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Preface

The 20th International Computing and Combinatorics Conference (COCOON
2014) was held during August 4-6, 2014 in Atlanta, Georgia, USA. COCOON
2014 provided a forum for researchers working in the area of theoretical computer
science and combinatorics.

The technical program of the conference includes 51 contributed papers se-
lected by the Program Committee from 110 full submissions received in response
to the call for papers. All the papers were peer reviewed by at least three Program
Committee members or external reviewers. The papers cover various topics, in-
cluding algorithms and data structures, algorithmic game theory, approximation
algorithms and online algorithms, automata, languages, logic, and computabil-
ity, complexity theory, computational learning theory, cryptography, reliability
and security, database theory, computational biology and bioinformatics, com-
putational algebra, geometry, number theory, graph drawing and information
visualization, graph theory, communication networks, optimization, and parallel
and distributed computing. Some of the papers will be selected for publication in
special issues of Algorithmica, Theoretical Computer Science (TCS), and Journal
of Combinatorial Optimization (JOCO). It is expected that the journal version
papers will appear in a more complete form.

The proceeding also includes 8 papers selected from a workshop on compu-
tational social networks (CSoNet 2014) co-located with COCOON 2014, held
on August 6th, 2014. An independent Program Committee was chaired by Dr.
Yingshu Li and Dr. Yu Wang. We appreciate the work by the CSoNet Program
Committee that helped with enriching the conference topics.

We would like to thank the Program Committee members and external re-
viewers for volunteering their time to review conference papers. We would like to
extend special thanks to the publication, publicity, and local organization chairs
for their hard work in making COCOON 2014 a successful event. Last but not
least, we would like to thank all the authors for presenting their works at the
conference.

August 2014 Zhipeng Cai
Alex Zelikovsky
Anu Bourgeois
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Building above Read-once Polynomials:
Identity Testing and Hardness of Representation

Meena Mahajan', B.V. Raghavendra Rao?, and Karteek Sreenivasaiah®

! The Institute of Mathematical Sciences, Chennai, India
{meena,karteek}@imsc.res.in
2 Indian Institute of Technology Madras, Chennai, India
bvrr@cse.iitm.ac.in

Abstract. Polynomial Identity Testing (PIT) algorithms have focussed
on polynomials computed either by small alternation-depth arithmetic
circuits, or by read-restricted formulas. Read-once polynomials (ROPs)
are computed by read-once formulas (ROFs) and are the simplest of
read-restricted polynomials. Building structures above these, we show:

1. A deterministic polynomial-time non-black-box PIT algorithm for
S .T]-ROF.

2. Weak hardness of representation theorems for sums of powers of
constant-free ROPs and for O-justified alternation-depth-3 ROPs.

1 Introduction

The Polynomial Identity Testing (PIT) problem is the most fundamental com-
putational question that can be asked about polynomials: is the polynomial
given by some implicit representation identically zero? The implicit representa-
tions of the polynomials can be arithmetic circuits, branching programs etc., or
the polynomial could be presented as a black-box, where the black-box takes
a query in the form of an assignment to the variables and outputs the evalu-
ation of the polynomial on the assignment. PIT has a randomized polynomial
time algorithm on almost all input representations, independently discovered by
Schwartz and Zippel [Sch80, Zip79]. However, obtaining deterministic polyno-
mial time algorithms for PIT remained open since then. In 2004, Impagliazzo
and Kabanets [KI04] showed that a deterministic polynomial time algorithm for
PIT implies lower bounds (either NEXP ¢ P/poly or permanent does not have
polynomial size arithmetic circuits), thus making it one of the central problems
in algebraic complexity. Following [KI04], intense efforts over the last decade
have been directed towards de-randomizing PIT (see for instance [SY10, Sax14]).
The attempts fall into two categories: considering special cases ([Sax14]), and
optimizing the random bits used in the Schwartz-Zippel test [BHS08, BE11].
The recent progress on PIT mainly focusses on special cases where the poly-
nomials are computed by restricted forms of arithmetic circuits. They can be
seen as following one of the two main lines of restrictions: 1. Shallow circuits
based on alternation depth of circuits computing the polynomial. 2. Restriction

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 1-12, 2014.
© Springer International Publishing Switzerland 2014



2 M. Mahajan, B.V.R. Rao, and K. Sreenivasaiah

on the number of times a variable is read by formulas (circuits with fanout 1)
computing the polynomial.

The study of PIT on shallow circuits began with depth two circuits, where
deterministic polynomial time algorithms are known even when the polynomial
is given as a black-box [BOT88, KS01]. Further, there were several interesting
approaches that lead to deterministic PIT algorithms on depth three circuits
with bounded top fan-in [DS07, KS07]. However, progressing from bounded fan-
in depth three circuits seemed to be a big challenge. In 2008, Agrawal and
Vinay [AV08] explained this difficulty, showing that deterministic polynomial
time algorithms for PIT on depth four circuits implies sub-exponential time de-
terministic algorithms for general circuits. There have been several interesting
approaches towards obtaining black-box algorithms for PIT on restricted classes
of depth three and four circuits, see [Sax14, SY10] for further details. Recently,
Kamath, Kayal and Saptharishi [GKKS13] showed that, over infinite fields, de-
terministic polynomial time algorithms for PIT on depth three circuits would
also imply lower bounds for the permanent.

A formula computing a polynomial that depends on all of its variables must
read each variable at least once (count each leaf labeled x as reading the vari-
able x). The simplest such formulas read each variable exactly once; these are
Read-Once Formulas ROFs, and the polynomials computed by such formulas
are known as read-once polynomials (ROP). In the case of an ROP f presented
by a read-once formula computing it, a simple reachability algorithm on for-
mulas can be applied to test if f = 0. Shpilka and Volkovich [SVO08] gave a
deterministic polynomial time algorithm for PIT on ROPs given as a black-box.
Generalizing this to formulas that read a variable more than once, they obtained
a deterministic polynomial time algorithm for polynomials presented as a sum
of O(1) ROFs. Anderson et. al [AvMV11] showed that if a read-k formula, with
k € O(1), is additionally restricted to compute multilinear polynomials at every
gate, then PIT on such formulas can be done in deterministic polynomial time.
The result by [AvMV11] subsumes the result in [SV08] since a k-sum of read-
once formulas is read-k and computes multilinear polynomials at every gate.
However, both [SV08] and [AvMV11] crucially exploit the multilinearity prop-
erty of the polynomials computed under the respective models. In [MRS14], the
authors explored eliminating the multilinear-at-each-gate restriction, and gave a
non-blackbox deterministic polynomial time algorithm for read-3 formulas. How-
ever for the case of Read-k formulas for k& > 4, even the non-blackbox version
of the problem is open. Note that multilinearity checking itself is equivalent to
PIT on general circuits [FMM12].

Our Results: In this paper, we explore further structural properties of ROPs
and polynomials that can be expressed as polynomial functions of a small num-
ber of ROPs. Our structural observations lead to efficient algorithms on special
classes of bounded-read formulas.

We attempt to extend the class considered in [SV08] (namely, formulas of
the form ) . f; where each f; is an ROF) to the class of polynomials of the

form Zle fig:; where the f;s and g;s are presented as ROFs and k is some
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constant. These are read-2k polynomials, not necessarily multilinear. Over the
ring of integers and the field of rationals, we can give an efficient deterministic
non-blackbox PIT algorithm for the case & = 2; the polynomial is fi fo + ¢g192
where f1, f2, 91, g2 are all read-once polynomials presented by ROFs. This class
can also be seen as a special case of read-4 polynomials. Our algorithm exploits
the structural decomposition properties of ROPs and combines this with an algo-
rithm that extracts greatest common divisors of the coefficients in an ROP. The
algorithm easily generalises to polynomials of the form fy fofs -« fin +9192 - gs
where f;s and g;s are presented as ROFs, but m, s can be unbounded; that is, the
class 2(2) -T] -ROF. Note that this class of polynomials includes non-multilinear
polynomials and also polynomials with no bound on the number of times vari-
ables are read. Thus it is incomparable with the classes considered in [SV08],
[AvMV11] and [MRS14]. This result is presented in Section 3, Theorem 1.

(At a recent Dasgtuhl seminar 14121, Amir Shpilka pointed out to the first
author that this method can be adapted to work over any field. That is, over
any field, identity testing for polynomials of the form 2(2) -]] -ROF can be done
deterministically and efficiently. Details will appear in the full version.)

Central to the PIT algorithm in [SVO08] is a “hardness of representation”
lemma showing that the polynomial M,, = z1x5 - - - x,,, consisting of just a single
monomial, cannot be represented as a sum of less than n/3 ROPs of a particular
form (weakly 0O-justified). More recently, a similar hardness of representation
result appeared in [Kayl2]: if M,, is represented as a sum of powers of low-
degree (at most d) polynomials, then the number of summands is exp(§2(n/d)).
As is implicit in [Kay12], such a hardness of representation statement can be
used to give a PIT algorithm. We analyze this connection explicitly, and show
that the results in [Kay12] lead to a deterministic sub-exponential time algorithm
for black-box PIT for sums of powers of polynomials with appropriate size and
degree (Section 4, Theorem 2).

A minor drawback of both these statements is that they consider a model that
cannot even individually compute all monomials. One would expect any reason-
able model of representing polynomials to be able to compute M,,. In Section 5,
we consider the restriction of read-once formulas to constant-free formulas that
are only allowed leaf labels ax, where x is a variable and a is a field element.
This model can compute any single monomial. We show (Theorem 3) that the
elementary symmetric polynomial Sym,, ; of degree d cannot be written as a sum
of powers of such formulas unless the number of summands is £2(log(n/d)). This
appears weak compared to the n/3 bound from [SV08], but this is to be expected
since unlike in [SV08] where the ROPs could only be added, we allow sums of
powers. We also consider 0 — justified read-once formulas with alternation depth
(between + and x) 3, and obtain a similar hardness-of-representation result for
the polynomial M,, against sums of powers of polynomials computed by such
formulas, showing that n2~¢ summands are needed (Theorem 4). Again, this
appears weak compared to the exp(£2(n/d)) bound from [Kay12], but unlike in
[Kay12] where the degree of the inner functions is a parameter, our inner ROPs
could have arbitrarily high degree.
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2 Preliminaries

An arithmetic formula on n variables X = {x1,...,2,} is a rooted binary tree
with leaves labeled from F U X and internal nodes labeled by o € {+, x}. Each
node computes a polynomial in the obvious way, and the formula computes the
polynomial computed at the root gate. An arithmetic formula is said to be read-
once (ROF) if each € X appears at most once at a leaf. Polynomials computed
by ROFs are called read-once polynomials ROPs.

It is more convenient for us to allow leaf labels axz + b for some z € X and
some a,b € F. This does not change the class of polynomials computed, even
when restricted to ROF's. Henceforth we assume that ROF's are of this form.

The alternation depth of the formula is the maximum number of maximal
blocks of + and x gates on any root-to-leaf path in the formula.

We say that an ROF is constant-free (denoted CF-ROF) if the labels at the
leaves are of the form az for x € X and a € F\ {0}. We call polynomials
computed by such formulas constant-free ROPs, denoted CF-ROP.

For a polynomial f € F[zq1, 22, -+ ,x,], a set S C [n] and an assignment a,
let fs—as denote the polynomial on variables {z; : i ¢ S} obtained from f
by setting z; = a; for j € S. Using notation from [SV08], for a polynomial f,
var(f) denotes the set of variables that f depends on non-trivially. We say that
f is O-justified if for all S C var(f), var(f|s—o) = var(f) \ S. Equivalently, f is
0-justified if and only if Va € var(f), the monomial 2 has a non-zero coefficient.

3 Identity Testing for 2(2) -] -ROPs over Z or Q

In this section we show that PIT can be solved efficiently for formulas of the form
fifa... fm + 9192 ..gs, where each f;, g; is an ROF over the field of rationals.

Theorem 1. Given Read-Once Formulas computing each of the polynomials

flana"' afraglagQa"'ags € Q[:Ela"'axn]; CheCking folefT =4g1°92°"0s
can be done in deterministic polynomial time.

A crucial ingredient in our proof is the following structural characterization

from [RS11, RS13] and its constructive version; this is a direct consequence of
the characterisation of ROPs given in [SV08].

Lemma 1 ([RS13], follows from [SVO08]). Let f be an ROP. Then ezactly
one of the following holds:

1. k > 1, there exist ROPs f1,..., fi, with var(f;) Nvar(f;) =0 for all distinct
i,7 € [k], such that f = a+ f1 + -+ + fr, for some a € F, and each f; is
either uni-variate or decomposes into variable-disjoint factors.

2. k > 2, there exist ROPs fi,..., fi, with var(f;) Nvar(f;) =0 for all distinct
i,7 € [k], such that f = ax fi1 X fax---X f for some a € F\ {0}, and none
of the f;s can be factorised into variable-disjoint factors.

Furthermore, ROFs computing such f;s can be constructed from an ROF com-
puting f in polynomial time.
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Given an ROF over QQ, we can clear all denominators to get an ROF over Z,
without changing the status of the 7 = 07 question. So we now assume that all the
numbers a, b appearing in the ROF (recall, leaf labels are of the form ax +b) are
integers. For a polynomial p(X), let content(p(X)) denote the greatest common
divisor (gcd) of the non-zero coefficients of p. The next crucial ingredient in our
proof is that for an ROF f, we can efficiently compute its content.

Lemma 2. There is a polynomial-time algorithm that, given an ROF f in
Z[X], computes content(f) and constructs an ROF f' in Q[X] such that f =

content(f) - f'.

Proof. Tt suffices to show how to compute content(f); then the ROF f’ is just
contelnt( X f. We proceed bottom-up, or alternatively, we prove this by induction
on the structure of f.

For a polynomial p € Z[X], let p = p — p(0), where p(0) = p(0,...,0), and let

P’ be the polynomial such that p = content(p)p’.
If f is a single leaf node, then computing content(f) and content(f) is trivial.
N

Otherwise, say f = g o h. Since f is an ROF, var(g) Nvar(h) = 0.
Case f =g+ h: Then f = §+ h, and f(0) = g(0) + h(0). So
content(f) := ged(content(§), content(h), g(0) + h(0)),

content(f) := ged(content(§), content(h)).

Case f = g x h: Then f = gh + h(0)§ + g(0)h, and f(0) = g(0)h(0). We can
show that

)
)

PRy

Claim. For any two variable-disjoint polynomials p,q € Z[X], content(pq) =
content(p)content(q).

Proof. Let p = content(p)(a1 M1 +asMa+- - -+a;My) and g = content(q) (b N1+
boNy + --- + beNy), where M;, N; are monomials. By definition of content,
ged(...,a;,...) =ged(...,b;,...) = 1. Since p and ¢ are variable-disjoint, every
monomial of the form content(p)content(q)(a;b; M;N;) appears in the polynomial
p X g, and there are no other monomials. Hence content(p)content(q)|content(p x
q). For the converse, we need to show that gcd(S) = 1, where S = {a;b; | i €
[k],7 € [€]}. Suppose not. Let ¢ be the largest prime that divides all numbers in
S. Then, Vi € [k],

cla;br and cla;be and ... and c|a;bg.
Hence cla; or (c|by,clba, - ,c|be).
Hence cla; or ¢ =1, since ged(by,...,be) = 1.
Thus we conclude that ¢ divides ged(aq, ..., ar) = 1, a contradiction. a

Using this claim, we see that

content(f) := content(g) x content(h),
content(f) := ged(content(g)content(h), h(0)content(§), g(0)content(h)).
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Now we have all the ingredients for proving Theorem 1.

Proof (of Theorem 1). Let f = f1- fo---fr and g = g1 - g2+ - gs As discussed
above, without loss of generality, each f;, ¢g; is in Z[X]. Using Lemma 1 and 2,
we can compute the irreducible variable-disjoint factors of each f; and each g;,
and also pull out the content for each factor. That is, we express each f; as
oifir- - fir, and each g; as 3;gi1- - gi,¢;, Where the f; ;s, g; ;s are irreducible
and have content 1. We obtain ROFs in Q[X] for each of the f; ;s and g; ;s. Note
that if ). ki # > ; 45, then there cannot be a component-wise matching between
the factors of f and g, and hence we conclude f # g. Otherwise, >, k; = Zj ;.
We now form multisets of the factors of f and of g, and we knock off equivalent
factors one by one. (See Algorithm 1.) Detecting equivalent factors (the condition

Algorithm 1. Test if [T, oy [[52, fiy = T15, Bi 15y 9i

1S —{fir, - fresSar, o s fokase s fras oo s frke }
20 T {g11, 91,00, 92.1, " 192,055+ -1Gs, 15" " 1 Js,t }
3: (Both S and T are multisets; repeated factors are retained with multiplicity.)
4: for p € S do
5: for ¢ € T do
6: if p = ¢ then
7 if S and T have unequal number of copies of p and ¢ then
8: Return No
9: else
10: S+ S\ {p}. (Remove all copies).
11: T <~ T\ {¢}. (Remove all copies).
12: end if
13: end if
14: end for
15: end for
16: if (a1a2-~ar26162~--65)A(S:T:@) then
17: Return Yes
18: else
19: Return No
20: end if

in Step 6) requires an identity test p = ¢7, or p—q = 07, for ROF's in Q[X]. Since
we have explicit ROFs computing p and ¢, this can be done using [SV08]. a

4 PIT for Sums of Powers of Low Degree Polynomials

In this section, we give a blackbox identity testing algorithm for multilinear sums
of powers of low-degree polynomials.

We say that a polynomial f has a sum-powers representation of degree d
and size s if there are polynomials f; each of degree at most d, and a set of
positive integers e;, such that f = ff* +... 4+ f&. In [Kayl2], it is shown that
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computing the full multilinear monomial M,, = z1zs - - - x,, using sums of powers
of low-degree polynomials requires exponentially many summands:

Proposition 1. [Kay12] There is a constant ¢ such that for the polynomial
T1To -+ Ty, any sum-powers representation of degree d requires size s > 2%

Shpilka and Volkovich [SV08] proved that sum of less than n/3 0-justified
ROPs cannot equal M,,, and used it to obtain a black-box PIT algorithm for
bounded sums of ROPs. Using these ideas along with Proposition 1, we note that
such a hardness of representation for sums of powers of low-degree polynomials,
where the final sum is multilinear, gives sub-exponential time algorithms for
black-box PIT for this class.

Let R =1{0,1} C F be a finite set that contains 0. For any k > 0, define

W (R) £ {a € R"| a has at most k non-zero coordinates}.

In Theorem 7.4 of [SV10], it is shown that for a certain kind of formula F' (k-
sum of degree-d 0-justified preprocessed ROP), and for any R C F containing
0 and of size at least d + 1, F = 0 if and only if F |W3nk(R)E 0. The proof uses
the Combinatorial Nullstellensatz [Alo99], see also Lemma 2.13 in [SV10]. We
re-state it here for convenience:

Proposition 2 (Combinatorial Nullstellensatz, [Alo99]). Let P €
Flxq,...,x,] be a polynomial where for every i € [n], the degree of x; is bounded
by t. Let R C T have size at least t + 1, and S = R™. Then P =0« P|s =0.

Along similar lines, using Propositions 1,2, we show that

Lemma 3. Let C(n,s,d) be the class of all n-variate multilinear polynomials
that have a sum-powers representation of degree d and size s. Let ¢ be the con-
stant from Proposition 1. For f € C(n,s,d), R = {0,1}, and k = (dlogs)/c,

Proof. The < direction in the claim is trivial. To prove the = direction, we
proceed by induction on n.

Base Case: n < k. Then W}'(R) = R". Using Proposition 2 (since f is multi-
linear, R is large enough), we conclude that f = 0.

Induction Step: n > k. Suppose f % 0. Consider any i € [n], and let f' =
flzi=0- Then f" € C(n —1,s,d). Since flwn(r) = 0, we have f’|W£L71(R) = 0.
So by the induction hypothesis, f/ = 0. Hence z;|f. Since this holds for every
i € [n], the monomial z; - -z, must divide f. Since f is multilinear, it must
be that f = 21 ---x,. But n > k = (dlogs)/c, so s < 2¢"/4. This contradicts
Proposition 1. Hence we conclude f = 0. a

This gives the required black-box PIT algorithm, since for our choice of k in
the above lemma, [W[({0,1})] € nO*) ¢ 20(dlogslogn) Thyg

Theorem 2. Let C(n,s,d) be the class of all n-variate multilinear polynomials
that have a sum-powers representation of degree d and size s. There is a deter-
ministic black-box PIT algorithm for C(n,s,d) running in time 20(dlognlogs)
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Remark 1. Though f is multilinear in Lemma 3 (and hence Theorem 2), the
polynomials f; in the sum-powers representation of f need not be multilinear.

5 Hardness of Representation for Sum of Powers of
CF-ROPs

The hardness of representation result from [Kay12], stated in Proposition 1, and
its precursor from [SV08],[SV10], are both for M,,, the former using low-degree
polynomials and the latter using a kind of ROPs called 0-justified ROPs. Note
that ROPs, even when O-justified, can have high degree, so these results are
incomparable. Here we extend such a hardness result in two ways.

Our first hardness result is for elementary symmetric polynomials Sym,, ;, not
just for d = n. It works against another subclass of ROPs, CF-ROF; as is the case
in [SV08, SV10], this class too can have high-degree polynomials. Recall that this
class consists of polynomials computed by read-once formulas that have + and x
gates, and labels ax at leaves (a # 0). Hence for any f in this class, f(0) = 0. We
show that powers of such polynomials cannot add up to elementary symmetric
polynomials of arbitrary degree d < m unless there are many such summands.
First, we establish a useful property of this class.

Lemma 4. For every CF-ROP f € Flz1,...,xy], there is a set S C [n] with
|S| < |var(f)|/2 such that deg(f|s—o) < 1.

Proof. Consider a CF-ROF F' computing f. If F' has a single node, then f is
already linear, so S = (). Otherwise, F' = G o G, where G1, G2 are variable-
disjoint CF-ROFs computing CF-ROPs g1, g2, respectively.

Case 1: o = x. Without loss of generality, assume |var(gy)| < |var(f)|/2. For
S ={i:x; evar(g1)}, g1ls—0 = fls—0 = 0.

Case 2: o = +. Inductively, we can find sets S; of at most half the variables of
each g;, such that g;|s, 0 has degree at most 1. Define S = S, USs. Since G1, G
are variable-disjoint, |S| < |var(f)|/2, and f|s—o has degree at most 1. O

We use this to get our hardness-of-representation result for CF-ROPs, irrespective
of degree.

Theorem 3. Fiz any d € [n]. Suppose there are CF-ROPs f1,..., fi, and pos-
itive integers e1, ..., ex such that

k
Z fZEL = Symn,d‘
i=1

Then k > min{log %, 27(V)}.

Proof. Let f = Sym,, 4.

We repeatedly apply Lemma 4 to restrictions of the f;’s obtain a formula of
degree at most 1. Let Sg = Tp = @, and let S;;1 be the set obtained by applying
the Lemma to fiy1|r,—0, where each T; = S1 U ... U S;. Define S = Tj,. Since
at least half the variables survive at each stage, we see that r = |var(f|s_o0)| >

jvar(f)| /2% = n/2".
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— If r > d, then f|so = Sym, ; # 0. Add any r — d surviving variables to

the set S to obtain the expression Sym, ; = f|s—o0 = Zle(fi\gﬁo)ei where
each f; is either linear or identically 0. Let ¥’ be the number of non-zero
polynomials f;|s_,0. By Proposition 1, ¥’ € 224 and k > k'

— If r <d, then n/2" <r < d. So k > log(").

Thus if k <log 7, then k € 20(d), O

What this tells us is that there is a threshold r ~ loglogn such that any
sum-powers representation of Sym,, ; using CF-ROPs needs size 292(d) for d < r,
and size > log ? for d > r.

Our second hardnessresult is for M,,, but works against a different class of ROF's.
These ROFs may not be constant-free, but they have bounded alternation-depth,
and are also 0-justified. Again, first we establish a useful property of the class.

Lemma 5. Let f € Flxy,...,x,] be computed by an ROF with alternation depth
3. For any degree bound 1 < d < n, there is an S C [n] of size al most
[var(f)|/d, and an assignment of values Ag to the variables z; for i € S, such
that deg(f|s—a) < d. Moreover, if f is 0-justified, then we can find an Ag with
all non-zero values.

Proof. Let f be computed by the ROF F' with alternation depth 3, where no
gate computes the 0 polynomial.

If the top gate in F' is a 4, then F = 22:1 fi, where each summand f; is
of the form H§:1 ¢; ; and the factors ¢; ;’s are linear forms on disjoint variable
sets. We find a partial assignment that kills all summand of degree more than d.
For each such summand f;, identify the factor with fewest variables, and assign
values to the variables in it to make it 0. We assign values to at most |var(f;)|/d
variables, so overall no more than |var(f)|/d variables are set.

Further, if f is O-justified and read-once, then each f; is also a 0-justified ROF.
Hence no factor of f; vanishes at 0; each factor ¢; ; is of the form > "% _, a; j ki j .k —
¢i,; where ¢; ; # 0. We can kill such a factor with an assignment avoiding 0Os (eg
set Li, 5.k = cm/pai’j,k.)

If the top gate in F' is a x, then F' = H;Zl F;, where the F; have alternation
depth 2 and are on disjoint variables. If f has degree more than d, it suffices to
kill any one factor F; to make the polynomial 0. Choosing the factor with fewest
variables, and proceeding as above, we set no more than |var(f)|/d variables.
Again, since F' is an ROF, if F is O-justified, then so are the F;. So Ag can be
chosen avoiding Os. g

Using this, we get a hardness of representation result for 0-justified alternation-
depth 3 ROPs.
Theorem 4. Let € € (0, ;) If there are 0-justified, alternation-depth-3 ROPs

f1,..., fs, and non-negative integers ey, ...,es such that
S
Z e,
il — ‘/Ijl “e xn
i=1

then s > nae.
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Proof. Let d be a parameter to be chosen later. We identify a subset of variables
S and an assignment A avoiding zeroes to variables of S, such that under this
partial assignment, all the f;’s are reduced to degree at most d. We show that
for any d € [n], this is possible with |S| =t < SZ”. This gives a sum-powers
representation of degree d and size s for HmiQS x; = M,_¢. Invoking Kayal’s

result from Proposition 1, we see that s > 2¢("=%)/d and hence log s + ngz > 9.

1—2e¢ €

Choosing d = 4n , we conclude that s > nz—.

The construction of S proceeds in stages. At the kth stage, polynomials
f1,..., fi—1 have already been reduced to low-degree polynomials, and we con-
sider f;. We want to use Lemma 5 at each stage. This requires that each poly-
nomial f;, after all the substitutions from the previous stages, is still a
0-justified ROF with alternation-depth 3. The alternation-depth-3 ROF is ob-
vious; it is only maintaining 0-justified that is a bit tricky. We describe the
construction for stage 1; the other stages are similar.

Applying Lemma 5 to f; with d as the parameter, we obtain a set R
of variables with |R;| < n/d and an assignment Ag, avoiding 0, such that
deg(f1lr,»az,) < d. It may be the case that for some i > 1, the polynomial
filr,—4p, is no longer O-justified. We fix this by augmenting R; as follows.

Assume first that the ROF's for all the f;’s have top-gate +; we will discuss
top-gate x later. So, as discussed in the proof of Lemma 5, each f; has the form
> 114 where each £; is a linear form. If f;|r, 4, is not O-justified, then
some of the linear forms in it are homogeneous linear (no constant term). We
identify such linear forms in each f;, i > 2. Call this set L;. That is,

| £|p,— AR, is homogeneous linear but not

{ is a linear form at level-2 of some f;;
identically 0.

Since each f; is a ROF, it contributes at most |R1| linear forms to L. Hence
|Li| < (s — 1)|Ry]. Now pick a minimal set T; of variables from X \ R; that
intersects each of the linear forms in L;. By minimality, |7} < |L1| < (s —1)|Ry].
We want to assign non-zero values Ap, to variables in 7} in such a way that for
all i > 2, the fi|r,»Ap, .7y —Ay, are O-justified. We must ensure that the linear
forms in Ly become homogeneous (or vanish altogether), and we must also ensure
that previously non-homogeneous forms do not become homogeneous. To achieve
this, consider

[y { is a linear form at level-2 of some f;;
2= | €\RIHAR1 £ 0; €|Rl*>AR1 contains a variable from T7;.

Clearly, L1 C Lo. It suffices to find an assignment Ap, to variables in 77,
avoiding zeroes, such that for each ¢ € Lo, either K\Rl_,ARl;TlﬁATl =0 or
l|Ry AR, Ty A, (0) # 0. For sufficiently large fields, such an assignment can
always be found.

If some of the f;’s have top-gate X, we need only a minor modification. We
use this fact:
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Observation 1. If F' = [[ F, is a read-once formula, then F is O-justified if
and only if for each r, F, is O-justified and satisfies F.(0) # 0.

Treat each factor of the polynomials with top-gate x exactly as we dealt with
the other polynomials. Add their level-2 linear factors to L;. Note that each such
fi can have many factors, but since it is read-once, any one variable can occur in
at most one of these factors. So f; still contributes no more than Ry linear forms
to Li. Also modify the definition of Lo to include also all linear forms at level
3 of such f;’s, containing a variable of Tj. Finally, look for an assignment also
satisfying the additional condition that the factors do not vanish at 0. Again,
over sufficiently large fields, it is possible to find such an assignment.

Now we set S1 = R1UTy, and A1 = Ag, UAT, . We have ensured the following:

L. deg(f1‘51—>z41) <d; and
2. fori > 2, fils,—a, is O-justified.

Furthermore, |S1| = |R1| + |Th| < |R1[(1 4+ (s — 1)) < sn/d.

Other stages are identical, working on the polynomials restricted by the
already-chosen assignments. Finally, S = S; U...U Ss, and so |S| < s?n/d,
as required. O

6 Further Questions

— Can the results of [SV08] be extended to the case Zle /', where f/s are
ROFs?

— Can a hardness of representation for Sym,, ; be transformed into a polyno-
mial identity test for a related model?

— Can the bound given by Theorem 3 be improved? We conjecture:

Conjecture 1. There is a constant € > 0 such that if there are CF-ROPs
fi,---, fr, and integers ey, ...e; > 0 satisfying

k
ZfzeL = Symn,n/Zv

i=1
then k = 2(n°).

— Do the results of [AvMV11] extend to read-k-multilinear branching pro-
grams?
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Abstract. We investigate the ability to sample relatively small amounts of data
from a stream and approximately calculate statistics on the original stream. Mc-
Gregor et al. [29] provide worst case theoretical bounds that show space costs for
sampling that are inversely correlated with the sampling rate. Indeed, while the
lower bound of McGregor et al. cannot be improved in the general case, we show
it is possible to improve the space bound for stream D of domain n, when the av-
erage positive frequency p = Fi / Fy is sufficiently large. We consider the follow-
ing range of parameters: . > log(n) and sample rate p > Cjp ™" log(n), where
C}; is a constant. On these streams we improve the bound from O(;nl_Q/ ) to

ON(n172/ k) thus giving polynomial improvement in space for sufficiently large 1
and p~ L.

Keywords: Streaming Algorithms, Sampling, Frequency Moments, Heavy Hit-
ters.

1 Introduction

An exciting topic of current algorithms research is evaluating the ability to sample rel-
atively small amounts of data from a stream and to be able to approximately calculate
statistics on the stream as a whole. In a recent paper [29], McGregor, Pavan, Tithrapura,
and Woodruff provided worst case theoretical bounds that show space costs for sam-
pling that are inversely correlated with the sampling rate. ! This implies it is not possible
to sample effectively on the stream without a cost tradeoff. However, experimental work
has shown that sampling can be performed on the stream without sacrificing additional
space for accuracy [30]. Let us define the following terms:

Definition 1. Let m,n be positive integers. A stream D = D(n,m) is a sequence of size
m of integers ay, g, . .., am, where a; € {1,...,n}. A frequency vector is a vector of
dimensionality n with non-negative entries f;,i € [n] defined as:

* This work was supported in part by DARPA grant N660001-1-2-4014. Its contents are solely
the responsibility of the authors and do not represent the official view of DARPA or the De-
partment of Defense.

! We have recently learned from an anonymous reviewer that these lower bounds may not hold.
We stress that our techniques are independent of this result, and thus they hold regardless of
the correctness of this work.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 13-24, 2014.
(© Springer International Publishing Switzerland 2014



14 V. Braverman and G. Vorsanger

fi=Ri:1<j<m,a; =i}l

Definition 2. A k-th frequency moment of a stream D is defined by Fi,(D) =, ] Ik
Fy is the number of distinct elements in the stream and Foo = maTig(yn fi.

Definition 3. A dense stream is any stream D s.t Fy(D)/Fy(D) > log(n)

While the lower bound of McGregor et al. cannot be improved in the general case, we
show it is possible to improve the space bound for a stream D of domain n and length
m, when the the average positive frequency u = Fy/Fy is sufficiently large. Specif-
ically, we consider the following range of parameters: > log(n) and p > Cpp~?
log(n), where C}, is a constant (defined in (6)).

As our main technical claim, we show in Theorem 1 that the frequency moment on
the sampled stream, D,,, is a 1+ ¢ approximation for the frequency moment on the entire
stream with high probability. As a result, we show the problem of computing F}, on D is
reducible to the problem of computing F; on D,, and the reduction preserves the space
bounds up to a constant factor. In particular, the space bounds are independent of the
sample rate, p. We stress that for our range of parameters the problem of approximating
Fy, is as hard as the problem of approximating F}, on the set of all streams. In this case,
the lower bound from [15] still applies. However, the lower bound from [29] does not
apply, as this bound is proven for streams with average frequency bounded by a con-
stant. On these streams we improve the bound? from O(;nl_z/ ) to O(n'~2/%) thus

giving polynomial improvement in space for sufficiently large 2 and p~!. Additionally,
we provide proof that the same result is applicable for finding heavy elements (heavy
hitters) in the stream. Specifically, we show that heavy elements in the original stream
are heavy elements in the sampled stream. Thus, techniques to analyze heavy elements
are also unaffected by the sampling rate. We also describe several practical applications
where streams have high average frequency.

1.1 Related Work

For many applications it is practical to consider sampling data instead of attempting to
process the entire data set. This is especially true as data sets grow larger and larger.
The concept of accurately calculating statistics using small portions of a stream is not
new, and sampling algorithms in the streaming setting have been studied for a long time.
Sampling algorithms in the streaming setting have been studied for a long time [2], [3],
[12], [13,14], [16], [32].

Calculating frequency moments is one of the central problems for streaming algo-
rithms, see, e.g., [11, [4], [5], [7,8], [10,11], [15], [17,18,19,20,21], [24,25], [27], and
the references therein.

Further, computing frequency moments and other functions using sampling has been
an intriguing question for a long time [9]. For example, Bar-Yossef showed® [3] that

2 The O notation suppresses factors polynomial to 1 and factors logarithmic in m and n.
3 While Bar-Yossef showed his results in a slightly different model the lower bounds are appli-
cable for the sampled streams as well. See also Theorem 3.1 from [29].



Sampling from Dense Streams without Penalty 15

the complexity of sampling from streams differs from the complexity of sketching by a
polynomial factor in the worst case. Specifically computing F5 is possible using O(l)
bits, but £2(n°-%) samples are still needed.

In 2007 Bhattacharyya, Madeira, Muthukrishnan, and Ye [6] considered skipping
certain portions of the stream and only examining every Nth item deterministically.

Following this, in [28] Problem 13, Matias asked about the effects of subsampling
on the streaming data. His question addresses the issue of very fast streams, ones that
cannot be analyzed effectively even if each element can be processed in O(1) time. In
addition to asking questions regarding [6], he also asked about how subsampling effects
the accuracy of standard calculations, such as frequency moments.

Recent work provided by McGregor, Pavan, Tirthapura, and Woodruff [29]
considered sampling streams and addressed several fundamental problems, including
frequency moments, heavy hitters, entropy, and distinct elements. In particular, they
provide a matching (up to a polylogarithmic factor) upper and lower bound for the
problem of frequency moments for k£ > 2 with lower bound of fl(;nlfz/ k). However,
if we can observe the entire stream, then we can apply the well known upper bound of
O(nl_z/ k) from Indyk and Woodruff [22]. Thus, the bound of [29] shows that it is not
possible to obtain approximations without increasing the space required by a factor of
p~1, in the worst case.

However, in 2009, Rusu and Dobra [30] experimentally showed that when 10% of
the original stream is sampled then the second frequency moment is still preserved. This
provides intuition that there may be certain inputs that allow for an improvement over
the bound from [29].

1.2 Relation to Existing Work on Lower Bounds

We now explain why the lower bound of Q(;nl_z/ *) does not apply to our analysis.

The lower bound in question only applies when n = ©(m). Consider streams such
that Fy = (2(n) and for all 4 either f; = 0 or f; > n. Clearly in this case n = o(m)
and thus the lower bound of [29] do not necessarily apply. Indeed, if we sample with
probability p = n =95 then, with high probability, all sampled frequencies will be in the
range [(1 — €)n=%5f;, (1 4+ €)n=%5 f,] for constant € and sufficiently large n. Thus, it
is not hard to show that Fj, on the entire stream can be approximated by computing the
frequency moment on the sampled stream, FJ,. In this paper we investigate the range of
parameters for which sampled streams possess these properties.

Consider Theorem 4.33 from [3]. Let us consider the case when & = 2. To prove
the lower bound of Bar-Yossef considers the following example. Either (1) the stream
represents a frequency vector with all frequencies bounded by 1 or (2) the stream rep-
resents a frequency vector with all frequencies bounded by 1 and one frequency is
O(n'/?). Observe that in both cases the average non-zero frequency 1 = O(1). Since
we require . = 2(Cj; log(n)) the lower bound from [3] is not applicable directly to our
range of parameters. Is it possible to increase i by repeating the same element many
times. However, the bound from [3] is for algorithms that are based solely on sampled
data. In our model, we first sample and then we can apply an arbitrary algorithm, in-
cluding the sketching algorithm for F5 from [1]. In this case the lower bound on the



16 V. Braverman and G. Vorsanger

number of samples from [3] becomes the lower bound on the length of the sampled
stream D),, which is Fl.

In the same way consider Section 3.3 from [29]. The authors explicitly state that
their bound is for the case when m = ©(n). (It is important to note that the implicit
(and standard) assumption in [29] is that Fj = ©(n). Otherwise, better bounds are
possible, even on the original stream. E.g., if F = O(1) then we can compute any Fj,
precisely). In the proof of Theorem 3.3 in [29] the construction requires each element
to be included at most once in the stream (except for one special element).

We give polynomial improvements over previous methods for the case when the non-
zero average frequency is polynomial. Consider the stream where the average non-zero
frequency is n®. For sampling rate p =, the bound [29] is Q(min(n, ;nk?/k)) =
2(n). Our improvement for such streams can be as large as £2(n?/*). Consider streams
with the average frequency n¢ where 0 < ¢ < 1.If the sampling rate is p = Cy, log(n) n1<

then our improvement is of order £2( 113)

1.3 Results

We show in this paper that the space requirement bound in [29] can be improved on a
sufficiently long stream, given input with specific characteristics such that the stream is
a dense stream. Specifically, we improve these results for stream D of domain n, when
the average frequency of all elements in D is greater than Cy, log(n).

To the best of our knowledge, this is the first theoretical bound that shows strict im-
provement for sampling (no time/space trade-off) and thus gives justification for prac-
tical observations such as [30]. Note that our results do not contradict the lower bounds
of [29]. In [29], the lower bound is given for the case when F; = ©(F}); this is not
the case for the streams we analyze, and thus does not effect correctness of the upper
bounds in this paper.

All of our results are applicable for the following range of parameters: 1 > log(n)
and p > Cyu~*log(n), where Cy, is a constant defined in (6). Our contributions are:

— As our main technical claim, we show in Theorem 1 that the frequency moment on
the sampled stream is a 1+ € approximation for the frequency moment on the entire
stream with high probability.

— As aresult, we show the problem of computing F}, on D is reducible to the prob-
lem of computing Fj, on D, and the reduction preserves the space bounds up to a
constant factor. In particular, the space bounds are independent of the sample rate,

.

— We provide the bound of O(nlﬁ/ *) for k > 2. On our range of parameters we
improve the bounds of [29] by a factor of 1/p. In fact, our recent result [7] implies
a bound of O(n'~2/*) bits,

— We provide the bound of O(l) for 1 < k < 2 for F}, approximation. To the best
of our knowledge this is the first theoretical bound for this range of k on sampled
streams.

— We provide proof that our result is also applicable for finding heavy elements
(heavy hitters) in a stream. See Section 4. To the best of our knowledge this is
the first theoretical bound for heavy hitters in sampled streams.
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— We give a concenatration bound on the sum of k-th powers of binomial random
variables using inequalities for Sterling numbers of the 2nd kind, Bell numbers,
and the Holder Inequality.

It is important to note that the space lower bound (N)(nl’w *) holds for streams with
arbitrary large u. To see this, consider a stream D with the average non-zero frequency
smaller than some parameter ¢. Replace stream D with stream D’, where every element
of D is repeated exactly ¢ times. In this case the average non-zero frequency in D’ is
increased exactly by factor of ¢. Since the y is always at least one, we conclude that
wu(D") > t. It is not hard to see that the lower bound from [15] will be applicable for
such D’. Thus, our restrictions do not make the problem of approximating F}, easier.

1.4 Intuition

Given a stream D, of length m with domain n, we assume that m = 6(n). However,
as datasets get large, it is often the case that the expected frequency of a given element
increases significantly. If this is the case then we can sample the stream without losing
much precision (at least for the F}, approximation). As a result, we can improve the
space bounds for frequency moments on sampled streams.

Our main claim is that F}, is approximately p~* F}, if the expected frequency y is
sufficiently large and p > 1! log(n). Specifically, we prove that the value of the fre-
quency moment will be preserved (up to a multiplicative error) with high probability.
It is easy to see* that the sampled frequency f; is a random variable with binomial dis-
tribution. Thus, the frequency moment on the sampled stream is £, = >y fzk where
fi ~ B(fi,p).> Note that fis are independent but not identically distributed since the
numbers of trials are different.® To obtain our result, we use the relation between the
the moments of fi, the Stirling numbers of the second kind and the Bell numbers.

Intuitively, when sampling datasets with large average frequency, we can divide all
elements into one of three categories: A1, the category of all elements with frequency
greater than the sampling rate multiplied by an O(log(n)) factor, Ao, elements with fre-
quency greater than the sampling rate but less than Ay, and Ags, elements with frequency
smaller than the sampling rate. With this, we can prove that the group of elements in A
dominates the frequency moment of a dense stream. In this paper, we prove that the con-
tribution of the sampled frequencies from the second two groups is negligible, with high
probability. This allows us to accurately estimate the frequency moment of the sampled
stream using only elements in A;. We also prove that the frequency of each element f;
in A; is preserved within 1 & ©(€), while sampling with rate p > Crp ! log(n), for
sufficiently large constant Cj,. Thus, F} is a (1 =+ ¢)-approximation of F}, and we can
accurately perform our computations on D,, instead of D.

* Similar observation has been made in [29].

> We denote B(0, p) as the degenerate distribution concentrated at 0.

% A slightly different case is well studied, when Y = > | V¥ where Y; ~ B(n,p;), i.e., the
number of trials is the same, but success probabilities are different. See e.g., [23] for more
details.
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2 Definitions and Facts

The average positive frequency is defined as
p= (D) = F1/Fp. (1)
Note that 4+ > 1. Let us prove the following simple fact.
Fact 1. [LkF() S Fk

Proof. By Holder inequality Fy < Fy /" F!/* Thus, u*Fy = (Fy/ Fo)* Fy < Fy.

Definition 4. Given data stream D = {a1,az,...,an} and a fixed real p € (0,1), let
Dy, be a random sub-stream of D obtained as follows. Let Z1, . .., Z,, be independent
random variables such that Z; = a; with probability p and Z; = —1 with probability
(1 — p). Denote D’ to be the sequence Z1, . .., Zy,. Next let D, be the subsequence of
D’ obtained by deleting all —1s. Define’

ﬂ = frequency of iin D,. 2)
Fe=>Y"JF 3)
i=1

B(N, p) is the binomial distribution with N trials and success probability p, where N
is a positive integer and p € [0, 1]. For completeness, define B(0, p) to be the degenerate
distribution concentrated at 0.

3 Frequency Moments on Sampled Streams

Define:
ay = 64(k/€)?, “4)
Br = (k+1)Bx, (%)
where By, is the k-th Bell number (see [26] for the definition).
Cr = e VR108) Y . (6)
Consider stream D such that:
u > Gy log(n). (7
Let p be such that:
1> p > p~ ' Cylog(n). ®)

Let £ > 1 and e be arbitrary constants. We now divide elements by frequency. Define:

Sy ={i: f; > arp 'log(n)}, ©)

7 Note that we make “two passes” on D to define D,, but our algorithms will only need one pass
on D,.
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So={i:pt < fi <aup tlog(n)}, (10)
Ss={i: fi<p~'}, (11)

Denote random variables X;, j € {1,2,3}:
X;=p Y k. (12)

Denote numbers A;, j € {1,2,3}:
A= fF (13)
iESj

For completeness define A; = X; = 0if S; = 0 for j = 1,2,3. It follows that
p*F, = X1 4+ X2 + X5 and F, = A; + Ay + A3. We will show that, with high
probability: A; is very close to X, A3+ A, is negligible in terms of F},, and X5+ X3 is
bounded by ¢(As+ Asz) for some constant c. As aresult, we will prove that X; =~ p*kﬁ’k
is a good approximation of F}. Define

v =¢/2k (14)
Fact 2. For any i the following is true. If
p~ i = fil < fs (15)
then
T = fE < el (16)
Lemma 1. A; + A3 < 0.16;16Fk < €Fy.

Proof. Recall thati € (Sz U S3) implies f; < axp~!log(n). Thus,

Ay+ A= > fF < (arp'log(n))"Fy. (17)
1€S52US3

Recall that p > Cyp~ ! log(n). Thus,

Ay + Az < Fo(akC’kflp)k. (18)
Equation (6) yields

Ag + Az < Fr(arCh". (19)

The first inequality of the lemma follows from the definition (6) of Cj. The second
inequality follows since S > 1.

Lemma 2. Let X ~ B(N,p). There exists a constant Py, that depends only on k and
such that if Np > 1 then
E(X"*) < Bx(Np)*, (20)
and if Np < 1 then
E(X") < B 21)
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Due to a lack of space, we omit the proof. The proof is included in the full version of
the paper.

Lemma 3. P(X5 > €F)) <0.1

Proof. To bound X, we observe that f; ~ B(fi,p)- Also i € Sy implies that 1/p < f;.
Thus, we can apply Lemma 2. In particular, the case (20) gives:

E(fF) < Bu(fip)", (22)
which in turn gives
E(Xs) = Z E(ff) < Br Y fF = BrAs. (23)
p 1€S2 1€S2

Combining (23) with Lemma (1) we obtain E(X3) < 0.1eF}. Note that X5 is non-
negative. Thus, the lemma follows from Markov inequality.

Lemma4. P(X3 > €F)) <0.1

Proof. To bound X5 we observe that ¢ € Ss implies 1/p > f;. Thus we can apply
Lemma 2. In particular (21) gives us:

1
B(Xs) = Z B(f) < 4Bk, (24)
1€S3

Recall that p > Cy =1 log(n) (see (8)). Thus, Fact 1 gives us:

1 Bk F
E(X3) < ) BiFo < G e Fo o 1ep,. (25)

P ~ logh(n)
The lemma follows.
Lemma 5. Ifi € {2,3} and | X; — A;| > €F}, then X; > €Fy.
Proof. If | X; — A;| > €F}, then either
X; > A+ €Fy, (26)

or
Xi < A; — B @7

Note that 0 < A; < eF}, (by the definition and Lemma 1) and X; > 0 (by the defini-
tion). Thus (27) is not possible and (26) implies X; > €Fy,.

Lemma 6. P(|X; — A1| > €F)) <0.1.
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Proof. Note thatif S; = () then X; = A; = 0 and thus the lemma is correct. Otherwise,
let 7 € S be fixed. First, we will show that

5 1
P(lfi —pfil > ypfi) < Lon” (28)

Indeed, f; = Zle Y; ; where Y] ; are i.i.d. indicators with mean p. Thus E(f) =pfi,
and by Chernoff bound (see e.g., [31], B.2) we have:

P(|fi = pfil) > pfi) < 260771/, (29)

Direct computations and the definitions (4) and (14) imply that v2ay, = 16. Since
i € Sy, it follows that f; > p~tay log(n). Thus, v2pfi > v2ax log(n) = 161og(n).

Substituting this bound into (29) we obtain (for sufficiently large n):

~ 1
P(|fi = pfil) > ypfi) < 2108 < ;
(Ifi = pfil) > ypfi) < 2e < lon

and thus (28) holds. Further, Fact 2 and (28) imply

P(lp " fF — fFI > efF) (30)

< .
— 10n

If we apply (30) to every ¢ € S; and use the union bound and the fact that |S1| < n
then the lemma follows immediately. Indeed,

P(IX1 — A1| > eFy) < P(|1X1 — Ay| > eAy) = 31)

PO o =Y 1> ed>] ) <

€St €St 1€S1

P(Uies, (Ip*fF = fF1 > eff) < D> P(p 7" ff = 11 > eff) <0.1.
1€S1

Theorem 1. Let D be a stream such that in = (D) > Cj, log(n) and let p be a number
such that 1 > p > p~*Cy log(n). Let D,, be the sampled stream (see Definition 4). Let
k > 1 and € be constants. Then the following bound holds for sufficiently large n.

P(|EFy — Fi| > 3€¢F},) <0.3.

Proof. Indeed, R
P(|F}C7F}C‘ >36F}€) < (32)

P(‘Xl — Al‘ > EFk) + P(|X2 — A2| > GFk) + P(|X3 - Ag‘ > GFk)
Applying Lemma 5 we obtain:
P(|Fy — Fy| > 3¢Fy,) < (33)
P(|X1 - A1| > GFk) + P(XQ > GFk) + P(Xg > EFk).

The theorem follows from the union bound and Lemmas 6, 4, 3.
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Theorem 2. Let D be a stream such that ;n = (D) > Cy log(n) and let p be a number
such that 1 > p > p='Cylog(n). Let D, be the sampled stream. Let k > 1 and € be
constants. Then it is possible to output the (1 + €)-approximation of Fy, by making a
single pass over D,, and computing F}.. Thus, the problem of computing Fy, on D is
reducible to the problem of computing F}, on D,, and the reduction preserves the space
bounds. In particular, the space bounds are independent of p. Current best bounds for
Fy, include:

1. O(n'=2/*) memory bits for k > 2.
2. O(1) memory bits for 1 < k < 2.

4 Finding Heavy Elements

Definition 5. Let D be a stream and p be a parameter. The index i € [n] is a p-heavy
element if f¥ > pFy.

In this section, we show that a heavy element in the original stream remains a heavy
element in the sampled stream, and therefore we can apply existing techniques for heavy
hitters. The frequency of the found heavy element is (1 £ €)pf;, with high probability,
by Chernoff bound.

Theorem 3. Let D be a stream and i be a heavy element w.r.t. Fy, on D. Let k > 1
and let p > ,u‘l = Fy/Fy. Then there exists a constant ¢, such that with a constant
probability, i is a ci-heavy element w.r.t. Iy, on D,

Proof. By Chernoff bound, the frequency of 7 in D), is at least (1—¢)pf; with high prob-
ability. By Fact 3, the k-th frequency moment of D is bounded by azpu=* > "
Thus, i is a heavy element.

zlz'

Fact3. Let V € (Z " be a vector with strictly positive integer entries v;. Let |4 =
LS v Note that > 1. Let X; ~ B(v,u~") and X = Y| XF. Then there
exists a constant ay, that depends only on k such that P(X > ap=* Y7 | oF) < 0.1.

Proof. By Lemma 2
E(X]) < Bre((pv)* +1)
Thus,

E( <ﬁk kZ’U + Bgn.

Also, by the Holder inequality

Thus,

1/k 1D Vi —1 S k\1/k
net=u < (ZUZ)

Finally, n < (p=* Y"1, v¥). We conclude the proof by putting c = 2000 and
applying Markov’s inequality.
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Discussion, Open Questions, and Appendix

Due to space constraints, we have omitted the discussion, open questions, and appendix.
These are available in the full version of our paper on arXiv.
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Abstract. Markov chain Monte Carlo (MCMC)) is a standard technique
to sample from a target distribution by simulating Markov chains. In an
analogous fashion to MCMC, this paper proposes a deterministic sam-
pling algorithm based on deterministic random walk, such as the rotor-
router model (a.k.a. Propp machine). For the algorithm, we give an upper
bound of the point-wise distance (i.e., infinity norm) between the “distri-
butions” of a deterministic random walk and its corresponding Markov
chain in terms of the mizing time of the Markov chain. As a result, for
uniform sampling of #P-complete problems, such as 0-1 knapsack solu-
tions, linear extensions, matchings, etc., for which rapidly mixing chains
are known, our deterministic algorithm provides samples with a “distri-
bution” with a point-wise distance at most € from the target distribution,

in time polynomial in the input size and ™ *.

Keywords: rotor-router model, #P-complete, Markov chain Monte
Carlo, mixing time.

1 Introduction

Motivated by a new general scheme for a derandomization of randomized algo-
rithms, this paper proposes a deterministic sampling algorithm, that is a deter-
ministic algorithm to provide samples. Our approach is an analogy of Markov
chain Monte Carlo (MCMC'), and uses the idea of deterministic random walk.

Background: Sampling and approzimate counting. Counting is a fundamental
topic in Combinatorics, and it is highly related to sampling, a fundamental topic
in Probability Theory. #P, a computational class of the counting version of NP,
is an important class of polynomial-time complexity theory. Several counting
problems are known to be #P-complete.

A number of randomized approximate counting (cf. FPRAS!) based on MCMC
sampling are devised for #P complete problems, such as knapsack solutions [17],

* This manuscript is an extended abstract version of [19].

! An algorithm (for counting, for simplicity) is called fully polynomial-time approzima-
tion scheme (FPRAS) if the output approximate value Z € R for the exact number
A € Z satisfies that Pr(|]Z — A|/A <e)>1—4 for any € € (0,1) and 6 € (0,1), and
the algorithm terminates in time polynomial in the input size, e ™' and log(§™').
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linear extensions [14,3], matchings [12,13], etc. (see Section 5). The idea of
MCMC is simple; design an ergodic Markov chain with a desired limit distribu-
tion, and sample from the limit distribution simulating the chain (see Section 2).
It is easy to design Markov chain with a desired limit distribution based on re-
versible chains, and a major issue is mixing time of chains; “How long shall we
simulate the chain to obtain samples from an approximately limit distribution?”
Several techniques are developed for estimating mixing times concerning total
variation distance or relative point-wise distance (see e.g., [20,16]).

Recently, deterministic approximation for #P-hard problems is a major chal-
lenge. For instance, deterministic approximation algorithm based on the dynamic
programing was proposed for counting knapsack solutions [9].

Deterministic random walk. The rotor-router model, also known as the Propp
machine, is a deterministic process analogous to random walk on a graph [6,15].
Instead of distributing tokens to randomly chosen neighbors, the rotor-router
model deterministically serves the neighbors in a fixed order by associating to
each vertex a “rotor-router” pointing to one of its neighbors. Doerr et al. [5,7]
first called the rotor-router model deterministic random walk, meaning a “de-
randomized, hence deterministic, version of a random walk.”

The first remarkable result on the rotor-router model is due to Cooper and
Spencer [6]. They are concerned with the model of multiple tokens (multiple-
walk) on Z™, and investigated the discrepancy on a single vertex: they gave a
bound that \XE,” — /M(}t)| < ¢,, where XE,” (resp. ug,t)) denotes the number (resp.
expected number) of tokens on vertex v € Z" in a rotor-router model (resp.
corresponding random walk) at time ¢ on the condition that MS)O) = XS)O) for
any v, and ¢, is a constant depending only on n but independent of the total
number of tokens in the system. Cooper et al. [5] showed ¢; ~ 2.29, and Doerr
and Friedrich [7] showed that ¢y is 7.29 or 7.83 depending on the routing rules.

On the other hand, Cooper et al. [4] gave an example of |X1(}t) - /M(}t)| = Q(Vkt)
on infinite k-regular trees, the example implies that the discrepancy can get
infinitely large as increasing the total number of tokens.

Motivated by a derandomization of Markov chains, Kijima et al. [15] are con-
cerned with the multiple-walks on general finite multidigraphs (V, A), and gave

a bound | Xq(}t) - /M(}t)| = O(|V]].A|) in case that corresponding Markov chain is er-

godic, reversible and lazy. They also gave some examples of \XE,” - /M(}t)| = 2(|A]).
In the context of load balancing, Rabani et al. [18] are concerned with a determin-
istic algorithm similar to the rotor-router model corresponding to Markov chains
with symmetric transition matrices, and gave a bound O(Alog(|V])/(1 — Ay))
where A denotes the maximum degree of the transition diagram and A, denotes
the second largest eigenvalue of the transition matrix.

For some specific finite graphs, namely hypercubes and tori, some bounds in
terms of logarithm of the size of transition diagram are known [15,8,1]. For in-
stance, Akbari and Berenbrink [1] gave a bound O(n!-?) for n-dimensional hyper-
cube. Those analyses highly depend on the structures of the specific graphs, and
it is difficult to extend the technique to other combinatorial graphs.
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Kijima et al. [15] gave rise to a question if there is a deterministic random walk
for #P-complete problems, such as 0-1 knapsack solutions, bipartite matchings,
etc., such that | XE,” - ,ug,t)| is bounded by a polynomial in the input size.

There are a number of results related to deterministic random walk. Here, we
briefly refer some of them. Holroyd and Propp [10] analyzed “hitting time” of the

rotor-router machine with a single token (single-walk) on finite simple graphs,

and gave a bound \uff) —tmy| = O(|V||A|) where 5P denotes the frequency of
visits of the token at vertex v in t steps, and 7 denotes the stationary distribu-
tion of the corresponding random walk. Holroyd and Propp [10] also proposed a
generalized model called stack walk, which is the first model of deterministic ran-
dom walk for irrational transition probabilities, as far as we know. While Holroyd
and Propp [10] showed the existence of routers which approximates irrational
transition probabilities well, Angel et al. [2] gave a simple routing algorithm,
which serves tokens in a greedy manner based on the “shortest remaining time”
strategy.

Our Results. This paper proposes a deterministic algorithm for sampling from
a finite set V' = {1,..., N}. Our algorithm is based on a version of deterministic
random walk which emulates a Markov chain with a transition matrix P. In the
algorithm, a configuration of M tokens over V is deterministically updated; let
x® = (th), cee Xg\t,)) € 7%, denote the configuration at time ¢t = 0,1,2,..., i.e.,
XE,” denotes the number of tokens on v € V, and hence ) ., XE,” = M. For
comparison, let 1(*) = (O and let u® = p(© P! then u¥ € RY, denotes the
expected configuration of M tokens independently according to P for ¢ steps. A
main contribution of the paper is to show that \XE,” — ,ug,t)\ < 3(Tmax/Tmin)t* A
holds for any v € V at any time ¢ in case that P is ergodic and reversible, where
Tmax and Ty are maximum/minimum values of 7 respectively, t* is the mizing
rate of the corresponding Markov chain, and A is the maximum degree of the
transition diagram.

This result suggests polynomial-time deterministic algorithms (with polyno-
mial space) for uniform sampling for #P-complete problems, such as knapsack
solutions, linear extensions, matchings, etc., for which rapidly mixing chains ex-
ist. Thus, our result affirmatively answers the question by Kijima et al. [15].
Setting the number of tokens M > 3e~1¢* A for an arbitrary ¢ (0 < ¢ < 1), our
algorithm provides M samples with a “distribution” () := x) /M, of which
the point-wise distance ||X\") — 7||o is at most & from the uniform distribution
7 over the target set. For instance, our algorithm runs in O*(n'l1e~1) time for
n-dimensional 0-1 knapsack solutions, in O*(n8¢~1) time for linear extensions of
n elements poset, in O* (m*n*e~1) time for all matchings in a graph with n ver-
tices and m edges, where O* notation ignores poly(log(¢~1),log m, logn) factors.
Note that those orders of magnitude are not optimized, for simplicity of the main
arguments. Unfortunately, these running times are the best possible in terms of
¢~1! for any deterministic sampler, because of the integrality gap concerning the
number of tokens. See also the full-paper version [19] for a relationship to the
previous deterministic random walks.
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Organization. This paper is organized as follows. In Section 2, we briefly reviews
MCMC, as a preliminary of our algorithm and analysis. In Section 3, we describe
out algorithm, and explain a summary of our main result. In Section 4, we prove
the main theorem. In Section 5, we show examples of polynomial-time uniform
samplers, namely for knapsack solutions, linear extensions, and matchings.

2 Preliminaries: Markov Chain Monte Carlo

As a preliminary step of our deterministic sampling, this section briefly reviews

the Markov chain Monte Carlo (MCMC). See e.g., [20,16] for detail of MCMC.

Let V 9 {1,..., N} be a finite set, and suppose that we wish to sample from

V with a probability proportional to a given positive vector f = (f1,..., fn) €
Rgo; for example, we are concerned with wuniform sampling of 0-1 knapsack
solutions in Section 5.1, where V denotes the set of 0-1 knapsack solutions and
fo =1 for each v € V. The idea of a Markov chain Monte Carlo (MCMC) is to
sample from a limit distribution of a Markov chain which is equal to the target
distribution f/|| f[l1 where || f|l1 = >, cy fo is the normalizing constant.

Let P € RYSY be a transition matrix of a Markov chain with the state
space V, where P, denotes the transition probability from u to v (u,v € V).
A transition matrix P is irreducible if P}, > 0 for any v and v in V, and is
aperiodic if GCD{t € Z¢ | P., > 0} = 1 holds for any « € V, where P, ,
denotes the (u,v) entry of P!, the t-th power of P. An irreducible and aperiodic
transition matrix is called ergodic. It is well-known for a ergodic P, there is a
unique stationary distribution w € R]>VO, i.e., tP = m, and the limit distribution
is 7, i.e., EP>° = 1 for any probability distribution £ € RY, on V.

An ergodic Markov chain defined by a transition matrix P € R]>VOXN is re-
versible if the detailed balance equation

fuPu,v = fvpv,u (1)

holds for any u,v € V. When P satisfies the detailed balance equation, it is not
difficult to see that fP = f holds, meaning that f/| f||1 is the limit distribution
(see e.g., [16]). Let £ and ¢ be a distribution on V, then the total variation
distance Dy, between & and ( is defined by

1
D€, 0) "% max 3 (60— 6) =, €= Gl @

Note that Dy (€,¢) < 1, since ||£]|1 and ||¢]|1 are equal to one, respectively. The
mizing time of a Markov chain is defined by

7(g) def: ma‘}min {t € Z>o | Dtv(Rf o) < 5} (3)
vE - ’

for any € > 0, where P} denotes the v-th row vector of P*; i.e., P} denotes
the distribution of a Markov chain at time ¢ stating from the initial state v € V.
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In other words, the distribution P of the Markov chain after 7(e) transition
satisfies DtV(Pﬁ’_, 7) < g, meaning that we obtain an approximate sample from
the target distribution.

For convenience, let h(t) def. maxXyey Div (sz}’,,ﬂ') for ¢t > 0, then it is well-
known that h satisfies a kind of submultiplicativity. We will use the following
proposition in the analysis of our algorithm in Section 4.2. See [16] or [19] for

the proof.
Proposition 1. For any integers £ (¢ > 1) and k (0 < k < 7(v)),

BTl +8) < L (20)"

holds for any v (0 <y < 1/2). |
By the submultiplicativity, t* det 7(1/4), called mizing rate, is often used as a
characterization of P.

3 Deterministic Sampling Algorithm

Now, we explain our algorithm in Section 3.1, and exhibit a summary of our
main theorem in Section 3.2. Our algorithm is based on the idea of determinis-
tic random walks, such as the rotor-router model (see e.g., [6,15]) or the stack
walk (greedy-routing) [10,2,21], but a major difference is that our algorithm is
oblivious; while the rotor-router model and greedy-routing model memorizes the
configurations of tokens and routers, our algorithm memorizes the configuration
of tokens only. It makes the description of the algorithm simple, compared with
other deterministic random walks.

See Section 5 for the detailed description of deterministic sampling algorithms
for particular applications, such as 0-1 knapsack solutions (Section 5.1), linear
extensions (Section 5.2), and matchings (Section 5.3), where we also discusses
the computational complexities of our algorithm for the applications. See also
the full paper version [19] for a relationship to other deterministic random walk,
including the rotor-router model [6,15], greedy-routing [10,2,21], etc.

3.1 Algorithm

Let P € RgOXN be a transition matrix of an ergodic Markov chain with the

state space V. Let p(9) = (,ugo)7 ey ,ugs)) € ZJZVO denote an initial configuration

of M tokens over V, and let u*) e Rgo denote the expected configuration of
tokens independently according to P at time ¢ € Zso, i.e., [|p?|1 = M and
p = pO Pt Let g® = p® /M, for simplicity, then clearly () = 7 holds,
since P is ergodic (see Section 2).

The idea of our algorithm is to simulate (¥ in a deterministic way. Let G =
(V, ) be the transition digram of P, meaning that & = {(u,v) € V? | P,, > 0}.
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Note that £ may contain self-loop edges such as (v,v). Let N (v) and N~ (v)
respectively denote the out-neighborhood and in-neighborhood of v € V| i.e.,
Ntw)={ueV |P,, >0} and N~ (v) = {u € V| P,, > 0}. Note that v is
a member of both N (v) and N~ (v) if (v,v) € €. For convenience, let §(v) =
INT(v)| and 6~ (v) = [N~ (v)|. In case that P is reversible, N (v) = N~ (v)
holds, and let A/(v) denote them and let 6(v) = |A(v)|, for simplicity.

Let x(© = u®, and let x® € Z%, denote the configuration of tokens at
time ¢t € Z>¢ in our algorithm. A configuration x is updated, imitating P, ,,
as follows. Without loss of generality, we may assume that an arbitrary ordering

UL, .., Ust(y) i defined on NT(v) for each v € V. Then, we define the number
)

of tokens Zétu sent from v to uw during the time interval from ¢ to ¢ + 1 by
AP | +1 G <)
(t)

Zyu; = o (4)
LXU Pv,uiJ (otherwise)

where
. 5t
v = th) - Zi=§v) {th)Pv,uiJ
denoting the number of “surplus” tokens. Then, x**1) is defined by

def.
xetE Lzl (5)

for each u € V.

Remark that ,ugfﬂ) = ZUEV /M(f)Puu holds for each v € V and ¢ > 0, in
the multiple random walk, meaning that if x(*) approximates u(* well, then we
can expect that Zi()t,)t approximates the “expected flow of tokens” /Lg)t)Pv,u and
hence that x**1 approximates p(*+1) well. In fact, it is not difficult to see the
following observation, which we will use in the analysis in Section 4.2.

Lemma 2. For the above algorithm,
Zz()g - Xg;t)Pv,u < 1

holds for any u,v,€ V and t > 0.

3.2 Main Results

By the definition of the mixing time, Dy, (1(7(*)), 7) < ¢ holds where 7(¢) denotes

the mixing time of P, meaning that g approximates the target distribution 7
well. Thus, we hope our deterministic sampler that the “distribution” YT def.
xT) /M approximates the target distribution 7 well. We define a point-wise

distance Dpw (&, ) between £ € RJZVO and (¢ € RJZVO satisfying [|€]]1 = ||<|l1 = 1 by

def

DPW(&C) = max‘fv - Cv‘ = ||§ - CHOO (6)

veV
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Theorem 3. Let P € RY XY be a reversible transition matriz with a stationary
distribution m, then B

e 3t*A
D (;(T) ~<T>> < Tmax
Pw i Tmin M
holds for any T > 0, where Tmax = max{m, | v € V} and myin = min{m, | v €
V1.
In a special case that the stationary distribution is uniform, we obtain the

following.

Corollary 4. Let P € ]R1>VOXN be an ergodic and reversible transition matrix

with a uniform stationary s}ationary distribution w. Set M > 6e~1t* A, then the
“distribution” X'T) of the deterministic sampler after T > 1(c/2) steps satisfies
that Dy (X(T), 77) <e.

4 Analysis of the Point-Wise Distance

This section proves Theorem 3. Some of basic techniques in our proof are based
on or similar to previous works [6,15,18].

4.1 Framework
To begin with, we establish the following key lemma. See [19] for the proof.

Lemma 5. Let P € ]R1>VOXN be a transition matrixz of an ergodic Markov chain
with a state space V, and let ™ be the stationary distribution of P. Then, the
configurations X7 and p") of tokens in the algorithm and in corresponding
random walk satisfy

T) — Z Z Z ( X(t)Pv u) (nglzt—l _ 7Tw)

t=0 ueV veN—

for any w €V and for any T > 0. ]

4.2 Analysis for Reversible Chains

Now, we are concerned with reversible Markov chains, and show the following
theorem.

Theorem 6. Let P € RQIOXN be a transition matriz of a reversible and ergodic
Markov chain with a state space V, and let 7 be the stationary distribution of P.
Then, the configurations xT) and p™) of tokens in the algorithm and in its
corresponding random walk satisfy

2(1 —~) ™
(T T)’ < 2l WA
X L T (7)

foranyw eV, T>0and~vy (0 <vy<1/2).
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Remark that our main Theorem 3 is immediate from Theorem 6 by setting
~v =1/4 and dividing (7) by the total number of tokens M.

Proof. By Lemma 5 and Observation 2, we obtain that

R E Z

t=0 u€V veN (u

T-1 T-1
<D D> R ] = XY s [Pl -] (8)

t=0 ueV veN (u) t=0 ueV

—xPP, .,

T—t—1
’Pu,w - 77“1’

holds. Since P is reversible, P}, = ™ P!  holds for any w and u in V. Thus

=3 Y| (P )
t=0 ueV
T-1
<A™ ZZ| —m| =247 Dy (PLT) ()
TrIl’llIl t=0 uEV TrIl’llIl t=0

where the last equality follows the fact that } |P5} — y| = 2Dy (P ,77),
by the definition of the total variation distance (2). By Proposition 1, we obtain
the following.

Lemma 7. For any v € V and for any T > 0,

< 1=
Dy (P, m) <
Z t v,- 1727 (7)

holds for any v (0 <y < 1/2).

Proof. Let h(t) = D (P}, ., ), for convenience. Then, h(t) is at most 1 for any
t > 0, by the definition of the total variation distance (2). By Proposition 1,

- 00 oo T(v)—1
> Dy (P 7)) =Y _ht) < h(t) = > > hlt-7(y)+k)
t=0 t=0 t=0 =0 k=0
T(v)—-1 co T(v)—1 T(v)—-1 oo T(v)-1 1 ,
= <
S hk)+Y h(l-7(7) + k) 1+>° 5 (27)
k=0 /=1 k=0 k=0 =1 k=0
)+ @0 =+ T ) = T )
Y 2 1)y (27 N+ _y, 70 19,70
holds, and we obtain the claim. a

Now we obtain Theorem 6 from (9) and Lemma 7. O
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5 Applications to Rapidly Mixing Chains

In this section, we show some examples of polynomial-time deterministic sam-
plers for uniform sampling of combinatorial objects, whose counting is known to
be #P-complete.

5.1 0-1 Knapsack Solutions

Given a € RZ; and b € Ry, the set of the 0-1 knapsack solutions is defined by
ke = {x € {0,1}™ | 31, azz; < b}. We define a transition matrix Pkna €
R!92Knal X |2knal by

PKna(xyy) - 1-— |NKna(5E)‘/2n (lf Yy = a:)
0 (otherwise)

for &,y € Qxna, where Nina(®) = {y € Pkna | |2 — y||1 = 1}. Note that the
stationary distribution of Pk, is uniform on {2k, since Py, is symmetric. The
following theorem is due to Morris and Sinclair [17].

Theorem 8. [17] The mixing time 7(v) of Pkna S O(na+e logy~1) for any
a > 0 and for any v > 0.

For the Markov chain defined by Pgkpa, our deterministic sampler is described
as follows. Note that the following implementation does not optimize the time
and space complexity, for simplicity of the arguments.

Algorithm 1
Step 0. Set WO[i] := 0 for each i = 1,..., M.

/* W'[i] stores a solution in {2k,., where token i is. */
Step 1. For (t =0 to T — 1){

(a). Set list S :={i € {1,..., M} | W'[i] = &} for each @ € Q2kna as
long as S5 # 0.
(b). Serve tokens in S to neighboring vertices according to (4) for

cach & € Qxna satisfying that S # 0, and set W' T[] be the
solution in 2kn. at which token i arrived.

}

Step 2. Output WT[i] for each i =1,..., M.

Theorem 9. For an arbitrary ¢ (0 < & < 1), set M :=cyn2 T~ and T :=

comate log e~ with appropriate constants cy, co and o, then Algorithm 1 outputs

M samples over 2xna satisfying that

Dy (7,7 < (10)

where 7 is the uniform distribution over 2kna. The running time of Algorithm 1
18

O(T M log(M) npoly(loga,logh)) = O* (nt1T22c=1)

where O* ignores poly log term.
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Proof. We check the complexity of Algorithm 1 for each Step. Step 0 sets all M
tokens on 0 € 2kna, which takes O(Mn) time. Step 1(a) constructs the configu-
ration X(t) of M tokens over {2kx,.. Note that the number of lists is at most M,
since Step 1(a) constructs a list for v € 2k, only when at least one token exists
on v. Step 1(a) takes O(M log(M)n) time, by heapifying W'[i] (i = 1,..., M)
with the lexicographic order on {2ky,. Step 1(b) updates a configuration accord-
ing to our deterministic sampling algorithm described in Section 3.1. It takes
O(npoly(log a,logd)) time to find all feasible solutions neighboring to x. Once
the algorithm finds all feasible solutions neighboring to @, then it is easy to let
every token of X(wt ) go to the neighboring vertex according to (4), in O(n X(wt ))
time, like the rotor-router. Since we repeat Step 1 T times, then we obtain the
time complexity O(T'M log(M) n poly(log a,logd)).

Now, (10) is clear from Corollary 4, since Algorithm 1 is an implementation
of the deterministic sampler described in Section 3.1. O

5.2 Linear Extensions of a Poset

Let S = {1,2,...,n}, and @ = (5,=) be a partial order. A linear extension
of @ is a total order X = (S,C) which respects @Q, i.e., for all i,j7 € S, i < j
implies 7 C j. Let {21, denote the set of all linear extensions of Q. We define a
relationship X ~, X’ (p € {1,...,n}) for a pair of linear extensions X and X'
€ Ly satisfying that z, = 2, |, v,41 = 2, and 7; = 2 for all i # p,p+1, i.e.,

X = (xlaan"'al'pflal'pasz*laxp‘FQa"'axn)

/
X' = (.’1,‘1,.’1',‘2,...,J,‘p_1,$p+1,.’11‘p,xp+2,...,.’L‘n)

holds. Then, we define a transition matrix Pr;, € RI€uin| x| 2rin] by

)2 (if X' ~, X)
PLin(XaX/): 1721€NLin(X)PLin(X’I) (le/:X)
0 (otherwise)

for X, X' € Quin, where Npin(X) ={Y € Quin | X ~, Y(p € {1,...,n—1})}

and F(p) = I ((gsipz). Note that Ppi, is ergodic and reversible, and its stationary
6

distribution is uniform on (2r;, [3]. The following theorem is due to Bubley and

Dyer [3].

Theorem 10. [3] The mizing time 7(y) of PLin ts O (n3 log n’yfl) forany~y > 0.
Thus, we obtain a deterministic algorithm running in O*(n8¢~1) time, in a sim-
ilar way as 0-1 knapsack in Section 5.1. See [19] for detail.

5.3 Matchings in a Graph

Counting all matchings in a graph, related to the Hosoya index [11], is known
to be #P-complete [22]. Jerrum and Sinclair [12] gave a rapidly mixing chain.
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This Section is concerned with sampling of all matchings in a graph. Remark that
counting all perfect matchings in a bipartite graph, related to the permanent,
is also well-known #P-complete problem, and Jerrum, Sinclair, and Vigoda [13]
gave a celebrated FPRAS based on an MCMC method using annealing. To apply
our algorithm to sampling perfect matchings, we need some assumptions on the
input graph (see e.g., [20,12,13]).

Let H = (U, F) be an undirected graph. A matching in H is a subset M C F
such that no edges in M share an endpoint. Let No(M) = {e = {u,v} | e ¢
M, both u and v are matched in M} and let Myat(M) = {e | e ¢ No(M)}.
Then, for e = {u,v} € Myar(M), we define M(e) by

M—e (if ee M)

M+te (if u and v are unmatched in M)

M+ e — ¢ (if exactly one of v and v is matched in M, and
¢’ is the matching edge).

M(e) =

Let (2.t denote the set of all possible matchings of H. The we define the
transition matrix Pyrae € RIMael X [2nacl y

1/2m (it M= M(e))
Prtag (M, M) = < 1 — [Myag(M)|/2m (if M = M)
0 (otherwise)

for any M, M’ € 211, where m = |F|. Note that Pyt is ergodic and reversible,
and its stationary distribution is uniform on {2\a¢ [12]. The following theorem
is due to Jerrum and Sinclar [12].

Theorem 11. [12] The mizing time 7(y) of Puat is O (mn?logny™") for any
v > 0.

Thus, we obtain a deterministic algorithm running in O*(m*n*e=1) time, in a
similar way as 0-1 knapsack in Section 5.1. See [19] for detail.

6 Concluding Remarks

This paper proposed an algorithm for deterministic sampling, and gave an upper
bound of the point-wise distance Dpw(%(t), ﬁ(t)). Using the algorithm, we obtain
polynomial-time deterministic algorithms for uniform sampling of #P-complete
problems, such as knapsack solutions, linear extensions and matchings. A bound
of the point-wise distance independent of myax/mTmin is a future work. Develop-
ment of deterministic approximation algorithms based on a deterministic sampler
for #P-hard problems is a challenge.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Num-
ber 25700002, 24650008, and MEXT Grant-in-Aid for Scientific Research on
Innovative Areas “Molecular Robotics” (No. 25104519).
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Abstract. An inconsistent database is a database instance violating in-
tegrity constraints. A repair of an inconsistent database is a maximal
consistent subset. Sampling from the repair space is an alternative ap-
proach meeting the needs of many applications. In this paper, we intro-
duce a new class of repair, query feedback restricted repair, based on the
feedback on user’s witness query. We first map out a complete picture of
both data and combined complexities of repair existence problems under
different cases to identify the intractable cases. Especially, we show that
if the query is a projection or a union query, then the decision problem is
NP-complete; Even worse, if the query is a conjunctive query, the deci-
sion problem becomes XY -complete. At last, we provide a random repair
sampling algorithm when the witness query is a selection-join query, and
it is still polynomial even under the combined complexity.

Keywords: repair sampling, database, complexity.

1 Introduction

In many novel database applications, violations of integrity constrains cannot
be avoided. For example, two consistent data sources will contribute conflicting
information in data integration [1]. Integrity constrains (such as FDs [2]/CFDs
[3]) can be used to identify conflicts in the database. A resolution of a conflict
is the deletion of one of the tuples resulting in the conflict. Generally, there
are many nondeterministic choices to resolve the conflicts when repairing the
database, because integrity constrains can not be able to further determine which
tuple should be deleted. Due to the exponential space of possible subset-repairs,
we may not be able to, or may not want to, generate all repairs. Therefore,
repair sampling is proposed as an alternative approach which aims to provide
repairs sampled from the original data to user in some strategies in order to help
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user find a more reasonable repair. This approach will meet the needs of some
applications such as interactive data cleaning, data integration and uncertain
query answering, see [4].

Consider an example about the cargo information of a retail store. Suppose
a schema R(Item: string, Type: string, Brand: string, Origin: string, Price: nu-
merical), an database instance Iy over schema R is shown as follow,

{t1(Tea, Green, China, 100), t3(Tea, Red, India, 110),

t3(Tea, Green, China, 120), t4(Tea, Red, India, 130)}

Additionally, an FD ¢ is defined over R as follow, ¢: Item, Type, Origin
— Price. The semantic of ¢ is that if two tuples have the same value on the
attributes “Item”, “Type”, “Origin”, the values of attribute “Price” must be the
same. According to such FD, tuple “t1” is inconsistent with “t5”, and tuple “t3”
is inconsistent with “¢4”. Usually, inconsistencies imply that the data has errors.
However, ¢ cannot further guide how to repair such two inconsistencies in order
to recover the correct information. A subset-repair is the maximal consistent
subset of the inconsistent database, thus there are exponential possible repairs
with respect to the number of inconsistencies such as the repair set of Iy includes
four possible subset-repairs as follow,

I;: {(Tea, Green, China, 100), (Tea, Red, India, 110)}

I: {(Tea, Green, China, 100), (Tea, Red, India, 130)}

I4: {(Tea, Green, China, 120), (Tea, Red, India, 110)}

I}: {(Tea, Green, China, 120), (Tea, Red, India, 130)}

Sampling algorithm is to generate a sample of possible repairs of the input
database under some repair semantic, moreover, it will return empty when no
repairs are found.

In real life, there are many users having useful knowledge which can be used
to guide how to resolve the conflicts, for example, they are able to provide a
preference on how conflicts should be resolved which has been investigated in
[1]. In this paper, we consider another way of exploiting users’ knowledge, in
which user will give a feedback on a witness query result to guide how to resolve
the conflicts. Comparing with preference on conflicts in [1], query feedback has a
stronger expression ability, and this implies that user knowledge can be exploited
as more as possible. Often, users have the knowledge about the result of his
witness query, but they may not be permitted to modify the database directly
due to some reasons, since they may not have the complete knowledge about the
whole database. We restrict that the feedback can be only specified on the witness
query result, rather than the modifications directly on the original database.
Obviously, the guide from user’s feedback on the witness query will narrow down
the set of repairs to a set of repairs consistent with the users’ knowledge at least.

Continue the example above, user A wants to know “the information of all
the tea produced in China that this retail store sailed”. Motivated by this, user
A submits a witness database query Q : riem=Tea,0rigin=China (Io)." And an
result of Q is returned as {(Tea, Green, China, 100), (Tea, Green, China, 120)}.
In fact, user A has the useful knowledge about the cargo information of this

! Selection symbol o. See [2]
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retail store, and make sure that “The prices of green tea this store sailed are
no more than 100 !I” Consequently, for Q, user A will provide a feedback that
A =(Tea, Green, China, 120) should be eliminated. Then, these feedbacks are
the belief that we are allowed to eliminate tuple t2 and t5 from Iy. Because user
query feedback can be used to eliminate incorrect repairs, the sampling space
of possible repairs gets even better and smaller as follows, and we call the two
repairs query feedback restricted repair,

I{: {(Tea, Green, China, 100), (Tea, Red, India, 110)},

IJ: {(Tea, Green, China, 100), (Tea, Red, India, 130)}.

In this paper, we want to make a theoretical and algorithmic study on sam-
pling query feedback restricted repair. We first investigate the repair existence
problem. This is motivated that the repair existence problem is the fundamental
problem of repair sampling. We set the integrity constrain as the simple case and
set the witness query as a single relation algebraic query (not multiple queries),
then give the complexity analysis of the decision problems under different query
classes. After identifying all the intractable cases, we will provide polynomial
sampling algorithm for the tractable case.

Contributions. We summarize our contributions as follows. First, we formally
introduce query feedback restricted repair. Second, we give the thorough com-
plexity analysis of its existence decision problem, ¢fr-RE. On data complexity
aspect, qfr-RE is at least NP-hard if the witness query includes projection or
union; On combined complexity aspect, ¢fr-RE is also intractable if projection
or union included, and it turns to XY -complete if the witness query is a SPJ
(selection-projection-join) query (i.e., conjunctive query) or a SPJU (selection-
projection-join-union) query. In brief, we map out a complete picture of the data
and combined complexities of the three problems. Finally, we provide a random
repair sampling algorithm when the witness query is a selection-join query and
user has the complete knowledge about the witness query, the algorithm is still
polynomial even under the combined complexity.

2 Related Works

Optimal data repairing and consistent query answer are the most popular ap-
proaches to deal with violations of FDs and other integrity constraints. The for-
mer aim to find a repair with a minimum modifications on the given database,
including minimally differs from the original one (e.g., [5], [6], [7], [8]), mini-
mize the description length (e.g., [9]) and so on. The limitation of them is that
there may be many different optimal repairs. The latter aims to find answer
of a query that are true in every possible repair. It usually employ techniques
of condensed representation of possible repairs(e.g., [10], [11]) or query rewrit-
ing (e.g., [12], [13]) to obtain consistent answer. Unfortunately, there are lots of
classes of queries have to be answered approximately. Sampling repairs is an al-
ternative approach proposed to overcome several drawbacks of optimal repairing
and consistent query answering. It is to generate a sample of possible repairs of
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the input database under some repair semantic, moreover, it will return empty
query results when no consistent answers are found, such as [4] proposed three
classes of repairs and the corresponding sampling algorithm.

Different from the existing work, this paper consider using user query feed-
back to guide how to resolve conflicts so that a more reasonable sampling space
could be obtained. Comparing with the preferred repair in [1], query feedback
restricted repair defined in this paper has a stronger expressive ability. More-
over, we focus on sampling repairs, not the consistent query answering. We study
the complexity of repair existence problem not the repair checking problem that
whether a given instance is a repair of the input instance, see [14].

Another related problems is view update problem that given a view and an up-
date against a view, the problem is to translate the update into a corresponding
update against the base data, see [2]. There are several complexity bounds are
known on relational view updates, [15], [16], [17], and [18] give out the tractabil-
ity and intractability results of finding a minimal view complement for relational
views. [19] gave out the complexity of view update analysis under key preserv-
ing condition which can not be extended to ours. There are lots of works on the
algorithms for translating view update to base table update, such as [20], [21],
[22] and so on. Especially, [23] and [18] both considered the presence of certain
functional dependencies and provided algorithms for translating restricted view
updates to base table updates without side effects or with minimum side effects.
Their goal was to define correctness properties of these translations and to char-
acterize precisely the conditions for the existence of translations possessing these
properties. Different from our work, the database they considered is a consistent
one not a inconsistent database so that the presence of FD and other integrity
constrains simplifies view update problem which it is in contrary to this paper.

Dependency propagation is another related problem, it is to determine that
given a view defined on data sources and a set of dependencies on the sources,
whether another dependency is guaranteed to hold on the view, e.g., [24], [25]
which are the first to investigate dependency propagation. [26] extended [24],
[25] by providing complexity bounds for FD propagation in the general setting,
and for CFD propagation. However, this is a problem different from ours.

3 Notations and Definitions

A schema is a finite sequence R = (Ry,..., Ry,) of distinct relation symbols,
where each R; has an arity r; > 0 and includes several attributes, denoted by
R; = (Ai1,...,A,,). Each attribute A; has a corresponding set dom(A;) which
is the domain of values appearing in A;. An database instance I (over R) is a
sequence (RI, ..., RL), such that each R! is a finite set of tuples {t1,...,tn}, each
tuple t;, belongs to the set dom(Ay) x - - - x dom(A,,). We use I[R;] to represent
the relation R; in database I. If I and J are two instances over R = (Ry, ..., Ry,),
then J is a sub-instance of I denoted J C I if R/ C Rl for alli = 1,...,m.

An FD (Functional Dependency[2]) ¢ over a relation R can be represented
by ¢ : (X — A), where both X and A are a set of attributes from R. Such
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dependency means the values of any two tuples’ attributes A should be same if
they have same value in attributes X. Given a database instance I and an FD
, if there is no tuple pair violate the FD rule, we denote that I = ¢. Usually,
we use X to denote the set of FDs. Given a database I and an FD set X, for
every FD ¢ € X if I = ¢, we call I consistent, denoted as I = X. Otherwise,
we call it inconsistent.

In this paper, we suppose that the user has complete knowledge about the
answer of his witness query, he is able to guarantee what should be preserved
in the result and what should not be. Therefore, we define the query feedback
restricted repair as follow.

Definition 1 (Query feedback restricted repair). Given a database I, FD
set X, a query @, its result Q(I) and a subset of result need to delete specified
by users A (i.e., A C Q(I)), for any instance I, it is called a subset-repair
of T such that (1) I, = X, and (2) Q(I,) = Q(I)\A4, (3) I. is a mazimal
sub-instance of I.

Before we give the sampling algorithm, we first study the complexity of the basic
decision problem of repair existence, called qfr-RE . Here, the feedback A speci-
fied by user is a subset of the query result Q(I) where the witness query @ is writ-
ten by operations in relational algebra including S (selection), P (projection), J
(join), U (union), RA (Relation algebra). Recall the example in section 1, both
I} and I} are repairs restricted by the feedback A = {(Tea, Green, China,120)}.

4 Intractable Cases

In this section, we list the intractable cases on two aspects including both data
and combined complexity. We remark that data complexity is the complexity
expressed in terms of the size of the database only, while combined complexity
is the complexity expressed in terms of both the size of the database and the
query expression [27].

4.1 Data Complexity Aspect
Theorem 1. ¢fr-RE is NP-hard for P query.

Proof Sketch: We construct a PTIME reduction from 3SAT to this problem.
Given a boolean variable set X = {x1,...,2,}, the input of 3SAT problem is
a formula ¢ = C1 A ... A Cy, where C; = {l1,12,{3} and [; is either x or zy
for k € 1,...,n, reduction can be described as follows. (1)Base instance. Let I
contains only one relation R including three attributes (L, X, C). For each clause
C; € ¢ and each literal I; € C; (j € {1,2,3}), a tuple ¢;; is built and inserted
into R as follows. If [; is xy, let ¢;; = (+, Xk, ¢;). If I is g, let t;; = (—, Xk, ¢i).
(2)FD set. Let X be {X — L}. (3) Witness query. Let Q be mc(R). (4) Query
result. Let Q(I) = {(c1), ..., (cm)}. (5)Feedback. Let A be (). One can verify the
¢ is satisfied if and only if there is a valid repair of I.
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Theorem 2. ¢fr-RE is NP-hard for U query.

Proof Sketch: We construct a PTiME reduction from Monotone 3SAT problem.
Similar with 3SAT problem, an instance of Monotone 3SAT problem is a formula
¢ = C1A---AC,y,, where each clause C; includes only positive or negative literals.
The reduction can be made as follows. (1) Base relations. First, suppose there are
n variables z1,...,Z,, then let I contains n relations Ry, ..., R,. Each relation
R; has attribute set {X, C'}. Second, for each Cj, if z; € C}, add (+, C}) to R;, if
z; € Cj, add (—,Cj) to Ry; (2) FD set. For each R;, add rule ) — X to the rule
set X; (3) Witness query. Let Q be R1U---UR,; (4) Query result. Initially, Q(I)
includes m tuples where tuple t; is (4, C;) if C; contains positive; otherwise, it
is (—, C}); (5) Feedback. Let A be (). One can verify that ¢ is satisfied if and only
if there is a valid repair of I.

Theorem 3. ¢fr-RE is NP for RA query.

4.2 Combined Complexity Aspect

To analyze the SPJ query, we will use the term fact. Given a database instance
I and a SPJ query @ in a form of ma (0con(R1 X -+ X Ry)). A fact p of I
is a tuple sequence (t1,t2,...,t,) € Ry x --- x R,, where t; € R! for each
1<i<q If (t1,t2,...,t,) satisfies the selection condition con, then we denote

it as Q (i) € Q (I).
Theorem 4. qfr-RE is XY -complete for SPJ query and SPJU query.

Proof. We will prove the following two statements to show the correctness of
the theorem. (i) We prove the upper bound of ¢fr-RE for SPJU query is X¥ by
giving a YT algorithm as follows. First, guess a sub-instance I, of I satisfying
Y. Then, determining whether Q(I,) N A = () and Q(I)\A C Q (I,-). The former
question is in coNP, because any SPJU query has a form of ¢; J- - -|J ¢. where
each ¢; is a SPJ query, so that its complement can be solved by determining
whether for there is a fact p of I such that Q (n) € Q(I,) and Q (u) € A.
The latter question is also in coNP, because its complement can be solved by
determining whether there is a fact p of I such that @ (1) € Q (I) \A but p is
not a fact of I, (then it must be @ (1) ¢ Q(I,), because Q(p) € Q(I)).

(i) We prove the lower bound of ¢fr-RE for SPJ query is XY-hard by a
reduction from QSATy problem. An instance of QSATs problem includes two
variable sets X1 = {z1,...,2zn} and X3 = {Zp/41, ..., Tp/4n~}, and a 3-DNF
boolean expression ¢ with m clauses {C1,...,C,,}, the task is to determine
whether there is an assignment 7 for X; such that ¢ is satisfied by all assignments
for X5. Let n = n/+n”, that is | X;|+|X2| = n, we show the reduction as follows.
(An example of the reduction for a QSAT; instance ¢ = JzyzaVaszza(z1 A 22 A
x3) V (21 Axg Axs) V (1 Axg A xy) is shown in Fig. 1.)

Base instance I. We build I including n + m + 3 relations {S;,i =1,...,n} U
{Ri,k=1,...,m}U{Gp,p =1,2,3}, where S; simulates x;, Rj, simulates clause
Ck and G1, G, G are three auxiliary relations. Concretely, (1) For each variable
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x; (1 <4 < n), construct relation S; = {43, A2} and add three tuples (X, 1) and
(X,0) and (Y, B) to S;. (2) For each clause C; (1 < i < m), build a quintuple
relation R; (A1, Ag, Az, A4, A5). We add 8 tuples into I[R;]. In the first 7 tuples,
values of Aj, As, A3 refer to the 7 false value assignments of the 3 variables,
values of Ay are always ‘—’, and the values of As are the ids of these 7 tuples.
The last two tuples are auxiliary tuples (Z,Z, Z, —,8) and (B, B, B, B,9). (3)
G includes two tuples (X - X), (Y :--Y); Gz includes three tuples (0---0),
~ ~ ~

n’ n’ n!!
(@ o 1), (B o B); G5 includes eight tuples (1 o 1), (2 o 2), - (9 o 9).
n’’ n'’’ m m

m

FD set X. For each relation S;, i € [1,n], add FD: S;.A; — S;.A5 into X.
Witness query . Construct the query @ as follows. We denote Ry X - -+ X Ry,
S1 %+ xSy and Spryq X ---x S, as R, S, S2. For each clause C}, € ¢, without
loss of generality, it is assumed that Cx = xx1 A Tp2 A xk3, let the condition
cony be (Skl.AQ = Rk.Al) A (SkQ.AQ = RkAQ) AN (Sk3.A2 = RkAd) Let the
condition con a4 be R1.Ay = Ry. Ay = --- = R,,.A4. Then, let the witness query
Q = Qo x Q1 X Q2 x Q3, where

QO = 7"'Rl.A4,...,Rm.A4(O'conl/\---/\conm/\conA4S1 x 82 x R),

Q1 ="7Tc1 Ar,.,G1A (08, 4,=G1 A A1, A1=Gr.A,, (ST X G1)),

Q2 = TGy Ay G A (05, As=Ca Ay A NS, Ar=Ca. A, (S? X G2)),

Q3 = TGy Ar,....Gs. A (TR1 . As=G3. A1 A ARpm. As=Gs. A (R X G3)).
Query result Q(I). Initially, let Q(I) = {t,t'} x G1 x G2 x G5, where t =
(—,. ), t' =(B,...,B).
N~ N~ ~ 4

m m
Feedback A. Let A = {t} x G1 x G2 x G3.

..7_
~

Ay Ao AL As ... A
X 1 A1A2...An/ AllAf.“Af” 1 1... 1
Si X 0 Gy X X... X Go OO.“ 0 Gs . . .
Y B Y'Y Y BB.HB N
A 9 9... 9
A1A2A3A4A5 A1A2A3A4A5 A1A2A3A4A5
110-—-1 111-1 111-1
101 -2 110 -2 110-—2
100 -3 100 -3 101 -3
011-—4 011—4 100 -4
Bg 105 B2 105 Bs g 11-5
001—-6 001—-6 010—-6
000-—-7 000-7 000 -7
Z 7Z Z — 8 Z Z Z — 8 Z 7Z Z — 8
BBBBY9 BBBBY9 BBBBY9

Fig. 1. Example for the reduction of Theorem 4

Some key properties are introduced before the correctness proof.
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P1. A solution I, Q(I) = Q(I)\A if and only if, Qo(I,) = {t'}, Q:1(I,) = G,
Q2(I;) = Gz and Q3(I,) = Gs.

P2. Q1(I;) = G1 where I, E X if and only if, either S; = {(X,0), (Y, B)} or
S; ={(X,1), (Y, B)} holds, for each S; of I, where 1 <4 < n'. It simulates that
each variable in X; has one and only one assignments.

P3. Q2(I.) = G2 if and only if each S; of I, is the same as it is in I where
n’ +1 < i < n. It simulates that each variable in X5 can be assigned arbitrarily.
P4. Qs3(I,) = G3 if and only if each R; of I, is the same as it is in I where
1<i<m.

Next, we show the correctness of the reduction by following two statements.
= If the answer of QSAT, instance ¢ is ‘yes’, there must be a sub-instance I,.
obtained from I by deleting some tuples such that I,. = X and Q(I,) = Q(I)\A.
Suppose ¢ is satisfiable for all assignments of X5 under the assignment 7 (X7).
Given 7, we will construct a repair I,. satisfying the conditions of ¢fr-RE. First,
delete (Z,Z) from each S; (1 <4 < n); Second, for each relation S; satisfying
1 <i<n of I, let the corresponding variable of S; is z; € X5. If 7(z;) = 1, the
tuple (X, 0) will be deleted, otherwise, the tuple (X, 1) will be deleted. Obviously,
I, = Y and Q;(I,) = G; (1 < i < 3), since the RHS of P2, P3, P4 are satisfied.
One can verify that Qo(I,) =t since that ¢ is a tautology under 7 (X7).
< One the other hand, if there is a sub-instance I, = X and Q(I,) = Q(I)\4,
then we can construct an assignment 7 (X7 ) such that ¢ is true under any assign-
ment of X5. In I,., each Ry, related with clause Cy is the same as it is in I where
1 < k < m, each S; related with variable in X5 is the same as it is in I where
n' +1 <14 <n,and each S; related with variable in X; excludes either {(X,0)}
or {(X,1)}, because of S; should satisfy S;.A; — S;.Aa, where 1 <14 < n’. Note
that, in I,., we do not care about that whether (Z,Z) is preserved in each S;.
For each variable x; € X7, let S; be the corresponding relation in I, then the
assignment 7 can be built as follows,

(1) = { 1, if (X,1) is in S;; (1)
' 0, otherwise. (2)

To show that 7 is a valid assignment for ¢, consider any tuple ¢ € S x S2 x R

in I, such that ¢[S;. As] = 7(x) (1 <i<n'), ¢[S;.A2] #B (0 +1<i<n). It
is not hard to verify that such ¢ always violates at least one condition defined
in Qo due to P1 where Qo(I,) = {t'}. That is, some condition cony, such that ¢
does not satisfy cony. Because t satisfies the conditions ¢[Rg.A4)]=‘—", then we
have that ¢ refer to the assignments on {41, Az, A3} which does not appear in
Ry, it means that clause CY is satisfied under such assignment. Because for each
assignment on Xo, there is at least one clause is true, we have that ¢ is tautology

under assignment .
Theorem 5. ¢fr-RE is PSPACE-complete for RA query.

Proof. qfr-RE is in PSPACE obviously, since the Relation algebraic Query Eval-
uation problem for RA is in PSPACE-complete [2]. We next prove that ¢fr-RE
is PSPACE-hard by reduction from query evaluation problem. Given an instance
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of Query Evaluation problem (I,q,t) where ¢ is a relational algebraic query, it
is to decide if tuple ¢t € ¢(I). Without loss of generality, we assume that I con-
sists of n relations, Ry, ..., R,, each relation R; contains ¢; columns, and ¢ is a
d-dimension tuple. Then, by means of the technique similar with the previous
proof, an instance of ¢fr-RE can be built as follows.

Base instance. Let I’ contain relations Rj,..., R, and two auxiliary relations
R, R’y. Each R] (1 <i < n) is obtained by adding an addition column ¢;11 to
R; and filling the additional column using integer numbers in [X1<;<;—1|R;| +
1, X1<j<i|R;|] to identify each tuple uniquely in I’. For convenience, let N =
|Ri|+ - +|Ry|. Then let R}, = {t} and R = {(t',—), (t",+)} where ¢ and ¢"
are two different d-dimension tuples as long as they are different from ¢.
Witness query Q. We denote ¢ (77(I")) as Ag, construct the query @ as follows,

Qa(l') = ma.,  (R)U---Uma,, . (Ry),

Q') = [Qa(I") x {(=), (1)} = mq, (Qu(I') x (R}, — Ag) U R}))] x Ry,

Here, the operator mg, extracts all attributes in the scheme of @,, and the
operator m; extracts all attributes in 1.

Query result Q(I). Initially, Q(I) = {(1),...,(N)} x {(-), (+)} x {t}.
Feedback A. Let A= {(1,-),...,(N,—)} x {t}.

Obviously, the reduction described above can be finished in polynomial time.
The correctness of the reduction can be obtained by observing that Q(I,) =
Q(I\A if and only if (1) no tuple in I’ disappears in I, since Q(I)\A includes
every unique identification number, and (2) t € ¢(I).

5 Repair Sampling Algorithm for FD and SJ Query

In the previous section, we conclude that there is no polynomial sampling algo-
rithm if the witness query include Projection or Union operation. In this section,
we propose a polynomial algorithm 1 to sample the subset-repair restricted by
SJ query. We first give a overview of the sampling algorithm and its intuitive
idea, then we show its polynomial implementation.

Given any SJ query @, an equivalent standard form o¢(Ry X -+ X Ry,) can
be built in PTmmE. Here, each R; (1 <4 < m) is a relation included in I, and
two relations in {Ry,..., R,,} may be same relation in the database. Next, we
provide a polynomial repair sampling algorithm only considering the self-join-
free case, i.e. each relation is allowed to appear at most once in the query Q.
Then, we extend such algorithm with general setting.

Algorithm works as follows. Build an anchor I, which is a sub-instance of the
instance I. Specifically, for each relation R; € I, I.[R;] is set to be mg, (Q(1)\A4),
if R; appears in the query Q; Let I,.[R;] be empty, otherwise. Once I, is obtained,
we first test that whether I, = X If not, return ; else, we should test if Q(I,) =
QUN\A. If Q1) # Q(I)\A, return @, which means that there is no repair
satisfying the user feedback restriction. Pick a tuple a € I\I, randomly, let
a € Ry, if there is a result ¢t € A such that ¢[R;] = a and each ¢[R;] € A (i # j),
then discard a. Otherwise if I, U {a} = X, add a into I,. Loop this step until
there is no new tuple can be added into I,.. At last, output I, as a sample repair.
The pseudo-code is given as below.
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Algorithm 1. Sampling Algorithm

. for all 7 such that 1 <7 <m do
if R; appears in the query @ then
I:[Ri] < mr, (Q(I\A)
else
I [Ri] + 0
if I ¥ ¥ or Q(Ir) # Q(I)\A then
return (

while there is no new tuple can be added into I, do
Pick a tuple a € I\I, randomly where a € R;
if 3t of A, t[R;] = a and Vj # i,t[R;] € A then
discard a
12. else if I, U {a} = X then
13. add a into I,

©® Ne ;s N

=
= O

14. return I,

The intuitive idea behind such algorithm as follows. All valid repair for I must
be a superset of the anchor I, since that in order to guarantee that Q(I)\A is
part of Q(I,.), the tuples in I, must be preserved when deleting tuples. An
important observation about F'D is that if database instance I does not satisfy
some F'D rule and I C J, we have J will not satisfy the rule also. Therefore,
I, is the only candidate solution needed to be considered for the given ¢fr-RE
problem, since there will be no valid repair if I, is invalid.

Now, we give a polynomial implementation of line 6 in algorithm 1. Obvi-
ously, whether I, satisfies the X' can be determined polynomially trivially. It is
a little complicated to determine whether Q(I) = Q(I)\ 4, since a trivial solu-
tion will take exponential time cost. A polynomial implementation for deciding
whether or not Q(I.) = Q(I)\A can be designed as follows.

First, in I, compute the transitive closure of attributes in the database as
follows. Build a node for each attribute and constant appearing in the condition,
then, build an edge between attribute A and constant ¢ if A = ¢ is in the
condition, and an edge between two attributes A and A’ if A = A’ is in the
condition. For each connected component in the graph, build a group, if there
is a group containing two different constants, then return false, since such query
condition is unsatisfiable. Otherwise, there must be two kinds of groups, one is
that containing one constant, the other one is that containing all variables. We
call each group with some constant ¢ is ‘constant group’ and use [c] to denote
it, and call each group without constant is ‘variable group’. Then, all attributes
in [J{R;} can be divided into three parts, first part is the constant group, the
second part is the variable group, and the last part is others.

Then, partition tuples in each relation R; into several equivalent classes ac-
cording to the following steps. (i) For attributes in ‘constant group’, obviously,
only the corresponding constant value can appear in the table. (ii) For the at-
tributes in the ‘variable group’, partition the tuples according to different value
combinations. Therefore, all tuples in each R; are divided into several equivalent
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classes {¢1, ..., iy}, cach class represents a unique value combination for the
‘variable’ attributes. We use |g;;| to represent the size of the class.

For each variable group g, let gNR; be the ‘variable’ attributes in R;. Let R;[gN
R;] be the corresponding value set. Compute the intersections of all such value
set, Vy = (\{Rilg N R;]}. Delete those tuples of R; whose values on attributes
g N R; are not in V.

Compute join result Ry of all R; relations as follows. For each two relations
R; and R;, compute the join and filter the conditions C. Notice that there are
at most m — 1 joins needed to be computed. Each join operation involves two
relations R; and a temporal result. The size of each temporal result will not
exceed |Q(I)\A|. It should be noticed that the join operations are executed on
the equivalent classes and the ‘free’ attributes are not included in the result.

If Rw contains a tuple not included by Q(I)\A4, returns false. Otherwise, for
each tuple t in Ry, compute size size(t) as follows. For each relation R;, let
[t[R;]] be the class in R; containing the same values as t, size(t) is X g, |[t[Ri]]]-

Compare Yicp, size(t) with |Q(I)\4|, if they are not equal, return false, else
return frue.
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Abstract. We study the prediction with expert advice problem, where
in each round, the player selects one of N actions and incurs the corre-
sponding loss according to an N-dimensional linear loss vector, and aim
to minimize the regret. In this paper, we consider a new measure of the
loss functions, which we call Loo-variation. Consider the loss functions
with small L.-variation, if the player is allowed to have some information
related to the variation in each round, we can obtain an online bandit
algorithm for the problem without using the self-concordance methodol-
ogy, which conditionally answers an open problem in [8]. Another related
problem is the combinatorial prediction game, in which the set of actions
is a subset of {0,1}%, and the loss function is in [~1,1]%. We provide an
online algorithm in the semi-bandit setting when the loss functions have
small Lo-variation.

Keywords: prediction with expert advice problem, combinational pre-
diction game, semi-bandit setting, bandit setting, variation.

1 Introduction

We study the prediction with expert advice problem, in which the player has
to make repeated decisions for T' rounds in the following way. Suppose that
there are IV actions. In each round ¢, the adversary chooses a loss vector f; =
(fta, -, fon) € -1, l]N, and simultaneously, the player chooses an action I; to
play. After the choice, the player suffers the corresponding loss f; ;, and obtains
some feedback. In the full information setting, the player obtains the entire loss
function f;, while in the bandit setting, the player only knows the corresponding
loss fi1,. The goal of the player is to minimize the expected regret:

< T
E _ . |
Lg; ft,lt] Z‘e{?’l.l-_n’N};ft,z,

which is the difference between the expected total loss of the player and the total
loss of the best fixed action.

In the full information setting, one can achieve a regret of O (\/ Tlog N ) using
the multiplicative update algorithm [9,6]. Note that they considered arbitrary
sequence of loss functions, that is, they only considered the worst case scenario.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 49-60, 2014.
© Springer International Publishing Switzerland 2014
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When the loss functions have some restriction, a smaller regret can be achieved.
Hazan and Kale [7] considered the measure of the loss functions, called variation
VAR, which is defined to be

VAR}™ = max {VAR; (1)},

where /; is the best action till the ¢-th round, and VAR, (i) = Zizl (fri— utvi)z
with u; = 1 Zizl fr = (ug,1,...,us,n), and they provided an online algorithm

with a regret bound of O (\/VARI}‘aX log N). Note that since VART** < O (T),

this result recovers that in [9,6]. Chiang et al. considered another measure of the
loss functions, called L..-deviation, which is defined as

T

Doo =Y _|fi = fiall% .

t=1

where fy is the all-0 function, and showed that a regret bound of O (\/ Dy log N )
can be achieved [4]. Note that since Do, < O (T'), this result also recovers that
in [9,6], but it is incomparable to that of [7].

In the bandit setting, one can obtain a regret bound of O(v/NT) [2,3]. When
the loss functions have the quadratic variation Q = Zthl Ilfe — ,qu, where p =
}Zthl f+ is the mean of the loss functions, Hazan and Kale [8] achieved a
regret of O (N 2\/Q)1. However, this algorithm used some methodology based
on self-concordant barrier functions, which were first used in online learning by
Abernethy et al. [1]. Besides, no bound is known for the loss functions with a
small L..-deviation.

Another related problem is the combinatorial prediction game. Suppose that
the set of actions is A = {4;,---, An}, where 4; € {0, 1}d. In each round ¢,
the adversary secretely chooses a loss function f; € [—1, 1]d. Simultaneously,
the player chooses an action Aj, and suffers a loss of (f;, Ay, ), where (x,y) is
the inner product of z,y € R%. In the combinatorial prediction game, there are
three kinds of feedback. (1) In the full information setting, the player knows
the entire loss function f;. (2) In the bandit setting, the player only obtains the
corresponding loss value (f;, 47,). (3) In the semi-bandit setting, the player can
know the loss values f; ; for any j € [d] satisfying A;, ; = 1. The target of the
player is also to minimize the expected regret:

E lz (fe, Are)

t=1

T

- g%%gm,m

In the full information setting and the semi-bandit setting, Audibert et al.
obtained a regret bound of O <d\/ T) [3]. In the bandit setting, a regret of

@) <d5/2\/T) can be achieved [5].

! We use the notation O (-) to hide the dependence on poly(logT') factor.
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In this paper, we consider a new measure of the loss functions, which we call
L-variation, defined to be

T
Voo = > Ife = nillZ -
t=1

It is easy to see that the L.-variation V,, is bounded by O(T'), and the Loo-
deviation D, in [4] is bounded by O (Va)?, but the L.-variation is incompa-
rable to the variation VAR:™ in [7]. However, our definition of Lo-variation
is simple and more intuitive. Besides, in each round, after the player makes his
choice, he is allowed to receive some information related to || f; — || .. Note that
he may not know the true value of || f; — p||,, and he is not able to know which
choice has the biggest difference from the mean. Consider the loss functions with
a small L.,-variation, we can obtain an online bandit algorithm for prediction
with expert advice problem without using the self-concordance methodology,
which conditionally answers an open problem in [8]. Nevertheless, there is an ad-
ditional factor v/logT in our regret bound in the full information setting. More
precisely, when the loss functions have L.-variation V,, we can prove a regret of
O (\/Voo log N) in the full information setting, and a regret of O (\/NVOO log N)
in the bandit setting.

We also consider the combinatorial prediction game in which the loss functions
have a small L,-variation. Note that many situations in daily life can be modeled
as a combinatorial prediction game, for example, the commuting problem. Each
morning, one has to choose one of N routes to work where each route may contain
several roads. The environment will decide the commuting time for each road.
Observe that for each road, the commuting time between different days may
be very similar, which implies that in this problem, the L. -variation of the loss
functions may be small. Since the combinatorial prediction game is a special case
of the online linear optimization problem?, when the loss functions are with the
quadratic variation Q) = Zle Ilfe — p||§, one can achieve a regret of O (\/Q) in
the full information setting [7], and a regret of o} (d3/ 2y Q) in the bandit setting
[8]. For loss functions with Lo-deviation Dy = Zthl | fe — fe—1 Hg, Chiang et al.
showed a regret bound of O (\/ Dg) in the full information setting [4]. However,
no result exists for the loss functions with a small variation in the semi-bandit
setting. None is known either for loss functions with a small deviation in the
semi-bandit setting and the bandit setting. Our final contribution is to provide
an online algorithm and obtain a regret bound of O (d\/ Vs log N ) in the semi-
bandit setting, when the loss functions have the L,-variation V.

2 By the triangle inequality and the fact that for any two real numbers a, b, (a +b)?
2 2
2a” + 2b%, we have Doo = 32, [|fe = fiallZ, < 32, (Ilfe = pill o + i = fi-all)
4V
3 In the online linear optimization problem, the set of actions can be arbitrary subset
of R?, while in the combinatorial prediction game, the set of actions is a subset of

{0,134

ININ
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2 Preliminaries

Let N be the set of positive integers and R the set of real numbers. For n € N, let
R™ be the set of n-dimensional vectors over R and [n] be {1,2,--- ,n}. We denote
the inner product of z,y € R™ by (z,y) and the infinity norm of x by ||z .
Let RE (z]jy) = o, 2;In (2 /y;) be the relative entropy of & with respect to
y for non-negative =, y € RY. For some event A, 1[A] is the indicator variable
of A. Let E; denote the expectation conditioned on the randomness up to round
t —1. Let {e1,--- ,en} be the set of standard basis of RY. We denote 1 to be
the all-1 vector.

2.1 Problems

In this work, we address two categories of prediction problems; one is a prediction
with expert advice and another is a combinatorial prediction game. Generally,
in a prediction game a player makes repeated decisions and then suffers the
corresponding loss, and the goal is to minimize the player’s total loss of T rounds
with respect to an optimal fixed decision. We formally define the problems as
follows:

Prediction with Fxpert Advice: In round t =1,2,---, T

— The player chooses I; € [N] and reveals his estimator @;—1 of u
— Simultaneously, the adversary chooses a loss function
fo=(fear- fon) € [-1L,1Y
— The player incurs the loss f; 7,, and observes || fi — @1, * and either
e the whole loss function f; [the full information version]|, or
e the loss value f; ;, [the bandit version)]

Target: minimize the expected regret: E [Zthl f“t] — minen) E [Zthl ft,i]

Combinatorial Prediction Game: Let A = {A1,---,Ax} C {0,1}% be a set of
actions.
Inroundt=1,2,---,T

— The player chooses I; € [N] and reveals his estimator @;—1 of
— Simultaneously, the adversary chooses a loss function
ft - (ft,la T aft,d) € [713 1]d
— The player incurs the loss (f;, Ar,), and observes || f; — @—1]|,, and either
e the whole loss function f; [the full information version],
e the coordinates f; j1[Aj, ; = 1] [the semi-bandit version]|, or
e the loss (f:, Ar,) [the bandit version]

Target: minimize the expected regret: E [Zthl (ft, AIt)} —min;e v E [Zthl (ft, Ai>]

* In fact, the player only needs the information ||f; — @¢—1||, + ¢ for some 0 < e <

O(1/VT).
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2.2 Tools

We need the following simple fact, whose proof is omitted.

Proposition 1. Let f1,---, f, be a sequence of bounded d-dimensional vectors
over R. Then we have ||f1 + -+ anio <n- (Hf1||i<> +--+ ||fn\|§o>

Reservoir Sampling is a procedure that can obtain an unbiased estimator of the
mean of a stream of data [10]. Consider a situation that the data in the stream
can only be seen in one pass and can not be visited again. The problem is how
to sample this stream such that in any time the empirical mean is good enough?
The idea of RESERVOIR SAMPLING is to maintain a randomly chosen subset S of
size k, without replacement, from the stream of real numbers l1, s, - - -, and the
average of the sample is used as an estimator of the current mean u; = 1 Zizl lr.
Algorithm 1 [8] is a formal statements of this sampling method.

Algorithm 1. Reservoir Sampling

1. Initialize S by including the first k£ elements l1,l2,- - in the stream.
2. fort=k+1,k+2,--- do

3. include I} in S with probability k/t;

4. if decide to include I, then a random element of S is replaced by I+.
5. end for

2.3 Meta Algorithm

All of our algorithms in this paper is based on the META algorithm, as shown in
Algorithm 2. The parameter m in the META algorithm is the dimension of the
loss functions, and for different types of problems, we will choose different v;’s.

The META algorithm is inspired by the full information algorithm modified
from the multiplicative update algorithm in [4] for the loss functions with a small
deviation Dy, = Zte[T] Ilfe — ft,lHio. In round ¢, the multiplicative update
algorithm suggests the player should choose the action according to a distribution
p¢. It can be shown that if one can select the action according to p;11 in round ¢,
then the regret will be small. However, to compute p;41, we need the loss function
ft, which is not available before the round ¢. Nevertheless, since the loss functions
have a small deviation, f;_1 may be close to f;. Hence, in round ¢, it may be
a good idea to choose the action according to the distribution computed by
fi—1 instead of f;, and this indeed obtains a small regret in terms of deviation.
Here, we consider the measure Loo-variation Voo = 3 ,cipy [Ifi — ul|%,, where
W= %Zte[T] ft. Similarly, when the loss functions have a small variation, pu
may be a good approximation of f;. However, we do not know p in round ¢.
In the full information setting, it is natural to use u;—1 = til Zt;:ll fr as an
approximation of y in round ¢. Therefore, we choose the action according to the
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distribution p; computed by u;_1 instead of f;. While in the semi-bandit setting
and the bandit setting, we cannot know u;_1, so we borrow the idea of [8] to
compute an estimator ;1 of u;—1 by reservoir sampling, and choose the action
according to the distribution p; computed by @;_1 instead of f;. In the META
algorithm, the SAMPLE STEP is used to maintain a good estimator @, of wuy,
and the UPDATE STEP is used to update the distributions p; and p;. Note
that in the full information setting, the META algorithm always executes the
UPDATE STEP.

Algorithm 2. META algorithm
1. Initially, let p1 = p1 be the uniform distribution over [N], S = (0), ; € R™** and
S/ — (0)1'73' c Rmek
2. Let 7 : [Nk] — [INE] be a random permutation
3. fort=1to T do

4. Toss the biased coin whose outcome is r; € {0,1} with r = 0 for the full-
information setting; otherwise, Pr [r; = 1] = min { Aik,l}

5. if 7, = 1 then

6. // SAMPLE STEP to maintain S

7. if t < Nk then

8. Choose I; = (w(t) mod N) + 1, and reveal ;1

9. For each j € [m], if we observe f ;, then put it into an empty bucket in the
jth row of S’

10. If t = Nk, for each j € [m], randomly select k elements without replacement
from the nonempty buckets in the jth row of S’, and put them into the jth
row of S

11. else {// i.e. t > Nk}

12. Choose I; € [N] uniformly at random, and reveal @:—1

13. Update S by an additional rule // defined in later sections

14. end if

15. Estimate @:,; = ,16 Zle Sij

16. Let pty1 = pe, and Pry1 = P

7. else {// ie.r, =0}

18. // UPDATE STEP

19. Choose I; according to the distribution p:, and reveal @:—1

20. Compute the estimated loss f; = §: + @is—1 // defined in later sections

21. Compute u; // defined in later sections

22. Update Vi € [N],

pe,i exp(—n(fevi))

23. Pt+1,i = Zi , where Z; 11 = Z;yzlpt,je(7"<f““j>)
o4 Pro1i = Pt+1,i ex{)(-??(%,m))y where Zt+1 — Z;\Izl pt+17je(*ﬁ<’at,vj>)

Zi41
25. end if
26. end for

Next, we bound the regret of META algorithm. Let p* be the distribution over
[V] such that p}. = 1 for the best fixed action i* € [N] and pj = 0 Vj € [N]\{i"}.
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Moreover, let Ft’i = <ft,vi>, Ut,i = (tg,v;), and ét,i = Ft,i - Ut,l,i = {gt,v;).
We will need the following lemma, whose proof is omitted due to the page limit.

Lemma 1. Let T, include the rounds that run the UPDATE STEP. Then,
for anyn >0, if G¢; >0 for allt € Ty, and i € [N], we have E [ZteTu FMJ —

. [ZteTu Ft’i*] < 2ME {Zten HétHooEiNﬁt {ét,iﬂ + loiN.

3 Prediction with Expert Advice

In this section, we consider the prediction with expert advice problem when the
loss functions have small Lo-variation, defined to be Vo = Zle Il fe — /L”Zo,

where 1 = 7, Zthl f+ is the mean of fi’s.

3.1 Full Information Setting

In this subsection, we consider the full information setting. As mentioned, the
UPDATE STEP of META algorithm can deal with the full information game.
Therefore, we do not need to choose the parameter k. We instantiate the META
algorithm with v; = e; for each ¢ € [N], and:
— (step 20) Compute fi = Gi + Gig—1, with @1 = ws_1, and § = fr — w1 +
[fe = -]l - 1.
— (step 21) Compute u; = | S fe

Then, the updates in step 23 and 24 of META algorithm are:

= Dt+1,i = Pti  €XD (*Uﬁ,i) [Zi1, where Zyp1 =350y Pej - XD (*Uft,j);
— Derti = Per1,i-0xXp (—uei) [ Zorr, where Zopy = 3¢y Pest - 0xp (—nue ).
The following theorem shows the regret bound of our algorithm.

Theorem 1. When the Ly -variation of the loss functions is Vi, the regret of
our algorithm is at most O (\/V(><> log T'log N).

Proof. By the choices of v; = e; for each i € [N], and the fact that f, =
fe + [ fi = @s—1] o - 1, the expected regret of our algorithm is at most

log N log N

29E | > N3¢l oo Einp, [Ge]| + <mE | > gl | + :
te[T] te[T] N

by Lemma 1. It remains to bound the term ||g;||>. , which is at most 4 || f; — ;1 [|%,

by Proposition 1. Let f] = fé — p, which implies u} = 1 Zizl fl =wu —p and

Ife — Ut—lHio = Hft/ - u;_lHoo. By Proposition 1 and the definition of V,,, we
2 T 2 .

have Y, || f{ — u271|‘oo <o)+, |- u271|‘oo is at most
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T T
D+ 3 (20705 +2 w2 < 0Vee) +2 3 |2,
t=2 t=2

Note that by Proposition 1, 23;2 Hu;_l Hio is

T 1 t—1 T t—1 ) T 11
Z HZ <> N S Zuftu (Z )
t= 00 t=2 T=1 T=t

which implies ZtT:2 HUQ*IHZO < Zthl Hft’Hio logT =V -logT.
Combining these bounds together, the expected regret of our algorithm is at
most

log N
O (Vs - logT) + Oi SO(\/leongogN>,
by setting n = \/VS%OZT'

3.2 Bandit Setting

In this subsection, we consider the bandit setting. Recall that in the bandit
setting, we can only obtain the corresponding loss value and || f; — @;—1]|,,. To
obtain a small regret in terms of L..-variation, we instantiate the META algo-
rithm with parameters m = N, k =logT, v; = e; for each ¢ € [N], and:

— (step 13) Choose j uniformly from [k], and update Si, ; = fi1,-
— (step 20) Compute f; = §; + @i¢—1, where

g =, o, or = n + Lfe — Geallo) er,
— (step 21) Compute @y = Us—1.

Then, the updates in step 23 and 24 of META algorithm are:

— Dt+1,s = Pt,i - €XP (-nfw) /Zy41, where Zy1q = Zje[N] Dt,j - €XP (—Uft,j);
— DPi41s = Pet1,i-€Xp (—Nly,i) /Zt+17 where Zt+1 = Zje[N] Dit1,5-€xXp (=Nl ;).
It is easy to verify that for each UPDATE STEP ¢,

E, [ft] =E¢ [g¢] + U1

= Z 1, . (for, — 1,0, + || fr — Ue—1]l) €r, + Ue—1
Ite N] ’It

= fe+ 1 fe — U1l

where the first equality is due to the fact that u;—; is fixed when conditioned on
the randomness up to round ¢ — 1. Moreover, for each i € [N], g, > 0.

In the bandit setting, we need to estimate the function w;. The following
lemma shows that @; is an unbiased estimator of wu;, for any ¢ > Nk. We omit
the proof due to the page limit.
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Lemma 2. For each t > Nk, E [iy] = ut, and E [Hut - ﬁt”io] < Ve
The main result of this subsection is the following.

Theorem 2. Let k =logT. When the Lo -variation of the loss functions is Vo,
the regret of our algorithm is at most O (N log? T + /NVa log N log T).

Proof. Let T, include the rounds that run the SAMPLE STEP, that is, T =
{t €[T]:ry =1}, and T, include the rounds that run the UPDATE STEP,
that is, T), = [T]\ Ts. Note that E [T,] < O(N log? T). Since for any distribution
q over [N], {ft,q — p*) < 2, the expected regret of our algorithm is at most

O(N1og®T) +E | Y (fuo.pr — p*)]

LteT,

=O(Nlog’T) +E Z <ft7ﬁt —p*>

)

LteT,
2 | - - log N
<O(Nog”T)+E 20 Y (I3l - Einp, [e.:]) | + " (1)
L teTy,

where the equality is due to the fact that E, [ft} = fe+ || ft —W-1] -1, and

the last inequality follows from Lemma 1.
It remains to bound the second term of (1). First, note that by the definition
of g¢, we have

Einp, [Gti] = for, — 1,1, + | ft — U1l < 2| fe — Ge-1ll 5 - (2)

On the other hand, since for each ¢ € T,,, when conditioned on the randomness
up to round t — 1, uy_1 is fixed, we obtain

- 1 5 5
Bl =B || ) Gon = a4 1= vealen| |
t, I 0o
R 1 - ~
= Z Pt1; || ~ (ft,lt —Ut—1,1, + Hft - Ut—1||oo) €r,
1,€[N] t 1 oo
2N || fe — U1l o (3)

Therefore, using (2), (3), and Proposition 1, the second term of (1) is at most

8N -E lz || fi ﬂtl“io]

teT,

< 24nN - (Z 1fe =l + D Ml = wea |2, +E

teT, teTy,

§j|m1mui]>

teTy,
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where the first term in the parenthesis is bounded by V., and the second term
is at most V logT as in the proof of Theorem 1. Moreover, the last term is at
most Y, Voo /(kt) < Vo log T/k by Lemma 2. Therefore, we can bound

E |27 ) (13l - Ein, [Eh,i])} <O NV logT). (4)
teT,
Finally, by plugging (4) into (1) and setting n = N‘l;flzgng, the expected

regret of our algorithm is at most

log N

O(N1og?T) + O (pN Vi log T) + <0 <N log? T + /N Vi log N log T) .

4 Combinatorial Prediction Game

In this section, we consider the combinatorial prediction game in which the set
of actions is A = {Ay,---, Ay} C {0,1}%, and the loss function f, € [—1,1]%
Moreover, we consider the semi-bandit setting, that is, in round ¢, we can receive
the values f; ; for any j € [d] satisfying A, ; =1 and || f; — %s—1|| . To obtain a
small regret in terms of L-variation, we instantiate the META algorithm with
parameters m = d, k = logT, v; = A;, and:

— (step 13) For each j € [d] satisfying Ay, ; = 1, update, with probability 1/n;,
where nj =3, ) Aij; Sja = fi,; for a random index a € [k].

— (step 20) Compute f; = g + t—1, where

' (frg = -1y + Ife = w1llo) Ar -

— (step 21) Compute @y = Us—1.

Gtj = >

A =1 Pt,i

Then, with the choice of v; = A;, the updates in step 23 and 24 are

v.i-exp(—n{fi, A ~
— P =" p(—n(Ff >)’ where Zp1 = Y c v Prj - €xp (fn <ft,Aj>>;

Zig1
pt“’i'exg(_n(ut’Am, where Z 41 = Zje[N] Pe+1 - exp (=1 (ts, Aj)).

Zi41

= Dit1i =
Note that for each UPDATE STEP ¢, and for each j € [d], §.; > 0, and
- R 1 - -
Eilgel= Y. Pri o (frg = G-y L fe — Ge-1llo)
G A =1 Zi;Ai j=1 Pt
3, 5= )
= [t — W—1,5+ || fe — U1l
which implies that E; [ft} =fi+|ft — G-1] - 1.
Moreover, t; is an unbiased estimator of u;, whose proof is omitted.
Lemma 3. For each t > Nk, E [t] = ug.

The regret bound of our algorithm is guaranteed by the following.
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Theorem 3. When the Ly -variation of the loss functions is Vi, the regret of
our algorithm is at most O (Nlog2 T + dv/Vs log N log T).

Proof. As in the proof of Theorem 2, let T include the rounds that run the
SAMPLE STEP, and T, include the rounds that run the UPDATE STEP.
Note that E [T,] = O(N log® T').

By the choices of v; = A; for each i € [N] and Lemma 1, the expected regret

of algorithm E {Zte[T] <Ft7ﬁt — p*>] is at most

Z 2n Hét ‘OOEiNﬁt {étz]] + log N (5)

te T’U/ 77

O(Nlog?’T)+E

Next, we bound the second term of (5). For convenience, let g; j = > . 4. =1 Dti =

E;p, [4i;]. Then, since A; ; € {0,1}, the term E;p, [ét,z} is

_ 1 _ _
Eivp | D G0jAii| <O " (frj— i1+ I1fr = tu1llo) Bing, [Aig]
jeld) jeld) 1

<2d||fe — -1l - (6)
On the other hand, observe that for each t € Ty,

= e

2 .
] SE (D " llfe— ]l Arg
> sela) 1

2 -
< Z ) Hft - ut—1||oo]EItNﬁt [Ajt,j]
seta) 19

=2d || ft — U1l » (7)
where the first inequality is due to the fact that for each i € [N], ét,i =
Zje[d] grjAij < Zje[d] qij fe — 12t—1||oo Ar -

Therefore, the second term in (5) is at most 8nd*E {ZtETu Ife — ﬂt71||io] by

(6) and (7). By Lemma 3, 4, is an unbiased estimator of u, and hence, we can
follow the same argument in the proof of Theorem 2 to bound

8nd°E lz I fe — -2

teT,

<0 (nszoo log T) . (8)

Finally, by plugging (8) into (5), the regret bound is at most
log N
O(N10g? T) + O (nd®Vao log T) + 2
<0 (N log? T + dv/Vis log T'log N)

when 7 = \/log N/d?V, logT.
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5 Conclusion and Open Problems

By introducing a new measure of the loss functions and with the help of some
additional information related to the variation, we obtain a new bound for the
prediction with expert advice problem on the bandit setting without using the
self-concordance methodology and thus conditionally answer an open problem
raised by Hazan and Kale [8]. We also prove a new regret bound for the combi-
natorial prediction game under the semi-bandit setting.

For future work, we provide the following open problems. (1) Obtain the regret
bounds without the additional information. (2) Remove the terms poly(logT)
in the regret bounds of this paper. (3) Obtain the regret bounds in terms of the
deviation for the prediction problems in the bandit setting.
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Abstract. Shallit and Wang studied deterministic automatic complex-
ity of words. They showed that the automatic Hausdorff dimension I(t)
of the infinite Thue word satisfies 1/3 < I(t) < 2/3. We improve that
result by showing that I(t) > 1/2. For nondeterministic automatic com-
plexity we show I(t) = 1/2. We prove that such complexity Ax of a
word z of length n satisfies Ax(z) < b(n) := [n/2| + 1. This enables us
to define the complexity deficiency D(x) = b(n) — An(x). If x is square-
free then D(z) = 0. If x almost square-free in the sense of Fraenkel and
Simpson, or if x is a strongly cube-free binary word such as the infinite
Thue word, then D(z) < 1. On the other hand, there is no constant
upper bound on D for strongly cube-free words in a ternary alphabet,
nor for cube-free words in a binary alphabet.

The decision problem whether D(z) > d for given z, d belongs to
NP NE.

1 Introduction

The Kolmogorov complexity of a finite word w is roughly speaking the length
of the shortest description w* of w in a fixed formal language. The description
w* can be thought of as an optimally compressed version of w. Motivated by
the non-computability of Kolmogorov complexity, Shallit and Wang studied a
deterministic finite automaton analogue.

Definition 1 (Shallit and Wang [3]). The automatic complexity of a finite
binary string x = 1 ...y is the least number Ap(x) of states of a deterministic
finite automaton M such that x is the only string of length n in the language
accepted by M.

This complexity notion has two minor deficiencies:

1. Most of the relevant automata end up having a “dead state” whose sole
purpose is to absorb any irrelevant or unacceptable transitions.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 61-70, 2014.
© Springer International Publishing Switzerland 2014


http://math.hawaii.edu/wordpress/bjoern/
http://math.hawaii.edu/wordpress/graduate-alumni/kkhyde/

62 K.K. Hyde and B. Kjos-Hanssen

2. The complexity of a string can be changed by reversing it. For instance,
Ap(011100) =4 < 5= Ap(001110).

If we replace deterministic finite automata by nondeterministic ones, these defi-
ciencies disappear. The NFA complexity turns out to have other pleasant prop-
erties, such as a sharp computable upper bound.

Technical Ideas and Results. In this paper we develop some of the properties of
NFA complexity. As a corollary we get a strengthening of a result of Shallit and
Wang on the complexity of the infinite Thue word t. Moreover, viewed through
an NFA lens we can, in a sense, characterize exactly the complexity of t. A main
technical idea is to extend Shallit and Wang’s Theorem 9 which said that not
only do squares, cubes and higher powers of a word have low complexity, but a
word completely free of such powers must conversely have high complexity. The
way we strengthen their results is by considering a variation on square-freeness
and cube-freeness, strong cube-freeness. This notion also goes by the names of
irreducibility and overlap-freeness in the combinatorial literature. We also take
up an idea from Shallit and Wang’s Theorem 8 and use it to show that the natural
decision problem associated with NFA complexity is in E = DTIME(2°("). This
result is a theoretical complement to the practical fact that the NFA complexity
can be computed reasonably fast; to see it in action, for strings of length up to
23 one can view automaton witnesses and check complexity using the following
URL format

http://math.hawaii.edu/wordpress/bjoern/complexity-of-110101101/
and check one’s comprehension by playing a Complexity Guessing Game at

http://math.hawaii.edu/wordpress/bjoern/software/web/
complexity-guessing-game/

Let us now define our central notion and get started on developing its prop-
erties.

Definition 2. The nondeterministic automatic complezity An(w) of a word w
18 the minimum number of states of an NFA M, having no e-transitions, accept-
ing w such that there is only one accepting path in M of length |w|.

The minimum complexity Ay (w) = 1 is only achieved by words of the form a™
where a is a single letter.

Theorem 3 (Hyde [2]). The nondeterministic automatic complezity An(x) of
a string x of length n satisfies

Apn(x) <b(n):=[n/2] + 1.

Proof (Proof sketch.). If x has odd length, it suffices to carefully consider the
automaton in Figure 1. If x has even length, a slightly modified automaton can
be used.
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Tm+1

z1 X2 €3 x4 Tm—1 Tm
P
start — s
"
Tn Tn—1 Tn—2 ITn-3 Tm+3 Tm+2

Fig.1. A nondeterministic finite automaton that only accepts one string z =
T1T2X3%4 ... Ty Of length n =2m + 1

Definition 4. The complexity deficiency of a word x of length n is
D, (z) = D(z) = b(n) — An(z).

Table 1. Probability of strings of having positive complexity deficiency D,,, truncated
to 3 decimal digits

Length n P(D,, > 0) Length n P(D,, > 0)

0 0.000 1 0.000

2 0.500 3 0.250

4 0.500 5 0.250

6 0.531 7 0.234

8 0.617 9 0.207
10 0.664 11 0.317
12 0.600 13 0.295
14 0.687 15 0.297
16 0.657 17 0.342
18 0.658 19 0.330
20 0.641 21 0.303
22 0.633 23 0.322
24 0.593 25 0.283

(a) Even lengths. (b) Odd lengths.

The notion of deficiency is motivated by the experimental observation that about
half of all strings have deficiency 0; see Table 1.

2 Time Complexity

Definition 5. Let DEFICIENCY be the following decision problem.
Given a binary word w and an integer d > 0, is D(w) > d?

2.1 NP

Theorem 6 is not surprising; we do not know whether DEFICIENCY is NP-
complete.
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Theorem 6. DEFICIENCY is in NP.

Proof. Shallit and Wang’s Theorem 2 showed that one can efficiently determine
whether a given DFA uniquely accepts w among string of length |w|. Hyde [2],
Theorem 2.2, extended that result to NFAs, from which the result easily follows.

22 E

Definition 7. Suppose M is an NFA with q states that uniquely accepts a word
x of length n. Throughout this paper we may assume that M contains no edges
except those traversed on input x. Consider the almost unlabeled transition di-
agram of M, which is a directed graph whose vertices are the states of M and
whose edges correspond to transitions. Each edge is labeled with a 0 except for
an edge entering the initial state as described below.

We define the accepting path P for x to be the sequence of n+1 edges traversed
in this graph, where we include as first element an edge labeled with the empty
string € that enters the initial state qo of M.

We define the abbreviated accepting path P’ to be the sequence of edges ob-
tained from P by considering each edge in order and deleting it if it has previously
been traversed.

Lemma 8. Let v be a vertex visited by an abbreviated accepting path P’ =
(egy...,e). Then v is of one of the following five types.

In-degree 1 (edge e;), oul-degree 1 (edge e;+1).

In-degree 2 (edges e; and ej with j > i), out-degree 1 (e;41).
In-degree 1 (edge e;), out-degree 2 (edges e;11 and ej, j >i+1).
In-degree 2 (edges e; and ej with j > i), out-degree 2 (e;+1 and e;y1).
In-degree 1 (edge e;), out-degree 0.'

Grds Lo o~

Proof. The out-degree and in-degree of each vertex encountered along P’ are
both < 2, since failure of this would imply non-uniqueness of accepting path.
Since all the edges of M are included in P, the list includes all the possible
in-degree, out-degree combinations. We can define ¢ by the rule that e; is the
first edge in P’ entering v. Again, since all the edges of M are included in P,
ei+1 must be one of the edges contributing to the out-degree of v, if any, and e;
must also be as specified in the types.

Lemma 8 implies that Definition 9 makes sense.

Definition 9. For 0 < i <t+1and 0 <n <t+1 we let E(i,n) be a string
representing the edges (ei,...,en). The meaning of the symbols is as follows: 0
represents an edge. A left bracket | represents a vertex that is the target of a
backedge. A right bracket | represents a backedge. The symbol + represents a
vertex of out-degree 2. When i > n, we set E(i,n) = . Next, assuming we have
defined E(j,m) for all m and all j > i, we can define E(i,n) by considering the
type of the vertex reached by the edge e;. Let a; € {0,e} be the label of e;.

! This type was omitted by Shallit and Wang,



Nondeterministic Automatic Complexity 65

) = az[E(Z + Lj - 1)}E(j + 17”)'
) ai—l—E(i—l—l,n).
) = az[+E(Z+ Lj - 1)}E(j + 1’n)'

Grds Lo do =

Lemma 10. The abbreviated accepting path P’ can be reconstructed from E(0,t).

Lemma 11
|E(a,b)] <2(b—a+1).

Theorem 12. DEFICIENCY is in E.

Proof. Let w be a word of a length n, and let d > 0. To determine whether
D(w) > d, we must determine whether there exists an NFA M with at most
| 5] — d states which accepts w, and accepts no other word of length n. Since
there are prima facie more than single-exponentially many automata to consider,
we consider instead codes E(0,t) as in Definition 9. By Lemma 10 we can recover
the abbreviated accepting path P’ and hence M from such a code. The number

of edges t is bounded by the string length n, so by Lemma 11
|E(0,t)] <2(t+1) <2(n+1);
since there are four symbols this gives
42(nt) — O(16™)

many codes to consider. Finally, to check whether a given M accepts uniquely
takes only polynomially many steps, as in Theorem 6.

Remark 13. The bound 16™ counts many automata that are not uniquely ac-
cepting; the actual number may be closer to 3™ based on computational evidence.

3 Powers and Complexity

In this section we shall exhibit infinite words all of whose prefixes have complexity
deficiency bounded by 1. We say that such a word has a hereditary deficiency
bound of 1.

3.1 Square-Free Words

Lemma 14. Let a and b be strings in an arbitrary alphabet with ab = ba. Then
there is a string ¢ and integers k and £ such that a = c* and b= c’.

We will use the following simple strengthening from DFAs to NFAs of a fact
used in Shallit and Wang’s Theorem 9 [3].

Theorem 15. If an NFA M wuniquely accepts w of length n, and visits a state
p as many as k+ 1 times, where k > 2, during its computation on input w, then
w contains a kth power.
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Proof. Let w = wow -+ - wipwgy1 where w; is the portion of w read between
visits number i and 7 + 1 to the state p. Since one bit must be read in one unit
of automaton time, |w;| > 1 for each 1 <14 < k (wg and/or wy41 may be empty
since the initial and/or final state of M may be p). For any permutation = on
1,...,k, M accepts wowx(1) -+ Wrkywr+1- Let 1 < j < k be such that w; has
minimal length and let w; = wy - - - wj_1wj41 - - - wg. Then M also accepts

woijjwkH and woijjwkH.
By uniqueness,
woijjwkH = w = woijjwk+1
and so
Wjw; = Wjwy
By Lemma 14, w; and w; are both powers of a string c. Since |;| > (k—1)|w;],
w;w; is at least a kth power of ¢, so w contains a kth power of c.

We next strengthen a particular case of Shallit and Wang’s Theorem 9 to NFAs.

Theorem 16. A square-free word has deficiency 0.
Corollary 17. There exists an infinite word of hereditary deficiency 0.

Proof. There is an infinite square-free word over the alphabet {0, 1,2} as shown
by Thue [5][6]. The result follows from Theorem 16.

3.2 Cube-Free Words

Definition 18. For a word u, let first(u) and last(u) denote the first and last
letters of u, respectively. A weak cube is a word of the form wu first(u) (or
equivalently, last(u)uu). A word w is strongly cube-free if it does not contain
any weak cubes.

Theorem 19 (Shelton and Soni [4]). The set of all numbers that occur as
lengths of squares within strongly cube-free binary words is equal to

{2°:a>1}U{3-2%:a>1}.

Lemma 20. If a cube www contains another cube xxx then either |z| = |w|, or
xx first(x) is contained in the first two consecutive occurrences of w, or last(x) xx
18 contained in the last two occurrences of w.

Theorem 21. The deficiency of cube-free binary words is unbounded.

Proof. Given k, we shall find a cube-free word x with D(z) > k. Pick a number n
such that 2™ > 2k + 1. By Theorem 19, there is a strongly cube-free binary word
that contains a square of length 2"1; equivalently, there is a strongly cube-free
square of length 27*!. Thus, we may choose w of length ¢ = 2" such that ww
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is strongly cube-free. Let x = www where w is the proper prefix of w of length
|w| — 1. By Lemma 20, z is cube-free. The complexity of z is at most |w| as we
can just make one loop of length w, with code (Theorem 12)

(w1 .. we—1],,
And so
lw| -1

D(@) 2 ||z]/2+1] = |w| 2 [2]/2 = Jw| =

= [wl
= |w|/2-1/2> k.

3.3 Strongly Cube-Free Words
Theorem 22 (Thue [5][6]). The infinite Thue word

t =tpt;... =0110100110010110...
given by
b= b2, bie{0,1} = =) b mod2

1s strongly cube-free.

Lemma 23. For each k > 1 there is a sequence 1 i, . . ., Tk i of positive integers
such that
k k
Zaixi,k}:2zxi,k — alz...:ak:2
i=1 i=1

Let t; denote bit j of the infinite Thue word. Then we can ensure that

1. 2y +1 < zipr1 and
2.ty Ftan, foreach 1 <0 <k.

Theorem 24. For an alphabet of size three, the complezity deficiency of strongly
cube-free words is unbounded.

Proof. Let d > 1. We will show that there is a word w of deficiency D(w) > d.
Let £ = 2d — 1. For each 1 < i < k let x; = Tp41-4r where the x;; are as in
Lemma 23. Note that since x; 1 + 1 < 41,5, we have z; > 2,11 + 1. Let

) )
= AMilg Ao -ty Ak

where \; = (271)2, T = Hf:_l t;, and where t; is the ith bit of the infinite Thue
word on {0, 1}, which is strongly cube-free (Theorem 22). Let M be the NFA
with code (Theorem 12)

[+072710[+0"27 10 - - - 0 % [+07+ 1]
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(where * indicates the accept state). Let X = Zle x;. Then M has k—1+ X
many edges but only ¢ = X many states; and w has length

n=k—1+2X=2(d—1)+2X

giving n/2+1=d+ X.
Suppose v is a word accepted by M. Then M on input v goes through each
loop of length x; some number of times a; > 0, where

k
k— 1+Zaixi = |v].
i=1

If additionally |v| = |w|, then by Lemma 23 we have a; = as = -+ = ag, and
hence v = w. Thus

Dw) > |n/24+1|—g=d+ X -X =d.
We omit the proof that w is strongly cube-free in this version of the paper.

Definition 2 yields the following lemma.

Lemma 25. Let (qo,q1,...) be the sequence of states visited by an NFA M given
an input word w. For any t, t1, ta, and r;, s; with

(plvrla .. 'art—27p2) = (qt17' . '?qt1+t)

and
(pla Slyvey St72ap2) = (qtza vey qt2+t)a

we have r; = s; for each i.

Note that in Lemma 25, it may very well be that t; # to.
Theorem 26. Strongly cube-free binary words have deficiency bound 1.

Proof. Suppose w is a word satisfying D(w) > 2 and consider the sequence of
states visited in a witnessing computation. As in the proof of Theorem 32, either
there is a state that is visited four times, and hence there is a cube in w, or there
are three state cubes (states that are visited three times each), and hence there
are three squares in w. By Theorem 19, a strongly cube-free binary word can
only contain squares of length 2%, 3 - 2%, and hence can only contain powers u’
where |u] is of the form 2%, 3-2% and i < 2.

In particular, the length of one of the squares in the three state cubes must
divide the length of another. So if these two state cubes are disjoint then the
shorter one repeated can replace one occurrence of the longer one, contradicting
Lemma 25.

So suppose we have two state cubes, at states p; and ps, that overlap. At py
then we read consecutive words ab that are powers a = u?, b = v/ of a word u,
and since there are no cubes in w it must be that ¢ = j = 1 and so actually
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a =0b. And at ps we have words ¢, d that are powers of a word v and again the
exponents are 1 and ¢ = d.

The overlap means that in one of the two excursions of the same length
starting and ending at p1, we visit po. By uniqueness of the accepting path we
then visit ps in both of these excursions. If we suppose the state cubes are chosen
to be of minimal length then we only visit ps once in each excursion. If we write
a = rs where r is the word read when going from p; to ps, and s is the word
going from ps to p1, then ¢ = sr and w contains rsrsr. In particular, w contains
a weak cube.

Definition 27. For an infinite word u define the deterministic automatic Haus-
dorff dimension of u by

I(u) = liminf Ap(u)/|ul.

u prefiz of u
and the deterministic automatic packing dimension of u by?
S(u) = limsup Ap(u)/|ul.
u prefiz of u

For nondeterministic complexity, in light of Theorem 3 it is natural to make the
following definition.

Definition 28. Define the nondeterministic automatic Hausdorff dimension of
u by

. An(u)
I = 1 f
N(u) u p%"rel}i;cnofu \u|/2

and define Sy analogously.
Theorem 29 (Shallit and Wang’s Theorem 18). } < I(t) < 2.

Here we strengthen Theorem 29.
Theorem 30. I(t) > 1. Moreover Iy (t) = Sn(t) = 1.

Proof. This follows from the observation that the proof of Theorem 26 applies
equally for deterministic complexity.

3.4 Almost Square-Free Words

Definition 31 (Fraenkel and Simpson [1]). A word all of whose contained
squares belong to {00,11,0101} is called almost square-free.

Theorem 32. A word that is almost square-free has a deficiency bound of 1.

2 There is some connection with Hausdorff dimension and packing dimension. For

instance, if the effective Hausdorff dimension of an infinite word x is positive then
so is its automatic Hausdorff dimension, by a Kolmogorov complexity calculation in
Shallit and Wang’s Theorem 9.
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Corollary 33. There is an infinite binary word having hereditary deficiency
bound of 1.

Proof. We have two distinct proofs. On the one hand, Fraenkel and Simpson [1]
show there is an infinite almost square-free binary word, and the result follows
from Theorem 32. On the other hand, the infinite Thue word is strongly cube-free
(Theorem 22) and the result follows from Theorem 26.

Conjecture 34. There is an infinite binary word having hereditary deficiency
0.

We have some numerical evidence for Conjecture 34, for instance there are 108
strings of length 18 with this property.
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Abstract. To model and verify multi-core parallel programs, the paper proposes
an axiom system for Propositional Projection Temporal Logic with Cylinder Com-
putation Model (CCM-PPTL). To do so, the syntax and semantics of CCM-PPTL
are presented. Further, based on the logical laws of PPTL, some algebraic laws
of sequence expressions and logical laws regarding CCM operators are proved.
Moreover, the axiom system of CCM-PPTL is established by extending that of
PPTL with some axioms and inference rules of CCM operators. In addition, the
soundness and completeness of the system are proved.

Keywords: Axiom System, Multi-core, Parallel, Formal Method.

1 Introduction

With the rapid development of integrated circuits technology and the demand for higher
performance, on-chip multi-core processors (CMP) have been brought into being. The
reality of multi-core processor has made parallel programs pervasive. Creating a correct
parallel program is not a straightforward process even for a considerable small system,
because programmers are forced to consider that the program will always yield to a cor-
rect result no matter what order the instructions are executed in. To improve the reliabil-
ity of parallel programs, formal verification is an important viable approach. Modeling
multi-core parallel programs is a crucial step for formal verification of correctness and
reliability of many core parallel programs.

Model checking and theorem proving are two key verification methods. With model
checking, the system is often modeled as a finite transition system or automaton M,
and the property is specified using a temporal logic formula P. Then a model checking
procedure is employed to check whether or not M = P. If so, the property is ver-
ified otherwise a counterexample can be found. The advantage of model checking is
that the verification can be done automatically. However, model checking suffers from
the state explosion problem [10]. Further, most of web applications are data-intensive
which are not suitable to be verified by means of model checking since the treatment
of the data usually leads to a huge, even infinite state space. Some successful model
checking tools are SPIN [9], SMV [10] and so on. By contrast, theorem proving can
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handle many complex structures abstractly without state space explosion but requires
more human intervention and are often time-consuming. With theorem proving, both
the system behavior and the desired property are specified as formulas, say .S and P, in
some appropriate logic. To demonstrate that the system satisfies the property amounts
to proving that - S — P is a theorem within the proof system of the logic. Some
famous theorem prover are PVS [11], ACL2 [2], Coq [1], Isabella [12], HOL [8] and
so on. Verification of multi-core parallel programs raises a great challenge for theorem
proving since it requires that the logic for modeling multi-core systems and specify-
ing the expected properties has a powerful expressiveness. However, the widely used
Propositional Linear Temporal Logic (PLTL) and Computational Tree Logic (CTL) are
not powerful enough. In fact, they are not full regular. Further, Quantified Linear time
Temporal Logic (QLTL) [13], Extended Temporal Logic (ETL) [16] and Linear mu-
Calculus [15] have a more powerful expressiveness of full regular language. However,
these logics are not practical since they are not intuitive or too complicated. Proposi-
tional Projection Temporal Logic (PPTL) [3] allows us to specify w full regular proper-
ties [14]. Further, a decision procedure [4,7] and a complete proof system for PPTL [6]
have been established. A model checker based on SPIN [5] and a theorem prover based
on PVS have also been developed. Cylinder Computation Model (CCM) [17] is a con-
current semantic model which is defined based on PPTL and has been implemented in
the interpreter of MSVL, which is an executable subset of Projection Temporal Logic.
CCM can be employed to model multi-core parallel programs since the sequence ex-
pressions in it have the nature of regular expressions. With CCM, the autonomy and
parallelism of the processes occupying different cores on one chip can be described
neatly and concisely. In [6], we have proposed an axiom system for PPTL, and proved
its soundness and completeness. To specify and verify multi-core parallel programs
in a uniform framework, this paper proposes an axiom system for CCM-PPTL which
extends that of PPTL by including transformation rules for sequence expressions and
axioms and inference rules on CCM operators. Furthermore, the soundness and com-
pleteness of the extended axiom system are also proved.

The paper is organized as follows. In the next section, the underlying logic PPTL and
the semantic model CCM are reviewed, including their syntax, semantics and PPTL
axiom system. Based on PPTL, CCM-PPTL is proposed in Section 3, including its
syntax and semantics. In Section 3, we further give an axiom system for CCM-PPTL
and prove the soundness and completeness of the system. Finally, conclusions are drawn
in Section 4.

2 Preliminaries

2.1 Propositional Projection Temporal Logic

Our underlying logic is Propositional Projection Temporal Logic. The formula P of
PPTL is given by the following grammar.

P:u=p| QP|-P|PiVP|(P,...,Pn)prj P
‘(Pl,...,(Pl‘,...,PZ)®,...,Pm)ijP
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where p € Prop, P;(1 < i < m) and P are well-formed PPTL formulas, and O,
prj and prj@® (projection-plus) are primitive temporal operators. A formula is a state
formula if it contains no temporal operators, otherwise it is a temporal formula.

We define a state s over Prop to be a mapping from Prop to B. s[p| denotes the val-
uation of p at state s. An interval ¢ is a non-empty finite or infinite sequence of states.
The length, ||, of ¢ is w if ¢ is infinite, and the number of states minus 1 if ¢ is finite.
We consider the set Ny of non-negative integers and w, N,, = Ny U {w} and extend
the comparison operators, =, <, <, to N, by considering w = w, and for all ¢ € Ny,
i < w. Furthermore, we define < as < —{(w, w)}. o is often denoted by (so, ..., 5/5).
where s|,| is undefined if o is infinite. With such a notation, o(;.. ;) (0 < i <X j <o)
denotes the sub-interval (s;, ..., s;) and o’ (0 < ¢ < |o|) denotes the prefix interval

(80, - - -, ;). The concatenation of a finite o with another interval (or empty string) o is
denoted by o - o (not sharing any states). Let o = (so, 51, . . ., §|5|) be an interval and
r1,...,7n be integers (h > 1) such that 0 < r; <79 < ... <1, <X |o|. The projec-
tion of o onto 1, ..., 7, is the interval (called projected interval) o | (rq,...,7p) =
(Stys Stay -« -, 8t,) Where t1,..., ¢ are obtained from ry,...,r, by deleting all dupli-
cates. That s, ¢1, . .., ?; is the longest strictly increasing subsequence of 11, ..., 7. An
interpretation is a triple Z = (o, k, j), where o is an interval, k an integer, and j an
integer or w such that 0 < k& < j < |o|. We use the notation (o, k, j) = P to indicate
that some formula P is interpreted and satisfied over the subinterval (s, ..., s;) of o
with the current state being s. The satisfaction relation (=) is inductively defined as
follows.

TkEp iff si[p] = true, for any atomic proposition p.

IE-P iffTEP

ITEQP iffk<jand (o,k+1,j) E P

IEPVQIffTEPorTlQ.

T (Pu,...,Py) prj Q iff there exist integers k = ro < -+ - < 11 X 1y < 7; for all
1<l <m,(o,r—1,m) E B; (07,0,|0']) = Q for one of the following ¢’
erpm <jando' =0 | (ro,...,"m) O (rm41..5)» OF
er, =jando’ =oc | (ro,...,r) for some 0 < h < m.

Tk (Piy...,(Pu,...,P)®, ..., Py) prj Q iff one of following cases holds:
e 1 < w < I < m and there exists an integer n > 1 and Z [
(Pl,...,(Pu,...,Pl)(">,...,Pm)prjQ,or
o1l < u <l =m,j = w and there exist infinitely many integers £ = ro < r1 <
oo <rp,<wand lim r, =wsuchthatforalll <z <u-—1, (0,72-1,7z) F Px,

n—oo

and (0, Ty 4+(1—ut1)+n—1> Tutt(i—ut1)4n) F Putn,forallt > 0and 0 < n < [ —u,
and o | (ro,71,...,7h,w) E Q for some h € N,,.

The axiom system for CCM-PPTL presented later is based on that of PPTL, which
has been proved to be sound and complete. For more detail, please refer to [6].

2.2 Cylinder Computation Model

In this section, Cylinder Computation Model (CCM) is reviewed [17], including its
syntax and semantics which are based on sequence expressions. Then the logical laws
on CCM are drawn. First, sequence expressions are defined as follows.
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li=0leln|l,l|bh®l|l*

From the syntax of the sequence expression given above, we see that it is an analogue
of regular expressions where () denotes empty set, € empty sequence expression and n
any non-negative integer. The concatenation (>), sum (®) or Kleene closure (x) of any
two sequence expressions is also a sequence expression. The semantics is also defined
by a satisfaction relation, I, by means of interpretation Z = (o, k, j).

LIZIO for all Z.

2.7 e€ iff j = k.

3.ZIFkn iff j —k=n.

5.1k l1,lp iff there exists r, k < r =< j, such that Zy = (o,k,r) Ik 11 and Zp =
(o,7,7) IF la.

6. ZIF1* iff j = k or there exist finitely many integers k = ro < r1 < ... X1, = J

such that forall h, 1 < h < n, (o,rp—1,7s) IF L.

In the semantics of sequence expressions, () cannot be satisfied by any interpretation.
The empty sequence expression e is equivalent to the sequence expression 0. In order
to avoid an excessive number of parentheses, the precedence rules are given from high
to low: (1) * (iteration); (2) > (concatenation); (3) ® (selection). Some algebraic laws of
sequence expressions are summarized in [17]. Then, the syntax of CCM is defined as
follows.

CCM == Pov(l)|CCM; || CCM;

where P is a PPTL formula, [ a sequence expression and the parallel (]|) composition
of any two CCM formulas is also a CCM formula. CCM operators “ ov ” and “ ||
” are temporal. So all the CCM formulas are temporal formulas. With CCM formu-
las, the interpretation of P is controlled by the sequence expression [. The beginning
and ending points generated by the interpretation of [ make up of the coarse-grained
interval of P. Therefore, to give the semantics of CCM formulas, it is necessary to
define the set of ending point lists denoted by SZ. First, some notations are defined.

. f £ .
For any two strings X de (1,...,Zm) and Y de (y1,-..,Yn), the concatenation of

X and Y is defined as: X,Y def (1, s Zm), (Y1, -+, Yn) def (T1y ey Ty Y1y - ooy Yn)-

For any two sets S7 and SS9, of strings , the concatenation of S7 and S5 is defined as:

51,8 ¥ I{X, Y| X € SiandY € So}.

Definition 1 (set of ending point lists 57) LetZ be an arbitrary interpretation (c, i, k, j).
S, lI is inductively defined as follows:

1. S5 = 0.

2. IfZ IF ¢, then ST = {(k, j)}.

3.1 Z Ik n, then Sy = {(k,7)}.
there exists r, k < r

4. LIk Iy, la, then ST, =< 7|(0,k,7) IF 11 and Tp
Te S, S

STy @, then SZo o, = SE U SE

lo

7, such that Z; =
(o,7,7) IF Iz and

I IA
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there exist finitely many integers k = ro < 71...
6. IfZIF1* then SE = SZU{ r|rn = j such that forall 1 < h < n,Zp
(oyrh—1,7n) IFland T € Slzl,SlIQ, ceey SZI"

PN

Then, the semantics of Cylinder Computation Model is defined by a satisfaction
relation |= by means of the interpretation Z = (o, k, j).

Z = P ov (1) iff one of the following cases holds:
(@) Z IF [ and there exists (ro,71,...,7n) € SZI, n € Ny such that P is satisfied by

ol (ro,r1,...,mp) forsome 0 < h < n;
(b) there exists 7, k < r < j such that Z; = (o, k, r) IF [ and there exists (1o, 71,...,7n) €
Slzl, n € No and P is satisfied by o | (r0,71,...,7n) - 0@, 41..5)-
Z = CCM, || CC My iff one of the following cases holds:
() Z E CCM, and there exists r, k < r =< 7, (0, k,r) = CCM;
(b) Z = CC My and there exists r, k < r < j, (0, k,r) = CCM;

In fact, an element in S7 is a sequence of non-negative integers, and a sequence ex-
pression can be satisfied by an interpretation in more than one way. Each element in
ST records one particular way in which T satisfies I, containing all the beginning and
ending points. The definition of SlI is necessary since the PPTL formula P in CCM
is interpreted over a coarse-grained interval composed of the points from one of the
elements in S7.

3 CCM-PPTL and Axiom System

To model and verify multi-core parallel programs, CCM is included in PPTL. Then
an axiom system is proposed in this section. The syntax of CCM-PPTL is inductively
defined as follows:

B = p|-B| OB|BLVB|(Br,...,0m)prjB
| By (Buy -, B)®, ... Bm) prj B| CCM

where p is an arbitrary atomic proposition; 3, 3; are arbitrary CCM-PPTL formulas;
CCM an arbitrary CCM formula defined in section 2. The semantics of CCM-PPTL is
also defined as a satisfaction relation |= by means of the interpretation Z = (o, k, j).

TkEp iff sg[p] = true for any atomic proposition p.
T8  ffT B

IE=QB iff(o,k+1,5) =B

T }: BV B2 iff T }: BirorZ }: Ba.

there exist k = ro < r1 < ... < "m—1 =X Tm < 7 such that for alll <1 < m,

(o,71-1,71) |E Bi, and one of the following cases holds:

(@) rm < jand B is satisfied by o | (70,...,7m) - O(rm+1..5)3

(b) rm = 7 and 3 is satisfied by o | (70, ...,7) for some 0 < h < m.
TE B, s Bus---,B)F, ..., Bm) prj B iff one of the following cases holds:

@ZE B Buy-- o, B)™, ..., Bm) prj B for some n > 1 and n € No;
(b) I = m and j = w and there exist infinitely many integers k = 7o < r1 < --- and

lim 7, = w, such that
xr—r 00
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(0,70—1,72) E B for1 <x <u-—1,and
- (o, Tu+t(l—u+1)+n—1:Tu+t(l—u+1)+n) ): Bu+n,fort >0and 0 <n <1 —wu, and
— Pissatisfied by o | (ro,71,...,7s) for some h € N.,.
Z = CCM see the semantics of CCM in Section 2.

It should be noted that the formula P appearing in P ov (I) is a PPTL formula and
doesn’t contain the ov operator. That is why the syntax and semantics of PPTL and
CCM-PPTL have to be separated to define. CCM is of a typical form of P; ov (I1) ||
<+« || Pp ov (I,) where each P; is a PPTL formula and each I; is a sequence ex-
pression. With this parallelism, a main time interval is the sequence of fine-grained
unit subintervals with length one while several coarse-grained projected intervals over
which processes are interpreted are in parallel with the main time interval. This com-
putation model can be viewed as m processes that share one processor and each oc-
cupies an execution core cooperating to complete their tasks in a parallel way. Each
process progresses in its own speed and communicates with each other at some global
states which indicates the coordination among these processes. Sequence expression [;
is used to control and determine the execution points (states) of P;. || is the main op-
erator in CCM. Thus Py ov (I1) || -+ || Pm ov (Im) is endowned with the semantics
of many-core parallel computing. For example, the interval satisfying CCM formula
Py ov(2,3,3,4) || P.ov (3,5,3,6) || Psov (2,1,2,3,3,1,5) is given in Fig.1.

Fig.1. Py ov (2,3,3,4) || P2 ov (3,5,3,6) || Psov (2,1,2,3,3,1,5)

All the logical laws in PPTL also hold in CCM-PPTL. In addition, we also prove some
logical laws on CCM, for more details, refer to [3]. Some of these laws are chosen to be
axioms later and are used to transform any CCM formula into its normal form. Now we
introduce a normal form for CCM-PPTL formulas upon which the completeness proof
of the axiom system is based.

Definition 2 (normal form of CCM-PPTL). A CCM-PPTL formula 3 is in normal
form if it conforms to the following syntax: a. A eV \/I_, (a; A OB;), where r > 1,
a. and the «;’s are state formulas, whereas the (3;’s are general CCM-PPTL formulas.
Moreover, (3 is in complete normal form if V]_; a; = true and Vi, (o Aoyj) = false.

Now, an axiom system for CCM-PPTL is formalized based on that of PPTL. Ax-
ioms and inference rules on CCM operators are included. Since the deduction of CCM
formulas depends on the nature of sequence expressions, some essential transformation
rules on sequence expressions need to be included in the proof system.
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Sl e~e" ~0~0" S7 0~

S2 0,1l ~1,0~1 S8 (I~

S3 ll,(lg,lg)’:(h,b),l;g211,12,13 S9 l1,(lz,l1)* ’:(11,l2)*,ll

S4 1, (2 ®1s),la =~ (1, l2,la) @ (I1, 13, la) SI0 (0®1)* ~1I*

S5 U'~e@ ")~ (e®])" S11 I ~ 1l = 1 ~1[l2/l]

S6  1I*~1%1 S12 I (I, ) ®@ly = L~ 17,1y

Then, the axioms on CCM formulas are given as follows based on the transformation
rules of sequence expressions.

Al Pov (I1,0,12) = false

A2 Pov(0)=P

A3 eov (m,l) 2 Oeov(m—1,1)) (m>0)

A4 OP ov (m,l) =2 Q™e; (Pov (1)) (m>0)

A5 (wAP)ov (l) ZwA (Pov(l))

A6 Pov(li®l2) 2 (Pov(lh))V(Pov(l2))

A7 (PLVP)ov(l) D (Prov(l)V (P2ov(l)

A8 CCM, || CCM; = (CCM;i;true) NCCM; V (CCMs;true) N CCM;

The inference rules are presented in the following:

11 P>P = Pov(l)DP ov(l)
12 li~lp = Pov (l1) 2 Pov(l2)

Some explanations are needed. Al means that any CCM formula P ov (1) with an
unsatisfiable sequence expression [ is also unsatisfiable. A2 means that CCM formula
P ov (0) is deduced to the PPTL formula P. A3 means that if a sequence expression
begins with a positive integer m and the PPTL formula is €, we can extract one next op-
erator directly with m decreasing by one. A4 means that if a sequence expression begins
with a positive integer m and the major operator of the PPTL formula is the next oper-
ator (), we can extract m next operators directly with deleting m from the sequence
expression and the next operator from () P. A5 means that if the PPTL formula contains
a conjunction being a state formula w, then w can be extracted from the PPTL formula
and treated as a conjunction of the whole formula. A6 indicates the distributivity of the
sum operator ® over the ov operator. A7 describes the distributivity of disjunction over
the ov operator. A8 presents the semantics of the parallel operator, that is, CC'M; and
CC M are interpreted in parallel and may specify their own lengths. I1 means that the
implication between any two PPTL formulas is preserved by the ov operator. I2 means
that if /1 is deduced to be the equivalent of I3, the two CCM formulas with {; and o
being sequence expressions respectively are also deduced to be equivalent. Then the
soundness and completeness of the axiom system of CCM-PPTL are demonstrated.

Theorem 1 (Soundness). For any CCM-PPTL formula B, if = f3, then |= f.

Proof. We need to prove that each axiom in the proof system of CCM-PPTL is valid
in the model theory of CCM-PPTL and each inference rule preserves the validity of
premises. Since the proof system of PPTL is sound, we only need to consider the axioms
and inference rules on CCM operators. We can prove that each transformation rule of
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sequence expressions is an algebraic law, each axiom on CCM is also a logical law.
Two inference rules I1 and 12 are also easy to understand, which formalize the idea of
substitution. All the above ensures the soundness of the axiom system of CCM-PPTL.
Since the proof is not difficult, we omit it here.

To prove the completeness of the axiom system given in Theorem 3, ten lemmas are
proved in advance. In general, the set of CCM-PPTL formulas are partitioned into ter-
minable and non-terminable formulas. We will prove that any terminable formula is
satisfiable (Lemma 7), and that for any non-terminable formula S, if I/ 5 — false,
then [ is satisfiable (Lemma 10). Lemma 10 is based on a fact that any CCM-PPTL
formula can be deduced into a normal form which is proved in Theorem 2. The proof
of Theorem 2 depends on Lemma 1-6. Because of space limitations, most of the details
of proofs is omitted here.

Lemma 1. For any CCM-PPTL formula 3, if 8 = 3’ where 8’ is in normal form, there
exists a CCM-PPTL formula B. in complete normal form satisfying 8 = f..

Lemma 2. Let v, .. ., o, be state formulas, and 5; a general CCM-PPTL formula. If
Viey @i Z true and \/;; ai Ao = false, then ~(\/iZ) o; A Bi) = iz (i A=B).

Lemma 1 indicates that any normal form can be deduced into a complete normal form.
In the deduction of —f into a normal form as we will see later on in Theorem 2, S is
deduced into its normal form first, then further deduced into its complete normal form
by means of Lemma 1. Finally, we deduce — into its normal form using Lemma 2
based on 3’s complete normal form.

Lemma 3. If §; = 8. (0 < i < m), where 3.’s are CCM-PPTL formulas in normal
Sform, then there exists a formula ( in normal form such that (31, ..., Bm) prj Bo = .

Lemmad4. If §; = 8. (0 < i < m), where 3.’s are CCM-PPTL formulas in normal
form, then (1) there exists a formula 3 in normal form such that

(B, B)®, o Bm) prj Bo = B (L <1< m);

(2) there exists a formula 3 in normal form such that

(ﬁlaa(ﬁla76[)6977Bm)pr.]ﬁogﬁ(l<ZSl§m)

Lemma 3 and 4 show that the projection and projection plus operators can be deduced
into normal forms. They are integral parts of the proof of Theorem 2. To deduce CCM
formulas into their normal forms, first we need to deduce the sequence expression into
one of the three following forms using transformation rules, which are formalized in
the following lemma.

Lemma 5. For any sequence expression l, | can be deduced using the transformation
rules into one of the following forms:

(Form 1) ()

(Form2)0® @ | (n;,l;) wherem > 0and n; € N forall1 <i < m.

(Form 3) ®z=1(nl, i) wherem > landn; € N foralll <i<m.
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Proof. The proof proceeds by induction on the structure of sequence expressions.
Base:

(1) 1 is @, then it is already in Form 1.

(2) lis €, then I ~ 0 according to the algebraic laws of sequence expressions, which is
in Form 2 under the condition m = 0.

(3) lis n, if n is zero, it is the same as case (2); if n is a positive integer, according to
the algebraic laws we have n ~ (n,0), which is in Form 3 under the condition m = 1,
ni :nandll =0.

Induction:

(4) L is (I3, l2), with the hypothesis that both of /; and l5 can be transformed into one of
the three forms, then there are 3 x 3 possible combinations.

If 11 or I5 is transformed into (), which covers 5 possible combinations, [ can be equiva-
lently transformed into () which is in Form 1.

If both of the transformations of {; and Il are in Form 2, [ is transformed into Form 2.

(I1,12)

~ (0@ @iy (ni, i), 0®® 1(n},15)) Hypothesis
=~ (0,0® Qj_, (n}, 1) ® (®Z"1(nl,l ),0® @j_ 1(n ) sS4
~ (0,0) ® (0, ®j_ (n 1)) ® (QiZy (1, 1), 0) & ( (nul)®J 1(n5,15)) sS4
~0® @j_y (], l;)®®z 1 (i1 )®®Z’il®3_1(n“lz,nj ) $2, 54

If [; is in Form 2 and {5 Form 3, then [ is in Form 3.

L~ (l1,l2) = (0@ @i, (ni, 1), @7, (15, 15)) Hypothesis
=~ (07®;=1(n]7l;)) & (®Zr; (n“l )’®;L=1(n]’l])) S4

n m n /
= ®j:1(nj7 ® Qi Q;_y (ni, li, nj, 15) 52,84

If [ is in Form 3 and [5 Form 2, then [ will be transformed into Form 3, and if both [;
and [ are in Form 3, then [ will be in Form 3. The proofs of these two cases are similar
as the proof given above, so they are omitted here.

(5) lis I ® lo, with the hypothesis that I, and 5 are transformed into I} and [}, then
I} ® 1} is already in one of the three forms.

(6) 1 is (I')*, using the transformation rule S5, we have [ ~ e @ (I’, (I’)*); then using
S1, wehave l ~ 0 ® (I, (I')*). Suppose that I has been transformed into I"’. If {" ~ @,
then [ = 0 which is in Form 2. If I ~ 0 ® @ ; (n;,;), then [ is in Form 2.

(@)

~

= (0®® 1(ni, 1)) Hypothesis
~ (®;~ (nz»l )" S10
~ 0®(®;ﬂ 1(7%: li), (®1 1(”17 i))") S5
~0® Qi (ni, li, ()=, (15,1))") S4

If I is in Form 3, that is, I” ~ @, (n;,l;), then [ is in Form 2.

o~

~0® (I, (1)) $5, 1
~0® (Q~,(ni,l:),(1)") Hypothesis
~0® @i, (ni, i, (I')") S4



80 N. Zhang, Z. Duan, and C. Tian

Lemma 6. For any CCM formula 3, there exists a formula 3’ in normal form such that

p=p.

Proof. The proof proceeds by induction on the syntax of CCM.

Base: For P ov (1), by Lemma 5, if [ ~ (), then P ov (1) & false (A1).

Ifl ~0® @:",(n;,;), by the theorem that any PPTL formula P can be deduced into
its normal form, we have

Pov (1)
= Pov(0® @~ (n,ls)) 12
= Pov (0)V V2, Pov(nil;) A6
= PV VI, Pov(ngl) A2
= PeNeV Vo1 (Pej AOPL) V VL (Pe AeV VT (Pej A OPY;)) ov (ni,1;) Hypothesis
= PeAeV V1 (Pej NOPL) V VI Vio1(Pej ANOPYL,) ov (i, ;) A7
= PeAeV Vi1 (Pej AOPL)

VVILy Pe A(eov (ni, 1) VL Viey Pej A (OP; ov (ni, 1)) A5
= Pe AeV Vi1 (Pej AOPL)

VVILy Pe AO(eov (s — 1,1)) V Vi Vi Pej AQ™ (P ov (1) A3, A4

Ifl ~ ®."(ni,1;), P ov () also can be deduced into its normal form in a similar way.
Induction: For CC'M; || CC M, suppose that CC M; and CC M3 have been deduced

into their normals, then

CCM, || CCM;

=~ (CCM;y;true) NCCMz VvV (CCMa;true) AN CC My A8
= ((are AeV VL oni A OBi)itrue) A (aze AeV VT, azj A OB2;)

V((aze NeV VI azj AOB2j);true) A (are AeV VL ars A OB1i) Hypothesis
>~ ((are Aeitrue) V VL, (a1s A OPri;true)) A (aze ANe V V;”=1 az; A OB2;)

V((aze A g;true) V \/'J'le(azj A QOB2j;true)) A (are AeVVIE ai AOB1Li) PDF, PEB

> (aie Agjtrue) A (coe A€)

VVi_i(aie Aestrue) A (az; A OB2;) V Vily Vioi(ari A OBuis true) A (az; A OBaz;)

V Vo (aze Agstrue) A (ari A OPBi) V Vi Vit (a2 A OBz;itrue) A (a1 A OB1i) TAU
> @1e N ge A€

\% V;L=1 Qaie N\ agj A OB29‘ \% VZ';1 aze A a1y A OB

\ :7;1 \/;L:1 agi N\ agi A O((ﬁlu true) AN ng \ (ng; true) A\ 51L) PSM, PEB

Lemma 6 tells us that any CCM formula can be deduced into a normal form after its
sequence expression having been deduced into one of three forms, which is also an
integral part of the proof of Theorem 2.

Theorem 2. For any CCM-PPTL formula 3, there exists a formula B’ in normal form
such that 3 = 3.

Proof. The proof proceeds by induction on the syntax of CCM-PPTL.

Base:

(1) For any atomic proposition p, p =2 p A e V p A Otrue.

(2) For OB, OB = true A OpB.

Induction:

(3) For =, suppose that 5 can be deduced into its normal form, from Lemma 1, 3
also can be deduced into its complete normal form o, A € V Vi_;(a; A Opf;) where
Viia; = true and Vizjo; A oy = false. Then we have
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-8 = _\(Oée ANeV vg:l (Ozi A Oﬁz)) = ae NeV \/le(ai A O_‘Bi)
(4) For 31 V [9, suppose 51 and (32 have been transformed into their normal form, then

61 V 62 = aie NV \/?;10411' AN Oﬁlz V age NV Vgl:lOéQj AN OBQ;‘
= (ate V aze) AeVVitian A OB V Vimiaz; A OB

(5) For (B1, ..., Bm) prj Po, refer to the proof of Lemma 3.
(6)For (B1,...,(Biy---,B1)%, ..., Bm) prj Bo, refer to the proof of Lemma 4.
(7) For CC' M, refer to the proof of Lemma 6.

Definition 3 (terminable formula and non-terminable formula) For any CCM-PPTL
formula 3, if 5 A Oe # false, then 3 is a terminable formula. Otherwise, it is a non-
terminable formula.

We can easily prove that any terminable CCM-PPTL formula 3, (3 is satisfiable.
Since [ is terminable, by Definition 3, 8 A $e # false, which means that there exists
amodel o satisfies 8 A Oe. Then o is also a model of 8 and so (5 is satisfiable. Then we
derive the following conclusion.

Lemma 7. For any terminable CCM-PPTL formula 3, if t/ 8 — false, then (3 is
satisfiable.

We can prove by contradiction that for any CCM-PPTL formulas 3 and /3, if 3 = '
where /3 is non-terminable and 8’ in normal form, then 3’ is of the form \/|_, a; AOB;
with each «; being a state formula and each 3; being non-terminable. From hypothesis,
we can derive a contradiction to the premise that 3 is non-terminable. Then we have the
following conclusion.

Lemma 8. For any CCM-PPTL formula 3, if 8 = (8’ where ' is in normal form of
ac NeV Vi, a; ANOpB;, then

(1) If ae £ false, then B is terminable.

(2) If there exists some [3; being terminable, then (3 is terminable.

With Lemma 8 which is a conclusion on model theory of CCM-PPTL, we can derive a
similar conclusion on the axiom system by using contradiction proof.

Lemma 9. For any CCM-PPTL formula 3 and f3', if 3 = B’ where (3 is non-terminable
and 8’ in normal form, then 3 must be of the form \/'"_, B; N Of; with each j; being
non-terminable.

Lemma 9 means that if a non-terminable formula $ has been deduced into its normal
form B’ using the axiom system, then we can infer that there is no terminal product
a. A€ in 8/, and each future product in normal form be also non-terminable. Otherwise,
there will be a contradiction to the premise that 3 is non-terminable.

Lemma 10. For any non-terminable CCM-PPTL formula 3, if i/ 8 — false, then (3 is
satisfiable.

The proof of Lemma 10 is with intricacy. It involves constructing an interval for 5 and
then prove the interval is indeed a model of 3. Two famous theorems on fix-point are
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used in the proof, one is Taski’s fix-point theorem and the other is Scott’s fix-point
induction. The proof is omitted here. From Lemma 7 and Lemma 10, we can derive
that any CCM-PPTL formula 3, no matter whether it is terminable or non-terminable,
if I/ B — false, then 3 is satisfiable. Then we have the following corollary.

Corollary 1. For any CCM-PPTL formula 5, if (3 is unsatisfiable, then = 3 — false.
Theorem 3 (Completeness). For any CCM-PPTL formula (3, if = 3, then - .

Proof. From the premise of 3 is valid, we can derive the duality that = is unsatisfiable.
By Corollary 1, we have =5 — false is a theorem in the proof system of CCM-PPTL,
which means that S is a theorem in the proof system.

4 Conclusion

We introduce a Cylinder Computation Model into Propositional Projection Temporal
Logic and propose an axiom system for CCM-PPTL, which can be employed to model
and verify many-core computation systems. In the future, we need to do some further
case studies for more complex many-core computation. Further, to provide a highly
automatical verification approach, the existing tool for PPTL theorem proving will be
extended to support CCM operators. Moreover, we will explore the verification method-
ology which combines model checking and theorem proving.
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Abstract. This paper presents normal form expressions of Propositional Pro-
jection Temporal Logic (PPTL). For doing so, a PPTL formula is represented
as the disjunction of formulas in form of ¥ = Nosizken, O'S; A Ofe or e =
Nosickeny O'Si A Nisjeny, O(OS kit AO*S 2 A+ AO'S k), 1 < 1 € Ny. Here ek
denotes a finite model with length being k while %" indicates an infinite model.
‘We show that any PPTL formula can be expressed as a normal form expression.

As a consequence, satisfiability of PPTL formulas can easily be achieved.

Keywords: Propositional projection temporal logic, normal form expression,
normal form, specification, satisfiability.

1 Introduction

Temporal logics are popular formalisations that can express properties about the tem-
poral order of events. They are widely used in model checking for specifying desired
properties of a system to be verified. The family of temporal logics has grown over the
years, containing linear [9] and branching time logics [4,2], and, more recently, game,
alternating time, and coordination logics [1,10]. While linear time temporal logics are
concerned with properties of paths, branching time logics describe properties that de-
pend on the branching of computational tree structures.

Interval-based temporal logics such as Interval Temporal Logic (ITL) [11] and Pro-
jection Temporal Logic (PTL) [5,6,7] which extends ITL with infinite models and a new
projection construct, (Py,..., P,)pr Q, are a more recent branch of temporal logics
with their own niche of interesting applications. Propositional PTL (PPTL) is a proposi-
tional subset of PTL with a usual next construct and the projection construct that is able

to express chop construct, often denoted by the symbol “3’, by P; QO &ef (P,Q)prj e.
Compared with classic temporal logics, interval-based temporal logics greatly simplify
the formulation of certain correctness properties [12], which underlines the useful-
ness of these logics for specification and formal reasoning about concurrent systems.
Interval-based temporal logics lend themselves particularly well to reasoning about
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properties with a ‘scope’; such properties are quite common in most programming lan-
guages. Further, with chop operators, sequential behaviours can be described elegantly
and succinctly; and full regular expressiveness is achieved by projection construct.

In this paper, we present normal form expression that represents a PPTL formula as
the disjunction of formulas in form of

e’éz /\ OiSi/\Oks

0<i<keNy

or

e&h = /\ O'Si A /\ O/OS kst AO*Sa2 A+ AO'Skar)

0<i<keN, k<jeN,,

1 < I € Ny, that implicitly depicts a finite or an infinite model of the corresponding
PPTL formula, respectively. We prove that any PPTL formula can be expressed in a
normal form expression. As a consequence, satisfiability of PPTL formulas can easily
be achieved.

The rest of the paper is organized as follows. The following section presents syntax
and semantics of PPTL. Normal form expressions are defined in Section 3. We then
show that any PPTL formula can be represented as a normal form expression in Section
4. As a consequence, a decision procedure for checking the satisfiability of PPTL for-
mulas based on normal form expressions is presented in Section 5. Finally, conclusions
are drawn in Section 6.

2 Propositional Projection Temporal Logic

Propositional Projection Temporal Logic (PPTL) [5,13] is an extension of Propositional
ITL (PITL) [14] with infinite models and a new projection construct [6,15].

Let Prop be a countable set of atomic propositions and B = {true, false} the boolean
domain. We use small letters, possibly with subscripts, like p,g,r to denote atomic
propositions, and capital letters, possibly with subscripts, for instance P, O, R to indicate
general PPTL formulas. Formulas of PPTL are defined by the following grammar:

P:=p|=-P|PiVPy| OP|(Py,...,Pp)prj P

where p € Prop, O (next), and prj (projection) are temporal operations.

We define a state s over Prop to be a mapping from Prop to B, s : Prop — B.
We write s[p] to denote the valuation of p at state s. An interval o = (so, 1, ...) iS
a non-empty sequence of states, which can be finite or infinite. The length of o, |0,
is the number of states in o- minus one if o is finite; otherwise it is w. Let Ny denote
the set of non-negative integers. To have a uniform notation for both finite and infinite
intervals, we will use extended integers as indices, that is N, = Ny U {w}, and extend
the comparison operators, =, <, <, to N, by considering w = w and for all i € Ny, i < w.
Moreover, we write < as < —{(w, w)}.

To formalize the semantics of the projection construct, we need an auxiliary oper-
ator |. Let o = (s0, 51,...) be an interval and ry, ..., r, be integers (2 > 1) such that
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0 <r <...<r < |0l The projection of o onto ry,...,r, is the projected inter-

val, o | (ri,...,r) def (81,5 Stps - - -5 Sy,), Where t1,...,1; are attained from rq,...,r,
by deleting all duplicates. In other words, #{,...,# is the longest strictly increasing
subsequence of ry,..., r,. For instance, {so, 51, s2,53) | (0,2,2,2,3) = (so, 52, 53).
The concatenation(-) of an interval o = (so, s1,..., S|sj) With another interval o’ =
(80> s v v sl’(rl) is represented by o - 0" = (50, 51, s Slorf> SGs S75 -+ 4 sl’(rl) (not sharing
any states).

An interpretation is a tuple I = (o, k, j), where o = (s, s1,...) is an interval, k
is a non-negative integer, and j is an integer or w, such that 0 < k < j < |o]. We
write (0, k, j) to mean that a formula is interpreted over a subinterval o ... ; with the
current state being s,. We utilize If,mp to stand for the state interpretation at state s.
The satisfaction relation = for formulas is given as follows:

I=(k)EP iff sy [p] = I},,,[p] = true
I =(ok, ) E-P iff 7 f P

I =(ok, ) EP1 AP if TEP and T E P,

I =(0,k,j) EOP iff k < jand (o, k+ 1, /) P

I =(o,k, j) E (P1,...,Py)pr P iff there exist integers rg, ..., andk =ryp < ... <
Fm—1 = 1y < jsuch that (o, 71—y, 1) E P; for all
1 <l<mand(0’,0,|c’|) E P for o’ given by :
(Drp<jando’ = ol (ro,...,7m) - Ot
Q)rp=jand o’ =0 | (ro,...,ry) forsome 0<h<m

For convenience, some derived formulas from elementary PPTL formulas are pre-
sented below. The abbreviations true, false, vV, — and < are defined as usual.

& ' Otrue more & -¢

OP © (rue,P)prj & oP @ —o-P

finP) « oE—p) halttP) & o o P)

keep(P) def O(—-& — P) rem(P) e d(more — QOP)

P;0 € (ROpie P30 £ (P;0)V(PADMmore)
fin & oe inf def omore

len(0) % ¢ len(n) = Olen(n—1),n> 1
O« L evoP skip e len(1)

A PPTL formula containing no temporal operators is called a state formula.
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Further, we have the following useful logic laws, whose proofs can be found in [13]:

(L) oP =PVQOOP (L2)oP =PAeVvVPAQOOP
L3)-O°r =(©-P (LA) Q35 (P1V Py) =(Q;5P)VI(Q;P)
(L5 o-Q0 =00 (L6) keep(P) = eV P A Okeep(P)
L7HoPvoQ >OPVQ) (L8) halt(P) = P A&V P AQOhalt(P)
L9YHaPAQ) =oOPAoQ (L10) fin(P) = P A eV Ofin(P)

(L11) true = oevomore (L12) Py 3(Py3P3) =(P13Py) ;s Ps

L13) OPv ) =0OPVOQ (L14)o(P Amore) = P AQO(P A more)
L15) OPAQ)=0OPAOQ (L16)oP - Q) >D(@P—- o)
(L17) true =gV Otrue (L18) more A\O-P=moreA-QOP

3 Normal Form Expressions

Now we define normal form expressions that implicitly express models of temporal
logic formulas.

Definition 1 (Normal Form Expressions). Let

E. :={|ef= A OSinOfe

0<i<keNy

E, = (el el = A OSin A OOSki AO*Sia A AOS ), 1 < 1€ Nob

O<i<keNy k<jeN,
Here, each S (possibly with subscripts) is a state formula. The set of normal form ex-
pressions are defined by:

E:={ele= V €€ e"e€E,UE,}

1<meN,
Every e € E is a normal form expression. O

Intuitively, in a normal form expression, each

e]; = /\ O's; AOfe
0<i<keN,
in E. denotes a finite interval with length being k, where for each 0 < i < k, state
formula S; holds at state i as illustrated in Fig. 1 (1). Whereas each

b= N OSin N\ OUOSka AO Sk A+ AO'Sk)

0<i<keNy k<jeN,,

in E, depicts an infinite model with a loop suffix where S; holds at state i in case
0 <i<k and Sij, 1 < j <1, holds at state k + m X j for all m > 1 as shown in Fig.
1 (2). Further, let E be the set of all normal form expressions, true (or T) and false (or

F) can be expressed by true ' E and false &ef 0, respectively.

The merits of normal form expressions are twofold: (1) compared with temporal
logic formulas, they are much more intuitive in acquiring the underlying meaning of
the formula; (2) in contrast to graphical models of temporal logic formulas, they are
more compact and convenient in logic operations. In the following, we show two simple
examples of normal form expressions.



88 Z. Duan, C. Tian, and N. Zhang

Sop S1 S22 Sz Sy Sk—15k
1 2 3 4 5 k-1 k
(1)
SLO Sl SLQ S§ 8‘4 N -.‘. S]E*ls‘k Sk-l—l D Sk+l

1 2 3 4 5 k-1 k k+1 k41
(2

Fig. 1. Intervals expressed by ¢ and eff’l)

Example 1. Examples of normal form expressions:
(1) Normal form expression of a proposition p:
p= \/ p AO'eV p AQ%true
0<ieNy

It hints that two kinds of models will satisfy p. The first kind of models contains the
finite ones with an arbitrary length such that p holds at the first state as shown in Fig.
2 (1), while the second kind includes only one infinite model where p holds at the first
states as illustrated in Fig. 2 (2), here T denotes true.

p T T T
(1) . . T 17
0 1 2 k-1 k

Fig. 2. Models of proposition p

(2) Normal form expression of formula < p:
Op = /\ O'true A Ofp AOMe v /\ O'true A OFp A Otrue
0<i<keNy,0<j 0<i<keN,

It indicates that the models that satisfy ©p are finite or infinite ones where p holds at
some state throughout the intervals as shown in Fig. 3 (1) and (2), respectively.

4 Normal Form Expressions of PPTL

In this section, we show that any PPTL formula can be equivalently transformed to a
normal form expression. We first show some results useful in the transformation.

Lemma 1 shows that the negation of a normal form expression will still be a normal
form expression.
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T T ... P T ... T
(1) = .
0

(2

oy
il A
Ll
e

Ej

Fig. 3. Models of ¢p

Lemma 1. Foranye € E; U E,, —e can be transformed to normal form expression.

Proof:Incasee= A O'S;A OFe. We have:
0<i<keN,

- A O'SiACOre)
0<i<keNy )
V ~O'SsivaCte
0<i<keNy

\/ @i—lSl’V@k—'E

O<i<keNy
Vo ®O'=S; v (O more
O<i<keNy A
V O=S;vOfmorev y Ole
O<i<keNo  O<isk-1eNy .
O( V =8;AO/eVv=S; AOtrue) v Ofmorev \/  Ole
0<i<keNy Osjel\{o o ) 0<i<k—1€eN, .
Vo O=S; AOMev O=S; AQ%true v Ofmorev -/ O'e

0<i<keN, 0<jeNy 0<i<k—1€eN,

—e

So in this case —e has been represented as a normal form expression. Further, if e =
A OSin A ONOSk1 AO*Sks2 A=+ AQ!S k), 1 < 1 € Ny. We have:
0<i<keNo k<jeN,
me=-( A OSin A ONOSki AO*Ski2 A= AO'Sk41))

0<i<keN, k<jeN,,

= V O-S;v V OO-Si1 VOS2 V- VO'-Swu) VvV Ole

- 0<i<keNy ) k<jeN, ) 0<ieN,,
= V O=S;v V Oe
0<ieN,, ) ' 0<ieN,, ) )
= \V O( V =S;A0ev=aS;AQ%rue)v \/ Oe
0<ieN,, Qs Jj€Ny o ) ) 0<ieN,, )
= V O-S;iAOMev V O=SiAO*truev \/ O'e
0<i<jeN,, ) o 0<ieN,, ) Osier.
= VvV O=8S;A0OMev \V O-SiAQruev ) O'e
0<i<jeNy 0<ieN, 0<ieNy
Hence the lemma holds. O

Lemma 2 indicates that the conjunction of normal form expressions is still a normal
form expression.
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Lemma 2. Let e; and ey be normal form expressions. e; A e, can be expressed by a
normal form expression.

k.l
Proof: Suppose ¢; = e’é‘ v oV ei,‘ v ,1 <1l € Np,ande, = ef;z \Y
0<ki €Ny 0<k/eNo 0<k €Ny
k).l
\V; (22) , 1 <1, € Ny. We have,

0<k,eNy

— k (k7.01) k (k5.1)

6‘]/\6‘2:( \/ ealv \/ ew] )/\( \/ eEZV \/ ewz )
0<k €Ny O<k’ eNy 0<k,eNy 0<k}eNp
K.l k)l
= \/ /\kZV('l)/\effZ)
0<k €Ny OskzeNU

It is ready that e; A e, can be expressed by a normal form expression. O

Lemma 3 presents how normal form expression of a chop construct is obtained.

Lemma 3. €' ; 2 and e‘,3 ;e can be expressed by normal form expressions.

Proof: Suppose,

= A OSiAONe
0<i<kiENy )

= A OSiAORe
0<i<k €Ny . i

K= AN OSiA N OHOSkt AO™S ka2 A AOS ks1)
0<i<keN, k<jeN,

We have,
dse=( A OSiAOMe);( A OS;AORe)

0<i<k, €N, 0<i<kreNp

A OSiAOMHe

0<i<k;+ko €Ny

diell=( A OSin01e);( A OSiA A OOSii AO*S k2 A+ AO'Ske)

0<i<kieNy 0<i<keNy k<jeNy,
= OSin N OOSkst AO*Sku2 A= AOS k)
0<i<k) +keNy k| +k<jEN,,
Thus, the lemma holds. O

Lemma 4 shows that projection construct can be expressed by a normal form expres-
sion.

Lemma 4. If Py, - -+, P, and Q can be expressed by normal form expressions, so does
(PO,"',Pm)PVj Q

Proof: Without loss of generality, suppose

()}

Ep = e Ve,
(k0. lo)
Ep, = elg" Ve,
ksl
Ep, = egm (m )
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Here for convenience, we represent Eg as A\ (O'S;. It has:
0<ieN,,

(Po,--,Pu)prj Q= (Ep,,---,Ep,)prj Eg

By the semantics of projection construction, Py, ---, and P,_; are confined to finite
models. In case i < m, we have:

; — kK H ki 1 . ki+ . knr . km (k;n’lm)
(EPO,"',EP,,I)P”J EQ = e Afin(So); -+ se AfiN(S) e - 5e" (e Ve, )

In case i > m, we have:

(Epys- -+ Ep,) prj Eg = € Afin(So); -+ 3¢ Afin(S,); A O

m<i

Note that each ef;" A fin(S;) means that S; is conjuncted with the state formula holding

at the last state of the interval specified by e’;’. Thus, by Lemma 3, the lemma is already

proved. O
Now the main theorem is presented.

Theorem 5. Any PPTL formula can be equivalently expressed by a normal form ex-
pression.

Proof: The proof proceeds by induction on the structure of PPTL formulas. As the base
case, we have shown that a proposition p can be expressed as a normal form expression.
Suppose PPTL formulas P (or P with subscripts) and Q have been expressed as normal
form expressions Ep and Ey, respectively.

1. Formula =P can be expressed as normal form expression by:

—|P = _|E17
=( \/ ei)’ ¢ e E.VE,
1<ieNy )
—|el
1<ieNy

By Lemma 1 and 2, -P = )\ —¢' can be further expressed in a normal form
1<ieNy
expression.

2. Formula P, V P, can be expressed as a normal form expression by:
PV P,=Ep VEp,
3. Formula OP can be expressed as a normal form expression by:
OP = QOEp

(QEp is already in normal form expression.
4. Formula P ; O can be expressed as a normal form expression by:
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P3Py =Ep ;Ep,
_ ki (G N k> (K},12)
= ’
(V eV V e )V eV V oe’)

0<k €Ny 0<kieNy 0<kreNy 0<k,eNy
= kiy . ko (k,12)
= ( \/ € )’( \/ eV \/ €y )

0<k €Ny 0<kreNy 0<k}eNp

kl
SV (e el
0<kieNy 0<k €Ny

ByLemma3,P ;P = \/ V(€ efvel ,e( vh)
0<k €N 0<kr €Ny
in a normal form expression.
5. By Lemma 4, formula (Py,---, P,) prj O can be expressed in a normal form ex-

pression.

) can be further expressed

Accordingly, any PPTL formula can be equivalently expressed by a normal form
expression. O

The above proofs also provide an approach for transforming a PPTL formula to a
normal form expression.

5 Decision Procedure of PPTL

Based on normal form expressions, how to check the satisfiability of PPTL formulas
becomes simple. Give a PPTL formula P, we first transform P to its normal form ex-

pression:
p=\/ v \/ &
0<keNy 0<k’eNy
where
k _ is, k
eg - /\ O 12 A O &€
0<i<keN,
7, . )
= A OSiA A ONOSkst AO*Ska A ANOISka)

0<i<k’eN, k’<jeN,,

1 <1 € Ny. Then for all k and &', if there exists an S (or with subscript) such that §
is unsatisfiable, P is unsatisfiable; otherwise, P is satisfiable. As a matter of fact, each
S (or with subscript) is a state formula without any temporal operators, i.e. a typical
propositional logic formula, a SAT solver can be employed to check its satisfiability
automatically.

Example 2. Satisfiability of PPTL formula (p AT QO p) ;q.

We first present p A O O p and g in normal form expressions:

pAOOp=pAr A O/Op)

0<jeN,

g= \V qgAOevVqgnQPtrue

0<ieNy
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There are no e € E, occuring in the normal form expression of p A 0 O p. Thus,

pAOOps;g=pA A O/Op)s( V grOeVgnOtrue)

0<jeN, 0<ieN,
= false

So, PPTL formula (p A 0 QO p) ; g is unsatisfiable.

6

Conclusion

In this paper, we present normal form expressions and show that any PPTL formula
can be represented as a normal form expression. When presented as a normal form
expression, the underlying models of a PPTL formula is easy to be acquired that leads
to a simple decision procedure for checking the satisfiability of PPTL formulas.
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Abstract. Two of the most popular data structures for storing strings
are the Trie and the Patricia index trees. Let H, denote the height
of the Trie (the Patricia, respectively) on a set of n strings. It is well
known that under the uniform distribution model on the strings, for
Trie Hy,/logn — 2 and for Patricia Hy,/logn — 1, when n approaches
infinity. Nevertheless, in the worst case, the height of the Trie on n strings
is unbounded, and the height of the Patricia on n strings is in ©(n).
To better understand the practical performance of both the Trie and
Patricia index trees, we investigate these two classical data structures in
a smoothed analysis model. Given a set S = {s1, s2,...,$n} of n binary
strings, we perturb the set by adding an i.i.d Bernoulli random noise to
each bit of every string. We show that the resulting smoothed heights of
Trie and Patricia trees are both ©(logn).

1 Introduction

A Trie, also known as a digital tree, is an ordered tree data structure for storing
strings over an alphabet Y. It was initially developed and analyzed by Fredkin [6]
in 1960, and is one of the first collected in “The art of computer programming”
by Knuth [7] in 1973. Such a data structure is used for storing a dynamic set
to be exploited as an associative array, where keys are strings. There has been
much recent exploitation of such index trees for processing genomic data.

In the simplest form, let the alphabet be ¥ = {0,1} and consider a set
S = {s1,82,...,8,} of n binary strings over X, where each s; is a countable
string of 0’s and 1’s. The Trie for storing these n binary strings is an ordered
binary tree Ts: first, each s; defines a path (infinite if its length |s;| is infinite)
in the tree, starting from the root, such that a 0 forces a move to the left and a 1
indicates a move to the right; if one node is the highest in the tree that is passed
through by only one string s; € S, then the path defined by s; is truncated at
this node, which becomes a leaf in the tree and is associated (i.e., labelled) with
s;- The height of the Trie T's built over S is defined as the number of edges on
the longest root-to-leaf path. Fig. 1 shows the Trie constructed for a set of six
strings. The strings can be long or even infinite, but only the first 5 bits are
shown, which are those used in the example construction.

* Correspondence author.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 94-103, 2014.
© Springer International Publishing Switzerland 2014
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Fig. 1. The Trie constructed for {s; = 00001...,s2 = 00111...,s3 = 01100...,54 =
01111...,85 =11010...,s¢ = 11111...}

Let H,, denote the height of the Trie on a set of n binary strings. It is not hard
to see that in the worst case H,, is unbounded, because any two of the strings can
have an arbitrary long common prefix. In the uniform distribution model, bits of
s; are independent and identically distributed (i.i.d.) Bernoulli random variables
each of which takes 1 with probability p = 0.5. The asymptotic behavior of Trie
height H,, under the uniform distribution model had been well studied in the
1980s [13,8,5,4,3,11,12,15,16], and it is known that asymptotically almost surely
(a.a.s.)

H, /logsn — 2, when n — co.

S5 S6

51 S2 83 S4

Fig.2. The Patricia constructed for {s; = 00001...,s2 = 00111...,s3 =
01100...,84 =01111...,85 = 11010...,s86 = 11111...}

A Patricia index tree is a space-optimized variant of the Trie data structure,
in which every node with only one child is merged with its child. Such a data
structure was firstly discovered by Morrison [9] in 1968, and then well analyzed
in “The art of computer programming” by Knuth [7] in 1973. Fig. 2 shows the
Patricia tree constructed for the same set of six strings used in Fig. 1. Again let
H,, denote the height of the Patricia tree on a set of n binary strings. In the
worst case, Hy, € O(n). Under the same uniform distribution model assumed for
an average case analysis on Trie height, Pittel showed that a.a.s. the height of
Patricia is only 50% of the height of Trie [11], that is,
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H, /logon — 1, when n — co.

The average case analysis is intended to provide insight on the practical per-
formance as a string indexing structure. Recently, Nilsson and Tikkanen experi-
mentally investigated the height of Patricia trees and other search structures [10].
In particular, they showed that the heights of the Patricia trees on sets of 50, 000
random uniformly distributed strings are 15.9 on average and 20 at most. For
real datasets consisting of 19,461 strings from geometric data on drill holes,
16,542 ASCII character strings from a book, and 38,367 strings from Internet
routing tables, the heights of the Patricia trees are on average 20.8, 20.2, 18.6,
respectively, and at most 30, 41, 24, respectively.

Theoretically speaking, these experimental results suggest that worst-case in-
stances are perhaps only isolated peaks in the instance space. This hypothesis is
partially supported by the average case analysis on the heights of Trie and Patri-
cia structures, under the uniform distribution model, that suggests the heights
are a.a.s. logarithmic. Nevertheless, these average case analysis results on the
specific random instances generated under the uniform distribution model could
be inconclusive, because the specific random instances have very special prop-
erties inherited from the model, and thus would distinguish themselves from
real-world instances. To overcome the fact that real-world instances are not cap-
tured by a single probabilistic distribution, Spielman and Teng introduced the
idea of smoothed analysis [14], which can be considered as a hybrid of the worst-
case and the average-case analyses, and inherits the advantages of both. In brief,
an given string instance is perturbed by adding a slight random noise to gener-
ate an instance neighborhood and the average performance on this neighbor is
evaluated; the smoothed performance is then taken as the worst among all these
local average performances. One can image that when the magnitude of random
noise approaches 0, the smoothed analysis becomes the worst case analysis; when
the magnitude of random noise approaches infinity, the smoothed analysis be-
comes the average case analysis under the probabilistic distribution assumed on
the random noise. In practice, such a magnitude is set to be small; then a good
smoothed analysis result under certain reasonable probabilistic distribution as-
sumed on the random noise generally implies a good practical performance in
real world applications. One key reason underlying this hypothesis is that real
world instances are often subject to a slight amount of noise, especially when they
are obtained from measurements of real world phenomena. The classic example
is the Simplex method for solving linear programming. The Simplex method is
one kind of practical algorithm for solving linear programming, all of which have
worst case exponential running time. Spielman and Teng showed that Simplex
algorithms have polynomial smoothed running time [14], which explained their
practical performance.

In this paper, we conduct the smoothed analysis on the height of Trie and
Patricia structures, to reveal certain essential properties of these two data struc-
tures. In the next section, we first introduce the string perturbation model, and
we show an a.a.s. upper bound O(logn) and an a.a.s. lower bound £2(logn) on
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the Trie height H,,. The consequence is that the smoothed height of the Trie on
n strings is in ©(logn). In Section 3, we achieve similar results for the smoothed
height of the Patricia tree on n strings.

2 The Smoothed Height of Trie

We consider an arbitrary set S = {s1,$2,...,8,} of n strings over alphabet
{0,1}, where each string may be infinitely long. Let s;(¢) denote the ¢-th bit in
string s;, for ¢ = 1,2,...,n and £ = 1,2,3,.... Every string s; is perturbed by
adding a noise string v;, giving rise to the perturbed string s; = s; + v;, where
5:(0) = s;(¢) if and only if v;(¢) = 0. The noise string v; is independently gener-
ated by a memoryless source, which assigns 1 to every bit of string v; indepen-
dently and with a small probability e € [0, 0.5]. More formally, Pr{v;(¢) =1} =€
for each ¢ = 1,2, 3,.. .. Essentially the perturbation flips each bit of every string
independently and with a probability e. Let S = {31, 3s,...,5,} denote the set
of perturbed strings.

Let pfj be the probability of the event {5;(¢) = 5;(¢)}. We have

A .

¢ _ 2¢(1 —€) = p, if 5;(€) # s;(0), ()
v €2+(1—€)2:1—péq, if s;(¢) = s,(0).
We can clearly note that ¢ > p, since ¢ < 0.5. Let C;; denote the length of

the longest common prefix between §; and 5;. Since C;; = k if and only if
5i() =§;(¢) for £ =1,2,...,k but not for ¢ = k+1, the probability of {C;; = k}

for any k > 0 is
k
Pr{Cyj =k} = (prj> (1-piith.

=1
From the fact that {C;; = k} and {C;; = m} are disjoint events when k # m,
we have for any k£ > 1

k—1 m m-+1 k
ey <= 5 (Tt - Tt ) =1~ 1Tt
m=0 \/=1 /=1 =1

Consequently, the probability that the longest common prefix between 3; and 5;
is at least k long is

k
Pr{Ci; > k} = 1— Pr{Ci; <k} = [ [ p};- (2)
=1
2.1 An a.a.s. Upper Bound

We use a slight abuse of notation H, to also denote the height of the Trie
constructed for S. We can express H,, in terms of C;; as

H, = max Cj;+1.
1<i<j<n
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By Boole inequality [2], we have

1<i<j<n

k
Pr{H, >k} =Pr{ max C;; >k} < (Z) prj < <;L> ",
=1

where the last equality holds when all the n strings {s1, $2,...,s,} have the
same prefix of length k. By setting k = 2(1 + 9) log, /4 n for a constant 6 > 0, we
have

Pr{H, >k} < (Z) P+ Ios1 /g < =28

as n — oc. Therefore, H,, < 2log,,,n with high probability, when n approaches
infinity.

2.2 An a.a.s. Lower Bound

To estimate a lower bound, we will use the following Chunge-Erdés formulation
of the second moment method on a set of events:

Lemma 1. (Chunge-Erdos) [1] For any set of events By, Ea, ..., E,,
" Pr{E;})
PT{U;‘LzlEZ} Z " (ZZZI ,r‘{ Z}) .
Yoic1 Pri{Ei} + 2, Pr{E; N E;}

Let A;; denote the event {C;; > k}, for every pair {i,;j} such that 1 < i <
j < n; also define the following two sums:
N N
S| = Z P’I“{Aij}, and S; = Z P’I“{Aij N Ast}-
1<i<j<n {i.5}#{s:t}

Then by Chunge-Erdos formulation (Lemma 1), we have
Pr{H, >k} = Pr{Ui<i<j<ndi;} > 57
n = 1<i<j<ndlijy Z Sl+52.

Let’s first estimate S;. From Eq. (2), one clearly sees that
k
S = Z Pr{A;;} = Z prj- (4)
1<i<j<n 1<i<j<n =1

Recall the definition of pj; and its value in Eq. (1). The following Lemma 2
is then straight-forward:

Lemma 2. For any £ > 1 and any three perturbed strings 3;,5;, 3¢, if pfj = pft,
then pft =q.
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Lemma 3. For any three perturbed strings 5;,5;, 3¢,

k k k
A 2 1
So = 1105 + [ 1wt + [T #5e = 3p3%as".
=1 =1 /=1

Proof. For the string pair (s;, s;), let Z;; denote the number of (0,1)-pairs and
(1,0)-pairs in {(s;(¢), s;(¢)),1 < ¢ < k}, that is, the number of bits where s; and
s; have different values among the first k bits. Clearly from Eq. (1),

k

¢ Zii k—Zis
sz‘j =p7vq .
(=1

For the string triple (s;,s;,s:), let x;; denote the number of (0,0, 1)-triples
and (1, 1,0)-triples in {(s;(¢), s;(€),s:(£)),1 < £ < k}; likewise, z;4 and z;; are
similarly defined. Also let y denote the number of (0,0, 0)-triples and (1,1, 1)-
triples in {(s;(¢), s;(€), s¢(¢)),1 < £ < k}. The following relationships are direct
consequences of the definitions:

Zij = Tip + Ty,
Zi = xij + xju,
Zjt = Tij + Ta,
k=i +xie + e +y.

It follows that

k k k
So - prj + prt + prt
{=1 l=1 l=1

— pIit+Ijt qujer + pxij+mjthit+y + pmiﬁrzit qzjter

Tij+y Tit+y Tty
GG 0 )
p p p

One can check that, since ¢ > p, the quantity in the last line reaches the minimum
when z;; = x;y = zjy = k/3 and y = 0. That is,

k k k
A 2 1
So = [Ty + [Teh + [T 75 = 3p3%a2".
=1 =1 =1
This proves the lemma. O

Note that each string pair (s;,s;) is involved in exactly n — 2 string triples
(si, 85, 8t), for t # 4, j. By Lemma 3, Eq. (4) becomes

k
]. 1 2 1

1<i<j<n £=1



100 W. Tong, R. Goebel, and G. Lin

We next estimate Sy, which is a bit harder because two events A;; and Ay
may not be independent. We split Sy into two parts: So = S5 4+ S, where

S 2 Z Pr{A;; N Ag}, and
{i,330{s,t}=0

sy2 N Pr{AynAg).
{i,g3n{st}#0
Since two events C;; and Cy; are independent when {4, j} N{s,t} = (), we can
estimate S5 as follows:

Si= > (Pr{agtPr{aa}) < | D Pr{4y}| =52
(i,73N{s,t}=0 in

Event {A;; N A;+} is equivalent to the event in which the first k bits of all
three perturbed strings 5;, §;, and §; are identical. Using € < 0.5, we have

Prids; N Ay} = Pri&(0) = 5;(0) = 5(0),1 <0<k} < (63 . 6)3)k.

It follows that

sy= S Pr{A;nAg} < 3(3) (¢+0- 6)3)k < 3(?)

{i,530{s,t}7#0
where the factor 3 arises because a string triple {§;,5;,35;} gives rise to three
events {Aij n Ait}a {AZ] n Ajt}, and {Ait N Ajt}.
Putting S and S together, we can upper bound Sy by

sz—s;+sggsf+3<’;). (6)

Using the estimates of S; and Sy in Egs. (5) and (6) respectively, Eq. (3)
becomes
Pr{H, >k} > Si
" S5+ 5

1

/81 + (85 + 55)/5%
S 1
T 1/S1+1+57/S%

Y

1
LH (o dg b

- 1+4n—2p7§kq7§k+2n—1p7§kq7§k
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1
= 1+ 4n—2n201-98) 4 2p—1pl-9d
1
1+4n=20 4 2n—9
>1-0(n7%) =1,

where the inequality Eq. (7) is achieved by setting

k=2(1—0)log,-2/3,-1/3n, that is, p_gkq_ék = n21-9),
for a constant § > 0. Therefore, H,, is larger than 2log,-2/s,-1/s n with a high
probability when n approaches infinity.

Theorem 1. The smoothed height of the Trie on n strings is in ©(logn), where
the bit perturbation model is i.i.d. Bernoulli distribution.

3 The Smoothed Height of Patricia

Here we briefly do the smoothed analysis on the height of the Patricia tree on
a set of n binary strings. We adopt the same i.i.d. Bernoulli bit perturbation
model as in the last section. Again, we present an a.a.s. upper bound and an
a.a.s. lower bound for the smoothed height.

3.1 An a.a.s. Upper Bound

Following Pittel [11], on the set of n perturbed strings S = {51,82,...,8,}, we
claim that for any fixed integers k > 0 and b > 2, the event {H,, > k+b— 1}
implies the event that there exist b strings 5;,, 55, . . . , 5;, such that their common
prefix is of length at least k (denoted as Ci,4,..4, > k). The correctness of the
above claim follows from because, in Patricia trees, there are no degree-2 nodes
(except for the root), and thus a path of length k + b — 1 hints at least b leaves
in the subtree rooted at the node at distance k from the Patricia root.

Similar to the definition of pfj in Eq. (1), p{ ;. ;, denotes the probability of
¢

the event {3/ =3/ =... =5}, for any b > 2, which is calculated as follows:
pfu‘z...ib = (1 - 6)k06k1 + (1 - G)kleko’

where kg and k; are the number of 0’s and 1’s among the b bit values
5i(0), 85, (0), ..., 5 (£), respectively. By a similar argument as presented for
Pr{A;;} in Section 2, we have

k
(4
PT{Ci1i2~~~ib Z k} = Hpilig‘“i[,'
(=1

For a fixed b > 2, let g = €® + (1 —¢)® and k = ky, = b(1 + §/2) logy /g, n- We
have

k=0b(1+0d/2)logy,q n
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Inn

=(1+6/2) 1,

Ing,
Inn
In (eb + (1 — e)b) /?
Inn
<(1+446/2
(1+2/ )ln(62+(176)2)71/2
=2(1+0/2)log,/,n

where the inequality in Eq. (8) holds for any b > 2. Setting b = Jlog; /, 7, it
follows that

= (145/2)

(®)

Pr{H, >2(1 +d)log,,,n} < Pr{H, > k+b—1}
< Pr{ max sz i >k}

11,12,

b ¢
=n H Diyis..iy
=1

< nbqf
e 0(n~%) =0,

when n — oo.
In summary, for any § > 0, we have

Pr{H, >2(1 +4)log,,,n} € O(n"~ "y =0,

when n approaches infinity, and thus a.a.s. H, <2(1 + §)log; /,n

3.2 An a.a.s. Lower Bound

Let D; be the depth of node labelled §; in the Patricia tree.

Clearly, H,, = max]—; D; and the 5;- reaching the maximum depth must be a
leaf node. It follows that if H,, < k, then at least one of the 2¥ possible length-k
strings does not appear as a preﬁX of any perturbed strings 51, 8o, ..., 8.

Let Ln =logy ) n and k =L ' . We have

Pr{H, <k} < 2FPr{no 3, starts with k 0’s}
< 2k(1 — by
< ok —e*n
=exp{kln2 — ekn}

=exp{ln2-L —Llnn} — 0,

]Ll

when n approaches infinity, and thus a.a.s. H,L >L
In summary, we have the following theorem.

]Llnn

Theorem 2. The smoothed height of the Patricia on n strings is in ©(logn),
where the bit perturbation model is i.i.d. Bernoulli distribution.
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Conclusion

Under the i.i.d. Bernoulli bit perturbation model, we have shown that the
smoothed heights of both Trie and Patricia index trees on n strings are in the
order of logn. These theoretical results explain the typical probabilistic behavior
of these two important data structures on real-world applications.

Acknowledgement. This research was supported in part by NSERC, AITF
and iCORE.
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Abstract. Problems on uncertain data have attracted significant at-
tention due to the imprecise nature of many measurement data. In this
paper, we consider the k-center problem on one-dimensional uncertain
data. The input is a set P of (weighted) uncertain points on a real line,
and each uncertain point is specified by its probability density function
(pdf) which is a piecewise-uniform function (i.e., a histogram). The goal
is to find a set of @ of k points on the line to minimize the maximum ex-
pected distance from the uncertain points of P to their expected closest
points in . We present efficient algorithms for this uncertain k-center
problem and their running times almost match those for the “determin-
istic” k-center problem. The techniques proposed in the paper may also
be useful for solving other related problems on uncertain data.

1 Introduction

A large amount of work has been done on deterministic data, e.g., points with
exact positions. Recently, due to the observation that many real-world mea-
surements are inherently accompanied with uncertainty, problems on uncertain
data have attracted dramatically increasing amount of attention. Two models
are commonly used for data uncertainty: the existential model (or tuple model)
[23,24,37] and the locational model (or attribute model) [1,2,16,34]. In the exis-
tential model, each uncertain point has a specific location but its existence is un-
certain, following a given probability density function. In the locational model,
each uncertain point always exists but its location is uncertain and follows a
probability density function. In this paper, we consider the k-center problem on
one-dimensional uncertain data under the locational model.

1.1 Problem Definitions and Our Results

Let P = {P1, P,...,P,} be a set of n uncertain points on the z-axis, where
each uncertain point P; is specified by its probability density function (pdf)
fi: R. — R U {0}, which is a piecewise-uniform function (i.e., a histogram),
consisting of at most m + 1 pieces (e.g., see Fig. 1). More specifically, for each
uncertain point P;, there are m z-coordinates z;; < x;0 < ... < Tjm and m — 1

* This research was supported in part by NSF under Grant CCF-1317143.

Z. Cai et al. (Eds.): COCOON 2014, LNCS 8591, pp. 104-115, 2014.
© Springer International Publishing Switzerland 2014
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Tl Tq2 Ti3 | Ti4 Li5 Tie  LiT T8

Fig. 1. Tllustrating the pdf f; of an uncertain point P; with m =8

nonnegative values ¥;1, ¥i2, - - -, ¥i,m—1 such that f;(z) = vi; (yi; = 0 is possible)
for z;; <z < x; ;41 with 0 < j <m, and we set z;0 = —00, s m+1 = +00, and
Yio = Yim = 0. In addition, the uncertain points of P are independent.

Note that in some applications each uncertain point has a discrete pdf, that is,
it could appear at one of a few locations, each with a probability. This discrete
case can also be represented by the above histogram model using infinitesimal
pieces around these locations, and thus the histogram model also incorporate
the discrete case. In other words, the discrete case is a special case of our model.

Let L denote the z-axis. For any certain point p € L, we let x,, denote its
z-coordinate. The expected distance between p and any uncertain point P; is
defined as

+oo
Edp.P) = [ filole - o
—00

Let @ be a set of (certain) points on L, called facilities. For any uncertain
point P;, we use Ed(Q, P;) to denote the smallest expected distance from P; to
all points of @, i.e., EA(Q, P;) = mingeg Ed(g, B;). The facility ¢ with Ed(q, P;) =
Ed(Q, P;) is called the expected closest facility of P; in @, and we also say P; is
“served” by the facility g or P; is “assigned” to g. The k-center problem is to
find a set @@ of k points on L to minimize the maximum expected distance from
the uncertain points of P to their expected closest facilities in @, i.e., the value
maxp,cp EA(Q, ;).

In a realization, each uncertain point will appear at a deterministic location
abiding by its pdf. We should point out that our problem definitions imply that
we always assign each uncertain point P; to its expected closest facility and we
never change the assignment in any realization even through the actual location
of P; in a realization may be closer to a different facility.

For differentiation, we refer to the traditional k-center problem where each
point is given in an exact position as the deterministic version.

In this paper, we present an algorithm for the uncertain k-center problem
and the running time is O(mnlogmn + nlogklognlogmn). Further, for the
discrete case where the pdf of each uncertain point of P is discrete, i.e., each
uncertain point P; has m possible locations, each with a probability, we have a
more efficient algorithm with running time O(mnlogmn + nlogklogn). Since
mn is the input size, as will be seen soon, our results almost match those for the
corresponding deterministic k-center problems.
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Note that our algorithms can also solve the weighted case where each uncertain
point P; has a nonnegative weight w; and we consider the weighted ezrpected
distance, i.e., w; - Ed(q, P;), from P; to each facility ¢ in Q. To solve the weighted
problems (for both the general and the discrete cases), we only need to change
each value y;; to w; -y;; for 1 < j < m—1, and then simply apply our algorithms
for the corresponding unweighted problems. The time complexities do not change
asymptotically.

1.2 Related Work

The deterministic k-center (and k-median) problems are classical problems that
have been extensively studied. It is well-known that the k-center problem is NP-
hard even in the plane [28] and approximation algorithms have been proposed
(e.g., see [3,5,8,22]). Efficient algorithm were also given for some special cases,
e.g., the smallest enclosing circle [27], k-center on trees [10,20,29]. Refer to [19]
for other variations of facility location problems. The deterministic k-center in
one-dimensional space is solvable in O(nlogn) time [14,15,20,30].

The k-center problems on uncertain data in high-dimensional space have been
proposed. For example, approximation algorithms were given in [18] for different
problem models, e.g., the assigned model that is similar to our problem model
and the unassigned model which was relatively easy because it can be reduced
to the corresponding deterministic problem, as shown in [18]. Other problems
on clustering uncertain data were also studied and heuristic algorithms were
proposed [4,11,31]. Other facility location problems on uncertain data under
various models, e.g., the minmax regret [6,7,36,38], have also been studied (see
[33] for a survey).

To the best of our knowledge, the uncertain k-center problem proposed in this
paper has not been particularly studied before.

1.3 Our Approach

For the deterministic one-dimensional k-center problem, there is an observation
that there exists an optimal facility set @ such that the input points served
by each facility are consecutive if we order them from left to right on L; this
observation is crucial for designing the algorithms [14,15,17,30]. In our uncertain
problem, however, since the input points of P are uncertain, it is not clear how
to “sort” them; consequently, the algorithmic techniques used before for solving
the deterministic problems are not applicable here.

As explained above, one main difficulty for solving the uncertain k-center
problem is that we do not have an “order” for the uncertain points of P to
help us design algorithms. Instead, we use the following approach. We first
solve the decision problem which is to determine whether the minimized value
maxp,cp EA(Q, P;) in the optimal solution is less than or equal to a given value
€, and if yes, € is called a feasible value. We solve the decision problem with
the following result: with O(mn) time preprocessing, for any given €, we can
determine whether € is a feasible value in O(logm + nlogk) time.
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By using the above result for the decision problem, we solve the k-center
problem by using parametric search [17,26]; however, there are some issues that
do not allow us to use the parametric search in [17,26] directly and we have to
make certain modifications. A useful observation discovered in the paper is that
the expected distance Ed(p, P;) is a unimodal function (i.e., first monotonically
decreasing and then increasing) as p moves from left to right on L.

For the discrete case, we reduce the problem to finding a particular vertex in
a line arrangement. By using the arrangement searching technique in [13], we
can solve the discrete case in a faster way, in O(mnlogmn + nlogklogn) time.

The rest of the paper is organized as follows. Section 2 introduces some ob-
servations. In Section 3, we present our results for the decision algorithms. In
Section 4, we solve the k-center problem, which is referred to as the optimization
problem. Section 5 presents our algorithm for the discrete case.

2 Observations

Consider any uncertain point P; of P. For any point p, its expected distance
to P; is Ed(p, P;) = f_Jr;o fi(z)|lz — zp|dx. With a little abuse of notation, we
also use Ed(xp, P;) to denote Ed(p, P;), but we normally consider Ed(z,, P;) as
a function of z, for z, € R = (—o00, +00) as p moves on L.

A function g : R — R is a unimodal function if there exists a value 2’ such that
g(z) is monotonically decreasing on x € (—oo, 2’| and monotonically increasing
on x € [2/,4+00), ie., for any 1 < x2, g(x1) > g(x2) holds if o < 2’ and
g(x1) < g(x2) holds if 2’ < x;.

We assume the m coordinates x;1,...,Z;m of P; are given sorted. We have
the following lemma, which is crucial to our algorithm. The proof is omitted.

Lemma 1. The function Ed(zp, P;) for z, € R is a unimodal function and can
be explicitly computed in O(m). More specifically, Ed(zp, P;) is a parabola (of
constant complexity) on the interval [xk, xr11) for each 0 < k < m.

By using Lemma 1, we can obtain the following corollary.

Corollary 1. For each uncertain point P;, with O(m) time preprocessing, we
can compute the value Ed(x,, P;) in O(logm) time for any query point p on L.

Consider any uncertain point P; € P. According to Lemma 1, there is a point
p € L that minimizes the value Ed(p, P;) and let p; denote such a point; note
that such a point may not be unique, in which case we let p; denote any such
point. We refer to p; as the centroid of P;. By Lemma 1, we can compute the
centroids for all uncertain points of P in O(nm) time, by explicitly computing
the functions Ed(x,, P;) for all uncertain points P; of P.

3 The Decision k-Center Problem

In order to solve our k-center problem, we first solve the decision version of the
problem in this section.
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Recall that our goal for the k-center problem is to find a set @ of k& points
such that maxp,ep EA(Q, P;) is minimized, where Ed(Q, P;) = min,ecg Ed(q, P;).
Below, for any set @ of points on L, let ¥(Q) = maxp,cp EA(Q, P;). Denote by
€* the value ¥(Q) in an optimal solution for the k-center problem.

Given any real value €, the decision k-center problem is to determine whether
there exist a set Q) of k points on L such that ¢(Q) < € (i.e., determine whether
e* <€), and if yes, then we say the decision problem is feasible and ¢ is a feasible
value. To distinguish from the decision problem, we refer to our original k-center
problem the optimization problem. Clearly, €* is the smallest feasible value.

Consider any value € and any uncertain point P; € P. Let @ be any set of
k points on L. If EA(Q, P;) < €, then there is at least one point ¢ in @ with
Ed(q, P;) < e. Let a(P;, €) be the set of points p of L such that Ed(z,, P;) <e. A
line segment on L is also called an interval of L. By using Lemma 1, we obtain
the following result, whose proof is omitted.

Lemma 2. For any uncertain point P; and any value €, a(P;,€) is an interval
of L (a(P;,e) = 0 is possible); with O(m) time preprocessing, we can compute
a(P;,€) in O(logm) time for any given e.

We say that a point on L covers an interval of L if the interval contains the
point. Let a(P,¢) is the set of all intervals a(P;,€) for ¢ = 1...n. We have the
following observation.

Observation 1 The value € is a feasible value if and only if there exist a set
Q of k points on L such that each interval of a(P,¢€) is covered by at least one
point in Q.

Hence, to determine whether e is feasible, it is sufficient to solve the following
interval covering problem: determine whether there exist a set (Q of k points on
L such that each interval of a(P,¢€) is covered by at least one point in Q.

To solve the interval covering problem, we can compute the minimum number
k* of points that can cover all intervals of a(P, €), and the problem can be solved
in O(n) time by a simple greedy algorithm after the endpoints of all intervals of
a(P, €) are sorted [21]. Specifically, we scan the sorted endpoints of intervals of
a(P,€) from left to right until we first encounter a right endpoint of an interval.
We add this right endpoint into @ and removes all intervals that contain this
point. This process is repeated until no intervals remain. However, due to the
sorting procedure, the total time for computing k* is O(nlogn).

Snoeyink [32] gave an O(nlogk*) time algorithm for computing k* without
sorting. If k* < k, then we have nlogk* = O(nlog k), which means that we can
solve the interval covering problem in O(nlog k) time. However, if k* > k, since
it is possible that nlogk = o(nlog k*) (e.g., k = O(1) and k* = ©(n)), we cannot
bound the time by O(nlog k). To ensure that the interval covering algorithm can
still be solved in O(nlog k) time even if k* > k, we modify Snoeyink’s algorithm
[32] in the following way.

Observe that to solve the interval covering algorithm, it is sufficient to know
whether £* > k holds. Snoeyink’s algorithm finds a set ) of points one by one
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in O(nlogk*) time, with k£* = |Q|. Since the points of @) are computed one by
one, when we run the algorithm, we simply stop the algorithm when there are
k + 1 points in the current @. In this way, the recursion tree of the algorithm
has k 4 1 leaves (instead of k* leaves) and thus the running time is O(nlogk)
according to Lemma 1 in [32].

As a summary, given any €, we solve the decision k-center as follows. First,
we compute all intervals a(P,e), in O(nlogm) time by Lemma 2. Then, by
modifying the algorithm in [32] as discussed above, we can solve the interval
covering problem in O(nlogk) time. The decision problem is thus solved. The
total time is O(nlogm+nlogk), after the O(mn) time preprocessing in Lemma
2 for all uncertain points. By using fractional cascading [12], we further reduce
the running time in Lemma 3, whose proof is omitted.

Lemma 3. With O(mn) time preprocessing, we can determine whether € is a
feasible value in O(logm + nlogk) time for any given e.

4 The Optimization Problem

In this section, we present our algorithm for the original k-center problem, which
we refer to as the optimization problem, and our goal is to find the smallest
feasible value €* and the corresponding optimal facility set (). Based on some
observations and our decision algorithm in Lemma 3, we finally compute €* by
modifying the parametric search technique [17,26].

For any € > 0, for each 1 < ¢ <, let a(P;, €) = [li(€),7i(€)], i-e., li(€) is the
z-coordinate of the left endpoint of «(P;,€) and r;(€) is the z-coordinate of the
right endpoint of a(P;, €); below we will consider /;(¢) and r;(e) as functions of
e. With a little abuse of notation, we also use l;(e) and r;(e) to denote the left
and right endpoints of «(P;,¢€), respectively. Define E(e) to be the set of the
endpoints of all intervals in a(P,€). Notice that if we know the sorted order of
the endpoints of E(e*) at the value €*, we can easily find an optimal facility set
Q, e.g., by using the greedy algorithm mentioned before. Although we do not
know €*, but we can still sort the values in E(e*) by making use of our decision
algorithm to resolve comparisons, which is the key idea of parametric search
[17,26]. However, our problem does not allow us to apply the parametric search
approaches in [17,26] directly, because in our problem we cannot resolve each
“comparison” by a single call on the decision algorithm (since a comparison may
have multiple “roots”). The details are given below.

Suppose in our sorting algorithm we want to resolve a comparison between
two values in E(e*). Depending on whether the two values are left endpoints or
right endpoints, there are two cases.

1. If a value is a left endpoint, say I;(¢*), and the other value is a right endpoint,
say 7;(€*), then the comparison between them is called a type-1 comparison.
We resolve this type of comparison in the following way.

Recall that py is the centroid for each uncertain point P, € P. We denote the
function Ed(zp, P;) on x, € (—o0, zp, | by Edr(zp, Pi) and denote Ed(x,, Pr)
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Fig. 2. Illustrating the intersection of Fig.3. Illustrating two intersections of
Edr(zp, P;) and Edr(zp, P;), where the in- Edgr(zp, P;) and Edg(zp, P;). For example,
tersection is a single point and thus y1 = if € € [y1,y2], then 7i(e*) > r;(€¥).

y2. li(e") > r;(e") if and only if €* < y;.

onz € [zp,,+00) by Edr(xp, Pr). By Lemma 1, Edr (2, Pj;) is monotonically
decreasing and Edg(zp, P;) is monotonically increasing. Further, l(e) <
xp,, < ri(e) holds. To simplify the discussion below, for each Py, € P, we add
a vertical half-line on the function Edy, (xp, P;) from the point py, downwards
to —oo and we also add the same half-line to Edgr(x,, P;). Note that each
new Edy (zp, Py) is still monotonically decreasing and each new Edg(xp, Pk)
is still monotonically increasing.

To resolve the comparison between [;(e*) and r;(e*), our goal is to deter-
mine whether [;(e*) < r;(e*) or ;(¢*) > r;(¢*) holds. To this end, we first
determine whether Edy (x,, P;) intersects EdR(xp, P)).

If xp, < xp,, then since Edr(z),, P;) is to the left of p; and Edgr(x,, P;))
is to the right of p;, the two functions do not intersect and [;(e*) < 7;(e*)
always holds.

Otherwise, since Edz,(zp, P;) is monotonically decreasing and Edg(z,, P;)
is monotonically increasing, Edy (x,, P;) must intersect Edg(xp, P;) and the
intersection is a line segment (may be degenerated into a single point) that
spans an interval [y1,yz2] on y-coordinates (e.g., see Fig. 2). Observe that
Li(e*) < rj(e*) if € > yo, li(€") = 1;(¢*) if € € [y1,y2], and l;(e*) > r;(e*) if
€< Y1.

Hence, to resolve the comparison between [;(¢*) and r;(e*), it sufficient
to resolve the comparisons among ¢*, y;, and y2, which can be done by
calling the decision algorithm to determine whether y; and yo are feasible
values. Specifically, if € = y- is not feasible, then €* > ys and we obtain
li(e*) < rj(e*). If € = yo is feasible, then €* < yo. We further check whether
e = yp is feasible. If y; is not feasible, then we have €* € (y1,y2] and thus
obtain [;(e*) = r;(e*); otherwise, we have €* < y; and obtain [;(e*) > r;(e*).
In summary, we can resolve the comparison between I;(e*) and r;(e*) by first
finding the intersection of Edy,(zp, P;) and Edg(xp, P;) and subsequently at
most two calls on the decision algorithm. The intersection of Edp(zp, P;)
and Edg(zp, P;) can be found by binary search in O(logm) time and the
two calls on the decision algorithm takes O(logm + nlogk) time.

Hence, we can resolve each type-1 comparison in O(logm + nlogk) time.
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2. If the two values involved in the comparison are both left endpoints or both
right endpoints, then we call it a type-2 comparison. It becomes more com-
plex to resolve this type of comparison. Assume both values are two right
endpoints, say r;(€*) and r;(e*), and the case where both values are two left
endpoints can be handled similarly. In the sequel, we resolve the comparison
in the following way.

As in the type-1 case, we first compute the intersections between the two
functions Edg(zp, P;) and Edg(s, P;). Although both functions are mono-
tonically increasing, there may be ©(m) intersections as their complexities
are ©(m) in the worst case (e.g., see Fig. 3). All intersections can be com-
puted in O(m) time. If there is no intersection, then r;(e*) < r;(e*) if and
only if z), < z,,, where p; and p; are the centroids.

Otherwise, let y1, y2, - . . , yn, be the y-coordinates of all intersections, sorted
in ascending order, with h = O(m). We can compute this sorted list in
O(m) time as we compute the intersections. Using our decision algorithm,
we can determine an interval (y,yr+1] that contains €*, by binary search
with O(logm) calls on the decision algorithm. After finding the interval
(Y&, Yet1], we can easily determine whether 7;(e*) < r;(€*) or r;(e*) > r;(e*)
in the similar way as in the type-1 case (e.g., see Fig. 3).

Hence, we can resolve each type-2 comparison in O(m + nlogklogm)
time.

The above shows that we can resolve each comparison in O(m +nlog klogm)
time, which is dominated by the type-2 comparisons.

Now we apply the parametric search scheme to our problem by resolving
comparisons in the above ways. We first consider Megiddo’s approach [26]. We
can use n processors to do the soring in O(logn) parallel steps. For each parallel
step, we need to resolve n “independent” comparisons. Our problem is different
from other problems in the sense that each type-2 comparison can have O(m)
“roots” (i.e., the y-coordinates of the intersections). Nevertheless, we can still
be able to resolve all these comparisons in a simultaneous way, as follows.

First, for each comparison, we compute the coordinates of the O(m) intersec-
tions as discussed above. The intersections of all n comparisons can be computed
in O(mn) time. Then, we have O(mn) roots. Suppose y1, 2, . . ., yn are the list
of all O(mn) roots sorted in ascending order, with h = O(mn). Note that we
only use this sorted list to explain our approach and our algorithm do not com-
pute this sorted list. By using our decision algorithm, we determine the interval
(YK, Yr+1] that contains e, which can be done in O(mn) time plus O(log mn) calls
on the decision algorithm by using the linear time selection algorithm and binary
search (without computing the above sorted list). Further, all n comparisons are
resolved on the interval (yi,yr+1]. Therefore, we can resolve all these n inde-
pendent comparisons in O(mn + nlogklogmn) time. Since there are O(logn)
parallel steps, we can resolve all comparisons and compute the order for E(e*)
in O(mnlogn + nlogklognlogmn) time.

Once the order for E(e*) is determined, we can easily compute €* and obtain
an optimal facility set @ by using the greedy algorithm discussed in Section 3.
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In fact, we can immediately determine €* after the above parametric search fin-
ishes. Specifically, after the parametric search finishes, the algorithm also gives
us an interval (yk,yr+1] that contains €*. We claim that €* = yj11. Indeed, an
observation is that €* is always equal to the y-coordinate of an intersection of
two functions Ed(z,, P;) and Ed(zp, P;) since otherwise we would always make
€* smaller without changing the order of E(e*). On the other hand, the para-
metric search essentially finds y;+1 as the smallest y-coordinate of such function
intersections that is feasible. Therefore, €* = yj41.

In summary, we solve the k-center problem in O(mn log n+nlog k log nlog mn)
time. Note that this result is based on the assumption that x;; for j=1,...,m
are given sorted for each uncertain point P; € P. If they are not given sorted,
then we need an extra step to sort them first, which takes O(mnlogm) time in
total. Therefore, we have the following lemma.

Theorem 1. The optimization version of the k-center problem can be solved in
O(mnlogmn + nlogklognlogmn) time.

One may wonder that Cole’s parametric search [17] can be used to further
reduce the time complexity by a logarithmic factor, i.e., reduce the time to
O(mnlogmn + nlogklogmn). However this is not the case because resolving
each type-2 comparison needs to consider O(m) roots. Specifically, in Cole’s
parametric search, calling the decision algorithm on the weighted median root
of all roots in each comparison level can resolve a weighted-half comparisons
in the level. However, in our problem, to resolve the each type-2 comparison,
calling the decision algorithm once is not enough. Therefore, Cole’s approach is
not applicable to our problem.

Since even Megiddo’s parametric search may not be quite practical, Van
Oostrum and Veltkamp [35] showed that one can replace the parallel sorting
scheme in Megiddo’s parametric search by the randomized quicksort to obtain
a practical solution with the same expected running time. By using the ran-
domized quicksort, our algorithm can solve the k-center problem in expected
O(mnlognm + nlogklognlogmn) time and the algorithm is practical.

5 The Discrete k-Center Problem

In this section, we present an algorithm for the discrete version of the k-center
problem, and due to some special properties of the discrete case, the algorithm
is faster than the one in Theorem 1 for the general case.

In the discrete k-center problem, each uncertain point P; has m possible lo-
cations, denoted by p;1,pi2, - - -, Pim, €ach having a probability. Since this is a
special case of the general k-center problem, the previous results on the general
k-center problem (e.g., Lemma 3 and Theorem 1) are still applicable.

By Lemma 1, the function Ed(x,, P;) for x, € R is still a unimodal function,
but in the discrete version, Ed(z,, P;) is a piecewise linear function. After the
locations p;1, pi2, - - - , Dim are sorted in O(mlogm) time, the function Ed(z,, P;)
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can be computed in additional O(m) time by Lemma 1. In the following, we
assume all functions Ed(z,, P;) for i = 1,2,...,n have been computed.

We define the decision problem in the same way as before. Our goal is to find
the smallest feasible value €*. As we discussed in the general k-center problem, €*
is the y-coordinate of the intersection of two functions Ed(z,, P;) and Ed(z,, P;)
for some ¢ and j. Let Z be the set of intersections of all functions Ed(x,, P;) for
1=1,2,...,n, and for simplicity of discussion, we assume each such intersection
is a single point (the general case can be solved by the same techniques with
more tedious discussion). Then, €* is the smallest feasible value among the y-
coordinates of all points of Z. The algorithm of Theorem 1 uses parametric search
to find €*. In the discrete version, due to the property that each Ed(z,, P;) is a
piecewise linear function, we compute €* by using a technique for searching line
arrangement [13], as follows.

We first define an arrangement A. For each 1 < i < n, since Ed(z,, P;) is a
piecewise linear function, it consists of O(m) line segments and two half-lines,
and we let A; denote the set of lines containing all line segments and half-lines of
Ed(zp, P;). Hence, |A4;| = O(m) for each 1 <14 < n. We explicitly compute each
A; in O(m) time. Let A be the arrangement of the lines in J._, A;. Note that our
algorithm does not compute A explicitly. With a little abuse of notation, we also
use A to denote the set of all vertices of A (i.e., all line intersections). Clearly,
T C A. Hence, €* is also the smallest feasible value among the y-coordinates
of the vertices of A, and in other words, €* is the y-coordinate of the lowest
vertex v* of A whose y-coordinate is a feasible value for the decision problem.
To search the particular vertex v*, we use the decision algorithm in Lemma 3
and the following arrangement searching technique given in [13].

Suppose there is a function g : R — {0, 1}, such that the description of ¢ is
unknown but it is known that g is monotonically increasing. Further, given any
value y, we have a “black-box” that can evaluate g(y) (i.e., determine whether
g(y) is 1 or 0) in O(G) time, which we call the g-oracle. Let B be a set of
n lines in the plane and let B denote their arrangement. Note that B is not
computed explicitly. For any vertex v of B, let y, be the y-coordinate of v.
The arrangement searching is to find the lowest vertex vertex v of B such that
g(yy) = 1. An O((n + G)logn) time algorithm is given in [13] to solve the
arrangement searching problem by modifying the slope selection algorithm [9,25],
without using parametric search.

In our problem, we are searching the vertex v* in the arrangement A. We can
define such a function g as follows. For any value y, g(y) = 1 if and only if y is a
feasible value. Clearly, g is monotonically increasing since for any feasible value
y, any value larger than y is also feasible. Hence, v* is the lowest point in A
with g(y,+) = 1. We use our decision algorithm in Lemma 3 as the g-oracle with
G = O(logm + nlogk). By the result in [13], after the O(mn) lines of (I, 4;
are computed, we can compute v* in O((mn + logm + nlog k) logmn) time. It
can be verified that (mn+logm+nlogk)logmn = O(mnlogmn+nlogklogn).
Consequently, we can obtain €*. An optimal solution set () can be found by using
the decision algorithm on €* in additional O(logm + nlogklogn) time.



114 H. Wang and J. Zhang

Theorem 2. The optimization version of the discrete k-center problem can be
solved in O(mnlogmn + nlogklogn) time.
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