limited space, the generalization will be given in a future paper.
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Abstract. We study the approximation of minimum travel time paths
in time dependent networks. The travel time on each link of the network
is a piecewise linear function of the departure time from the start node
of the link. The objective is to find the minimum travel time to a desti-
nation node d, for all possible departure times at source node s. Dehne et
al. proposed an exact output-sensitive algorithm for this problem [6, 7]
that improves, in most cases, upon the existing algorithms. They also
provide an approximation algorithm. In [10, 11], Foschini et al. show
that this problem has super-polynomial complexity and present an Θ–
approximation1 algorithm that runs O(α

γ
log(Tmax

Tmin
) log( L

αγTmin
)) short-

est path computations, where Ω is the total number of linear pieces in
travel time functions on links, L is the horizontal span of the travel time
function and Tmin and Tmax are the minimum and maximum travel time
values, respectively.

In this paper, we present two Θ–approximation algorithms that im-
prove upon Foschini et al.’s result. Our first algorithm runsO(α

γ
(log(Tmax

Tmin
)

+ log( L
αTmin

))) shortest path computations at fixed departure times. In
our second algorithm, we reduce the dependency on L, by using only
O(Ω( 1

γ
log(Tmax

Tmin
) + log( L

αγTmin
))) total shortest path computations.

1 Introduction

Static shortest path computations arise naturally in areas such as Navigation
Systems, Network Routing, Robotics, Social Networks, and VLSI design. How-
ever, in many applications, the travel time on links are dynamically changing
over time. In this case, the minimum travel time from source s to destination
d depends on the departure time at s. E.g., a departure time before, or after,
rush hour may lead to a reduced travel time when compared to rush hour travel.
The problem of finding shortest paths to d for all possible departure times at
s is referred to as Time-Dependent Shortest Path problem (TDSP for short).
The first variant of TDSP (referred to also as “earliest arrival time” and “min-
imum travel time” problem in some texts) was introduced in 1966 by Cooke
and Halsey [3]. Their result is obtained by discretizing time. To capture the

1 We denote by Θ–approximation any algorithm whose quality is less than or equal to
(1 + Θ) · OPT , where OPT is the optimal achievable quality.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 453–464, 2014.
c∞ Springer International Publishing Switzerland 2014
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dynamically changing nature of travel time on links in many applications, most
recent results consider continuous time. E.g., with deteriorating road conditions,
say due to snow fall, travel along a road may become progressively harder, i.e.,
slower. Later, snow may melt or be removed. Piece-wise linear functions are com-
monly used either to approximate non-linear travel time functions, or to model
link travel times when they are changing linearly during specific periods of time.
Let Ωmax be the maximum number of linear pieces on link travel time functions.
A solution to TDSP, for a specified departure time, can be obtained by applying
a simple modification to Dijkstra’s shortest path algorithm [8], using Fredman
and Tarjan’s implementation [12]. Using this approach on a network G(V,E),
with vertices, V , and links (edges), E, the minimum travel time from s to d at a
given time instance is computed in O(|E| log Ωmax + |V | log |V |) time [2]. Here,
logΩmax in the first term is the time for a binary search to evaluate arrival times
on link functions (to find the right linear piece in piecewise linear functions).

In time-dependent networks, the travel time data could either be obtained
in real-time by traffic sensors, polling, or using historic data gathered over a
period of time. Some navigation systems companies collect such information on
the devices and upload it to their servers when maps are updated. For a given
starting time at s, the minimum travel time when real-time data is available is
computed by taking a snapshot of the network and running a static shortest path
algorithm. Conversely, for link e = (u, v) of the network, historic data is usually
presented by a piecewise linear function Te(t) that returns the minimum travel
time to v for any departure time t at u. Unlike in time-dependent networks with
real-time data, in this case, the minimum travel time for all links (u, v) → E
depends on the departure time from u and would be obtained using link arrival
time functions.

With the advent of sensors, cameras, cell-phones, navigation systems, and
other devices that collect traffic data, users are becoming increasingly interested
and dependent on route planning that is time-dependent. Real-time traffic in-
formation might be available and sometimes navigation systems utilize these to
compute fastest routes. However, computed routes often need to be recomputed
and users may have to follow redirections to accommodate changes occurring
during their trip. Traffic data though exhibit typically predictable pattern based
on historic data. For example, rush hour traffic would mostly follow a similar
pattern for specific weekdays, e.g., Mondays, in an alike weather condition. In
such cases, time dependent shortest path can be computed that already takes
the nature of expected congestion etc. into consideration.

Additionally, using historic travel time data, one could obtain the minimum
travel time function for each link of the network, which then can be used to
compute for all possible departure times at s the minimum travel time to d.
For example, in Navigation Systems, minimum travel time functions can help
for trip planning by letting users pick a time that suits their schedule. It also
enables users to examine the travel times during trip planning, choose an optimal
departure time, and obtain a suitable route.
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Fig. 1. A time-dependent network and link arrival time functions

Problem Definition. The TDSP problem is formally defined as follows: Let
G(E, V ) be a graph with edge set E and node set V . Each edge e = (u, v) → E is
assigned a non-decreasing piece-wise linear function Ae(t) denoting the arrival
time at v for a given departure time t at u. The travel time function on each
edge e denoted by Te(t) is Ae(t)− t. Given a source node s and destination node
d, the goal is to approximate As,d(t) which returns the earliest arrival time at d
for any departure time t at s. This is equivalent to approximating the minimum
travel time function, i.e., Ts,d(t) = As,d(t) − t. We say a function T →

s,d(t) is an
σ–approximation of Ts,d(t) if |Ts,d(t)− T →

s,d(t)| ⊂ σ · Ts,d(t) for all t.
Solving TDSP for all possible times in its general form, where waiting at

nodes is not allowed, is known to be NP–hard [17]. In 2004, Dean [5] conjectured
that TDSP when waiting at nodes is allowed has super-polynomial complexity.
Foschini et al. [11] proved this conjecture. In [16], it has been shown that any
non-FIFO network that allows unrestricted waiting on nodes can be converted
to a FIFO network with zero waiting on nodes. The FIFO property on links
implies that on each link (u, v), a later departure time at u results in a later
(or equal) arrival time at v. In other words, link minimum travel time functions
can not have a slope less than −1. Since the FIFO property appears to be a
natural assumption holding in many applications, it is a common assumption in
the literature (see e.g., [5, 11, 13–15]) and one that is also used in this paper.

Figure 1 depicts an instance of a time-dependent network and link arrival
time functions. Let p1 = ≡s, v, d∈, p2 = ≡s, v, w, d∈, and p3 = ≡s, w, d∈ be the three
possible paths from s to d. Then, the arrival time functions on p1, p2, and p3 are
Ap1 = A(v,d)(A(s,v)), Ap2 = A(w,d)(A(v,w)(A(s,v))), and Ap3 = A(w,d)(A(s,w)),
respectively. Figure 2(a) shows the arrival time function on each path as well as
the earliest arrival time function from s to d, As,d. For the same network, travel
time functions on paths p1, p2, and p3 are Tp1 = Ap1 − t, Tp2 = Ap2 − t, and
Tp3 = Ap3 − t, respectively. The travel time function on each path as well as the
minimum travel time function from s to d, Ts,d, is shown in Figure 2(b).
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Fig. 2. a) The earliest arrival time function for the network shown in Figure 1. b) The
minimum travel time function for the network shown in Figure 1.

Related Work. Our goal is to find the minimum travel time to d for all possible
departure times t at s on a network, where the travel time on each link is a piece-
wise linear FIFO function of the departure time from s, i.e., solve TDSP.

Orda and Rom [16] proposed an algorithm for TDSP using a modified version
of Bellman-Ford’s label-correcting algorithm for shortest paths [1]. For a FIFO
network with piece-wise linear link functions, the time complexity of their algo-
rithm is O(Fmax|V ||E|), where Fmax is the maximum number of linear pieces on
the minimum travel time function from s to any node in the network. Dean [5]
proposed the first label-setting algorithm (building on Dijkstra’s algorithm [8]
for the static shortest path problem) that performs a single chronological scan
through time and runs, an approach similar to that used in solutions to paramet-
ric shortest path problems to establish output functions. The time complexity
of this algorithm is O(|E|F ≥ log |V |), where F ≥ is the total number of pieces in
all output functions.

Ding et al. [9] presented a simpler label-setting algorithm for TDSP that
scans a sequence of time steps. As analyzed in [6], the total number of time
steps depends on the values of the arrival time functions. Therefore, the time
complexity of their algorithm is O(α(|E|+ |V | log |V |)). Note that α depends on
travel time values which can be arbitrarily large. See [6] for an example of an
instance, where α is independent on |E|, |V | and Ω, and can be arbitrarily large.

Dehne et al. [7] proposed an improved label-setting algorithm to solve TDSP
that exploits the structural properties of the problem as well as combinato-
rial properties of the travel time functions. Using these properties, they could
discard unnecessary minimum travel time function computations for all interme-
diate nodes of the network and focus on finding the minimum travel time func-
tion for just the destination node, and only at crucial time-points (i.e., function
breakpoints). Their algorithm for solving TDSP runs in time O((Fd + Ω)(|E| +
|V | log |V |)), where Fd is the output size (number of linear pieces needed to rep-
resent the minimum travel time function from s to d) and Ω is the input size
(total number of linear pieces in all link travel time functions).
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Recently, Foschini et al. [11] proved that the minimum travel time function
could have super-polynomial complexity (i.e., O(nΘ(log n))). They also presented
an algorithm that uses kinetic data structures and holds a set of certificates
that are linear functions of t that guarantee the correctness of the shortest path
tree. They also keep a priority queue of events (certificate failure times) and
remove an event and update the corresponding certificates. Their algorithm has
time-complexity O((Ω + Fmax|E|) log2 |V |), where Fmax is the maximum of the
complexity of travel time functions from s to each nodes in the network.

All algorithms mentioned above provide exact results. Dehne et al.’s algorithm
outperforms others in most cases and provides a real output sensitive algorithm
whose time complexity depends on the complexity of output function, i.e., Fd.
The complexity of a minimum travel time function from s to d could be super-
polynomial, and in most cases, link travel time functions are approximation of
reality. Therefore, efficient approximation algorithms with customizable quality
of result are both acceptable and often favorable for TDSP. In the following, we
provide an overview of existing approximation algorithms.

Dehne et al. [6] presented an additive approximation algorithm for TDSP
that approximates the earliest arrival time function from s to d. Their algorithm
is based on running a reverse shortest path algorithm at arrival time values
at d that are σ apart from each other. A reverse shortest path is obtained by
running Dijkstra’s algorithm on graph Gr obtained by reversing all links of G
and inverting all link arrival time functions [4]. This returns, for each arrival time
at d, the latest departure time from s. The function obtained by connecting all
such sample points is an approximation of the earliest arrival time function from
s to d. Their algorithm runs in O(ΣΩ (|E| + |V | log |V |)) time, where β is the
vertical span of the earliest arrival time function from s to d.

Foschini et al. [11] subsequently proposed an σ–approximation algorithm for
TDSP that approximates the minimum travel time function from s to d. Note
that, unlike earliest arrival time functions, it is not possible to run a reverse
shortest path algorithm on minimum travel time functions directly to obtain,
for a given travel time from s to d, the starting time at s. This is because it is
not possible to evaluate the travel time on each link without knowing the arrival
time at d. Therefore, they run a combination of forward (standard) shortest path
computations on travel time functions and reverse shortest path computations
on arrival time functions to obtain the sample points. Their algorithm requires
O(νΩ log(

Tmax

Tmin
) log( L

νΩTmin
)) shortest path computations, where L is the horizon-

tal span of the travel time function from s to d. Tmin and Tmax are the minimum
and maximum travel time values of the function, respectively (see Section 2.1
for more details).

Contributions. We propose new algorithms that improve upon Foschini et
al.’s algorithms by reducing the number of shortest path computations. Our first
algorithm runs shortest path computations at fixed departure times, chosen so
that the relative ratio is fixed to (1+σ) for any consecutive pair of time instances.
The total number of shortest path computations required by our algorithm is
O(νΩ (log(

Tmax

Tmin
) + log( L

νTmin
))) (“+” instead of “·”in the complexity). Next, we
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Fig. 3. The V –points and the X–points of Ts,d for the network shown in Figure 1

further reduce shortest path computations by increasing the horizontal distance
between sample points as the slope function converges to zero. The total number
of shortest path computations required for this approach is O(Ω(1Ω log(

Tmax

Tmin
) +

log( L
νΩTmin

))) (1Ω factor is removed from the log( L
νTmin

) term).

Organization. Next, in Section 2, we provide required details of previous al-
gorithms and then present our solutions. Finally, in Section 3 we conclude the
paper.

2 Solutions

In this section, we first sketch the previous approximation approaches by Dehne
et al. [7] and Foschini et al. (Section 2.1). Then, we propose new σ–approximation
algorithms that improve upon the running time of Foschini et al.’s algorithm
(Section 2.2 and 2.3).

2.1 Previous Algorithms

Dehne et al. [7] showed that Ts,d(t) is composed of two types of breakpoints: V–
points and X–points. V –points originate from breakpoints in link functions and
X–points are the points at which a shortest path from s to d switches to a new
path (Figure 3). They also showed that between any consecutive pair of V –points
the sub-function is concave and has slope not less than −1. Let Ω be the total
number of breakpoints on all link functions. The number of V –points in Ts,d(t)
is at most O(Ω). Thus, in order to approximate Ts,d(t), it suffices to approximate
O(Ω) concave sub-functions. Let v→ = (t→, Ts,d(t

→)) and v→→ = (t→→, Ts,d(t
→→)) be an

arbitrary pair of consecutive V –points. We denote the sub-function of Ts,d(t)
between v→ and v→→ by Ts,d[v

→, v→→]. Because of the concavity of Ts,d[v
→, v→→], the

minimum value, θmin, is min(Ts,d(t
→), Ts,d(t

→→)) and its maximum value, θmax,
is 2Ts,d((t

→ + t→→)/2). Let Tmin and Tmax be the minimum θmin and maximum
θmax among all consecutive V –points, respectively. The general approach used by
Foschini et al. to approximate Ts,d[v

→, v→→] is to intersect Ts,d(t) with the horizontal
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lines y = (1 + σ)kTmin for each k ≥ 0 such that (1 + σ)kTmin ⊂ Tmax. This
generates ∪ 2

Ω log(Tmax/Tmin) sample points. Connecting consecutive sample
points with line-segments results in an σ-approximation of Ts,d[v

→, v→→].
The above approach requires O(νΩ log(

Tmax

Tmin
)) reverse shortest path compu-

tations on Ts,d(t). However, reverse shortest path computation is only feasible
for As,d(t), not for Ts,d(t). Also note that an σ–approximation of As,d(t) does
not necessarily result in an σ–approximation for Ts,d(t). Foschini et al. resolved
the issue by running a combination of forward and reverse shortest path com-
putations. They first partition the range of Ts,d[v

→, v→→] using horizontal lines
y = (1 + σ)i/2Tmin for i ⊂ 2 log(Tmax/Tmin)/ log(1 + σ). Starting from t = t→, on
parts of Ts,d[v

→, v→→] with slope at least 1, they compute a reverse shortest path
for As,d(t) = t+ Ts,d(t) ·

◦
1 + σ, then set t to the resulting starting time value.

They show that this approach performs a constant number of reverse shortest
path computations in each horizontal partition of the range of Ts,d[v

→, v→→]. There-
fore, the value of Ts,d(t) at consecutive sample points differ by a factor of 1 + σ.
Linearly interpolating between the sample points obtained using the above ap-
proach provides an σ− approximation of Ts,d[v

→, v→→] for the parts with slope at
least 1. In total, their approach performs O(νΩ log(

Tmax

Tmin
)) reverse shortest path

computation on As,d(t).
They use a different approach to find sample points on parts of Ts,d[v

→, v→→] with
slope at most 1. They perform bisection with forward shortest path computations
on Ts,d(t) until the approximation error between consecutive sample points is at
most 1+σ. They show that their approach requires O(νΩ log(

Tmax

Tmin
) log( L

νΩTmin
))

forward shortest path computations, where L is the horizontal span of Ts,d(t).
The reader is referred to [11] for more details.

2.2 First Improved Algorithm

In this section, we present an improved algorithm, referred to as Aprx–A, which
reduces the number of shortest path probes significantly. For two consecutive
V –points, v→ = (t→, Ts,d(t

→)) and v→→ = (t→→, Ts,d(t
→→)), we approximate Ts,d[v

→, v̄] as
in [11] where v̄ = (t̄, Ts,d(t̄)) is the first point on Ts,d[v

→, v→→], in increasing order
of time, whose slope is less than or equal to 1. However, on Ts,d[v̄, v

→→], we use a
different approach to obtain sample points. Our new strategy is illustrated next.

Let l̄ be the line, with slope 1, that goes through v̄, and l→→ be the line, with
slope −1, that goes through v→→ (Figure 4). Starting from v̄, in the ith iteration,
we compute Ts,d(t̄i) where t̄i is the starting time at s that corresponds to the
intersection of l̄ with the horizontal line y = (1 + σ)iTs,d(t̄). The operation
terminates at the smallest k for which Ts,d(t̄k) ≥ Ts,d(t̄k+1). Similarly, starting
from v→→, in the jth iteration, we compute Ts,d(t

→→
j ) where t

→→
j is the starting time

at s that corresponds to the intersection of l→→ with line y = (1+ σ)jTs,d(t
→→). The

operation terminates at the smallest z at which Ts,d(t
→→
z ) ≥ Ts,d(t

→→
z+1). We then

connect the set of sample points obtained using the above approach, in increasing
order of the starting times (see Figure 4). The following theorem states that this
approach results in an σ–approximation of Ts,d(t).
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Fig. 4. Sample point placement of Algorithm Aprx–A

Theorem 1. Algorithm Aprx–A is an σ-approximation of Ts,d(t).

Proof. Let t̄i−1 and t̄i be the starting times corresponding to two consecutive
sample points of Algorithm Aprx–A. Let v̄i−1 = (t̄i−1, Ts,d(t̄i−1)) be the i− 1th

sample point and l̄i−1 be the line that goes through v̄ and v̄i−1. Also, let vc =
(t̄i, Ts,d(t̄i−1)), and vd be the intersection point of the lines l̄i−1 and x = t̄i. We
define vertical distances A,B,C,D, and Y as depicted in Figure 5. We show that
between t̄i−1 and t̄i, the approximation ratio is at most 1 + σ. We have:

m :=
B

D
=

A

C
=

Slope(l̄)

Slope(l̄i−1)
(1)

B ∪ D, A ∪ C ∈ m ∪ 1 (2)

D ∪ C (3)

B + Y

A + Y
= 1 + Ω (4)

Then:

B + Y

A+ Y
−

D + Y

C + Y
=

BC + BY + CY + Y 2 − DA − DY − AY − Y 2

(A + Y )(C + Y )

(1)
=

(B + C − D − A)Y

(A + Y )(C + Y )

(1)
=

(mD + C − D − mC)Y

(A + Y )(C + Y )

=
((m − 1)D − (m − 1)C)Y

(A + Y )(C + Y )

(2)(3)

∪ 0

∈
B + Y

A + Y
−

D + Y

C + Y
∪ 0

(4)∈
D + Y

C + Y
⊆ 1 + Ω (5)

Since Ts,d(t) is a concave function, it lies inside the triangle ⊆(v̄vcvd). By Equa-
tion 5, the error ratio between t̄i−1 and t̄i is at most 1+ σ. Due to the symmetry
of l̄ and l→→, a similar argument can be made for sample points along l→→. There-
fore, Algorithm Aprx–A provides an σ–approximation of Ts,d(t) which proves the
theorem. �
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D

Fig. 5. A sample step of Algorithm Aprx–A

Theorem 2. Approximation Algorithm Aprx–A requires
O(νΩ (log(

Tmax

Tmin
) + log( L

νTmin
)) shortest path computations.

Proof. Each V –point on Ts,d(t) corresponds to a breakpoint on a link travel time
function. Therefore, the number of V –points is O(Ω). On parts of Ts,d(t) that
have slope at least 1, we run a reverse Dijkstra. In [11], it has been shown that
there are O(1Ω log(

Tmax

Tmin
))) such points for any two consecutive V –points. Since

l̄ and l→→ have slopes 1 and −1, respectively, the vertical span of Ts,d(t) between
v̄ and v→→ is at most 2L, where L is the horizontal distance between v̄ and v→→.
Therefore, our improved method would placeO(1Ω log(

L
Tmin

)) sample points along
each line for consecutive V –points, v→ and v→→. Let Li be the horizontal distance
between the ith pair of V –points. Then, the total horizontal span of Ts,d(t), L, is∑ν

i=1 Li. The above results can be extended to L using the log-sum inequality,
∑ν

i=1 log
Li

Tmin
⊂ Ω log L

νTmin
. As a result, the total number of shortest path

computations by Algorithm Aprx–A is O(νΩ (log(
Tmax

Tmin
) + log( L

νTmin
)). �

2.3 Further Improvement

In this section, we present a second algorithm, Aprx–B, for approximating Ts,d(t).
Similar to Aprx–A, Aprx–B approximates the travel time function between every
consecutive pair of V –points. Now, we replace in algorithm Aprx–A the sam-
ple point placement on Ts,d(t) when the slope is less than or equal to 1. Let
v̄ = (t̄, Ts,d(t̄)) be the first point on Ts,d(t), in increasing order of time, whose
slope is less than or equal to 1. We present a new approach for finding sample
points of an σ-approximation for Ts,d[v̄, v

→→]. Here, our general approach is to
partition the range of Ts,d[v̄, v

→→] and find at least one sample point in each par-
tition. We set the ith horizontal partitioning line to y = (1 + σ)i/2Ts,d(Tmin), so
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that the maximum error between any two consecutive sample points is at most
(1 + σ)Ts,d(Tmin).

We split Ts,d[v̄, v
→→] into two sections: the parts of the function with slopes

between 0 and 1; and the remaining parts with slopes between −1 and 0. We now
illustrate our approach to find sample points on the first section of Ts,d[v̄, v

→→]. Let
p̄0 = v̄ be the initial sample point and l̄1 be the line that goes through p̄0 with
slope 1. Let p̄0 be in the rth partition of the range. Let t̄1 be the time instance
that corresponds to the intersection of l̄1 with the (r+1)st partitioning line, i.e.,
y = (1 + σ)(r+1)/2Ts,d(Tmin). We then obtain sample point p̄1 = (t̄1, Ts,d(t̄1)) by
running a forward Dijkstra at time t̄1. Now, let p̄i−1 be in the kth partition of
the range and l̄i be the line segment that goes through p̄i−2 and p̄i−1. Let t̄i
be the time instance that corresponds to the intersection of l̄i with the k + 1st

partitioning line, i.e., y = (1+ σ)(k+1)/2Ts,d(Tmin). We then obtain sample point
p̄i = (t̄i, Ts,d(t̄i)) by running a forward Dijkstra at time t̄i. The process stops at
step j when Ts,d(t̄j−1) > Ts,d(t̄j). To find sample points on parts of Ts,d[v̄, v

→→]
with slope between−1 and 0, we run a process similar to above, but with p→→0 = v→→.
Let l→→1 be the line that goes through p→→0 with slope −1. Figure 6 depicts steps of
Aprx–B.

p̄0 = v̄

v→→

t̄ t→→

l̄1

l→→1

Ts,d

t

Ts,d(θmin)

(1 + σ)1/2Ts,d(θmin)

t̄1 t̄2 t→→1t→→2t̄3

(1 + σ)Ts,d(θmin)

(1 + σ)3/2Ts,d(θmin)

(1 + σ)2Ts,d(θmin)

(1 + σ)5/2Ts,d(θmin)
l̄2 l̄3

l→→2

rth partition

(r + 1)st partitioning line

Fig. 6. Sample point placement of Algorithm Aprx–B

Theorem 3. Algorithm Aprx–B is an σ-approximation of Ts,d(t).

Proof. Proof is omitted due to space constraint.

Theorem 4. Approximation Algorithm Aprx–B requires
O(Ω(1Ω log(

Tmax

Tmin
) + log( L

νΩTmin
)) shortest path computations.

Proof. As mentioned earlier, between any two consecutive V−points of Ts,d(t),
namely v→ and v→→, Algorithm Aprx–B would place at least a sample point in
each horizontal partition of the function range. The total number of partitions
of the function range is O(νΩ log(

Tmax

Tmin
)). However, the algorithm may place extra

sample points in each partition. We show below that, in total, the algorithm may
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place O(Ω log( L
νΩTmin

)) extra sample points in existing partitions. Between v→ and

v→→, the vertical length of the ith partition is

(1 + Ω)i/2Ts,d(θmin) − (1 + Ω)(i−1)/2Ts,d(θmin)

= ((1 + Ω)1/2 − 1)(1 + Ω)(i−1)/2Ts,d(θmin),

where θmin is the minimum travel time value between v→ and v→→. This increases
for higher values of i. Therefore, at the ith step of the algorithm, if pi is in the
same partition as pi−1, then slope(li) <

1
2slope(li−1). The algorithm terminates

if slope(li) <
ΩTmin

L since in that case, the maximum error value would be less
than σTmin. So, the total number of extra sample points can be determined as
follows:

1

2k
<

ΩTmin

L
∈ log 2k > log

L
ΩTmin

∈ k > log
L

ΩTmin

Let Li be the horizontal distance between the ith pair of consecutive V –points
and L =

∑ν
i=1 Li. The above result can be extended to L using the log-sum

inequality,
∑ν

i=1 log
L

ΩTmin
⊂ Ω log L

νΩTmin
. �

3 Conclusions

We studied the approximation of the time dependent shortest path problem
(TDSP), where travel times on links are piecewise linear FIFO functions. We
proposed two σ-approximation algorithms (referred to as Aprx–A and Aprx–
B, respectively) which improve upon the existing approximation algorithm for
TDSP by Foschini et al. [11]. The algorithms presented here use simple data
structures, are easy to implement and employ as key building block the modifi-
cation of Dijkstra’s algorithm studied in [4].

In [7], it has been shown that, within the same time complexity, for a given
departure time at s, not only can one compute the minimum travel time to d, but
it is also possible to obtain the slope of the function at that time instance. This
could be used in Algorithm Aprx–B as a heuristic improvement to reduce the
number of computations by using the function tangent instead of lines connecting
consecutive sample points. However, it would not change the worst-case time
bound.
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Abstract. We consider the problem of approximate sorting of a data
stream (in one pass) with limited internal storage where the goal is not
to rearrange data but to output a permutation that reflects the ordering
of the elements of the data stream as closely as possible. Our main ob-
jective is to study the relationship between the quality of the sorting and
the amount of available storage. To measure quality, we use permutation
distortion metrics, namely the Kendall tau and Chebyshev metrics, as
well as mutual information, between the output permutation and the
true ordering of data elements. We provide bounds on the performance
of algorithms with limited storage and present a simple algorithm that
asymptotically requires a constant factor as much storage as an opti-
mal algorithm in terms of mutual information and average Kendall tau
distortion.

1 Introduction

In many applications, such as sensor networks, finance, and web applications,
data may be available as a transient stream that is not permanently accessible [1].
Often, in these applications, the large volume of data or time constraints prevent
storage of the whole stream before processing. Even if data is locally stored,
certain storage media only allow sequential access in a time-efficient manner.

In this paper, we study the fundamental problem of sorting a data stream
when internal storage is limited. As the nature of the problem makes rearrang-
ing the data into a sorted stream impossible, by sorting we mean determining
the ordering of the elements of the stream. In our model, the amount of available
internal storage limits the number of elements of the data stream that can be
stored internally. Furthermore, only elements in internal storage can be com-
pared with each other. Lack of storage capable of holding the whole data stream
implies that sorting must be approximate; the goal is to produce a permutation
that represents the ordering of the elements of the data stream as faithfully as
possible. As in [1], we consider algorithms that make only one pass over the data
stream.

To evaluate performance, we measure the distortion between the output per-
mutation and the permutation representing the true ordering of the data. There
are many possible distortion measures on permutations [6], among which we con-
sider the Kendall tau metric and the Chebyshev metric. The Kendall tau met-
ric can be viewed as the number of mistakes made by the algorithm, while the

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 465–476, 2014.
c∞ Springer International Publishing Switzerland 2014
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Chebyshev metric represents the maximum error in the rank of any element. An-
other quality measure considered in the paper is the mutual information between
the true permutation and the output permutation, which reflects the amount of
relevant information present in the output.

We first provide universal bounds on the performance of algorithms with lim-
ited storage, namely an upper bound on mutual information, and lower bounds
on distortion, between the true permutation and the output. Further, we present
a simple algorithm that is asymptotically optimal in terms of mutual information
and asymptotically requires a constant factor as much storage as any algorithm
with the same average Kendall tau distortion. For the Chebyshev distortion, the
algorithm is also asymptotically constant-factor-optimal, provided that normal-
ized distortion, to be defined later, is bounded away from 0.

The problem of sorting a data stream with limited storage goes back to the
work of Munro and Paterson [12], where they considered sorting of, and selecting
from, data stored on a read-only tape and showed that for exact sorting of a
stream of length n in p passes, one requires storage of size Ω(n/p). While they
allowed making multiple passes over the data and considered only exact sorting,
in this work we study the quality of approximate sorting that can be obtained
in one pass. Since the work of Munro and Paterson, many papers have studied
problems related to selection in data streams, such as finding the kth highest
value or quantiles, in one or many passes, e.g., [2, 8, 10, 11]. The problem of
approximate sorting in one pass, however, to the best of our knowledge, has not
been studied.

The rest of this paper is organized as follows. In Section 2, we present the
formal problem statement and preliminaries. Section 3 includes universal bounds
on the performance of algorithms with limited storage. In Section 4, an algorithm
for sorting with limited storage is given and its performance is analyzed.

2 Problem Statement and Preliminaries

For a positive integer n, we let [n] = {1, . . . , n}. The set of all permutations of
[n] is denoted by Sn. For a permutation σ → Sn and distinct i, j → [n], we use
i ⊂Θ j (resp. i ≡Θ j) to denote that i appears before j (resp. after j) in σ. For
example, if σ = (2, 3, 1), we have 2 ⊂Θ 3 and 1 ≡Θ 2. The inverse of σ is denoted
by σ−1. The rank of element i in σ is its position in σ, that is, σ−1 (i).

The data stream is denoted by the sequence s = s1, s2, . . . , sn. We assume
there is a permutation X → Sn that represents the ordering of the elements of s;
if i ⊂X j, then si < sj with respect to X . The goal is to approximateX as closely
as possible. While X is not directly accessible in our setting, the relationship
between every two elements si and sj of s can be queried (or computed) if they
are both present in internal storage, and the result of the query is either i ⊂X j
or j ⊂X i. Throughout the paper, our assumption is that X is chosen uniformly
and at random among the permutations of Sn but we only consider deterministic
algorithms.

The elements of s are revealed in a streaming fashion, i.e., one by one. If
an element of the stream is not stored internally when revealed, it will not be
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possible to access it in the future. The storage limitation is that there are m
cells each of which can store one element of s and thus any algorithm can only
access m elements of the sequence s at any one time. The set of these m cells is
termed stream memory. When a new element si of the stream s arrives, it can
only be stored in the stream memory if there is an empty cell or if the contents
of a cell is discarded; otherwise, si is ignored. To make a query regarding the
relative order of si and sj with respect to X , both si and sj should be stored
in the stream memory. We do not impose any other type of storage limitation.
For example, there is no restriction on the number of integer values that an
algorithm can store and access. This assumption is for simplifying the analysis
and is also valid when each element of s is much larger than other types of data
that an algorithm may require. To avoid trivial cases, we assume n,m ∈ 2.

The output of the algorithms considered here is a permutation, denoted Y .
To measure performance, we evaluate how “close” Y is to X . Closeness between
two permutations can be quantified in a variety of ways. We use the Kendall
tau and Chebyshev metrics, defined below, as well as the mutual information
between X and Y .

The Kendall tau distance between two permutations σ, α → Sn is the number
of pairs of distinct elements i and j such that i ⊂Θ j and j ⊂Σ i, or equivalently,
the number of adjacent transpositions needed to take σ to α. This distance is
denoted as dΩ (σ, α). The Chebyshev distance between σ and α, denoted dC (σ, α),
is defined as

max
i→[n]

∣
∣σ−1 (i)− α−1 (i)

∣
∣ .

In other words, the Chebyshev distance is the maximum difference in the rank
of any element in the two permutations.

For two functions fn and gn of n, the notation fn ≥ gn is used to denote
limn≥∪ fn/gn = 1. Furthermore, we use lg and ln as shorthands for log2 and
loge, respectively.

3 Universal Bounds

In this section, we present bounds on the performance of any algorithm that
can only store m elements of the sequence s. To derive these bounds, we use
the fact that to make a query for comparing two elements si and sj , both need
to be present in the stream memory and so the amount of information that
can be obtained via queries is limited because of the limitation on storage. As
mentioned earlier,X is a random element of Sn but only deterministic algorithms
are considered. We first present bounds on the mutual information between X
and the output permutation Y and then consider distortion under the Kendall
tau and Chebyshev metrics.

We use H(X) and I(X ;Y ) to refer to the entropy of X and the mutual
information between X and Y , respectively. For these functions, logarithms are
base 2. Note that as X is a random element of Sn, we have H(X) = lgn!.
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Theorem 1. For any algorithm with stream memory of size m, we have

I (X ;Y ) ∪ n lgm−m lg e+O(lgm) .

Furthermore, I (X ;Y ∈) /H (X) ≥ lgm/ lgn for m,n ◦ ⊆, where Y ∈ is the
output of an algorithm that maximizes the mutual information between X and
Y .

Proof. Let Z be the set of responses provided to the comparison queries made
by the algorithm. Since the algorithm can only have access to X through Z,
by the data processing inequality [5], we have I(Y ;X) ∪ I(Y ;Z). Furthermore,
I(Y ;Z) ∪ H (Z).

We now show that H (Z) ∪ lgm! + (n −m) lgm. The first m elements of s
can be fully compared and so m! cases arise from their ordering. Let Z ⊆

0 be an
integer in [m!] denoting the permutation representing the ordering of the first m
elements. Each of the next n−m elements can at most be compared with m− 1
elements already present in the stream memory. These m− 1 elements define m
intervals, into one of which the new element falls. For i → {m+1, . . . , n}, let Z ⊆

i be
an integer in [m] denoting the interval in which the ith element of the stream falls.
Given the algorithm, Z is a deterministic function of

(
Z ⊆
0, Z

⊆
m+1, Z

⊆
m+2, . . . , Z

⊆
n

)

and thus

H (Z) ∪ H
(
Z ⊆
0, Z

⊆
m+1, Z

⊆
m+2, . . . , Z

⊆
n

)

∪ H (Z ⊆
0) +

n∑

i=m+1

H (Z ⊆
i)

∪ lgm! + (n−m) lgm .

It follows that I (X ;Y ) ∪ H (Z) ∪ lgm! + (n − m) lgm. The first theorem
statement then follows from the Stirling approximation: For a positive integer
k, we have lg k! = k lg k − k lg e+O (lg k) .

Since I (X ;Y ) ∪ lgm! + (n−m) lgm holds for Y = Y ∈, we have

I (X ;Y ∈)

H (X)
∪ n lgm+O(m)

n lgn+O(n)
=

lgm

lgn
(1 + o (1)) , (1)

where we have used the fact that m
n lgm = O(1/ lgn) = o(1). In Section 4, we

present an algorithm that produces an output Y1 such that

I (X ;Y1)

H (X)
∈ lgm

lgn
(1 + o (1)) , m, n ◦ ⊆ ·

Since I(X ;Y ∈) ∈ I (X ;Y1), we have

I (X ;Y ∈)

H (X)
∈ lgm

lgn
(1 + o (1)) , m, n ◦ ⊆ · (2)

The second statement of the theorem follows from (1) and (2). ∀∩
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In particular, if m = nν + O(1) for a constant β, then a β fraction of the
information of X can be recovered by an algorithm with stream memory m.

Next, we use the rate-distortion theory to find lower bounds on the average
Kendall tau distortion between X and Y , defined as E[dΩ (X,Y )]. We use θ to
denote the normalized version of this distortion, that is, θ = E[dΩ (X,Y )]/n.
This choice leads to simpler expressions. Note that since dΩ can be of the order
of n2, θ can take on values in the range [0,⊆).

The following theorem applies to any algorithm with stream memory m. We
use W0 and W−1 to respectively denote the principal and the lower branches
of the Lambert W function. The Lambert W function W (x) is defined as the
function satisfying W (x)eW (x) = x [4].

Theorem 2. Let μ = m
n and θ = E[dτ(X,Y )]

n . Suppose π is a positive constant.
For any algorithm with stream memory m and θ > π, we have

μ ∈ −W0

(

− θθ

e(1 + θ)1+θ

)(

1− KΔ lg n

n

)

, (3)

where KΔ is a constant that depends on π, and

μ ∈ 1

e2θ

(

1 +O

(
lgn

n

)

+O

(
1

θ

))

. (4)

Proof. Since we only consider deterministic algorithms, the numberM of outputs
of a given algorithm is bounded from above by m!mn−m. This statement can be
proven in a similar manner to the upper bound on H (Z) in Theorem 1.

Let A = 1
n lg M

n! . We have lgM ∪ n lgm−m lg e+O(lgm) and so

A ∪ 1

n
(n lgm−m lg e− n lg n+ n lg e+O(lg n))

= lg
(
μe1−μ

)
+O

(
n−1 lg n

)
.

Hence, there exists a positive constant K1 such that A ∪ lg
(
μe1−μ

)
+K1 lg n/n.

The parameter M can be viewed as the size of a rate-distortion code. Hence,
from [7, Theorem 5], we have the following relationship between the average
distortion E [dΩ (X,Y )] and M , expressed in terms of θ and A,

A ∈ lg
θθ

(1 + θ)1+θ
− lgn

n
.

From this and the fact that A ∪ lg
(
μe1−μ

)
+K1 lgn/n, we obtain

μe1−μ ∈ θθ

(1 + θ)1+θ

(

1−K2
lgn

n

)

,

where K2 = (1 +K1) ln 2, or equivalently,

−μe−μ ∪ −θθ
e(1 + θ)1+θ

(

1−K2
lgn

n

)

.
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Hence

μ ∈ −W0

(
−θθ

e(1 + θ)1+θ

(

1−K2
lgn

n

))

. (5)

For convenience, let g (θ) = θδ

e(1+θ)1+δ . By taking derivatives, one can show that
the function W0 is concave. Hence,

W0

(

−g(θ) + g(θ)K2
lg n

n

)

∪W0(−g(θ)) +W ⊆
0(−g(θ))g(θ)K2

lgn

n

=W0(−g(θ)) +
W0(−g(θ))

−g(θ) (1 +W0(−g(θ)))
g(θ)K2

lgn

n

=W0(−g(θ))
(

1− K2

1 +W0(−g(θ))
lg n

n

)

∪W0(−g(θ))
(

1−KΔ
lgn

n

)

,

where KΔ = K2

1+W0(−g(Δ)) . Note that for θ ∈ 0, the expression −g(θ) is strictly
increasing and we have −g(θ) → [−1/e, 0). Since π > 0, we have −g (π) > −1/e
and so W0 (−g (π)) > −1. Thus KΔ is well defined. Furthermore, W0 (−g (θ)) >
W0 (−g (π)) for θ > π and from this and the fact that W0(−g(θ)) < 0, the last
step of the above derivation follows. We finally have,

μ ∈ −W0

(

− θθ

e(1 + θ)1+θ

)(

1− KΔ lgn

n

)

. (6)

To prove the second statement, note that by concavity of W0 and the facts
that W0(0) = 0 and W ⊆

0(0) = 1, we have

W0

(

− θθ

e(1 + θ)1+θ

)

∪ − θθ

e(1 + θ)1+θ

∪ − 1

e2(1 + θ)

= −1 + O(1/θ)

e2θ
. (7)

The second statement of the theorem then follows from (6) and (7). ∀∩

Finally, we consider the Chebyshev distortion between X and Y . The normalized
Chebyshev distortion is ε = E [dC(X,Y )] /n. We only consider the case of ε ∪
1/2 which is more important as it represents small distortions.

Theorem 3. Let μ = m
n and ε = E[dC(X,Y )]

n . Suppose 2/n ∪ ε ∪ 1/2. For any
algorithm with stream memory m, we have

μ ∈ −W0

(

− (e/2)2χ

2εn

)
(
1 +O

(
n−1 lg n

))
.
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Proof. Let M be defined as in the proof of Theorem 2 and let R = 1
n lgM . Since

lgM ∪ n lgm − m lg e + O(lgm), we have R ∪ lgm − m
n lg e + O(n−1 lgm).

From [7, Theorem 16], we find R ∈ lg 1
2χ + 2ε lg e

2 + O(n−1 lg n) for ε ∪ 1/2.
Hence,

lg
1

2ε
+ 2ε lg

e

2
∪ lgm− m

n
lg e+O(n−1 lg n)

implying that μe−μ ∈ (e/2)2χ

2χn

(
1 +O

(
n−1 lgn

))
, or equivalently,

μ ∈ −W0

(

− (e/2)2χ

2εn

(
1 +O

(
n−1 lgn

))
)

.

Since ε ∪ 1/2, we have (e/2)2χ ∪ e/2 and since ε ∈ 2/n, we have 2εn ∈ 4.
So − (e/2)2χ

2χn ∈ − e
8 > − 1

e . Hence, W0

(
− (e/2)2χ

2χn

)
is bounded away from -1. We

have

W0

(

− (e/2)2χ

2εn

(
1 +O

(
n−1 lg n

))
)

(a)

∪ W0

(

− (e/2)2χ

2εn

)

+W ⊆
0

(

− (e/2)2χ

2εn

)
(e/2)2χO

(
n−1 lg n

)

2εn

=W0

(

− (e/2)2χ

2εn

)

+W0

(

− (e/2)2χ

2εn

)
O
(
n−1 lg n

)

1 +W0

(
− (e/2)2χ

2χn

)

(b)
= W0

(

− (e/2)2χ

2εn

)
(
1 +O

(
n−1 lg n

))
.

where (a) and (b) follow from the concavity of W0 and the fact that 1 +

W0

(
− (e/2)2χ

2χn

)
is bounded away from 0, respectively. ∀∩

4 Algorithm for Limited-Storage Approximate Sorting

We present the following simple algorithm for approximately sorting a stream
using storage of size m and then present results regarding its performance. Let
c1, . . . , cm denote the m memory cells capable of storing elements of the stream.
Recall that si < sj if i appears before j in X , i.e., i ⊂X j.

Algorithm 1

1. Store the first m− 1 elements of s in memory cells c1, . . . , cm−1.
2. Find permutation y of {1, . . . ,m− 1} such that sy1 < sy2 < . . . < sym−1 .
3. Let Y1 ∅ y.
4. For each new element si, i = m,m+ 1, . . . , n, of the stream:

(a) Store si in cm.
(b) If there exists j such that syj−1 < si < syj , insert i immediately before

yj in Y1.
(c) If si < sj for all j → [m− 1], insert i immediately before y1 in Y1.
(d) If si > sj for all j → [m− 1], append i to the end of Y1.
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In this algorithm, the first m−1 elements, namely, s1, . . . , sm−1, are stored in
the memory for the duration of the algorithm and every new element is compared
with these. An element that is stored in memory, for the purpose that new
elements can be compared with it, is called a pivot.

Example 1. Suppose X = (5, 4, 2, 3, 7, 6, 1, 9, 8) and m = 3. After step 3 of Al-
gorithm 1, we have y = Y1 = (2, 1). For i = 3, Y1 is updated to (2, 3,1),
where the indices of the pivots are shown in bold. For i = 4 and i = 5,
Y1 is respectively updated to (4,2, 3,1) and (4, 5,2, 3,1). The final output is
Y1 = (4, 5,2, 3, 6, 7,1, 8, 9). For the Kendall tau and Chebyshev distortions, we
have dΩ (X,Y1) = 3 and dC(X,Y1) = 1.

In Algorithm 1, the index set of pivots is {1, 2, . . . ,m−1} and they are in correct
order in Y1. However, indices of elements between the pivots, and between the
pivots and the boundaries, are sorted in the natural increasing order which may
differ from their order in X , e.g., the subsequence 3, 6, 7 of Y1 in the preceding
example. Let r1, . . . , rm−1 be an increasing sequence that denotes the positions
of the indices of the pivots in X (or equivalently in Y1). Furthermore, let r0 = 0
and rm = n+ 1. In Example 1, we have r0 = 0, r1 = 3, r2 = 7, and r3 = 10. For
j → [m], the elements of Y1 between positions rj−1 and rj can have any order in
X . Additionally, all possibilities are equally probable. Given Y1, the number of
possible cases for X is given by

∏m
j=1 (rj − rj−1 − 1)!. We will use this fact to

compute the conditional entropy of X given Y1 in the next theorem.

Theorem 4. Algorithm 1 is asymptotically optimal for m,n◦ ⊆, with respect
to mutual information.

Proof. Since I(X ;Y1) = H(X) −H(X |Y1) and H(X) = lgn!, to find I(X ;Y1),
it suffices to find H(X |Y1). We have

H(X |Y1) =
∑

z→Sn

P (Y1 = z)H(X |Y1 = z)

=

(
n

m− 1

)−1 ∑

r0<···<rm

m∑

j=1

lg (rj − rj−1 − 1)! .

For given values of r0, . . . , rm, the set [n] is divided into m blocks with lengths
rj − rj−1 − 1. To compute the above sum, we count how many times a block of
size k occurs for all possible values of r0, . . . , rm. The number of times a block of
length k appears starting at position 1 equals

(
n−k−1
m−2

)
since we have r1 = k + 1

but must choose the values of r2, . . . , rm−1 among the n− (k + 1) possibilities.
The number of times a block of size k ends at position n is the same. A similar
argument shows that the number of times a block of length k starts at position i
and ends at position i+ k− 1, for each i → {2, . . . , n− k}, is

(
n−k−2
m−3

)
. Thus, the

total number of blocks of size k is 2
(
n−k−1
m−2

)
+ (n− k − 1)

(
n−k−2
m−3

)
= m

(
n−k−1
m−2

)
.

Hence,

H(X |Y1) =
(

n

m− 1

)−1

m
n−m+1∑

k=2

(
n− k − 1

m− 2

)

lg k! . (8)
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It can be shown that
n−m+1∑

k=1

(
n− k − 1

m− 2

)

k lg k ∪
(
n

m

)(
lg
n

m
+O(1)

)
. (9)

From (8), (9), and the fact that lg k! < k lg k, we obtain

H (X |Y1) ∪ (n−m+ 1)
(
lg
n

m
+O(1)

)
= n lg

n

m
+O(n)

and so I(X ;Y1) ∈ lg n! − n lg n
m + O(n) = n lgm + O(n). Thus I(X;Y1)

H(X) ∈
lgm
lgn (1 + o (1)) for m,n ◦ ⊆. Recall from the proof of Theorem 1 that I(X;Y )

H(X) ∪
lgm
lgn (1 + o (1)) for the output Y of any algorithm. Therefore,

I (X ;Y1)

H (X)
=

lgm

lgn
(1 + o (1)) , m, n ◦ ⊆ ,

which is optimal. ∀∩
Next, we discuss the average Kendall tau distortion of Algorithm 1.

Theorem 5. Suppose Algorithm 1 has stream memory m = μ1n and produces
an output with average Kendall tau distortion θn. We have

μ1 ∪
(
1 + θ −

√
θ(θ + 2)

)
(1 +O(1/n)) .

Furthermore, Algorithm 1 asymptotically requires at most a constant factor as
much storage as an optimal algorithm with the same average Kendall tau distor-
tion.

Proof. For a random permutation of length k, the average Kendall tau distance
from the identity is 1

2

(
k
2

)
. Hence, from the discussion preceding Theorem 4, we

obtain

E [dΩ (X,Y1)] =

(
n

m− 1

)−1 ∑

r0<···<rm

m∑

j=1

1

2

(
rj − rj−1 − 1

2

)

=
1

2

(
n

m− 1

)−1

m
n−m+1∑

k=2

(
k

2

)(
n− k − 1

m− 2

)

=
1

m+ 1

(
n−m+ 1

2

)

, (10)

where for the second equality, we have used an argument similar to that of the
proof of Theorem 4. We have θn = E [dΩ (X,Y1)] =

1
μ1n+1

(
n−μ1n+1

2

)
and thus

θn ∪ (n−μ1n+1)2

2μ1n
. It follows that

μ1 ∪ 1 + θ +
1

n
−
√
θ(θ + 2 + 2/n)

=
(
1 + θ −

√
θ(θ + 2)

)
(1 +O(1/n)) .
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In particular, for large θ, we have μ1 ∪ 1/(2θ) (1 +O(1/θ)) (1 +O(1/n)).
Let μ∈n be the smallest amount of stream memory of any algorithm with

average Kendall tau distortion θn. From (4), we have

μ1
μ∈

∪ 1/(2θ)

1/ (e2θ)
(1 +O(1/θ)) (1 +O(lg n/n)) .

Thus there is a constant c such that for θ, n ∈ c, μ1/μ∈ is bounded.
On the other hand, if θ < c, from (3) and using the fact that μ∈ is a de-

creasing function of θ, we have μ∈ ∈ −W0

(
−cce−1(1 + c)−1−c

)
(1 +O(lg n/n)) .

Furthermore μ1 ∪ 1. Hence, if θ < c, then μ1/μ∈ is bounded. ∀∩
Remark 1. There is an alternative way to show thatE [dΩ (X,Y1)]=

1
m+1

(
n−m+1

2

)
.

Without loss of generality, assume 1 ⊂X · · · ⊂X m − 1. Consider distinct
i, j → {m, . . . , n}, with i < j. The pair i, j will have incorrect order in Y1, if
and only if j ⊂X i and there is no p → {1, . . . ,m− 1} such that j ⊂X p ⊂X i (in
other words, there is no pivot sp such that sj < sp < si). Since X is random, it
is straightforward to see that the probability of this event is 1/(m + 1). There
are

(
n−m+1

2

)
possible choices for the pair i, j. The desired result then follows by

the linearity of expectation.

The next theorem concerns the average Chebyshev distortion of Algorithm 1.

Theorem 6. Suppose Algorithm 1 has memory m and produces an output with
average Chebyshev distortion εn. Furthermore, suppose that ε ∪ 1/2 and m ∈ 2.
We have

m ∪ − 1

ε
W−1

(
−ε
e

)
.

Additionally, if ε is bounded away from zero, Algorithm 1 asymptotically requires
at most a constant factor as much memory as an optimal algorithm with the same
average Chebyshev distortion.

Proof. Consider an element i in Y1 that is between positions rj−1 and rj . We
know that the position of this element in X is also between rj−1 and rj . Thus,∣
∣X−1(i)− Y −1

1 (i)
∣
∣ ∪ rj − rj−1 − 1 and so

dC (X,Y1) ∪ max
j

(rj − rj−1 − 1) .

Suppose a stick of length n is randomly broken at m − 1 points. Let the
length of the longest piece among the m pieces be denoted by S. From [9],
we have E[S] = nE[S⊆]/m, where S⊆ is the largest random variable among m
iid exponential random variables with mean 1. We have E[S⊆] =

∑m
i=1 1/i ∪

lnm+ γe +
1
2m , where the inequality follows from [3] and γe is Euler’s constant.

Since the positions of the pivots in Algorithm 1 are random, with a coupling
argument one can show that the expected length of the longest segment is not
more than E[S]. That is, E [maxj (rj − rj−1 − 1)] ∪ E [S]. Hence,

E[dC(X,Y1)] = εn ∪ n

m

(

lnm+ γe +
1

2m

)

.



Approximate Sorting of Data Streams with Limited Storage 475

Since m ∈ 2 we have γe + 1
2m ∪ 1, and thus ε ∪ ln(me)

m . This in turn im-
plies that −mεe−mχ ∪ −χ

e , from which it follows that −(1/ε)W0 (−ε/e) ∪
m ∪ −(1/ε)W−1 (−ε/e) and so we have the first statement in the theorem.
Note that for ε ∪ 1, we have −(1/ε)W0 (−ε/e) ∪ 1 and hence the inequality
−(1/ε)W0 (−ε/e) ∪ m does not give us any useful information.

Let μ1 denote m/n for Algorithm 1 and μ∈ denote the smallest amount of
storage of any algorithm with Chebyshev distortion εn. From Theorem 3,

μ1
μ∈

∪
− 1

χnW−1

(
−χ

e

)

−W0

(
− (e/2)2χ

2χn

)

(

1 +O

(
lgn

n

))

≥
− 1

χnW−1

(
−χ

e

)

(e/2)2χ

2χn

≥
−2W−1

(
−χ

e

)

(e/2)2χ
. (11)

Suppose ε is bounded away from 0. It follows that −ε/e is also bounded away
from 0. This in turn implies that −W−1(−ε/e) is bounded and so is the right
side of (11). This completes the proof of the theorem. ∀∩
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Abstract. In this paper, we study the problem of testing whether a given graph
admits a 2-page book embedding with a fixed edge partition. We first show that
finding a 2-page book embedding of a given graph can be reduced to the pla-
narity testing of a graph, which yields a simple linear-time algorithm for solving
the problem. We then characterize the graphs that do not admit 2-page book em-
beddings via forbidden subgraphs, and give a linear-time algorithm for detecting
the forbidden subgraph of a given graph.

1 Introduction

For an integer k → 1, a k-page book embedding (or a k-stack layout) of a graph is
to place the vertices linearly on a spine (a line segment) and the edges on k pages
(k half planes sharing the spine) so that each edge is embedded in one of the pages
without edge crossings. It was shown that a planar graph has a 2-page book embedding
if and only if it is sub-Hamiltonian [3]. A planar graph is sub-Hamiltonian if and only
if it is Hamiltonian or can be made Hamiltonian by inserting additional edges without
violating planarity. Since the problem of testing sub-Hamiltonicity is NP-complete [8],
the problem of testing whether a given planar graphG has a 2-page book embedding is
NP-complete.

The 2-page book embedding problem contains two combinatorial aspects. One is
how to partition an edge set in two edge subsets, each corresponds to one of the two
sides along the spine. The other is how to decide an ordering of the vertices on the
spine. Note that if an ordering π of all the vertices along the spine is fixed, then we
can test whether a given graph admits a 2-page book embedding with π in linear time;
the problem can be converted into a planarity testing problem by adding edges between
every two consecutive vertices in π (where the last vertex is connected by the first one).
However, it was not known whether the problem remains NP-complete or can be solved
in polynomial time if a partition of the edge set is prescribed.

In this paper, we consider the problem of testing whether a given graph admits a
2-page book embedding for a fixed edge partition. Based on structural properties of
biconnected planar graphs, we show that the problem can be solved in linear time.

α This is an extended abstract. For the full version of this paper with omitted proofs, see [7].

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 477–488, 2014.
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In a preliminary version of this paper [6], we characterized 2-page book embeddings
as “splitter-free” and “disjunctive” plane embeddings (see Section 4 for the definitions),
and show that such an embedding, if any, can be constructed in linear time by designing
the following three procedures:
1. procedure for detecting rigid splitters, a special type of splitters;
2. procedure for computing splitter-free plane embeddings;
3. procedure for computing disjunctive plane embeddings.

Recently, Angelini et al. [1] implemented the algorithm in [6] with a simplified pro-
cedure for computing disjunctive plane embeddings, reducing the hidden constant factor
in the time bound.

In this paper, we present simpler algorithms for testing 2-page book embedding with
edge partition. More specifically, the new contribution of this paper is the following:

1. We first show that the given instance of 2-page book embedding with edge partition
can be converted into another instance with a special structure, called a canonical
instance (see Theorem 1 in Section 3).

2. We then prove that finding a 2-page book embedding of a given partitioned graph
can be reduced to the planarity testing of a modified graph, which yields a sim-
ple linear-time algorithm for solving the problem without using any of the three
procedures in [6] (see Theorem 3 in Section 5).

3. We also characterize the graphs that do not admit 2-page book embeddings via
forbidden subgraphs, and present a linear-time algorithm for either detecting a for-
bidden subgraph or constructing a 2-page book embedding of a given graph. This
algorithm is obtained by significantly simplifying the first procedure for detect-
ing rigid splitters in [6] utilizing the restricted structure of canonical instances (see
Theorem 4 in Section 6).

The 2-page book embedding problem studied in this paper also has two important
applications in Graph Drawing: simultaneous embedding and clustered graph planarity.
Angelini et al. [2] showed the relationship between the 2-page book embedding problem
with edge partition and the simultaneous embedding with fixed edges (SEFE) problem.
They used the algorithm in [6] to solve some specific instance of the SEFE problem.

Previously in [6], we also showed the reduction between the 2-page book embedding
problem with edge partitions and the clustered planarity (c-planarity) testing problem
with two clusters. The same c-planarity problem can be modeled as the HH-drawing
problem, and a testing algorithm was reported in [4]. Note that our new algorithms
presented in this paper are simpler than those presented in [1,4,6].

2 Preliminaries

Let G = (V,E) be a graph. The set of edges incident to a vertex v ⊂ V is denoted by
E(v;G). A path with endvertices u and v is called a u, v-path. The degree of a vertex v
in G is denoted by deg(v;G). For a subsetX ≡ E (resp.,X ≡ V ), G−X denotes the
graph obtained from G by removing the edges in X (resp., the vertices in X together
with the edges in ∈v∞XE(v;G)). Subdividing an edge e = (u, v) is to replace the edge
with a u, v-path u,w1, w2, . . . , wk, v for some k → 1. A graph H is a subdivision of G
if H is obtained by subdividing some edges in G.
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A block (biconnected component) of a graph is a maximal biconnected subgraph
(which possibly consists of a single vertex or a single edge). A graph each of whose
blocks is a simple cycle or a single edge is called a cactus, i.e., a graph in which any
two distinct cycles share at most one vertex. Note that a graph is a cactus if and only if
no two vertices are joined by three vertex-disjoint paths.

A planar graph G = (V,E) with a fixed plane embedding F of G is called a plane
graph. The set of vertices, set of edges and set of facial cycles of a plane graph H are
denoted by V (H), E(H) and F (H), respectively. We say that a cycle Q in a plane
embedding of a graph separates a vertex/edge a1 and a vertex/edge a2 (which are not
elements of Q) if a1 and a2 are respectively contained in the two connected regionsR1

and R2 of the plane divided by Q.
A planar graph is called outerplanar if it admits an outerplane embedding, such that

all the vertices appear along the outer boundary. We observe that each block B of a
simple outerplanar graph is a single edge or a cycleQ of length at least 3 possibly with
some chords. Note that such a cycle Q for the block B is uniquely determined, and we
call Q the frame of B (we let Q = B if B is a single edge). We observe the next result.

Lemma 1. Let Bi, i = 1, 2, . . . , p be the blocks of a simple outerplanar graph G, and
Qi be the boundary ofBi. Then a plane embeddingΓG ofG is an outerplane embedding
of G if and only if each frame Qi appears on the outer boundary of ΓG.

In this paper, we denote an instance of two-page book embedding problem by a graph
G = (V,E1 ∈E2) with a partition of its edge set E into E1 and E2 (i.e., E1 ∈E2 = E
andE1≥E2 = ∪), where two vertices may be joined by two edges e ⊂ E1 and e→ ⊂ E2.
We call the edges in E1 (resp., E2) red edges (resp., blue edges). A subgraph H of G
is called red (resp., blue) if E(H) consists of only red (resp., blue) edges. A vertex to
which only red (resp., blue) edges are incident is called an r-vertex (resp., b-vertex). A
vertex to which both red and blue edges are incident is called a br-vertex.

A 2-page book embedding (2PB-embedding, for short) π of a graph G = (V,E1 ∈
E2) is a linear ordering of the vertices such that all vertices are placed in this order on
a spine and all red edges are drawn above the spine and all blue edges are drawn below
the spine without any edge crossings.

In a 2PB-embedding π of a graph G = (V,E1 ∈ E2), we can join the first and last
vertices on the spine with a new curve so that the spine together with the curve forms
a simple closed curve which encloses all red edges but no blue edges. Thus, a 2PB-
embedding π can be regarded as a plane embedding Γ of G in which a simple closed
curve λ visits each vertex exactly once without intersecting any edge and encloses all
red edges but no blue edges. We call λ a separating curve of Γ .

Note that the first and last vertices appear on the outer facial cycle in the plane em-
bedding Γ . However by choosing a new outer face, any vertex v can appear along the
outer facial cycle. This does not change the combinatorial embedding, and thereby the
vertex v can appear as the first vertex on the spine in the 2PB-embedding obtained from
the resulting plane embedding Γ →.
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3 Canonical Instances

In this section, we give a linear-time algorithm for converting a given 2PB embedding
instance into another instance with a special structure, called a “canonical” instance,
without changing the 2PB-embeddability.

Clearly an instance G = (V,E1 ∈ E2) admits a 2PB-embedding only when G is
planar, and each Ei induces an outerplanar graph. If E1 = ∪ or E2 = ∪, then G has
a 2PB-embedding if and only if G is outerplanar. In what follows, we assume that
E1 ◦= ∪ ◦= E2. Also we assume thatG is not a simple cycle (otherwise it always admits
a 2PB-embedding). An instance G = (V,E1 ∈ E2) is canonical if:
(i) G is a simple, biconnected planar graph, but G is not a simple cycle;
(ii) Each Ei induces a cactus (V,Ei ◦= ∪); and
(iii) Each br-vertex of G is of degree 2.

Lemma 2. A planar graphG = (V,E1∈E2) admits a 2PB-embeddingπ with partition
E1 and E2 if and only if each block H of G has a 2PB-embedding πH for the partition
E(H) ≥ E1 and E(H) ≥ E2 of E(H).

Now we can assume that an instance G = (V,E1 ∈E2) is biconnected. We next ex-
plain why each induced graph (V,Ei) of G can be assumed to be a cactus. Let Γi be an
outerplane embedding of (V,Ei) (where all vertices in V appear along the outer bound-
ary). In Γi, each block of (V,Ei) is either a single edge or a cycle Q with some chords,
where each chord is drawn within the cycle. By Lemma 1, in any such embedding of
(V,Ei), chords are drawn inside the corresponding cycle and no other edges/vertices
are contained in the interior of the cycle.

On the other hand, in any 2PB-embedding ofG, such a cycle (frame)C withE(Q) ≡
Ei is drawn without surrounding any edge in Ej (j ◦= i) in its interior. This means that
we can remove all the chords in the embedding Γi (i = 1, 2) in the sense that we can
put them back into any 2PB-embedding of the resulting instance without creating any
edge crossings. Hence we can assume that each (V,Ei) is a simple cactus.

We transform a biconnected graphG = (V,E = E1 ∈E2) into a canonical instance
of 2PB-embedding problem as follows.

Definition 1: Procedure of Transformation

Step 1. For each outerplanar graph (V,Ei), i = 1, 2, remove the chords of each block
B to obtain a cactus (V,E→

i) in the resulting instance G→ = (V,E→
1 ∈ E→

2) (see
Fig. 1(a) and (b)).

Step 2. Let Vbr be the set of br-vertices v ⊂ V of degree → 3 in G→.
Replace each v ⊂ Vbr of degree → 3 with three vertices v1, wv and v2 joined by
a new red edge (v1, wv) and a new blue edge (v2, wv) (see Fig. 1(b) and (c)). Let
G→→ = (V →→, E→→

1 ∈ E→→
2 ) be the resulting graph.

Theorem 1. Let G→→ be the canonical instance obtained from a biconnected instance
G = (V,E1 ∈ E2) by Definition 1. Then G admits a 2PB-embedding if and only if G→→

admits a 2PB-embedding. Furthermore a 2PB-embedding of G→→ can be converted into
a 2PB-embedding of G in linear time.
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(a) G

v1
v2

wv
v

(c) G”

C

(b) G’

v

Fig. 1. (a) a biconnected graph G = (V,E1 ∪ E2); (b) G⊕ = (V,E⊕
1 ∪ E⊕

2) with cactus (V,E⊕
i),

i = 1, 2; and (c) a canonical instance G⊕⊕ = (V ⊕⊕, E⊕⊕
1 ∪ E⊕⊕

2 ) with cactus (V,E⊕⊕
i ), i = 1, 2

A canonical instance G is simple, since G is not a cycle and it has no pair of blue
and red multiple edges. Also, if there are a red u, v-path and a blue u, v-path for some
vertices u, v ⊂ V , then u and v are br-vertices of degree 2. In the following two sections,
a given instance is assumed to be canonical.

4 Disjunctive and Splitter-free Plane Embeddings

In a plane embedding Γ ofG, a red (resp., blue) cycleQ ofG is called a splitter if each
of the two regions obtained by the cycle Q contains a vertex v ⊂ V − V (Q) or a blue
(resp., red) edge. In Γ , a vertex v is called disjunctive if for each i = 1, 2, all the edges
in Ei(v;G) appear consecutively around v. We call Γ disjunctive if all vertices in V are
disjunctive.

Theorem 2. Let G = (V,E1 ∈ E2) be a biconnected planar graph (not necessarily
canonical). ThenG admits a 2PB-embeddingπ if and only ifG admits a disjunctive and
splitter-free plane embedding Γ . Moreover, a 2PB-embedding π of G can be obtained
from a disjunctive and splitter-free plane embedding Γ of G in linear time.

Note that any plane embedding of a canonical instance is disjunctive, since red and
blue edges meet at a br-vertex of degree 2.

5 Reduction to Planarity Testing

Lemma 3. Let G = (V,E1 ∈ E2) be a canonical instance, and Q be a red (or blue)
cycle. In a plane embedding Γ of a canonical instance G, Q is a splitter if and only if
Q is not a facial cycle of Γ .

We call a plane embedding Γ of G proper if every red/blue cycle of G appears as a
facial cycle of Γ . Detecting a proper embedding Γ of G can be reduced to the standard
planarity testing of an augmented graph as follows. For each cycle C in the cactus
(V,Ei), i = 1, 2, we subdivide each edge e in C with a new vertex we, create a new
vertex vC , and add new edges (vC , we), e ⊂ E(C).

Fig. 2(a) shows the graph G̃ obtained from the canonical instance in Fig. 1(c). Let
G̃ = (Ṽ , Ẽ1 ∈ Ẽ2) denote the resulting graph, where Ẽi is the set of edges obtained by
subdividing an edge in Ei or introduced to augment a cycle in the cactus (V,Ei).
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Theorem 3. A canonical instanceG = (V,E1∈E2) admits a proper embedding if and
only if G̃ is planar. A proper embedding of G can be obtained from a plane embedding
of G̃ in linear time.

Proof. Only-if part: Let ΓG be a proper embedding of G. Then each cycle block C
of the cactus (V,Ei) surrounds no edge in Ej (j ◦= i). Hence, we can draw the newly
added vertices vC , and we, e ⊂ E(C) and edges between them inside the empty re-
gion of C without creating edge crossings. Thus the resulting embedding is a plane
embedding of G̃.

If part: SinceG is biconnected, G̃ is also biconnected. Let ΓG̃ be a plane embedding of

G̃, where without loss of generality the outer facial cycle fo contains a br-vertex z ofG.
Note that z is not in any cycle of a cactus (V,Ei). Let ΓẼi

denote the plane embedding
induced from ΓG̃ by the edges in ΓẼi

.
We first show that for each block C in (V,E) augmented with vertex vC , the vertex

vC is surrounded by the cycle C (i.e., C separates vC from fo) in ΓẼi
. If for some

C, both vC and fo are outside C, then by the way of augmentation, only one vertex
u ⊂ V (C) can be adjacent to vertices outside C (see Fig. 2(b)), and u would be a cut-
vertex separating vC and z in G̃, contradicting the biconnectivity of G̃. Now vC of each
cycle is located inside the subdivided cycle C in ΓẼi

.

we

f o

z

(b)  (c)  

C

vC

vC

u

f o

z

u

y

we’
C

(a) G

vC

~

we

Fig. 2. Illustration for a plane embedding of the augmented graph G̃; (a) Graph G̃ obtained from
the graph in Fig. 1(c) by augmenting each cycle in red and blue cacti with stars; (b) fo and vC
are outside the subdivided cycle C; (c) other vertex y than vC is inside the subdivided cycle C

Next we show that no other vertex than vC is located inside the subdivided cycle C
in ΓG̃. Assume that for some C, a vertex y (◦= vC) is inside the subdivided cycle C in
ΓG̃ (see Fig. 2(c)). Since G is connected, y is connected to a vertex u by a path in the
subdivided C. Let u be the one closest to y among such u. Then in G, u ⊂ V (C), and
u is adjacent to two edges e, e→ ⊂ E(C). Now in the plane embedding ΓG̃, the cycle
(u,we, vC , we′) surrounds the set Y of all vertices reachable from y without passing
through u. This, however, implies that u is a cut-vertex separating y and z in G̃, a
contradiction. Hence, each subdivided C encloses no other vertex than vC in ΓG̃.

Let Γ be the plane embedding of G induced by ΓG̃; i.e., remove the augmented
vertices vC and ignore the introduced vertices we for all cycles C in cacti (V,E1) and
(V,E2). Clearly, eachC of a cactus (V,Ei) encloses no edges/vertices in Γ . Since each
red (resp., blue) cycleQ in G is a (facial) cycle of (V,E1) (resp., (V,E2)), Γ is proper.

⊆∀
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Since testing planarity and constructing a plane embedding, if any, can be done in
linear time, we can find a 2PB-embedding of a given instance, if any, in linear time.
When ΓG̃ is not planar, it contains a subdivision of K5 or K3,3. However, such a sub-
graph is not a direct evidence of a given infeasible instance due to the augmentation.
In the next section, we give an algorithm that detects a forbidden subgraph of a given
instance.

6 Forbidden Subgraphs in Two-Page Book Embeddings

A graph H is called pseudo-triconnected if it is a subdivision of a triconnected graph
G. Observe that a graph H is pseudo-triconnected if and only if H has at least three
vertices of degree → 3 and every two vertices u and v of degree → 3 in H are connected
by three internally disjoint paths. We call a pseudo-triconnected subgraph S of G a
forbidden subgraph if a cycle Q with edges of Ei in a plane embedding of S separates
two edges e1, e2 ⊂ Ej (j ◦= i). By the uniqueness of plane embedding of S, such a
subgraph S (and hence G) cannot admit a 2PB-embedding. In this section, we show
that the converse is true establishing the following result.

Theorem 4. LetG = (V,E1 ∈E2) be a planar graph with a partitionE1 and E2 such
that each Ei induces a simple and outerplanar subgraph (V,Ei). Then G admits a
2PB-embedding if and only if there is no forbidden subgraph in G. Furthermore, either
a 2PB-embedding or a forbidden subgraph of G can be found in linear time.

The forbidden subgraph characterization in Theorem 4 is more interesting than merely
testing feasibility, since our algorithm can detect some structures of a graph that never
(or always) admit a 2PB-embedding. For example, every graph instance such that each
of E1 and E2 induces a forest always admits a 2PB-embedding because it cannot have
any forbidden subgraph in Theorem 4. Hence Theorem 4 implies the next.

Corollary 1. Let G = (V,E1 ∈ E2) be a graph with a partition E1 and E2 of E(G)
such that eachEi induces a forest (V,Ei). ThenG admits a 2PB-embedding if and only
if G is planar. Furthermore, a 2PB-embedding of G if any can be found in linear time.

To prove Theorem 4, we first design a linear-time algorithm for detecting a forbid-
den subgraph of a given canonical instance. It is not difficult see that even if a canonical
instance G is obtained from the original instance G≥ by Definition 1, a forbidden sub-
graph S of G gives a forbidden subgraph of G≥.

We then prove that a canonical instance with no forbidden subgraphs admits a proper
embedding (and hence a 2PB-embedding) by designing a linear-time algorithm for con-
structing a proper embedding for such an instance in Section 7.

6.1 SPR Tree Decomposition

To consider all the possible plane embeddings of a biconnected graph, we use the SPR
tree, a simplified version of the SPQR tree [5]. The SPR tree T of a biconnected graph
G represents the decomposition of G into triconnected components. Each node ν in T
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is associated with a graph σ(ν) = (Vν , Eν) called the skeleton of ν, which corresponds
to a triconnected component of G.

Each skeleton consists of real edges (i.e., edges of G) and virtual edges (i.e., edges
newly introduced during the decomposition process). Each skeleton σ(ν) provides an
abstract structure of the entire graph G; for each virtual edge e = (u, v) ⊂ Eν , G has
an induced subgraphGe which shares {u, v} as a cut-pair with the complementary part
G − (V (Ge) − {u, v}). Two nodes ν and μ are connected by an edge in T , if their
skeletons share the same virtual edge e = (u, v) (i.e., a cut-pair (u, v)).

There are 3 types of nodes in the SPR tree:
1. S-nodes: σ(ν) is a simple cycle with at least 3 vertices.
2. P-nodes: σ(ν) consists of two vertices connected by at least 3 edges.
3. R-nodes: σ(ν) is a simple triconnected graph with at least 4 vertices.

In this paper, a given graph G is assumed to be canonical with no multiple edges.
Hence, for each skeleton σ(ν), there is a subgraph S of G that is a subdivision of σ(ν),
which is obtained by replacing each virtual edge (u, v) with a u, v-path of G.

For each edge of the skeleton of a node ν of T of a canonical instanceG = (V,E1 ∈
E2), the graph Ge is called an r-graph (resp., b-graph) if it has a red (resp., blue) u, v-
path. Note thatGe cannot have both a red u, v-path and a blue u, v-path, since otherwise
u and v would be br-vertices of degree 2 and could not be adjacent to other vertices in
V − V (Ge). A virtual edge e is called an r-edge (resp., b-edge) if Ge is an r-graph
(resp., b-graph). Note that no virtual edge can be an r-edge and b-edge at the same
time. We also treat a red (resp., blue) real edge as an r-edge (resp., b-edge).

For a subgraphH of the skeleton σ(ν) of a node ν, let Er(H) (resp.,Eb(H)) denote
the set of r-edges (resp., b-edges) in H . Note that each of Er(H) and Eb(H) induces a
cactus, since each (V,Ei) is a cactus. Hence each P-node ν of T satisfies

|Er(σ(ν))| + |Eb(σ(ν))| ∩ 2. (1)

6.2 Splitters and Forbidden Subgraphs

Now we examine the structure of red/blue splitters in canonical instances. A cycleQ→ in
the skeleton σ(ν) of a node ν is called an r-cycle (resp., b-cycle) if E(Q→) ≡ Er(σ(ν))
(resp., E(Q→) ≡ Eb(σ(ν))).

In canonical instances, non-facial r- and b-cycles in the skeleton of an S- or a P-node
can be avoided by an adequate choice of plane embeddings (i.e., proper embeddings)
of the instances, which will be discussed in Section 7. However, non-facial r- and b-
cycles in the skeleton of an R-node need to be checked. In fact, splitters and forbidden
subgraphs are equivalent in the following sense.

Lemma 4. Let G = (V,E1 ∈ E2) be a canonical instance.

(i) Let Q→ be a non-facial r-cycle in the skeleton σ(ν) of an R-node ν, and let Q be
a red cycle of G corresponding to Q→. Then the subgraph S of G obtained from
σ(ν) by replacing each virtual edge e = (u, v) ⊂ E(Q→) (resp., e = (u, v) ⊂
E(σ(ν)) − E(Q→)) with a u, v-path of Q (resp., G) is a forbidden subgraph of G.

(ii) Let S be a forbidden subgraph such that a red cycle Q in S separates two blue
edges e1, e2 of G. Then for the R-node ν such that V (ν) contains all the vertices
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of degree → 3 of S, the set of r-edges e ⊂ Er(σ(ν)) with E(Ge) ≥ Q ◦= ∪ is a
non-facial r-cycle Q→ in the skeleton σ(ν).

Lemma 5. Given Er(σ(ν)) (resp., Eb(σ(ν))) for the skeleton σ(ν) of an R-node ν,
testing if there is a non-facial r-cycle (b-cycle) in a plane embedding γν of σ(ν) can be
done in O(|E(σ(ν))|) time.

Lemma 5 implies that once we know Er(σ(ν)) (resp., Eb(σ(ν))) for all nodes ν
in the SPR tree, a non-facial r-/b-cycle in the skeleton of an R-node can be found in
linear time. In the next section, we show how to compute the r-edges and b-edges in the
skeletons of all nodes in the SPR tree.

6.3 Computing the Color of Edges in the Skeletons of the Rooted SPR Tree

We choose a node in the SPR tree and treat it as a rooted tree. Let μ be a non-root
node in T , and ν be the parent of μ. The graph σ(μ) has exactly one virtual edge e in
common with σ(ν), called the parent virtual edge in σ(μ), and a child virtual edge in
σ(ν). Let Ch(ν) denote the set of all children of ν.

We denote the graph formed from σ(ν) by deleting its parent virtual edge pe(ν) as
σ−(ν), if ν is not the root of T . Let G−(ν) denote the subgraph of G induced by the
set of all vertices in the graphs σ−(μ) for all descendants μ of ν, including ν itself.

We first give an overview of the algorithm for computing the r-edges in the skeletons
of all nodes in the SPR tree of G (computing b-edges can be done symmetrically):

1. First choose a node as the root of the SPR tree of G.
2. By traversing the rooted SPR tree in a bottom-up manner, compute the r-edges in

the skeleton σ−(ν) of each node ν (except for the parent virtual edge pe(ν)), based
on the computation of r-edges in the skeletons of children of ν.

3. By traversing the rooted SPR tree in a top-down manner, identify the children μ ⊂
Ch(ν) of each node ν such that the parent virtual edge pe(μ) is an r-edge.

Since G is not a simple cycle, the SPR tree of G has an R- or P-node. We choose an
R- or P-node ν≥ as the root of the SPR tree T . For a leaf node ν in the rooted SPR tree
T , we know that Er(σ−(ν)) is the set of the red edges in the subgraph G−(ν). The
next lemma says that the r-edges in the skeletons σ−(ν) of all other nodes in the SPR
tree T can be computed in linear time.

Lemma 6. Given Er(σ−(μ)) for all μ ⊂ Ch(ν) of a node ν in T the set Er(σ−(ν))
of all r-edges in the skeleton σ−(ν) except pe(ν) can be computed in O(|E(σ(ν))| +∑

μ∞Ch(ν) |E(σ(μ))|) time.

By the lemma, we can compute Er(σ−(ν)) for all nodes ν in T . The next lemma
says that the parent virtual r-edges of the skeletons σ(ν) of all nodes in the SPR tree T
can be computed in linear time.

Lemma 7. Given Er(σ−(ν)) for a node ν in T , the set of all children μ ⊂ Ch(ν) such
that pe(μ) is an r-edge can be computed in O(|E(σ(ν))|) time.
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By Lemma 4, any forbidden subgraph can be found as a non-facial r- or b-cycle in
the skeleton of an R-node. After we compute the r-edges in the skeletons of all nodes in
the SPR tree in linear time by Lemmas 6 and 7, we test if each R-node has a non-facial
r-cycle in its skeleton in time linear of the size of the skeleton by Lemma 5, which takes
O(|V | + |E|) time in total over all R-nodes. Symmetrically we can find a non-facial
b-cycle in the skeleton of an R-node in linear time. Hence finding a forbidden subgraph
of a canonical instance, if any, can be done in linear time.

To prove Theorem 4, the remaining task is to design a linear-time algorithm for
constructing a proper embedding for a canonical instance with no forbidden subgraphs.

7 Constructing Proper Embeddings

In this section, we assume that a given canonical instance G = (V,E1 ∈ E2) has no
forbidden subgraph, i.e., no non-facial r- or b-cycle in the skeleton of any R-node, and
present a linear-time algorithm for constructing a proper plane embedding.

In what follows, for a graph H = σ−(ν) or H = G−(ν) of each non-root node
ν in T , an embedding ψ of H means a plane embedding of the graph such that both
end vertices u and v of the parent virtual edge pe(ν) = (u, v) of ν appear in the
boundary of the plane embedding. When we traverse the boundary of ψ clockwise, we
denote the path along the boundary from u to v (resp., from v to u) by Bu,v(ψ) (resp.,
Bv,u(ψ)). The path Bu,v(ψ) is called r-rimmed if Bu,v(ψ) is the unique r-u, v-path
(i.e., red u, v-path). We define b-rimmed boundaries symmetrically. Fig. 3(a) and (b)
show an embedding γν of the skeleton σ(ν) and an embedding Γν of the graph G−(ν)
for an R-node ν (Bu,v(γν) andBu,v(Γν) are r-rimmed;Bv,u(γν) andBv,u(Γν) are not
r-rimmed).

An embedding ψ of H is called proper if (i) every r-cycle/b-cycle in ψ is a facial
cycle; and (ii) Bu,v(ψ) or Bv,u(ψ) is r-rimmed (resp., b-rimmed) when pe(ν) is an
r-edge (resp., b-edge). A plane embedding ψ of H = G or H = σ(ν) for the root node
ν is called proper if every r-cycle/b-cycle in ψ is a facial cycle.

Assuming that each edge e ⊂ E(σ−(ν)) of a node ν admits a proper embedding Γe

of Ge, we show that a proper embedding Γν of G−(ν) can be obtained from a set of
proper embeddings Γe, e ⊂ E(σ−(ν)). For this, we first observe that the skeleton of
each node admits a proper embedding.

Lemma 8. LetG be a canonical instance with no forbidden subgraph, and ν be a node
in the SPR tree of G. Then:

(i) When ν is an S- or R-node or a P-node, with |Er(σ(ν))| + |Eb(σ(ν))| ∩ 1, any
plane embedding γν of the skeleton σ(ν) of the root ν or of σ−(ν) of a non-root ν
is proper.

(ii) When ν is a P-node with |Er(σ(ν))| = 2 (resp., |Eb(σ(ν))| = 2), a plane embed-
ding γν of the skeleton σ(ν) of the root ν or of σ−(ν) of a non-root ν is proper if
one of the two edges in Er(σ(ν)) (resp., Eb(σ(ν))) appear consecutively (possibly
one appears as Bu,v(γν) and the other as the parent virtual edge pe(ν)).

Based on proper embeddings of all nodes in the SPR tree, we show how to construct a
proper embedding forH = G traversing the rooted SPR tree T in a bottom-up manner.
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We first construct proper embeddings for leaf nodes of T . Then we construct a proper
embedding of a non-leaf node ν by assembling the proper embeddings of all children
of ν.

1. Leaf nodes: For each leaf S- or R-node ν of T , any plane embedding of G−(ν) =
σ−(ν) is proper by Lemma 8. Note that there is no leaf P-node since G is simple.

2. Internal nodes: Let ν be an internal node of T , pe(ν) = (u, v) be the parent virtual
edge of ν, and γν be a proper embedding of σ−(ν) in Lemma 8. For each virtual edge
e ⊂ E(σ−(ν)), let Γe denote a proper embedding of Ge.
(1) S-node: Let ν be an S-node. In this case, γν is a single path joining u and v.
Let Γν be an embedding of G−(ν) obtained from γν by replacing each virtual edge
e ⊂ E(σ−(ν)) with Γe. If G−(ν) is not an r-graph or a b-graph, then the resulting
embedding Γν of G−(ν) is already proper. Assume that G−(ν) is an r-graph (the case
of a b-graph can be treated symmetrically). Then,

(α) for each edge e in Bu,v(ξν), we flip each Γe if necessary so that the r-rimmed
boundary of ψe appears along the outer face of γν .

The resulting embedding Γν of G−(ν) is now proper.
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Fig. 3. (a) A proper embedding γγ of the skeleton σ(ν) of an R-node ν, where e1, . . . , e8 are
the virtual edges of σ(ν); (b) A proper embedding Γei of subgraph Ge for each virtual edge
ei, i = 1, 2, . . . , 8; and (c) A proper embedding Γγ of subgraph G−(ν) obtained from γγ by
replacing each virtual edge ei with Γei

(2) R-node: Let ν be an R-node, and γν be a proper embedding of σ−(ν), where we
assume without loss of generality thatBu,v(γν) is the unique r-u, v-path of σ−(ν). See
Fig. 3, where (a) shows a proper embedding γν of σ−(ν) of the R-node ν, and (b) shows
a proper embedding Γei of Gei of each virtual edge ei ⊂ E(σ(ν)). Consider the case
where G−(ν) is an r-graph and the parent virtual edge of ν is an r-edge (the other case
can be treated analogously). We replace each virtual edge e in σ−(ν) such that

(α) for each edge e in Bu,v(γν), the r-rimmed boundary of Γe of appears along the
outer face of γν ; and
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(β) for each edge e in a facial r-cycle Q→ of γν , the r-rimmed boundary of Γe

appears facing the interior of Q→ (note that an r-edge cannot belong to two r-faces
in a canonical instance).

Let Γν be the resulting embedding of G−(ν). See Fig. 3(c) for the resulting embed-
ding Γν obtained from the embeddings in Fig. 3(a) and (b). We see that Γν is proper,
since γν and all ψe are proper.

(3) P-node: Let ν be a P-node and γν be a proper embedding of σ−(ν). That is, two
edges in Er(σ(ν)) (resp., Er(σ(ν))), if any, appear consecutively (possibly one as
Bu,v(γν) and the other as the parent edge pe(ν)). We replace each virtual edge e in
σ−(ν) by Γe according to the same rules (α) and (β). We easily see that the resulting
embedding Γν of G−(ν) is proper.

3. Root nodes: For the root R- or P-node ν, we can obtain a proper embedding Γ of
G by replacing each virtual edge e in a proper embedding γν of σ(ν) with a proper
embedding Γe according to the same rule (β).

This completes an inductive proof for the existence of proper embeddings in canon-
ical instances when there is no forbidden subgraph. It is not difficult to see that the
above procedure for constructing a proper embedding of G can be implemented to run
in linear time. Therefore, this completes the proof of Theorem 4.
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Abstract. Let G be a bipartite graph, and let H be a bipartite graph
with a fixed bipartition (BH ,WH). We consider three different, natural
ways of forbidding H as an induced subgraph in G. First, G is H-free if it
does not contain H as an induced subgraph. Second, G is strongly H-free
if G is H-free or else has no bipartition (BG,WG) with BH ≥ BG and
WH ≥ WG. Third, G is weakly H-free if G is H-free or else has at least
one bipartition (BG,WG) with BH ≤≥ BG or WH ≤≥WG. Lozin and Volz
characterized all bipartite graphs H for which the class of strongly H-
free bipartite graphs has bounded clique-width. We extend their result by
giving complete classifications for the other two variants of H-freeness.

1 Introduction

The clique-width of a graph G, is a well-known graph parameter that has been
studied both in a structural and in an algorithmic context. It is the minimum
number of labels needed to construct G by using the following four operations:

(i) creating a new graph consisting of a single vertex v with label i;
(ii) taking the disjoint union of two labelled graphs G1 and G2;
(iii) joining each vertex with label i to each vertex with label j (i →= j);
(iv) renaming label i to j.

We refer to the surveys of Gurski [13] and Kamiński, Lozin and Milanič [14] for
an in-depth study of the properties of clique-width.

We say that a class of graphs has bounded clique-width if every graph from the
class has clique-width at most p for some constant p. As many NP-hard graph
problems can be solved in polynomial time on graph classes of bounded clique-
width [10,15,20,21], it is natural to determine whether a certain graph class has
bounded clique-width and to find new graph classes of bounded clique-width. In
particular, many papers determined the clique-width of graph classes character-
ized by one or more forbidden induced subgraphs [1,2,3,4,5,6,7,8,9,11,16,17,18,19].

In this paper we focus on classes of bipartite graphs characterized by a for-
bidden induced subgraph H . A graph G is H-free if it does not contain H as
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an induced subgraph. If G is bipartite, then when considering notions for H-
freeness, we may assume without loss of generality that H is bipartite as well.
For bipartite graphs, the situation is more subtle as one can define the notion
of freeness with respect to a fixed bipartition (BH ,WH) of H . This leads to two
other notions (see also Section 2 for formal definitions). We say that a bipartite
graph G is strongly H-free if G is H-free or else has no bipartition (BG,WG)
with BH ⊂ BG and WH ⊂ WG. Strongly H-free graphs have been studied with
respect to their clique-width, although under less explicit terminology (see e.g.
[14,17,18]). In particular, Lozin and Volz [18] completely determined those bi-
partite graphs H , for which the class of strongly H-free graphs has bounded
clique-width (we give an exact statement of their result in Section 3). If G is H-
free or else has at least one bipartition (BG,WG) with BH →⊂ BG or WH →⊂WG,
then G is said to be weakly H-free. As far as we are aware this notion has not
been studied with respect to the clique-width of bipartite graphs.

Our Results: We completely classify the classes of H-free bipartite graphs
of bounded clique-width. We also introduce the notion of weak H-freeness for
bipartite graphs and characterize those classes of weakly H-free bipartite graphs
that have bounded clique-width. In this way, we have identified a number of new
graph classes of bounded clique-width. Before stating our results precisely in
Section 3, we first give some terminology and examples in Section 2. In Section 4
we give the proofs of our results.

2 Terminology and Examples

We first give some terminology on general graphs, followed by terminology for
bipartite graphs. We illustrate the definitions of H-freeness, strong H-freeness
and weak H-freeness of bipartite graphs with some examples. As we will explain,
these examples also make clear that all three notions are different from each
other.

General Graphs: Let G and H be graphs. We write H ⊂i G to indicate that H
is an induced subgraph of G. A bijection of the vertices f : VG ≡ VH is called
a (graph) isomorphism when uv ∈ EG if and only if f(u)f(v) ∈ EH . If such
a bijection exists then G and H are isomorphic. Let {H1, . . . , Hp} be a set of
graphs. A graph G is (H1, . . . , Hp)-free if no Hi is an induced subgraph of G. If
p = 1 we may write H1-free instead of (H1)-free. The disjoint union G +H of
two vertex-disjoint graphs G and H is the graph with vertex set VG ≥ VH and
edge set EG ≥ EH . We denote the disjoint union of r copies of G by rG.

Bipartite Graphs: A graph G is bipartite if its vertex set can be partitioned
into two (possibly empty) independent sets. Let H be a bipartite graph. We
say that H is a labelled bipartite graph if we are also given a black-and-white
labelling Ω, which is a labelling that assigns either the colour “black” or the colour
“white” to each vertex of H in such a way that the two resulting monochromatic
colour classes BΘ

H and W Θ
H form a partition of H into two (possibly empty)

independent sets. From now on we denote a graph H with such a labelling Ω by
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HΘ = (BΘ
H ,W

Θ
H , EH). Here the pair (BΘ

H ,W
Θ
H) is ordered, that is, (BΘ

H ,W
Θ
H , EH)

and (W Θ
H , B

Θ
H , EH) are different labelled bipartite graphs.

We say that two labelled bipartite graphs HΘ
1 and HΘ∗

2 are isomorphic if
the (unlabelled) graphs H1 and H2 are isomorphic, and if in addition there
exists an isomorphism f : VH1 ≡ VH2 such that for all u ∈ VH1 , u ∈ W Θ

H1
if

and only if f(u) ∈ W Θ∗
H2

. Moreover, if H1 = H2, then Ω and Ω→ are said to be
isomorphic labellings. For example, the bipartite graphs ({u, v}, ∪) and ({x, y}, ∪)
are isomorphic, and the labelled bipartite graph ({u, v}, ∪, ∪) is isomorphic to the
labelled bipartite graph ({x, y}, ∪, ∪). However, ({x, y}, ∪, ∪) is neither isomorphic
to (∪, {x, y}, ∪) nor to ({x}, {y}, ∪) (also see Fig. 1).

We write HΘ
1 ⊂li H

Θ∗
2 if H1 ⊂i H2, BΘ

H1
⊂ BΘ∗

H2
and W Θ

H1
⊂W Θ∗

H2
. In this case

we say that HΘ
1 is a labelled induced subgraph of HΘ∗

2 . Note that the two labelled
bipartite graphs HΘ1

1 and HΘ2
2 are isomorphic if and only if HΘ1

1 is a labelled
induced subgraph of HΘ2

2 , and vice versa.

Fig. 1. The graph 2P1 partitioned into three ways; none of these three labelled bipartite
graphs are isomorphic to each other

Let G be an (unlabelled) bipartite graph, and let HΘ be a labelled bipartite
graph. We say that G contains HΘ as a strongly labelled induced subgraph if
HΘ ⊂li (BG,WG, EG) for some bipartition (BG,WG) of G. If not, then G is said
to be strongly HΘ-free. We say that G contains HΘ as a weakly labelled induced
subgraph if HΘ ⊂li (BG,WG, EG) for all bipartitions (BG,WG) of G. If not, then
G is said to be weakly HΘ-free. Equivalently, G is strongly HΘ-free if for every
labelling Ω→ of G, GΘ∗ does not contain HΘ as a labelled induced subgraph and G
is weaklyHΘ-free if there is a labelling Ω→ of G such that GΘ∗ does not contain HΘ

as a labelled induced subgraph. Note that these two notions of freeness are only
defined for (unlabelled) bipartite graphs. Let {HΘ1

1 , . . . , H
Θp
p } be a set of labelled

bipartite graphs. Then a graph G is strongly (weakly) (HΘ1
1 , . . . , H

Θp
p )-free if G is

strongly (weakly) HΘi
i -free for i = 1, . . . , p.

The following lemma shows that for all labelled bipartite graphs HΘ, the class
of H-free graphs is a (possibly proper) subclass of the class of strongly HΘ-free
bipartite graphs and that the latter graph class is a (possibly proper) subclass
of the class of weakly HΘ-free bipartite graphs.

Lemma 1. Let G be a bipartite graph and HΘ be a labelled bipartite graph. The
following two statements hold:

(i) If G is H-free, then G is strongly HΘ-free.
(ii) If G is strongly HΘ-free, then G is weakly HΘ-free.

Moreover, the two reverse statements are not necessarily true.

Proof. Statements (i) and (ii) follow by definition. The following two examples,
which are also depicted in Fig. 2, show that the reverse statements may not
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necessarily be true. Let G be isomorphic to S1,1,3 with VG = {u1, . . . , u6} and
EG = {u1u2, u1u3, u1u4, u4u5, u5u6}. Let H = K1,3 + P1. We denote the vertex
set and edge set of H by VH = {x1, x2, x3, x4, x5} and EH = {x1x2, x1x3, x1x4}.

Let HΘ = ({x2, x3, x4}, {x1, x5}, EH). We first notice that G is not H-free,
because G[u1, u2, u3, u4, u6] is isomorphic to K1,3 + P1. However, we do have
that G is strongly HΘ-free, because HΘ is neither a labelled induced subgraph of
({u1, u5}, {u2, u3, u4, u6}, EG} nor of ({u2, u3, u4, u6}, {u1, u5}, EG}.

Let HΘ∗ = ({x2, x3, x4, x5}, {x1}, EH). Then G is not strongly HΘ∗ -free, be-
cause ({u2, u3, u4, u6}, {u1}, {u1u2, u1u3, u1u4}) is isomorphic to HΘ∗ . However,
G is weakly HΘ∗ -free, because HΘ∗ is not a labelled induced subgraph of
({u1, u5}, {u2, u3, u4, u6}, EG}). ◦⊆

u1 u4 u5 u6

u2

u3

(a) G (b) Hγ (c) Hγ∗

Fig. 2. The graphs G,Hγ and Hγ∗ from the proof of Lemma 1

Special Graphs: For r ∀ 1, the graphs Cr, Kr, Pr denote the cycle, complete
graph and path on r vertices, respectively, and the graphK1,r denotes the star on
r+1 vertices. If r = 3, the graph K1,r is also called the claw. For 1 ∩ h ∩ i ∩ j,
let Sh,i,j denote the tree that has only one vertex x of degree 3 and that has
exactly three leaves, which are of distance h, i and j from x, respectively. Observe
that S1,1,1 = K1,3. A graph Sh,i,j is called a subdivided claw.

Let HΘ = (BΘ
H ,W

Θ
H , EH) be a labelled bipartite graph. The opposite of HΘ is

defined as the labelled bipartite graph HΘ = (W Θ
H , B

Θ
H , EH). We say that Ω is

the opposite black-and-white labelling of Ω. Suppose that H is a bipartite graph
such that among all its black-and-white labellings, all those that maximize the
number of black vertices are isomorphic. In this case we pick one of such labelling
and call it b.

3 The Classifications

A full classification of the boundedness of the clique-width of strongly HΘ-free
bipartite graphs was given by Lozin and Voltz [18], except that in their result the
trivial case when HΘ = (sP1)

b or HΘ = (sP1)
b for some s ∀ 1 was missing. Their

proof is correct except that it overlooked this case, which occurs when one of the
colour classes of the labelled graph HΘ is empty. However, strongly (sP1)

b-free
bipartite graphs can have at most 2s − 2 vertices, and as such form a class of
bounded clique-width. Below we state their result after incorporating this small
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correction, followed by our results for the other two variants of freeness. We refer
to Fig. 3 for pictures of the labelled bipartite graphs used in Theorems 1 and 3.

Theorem 1 ([18]). Let HΘ be a labelled bipartite graph. The class of strongly
HΘ-free bipartite graphs has bounded clique-width if and only if one of the fol-
lowing cases holds:

• HΘ = (sP1)
b or HΘ = (sP1)

b for some s ∀ 1

• HΘ ⊂li (K1,3 + 3P1)
b or HΘ ⊂li (K1,3 + 3P1)

b

• HΘ ⊂li (K1,3 + P2)
b or HΘ ⊂li (K1,3 + P2)

b

• HΘ ⊂li (P1 + S1,1,3)
b or HΘ ⊂li (P1 + S1,1,3)

b

• HΘ ⊂li (S1,2,3)
b or HΘ ⊂li (S1,2,3)

b.

Theorem 2. Let H be a graph. The class of H-free bipartite graphs has bounded
clique-width if and only if one of the following cases holds:

• H = sP1 for some s ∀ 1
• H ⊂i K1,3 + 3P1

• H ⊂i K1,3 + P2

• H ⊂i P1 + S1,1,3

• H ⊂i S1,2,3.

Theorem 3. Let HΘ be a labelled bipartite graph. The class of weakly HΘ-free
bipartite graphs has bounded clique-width if and only if one of the following cases
holds:

• HΘ = (sP1)
b or HΘ = (sP1)

b for some s ∀ 1

• HΘ ⊂li (P1 + P5)
b or HΘ ⊂li (P1 + P5)

b

• H ⊂i P2 + P4

• H ⊂i P6.

4 The Proofs of Our Results

We first recall a number of basic facts on clique-width known from the literature.
We then state a number of other lemmas which we use to prove Theorems 2 and 3.

4.1 Facts about Clique-width

The bipartite complement of a bipartite graph with respect to a bipartition (B,W )
is the bipartite graph with bipartition (B,W ), in which two vertices u ∈ B and
v ∈ W are adjacent if and only if uv /∈ E. For instance, the graph 2P2 has
C4 as its only bipartite complement, whereas the graph 2P1 has 2P1 and P2

as its bipartite complements. For two disjoint vertex subsets X and Y in G,
the bipartite complementation operation with respect to X and Y acts on G
by replacing every edge with one end-vertex in X and the other one in Y by a
non-edge and vice versa. The edge subdivision operation replaces an edge vw in
a graph by a new vertex u with edges uv and uw.
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(a) (sP1)
b for s = 5

(b) (K1,3 + 3P1)
b (c) (K1,3 + P2)

b

(d) (P1 + P5)
b (e) (P1 + S1,1,3)

b (f) (S1,2,3)
b

Fig. 3. The labelled bipartite graphs used in Theorems 1 and 3

We now state some useful facts for dealing with clique-width. We will use
these facts throughout the paper. We will say that a graph operation preserves
boundedness of clique-width if for every constant k and every graph class G, the
graph class G[k] obtained by performing the operation at most k times on each
graph in G has bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [16].

Fact 2. Bipartite complementation preserves boundedness of clique-width [14].

Fact 3. For a class of graphs G of bounded degree, let G≥ be the class of graphs
obtained from G by applying zero or more edge subdivision operations to each
graph in G. Then G has bounded clique-width if and only if G≥ has bounded
clique-width [14].

We also use some other elementary results on the clique-width of graphs. In order
to do so we need the notion of a wall. We do not formally define this notion, but
instead refer to Fig. 4, in which three examples of walls of different height are
depicted. A k-subdivided wall is a graph obtained from a wall after subdividing
each edge exactly k times for some constant k ∀ 0. The next well-known lemma
follows from combining Fact 3 with the fact that walls have maximum degree 3
and unbounded clique-width (see e.g. [14]).

Lemma 2. For every constant k, the class of k-subdivided walls has unbounded
clique-width.

We let S be the class of graphs each connected component of which is either a
subdivided claw Sh,i,j for some 1 ∩ h ∩ i ∩ j or a path Pr for some r ∀ 1.
This leads to the following lemma, which is well-known and follows from the
fact that walls have maximum degree at most 3 and from Lemma 2 by choosing
an appropriate value for k (also note that k-subdivided walls are bipartite for
all k ∀ 0).

Lemma 3. Let {H1, . . . , Hp} be a finite set of graphs. If Hi /∈ S for i = 1, . . . , p
then the class of (H1, . . . , Hp)-free bipartite graphs has unbounded clique-width.
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Fig. 4. Walls of height 2, 3, and 4, respectively

4.2 A Number of Other Lemmas

We start with a lemma which is related to Lemma 1 and which follows immedi-
ately from the corresponding definitions.

Lemma 4. Let G and H be bipartite graphs. Then G is H-free if and only if G
is strongly HΘ-free for all black-and-white labellings Ω of H.

A graphG that contains a graphH as an induced subgraph may be weaklyHΘ-
free for all black-and-white labellings Ω of H ; take for instance the graphs G and
H from the proof of Lemma 1. However, we can make the following observation,
which also follows directly from the corresponding definitions.

Lemma 5. Let H be a bipartite graph with a unique black-and-white labelling Ω
(up to isomorphism). Then every bipartite graph G is H-free if and only if it is
weakly HΘ-free.

Note that there exist both connected bipartite graphs (for example H = P6)
and disconnected bipartite graphs (for example H = 2P2) that satisfy the con-
dition of Lemma 5.

Two black-and-white labellings of a bipartite graphH are said to be equivalent
if they are isomorphic or opposite to each other; otherwise they are said to be
non-equivalent. The following lemma follows directly from the definitions.

Lemma 6. Let Ω and Ω→ be two equivalent black-and-white labellings of a bipar-
tite graph H. Then the class of strongly (weakly) HΘ-free graphs is equal to the
class of strongly (weakly) HΘ∗-free graphs.

The following lemma is due to Lozin and Rautenbach [17].

Lemma 7 ([17]). Let {HΘ1
1 , . . . , H

Θp
p } be a finite set of labelled bipartite graphs.

For i = 1, . . . , p, let Fi denote the bipartite complement of Hi with respect to
(BΘi

Hi
,W Θi

Hi
). If Hi /∈ S for all 1 ∩ i ∩ p or Fi /∈ S for all 1 ∩ i ∩ p, then the

class of strongly (HΘ1
1 , . . . , H

Θp
p )-free bipartite graphs has unbounded clique-width.

In the next lemma we demonstrate a list of H-free bipartite classes with
unbounded clique-width. It is obtained by combining a known result of Lozin
and Voltz [18] with a number of new results.

Lemma 8. The class of H-free bipartite graphs has unbounded clique-width if
H ∈ {2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2, 2P3}.
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Proof. Lozin and Voltz [18] showed that 2P3-free bipartite graphs have un-
bounded clique-width. Let H ∈ {2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2}, and let
{HΘ1, . . . , HΘp} be the set of all non-equivalent labelled bipartite graphs isomor-
phic to H . For i = 1, . . . , p, let Fi denote the bipartite complement of H with
respect to (BΘi

H ,W
Θi
H ). We will show that every Fi does not belong to S. Then,

by Lemma 7 the class of strongly (HΘ1
1 , . . . , H

Θp
p )-free bipartite graphs has un-

bounded clique-width. Because a bipartite graph is H-free if and only if it is
strongly (HΘ1

1 , . . . , H
Θp
p )-free (by Lemmas 4 and 6), this means that the class of

H-free bipartite graphs has unbounded clique-width.
Suppose H ∈ {2P1 + 2P2, 2P1 + P4}. Let VH = {x1, . . . , x6} with EH =

{x1x2, x3x4} if H = 2P1 + 2P2 and EH = {x1x2, x2x3, x3x4} if H = 2P1 + P4.
Then H has only two non-equivalent black-and-white labellings. We may assume
without loss of generality that one of these two labellings colours x1, x3, x5, x6
black and x2, x4 white, whereas the other one colours x1, x3, x5 black and x2, x4,
x6 white. Let F1 and F2 be the bipartite complements corresponding to the first
and second labellings, respectively. The vertices x2, x4, x5, x6 induce a C4 in F1,
whereas the vertices x1, x4, x5, x6 induce a C4 in F2. Hence, F1 and F2 do not
belong to S.

Suppose H = 4P1 + P2. Let VH = {x1, . . . , x6} and EH = {x1x2}. Then H
has three non-equivalent black-and-white labellings. We may assume without loss
of generality that the first one colours x1, x3, x4, x5, x6 black and x2 white, the
second one colours x1, x3, x4, x5 black and x2, x6 white, and the third one colours
x1, x3, x4 black and x2, x5, x6 white. Let F1, F2, F3 denote the corresponding
bipartite complements. The vertices x2, . . . , x6 induce a K1,4 in F1. The vertices
x2, x3, x4, x6 induce a C4 in F2 and F3. Hence, none of F1, F2, F3 belongs to S.

Suppose H = 3P2. Let VH = {x1, . . . , x6} and EH = {x1x2, x3x4, x5x6}. Let Ω
be a black-and-white labelling of H that colours x1, x3, x5 black and x2, x4, x6
white. Then every other labelling Ω→ of H is isomorphic to Ω. The bipartite
complement of H with respect to (BΘ

H ,W
Θ
H) is isomorphic to C6, which does not

belong to S. ◦⊆

We will also need the following lemma. We omit the proof due to space re-
strictions.

Lemma 9. Let H ∈ S. Then H is (2P1+2P2, 2P1+P4, 4P1+P2, 3P2, 2P3)-free
if and only if H = sP1 for some integer s ∀ 1 or H is an induced subgraph of
one of the graphs in {K1,3 + 3P1,K1,3 + P2, P1 + S1,1,3, S1,2,3}.

The last lemma we need before proving the main results of this paper is the
following one (we use it several times in the proof of Theorem 3).

Lemma 10. Let HΘ be a labelled bipartite graph. The class of weakly HΘ-free
bipartite graphs has unbounded clique-width in both of the following cases:

(i) HΘ contains a vertex of degree at least 3, or
(ii) HΘ contains four independent vertices, not all of the same colour.
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Proof. Let b1 be a black-and-white labelling of 4P1 that colours three ver-
tices black and one vertex white. Let b2 be a black-and-white labelling of 4P1

that colours two vertices black and two vertices white. We show below that
the class of weakly HΘ-free bipartite graphs has unbounded clique-width if
HΘ ∈ {(K1,3)

b, (4P1)
b2 , (4P1)

b3}. Then we are done by Lemma 6.
Consider a 1-subdivided wall G≥ obtained from a wall G. Recall that 1-

subdivided walls are bipartite. Moreover, the vertices that were introduced when
subdividing every edge of G all have degree 2 and form one class of a bipartition
(B,W ) of G≥. Let this class be B. Then (K1,3)

b is not a labelled induced sub-
graph of (B,W,EG∞). Hence, G≥ is weakly (K1,3)

b-free. This means that the class
of weakly (K1,3)

b-free graphs contains the class of 1-subdivided walls. As such,
it has unbounded clique-width by Lemma 2. The bipartite complement G≥≥ of G≥

with respect to (B,W ) is weakly (4P1)
b1 -free, as (K1,3)

b is the bipartite comple-
ment of (4P1)

b1 and (K1,3)
b is not a labelled induced subgraph of (B,W,EG∞).

Hence, the class of weakly (4P1)
b1 -free graphs has unbounded clique-width by

Fact 2. The class of weakly (4P1)
b2 -free bipartite graphs has unbounded clique-

width by Lemma 1 and Theorem 1. ◦⊆

4.3 The Proof of Theorem 2

Proof. We first deal with the bounded cases. First suppose H = sP1 for some
s ∀ 1. Then every H-free bipartite graph G has at most s − 1 vertices in each
partition class for every bipartition. This means that the clique-width of G is at
most 2s− 2. Now suppose that H ∈ {K1,3 + 3P1,K1,3 + P2, P1 + S1,1,3, S1,2,3}.
Then the claim follows from combining Lemma 1 with Theorem 1.

We now deal with the unbounded cases. Suppose H →= sP1 for some s ∀ 1 and
that H is not an induced subgraph of one of the graphs in {K1,3 + 3P1,K1,3 +
P2, P1 + S1,1,3, S1,2,3}. Then by Lemma 9, either H /∈ S or, H is not (2P1 +
2P2, 2P1 + P4, 4P1 + P2, 3P2, 2P3)-free. Hence, the clique-width of the class of
H-free bipartite graphs is unbounded by Lemmas 3 and 8, respectively. ◦⊆

4.4 The Proof of Theorem 3

Proof. We first consider the bounded cases. First suppose HΘ = (sP1)
b for some

s ∀ 1 (the HΘ = (sP1)
b case is equivalent). Then every weakly HΘ-free bipartite

graph has a bipartition (B,W ) with |B| ∩ s−1. Hence, the clique-width of such
a graph is at most s+1 (first introduce the vertices of B by using distinct labels,
then use two more labels for the vertices of W , introducing them one-by-one).

Before considering the case HΘ = (P1 +P5)
b, we first consider the case where

H ⊂i P2 + P4 or H ⊂i P6. We first assume that H = P2 + P4 or H = P6. Then
H ⊂i S1,2,3, which implies that that the class of H-free bipartite graphs has
bounded clique-width by Theorem 2. All black-and-white labellings of P2 + P4

are isomorphic. Similarly, all black-and-white labellings of P6 are isomorphic.
Hence, the class of H-free bipartite graphs coincides with the class of weakly
HΘ-free graphs by Lemma 5. We therefore conclude that the latter class also has
bounded clique-width.
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Now let H ⊂i P2 + P4 or H ⊂i P6, but H →∈ {P2 + P4, P6}. Note that
P2 + P4 and P6 have a unique labelling b (up to isomorphism). If HΘ is not
a labelled induced subgraph of one of {(P2 + P4)

b, P b
6} then H must have

two non-equivalent black-and-white labellings. Since H is a linear forest, it
must have at least two components with an odd number of vertices. There-
fore H ∈ {2P1, 3P1, P1 + P3, 2P1 + P2}. However, in all these cases, for every
labelling Ω of H , HΘ ⊂li P

b
6 or HΘ ⊂li (P2 + P4)

b. Therefore, if H ⊂i P2 + P4 or
H ⊂i P6 then for every labelling Ω of H , the weakly HΘ-free bipartite graphs are
a subclass of either the P6-free or (P2 + P4)-free bipartite graphs. In particular,
this holds for HΘ = (P1+2P2)

b (we need this observation for the following case).
Finally, suppose HΘ = (P1 +P5)

b. Let G be a weakly HΘ-free bipartite graph.
Then G has a labelling Ω→ such that HΘ is not a labelled induced subgraph of
(BΘ∗

G ,W
Θ∗
G , EG). If |BΘ∗

G | is even, then we delete a vertex of BΘ∗
G . We may do this

by Fact 1. Hence |BΘ∗
G | may be assumed to be odd. Let X be the subset of W Θ∗

G

that consists of all vertices that are adjacent to less than half of the vertices
of BΘ∗

G . We apply the bipartite complementation between X and BΘ∗
G . We may

do this by Fact 2. Let G1 be the resulting bipartite graph, with bipartition classes
BΘ∗

G1
= BΘ∗

G and W Θ∗
G1

=W Θ∗
G .

Suppose BΘ∗
G1

contains three vertices b1, b2, b3 and W Θ∗
G1

contains two vertices
w1, w2 such that GΘ∗

1 [b1, b2, b3, w1, w2] is isomorphic to (P1+2P2)
b. By construc-

tion and because |BΘ∗
G1

| = |BΘ∗
G | is odd, w1 and w2 have at least one common

neighbour b4 ∈ BΘ∗
G1

. Then GΘ∗
1 [b1, b2, b3, b4, w1, w2] is isomorphic to (P1 + P5)

b.
However, then GΘ∗ [b1, b2, b3, b4, w1, w2] is also isomorphic to (P1+P5)

b (irrespec-
tive of whether w1 or w2 belong to X), which is a contradiction. We conclude
that G1 is weakly (P1 + 2P2)

b-free. As observed above, this means that G1 has
bounded clique-width. Hence G has bounded clique-width.

We now consider the unbounded cases. Let HΘ be a labelled bipartite graph
that is not isomorphic to one of the (bounded) cases considered already. Suppose
thatH contains a cycle or an induced subgraph isomorphic to 2P3. Then the class
of weakly HΘ-free graphs has unbounded clique-width by combining Lemma 1
with Theorem 2. Suppose that H contains a vertex of degree at least 3. Then
the class of weakly HΘ-free bipartite graphs has unbounded clique-width by
Lemma 10(i). It remains to consider the case when H = sP1+ tP2+Pr for some
constants 1 ∩ r ∩ 6, s ∀ 0 and t ∀ 0, where max{s, t} ∀ 1 (as H is not an
induced subgraph of P6).

Suppose 5 ∩ r ∩ 6. Assume without loss of generality that three vertices of
the copy of Pr in HΘ are coloured black. If r = 6 or t ∀ 1 or some copy P1 in HΘ

is coloured white, or two copies of P1 in HΘ are coloured black, then we can apply
Lemma 10(ii). Hence, HΘ = (P1 + P5)

b, which is not possible by assumption.
Suppose r = 4. If two vertices in the induced subgraph of HΘ isomorphic to

sP1 + tP2 have the same colour then we can apply Lemma 10(ii). Hence we may
assume that s ∩ 2 and t ∩ 1, and moreover that s = 0 if t = 1. Also we would
have H ⊂i P2 + P4 if s = 0 and t = 1 or if s = 1 and t = 0. Hence, it remains
to consider the case s = 2 and t = 0, such that one copy of P1 is coloured black
and the other one white. In that case, we may apply Lemma 10(ii).
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Suppose r = 3. Assume without loss of generality that the two vertices of the
copy of P3 in HΘ are coloured black. Recall that s ∀ 1 or t ∀ 1. If t ∀ 2, then we
can apply Lemma 10(ii). Suppose t = 1. Then s = 0 otherwise HΘ would contain
an induced 4P1 in which not all the vertices are the same colour, in which case we
could apply Lemma 10(ii). However, this means that H is an induced subgraph
of P2 + P4. Now suppose t = 0. Then s ∀ 2, as otherwise H is an induced
subgraph of P2 + P4. If s ∀ 3 then HΘ contains an induced 4P1 in which not all
the vertices are the same colour, in which case we apply Lemma 10(ii). Hence,
s = 2 and both copies are coloured black (otherwise we apply Lemma 10(ii)).
However, in this case HΘ is a labelled induced subgraph of (P1 + P5)

b, which is
not possible by assumption.

Finally suppose that r ∩ 2. Then we may write H = sP1 + tP2 instead. We
must have s + t ∀ 4 or t ∀ 3, otherwise H would be an induced subgraph of
P2+P4 or P6. If t = 0 then since HΘ →= (sP1)

b and HΘ →= (sP1)
b we can find four

copies of P1 in H that are not all of the same colour and apply Lemma 10(ii). If
t ∀ 1, s + t ∀ 4, we can also find four copies of P1 that are not all of the same
colour and apply Lemma 10(ii). Finally, suppose s = 0, t = 3. In this case we
combine Lemmas 1 and 8. This completes the proof. ◦⊆

5 Conclusions

We have completely determined those bipartite graphs H for which the class of
H-free bipartite graphs has bounded clique-width. We also characterized exactly
those labelled bipartite graphs H for which the class of weakly H-free bipartite
graphs has bounded clique-width. These results complement the known charac-
terization of Lozin and Volz [18] for strongly H-free bipartite graphs. A natural
direction for further research would be to characterize, for each of the three no-
tions of H-freeness, the clique-width of classes of H-free bipartite graphs when
H is a set containing at least 2 graphs. In a follow-up paper [12], we apply our
results for H-free bipartite graphs to determine classes of (H1, H2)-free (general)
graphs of bounded and unbounded clique-width.
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Abstract. Consider sensors on a line. Assume that for a given param-
eter s > 0 two sensors’ signals interfere with each other during commu-
nication if their distance is ≤ s. We are allowed to move the sensors on
the line, if needed, so as to avoid interference. We call total movement
the sum of displacements that the sensors have to move so that the dis-
tance between any two sensors is > s. We study the following sensor
displacement problem for avoiding interference. Assume that n sensors
are thrown randomly and independently with the Poisson distribution
having arrival rate λ = n in the interval [0,+∞). What is the expected
minimum total distance that the sensors have to move from their initial
position to a new destination so that any two sensors are at a distance
more than s apart? In this paper we study tradeoffs between the inter-
ference distance s and the expected minimum total movement, denoted
by E(s). (Clearly, the higher the value of s the more the resulting dis-
placement E(s).)

For the line. we prove the following results. 1) If s ≤ 1
nt

then E(s) ≤
min{t2/(t − 1)3, (n− 1)/2t}, where t > 1. 2) For s ≥ 1/n + Ω(n−α) we
show that E(s) ∈ Ω(n2−α), 2 ≥ α ≥ 0, while for |s − 1/n| ∈ Θ(n−3/2),
we show that E(s) ∈ Θ(

√
n). These results show a critical regime for

the expected minimum total displacement E(s), for s in the interval
[1/n − 1/n3/2, 1/n+ 1/n3/2].

Similar results concerning the expcted optimal sum of displacements
are obtained when the sensors are located on the plane and their coordi-
nates are generated by two independent identical Poisson processes. In
the critical regime for sensors on the plane, we show that E(s) ∈ Θ(n3/4)
provided that s is in the interval [1/n1/2 − 1/n3/4, 1/n1/2 + 1/n3/4].

Keywords and Phrases. Displacement, Interference, Line, Plane, Pois-
son, Random, Sensors.

1 Introduction

It is well known that proximity between neighbouring sensors affects their trans-
mission and reception signals and degrades network performance (see [5]). In
fact, the closer their distance the higher the resulting interference and hence
performance degradation. Therefore to avoid interference a critical value, say s,
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is established and unless the sensors maintain this minimum critical distance
interference will occur.

Consider n sensors thrown randomly with the Poisson distribution (having
arrival rate n) in the half-line [0,+∞). For a given interference value s, no two
consecutive sensors can be at distance less than s. What is the expected minimum
total displacement (i.e., sum of distances) that the sensors have to move so as
to ensure that in their final position no two sensors are at distance ≤ s? In
particular, what are tradeoffs on the movement of the sensors with respect to
the parameter s?

1.1 Preliminaries and Notation

We consider a Poisson process with arrival rate λ = n and suppose that the
i-th event represents the location of the i-th sensor, for i = 1, 2, . . . , n. Let Xi

be the arrival time of the ith event in this Poisson process. If T1, T2, . . . are the
interarrival times of the Poisson process then Xi = T1+T2+ · · ·+Ti. Recall (see
[14]) that for i = 1, 2, . . . the interarrival times are independent and identically
distributed exponential random variables such that

Pr[Ti = s] = λe−λs and Pr[Ti ≥ s] = e−λs.

In can be shown from this that E[Ti] = 1
λ and V ar(Ti) = 1

λ2 . The random
variable N(0, t] which counts the number N(0, t] of points in the interval (0, t] is
Poisson with arrival rate λt and E[N(0, t]] = λt and V ar(N(0, t]) = λt. The law
of large numbers for the Poisson distribution (see [9][pages 41-43]) states that

limt→≥
N(0,t]

t = λ, with probability 1. For related work on Poisson distributions
and random geometric graphs we refer the reader to [6] and [13], respectively.

Throughout we assume that s ≥ 0 is a given parameter denoting the inter-
ference value or interference distancee. Two sensors avoid interference if their
distance is > s. A sensor avoids interference if its distance from all other sensors
is > s. Two sensors overlap if their distance is < s. There is a gap of length g
between the ith and i + 1st sensors if their distance is > g. Similarly, we say
that there is gap of length g following the ith sensor if the distance between
the ith and i + 1st sensors is > g. The sensors are required to move from their
starting to a final position so as to attain an interference distance of at least s.
In this context, the displacement of a sensor is the distance that it has to move
from its starting to its final position and the total displacement is the sum of
displacements of all sensors.

Definition 1. Given n, s, we denote by En(s) the expected minimum total dis-
placement required so that in their final poisitions every pair of sensors is at
distance > s.

Usually, we abbreviate En(s) by E(s) when the number n of sensors is clear from
the context. Our intention is to study tradeoffs between the interference value s
and the expected minimum total distance E(s).
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1.2 Related Results

Several papers study interference in relation to network performance degradation
[5,8], while [2] proposes connectivity preserving and spanner constructions which
are interference optimal. [12] considers the average interference problem while
maintaining connectivity.

Related to our work, is the waiting time between events which has been an-
alyzed by several researchers. Let W (s) be the random variable measuring the
waiting time until two events of the Poisson process occur within time s. Ac-
cording to [17][Equation 15.4] (see also [3][Equation 1.3]), the following identity
is valid

Pr[W (s) > t] = e−λt

∪t/s∈∑

k=0

(t− (k − 1)s)kλk

k!
,

i.e., the probability that the Poisson process has no two consecutive events in
the interval [0, t] separated by a distance which is shorter than s. Additional
related work can be found in [17][Equation 15.4] and [15,16,3].

All the studies mentioned above refer only to static sensor models in that no
movement of the sensors is investigated. Our work is closely related to the work
of [10] where the authors consider the expected minimum total displacement for
establishing full coverage of a unit interval for n sensors placed uniformly at
random. In a sense, the coverage problem is opposite to our problem but the
analysis required for the solution of the interference problem is different.

Finally, it is worth mentioning the related problem of choosing transmission
radii which minimize the maximum interference while maintaining a connected
symmetric communication graph; this is shown by [1] to be NP-complete. In
addition, [7] gives an algorithm which yields a maximum interference of O(

√
n),

while [11] studies the max interference problem for a set of sensors on a line.

1.3 Outline and Results of the Paper

We assume that the arrival rate λ = n. The tradeoffs derived for the expected
minimum total movement depend on the required interferences distance s be-
tween consecutive sensors. Table 1 displays results proved in the paper. We study
tradeoffs between the interference distance s and the expected minimum total

Table 1. Table displays our results about the expected minimum total movement in
the interval [0,+∞) as a function of the interference distance s. Similar results are
obtained for sensors on the plane.

Interference Distance s Total Displacement E(s) Theorem

s− 1
n
∈ Ω

(
n−α

)
, 2 ≥ α ≥ 0 Ω(n2−α) 1

∣
∣s− 1

n

∣
∣ ∈ O

(
n−3/2

)
Θ(
√
n) 2

s ≤ 1
tn
, t > 1 ≤ t2

(t−1)3
3
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displacement E(s). The results are presented relative to the size of the interfer-
ence distance s.

Our study indicates the existence of a critical threshold around the value 1
n as

this affects the expected total movement of the sensors to solve the interference
problem. First of all, in Section 2.1 we prove a basic Ω(n2−α) lower bound
when s − 1

n ∈ Θ (n−α), for 2 ≥ α ≥ 0. Next, sensor interference distance 1
n

is shown to be a critical threshold 1) around which and within the interval[
1
n − 1

n3/2 ,
1
n + 1

n3/2

]
we have a critical regime, i.e., the value E(s) (the expected

minimum total movement required so that every pair of sensors is at distance
at least s) is exactly Θ(

√
n), 2) below which E(s) declines sharply to a constant

O(1), and 3) above which it increases above Θ(
√
n).

Similar results are obtained when the sensors are located on the plane. Like
for the line we determine a critical threshold and show that in the interval[

1
n1/2 − 1

n3/4 ,
1

n1/2 + 1
n3/4

]
we have a critical regime.

Here is an outline of the paper. In Section 2 we consider sensors on the line.
In Subsection 2.2 we prove a Θ(

√
n) bound when s is sufficiently close to 1

n .
Subsection 2.3 investigates interference, displacemnt tradeoffs for s ≤ 1

tn as
a function of the paprameter t. Section 3 considers sensors on the plane. We
conclude with some open problems.

2 Sensors on the Line

In this section we analyze sensor interference when the sensors are placed on the
half-line [0,+∞).

2.1 Expected Displacement for s − 1
n

∈ Ω
(
n−α

)

In this subsection we study the total displacement when the interference value
is sufficiently above 1/n. Our first theorem gives a lower bound on the expected
total displacement when

(
s− 1

n

)
∈ Ω(n−α), where 2 ≥ α ≥ 0.

Theorem 1. Assume that the interference value between sensors is s. If s− 1
n ∈

Ω(n−α) then E(s) ∈ Ω(n2−α), where 2 ≥ α ≥ 0 is a real number. In particular,
if s− 1

n ∈ Ω(n−3/2) then E(s) ∈ Ω(
√
n).

Proof. (Theorem 1) Suppose that the i-th sensor’s displacement is equal to Di.
After the sensors move to their final destinations it must be true that Di+1 +
Xi+1 ≥ Di+Xi+s, for all 1 ≤ i ≤ n−1, so as to ensure that the two sensors are
at least distance s apart. It follows that E[Di+1]+E[Xi+1] ≥ E[Di]+E[Xi]+s.
However, E[Xi+1] =

i+1
n and E[Xi] =

i
n . Therefore E[Di+1] ≥ E[Di] + s − 1

n ,
for 1 ≤ i ≤ n− 1. Repeating this inequality recursively we see that

E[Di+1] ≥ E[D1] +

(

s− 1

n

)

i,
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for 1 ≤ i ≤ n − 1. In particular, we conclude that the expected minimum total
movement must satisfy

n∑

i=1

E[|Di|] ≥
n∑

i=1

E[Di] ≥ nE[D1] +

(

s− 1

n

)
n(n− 1)

2
. (1)

Now we can prove that the expected minimum total movement is in Ω(n2−α),
where 2 ≥ α ≥ 0 is a real number. There are two cases to consider.

Case 1. If E[D1] ≥ 0. Then the first part of the theorem follows immediately
from Inequality (1).

Case 2. If E[D1] < 0. Then observe that Pr[T1 ≥ s] = e−λs and so with
with high probability the sensor must fall within the interval [0, c lnn

n ]. Therefore

the sensor will never need to move more than O
(
c lnn
n

)
. Hence, |nE[D1]| is in

O(lnn) and therefore the first part of the theorem follows immediately from
Inequality (1).

Finally, the proof of the second part of the theorem concerning the expected
minimum total movement follows immediately from the first part using the value
α = 3/2.

2.2 Expected Displacement for
⎧
⎧s − 1

n

⎧
⎧ ∈ O

(
n−3/2

)

Next we look at the expected minimum total displacement when s is close to
1/n. As a consequence of our analysis we prove that there is a critical regime
when

⎧
⎧s− 1

n

⎧
⎧ ∈ O

(
n−3/2

)
.

First we prove a lemma, which was first stated and proved in [10] for the unit
interval using the binomial distribution. Our random placement model uses the
Poisson distribution and is on the half-line [0,+∞). Therefore we must restate
and prove the result in this new model; but our proof is simpler

Lemma 1. The expected sum of displacements of n sensors to move from their
current location to anchor locations ai :=

i
n − 1

2n , for i = 1, . . . , n, respectively
is given by the formula

−1

2
+

1

n

n∑

i=1

e−
2i−1

2

i−1∑

j=0

(2i−1
2 )j

j!
+

2

n

n∑

i=1

ie−
2i−1

2
(2i−1

2 )i

i!
(2)

Moreover, the expected sum of displacements is in Θ(
√
n).

Proof. (Lemma 1) Let Xi be the arrival time of the ith event in a Poisson process
with arrival rate λ. It turns out (see [14]) that Xi obeys the Gamma distribution

with parameters i, λ, where i = 1, 2, . . . , n, i.e., Pr[Xi = s] = λe−λs (λs)i−1

(i−1)! . If

the arrival rate is λ = n then E[Xi] =
i
n , for i = 1, 2, . . . , n.

Next we calculate the expected displacement of ith sensor. Let the i-th sensor
move to position ai =

i
n − 1

2n . Let Di(ai) := E [|Xi − ai|] denote the expected
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displacement of the ith sensor. Di(ai) is given by the following formulas which
are easily proved.

Di(ai) =

(

ai −
i

λ

)
⎪

⎨1− 2e−λai

i−1∑

j=0

(λai)
j

j!

⎩

+
2i

λ
e−λai

(λai)
i

i!
. (3)

If we assume that the Poisson arrival rate λ satisfies λ = n then using For-
mula (3) we derive the following identity for the displacement of the ith sensor
to the anchor ai =

2i−1
2n

Di

(
2i− 1

2n

)

= − 1

2n

⎪

⎨1− 2e−
2i−1

2

i−1∑

j=0

(2i−1
2 )j

j!

⎩

+
2i

n
e−

2i−1
2

(2i−1
2 )i

i!

= − 1

2n
+

1

n
e−

2i−1
2

i−1∑

j=0

(2i−1
2 )j

j!
+

2i

n
e−

2i−1
2

(2i−1
2 )i

i!
. (4)

Using the last Identity (4) above, the expected sum of displacements of all n
sensors is given by the formula

n∑

i=1

Di

(
2i− 1

2n

)

=

n∑

i=1

E

⎛⎧
⎧
⎧
⎧Xi −

2i− 1

2n

⎧
⎧
⎧
⎧

⎝

= −1

2
+

1

n

n∑

i=1

e−
2i−1

2

i−1∑

j=0

(2i−1
2 )j

j!
+

2

n

n∑

i=1

ie−
2i−1

2
(2i−1

2 )i

i!

This proves Identity (2) in the first part of the theorem. We now prove the
second part. It turns out this sum is in Θ(n). To this end observe that we can
bound the terms in the sum above as follows.

e−
2i−1

2

i−1∑

j=0

(2i−1
2 )j

j!
=

√
e · e−i

i−1∑

j=0

(i− 1
2 )

j

j!
≤

√
e · e−i

i−1∑

j=0

ij

j!
≤

√
e · ie−i i

i

i!

ie−
2i−1

2
(2i−1

2 )i

i!
=

√
e · ie−i (i −

1
2 )

i

i!

Therefore it follows that the sum (2) is dominated up to a constant factor by

the term 1
n

⎞n
i=1 ie

−i · ii

i! . Recall from Stirling’s Inequality (see Feller [4][page
54]) that we have the following bounds on the factorial functions:

√
2πnn+

1
2 e−n+ 1

12n+1 < n! <
√
2πnn+

1
2 e−n+ 1

12n (5)

Using Inequalities (5) we see that

ie−i i
i

i!
>

1√
2π

ie−iii

ii+
1
2 e−i+ 1

12i
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1√
2π

i
1
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e
1

12i
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1√

2πe
1
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√
i

ie−i i
i
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<

1√
2π

ie−iii

ii+
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2 e−i+ 1
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=
1√
2π

i
1
2

e
1

12i+1

=
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2πe
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It is now easy to see that 1
n

⎞n
i=1 ie

−i · ii

i! ∈ Θ(n1/2). This completes the proof
of Lemma 1.

Using this lemma we are now in a position to study upper bounds on the
expected minimum displacement when the interference value s is sufficiently
close to 1/n, namely

⎧
⎧s− 1

n

⎧
⎧ ∈ O

(
n−3/2

)
.

Theorem 2 (Critical Regime). Assume the interference value between sen-
sors is s. If

⎧
⎧s− 1

n

⎧
⎧ ∈ O

(
n−3/2

)
then E(s) ∈ Θ(√n).

Proof. (Theorem 2) Assume
⎧
⎧s− 1

n

⎧
⎧ ∈ O

(
n−3/2

)
.

First consider the case s ≥ 1
n . Define the position bi := (i− 1)s and have the

i-th sensor move to position bi, for i ≥ 1. It is sufficient to show that

n∑

i=1

E[|Xi − bi|] ∈ O(
√
n). (6)

Clearly, if the ith sensor occupies position bi, for i = 1, 2, . . . , n, then the distance
between consecutive sensors is equal to s.

Now consider the anchor positions ai = 2i−1
2n , for i = 1, . . . , n, used in the

proof of Lemma 1. By Lemma 1 we know that
⎞n

i=1E[|Xi − ai|] ∈ Θ(
√
n). Now

observe from the triangle inequality that

|Xi − bi| ≤ |Xi − ai|+ |ai − bi|. (7)

From the definition of the anchor points it is easy to see that

ai − bi =
2i− 1

2n
− (i− 1)s =

1

2n
+ (i− 1)

(
1

n
− s

)

.

Therefore we conclude that

n∑

i=1

|ai − bi| ≤
1

2
+

⎧
⎧
⎧
⎧s−

1

n

⎧
⎧
⎧
⎧ ·

n∑

i=1

(i − 1)

≤ 1

2
+

⎧
⎧
⎧
⎧s−

1

n

⎧
⎧
⎧
⎧ ·
n(n− 1)

2
. (8)

Taking the sums in Inequality (7), for i = 1, . . . , n, we conclude that

n∑

i=1

E[|Xi − bi|] ≤
n∑

i=1

E[|Xi − ai|] +
n∑

i=1

|ai − bi|

Therefore the theorem foliows using Inequality (8) above and Lemma 1.
Next consider the case s ≤ 1

n .. First of all observe that for the positions bi,
i = 1, 2, . . . , n, defined above we have that

E(s) ≥
n∑

i=1

|Xi − bi|.
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From the triangle inequality we have that |Xi−bi| ≥ |Xi−ai|−|ai−bi|. Therefore
using Inequality (8) we see that

n∑

i=1

E[|Xi − bi|] ≥
n∑

i=1

E[|Xi − ai|]−
n∑

i=1

|ai − bi|

≥
n∑

i=1

E[|Xi − ai|]−
1

2
−
⎧
⎧
⎧
⎧s−

1

n

⎧
⎧
⎧
⎧ ·
n(n− 1)

2
.

This is sufficient to complete the proof of Theorem 1.

2.3 Expected Displacement for s ≤ 1
tn

In this subsection we prove an upper bound on the expected minimum displace-
ment for s ≤ 1

tn , provided that t > 1.
A simple upper bound can be obtained as follows for t ≥ 1. Consider the

locations X1, X2, . . . , Xn of the n sensors in the interval [0,+∞). Apply a recur-
sive procedure that moves sensors to the right of their current position so as to
ensure that in their new position each pair of consecutive sensors is separated by
a distance of at least s. An algorithm that accomplishes this task is as follows.

Algorithm 1: Moving Sensors
1. Set M1 = 0;
2. for i = 2 to n do
3. move sensor Xi to new position Xi +Mi s.t.
4a. Xi−1 +Mi−1 ≤ Xi +Mi;
4b. Xi +Mi ≤ s+Xi−1 +Mi−1;

Observe that in this movement the order of the sensors is maintained. How-
ever, when a sensor moves to the right, consecutive sensors to its right will also
have to move cummulatively. It follows that Xi +Mi ≤ X1 +M1 + (i − 1)s =
X1 +(i− 1)s holds for all i ≥ 1. Therefore the total movement of all the sensors
satisfies the inequality

E(s) ≤
n∑

i=2

Mi ≤
n∑

i=2

(i − 1)s ≤ n− 1

2t
. (9)

However, we can improve this result by using standard results in queueing theory.
We have the following result.

Theorem 3. Assume the interference distance between sensors is s. If s ≤ 1
tn

then

E(s) ≤ min

⎣
t2

(t− 1)3
,
n− 1

2t

⎤

, (10)

where t > 1.
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Proof. (Theorem 3) The upper bound n−1
2t is immediate from the previously

proved Inequality (9). Therefore we only need to prove the upper bound t2

(t−1)3 .

Our model is equivalent to a single-server service station in which customers
arrive according to a Poisson process having rate λ. An arriving customer is
served immediately if the server is free; and if not, the customer joins the queue
(i.e., waits in line). Successive service times are independent with a common
distribution and the system will alternate between idle periods (with no cus-
tomers in the system—server is idle), and busy periods (with customers in the
system—server is busy). A busy period begins when an arrival finds the system
empty, and because of the memoryless property of the Poisson arrivals it follows
that the distribution of the length of a busy period will be the same for each
such period. Let the random variable B denote the length of a busy period and
S the service time of the first customer in the busy period.

According to [14][pages 348-349] its mean and variance are given by the for-
mulas below

E[B] :=
E[S]

1− λE[S]
(11)

V ar(B) :=
V ar(S) + λE3[S]

(1 − λE[S])3
(12)

In our model we have that E[S] = s and λ = n. Let the random variable N
denote the number of customers in the busy period B. Since B is the length of
the busy period, and the service for a customer is equal to s, it follows that the
number of customers in the busy period must be exactly equal to B

s . It follows
from Identities (11) and (12) that

E[N ] =
E[B]

s
=

E[S]

(1 − λE[S])s
=

1

1− ns
≤ t

t− 1
(13)

V ar(N) =
V ar(B)

s2
=

ns

(1 − ns)3
≤ t2

(t− 1)3
(14)

E[N2] = V ar(N) + E[N ]2 ≤ t2

(t− 1)3
+

t2

(t− 1)2
=

t3

(t− 1)3
(15)

Let the random variable D denote the sum of displacements of the sensors in
the busy period B. It is clear that D ≤ N2s. Therefore using Equation (13) we
conclude

E[D] ≤ E[N2s] = E[N2]s ≤
(

t

t− 1

)3

s =
t2

n(t− 1)3
. (16)

Let the random variable T denote the sum of displacements of all the sensors.
Recall that a busy period has B

s customers. Let the consecutive busy periods be
B1, B2, . . . , Bm, where m ≤ n.

Let Di denote the sum of displacements of the sensors participating in the
busy period Bi. Since the randomm variables Di are identical, it follows from
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the above discussion and Inequality (16) that the expected sum of displacements
of all the sensors satisfies

E[T ] = E

⎦
m∑

i=1

Di

⎟

= mE[D] ≤ t2

(t− 1)3
,

which proves the theorem.

3 Sensors on the Plane

Assume that n sensors are placed in the quadrant [0,+∞)×[0,+∞) according to
a “double” Poisson process, i.e., there are two identical and independent Poisson
processes Xi, Yi, for i = 1, 2, . . . ,m, each with arrival rate m, and n = m2,
where Xi (respectively, Yi) represents the ith arrival in the x-axis (respectively,
y-axis). The position of a sensor in the plane is determined by the pair (Xi, Yj),
i, j = 1, 2, . . . ,m. To prevent interference sensors must be displaced (in the
plane) so that any pair of sensors is at Euclidean distance > s, where as before s
is a given positive real number called the interference distance. Similarly to the
line, let E(s) denote the expected minimum sum of displacements of all sensors
in the plane which ensures that in their final position every pair of sensors is at
distance > s.1

We now embark to extend our results to the plane. Arguing as in Theorem 1
we can prove the following result.

Theorem 4. If s − 1
n1/2 ∈ Ω(n−β) then E(s) ∈ Ω(n3/2−β), where 1 ≥ β ≥ 0

is a real number. In particular, for β = 3/4 we see that if s− 1
n1/2 ∈ Ω(n−3/4)

then E(s) ∈ Ω(n3/4).

Proof. (Theorem 4) Put α = 2β. Assume m = n1/2. By assumption we have
that s− 1

m ∈ Ω(m−α). Observe that if a sensor moves from position (Xi, Yj) to
position (Xi +Mi,j , Yj +Ni,j) then the Euclidean distance between the old and
new position is Di,j := (M2

i,j + N2
i,j)

1/2 while for the sum of movements of all
the sensors we have that the folllowing inequalities are valid

1√
2

m∑

i,j=1

(|Mi,j |+ |Ni,j |) ≤
m∑

i,j=1

(M2
i,j +N2

i,j)
1/2 ≤

m∑

i,j=1

(|Mi,j |+ |Ni,j |) (17)

It is clear that if the displacement Di,j of sensor (Xi, Yj) is > s then |Mi,j | +
|Ni,j | > s. By Theorem 1 applied to the integerm = n1/2 we have that HEi(s)+
V Ej(s) ∈ Ω(m2−α) = Ω(n1−α/2), for all i = 1, 2, . . . ,m, where 2 ≥ α ≥ 0
is a real number, and HEi(s), V Ej are the corresponding minimum sum of
horizontal and vertical displacements of the sensors (Xi, Yj), for j = 1, 2, . . . ,m,
and of the sensors (Xi, Yj), for i = 1, 2, . . . ,m, respectively. Using the lefthand
side of Inequality (17) we see that

⎞m
i,j=1(HE

i(s) + V Ej(s)) ≤ E(s), which

yields E(s) ∈ Ω(n3/2−α/2). The second part of the theorem is easy.

1 By abuse of notation, we will use the same symbol for sensors in the plane as for
sensors in the line. However the precise interpretation will be clear from the context.
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Consider the anchor positions Ai,j := (ai, aj), for i, j = 1, 2, . . . ,m, where
ai :=

2i−1
2n . First we prove the following lemma which is the analogue of Lemma 1.

Lemma 2. The expected minimum sum of displacements of n = m2 sensors to
move to the anchor positions Ai,j, for i, j = 1, 2, . . . ,m, is in Θ(n3/4).

Proof. (Lemma 2) For the O(n3/4) upper bound note that the movement of all
sensors in each row and column is in O(m1/2) = O(n1/4). Hence, the result
follows since there are m rows and m columns of sensors. For the Ω(n3/4) lower
bound note that if a sensor moves from position (Xi, Yj) to position (Xi +
Mi,j , Yj +Ni,j) then the Euclidean distance between the old and new position is
Di,j := (M2

i,j+N
2
i,j)

1/2 while for the sum of movements of all the sensors we have

that Inequality (17). However, for each given i, j, we have that
⎞m

j=1 |Mi,j | ∈
Ω(m1/4) and

⎞m
i=1 |Ni,j | ∈ Ω(m1/4), which proves the lemma.

Theorem 5 (Critical Regime). Assume the interference distance between
sensors is s. If

⎧
⎧s− 1

n1/2

⎧
⎧ ∈ O

(
n−3/4

)
then E(s) ∈ Θ(n3/4).

Proof. (Theorem 5) This is similar to the proof of Theorem 2.

The analogue of Theorem 3 in the plane for s ≤ 1
tn , where t > 1, can also be

proved as before.

Theorem 6. Assume the interference value between sensors is s. If s ≤ 1
tn1/2

then

E(s) ≤ min

⎣
t2

(t− 1)3
,
n1/2 − 1

2t

⎤

, (18)

where t > 1.

Proof. (Theorem 6) This is an immediate consequence of Theorem 3 applied
to m = n1/2. By displacing the respective sensors located at X1, X2, . . . , Xm

and Y1, Y2, . . . , Ym to ensure interference distance at least s, respectively, we
guarantee that any pair among the sensors (Xi, Yj) is also at distance at least
s. This proves the theorem.

4 Conclusion

In this paper we have considered the sensor displacement problem to avoid sen-
sor interference. An interesting question would be to study the coverage problem
simultaneously with the interference problem. Namely, what is the expected min-
imum total displacement of n sensors each of range r from their initial position
to a new destination so that any two consecutive sensors are at a distance more
than s (where r > s) apart while at the same time there are no coverage gaps
from the left endpoint to the last rightmost sensor?

Acknowledgements. Many thanks to Danny Krizanc for useful discussions on
the subject of the paper.
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Abstract. We continue the study of the performance of mildly greedy
players in cut games initiated by Christodoulou et al. in [14], where a
mildly greedy player is a selfish agent who is willing to deviate from a
certain strategy profile only if her payoff improves of a factor of more
than 1+Θ, for some Θ ≥ 0. Hence, in presence of mildly greedy players, the
classical concepts of pure Nash equilibria and best-responses generalize
to those of Θ-approximate pure Nash equilibria and Θ-approximate best-
responses, respectively. We first show that the Θ-approximate price of an-
archy, that is the price of anarchy of Θ-approximate pure Nash equilibria,
is at least 1

2+ε
and that this bound is tight for any Θ. Then, we evaluate

the approximation ratio of the solutions achieved after an Θ-approximate
one-round walk starting from any initial strategy profile, where an ap-
proximate one-round walk is a sequence of Θ-approximate best-responses,
one for each player. We improve the currently known lower bound on this

ratio from min
{

1
4+2ε

, ε
4+2ε

}
up to min

{
1

2+ε
, 2ε
(1+ε)(2+ε)

}
and show that

this is tight for any Θ.

1 Introduction

It has been known since the early fifties that the strategic behavior of selfish
players in non-cooperative games usually produces suboptimal outcomes with
respect to the ones which could be potentially enforced by a dictatorial au-
thority, the Prisoner’s Dilemma being the most famous and pragmatic example.
Nevertheless, it has been only after the seminal paper of Koutsoupias and Pa-
padimitriou [21] in 1999 that this phenomenon, termed as price of anarchy,
became object of a thorough analytical scrutiny by the scientific community.

Formally speaking, given a social function measuring the overall quality of all
the strategy profiles which can be realized in a game, the price of anarchy mea-
sures the worst-case ratio between the social value of a strategy profile optimizing
the social function and the social value of a Nash equilibrium.
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TechnoMedia: “Algorithmics for Social Technological Networks” funded by the Ital-
ian Ministry of University.
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In the last years, however, a ground-breaking sequence of complexity results
has provided a strong evidence of the computational intractability of the problem
of computing Nash equilibria in several games of interest. In particular, the
problem of computing a pure Nash equilibrium has been shown to be PLS-
complete in congestion games by Fabrikant et al. [17] and in some of their special
cases by Ackermann et al. [1], where congestion games, introduced by Rosenthal
in [23], is a well-known and significative class of games represented in succinct
form for which any best-response dynamics is always guaranteed to converge to
a pure Nash equilibrium in a finite number of steps. Moreover, the problem of
computing a (mixed) Nash equilibrium has been shown to be PPAD-complete for
any number of players (Chen and Deng [11], Daskalakis et al. [15], Daskalakis
and Papadimitriou [16]), even in games represented in standard normal form,
i.e., by explicitly listing the utility of each player in any possible strategy profile.

For such a reason, the price of anarchy has to be intended as a theoretical
bound of inefficiency to which a system populated by selfish agents may ideally
tend to the limit, but which is unlikely to be attained in practice because of
computational issues. Because of these limitations, in the last years, quite an
attention has been moved to the analysis of the performance of less demanding
solution concepts, among which are approximate pure Nash equilibria and best-
response dynamics of polynomially bounded length.

Approximate pure Nash equilibria are pure Nash equilibria for mildly greedy
players, that is, players who are willing to be part of any strategy profile in
which they experience a utility which is “not too far” from the best utility they
can get by deviating to another strategy. More formally, given a value Ω → 0, an
Ω-approximate pure Nash equilibrium is a strategy profile Ω such that the utility
that each player gets when deviating to any other strategy is no more than 1+ Ω
times the utility that she gets in Ω. Any 0-approximate pure Nash equilibrium is
a pure Nash equilibrium by definition, hence, the set of pure Nash equilibria is
a proper subset of that of Ω-approximate pure Nash equilibria for any Ω > 0. For
sufficiently high values of Ω, the problem of computing an Ω-approximate pure
Nash equilibrium becomes polynomial time solvable in several games of interest.
In particular, there exist polynomial time algorithms for computing one such
an equilibrium in several special cases of congestion games (Bhalgat et al. [4],
Caragiannis et al. [8,9], Chien and Sinclair [12]).

A best-response dynamics, instead, is an evolutive processes in which, starting
from a given strategy profile, the players are processed sequentially and, at each
step, each player is allowed to change her current strategy by best-responding
to the strategies played by the others. Clearly, when players can compute in
polynomial time their best-responses, a best-response dynamics of polynomially
bounded length, i.e., with a polynomial number of steps, can be efficiently com-
puted. We speak of an approximate best-response dynamics when it involves
mildly greedy players. In particular, an Ω-approximate best-response dynamics
is a dynamics in which each player changes her strategy only when it improves
her utility of a factor of more than 1 + Ω. By definition, any fixed point of an Ω-
approximate best-response dynamics is an Ω-approximate pure Nash equilibrium.
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One may define several special cases of best-response dynamics: for instance, Mir-
rokni and Vetta [22] introduce the notions of covering walks, k-covering walks,
one-round walks, k-round walks and random one-round walks. A covering walk
is a sequence of best-response dynamics in which each player plays at least once,
a k-covering walk is a concatenation of k covering walks, a one-round walk is a
covering walk in which each player plays exactly once, a k-round walk is a con-
catenation of k one-round walks, while a random one-round walk is a one-round
walk such that the order in which players are processed is chosen randomly.
When considering mildly greedy players, the analogous notions of approximate
covering walks, approximate k-covering walks, approximate one-round walks,
and so on, may be defined.

Our Contribution. In this paper, we study the performance of mildly greedy
players in cut games, a relevant subclass of congestion games. Cut games are
naturally defined by an undirected edge weighted graph G. Each vertex of G
is owned by a player and has to be placed in one of the two possible sides of a
bipartition. Each player has to decide which side to choose so as to maximize the
sum of the weights of the edges connecting her node to all the nodes belonging to
the opposite side. Thus, each strategy profile induces a cut of G and each player
wants to maximize the contribution given to the total weight of the cut by the
edges incident to her node. The social function mainly used in the literature to
measure the overall quality of a strategy profile is the total weight of the induced
cut which is half of the sum of the players’ utilities.

Each cut game, being a particular instance of congestion games, always admits
pure Nash equilibria; moreover, any best-response dynamics is guaranteed to
converge to one such an equilibrium in a finite number of steps. However, the
computation of one such an equilibrium, being strongly related to that of a local
optimum of the MAXCUT problem, is a PLS-complete problem, hence widely
believed to be computationally untractable. This justifies the idea of resorting
to mildly greedy players who can give life to solutions having a more permissive
computational complexity. To this aim, Bhalgat et al. [4] give a polynomial time
algorithm to compute a (3+Ω)-approximate pure Nash equilibrium, for any Ω > 0.

Standard arguments from the theory of approximation algorithms imply that
the price of anarchy of cut games is 1/2 and that so is also the approximation
ratio of the solutions achieved after a one-round walk starting from the empty
strategy profile. Chrisodoulou et al. [14] show that a random one-round walk
converges to a 1/8 approximation of the social optimum, while, on the negative
side, they show that there exist k-round walks converging to an O(k/n) approxi-
mation of the social optimum and that there are strategy profiles at exponential
distance from any pure Nash equilibrium. Such a worst-case poor determinis-
tic convergence, however, does not occur when mildly greedy players come into
play, since they prove that any Ω-approximate one-round walk starting from any

initial strategy profile converges to a
(
min

{
1

4+2Θ ,
Θ

4+2Θ

})
-approximation of the

social optimum.
We give exact bounds on the worst-case performance guarantee of mildly

greedy players in cut games by considering either approximate pure Nash
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equilibria and approximate one-round walks. In particular, we show that the
Ω-approximate price of anarchy, that is the price of anarchy of Ω-approximate
pure Nash equilibria, is at least 1

2+Θ and that this bound is tight for any Ω. We
then move to the evaluation of the approximation ratio of the solutions achieved
after an Ω-approximate one-round walk starting from any initial strategy profile.
This notion can be seen as an analogy of the price of anarchy for Ω-approximate
one-round walks and is defined as the worst-case ratio between the value of the
social optimum and the social value of a strategy profile realized at the end of the

walk. We show that this ratio is at least min
{

1
2+Θ ,

2Θ
(1+Θ)(2+Θ)

}
, thus significantly

improving the previous lower bound of min
{

1
4+2Θ ,

Θ
4+2Θ

}
given by Christodoulou

et al. [14], and prove that also this bound is tight for any Ω.
Our lower bounds are both obtained by exploiting the primal-dual method

introduced by Bilò in [5]. In particular, for the case of approximate one-round
walks, a simple but tricky analysis of all the situations which may occur during
the walk allows us to exploit the power of the primal-dual method at its full
magnitude. In fact, the lower bound that we achieve is much better (at least
the double) than the one that could be obtained by Christodoulou et al. [14] by
making use of only combinatorial arguments.

Related Work. The study of (approximate) best-response dynamics plays a
crucial role in the determination of both (approximate) pure Nash equilibria
and solutions of good social value in a variety of congestion games.

As to the computation of (approximate) pure Nash equilibria, Fabrikant et
al. [17] design a polynomial time algorithm to compute a pure Nash equilib-
rium in symmetric network congestion games, Ackermann et al. [1] show that,
when the strategy set of each player is the bases of a matroid over the set of
resources, any best-response dynamics converges in polynomial time to a pure
Nash equilibrium, while Caragiannis et al. [8,9] give polynomial time algorithms
for computing an O(1)-approximate pure Nash equilibrium either in conges-
tion games with polynomial latency functions and in their generalization with
weighted players. Chien and Sinclair [12] show that, under some mild assump-
tions, any Ω-approximate best-response dynamics converges to an Ω-approximate
pure Nash equilibrium after a polynomial number of steps in symmetric conges-
tion games. Such a result has been complemented by Skopalik and Vöcking [24]
who showed that there exist asymmetric congestion games with strategy profiles
being at an exponential distance from any approximate pure Nash equilibrium.

For what concerns the convergence to solutions of good social value, Goe-
mans et al. [20] show that any random best-response dynamics converges in
polynomial time to a constant approximation of the social optimum in weighted
congestion games with polynomial latency functions, as well as in basic and
valid utility games. Awerbuch et al. [2] prove that, under some mild assump-
tions, any approximate best-response dynamics converges in polynomial time to
an approximation of the social optimum which is arbitrarily close to the price of
anarchy in weighted congestion games and that such a property does not hold
for best-response dynamics. A similar, but independent, result by Bhalgat et
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al. [3] states that any approximate best-response dynamics converges in poly-
nomial time to a constant approximation of the social optimum in congestion
games whose resources have similar latency functions. Despite the negative re-
sult of Awerbuch et al. [2], Fanelli and Moscardelli [19] show that, with some
additional reasonable assumptions, best-response dynamics are guaranteed to
converge in polynomial time to a constant approximation of the social optimum
in weighted congestion games with polynomial latency functions. For the special
case of congestion games with linear latency functions, Fanelli et al. [18] show
that σ(n log logn) best-responses are necessary and sufficient to attain a con-
stant approximation of the social optimum, where n is the number of players.
Christodoulou et al. [14] prove that any one-round walk starting from the empty
strategy profile converges to a (2 +

⊂
5)-approximation of the social optimum

and that such a value grows to 4 + 2
⊂
3 in the case of weighted players, while,

when starting from any initial strategy profile, the bound becomes O(n) which
is asymptotically tight. The 2+

⊂
5 upper bound has been shown to be tight by

Bilò et al. [6], while Caragiannis et al. [10] give a lower bound of 3+2
⊂
2 for the

case of weighted players.
The approximate price of anarchy of congestion games with linear latency

functions has been characterized by Christodoulou et al. [13].

Paper Organization. Next section contains all necessary definitions and nota-
tion, while Sections 3 and 4 illustrate the technical contributions of the paper.
In particular, in the former, we bound the approximate price of anarchy, while,
in the latter, we focus on approximate one-round walks starting from any initial
strategy profile. Finally, in the last section, we discuss our results and possi-
ble future research directions. Due to space limitations, some proofs have been
omitted.

2 Definitions and Notation

A strategic game is a triple SG =
(
[n], (Σi)i→[n], (Ui)i→[n]

)
, where [n] := {1, . . . , n}

is a set of players and, for each i ≡ [n], Σi is the set of strategies for player i and
Ui : ×j→[n]Σj ∈ R≥0 is her utility function.

A strategy profile Ω = (α1, . . . , αn) is an n-tuple of strategies, one for each
player. We denote as Σ = ×j→[n]Σj the set of all the strategy profiles of SG.
Given a strategy profile Ω, a player i ≡ [n] and a strategy β ≡ Σi, we denote
with Ω−i ≥ β = (α1, . . . , αi−1, β, αi+1, . . . , αn) the strategy profile obtained from
Ω when player i unilaterally changes her strategic choice from αi to β . Classical
greedy (or selfish) players choose their strategies so as to maximize their utility
functions. Mildly greedy players, instead, are players who may be willing to be
part of some suboptimal profiles in a sense that we make precise in the following.

Definition 1. Given a strategy profile Ω and a value Ω → 0, a strategic choice
β ≡ Σi is an Ω-approximate improving deviation for player i in Ω if it holds
Ui(Ω−i ≥ β) > (1 + Ω)Ui(Ω).
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Let us denote with IDΘ(Ω, i) = {β ≡ Σi : Ui(Ω−i ≥ β) > (1 + Ω)Ui(Ω)} the set
of Ω-approximate improving deviations for player i in Ω.

Definition 2. Given a strategy profile Ω and a value Ω → 0, a strategic choice
β ≡ Σi is an Ω-approximate best-response for player i in Ω if it holds β ≡
argmaxΣ ∗→IDδ(σ,i)∪Ωi

{Ui(Ω−i ≥ β ∈)}.

Thus, an Ω-approximate best-response for player i in Ω is one of her Ω-
approximate improving deviations providing the highest improvement when she
possesses at least one such a deviation (i.e., IDΘ(Ω, i) ∪= ◦), while it is equal to
the strategy currently played by i otherwise.

An Ω-greedy player is never willing to be part of a strategy profile for which
she has an Ω-approximate improving deviation, but she accepts strategy profiles
for which she has only Ω∈-approximate improving deviations for any Ω∈ < Ω. This
yields the following definitions of approximate equilibrium and approximate one-
round walk.

Definition 3. Given a value Ω → 0, a strategy profile Ω ≡ Σ is an Ω-
approximate pure Nash equilibrium if, for each i ≡ [n] and for each β ≡ Σi,
it holds Ui(Ω−i ≥ β) ⊆ (1 + Ω)Ui(Ω).

Definition 4. Given a value Ω → 0, an Ω-approximate one-round walk is
an (n + 1)-tuple of strategy profiles W = (w0,w1, . . . ,wn) such that, for each
0 ⊆ i < n, wi+1 = wi

−i ≥ β , where β is an Ω-approximate best-response for player
i in wi. The strategy profiles w0 := s(W ) and wn := f(W ) are the starting
and the final strategy profile of W , respectively.

Note that the concepts of Ω-approximate improving deviation, Ω-approximate
best-response, Ω-approximate pure Nash equilibrium and Ω-approximate one-
round walk are proper generalizations of their counterparts defined for greedy
players since the latter ones can be obtained from the former when Ω = 0.

Let G = (V,E, c), with c : E ∈ R≥0, be an edge weighted undirected graph.
Graph G defines a cut game C(G) as follows. Each node vi ≡ V corresponds to
a player i ≡ [n] whose set of strategies is Σi = {{0}, {1}}. For a strategy profile
Ω, let Tσ = {vi ≡ V (G) : αi = 0} and Tσ = V (G) \ Tσ. Each strategy profile Ω
induces a bipartition (Tσ, Tσ) of the nodes of G, that is, a cut of G. Let Adj(i) =
{j ≡ [n] : {vi, vj} ≡ E} be the set of players whose corresponding node is adjacent
to vi in G and denote cij := c({vi, vj}). The utility of player i in the strategy
profile Ω is defined as Ui(Ω) =

∑
{vi,vj}→E:Ωi ⊆=Ωj

cij =
∑

j→Adj(i):Ωi ⊆=Ωj
cij . Hence,

the utility of player i in Ω is equal to the total weight of the edges which are
incident to vi in G and belong to the cut (Tσ, Tσ). We use the social function
CUT(Ω) =

∑
{vi,vj}→E:Ωi ⊆=Ωj

cij , that is, the total weight of all the edges in the

cut (Tσ, Tσ) as a measure of the quality of a given strategy profile. It is easy to
see that CUT(Ω) = 1

2

∑
i→[n] Ui(Ω), which justifies the use of the function CUT

as a measure of the total welfare of the players.
For a cut game C(G), let NEΘ(C(G)) be the set of its Ω-approximate pure Nash

equilibria and let Ω∅ be the strategy profile maximizing the social function CUT,
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that is, a maximum cut in G. The Ω-approximate price of anarchy of C(G)
is defined as

PoAΘ(C(G)) = min
σ→NEδ(C(G))

CUT(Ω)

CUT(Ω∅)
.

Moreover, let WΘ(C(G)) be the set of Ω-approximate one-round walks starting
from any initial strategy profile for C(G). The approximation ratio of the so-
lutions achieved after an Ω-approximate one-round walk starting from
any initial strategy profile of C(G) is defined as

ApxΘ(C(G)) = min
W→Wδ(C(G))

CUT(f(W ))

CUT(Ω∅)
.

Hence, by definition, both PoAΘ(C(G)) and ApxΘ(C(G)) take values in the interval
[0, 1]. These metrics naturally extend to the whole class of cut games C as follows:

PoAΘ(C) = inf
C(G)→C

PoAΘ(C(G)) and ApxΘ(C) = inf
C(G)→C

ApxΘ(C(G)).

3 The ε-Approximate Price of Anarchy

In this section, we give an exact characterization of the Ω-approximate price of
anarchy of cut games for any value of Ω. Our theoretical analysis relies on the ap-
plication of the primal-dual method introduced by Bilò in [5]. When instantiated
to our scenario of investigation, such a method operates as follows.

Given a cut game C(G), let us denote with Ω a generic Ω-approximate pure
Nash equilibrium of C(G). We formulate the problem of minimizing the ratio
CUT(σ)
CUT(σ∞) via linear programming. The two strategy profiles Ω and Ω∅ play the role

of fixed constants, while, for each {vi, vj} ≡ E(G), the values cij defining the edge
weights are variables that must be suitably chosen so as to satisfy two constraints:
the first assures that Ω is an Ω-approximate pure Nash equilibrium of C(G),
while the second normalizes to 1 the value of the social optimum CUT(Ω∅). The
objective function aims at minimizing the social value CUT(Ω) which, being the

social optimum normalized to 1, is equivalent to minimizing the ratio CUT(σ)
CUT(σ∞) .

Let us denote with LP(Ω,Ω∅) such a linear program. By the Weak Duality
Theorem, each feasible solution to the dual program of LP(Ω,Ω∅) yields a lower
bound on the optimal solution of LP(Ω,Ω∅). Hence, by providing a feasible dual

solution, we obtain a lower bound on the ratio CUT(σ)
CUT(σ∞) for C(G). Since no as-

sumptions are made on C(G), if the provided dual solution is independent on

the particular choice of Ω and Ω∅, we obtain a lower bound on the ratio CUT(σ)
CUT(σ∞)

for any possible pair of profiles Ω and Ω∅ in any possible cut game C(G), which
means that we obtain a lower bound on the Ω-approximate price of anarchy of
cut games.

Given a strategy profile Ω, let us introduce a boolean variable θσ
ij which, for

any pair of indexes i, j ≡ [n], takes the value 1 if and only if the edge {vi, vj}
belongs to the cut (Tσ, Tσ), that is, θσ

ij = 1 if and only if αi ∪= αj . Moreover,
define θσ

ij = 1− θσ
ij as the complement of θσ

ij .
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By the definition of Ω-approximate pure Nash equilibria, we obtain the follow-
ing linear program LP(Ω,Ω∅).

min
∑

{vi,vj}→E

cijθ
σ
ij

subject to

(1 + Ω)
∑

j→Adj(i)

cijθ
σ
ij −

∑

j→Adj(i)

cijθ
σ
ij → 0, ∀i ≡ [n]

∑

{vi,vj}→E

cijθ
σ∞
ij = 1,

cij → 0, ∀{vi, vj} ≡ E

The dual program DLP(Ω,Ω∅) is defined as follows.

max π

subject to

(1 + Ω)θσ
ij(xi + xj)− θσ

ij(xi + xj) + πθσ∞
ij ⊆ θσ

ij , ∀{vi, vj} ≡ E

xi → 0, ∀i ≡ [n]

We obtain the following lower bound on the Ω-approximate price of anarchy of
cut games.

Theorem 1. For any cut game C(G) and value Ω → 0, it holds PoAΘ(C(G)) →
1

2+Θ .

Proof. It suffices to show that the solution in which π = 1
2+Θ and xi =

1
4+2Θ for

each i ≡ [n] is feasible for DLP(Ω,Ω∅). Since all the values xi are non-negative,
it remains to show that, for each {vi, vj} ≡ E, it holds

1 + Ω

2 + Ω
θσ
ij − 1

2 + Ω
θσ
ij +

1

2 + Ω
θσ∞
ij ⊆ θσ

ij . (1)

Note that inequality (1) is implied by the following inequality

1 + Ω

2 + Ω
θσ
ij − 1

2 + Ω
θσ
ij +

1

2 + Ω
⊆ θσ

ij (2)

which we show to be always true.
For the case of θσ

ij = 1, inequality (2) becomes

1 + Ω

2 + Ω
+

1

2 + Ω
⊆ 1

which is always true. On the other hand, for the case of θσ
ij = 0, inequality

(2) becomes

− 1

2 + Ω
+

1

2 + Ω
⊆ 0

which is again always true. ∩∅
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We now present a matching upper bound.

Theorem 2. For any Ω → 0, there exists a cut game C(G) such that
PoAΘ(C(G)) = 1

2+Θ .

Proof. Consider the cut game C(C4) defined by the four cycle C4 in which the
weights of the edges {v1, v2} and {v3, v4} are equal to 1

4+2Θ , while the weights of

the remaining ones are equal to 1+Θ
4+2Θ . Being C4 a bipartite graph, the maximum

cut contains all the edges and, thus, has a social value equal to 1. It is easy to
verify by inspection that the strategy profile Ω such that Tσ = {v1, v4} is an
Ω-approximate pure Nash equilibrium such that CUT(Ω) = 1

2+Θ , which yields the
claim. ∩∅

As a consequence of Theorems 1 and 2, it follows that, for any Ω → 0, the
Ω-approximate price of anarchy of cut games is equal to 1/(2+ Ω). Note that, for
Ω = 0, we reobtain the known value of 1/2 for the price of anarchy of pure Nash
equilibria.

Corollary 1. For any Ω → 0, it holds PoAΘ(C) = 1
2+Θ .

4 Performance of ε-Approximate One-Round Walks

Given a cut game C(G) and a value Ω → 0, let W be an Ω-approximate one-round
walk for C(G). For notation purposes, set ΩS := s(W ), ΩF := f(W ) and denote
with CH the set of players changing their strategy during the walk, that is,
CH = {i ≡ [n] : αFi ∪= αSi }. By using the same approach of the previous section,
we obtain the following linear program LP(ΩS ,ΩF ,Ω∅).

min
∑

{vi,vj}→E

cijθ
σF

ij

subject to

(1 + Ω)
∑

j→Adj(i):j<i

cijθ
σF

ij + (1 + Ω)
∑

j→Adj(i):j>i

cijθ
σS

ij

−
∑

j→Adj(i):j<i

cijθ
σF

ij −
∑

j→Adj(i):j>i

cijθ
σS

ij → 0, ∀i ≡ [n] \ CH

−(1 + Ω)
∑

j→Adj(i):j<i

cijθ
σF

ij − (1 + Ω)
∑

j→Adj(i):j>i

cijθ
σS

ij

+
∑

j→Adj(i):j<i

cijθ
σF

ij +
∑

j→Adj(i):j>i

cijθ
σS

ij → 0, ∀i ≡ CH
∑

{vi,vj}→E

cijθ
σ∞
ij = 1,

cij → 0, ∀{vi, vj} ≡ E

The first constraint states that, for each player not changing her strategy in W ,
the utility that she is getting at the time in which she is processed is at least
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1+ Ω times the one that she can achieve when moving to the opposite side, that
is, each player not belonging to CH is currently playing an Ω-approximate best
response at the time she is processed by W . Note that, in order to compute the
utility that player i gets at the time she is processed by W , we have to consider
the fact that all nodes with indexes smaller than i might have changed side with
respect to ΩS ; hence, we evaluate their side with respect to ΩF . For the nodes
with indexes greater than i, we evaluate their side with respect to ΩS , since their
associated players have not been processed yet at the time in which player i is.
The second constraint states that each player changing her strategy in W has
an Ω-approximate improving deviation, that is, each such a player improves by a
factor of at least 1+Ω by moving to the opposite side. Note that, by the definition
of Ω-approximate improving deviations, the second constraint should have been
a strict inequality; nevertheless, this does not affect our analysis since, as by
so doing we are expanding the set of the feasible solutions of a minimization
problem, we can only obtain less significant lower bounds (our objective, in fact,
is to obtain the highest possible lower bound).

The dual program DLP(ΩS ,ΩF ,Ω∅) is defined as follows.

max π

subject to

(1 + Ω)
(
θσF

ij xj + θσS

ij xi

)

−θσF

ij xj − θσS

ij xi + πθσ∞
ij ⊆ θσF

ij , ∀{vi, vj} ≡ E : i, j /≡ CH
−(1 + Ω)

(
θσF

ij yj + θσS

ij yi

)

+θσF

ij yj + θσS

ij yi + πθσ∞
ij ⊆ θσF

ij , ∀{vi, vj} ≡ E : i, j ≡ CH
(1 + Ω)

(
θσF

ij xj − θσS

ij yi

)

−θσF

ij xj + θσS

ij yi + πθσ∞
ij ⊆ θσF

ij , ∀{vi, vj} ≡ E : i ≡ CH, j /≡ CH
−(1 + Ω)

(
θσF

ij yj − θσS

ij xi

)

+θσF

ij yj − θσS

ij xi + πθσ∞
ij ⊆ θσF

ij , ∀{vi, vj} ≡ E : i /≡ CH, j ≡ CH
xi, yi → 0, ∀i ≡ [n]

We obtain the following lower bound of the approximation ratio of the solutions
achieved after an approximate one-round walk starting from any initial strategy
profile.

Theorem 3. For any cut game C(G) and value Ω → 0, it holds ApxΘ(C(G)) →
min

{
1

2+Θ ,
2Θ

(1+Θ)(2+Θ)

}
.

Also in this case, we give a matching upper bound as shown in the following
theorem.

Theorem 4. For any Ω → 0, there exists a cut game C(G) such that

ApxΘ(C(G)) ⊆ min
{

1
2+Θ ,

2Θ
(1+Θ)(2+Θ)

}
.
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As a consequence of Theorems 3 and 4, it follows that the approximation ratio
of the solutions achieved after an Ω-approximate one-round walk starting from
any initial strategy profile in cut games is equal to 1/(2 + Ω) for any Ω → 1 and
equal to 2Θ

(Θ+1)(Θ+2) for any 0 ⊆ Ω < 1. Note that Apx0(C) = 0 models the fact

that there are cut games with some strategy profiles starting from which some
0-approximate one-round walk may end up to a solution whose social value is
arbitrarily far from the social optimum, as already shown by Christodoulou et
al. [14].

Corollary 2. For any Ω → 0, it holds ApxΘ(C) = min
{

1
2+Θ ,

2Θ
(Θ+1)(Θ+2)

}
.

5 Conclusions

Our findings reveal an unexpected and surprisingly good performance of the very
simple solutions generated after an Ω-approximate one-round walk, independently
of which is the initial strategy profile, for some values of Ω. In particular, since for
Ω → 1 it holds PoAΘ(C) = ApxΘ(C), any Ω-approximate one-round walk converges
to an approximation of the social optimum which is never worse than the Ω-
approximate price of anarchy. To the best of our knowledge, this is the first
evidence of such a quick convergence to such a good quality solution. Moreover,
for Ω = 1, it holds ApxΘ(C) = 1/3, whereas a recent paper by Bilò et al. [7]
shows that the approximation ratio of the solutions achieved after a one-round
walk starting from any initial strategy profile performed by greedy players who
apply a farsighted, rather than a myopic, rationality (termed as sequential price
of anarchy) is exactly 1/3. Thus, 1-approximate greedy players perform as well
as farsighted greedy ones in the worst-case.

In the light of these interesting situations, determining whether mildly greedy
players may exhibit a similar outstanding performance in other contexts as well
becomes an intriguing research direction.
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524 V. Bilò and M. Paladini
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Abstract. In this paper, we study some computational security assump-
tions involved in two cryptographic applications related to the RSA
cryptosystem. To this end, we use exponential sums to bound the statisti-
cal distances between these distributions and the uniform distribution.We
are interested in studying the k least (ormost) significant bits of xe mod N ,
whereN is anRSAmodulus and x only belongs to a small interval of [0, N).

First of all, we provide the first rigorous evidence that the cryptographic
pseudo-random generator proposed byMicali and Schnorr is based on firm
foundations. This proof is missing in the original paper and does not cover
theparameters chosenby theauthors.Consequently,we extend theproof to
get a new result closer to these parameters using recently new exponential
sums results and we show some limitations of our technique. Finally, we
look at the semantic security of the RSA padding scheme called PKCS#1
v1.5which is still used a lot in practice.We show that parts of the ciphertext
are indistinguisable from uniform bitstrings.

Keywords: Exponential Sums, Security Proof for Micali-Schnorr pseu-
dorandom generator, semantic security of RSA padding scheme.

1 Introduction

The RSA assumption states that, given a random value y in Z/NZ where N
is the product of two large primes, it is difficult to compute a e-th root of
y, i.e. find x such that y = xe mod N . The RSA problem has been heavily
studied by mathematicians and no attack more efficient than factoring the RSA
modulus has been found since its discovery. Usually, it is very difficult to prove
a computational assumption such as RSA and cryptographers try to prove that
this one is at least as difficult as another one, for instance factoring. However,
some evidences for the non-equivalence of these two hard problems has been
provided by Boneh et Venkatesan in [7] while the RSA assumption seems to
hold.

RSA is a valid cryptographic assumption since on average its difficulty seems
to be established thanks to its self-reducibility property. Indeed, it is well-known
that if we are able to invert RSA on a non-negligible subset of Z/NZ, then

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 525–536, 2014.
c∞ Springer International Publishing Switzerland 2014
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we can invert nearly all values in Z/NZ with high probability. Based on this
assumption, cryptographers have proposed and proved that the RSA signature
and encryption schemes using adequate padding functions [4,3] are secure in
the random oracle model [2]. The security proof of RSA-OAEP for encryption
appeared in [11].

Another direction to assess the security of a computational assumption con-
sists in showing that the values we are looking for are computationally or statis-
tically indistinguishable from the uniform distribution on bitstrings of the same
size. Consequently, the best the adversary can do is to guess this value until he
finds it. For RSA, it is easy to see that the value y is uniformly distributed if x
is. In this paper, we will be interested in the short RSA problem: given y and
the promise that x < M → N , find x such that xe mod N . Clearly, if M ⊂ N1/e

then it is possible to recover the value x using the well-known Hensel’s lifting
lemma whose complexity is linear in the size of x. However, we can wonder what
is the security of this new assumption when M ≡ N1/e. It is trivial to see that
if M = N

1
e+ε then, by guessing the high order bits of x, in time Nε times

a polynomial in logN , we can invert x. However for larger values of M , the
problem seems to be hard. This assumption is made in some standards, such as
the standard PKCS#1 v1.5 that is used to protect RSA encryption and we will
study it in a special case. To assess the security of this short RSA assumption,
the classical technique consists in studying the distribution of values xe mod N
when x < M . This distribution cannot be uniform in Z/NZ when the output
is larger than M , but it can be computationally difficult to distinguish it from
the uniform distribution in Z/NZ. We will study the short RSA distribution
when we consider only some part of the output bits. In this case, it is possi-
ble to prove some mathematical statements on the statistical distance between
this distribution and the uniform distribution. We will also study the security of
the Micali-Schnorr pseudorandom generator. At COCOON 2013, we have shown
some attacks that explain the choice of the parameters proposed by Micali and
Schnorr [9]. This generator assumes that the distribution of the least significant
bits of xe mod N is indistinguishable from the uniform distribution in {0, 1}k if
x < M with M = N2/e.

Our Contributions. In the first part of this paper, we will prove the following
informal theorem for different values of M .

Theorem 1. Let N = pq be a balanced RSA modulus, e the public exponent and
M < N . Let the function f : Z/MZ −∈ Z/NZ defined as f(x) = xe mod N .
The k least significant bits of f(x) for k < logN are statistically indistinguishable
from the uniform distribution on {0, 1}k.
ForM ≡

≥
N , we will show it using classical bounds, and forN1/e →M →

≥
N ,

we will use more recent results proved by Wooley [17]. This last bound is very
close to be optimal since for M ⊂ N1/e, it is possible in polynomial-time to
recover x ⊂ M given the k ∪ M least significant bits of f(x) as we explain
in [9]. Indeed, in this case the function f becomes non modular and the problem
of retrieving x is quite easy by using Hensel’s lifting.
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In a second part, we will show two applications of these theorems. Micali and
Schnorr original proof refers to the first bound M ≡

≥
N when e = 3, or the

second one otherwise. However the proof is missing and they do not give any
hint to explain their more aggressive choice of parameters. Indeed, it would be
possible to output less bits at each iteration of the generator, but the efficiency of
this generator would be less efficient than the Blum-Blum-Shub generator [6] for
instance. Micali and Schnorr prefer to output more bits and avoid the previous
attack whenM = N1/e. Last year, we developed some attacks to go beyond this
bound using some time/memory tradeoff techniques which require exponential
time complexity. Our result allows us to propose parameters ensuring the ran-
domness of the output. We also explain that the parameters proposed by Micali
and Schnorr are close to be optimal in the special case of e = 3.

Finally, we propose to study the semantic security of the RSA padding called
PKCS #1 v1.5 proposed by the RSA Labs. This padding is used in practice
in many IETF standards and its security has been studied in [1] under various
security notions. Here, we study the semantic security, i.e. the most interesting
security notion, to assess this assumption as much as we can using mathematical
and rigorous statements. This notion means that no bit of the plaintext leaks
when we see the ciphertext. In this paper, we will show that no bit of the plaintext
leaks when we see some part of the bits of the ciphertext.

2 Some Mathematical Backgrounds

Statistical Distance. We need several results on the regularity of the prob-
ability distributions related to the studied problem. Recall that the statistical
distance between a random variable X on a finite set S and the uniform distri-
bution is defined as:

Ω1(X) =
1

2
·
∑

s→S

∣
∣
∣Pr[X = s]− 1

|S|

∣
∣
∣.

We say that X is σ-statistically close to uniform when Ω1(X) ⊂ σ.
In addition we will consider the collision probability of a random variable X

on a finite set S, defined as:

Col(X) =
∑

s→S

Pr[X = s]2.

Finally the link between the statistical distance and the collision probability
is given by the following lemma proven in [15]:

Lemma 1. Let X be a random variable with values in a finite set S of size m.
If X has collision probability α and distance σ from uniform on S, then:

σ ⊂ 1

2

√
mα − 1.
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Exponential Sums. Our proof of Theorem 1 relies on exponential sums in
Z/mZ, so we first fix some notations and recall useful standard results. For
any integer m, we denote by em the additive character Z/mZ ∈ C

≥ given by
em(x) = exp(2iβx/m). The following results hold.

Proposition 1 (Orthogonality). For all x ◦ Z/mZ, we have:

m−1∑

c=0

em(cx) =

{
0 if c ⊆∀ 0 (mod m),

m if c ∀ 0 (mod m).

Lemma 2 ([16, Problem 11.c]). For any modulus1 m ∪ 60 and any non
negative integers h, k, we have:

m−1∑

c=1

∣
∣
∣
∣

k+h∑

x=k

em(cx)

∣
∣
∣
∣ ⊂ (m− 1) logm.

Lemma 3 (Weil [13]). Consider a prime modulus p. For all polynomials
g(X), h(X) ◦ Fp[X ] such that the rational function f(X) = h(X)/g(X) is not
constant on Fp, the bound:

∣
∣
∣
∣

∑

x→Fp

g(x) ∪=0

ep
(
f(x)

)
∣
∣
∣
∣ ⊂

(
max(deg g, deg h) + v − 1

)
· p1/2

holds, with v the number of distinct zeros of g(X) in the algebraic closure of Fp.

3 Main Results

To prove Theorem 1, we have to estimate the statistical distance between the
function lsbk(x

e mod N) for x randomly chosen in Z/MZ and the uniform dis-
tribution modulo 2k. In function of the values of N, e, k and M , we will be able
to show (or not) the statistically indistinguishability of these two probability
ensembles. More precisely the ratio between M and N is crucial in our analysis
and we propose two different techniques for estimating the statistical distance.
The first one is meaningful when M ≡

≥
N (see Theorem 2) and the second one

is useful for M →
≥
N (see Theorem 3).

3.1 First Bound When M ∞ ≤
N

The first technique we propose uses mostly the technical lemmas on exponential
sums which are recalled in Section 2. We obtain a bound on the statistical
distance which is negligible when the parameter M is sufficiently larger than≥
N . With this first analysis we cannot hope to approach the optimal bound,

i.e. M ≡ N1/e for e ∪ 3. However its advantage may lie in providing concrete
values of M and k for cryptographic sizes of modulus N . It is thus an useful
bound for our applications.

1 We assume that this bound on m holds for all moduli involved in our computations
below, i.e. p, q > 60, which is of course satisfied for all RSA moduli in practice.
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Theorem 2. Let N = pq be a balanced RSA modulus (i.e. N = pq for primes
p, q such that 60 < q < p < 2q), e the public exponent and M < N an integer
such that M ≡

≥
N . Then the random variable X = lsbk(x

e mod N) for x
randomly chosen in Z/MZ is σ-statistically close to uniform with:

σ =

√
2k

N
+

2k/2e2
≥
N log3/2N

M
.

Proof. The values of the random variableX are taken in [0, 2k) with the following
distribution: x is chosen uniformly at random in Z/MZ and we output f(x) =
lsbk(x

e mod N). We are interested in bounding the collision probability of this
random variable. By denoting K =

⌊
N−1
2k

⌋
, we can evaluate this probability

using the orthogonality property of additive characters (Prop. 1):

Col(X) =
1

M2
×
∣
∣{(x, y) ◦ [0,M − 1]2 | ∩u ◦ �−K,K�, xe − ye = 2k · u mod N}

∣
∣,

⊂ 2

M2N

M−1∑

x=0

M−1∑

y=0

K∑

u=0

N−1∑

a=0

eN (a(xe − ye − 2k · u)).

We now define byB the valuemaxa |S(a,M)|whereS(a,M) =
∑

0∈x<M eN (axe)

to uniformlybound
∑M−1

x=0

∑M−1
y=0 eN (axe−aye) = S(a,M)S(a,M) = |S(a,M)|2.

The contribution of a = 0 is exactly 2(K + 1)/N and if we put it aside we get:

Col(X) ⊂ 2(K + 1)

N
+

2

M2N

N−1∑

a=1

|S(a,M)|2
∣
∣
∣
∣

K∑

u=0

eN (−a2k · u)
∣
∣
∣
∣.

The probability collision can be bounded usingB and Lemma 2 since the function
a ◦ Z/NZ \ {0} ∈ 2ka ◦ Z/NZ \ {0} is a bijection:

Col(X) ⊂ 2(K + 1)

N
+

2

M2N

(

max
1∈a∈N−1

|S(a,M)|2
)N−1∑

a=1

∣
∣
∣
∣

K∑

u=0

eN (−a2k · u)
∣
∣
∣
∣,

Col(X) ⊂ 2(K + 1)

N
+

2

M2N
B2 ·N logN. (1)

It remains to bound B for all a ◦ Z/NZ \ {0}. The incomplete exponential sum
S(a,M) can be expressed using the complete one as follow:

S(a,M) =
∑

x<M

eN(axe) =
∑

x→Z/NZ

eN(axe) ·
[
x ◦ �0,M − 1�

]
,

=
∑

x→Z/NZ

eN(axe)
1

N

M−1∑

m=0

∑

b→Z/NZ

eN (b(x−m)),

=
1

N

∑

b→Z/NZ

M−1∑

m=0

eN (−bm)
∑

x→Z/NZ

eN(axe + bx).
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where [·] is the usual Iverson bracket notation: for a statement U , [U ] = 1 is U
is true and 0 otherwise. If we pick integers u, v such that up + vq = 1, we see
that the sum in x decomposes as:

∑

x→Z/NZ

eN(axe + bx) =
∑

x→Z/NZ

eN
(
(up+ vq) · (axe + bx)

)

=
∑

xp→Fp

ep
(
vga,b(xp) mod p

) ∑

xq→Fq

eq
(
uga,b(xq) mod q

)

where the function ga,b is given by ga,b(x) = axe+bx. Now if a ⊆= 0 mod p , vga,b
is a non constant function in Fp, so Lemma 3 ensures:

|Tp| =
∣
∣
∣
∣

∑

xp→Fp

ep(vga,b(xp) mod p)

∣
∣
∣
∣ ⊂ e

≥
p.

On the other hand, if a = 0 mod p, we have:

∑

xp→Fp

ep(vga,b(xp) mod p) =
∑

xp→Fp

ep(vbx) =

{
p if b = 0 mod p,

0 otherwise.

A corresponding result holds for Tq =
∑

xq→Fq
eq(uga,b(xq) mod q) and as a

result, to bound |S(a,M)|, we have to separate the case when a is invertible
modulo N from the case where it is a multiple of p or q. When a is invertible
modulo N , we directly have:

|S(a,M)| ⊂ 1

N

∑

b→Z/NZ

∣
∣
∣
∣

M−1∑

m=0

eN (−bm)

∣
∣
∣
∣ · |Tp| · |Tq|,

⊂ 1

N

∑

b→Z/NZ

∣
∣
∣
∣

M−1∑

m=0

eN (−bm)

∣
∣
∣
∣ · e

≥
p · e≥q ⊂ 1

N
e2

≥
N ·N logN

by Lemma 2. On the other hand, assume that a is a multiple of p. We have:

|S(a,M)| =
∣
∣
∣
∣
p

N

∑

b→Z/NZ

b=0 mod p

M−1∑

m=0

eN (−bm)
∑

xq→Fq

eq
(
uga,b(xq) mod q

)
∣
∣
∣
∣

⊂1

q

q−1∑

b∗=0

∣
∣
∣
∣

M−1∑

m=0

eN (−bm)

∣
∣
∣
∣ · e

≥
q ⊂ e

≥
q log q < e2

≥
N logN,

by applying Lemma 2. the same bound holds when a is a multiple of q, so that
B ⊂ e2

≥
N logN . Together with (1), we obtain:

Col(X) ⊂ 2(K + 1)

N
+

2e4N log3N

M2
.
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Finally Lemma 1 provides a bound on the statistical distance Ω1(X):

Ω1(X) ⊂
√

2k(K + 1)

N
− 1 +

2k/2e2
≥
N log3/2N

M
,

and to conclude the proof, it is easy to show that
∣
∣K+1

N − 1/2k
∣
∣ ⊂ 1/N . ∅↓

3.2 Second Bound When M � ≤
N

Here we treat the case where M is smaller than
≥
N , which will be interesting

to approach the optimal bound, i.e. M ≡ N1/e. Even if the following lemma
and corollaries do not require anything on the size of M (except that it is less
than N obviously), the bounds we find for Ω1(X) are only interesting for small
values of M , meaning M →

≥
N .

Theorem 3. Let Let N , e, X be as in Theorem 2 and M < N an integer such
that M →

≥
N . Then X is σ-statistically close to uniform with:

σ =

√
2k

N
+ 2k/2 log3/2N

(
1

M
+

N

M e

) 1
2e(e−1)+1

+
2k/2e log3/2N

M
.

Proof. This result is based on a more recent result proved by Wooley, which
provides another evaluation of the exponential sum S(a,M). We give here a
specific version adapted to our case:

Theorem 4 (Wooley, [17]). Let e be an integer with e ∪ 2, and let a/N ◦
R. Suppose that, for some c ◦ Z and N ◦ N with gcd(c,N) = 1, one has
|a/N − c/N | ⊂ N−2 and N ⊂ M e. Then one has:
∑

1∈x∈M

eN(axe) →M1+ε(N−1+M−1+N ·M−e)σ(e) where θ(e)−1 = 2e(e−1).

According to [17], the factorM ε may be replaced by log(2M), if one increases
θ(e)−1 from 2e(e− 1) to 2e2 − 2e+1. For sake of simplicity, we bound log(2M)
by logN (with the weak assumption that M ⊂ N/2) and we neglect the term
1/N since it is negligible compared to min(M−1, N ·M−e). Thus we obtain:

|S(a,M)| →M logN(M−1 +N ·M−e)
1

2e(e−1)+1 .

Note that this bound is correct for a ◦ (Z/NZ)≥ and because it is mean-
ingful when M →

≥
N , one cannot bound as before the value |S(a,M)| for

a ⊆◦ (Z/NZ)≥. Starting from:

Col(X) ⊂ 2(K + 1)

N
+

2

M2N

N−1∑

a=1

|S(a,M)|2
∣
∣
∣
∣

K∑

u=0

eN (−a2k · u)
∣
∣
∣
∣,

we decompose the sum in a as:

N−1∑

a=1

|S(a,M)|2
∣
∣
∣
∣

K∑

u=0

eN (−a2k · u)
∣
∣
∣
∣ = S≥ + Sp + Sq
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with S≥ the sum in a ◦ (Z/NZ)≥ and Sp (resp. Sq) the one in a ◦ Z/NZ\{0} such
that a = 0 mod p (resp. a = 0 mod q). The sum S≥ is bounded using Theorem 4
and Lemma 2, whereas we treat Sp (and similarly Sq) using an intermediate
result from the previous proof and Lemma 2, i.e.:

S≥ ⊂M2 log2N(M−1 +N ·M−e)
2

2e(e−1)+1 ·N logN,

Sp ⊂e2q log2 q ·
∑

ap→F∞
q

∣
∣
∣
∣

K∑

u=0

eq(−ap2k · u)
∣
∣
∣
∣ ⊂ e2q2 log3 q ⊂ e2N log3N.

We thus have:

Col(X) ⊂ 2(K + 1)

N
+ 2 log3N(M−1 +N ·M−e)

2
2e(e−1)+1 +

4e2 log3N

M2

Ω1(X) ⊂
√

2k

N
+ 2k/2 log3/2N

(
1

M
+

N

M e

) 1
2e(e−1)+1

+
2k/2e log3/2N

M

∅↓

Since Theorem 3 does not require any assumption of size on M , we want to
define this parameter using the bound N1/e. In other words, we write M as
M = N1/e logcN with c > 1 and we propose two corollaries, proved in the full
version of the paper, which treat the case 1/M ⊂ N/M e (see Corollary 1) and
1/M ∪ N/M e (see Corollary 2). This distinction is done for simplifying the
bound of Theorem 3 and implies a bound of the value c.

Corollary 1. Let N , e and X be as in Theorem 2. Let M = N1/e logcN and
c ⊂ 1

e(e−1)
logN

log logN . Then X is σ-statistically close to uniform with:

σ =
2k/2

(logN)ceσ(e)−3/2
+ o(1) where θ−1(e) = 2e(e− 1) + 1.

Note that the statistical distance will be negligible if ceθ(e)−3/2 ≡ 0, mean-
ing if c ≡ 3(e− 1) + 3/2e.

Corollary 2. Let N , e and X be as in Theorem 2. Let M = N1/e logcN and
1

e(e−1)
logN

log logN ⊂ c < e−1
e

logN
log logN . Then X is σ-statistically close to uniform with:

σ =
2k/2

N
σ(e)
e (logN)cσ(e)−3/2

+ o(1) where θ−1(e) = 2e(e− 1) + 1.

An interesting value of c is c = (12 − 1
e )

logN
log logN which represents the case

M =
≥
N . For e = 3, this is the lower bound of c in Corollary 2 and for e > 3 it

is included in the defined interval.

Let us give a numerical example for Corollary 1, the most interesting corollary
since it treats values of M as close as possible to the optimal bound N1/e. We



Statistical Properties of Short RSA Distribution 533

consider classical cryptographic parameters for the upper bound of σ, i.e. 2−80,
and we put e = 3. Suppose that we want to have a negligible statistical distance
for k = 160, then a modulus of 4096 bits leads to an impossibility. Indeed,
Corollary 1 requires that 7 → c < 56 and the result on σ is true for c ∪ 65.
However, with a modulus of 8192 bits one obtains the condition 60 ⊂ c < 105.
In other words, with an input of at least 3511 bits for the function f , the 160
least significant bits of f(x) are statistically indistinguishable from the uniform
distribution on {0, 1}160.

To conclude, we extend ours theorems and corollaries to another model. More
precisely we prove in the full version that all our results are still valid when
we study the indistinguishability of the most significant bits of the function
xe mod N . That is the following corollary:

Corollary 3. Let N , e be as in Theorem 2 and M < N . The results from
Theorem 2 and Theorem 3 on the statistical distance between lsbk(x

e mod N)
for x randomly chosen in Z/MZ and the uniform distribution modulo 2k are
still valid for msbk(x

e mod N).

4 Applications of These Bounds to Cryptographic Cases

4.1 Security of Micali-Schnorr Pseudo-Random Number Generator

Micali-Schnorr PRNG. A pseudorandom generator is a deterministic poly-
nomial time algorithm that expands short seeds (made of truly random bits) into
longer bit sequences, whose distribution cannot be distinguished from uniformly
random bits by a computationally bounded algorithm.

Let (e,N) a RSA public key with e small compared to logN and x0 ◦ [0, 2r)
with 2r → N a secret seed of size r. The Micali-Schnorr pseudorandom generator
proposed in [14] is defined as follows:

vi = xei−1 mod N and vi = 2kxi + wi for i ∪ 1.

At each iteration, this generator outputs the k least significant bits of vi, denoted
by wi. In addition, denoting n the size of the modulus N , only xi of size r = n−k,
unknown, is reused for the next iteration. Since the generator outputs O(k/ log e)
bits per multiplication, one wants k to be as large as possible and e to be as
small as possible to be efficient. This pseudorandom generator is proven secure
under the following strong assumption:

Assumption 1. The distribution of xe mod N for random r-bit integers x is
indistinguishable by all polynomial-time statistical tests from the uniform distri-
bution of elements of (Z/NZ)≥.

Clearly this assumption cannot be true if one does not restrain the tests to
polynomial-time ones only because of the lack of entropy in input. Micali and
Schnorr have proposed the parameters r = 2n/e and thus k = n(1− 2/e) which
are very aggressive parameters in order to increase the efficiency of the generator.
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Our Result. We do not contradict this assumption since our theorems give up-
per bounds on σ. However Theorem 2 is useful to define the sizes of parameters
k and r such that the statistical distance is bounded as desired. Corollary 4,
which is proven in the full version, consists in determining the minimal size of
the input in order to have an indistinguishable output from the uniform dis-
tribution. This is really interesting to note that when N tends to infinity, this
bound tends to 2/3. In other words we cannot expect to have a positive result of
indistinguishability according to our results if one outputs more than (logN)/3
of the least significant bits asymptotically.

Corollary 4. Let (e,N) a RSA public key with e small compared to logN and d
a security parameter such that σ < 2−d. Let π ◦ (0, 1) such that Micali-Schnorr
pseudo-random number generator outputs the (1− π) logN least significant bits
at one iteration. This output is indistinguishable from the uniform distribution
on {0, 1}(1−α) logN if

π > 2/3 +
2d+ 4 log e

3 logN
+

log logN

logN
.

As a concrete example, for N = 21024, e = 3 and d = 80, that gives an input
greater than 747 bits (and thus an output lesser than 277 bits). Note that we
study a single iteration of the generator as in [10] for example, the consideration
of two or more consecutive outputs is a more difficult task. Finally remark that
Theorem 3 is useless for this application because of the necessarily link between
k and M : if M = Nα then 2k ∨ N1−α. For M →

≥
N , there is not enough

entropy to prove the indistinguishability.

4.2 Semantic Security of PKCS #1 v1.5 Encryption

RSA is a well-known asymmetric cryptosystem which was first publicized in 1977.
Even nowadays it is frequently used in applications where security of digital data
is a concern. However the basic RSA encryption process, meaning without any
padding of the plaintext, is vulnerable to quite simple or clever attacks (see for
example [8,12]). The standard PKCS #1 v1.5 proposes a padding which avoids a
part of these attacks, nevertheless it has been defeated by Bleichenbacher in [5].

PKCS #1 v1.5 Encryption. We recall the encryption scheme proposed in
the standard PKCS #1 v1.5. By denoting (e,N) the RSA public key with n the
size of the modulus N , a message m of size at most ε = n − 88 is padded as
mpadded = 00||02||PS||00||m with PS the padding string of size r = n− ε− 24.
Then, mpadded is encrypted using the RSA encryption process.

Semantic Security. The semantic security requires that the adversary should
not gain any advantage or information from having seen the ciphertext resulting
from an encryption algorithm. This can be formalized by this concrete definition:
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Definition 1. An encryption scheme (Enc,Dec) is (t, o, γ) semantically secure
if for every distribution X over messages, every functions I : {0, 1}m ∈ {0, 1}≥
and f : {0, 1}m ∈ {0, 1}≥ (of arbitrary complexity) and every function A of
complexity tA ⊂ t, there is a function A⊆ of complexity ⊂ ta + o such that

∣
∣Pr[A(Enc(K,M), I(m)) = f(M)]− Pr[A⊆(I(m)) = f(M)]

∣
∣ ⊂ γ.

I(m) can be seen as the knowledge of the adversary on the message M ,
whereas f(M) represents the knowledge the adversary would learn.

This notion is equivalent to the notion of indistinguishability. Informally, con-
sider that a challenger chooses m0,m1 two messages of same length and s the
state information (possibly including the public key). Now suppose that a ran-
dom one of m0 and m1 is selected and encrypted as y. With the knowledge of s
and y, the goal of the challenger consists in determining if y was selected as the
encryption of m0 or m1. If the ciphertext is indistinguishable from the uniform
distribution, the advantage of the challenger is negligible.

In the case of PKCS #1 v1.5, the indistinguishability can only be proven for
a message of one bit. When it is larger, the security of this scheme is based on
a computational assumption because of a lack of entropy. To propose a positive
result of indistinguishability we thus consider only some bits of the ciphertext.

Our Result. We are interested by bounding the statistical distance between
the function lsbk(Pad(x)

e mod N) for x randomly chosen in Z/2rZ and the
uniform distribution on {0, 1}k, x being an integer whose binary representation
is PS. More precisely we define Pad(x) as Pad(x) = 2n−16b+ 2l+8x+m with b
representing 02 andm of size ε. Note that the standard adds another requirement
for PS: this random value should not have any null byte. For simplicity we omit
this property but we assume that it would not change the results in the following
corollary.

Corollary 5. Let N , e be as in Theorem 3 and M < N . Let Pad(x) a function
defined same as above. The results from Theorem 2 and Theorem 3 on the sta-
tistical distance between lsbk(x

e mod N) for x randomly chosen in Z/MZ and
the uniform distribution on {0, 1}k are still valid for lsbk(Pad(x)

e mod N).

With a security parameter d = 80, logN = 1024, e = 3 and logM = 872 (we
consider the encryption of a symmetric cryptosystem key of size 128), we obtain
the condition k < 524.

References

1. Bauer, A., Coron, J.-S., Naccache, D., Tibouchi, M., Vergnaud, D.: On the Broad-
cast and Validity-Checking Security of pkcs#1 v1.5 Encryption. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 1–18. Springer, Heidelberg (2010)

2. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)



536 P.-A. Fouque and J.-C. Zapalowicz

3. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

4. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

5. Bleichenbacher, D.: Chosen Ciphertext Attacks against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

6. Blum, L., Blum, M., Shub, M.: A Simple Unpredictable Pseudo-Random Number
Generator. SIAM J. Comput. 15(2), 364–383 (1986)

7. Boneh, D., Venkatesan, R.: Breaking RSA May Not Be Equivalent to Factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998)

8. Coppersmith, D., Franklin, M.K., Patarin, J., Reiter, M.K.: Low-Exponent RSA
with Related Messages. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 1–9. Springer, Heidelberg (1996)

9. Fouque, P.-A., Vergnaud, D., Zapalowicz, J.-C.: Time/Memory/Data Tradeoffs for
Variants of the RSA Problem. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013.
LNCS, vol. 7936, pp. 651–662. Springer, Heidelberg (2013)

10. Friedlander, J., Shparlinski, I.: On the distribution of the power generator. Math.
Comput. 70(236), 1575–1589 (2001)

11. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP Is Secure under
the RSA Assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001)

12. H̊astad, J.: Solving Simultaneous Modular Equations of Low Degree. SIAM J.
Comput. 17(2), 336–341 (1988)

13. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press (1996)
14. Micali, S., Schnorr, C.-P.: Efficient, Perfect Polynomial Random Number Genera-

tors. J. Cryptology 3(3), 157–172 (1991)
15. Shoup, V.: A computational introduction to number theory and algebra. Cam-

bridge University Press (2006)
16. Vinogradov, I.M.: Elements of number theory. Dover (1954)
17. Wooley, T.D.: Vinogradov’s mean value theorem via efficient congruencing. Annals

of Mathematics 175(3), 1575–1627 (2012)



Numerical Tic-Tac-Toe on the 4 × 4 Board

Bryce Sandlund1, Kerrick Staley2, Michael Dixon2, and Steve Butler2

1 University of Wisconsin–Madison, Madison, WI 53706, USA
bcsandlund@gmail.com

2 Iowa State University, Ames, IA 50011, USA
kerrick@kerrickstaley.com,

{medixon,butler}@iastate.edu

Abstract. Numerical Tic-Tac-Toe on the n × n board is a two player
game where the numbers {1, 2, . . . , n2} are divided between the two play-
ers (usually as odds and evens) and then players alternately play by plac-
ing one of their numbers on the board. The first player to complete a
line of n numbers (played by either player) that add up to n(n2 + 1)/2
is the winner. The original 3× 3 game was created and analyzed by Ron
Graham nearly fifty years ago and it has been shown that the first player
has a winning strategy. In this paper we consider the 4 × 4 game and
determine that in fact the second player has a winning strategy.

Keywords: Tic-Tac-Toe, games, symmetry, backtracking, pruning.

1 Introduction

Tic-Tac-Toe is a classic game that is familiar to people of all ages. Because of its
familiarity this game is often used as a starting example of how to mathematically
analyze a game, and it is well known that in optimal play by both players the
game will always end in a tie.1 One of the best known Tic-Tac-Toe strategy
guides was created by Randall Munroe in an XKCD posting [6].

Nearly fifty years ago Ron Graham created a variation of Tic-Tac-Toe which
has come to be known as “Numerical Tic-Tac-Toe”. The game is still played on
the same 3× 3 board but now instead of using ×’s and →’s the two players are
given the numbers {1, 3, 5, 7, 9} and {2, 4, 6, 8}, respectively. The players take
turns (with the odd player going first) and at each round the players put one of
their unused numbers on an open square on the board. The first player to create
any three numbers in a line that sum to 15 wins the game.

Numerical Tic-Tac-Toe is easily played by two players and the reader is en-
couraged to give it a try to help get a sense of the game. It should be noted that
there are many implementations of this game online as well as apps for portable
devices.

1 Even modest training can result in a “good” player. At one time people would
compete against chickens playing Tic-Tac-Toe in casinos in Atlantic City (though
the chickens themselves responded more to lighting cues than strategy).

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 537–546, 2014.
c© Springer International Publishing Switzerland 2014
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By extensive case analysis carried out by hand, Graham [1] determined that
remarkably the first player has a strategy that can guarantee a win. An exhaus-
tive computer analysis by Markowsky [4,5] thirty years later verified the result
of Graham, while Orr and Cooper [7] subsequently gave a compact strategy for
the game.

This game can be generalized to be played on any size board. Usually, on the
n×n board the numbers {1, 2, . . . , n2} are divided into the odd’s and even’s. The
players take turns, starting with the odd player, and at each round the players
put one of their unused numbers on the board. The first player to complete a line
of any n numbers that sum to n(n2+1)/2 wins the game. (The value n(n2+1)/2
comes from the average value of 1, 2, . . . , n2 being (n2 +1)/2 and then having n
of them.)

In this paper we will outline the computation that was done to carry out
the analysis for n = 4. Our exhaustive computation shows that in optimal play
the second player has a winning strategy (though we do not have a compact
description of such a strategy).

We mention in passing that there are other variations that could be considered
for this game. One variation that we also explored was altering the initial division
of 1, 2, . . . , 9 between the two players for the 3 × 3 game. It turns out that
regardless of which five numbers the first player has they will always be able to
win. This was independently confirmed by Bennett Hansen [2]. For the 4×4 case
one could also create variations by changing the initial division; or giving each
player the numbers {1, 2, . . . , 8} and then the winner would be the first person
to get four numbers in a line that total to 18. We have not considered these
variations here but the technique we will give can be used to analyze these and
other situations as well.

One popular approach to solve perfect information games that has proven
effective is using retrograde analysis, i.e., starting at the finishing positions and
then working backwards. This works well when there are relatively few finishing
positions, e.g., chess endgames [9]. This technique was also used to solve end
game for checkers when there were relatively few pieces (later Schaeffer et al.
[8] gave a complete solution of checkers combining various ideas). While this
technique could work in this setting we will opt instead to use symmetry and
efficient pruning of the game tree to determine the result. A survey of games that
have been solved, including a discussion of various techniques to solve them, is
given by van den Herik et al. [3].

2 Symmetries of the 4 × 4 Game

One näıve approach to this problem is to determine every possible state of the
board and then form a graded poset with the unique maximal entry correspond-
ing to an empty board and then as we go down we look at all possible ways to
legally insert one number until either there is a win or the game results in a tie.
Given such a poset we could then easily determine the winner of the game by
working from the bottom to the top. However an approximation for the number
of boards at depth k is
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)

k!.

That is, choose k positions out of 16 possible positions, then choose which odds
are to be played, which evens are to be played and put them on the board in all
possible ways. Summing up over all possible k then gives us 2.7 × 1015 boards.
For comparison the 3 × 3 version of Numerical Tic-Tac-Toe has 9.3 × 106 and
classical Tic-Tac-Toe has 6, 046. (This count gives all possible boards, but some
of these boards would not occur in gameplay as they contain within them two
or more disjoint winning lines which would indicate play has already stopped.)

Even with advances in computing power and memory storage this is still
prohibitive to approach an analysis of the 4 × 4 board. We will employ several
techniques to reduce the size of this problem to a point where the computation
can be carried out efficiently.

One of the most important tools that we have is to use the symmetry of the
board. That is a bijection from the board to itself which preserves lines. To be
more precise when we have the following board:

A B C D

E F G H

I J K L

M N O P

then the lines are:

{A,B,C,D}, {E,F,G,H}, {I, J,K, L}, {M,N,O, P}, {A,E, I,M},
{B,F, J,N}, {C,G,K,O}, {D,H,L, P}, {A,F,K, P}, {D,G, J,M}.

Proposition 1. The bijections of the board consist of compositions of the fol-
lowing maps: rotations, reflections, and the two maps shown below.

=

F E H G

B A D C

N M P O

J I L K

=

A C B D

I K J L

E G F H

M O N P

For the two maps given above we will call the one on the left the “cross-
symmetry” and the one on the right the “X-symmetry”. When all of these are
combined we end up with 32 different bijections that preserve the lines of the
4× 4 board.

Proof. A simple check will verify that each one of those maps will preserve
lines, so it suffices to show that if we have preserved lines that we must be a
composition of these maps.

Next we note that each map we have outlined is reversible (i.e., for rotation we
reverse the direction and for the other maps we simply apply the map a second
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time). Therefore to show that we have all possible bijections by combining these
maps, it suffices to show how we can apply these maps to get back to the starting
board.

So suppose we have a board that has preserved lines. Then by applying ro-
tations we can place the A in the upper left corner. Note that A, D, M and
P will always have to form the corners of a square and so if needed we can
apply reflection to place D in the upper right corner. Reflection will achieve this
because A and D cannot be on opposite corners, since that would force B and
C to be one of the four center squares. The center squares are involved in three
lines, but B and C are only involved in two, meaning they can never be center
tiles. Therefore we are in one of the following two situations:

A D

M P

A D

M P

Similarly, F , G, J , and K will form another square and their positioning must
agree with the above boards in preserving diagonal lines. So in the first case we
now have the following four possibilities:

A D

M P

F G

J K

A D

M P

F J

G K

A D

M P

K G

J F

A D

M P

K J

G F

Every remaining unfilled square is contained in two lines and we can determine
what value (if possible) must go in the square by taking the intersection of the
two lines. The first possibility reduces to the identity, the fourth gives the X-
symmetry, and the other two are impossible.

For the second case we have the following four possibilities:

A D

M P

F G

J K

A D

M P

F J

G K

A D

M P

K G

J F

A D

M P

K J

G F

Again proceeding as before we can fill in any remaining squares by looking at
the intersection of the lines. The first possibility reduces to cross-symmetry, the
fourth possibility is the result of composition of X-symmetry and cross-symmetry
maps, and the other two are impossible.

Thus using only our given maps we have accounted for each valid bijection of
the board. �
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There is one other natural candidate for symmetry involving manipulation of
the numbers themselves rather than the location of each entry. The symmetry
was used by Markowsky [4] in the 3× 3 version and was found due to the fact:

a+ b+ c = 15 ∪ (10− a) + (10− b) + (10− c) = 15.

Simple algebra takes the original sum n(n2 + 1)/2 and finds that in the general
case, subtracting each filled entry from n2+1 presents a possible symmetry. For
the 4×4 version, each filled cell q would then be replaced by 17− q. An example
is given below:

3

16

10 7

14

1

7 10

However, due to the fact replacing q by 17 − q changes the parity of an entry,
this symmetry is invalid for two reasons. First, if we apply this after an odd
number of plays then we will be in an impossible board, i.e., one with more even
numbers than odd numbers. Second, if we apply this after an even number of
plays then situations can change dramatically. As an example of this latter case,
consider the above scenario where it is now the first player’s turn. In the original
board the first player can block but cannot win with the next move, while in the
second board the first player can place 9 in the lower right corner and win.

We note that this last symmetry does work for the 3 × 3 board and more
generally any n×n board when n is odd, due to the fact n2+1 is even whenever
n is odd.

3 Splitting the Computation

As already mentioned, we can form a graded poset consisting of all boards where
connections go between consecutive levels between boards that differ by a legal
move. In this poset we then identify each “winning move” and break all con-
nections below such boards and work from the bottom up. Each board can be
labeled with one of three possibilities P1, P2, or T for “player one wins”, “player
two wins” and “neither player can guarantee a win”. Working from the leaf nodes
upwards we visit each board and identify the labels of all boards below it which
it connects to and then determine the label of the board by the following rule:
If it is player one’s turn then P1 ◦ T ◦ P2 (i.e., P1 is preferred to T which is
preferred to P2 and the player takes the best labeling of all boards immediately
below); while if it is player two’s turn then P2 ◦ T ◦ P1. Finally, the label
of the empty board indicates the outcome of optimal play on the part of both
players.

Instead we will opt for starting at the root and working our way down the tree
and filling in this information as we go along. The implemented program is a
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version of the minimax algorithm, working in a depth-first, backtracking manner.
One advantage of this is that we can use alpha-beta pruning to eliminate the
need to compute significant parts of the tree (i.e., avoid having to consider some
board configurations). Suppose that below is part of the tree for us to consider
(where on the left we have indicated which player is playing):

Player one

Player two

T

P2 T T

P2 T P1 P1 T T T T P1

Given that at each board we will scan its children from left to right, we can
then trim off parts of the tree that we guarantee are not necessary to visit, giving
us the following:

Player one

Player two

T

P2 T T

P2 P1 T T T T P1

Since this technique is applied at each level of the tree, this pruning has a
dramatic effect on execution time. But we can prune even more if we run the
computation twice and instead of looking at P1, P2 and T we ask the following
two questions:

• Can player one force a win?
• Can player two force a win?

While forming the tree for each of these two situations we will use Y and N
for “Yes” and “No” respectively. For the first question we note that Y = {P1}
and N = {P2, T }, further when it is player one’s turn Y ◦ N and for player
two N ◦ Y . For the second question we note that Y = {P2} and N = {P1, T },
further when it is player one’s turn N ◦ Y and for player two Y ◦ N .

Applying this to the above tree and trimming as we are wont will result in
the following two trees:
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Player one

Player two

Can player one win?N

N N N

N Y N N

Player one

Player two

Can player two win?N

Y N

Y N N N

In this particular problem space, we found that examining only two utility
values instead of three sped up computation exponentially due to the fact many
tie boards exist in the game space. With this technique, only one player must
search to find a winning configuration, but the other can return as soon as a
tie board is found. In theory, this could reduce runtime from O(bd) to O(bd/2)
(where b is the branching factor and d is the depth), due to the repeating pattern
of 1 ⊆ b ⊆ 1 ⊆ b... corresponding to an immediate return vs. searching every child.
In practice, we found the strategy more effective for player one’s computation
than player two’s computation (sensible considering our result) and encourage
the reader to look at the number of boards visited at each depth in the attached
appendix, which is explained in more detail in the following section.

The authors comment that this general technique is probably known in AI
literature and can be seen as similar to other techniques such as proof-number
search [10]. For the record, however, we note that the above strategy could be
easily translated to any general problem space with k utility values to turn the
original question into O(log(k)) separate questions by binary searching for the
best achievable utility value.

4 Results

In the previous two sections we have outlined our basic approach. First we run
two computations to ask starting from an empty board whether each player can
win. To further help prune we store all boards up through some preset depth
and the corresponding answers for those boards. Symmetries were only used in
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the first five depths, a cutoff found by trial and error to avoid the expensive cost
of calculating symmetries but keep the gain of avoiding duplicate computation.
Boards were still stored after this point since it is quite possible to arrive at the
same board from two or more different paths. Finally, due to memory constraints,
to answer player two’s computation, periodically we removed configurations from
memory at the deeper depths of the memory storage.

In the appendix is the information regarding the outcome when we ran the
program for the question: Can player one force a win? For each depth (i.e.,
number of rounds played in the game) it records the number of boards that
were visited, how many were determined because they were already calculated
in memory (stored up through depth 9), and how many times the answer was
“Yes”. Since our program looked one move ahead to determine if the opponent
can win, all recorded “Yes’s” represent a win at least one depth away from the
winning board. Similarly, in the appendix is the same information when we ran
the program for the question: Can player two force a win? (Where we stored
boards up through depth 10.)

In particular, we see that for the 4 × 4 Numerical Tic-Tac-Toe game that
player two can force a win. Comparing the amount of computation required to
determine the answers to our original questions, it appears that in random play
that it is much easier to stop player one from winning than it is to make player
two win. This is easy to convince yourself of in the 3× 3 case where it is not so
hard to stop player two from winning but far from obvious how to have player
one win.

By using an appropriately pruned tree for the question “Can player two force a
win?” we would have a perfect strategy for the game. Unfortunately this requires
immense amounts of storage and so is likely impractical to program. Therefore
we expect that for most players (even most low-powered computer players with
limited time to act in each move), games will likely end in a tie.

There are of course many interesting questions left to ask for numerical tic-tac-
toe, including whether or not one of the players always has a winning strategy.
One can imagine that we divide the numbers up arbitrarily or play in larger
boards. If one player did always have a winning strategy is there an easy ex-
planation for which player it is and what strategy they should pursue? Another
question that we did not answer here is whether player two could force an early
win, i.e., is it possible to finish the game in the fourteenth round? We do not yet
have the answers to these questions, but look forward to the next move in this
area.

Implementation

The program for carrying out the computation was written in Java, and is avail-
able online: https://github.com/brycesandlund/4x4TicTacToe/

https://github.com/brycesandlund/4x4TicTacToe/
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Appendix

For the question “Can player one force a win?” we have the following information
in regards to the computation:

Depth Boards Visited Found in Memory How many “Yes”’s
0 1 0 0
1 128 112 0
2 16 0 0
3 1,440 136 0
4 1,304 0 0
5 88,430 33,554 0
6 57,295 0 2,419
7 2,158,685 1,131,526 2,419
8 1,334,445 6,328 309,061
9 23,654,937 9,012,830 306,283

10 18,237,546 0 3,896,978
11 215,581,273 0 3,896,978
12 221,312,077 0 9,627,782
13 1,462,159,978 0 9,627,782
14 1,452,532,196 0 0
15 2,818,792,528 0 0
16 2,818,792,528 0 0

http://xkcd.com/832/
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For the question “Can player two force a win?” we have the following information
in regards to the computation:

Depth Boards Visited Found in Memory How many “Yes”’s
0 1 0 1
1 128 112 128
2 72 0 16
3 1,467 19 1,411
4 17,358 329 1,396
5 155,748 5,215 140,006
6 2,822,029 150,020 135,188
7 14,434,502 833,734 11,892,556
8 185,959,992 16,012,248 11,122,103
9 572,733,507 45,970,492 413,409,269

10 5,686,646,311 699,206,459 374,906,758
11 10,231,334,279 0 5,593,772,898
12 82,553,255,357 0 5,593,772,898
13 109,945,222,392 0 32,985,739,933
14 521,913,263,546 0 32,985,739,933
15 488,927,523,613 0 0
16 488,927,523,613 0 0
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Abstract. We study the issues of existence and inefficiency of pure Nash
equilibria in linear congestion games with altruistic social context, in
the spirit of the model recently proposed by de Keijzer et al. [14]. In
such a framework, given a real matrix Γ = (γij) specifying a particular
social context, each player i aims at optimizing a linear combination
of the payoffs of all the players in the game, where, for each player j,
the multiplicative coefficient is given by the value γij . We give a broad
characterization of the social contexts for which pure Nash equilibria are
always guaranteed to exist and provide tight or almost tight bounds on
their prices of anarchy and stability. In some of the considered cases, our
achievements either improve or extend results previously known in the
literature.

1 Introduction

Congestion games are, perhaps, the most famous class of non-cooperative games
due to their capability to model several interesting competitive scenarios, while
maintaining some nice properties. In these games there is a set of players sharing
a set of resources, where each resource has an associated latency function which
depends on the number of players using it (the so-called congestion). Each player
has an available set of strategies, where each strategy is a non-empty subset of
resources, and aims at choosing a strategy minimizing her cost which is defined
as the sum of the latencies experienced on all the selected resources.

Congestion games have been introduced by Rosenthal [21]. He proved that
each such a game admits a bounded potential function whose set of local min-
ima coincides with the set of pure Nash equilibria of the game, that is, strategy
profiles in which no player can decrease her cost by unilaterally changing her
strategic choice. This existence result makes congestion games particularly ap-
pealing especially in all those applications in which pure Nash equilibria are
elected as the ideal solution concept.

In these contexts, the study of the inefficiency of pure Nash equilibria, usually
measured by the sum of the costs experienced by all players, has affirmed as a

α This work was partially supported by the PRIN 2010–2011 research project ARS
TechnoMedia: “Algorithmics for Social Technological Networks” funded by the Ital-
ian Ministry of University.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 547–558, 2014.
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fervent research direction. To this aim, the notions of price of anarchy (Kout-
soupias and Papadimitriou [18]) and price of stability (Anshelevich et al. [2])
are widely adopted. The price of anarchy (resp. stability) compares the perfor-
mance of the worst (resp. best) pure Nash equilibrium with that of an optimal
cooperative solution.

Congestion games with unrestricted latency functions are general enough to
model the Prisoner’s Dilemma game, whose unique pure Nash equilibrium is
known to perform arbitrarily bad with respect to the solution in which all players
cooperate. Hence, in order to deal with significative bounds on the prices of
anarchy and stability, some kind of regularity needs to be imposed on the latency
functions associated with the resources. To this aim, lot of research attention
has been devoted to the case of polynomial latency functions. In particular,
Awerbuch et al. [4] and Christodoulou and Koutsoupias [12] proved that the price
of anarchy of congestion games is 5/2 for linear latency functions and dΘ(d) for
polynomial latency functions of degree d. Subsequently, Aland et al. [1] obtained
exact bounds on the price of anarchy for congestion games with polynomial
latency functions. Still for linear latencies, Caragiannis et al. [7] proved that the
same bounds hold for load balancing games as well, that is, for the restriction in
which all possible strategies are singleton sets, while for symmetric load balancing
games, that is load balancing games in which the players share the same set of
strategies, Lücking et al. [19] proved that the price of anarchy is 4/3. Moreover,
the works of Caragiannis et al. [7] and Christodoulou and Koutsoupias [13] show
that the price of stability of congestion games with linear latency functions is
1 + 1/

→
3, while an exact characterization for the case of polynomial latency

functions of degree d has been recently given by Christodoulou and Gairing [11].

Motivations and Previous Related Works. To the best of our knowledge,
Chen and Kempe [10] were the first to study the effects of altruistic (and spite-
ful) behavior on the existence and inefficiency of pure Nash equilibria in some
well-understood non-cooperative games. They focus on the class of non-atomic
congestion games, where there are infinitely many players each contributing for
a negligible amount of congestion, and show that price of anarchy decreases as
the degree of altruism of the players increases. Hoefer and Skopalik [16] consider
(atomic) linear congestion games with Ωi-altruistic players, where Ωi ⊂ [0, 1], for
each player i. According to their model, player i aims at minimizing a function
defined as 1 − Ωi times her cost plus Ωi times the sum of the costs of all the
players in the game (also counting player i). They show that pure Nash equi-
libria are always guaranteed to exist via a potential function argument, while,
in all the other cases in which existence is not guaranteed, they study the com-
plexity of the problem of deciding whether a pure Nash equilibrium exists in a
given game. In such a context, Chen et al. [9] show that the price of anarchy
of coarse correlated equilibria is upper bounded by 5+2γ̂+2γ̌

2−γ̂+2γ̌ , where Ω̂ = maxi Ωi
and Ω̌ = mini Ωi. Such a result implies the same upper bound also on the price of
anarchy of correlated equilibria, mixed Nash equilibria and pure Nash equilibria.

Caragiannis et al. [8] consider a more general model of altruistic behavior: in
fact, for a parameter Ωi ⊂ [0, 1], they model a Ωi-altruistic player i as a player
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who aims at minimizing a function defined as 1− Ωi times her cost plus Ωi times
the sum of the costs of all the players in the game other than i1. In such a way,
the more Ωi increases, the more Ωi-altruistic players tend to favor the interests
of the others to their own ones, with 1-altruistic and 0-altruistic players being
the two opposite extremal situations in which players behave in a completely
altruistic or in a completely selfish way, respectively. Caragiannis et al. [8] study
the basic case of Ωi = Ω for each player i and show that the price of anarchy is
5−γ
2−γ for Ω ⊂ [0, 1/2] and 2−γ

1−γ for Ω ⊂ [1/2, 1] and that these bounds hold also
for load balancing games. This result appears quite surprising, because it shows
that altruism can only have a harmful effect on the efficiency of linear congestion
games, since the price of anarchy increases from 5/2 up to an unbounded value
as the degree of altruism goes from 0 to 1. On the positive side, they prove that,
for the special case of symmetric load balancing games, the price of anarchy is
4(1−γ)
3−2γ for Ω ⊂ [0, 1/2] and 3−2γ

4(1−γ) for Ω ⊂ [1/2, 1], which shows that altruism has

a beneficial effect as long as Ω ⊂ [0, 0.7]. Note that, that for Ω = 1/2, that is when
selfishness and altruism are perfectly balanced, the price of anarchy drops to 1
(i.e., all pure Nash equilibria correspond to socially optimal solutions), while, as
soon as Ω approaches 1, the price of anarchy again grows up to an unbounded
value.

Recently, de Keijzer et al. [14] proposed a model for altruistic and spiteful
behavior further generalizing the one of Caragiannis et al. [8]. According to
their definition, each non-cooperative game with n players is coupled with a real
matrix σ = (Ωij) ⊂ R

n×n, where Ωij expresses how much player i cares about
player j. In such a framework, player i wants to minimize the sum, for each player
j in the game (thus also counting i), of the cost of player j multiplied by Ωij .
Thus, a positive (resp. negative) value Ωij expresses an altruistic (resp. spiteful)
attitude of player i towards player j2. When considering linear congestion games
with altruistic players, along the lines of the negative results of Caragiannis et
al. [8], as soon as there are two players i, j such that Ωij > Ωii, i.e., player i
cares more about player j than about herself, the price of anarchy may become
unbounded. Therefore, de Keijzer et al. [14] focus on the scenario, which they call
restricted altruistic social context, in which Ωii ≡ Ωij for each pair of players i and
j. They show an upper bound of 7 on the price of anarchy of coarse correlated
equilibria. Moreover, they prove that, when restricting to load balancing games
with identical resources, such an upper bound decreases to 2+

→
5 ∈ 4.236. Very

recently, Rahn and Scäfer [20] improved the 7 upper bound to 17/3 and showed
that this is tight even for pure Nash equilibria.

Noting that matrix σ implicitly represents the social context (for instance, a
social network) in which the players operate, the model of de Keijzer et al. [14]
falls within the scope of the so-called social context games. In these games, the

1 Note that each game with γi-altruistic players, where γi ∈ [0, 1], in the model of
Hoefer and Skopalik [16] maps to a game with γ′

i-altruistic players, where γ′
i ∈

[0, 1/2], in the model of Caragiannis et al. [8].
2 Nevertheless, a model in which γii = 1 and γij = γji for each i, j ∈ [n] had been
previously considered by Hoefer and Skopalik in [17].
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payoff of each player is redefined as a function, called aggregating function, of
her cost and of those of her neighbors in a given social context graph.

Social context games have been introduced and studied by Ashlagi, Krysta,
and Tennenholtz [3] for the class of load balancing games, in the case in which
the aggregating function is one among the minimum, maximum, sum and rank-
ing functions, for which they gave an almost complete characterization of the
cases in which existence of pure Nash equilibria is guaranteed. The model of de
Keijzer et al. [14], hence, coincides with a social context game in which the so-
cial context graph has weighted edges and the aggregating function is a weighted
sum. The issues of existence and inefficiency of pure Nash equilibria for the case
of social context linear congestion games have been considered by Bilò et al. [6].
In particular, for the aggregating function sum, pure Nash equilibria are shown
to exist for each social context graph via an exact potential function argument
and the price of anarchy is shown to fall within the interval [5; 17/3].

Finally, the particular case of social context games in which the social context
graph is a partition into cliques coincide with games in which static coalitions
among players are allowed. These games have been considered by Fotakis, Kon-
togiannis and Spirakis [15] who focus on weighted congestion game defined on a
parallel link graph when the aggregating function is the maximum function (i.e,
the coalitional generalization of the KP-model of Koutsoupias and Papadimitriou
[18]).

Our Contribution. We consider the issues of existence and inefficiency of pure
Nash equilibria in linear congestion games with social context as defined by
de Keijzer et al. [14]. In particular, we restrict our attention to the case of
altruistic players, that is, the case in which the matrix σ has only non-negative
entries. Hoefer and Skopalik [17] had shown that pure Nash equilibria are always
guaranteed to exist via an exact potential function argument when either the
altruistic social context is restricted and σ is symmetric. We prove that both
properties are essential to guarantee an existential result, by providing instances
with three players not admitting pure Nash equilibria as soon as exactly one of
them is not satisfied.

We then show that, in the restricted altruistic social context, the price of
anarchy of coarse correlated equilibria remains 17/3 even in the special case of
load balancing games. Such a result, which improves the one given by Rahn and
Schäfer [20], proves that the assumption of having identical resources is essential
in the upper bound of 2 +

→
5 given by de Keijzer et al. [14] for the case of

load balancing games. As to the price of stability, we give an upper bound of 2
holding for each symmetric matrix σ and a lower bound of 1 + 1/

→
2 ∈ 1.707

holding for the case in which σ is a boolean symmetric matrix.
Finally, we also consider the special case in which σ is such that Ωij = Ωi for

each pair of indexes i, j with i ≥= j, which coincides with the general model of Ωi-
altruistic players of Caragiannis et al. [8]. We show that pure Nash equilibria are
always guaranteed to exist in any case via an exact potential function argument
(this slightly improves the existential result by Hoefer and Skopalik [16] since
they only proved the existence of a weighted potential function). Moreover, we
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give an upper bound on the price of anarchy equal to 5+2γ̂−3γ̌
2−γ̂ when Ω̂ ⊂ [0, 1/2]

and to 2−γ̌
1−γ̂ when Ω̂ ⊂ [1/2, 1]. We stress that these upper bounds improve on the

one shown by Chen et al. [9] which, however, holds for the more general setting
of the price of anarchy of coarse correlated equilibria. Finally, we show that, for

the basic case of Ωi = Ω for each player i, the price of stability is (
→
3+1)(1−γ)→
3−γ(

→
3−1)

when Ω ⊂ [0, 1/2] and 3−
→
3−2γ(2−

→
3)

2(1−γ) when Ω ⊂ [1/2, 1].

Paper Organization. In the next section, we introduce all formal definitions
and notation; in Section 3, we address the issue of existence of pure Nash equilib-
ria for general altruistic social contexts; in Section 4, we bound the inefficiency
of pure Nash equilibria for games with restricted altruistic social contexts, while,
in Section 5, we consider the special case of Ωi-altruistic players of Caragiannis
et al. [8]. Due to space limitations, some of the proofs have been omitted.

2 Preliminaries

A congestion game is a tuple G = ∪[n], E, Si≥[n], αe≥E◦, where [n] := {1, . . . , n}
is a set of n ≡ 2 players, E is a set of resources, ⊆ ≥= Si ∀ 2E is the set of
strategies of player i, and αe : N ∩ R∪0 is the latency function of resource e.
The special case in which, for each i ⊂ [n] and each s ⊂ Si, it holds |s| = 1
is called load balancing congestion game. Denoted by S := ×i≥[n]Si the set of
strategy profiles in G, that is, the set of outcomes of G in which each player selects
a single strategy, the cost of player i in the strategy profile S = (s1, . . . , sn) ⊂ S
is defined as ci(S) =

∑
e≥si

αe(ne(S)), where ne(S) := |{j ⊂ [n] : e ⊂ sj}| is the
congestion of resource e in S, that is, the number of players using e in S.

Given a strategy profile S = (s1, . . . , sn) and a strategy t ⊂ Si for a player
i ⊂ [n], we denote with S−i ∅ t the strategy profile obtained from S by replacing
the strategy played by i in S with t. A pure Nash equilibrium is a strategy
profile S such that, for any player i ⊂ [n] and for any strategy t ⊂ Si, it holds
ci(S−i ∅ t) ≡ ci(S).

The function SUM : S ∩ R∪0 such that SUM(S) =
∑

i≥[n] ci(S), called
the social function, measures the social welfare of a game. Given a congestion
game G, let NE(G) denote the set of its pure Nash equilibria (such a set has
been shown to be non-empty by Rosenthal [21]) and S∈ be the strategy profile
minimizing the social function. The price of anarchy (PoA) of G is defined as

maxS≥NE(G)

{
SUM(S)
SUM(S∗)

}
, while the price of stability (PoS) of G is defined as

minS≥NE(G)

{
SUM(S)
SUM(S∗)

}
.

A linear congestion game is a congestion game such that, for each e ⊂ E, it
holds αe(x) = βex + θe, with βe, θe ≡ 0. For these games, the cost of player i
in the strategy profile S = (s1, . . . , sn) becomes ci(S) =

∑
e≥si

(βene(S) + θe),
while the social value of S becomes SUM(S) =

∑
i≥[n]

∑
e≥si

(βene(S) + θe) =
∑

e≥E

(
βene(S)

2 + θene(S)
)
.

A linear congestion game with an altruistic social context is a pair (G, σ )
such that G is a linear congestion game with n players and σ = (Ωij) ⊂ R

n×n
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is a real matrix such that Ωij ≡ 0 for each i, j ⊂ [n]. The set of play-
ers and strategies is defined as in the underlying linear congestion game G,
while, for any strategy profile S, the cost of player i is S = (s1, . . . , sn)
is defined as ĉi(S) =

∑
j≥[n] (Ωij · cj(S)) =

∑
j≥[n] (Ωij (βene(S) + θe)) =

∑
e≥E

(
(βene(S) + θe)

∑
j≥[n]:e≥sj

Ωij

⎧
, where cj(S) is the cost of player j in S in

the underlying linear congestion game G. For a strategy profile S, a player i ⊂ [n]
and a strategy t ⊂ Si, for the sake of brevity, let us denote with xe := ne(S). It
holds

ĉi(S)− ĉi(S−i ∅ t) =
⎪

e≥si\t

⎨

⎩Ωii (βexe + θe) + βe

⎪

j ⊆=i:e≥sj

Ωij



⎛

−
⎪

e≥t\si

⎨

⎩Ωii (βe(xe + 1) + θe) + βe

⎪

j:e≥sj

Ωij



⎛ .

(1)

The special case in which Ωii ≡ Ωij for each i, j ⊂ [n], is called restricted altruistic
social context. Note that, in such a case, as pointed out by de Keijzer et al. [14],
it is possible to assume without loss of generality that Ωii = 1 for each i ⊂ [n]3.

3 Existence of Pure Nash Equilibria

In this section, we provide a complete characterization of the social contexts for
which pure Nash equilibria are guaranteed to exist, independently of which is
the underlying linear congestion game.

Theorem 1. [17] Each linear congestion game with restricted altruistic social
context (G, σ ) such that σ is symmetric admits an exact potential function

π(S) =
1

2

⎪

e≥E

⎨

⎩βe

⎨

⎩ne(S)(ne(S) + 1) +
⎪

(i,j)≥Pe(S)

Ωij



⎛+ 2θene(S)



⎛ ,

where Pe(S) = {(i, j) ⊂ [n]× [n] : i ≥= j ↓ e ⊂ si ∨ sj}.

In order to prove that the characterization given in Theorem 1 is tight, we
provide the following two non-existential results. In the first one, although pre-
serving the property that σ is symmetric, we relax the constraint that the game
is played in a restricted altruistic social context: in particular, we allow Ωii = 0
for some player i ⊂ [n].

Theorem 2. There exists a three-player linear congestion game G and a sym-
metric matrix σ ⊂ R

3×3 such that the linear congestion game with altruistic
social context (G, σ ) does not admit pure Nash equilibria.

3 This claim follows from the fact that both the set of pure Nash equilibria and the
social value of any strategy profile do not change when dividing all the entries in
row i of Γ by the value γii.
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In the second result, although preserving the property that the game is played
in a restricted altruistic social context, we relax the constraint that σ is sym-
metric.

Theorem 3. There exists a three-player linear congestion game G and a matrix
σ ⊂ R

3×3 with a unitary main diagonal such that (G, σ ) does not admit pure
Nash equilibria.

4 Inefficiency of Pure Nash Equilibria

In this section, we give bounds on the prices of anarchy and stability of linear
congestion games with restricted social context.

Rahn and Schäfer [20] show that the price of anarchy of coarse correlated
equilibria is 17/3 and that this bound is tight even for pure Nash equilibria.
We improve the lower bound so as to hold even in the special case in which
the underlying linear congestion game is a load balancing one. The basic idea
of our construction, suitably extended to comply with our altruistic scenario, is
borrowed from Caragiannis et al. [7].

Theorem 4. For any ε > 0, there exists a linear congestion game with restricted
altruistic social context (G, σ ), such that G is a load balancing game and σ is a
symmetric boolean matrix, for which PoA(G, σ ) ≡ 17

3 − ε.

Note that such a lower bound implies that the the assumption of identical
resources in crucial in the upper bound of 2 +

→
5 given by de Keijzer et al. [14]

for load balancing games with restricted altruistic social context.
We now turn our attention to the study of the price of stability. To this aim,

we recall that it is possible to assume without loss of generality that θe = 0
for each e ⊂ E as long as we are not interested in load balancing games. For
a given linear congestion game with altruistic social context (G, σ ), we denote
with K = (k1, . . . , kn) and O = (o1, . . . , on), respectively, a Nash equilibrium
and a social optimum of (G, σ ) and we use Ke := ne(K) and Oe := ne(O) to
denote the congestion of resource e in K and O, respectively. By exploiting the
potential function defined in Theorem 1 and the fact that there exists a pure
Nash equilibrium K such that π(K) ⇔ π(O), we easily obtain the following
upper bound.

Theorem 5. For any linear congestion game with restricted altruistic social
context (G, σ ) such that σ is symmetric, it holds PoS(G, σ ) ⇔ 2.

Proof. Let K be a pure Nash equilibrium obtained after a sequence of improving
deviation starting from O. The existence of K is guaranteed by the existence of
the potential function π. Moreover, it holds π(K) ⇔ π(O). Hence, it follows that

SUM(K) =
⎪

e≥E

(
βeK

2
e

)
⇔
⎪

e≥E

⎨

⎩βe

⎨

⎩Ke(Ke + 1) +
⎪

(i,j)≥Pe(K)

Ωij



⎛



⎛ =
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= π(K) ⇔ π(O) =
⎪

e≥E

⎨

⎩βe

⎨

⎩Oe(Oe + 1) +
⎪

(i,j)≥Pe(O)

Ωij



⎛



⎛ ⇔

⇔
⎪

e≥E

(βe (Oe(Oe + 1) +Oe(Oe − 1))) = 2
⎪

e≥E

(
βeO

2
e

)
= 2SUM(O),

where the last inequality follows from the fact that Ωij ⊂ [0, 1] for each i, j ⊂ [n]
and |Pe(O)| = Oe(Oe − 1). ⇐⇒

In this case, we are only able to provide a lower bound of 1 + 1→
2
∈ 1.707.

Theorem 6. For any ε > 0, there exists a linear congestion game with restricted
altruistic social context (G, σ ), such that σ is a symmetric boolean matrix, for
which PoS(G, σ ) ≡ 1 + 1→

2
− ε.

5 Results for Simple Social Contexts

In this section, we focus on the special case given by model of Caragiannis et
al. [8] in which, for each i ⊂ [n], it holds Ωii = 1 − Ωi and Ωij = Ωi for each
j ≥= i ⊂ [n], where Ωi ⊂ [0, 1]. In such a model, the restricted altruistic social
context coincides with the case in which, for each i ⊂ [n], it holds Ωi ⇔ 1/2.
Caragiannis et al. [8] show that, when Ωi = Ω for each i ⊂ [n], the price of
anarchy is exactly 2−γ

1−γ for general altruistic social contexts (that is, for Ω > 1/2)

and 5−γ
2−γ in the restricted one.

First of all, we prove that pure Nash equilibria are always guaranteed to
exist via an exact potential function argument. An existential result had already
been given by Hoefer and Skopalik [16], nevertheless, their proof makes use
of a weighted potential function. So, our result is slightly stronger and, more
importantly, provides a better potential function to be subsequently exploited
in the derivation of an upper bound on the price of stability of these games.

Let γn := [0, 1]n be the set of n-dimensional vectors whose entries belong to
the interval [0, 1]. Given a vector Ω = (Ω1, . . . , Ωn) ⊂ γn, denote with σγ the
n× n matrix σ such that, for each i ⊂ [n], it holds Ωii = 1− Ωi and Ωij = Ωi for
each j ≥= i ⊂ [n].

Theorem 7. Each n-player linear congestion game with altruistic social context
(G, σ ) such that σ = σγ for some Ω ⊂ γn admits an exact potential function.

Proof. Consider a strategy profile S = (s1, . . . , sn), a player i ⊂ [n] and a
strategy t ⊂ Si, and again denote with xe := ne(S). From equation (1), since∑

j ⊆=i:e≥sj
Ωij = (xe − 1)Ωi and

∑
j:e≥sj

Ωij = xeΩi, it follows that

ĉi(S)− ĉi(S−i ∅ t)

=
⎪

e≥si\t
(βe (xe − Ωi) + (1− Ωi)θe)−

⎪

e≥t\si

(βe (xe + 1− Ωi) + (1 − Ωi)θe) . (2)
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Consider, now, the following potential function

π(S) =
1

2

⎪

e≥E

⎨

⎩βe

⎨

⎩xe(xe + 1)− 2
⎪

j:e≥sj

Ωj



⎛+ 2θe
⎪

j:e≥sj

(1 − Ωj)



⎛ .

It holds

π(S) − π(S−i ∅ t)
=

1

2

⎪

e≥si\t
(βe (2xe − 2Ωi) + 2(1− Ωi)θe)

−1

2

⎪

e≥t\si

(βe (2(xe + 1)− 2Ωi) + 2(1− Ωi)θe)

=
⎪

e≥si\t
(βe (xe − Ωi) + (1 − Ωi)θe)−

⎪

e≥t\si

(βe (xe + 1− Ωi) + (1− Ωi)θe)

which shows that π is an exact potential function for (G, σ ). ⇐⇒

By exploiting the potential function defined above, we obtain an upper bound
on the price of stability for the case in which Ωi = Ω for each i ⊂ [n] as follows.

The fact that there exists a pure Nash equilibrium K such that π(K) ⇔ π(O)
easily implies the following inequality (where, as usual, we have removed the
terms θe from the latency functions):

⎪

e≥E

(βe (Ke(Ke + 1)− 2ΩKe −Oe(Oe + 1) + 2ΩOe)) ⇔ 0, (3)

where we have used the equalities
∑

j:e≥kj
Ωj = ΩKe and

∑
j:e≥oj

Ωj = ΩOe.

By exploiting the inequality ĉi(K)− ĉi(K−i ∅oi) ⇔ 0, we obtain that, for each
i ⊂ [n], it holds

⎪

e≥ki\oi

(βe (Ke − Ω))−
⎪

e≥oi\ki

(βe (Ke + 1− Ω)) ⇔ 0,

which implies

⎪

e≥ki

(βe (Ke − Ω))−
⎪

e≥oi

(βe (Ke + 1− Ω)) ⇔ 0. (4)

We now apply the primal-dual technique that we introduced in [5]. This

method aims at formulating the problem of maximizing the ratio SUM(K)
SUM(O) via

linear programming. The two strategy profiles K and O play the role of fixed
constants, while, for each e ⊂ E, the values βe defining the latency functions are
variables that must be suitably chosen so as to satisfy a set of constraints: some
of them, assures that K is a pure Nash equilibrium with some desired properties,
while the last one normalizes to 1 the value of the social optimum SUM(O). The
objective function aims at maximizing the social value SUM(K) which, being
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the social optimum normalized to 1, is equivalent to maximize the ratio SUM(K)
SUM(O) .

Let us denote with LP (K,O) such a linear program, which, in our scenario of
investigation, by making use of inequalities (3) and (4), becomes the following
one:

maximize
⎪

e≥E

(
βeK

2
e

)

subject to
⎪

e≥E

(βe (Ke(Ke + 1)− 2ΩKe −Oe(Oe + 1) + 2ΩOe)) ⇔ 0

⎪

e≥ki

(βe (Ke − Ω))−
⎪

e≥oi

(βe (Ke + 1− Ω)) ⇔ 0, ≤i ⊂ [n]

⎪

e≥E

(
βeO

2
e

)
= 1,

βe ≡ 0, ≤e ⊂ E

Let DLP (K,O) be the dual program of LP (K,O). By the Weak Duality The-
orem, each feasible solution to DLP (K,O) provides an upper bound on the
optimal solution of LP (K,O). Hence, by providing a feasible dual solution, we

obtain an upper bound on the ratio SUM(K)
SUM(O) . Anyway, if the provided dual so-

lution is independent on the particular choice of K and O, we obtain an upper

bound on the ratio SUM(K)
SUM(O) for any possible pair of profiles K and O, which

means that we obtain an upper bound on the price of stability of pure Nash
equilibria. The dual program DLP (K,O) is

minimize ρ

subject to

x (Ke(Ke + 1)− 2ΩKe −Oe(Oe + 1) + 2ΩOe)

+
⎪

i:e≥ki

(yi (Ke − Ω))−
⎪

i:e≥oi

(yi (Ke + 1− Ω)) + ρO2
e ≡ K2

e , ≤e ⊂ E

x ≡ 0,

yi ≡ 0, ≤i ⊂ [n]

Theorem 8. For any n-player linear congestion game with altruistic social
context (G, σ ) such that σ = σγ for some Ω ⊂ γn with Ωi = Ω for each

i ⊂ [n], it holds PoS(G, σ ) ⇔ (
→
3+1)(1−γ)→
3−γ(

→
3−1)

when Ω ⊂ [0, 1/2] and PoS(G, σ ) ⇔
3−

→
3−2γ(2−

→
3)

2(1−γ) when Ω ⊂ [1/2, 1].

We now show matching lower bounds.

Theorem 9. For any ε > 0, there exists an n-player linear congestion game
with altruistic social context (G, σ ) such that σ = σγ for some Ω ⊂ γn with

Ωi = Ω ⊂ [0, 1/2] for each i ⊂ [n] for which it holds PoS(G, σ ) ≡ (
→
3+1)(1−γ)→
3−γ(

→
3−1)

− ε
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and an n-player linear congestion game with altruistic social context (G∅, σ ∅)
such that σ ∅ = σ ∅

γ for some Ω ⊂ γn with Ωi = Ω ⊂ [1/2, 1] for each i ⊂ [n] for

which it holds PoS(G∅, σ ∅) ≡ 3−
→
3−2γ(2−

→
3)

2(1−γ) − ε.

Note that for Ω = 1/2, the price of stability is 1 which means that, when
players are half selfish and half altruistic, there always exists a social optimal
solution which is also a pure Nash equilibrium. For Ω = 0, that is, when players
are totally selfish, we reobtain the well-known bound of 1 + 1/

→
3 on the price

of stability of linear congestion games proven by Caragiannis et al. [7]. For Ω =
1, the price of stability goes to infinity, i.e., all Nash equilibria may perform
extremely bad with respect to the social optimal solution. This implies that
totally altruistic players are tremendously harmful in a non-cooperative system,
since they yield games in which even the price of stability may be unbounded.
Finally, in the restricted altruistic social context, i.e., Ω ⊂ [0, 1/2], when Ω goes
from 0 to 1/2, the price of anarchy increases from 5/2 to 3, while the price of
stability decreases from 1 + 1/

→
3 to 1. In particular, the increase in the price

of anarchy is always compensated by a slightly higher decrease in the price of
stability.

We now conclude by considering the general case in which the players have
a different degree of altruism. For a vector Ω ⊂ γn, denote with Ω̂ and Ω̌ the
maximum and minimum entry in Ω, respectively. For the price of anarchy, by
simply exploiting inequality (2), we get the following dual program

minimize ρ

subject to
⎪

i:e≥ki

(xi (Ke − Ω̂))−
⎪

i:e≥oi

(xi (Ke + 1− Ω̌)) + ρO2
e ≡ K2

e , ≤e ⊂ E

xi ≡ 0, ≤i ⊂ [n]

Theorem 10. For any n-player linear congestion game with altruistic social
context (G, σ ) such that σ = σγ for some Ω ⊂ γn, it holds PoA(G, σ ) ⇔ 2−γ̌

1−γ̂

when Ω̂ ⊂ [1/2, 1] and PoA(G, σ ) ⇔ 5+2γ̂−3γ̌
2−γ̂ when Ω̂ ⊂ [0, 1/2].

Note that, for Ω̂ = Ω̌, we reobtain the upper bounds already proved by Cara-
giannis et al. [8]. Moreover, the bound for the case Ω̂ ⊂ [0, 1/2], improves on the
one proved by Chen et al. [9] which however holds for the more general setting
of coarse correlated equilibria.
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Abstract. We consider scheduling problems over scenarios where the
goal is to find a single assignment of the jobs to the machines which per-
forms well over all possible scenarios. Each scenario is a subset of jobs
that must be executed in that scenario and all scenarios are given explic-
itly. The two objectives that we consider are minimizing the maximum
makespan over all scenarios and minimizing the sum of the makespans
of all scenarios. For both versions, we give several approximation algo-
rithms and lower bounds on their approximability. With this research
into optimization problems over scenarios, we have opened a new and
rich field of interesting problems.

Keywords: job scheduling, makespan minimization, scenarios, approx-
imation.

1 Introduction

We consider optimization problems over scenarios where the goal is to find a
single solution that performs well for each scenario in a given set of scenarios.
In particular, we consider the scheduling problem where the objective function
is the makespan: we are given a set J of jobs, each with a processing time,
and a set of scenarios; each scenario is specified by a subset of jobs in J that
must be executed in that scenario. Our goal is to find an assignment of jobs
to machines that is the same for all scenarios and optimizes a function of the
makespan, i.e., the completion time of the last completed job, over all scenarios.
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The two objectives that we consider are minimizing the maximum makespan
over all scenarios and minimizing the sum of the makespan of all scenarios. We
note that when the input contains only a single scenario, both versions of the
problem reduce to the usual makespan minimization problem.

As an example, suppose that J contains three jobs, numbered 1, 2, and 3,
that must be executed on two machines; the processing time of job 1 is 2 while
the processing time of jobs 2 and 3 is 1. There are three scenarios S1 = {1, 2, 3}
and S2 = S3 = {2, 3}. Assigning job 1 to the first machine and jobs 2 and 3 to
the second machine minimizes the maximum makespan over all scenarios, while
assigning jobs 1 and 2 to the first machine and job 3 to the second one minimizes
the sum of the makespans of all scenarios.

The more egalitarian objective function of minimizing the maximummakespan
over all scenarios fits in the framework of robust optimization, where usually not
so much a finite set of scenarios is explicitly given, as in our problem, but ranges
for values of input parameters (see [3]). We will refer to this objective as the Min-
Max objective. The more utilitarian objective function of minimizing the sum
of the makespans of all scenarios fits in the framework of a priori optimization,
though a priori optimization has so far only been introduced as a problem where
the scenarios are random objects and the objective is to minimize the expected
objective value. In that sense, minimizing the sum of makespans could be seen
as the a priori problem with a uniform discrete distribution over a finite set of
fully specified scenarios. In general, the deterministic problem of optimizing over
a finite set of scenarios can be seen as an alternative to the stochastic a priori
setting [13], in case a limited number of likely scenarios exists. We refer to this
objective as the MinSum objective.

In an indirect way, combinatorial optimization problems over scenarios with
the MinSum objective have appeared as the first-stage problem in a boosted
sampling approach to two-stage stochastic optimization problems [11]. In [11],
scenarios are defined within a so-called black box, meaning that they can only
be learnt by sampling. From the black box, a finite set of scenarios is sampled,
giving rise to a deterministic optimization problem over the drawn set of scenar-
ios, in which a single solution needs to be found, that minimizes the sum of the
objective values for the drawn scenarios. In this sense some results on combina-
torial optimization problems over scenarios have appeared, like Vertex Cover,
Steiner Tree and Uncapacitated Facility Location [11].

Modeling optimization problems over a finite set of given scenarios yields a
rich source of interesting new combinatorial optimization problems, which are
in general harder than their single-scenario versions. Specifically, almost any
single-scenario scheduling problem has an interesting multi-scenario variation.
As mentioned before, in this paper we focus, as a first example, on minimizing the
maximum makespan over all scenarios and minimizing the sum (or, equivalently,
the average) of the makespan of all scenarios.

The specific setting of the scheduling problem over scenarios appears in situ-
ations where jobs have to be performed by skilled machines (workers), and some
investment is required to attain the skill for a particular job. In such situations,
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one should decide on an assignment of all possible jobs to the workers, such that
the workers can train for the jobs assigned to them ahead of time. The problem
then is to assign jobs (specializations) to machines (workers), so that the work-
load of a machine for any scenario of jobs, from a set of scenarios likely to occur,
is minimized. Examples of such a setting are assignment of clients to lawyers,
households to power sources, compile-time assignment of computational tasks to
processors. In most of such situations, the robust version of the problem with
the MinMax objective is rather plausible, especially in situations where a set of
likely scenarios to hedge against can be specified upfront.

Another motivation, though a bit indirect, comes from distributed informa-
tion retrieval: in a term-partitioned index, it is good to allocate to the same
processor terms appearing frequently together in queries, so as to minimize the
communication cost (to solve an intersection query between two terms that re-
side in different processors, one of the posting lists must be sent to the processor
holding the other). But this goal must be complemented with that of balancing
the load, as it is not viable to put all the terms in the same processor. There-
fore, it is necessary to divide “clusters” of commonly co-occurring terms among
the processors, trying to balance the load. Naturally, queries appear sequentially
over time and are not known a priori. One could, as an approximation, optimize
considering as input the more likely scenarios. The partition must indeed be
done a priori, because lists must be assigned to processors a priori.

To the best of our knowledge, this problem has not been considered in the
literature. An a priori version of scheduling with stochastic scenarios has been
studied in [4,5], albeit not from an approximation theory point of view, but
merely presenting experimental results, and with the scheduling objective of
minimizing the sum of completion times of all the jobs per scenario.

We now give a formal definition of the two problems we consider. We restrict
ourselves to the case of two machines. We are given a set of jobs J with for each
job j → J a processing times pj, and a set of k scenarios S = {S1, S2, . . . , Sk},
where each scenario Si → S is a subset of J . In each scenario, we are interested
in minimizing the makespan, but we are restricted to finding a solution, i.e., an
assignment of the jobs to the machines, that applies to every one of the scenarios.
Clearly, a solution that is good for one scenario may be bad for another. This
gives rise to specifying objectives that reflect the trade-off between the various
scenarios. In this paper we define the following two versions of the problem.

– MM2 Assign the jobs in J to two machines in such a way that the maximum
makespan over the given scenarios is minimized. In other words, if we denote
the makespan of a subset S ⊂ J of jobs by p(S) =

∑
j→S pj, we are looking for

a partition A, Ā of J , that minimizes maxi=1,2,...,k max{p(A≡Si), p(Ā≡Si)}.

– SM2 Assign the jobs to the machines such that the sum of the makespans of
the given scenarios is minimized. Using the notation just introduced, we are
seeking a partition A, Ā of J , that minimizes

∑k
i=1 max{p(A≡Si), p(Ā≡Si)}.

For both objective functions, the problems are NP-hard, since the single-scenario
version is NP-hard. However, the single-scenario version is only weakly NP-hard
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for 2 machines and an FPTAS exists [1], whereas the problems defined here are
strongly NP-hard. We will give various approximability and inapproximability
results for several different versions of the problem depending on restrictions of
the input. In particular, the special cases that we consider are the following:

1. pj = 1 ∈j → J , that is, the case where all processing times are unitary;
2. |Si| ≥ r ∈Si → S, that is, the case where the number of jobs in each scenario

is bounded by a constant;
3. k = |S| is constant, that is, the case that the number of scenarios is a

constant.

In Section 2, we study the problem MM2; we show that the problem cannot
be approximated to within a ratio of 2 − Ω already in the case where pj = 1
and a ratio of 3/2 if |Si| ≥ 3 and pj = 1. On the positive side, we give a
polynomial-time algorithm for the version in which every scenario contains 2
jobs. If k, the number of scenarios, is constant then there exists a PTAS; for
an arbitrary number of scenarios, a O(log2 k) approximation ratio exists. The
latter two results are a consequence of an observed direct relation to the so-called
Vector Scheduling problem (see Section 2 for its definition) and results of [6].

In Section 3, we study problem SM2. We prove inapproximability within
1.0196 assuming P ∪=NP, and within 1.0404 under the Unique Games Conjec-
ture [15]. On the positive side, we present a 3/2-approximate randomized algo-
rithm. For instances with scenarios of size at most 3, we use a reduction to Max
Cut to obtain a 1.12144-approximation algorithm. For scenarios of size at most
r, we present a reduction to Weighted Max Not-All-Equal r-Sat and use
this to obtain better-than-3/2- approximations for problems where the scenario
sizes are not larger than 4.

Some thoughts about related problems, and ideas for future research are con-
tained in a concluding section.

2 Minimizing Maximum Makespan

We obtain inapproximability of MM2 using a recent result [2] on the hardness of
Hypergraph Balancing: given a hypergraph find a 2-coloring of the vertices
such as to minimize over all hyperedges the discrepancy between the number of
vertices of the two colors.

Theorem 1. It is NP-hard to approximate MM2 with unitary jobs within ratio
2− σ.

This is remarkable since, trivially, any solution, for any job sizes, is 2-approximate
(since we consider the problem for two machines only). In the full version of this
paper [8] we prove a hardness bound of 3/2 when |Si| ≥ 3 and pj = 1. This
result completes the hardness characterization.

We now show that, if the number of jobs per scenario is 2, then the problem
is solvable in polynomial time.

Theorem 2. MM2 with |Si| = 2 for all Si → S can be solved in timeO(|S| log |S|).
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Proof. We create a graph with a vertex for each job and connect by an edge the
jobs that appear together in a scenario. We define the weight of edge (j, k) to
be pj + pk, i.e., the sum of the processing times of the jobs associated to the
incident vertices. Note that a solution for the a priori scheduling problem is a
partitioning of the job set, and can be associated with a coloring of the vertices
in this graph problem with two color classes. The objective value is then equal to
the maximum of the highest weight of any monochromatic edge and the largest
processing time of any job.

In other words, we should find a 2-coloring of the vertices of this graph,
such that the maximum weight of a monochromatic edge is minimized. A lowest
weight edge in any odd cycle gives a lower bound on the objective value.

Consider the following algorithm. Starting with all vertices being part of their
own singleton component, and having color 1, we grow components by inserting
edges, and label the vertices with the component they belong to, and with a
color that can assume two values; 1 and 2. A color inversion of a vertex changes
the color of the vertex (i.e., if it is colored 1, the color is changed to 2, and vice
versa). We consider the edges in order of descending weight. When considering
the next edge, say (j, k), the following 3 cases can occur.

Case 1. Vertices j and k have the same color, and are in the same component.
We end the algorithm. An optimal partitioning of the job set is given by the
two color classes, where jobs that have color 1 (respectively, 2) are assigned to
machine 1 (respectively, 2) and the objective is equal to the weight of edge (j, k).

Case 2. Vertices j and k have different colors. If the vertices are in different
components, then we update the component label for all nodes of the smaller
component (breaking ties arbitrarily), so that all vertices have the same label.
We then proceed to the next edge.

Case 3. Vertices j and k have the same color, and are in different components.
In this case we invert the color of all nodes in the smaller component (breaking
ties arbitrarily), and then proceed as in Case 2.

By construction, two vertices of the same color in the same component are
joined by an even-length path. Therefore, when the algorithm terminates in
Case 1, we have found an odd cycle in the graph, of which this last edge has
lowest weight. Note that the assignment of jobs with the same color to the same
machine implies that the makespan of the scenario is bounded by the weight of
the last considered edge. Since the weight of any such edge is a lower bound on
the objective value, we have found an optimal solution. Its value is given by the
maximum of the weight of a monochromatic edge and pmax = maxj→J pj .

The running time follows from the observation that any time we invert the
color and/or update the label of a vertex, it ends up in a component of at least
twice the size of the component it belonged to before. Hence, the label of a vertex
can be updated at most log |J | times. The total time can thus be bounded by
|S| log |S| time for sorting the edges by weight, plus |J | log |J | time for updating
the vertex colors and labels. Finally, we may assume without loss of generality
that each job appears in at least one scenario, so |S| ◦ |J |/2. ⊆∀
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Another sharp characterization w.r.t. the number of scenarios, is obtained
for the case of a constant number of scenarios. For jobs with unit processing
times, the problem can be solved exactly: given that the number of scenarios is
constant, there is only a constant number of job types, where the type of a job is
the set of scenarios it is in. Then, the number of jobs on machine 1 of each type
can be guessed. There are only a polynomial number of choices;, an extension
can also accommodate a constant number of machines in polynomial time. We
notice that this also solves SM2 under the same restrictions in polynomial time.

Theorem 3. MM2 and SM2 having jobs with unitary processing times can be
solved in polynomial time if the number of scenarios is constant.

A similar idea, with guessing the optimal value and rounding, leads to a PTAS
in the general case under a constant number of scenarios, but this is also implied
by the following result.

We conclude this section by noticing that if we consider any number of ma-
chines, the problem of minimizing the maximum makespan reduces to the Vec-
tor Scheduling problem, where each coordinate corresponds to a scenario.

Definition 1. In the Vector Scheduling problem we are given a set V of n
rational d-dimensional vectors v1, . . . , vn from [0,∩)d and a number m. A valid
solution is a partition of V into m sets A1, . . . , Am. The objective is to minimize
max1≥i≥m ||

∑
vj→Ai

vj ||∪.

This problem is a d-dimensional generalization of the makespan minimization
problem, where each job is a d-dimensional vector and the machines are d-
dimensional objects as well. In our setting, the dimension d equals the number
of scenarios |S|. Each coordinate of job j equals its processing time in the cor-
responding scenario (either 0 or pj). Results of Chekuri et al. [6] on Vector
Scheduling can directly be translated into our setting.

Theorem 4 ([6]). For the problem of minimizing the maximum makespan over
scenarios Si → S on m machines,

1. there exists a PTAS for the case that k = |S| is constant

2. there exists a polynomial-time O(log2 k)-approximation for k scenarios;
3. there exists no c-approximation algorithm for any c > 1, when dealing with

any number of scenarios.

3 Minimizing Sum of Makespans

We now turn our attention to SM2, the problem of minimizing the sum of the
makespans over all scenarios, in the case of 2 machines.

We start this section by noting that SM2 is MAXSNP-hard even with unitary
processing times and scenarios containing two jobs each.
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Theorem 5. SM2 is NP-hard to approximate to within a factor of 1.0196 and
UGC-hard to approximation to within a factor of 1.0404, even if all jobs have
length 1, and all scenarios contain two jobs.

The proof is through a reduction from Max Cut [9], and the hardness of
approximation results shown by H̊astadt [12] and Khot et al. [16]. The details
are given in the full version of this paper [8].

In the remainder of this section, we will give approximation results for SM2.
As for MM2 in the previous section, we notice that also for this problem any
solution is a trivial 2-approximation. In the remainder of this section, we will
first show that the algorithm that randomly assigns the jobs to the two ma-
chines independently with equal probability gives a 3/2-approximation. We then
show two deterministic approximation algorithms, which give good approxima-
tion guarantees if the number of jobs per scenario is small.

3.1 A Randomized Approximation Algorithm

Lemma 1. Consider a scenario S, and let A, Ā be any partitioning of the jobs in
S.When assigning each job of S to the twomachines independently with equal prob-
ability, the expected load of the least loaded machine is at least 1

2min{p(A), p(Ā)}.

Proof. An assignment of jobs to the two machines induces a partition of A into
sets A∈, A∈∈, and a partition of Ā into sets Ā∈, Ā∈∈ where the jobs in the same set
of the partition are assigned to the same machine. The sets A∈, A∈∈, Ā∈, Ā∈∈ are not
necessarily all non-empty. We will prove the lemma by showing that, conditioned
on the sets A∈, A∈∈, Ā∈, Ā∈∈, the machine load of the least loaded machine is at least
1
2 min{p(A), p(Ā)}, which implies that the statement also holds unconditionally.

Conditioned on the sets A∈, A∈∈, Ā∈, Ā∈∈, the least loaded machine has a load
of min{p(A∈) + p(Ā∈), p(A∈∈) + p(Ā∈∈)} with probability 1

2 (namely, if A∈, Ā∈ are
assigned to one machine, and A∈∈, Ā∈∈ to the other machine), and min{p(A∈) +
p(Ā∈∈), p(A∈∈) + p(Ā∈)} with probability 1

2 (namely, if A∈, Ā∈∈ are assigned to one
machine, and A∈∈, Ā∈ are assigned to the other machine). Hence, conditioned on
the partition of A into A∈, A∈∈ and of Ā into Ā∈, Ā∈∈, the expected load of the least
loaded machine is

1
2 min{p(A∈) + p(Ā∈), p(A∈∈) + p(Ā∈∈)}+ 1

2 min{p(A∈) + p(Ā∈∈), p(A∈∈) + p(Ā∈)}.

Note that a simple case analysis shows that the sum of the two terms is either
at least 1

2 (p(A
∈) + p(A∈∈)) = 1

2p(A) or at least 1
2

(
p(Ā∈) + p(Ā∈∈)

)
= 1

2p(Ā). So
the load of the least loaded machine is at least 1

2 min{p(A), p(Ā)}. ⊆∀

Theorem 6. Randomly assigning each job to the two machines independently
with equal probability is a 3/2-approximation for SM2.

Proof. Consider a scenario S, and let A be the set of jobs processed on machine 1,
and Ā = S\A the set of jobs processed on machine 2 in a schedule with minimum
makespan. Hence, the optimal makespan for S is max{p(A), p(Ā)}. By Lemma 1,
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the load of the least loadedmachine in scenarioS, if the jobs are randomly assigned
to the machines with equal probability, is at least 1

2 min{p(A), p(Ā)}. Hence, the
loadof themachinewith thehighest load is atmostp(A)+p(Ā)− 1

2 min{p(A), p(Ā)}
= max{p(A), p(Ā)} + 1

2 min{p(A), p(Ā)} ≥ 3
2 max{p(A), p(Ā)}.

Hence, the expected makespan for scenario S is at most 3
2 times the optimal

makespan for scenario S, which implies that the sum over all scenarios of the
expected makespans is at most 3

2 times the optimal summed makespan of all
scenarios. ⊆∀

We remark that the proof of the previous lemma bounds the objective value by
comparing the load on a machine in a given scenario to the load for the optimal
schedule for that scenario, rather than the optimal schedule for our problem.

It is easy to see that the analysis of the simple randomized algorithm is tight,
by considering an instance of two jobs {1, 2} with unitary execution time and one
scenario S1 = {1, 2}. The optimal solution is to assign one job to each machine,
whereas the randomized algorithm either assigns both jobs to the same machine
with probability 1

2 , or one job to each machine with probability 1
2 .

3.2 Deterministic Approximation Algorithms

To obtain a deterministic approximation algorithm, we show that the SM2 prob-
lem can be reduced to the Weighted Max Not-All-Equal Satisfiability
problem, that we will abbreviate as Max-Nae Sat.

Definition 2. In Max-Nae Sat, a boolean expression is given, and a weight
for each clause. A clause in the expression is satisfied if it contains both true
and false literals. The problem is to find an assignment of true/false values to
the variables, such as to maximize the total weight of the clauses satisfied.

Note that if r is such that |Si| ≥ r for all Si → S, then by adding dummy
jobs of processing time 0, we can assume that every scenario contains exactly
the same number of jobs, i.e., |Si| = r for all Si → S. We will reduce the SM2
problem with scenarios of size at most r to the Max-Nae Sat problem with
clauses of length r (Max-Nae r-Sat).

Theorem 7. A (1 − αr)-approximation for Max-Nae r-Sat implies a (1 +
2r−2αr)-approximation for the SM2 problem with |S| ≥ r for all scenarios S → S.

Proof. We start by formulating the SM2 problem as a Max-Nae Sat prob-
lem. Each job j corresponds to a variable xj in the Max-Nae Sat instance.
An assignment of the variables in the Max-Nae Sat instance corresponds to
an assignment in SM2 as follows: machine 1 is assigned all jobs for which the
corresponding variable is set to true, and machine 2 processes all jobs for which
the corresponding variable is set to false.
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We now construct a set of weighted clauses for each scenario such that the
weight of the satisfied clauses for a given assigment is equal to the load of the least
loaded machine in the scenario. Hence, maximizing the weight of the satisfied
clauses will maximize the weight of the least loaded machine, and it will thus
minimize the weight of the machine with the heaviest load, i.e., the makespan.

For a given scenario S of SM2 with r jobs, we construct 2r−1 clauses of length
r as follows. For each partitioning of S into two sets A and Ā, we create a clause
denoted by CS({A, Ā}). In clause CS({A, Ā}), all variables corresponding to jobs
in one set appear negated, all variables corresponding to the other set appear
non-negated. Note that CS({A, Ā}) has the same truth table as CS({Ā, A})
(namely, a clause is false if and only if all its literals are false, or all its literals
are true). Note that this means that if A is assigned to the first machine and Ā is
assigned to the second machine, then all clauses except CS({A, Ā}) are satisfied.

Denote by wS({A, Ā}) the weight on the clause CS({A, Ā}). To ensure the
weight of the satisfied clauses is equal to the weight of the least loaded machine
in SM2, we define weights on the clauses to be so that

∑

B,B̄:B⊆B̄=S,B∅B̄=∨

wS({B, B̄})− wS({A, Ā}) = min{p(A), p(Ā)}.

Let N = 2r−1, i.e., N is the number of clauses corresponding to scenario S. The
solution to this system of equations is to set

wS({A, Ā}) = 1

N − 1

∑

B,B̄:B⊆B̄=S,B∅B̄=∨

min{p(B), p(B̄)} −min{p(A), p(Ā)}.

The weights thus defined are not necessarily non-negative: consider a scenario
S that contains r = 4 jobs of unit length. There are four ways of partitioning S
into one set of size one and one set of size three, and there are

(
4
2

)
/2 = 3 ways of

partitioning S into two sets of size two. Therefore
∑

B,B̄ min{p(B), p(B̄)} = 10,

but that means that for a partitioning into sets A, Ā of size two wS({A, Ā}) =
1
7 (10)− 2 < 0.

To use approximation algorithms for Max-Nae Sat, we need to make sure
that all weights are non-negative. We accomplish this by adding a constantK(S)
to all weights of clauses corresponding to scenario S, where we set −K(S) equal
to a lower bound on the weights. We derive a lower bound on the weights by not-
ing that (1) 1

N

∑
B,B̄ min{p(B), p(B̄)} is the expected value of the least loaded

machine when all jobs are assigned to a machine with probability 1
2 indepen-

dently, hence, by Lemma 1, its value is lower bounded by 1
2 maxB,B̄ min{p(B),

p(B̄)}; and (2) trivially, maxB,B̄ min{p(B), p(B̄)} ≥ 1
2p(S). Therefore



568 E. Feuerstein et al.

wS({A, Ā}) = 1
N−1

∑

B,B̄:B⊆B̄=S,B∅B̄=∨

min{p(B), p(B̄)} −min{p(A), p(Ā)}

= N
N−1

1
N

∑

B,B̄:B⊆B̄=S,B∅B̄=∨

min{p(B), p(B̄)} −min{p(A), p(Ā)}

◦ N
N−1

1
2 max

B,B̄
min{p(B), p(B̄)} −min{p(A), p(Ā)}

◦
1
2N−(N−1)

N−1 max
B,B̄

min{p(B), p(B̄)}

= − 1
2
N−2
N−1 max

B,B̄
min{p(B), p(B̄)}

◦ − 1
4
N−2
N−1p(S).

Thus, we set K(S) = 1
4
N−2
N−1p(S), such that w̃S({A, Ā}) = wS({A, Ā})+K(S) ◦

0 for all partitionings A, Ā of S into two sets.
A solution to the Max-Nae Sat instance is now mapped to a solution of

SM2, by assigning the jobs for which the variable is set to true to machine 1,
and scheduling the other jobs on machine 2. We note that the w-weights of
the clauses corresponding to scenario S were chosen so that the sum of the
weights of the clauses that are satisfied is exactly equal to the load on the least
loaded machine in scenario S. Also, N − 1 clauses of scenario S are satisfied
in any solution to the Max-Nae Sat instance. Therefore the total w̃-weight of
the clauses for scenario S that are satisfied in any Max-Nae Sat solution is
equal to the load on the least loaded machine in scenario S plus an additional
(N − 1)K(S).

We let L =
∑

S p(S), and denote by L∗
min the sum over all scenarios of the

load of the least loaded machine in an optimal solution, and by L∗
max the sum

over all scenarios of the load of the most loaded machine in an optimal solution,
so that L∗

min + L∗
max = L. Note that the additional term K(S) in the w̃-weights

of the Max-Nae Sat solution causes an increase of the objective value with
respect to the w-weights solution by adding an additional

∑
S(N − 1)K(S) =∑

S
1
4 (N − 2)p(S) = 1

4 (N − 2)L to each solution.
In particular, an optimal solution to the Max-Nae Sat instance, has objec-

tive value L∗
min + 1

4 (N − 2)L, and a (1 − α)-approximation algorithm for the
Max-Nae Sat instance, therefore, has objective value at least (1 − α)(L∗

min +
1
4 (N − 2)L). Let us denote by ALG(Lmin) and ALG(Lmax) the sum over all
scenarios of the least and most loaded machines in the corresponding job as-
signment. Note that ALG(Lmin) ◦ (1− α)

(
(L∗

min +
1
4 (N − 2)L

)
− 1

4 (N − 2)L =
(1− α)L∗

min − 1
4α(N − 2)L. Therefore,

ALG(Lmax) = L−ALG(Lmin) ≥ L− ((1 − α)L∗
min − 1

4α(N − 2)L)

= (1− α)(L− L∗
min) + αL+ 1

4α(N − 2)L

= (1− α)L∗
max +

1
4α(N + 2)L.

Noting that L ≥ 2L∗
max gives ALG(Lmax) ≥ (1 − α)L∗

max +
1
2α(N + 2)L∗

max =
(1 + 1

2αN)L∗
max which proves the theorem, since N = 2r−1. ⊆∀
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For r = 3, Zwick [18] gives a 0.90871-approximation for Max-Nae 3-Sat. By
the previous lemma, this gives a 1.18258-approximation for SM2 with scenarios
of length at most three. For r = 4, Karloff et al. [14] give a 7

8 -approximation
for Max-NAE 4-Sat. By our lemma, this implies a 3

2 -approximation for SM2
with scenarios of size 4. Note that this matches the guarantee we proved for
the algorithm that randomly assigns each job to one of the two machines. For
general r, the best approximation factor known forMax-Nae Sat is 0.74996 due
to Zhang, et al. [17], and the implied approximation guarantees for our problem
are worse than the guarantee for the random assignment.

If every scenario has exactly two jobs, then we can obtain a better approxi-
mation guarantee by reducing SM2 to Max Cut as follows: we create a vertex
for every job, and add an edge between i and j of weight min{pi, pj} for every
scenario that contains jobs i and j. For any cut, the weight of the edges crossing
the cut is then exactly the sum over all scenarios of the load of the least loaded
machine. Since the makespan for a scenario S is p(S) minus the load of the least
loaded machine, maximizing the load of the least loaded machine, summed over
all scenarios, is equivalent to minimizing the sum of the makespans.

If every scenario has at most three jobs, we can also reduce SM2 to Max
Cut, but the reduction, given in the full version [8], is slightly more involved.

Theorem 8. There exists a (1+ α)-approximation algorithm for the SM2 prob-
lem with scenarios containing at most three jobs, where 1 − α is equal to the
approximation ratio for Max Cut.

The 0.87856-approximation for Max Cut of Goemans et al. [10] gives us the
following corollary.

Corollary 1. There exists a 1.12144-approximation algorithm for the SM2 prob-
lem with scenarios containing at most three jobs.

4 Epilogue

This paper presents some first results on a basic scheduling problem under a set
of scenarios. The objective is to find a single solution that is applied to all the
scenarios specified. We studied this problem for scheduling with two different
objectives: minimizing the maximum objective value over all scenarios, the Min-
Max version, and minimizing the sum of the objective values of all scenarios, the
MinSum version.

To the best of our knowledge, combinatorial optimization problems under a
set of fully explicitly specified scenarios has hardly been studied in the literature.
Apart from posing theoretically interesting questions as we hope to have shown
with this paper, it enhances our ability to model decisions problems where a
learning aspect for performing jobs prohibits that job assignments can be ad-
justed on a day-by-day basis, but merely require a fixed assignment whose quality
then necessarily differs over the various instances.

In relation to the MinMax version of the problem, we also like to mention
a version of combinatorial optimization which has become known under the
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name universal optimization. E.g., [7] study a universal scheduling problem. In
such a problem, the scenarios are not explicitly specified, but can be seen to
be chosen by an adversary. The quality of an algorithm is then measured by
comparing its solution to the optimal solution when the adversarial choices are
known beforehand.

For future research, anyone can choose her or his favorite combinatorial opti-
mization problem and study its multiple-scenario version.

We finish with the some questions emerging from our multiple-scenario schedul-
ing problem. The result in [2] suggests a 3/2-approximation for MM2 with 4 jobs
per scenario and unitary jobs. Can this be extended to any job sizes? For the
SM2 version the question is to close the gap between the 3/2-approximate ran-
domized algorithm for the general case and the 1.0404 lower bound under the
Unique Games Conjecture. It would also be interesting to find out if our ran-
domized algorithm can be derandomized.

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer (1999)

2. Austrin, P., Guruswami, V., H̊astad, J.: (2 + ε)-SAT is NP-hard. Electronic Col-
loquium on Computational Complexity, TR13-159 (2013)

3. Ben-Tal, A., Nemirovski, A.: Robust optimization–methodology and applications.
Mathematical Programming 92(3), 453–480 (2002)

4. Bouyahia, Z., Bellalouna, M., Ghedira, K.: Load balancing a priori strategy for the
probabilistic weighted flowtime problem. Comput. Ind. Eng. 64(1), 1–10 (2013)

5. Bouyahia, Z., Bellalouna, M., Jaillet, P., Ghedira, K.: A priori parallel machines
scheduling. Comput. Ind. Eng. 58(3), 488–500 (2010), Supply, Production and Dis-
tribution Systems

6. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM Journal
on Computing 33(4), 837–851 (2004)

7. Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella,
M., Stougie, L.: Universal sequencing on an unreliable machine. SIAM Journal on
Computing 41, 565–586 (2012)

8. Feuerstein, E., Marchetti-Spaccamela, A., Schalekamp, F., Sitters, R., van der Ster,
S., Stougie, L., van Zuylen, A.: Scheduling over scenarios on two machines. CoRR,
abs/1404.4766 (2014)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

10. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

11. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Sampling and cost-sharing: Approxima-
tion algorithms for stochastic optimization problems. SIAM Journal on Comput-
ing 40(5), 1361–1401 (2011)

12. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
13. Jaillet, P.: A priori solution of a traveling salesman problem in which a random

subset of the customers are visited. Oper. Res. 36(6), 929–936 (1988)



Scheduling over Scenarios on Two Machines 571

14. Karloff, H.J., Zwick, U.: A 7/8-approximation algorithm for MAX 3SAT? In:
FOCS, pp. 406–415. IEEE Computer Society (1997)

15. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of 34th
Annual ACM Symposium on Theory of Computing, pp. 767–775 (2002)

16. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

17. Zhang, J., Ye, Y., Han, Q.: Improved approximations for max set splitting and
max NAE SAT. Discrete Applied Mathematics 142(1-3), 133–149 (2004)

18. Zwick, U.: Outward rotations: A tool for rounding solutions of semidefinite pro-
gramming relaxations, with applications to MAX CUT and other problems. In:
STOC, pp. 679–687 (1999)



The Complexity of Bounded Register

and Skew Arithmetic Computation

Vikraman Arvind and S. Raja

The Institute of Mathematical Sciences (IMSc), Chennai, India
{arvind,rajas}@imsc.res.in

Abstract. We study two register arithmetic computation and skew arith-
metic circuits. Our main results are the following:

– For commutative computations, we present an exponential circuit
size lower bound for a model of 2-register straight-line programs
(SLPs) which is a universal model of computation (unlike width-2
algebraic branching programs that are not universal [AW11]).

– For noncommutative computations, we show that Coppersmith’s 2-
register SLP model [BOC88], which can efficiently simulate arith-
metic formulas in the commutative setting, is not universal. However,
assuming the underlying noncommutative ring has quaternions, Cop-
persmith’s 2-register model can simulate noncommutative formulas
efficiently.

– We consider skew noncommutative arithmetic circuits and show:

• An exponential separation between noncommutative monotone
circuits and noncommutative monotone skew circuits.

• We define k-regular skew circuits and show that (k+ 1)-regular
skew circuits are strictly powerful than k-regular skew circuits,
where k ≤ n

ω(logn)
.

1 Two Register Arithmetic Computations

An arithmetic circuit over a field F and indeterminates X = {x1, x2, · · · , xn} is
a directed acyclic graph with each node of indegree zero labeled by a variable or
a scalar constant. Each internal node g of the DAG is labeled by + or × (i.e. it is
a plus or multiply gate) and is of indegree two. A node of the DAG is designated
as the output gate. Each gate of the arithmetic circuit computes a polynomial
in the commutative ring F[X ], by adding or multiplying its input polynomials.
The polynomial computed at the output gate is the polynomial computed by
the circuit.

If the indeterminates X = {x1, x2, · · · , xn} are noncommuting with no rela-
tions between them, then the circuit is called a noncommutative circuit and it
computes a polynomial in the free noncommutative ring F→X⊂.

We can view an arithmetic circuit C as a straight-line program (called an SLP,
for short), which prescribes an order of gate evaluation for C. More precisely, a
straight-line program corresponding to circuit C is a topologically sorted listing

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 572–583, 2014.
c∞ Springer International Publishing Switzerland 2014



The Complexity of Bounded Register and Skew Arithmetic Computation 573

of the nodes of the DAG defining C. For each internal gate gi we have an in-
struction like gi := gj ≡ gk, where gj and gk are the inputs to gi and ≡ ∈ {+, ≥}.
Thus, a straight-line program is a list of input variables and scalars followed by
a list of assignment statements of the form x := y ≡ z, where y and z are already
computed.

The above notion of straight-line programs (SLPs) can be refined by intro-
ducing registers. Each instruction x := y ≡z entails that x be stored in a register.
The input variables and scalars (which occur only on the right-hand side) of
the assignments are freely accessible by the program. This naturally leads to
the notion of bounded register SLPs, where the bound is the number of registers
used by the program. We give a general definition of bounded register SLPs.

Definition 1. A straight-line program using w registers R1, R2, . . . , Rw over
the field F and indeterminates from X = {x1, x2, . . . , xn} consists of a se-

quence of instructions. Let R
(t)
i denote the contents of register Ri at stage t.

Then the tth instruction in the sequence transforms the tuple of register contents

(R
(t−1)
1 , R

(t−1)
2 , . . . , R

(t−1)
w ) to (R

(t)
1 , R

(t)
2 , . . . , R

(t)
w ), where each

R
(t)
w = f(R

(t−1)
1 , R

(t−1)
2 , . . . , R

(t−1)
w , x1, . . . , xn), where the function f comes from

a fixed set of polynomials.

In an important paper in the area of arithmetic complexity, Ben-Or and
Cleve [BOC92] showed that three registers suffice to efficiently simulate arith-

metic formulas. The instructions they use in their SLPs are of the form: R
(t)
i =

l1R
(t−1)
j +l2R

(t−1)
k +Ri where l1, l2 are affine linear forms in x1, ..., xn. In general,

when we allow instructions of the form

R
(t)
i = l1R

(t−1)
j + l2R

(t−1)
k + l3Ri,

where the li are affine linear forms, the polynomial in F[X ] computed by such 3-
register SLPs can be computed as the (1, 1)th entry of the product of a sequence
of 3× 3 matrices, one for each SLP instruction, where these matrices have affine
linear forms in the xi’s as entries. This is precisely the width-3 algebraic branch-
ing program (ABP) model of arithmetic computation which, by the Ben-Or and
Cleve result is equivalent to arithmetic formulas (upto polynomial size).

A natural question is about the power of 2-register computations. Allender and
Wang [AW11] have shown that 2-register ABPs (defined similarly via the iterated
product of 2× 2 matrices with affine linear form entries) are not even universal.
Indeed, they show that the quadratic polynomial x1x2+x2x3+...+xn−1xn cannot
be computed by width-2 ABPs. However, there are interesting 2-register SLP
models that merit further investigation. Coppersmith (as mentioned in [BOC88])
has already observed that 2-register SLPs, with instructions of the form: Ri =
Ri + ΩR2

j , Ω ∈ F and Ri = Ri + l where l is a affine linear form, can simulate
formulas efficiently if char F ∪= 2.

Notice that Definition 1 allows for SLPs that are more powerful than the Ben-
Or Cleve model because the general SLPs allow for multiplication of registers
and hence can compute polynomials of degree exponential in their size. If we
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restrict ourselves to polynomials in F[X ] of polynomially bounded degree, then
arbitrary SLPs, indeed arbitrary arithmetic circuits of polynomial degree, can
be transformed to nO(logn) size formulas and hence width-3 ABPs.

This motivates the study of other universal 2-register SLP models of com-
putation. It turns out that these models are universal because we allow a reset
instruction Ri = c for any c ∈ F. Apart from the reset instruction, even if we
restrict ourselves to only the ABP-like “skew” instructions Ri = σ1Ri+ σ2Rj for
affine linear forms σ1 and σ2, the model is surprisingly quite powerful. It can ef-
ficiently simulate αβα arithmetic circuits and it would be interesting to either
prove lower bounds for such a model or even to separate it from αβα arith-
metic circuits. As we are unable to show such results, we consider a somewhat
weaker universal 2-register SLP model and show exponential size lower bounds
for a polynomial that has αβα circuits of polynomial size. Due to page limit,
we omit several proofs in this conference version and we refer to ECCC version
of the paper [AR14] for the full proofs.

Model 1

At each time instant t, we allow instructions of the form

1. R
(t)
i = ΩR

(t−1)
i + θR

(t−1)
j where i, j ∈ {1, 2} and Ω, θ ∈ F.

2. R
(t)
i = xR

(t−1)
i where x is a variable.

3. R
(t)
i = ΩR

(t−1)
i + l where l is any affine linear form and Ω ∈ F.

Here R
(t)
i denotes the contents of register Ri at time t. At each time instant

t, we can apply any instruction to R1 and R2 simultaneously. Notice that the
instruction (3) gives the power of resetting contents of a register to a nonzero
constant. This is a crucial difference from width-2 ABPs (which cannot do such
a reset). However, width-3 ABPs can simulate Model 1 efficiently.

Lemma 1. Model 1 is universal.

In Section 2 an exponential lower bound for Model 1. As noted above, the

variant in which we allow R
(t)
i = lR

(t−1)
i for an affine linear form l is at least as

powerful as αβα circuits. We refer to this variant as Model 2.

Lemma 2. Model 2 is at least as powerful as αβα circuits. I.e., for any αβα
circuit of size s there is a size O(s) SLP of Model 2 type.

2 A Lower Bound for 2-Register SLP of Model 1

In this section we show an exponential size lower bound for 2-register SLPs (of
Model 1) computing an explicit multivariate polynomial over any field F. The
instructions allowed in Model 1 are: (1) Ri = ΩRi + θRj , where Ω, θ ∈ F, (2)
Ri = xRi where x is a variable, and (3) Ri = ΩRi + l, where l is an affine linear
form and Ω ∈ F.
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Model 1 is universal by Lemma 1. In the absence of instruction (3) (which
allows resets Ri := c for any c ∈ F), the model can be simulated by width-2
arithmetic branching programs (ABP), which are not universal, as shown by
Allender and Wang [AW11]. As mentioned earlier, they give a sparse polynomial
that is not width-2 ABP computable. In Model 1 there is an SLPs of size O(td)
to compute any t-sparse polynomial of degree d. The idea is to compute the
monomials, one at a time, in the first register, add it to the second register, and
reset the first register to continue.

Consider the polynomial Q = P1 + P2 + ...+ Pk where Pi = βn
j=1(xij + yij)

for each i. We will show an exponential size lower bound for SLPs in Model
1 computing the polynomial Q. Let V = {xij , yij}i→[k],j→[n] denote the set of
indeterminates of polynomial Q. Note that |V | = 2nk. Each Pi is a homogeneous
multilinear polynomial of degree n with 2n distinct monomials. Furthermore,
each Pi has an O(n) size βα arithmetic circuit, and Q has an O(nk) size αβα
arithmetic circuit.

Let R1, R2 be the two registers used by an SLP computing polynomial Q, and
let R1 be the output register. A rough outline of the argument is as follows: based
on the structure of the SLP, we pick some indeterminates of the polynomial Q
and set them to 0. We then analyze the resulting SLP to establish the lower
bound.

Theorem 1. The polynomial Q = P1+P2+· · ·+Pk, defined above, for a suitably
large constant k, requires 2Θ(n) size SLPs in the 2-register SLP of Model 1.

Proof. Consider an SLP of Model 1 computing polynomial Q that is of minimal
size s. Let V = {xij |i ∈ [k], j ∈ [n]}◦{yij |i ∈ [k], j ∈ [n]} denote the variable set
of Q. The SLP consists of a sequence of instructions (of type (1) – (3)). At time

t, 0 ⊆ t ⊆ s the SLP computes the register contents R
(t)
1 and R

(t)
2 simultaneously

from R
(t−1)
1 and R

(t−1)
2 by permissible instructions. We can assume that the

contents of the registers R1 and R2 at time 0 is R
(0)
1 = R

(0)
2 = 0. The final

contents of the two registers is R
(s)
1 and R

(s)
2 at time instant s, and let R

(s)
1 be

the output of the SLP. Our aim is to lower bound s. We assume to the contrary
that s = 2o(n) and derive a contradiction.

Clearly, at any time t both R
(t)
1 and R

(t)
2 contain polynomials of degree at

most t in indeterminates from V over F. We define the set of all good monomials
as GOOD = {m | m has nonzero coefficient in Q}. Notice that good monomials
have degree n and there are k.2n good monomials. A monomial m is said to be

in R
(t)
i if it has nonzero coefficient in the polynomial R

(t)
i . Since the SLP is not

monotone, the set of good monomials in R
(t)
i need not monotonically increase in

cardinality with t. But the SLP satisfies the following two properties:

– At time s the number of good monomials in R
(s)
1 is k2n.

– The number of good monomials in R1 and R2 together, at time t≥ > t, can
exceed the number at time t only if we apply the instruction Ri = xRi for
some variable x ∈ V to a register Ri and then Rj = ΩR1 + θR2. Clearly,
taking only linear combinations of R1 and R2 cannot increase the set of good
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monomials. But any given variable x occurs in exactly 2n−1 good monomials
in Q. Consequently, at each time step the total number of good monomials
in the two registers can increase by at most 2n−1.

Therefore, there is a time instant t̂ ⊆ s such that: (i) l2n ⊆ |GOODt̂| ⊆ (l +
1)2n and (ii) ∀t ∩ t̂ we have |GOODt| ∩ l2n. Choose l such that k/8 < l < k/4.
For t ∩ t̂, for our convenience, we rename the registers at each time instant so

that R
(t)
1 has at least as many good monomials as R

(t)
2 .

Hence, without loss of generality, we can assume that ∀t ∩ t̂, R
(t)
1 has at least

l
2 .2

n many good monomials. This means the SLP cannot apply the instruction

R
(t+1)
1 = xR

(t)
1 for all ∀t ∩ t̂. Otherwise, R

(t+1)
1 will have fewer than 2n−1 many

good monomials, contradicting the above property of t̂.
The number of good monomials at time t̂ is bounded by (l+1)2n. Hence, there

are at least (k − l − 1)2n good monomials to be still included in the registers.
The only way to generate new good monomials is to apply the instruction R2 =
xR2 for x ∈ V . Let t0 > t̂ be the first such time instant. We set this variable
x = 0. As a result R

(t0)
2 = 0. Without loss of generality, assume x occurs in

the polynomial Pk. We can set all variables in Pk to zero and the polynomial
Q becomes P1 + P2 + ...+ Pk−1 which the SLP must still compute. Notice that

the number of good monomials in R
(t0)
1 is still at least ( l

2 − 1)2n and at most
(l + 1).2n.

Since k
8 < l < k

4 , there are at least k−2l−1 polynomials Pi in {P1, P2, ..., Pk−1}
such that R

(t0)
i contains fewer than 2n−1 good monomials of Pi. Without loss

of generality, let these polynomials be {P1, P2, ..., Pq} where q ∩ k − 1− 2l. Let
V ar(Pj) denote the variable set of the polynomial Pj .

We analyze the SLP for time instants after t0 in segments. For any polynomial
Pi ∈ {P1, P2, ..., Pq}, a Pi-segment is a maximal time interval [t≥, t≥≥] such that
in this time interval, all variable multiplication instructions R2 = xR2 are for
x ∈ V ar(Pi). As a consequence, the last variable multiplication R2 = yR2 that
occurs before time instant t≥ is either for some y ∪∈ V ar(Pi) or t

≥ = t0.
A Pi-segment [t≥, t≥≥] is nontrivial if 2Θ(n) good monomials of Pi, not present

in R
(t∗)
1 are included in R

(t∗∗)
1 .

Clearly, for each Pi ∈ {P1, P2, ..., Pq} there must be at least one nontrivial Pi

segment in the SLP. Otherwise, the SLP cannot compute Q because s = 2o(n).
Without loss of generality suppose the first nontrivial segment is P1-segment

and it occurs in the time interval [t≥, t≥≥]. Clearly, the first variable multiplication
to R2 after time instant t≥≥ is of the form R2 = zR2 for z ∪∈ V ar(P1), because
the SLP must have nontrivial segments for all polynomials in {P1, P2, ..., Pq}.
Likewise, either t≥ = 0 or the last variable multiplication to R2 before time
instant t≥ is of the form R2 = yR2 for y ∪∈ V ar(P1). In any case, by setting
z = 0 and y = 0 we enforce the condition that at time t≥ the register R2 = 0 and
R1 has at least ( Σ2 − 3)2n good monomials. Let G denote the set of these good

monomials in R
(t∗)
1 . Also at time t≥≥ the register R2 is zero.

The rest of the proof will proceed as follows. We will first argue that at time
t≥≥, for every good monomial g ∈ G, the register R1 has a monomial of the form



The Complexity of Bounded Register and Skew Arithmetic Computation 577

mgg, wheremg is a nontrivial monomial in V ar(P1). Furthermore, we shall argue
that the rest of the SLP cannot remove these “bad” monomials if s = 2o(n). The
main steps of the argument are in the following claims.

Claim. In the SLP segment [t≥, t≥≥], if we replace R
(t∗)
1 by a fresh variable u, the

polynomial computed in R1 at time t≥≥ can be uniquely expressed as Q1 ·u+Q2.

Hence, in the original SLP segment R
(t∗∗)
1 can be expressed as R

(t∗∗)
1 = Q1 ·R(t∗)

1 +
Q2, for the uniquely defined polynomials Q1 and Q2.

Likewise, at any time instant t ∈ [t≥, t≥≥] we can uniquely express the contents

of R
(t)
1 as Q

(t)
1 ·R(t∗)

1 +Q
(t)
2 , where the polynomials Q

(t)
i are uniquely defined in

the same way. The above claim is clearly true on inspection of the SLP segment

[t≥, t≥≥]. We can similarly express the contents of R
(t)
2 as P

(t)
1 · R(t∗)

1 + P
(t)
2 , for

uniquely defined polynomials P
(t)
i .

Claim. The polynomial Q1, where R
(t∗∗)
1 = Q1 · R(t∗)

1 + Q2, is a nonconstant
polynomial over the variable set V ar(P1).

Proof. The proof is by an inductive argument. We divide the SLP segment into
blocks. More precisely, there are time instants t≥ < t1 < t2 < · · · < tr ⊆ t≥≥ when
a linear combination of R1 and R2 is computed and stored in R1.

Assume to the contrary that Q1 is a constant. Let j1 ∈ (t≥, t≥≥) be the least

index such that R
(tj1 )
1 = Tj1 .R

(t∗)
1 +Q

(j1)
2 , where Tj1 =

∑
l Ωlml is a nonconstant

polynomial and ml strictly dividesml+1 for each l. In the sequel, by the u-degree

of polynomial R
(t)
1 , we will mean the degree of the polynomial Q

(t)
1 .

The u-degree of polynomial R
(tj1)
1 is the degree of Tj1 . By minimality of

j1, R
(tj1−1)
1 = cj1−1.R

(t∗)
1 + Q

(j1−1)
2 . It is easy to see that Q

(j1−1)
2 and Q

(j1)
2

are both s-sparse polynomials. Let j2 ∈ (j1, t
≥≥] be the least index such that

R
(tj2 )
1 = cj2 .R

(t∗)
1 + Q

(j2)
2 , where cj2 ∈ F. Intuitively, in the interval (j1, j2], the

SLP is removing the nonconstant multiplicative factors of R
(t∗)
1 at time j2 in

register R
(j2)
1 . We note that in the SLP segment (j1, j2), R1 can not be used by

R2. Otherwise, the u-degree of R2 will equal the u-degree of R1 at that time,
and in subsequent computation the nonconstant factors cannot be removed. This

forces that the polynomial Q
(j2)
2 remains an s-sparse polynomial. The rest of the

proof proceeds inductively by considering the least time instant j3 ∈ (j2, t
≥≥] such

that the u-degree of R
(j3)
1 is zero. We can similarly argue that the polynomial

Q
(j3)
2 will remain s-sparse. Continuing thus, it follows that if Q1 is constant then

Q2 is s-sparse contradicting the assumption that the SLP adds 2Θ(n) monomials
of P1 in the [t≥, t≥≥] segment.

Claim. If R
(t∗∗)
1 = Q1R

(t∗)
1 + Q2 and deg(Q1) ∩ 1 then R

(t∗∗)
1 has exponentially

many monomials of the form mgg whose degree is > n, where g ∈ G and mg is
a monomial over V ar(P1).
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Proof. Let π be the lexicographic ordering on the variable set V ar(P1). Note that
π induces a monomial ordering on all monomials over V ar(P1). Let B = {m ·g ∈
Rt∗∗

1 | g ∈ G, V ar(m) ∅ V ar(P1), & m is the largest such monomial under π}.
Here G is the set of ( Σ2 − 3)2n good monomials in R

(t∗)
1 . Clearly, |B| = |G| ∩

( Σ2 −3)2n. Let m̂ be the largest monomial under π in the polynomial Q1. Clearly,
each monomial in the set m̂ ·B = {m̂ ·mg|mg ∈ B} is nonzero in the polynomial

Q1 · Rt∗
1 . These monomials will also occur with nonzero coefficient in R

(t∗∗)
1 =

Q1R
(t∗)
1 +Q2 because each monomial in Q2 has all but at most one of its variables

from V ar(P1). On the other hand, each monomial in m̂·B has exactly n variables
not in V ar(P1). This proves the claim.

Putting the claims together, we have shown that at time t≥≥ + 1 the SLP has
an exponential sized error set m̂B in R1 and R2 is 0. This error set can only be
shifted and cannot be removed in the subsequent SLP computation assuming
s = 2o(n). This completes the proof. ↓∨

2.1 Noncommutative 2-register Arithmetic Computations

We now briefly consider 2-register noncommutative arithmetic computations.
Here we are working in the free noncommutative ring F→X⊂ whereX = {x1, ..., xn}
is a set of noncommuting free variables and F is any field. Thus monomials are
words in the noncommutative free monoidX∪, and polynomials are F-linear com-
binations of monomials. Nisan [Nis91] has shown that noncommutative ABPs
can simulate noncommutative formulas efficiently. An examination of Ben-or and
Cleve [BOC92] result shows that width-3 noncommutative ABPs can efficiently
simulate noncommutative arithmetic formulas and are, in fact, equivalent to
them. This has been observed before (e.g. see [AJS09]). Therefore, it is inter-
esting to examine the power of 2-register noncommutative arithmetic computa-
tions. Width-2 noncommutative ABPs are also not universal [AW11]. However,
the noncommutative version of Model 1 is universal. We can consider a non-
commutative generalization of Model 1 in which we allow both left and right
multiplication by an indeterminate: Rt

i = xRt−1
i and Rt

i = Rt−1
i x.

Lemma 3. Noncommutative 2-register SLPs of Model 1 type have O(n) size
SLPs for the Palindrome polynomial Pn(x0, x1) =

∑
w→{x0,x1}n w.wR.

We omit the easy proof of the above lemma. In the noncommutative setting,
Q = P1+P2+ ...+Pk, where Pi = βn

j=1(xij +yij), has linear size αβα circuits.
But by Theorem 1 any 2-register SLP of Model 1 for Q requires exponential size.
The palindrome polynomial cannot be computed by polynomial size noncommu-
tative αβα circuits [Nis91] but we have linear sized 2-register SLP of Model 1
by Lemma 3.

Corollary 1. In the noncommutative setting, 2-register SLPs of Model 1 are
incomparable to αβα circuits (or even ABPs).
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Next, we show that Coppersmith’s model [BOC88] is not universal for non-
commutative polynomials. Recall that the model is Ri = Ri +ΩR2

j , Ri = Ri + l
where Ω ∈ F and l is a affine linear form.

Proposition 1. The Coppersmith model is not universal in the noncommutative
ring of polynomials Fx, y for any field F.

However, if we assume the presence of quaternions in the ring F→x1, ..., xn⊂ we
can show that Coppersmith’s 2-register model is universal and even efficiently
simulates noncommutative arithmetic formulas.

Lemma 4. Let R = F→x1, ..., xn, i, j, k⊂ be a noncommutative ring where charF ∪=
2, and x1, ..., xn are free noncommuting variables and i, j, k satisfy the relations:
i2 = j2 = k2 = −1, ij = k,ji = −k,jk = i,kj = −i,ki = j,ik = −j, ∀y ∈ {i, j, k}
∀x ∈ {x1, ..., xn} yx = xy. For any noncommuting arithmetic formula of size s
we can give an equivalent 2-register SLP of size sO(1).

3 Skew Noncommutative Computation

An arithmetic circuit is skew if for every multiplication gate one of its inputs
is a scalar or an indeterminate xi ∈ X . This model of arithmetic circuits has
been studied in [AJMV98], especially in connection with depth reduction for
noncommutative circuits. Although commutative skew circuits are equivalent to
ABPs, in the noncommutative setting, skew circuits are known to be strictly
more powerful than noncommutative ABPs [Nis91, AJMV98]. This is because
multiplications could be either to the left or right. For instance, consider the
palindrome polynomial P (x0, x1) =

∑
w→{x0,x1}n wwR, where wR denotes the

reverse of w can be computed by an O(n) size noncommutative skew circuit
(using both left and right skew multiplications), but requires 2Θ(n) size ABPs
as show by Nisan [Nis91].

Remark 1. It is an interesting question whether we can prove superpolynomial
size lower bounds for noncommutative skew circuits computing the noncommu-
tative Permanent or Determinant. A lower bound argument given in [AJMV98,
Theorem 7.12] is unfortunately not correct. The idea there was to convert a
given skew circuit into a left skew circuit (which is just a noncommutative ABP)
by moving all right skew multiplications to the left, and then to apply Nisan’s
rank argument, to the resulting ABP. However, the modified circuit, in general,
does not compute a polynomial weakly equivalent (in the sense of [Nis91]) to
the one computed by the original circuit. Recently Limaye, Malod, and Srini-
vasan [LMS14] have shown a 2Θ(n) lower bound for general noncommutative
skew circuits.

Although our results fall short of proving a lower bound for general noncom-
mutative skew circuits, we show some exponential lower bounds separations.
Specifically, we define a natural subclass of skew circuits, which we call k-regular
skew circuits, and show exponential separations between k-regular and k + 1-
regular skew circuits for each k, resulting in an infinite hierarchy of separations



580 V. Arvind and S. Raja

above noncommutative algebraic branching programs. Indeed, noncommutative
ABPs form a proper subclass of 1-regular skew circuits.

We also compare the power of monotone noncommutative skew circuits with
unrestricted noncommutative monotone circuits. Exponential size lower bounds
for arbitrary monotone circuits computing the Permanent in both commuta-
tive and noncommutative settings are already well known (e.g. see [Nis91] for
one proof). Here, we show an exponential separation between noncommutative
monotone circuits and noncommutative monotone skew circuits.

Lower Bounds for k-regular Skew Circuits

Let C be a noncommutative skew circuit of size s computing a homogeneous
polynomial in F→X⊂, where X = {x1, x2, . . . , xn} are noncommuting free vari-
ables. We can first convert C into a layered circuit of size poly(n, s) such that
(i) all gates at layer i compute polynomials of degree i, (ii) all edges are between
gates at layer i and i + 1 for each i, (iii) An edge from a gate u in layer i to
a gate v layer i + 1 is labeled by a homogeneous linear form and the symbol l
or r (indicating whether the linear form is to be multiplied to the left or right
of the polynomial produced at gate u). This product of the linear form and the
polynomial at gate u is the contribution of u to v. The polynomial computed at
gate v is the sum of contributions over all incoming edges to v from layer i.

If the polynomial f computed by C is not homogeneous we can compute each
homogeneous part of f by a layered skew circuit as described above. Let C is
a layered skew circuit that computes a homogeneous polynomial f ∈ F→X⊂ of
degree d.

A path ε from a gate g in layer i to the output gate is said to be an (a, b)-type
if there are exactly a left-skew multiplications and b right-skew multiplications
in ε, where a+ b = d− i.

Definition 2. A layered skew circuit C is said to be k-regular if for each multi-
plication layer i, we can associate a set of types Si = {(c, d) | c, d ∩ 0 and c+d =
d− i} such that |Si| ⊆ k and for each gate g in layer i, if there is a path of (a, b)-
type from gate g, where a+ b = d− i, then (a, b) ∈ Si.

Note that in a k-regular skew circuit, the number of gates in each layer can be
unbounded. Furthermore, the type sets Si are not fixed and can depend on the
computed polynomial. Of course the set Si and the circuit structure between the
ith and i + 1st multiplication layers will determine Si+1. Given a layered skew
circuit C we can check if it is k-regular for a given k, and also efficiently compute
the minimum k for which C is k-regular.

Remark 2. We note here that even 1-regular skew circuits are strictly more pow-
erful than ABPs. For, ABPs are just 1-regular skew circuits in which all multi-
plications are right skew, and there is an O(n) size 1-regular skew circuit (which
is also monotone) for the palindrome polynomial which requires exponential size
ABPs [Nis91].
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It is convenient to first convert a given layered noncommutative skew circuit
into one which is homogeneous in a specific sense that we call type homogeneous.
Something more general is known for general noncommutative circuits [HWY10].
This conversion can be carried out in deterministic polynomial time.

A gate g in layer i is said to be an (a, b)-type gate if all paths from g to the
output are of (a, b)-type. Clearly, the output gate is always type homogeneous.
Starting from the output gate and proceedings downward in a given layered skew
circuit C of size s we can convert it, layer by layer, into a type homogeneous
layered skew circuit of size poly(d, s) size.

Lemma 5. A layered skew circuit C of size s computing a homogeneous poly-
nomial of degree d in F→X⊂ can be transformed in polynomial time (in s and n)
into a layered type homogeneous skew circuit CT of size poly(d, s) computing f .

In general the gates in layer i of a type homogeneous skew circuit C can have
any of the d− i+1 possible types. Notice that, crucially, type homogenization of
skew circuit does not alter the set of types of the paths at any layer. Specifically,
if C is k-regular then CT remains k-regular.

Now, we show that for each fixed k > 0, an exponential size separation between
k-regular and (k+1)-regular skew circuits. We define the following homogeneous
degree 2(k + 1)n polynomial Pi,k(X,Y, Z) where the 2(k + 1)n variables are
partitioned as X ◦ Y ◦ Z such that |X | = |Y | = n and |Z| = 2kn.
Pi,k(X,Y, Z) =

∑
w→S z1z2...z2(i−1)n.w.w

R.z2(i−1)n+1.z2(i−1)n+2...z2kn, where
S = {x1, y1} × {x2, y2} × ...× {xn, yn}.

Theorem 2. Let P =
∑

i→[k+1] Pi,k(Xi, Yi, Zi) where variable sets Xi, Yi, Zi are

disjoint ∀i ∈ [k + 1]. Any k-regular skew circuit for P requires size at least 2n.
But there is polynomial sized (k + 1)-regular skew circuit for P .

Examining the proof of Theorem 2, we note that in the definition of polyno-
mial P if we set k = n (hence k is not constant) then the polynomial P can
be computed by a polynomial size layered skew circuit but any n

Ω(logn) -regular

skew circuit that computes P is of exponential size. Putting it together we have
the following.

Corollary 2. There is an explicit noncommutative polynomial in n variables
that has polynomial-size skew circuits but any n

Ω(logn) -regular skew circuit that

computes it is of size nΩ(1).

Remark 3. Chien and Sinclair [CS07] considered the question of lower bounds
for the Determinant polynomial whose entries are 2× 2 matrices over a field F,
where char F ∪= 2. Based on Nisan’s rank argument they showed that any ABP
computing the order n Determinant, DETn, whose entries are 2 × 2 matrices
requires 2Θ(n) size.

As in the proof of Theorem 2, we can show that any k-regular skew circuit
computing DETn can be transformed into an ABP computing the n

k+1 × n
k+1

determinant. It now follows from Chien and Sinclair’s result that for any constant
k, k-regular skew circuits computing DETn over 2× 2 matrices are of size 2Θ(n).



582 V. Arvind and S. Raja

A Rank Based Approach to Lower Bounds for Skew Circuits

Let P ∈ F→X⊂ be a homogeneous noncommutative polynomial of degree d on the
variables X = {x1, x2, . . . , xn}. For each 0 ⊆ k ⊆ d, we can associate a matrix
Mk(P ) over the field F with nk rows and (d−k+1)n(d−k) columns. Each row of
Mk(P ) is labeled by a distinct monomial m of degree k. Each column is labeled
by a pair of monomials (m1,m2) such that the sum of their degrees is d− k. A
monomial m̂ of degree d can be factored as m̂ = m1mm2 in d− k + 1 different
ways, where m is of degree k. The property we demand of the matrix Mk(P ) is
that the coefficient P (m̂) of the monomial m̂ in P can be written as

P (m̂) =
∑

m̂=m1mm2

MK(m, (m1,m2)), (1)

where m is a degree k monomial.

Remark 4. Note that unlike for ABPs, the matrixMk(P ) is not uniquely defined
for the polynomial P . In a skew circuit a monomial m̂ can occupy more than one
entry in Mk(P ), but we require that these entries sum to the coefficient of m̂.
In particular, it is clear that in a skew circuit computing a homogeneous degree
d polynomial, each monomial can occupy O(d) nonzero entries in Mk(P ).

However, we can still relate the minimum size of a skew circuit computing a
homogeneous degree d polynomial P to the rank ofMk(P ). Let S(P ) denote the
minimum size of a layered skew circuit computing the polynomial P . Similar to
Nisan’s [Nis91] ABP size characterization we have the following.

For 0 ⊆ k ⊆ d, let rankk(P ) denote the minimum rank attained by a matrix
Mk(P ) satisfying Equation 1.

Theorem 3. For homogeneous polynomials P of degree d

S(P ) ∩
d∑

k=0

rankk(P ).

Theorem 3 seems difficult to use for general skew circuits as we need to lower
bound rankk(P ). However, we can use it for the monotone case for the following
reason. Suppose P ∈ R→X⊂ is a monotone noncommutative homogeneous poly-
nomial of degree d and C is a monotone layered skew circuit computing P . As
the circuit C is monotone, the matrices Lk and Rk in the proof of Theorem 3
will both be monotone. Let mrankk(P ) denote the minimum rank of a nonnega-
tive matrix Mk(P ) corresponding to P and let mS(P ) denote the minimum size
of a monotone skew circuit for P . It follows from the proof of Theorem 3 that
mS(P ) ∩

∑d
k=0mrankk(P ).

Let Q = P1(x1, x2)P2(x3, x4) where Pi are the palindrome polynomials of
degree 2n. Clearly, Q has polynomial size monotone noncommutative circuits:
we can compute P1 and P2 with O(n) size monotone skew circuits and multiply
their outputs. We will show that Q requires exponential size monotone skew cir-
cuits. Note that Q is a homogeneous degree 4n polynomial with 22n monomials.
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Let Mk(Q) be a nonnegative matrix corresponding to polynomial Q with rows

labeled by degree k monomials. By Ma,b
k (Q) we mean the submatrix of Mk(Q)

with all columns (m1,m2) of Mk(Q) such that |m1| = a, |m2| = b.

Theorem 4. Let Q = P1(x1, x2)P2(x3, x4), where Pi are palindrome polynomi-
als of degree 2n each. If M3n(Q) is nonnegative then rank(M3n(Q)) = 2Θ(n) and
hence mS(Q) = 2Θ(n).

Examining the proof of Theorem 2, we note that the upper bounds are ob-
tained by monotone skew circuits. Thus we also have an exponential separation
between the size of monotone k-regular skew circuits and monotone k+1-regular
skew circuits.

Corollary 3. There is an exponential size separation between the following mono-
tone circuit classes via explicit monotone noncommutative polynomials: (i) mono-
tone circuits andmonotone skew circuits, (ii) monotone skew circuits and k-regular
monotone skew circuits, (iii) k + 1-regular and k-regular monotone skew circuits.

Acknowledgments. We thank Meena Mahajan and Yadu Vasudev for discus-
sions and comments. We are grateful to the referees for their comments.
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Abstract. We give the first logarithmic approximation for minimizing
average flow-time of jobs in the subset parallel machine setting (also
called the restricted assignment setting) under a single knapsack con-
straint. In a knapsack constraint setting, each job has a profit, and the
set of jobs which get scheduled must have a total profit of at least a
quantity Π . Our result extends the work of Gupta, Krishnaswamy, Ku-
mar and Segev (APPROX 2009) who considered the special case where
the profit of each job is unity. Our algorithm is based on rounding a
natural LP relaxation for this problem. In fact, we show that one can
use techniques based on iterative rounding.

1 Introduction

Classical scheduling problems that minimize an underlying objective function
require that all the jobs in the input get processed. However, for many applica-
tions, one might require only a subset of the jobs to be scheduled so as to meet a
pre-specified hard profit. In this paper, we consider the well studied objective of
minimizing the average flow time of jobs in a multiprocessor environment under
such a hard profit constraint which we call the knapsack constraint. Formally,
there is an associated profit πj with each job. The goal is to schedule a subset of
jobs whose sum of profits is at least a fixed quantity Π . Equivalently, the sum
of profit (weights) of the rejected jobs should fit in a knapsack of size B. Note
that the special case where each job has unit profit corresponds to the problem
where there is a lower bound on the number of jobs to be processed.

Charikar et al. [3] initiated the study of this model where there is a lower
bound on the number of jobs which need to be scheduled. Gupta et al. [8]
extended this model to a wide variety of scheduling problems. In particular,
they consider the problem of minimizing average flow-time on identical parallel
machines where jobs have unit profit. In this paper, we generalize this result in
two directions as described below.

1.1 Our Results and Techniques

We give the first O(logP )-approximation algorithm for the problem of mini-
mizing average flow-time of jobs in the restricted assignment setting (each job

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 584–595, 2014.
c∞ Springer International Publishing Switzerland 2014
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can only be processed by a subset of machines) under a single knapsack con-
straint(FlowKnap). Here P is the ratio of the largest to the smallest job size.
Previously, such a result was only known for the parallel machines setting and
when each job had unit profit [8].

Our technique is based on a standard LP relaxations for these problems. Di-
rectly working with such a relaxation turns out to be involved and tricky. Instead,
we show that one can often extract some interesting properties of a fractional
solution, and we can write a second simpler LP relaxation based on these prop-
erties. This simpler LP relaxation can then be iteratively rounded.

As has been remarked in [8], the presence of knapsack constraint makes the
problem significantly harder than the non-profit version even in the simple set-
ting of a single machine. In fact, this is the version we shall consider in greater
details and later on show how to extend it to the case of subset parallel assign-
ments.

As is standard for algorithms for flow-time, we first divide the jobs into classes
based on their sizes pj – a job is of class k if its processing time lies in the range
[2k, 2k+1]. Using established techniques, it turns out that it is enough to get a
constant factor approximation for the special case when all the jobs are of the
same class provided our rounding algorithm schedules these jobs in the same
timeslots in which class k jobs were scheduled by the fractional solution (upto
some constant number of slots violations). Thus, we consider the case when all
jobs are of roughly the same size and they are only allowed to be processed in
some given region of the timeline. We call this the Scheduling with Forbidden
Regions(ForbidFlow) problem. We first write a time-indexed LP relaxation for
this problem which schedules each job to a fractional extent between 0 and 1.
Given a fractional solution, we perform the following steps:

– We create a modified instance and its corresponding fractional solution by
compressing all the gaps in the LP schedule, i.e., we move the jobs back in
time (and decrease their release dates) to fill all available space. This consid-
erably simplifies the subsequent rounding steps. Note that in the algorithm
of Gupta et al. [8], considerable technical work is required to get around
this problem. The high level reason is that one would want to change the
fractional assignment of jobs such that these become 0 or 1. Naive ways to
achieve this may end up charging to the entire length of the schedule includ-
ing the gaps in between. So one needs to do a finer analysis to prevent this.
However, once we move the jobs back, this issue goes away.

– It turns out we can get rid of the time-indexed LP relaxation, and just
work with the fraction to which a job is processed. We write a simpler LP
relaxation to capture this and show that it can be rounded using iterative
rounding.

– Finally, we show how to expand this schedule to obey the earlier release dates
without incurring much in the flow-time.

The analysis essentially shows that we do not incur a lot of cost compared to
LP in each of these steps.
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1.2 Related Work

Scheduling jobs on machines subject to various constraints is one of the central
problems in combinatorial optimization. See [9, 11] for earlier work on the prob-
lems of minimizing makespan and GAP in multiple machines environment. Garg
and Kumar [5, 6] gave upper and lower bounds for minimizing average flow-time
of jobs under various settings.

More recently, there has been a growing interest in the study of scheduling
with rejections. Several works ([1, 4, 2]) have studied the prize collecting model
where one has to pay a penalty for the jobs that are rejected. On the other
hand, Charikar et al. [3] considered scheduling under the knapsack constraint
where the objective is to schedule jobs so as to achieve a target profit. Guha
et al. [7] presented an LP rounding based algorithm for minimizing average
completion-time with outliers where the outlier constraint is violated by a con-
stant factor. Gupta et al. [8] gave approximation algorithms for scheduling with
outliers under various settings. They give a constant factor approximation for
GAP under the knapsack constraint(approximation factor improved by Saha and
Srinivasan [10]), an O(log k) approximation for average completion time on un-
related machines minimization under k knapsack constraints and a logarithmic
approximation for minimizing total(average) flow time of jobs on identical par-
allel machines under knapsack constraint where each job has unit profit.

2 Preliminaries

In this section, we formally describe the scheduling problems that will be consid-
ered in this paper. We will be given a set of jobs J and a set of machines M . In
the subset parallel machines setting, each job j specifies a subset Sj of machines
on which it can be processed and its processing time on these machines is pj .
Recall that in the knapsack constraint, each job j also comes with a profit πj ,
and we are given a lower bound Π . Given a release date rj for each job j, The
flow-time of a j is the difference between its completion time and release date.
The goal is to schedule a subset of jobs of total profit at leastΠ while minimizing
the total flow-time of scheduled jobs. We allow jobs to be pre-empted but we do
not allow migration across machines. However, our approximation ratio holds
with respect to a migratory optimum as well.

We need to solve a related problem, which we call scheduling with forbidden
regions(ForbidFlow).Here, we are given a single machine, and the setting is same
as minimizing total flow-time with knapsack constraint. Further, all processing
times are within a factor of 2 of each other. We are also given a quantity z(t)
for each timeslot [t, t + 1]. Any schedule can only use 1 − z(t) amount of space
in this timeslot. In Section 3, we give an O(1)-approximation algorithm with an
additive

∑
t z(t) factor for this problem. We use this result as a subroutine for

the FlowKnap problem (Section 4).
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3 Scheduling with Forbidden Regions on a Single
Machine

In this section, we give an approximation algorithm for the ForbidFlow problem.
An instance I = ForbidFlow(J,Q,Π, z) is similar to an instance of FlowKnap –
each job j → J has associated parameters rj , pj and πj as before while Π is a
hard profit. Processing times of the jobs are bounded in a range [Q, 2Q] for some
positive integer Q,Q ⊂ 1. Let T be a guess for the time at which the optimal
solution completes processing all jobs. Moreover, z is a vector in [0, 1]T . In any
time slot [t, t+1], the schedule can do at most 1−zt amount of processing. For a
time slot t we refer to the quantity zt as forbidden space while the rest is called
available space. We write the following LP relaxation for this problem. Here xjt
refers to the amount of processing of job j done during the timeslot [t, t + 1].
This variable is defined only for t ⊂ rj . For a job j, yj refers to the fraction of
job j which gets processed. It is well-known that the objective function is a lower
bound on the value of the flow-time of the corresponding schedule [5]. The first
term in the objective function refers to fractional flow-time and the second term
refers to half of the processing time of the schedule. Constraint (1) states that a
job should be processed to the extent of pj if yj is 1. Constraint (2) says that a
timeslot [t, t+ 1] can only be used to the extent of 1− zt. Finally, constraint (3)
states that the total profit of jobs selected for processing must be at least Π .
Thus, this is a relaxation for the ForbidFlow problem.

min
n∑

j=1

∑

t

xjt(t− rj)

2Q
+

1

2

∑

j

yjpj (LP1)

∑

t→rj

xjt = yjpj , ≡j (1)

n∑

j=1

xjt ∈ 1− zt, ≡t (2)

n∑

j=1

yjπj ⊂ Π (3)

0 ∈ yj ∈ 1, ≡j (4)

Let (xΘ, yΘ) be an optimal solution to LP1 and flow(xΘ, yΘ) denote the LP
objective. We state the main theorem of this section.

Theorem 1. There is a polynomial time algorithm to schedule jobs of total
profit at least Π such that total flow-time of the scheduled jobs is at most
O(flow(xΘ, yΘ) +

∑
t zt).

3.1 The Rounding Algorithm

Our algorithm will only use the yΘj variables – this is so because there is an opti-
mal fractional solution which schedules jobs in order of their release dates(proof
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deferred to full version of paper). Hence, given yΘj values, we can deduce the
xΘjt values. We now describe the details of each of the conceptual steps of our
algorithm:

CloseGaps :

1. Initialize ȳj = 0 for all j and x̄jt = 0 for all j, t.
2. For l = 1, 2, . . . , n

Let tl be the first time such that z(tl) +
∑l−1

s=1 x̄jstl < 1
(i.e., there is some more processing which can be done at this time slot)

In the instance I⊕, define s̄jl = tl.
Process the job jl to an extent of yα

jl
from time tl onwards, i.e.,

for t = tl, set x̄jt = min(1− zt −∑l−1
s=1 x̄jst, pjy

α
j ) and

for t > tl, iteratively set x̄jt = max(0,min(1− zt, pjy
α
j −∑

t′<t x̄jt)).
Set ȳjl = yα

jl
, r̄j = rj − (sαj − s̄j).

Fig. 1. Algorithm for modifying I to I⊕

Closing the Gaps: Given the instance I and the solution (xΘ, yΘ), our first step
is to create a new instance I ≥ and a corresponding fractional solution (x̄, ȳ). The
idea is that in the solution (xΘ, yΘ) there may be gaps in the fractional schedule
– a gap is unused timeslot which appears in the middle of a schedule. The reason
why we cannot process a job during the gap is that all subsequent jobs have
release dates beyond this timeslot. In I ≥ we would like to move jobs to the left
so that these gaps go away. I ≥ will be identical to I except that the release date
of a job in I ≥ will appear before that in I.

We give some notation first. Let j1, . . . , jn be an ordering of the input jobs
according to increasing release dates. For a job j, let sΘj , the starting time of
j, denote the first timeslot [t, t + 1] in which the solution (xΘ, yΘ) processes j,
i.e., the smallest t such that xΘjt > 0 – we can assume that yΘj > 0 for all jobs
j because we may not consider any job for which yΘj = 0. When we construct
I ≥, r̄j will denote the release date of job j in this instance, and s̄j will denote
the first timeslot [t, t+ 1] for which x̄jt > 0. We iteratively modify the instance
I to I ≥ and construct a fractional schedule simultaneously. The procedure is
described in Fig. 1. It essentially moves each job back so that all gaps get filled.
The starting time of the job moves back accordingly. The release dates also move
back by the same amount as the starting time. It is not difficult to see that the
relative ordering of the release dates in I ≥ are same as that in I.

Since we are only moving the processing of a job back in time, it is easy
to prove by induction that for each job j, s̄j ∈ sΘj and so, r̄j ∈ rj . For in-
dices t1 < t2, let avail(t1, t2) denote the total available space in the timeslots
[t1, t1+1], . . . , [t2, t2+1], i.e.,

∑t2
t=t1

(1−zt). Let forbid(t1, t2) be the total forbid-
den space in the corresponding timeslots, i.e.,

∑t2
t=t1

zt. Clearly, avail(t1, t2) +
forbid(t1, t2) = t2 − t1 + 1.
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We note one simple fact which will be useful later. Again, the reason why this
is true is because in (xΘ, yΘ), we could have had gaps between the execution of
two jobs j and j≥, but these will not be present in (x̄, ȳ).

Claim. Let j, j≥ be jobs with rj ∈ rj′ . Then avail[sΘj , s
Θ
j′ ] ⊂ avail[s̄j , s̄j′ ].

The first observation is that the cost of the solution (x̄, ȳ) is close to that of
(xΘ, yΘ).

Lemma 1

∑

j,t

x̄jt(t− r̄j)

2Q
∈

∑

j,t

xΘjt(t− rj)

2Q
+
∑

t

zt +
∑

j

yΘj pj .

Proof. Let C̄j be the completion time of j in the schedule (x̄, ȳ). For a job j, we
will show that

∑

t→s̄j

x̄jt(t− s̄j)

2Q
∈

∑

t→s�j

xΘjt(t− sΘj )

2Q
+

C̄j∑

t=s̄j+1

zt + yΘj pj(5)

For the sake of argument, we divide the processing of job j into very small
pieces such that each piece “fits” in one timeslot. More formally, suppose ε is
a small enough positive quantity such that all positive xΘjt and x̄jt values are

integral multiples of ε. We can think of Nj =
yjpj

Σ such contiguous pieces of j,
which get processed in both schedules in this order. Now, such a piece c getting

processed at time t in xΘ will contribute
Σ(t−rj)

2Q to the sum
∑

t→s�j

x�
jt(t−s�j )

2Q .

We claim that this piece will finish processing in the schedule (x̄, ȳ) by time
t≥ = s̄j + 1 + (t − sΘj ) + forbid(s̄j + 1, C̄j). Indeed, if t

≥ ⊂ C̄j , then there is

nothing to prove because by definition of C̄j , j will finish by C̄j ∈ t≥. So assume
t≥ < C̄j . Now, forbid(s̄j + 1, t≥) is at most forbid(s̄j + 1, C̄j). So,

avail(s̄j + 1, t≥) ⊂ t≥ − s̄j − forbid(s̄j + 1, C̄j) ⊂ t− sΘj + 1.

But then the piece c should finish processing by time t≥ in (x̄, ȳ) because the total
processing requirement of pieces of j coming before c (including c) is at most

t− sΘj + 1. Thus, this piece will contribute at most
Σ(1+(t−s�j )+forbid(s̄j+1,C̄j))

2Q to

the sum
∑

t→s̄j

x̄jt(t−s̄j)
2Q . Summing over all the pieces of j, we get

∑

t→s̄j

x̄jt(t− s̄j)

2Q
∈

∑

t→s�j

xΘjt(1 + (t− sΘj ) + forbid(s̄j + 1, C̄j))

2Q

∈
∑

t→s�j

xΘjt(t− sΘj )

2Q
+ yΘj pj + forbid(s̄j + 1, C̄j),

because pj ⊂ 1 and
∑

t x
Θ
jt = yΘj pj ∈ 2yΘjQ. This proves inequality (5). Summing

this over all jobs and noting that the closed intervals [(s̄j +1, C̄j] are disjoint for
different jobs, we get
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∑

j,t

x̄jt(t− s̄j)

2Q
∈

∑

j,t

xΘjt(t− sΘj )

2Q
+
∑

t

zt +
∑

j

yΘj pj.(6)

This implies the desired result because

∑

j,t

x̄jt(t− r̄j)

2Q
−
∑

j,t

xΘjt(t− rj)

2Q

=
∑

j,t

x̄jt(t− s̄j)

2Q
+
∑

j,t

x̄jt(s̄j − r̄j)

2Q
−
∑

j,t

xΘjt(t− rj)

2Q
−
∑

j,t

xΘjt(rj − sΘj )

2Q

=
∑

j,t

x̄jt(t− s̄j)

2Q
−
∑

j,t

xΘjt(t− sΘj )

2Q

because rj − sΘj = r̄j − s̄j and
∑

j,t x̄j,t = ȳj = yΘj =
∑

j,t x
Θ
j,t. ≥∪

Iterative Rounding: Now we show how to round the solution (x̄, ȳ) for the
instance I ≥. Again, our rounding algorithm will only use the ȳ values. We achieve
this by an iterative rounding procedure which works with a simple LP relaxation
– this simpler LP relaxation only looks at the ȳj values. We first motivate the
new LP relaxation. It is not hard to see that the objective function for the

solution (x̄, ȳ) can be written as
∑

t
tu(t)
2Q −

∑
j

r̄j ȳjpj

2Q + 1
2

∑
j pj ȳj , where u(t)

is the amount of processing done in timeslot [t, t+ 1]. It will turn out that the
quantity u(t) will not change. Hence, we can treat the objective function as
−
∑

j
r̄j ȳjpj

2Q + 1
2

∑
j pj ȳj .

Our algorithm will iteratively reject or select some jobs. Hence, at any point
of time during our algorithm, we will work with a residual budget Π ≥ – this is
the remaining profit we need to recover from jobs for which we have not made
a decision. Our algorithm will also maintain a set of jobs J ≥ initialized to the
set of all jobs. These will be the set of jobs about which our algorithm has not
decided whether they will be scheduled or not. For a set of jobs J ≥, let F (J ≥) be
the first three jobs in J ≥ (according to release dates).

Given jobs j, j≥ we say that j ◦ j≥ if r̄j ∈ r̄j′ . For a job j, let V̄j denote
the amount of processing done by the solution (x̄, ȳ) on jobs released before j
(including j), i.e., V̄j =

∑
j′:j′∪j

∑
t x̄j′t =

∑
j′:j′∪j ȳj′pj′ . Our new LP relaxation

is shown below.

min−
∑

j∈J′

pjyj r̄j
2Q

+
1

2

∑

j∈J′
yjpj (LP2)

∑

j∈J′
yjπj = Π ≥ (7)

∑

j′∈J′:j∪j′
yj′pj′ = Vj ≡j → J ≥ − F (J ≥) (8)

0 ∈ yj ∈ 1 ≡j → J ≥ (9)
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Constraint (7) ensures the total profit remains unchanged. Constraints (8) im-
poses that total volume of scheduled jobs which come before j remain restricted
to a certain volume Vj (which will be initially V̄j). We write these constraints
for j → J ≥ − F (J ≥).

IterRound:

1. Initialize J ⊕ ← J , Vj ← V̄j for all jobs j. Set S = ∅, Π ⊕ = Π .
2. While |J ⊕| > 3

(i) Find a vertex solution y to LP2.
(ii) If there is a job j ∈ F (J ⊕) with yj = 0, set J ⊕ ← J ⊕

� {j}.
(iii) Else if there is a job j ∈ F (J ⊕) with yj = 1, set S ← S ∪ {j} and

a. J ⊕ ← J ⊕
� {j}.

b. Π ⊕ ← Π ⊕ − πj .
c. ∀j⊕ ≺ j, j⊕ ∈ J ⊕, Vj′ ← Vj′ − pj .

3. S ← S ∪ J ⊕

4. Return S.

Fig. 2. Algorithm for rounding LP relaxation for I⊕

Now we present the iterative rounding algorithm for converting the fractional
schedule into an integral one (Algorithm IterRound). Note that the LP relax-
ation does not write the constraints (8) for the first three jobs in J ≥. This will
ensure that a vertex solution will have at least one variable which is 0 or 1. In
the end, we shall return the jobs which were added to the set S and the remain-
ing three jobs in J ≥. This is the set of jobs chosen by our algorithm. We will
prove that either step 2(ii) or step 2(iii) will be executed in each iteration of
this algorithm. Let S be the set of jobs returned by the above algorithm. Finally,
we show how to schedule these jobs feasibly with respect to the original release
dates.

We first show that the iterative rounding algorithm will terminate.

Lemma 2. Consider a vertex solution y to (LP2). Assuming |J ≥| ⊂ 4, there
exists a job j → F (J ≥) for which yj is 0 or 1.

Proof. Suppose not. Let j4 be the fourth job (according to release date) in J ≥.
Note that constraints (8) is written for j4 and jobs released after j4. By sub-
tracting the constraint for all jobs j≥ released after j4 from the constraint for
job j4, we get an equivalent LP. However, in this LP, the variables yj1 , yj2 , yj3 ,
where j1, j2, j3 are the first three jobs in J ≥, appear in only two tight constraints
– constraint (8) for j4 and constraint (7). ≥∪

We give some more notations. We index the iterations of the while loop in
the algorithm starting from n downwards. Thus, at the beginning of iteration
k, |J ≥| = k. Let LP2(k) denote the corresponding LP, and y(k) be the vertex
solution found by the Algorithm IterRound for this LP. So the first iteration
finds the solution y(n), then y(n−1) and so on till y(4). Let y(3) be a vertex
solution to LP2(3) when |J ≥| is 3 (and Vj , Π

≥ values are given by the end of
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iteration indexed 4) – even though our algorithm will not use this LP solution,

it will be useful for analysis. Again, let V
(k)
j and Π(k) to be the values of Vj and

Π ≥ when |J ≥| = k. Let S(k) be the set S when |J ≥| = k. So, S(n) is ⊆.
We now give a procedure which given values yj for all jobs j → J , outputs

a corresponding schedule xjt. This is similar to the algorithm in Figure 1. The
procedure arranges the jobs in ascending order of release dates and schedules
them in this order. The procedure is described in Figure 3. Note that the schedule
itself does not care about the release dates of the jobs and so may not even respect
the release dates.

ScheduleJobs :

Input : Values yj ∈ [0, 1] for all jobs j ∈ J .
Output : A schedule of the jobs x̄jt, such that

∑
t x̄jt = yj .

1. For l = 1, 2, . . . , n
Let tl be the first time such that z(tl) +

∑l−1
s=1 x̄jstl < 1

(i.e., there is some more processing which can be done at this time slot)
Process the job jl to an extent of yjl from time tl onwards, i.e.,
for t = tl, set x̄jlt = 1− zt −∑l−1

s=1 x̄jstl and
for t > tl, iteratively set x̄jlt = max(0,min(1− zt, pjly

α
jl
−∑

t′<t x̄jlt
′)).

Fig. 3. Algorithm for building schedule from a solution y

Given the solution y(k) for a subset of jobs J ≥, we extend it to the set of all

jobs in J by setting y
(k)
j = 1 for all j → S(k), and 0 for jobs in J − J ≥ − S(k). We

shall call this the extended solution y(k). Let x(k) be the corresponding schedule
of these jobs given by calling ScheduleJobs on the extended solution y(k). We
shall use flow(x(k), y(k)) to denote the objective function value if we view this
as a solution to (LP1) with respect to release dates r̄, i.e.,

flow(x(k), y(k)) =
∑

j

∑

t

x
(k)
jt (t− r̄j)

2Q
+

1

2

∑

j

y
(k)
j pj .

Lemma 3. The extended solution y(k) is feasible to (LP2) during every iteration
k of the algorithm IterRound. Further, each of these solutions processes jobs
of total volume

∑
j ȳjpj , and

flow(x(3), y(3)) ∈ flow(x̄, ȳ).

Proof. Clearly, ȳ is a feasible solution to LP2(n). Hence, LP2(n) has non-empty
set of feasible solutions, and y(n) is well-defined. Assume (by induction) that
LP2(k) has a non-empty set of feasible solutions, and hence y(k) is well-defined.

Given the solution y(k), suppose we select a job j with y
(k)
j = 1 in iteration k

(the other case is similar). It is easy to see that y(k) is also a feasible solution to
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LP2(k−1) in the next iteration if we do not consider the variables corresponding
to j. Further, the constraint (8) for the last job (according to release date) ensures
that the total volume of the processed jobs in the solution y(k−1) is same as that
in the solution (x(k), y(k)) minus pj . Hence, if we consider the extended solution
y(k−1) to all the jobs, then the volume processed by it does not change.

Since all the solutions y(k) process the same amount of volume, and do not
have any gaps, they will occupy each slot to the same extent. So

flow(x(k), y(k)) =
∑

t

u(t)t

2Q
−
∑

j

r̄jy
(k)
j pj

2Q
+

1

2

∑

j

y
(k)
j pj .

The quantity u(t) denotes the amount of processing done in [t, t + 1], and will
not depend on k. Since LP2 treats the other terms above in the objective, it is
easy to show that flow(x(k−1), y(k−1)) ∈ flow(x(k), y(k)). ≥∪

We now consider the schedule corresponding to S. Define a solution ỹ as
ỹj = 1 iff j → S. Let (x̃, ỹ) be the corresponding schedule obtained by calling
ScheduleJobs on ỹ.

Lemma 4. For the schedule (x̃, ỹ),

flow(x̃, ỹ) ∈ flow(x̄, ȳ) + 12
∑

j

ȳjpj + 6
∑

t

zt.

Proof. The schedule for S is obtained from (x(3), y(3)) by adding 3 jobs in the
beginning. This will require shifting the jobs scheduled in (x(3), y(3)) to the right
by at most 6Q amount of available space so that these 3 jobs can be accommo-
dated. The processing time of these 3 jobs is at most 6Q. Now, if we look at any
timeslot [t, t+ 1], the number of alive jobs at this time can increase by at most
6 (because these many new jobs which were being processed before t could now
be getting processed after t). Hence the increase in flow-time is at most 6 times
the makespan of the schedule, which is at most 6 times

∑
t zt plus the total

processing volume. Assuming that there are at least 4 jobs in optimal solution
(otherwise we could just enumerate), this would mean that the processing time
of the 3 new jobs can be charged to the processing volume of (x(3), y(3)). This
proves the desired result. ≥∪

Corollary 1. The total profit of the jobs S returned by the algorithm Iter-
Round is at least Π.

Proof. We prove by induction on k that the total profit of the jobs in S − S(k)

is at least Π(k). Base case is k = 3. We know that there is a feasible solution to
(LP2) when there are just 3 jobs remaining in J ≥ (Lemma 3). In this fractional
solution, we get a profit of at least Π(3). Our algorithm picks all the three jobs
and hence its profit must be at least Π(3) as well. Assuming that this is true for
some k, it is easy to see that the statement holds true for k − 1 as well (we are
updating Π(k) accordingly). When k = n, S(k) is ⊆, and so we are done. ≥∪
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Lemma 5. For a job j → J , let p(S∪j) be the total processing time of jobs in S
which are released before j. Then p(S∪j) lies in the interval [V̄j − 6Q, V̄j + 6Q].

Proof. Consider the first iteration of LP2 when j is among the first 3 jobs of J ≥

– say this is iteration k. So far, we have chosen a set of jobs S(k). Since we are

always writing the constraint (8) for j, we know that V
(k)
j = V̄j − p(S(k)). Since

there is a feasible solution to this LP (Lemma 3), we know that V
(k)
j ⊂ 0, and

so the jobs selected in S have processing time at least V̄j − V
(k)
j . But now V

(k)
j

involves just 3 jobs, and so it cannot be larger than 6Q. This proves the lower
bound on p(S∪j). The upper bound follows similarly – the only eligible jobs in
p(S∪j) are either those in S(k) or the first three jobs of this iteration. ≥∪

Corollary 2. Let j, j≥ be jobs in J , j ◦ j≥. Let Sj,j′ be the of jobs in S which
lie between j and j≥ (excluding j and j≥) with respect to the order ◦. Then
p(Sj,j′) ∈ 12Q+

∑
j′′ :j∪j′′∪j′ pj′′y

Θ
j′′ .

Using the above lemma, we now show that it is possible to modify the solution
(x̃, ỹ) such that it obeys the release dates r̄j for the jobs. But we will not need
such a result in our analysis because we can directly use the above result. We
now give proofs for the final schedule constructed by our algorithm.

Opening the Gaps: Recall that (x̃, ỹ) is the schedule obtained for S where
we just start from the beginning and fill available space without looking at the
release dates (Figure 3). As a final step in our algorithm, we convert this into
a feasible schedule that respects all release dates. We consider these jobs in the
ascending order of release dates rj (which is same as the ordering with respect
to r̄). We schedule j in the earliest available slots after rj .

Let Ĉj be the completion time of job j → S in the final schedule. We need to

account for
∑

j∈S(Ĉj − rΘj ). We split this sum into two parts and give bounds on
them separately. The proofs of the following lemma can be found in full version
of the paper.

Lemma 6 ∑

j∈S

(sΘj − rΘj ) ∈ 8flow(x̃, ỹ) + 7
∑

t

zt.

Lemma 7 ∑

j∈S

(Ĉj − sΘj ) ∈ 14flow(x̃, ỹ) + 14
∑

t

zt.

Combining Lemma 6, Lemma 7, Lemma 4 and Lemma 1, we get Theorem 1.

4 Flow Time Minimization on Multiple Machines under
Knapsack Constraint

We use our algorithm for ForbidFlow to design an algorithm for Flowknap in the
subset parallel setting. Recall that each job has a release date rj , a processing
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requirement pj and a profit πj while a target profit Π has to be attained by the
scheduled jobs. The machines are identical, but a job can go only to a subset of
machines Sj. The objective is to minimize total flow time of the scheduled jobs.
The proof of the following theorem can be found in full version of the paper.

Theorem 2 There is a polynomial time O(logP )-approximation algorithm for
Flowknap in the subset parallel setting under a single knapsack constraint. Here,
P is the ratio between largest and the smallest processing time of a job.

We write a natural LP relaxation for this problem, which is an extension of the
LP relaxation used in [6]. We divide jobs into classes – a job is of class k if its
processing time lies in the interval [2k−1, 2k). Our algorithm runs over several
iterations – in each iteration it schedules jobs of a particular class, say class
k. Using the optimal solution to the LP relaxation, we figure out the extent
to which each timeslot processes jobs of class k. We now use the ForbidFlow

algorithm to schedule jobs of class k where we are allowed to use a timeslot to
this extent only. Combining the solutions for all classes gives Theorem 2.
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Abstract. We study depth lower bounds against non-monotone circuits,
parametrized by a new measure of non-monotonicity: the orientation1

of a function f is the characteristic vector of the minimum sized set
of negated variables needed in any DeMorgan2 circuit computing f . We
prove trade-off results between the depth and the weight/structure of the
orientation vectors in any circuit C computing the CLIQUE function
on an n vertex graph. We prove that if C is of depth d and each gate
computes a Boolean function with orientation of weight at most w (in
terms of the inputs to C), then d × w must be Ω(n). In particular, if
the weights are o( n

logk n
), then C must be of depth ω(logk n). We prove

a barrier for our general technique. However, using specific properties
of the CLIQUE function (used in [4]) and the Karchmer-Wigderson
framework [11], we go beyond the limitations and obtain lower bounds
when the weight restrictions are less stringent.

We then study the depth lower bounds when the structure of the ori-
entation vector is restricted. We demonstrate that this approach reaches
out to the limits in terms of depth lower bounds by showing that slight
improvements to our results separates NP from NC.

As our main tool, we generalize Karchmer-Wigderson game [11] for
monotone functions to work for non-monotone circuits parametrized by
the weight/structure of the orientation. We also prove structural results
about orientation and prove connections between number of negations
and weight of orientations required to compute a function.

1 Introduction

Deriving size/depth lower bounds for Boolean circuits computing NP-complete
problems has been one of the main goals in circuit complexity. Attempts to prove
size lower bounds against constant depth circuits has yielded useful results (see
survey [1,2] and textbook [10]). However, despite many efforts, for computing
explicit functions, the best size lower bound known against general circuits is

1 A generalization of monotone functions are studied under the name unate func-
tions(cf. [7]). We inherit the terminology of orientation from that setting. We remark
that our definition is universal unlike the case of unate functions.

2 Circuits where negations appear only at the leaves.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 596–607, 2014.
c∞ Springer International Publishing Switzerland 2014
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still a constant factor on the number of inputs [8], and the best depth lower
bound known against general bounded fan-in circuits is (derived from formula
size lower bound due to H̊astad [17]) less than 3 logn.

Notable progress has been made in proving lower bounds against mono-
tone circuits. Razborov [15] proved a super-polynomial size lower bound against
monotone circuits computing the CLIQUE function which is NP-hard. This was
further strengthened to exponential lower bounds by Alon and Boppana [3]. A su-
per polynomial monotone size lower bound is also known [16] for the PMATCH
problem. The latter result also showed that non-monotonicity helps in size re-
stricted settings as PMATCH is known to be in P[5].

Moving in the direction of non-monotonicity, Amano and Maruoka [4] estab-
lished super-polynomial lower bounds against circuits with at most 1

6 log logn
negations computing the CLIQUE function. A chasm was already known at
the logn negations; Fisher [6] proved that any circuit of polynomial size can be
converted to a circuit of polynomial size having only logn negations. In partic-
ular, this implies that if we are able to extend the lower bounds to the case of
circuits having O(log n) negations, then it separates P from NP. The gap was
further tightened by Jukna [9] (for multi-output functions), where he showed
a super-polynomial size lower bound against circuits with logn − 16 log logn
negations.

In terms of depth lower bounds, it is known that CLIQUE function and
the PMATCH function on graphs of n vertices require Ω(n) depth for any
bounded fan-in monotone circuit computing them [14]. Thus, non-monotonicity
is useful in the depth restricted setting also as PMATCH is known to be in
non-uniform NC2 [12]. One main technique involved in [14] is a characterization
of circuit depth using a communication game defined between two players. Raz
and Wigderson [13] used this framework to obtain a lower bound of Ω(n2) on
the number of negations at the leaves for any O(log n) depth DeMorgan circuit
solving the s-t connectivity problem. However, we do not know3 depth lower
bounds against circuits where there are negations at arbitrary locations using
the Karchmer-Wigderson framework.
Our Results : We study an alternative way of limiting the non-monotonicity
in the circuit. To arrive at our restriction, we define a new measure called ori-
entation of a Boolean function. A function f : {0, 1}n → {0, 1} is said to have

orientation σ ⊂ {0, 1}n if there is a monotone function h : {0, 1}2n → {0, 1}
such that : ≡x ⊂ {0, 1}n , f(x) = h(x, (x ∈ σ)). The orientation of a Boolean
function is simply the indicator vector of the set of inputs which are required
to be negated in any DeMorgan circuit computing the function f . Indeed, if f
itself is monotone, the orientation is simply the all-0s vector. The weight of the
orientation is simply the number of 1s in σ, and can be thought of as a parameter
indicating how “close” f is to a monotone function.

3 Indeed, size lower bounds against bounded fan-in circuits in the presence of nega-
tions [4] also imply depth lower bounds against them. In particular, [4] implies that

any circuit with 1
6
log log n negation gates computing CLIQUE(n, (log n)

√
log n) re-

quires depth Ω((log n)
√

log n).
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The same definitions can be extended to circuits as well. We consider circuits
where the function computed at each gate can be non-monotone, but the cor-
responding orientation (with respected to the inputs to the circuit) must be of
limited weight. We say a circuit C is weight w oriented if every internal gate of
C computes a function which has an orientation σ with |σ| ≥ w. The semantic
restriction we study limits the weight of the orientation of the function computed
at each gate of the circuit (in terms of the original inputs of the circuit). We
prove the following theorem which presents a depth vs weight trade-off.

Theorem 1. If C is a Boolean circuit of depth d and weight of the orientation
w (w > 0), computing CLIQUE then, d× w must be Ω(n).

In particular, if the weights are o( n
logk n

), the CLIQUE function requires

α(logk n) depth. By contrast, any circuit computing CLIQUE has weight of
the orientation at each gate at most n2. We prove the above theorem by extend-
ing the Karchmer-Wigderson framework to the case of non-monotone sparsely
oriented circuits. The proof critically requires the route via Karchmer-Wigderson
games since it is unclear how to directly simulate the above non-monotone cir-
cuit model using a monotone circuit. We remark that the above theorem applies
even to circuits computing PMATCH.

The difficulty in extending the above lower bound to more general lower
bounds is the potential presence of gates computing densely oriented functions.
In this context, we explore the usefulness of having gates with non-zero orienta-
tion in the circuit. We argue that allowing even a constant number of non-zero
(but dense) oriented gates makes the circuit more powerful in the limited depth
setting. In particular, we show (see Theorem 7) that there exists a monotone
function f which cannot be computed by poly-log depth monotone circuits, but
there is a poly-log depth circuit computing it such that there are at most two
internal gates which has a non-zero orientation σ.

The above theorem indicates that the densely oriented gates are indeed use-
ful, and that Theorem 1 cannot be improved in terms of the number of densely
oriented gates it can handle, without using specific properties about the func-
tion(for example, CLIQUE) being computed.

Going beyond the above limitations, we exploit the known properties of the
CLIQUE function and the generalized Karchmer-Wigderson games to prove
lower bounds against less stringent weight restrictions (in particular, we can
restrict the weight restrictions to only negation gates and their inputs).

Theorem 2. For any circuit family C = {Cm} (where m =
(
n
2

)
) computing

CLIQUE(n, n
1
6δ ) where there are β + k negation gates, with β ≥ 1/6 log logn

and the k negation gates in Cm are computing functions which are sensitive only
on w inputs (i.e., the orientation of their input as well as their output is at most
w) and the remaining β negations compute functions of arbitrary orientation:

Depth(Cm) ∪ n
1

2Δ+8 − kw − β

This theorem implies that CLIQUE cannot be computed by circuits with depth
no(1) even if we allow only constant number of gates to have non-zero (even dense)
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orientation - thus going beyond the earlier hurdle presented for PMATCH. We
remark that the above theorem also generalizes the case of circuits with negations
at the leaves (β = 0, and w = 1).

We now turn to circuits where the structure of the orientation is restricted.
The restriction is on the number of vertices of the input graph involved in edges
indexed by σ.

Theorem 3. If C is a circuit computing the CLIQUE function and for each
gate g of C, the number of vertices of the input graph involved in edges indexed
by σg (the orientation vector of gate g) is at most w, then d×w must be Ω( n

logn ).

We also study a sub-class of the above circuits for which we prove lower
bound results very close to the required ones. A circuit is said to be of uniform
orientation if there exists a σ ⊂ {0, 1}n such that every gate in it computes a
function which has orientation σ.

Theorem 4. Let C be a circuit computing the CLIQUE function, with uniform
orientation σ ⊂ {0, 1}n such that there is a subset of vertices U , |U | ∪ logk+Θ n
for which σe = 0 for all edges e within U , then C must have depth α(logk n).

We remark that a DeMorgan circuit has an orientation of weight exactly
equal to the number of negated variables. However, this result is incomparable
with that of [13] against DeMorgan circuits for two reasons : (1) this is for the
CLIQUE function. (2) the lower bounds and the class of circuits are different.

In contrast to the above theorem, we show that an arbitrary circuit can be
transformed into one having our structural restriction on the orientation with
|U | = O(logk n).

Theorem 5. If there is a circuit C computing CLIQUE with depth d then for
any set of c logn vertices U , there is an equivalent circuit C

∗
of depth d+ c logn

with orientation σ such that none of the edges e(u, v), u, v ⊂ U has σe(u,v) = 1.

Thus if either Theorem 4 is extended to |U | = O(logk n) or the transformation
in Theorem 5 can be modified to give |U | = O(logk+Θ n) for some constant θ > 0,
then a depth lower bound forCLIQUE function against general circuits of depth
O(logk n) will be implied.

2 Preliminaries

For x, y ⊂ {0, 1}n, x ≥ y if and only if for all i ⊂ [n], xi ≥ yi. A Boolean function
f is said to be monotone if for all x ≥ y, f(x) ≥ f(y). In other words value of a
monotone function does not decrease when input bits are changed from 0 to 1.

For a set U , we denote by
(
U
2

)
the set {{u, v} |u, v ⊂ U}. In an undirected graph

G = (V,E), a clique is a set S ◦ V such that
(
S
2

)
◦ E(G). CLIQUE(n, k)

is a Boolean function f : {0, 1}(
n
2) → {0, 1} such that for any x ⊂ {0, 1}(

n
2),

f(x) = 1 if Gx, the undirected graph represented by the undirected adjacency
matrix x has a clique of size k. CLIQUE(n, k) is a monotone function as adding
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edges (equivalent to turning 0 to 1 in adjacency matrix) cannot remove a k-
clique, if one already exists. By CLIQUE, we denote CLIQUE(n, n2 ). A perfect
matching of an undirected graph G = (V,E) is a M ◦ E(G) such that no two
edges in M share an end vertex and it is such that every vertex v ⊂ V is
contained as an end vertex of some edge in M . Corresponding Boolean function

PMATCH : {0, 1}(
n
2) → {0, 1} is defined as PMATCH(x) = 1 if Gx contains a

perfect matching. It is easy to note that PMATCH is also a monotone function.
A circuit is a directed acyclic graph whose internal nodes are labeled with ⊆,

∀ and ¬ gates, and leaf nodes are labeled with inputs. The function computed
by the circuit is the function computed by a designated “root” node. All our
circuits are of bounded fan-in. The depth of a circuit C, denoted by Depth(C)
is the length of the longest path from root to any leaf, and Depth(f) denotes the
minimum possible depth of a circuit computing f . By Deptht(f) we denote the
minimum possible depth of a circuit computing f with at most t negations. Size
of a circuit is simply the number of internal gates in the circuit, and is denoted
by Size(C). Size(f),Sizet(f) are defined analogous to Depth(f),Deptht(f)
respectively. We refer the reader to a standard textbook (cf. [18]) for more details.

We now review the Karchmer-Wigderson games and the related lower bound
framework. The technique is a strong connection between circuit depth and com-
munication complexity of a specific two player game where the players say Alice
and Bob are given inputs x ⊂ f−1(1) and y ⊂ f−1(0), respectively. In the case
of general circuits, the game is denoted by KW(f) and the goal is to find an
index i such that xi ∩= yi. In the case of monotone circuits, the game is denoted
by KW+(f) and the goal is to find an index i such that xi = 1 and yi = 0. We
abuse the notation and use KW(f) and KW+(f) to denote the number of bits
exchanged in the worst case for the best protocols for the corresponding com-
munication games. Karchmer and Wigderson [11] proved that for any function f
depth of the best circuit computing f , denoted by Depth(f) is equal to KW(f).
For any monotone function f the depth of the best monotone circuit computing
f , denoted by Depth+(f) is equal KW+(f). Raz and Wigderson [14] showed
that KW+(CLIQUE) and KW+(PMATCH) are both Ω(n).
Characterization of Orientation: If σ ⊂ {0, 1}n is an orientation for a func-
tion f , then any σ→ ∪ σ is also an orientation for f by definition of orientation.
For any general circuit C computing a function f : {0, 1}n → {0, 1} there is a
circuit C

∗
of at most twice the size of C, such that it has a uniform σ for some

σ ⊂ {0, 1}n. This can be seen by simply converting the circuit into a DeMorgan
circuit by pushing down the negations applying De-Morgan’s laws. Also, for any
function f whose orientation is σ, there is a circuit C of uniform orientation σ.
We prove a sufficient condition for the σi to be 1 in the orientation.

Proposition 1. For any function f , if there exists a pair (u, v) such that ui =
0, vi = 1, u[n]\{i} = v[n]\{i} and f(u) = 1, f(v) = 0 then any orientation σ of the
function must have σi = 1.

It is not a priori clear that the minimal orientation for a function f is unique.
We defer the proof of the following proposition to the full version.
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Proposition 2. Minimal orientation for a function f : {0, 1}n → {0, 1} is well
defined and it is σ ⊂ {0, 1}n such that σi = 1 if and only if there exists a pair
(u, v) such that ui = 0, vi = 1, u[n]\{i} = v[n]\{i} and f(u) = 1, f(v) = 0.

3 Lower Bound Argument for Sparsely Oriented Circuits

In this section, we prove Theorem 1 which shows the trade-off between depth
and weight of orientation of the internal gates of a circuit. We prove the following
main lemma of our paper.

Lemma 1. If C is a circuit of depth d such that each internal gate computes a
Boolean function whose orientation has weight at most w and C is computing a
monotone function f : {0, 1}n → {0, 1} which is sensitive on all its inputs, then
d× (4w + 1) ∪ KW+(f).

Proof. The proof idea is to devise a protocol for KW+(f) using C having
Depth(C) rounds and each round having a communication cost of 4w + 1.

Alice is given x ⊂ f−1(1) and Bob is given y ⊂ f−1(0). The goal is to find an
index i such that xi = 1, yi = 0. The protocol is described in Algorithm 1.
We now prove that the protocol(Algorithm 1) solves KW+(f). The following
invariant which is maintained during the run of the protocol is crucial for the
proof.

Invariant: When the protocol is at a node which computes a function f with
orientation vector σ it is guaranteed a priori that the inputs held by Alice and
Bob, x→ and y→ are equal on the indices where σi = 1, f(x→) = 1, f(y→) = 0
and restriction of f obtained by fixing variables where σi = 1 to x→i(= y→i) is a
monotone function.

Assuming that the invariant is maintained, we claim that when the protocol
stops at an input node of the circuit computing a function f with f(x→) = 1 and
f(y→) = 0 then f = xi for some i ⊂ [n]. If the input node is a negative literal,
say x̄i then by Proposition 1, orientation of x̄i has σi = 1. By the guarantee
that x→Σ = y→Σ , x

→
i = y→i, contradicting f(x

→) ∩= f(y→). Hence whenever the protocol
stops at leaf node it is guaranteed that the leaf is labeled by a positive literal.
And when input node is labeled by a positive literal xi, then a valid solution is
output as f(x→) = 1, f(y→) = 0 implies x→i = 1 and y→i = 0. Note that during the
run of the protocol we only changed x, y at some indices i, xi ∩= yi to x

→
i = y→i.

Hence, any index where x→i ∩= y→i it is the case that xi = x→i and yi = y→i.
Now we prove the invariant. Note that it is vacuously true at the root gate as

f is a monotone function implying σ = 0n, and in the standard KW+(f) game
x ⊂ f−1(1) and y ⊂ f−1(0). We argue that, while descending down to one of
the children of the current node the invariant is maintained. To begin with, we
show that the protocol does not get stuck in step 8 (and similarly for step 17).
To prove this, we claim that at an ⊆ gate f = f1 ⊆ f2, if the protocol failed to
find an i in step 4 such that x→i = 1, y→i = 0 then on the modified input y→→ at
least one of f1(y

→→) or f2(y
→→) is guaranteed to be zero. Since the protocol failed

to output an i such that x→i = 1, y→i = 0, it must be the case that x→i ≥ y→i for
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Algorithm 1. Modified Karchmer-Wigderson Protocol

1. {Let x→ and y→ be the current inputs. At the current gate g computing f ,
with the input gates g1 and g2, f1 and f2 be the corresponding sub-functions
and σ1, σ2 be the corresponding orientations (and are known to both Alice
and Bob). If g1 or g2 is a negation gate, let π1 and π2 be the orientation
vectors of input functions to g1 and g2, otherwise they are 0-vectors. Let
ε = σ1 ∀ σ2 ∀ π1 ∀ π2. Let S = {i : εi = 1}, xS is the substring of x indexed
by S. }

2. if g is ⊆ then
3. Alice sends x→S to Bob. Bob compares x→S with y→S.
4. if there is an index i ⊂ S such that x→i = 1 and y→i = 0 then
5. Output i.
6. else
7. Define y→→ ⊂ {0, 1}n: y→→S = x→S and y→→[n]\S = y→[n]\S.

8. Bob sends i ⊂ {1, 2} such that fi(y
→→) = 0 to Alice. They recursively run

the protocol on gi with x
→ = x→ and y→ = y→→.

9. end if
10. end if
11. if g is ∀ then
12. Bob sends y→S to Alice. Alice compares y→S with x→S .
13. if there is an index i ⊂ S such that x→i = 1 and y→i = 0 then
14. Output i.
15. else
16. Define x→→ ⊂ {0, 1}n: x→→S = y→S and x→→[n]\S = x→[n]\S .

17. Alice sends i ⊂ {1, 2} such that fi(x
→→) = 1 to Bob. They recursively run

the protocol on gi with x
→ = x→→ and y→ = y→.

18. end if
19. end if

indices indexed by σ1, σ2. Let U be the subset of indices indexed by σ1 and σ2
where xi = 0 and yi = 1. Bob obtains y→→ from y→ by setting y→→i = 0 for all i ⊂ U .
Thus we have made sure that x→ and y→→ are the same on the variables whose
negations are required to compute f, f1 and f2.

Consider the functions f →, f →→ : {0, 1}n−|Σ1≥Σ2| → {0, 1} which are obtained by
restricting the variables indexed by orientation vectors of f1 and f2 to the value
of those variables in x→. Both f → and f →→ are monotone as they are obtained by re-
stricting all negated input variables of the DeMorgan circuits computing f1 and
f2 for orientations σ1 and σ2 respectively. The changes made to x→, y→ were only at
places where they differed. Thus at all the indices where x→, y→ were same, x→, y→→

is also same. Hence monotone restriction fx∗
α
of f obtained by setting variables

indexed by σ to their values in x→ is a consistent restriction for y→→ also. It is easy
to note that y→→ ≥ y→. Hence f(y→→) = 0 because y→→ agrees with y→ on variables
indexed by σ (as x→→ agrees with y→ and y→→ on variables indexed by σ) implying
fx∗

α
(y→→[n]\Σ) ≥ fx∗

α
(y→[n]\Σ) = 0. Since f(y→→) = 0, it is guaranteed that one of
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f1(y
→→), f2(y

→→) is equal to 0. Bob sets y→ = y→→ and sends 0 if it is f1(y
→→) = 0 or 1 oth-

erwise, indicating Alice which node to descend to. Note that x→Σ1
= y→→Σ1

, x→Σ2
= y→→Σ2

and restriction of f1, f2 to x→Σ1
, x→Σ2

respectively gives monotone functions f →, f →→

thus maintaining the invariant for both f1 and f2.
We claim that if any of the input gates g1, g2 to the current ⊆ gate g is a

¬ gate then the protocol will not take the path through the negation gate. To
argue this, we use the following Lemma.

Lemma 2. If β, β̄ are functions with orientations σ, π, then for all x, y ⊂ {0, 1}n
such that xΣ≥Ω = yΣ≥Ω, β(x) = β(y).

Proof. We know that for a function β, if there exists a pair (u, v) ⊂ {0, 1}n ×
{0, 1}n with u ≥ v, ui ∩= vi, u[n]\{i} = v[n]\{i} and β(u) = 1, β(v) = 0 then
by Proposition 1 for every orientation σ, σi = 1 . Let i be an index on which
β is sensitive, i.e., there exists (u, v) ⊂ {0, 1}n × {0, 1}n with u ≥ v, ui ∩= vi,
u[n]\{i} = v[n]\{i} and β(u) ∩= β(v). Note that l is sensitive on i need not force
σi = 1, as it could be that β(u) = 0 and β(v) = 1. But in this case β̄(u) = 1 and
β̄(v) = 0, hence πi = 1 for β̄. Hence, β is sensitive only on indices in σ ∀ π. ∅↓

The lemma establishes that at every negation gate in weight w oriented circuit,
a function which is sensitive on at most 2w indices is computed. Hence, the
root gate cannot be a negation gate for a function sensitive on all inputs if
2w < n. Suppose only one child is a negation gate, say f1. Since we ensure
x→Σ1≥Ω1

= y→→Σ1≥Ω1
, the above lemma implies f1(x

→) = f1(y
→→). But the protocol

does not descend down a path where x→, y→→ are not separated. Hence the claim.
This also proves that when the protocol reaches an ⊆ node with both children

negated, at the round for that node protocol outputs an index i and stops.
Otherwise, since we ensure x→S = y→→S , f1(y

→→) = f1(x
→) = 1 and f2(y

→→) = f2(x
→) =

1. But this contradicts the fact that at a node f = f1 ⊆ f2 either f1(y
→→) = 0 or

f2(y
→→) = 0 (or both).

Proof of equivalent claims for an ∀ gate is similar except for the fact that
Alice modifies her input.

Thus, using the above protocol we are guaranteed to solve KW+(f). Commu-
nication complexity of the protocol is upper bounded by Depth(C)× (4w+ 1).
Communication cost of a round is 4w + 1. Because if any of the children is a
negation gate then we have to send its orientation along with the orientation of
its complement. The protocol clearly stops after Depth(C) many rounds. ∅↓

4 Dense Orientation

Currently our depth lower bound technique cannot handle orientations of weight
n

logk n
or more for obtaining α(logk n) lower bounds. In light of this, we explore

the usefulness of densely oriented gates in a circuit. First we prove that any poly-
nomial sized circuit can be transformed into an equivalent circuit of polynomial
size but having only O(n log n) gates of non-zero orientation by studying the
connection between orientations and negations. Next we present a limitation of
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our technique in a circuit having only two gates of non-zero (but dense) orienta-
tion. Thus, strengthening of our technique will have to use some property of the
function being computed. Finally we show how to use a property of CLIQUE
function to slightly get around the limitation.

4.1 From Negation Gates to Orientation

Since weight of the orientation can be thought of as ameasure of non-monotonicity
in a circuit, a natural question to explore is the connection between the number of
negations and number of non-zero orientations required to compute a function f .
By analyzing the sub-functions produced at each negation gate and carefully com-
bining them, we show the following (detailed proof is deferred to the full version):

Theorem 6. For any function f : {0, 1}n → {0, 1}, if there is a circuit family
{Cn} computing f with t(n) negations then there is also a circuit family {C→

n}
computing f such that Size(C→

n) ≥ 2t × (Size(Cn) + 2t) + 2t, and there are at
most 2t−1(t+ 2)− 1 internal gates whose orientation is non-zero.

In particular, in conjunction with the result of Fisher [6] mentioned before,
this implies that it is enough to prove lower bounds against circuits with at most
O(n log n) internal nodes of dense orientations to obtain lower bounds against
the general circuits.

4.2 Power of Dense Orientation

We show that even as few as two densely oriented internal gates can help to
reduce the depth from super poly-log to poly-log for some functions. We defer
the proof to the full version.

Theorem 7. There exists a monotone Boolean function f such that it cannot be
computed by poly-log depth monotone circuits, but there is a poly-log depth circuit
computing it such that at most two internal gates have non-zero orientation σ.

This theorem combined with the sparse orientation protocol implies that the
two non-zero orientations σ1, σ2 is such that |σ1|+ |σ2| is not only non-zero but is
super poly-log. Because our protocol will spend |σ1|+ |σ2| for handling these two
gates, and on the remaining gates in the circuit it will spend 1 bit each. Hence the
cost of the sparse orientation protocol will be at most |σ1| + |σ2|+Depth(C),
thus |σ1| + |σ2| is at least KW+(f) − Depth(C) which is super poly-log as
Depth(C) is poly-log and KW+(f) is super poly-log.

By Theorem 7 we get a function which has an NC2 circuit with two non-
zero orientation gates which has no monotone circuit of poly-log depth. Thus
our bounds cannot be strengthened to handle higher weight without incorporat-
ing the specifics of the function being computed. In section 4.3, we rescue the
situation slightly using the specific properties of the CLIQUE function.

4.3 Lower Bounds for CLIQUE Function

The number of gates with high orientations can be arbitrary in general. In this
subsection we give a proof for Theorem 2. We first extend our technique to
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handle the low weight negations efficiently so that we get a circuit on high weight
negations (see Lemma 3 below). To complete the proof of Theorem 2, we appeal
to depth lower bounds against negation-limited circuits computing f . We refer
the reader to the full version for the details.

Lemma 3. For any circuit family C = {Cn} computing a monotone function f
where there are k negations in Cn computing functions which are sensitive only
on w inputs (i.e., the orientation of their input as well as their output is at most
w) and the remaining β negations compute functions of arbitrary orientation:
Depth(Cn) ∪ Depth2Δ(f)− kw − β

5 Structural Restrictions on Orientation

In this section we study structural restrictions on the orientation and prove
stronger lower bounds.

5.1 Restricting the Vertex Set Indexed by the Orientation

We first consider restrictions on the set of vertices4 indexed by the orientation -
in order to prove Theorem 3 stated in the introduction. As in the other case, we
argue the following lemma, which establishes the trade-off result. By using the
lower bound for KW+ games for CLIQUE function, the theorem follows.

Lemma 4. Let C be a circuit of depth d computing CLIQUE, with each gate
computing a function whose orientation is such that the number of vertices of the

input graph indexed by the orientation σ is at most w
logn , then d is Ω

(
KW+(f)
4w+1

)
.

Proof. It is enough to solve theKW+(f) on the min-term, max-term pairs which
in case of CLIQUE(n, k) is a k-clique and a complete k − 1-partite graph. We
play the same game as in the proof of Theorem 1, but instead of sending edges
we send vertices included in the edge set indexed by σ with some additional
information. If it is Alice’s turn, then x→Σ defines an edge sub-graph of her clique.
Both Alice and Bob know σ and hence knows which vertices are spanned by
edges eu,v such that σe(u,v) = 1. So Alice can send a bit vector of length at most
w (in the case of Alice we can handle up to w), indicating which of these vertices
are part of her clique. This information is enough for Bob to deduce whether any
eu,v indexed by σ is present in Alice’s graph or not. Since Bob makes sure that
x→Σ = y→Σ by modifying his input, and Alice keeps her input unchanged, Alice
knows what modifications Bob has done to his graph.

Similarly on Bob’s turn, he sends the vertices in the partition induced by yΣ
and the partition number each vertex belongs to (hence the logn overhead for
Bob) to Alice. With this information Alice can deduce whether any eu,v ⊂ σ is
present in Bob’s graph or not. Inductively they maintain that they know of the
changes made to other parties input in each round. Hence the game proceeds as
earlier. This completes the proof of the theorem.

4 Notice that the input variables to the CLIQUE function represents the edges. This
makes the results of this section incomparable with the depth lower bounds of [13].
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5.2 Restricting the Orientation to be Uniform

In this section, we consider the circuits where the orientation is uniform and
study its structural restrictions. We proceed to the proof of Theorem 4.

Theorem 4: Let C be a circuit computing the CLIQUE function with uniform
orientation σ ⊂ {0, 1}n such that there is subset of vertices U and θ > 0 such
that |U | ∪ logk+Θ n for which σe = 0 for all edges e within U , then C must have
depth α(logk n).

Proof. We prove by contradiction. Suppose there is a circuit C of depth c logk n.
In the argument below we assume c = 1 for simplicity. Without loss of generality,
we assume that |U | = logk+Θ n. Fix inputs to circuit C in the following way:
Choose an arbitrary Kn

2 − |U|
2

comprising of vertices from [n] \ U and set those

edges to 1. For every edge in
(
[n]\U

2

)
which is not in the clique chosen earlier,

set to 0. For every edge between [n] \ U and U set it to 1. Since every edge
e(x, y) which has σe = 1 has at least one of the end points in [n] \ U , by above
setting, all those edges are turned to constants. Thus we obtain a monotone

circuit C→→ computing CLIQUE(|U |, |U|
2 ) of depth at most (logn)k. In terms of

the new input, (logn)k = ((log n)k+Θ)
k

k+θ = (|U |) k
k+θ , this contradicts the Raz-

Wigderson [14] lower bound of Ω(|U |), as k
k+Θ < 1 for θ > 0. ∅↓

A Contrasting Picture: Any function has a circuit with a uniform orientation
σ = 1n (|σ| = n). We show that the weight of the orientation can be reduced at
the expense of depth, when the circuit is computing the CLIQUE function.

Theorem 5: If there is a circuit C computing CLIQUE with depth d then for
any set of c logn vertices U , there is an equivalent circuit C

∗
of depth d+ c logn

with orientation σ such that none of the edges e(u, v), u, v ⊂ U has σe(u,v) = 1.

Proof. We modify the KW protocol on circuit C as follows: Alice chooses an
arbitrary clique Kn

2
⊂ Gx (which she is guaranteed to find as x ⊂ f−1(1)).

She then obtains x→ by deleting edges e(x, y) from
(
U
2

)
which are outside the

chosen clique Kn
2
. Note that since Kn

2
⊂ Gx∗ , f(x→) = 1. Alice then sends the

characteristic vector of vertices in Kn
2
∨ U which is of length at most c logn, to

Bob. Bob then obtains y→ from y by removing edges in
(
U
2

)
which are outside the

clique formed by Kn
2
∨
(
U
2

)
. By monotonicity of CLIQUE, f(y→) = 0. If there

is an edge e(u, v) ⊂ Kn
2
∨
(
U
2

)
which is missing from y→ Bob outputs the index

e(u, v). Otherwise they run the standard Karchmer-Wigderson game on x→, y→

using the circuit C to obtain an e(x, y) such that xe(u,v) = 1 and ye(u,v) = 0.
The correctness of the protocol is easy to see The cost of the above protocol
is d + c logn. By the connection between KW(f) and circuit depth, we get a
circuit of desired properties. ∅↓

Thus, if there is a circuit C ⊂ NCk computing CLIQUE(n, k), then there is a
circuit C

∗ ⊂ NCk of uniform orientation σ computing CLIQUE(n, k) such that
there are (c logn)k vertices V

∗
with none of the edges e(u, v)having σe(u,v) = 1. In
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other words, if we improve Theorem 3 to the case when the orientation “avoids”
a set of logn vertices (instead of (logn)(1+Θ) as done), it will imply NC1 ∩= NP.

References

1. Allender, E.: Circuit Complexity before the Dawn of the New Millennium. In:
Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 1–18. Springer,
Heidelberg (1996)

2. Allender, E.: Cracks in the defenses: Scouting out approaches on circuit lower
bounds. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR
2008. LNCS, vol. 5010, pp. 3–10. Springer, Heidelberg (2008)

3. Alon, N., Boppana, R.B.: The Monotone Circuit Complexity of Boolean Functions.
Combinatorica 7(1), 1–22 (1987)

4. Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing
the clique function with at most (1/6) log log n negation gates. SIAM Journal on
Computing 35(1), 201–216 (2005)

5. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)
6. Fischer, M.: The Complexity of Negation-limited Networks — A Brief Survey.

In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 71–82. Springer,
Heidelberg (1975)

7. Impagliazzo, R., Paturi, R., Saks, M.E.: Size-depth tradeoffs for threshold circuits.
SIAM Journal of Computing 26(3), 693–707 (1997)

8. Iwama, K., Morizumi, H.: An explicit lower bound of 5n-o(n) for boolean circuits.
In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer,
Heidelberg (2002)

9. Jukna, S.: On the minimum number of negations leading to super-polynomial sav-
ings. Information Processing Letters 89(2), 71–74 (2004)

10. Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Algorithms and
Combinatorics, vol. 27. Springer New York Inc. (2012)

11. Karchmer, M., Wigderson, A.: Monotone Circuits for Connectivity Require Super-
logarithmic Depth. In: STOC, pp. 539–550 (1988)

12. Lovász, L.: On determinants, matchings, and random algorithms. In: Symposium
on Fundamentals of Computation Theory (FCT), pp. 565–574 (1979)

13. Raz, R., Wigderson, A.: Probabilistic communication complexity of boolean rela-
tions. In: Proc. of the 30th FOCS, pp. 562–567 (1989)

14. Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. Jour-
nal of ACM 39(3), 736–744 (1992)

15. Razborov, A.A.: Lower Bounds for Monotone Complexity of Some Boolean Func-
tions. Soviet Math. Doklady, 354–357 (1985)

16. Razborov, A.A.: Lower bounds on monotone complexity of the logical permanent.
Mathematical Notes 37(6), 485–493 (1985)

17. H̊astad, J.: The shrinkage exponent of de morgan formulas is 2. SIAM Journal on
Computing (1998)

18. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer
New York Inc. (1999)



Efficient Respondents Selection for Biased

Survey Using Online Social Networksα

Donghyun Kim1, Jiaofei Zhong2, Minhyuk Lee1, Deying Li3,
and Alade O. Tokuta1

1 Dept. of Math. and Physics, North Carolina Central University,
Durham, NC 27707, USA

{donghyun.kim,atokuta}@nccu.edu, mlee28@eagles.nccu.edu
2 Dept. of Math. and Computer Science, California State University, East Bay,

Hayward, CA 94542, USA
fayzhong08@gmail.com

3 School of Information, Renmin University of China, Beijing 100872, China
deyingli@ruc.edu.cn

Abstract. Online social networks are getting lots of attentions from the
research communities since they are rich sources of data to learn about
the members of our society as well as the relationship among them. With
the advances of Internet related technologies, online surveys are estab-
lished as an essential tool for a wide range of applications. One significant
issue of online survey is how to select a good respondent group so that
the survey result is reliable. This paper investigates the use of online so-
cial network to form a biased survey respondent group which is useful for
certain applications. We formally introduce a new optimization problem
called the minimum inverse k-core dominating set problem (MIkCDSP)
for this purpose, show its NP-hardness, and finally and mostly impor-
tantly introduce a greedy approximation algorithm for it.

1 Introduction

Recently, online social networks are receiving lots of attentions from the research
communities due to the growing popularity of social networking web sites such
as Facebook, Twitter, Google+, etc. It is widely recognized that the online social
networks are rich sources of data to learn about the interest of each user as well
as the relationship among them. Due to the reason, online social networks are
investigated for a wide range of applications such as shared interest discovery
among users [4], information propagation [6,1], online advertising [5], efficient
information propagation [7], community clustering [2], and so on.
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These days, online surveys are established as an essential tool for a wide range
of applications such as marketing and political decision making. It is known that
in 2006, around 20% of global data-collection expenditure was spent for online
survey research [8]. In 2012, US spent more than $1.8 billion for all survey
research spending [9]. There are a number of reasons, not to mention its low
cost (than the traditional methods), that online survey becomes so popular [10].
In online survey researches, how to find a right sample group of respondents
is a long lasting conundrum since this is directly related to the reliability of
the survey. Frequently, a biased respondent group is considered to be lack of
its reliability. This is because the result from the surveys are mainly used to
obtain a statistical information about the general public by consulting with a
sample group from the public, the survey result from a sample group which lost
its representative is not reliable for this purpose. Due to the reason, many efforts
are made to find a representative and unbiased respondent group [9].

Interestingly enough, however, we observe the bias in the survey is not always
something to avoid. Consider a product quality manager of a new smartphone,
e.g. iPhone 5c, who wants to collect the feedback via an online survey from users
so that he/she can improve the quality of the product. Also, suppose most of
the customers using the product are happy with it. Then, while the manager is
only interested in hearing complaints from the users, it is likely that the online
survey result from the respondents selected by the methods whose common goal
is to make the result representative and unbiased, would be mostly about their
satisfaction about the new product. As a result, such survey is quite wasteful
in practice to the manager who is only interested in complaints. Therefore, it
would be helpful to form a biased respondent group so that it includes more
unsatisfied users.

In this paper, we investigate the use of online social networks to compute a
biased but representative respondent group such that the rate of the minority
opinion group (e.g. those who are not satisfied with the product) in the respon-
dent group can be magnified. To the best of our knowledge, this is the first
effort in the literature which exploits online social network to enhance to the
quality of online survey. The rest of this paper is organized as follows: In Sec-
tion 2, we introduce several important notations and definitions. Especially, we
introduce the formal definition of our problem of interest, the minimum inverse
k-core dominating set problem (MIkCDSP), corresponding justification, and its
NP-hardness result. Section 3 proposes a new greedy approximation algorithm
for MIkCDSP. Finally, we conclude this paper in Section 4.

2 Notations, Definitions, and Problem Statement

2.1 Notations and Definitions

In this paper, G = (V,E) represents an online social network graph with a node
set V = V (G) and an edge set E = E(G). We assume the relationship between
the members are symmetric and thus the edges in E are bidirectional. Also, we
use n to denote the number of nodes in V , i.e. n = |V |. For any subset D → V ,



610 D. Kim et al.

G[D] is a subgraph of G induced by D. For each node v ⊂ V , Nv,V (G) is the
set of nodes in V neighboring to v in G. Now, we introduce some important
definitions.

Definition 1 (DS). Given a graph G, a subset D → V is a dominating set
(DS) of G if for each node u ⊂ V \D, ≡v ⊂ D such that (v, u) ⊂ E.

Definition 2 (MDSP). Given a graph G, the goal of the minimum dominating
set problem (MDSP) is to find a minimum size DS of G.

Definition 3 (Inverse k-core). Given a graph G, a subset D → V , and a
positive integer k such that 0 ∈ k ∈ Δ, where Δ is the degree of G, D is an
inverse k-core in G if for each v ⊂ D, |Nv,D(G)| ∈ k.

2.2 Problem Statement

In this paper, we study an online survey sample (respondents) selection problem
such that the rate of people with minority opinion in the sample can be higher
than their rate in the overall group.

We claim that people who share similar opinions have better chance to be a
friend with each other in the online social networking, which is frequently true
in the professional social networks. Suppose for a survey, there exists an online
social network relevant to the survey topic. For instance, for the survey on a
new smartphone, we assume the existence of some online social network among
the technicians. Then, based on our assumption, even though we do not know
the opinion of each user in the social network regarding the smartphone, we can
assume that two neighboring users in the social network have a smaller chance
to have two drastically opposite opinion on the product.

A randomly selected DS of the whole group might be one approach to compute
a good representative group since any node in the whole group either is a member
of the DS or has a close friend who share similar opinion in the DS. However,
note that while the DS has a representativeness, it is quite hard to tell if the DS
is biased or not, and if biased, how much it is biased.

Based on our previous discussion, we claim the bias of the DS can be observed
by checking its cohesiveness. That is, if there exists a clear majority opinion
group in the overall group and the DS is completely randomly selected, then it
is likely that the rate of the majority opinion group in the overall group is similar
to the rate of the majority group in the DS. Furthermore, they will be appeared
as a well-connected subgraph with relatively larger size in the social network
graph induced by the DS. Meanwhile, there can be one or more well-connected
subgraph with relatively smaller size in the graph, each of which represents a
unique minority opinion group in the DS.

This observation implies that when we select a DS for the respondents if the
degree of the induced graph by the DS is limited, then, the DS will include more
amount of non-majority opinion group members. Formally, such a DS can be
defined as the inverse k-core dominating set (IkCDS) showed below, where k is
the degree of bias (with higher k, the DS is less biased, and with k equivalent
to the degree of the social network, the DS is completely unbiased).
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Definition 4 (IkCDS). Given a graph G, a subset D → V , and a positive
integer k, D is an inverse k-core dominating set (IkCDS) of G if (a) D is a DS
of G and (b) for each v ⊂ D, |Nv,D(G)| ∈ k.

It is noteworthy that there are a number of ways to compute IkCDS of a social
network. Apparently, it is more desirable to reduce the size of IkCDS since it will
cost less for the actual survey. As a result, the problem of computing a biased
online survey respondent group can be formulated as MIkCDSP shown below.

Definition 5 (MIkCDSP). Given a graph G and a positive integer k, the goal
of the minimum inverse k-core dominating set problem (MIkCDSP) is to find a
minimum size IkCDS of G.

Remark 1. It is noteworthy that as k decreases, the DS will be more biased and
the rate of minority opinion in the survey will increase. At the same time, the
size of the IkCDS will decrease. This means that with very small k value, the
survey respondent set can be very small and less practical given that the usual
degree of social networks is not small. On the other hand, with very high k value,
the survey respondent group can be negligibly biased, which also may not be
desirable for our application. While selecting proper k value is very significant,
it is also application dependent. Since this question is the out of this paper, we
assume that k value is given as a part of the inputs of the problem.

The below theorem shows our problem is NP-hard.

Theorem 1. MIkCDSP is NP-hard.

Proof. A special case of MIkCDSP with k = n is equivalent to the minimum
dominating set problem, the problem of computing a minimum size dominating
set of G, which is proven to be NP-hard [3]. As a result, MIkCDSP is NP-hard.

Remark 2. Given any graph G and a non-negative integer k, there exists a feasi-
ble solution of MIkCDSP in G. This claim is true since (a) a feasible solution of
MIkCDSP with k = 0 is clearly a feasible solution of MIkCDSP with any k ≥ 1,
and (b) the following coloring strategy can be used to compute an independent
set of G, the subset of nodes in G which are pairwise disjoint with each other,
which is a feasible solution of MIkCDSP with k = 0: (i) initially color all nodes
white, (ii) pick each white node black and its neighbors in gray until there is not
white node left, and (iii) return the set of black nodes. Clearly, the set of black
nodes is a dominating set and each pair of black nodes are not neighboring from
each other.

3 Greedy-MIkCDSA: A Simple Greedy Approximation
for MIkCDSP

In this section, we introduce Greedy-MIkCDSA, a simple greedy strategy for
MIkCDSP and show that its performance ratio is (1+Δ), whereΔ is the degree of
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Algorithm 1. Greedy-MIkCDSA (G = (V,E), k)

1: Prepare an empty set D, i.e. D ≥ ≤.
2: For each vi ∗ V , prepare a counter ni which is initialized to 0, i.e. ni ≥ 0.
3: Suppose Xj = {vi|vi ∗ V and ni = j}.
4: while X0 ⊆= ≤ do

5: Find vi ∗ V \
(
(
⋃

j≥k Xj)
⋃

D
⋃

Q
)
so that |Nvi ,X0(G)| is maximized, where

Q = {w1, · · · , wq} such that wl ∗ Q has at least one neighbor in (
⋃

j≥k Xj) and
wl ∗ D is true. A tie can be broken arbitrarily.

6: Set D ≥ D ∅ {vi}.
7: for each node vj ∗ Nvi,V (G) do
8: nj ≥ nj + 1.
9: end for
10: end while
11: Output D.

the inputonline social networkgraph.The formaldescriptionofGreedy-MIkCDSA
is Algorithm 1. Given an MIkCDSP instance ∪G, k◦, Greedy-MIkCDSA first pre-
pares an empty setD (Line 1), which will eventually include the output, an inverse
k-core dominating set (IkCDS) ofG. For each node vi ⊂ V , we create a counter ni
which is initialized to 0 (Line 2). The counter will be used to track the number of
neighbors of vi inD. Depending on the counter, we create a partition of the nodes
in V ,X0, X1, · · · , whereXj is the subset of nodes in V whose counter is j (Line 3).
This means that initially X0 is equal to V and each of the rest is empty. Clearly,
the number of the subsets is bounded by n. From Lines 4-10, we iteratively pick a

node vi from
(
(
⋃

j→k Xj)
⋃
D

⋃
Q
)
, i.e. vi is a node which is

– Condition 1: with a counter ni whose value is less than k (i.e. has less than
k neighbors in DS),

– Condition 2: not selected as a DS node yet, and
– Condition 3: without any neighboring node wl which is in D and, at the

same time, in Xj for some j ≥ k,

such that the number of neighbors of vi in X0 is the maximum. Any tie can be
broken arbitrarily. This loop is repeated until all nodes in V is either in D or
dominated by some node in D while maintaining G[D] as an inverse k-core.

Clearly, Algorithm 1 produces a feasible solution of MIkCDSP since the algo-
rithm repeatedly constructs D until X0 becomes empty (which means D is a DS
of G) and by Line 5, the degree of G[D], the graph induced by D in G, will be
bounded by k (which means D is an inverse k-core). One may wonder if there
is a situation in which some node x, which has to be included in D to dominate
some other node y, cannot be included in D since it has already k neighbors in
D. However, this never becomes a problem since if x cannot be selected, then y
itself will be included in D by our algorithm, which means that D is always a
valid output.

Now, we show Algorithm 1 is a (1+Δ)-approximation algorithm for MIkCDSP.
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Lemma 1. Given a graph G = (V,E), let OPTMDSP and OPTMIkCDS be an
optimal solution of MDSP and an optimal solution of MIkCDSP defined over
∪G, k◦ for some k ≥ 1, respectively. Then,

|OPTMDSP | ∈ |OPTMIkCDS |.

Proof. By definitions, the goal of MDSP is to find a DS of G with minimum
cardinality and the goal of MIkCDSP is to find a DS of G with minimum car-
dinality such that for each node in the DS, the node is allowed to be adjacent
with at most k other nodes in the DS. Therefore, in any given G, an IkCDS of
G is also a DS of G, but our choice of IkCDS is more limited than that of DS.
As a result, this lemma is true.

Lemma 2. Given a graph G = (V,E), suppose we have an α-approximation
algorithm of MDSP such that the output O of the algorithm is also a feasible
solution of MIkCDSP. Then, we have |O| ∈ α|OPTMIkCDS |.
Proof. By the definition of an α-approximation algorithm of MDSP, we have
|O| ∈ α|OPTMDSP |. By combining this with Lemma 1, we have |O| ∈
α|OPTMDSP | ∈ α|OPTMIkCDS |, and thus this lemma is true.

Recall that Algorithm 1 produces a feasible solution of MIkCDSP defined over
∪G, k◦ which is also a feasible solution of MDSP defined over G. Therefore, by
Lemma 2, we can obtain the performance ratio of Algorithm 1 for MIkCDSP by
bounding the ratio between the size of an output of Algorithm 1 and the size of
an optimal DS.

Theorem 2. The performance ratio of Algorithm 1 for MIkCDSP is 1 + lnΔ,
where Δ is the maximum degree of G.

Proof. Given G = (V,E) and k, consider OPTMDSP = {o1, o2, · · · , ol} be a
minimum DS of G. Then, for each oi ⊂ OPTMDSP in the increasing order of i,
we compute

P1 = {o1}
⋃
No1,V \OPTMDSP

(G), and

Pi =
(
{oi}

⋃
Noi,V \OPTMDSP

(G)
)
\
(⋃

1≥j≥i−1 Pj

)
for i ⊆= 1.

Then, V is partitioned into P = {P1, P2, · · · , Pl} such that each Pi ⊂ P exactly
includes one oi ⊂ OPTDS .

Suppose Algorithm 1 is applied to ∪G, k◦ and outputs D. Then, each Pi can
include some nodes in D. During the rest of this proof, we will try to find the
upper bound of the size (i.e. the number of nodes) of Pi ∀ D. If we can bound
this size by α, we have

|D| ∈ max
1≥i≥l

|Pi ∀D| · |OPTMDSP | = α · |OPTMDSP |.

Remember that D is also an IkCDS. Therefore, by Lemma 2, we have

|D| ∈ α · |OPTMDSP | ∈ α · |OPTMIkCDS |,

which will complete this proof.



614 D. Kim et al.

To obtain the upper bound of |Pi ∀ D|, we consider the following strategy:
whenever a node v ⊂ Pi is selected as a member of D by Algorithm 1, we assume
each neighbor u ⊂ (Pi

⋂
X0) of v immediately (before updating its counter)

receives an additional weight w(u), which is equivalent to one divided by the
number of neighbors of v in (Pi

⋂
X0), i.e.

w(u) ∩ w(u) +
1

Nv,(Pi
⋂

X0)(G)
.

Clearly,
∑

v∪Pi
w(v) = |Pi ∀D|.

Next, we show that
∑

v∪Pi
w(v) = 1 + lnΔ. If Pi ∀ D = ∅, then this proof

is trivial, and thus we assume Pi ∀D ⊆= ∅. Let Pi ∀D = {z1, z2, · · · , zp}. Also,
let X0 be the set of nodes in ‘Pi’ whose counter is 0, i.e. has no neighbor in D,
yet. Note that each time, a node is selected by Algorithm 1 using the greedy
strategy and added to D, there will be less number of nodes left in X0. Let us use

X
(0)
0 , X

(1)
0 , · · · , X(p)

0 , where X
(i)
0 is the remaining nodes in X0 after ith iteration

of while loop (Line 4-9 in Algorithm 1). Then, we have

|X(0)
0 | ≥ |X(1)

0 | ≥ · · · ≥ |X(p)
0 |. (1)

Note that for any j, |X(j−1)
0 | − |X(j)

0 | is the number of nodes removed fromX
(j−1)
0

after jth iteration. In otherword, |X(j−1)
0 |−|X(j)

0 | is the number of nodes inX
(j−1)
0 ,

which are not adjacent to any node in {z1, z2, · · · , zj−1} yet, and at the moment
that zj is selected, they are adjacent to zj .

Suppose the initial iteration is executed and z1 is selected and added to D.

Then, the weight added to each neighbor of z1 in Pi

⋂
X

(0)
0 is 1/N

z1,(Pi

⋂
X

(0)
0 )

and the number of such nodes is |N
z1,(Pi

⋂
X

(0)
0 )

|. In general, after jth iteration,

the weight added to each neighbor of vj in Pi

⋂
X

(j−1)
0 is 1/N

vj,(Pi
⋂

X
(j−1)
0 )

and the number of such nodes is |N
vj ,(Pi

⋂
X

(j−1)
0 )

|. Since we are using a greedy

strategy, zj is always neighboring more nodes in Pi

⋂
X

(j−1)
0 than oi ⊂ OPTDS .

Therefore, we have

|N
zj,(Pi

⋂
X

(j−1)
0 )

| ≥ |N
oi,(Pi

⋂
X

(j−1)
0 )

|,

which implies
1

|N
zj,(Pi

⋂
X

(j−1)
0 )

| ∈ 1

|N
oi,(Pi

⋂
X

(j−1)
0 )

| .

Since oi is adjacent to all nodes in Pi, Noi,(Pi

⋂
X

(j−1)
0 )

= X
(j−1)
0 . As a result,

after the iteration is repeated for p times. we have

∑

v∪Pi

w(v) ∈
∑

1≥j≥p

|X(j−1)
0 | − |X(j)

0 |
|X(j−1)

0 |
. (2)

By Eq. (1), we have |X(j−1)
0 |− |X(j)

0 | > 0 for all j. Finally, p can be bounded by
Δ since all nodes in Pi has to be adjacent to oi. As a result, the second term of
the right side of Eq. (2) can be bound by H(Δ), where H is a harmonic function.
As a result, we have
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∑

v∪Pi

w(v) ∈ 1 +H(Δ) ↓ 1 + lnΔ,

and this theorem is true.

4 Conclusion

In this paper, we introduce a new approach to use the information from an
online social network to enhance the result of online survey. To perform this
task efficiently, we introduce to solve a new NP-hard optimization problem,
propose a new greedy heuristic algorithm for it, and show the algorithm in fact
has a theoretical performance guarantee. To the best of our knowledge, this is
the first attempt to use online social network to improve the result of online
survey. We plan to further investigate the use of social network to improve the
reliability of online voting systems. In this paper, we assume the existence of a
single social network for survey. However, in reality, there could be more than
one social networks which can be used for this kind of computation. Also, it
would be very interesting to consider a social network with weighted edges.

References

1. Zhang, H., Dinh, T.N., Thai, M.T.: Maximizing the Spread of Positive Influence
in Online Social Networks. In: Proc. of the IEEE Int. Conference on Distributed
Computing Systems, ICDCS (2013)

2. Kim, D., Li, D., Asgari, O., Li, Y., Tokuta, A.O.: A Dominating Set Based Approach
to Identify Effective Leader Group of Social Network. In: Du, D.-Z., Zhang, G. (eds.)
COCOON 2013. LNCS, vol. 7936, pp. 841–848. Springer, Heidelberg (2013)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, San Francisco (1978)

4. Wang, F., Xu, K., Wang, H.: Discovering Shared Interests in Online Social Net-
works. In: International Workshop on Hot Topics in Peer-to-peer Computing and
Online Social Networking (July 2012)

5. Kahl, C., Crane, S., Tschersich, M., Rannenberg, K.: Privacy Respecting Targeted
Advertising for Social Networks. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011.
LNCS, vol. 6633, pp. 361–370. Springer, Heidelberg (2011)

6. Zhang, W., Wu, W., Wang, F., Xu, K.: Positive Influence Dominating Sets in
Power-Law Graphs. Social Network Analysis and Mining 2(1), 31–37 (2012)

7. Cha, M., Mislove, A., Gummadi, K.: A Measurement-driven Analysis of Informa-
tion Propagation in the Flickr Social Network. In: Proc. of the 18th International
Conference on World Wide Web (WWW), pp. 721–730 (2009)

8. Vehovar, V., Manfreda, K.L.: Overview: Online Surveys. In: Fielding, N.G., Lee,
R.M., Blank, G. (eds.) The SAGE Handbook of Online Research Methods,
pp. 177–194. SAGE, London (2008)

9. Terhanian, G., Bremer, J.: A Smarter Way to Select Respondents for Surveys?
International Journal of Market Research 54(6), 751–780 (2012)

10. Duffy, B., Smith, K., Terhanian, G., Bremer, J.: Comparing Data from Online and
Face-to-faceSurveys. International Journal ofMarketResearch47(6), 615–639 (2005)
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Abstract. Much research has been done on studying the diffusion of
ideas or technologies on social networks including the Influence Maxi-
mization problem and many of its variations. Here, we investigate a type
of inverse problem. Given a snapshot of the diffusion process, we seek to
understand if the snapshot is feasible for a given dynamic, i.e., whether
there is a limited number of nodes whose initial adoption can result in
the snapshot in finite time. While similar questions have been considered
for epidemic dynamics, here, we consider this problem for variations of
the deterministic Linear Threshold Model, which is more appropriate for
modeling strategic agents. Specifically, we consider both sequential and
simultaneous dynamics when deactivations are allowed and when they
are not. Even though we show hardness results for all variations we con-
sider, we show that the case of sequential dynamics with deactivations
allowed is significantly harder than all others. In contrast, sequential dy-
namics make the problem trivial on cliques even though it’s complexity
for simultaneous dynamics is unknown. We complement our hardness
results with structural insights that can lead to better understanding of
diffusions on social networks under various dynamics.

Keywords: social influence, linear threshold model, NP-hardness.

1 Introduction

Diffusion processes have been widely studied both theoretically and empirically.
One of the main theoretical frameworks is based on modeling a diffusion as the
result of a network game, i.e., a model in which rational agents make decisions
to maximize a pay-off that depends on the actions of other agents in way that
depends in part on an underlying network structure. The network game that
we assume in this paper is one where agents are called upon at each discrete
time point to make a rational decision based on previous decisions of other
neighboring agents. We can think of the action to be concerning the adoption
or not of a new technology and assume that all agents start the game with the
status quo technology (we will also refer to this state as “deactivated” through
out the paper). Moreover, we assume that each agent has a non-negative integer
threshold which represents the number of her neighbors in the network that need
to adopt the new technology (or “activate” as we refer to that action throughout
the paper) in order for her utility to be maximized by her also choosing to adopt.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 616–625, 2014.
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In an influence maximization setting this model translates to the widely used
Linear Threshold Model.

The problem that we study in this paper is a generalization of the Target

Set problem introduced in [4], since alongside the network graph G, integer
budget k and thresholds t1, t2, . . . , tn, we are also given a subset S ⊆ V (G) that
we call a Snapshot. We seek to find an initial seed set of size at most k that leads,
in finite time, to the activation of exactly S. For example, this could model a
scenario where a snapshot is observed and one seeks to determine the set of
nodes that could have started the underlying diffusion. We call this problem the
Snapshot problem, and we study four variations of it. When S = V (G), then
the Snapshot problem becomes the Target Set problem since we are looking
to activate the whole graph.

We consider two order-dynamics for our network game setting. In the simul-
taneous (or parallel) best-response process, at each point in time, all agents
best respond to the state of the network simultaneously while in the sequential
best-response process we chose only one agent to best respond at each point in
time.

In addition to the linear threshold model, other widely used models for dif-
fusions in social networks are the Independent Cascade (IC), Susceptible-Infected
(SI), Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered
(SIR) models. We refer to [6] for more information on these models.

In the same spirit as the SI and SIR models, for each of the two order-dynamics
(simultaneous and sequential), we consider two variations of our problem: one
that forces the agents we choose in the seed set to commit to remain activated
forever and one that allows them to deactivate at a later stage if such an action
maximizes their utility. Note that this restriction concerns only the nodes in the
initial seed set and that all other nodes always best-respond and so are allowed
to deactivate at any point in time in both settings. When we force the seed
set to commit to remain activated, the set of activated nodes can only grow
(weakly) larger at each time step and so we call this case monotone. Hence
we get four variations of the Snapshot problem: Monotone Simultaneous

Snapshot, Simultaneous Snapshot, Monotone Sequential Snapshot

and Sequential Snapshot.
In this work, we start by exploring the connections between feasible snapshots

under various dynamics and then show that when we are looking for a single
initial adopter we can restrict our attention to the closed neighborhood of the
given snapshot. Moreover, in the same case, when trying to find an ordering that
produces a given snapshots we can ignore all nodes that are not in the snapshot.
We then provide various hardness results for all four variations of the problem,
most notably that Sequential Snapshot is NP-hard even for k = 1. Finally,
we take an interest in the special case of cliques, a graph structure not studied as
much in related literature, and show that even though Sequential Snapshot

problem becomes easy to solve, the situation is much more complicated under
simultaneous dynamics.
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As noted previously, one branch of related work is on variations of the In-

fluence maximization problem [9]: Given a graph G, threshold vector t and
a budget k, choose k nodes to activate, in order to maximize the number of
infected nodes. Such problems can be motivated by marketing scenarios where
one tries to target specific influential persons by, e.g., giving them some kind
of an offer or a free product, with the goal of making the product as popular
as possible. Strong hardness and inapproximability results have been shown for
even the special case when all agents have threshold 2 [4], [11]. Other related
problems have been studied as well. For example, [1], defines a notion of influ-
ence for bloggers in the web and studies the problem of identifying the most
influential bloggers. Similarly, in [12] the authors define the notions of “starters”
and “followers” in social media and try to identify agents from each set. In a
different spirit, [13] and [18] study the problem of determining the edges of the
network given the activation times of the agents.

The other branch of related work seeks to find the source of a diffusion modeled
as arising from a probabilistic epidemic process. Shah and Zaman, [19], use the SI
model and propose a measure they call rumor-centrality to find the single source
of a rumor spread. Prakash et al. in [17] study the same problem as us but under
the probabilistic SI model and they provide experimentally tested heuristics.
Similar work, under the IC model in the context of finding users suspected of
providing misinformations, has been done in [14]. Lappas et al. in [10] study
the problem of finding the initial set that best explains a given snapshot in a
network. For each set of nodes, they define a cost function that represents the
difference of the expected final set of activated nodes and the actual observed
snapshot, and try to minimize that function. Finally, assuming that information
propagates in a social network following the IC model, Gundecha et al. in [8]
study the problem of finding initial sources as well as other recipients of some
information given only a small fraction of the recipients of the information. Even
though the problem is NP-hard, they provide an efficient heuristic algorithm that
they test with real social media datasets. The main difference of our work from
this second body of work is the use of the deterministic Linear Threshold Model
in contrast to the stochastic IC and SI ones. This can result in significantly
different dynamics.

2 Model

We call the general problem we study the Snapshot problem. The input is a
tuple (G,S, t, k) where G = (V,E) is an undirected network graph, S ⊆ V (G) is
a set of nodes we call the snapshot, t = (t1, t2 . . . , tn), for n = |V (G)|, is a vector
of non-negative integer thresholds, and k is a positive integer that we call the
budget. The goal is to find a set S0 ⊆ V (G) of size at most1 k, that we will call
the initial activated set or seed set, whose activation will, in finite time, cause the
1 Note that the existence of a seed set of size ≤ k does not necessarily imply the

existence of a seed set of size exactly k, since here we take care to activate only S
and nothing else.
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activation of exactly S for some valid sequence of best responses.2 . If such S0

exists for S, we will call S a valid snapshot. Depending the order dynamics used
we get the Simultaneous Snapshot and Sequential Snapshot problems.
In these versions we don’t force the agents in the seed set to commit to remain
activated forever and hence they can best respond by deactivating at any time
point. When we do force the nodes in S0 to remain activated forever we get the
monotone version of each of the two problems, which we will call Monotone

Simultaneous Snapshot and Monotone Sequential Snapshot, respec-
tively.

Of particular interest will be the case where k = 1 and hence S0 = {u0}. We
will then just say that u0 is an initial adopter for S. It’s important to clarify a
point here. We do not need the snapshot S to be the final state of the activation
triggered by S0. Any S0 that in finite time t will produce exactly S is considered
to be an initial seed set for S even if at time t + 1 more nodes will be added to
or removed from S.

Example 1. Suppose that our input graph and thresholds are as shown in Figure
1, our budget is k = 2, and we use monotone simultaneous dynamics. It can be
seen that snapshot S1 = {u1, u2, u3} is feasible since we can activate {u1, u3}
at time 0, which will activate node u2 at time 1. We don’t mind that at time 2
node u4 will be activated as well. In contrast, snapshot S2 = {u1, u3, u4} is not
feasible for k = 2.

(u1, 1) (u2, 2) (u3, 1)

(u4, 1)

Fig. 1. Example of a network and thresholds. The notation (ui, ti), which is used
throughout the paper, denotes that node ui has threshold ti.

Given that S = V (G), it’s implicit from Kempe et al., [9], that finding an
influential set of initial adopters of minimum size is NP-hard and later Chen,
[4], showed that the problem is hard to approximate within a polylogarithmic
factor even when all the thresholds are equal to 2. These will be our starting
point towards our hardness results in Section 4.

3 Structural Results

In this section we present various results concerning the structure of the snap-
shots and seed sets under the various dynamics. Due to space limitations, all
proofs are deferred to the full version [2].
2 Note in the case of simultaneous dynamics the sequence of best responses is unique,

while for sequential dynamics there are multiple possibilities; we only require that
S be activated under one such sequence.
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3.1 Feasible Snapshots of Sequential and Simultaneous Dynamics

We start by understanding the relationship between the feasible snapshots under
sequential and simultaneous dynamics. We then show similar results between
monotone and non-monotone dynamics.

Lemma 1. Let (G,S, t, k) be an instance of the Snapshot problem. If S is fea-
sible for (G, t, k) under monotone simultaneous dynamics then it’s also feasible
for (G, t, k) under monotone sequential dynamics.

As the following example shows, the reverse is not true. There are snapshots
that are feasible under sequential dynamics (monotone or non-monotone) that
cannot be created under simultaneous (monotone or non-monotone) dynamics.

Example 2. Consider the graph and thresholds shown in Figure 1 and assume
we have k = 1, i.e., we are allowed only one initial adopter.

It can be seen that the snapshot S1 = {u2, u3} is feasible under monotone
or non-monotone sequential dynamics since we can activate u2 at time 0 and
at time 1 choose u3 to best respond but S1 is not feasible under monotone nor
non-monotone simultaneous dynamics.

Even though the above example shows that the set of feasible snapshots for
sequential and simultaneous dynamics are not the same, the next lemma shows
that when we are looking to activate the whole graph, i.e., when S = V (G), and
there are no deactivations allowed, then the dynamics are indeed equivalent.

Lemma 2. Let (G, t, S = V (G), k) be an instance of the Snapshot problem.
Then S is feasible under monotone sequential dynamics if and only if it is feasible
under monotone simultaneous dynamics.

The key difference that makes Lemma 2 work for S = V (G) but not in general
is that when S = V (G) we don’t have the issue of over-activating, i.e., activating
more nodes than are in the snapshot. As can be seen by chosing u2 as an initial
adopter in Example 2, this can occur when S is a strict subset of V (G). Under
sequential dynamics we can ensure that a node is not activated by simply never
selecting it to best respond, while with simultaneous dynamics we do not have
that freedom.

No containment relation holds between the sets of feasible snapshots under
simultaneous and sequential dynamics when we don’t require monotonicity, as
shown in the next example.

Example 3. Assume we have the same graph and thresholds as shown in Figure
1 and k = 1. As shown in Example 2, S1 = {u2, u3} is feasible under sequential
dynamics but not under simultaneous.

In the same example, it can be seen that S4 = {u1, u3, u4} is feasible under
non-monotone simultaneous dynamics since we can choose u2 as our seed. In the
next round, u1, u3 and u4 will activate since they had the appropriate number
of activated neighbors in the previous round, and u2 will deactivate since it had
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0 activated neighbors in the previous round. In contrast, it can be seen that
there is no seed set of size 1 that can produce S4 under sequential dynamics
(monotone or non-monotone).

As Lemma 3 in [2] shows, if S is feasible under monotone sequential dynamics
then it’s also feasible under non-monotone sequential dynamics. The reverse is
not true though, as shown in Example 4 in [2]. No containment relation holds
between the feasible snapshots of monotone and non-monotone simultaneous
dynamics, as shown in Examples 5 and 6 in [2].

3.2 Distance between the Seed Set and the Snapshot

We study next the distance that a seed set can have from an observed snapshot.
Clearly, when we allow for no deactivations the seed set must be part of the
observed snapshot and hence the distance is zero. When we have non-monotone
sequential dynamics, we show below that for the case of k = 1, the seed set can
have distance at most 1 from the observed snapshot. We then show that this is
not true when we have k ≥ 2 or non-monotone simultaneous dynamics.

Lemma 3. Let I = (G,S, t, 1) be an instance of the Snapshot problem. If S
is valid under sequential dynamics, then there exists an initial adopter u0 for S
in N [S].

The main idea behind the proof is that we follow the activation path from
a node in S back to u0 and then argue that this path cannot be deactivated
because every node u in that path has at least one ‘down stream’ neighbor v
that it is responsible for activating, i.e., v was activated after u and it’s activation
required u to be active. Therefore, even if u0 deactivates, v will ensure that u
still has the appropriate number of activated neighbors. Examples 7 and 8 in [2]
show that the assumptions of sequential dynamics and k = 1 respectively, are
necessary for Lemma 3 to hold.

3.3 The Clearing Lemma

Lemma 3 states that when we are looking for a single initial adopter, we can just
look in the neighborhood of the snapshot S. We show next, that we can reduce
the search space further by simply ignoring all nodes except u0 that are not in
S. This shows that in the case of sequential dynamics and k = 1, the activation
cannot ‘pass through’ a node, i.e., use a node v to activate another node u ∈ S
and then leave v deactivated. Again, the result is trivially true when we have
monotone dynamics and hence we concentrate on the non-monotone case.

Lemma 4. Let I = (G, t, S, 1) be an instance of Sequential Snapshot and
u0 ∈ V (G). Then there is an ordering of V (G) that produces S with u0 as the
initial adopter if and only if there is an ordering of S ∪ u0, that produces S
with u0 as the initial adopter. Moreover, no node in that ordering other than
(possibly) u0 ever gets deactivated.

As Example 9 in [2] shows, Lemma 4 does not extend to the case where k ≥ 2.
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4 Hardness

In this section we study the computational complexity of the various versions of
the Snapshot problem discussed in this paper. This work extends the already
rich literature on the hardness of the Influence Maximization problem, which was
first formulated and proved to be NP-hard by Kempe et al. in [9], and Target

Set (which is the minimization variant of the Influence Maximization problem)
that was proved to be APX-hard even in cases of restricted threshold values by
Chen in [4]. The decision versions of these two problems coincide and hence
we have that Target Set is NP-hard. Some tractable cases have also been
studied for the Target Set problem. Chen in [4] gives a linear-time algorithm
for trees and Ben-Zwi et al. in [3] generalized the result by solving the problem
in graphs of constant treewidth. Moreover, even though for any constant k the
Target Set problem can be solved in O(nk+1) time, the problem is W[2]-hard
for undirected graphs [15] and W[P]-hard for directed graphs [7]. For more on
parameterized complexity we refer to [16].

We use the NP-hardness of the Target Set problem, [9], [4], as our starting
point for proving the following theorem.

Theorem 1. Simultaneous Snapshot, Monotone Simultaneous Snap-

shot and Monotone Sequential Snapshot are all NP-hard, even for the
case that all thresholds are less than or equal to 2.

The result follows from Lemmas 6, 7 and 8 in [2] and show the individual
NP-hardness results for each of the three problems. All three reductions are
parameter preserving and as such they carry over the W[2]-hardness result shown
in [15] for the Target Set. Hence we get the following theorem as well.

Theorem 2. Simultaneous Snapshot, Monotone Simultaneous Snap-

shot and Monotone Sequential Snapshot are all W[2]-hard when param-
eterized by the size of the solution, k.

Finally, all three reductions are also approximation preserving, [5], and as such
they carry over the approximation hardness shown by Chen, [4], for the Target

Set.

Theorem 3. The optimization version of Simultaneous Snapshot, Mono-

tone Simultaneous Snapshot, Sequential Snapshot and Monotone Se-

quential Snapshot even for the case when all thresholds are less than or equal
to 2, cannot be approximated within the ratio of O(2log

1−ε n), for any fixed con-
stant Ω > 0, unless NP⊆DTIME(npolylog(n)).

Nevertheless, for constant k, all three problems discussed so far are solvable
in time O(nk+1) by a brute force search, and hence are polynomial time solvable
for k = 1. We show next that when we have non-monotone sequential dynamics
the problem becomes NP-hard even for k = 1.

Theorem 4. The Sequential Snapshot problem is NP-hard even for k = 1.

Due to space limitations, we defer the proof to the full version [2].
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5 Snapshot Problem on Cliques

We briefly discuss here the case of the Snapshot problem restricted on cliques,
a special case that unlike others (especially trees) has received little attention in
the literature. It’s easy to notice that the Target Set problem can be solved
efficiently on cliques. When trying to activate the whole clique, and because of
the strong symmetry of the graph, the best way we can use our budget of k
nodes is on the set of k nodes with the highest threshold.

In the Snapshot problem though, we are interested in activating a specific
S ⊆ V (G) and nothing more. When we are under monotone sequential dynamics,
the problem is still easy since we get to choose which nodes to best respond
at each time period and hence we can just ignore all nodes that are not in the
snapshot and then solve the problem on G[S], the subgraph induced by S, which
is easy to do.

However under monotone simultaneous dynamics, we need to be careful to
not over-activate, and hence choosing the strongest seed set (i.e., the k nodes of
highest thresholds) may not be optimal, as shown next.

Example 4. Suppose we have a clique of size 10 with thresholds as follows (in
increasing order): tu1 = tu2 = 1, tu3 = tu4 = 2, tu5 = 3, tu6 = 4, tu7 = 5, tu8 =
6, tu9 = 7 and tu10 = 8. Suppose we are given the snapshot S = {u1, u2, . . . , u7}
and k = 2. Then activating the two nodes in S with the highest thresholds, i.e.
u6 and u7, will activate four nodes, u1, u2, u3, u4, bringing the total number of
activated nodes to 6. After that the remainder of S will be activated, but so will
u8 causing the snapshot to be overshot. If instead we activated u5 and u4, we
would be able to activate exactly S. The intuition behind this is that we need to
keep a balance between the nodes that we need to activate and the nodes that
we should not.

We present here some properties that can be used to make the Monotone

Simultaneous Problem on cliques simpler. We leave as an open question if
these properties can be used to provide provable guarantees on the size of the
resulting instance. The proofs are deferred to the full version, [2].

Property 1 If there exists a node u ∈ S such that tu ≥ |S|, then u must be in
the seed set if S is feasible.

Property 2 If there is a node u /∈ S such that tu ≤ k, then S is not feasible,
unless |S| = k.

Property 3 If there are nodes u ∈ S and v /∈ S such that tu = tv, then u must
be part of the seed set if S is feasible.

Property 4 Let t = min{tu|u /∈ S}. Then we can remove all nodes from V (G)\
S that have threshold higher than t.

Property 5 Let t = min{tu|u /∈ S}. If |S| < t, then S is feasible if and only if
the k highest threshold nodes in S can activate S.
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6 Conclusions and Open Problems

In this paper we studied the problem of explaining given snapshots of a network
diffusion, i.e., finding a small seed set whose activation will cause the activation
of the snapshot. Although we presented strong hardness results for all variations
we studied, we also presented a variety of structural results that can help better
our understanding of this important problem. These structural results could po-
tentially be used as part of heuristics and/or approximation algorithms. We leave
several interesting directions open. One being the complexity of the Monotone

Snapshot on cliques. If it’s proven to be hard, then the question of polynomial
size kernels and approximation algorithms arises, and our results from Section 5
could potentially be used towards those directions. Another interesting question
is how far can a seed set be from a given snapshot? Can the distance be as large
as the diameter of the graph or is it upper bounded by a function of tmax, the
maximum threshold of the graph, and/or the budget k.

Acknowledgements. We thank Nicole Immorlica and Ming-Yang Kao for use-
ful discussions as well as two anonymous referees for their comments.
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Abstract. In this paper, we present a diffiusion model developed by en-
riching the generalized random graph (a.k.a. configuration model), mo-
tivated by the phenomenon of viral marketing in social networks. The
main results on this model are rigorously proved in [3], and in this pa-
per we focus on applications. Specifically, we consider random networks
having Poisson and Power Law degree distributions where the nodes are
assumed to have varying attitudes towards influence propagation, which
we encode in the model by their transmitter degrees. We link a condi-
tion involving total degree and transmitter degree distributions to the
effiectiveness of a marketing campaign. This suggests a novel approach to
decision-making by a firm in the context of viral marketing which does
not depend on the detailed information of the network structure.

1 Introduction

The penetration of internet and the emergence of huge online social networks in
the last decade has lead to a decline of the conventional channels of communi-
cation and consequently, marketing through them. This has given the firms an
opportunity to reach a large subset of their customers through innovative viral
marketing campaigns. But the wild uncertainty inherent in whether a market-
ing campaign goes viral or not, makes it markedly different from conventional
marketing and calls for a fundamentally different approach to decision-making.

1.1 Results

In this paper, we introduce a generalized diffusion dynamic on configuration
model. Configuration model, while lacking the community structure of real-world
social networks, approximates the degree distribution of these networks quite
well. The diffusion dynamic that we consider can be intuitively described in
the following way: an influenced individual in the network influences a random
subset of its neighbours, the distribution of which depends on the effectiveness
of the marketing campaign.
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c∞ Springer International Publishing Switzerland 2014



Pioneers of Influence Propagation in Social Networks 627

We illustrate large-network-limit results on this model, rigorously proved in
[3]. We present a condition involving the total degree and transmitter degree
distribution of a uniformly chosen node which, if satisfied, will allow, with a
non-negligible probability, the campaign to go viral when started from this par-
ticular node. Given this condition, we present an estimate of the fraction of the
population that is reached when the campaign does go viral. We then state that
under the same condition, the fraction of good pioneers in the network, i.e.,
the individuals who if targeted initially will lead the campaign to go viral, is
non-negligible as well, and we give an estimate of this fraction. We analyze in
detail the process of influence propagation on configuration model having two
types of degree-distribution: Poisson and Power Law. Three examples illustrat-
ing the dynamic of influence propagation on these two networks are considered:
(1) Bernoulli transmissions; (2) Node percolation; (3) Coupon-collector trans-
missions.

Based on the above analysis, we suggest what statistical data a firm should
collect from the pioneers of its marketing campaign, and based on these, how to
estimate the effectiveness of the campaign and make a cost-benefit analysis.

1.2 Related Work

The diffusion-on-random-graph models have been previously studied in the con-
text of the spread of epidemics in population ([1]), and more recently, to under-
stand the propagation of social and economic behavior through a social network
([7], [2], [9]).

In the context of viral marketing, one approach is to use the detailed informa-
tion about the network structure and the past instances of influence propagation
to come up with a predictor of the most influential individuals who should be
targeted for future campaigns ([6]). Another approach is to take into account the
current campaign’s effectiveness based on the detailed temporal and structural
information regarding the ongoing diffusion in the network ([4]). Our analysis
follows the latter approach, but differs in that we require much less information
regarding the network and the ongoing diffusion in it.

2 Model and Theoretical Claims

In this section, we introduce our model and informally describe the results which
are rigorously proved in [3].

2.1 Model

Consider that the only information available to you about an online social net-
work is the number of friends that a subset of network members have. We will
work with a uniform random network which agrees with the statistics that you
can obtain from the available information. Such a uniform random network is
obtained by constructing what is known as configuration model (CM); cf [8]. This



628 K. Gaurav, B. Bfflaszczyszyn, and P.H. Keeler

random network is realized by attaching half-edges to each vertex corresponding
to its degree (which represents here, the number of friends) and then uniformly
pair-wise matching them to create edges. We assume this model of the social
network throughout the paper and will use interchangeably the terms “social
graph” and “random network” meaning precisely the CM. We call the vertices
of this graph “nodes” or “users” and graph neighbours “friends”.

We consider a marketing campaign started from some initial target called
pioneer in this network. A person influences a subset of its friends who further
propagate the campaign in the same manner. The number of friends that a
person influences depends on a particular campaign. To model this dynamic, we
enhance the configuration model by partitioning the half-edges into transmitter
half-edges, those through which the influence can flow and receiver half-edges
which can only receive influence. So, if a person A influences his friend B in the
network, then in our representation, A has a transmitter half-edge matched to
the transmitter or receiver half-edge of B.

Let D and D(t) denote the random variables corresponding to the empiri-
cally observed distributions of total degree and transmitter degree respectively.
For notational convenience, we will interchangeably use random variables and
their distributions to mean the same thing. Empirical receiver degree distribu-
tion, D(r), is D −D(t). Then we have the following large-network-limit results,
rigorously proved in [3], but only informally stated here.

2.2 Theoretical Claims

Claim 1. Starting from a randomly selected pioneer, the campaign can go viral,
i.e., reach a strictly positive fraction of the population, with a strictly positive
probability if and only if

E[D(t)D] > E[D(t) +D]. (1)

Note that E[D(t)D] > E[D(t) +D] implies

E[D(D − 2)] > 0 (2)

and recall that this latter condition is necessary and sufficient 1 for the existence
of a (unique) connected component of the underlying social graph, called big
component, encompassing a strictly positive fraction of its population; cf [5].
Obviously, our campaign can go viral only within this big component.

Call good pioneers the pioneers from which the campaign can go viral.

Claim 2. If (1) is satisfied, then the population reached is, more or less, the
same, irrespective of the good pioneer chosen initially.

Let C→ denote the population reached by the campaign when started from a
good pioneer and C

→
the set of good pioneers.

1 Under a few additional technical assumptions, as 0 < E[D] < ∞, P{D = 1} > 0,
which we tacitly assume throughout the paper.
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Claim 3. If (1) is satisfied, then the set of good pioneers C
→
also forms a strictly

positive fraction of the population.

The next claim gives the estimates on the size of C→ and C
→
. Let

H(x) := E[D]x2 − E[D(r)]x− E[D(t)xD] (3)

and

H(x) := E[D]x2 − E[D(t)xD
(t)

]− E[D(r)xD
(t)

]x. (4)

If condition (1) is satisfied, then H(x) and H(x) have unique zeros in (0, 1).
Call them ξ and ξ respectively. Denote also by GD(x) = E[xD] and GD(t)(x) =

E[xD
(t)

], the probability generating function (pgf) of D and D(t), respectively.

Claim 4. If (1) is satisfied and n denotes the size of network population, then
for n large,

|C→|
n

≈ 1−GD(ξ) =: α > 0 (5)

and ∣
∣
∣C

→
∣
∣
∣

n
≈ 1−GD(t)(ξ̄) =: α > 0. (6)

Note that α can be interpreted as the probability that the campaign goes viral
when started from a randomly chosen pioneer.

See [3] for formal statements and proofs of the above claims. Recall also
from [5] that under assumption (2), the size, |C0|, of the big network component,

C0, satisfies for n large, |C0|
n ≈ 1 − GD(ξ0) =: α0 > 0, where ξ0 is the unique

zero of H0(x) := E[D]x2 −xG≥
D(x) in (0, 1), with G≥

D(x) denoting the derivative
of the pgf of D.

3 Examples

Let us consider the results of Section 2 in the context of a few illustrative network
examples.

3.1 Bernoulli Transmissions

Let us assume some arbitrary distribution of the degree D satisfying (2) (to
guarantee the existence of the big component of the social graph). Suppose that
each user decides independently for each of its friends with probability p ∈ [0, 1]
whether to transmit the influence to him or not. We call this model, CM with
Bernoulli transmissions, and p, the transmission probability. Note that given the
total degree D, the transmitter degree Dt is Binomial(D, p) random variable.
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Proposition 1. In the CM with a general degree distribution D satisfying (2)
and Bernoulli transmissions, the campaign can go viral if and only if the trans-
mission probability p satisfies

p >
E[D]

E[D2]− E[D]
. (7)

In this latter case, the fraction of the influenced population and the fraction of
good pioneers are approximately equal to each other, i.e., |C→|/n ≈ |C̄→|/n =: α,
for large n, and satisfy

α = 1−GD(ξ) , (8)

where ξ is the unique zero of the function E[D]((x− 1)/p+1)−G≥
D(x) in (0, 1).

Proof. Bernoulli transmissions with (3) and (4) imply H(x) = E[D]x2 − (1 −
p)E[D]x−pxG≥

D(x) and H(x) = E[D]x2−G≥
D(1−p(1−x)). MoreoverGD(t)(x) =

GD(1 − p(1 − x)). Dividing H(x) by px and substituting y := 1 − p(1 − x) in
H(x) and GD(t)(x) completes the proof.

Consider two specific network degree examples.

Example 1 (Poisson degree). When D has Poisson distribution of parameter λ
(in which case the CM is asymptotically equivalent to the Erdös-Rényi model)
the condition (7) reduces to λp > 1 and the fraction of the influenced population
and good pioneers (8) is equal to α = (1 − ξ)/p, where ξ is the unique zero of
the function (x− 1)/p+ 1− exp(λ(x− 1) in (0, 1).

More commonly observed degree-distributions in social networks have power-
law tails.

Example 2 (Power-Law (“zipf”) degree). Assume D having distribution P{D =
k} = k−β/ζ(β) k = 1, 2, . . ., with β > 2, where ζ(β) is the zeta function. Recall
that the pgf of D is equal to GD(x) = Liβ(x)/ζ(β), where Liβ(x) =

∑∪
k=1 k

−βxk

is the so-called poly-logarithmic function. Condition (2) for the existence of the
big component is equivalent to ζ(β− 2)− 2ζ(β− 1) > 0, which is approximately
β < 3.48. Condition (7) reduces to p > ζ(β − 1)/(ζ(β − 2) − ζ(β − 1)) and
the fraction of the influenced population and good pioneers (8) is equal to α =
1−Liβ(ξ), where ξ is the unique zero of the function xζ(β − 1)((x− 1)/p+1)−
Liβ−1(x) in (0, 1).

Recall from Proposition 1, that Bernoulli transmissions lead to the model
where the fraction of the influenced population and the fraction of good pioneers
are asymptotically equal to each other. In what follows we present two scenarios
where the set of good pioneers and the influenced population have different size.

3.2 Enthusiastic and Apathetic Users or Node Percolation

Consider CM with a general degree distribution D satisfying (1), whose nodes
either transmit the influence to all their friends (these are “enthusiastic” nodes)
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or do not transmit to any of their friends (“apathetic” ones). Let p denote the
fraction of nodes in the network which are enthusiastic. Note that this model
corresponds to the node-percolation 2 on the CM. Thus, in this model, given D,
D(t) = D with probability p and D(t) = 0 with probability 1− p.

Proposition 2. Consider node-percolation on the CM with a general degree dis-
tribution D satisfying (2). The campaign can go viral if and only if the fraction p
of enthusiastic users satisfies condition (1); the same as for the Bernoulli model.
Moreover, in this case, the fraction α of reached population is also the same as in
the network with Bernoulli transmissions, i.e., equal to (8) with ξ as in Claim 1.
However, the fraction α of good pioneers is equal to α = pα.

The proof follows easily from the general results of Section 2.2. Note that the
campaign on the network with enthusiastic and apathetic users can reach the
same population as in the Bernoulli transmissions, however there are less good
pioneers.

3.3 Absentminded Users or Coupon-Collector Transmissions

Consider again CM with a general degree distribution D satisfying (1). Suppose
that each user is willing (or allowed) to transmit K messages of influence. In this
regard, it randomly selects, K times, one of his friends with replacement (as if it
forgets its previous choices). An equivalent dynamic of the influence propagation
can be formulated as follows: every influenced user, at all times, keeps choosing
one of its friends uniformly at random and transmits the influence to him; it
stops forwarding the influence after K transmissions.

In this model, the transmission degree, D(t), corresponds to the number of
collected coupons in the classical coupon collector problem with the number of
coupons being the vertex degree,D, and the number of trials,K. The conditional
distribution of D(t), given D, can be expressed as follows: P{D(t) = k |D } =

D!
(D−k)!D−K

{
K
k

}
, where {K

k } = 1/k!
∑K

i=0(−1)i
(
k
i

)
(k−i)K is the Stirling number

of the second kind.
Calculating the pgf for this distribution is tedious and we do not present

analytical results regarding this model but only simulations and estimation. As
we shall see in Section 3.4, in this model, the influenced population is smaller
than the population of good pioneers.

3.4 Numerical Examples

We will present now a few numerical examples of networks and diffusion models
presented above.

2 Diffierent than edge-percolation.
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Simulations. In all our examples, we simulate the enhanced configuration
model on N = 1000 nodes assuming some particular node degree distribution,
D, and influence propagation mechanism modeled by the conditional distribu-
tion of the transmitter degree, D(t). More precisely, we sample the individual

node degrees and transmitter degrees (Di, D
(t)
i ) i = 1 ... N independently from

the joint distribution of (D,D(t)) and use these values to construct an instance
of our enhanced CM by uniform pairwise matching of the half-edges. We calcu-
late the relative size of the influenced population and the set of good pioneers
through the exploration of the influenced components for all nodes. 3

Estimation. We adopt also the following “semi-analytic” approach: Using the

sample (Di, D
(t)
i ), i = 1, . . . , N used to construct the CM, we consider estima-

tors, ĜD(x) := 1
N

∑N
i=1 x

Di , Ĝ
(t)
D (x) := 1

N

∑N
i=1 x

D
(t)
i , Ĥ(x) := 1

N

∑N
i=1

(
Dix

2−

(Di−D(t)
i )x−D(t)

i xDi

)
, Ĥ(x) :=

∑N
i=1

(
Dix

2−D(t)
i xD

(t)
i −(Di−D(t)

i )xD
(t)
i +1

)
,

of the functions, GD(x), GD(t)(x), H(x) and H(x), respectively. We calculate
estimators α̂ and α̂ of the fraction of the influenced population, α, and of good
pioneers, α, using Claim 5 and the estimated functions, ĜD(x), ĜD(t)(x), Ĥ(x)

and Ĥ(x). (That is, we find numerically, zeros, ξ̂ and ξ̂ of Ĥ(x) and Ĥ(x), re-
spectively, and plug them into (5) and (6), with ĜD(x) and ĜD(t)(x) replacing
GD(x) and GD(t) (x).)

Note that in the semi-analytic approach, we do not need to know/construct
the realization of the underlying model. This observation is a basis of a campaign
evaluation method that we propose in Section 4. In fact, in reality one usually
does not have the complete insight into the network structure and needs to rely
on statistics collected from the initially contacted pioneers.

Analytic Evaluation. Finally, for all models, except the “coupon-collector”
one of Section 3.3, we calculate numerically, the values of α and α using the
explicit forms of all the involved functions. (For the coupon-collector model, we

obtained the “true” values of α and α from a sample of (Di, D
(t)
i ) of a larger

size N .)
When comparing these analytic solutions to the simulation and semi-analytic

estimates, we see that in some cases, N = 1000 is not big enough to match the
theoretical values. One can easily consider larger samples, however, we decided
to stay with N = 1000 to show how the quality of the estimation varies over
different model assumptions. Also, N = 1000 seems to be near the lower range
of the number of initial pioneers one needs to contact to produce a reasonable
prognosis for the development of the campaign.

3 The simulations are run in python by modifying code from the networkx package.
Remark that the directed configuration model in networkx package is a completely
diffierent model despite superficial similarity.
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Fig. 1. CM with Poisson degree of mean λ = 4 and Power-Law degree of parameter β =
2.180 (corresponding to E[D] ≈ 4), both with Bernoulli transmissions with probability
p. The set of good pioneers and the influenced population are of the same size. In the
Poisson case their fraction is strictly positive for p > 1/λ while in the Power-Law case
it is so for all p > 0 whenever β ≤ 3.
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Fig. 2. CM with Poisson and Power-Law degree of mean E[D] ≈ 1.35 (λ = 1.35 and
β = 3.035) and Bernoulli transmissions. The set of good pioneers and the influenced
population are of the same size for each model. One observes the phase transition in
both models, at p = 1/λ and p = ζ(β − 1)/(ζ(β − 2)− ζ(β − 1), respectively.

Case Study. Figure 1 presents Bernoulli influence propagation on the CM
with Poisson and Power-Law degree distribution of mean E[D] = 2. Bernoulli
transmissions imply that the sets of good pioneers and influenced population are
of the same size. The Power-Law degree with β < 3 leads to a positive fraction
of good pioneers and influenced component for all p > 0, while for the Poisson
degree distribution one observes the phase transition at p = 1/λ. That is, the
fractions of good pioneers and the influenced component are strictly positive, if
and only if, p > 1/λ.

Figure 2 shows again the model with Bernoulli transmissions on CM with
Poisson and Power-Law degree distribution, this time for E[D] ≈ 1.35 for which
both models exhibit the phase transition in p.

A general observation is that the Power-Law degree distribution gives smaller
critical values of p for the existence of a positive fraction of influenced popula-
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Fig. 3. Node percolation (“apathetic and enthusiastic users”) on CM with Poisson and
Power-Law degree of mean E[D] ≈ 2 (λ = 2 and β = 2.45). The influenced component
and the critical values for p are equal to these for the CM with Bernoulli transmissions.
The set of good pioneers is smaller than the influenced population. We do not observe
the phase transition for the Power-Law model since β < 3.
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Fig. 4. Coupon collector dynamics “absentminded users”) on CM with Poisson and
Power-Law degree of mean E[D] ≈ 2 (λ = 2 and β = 2.45). The set of good pioneers is
bigger than the influenced population.

tion and good pioneers, however for these, the size of these sets increase more
slowly with the transmission probability, p, in the Bernoulli model. Obviously,
the values of α = α at p = 1 correspond to the size of the biggest connected
component of the underlying CM.

Figure 3 shows the node percolation (or the case of “apathetic and enthusiastic
users”) on CM with Poisson and Power-Law degree distribution of mean E[D] ≈
4. Note that the influenced components have the same size as for Bernoulli
transmissions, however good components are smaller. The critical values of p for
the phase transition are also the same as for Bernoulli transitions. Note that
the estimation of the node percolation model is more difficult than the Bernoulli
transmissions because of higher variance of the estimators.

Finally, Figure 4 shows that the coupon collector dynamic (the case of “absent-
minded users”) on CM produces bigger sets of good pioneers than the influenced
population.
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4 Application to Viral Campaign Evaluation

From the point of view of a firm which has no prior information about the
network structure and the campaign effectiveness, it could be useful to assume
that the network is a uniform random network, with the total degree and trans-
mitter degree distributions estimated using the information collected from the

initial set of pioneers targeted. The collected information, denote it by (Di, D
(t)
i ),

i = 1, . . . , N , allows to estimate various quantities relevant to the potential de-
velopment of the ongoing campaign, as we did in 3.4. Particularly relevant are
the estimates for the following.

Network fragmentation If the value of the estimator, E[D2−2D] ≈ 1
N

∑N
i=1

(
D2

i−

2Di

)
, is not sharply larger than zero, then the firm must assume that the network

is too fragmented to allow for viral marketing (condition (2)).

Effectiveness of the campaign If one estimates that the network is not too frag-
mented, then the firm can evaluate the effectiveness of the ongoing campaign

using an estimate of E[DD(t) −D(t) −D] ≈ 1
N

∑N
i=1

(
DiD

(t)
i −Di −D

(t)
i

)
(con-

dition (1)). If the value of this estimator is sharply larger than zero, then the
firm can assume that there is a realistic chance of picking a good pioneer via
random sampling and make the campaign go viral.

The estimates of the fraction of good pioneers and the vulnerable population
can also be considered to make a cost-benefit analysis of the marketing campaign.

5 Conclusion

Diffusion studies on networks generally tend to focus on the component that
can be reached starting from an initial target. Our work in [3], over and above,
focuses on the set of good pioneers based on a new approach which consists of
identifying this subset as the big component of a reverse dynamic in which an
“acknowledgment” message is sent in the reversed direction on every edge thus
allowing to trace all the possible sources of influence of a given vertex.

In this paper, we consider what insight the graph-theoretical results obtained
through this approach provide about the phenomenon of viral marketing on
online social networks, particularly to a firm trying to decide how much to spend
on a marketing campaign which might go viral or not.
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Abstract. Network analysis has draw a considerable amount of
attention in the last decade, especially after the discovery of common topo-
logical characteristics such as SmallWorld or a Power Law degree distribu-
tion.Recently our understanding of complex networks has been augmented
with the inclusion of a local view of patterns of connectivity, such patterns
that are present more often in real networks than in randomized ones have
been called motifs. These global and local perspectives equip us with pow-
erful tools to understand the behavior of many real networks. However, an
important aspect of complex network analysis is often neglected: the dy-
namics of the information flows. The structural elements of the network
topology are very important, but to fully understand the dynamics of these
networks we need to take a closer look at the dynamics of the information
flow in a self-regulation perspective. For example, we know that the per-
formance and reliability of a compute network is likely influenced by the
dynamics of the packet flows, as much as it is influenced by the network
topology. In a biological regulatory network we need to understand the dy-
namics that control the excitation and the suppression of gene activity and
other transcription factors. In thiswork we introduce a preliminary simula-
tion study of the flow of information in networks with different topological
properties and activation functions. The goal is to approach the analysis of
network dynamics from a data-driven approach, using simulations to cap-
ture, understand, and possibly model the overall dynamics of the network
in a self-regulated perspective.

1 Introduction

The study of networks is not recent, it dates back from the eighteenth century,
from the studies of Euler in the problem of seven bridges [1]. He used a graph,
a mathematical structure that consists of nodes and edges connecting them, to
proof that there was no solution to such problem. Many theories, algorithms and
concepts have been developed ever since, however what has been called of the
new network science is quite different from the old network science [2]. The new
network science is concerned with the structure of naturally occurring network,
rather than theoretical ones, like social networks [3], biological networks [4] and
communications networks [5].

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 637–646, 2014.
c∞ Springer International Publishing Switzerland 2014
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Among the concepts presented with this new network science we can mention
Small World networks [6] and Scale Free networks [7]. In a Small World network
the distance between any two node is short, precisely it should be O(log n), where
n is the number of nodes of the network. The distance between any two nodes
is normally calculated using a shortest path algorithm [8]. Not only the average
shortest path must be short but also network must be clustered, which holds the
percentage of possible cliques of size three in the network. When the network
is called Scale Free, its degree distribution follows a Power Law distribution,
formally the probability of a node having degree k is: p(k) = k−λ.

Moving beyond global properties, the work of [9] presents a concept called
motifs. Motifs are basic structural elements, subgraphs, that are present more
often in real networks rather than in randomized ones. Depending of the kind
of network different motifs arise, for example in information-processing network
motifs tend to create multiple paths among different nodes in order to improve
robustness of the network. Motifs provide a local view of the network, each
node only observes its own connections and the connections of its neighbors to
uncover the motifs in its neighborhood. Depending of the types of motifs and
their frequency in the network many other properties can be deducted [10].

However, all these properties, either global or local ones, are not enough to
propertly understand the behavior of many real networks. For example, in a
cell regulatory network, that can change its function rapidly depending of the
part of the cell cycle that it is in or when there are unexpected changes in the
environment due to an stress factor. In these cases, the static properties of the
networks remain the same and yet its function changes, this happens because of
changes in the information flowing through the network. Such changes can be in
the amount of information, in the type of information or in the direction of the
information flow. Another characteristic inherent to the dynamics is that each
node has its own state that can vary in time, thus any dynamic analysis needs
to consider the evolution of the network in time.

According to [11] we are far from comprehend how the collective behavior of
thousand of nodes interacting locally contribute to the dynamic behavior that
we observe in many real systems. Once we understand how all these nonlinear
interactions on the dynamics of real world networks we will have a better un-
derstanding of their behavior, even in stressful situations (in a cellular network
it could be a cancer state). For this purpose in this work we simulate the flow of
information that will be processed by the network, and we measure the various
states of the network along the time in many different topological structures. We
expect to find the conditions necessary to the self-regulation of the network, in
other words, the parameters of the network that will maintain its information
flowing without any external interference.

2 Related Work

Several research efforts in the literature focus on the dynamics of the networks
from a growth perspective, trying to understand which processes lead to the
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appearance of certain characteristics in real networks [12]. For example, the
work of [13] proposes a model to generate Scale Free networks based on two
main principles: that real networks are constantly evolving by the addition of
new nodes and new vertices attach preferentially to already well connected nodes.

Another dynamic process commonly found in literature is the study of diffu-
sion process, like the one that happens in disease spread[14]. In this work the
authors claim that the robustness present in Scale Free networks is a disadvan-
tage in this situation once it favors the spreading of viruses. A simulation of the
spread of the pandemic disease H1N1 was made by [15] that focused in the role
of travel restrictions in halting and delaying the spread of disease. Similar works
analyzed diffusion processes in Small World networks [16]. The work of [17] an-
alyze the diffusion pattern of websites visitation and claims that the timing of
the browsing process is non-poisson contradicting previous works [18].

The authors of [19] propose a realistic model for dynamics in social networks
that takes into account digital and social aspects of online social networks. Their
work deals with information propagation, that can be either truthful or not
(rumor), and how people reacts by receiving such information, if they believe
it or not and if they decide to pass such information to its neighbors or not.
This works differs considerably from ours in the kind of information that its
propagated in the network. In our work we deal with the amount of information
that each nodes passes to its neighbors, thus it is represented as a numerical
value. In the work of [19] the information has a dual type, positive or negative,
and depending of its type it will propagate more or less.

In the work of [20] the authors present the a statistical analysis of the dynamics
in a biological network on a genomics scale by combining gene-expression data
with transcriptional regulatory information in many different scenarios. Their
results shown that less than one percent of the interactions are retained across
four or more conditions and that half of the nodes are uniquely expressed in only
one condition. Such findings can be easily incorporated in our model.

In this work each node in the network receives an input and following the
behavior of a specific function produces an output that is broadcasted to its
neighbors. An analogy can be made with artificial neural networks [21], which
also receive inputs and produce outputs based on a given function, however the
similarities stop there. In artificial neural networks the structure is organized in
layers, which have the purpose of learning a pattern from previous data aiming
to adjust several parameters to solve a particular problem. Artificial neural net-
works have been used in many predicting tasks, like electric load forecasting [22]
and in pharmaceutical research [23]. The goal of the model used in this work
is to analyze how the information flows in the network, it does not have any
direction that the information must flow or try to solve any problem.

3 The Simulation Model

In order to simulate dynamic processes of information flow on a network we
create a model where, at each time step t, each node i in the network receives



640 D. Oliveira and M. Carvalho

input signals from each of its incoming neighbor r. The input signal is denoted
by ϕr(t) and can be either excitatory or inhibitory. Depending of the strength
of these signals and the function (γ) used to calculate the output, the node
broadcast an output signal to all its output neighbors, which is denoted by
ωi(t).

At each time step t each node i receives input signals from all its neighbors,
the sum of all these inputs, that will be computed, is denoted by vi(t) and is
formally defined as:

vi(t) =
∑

0<r<k

ϕr(t) (1)

Where k is the number of neighbors of node i. The Figure 1 presents an
example of a node in the model. The node i receives input signals ϕ1(t), ϕ2(t)
and ϕ3(t) from each of its three incoming neighbors (that will compose vi(t))
and thus will produce an output ωi(t) that will be broadcast to its outgoing
neighbors.

φ1 t
φ2 t φ3 t

ωi t ωi t

Fig. 1. Example of information flow in a node of the network

To calculate the output, each node uses a function γ on the input vi(t), we
used two well known functions. The first is called Hill function [24]. The Hill
function is a common sigmoid function presented in many biological processes,
like tumor growth [25]. It consits of a curve that rises from zero and approaches
a maximal saturated level δ. Formally, it is defined as:

γ(vi(t)) =
δ

1 + b−vi(t)
(2)

Where b is the base of calculation, as the value of b increases the function con-
verges faster towards the saturation point δ. At the beginning of the simulation
each node defines randomly its own value of b, this variation was made to incor-
porate the variations of output of different nodes that might receive the same
amount of input signals, vi(t).The second function used is a Poisson function
which is widely used and defined by the mean and standard deviation [26].
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4 Results

As a result of this model the network’s ability to maintain itself ’alive’ without
any external input is characterized by three main factors: the function (γ) used
to calculate the output, the topology of the network and the initial input given
to start the simulation. We first analyze the relationship between the topology
and γ.

In this work we assume that the network is in a ”stable” state if a certain
amount of the nodes remains in an state that is neither dead or saturated withou
any external input. Nodes in a saturated state receive continuously the maximum
input, thus producing its maximum output. This situation may occur due to a
loop between two nodes that the output of one is the input of the other and
the same happens with the other node. A dead state is a state where the node
does not receive any input, thus it cannot produce any output, perhaps due to
the lack of input in its incoming neighbors. Such ”stable” state is an indicative
that the network will not reach a point where no node receives any input (in
a biological network this means that the cell died) or all the nodes receive the
maximum input, which is not realistic. In order to investigate if such behavior
occurs in a large network with real world properties we defined the following
metric:

Θ(t) = 1− (η(v0i (t)) + η(vδi (t)))

n
(3)

Where the function η computes the number of nodes at time t that have vi(t)
equals to a specific value. In the case of saturation this value is δ and in a ’dead’
state this value is zero. Thereby, Θ(t) holds the percentage of nodes that are in
neither states at each time t. From a global perspective of the network, in order
to maintain itself functional the network aims to maximize the value of Θ(t).

We create a network with the same topological characteristics of the regulatory
network of E. coli [27] that has 126 nodes and 326 edges, which can be seen in
Figure 2. In Figure 2 the nodes were colored accordingly to their degree, the
majority of nodes only have one or two edges and few nodes connect the entire
network, like ’crp’ and ’h-ns’. The topological properties of this network were
analyzed in more details in [28]. Thus we simulate the flow of transcription
factors through the network that can excite or inhibit the production of other
transcription factor in other nodes.

We measured the variation of Θ(t) over the time in order to analyze the
collective behavior of the network maintain itself in a ’stable’ state without any
external interference. As can be seen in Figure 3, when we use the Hill function
(left) the nodes soon converges to a dead or a saturated state, the percentage of
nodes that died is around 30% and the percentage of nodes saturated is around
70%, which leads to Θ(t) remain close of zero, during the rest of the simulation
with almost no change. When we use the Poisson function we perceive a more
dynamical behavior of the network, where a few percentage of nodes are dead,
less than 10%, and the percentual of node in a saturated state oscillates around
50 and 70%.
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Fig. 2. Regulatory network of E. coli
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Fig. 3. Variation of the percentage of nodes saturated (X’s), dead (asterisk) and Θ(t)
(squares) over time. In the scenario on the left we used the hill function and in the
scenario on the right we used the poisson function.
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Fig. 5. Variation of the percentage of nodes saturated (X’s), dead (asterisk) and Θ(t)
(squares) over time in a Scale Free network

In this case we constructed the network randomly, accordingly to [29]. In
order compare the results with a Small-World network, we create an equivalent
network (with the same number of nodes and edges) with such characteristics,
following the algorithm proposed in [30]. In the Figure 4 we present the results
of the simulation of our model in such network that uses a Poisson function.
We notice that the results are very similar to the results of the random network
Figure 3 (right), although there is a larger percentage of nodes that saturates.
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We performed a similar analysis in a Scale Free network. Preserving the di-
mensions of the network (number of nodes and edges), we rewired the edges
aiming that its degree distribution follow a power law distribution with λ=3,
accordingly to [13]. In Figure 5 we see that although the network uses a Poisson
function it exhibits a very similar behavior of the randomly created network in
Figure 3 (left) where Θ(t) soon converges to zero. The main difference between
these results is that in the Scale Free network the majority of nodes dies and in
the random network the majority of nodes saturates.

5 Conclusions and Future Work

In the last few years many advances has been made in network science, including
the discovery of Small World properties and its numerous applications, and the
characterization of Scale Free networks. Recurrent patterns of local connectiv-
ity were also shown to play important role in complex networks, and several
algorithms and techniques have been proposed to find and characterize such
structures. In this paper we focus on the analysis and understanding of network
flow dyanmics. While preliminary, the work proposes a simulation-based model
to represent the flow of information. At each time step, each node receives an
input from its incoming neighbors and accordingly to a function produces an
output that is broadcasted to its output neighbors.

We first introduce two different functions that for node activation: a Hill
function and a Poisson function. The Hill function rapidly leads the network to an
unrealistic state where almost the totality of nodes are either dead or saturated.
In the other hand the Poisson function presented more dynamic results where
the percentage of nodes saturated is low and the percentage of nodes dead is not
so high, thus the network maintain itself, without any external interference, in
such stable state.

We discussed the flow analysis for a Small World network, in contrast to a
comparable random network. The results showed, apparently, a similar behavior
between the two topologies. The major difference is an increase in the percent-
age of nodes that saturated, perhaps due to the clustering characteristic of the
network that lead the information reach faster between any pair of nodes of the
network. We intend to deeper investigate these results aiming to provide a more
solid comparison. We also compared the results of such randomly created net-
work with a Scale Free that has the same dimensions. We perceived that due to
the majority of nodes only have a couple edges the network rapidly evolves to a
completely dead state.

As part of our future work, we intend to further investigate the specific phe-
nomena in Small World networks and Scale Free networks that lead to such
behavior presented here. For example, if we change the exponent λ of the power
law distribution in Scale Free network the results will remain the same? If the
network is more clustered in our Small World version the value of Θ(t) will in-
crease ou decrease? We also aim to include different motifs in the network and
see how if affect the dynamic of the network locally. The possibilities are very
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broad, thus we also need to come up with other ways to measure the dynamic
flow of information of the network
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Abstract. People always need to find partners to engage in a lot of daily
activities. Therefore, applications of partner matching are significant to
help people to find good partners easily. In this paper, we proposed a
framework which can match partners for an activity community. In order
to improve the matching performance, all users are divided into groups
based on a specific classification tree that is built for a specific activity.
Maintaining as many stable partnerships as possible in the community
is the optimization goal. To achieve the goal, various factors are consid-
ered to design matching functions. The simulation results show that the
proposed framework can help most of people find stale partners quickly.

Keywords: Social networks, Partner matching, Stable partnership.

1 Introduction

A lot of daily activities require two or more people to collaborate. For instance,
playing tennis, squash, rock climbing, and ballroom dancing. However, a lot of
people liking these activities suffer from finding good partners. Some people
have partners; however, it is still impossible to engage in these activities at the
time they preferred since their partners might not be available at that time.
Also, partners with different levels usually don’t enjoy playing with each other.
Everyone wants to have good partners since good partners can help each other
improve their performance and skills efficiently. Lacking of matched partners
really can ice people’s enthusiasm for these activities. An application which can
find partners for people has high practical utility. It encourages more people to
engage in these activities.

Nowadays, social networks have integrated into our daily life [1–5]; therefore,
using social networks to find partners are feasible. However, randomly finding
partners through social networks are not efficient. It is difficult and takes time
for users to find partners who meet their requirements via social networks. Most
importantly, people take various risks to be partners with strangers. Therefore,
people rarely try to find partners via social networks. This motivates us to design
an application to find partners for people.
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Usually, people engage in these activities at places such as a gym, fitness
center, or classroom. Obviously, people don’t want to change their activity lo-
cations for a new partner. Therefore, the searching pool should be composed of
people who engage in the same activity at the same place. Partner matching
applications can be used by these places to help their members to have better
experiences and also attract more people.

The challenges of designing a partner matching framework are as follows:

1. How to find a good partner for a user? A good partner for one may be bad
for another since users have different definitions of good partners. Therefore,
we cannot use the same criteria for every user.

2. How to make the utmost possible effort to benefit all users? It is very difficult
to satisfy every user. Then, how to match partners to benefit as many users
as possible is a complicated optimization issue.

3. How to protect every user’s privacy? In order to match partners very well,
users need to provide their personal information such as age, gender, years
of experience, and contact information.

In this paper, we proposed a partner matching framework to address this
issue. The rest of the paper is organized as follows. Section 2 reviews related
work. The proposed mechanism is introduced in Section 3. Section 4 shows the
simulation results. Section 5 concludes our work.

2 Related Work

Gale and Shapley proposed an algorithm to solve the college admissions and the
stability of marriage problem [6]. The stable marriage problem is the problem
of finding a stable match between two sets of elements given a set of preferences
for each element. A matching is a mapping from the elements of one set to the
elements of the other set. David Gale and Lloyd Shapley proved that, for any
equal number of men and women, it is always possible to solve the stable marriage
problem and make all marriages stable. The algorithm in [6] is not suitable
for the partner matching problem since unlike the marriage relationship, we
cannot divide people into two sets. In [7], the preferential partner selection in an
evolutionary study of prisoner’s dilemma was studied. Marriage and employment
relationship matching problem is addressed in [8]. [9] studied the network partner
selection.

To the best of our knowledge, existing algorithms are not suitable for solving
partner matching problem efficiently. Obviously, randomly matching partners
or round-robin will not find stable partnerships quickly since people will keep
requesting a new partner when they are not satisfied with the current one. In
this paper, we proposed a mechanism to matching partners for an activity com-
munity.

3 Partner Matching Framework

In this section, we introduce our proposed partner matching framework. People
who need to find partners can send a request. The partner searching pool includes
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people who request partners and all members of a certain place where the activity
is held. Even though some members have no intention to send a partner matching
request, they might accept a partner request from others. Therefore, we also add
them to the searching pool.

A profile is created for every member in the searching pool. An example
profile for an indoor rock climbing gym is shown in Table 1 [10]. For different
activities, the profile is designed specifically according to the features of the
activity. When a climber uses a harness and rope as protection from falling,
he/she needs a belayer to operate these belaying devices to ensure a falling
climber does not fall very far. It is important for the belayer to closely monitor
the climber’s situation, as the belayer’s role is crucial to the climber’s safety.
Therefore, a rock climber usually carefully picks a partner. Usually, an indoor
rock climbing gym requires climbers to pass a test to get a belay certification.
A climber without a certification is not allowed to belay other climbers. There
are 2 belay certification levels, top rope and lead climbing. A climber who can
do lead climbing also can do top rope, but not vice versa. The climb route level
is from 5.6 to 5.13 usually for an indoor gym. Climbers like to be partners with
someone who has similar or more advanced climbing skills than themselves, thus
they will improve more quickly.

Table 1. Member profile for a rock climbing gym

Name Rachel
Phone 555-555-5555
Email rachel@partnerfinding.com
Gender female
Age 35
Year of experience 2
Belay certification level Top rope
Climbing level 5.9-5.10
Climbing time weekday evenings

For request senders, we can obtain their profiles easily when they send the
requests. For the regular members of the place, we use their membership infor-
mation to fill the profile, thus some information might be missing such as years
of experience, level, and time schedule. A time schedule can be summarized ac-
cording to check-in records of the past few months. If someone does not have
a regular time schedule, we use the term random to fill it. Also, we can use
their years of membership as their estimated years of experience. Then, use the
average values of other members with the same years of experience to fill other
missing items. For these members with estimated items in their profiles, we put
an estimated mark on them.

When a user signs in to use the partner matching application, he/she needs
to complete a form to describe their requirements to potential partners. An ex-
ample request form is shown in Table 2. The request form is designed according
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to features of activities. Requirements are divided into two categories, strong
requirements and weak requirements. Strong requirements are more important
for users; thus strong requirements must be totally or partially met. Weak re-
quirements don’t affect collaboration experience of partners obviously, so these
are used for ranking search results when multiple candidates are found. For the
climbing gym example, belay certification level, climbing level, and scheduling
are strong requirements. Age and gender are weak requirements.

For the strong requirement items, users must specify a value or choose a range.
For each requirement item, there are a few options from which to choose. In Table
2, we use semicolons to separate options. For some requirement items, users can
choose more than one option. For instance, in Table 2, users can choose more
than one Schedule and Climbing level option. But users can only choose one
option at Belay certification level. The domain of a requirement item which
has values within a certain range are divided into several continuous intervals.

Table 2. Partner request

Requirement Option Weight

Belay certification level Top rope ; Lead climb 0.4
Climbing level 5.6-5.7 ; 5.8-5.9 ; 5.10-15.11 ; 5.12 or above 0.3
Schedule weekday mornings ; weekday afternoons ; 0.2

weekday evenings ; weekends
Preferred gender male ; female ; none 0.05
Preferred age under 30 ; 31-40 ; 40 or above ; none 0.05

3.1 Problem Definition

The optimization goal of the partner matching application is to construct as
many stable partner relationships as possible. A partner relationship is stable
when each party thinks he/she found the best partner already or he/she cannot
find a better partner. The rating system in Table 3 is used for rating partners.

A set P is created including everyone who has either sent a partner request
or accepted a partner request. For a person pi in P , Rpi is the rate he/she gave
to the current partner or the previous partner if he/she does not have a partner
currently. If a person pi sent a request, but never found a partner, Rpi = 0. The
goal of matching partners is to

Maximize

|P |∑

i=1

Rpi (1)

3.2 Classification

If a user requests a partner, the system recommends a list of members who
meet or almost meet requirements of the user. In order to efficiently find the
members who meet the requirements, we use classification techniques to divide
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Table 3. Partnership rating

Score Rate Action Possibility of
accepting a new partner

4 Excellent None 0%
3 Good Little chance of accepting new partners 25%
2 Fair Big chance of accepting new partners 50%
1 Poor Request a new partner 75%

all members in the searching pool into groups. SP is the searching pool. SP =
{m1,m2, · · · ,m|SP |} where mi is the profile of member i in the searching pool.

Assume there are n requirements, r1, r2, · · · , rn, in the partner request form.
For every requirement ri, we assign a weight wi for it.

n∑

i=1

wi = 1 (2)

The more important the requirement is, the bigger weight is assigned. Opinions
of experts of the activity are necessary for weight assignment. Table 2 shows the
weight assignment for the rock climbing gym example. Usually, the total weight
of weak requirements are not more than 0.1 since they are not so important
compared to strong requirements.

Assume there are s strong requirements. We sort strong requirements in
descending order by weights, and store in the list RS = r1, r2, · · · , rs, where
wi > wj if i < j. Each requirement ri in RS has oi options. rik indicates the
kth option of requirement ri. These strong requirements are used to divide all
members into groups. The requirement with bigger weight is applied first. The
purpose is to reduce the searching range when processing a user’s request. A
classification guide tree is used to help the group division process.

Initially, we create an empty classification tree T . A tree node t has the struc-
ture {rik ,member list, child list}. rik is the classification attribute used for the
current tree node. member list includes all members who fall into the group that
the current tree node represents. child list contains links to child nodes of the
current tree node. In the classification tree, all members are in the leaf nodes;
therefore, for any tree node, either member list or child list is empty.

Algorithm 1 describes the basic process of building a classification tree. First,
the root node is created. its member list initially includes all members in the
searching pool. Then, all options of the requirement r1 are used as grouping
criteria to divide all members into separate groups. For each option, a new group
is generated. We create a new tree node for each group to store the members in
this group. Also, all these new created nodes are children of the current node.
Then, for these new nodes, options of the next requirement in the listRS are used
to partition their members to new groups. This process is repeated until the last
strong requirement is applied. However, if members are not evenly distributed
based on these options of requirements or there is no sufficient members, a lot
of sparse nodes (groups without member or just with few members) will be
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Algorithm 1. Classification

Input: SP , RS, OS, and classification threshold
Output: Classification tree T
1: create a queue Q, set Q empty initially
2: create a tree T with only the root node root where root = {null, SP, ∅}
3: add the root node root to Q
4: while Q is not empty do
5: t = dequeue(Q) {return the first node in the queue}
6: if |member list| of t is greater than classification threshold then
7: if the first element classification attribute rik of t is null then
8: classification requirement = r1
9: else if i of rik is less than s {did not apply the last strong requirement yet}

then
10: classification requirement = ri+1

11: end if
12: for each option rjk of classification requirement do
13: create a tree node c = {rjk , ∅, ∅}
14: remove every member who meet rjk in member list of t and add to the

member list of c
15: if member list of c is not empty then
16: add c to the child list of t
17: add c to Q
18: end if
19: end for
20: end if
21: end while

generated. The tree with many sparse nodes is not desired since it leads to poor
searching performance. In order to avoid generating too many sparse nodes, a
classification threshold is predefined. When the number of members of the
current processing node is less than classification threshold, it is not necessary
to continue the partition process.

The classification tree of the rock climbing gym example is shown in Fig. 1.
Usually, there is no 5.12 and 5.13 top rope routes in an indoor rock climbing
gym, so there is no child node for level 5.12-5.13 for top rope. Also, lead climbers
don’t climb easy routes like level 5.6 and 5.7, so there is no node for level 5.6-5.7
for lead climb. The node for level ≥ 5.12 of lead climb is not partitioned further
since there are not enough climbers in the group to support further partition on
schedule [10].

After the classification tree is generated, we can search members who meet
certain requirements easily via visiting from the top to the corresponding leaf
node. If a new member just joins in, we can use his/her profile to search the
tree and find the matched leaf node to insert the member. Each member in the
searching pool is stored in one leaf node of the classification tree T . If a member’s
certain attributes in the profile are updated, we can relocate the member to the
proper leaf node by removing the member and then reinserting into the tree.
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Top rope Lead climb
Belay certification

Climbing level

5.6-5.7
5.8-5.9

5.10-5.11

ScheduleScheduleSchedule Schedule

Climbing level

5.8-5.9 5.10-5.11
>=5.12

ScheduleSchedule

weekday morning weekday afternoons weekday afternoons weekends
weekday morning weekday afternoons weekday afternoons weekends

... ... ...

Fig. 1. Classification tree of rock climbing gym

3.3 Partner Matching

Maintaining as many stable partnerships as possible is the optimization goal
of the partner matching application. When a partner request pr is received,
we will search the classification tree to find all members who meet the strong
requirements of pr and add them to candidate set Cpr. If there is no more
than 10 candidates found in the corresponding leaf node, add left and right
direct sibling’s members into the candidate set. If a user does not think his/her
current partner is the best partner he/she can find, he/she will keep trying to
send partners requests or accept requests until the best match is found. In order
to make each user find their matched partner as early as possible, the method of
ranking candidates becomes significant. For a member m in Cpr, function f(m)
is designed to measure how well the member m matches the request pr.

f(m) =

n∑

1

wi ∗meeti (3)

wi is the weight of requirement i. meeti is 1 if member m meets requirement
i, otherwise, meeti is 0.

How well a pair of partners match relies on both parties. The candidate with
the largest f(m) is the best candidate for the requester. However, the requester
might not meet the expectation of the candidate. Therefore, only considering
the benefits of the requester is not sufficient. Benefits of candidates are also
important for maintaining stable partnerships.

f(m) = (

n∑

1

wi ∗meeti) ∗ (
n∑

1

wi ∗meetim) (4)

meetim is used to indicate wether the requester meets the candidate m’s
requirement i. f(m) in Formula 4 are suitable to measure how well the requester
and the candidate m match each other.

If the best candidate is satisfied with the current partner, the possibility
he/she accepts the request would be low. If the request sender was rejected
by the best candidate, he/she also possibly misses the chance to win the second
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or third best candidate. Thus, the possibility of being accepted by a candidate
also need to be considered when we rank all candidates.

f(m) = (

n∑

1

wi ∗meeti) ∗ (
n∑

1

wi ∗meetim) ∗ ratem (5)

As shown in Formula 5, we add one more factor ratem which is the possibility
candidate m accepts a new request. The estimated possibility of accepting a re-
quest is related to the rating of the current partner. Table 3 shows our estimated
possibilities. If a person never has a partner, we set the ratem to 50%.

f(m) is used to rank all candidates of the request pr. Then, the system will
send a request to the top 1 candidate. The request includes the profile of the
request sender. To protect privacy of members, personal information such as
name and contact information are not included. Age is sent as a range format
instead of using exact age. If the request is accepted, a new partnership is estab-
lished. Otherwise, send a request to the next candidate in the ranked list. The
system repeatedly sends the request out until someone accepts the request or
all candidates are probed already. A reply waiting time is set up. If the receiver
did not reply in time, the request is withdrawn and continues to probe the next
candidate. If no one in the candidate set accepts the request finally, the partner
request sender can file another request. Candidates who made a rejection prior
might accept the request from the same sender since they are not satisfied with
the current partner.

Since a member changes a partner when there is a better choice, most members
will have a stable partnership over time. A few members with improper behaviors
are not capable of maintaining a long term partnership. Therefore, they have to
keep changing partners.

4 Simulation

We use the rock climbing gym example to evaluate the proposed framework.
In our simulation, there are total 500 members. 100 of them request partners
initially. If a member gave the current partner a poor rating, he/she definitely
sends a new request. Whenever someone accepts the request, he/she will break
the partnership with the current partner. The member abandoned by the partner
will send a new partner request to find a new partner.

We use the ranking function f(m) in Formula (3), (4), and (5) respectively
to evaluate the performance of our partner matching mechanism. The matching
program is run by rounds. In each round, a person can only send or receive one
request. Fig. 2 shows the percentage of matched partners within 20 rounds. The
percentage of matched partners is calculated by the following Formula 6.
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Fig. 2. Percentage of matched partners

Fig. 3. Average rate to partners

the number of partner requesters who currently have a partner

the total number of partner requesters
(6)

As seen in Fig. 2, the effectiveness of Formula (3) is the worst among these
3 formulas. The reason is that only the requester’s need is considered; however,
a request might not satisfy his/her best candidate’s requirements. Formula (4)
and (5) performs better since requirements of both requesters and candidates
are considered. Overall, Formula (5) achieves the fastest matching progress since
it also considers the possibility of the candidates accept the request.

The average rate to partners is shown in Fig. 3. Formula (4) and (5) perform
better than Formula (3) since Formula (3) does not consider the need of can-
didates. Thus, if the chosen candidate accepted the request, the possibility of
satisfaction is not high. Formula (4) has higher average rate to partners than
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Formula (5) because it always chooses the best matched partners for each other.
However, Formula (5) sacrifices the best match to achieve a higher request ac-
ceptance rate. Overall, Formula (5) has the fastest matching progress and gains
acceptable partner rate scores.

5 Conclusion

In this paper, a partner matching mechanism is proposed to help people find
partners in an activity social community. A classification tree is used to partition
users into groups to reduce the candidate searching time complexity. To achieve
the optimization goal to maintain stable partnerships in the community, we
design 3 matching functions. The simulation results show that the proposed
framework gains good partner matching performance. In our future work, we
will consider partnerships which require more than two parties.
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Abstract. In this paper we present an original approach for commu-
nity detection in complex networks. The approach belongs to the family
of seed-centric algorithms. However, instead of expanding communities
around selected seeds as most of existing approaches do, we explore here
applying an ensemble clustering approach to different network partitions
derived from ego-centered communities computed for each selected seed.
Ego-centered communities are themselves computed applying a recently
proposed ensemble ranking based approach that allow to efficiently com-
bine various local modularities used to guide a greedy optimization pro-
cess. Results of first experiments on real world networks for which a
ground truth decomposition into communities are known, argue for the
validity of our approach.

Keywords: Community detection, complex networks, seed-centric al-
gorithms.

1 Introduction

Complex networks are frequently used for modeling interactions in real-world
systems in diverse areas, such as sociology, biology, information spreading and
exchanging and many other different areas. One key topological feature of real-
work complex networks is that nodes are arranged in tightly knit groups that are
loosely connected one to each other. Such groups are called communities. Nodes
composing a community are generally admitted to share common proprieties
and/or be involved in a same function and/or having a same role. Hence, un-
folding the community structure of a network could give us much insights about
the overall structure a complex network. Works in this field can be roughly
divided into two main classes:

– Computing a network partition into communities [12,36], or possibly detect-
ing overlapping communities [27,38].

– Computing a local community centered on a given node [6,4,17].

Recently, an increasing number of work has been proposed with the idea of
merging both kind of approaches. The basic idea is to identify some particular
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nodes in the target network, called seed nodes, around which local communities
can be computed [16,29,33]. The interest in seed-centric approaches has been
boosted in the recent years following the demonstration of serious limitations
of modularity optimization based approaches considered till lately as the most
efficient approaches [14,20]. In this paper we propose an original seed-centric
community detection algorithm called: Yasca. Instead of expanding commu-
nities around selected seeds as most of existing approaches do, we apply an
ensemble clustering approach to different network partitions derived from local
communities computed for each selected seed. Local communities are themselves
computed applying a recently proposed ensemble ranking based approach that
allow to efficiently combine various local modularities used to guide a greedy
optimization process [17].

The reminder of this paper is organized as follows. Next in section 2, we review
briefly the field of seed-centric approches for community detection. The proposed
algoithm is detailed in section 3. First evaluation on benchmark networks are re-
ported and commented in section 4. Comparaison with top algorithms of the state
of the art is also made in the same section. Conclusions are given in section 5.

2 Seed-Centric Community Detection Algorithms

Seed-centric approaches constitute an emerging trend in the field of community
detection in complex networks. The underlaying idea of these approaches is to
select a set of nodes (i.e. seeds) around which communities are constructed.
Being based on local computations, these approaches are very attractive to deal
with large-scale and/or dynamic networks. A quick review study of existing
approaches allow to identify the following criteria for classifying seed-centric
algorithms:

– Seed nature : A seed can be single node [18,33], a set of nodes [16] , or a
connected subgraph [29].

– Seed number : The number of seed nodes can be pre-determined [18,7] or
computed by the approach itself [16,33].

– Seed selection policy : The seed selection process can be : random [18] or
informed [16,33,29].

– Seed community computation : The community construction can be made
applying consensus techniques [32,26,37,8], expansion techniques [4,29,28]
or agglomeration techniques [16,33,18].

Next, we present YASCA an original approach that apply an ensemble cluster-
ing approach that aggregate different bi-partitions of the whole network inferred
from different local communities computed around a set of seeds selected in an
informed way.
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3 YASCA: The Proposed Algorithm

3.1 General Description

In this section we give the general outlines of the proposed algorithm: YASCA1

algorithm. Algorithm 1 sketchs the outlines of proposed approach. This is struc-
tured into three main steps:

Algorithm 1 The Yasca community detection algorithm

Require: G =< V,E > a connected graph,
1. C ← ∅
2. S ← compute seeds(G)
3. for s ∈ S do
4. Cs ← compute local com(s,G)
5. C ← C + (Cs, Cs)
6. end for
7. return Ensemble Clustering(C)

1. The first step is to compute a set of seed nodes S → V . This is the role of
the compute seeds() function (line 2 in algorithm 1). Different selection
strategies can be applied for seed election as mentioned in previous section.
However, while most of existing approaches seek for seeds that are likely to
be at the core of computed communities, we search here to locate seeds as
nodes having various positions in the graph. This will be detailed further in
section 3.2

2. For each seed node s ⊂ S we compute its local community Cs. This is the
role of compute local com() function (line 4 in algorithm 1). Different
algorithms can be applied for local community detection [4,6,2]. We mainly
apply here a recent algorithm proposed in [17] that apply a multi-objective
greedy optimization approach. The set of vertices V can then be partitioned
into two disjoint sets : Pv = {Cs, Cs} where Cs denotes the complement of
set Cs.

3. Finally, we apply an ensemble clustering approach [34] in order to merge
the different bi-partitions obtained in step 2. This is the role of the Ensem-
ble Clutering() function (line 7 in algorithm 1). The output of this process
is the taken to be the final decomposition of the graph into communities.

The overall complexity of the algorithm is determined by the highest com-
plexity of the three above described steps. This depends on specific algorithms
applied for implementing each step. However, the ensemble clustering step is
usually the most expensive step, computationally speaking. In this work, we ap-
ply a classical cluster-based similarity partitioning algorithm [34] that have the
following complexity in our case O(n2×2×|S|) ≡ O(n2), where n is the number
of nodes of the graph, 2 is the number of clusters in each clustering and |S| is
the number of different partitions to merge.

1 Yet Another Seed-centric Community detection Algorithm
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3.2 Seed Selection

Most existing seed-centric approches search for seeds that are likely to be at the
core of communities to be detected. This is mainly the case of leader-based ap-
proaches [16,33,18] and set-seeds based approaches [30]. However, the basic idea
of our algorithm is to compute a set of seed nodes that occupy diverse positions
in the network. Each node will provide a bi-partition of the network from its
own point of view. Our intuition is that merging these diverse bi-partitions can
provide a good partition of whole network into communities.

Our seeding strategy is inspired form the work of [21] that show that real
complex networks are often structured in one huge bi-connected core linked to
number of small-sized sub-graphs named whiskers by a set of bridges. Before
defining formally, the three mentioned concepts, we recall first the definition of
a bi-connected component in a graph.

Definition 1 Given a graph G =< V,E > a biconnected component is a maximal
induced subgraph G′ =< V ′, E′ > that remains connected after removing any
node and its adjacent edges in G′.

The size of a biconnected component is defined as the number of edges. We
can now define the three above mentioned concepts:

Definition 2 A biconnected core is a maximum size connected graph of G after
removing all bi-connected components of size one.

Definition 3 A bridge is a biconnected component of size one which is directly
connected to the biconnected core.

Definition 4 A whisker is a maximal subgraph of G that can be detached from
the biconnected core by removing a bridge.

We call articulation nodes, nodes that are at the intersection of bridges and
the biconnected core. Our seeding strategy consists on composing the seed set by
the set of articulation nodes to which we add the top high central nodes in the
biconnected core. This allows to select nodes playing central role in the major
part of the network (the biconnected core) and nodes controlling the periphery
of the network (articulation nodes). The computation of the biconnected core
and the articulation node is done using a variant of the depth-first traversal of
a graph [15] in a nearly linear time complexity.

3.3 Local Community Detection

A main stream in the area of local community detection consists on applying
greedy optimization algorithm that starts to explore the network from the query
node vq. Let D be the set of current explored nodes. We can classify nodes in V
at any time during the exploration process, into three disjoint sets:

– The core set (denoted by C) : is composed of explored nodes whose all neigh-

bors are also explored. In a formal way. We have C = {x ⊂ V s.t. Γ̂ (x) ∈ D}.



YASCA: An Ensemble-Based Community Detection Algorithm 661

– The border set (denoted B): is composed of explored nodes that have at least
one unexplored neighbor node. Formally, B = {x ⊂ D : ≥v ⊂ Γ (x) : v ∪⊂
D}.

– The shell set (denoted by S) : is composed of nodes partially explored. These
are nodes that have some neighbors in the set B. Formally, S = {x ⊂ D :
Γ (x) ◦D ∪= φ}.

– The set of unexplored nodes (denoted by U): This is the set of nodes in V
that are not explored at all. Formally, U = {x ⊂ D ⊆ S}.

Notice that D is equal to B⊆C. Figure 1. illustrates the different sets of nodes
at a given time t during the exploration process.

Fig. 1. Illustration of the definitions of the different sets of nodes during the exploration
the neighborhood of a query node vq

A greedy optimization is an iterative process: Initially, C is set to the singleton
{vc}, B is initialized to the empty set and S is set to Γ (vc) the direct neighbors of
vc. At each iteration, nodes in S are ranked in function of an objective function
Q called also local modularity function. The top ranked node is added to the set
B. Then all three sets C, B and S are updated. The algorithm iterates while S
is not empty and if the local modularity induced by the selected node increases.
Different algorithms apply different objective functions [6,22,4]. We apply here
an algorithme proposed in [17] that consists apply a multi-objective optimization
strategy using ensemble-ranking approaches: Let Q = (Q1, . . . , Qn) be the set
of applied objective functions. Let SQi be the ranked list of elements of S in
function of Qi. At each iteration of the greedy optimization algorithm, we select
the node that is ranked first after fusion of the obtained ranks {SQ1 , . . . , SQk}.
Ensemble ranking (a.k.a rank aggregation, rank fuse or social choice algorithms)
approaches can be used to obtain the final ranking of elements in S [1,10,5,35].

Let vw ⊂ S be the winner node: the node that is ranked first after the rank
merging process. Let Qi(vw) be the ith modularity obtained from adding vw to
B. The algorithm iterates if there exist at least one local modularity that is
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enhanced or equal to the same modularity computed for the previously winner
node selected in the previous iteration.

3.4 Ensemble Clustering

The goal of an ensemble clustering approach is to compute a clustering (here
a partition) that combine the different obtained partitions. One widely applied
method is based on constructing a consensus graph out of the set of partitions
to be combined [11,34]. The consensus graph Gcons is defined over the same set
of nodes of the initial graph G. Two nodes vi, vj ⊂ V are linked in Gcons if there
is at least one partition P y

Qx
where both nodes are in a same cluster. Each link

(vi, vj) is weighted by the frequency of instances that nodes vi, vj are placed in
the same cluster. Different approaches have been proposed to detect communities
in the consensus graph [34,9]. In this work we propose applying to the consensus
graph a community detection algorithm that can handle unconnected, weighted
graphs. The Louvain algorithm [3] is one good option that we have adopted for
that purpose.

4 Experiments

In a first experiment, we evaluate the proposed approach on a set of four widley
used benchmark networks for which a ground-truth decomposition into commu-
nities are known. These networks are the following:

Zachary’s karate club. This network is a social network of friendships be-
tween 34 members of a karate club at a US university in 1970 [39]. Following
a dispute the network was divided into 2 groups between the club’s adminis-
trator and the club’s instructor. The dispute ended in the instructor creating
his own club and taking about half of the initial club with him. The network
can hence be divided into two main communities.

Dolphins social network. : This network is an undirected social network re-
sulting from observations of a community of 62 dolphins over a period of 7
years [23]. Nodes represent dolphins and edges represent frequent associa-
tions between dolphin pairs occurring more often than expected by chance.
Analysis of the data revealed two main groups.

American political books. This is a political books co-purchasing network.
Nodes represent books about US politics sold by the online bookseller Ama-
zon.com. Edges represent frequent co-purchasing of books by the same buy-
ers, as indicated by the ”customers who bought this book also bought these
other books” feature on Amazon. Books are classified into three disjoint
classes: liberal, neutral or conservative. The classification was made sepa-
rately by Mark Newman based on a reading of the descriptions and reviews
of the books posted on Amazon.

Next figure shows the structure of the selected networks with real communities
indicated by the color code. In table 1 we summarize basic characteristics of
selected benchmark real networks.
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(a) Zachary Karate Club Network [39] (b) US Politics books network [19]

(c) Dolphins social network [23]

Fig. 2. Real community structure of the selected benchmark networks

Table 1. Characteristics of some well-known benchmark networks

Network n m # com reference

Zachary club 34 78 2 [39]
Political books 100 441 3 [19]
Dolphins 62 159 2 [23]

In the seeding phase we selected in addition to the articulation nodes the top
15% central nodes in the biconnected core (using the degree centrality). For the
consensus graph we keep a link if the associated frequency is equal or greater
than 0.5 (these are the best parameters when using the degree centrality for
selecting seeds). Next figure shows the obtained results on the three datasets
compared to state of the art algorithms : Louvain [3], Infomap [24], Walktrap
[31] and edge-betweenness based modularity optimization algorithm (denoted
Girvan algorithm in the figure) [13]. Evaluation is made in function of the nor-
malized mutual information ( NMI ) indice that measures the similarity between
computed partition and ground-truth partition [25]. Results show that YASCA
yields better results than other algorithms on these small benchmark networks.
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Fig. 3. Comparative results on the three selected dataset in terms of NMI

These results needs confirmation on large-scale datasets. The problem to cope
with is to find large-scale networks with reliable known ground-truth partitions.

5 Conclusion

A new seed centric algorithm for community detection is proposed. First results
on small networks show the potential of this algorithm compared to the state of
the art algorithms. Further investigations about the effects of different parame-
ters of the algorithm are considered (seed selection strategy, the local community
algorithm to be used, etc.). Validations on large-scale graphs are also scheduled.
This requires to parallelise the step of local community identification of each
seed node.
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Abstract. With the development of the online social network (OSN),
huge number pieces of information are propagating over the OSN all
the time which has formed the information diffusion network. We find
that during the process of information spreading, there exists not only
the significant spreaders who play important role in the process of in-
formation transmission, but also some special structure that we call it
key structure. In this paper, we define the problem in the large social
network and propose an algorithm to mining the key structure (abbre-
viation as MKS). We evaluate our algorithm on the SINA microblog
datasets and compare it with the classical algorithm PageRank. Em-
pirical results indicate that our proposed method can yield out better
performance.

Keywords: Social Network, Influential, Spreading Process, Key Struc-
ture.

1 Introduction

Online Social Network (OSN) has become a major service of Internet for people
to communicate with each other, such as Twitter, WeChat. Microblogging has
become an extremely fashionable form of social media over the past year or so.
Similar to weblogs, people most record and share interesting information through
following networks. Compared to blogs, microblogging encourages fast updating
by limiting post size, restricting the content format to text, and by supporting
easy mobile updating. The differences of function potentially are creating new
ways for people to accumulate and share information. Social influence can be
described as power – the ability of a single to influence the actions or thoughts
of others.

Information and influence propagation in social network has been actively
studied for decades in the fields of psychology, sociology, communication, mar-
keting, and political science. For online social networks, researchers has summa-
rized the social structures into three categories: Pyramid, Circular, and Hybrid.
An example of the pyramid structure is Microblogging. Influences such as CNN
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have millions of followers, while the influencer does not follow back. Face-book
is an example of the circular social structure, because Face-book users become
friends only by selecting from a number of people or brands. The hybrid social
structure combines the circular and pyramid-shaped community frameworks.

The rest of the paper is organized as follows. Section 2 gives the description
of the related work. Section 3 presents the problem definition and our proposed
algorithm in detail. In section 4, we gives experimental results by using a real
dataset - online social network SINA microblog. Section 5 summarizes our work
and presents the future work.

2 Related Work

Complex network are pervasive to natural and social sciences, ranging from so-
cial and information networks to technological and biological networks[1,2]. The
spreading processes of epidemic information attract increasing attention in com-
plex network studies[3], and researchers tried to find the reason that why infor-
mation spread so quickly and influential[4,5]. Spreading is a ubiquitous process,
which describes many important network activities[6,7]. And how to control the
information spreading process is of particular interests. In the spreading process,
the identification of influential nodes is a crucial issue according to the assump-
tion because that highly influential nodes are more likely to be infected and to
infect a large number of nodes[7]. At the same time, this paper[7] also shows that
the best spreaders are not necessarily the most connected people in the network
and the most efficient spreaders are those who located within the core of the
network as identified by the k − core decomposition analysis[8].

Basically, the principle of the k− core decomposition is to assign a core index
k to each node such that the nodes with the lowest values are located at the
periphery of the network while the nodes with the highest values are located
in the center of the network. Thus, the innermost nodes forms the core of the
network. Brown et al.[9] observed that the results of the k−shell decomposition
on Twitter network are highly skewed. Therefore they proposed a modified al-
gorithm which uses a logarithmic mapping, in order to produce fewer and more
meaningful k − shell values. Cataldi et al.[10] proposed to use the well-known
PageRank algorithm[11] to assess the distribution of influence throughout the
network. The PageRank value of a given node is proportional to the probability
of visiting this node in a random walk of the social network, where the set of
states of the random walk is the set of nodes. The methods we have just de-
scribed only exploit the topology of the network, and ignore other important
properties, such as nodes’ features and the way they process information.

According to the observation, we can find that most OSNs members are pas-
sive information consumers. Romero et al.[12] developed a graph-based approach
similar to the well-known HITS algorithm, which assigns a relative influence
and a passivity score to every users based on the ratio of which they forward
information. However, no individual can be a universal influencer, and influen-
tial members of the network tend to be influential only in one or some specific
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domains of knowledge. Therefore, Pal et al.[13] developed a non-graph based,
topic-sensitive method. To do so, they defined a set of nodal and topical features
for characterizing the network members. Using probabilistic clustering over this
feature space, they ranked nodes with a within-cluster ranking procedure to
identify the most influential and authoritative people for a given topic.

However, most of the theoretic researches above are all about the identification
of influential nodes which are to be unrelated in the set of nodes. In this study,
we propose a new algorithm which combines the cluster detection and structure
hole to mine the key structure of the spreading process. The key structure is
organized by a set of nodes which are connected with each other.

3 An Algorithm to Mining the Key Structure in Large
Social Network

Giving a network consisting of N nodes and M links. The goal of our study is
to mine the key structure that ensure the influence of information maximization
of the diffusion network which formed by the information spreading process.
As mentioned above in Section 2, our algorithm combine both the algorithm of
cluster detection and the structure hole. And in this paper we use the (α, β) −
cluster[14] to find the overlapping communities and HIS model to identify the
structure holes[15].

3.1 The (α, β) − cluster Algorithm

What is a good cluster in a social network? Different from the cut-based graph
clustering algorithm producing a strict partition of the graph, the example in
Figure 1 motivates a new formulation of the graph clustering problem which does
not stipulate that each vertex belongs to exactly only one cluster. The objective
of the (α, β)− cluster algorithm is to identify clusters that are internally dense,
i.e., each vertex in the cluster is adjacent to at least a β−fraction of the cluster,
and externally sparse, i.e., any vertex outside of the cluster is adjacent to at most
an α− fraction of the vertices in the cluster.

Fig. 1. Overlapping clusters[14]

Definition1. Given a graph, G = (V,E), where every vertex has a self-loop
C ⊂ V is an (α, β) − cluster if
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Internally Dense: ∀v ∈ C, |E(v, C) ≥ β|C|
Externally Sparse: ∀v ∈ (V − C), |e(u,C) ≤ α|C|, Given 0 ≤ α ≤ β ≤ 1, the

(α, β) − cluster problem is to find all (α, β)− clusters.
The new clustering criterion does not seek a strict partitioning of the data.

From Figure 1, you can see why clusters can overlap. In Definition 1, we can
notice that when β → 1, the cluster C approaches a clique, and when α → 0,
an (α, β)− cluster tends to a disconnected component. We want α < β because
nodes outside of a cluster should own fewer neighbors in the cluster than node
that belong to the cluster. Based on the above analysis, we take (0.3, 0.5) as
the parameters values of (α, β) which could achieve a good effect. The details of
(α, β) − clustering can be get from the literature[14].

3.2 The HIS Model

According to the theoretical analysis[15], we assume a setting in which the set V
which is consisted of n distinct users form l groups C = {C1, · · · , Cl}, where C
is the set of communities. A utility function Q = (v, C) is defined for each node
to measure its degree to span structural holes. Formally, we have the following
definition:

Definition2.Top-k Structural Hole Spanners[15]. Let G = (V,E) denote a social
network, where V = {v1, v2, · · · , vn} is a set of n nodes, and E ∈ V ×V is a set of
undirected social relationships between users. Further that the nodes of the social
network can be grouped into l (overlapping) communities C = {C1, · · · , Cl}, with
V = C1∪· · ·Cl. Then, the top−k structure hole spanners are defined as a subset
of k nodes, denoted as VSH in the network, which maximizes the following utility
function:

maxQ(VSH , C), with |VSH | = k (1)

Please note in the definition2, we just focus on the network information but
not the content information. Figure 2 shows an example of the structural holes
with two communities. Generally speaking, v6 and v12 can be viewed as the
structural holes spanners between the two communities. But the HIS model
consideres that the v6 is the only structural holes spanner.

Fig. 2. Illustration of structural holes[15]
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3.3 The MKS Algorithm

In this section, we propose the MKS algorithm. For our study in this paper,
we define the key structure of information diffusion network as follows: 1) it is a
set of nodes which includes not only the structural holes spanners but also the
leader nodes in each cluster; 2) each node in the set can be connected via some
hops.

Note we just consider the undirected network. Therefore, for each node in
these clusters, we adopt the node degree as the measure of its importance. Be-
sides, we have verified that nodes degree in the top 20% could covers the vast
majority of connections in the corresponding cluster. Algorithm 1 gives the pseu-
docode of MKS algorithm.

Algorithm 1. The pseudocode of MKS algorithm

1: /*Phase 1 starts here */
2: Input network N = (V,E).
3: Build a graph G = (V,E) based on the network N .
4: Apply the (α, β) − clustering algorithm to G and obtain the clusters C =
{C1, · · · , Cl}.
5: Apply the HIS model to both G and C to obtain the set of the structural hole
spanners VSH.
6: /*Phase 2 starts here */
7: for each Cl ∈ C do
8: for each node in Cl do
9: calculate the degree of node Degli.
10: end for
11: Choose the nodes with top 20% Degli and put into these nodes into node set Nl

12: end for
13: repeat each Nl do
14: if exist path from nodes in VSH and Nl do
15: add the node into new set D.
16: end repeat and output D.

4 Experiments

In this section, we evaluate the coverage ratio Rcov of our algorithm proposed in
Section 3 and compare the efficiency with PageRank algorithm. We define the
coverage ration Rcov as follows:

Rcov =
Lcov

Lall
(2)

In the formula, Lcov denote the covered links which obtained by algorithms
and Lall denotes all the links in the information diffusion network. According to
the definition, the bigger value of Rcov indicates that the algorithm will be more
efficiency.
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4.1 Data Sets

Experiments are carried out on the real online social network. We consider three
different types of networks for researching our problem: Sina micorblog and
Coauthor.

The Sina microblog datasets are from theWISE2012 Challenge (http://www.
wise2012.cs.ucy.ac.cy/challenge.html)whichwas based on a dataset collected from
one of the most popular micro-blog service (http://weibo.com) in China. Since
we focus on the information diffusion network and in order to compare the cov-
erage ratio correctly, we collect the datasets by events. Note that we just pay
attention to the diffusion network structure and ignore the event content. There-
fore, we use the letters A,B,C,D to denote the four events which are used in our
experiments. And based on the four events we extract four diffusion networks
with different size respectively. The datasets are described as follows Table 1
and Table 2.

Table 1. Dataset 1 - the dataset of the
events

Event #Users #Relationships

EventA 13946 49834

EventB 9583 36042

EventC 11375 39586

EventD 8647 33204

Table 2. Dataset 2 - the dataset with
smaller size of the events

Event #Users #Relationships

EventA 6641 23906

EventB 4354 16116

EventC 5416 19500

EventD 3393 12577

Coauthor is network of authors and the dataset is gained from [16]. The net-
work includes 815, 946 authors and 2, 792, 833 coauthorships and for the eval-
uation purpose, we extract part of them which consists of 52146 authors and
134539 coauthorships from papers published at 28 major computer science con-
ferences. These conferences cover six research areas: Artificial Intelligence (AI),
Databases (DB), Data Mining (DM), Distributed Parallel works, Communitica-
tions and Performance (NC).The description of the dataset is listed as follows
Table 3.

Table 3. Description of Coauthor dataset

Network #Authors #Coauthoships

Coauthor 52146 134539

4.2 Experiment Results

It is well known that the PageRank algorithm is a classical algorithm about
evaluating the nodes importance. We apply the PageRank on the same datasets
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to estimate the importance of each node and then select those nodes with the
highest PageRank scores as the influential nodes.

In Figure 3, the X − axis denotes different top − k of PageRank and the
Y − axis denotes the the Rcov. The red line and the blue line respectively rep-
resent the MKS algorithm and the PageRank algorithm. For the PageRank
algorithm, we can select different top − k values as the most influential nodes
and find that the Rcov also grows with the increment of value of top − k . This
tendency of increasing could be easy to understand for the reason that the bigger
value of top−k, the more nodes are chosen as the influential nodes. However, for
the information diffusion network, not all the nodes can be consider as influen-
cial nodes. Therefore, it will make no sense if the value of top− k becomes more
bigger. From the four sub-figures, the Rcov of the MKS algorithm still remains
at about 0.85 because the algorithm both consider the cluster leaders and the
structure holes. The cluster leaders would guarantee the the coverage ration at
a high level in each cluster and the existence of the structure holes make the
clusters be connected which play a significant role in information propagating.
In the MKS algorithm, we take the top− 20 as the cluster leaders and the Rcov

is about 0.85 as well as for the PageRank algorithm, the Rcov is about 0.75 with
top− 20.

Fig. 3. Comparison about Rcov between two algorithms on Sina microblog dataset 1

We also apply theMKS algorithm on both the two datasets which include the
same events but different size. From Figure 4, conclusion can be obtained that for
different network size, our algorithm can produce the same results approximately,
which means our method has a good scalability.
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Fig. 4. The MKS algorithm on Sina microblog dataset 2

Besides, the evaluation of the two algorithms are also deployed on the Coau-
thor dataset. In Figure 5, the Y −axis denotes the Rcov and the X−axis denotes
the different values of top− k of the PageRank algorithm. The PageRank algo-
rithm makes a better performance when the value of top− k is up to 0.7 but for
the smaller values of top− k that the MKS algorithm has much advantages.

Fig. 5. Comparison about Rcov between two algorithms on Coauthor dataset

5 Conclusion and Future Work

With the development of Web2.0, the Online Social Network has become a sig-
nificant component of the Internet. And information propagation also attracted
more and more researchers’ interest. Different from the obvious works which
are with emphasis on identifying the separate influential spreaders, we focus
on the structure of the information spreaders in information diffusion network.
In order to deal with this problem, we combine the theoretical of clusters and
structure holes and propose a new method based on them. Experiments are
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implemented on the real network and the results show our method performs
better than PageRank. Also we compare the coverage ratio on different size
of event diffusion network. However, the MKS algorithm is still remain to im-
prove in some aspects, such as the choosing clusters leaders and improving the
coverage ratio accuracy. In the future, we will study these these problems deeply.
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Abstract. Dealing with big data in computational social networks may
require powerful machines, big storage, and high bandwidth, which may
seem beyond the capacity of small labs. We demonstrate that researchers
with limited resources may still be able to conduct big-data research by
focusing on a specific type of data. In particular, we present a system
called MPT (Microblog Processing Toolkit) for handling big volume of
microblog posts with commodity computers, which can handle tens of
millions of micro posts a day. MPT supports fast search on multiple
keywords and returns statistical results. We describe in this paper the
architecture of MPT for data collection and stat search for returning
search results with statistical analysis. We then present different indexing
mechanisms and compare them on the micro posts we collected from
popular social network sites in China.

Keywords: commodity, indexing, Mongo DB.

1 Introduction

Dealing with big data in computational social networks may require big machines
and big storage. This may seem that only large companies or organizations
with lucrative budgets can afford big-data research in online social networks
(OSNs). We show that, by focusing on a specific type of data, it is possible
to carry out big-data research in OSNs using commodity computers in a small
lab environment with limited resources. In particular, we present a system for
handling big volume of microblog posts (MBPs), and we call the system MPT,
which stands for Microblog Processing Toolkit.

Our goals are collecting MBPs from popular OSN sites in China, identify-
ing interesting topics from MBPs, and carrying out statistical analysis on each
topic, including gender and location distributions, and discovering hot words
and trends. We collected on average approximately 4.5 million (sometimes over
10 million) MBPs a day. We stored these MBPs in a database running Mongo
DB on a commodity computer.

To make use of these data, MPT supports, among other things, statistical
search that will quickly return, on a set of words entered by the user, the set of
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MBPs that contain these words and the statistical results of these posts displayed
in various graphs. For this purpose we would need to create an appropriate
indexing mechanism and update the indexing content regularly. In addition, we
also want to retrieve MBPs in real time while we are collecting them, so that we
may detect unexpected social events and perform other tasks.

In this paper, we present three indexing methods deployed on commodity
computers. Without using clusters of computers, we were able to build a system
suitable for implementing a fast search engine and carrying out topic modeling
and statistical analysis on large volume of MBPs.

The rest of the paper is organized as follows: In Section II we will describe the
data source and the API we use to collect MBPs. In Section III we will introduce
the database we use to store the data and describe some of the problems we
encountered when storing MBPs. In Section IV we will describe a number of
indexing mechanisms, including the default Mongo DB queries using regular
expressions, our own implementation of the nextword indexing [1], and a system
we built based on Lucene [2]. In particular, we will describe the structures of the
systems for indexing, searching, and carrying out statistical analysis. In Section
V we will compare the speed of querying, the speed of performing statistical
analysis, and the accuracy of each method on real data sets. We conclude the
paper in Section VI.

2 Data Collection

We have collected MBPs continuously for over a year from popular OSN sites
in China, including Sina, Tencent, and Renren. Both Sina and Tencent provided
open API (Application Programming Interface) to developers. They provided
different interfaces for different purposes. Since we were focusing on discovering
topics from daily MBPs with statistical analysis, rather than on a specific user
or a specific topic, we used the public-timeline interface [3] to collect MBPs (see
Fig. 1 for an example of such interface).

Under the restriction of the user privilege given to us, we collected a total
of about 4.5 million (sometimes over 10 million) MBPs a day from these OSN
sites. These MBPs were semi-structured JSON style records.

3 Database

To handle unstructured MBPs in large quantity, we would need a
high-performance, steady, and flexible database system. Because MBPs are un-
structured, such a database system should be non-relational. We chose Mongo
DB [4] for this purpose, which is a common choice for storing unstructured data.

Different MBPs from different sources use different data structures. With
Mongo DB, we can store data in different data structures in the same collection.
This makes it convenient to manage the data. Moreover, Mongo DB is a database
scheme with high performance on the operations of both read and write, which
meets our need of intensive writing and querying MBPs.
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Fig. 1. JSON example of public timeline API

Initially we stored the MBPs posted on the same date in one collection, and
stored all the collections in the database. After running it for a few weeks, we
experienced unexpected system crashes. The reason was that Mongo DB would
write data in the same database into the same file and load all the files that
are accessed frequently into the main memory. As more MBPs were stored in
the same database, the file grew larger quickly, causing Mongo DB to consume
almost all the RAM and crashing the system. To solve this problem, we divide
the collections according to a fixed interval of one week of the MBP postings
into different databases. Because writing to the database was the main operation
of the system and the system only collected real-time data, Mongo DB would
load the file of the most recent week into RAM, consuming much less RAM than
before. The system has never crashed after we made this change.

4 Data Retrieval

Our Microblo Processing Toolkit performs the following three types of search.
1) Given a keyword, retrieve all MBPs that contain the keyword.
2) Given a set of keywords, retrieve all MBPs that contain at least one of

these keywords (this is the logical OR operation)
3) Given a set of keywords, retrieve all MBPs that contain all of the keywords

(this is the logical AND operation).
We approached these tasks using the following three methods.

Mongo DB Regular Expressions. Mongo DB provides a built-in regular
expression searching method. Given the regular expression we want the text to
match, Mongo DB returns all the records that match the regular expression.
This search method, however, is inefficient and does not meet our needs.
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To speed up the search process, we developed an indexing system based on
the nextword indexing scheme [5].

Nextword Indexing. The nextword index consists of a vocabulary of distinct
words and, for each word w, a nextword list and a position list. The nextword list
consists of each word s that succeeds w anywhere in the database, interleaved
with pointers into the position list. Fig. 2 depicts an example of the nextword
structure of MBPs.

Fig. 2. Nextword index structure

Based on the nextword indexing, we built a system consisting of two parts:
(1) index server and (2) search server. The index server indexes in real time
the MBPs we collected. In particular, we store the word pair list in the main
memory and the information of each word pair in the database. This list contains
the position of the word pair in the text and the information of the microblo
posts.

Our early version of the system recorded each word pair and stored it in
RAM. This method, however, took up too much RAM. We observed that, for
less-frequent words, if we just stored the word position and not the word pair
positions, then the search speed would only be mildly affected, while the con-
sumption of RAM would drop tremendously. To balance between the search
speed and the RAM occupancy by the nextword indexing, we set a threshold
on word-pair counts, so that the system only stores the nextword list of words
with frequencies over the threshold. This measure cuts down the RAM usage
significantly.

After several weeks of running the system, we encountered another problem
of data explosion: The number of MBPs provided through the APIs suddenly
increased significantly, more than twice the size of the data we collected in one
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day. Likewise, the index size also increased to occupy about 5GB of RAM. Since
we deployed the system on a commodity computer, RAM was a precious and
limited resource, and we could not afford such RAM usage. Thus, we were moti-
vated to devise a low-cost RAM solution and we accomplished this using Apache
Lucene.

Lucene-Based Indexing. Apache Lucene is a high-performance, full-featured
text search engine library, which requires small RAM for indexing and searching,
and generates an index file with reasonable size. We customized the Lucene core
and built a data retrieval system that solved the problem of memory blowup.
Our system consisted of two parts: (1) real-time index server and (2) search
server. The real-time index server refreshes the database frequently and indexes
dynamically the newly collected MBPs on the fly. The search server returns the
MBPs that contain all the keywords entered by the user. These two parts may
work simultaneously without conflicting each other, and so the search server
can return real-time posts the system collects. Fig. 3 shows the structure of our
Lucene-based indexing system.

Fig. 3. Lucene-based index structure

5 Statistical Analysis

To carry out statistical analysis on the MBPs we collected, we group the mi-
croblog posts according to the following three attributes: 1) posting time, 2)
poster’s gender, and 3) poster’s location.

Using the built-in regular expressions of Mongo DB, we would need to traverse
all the MBPs the database returned and then carry out the statistical analysis.
This process is extremely time consuming.



Handling Big Data of Online Social Networks on a Small Machine 681

Using the nextword indexing, we could complete the statistical analysis in
just a few steps without traversing the data.

Using the Lucene-based indexing, we need to customize our own functions.
For each MBP, we connect its poster’s location, gender, and posting time as one
string. We set this string as the key of the post. This means for two posts that
are posted in the same hour, the same location and by the posters of the same
gender will share the same key. When indexing the MBP, we include this key in
the index. When searching for the data, we first carry out the group search by
the key. After obtaining the groups with the same key, we traverse each group
and perform the statistical analysis in the group (details of statistical analysis
are not included in this paper).

6 Experiments

We designed an experiment to test the efficiency and accuracy of the three meth-
ods for data retrieval and statistical analysis mentioned in the previous sections.
For convenience, we will refer to these methods of Mongo DB’s built-in regu-
lar expressions, nextword indexing, and Lucene-based indexing as, respectively,
Mongo, Nextword, and Lucene. We used the MBPs we collected in one day
(the day was randomly chosen) from Sina and Tencent as the data set for com-
paring the three different methods. There were about 4,250,000 MBPs in this
one-day collection. All experiments were executed on a commodity computer
with a quad-core CPU and 16GB RAM.

The experiment consisted of two parts. In the first part, we examined how fast
each method responded to user queries, as well as how fast the method carried
out statistical analysis and returned the results. In the second part, we compared
the accuracy of each method.

To run the experiment, we pre-counted all the keyword phrases in the data
set and randomly selected a number of keyword phrases as our testing phrases,
such that these phrases were made up of two or three keywords and appeared in
the test data set for more than 100 times.

For each phrase we selected, we executed a query with each method. We
recorded the time that each method incurred to respond to the query and finished
up the statistical analysis. We tested Mongo, Nextword, and Lucene separately.
For each test, we repeated the process twice and calculated the average time.
The results are shown in Fig. 4 and Fig. 5.

First, we compared the response speed of each method. The horizontal axis
represents the actual frequency of keywords, and the vertical axis represents the
running time of returning the MBPs that contain the keywords.

From Fig. 4 we can see that 1) Lucene offers the fastest responding time, and
the responding time will increase as the phrase frequency increases. 2) Nextword
is faster, which is slower but close to Lucene; but its time complexity is not as
steady as Lucene. 3) Mongo is the slowest, which does not meet the real-time
search requirement.

We then compared the speed of carrying out statistical analysis for each
method.



682 M. Jia and J. Wang

Fig. 4. Responding Time

Fig. 5. Statistical-Analysis Time
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From Fig. 5 we can see that Lucene is still the fastest, Nextword is slower
than Lucene, while Mongo is substantially slower. The time interval between
responding to the search query and finishing up statistical analysis is quite short
for Lucene, and is much longer for the other two methods. We note that the
mechanism for carrying out the statistical analysis of each method is different.
By querying Mongo, we would need to traverse all the MBPs returned on the
query, which would incur significant computing time when the returning data
set is large. The nextword indexing is a well-structured indexing mechanism,
where no traverse is needed to perform statistical analysis, and so it can finish
the statistical analysis quickly. Lucene finishes statistical analysis by traversing
all the groups instead of all the posts.

We can see from Fig. 5 that the time complexity of Mongo search does not
increase much when the frequency of the keywords is increased, while the time
complexity of Nextword search and the Lucene search is clearly related to the
frequency of the keywords.

Finally, we compared the accuracy of each method (see Fig. 6). The horizontal
axis represents the actual frequency of the phrase, and the vertical axis represents
the counts of the returning results.

From Fig. 6 we can see that the accuracy of each method differs from each
other, where Mongo is 100% accurate. In other words, its precision and recall
rates are both equal to 1.

Nextword may miss some MBPs. The main reason of missing MBPs is due to
the segmentation error of the keywords in the Chinese language. The keyword
segmentation in the Chinese language is different from that of English, for the
standard Chinese writing contains no space between characters. Thus, different
segmentation tools may return different segmentation results. Even for the same
keyword using the same segmentation tool, the results may still be different with
different text. For the keywords we queried in the experiments, the segmentation
result in the MBPs could differ from that in the search query. The MBPs with
different segmentation results would be missed.

Lucene, on the other hand, seems to have the worst precision and recall rates,
where the number of returned MBPs is usually larger than the actual number
that contains the phrase. This is caused by the Lucene indexing structure, where
all the MBPs that contain a subset of the search keywords are returned. For
example, if phrase X is made up of words A and B, when querying X, Lucene
will return all the posts that contain A or B. So the returning result usually has
a larger-than-actual count.

Table 1 shows the precision and recall rates of the search results using the
three different methods. We can see from the table that Mongo performs well
on accuracy. Both Mongo and Nextword have a value of 1 on the precision rate,
which means that the MBPs Mongo returned were exactly those that contain the
search phrase. Since Nextword may miss some MBPs, this affected negatively its
recall value. Lucene suffers precision loss compared to the other two methods.
But it offers better performance in the recall value than Nextword, which means
that it may miss fewer MBPs than Nextword.
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Fig. 6. Accuracy

Table 1. Experiment Results on Precision and Recall Rates

Method Precision Recall

Mongo 1 1

Nextword 1 0.72

Lucene 0.53 0.81

From our experiment we can see that each method has its pros and cons. In
particular, Mongo provides the regular expression searching method with the
perfect accuracy. But it is too slow to meet the needs of real-time querying and
stat analysis. Nextword has the best performance in statistical analysis, and the
responding time can meet the need of real-time search. But its memory consump-
tion is high, which cannot meet the increasing data requirement. Lucene, on the
other hand, has the fastest responding time and the fastest statistical-analysis
time, but it incurs low accuracy. This method is good for building a fast search
engine but may not meet the requirement of high accuracy.

7 Conclusion

In this paper, we described and compared three methods we used to analyze big
volume of microblog posts. We conclude the paper by summarizing our findings
as follows:

1) Mongo is good for storing data but not suitable for carrying out search on
big data.

2) Nextword offers good performance on real-time search with fast response
time and statistical-analysis time. But it would take up too much RAM. Nextword
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would be a good choice for analyzing moderate-size data (e.g., less than 3 million)
with high requirement on statistical analysis.

3) Lucene is a low RAM-consumption and stable system. But it has the worst
performance on precision and recall. For those who need to analyze big volume
of data but do not require exact statistical results, Lucene would be a better
choice.
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