
 123

LN
BI

P
18

2

5th International Conference, ICSOB 2014
Paphos, Cyprus, June 16–18, 2014
Proceedings

Software Business
Towards Continuous Value Delivery

Casper Lassenius
Kari Smolander (Eds.)

Lecture Notes
in Business Information Processing 182

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Casper Lassenius
Kari Smolander (Eds.)

Software Business

Towards ContinuousValue Delivery

5th International Conference, ICSOB 2014
Paphos, Cyprus, June 16-18, 2014
Proceedings

13

Volume Editors

Casper Lassenius
Aalto University, Finland
E-mail: casper.lassenius@aalto.fi

Kari Smolander
Lappeenranta University of Technology, Finland
E-mail: kari.smolander@lut.fi

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-319-08737-5 e-ISBN 978-3-319-08738-2
DOI 10.1007/978-3-319-08738-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014942261

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Software business refers to commercial activities in and around the software in-
dustry, aimed at generating income from the delivery of software products and
software services. Although the software business shares common features with
other international knowledge-intensive businesses, it carries many inherent fea-
tures making it a challenging domain for research. In particular, software compa-
nies have to depend on one another to deliver a unique value proposition to their
customers or a unique experience to their users. Moreover, recent developments
like the emerging app economy offer a variety of opportunities for entrepreneurs
and/or start-up companies. The recent acquisition of the three-year–old Finnish
mobile game start-up Supercell with the total value of 2.2 billion euro shows that
the future of software is not only in utility, productivity, connection, and inter-
change, and but also in entertainment and free time of people globally. This will
have a profound effect on software business and requires novel business models
and new approaches to software product development as well. A new paradigm
that approaches simulation and education/training via games is also attracting
attention and becoming economically visible.

This volume contains the papers presented at ICSOB 2014: the 5th Interna-
tional Conference on Software Business held during June 16-18, 2014, in Paphos,
Cyprus. To acknowledge the constantly changing landscape of software business,
which requires flexibility and continuous business changes, we selected as the
conference theme “Shortening the Time-to-Market—From Short Cycle Times
to Continuous Value Delivery,” reflecting the contemporary trend toward ever
shortening deployment cycles in particular for service-based software business.
ICSOB 2014 addressed researchers and practitioners who are concerned with
software business in different ways, as well as the start-up community, which is
increasingly focusing on mobile and social software. ICSOB is a series of annual
conferences born in 2010. The previous conferences were held in Boston (USA),
Brussels (Belgium), Jyväskylä (Finland), and Potsdam (Germany).

This year’s two keynotes spanned both the reach and the new developments
in the software business economy:

“Is There Anything That Isn’t Software?”, by Mike Hinchey, Director, Lero—
the Irish Software Engineering Research Centre

“What Other Industries Could Learn from the Games Industry”, by KooPee
Hiltunen, Director, Neogames Finland Asociation

The conference received 45 submissions. Each submission was reviewed by at
least two, typically three, Program Committee members. Of the 45 submissions,
the committee decided to accept 18 full, two short, two industrial, and two
doctoral consortium papers. For full papers, this gives an acceptance rate of 42%.
The accepted papers follow diverse methodologies, and represent the diversity
in research in our community.

VI Preface

The papers span a wide range of issues related to contemporary software
business—from strategic aspects and ecosystems to software development and
business models. We have arranged the program into eight sessions that together
provide a good insight into current software business research. The industry
papers are included at the end of the proceedings.

We would like to extend our warm thank you to the members of the Program
Committee, who did a fantastic job in reviewing the papers, ensuring the quality
of the conference, as well to the local organization team, whose engagement was
essential in making this event a special experience. Furthermore, we extend our
warm thank you to the local organizers led by Prof. George Papadopoulos for
inviting us to beautiful Cyprus.

We sincerely hope that you enjoy the conference and have productive discus-
sions!

May 2014 Tiziana Margaria
Casper Lassenius
Kari Smolander

Organization

Program Committee

Sergey Avdoshin Higher School of Economics, Moscow, Russia
Jan Bosch Chalmers University of Technology, Sweden
Sjaak Brinkkemper Utrecht University, The Netherlands
Peter Buxmann Technical University of Darmstadt, Germany
Michael Cusumano MIT, USA
Torgeir Dingsøyr SINTEF, Norway
Brian Fitzgerald University of Limerick, Ireland
Samuel Fricker Blekinge Institute of Technology, Sweden
Peter Gloor MIT, USA
Georg Herzwurm University of Stuttgart, Germany
Thomas Hess University of Munich, Germany
Slinger Jansen Utrecht University, The Netherlands
Philippe Kruchten University of British Columbia, Canada
Thomas Kude University of Mannheim, Germany
Olli Kuivalainen Lappeenranta University of Technology,

Finland
Casper Lassenius Aalto University, Finland
Ulrike Lechner Universität der Bundeswehr München,

Germany
Ricardo J. Machado Universidade do Minho, Portugal
Andrey Maglyas Lappeenranta University of Technology,

Finland
Tiziana Margaria University of Potsdam, Germany
Rory OConnor Lero - The Irish Software Engineering

Research Centre, Ireland
Samuli Pekkola Tampere University of Technology, Finland
Wolfram Pietsch Aachen University of Applied Sciences,

Germany
Maryam Razavian VU University Amsterdam, The Netherlands
Bjorn Regnell Lund University, Sweden
Dirk Riehle University of Erlangen-Nürnberg, Germany
Matti Rossi Aalto University, Finland
Guenther Ruhe University of Calgary, Canada
Stefan Seidel University of Liechtenstein
Kari Smolander Lappeenranta University of Technology,

Finland
Klaus-Dieter Thoben University of Bremen, Germany

VIII Organization

Juha-Pekka Tolvanen MetaCase
Pasi Tyrväinen University of Jyväskylä, Finland
Krzysztof Wnuk Lund University, Sweden

Additional Reviewers

Alves, Carina
Bacelar Pinto, Eduardo
Dalpiaz, Fabiano
Eling, Nicole
Förderer, Jens
Harnisch, Stefan
Heumüller, Erich
Ho, Jason
Holmström Olsson, Helena
Hubert, Simon
Kabbedijk, Jaap
Kowalczyk, Martin

Lima, Ana
Nykänen, Jussi
Radzuweit, Martin
Roshan, Maryam
Salgado, Carlos
Santos, Nuno
Shahnewaz, Shawn
Spruit, Marco
Stol, Klaas-Jan
Van Angeren, Joey
Vlaanderen, Kevin

Doctoral Consortium Abstracts

Innovation Initiatives of Large Software

Companies

Henry Edison
Free University of Bozen,

Piazza Università 1, Bolzano 39100, Italy

henry.edison@stud-inf.unibz.it

1 Problem and Research Questions

Most large companies are struggling to seek a way to continuously innovate in
the dynamic and threatening environment. The strategy experts have switched
from traditional innovation to value-creation economy [1–3]. Over the decades,
corporate entrepreneurship (CE) has been proposed as the silver bullet to large
organisation stagnancy and lack of innovation. However, Ross [4] found that due
to its complexity and structure, modern and large organisations limit innova-
tion and changes occurring within themselves. When this happens, their market
position will be overtaken by new small innovative firms. Thus, our research
questions are:

RQ How can innovation initiatives be executed in large software companies?
RQ1 What are the innovation initiatives introduced in large software

companies?
RQ2 How do those initiatives structure and execute the main activities?
RQ3 How can lean startup principles be adopted to improve the the existing

innovation initiatives in large software companies?

2 Related Work

Study by Sharma and Chrisman [5] found that the common feature of CE is the
creation of new business within business. However, little is known in implement-
ing CE activity in the context of large software companies. Organisations need
to find and keep good entrepreneurs internally to identify the opportunities and
change them to successful business, just like a start up. Eric Ries [2] introduced
the concept of lean startup as a new way of entrepreneurship in disruptive in-
novation. We only find one industry report of applying lean startup in software
context [6]. There is no comprehensive process design of adopting lean startup
in large software companies. A research on this direction could help industry
practitioners to introduce better lean startup in their organisations.

3 Methods

A mixed methods research is employed to address the research questions. To
answer RQ1 and RQ2, systematic mapping study (SMS)[7] will be performed

XII H. Edison

to capture big picture of innovation initiatives in large software companies from
literature. To validate this result, quantitative survey to industry practitioners
will be conducted. For RQ3, we plan to perform multiple case studies to collect
empirical data about innovation initiatives as well as to validate the result of
RQ1 & RQ2.

4 Preliminary Results and Next Steps

As the preliminary result, based on the key person or team involved in, the ini-
tiative might take place inside the companies or outside the companies. Inside
the companies, we found two types of innovation initiatives of large software
companies: free and organised entrepreneurship. In free entrepreneurship, the
initiative is introduced by the employee or intrapreneur if she gets support from
management, otherwise it becomes bootlegging or underground work. In organ-
ised entrepreneurship, management takes the responsibility to setup the initia-
tive either through expert system e.g. R&D or empowerment e.g. ICV (internal
corporate venture), acquisition, internal project, subsidiary. The initiatives oc-
curred outside the companies are spin-off, crowdsourcing and capital venturing.

5 Next Steps

We are preparing the report of SMS studies and we will publish it. In the mean
time, we are also preparing the instrument to do qualitative survey and case
studies. We also start looking for and contacting the potential companies to
perform case studies.

References

1. Cooper, B., Vlaskovits, P., Ries, E.: The lean entrepreneur: how visionaries create
products, innovate with new ventures, and disrupt markets. John Wiley and Sons
(2013)

2. Ries, E.: The lean startup: how today’s entrepreneurs use continuous innovation
to create radically successful business. Crown Business (2011)

3. Kuratko, D.F., Hornsby, J.S., Covin, J.G.: Dignosing a firm’s internal environment
for corporate entrepreneurship. Business Horizons 57, 37–47 (2014)

4. Ross, J.: Corporations and entrepreneurs: paradox and opportunity. Business Hori-
zons 30(4), 76–80 (1987)

5. Sharma, P., Chrisman, J.J.: Toward a reconciliation of the definitional issues in the
field of corporate entrepreneurship. Entrepreneurship theory and practice 23(3),
11–27 (1999)

6. May, B.: Applying lean startup: an experience report. In: Proceedings of Agile
Conference, pp. 141–147 (2012)

7. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: Proceedings of 12th International Conference on Evalua-
tion and Assessment in Software Engineering, vol. 17, pp. 1–10 (2007)

Early-Stage Software Startups: Linking Business

Strategies to Software Development

Carmine Giardino

Free University of Bolzano Piazza Domenicani, Bolzano, 39100, Italy

camine.giardino@unibz.it

1 Problem and Research Question

Software startups are newly created company, with no operating history and ori-
ented in producing cutting-edge technologies. These companies develop software
under highly uncertain conditions, tackling fast growing markets with severe lack
of resources [1]. Despite their increasing importance in economy, there are only
few scientific studies attempting to address software engineering (SE) issues, es-
pecially in their early-stage development activities (i.e. from idea conception to
the first open beta release) [2]. With our research we aim to understand how
business and project-level strategies can effectively be aligned focusing on those
activities which better deliver customer value proposition, from a SE perspective.

2 Related Work

Evidences show how software development, especially in early-stage startups, is
at the core of the company’s daily activities [1, 3], most oriented towards Lean
and Agile methodology [3]. As resources are limited, understanding the relation-
ships between the business value and project-level strategies is a prerequisite for
putting the development effort in the right direction [4]. Nonetheless, little atten-
tion has been given on how development activities might effectively be aligned
to business goals over-time [5].

3 Methods

Evolutionary in nature and able to address a wider spectrum of topics, we are
currently adopting a grounded theory approach [6], which comprises a system-
atic mapping study, surveys, case studies, and an online project which collects
startups information about business and development executions (available at
www.widcy.com). Verification of the data will be conducted by triangulation of
the collected data and a systematic comparison to the state-of-art - related work
established in small and medium software companies.

4 Preliminary Results

The first systematic exploration of the state-of-art on software startup exhibits
a weak body of knowledge of 43 studies poor in their rigor and relevance [2]. On

XIV C. Giardino

that basis, we investigated thirteen startups, discovering a primary concern to-
wards faster time-to-market in contempt of an increasing technical debt [7]. How-
ever, speeding-up time-to-market not necessarily bring achievements business-
wise. Two case studies discovered how prematurely launching the product to
market can hinder learning practices (e.g. continuous customer feedback) de-
spite they could provide better insights of unpredictable market conditions and
fast-changing technological challenges [3].

5 Next Steps

Starting from the idea conceptualization, we aim to discover how a entrepreneurial
vision (i.e motivations and emotions to start up a company) can affect develop-
ment activities, and how clarifying it can align the achievement of business goals
to project-level strategies in early-stage software startup companies.

References

1. Sutton, S.M.: The role of process in software start-up. IEEE Software 17(4), 33–39
(2000)

2. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: A systematic mapping study. Infor-
mation and Software Technology (2014)

3. Coleman, G., O’Connor, R.: An investigation into software development process for-
mation in software start-ups. Journal of Enterprise Information Management 21(6),
633–648 (2008)

4. Blank, S.: Why the Lean Start-Up Changes Everything. Harvard Business Review
91(5), 64 (2013)

5. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: A
behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 27–41. Springer, Heidelberg (2014)

6. Corbin, J., Strauss, A.: Grounded theory research: Procedures, canons, and evalu-
ative criteria. Qualitative Sociology 13(1), 3–21 (1990)

7. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: The Greenfield Startup Model. IEEE
Transactions on Software Engineering (forthcoming)

Table of Contents

Strategic Aspects

Exploring the Relationship between Partnership Model Participation
and Interfirm Network Structure: An Analysis of the Office365
Ecosystem . 1

Joey van Angeren, Slinger Jansen, and Sjaak Brinkkemper

Ecosystem-Driven Software Development: A Case Study on the
Emerging Challenges in Inter-organizational R&D . 16

Helena Holmström Olsson and Jan Bosch

Why Early-Stage Software Startups Fail: A Behavioral Framework 27
Carmine Giardino, Xiaofeng Wang, and Pekka Abrahamsson

Startups and Software Business

A Comparative Perspective between Investors and Businesses
Regarding Success Factors of E-Ventures at an Early-Stage 42

Tim Taraba, Martin Mikusz, and Georg Herzwurm

From Agile Software Development to Mercury Business 58
Janne Järvinen, Tua Huomo, Tommi Mikkonen, and Pasi Tyrväinen

The Role of Business Model and Its Elements in Computer Game
Start-ups . 72

Erno Vanhala and Jussi Kasurinen

Products and Service Business

Following the Money: Revenue Stream Constituents in Case of
Within-firm Variation . 88

Matti Saarikallio and Pasi Tyrväinen

Defining the Process of Acquiring Product Software Firms 100
Jasper Schenkhuizen, Robert van Langerak, Slinger Jansen, and
Karl Michael Popp

Productization of an IT Service Firm . 115
Kadri Guvendiren, Sjaak Brinkkemper, and Slinger Jansen

XVI Table of Contents

Software Development

Software Development as a Decision-Oriented Process 132
Jarkko Hyysalo, Markus Kelanti, Jari Lehto, Pasi Kuvaja, and
Markku Oivo

Automated User Interaction Analysis for Workflow-Based Web
Portals . 148

Emil Backlund, Mikael Bolle, Matthias Tichy,
Helena Holmström Olsson, and Jan Bosch

Orchestrate Your Platform: Architectural Challenges for Different
Types of Ecosystems for Mobile Devices . 163

Herman Hartmann and Jan Bosch

Ecosystems

ESAO: A Holistic Ecosystem-Driven Analysis Model 179
Jan Bosch and Petra Bosch-Sijtsema

KPIs for Software Ecosystems: A Systematic Mapping Study 194
Farnaz Fotrousi, Samuel A. Fricker, Markus Fiedler, and
Franck Le-Gall

Evaluating the Governance Model of Hardware-Dependent Software
Ecosystems – A Case Study of the Axis Ecosystem 212

Krzysztof Wnuk, Konstantinos Manikas, Per Runeson,
Matilda Lantz, Oskar Weijden, and Hussan Munir

Platforms and Enterprises

App Store Models for Enterprise Software: A Comparative Case Study
of Public versus Internal Enterprise App Stores . 227

Stefan Wenzel

Impact of Cloud Computing Technologies on Pricing Models of
Software Firms – Insights from Finland . 243

Gabriella Laatikainen and Eetu Luoma

What Influences Platform Provider’s Degree of Openness? – Measuring
and Analyzing the Degree of Platform Openness . 258

Anisa Stefi, Matthias Berger, and Thomas Hess

Industry Session

Analytical Open Innovation for Value-Optimized Service Portfolio
Planning . 273

Maleknaz Nayebi and Guenther Ruhe

Table of Contents XVII

Observed Effects of Free Software on Software Development and
Requirements Management . 289

David Callele and Krzysztof Wnuk

Short Papers

The Preliminary Results from the Software Product Management
State-of-Practice Survey . 295

Andrey Maglyas and Samuel A. Fricker

Alignment Issues in Chains of Scrum Teams . 301
Jan Vlietland and Hans van Vliet

Author Index . 307

Exploring the Relationship between Partnership

Model Participation and Interfirm Network
Structure: An Analysis of the Office365

Ecosystem

Joey van Angeren1, Slinger Jansen2, and Sjaak Brinkkemper2

1 Department of Industrial Engineering and Innovation Sciences,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, the Netherlands
J.v.Angeren@tue.nl

2 Department of Information and Computing Sciences, Utrecht University
Princetonplein 5, 3508 TB Utrecht, the Netherlands

Slinger.Jansen,S.Brinkkemper@uu.nl

Abstract. Platform owners face complex decisions in managing an
ecosystem of third-party application developers. Little is known about
the effect platform governance has on the productivity, or degree of inter-
action, among complementors in the ecosystem. The presented study of
the Microsoft Office365 ecosystem investigates the extent to which par-
ticipation in the partnership model of Microsoft influences productivity
and embeddedness of complementors by means of network analysis and
statistical inference. Results show the Office365 ecosystem is populated
by 550 complementors that developed 1204 applications and initiated
787 interfirm relationships. Statistical inference reveals that increased
productivity and participation in the Microsoft Certified Partner Net-
work coincide with increased embeddedness, implying retention of com-
plementors results in more cohesive ecosystems. Yet, partnership model
participation does not result in increasing productivity of complemen-
tors. Results presented in this paper provide increased understanding of
the influence of partnership models on ecosystem structure, to the benefit
of practitioners and academia.

Keywords: app store, ecosystem governance, industry platform, lock-
in, network analysis, software ecosystem, software platform.

1 Introduction

The number of industry platforms and app stores in the software industry is ris-
ing, with the Apple App Store and Google Play as most imaginative examples.
An industry platform is defined by Gawer [1] as “a product, service or technology
that is developed by one or several firms, that serves as a foundation upon which
other firms can build complementary products, services or technologies.” Apart
from mobile platforms, such enterprise platforms as SAP BusinessOne, Google

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014

2 J. van Angeren, S. Jansen, and S. Brinkkemper

Apps and Salesforce.com also started to thrive on third-party application de-
velopment. In platform-based markets indirect network effects are prevalent,
meaning that an increase in available complementary applications will increase
the installed base of the platform and vice versa [2]. Accordingly, the platform
owner becomes dependent on an ecosystem populated by the developers of soft-
ware products and the interfirm relationships among them [1,3].

Platform owners have a plethora of instruments at their disposal to govern
their platform and the ecosystem around it. In studying these instruments, prior
research predominantly focused on their outcomes in market settings [4,5,6],
whereas the impact on the ecosystem remained unexplored. Addressing this de-
ficiency, this paper examines the network structure of the Microsoft Office365
ecosystem by means of an exploratory study. It explores the influence of com-
monly applied [1,4] active retention or locking of complementors on the number
of interfirm relationships among complementors in the ecosystem. The study
regards increasing development activity of a complementor or its status of Mi-
crosoft partner as invoked by fostering complementor lock-ins, and assesses the
influence thereof on the number of initiated interfirm relationships. As such, this
paper answers the following research question: “What is the influence of comple-
mentor lock-ins on the network structure of a proprietary platform ecosystem?”

This paper presents a visualization and analysis of the ecosystem around the
business productivity platform Office365 by means of network analysis [7,8] and
statistical inference. The study builds on our previous work [9] that explored the
interfirm network topology of the Google Apps ecosystem. It makes use of data
collected from the Office365 app store (Office365 Marketplace), CrunchBase and
websites of complementors. Through the analysis of the Office365 ecosystem, this
research gains insight into the factors that shape proprietary platform ecosystems
(i.e. a platform that is closed source and owned by a single for-profit entity).
In addition, this research adds to the growing body of research on industry
platforms and the multitude of means for governance that exists.

The remainder of this paper continues with an overview of related literature
and network metrics in Section 2. An elaboration upon the research approach is
included in Section 3. Section 4 presents a description of the Office365 ecosystem
and its population. Section 5 analyzes the Office365 ecosystem and among others
evidences that complementor lock-ins are positively related to the network den-
sity of the ecosystem, while the development scope of complementors remains
narrow and unaffected. A discussion of validity is presented in Section 6, followed
by a summary of findings and suggestions for future research in Section 7.

2 Background

The amount of literature on industry platforms, software ecosystems and net-
work analysis is extensive, yet application of their theories in synergy is limited.
This section first presents a brief review of contemporary literature on industry
platforms and ecosystem governance. Thereafter, network metrics are identified
and their computation is formalized. Herein, parallels with their application in
existing literature are drawn whenever possible.

Exploring the Relationship between Partnership Model Participation 3

Platform owners face complex and far reaching decisions in the management
of their platform and its surrounding software ecosystem. Jansen, Brinkkemper
and Finkelstein [3] define a software ecosystem as “a set of actors functioning as
a unit and interacting with a shared market for software and services, together
with the relationships among them.” In the management of an ecosystem, ac-
cording to West [10] platform owners face the challenge of reaping benefits from
a proprietary technology, while the success of this technology is determined by
the extent to which complementors and end-users adopt the platform. While
most prior work has focused on fostering ‘coherent’ persistent third-party de-
velopment and stimulating a continuous influx of new complementors [11,5,3],
recent advances came to challenge the ever cumulative advantage of indirect
network effects. Boudreau [12] observed that excessive numbers of new entrants
hampered innovation in the handheld gaming industry, while Zhu and Iansiti [6]
found that the influence of indirect network effects is often overestimated.

These progressing insights put stronger emphasis on retention of existing com-
plementors, not provoking unnecessary competition, or in more general terms
preserving the health of the ecosystem. The health of an ecosystem is deter-
mined by the capability of an ecosystem to; persistently produce meaningful out-
puts (productivity), survive market disruptions (robustness) and create niches
in the ecosystem (niche creation) [13,14]. Elaborated approaches to managing
an ecosystem include enforcing platform exclusivity for applications [11], man-
aging diversity of available applications [12] and facilitating interaction among
members of the ecosystem [4]. One of the proposed instruments to govern the
ecosystem are partnership models [15,16]. To participate in a partnership model,
complementors pay annual partnership fees and adhere to mandatory product
and resource certification. In return, partners receive benefits that may include
marketing benefits, participation in joint partner events and greater benefit from
niche creation. Based on case studies conducted at SAP, Open Design Alliance
and Eclipse Foundation, Van Angeren, Kabbedijk, Popp and Jansen [16] posit
that stimulating active participation in the partnership model is associated with
increased productivity and engagement of complementors in the ecosystem. Even
more so because complementors are stimulated through the provision of incen-
tives to further commit, specialize and integrate [17,11,4,3,9].

Graph theoretical mathematics developed a plethora of means to address the
quantitative inquiry of structural properties of interfirm networks [7,8]. Several
measures such as network density, centrality and clustering coefficients are useful
in the analysis of ecosystem structure. The remainder of this subsection defines
and formalizes these measurements as well as it illustrates their application in
ecosystem analysis, for the purpose of replication and uniformity.

Network density reflects the ratio of the number of interfirm relationships that
are present in an ecosystem compared to the number of relationships that can
theoretically be initiated [7,8]. As such, it is an indicator of the degree of intercon-
nectivity and collaboration among the inhabitants of an ecosystem [18]. Densely
interwoven interfirm networks have been labeled as being more robust [13] or
specialized [17]. Network density is calculated as

4 J. van Angeren, S. Jansen, and S. Brinkkemper

Δ =
2E

V (V − 1)
(1)

where E is the number of interfirm relationships in the ecosystem and V
represents the number of complementors. The measure can take values between
0 (empty graph) and 1 (fully connected graph).

Degree centrality is a measure to evaluate the structural position of comple-
mentors in an ecosystem. The structural position of a complementor is impor-
tant, as a large number of interfirm relationships eases access to complementary
knowledge and fosters exchange or innovation [19]. Degree centrality is denoted
as the ratio of the number of relationships a complementor has to the number of
relationships it could theoretically have [20]. The measure is computed as follows

Ci =

n∑

j=1

aij

Ei − 1
(2)

where aij denotes a relationship between complementor i and complementor j,
which is valued 1 if present and 0 otherwise. In the operationalization of business
ecosystem health measurement, Den Hartigh, Tol and Visscher [14] characterize
partners with a high degree centrality as ‘healthy’ compared to their peripheral
peers.

Centralization is an indicator for the extent to which an ecosystem is cen-
tralized around one or more members, and as such it reflects the ratio of how
central the most central member of the network is compared to the centrality of
all other members [20,8]. Platform ecosystems will display high centralization,
due to the strong dependence of complementors on the platform owner [9]. How-
ever, fluctuations in the centralization score may indicate the presence of other
catalysts in the ecosystem. Centralization is computed as follows, where Cmax

is the degree centrality of the platform owner.

C =

n∑

i=1

Cmax − Ci

max

(
n∑

i=1

Cmax − Ci

) (3)

Clustering coefficient reflects the extent to which the connections of a comple-
mentor are also connected to one another [21]. The clustering coefficient of the
entire ecosystem is the average of all values across the network. Clustering co-
efficient indicates the degree to which an ecosystem can be divided into clusters
of complementors that are tightly connected. the computation of the clustering
coefficient of a complementor is performed as follows

CCi =
2ei

Ki(Ki − 1)
(4)

where ei is the number of interfirm relationships among connections of a com-
plementor, and Ki is the number of connections of complementor i. Strongly

Exploring the Relationship between Partnership Model Participation 5

clustered networks have been labeled as innovative [19] or healthy [14]. Mean-
while, Iyer, Lee and Venkatraman [17] argue that specialized ecosystems will
reflect a greater degree of clustering. The explanation for the greater degree of
clustering is twofold: first specialization increases the need for interfirm collabo-
ration [17] and second the initiation of interfirm relationships is based on direct
complementarity and therefore more applicable to specialized settings [18].

3 Research Approach

In this research, the Office365 complementors, their characteristics and the inter-
firm relationships among them were subject of an exploratory study. Office365
is a business productivity suite that bundles independently modifiable versions
of Microsoft Office, Microsoft Lync, Microsoft Exchange and SharePoint for use
by enterprises and governmental or educational institutions. Third-party appli-
cations are found on a dedicated part of the bigger Microsoft Pinpoint Mar-
ketplace1, and can be listed either globally or in one of the 59 region-specific
marketplaces. The app store holds metadata for each application, of which ap-
plication identifier, application name, application category, release date, developer
name and developer website were deemed relevant for this research. Metadata
of applications listed under the category “Applications” was collected, thereby
excluding professional services and on-premises extensions from the dataset.

By means of a web crawler, all application specific metadata was extracted
from the app store over sixty iterations (one to retrieve the globally listed ap-
plications, and 59 to traverse all region-specific marketplaces). The web crawler
combined a set of scripts in Java programming language, and was derived from
a crawler developed by Burkard, Widjaja and Buxmann [22]. It has been pre-
viously used in our exploratory study of the Google Apps ecosystem [9]. The
metadata was collected in two stages: (1) an initial identification and (2) the
actual collection of the metadata. During the initial identification, application
identifiers were collected by systematically traversing all application categories
up to the point at which no new applications were found. Then, all application
specific metadata could be read-in from their publicly accessible information
pages. All metadata was saved in a central MySQL database by means of pre-
defined pattern templates.

After the removal of duplicates from the database, a list of complementors
was compiled by means of an SQL query. Contrary to existing studies on inter-
firm relationships where proprietary alliance databases are used as central data
source [17,19,18], the interfirm relationships were obtained directly from the
websites of complementors by archiving mentions of partnerships. Archived in-
terfirm relationships included alliances, technological partnerships, collaborative
research and development, strategic partnerships and partnership model partici-
pation. To provide for triangulation of evidence, additional interfirm relationships
were obtained from the openly accessible company database CrunchBase2. This

1 http://office365.pinpoint.microsoft.com
2 http://www.crunchbase.com

http://office365.pinpoint.microsoft.com
http://www.crunchbase.com

6 J. van Angeren, S. Jansen, and S. Brinkkemper

approach was preferred to move beyond alliances alone, which are likely to reflect
industry-wide collaborations. Interfirm relationships were treated as binary and
symmetric ties, maintained in an adjacency matrix3. Furthermore, complemen-
tor websites were used to assess whether it was currently participating in the
partnership model offered by Microsoft (Microsoft Certified Partner Network).

In the course of analysis, network graphs were drawn to visualize the ecosys-
tem. Its structural properties were computed in accordance with the network
metrics that were formalized in the preceding section. Apart from network anal-
ysis [8], subsequent analysis was performed by means of bivariate statistics that
include independent samples T-tests and Pearson correlations. The measurement
of complementor productivity was operationalized as the number of applications
a complementor developed, whereas complementor embeddedness was measured
as the number of interfirm relationships initiated by a complementor.

4 Descriptives of the Office365 Ecosystem

This section provides a description of a snapshot of the Office365 ecosystem that
was constructed on 13-02-2013. The remainder of this section first elaborates
upon the complementors and their characteristics, followed by a description of
the Office365 ecosystem.

4.1 Complementors

The Office365 Marketplaces contained 1204 applications developed by 550 com-
plementors (278 (50.50%) of which are participating in the Microsoft Certified
Partner Network). For an application to be included in the Office365 Market-
place it has to be subjected to technical compatibility and complementary value
requirements, with which Microsoft reserves the right to refuse inclusion of ap-
plications not of direct added-value to the platform. On average, each comple-
mentor develops 2.18 applications with a standard deviation of 1.65, reflecting
a narrow development scope per complementor. Applications include business
templates for Microsoft PowerPoint, document management functionality for
Microsoft Outlook, integrations with third-party software and customer rela-
tionship management or human resource functionality extensions. Noteworthy
is that Microsoft itself is not involved in the development of complementary ap-
plications, as opposed to platform owners such as Google [9] or Intel [23] studied
in prior work. The largest complementor in the ecosystem is Net2xs that lists 39
applications, followed by Bamboo Solutions and Orlandoś VBA and Excel Site
that developed 32 applications. Meanwhile, 67% of complementors develop one
application. A complete distribution of these figures is included in Figure 1. Im-
portant to note is that the distribution of complementors may be influenced by

3 An adjacency matrix is a square matrix with ecosystem inhabitants as rows as
columns. Entries in the adjacency matrix, denoted as aij , indicate the inhabitants
that are interrelated (i.e. adjacent). In a symmetric adjacency matrix, the value of
aij is equal to aji.

Exploring the Relationship between Partnership Model Participation 7

Microsoft listing each extension for a Microsoft Office component as a separate
application. When a complementor, for example, develops an application that
works with Microsoft Word, Excel and PowerPoint, it can be included three times
in the Office365 Marketplace. Consequently, the actual number of applications
for Office365 may be lower than the number recorded in this research.

Table 1. Distribution of Office365 complementors based on the number of applications
developed

of applications # of complementors

39 1

32 2

23 1

22 1

16 1

14 1

13 1

11 3

10 3

9 5

8 4

7 7

6 13

5 10

4 23

3 24

2 82

1 368

The entry date of a complementor was derived from the release dates of its
applications, and is considered equal to the release date of its first application.
Because the Office365 Marketplace does not provide a release date for all ap-
plications, to maintain validity a date of entry for a complementor could only
be determined if the release date for all its applications was known. In total,
a date of entry was recorded for 350 (63.64%) complementors. At the time of
measurement, on average two years and seven months have passed since their
entrance into the ecosystem, with a standard deviation of eight months. The
first recorded entry into the ecosystem dates back to 2005.

Every complementor is assumed to have initiated an interfirm relationship with
Microsoft, since they extend the Office365 platform and include their applications
in the app store. In total, the ecosystem is connected by 787 interfirm relationships.
Every complementor on average initiated 1.43 relationships with a standard devi-
ation of 11.74 relationships. Discarding the interfirm relationships initiated with
the platform owner, complementors are connected through 0.43 relationships per
complementor (standard deviation of 1.37 interfirm relationships). The most well

8 J. van Angeren, S. Jansen, and S. Brinkkemper

embedded complementors areDell (eleven applications) with 37 relationships and
Nintex (seven applications) with 32 connections.

4.2 Ecosystem

The Office365 ecosystem consists of complementors (nodes) and the interfirm
relationships among them (edges). The structural properties of the ecosystem
are summarized in Table 2. As expected, the Office365 ecosystem is centralized
and sparsely connected with a network density of 0.5%. These values, however,
reflect slight differences compared the network density of 0.25% and central-
ization of 99.95% that were recorded for 993 complementors in previous work
for Google Apps [9]. Despite the limited interconnectivity among inhabitants
of the ecosystem the overall clustering coefficient is high, indicating that most
complementors that do initiate interfirm relationships intensively interact.

Table 2. Network level descriptives for the Office365 ecosystem

Metric Value

Size 551

Network density 0.00500

Centralization 0.9984

Modularity 0.336

Clustering coefficient 0.773

Table 3 includes node level properties of the Office365 ecosystem. The high
standard deviation for degree centrality reveals the presence of a small number
of embedded complementors in the ecosystem. Yet, 70.18% of complementors
are solely connected to Microsoft and found in the periphery. This finding may
be partly explained by the presence of established SharePoint complementors in
the Office365 ecosystem, the on-premises version of which already came with an
extension architecture. This may well have positively influenced the number of
initiated interfirm relationships for SharePoint complementors.

Table 3. Network metrics for the Office365 ecosystem

Metric Min. Max. Avg. Std. dev.

Degree centrality 0.00183 1 0.00519 0.0427

Clustering coefficient 0.00215 1 0.773 0.228

A useful network visualization could be created by moving beyond the hub-
and-spoke network topology. Accordingly, the dataset was ‘cleansed’ by removing
Microsoft, and the complementors solely connected to Microsoft. Figure 1 shows
the resulting network, in which node sizes are proportional to the number of

Exploring the Relationship between Partnership Model Participation 9

applications developed per complementor. The grouping and shades represent
clusters in the ecosystem, identified by means of the modularity algorithm [24].
The algorithm treats clusters as groups of complementors that are densely con-
nected to one another while sparely linked to the rest of the ecosystem.

Fig. 1. Network visualization of clusters in the Office365 ecosystem

Figure 1 visualizes the interfirm relationships among 164 (29.82%) comple-
mentors. Noteworthy is that many of the most productive complementors are
present in the network visualization. Of the thirty most productive comple-
mentors, thirteen are present in Figure 1. Closer inspection reveals that absent
complementors are individuals rather than enterprises. Individual developer Or-
lando’s VBA and Excel Site, for instance listed 32 applications in the Office365
app store. The clusters in the ecosystem appear to be well and densely interwo-
ven, apart from the dyads shown in the right of Figure 1. Interfirm relationships

10 J. van Angeren, S. Jansen, and S. Brinkkemper

seem to pertain technological partnerships, as most clusters appear to lack a
geographical focus.

5 Analysis

This section presents an analysis of the Office365 ecosystem. It inducts propo-
sitions derived from the empirical data described in the preceding section by
means of bivariate statistical inference. The analysis aims to gain a deeper un-
derstanding of the relationship between partnership model participation and the
productivity and embeddedness (i.e. the number of initiated interfirm relation-
ships) of complementors. The remainder of this section first regards the causal
relationship between the productivity of a complementor and the interfirm rela-
tionships it initiates, followed by an assessment of the influence of partnership
model participation on complementor productivity and embeddedness.

5.1 Productivity and Embeddedness

In the operationalization of ecosystem health measurement [13,14] and platform
governance alike [11,9], the increasing productivity of a complementor has been
hypothesized to coincide with greater embeddedness. As the complementor starts
developing more applications, it will search for interfirm relationships such as
technological partnerships, shared research and development or alliances to ease
its access to resources or foster its influential position in the ecosystem [8,17,11].
Meanwhile, new entrants seek technological integrations with existing applica-
tions to increase their visibility in the market or to establish chains of interop-
erability [13,17]. Platform owners benefit from this increased network density
as it fosters relational lock-ins (i.e. embedded complementors are less likely to
depart the ecosystem) [14], increases consensus among complementors [11], and
benefits the stability of the ecosystem [13].

While a causal relationship between complementor productivity and the num-
ber of interfirm relationships it initiates has been recurrently assumed, little
empirical evidence is provided in existing scientific literature. Accordingly, a
Pearson correlation analysis is performed based on the data presented in the
preceding section. The productivity of a complementor is treated as the inde-
pendent variable, and the number of interfirm relationships it initiated as the
dependent variable. As shown in Table 4, there is a significant positive correla-
tion (0.131) between productivity and embeddedness, meaning that growth in
both variables coincides. Explanations for the mild correlation can be sought in
the amount of entrants that already established interfirm relationships in before
joining the ecosystem, the relative immaturity of the platform, or the presence
of multi-homers in the ecosystem [22].

These findings provide confirmatory evidence for observations from our study
of the Google Apps ecosystem [9]. Performing a similar correlation analysis
caused us to obtain a significant positive correlation between the productivity
of a complementor and its embeddedness. In line with empirical evidence it is

Exploring the Relationship between Partnership Model Participation 11

Table 4. Overview of Pearson correlations between number of applications developed
and number of interfirm relationships per complementor

Correlations

of complements # of relationships

of complements Pearson Correlation 1 .131**
Sig. (2-tailed) .002
N 550 550

of relationships Pearson Correlation .131** 1
Sig. (2-tailed) .002
N 550 550

**. Correlation is significant at the 0.01 level (2-tailed).

therefore postulated that productivity of a complementor and its embeddedness
will be positively related.

Proposition 1: The number of applications developed by a complementor will
be positively related to the number of interfirm relationships it initiates.

5.2 Partnership Model Participation

In prior work, a platform owner has been argued to be able to actively gov-
ern or coordinate its ecosystem. The partnership model has been proposed as
a locus of control to enable complementors to more actively participate in the
ecosystem; hereby ensuring ‘coherent’ complementor productivity [11,3,16]. By
means of their partnership model, Microsoft can foster lock-in effects [16], plat-
form exclusivity [4] and (quality) control through certification [15]. Ecosystems
characterized by fringent governance have been argued to display greater inter-
connectivity [17,19]. In summary, one could hypothesize that by means of their
partnership model, Microsoft can foster the productivity and degree of interac-
tion among ecosystem inhabitants.

To examine whether this argument holds (i.e. Microsoft partners are more
actively developing applications and initiating interfirm relationships compared
to non-partners), an independent samples T-test is performed. Office365 com-
plementors are distributed in two groups based on their recorded partner status.
Partner status is coded as a dummy variable, in which 1 corresponds to a status
as Microsoft partner and 0 represents non-partners. In total, 278 complementors
are acknowledged as Microsoft partners and 272 are categorized as non-partners.
The independent sample T-test was performed at the 95% confidence interval.
Group statistics for both tests are summarized in Table 5.

To explore the influence that the date of entry of complementors may have on
our test results, the recorded group means of date of entry for Microsoft partners
and non-partners are first compared by means of an independent samples T-
test. Microsoft partners (175 complementors) on average entered the Office365
ecosystem two years and eight months ago with a rounded standard deviation
of ten months, non-partners (175 complementors) entered two years and seven

12 J. van Angeren, S. Jansen, and S. Brinkkemper

Table 5. Group statistics for Microsoft partner and non-partner categories

Variable Partner status N Mean Std. Deviation

of relationships Partner 278 1.192 2.925
Non-partner 272 0.522 2.509

of complements Partner 278 2.313 3.351
Non-partner 272 2.063 3.390

months ago with a rounded standard deviation of one year. Based on these group
means, there is no significant difference between the date of entry for Microsoft
partners and non-partners; t(350) = 0.593, p = 0.728.

A Microsoft partner in the Office365 ecosystem on average initiated 1.192
interfirm relationships with a standard deviation of 2.925, a non-partner on av-
erage had 0.522 ties with a standard deviation equal to 2.509. The partner
category has a more skewed distribution of interfirm relationships compared to
the non-partners category. Based on these figures, there is a significant difference
in initiated interfirm relationships between partners and non-partners; t(538) =
2.895, p = 0.004. Results suggest that Microsoft partners in the Office365 ecosys-
tem have significantly more interfirm relationships compared to non-partners and
that lock-ins thus reflect in the network density of the ecosystem.

Proposition 2: Fostering complementor lock-ins will be positively related to
the network density of a proprietary platform ecosystem.

Another independent samples T-test is performed to investigate the relation-
ship between partnership model participation and productivity. Microsoft part-
ners on average develop 2.313 applications with a standard deviation of 3.351,
and non-partners develop 2.063 applications with standard deviation of 3.390.
Based on these group means, there is no significant difference in development
activity between partners and non-partners; t(548) = 0.871, p = 0.384. Results
imply that Microsoft partners are not significantly more committed to devel-
opment of complementarities compared to non-partners, the small difference in
group means may be attributed to random variation or luck.

Proposition 3: Fostering complementor lock-ins will not influence the
productivity of a proprietary platform ecosystem.

These findings provide preliminary empirical support for the proposed rela-
tionship between ecosystem health management, or platform governance, and
network density [13,14,11,3,15,16]. The results imply that a platform owner can
foster the network density of its ecosystem through its partnership model. Mean-
while, the absence of a relationship between partnership model participation
and complementor productivity is surprising and less evident in prior literature.
Studies on ecosystem health preservation [13,14] and partnership models [15,16]
have suggested that a platform owner can foster the productivity of complemen-

Exploring the Relationship between Partnership Model Participation 13

tors. However, empirical evidence provides stronger support for recent findings
by Boudreau [12], who based on an empirical study of app stores found that
complementors are unlikely to move beyond their development scope, regardless
of the strategic incentives offered.

6 Discussion

The results presented in this paper were based on data collected from the Of-
fice365 app store, CrunchBase and directly from websites of complementors.
Despite all precautions taken, as with any exploratory research this study has
a number of limitations. Inherent in the problem domain is the reliance on pro-
prietary sources. A lack of transparency becomes evident when complementors
indicate to engage in interfirm relationships, but omit to list their actual part-
ners. Accordingly, the partner activity of such a company is neglected, while in
practice it might be embedded in the ecosystem. To limit the influence of this ob-
served threat, interfirm relationships were treated as symmetric ties to increase
overall coverage. Furthermore, a preliminary validation of the data collection
method in previous research [9] brought it forward as accurate and complete in
capturing interfirm relationships in the ecosystem.

Using static analysis for networks that are likely to change over time, poses
another limitation for this research. While this threat needs to be acknowledged,
previous research [17] showed that the network structure of proprietary ecosys-
tems remained remarkably stable over a 12-year period. Moreover, a remark
needs to be placed related to the scope of interfirm relationships, which is likely
to span wider than the boundaries of a platform ecosystem. Accordingly, com-
plementor websites rather than alliance databases were used as data sources to
include relationships at a finer level of granularity.

Through the presented visualization and analysis of the Office365 ecosystem,
this research adds to a limited body of knowledge on the intersection of busi-
ness or software ecosystems and industry platforms. Being among the first to
have presented an ecosystem analysis of a proprietary platform ecosystem, this
research introduced a complementary perspective on software platforms and the
management thereof. A perspective pertained beneficial to ecosystem managers,
and deemed important to the inquiry into platform governance by academia.

7 Conclusion

This paper presented a description and analysis of the Office365 ecosystem.
By means of app store data extraction, metadata about complementors was
retrieved, after which the interfirm relationships among them were manually
identified based on partner mentions on complementor websites and Crunch-
Base. Subsequent network analysis and bivariate statistical inference oriented
itself at investigating the influence of fostering complementor lock-ins through a
partnership model on the network structure of a proprietary platform ecosystem
and the productivity of its inhabitants.

14 J. van Angeren, S. Jansen, and S. Brinkkemper

The Office365 ecosystem was populated by 550 complementors that together
developed 1204 applications. Complementors initiated 787 interfirm relation-
ships, which amounted for an average of 1.43 connections per complementor.
While 70.18% of complementors was solely connected to Microsoft, the remain-
der of the ecosystem appeared densely connected. Statistical inference evidenced
a positive relationship between the productivity of a complementor and the num-
ber of interfirm relationships it initiates. Complementors that participated in the
Microsoft Certified Partner Network were found to initiate significantly more in-
terfirm relationships than non-partners. Based on this finding, it was postulated
that complementor lock-ins will be positively related to the network density
of an ecosystem. Meanwhile, there was no significant difference in productivity
between Microsoft partners and non-partners; their productivity remained un-
affected and narrow, implying that complementors are unlikely to move beyond
their development scope regardless the triggers provided by the platform owner.

This paper provided a step towards better understanding of the effects of
enforcing platform governance by examining the influence of partnership model
participation on network structure and complementor productivity. Future re-
search should further address the tension between platform governance and the
productivity, and embeddedness, of complementors. The results presented in this
paper may be extended by means of a more fine-grained quantitative analysis,
in which the measurement of platform governance is operationalized in multiple
variables to enable multivariate statistical inference. Such an approach would
also allow to control for several contextual factors, such as the date of entry into
the ecosystem that was mentioned in our study. The method laid out in this pa-
per may also function as a blueprint for longitudinal replication. Another avenue
for future research pertains the study of entrance and exit strategies of comple-
mentors. Furthermore, this ongoing research project aims to contrast proprietary
platform ecosystems to uncover characteristic similarities and differences.

References

1. Gawer, A.: Platform dynamics and strategies: From products to services. In: Gawer,
A. (ed.) Platforms, Markets and Innovation, pp. 45–76. Edward Elgar Publishing,
Cheltenham (2009)

2. Rochet, J.C., Tirole, J.: Platform Competition in Two-Sided Markets. Journal of
the European Economic Assosication 1(4), 990–1029 (2003)

3. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business Network Management as a
Survival Strategy: A Tale of Two Software Ecosystems. In: Proceedings of the First
International Workshop on Software Ecosystems, pp. 34–48 (2009)

4. Boudreau, K.J., Hagiu, A.: Platform rules: Multi-sided platforms as regulators. In:
Gawer, A. (ed.) Platforms, Markets and Innovation, pp. 163–191. Edward Elgar
Publishing, Cheltenham (2009)

5. Boudreau, K.J.: Open Platform Strategies and Innovation: Granting Access vs.
Devolving Control. Management Science 56(10), 1849–1872 (2010)

6. Zhu, F., Iansiti, M.: Entry into platform-based markets. Strategic Management
Journal 33(1), 88–106 (2012)

Exploring the Relationship between Partnership Model Participation 15

7. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage Publications, Inc.,
Gateshead (2000)

8. Hanneman, R.A., Riddle, M.: Introduction to social network methods. University
of California, Riverside, CA (2005)

9. van Angeren, J., Blijleven, V., Jansen, S., Brinkkemper, S.: Complementor Em-
beddedness in Platform Ecosystems: The Case of Google Apps. In: Proceedings of
the Seventh International Conference on Digital EcoSystems and Technologies, pp.
37–42 (2013)

10. West, J.: How Open is Open Enough? Melding Proprietary and Open Source Plat-
form Strategies. Research Policy 32(7), 1259–1285 (2003)

11. Gawer, A., Cusumano, M.A.: How companies become platform leaders. MIT Sloan
Management Review 49(2), 28–35 (2008)

12. Boudreau, K.J.: Let a Thousand Flowers Bloom? An Early Look at Large Numbers
of Software App Developers and Patterns of Innovation. Organiation Science 23(5),
1409–1427 (2012)

13. Iansiti, M., Levien, R.: Strategy as Ecology. Harvard Business Review 82(3), 68–78
(2004)

14. den Hartigh, E., Tol, M., Visscher, W.: The health measurement of a business
ecosystem. In: Proceedings of the European Network on Chaos and Complexity
Research and Management Practice Meeting (2006)

15. van Angeren, J., Kabbedijk, J., Jansen, S., Popp, K.M.: A Survey of Associate
Models used within Large Software Ecosystems. In: Proceedings of the Third In-
ternational Workshop on Software Ecosystems, pp. 27–39 (2011)

16. van Angeren, J., Kabbedijk, J., Popp, K.M., Jansen, S.: Managing software ecosys-
tems through partnering. In: Jansen, S., Brinkkemper, S., Cusumano, M.A. (eds.)
Software Ecosystems: Analyzing and Managing Business Networks in the Software
Industry, pp. 85–102. Edward Elgar Publishing, Cheltenham (2013)

17. Iyer, B., Lee, C.H., Venkatraman, N.: Managing in a Small World Ecosystem:
Some Lessons from the Software Sector. California Management Review 48(3),
28–47 (2006)

18. Basole, R.C.: Visualization of interfirm relations in a converging mobile ecosystem.
Journal of Information Technology 24, 144–159 (2009)

19. Schilling, M.A., Phelps, C.C.: Interfirm Collaboration in Networks: The Impact of
Large-Scale Network Structure on Firm Innovation. Management Science 53(7),
1113–1126 (2007)

20. Freeman, L.C.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

21. Watts, D.J., Strogatz, S.H.: Collective dynamics of small world networks. Na-
ture 393, 440–442 (1998)

22. Burkard, C., Widjaja, T., Buxmann, P.: Software ecosystems. Business and Infor-
mation Systems Engineering 4(1), 41–44 (2012)

23. Gawer, A., Henderson, R.: Platform owner entry and innovation in complemen-
tary markets: Evicdence from Intel. Journal of Economics and Management Strat-
egy 16(1), 1–34 (2007)

24. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics 5(10) (2008)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 16–26, 2014.
© Springer International Publishing Switzerland 2014

Ecosystem-Driven Software Development: A Case Study
on the Emerging Challenges in Inter-organizational R&D

Helena Holmström Olsson1 and Jan Bosch2

1 Department of Computer Science, Malmö University, Malmö, Sweden
helena.holmstrom.olsson@mah.se

2 Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

jan.bosch@chalmers.se

Abstract. Most companies today experience a situation in which they are part
of a complex business ecosystem of stakeholders that influence business
outcomes. Especially for companies transitioning from selling products to
becoming systems, solutions and services providers, this is causing a significant
shift in their business strategies and relationships. Instead of focusing on
internal processes, companies need to strategically position themselves in a
dynamic network of actors to accelerate synergies and value co-creation.
However, while this shift in business strategy is inevitable, it is not without
challenges. An understanding for how to align internal, as well as external
processes is critical, as well as a careful assessment on how to establish
strategic partnerships in a dynamic network of interests. Based on on-going
research, this paper outlines the emerging challenges that most software
development companies face when adopting an ecosystem-driven approach, and
the different mitigation strategies to manage these.

Keywords: Company ecosystems, software ecosystems, ecosystem-driven
development, challenges.

1 Introduction

The environment in which companies operate is becoming increasingly complex in
nature. What we see is a transition from a predominantly intra-organizational
perspective to a predominantly inter-organizational perspective where innovation is
moving out from the organizational boundaries and where networks of stakeholders
co-create value and engage in what has become known as co-opetition [1, 2]. Often
co-opetition takes place when companies in the same market domain work together in
the exploration and development of new knowledge and products, at the same time as
they compete for market-share in the exploitation of the knowledge created. As
recognized by Messerschmidtt and Szyperki [3], more and more software companies
open up their products for functional extensions by third party developers, allowing
for value creation that goes beyond company boundaries [4]. In doing this, these
companies need to shift their attention from focusing on internal process efficiency, to

 Ecosystem-Driven Software Development 17

how to strategically align with, amplify, and accelerate in synergy with the ecosystem
of which it is part. To offer access to external stakeholders rather than being
exclusive, to manage the dynamics and dependencies within a large network of
stakeholders, and to continuously assess different needs and drivers among
stakeholders become critical activities. In the transition towards an ecosystem-driven
approach to development, the understanding of how to position oneself in the
ecosystem, and the implications this has on business models and strategies becomes
increasingly important. Also, there is a need for companies to understand how to align
their in-house, and often agile, practices with external stakeholders, such as e.g.
suppliers, that typically operate using more traditional ways-of-working.

In this paper, we present findings from an on-going case study in which we work
closely with a large company within the embedded systems domain. The company
develops products in which hardware is critical, but in which software is becoming
increasingly important. Our study focuses on the challenges they face when adopting
an ecosystem-driven approach to development, and identifies mitigation strategies to
manage these. Our research questions are the following:

• What are the challenges that emerge when adopting an ecosystem-driven
approach to software development?

• What mitigation strategies can be applied in order to manage these
challenges?

The paper is organized as follows. In section 2 we describe software ecosystems and
the reasons for companies to adopt an ecosystem-driven approach to software
development. In section 3 we present the research site and the case study method that
we use. In section 4, we present the findings concerned with the challenges that
emerge when transitioning towards an ecosystem-driven approach to development.
Also, we identify mitigation strategies to manage these challenges. In section 5, we
discuss our findings and in section 6 we conclude the paper.

2 Software Ecosystems

The emergence of ecosystems is one of the most significant developments for
software companies, and it is a topic that recently has attracted significant attention in
the software engineering research community [5, 6, 7]. The adoption of a software
ecosystem causes companies to open up its successful products and product lines for
functional extensions by third party developers [3]. Rather than being exclusive and
closing off the product for external developers, organizations are exploring different
ways to offer access for external stakeholders without sacrificing important system
properties or loosing out on business opportunities or customer relationships. This
phenomenon is well elaborated upon in the field of political science and economics,
and is described as a situation in which companies interact with partial congruence of
interests [8]. As described in this research, companies cooperate with each other to
create more value than what they had been able to achieve without the collaboration.

18 H.H. Olsson and J. Bosch

As recognized by Bosch [9], ecosystems take various forms. Typically, a
distinction is made between commercial and social ecosystems. In a commercial
ecosystem the actors are businesses, suppliers and customers, the factors are goods
and services and the transactions include financial transactions, but also information
and knowledge sharing, inquiries, pre- and post-sales contacts, etc. This is in line with
what Moore defined as a business ecosystem that includes suppliers, lead producers,
competitors, and other stakeholders [10]. Over time, they coevolve their capabilities
and roles, and align themselves with the directions set by one or more key
stakeholders. According to Moore [10], the concept of a business ecosystem enables
members to move toward shared visions, and to align their investments and find
mutually supportive roles.

A software ecosystem is usually defined as a commercial ecosystem consisting of a
set of software solutions that enable, support and automate the activities and
transactions by the actors [9]. In a software ecosystem there is typically a company
providing a software platform and a community of external developers providing
functionality that extends the basic platform, and/or users either actively or passively
contributing with knowledge, content, goods and services, connections or behavior to
the ecosystem. A software ecosystem is often complemented with a social ecosystem
consisting of users, their social connections and the exchange of information. Here,
users either actively or passively contribute knowledge, content, goods and services,
connections or behavior to the community and, consequently, to the company
providing the ecosystem platform. Successful social ecosystems usually capitalize on
the contributions of the users in the to create more value to each individual user as the
person provided in the first place. This can be achieved through aggregation and
consequent presentation of data uniquely relevant to the user, and through advanced
mechanisms that allow for customization.

As can be seen in previous research [9], there are a number of reasons explaining
why an ecosystem-driven approach has become so attractive, and why companies
adopt this approach to development:

• To increase value of the core offering to existing customers and users.
• To increase attractiveness for new customers and users.
• To decrease costs for commoditizing functionality by sharing maintenance

costs with other stakeholders.
• To accelerate innovation through open innovation in the ecosystem.
• To increase collaboration with partners in the ecosystem and share costs of

innovation.
• To “platformize” functionality developed by partners in the ecosystem.

As a fairly recent development within the software engineering domain, the concept
of software ecosystems reflects a shift in focus from the internals of an organization
towards the external environment and the relations and dynamics within this. This
introduces a number of opportunities in terms of collaboration, knowledge sharing
and value creation, as well as a set of challenges in terms of positioning, ownership
and strategic alignment.

 Ecosystem-Driven Software Development 19

In our research, we focus on the challenges that face companies when adopting an
ecosystem-driven approach to software development. As recognized by Bosch [11],
the company providing the platform needs to go through a significant change in
culture in that rather than being the one building products for customers, the role is
now to enable external stakeholders to do this. To manage this change without loosing
revenue, nor alienating the internal development organization, is a challenging task
that requires additional research.

3 Research Site and Method

3.1 Research Site

This paper presents on-going research based on a case study conducted at a company
within the embedded systems domain. Our case company is world leading in network
video and offers products such as network cameras, video encoders, video
management software and camera applications for professional IP video surveillance.
At the moment, the company is experiencing a shift in focus, i.e. from being
predominantly a product manufacturer the company is adding a focus on systems,
solutions and services. This shift is causing the company to carefully consider the
ecosystem of which it is part, and define alternative business strategies involving a
broad spectrum of stakeholders in this network. The strategies focus on how to
forward integrate in the value chain, how to complement the existing product
portfolio with service offerings and, finally, how to adopt an ecosystem-driven
approach to software development in which customers, suppliers, competitors and
end-customers engage in joint innovation efforts and value co-creation.

The main motivation for the company to engage in this research is the increasing
need to understand the ecosystem stakeholders, their drivers, their needs and their
challenges in order to strategically align, amplify and accelerate in synergy with
these.

3.2 Research Method

Our paper reports on an on-going single case study [12, 13] involving a large company
in the embedded systems domain. The project was initiated in October 2013 with the
first data collection activities starting in November 2013. The main data collection
method used is semi-structured group interviews with open-ended questions where the
researchers meet with groups of four to seven people for a two to three hour session.
Also, the two researchers continuously meet with key stakeholders to discuss project
activities, project findings, and how to best accelerate the adoption of an ecosystem-
driven approach within the company. These meetings are conducted in a workshop
style with a mix of presentation and discussion from researchers and practitioners.

So far, one group interview and three workshop meetings have been held at the
company. For the group interview, one of the researchers met with a group of seven

20 H.H. Olsson and J. Bosch

people representing global partners and business development, product and segment
marketing, product maintenance, global sales, product management, and core
technologies. In addition, two company representatives that work as contact persons
towards the research project, and with roles such as project and product managers,
were present to listen in and to be part of the introduction in which the research focus
and topic was explained to the group. The group interview lasted for three hours.
Notes were taken during the interview and these were shared between the two
researchers to allow for a discussion regarding the interview session, the answers that
had been given and the overall impression of the discussion. Also, the participants
were asked to provide their input on a number of topics that were listed and handed
out them during the workshop. This allowed the researcher to have documentation
consisting of both personal notes, but also notes taken by the participants themselves.
Finally, the group interview was recorded. The workshop meetings involved key
stakeholders in the company with an interest in the topic and with the intention to
have people from their unit participate in up-coming research activities. The
workshop meetings were one to two hour sessions in which the two researchers and
the company representatives all contributed with content and items for discussion. In
total, three workshop sessions have been conducted, involving six people with roles
such as project and product managers, and identified as key stakeholders for this
project.

In terms of data analysis, an interpretive approach was adopted as described by
Walsham [14]. While this approach has similarities with the qualitative grounded
theory approach [15], it is not as strict in its coding process. Rather, the researcher
documents his or her impressions during the research, for example after each
interview, in order to generate more organized sets of themes after a group of
interviews or a major field visit. When having this organized set of themes, the
researcher then carefully reflects on what can be learnt, and what implications can be
drawn, from the field data [14].

A problem that has been identified in relation to qualitative research is that
different individuals may interpret the same data in different ways [16]. This problem
is addressed in two ways. First, the grounded theory method prescribes coding
processes that provide a traceable, documented justification of the process by which
conclusions are reached. Second, we use a ‘venting’ method, i.e. a process whereby
interpretations are continuously discussed with professional colleagues [17]. By
sharing notes, and by discussing the results of group interviews and workshops, we
develop an accurate understanding of the company and the challenges it faces.

4 Findings

In this section, we present findings from our on-going research. We identify the
emerging challenges that face companies when adopting an ecosystem-driven
approach to development. Also, we present mitigation strategies for how to manage
these challenges. The challenges and the mitigation strategies were all identified

 Ecosystem-Driven Software Development 21

during a group interview and workshop meetings at the case company, and they
reflect concerns critical for successful R&D management in an increasingly complex
business environment.

4.1 Challenges

Our group interview and the workshops at the company reveal a number of challenges
that emerge when adopting an ecosystem-driven approach to development.

A recurrent theme, and the major challenge, is the difficulty to identify rewarding
business models that add revenue, at the same time as it allows for external
stakeholders to be value co-creators. The concern that our interviewees express is how
to minimize opportunities for their competitors, while at the same time maximize the
capacity of the ecosystem. One risk that was mentioned during the group interview
was a scenario where competitors could potentially provide the same value for free,
and monetize somewhere else. In this discussion, the interviewees all agreed that one
critical success factor is how to support collaboration in the ecosystem without
becoming the exchangeable component, and to find ways to share core competencies
without loosing business opportunities. Also, the interviewees identified the need to
understand what development should be made in-house and what development should
be outsourced to external stakeholders in the ecosystem. Both these concerns relate to
the challenge in finding an appropriate business model that drives revenue at the same
time as it fosters ecosystem collaboration.

A second challenge is the intention in the company to get closer to its end-
customers. Today, there are a number of intermediaries such as distributors and
installers, and the interviewees experience a situation in which important feedback
from customers is lost in the complex hierarchy of stakeholders. However, moving
closer to customers, i.e. forward integrate in the value chain, might upset other
stakeholders who already have a close relationship to end-customers, and do not want
to share, or even loose this. To manage this situation, the interviewees expressed a
need to understand more about the drivers for different stakeholders, and what
motivates them to be part of the ecosystem.

Third, the company is moving from a transactional business model in which box
products are the main focus of attention, towards a relationship-based business model
in which the company provides customers with entire systems, solutions and services.
This is a major transformation for the company, and it implies new relationships and
dependencies to stakeholders in the ecosystem. The interviewees express concerns for
not having all the necessary skills for achieving this, and they see challenges in
monitoring end-to-end service delivery to new stakeholders in the ecosystem.

In table 1 below, we summarize the challenges that were identified by our
interviewees as emergent when adopting an ecosystem-driven approach to software
development:

22 H.H. Olsson and J. Bosch

Table 1. The emerging challenges that companies face when adopting an ecosystem-driven
approach to software development

Challenges: Concerns:
Identify a rewarding business model • How to minimize opportunities for

our competitors while at the same
time maximize the capacity of the
ecosystem?

• How to support collaboration
without becoming the exchangeable
component?

• How to share core competence
without loosing business
opportunities?

• What development should be made
in-house and should be outsourced
to other stakeholders in the
ecosystem?

Forward integration in the value chain • How to move closer to end-
customers without upsetting other
stakeholders in the ecosystem?

• What are the drivers of the different
stakeholders that constitute the
ecosystem?

Transition towards systems, solutions
and services

• What new relationships and
dependencies emerge to other
stakeholders in the ecosystem?

• How to monitor end-to-end service
delivery to new stakeholders in the
ecosystem?

4.2 Mitigation Strategies

In order to manage the challenges as identified above, our study reveals a number of
possible mitigation strategies.

As the most rewarding, and long-term strategy, our interviewees identify the need
to form strategic partnerships with stakeholders in the ecosystem. This is considered
critical in order to mitigate competition and instead foster collaboration among key
stakeholders with potentially competing interests. In particular, this strategy is critical
to mitigate the challenge in identifying a rewarding business model. As opposite
strategies to this, our interviewees discuss the possibility to build more proprietary
solutions that make their products less open and less exposed to competition.
However, while this strategy would allow the company to charge a license fee from
any other stakeholder who wants to use the proprietary product platform, it would be
contrary to the ecosystem-driven approach and the use of open and standardized

 Ecosystem-Driven Software Development 23

solutions. As a mitigation strategy, this discussion reflects a short-term solution rather
than a long-term solution, with the risk to create more problems than it solves.

A second mitigation strategy is to become the preferred component supplier and
use offered solutions and services to drive revenue. This strategy is recognized as one
way to address the challenge associated with forward integration since it would allow
the company to establish closer relationships with stakeholders with whom they have
previously not interacted. In adopting a solution and services provider role, this
strategy would enable closer contact with end-customers.

Finally, our interviewees emphasize the need for qualified training for existing
employees as a strategy to mitigate the challenge with transitioning towards systems,
solutions and services. In order for the company to be successful in this transition,
functions besides the development organization need to be available and supportive of
the new business opportunities offered within the ecosystem. As one way to realize
this, our interviewees suggest rotation within the company to broaden the skillset
among existing employees.

In table 2 below, we summarize the mitigation strategies that were identified to
manage the challenges that emerge when adopting an ecosystem-driven approach to
software development:

Table 2. Mitigation strategies to manage challenges that emerge when adopting an ecosystem-
driven approach to software development

Challenge: Mitigation strategy:
Identifying a rewarding business model • Form strategic partnerships with

key stakeholders in the ecosystem
Forward integration in the value chain • Become the preferred component

supplier
• Adopt a solution and services

provider role
Transition towards systems, solutions
and services

• Qualified training for existing
employees

• Rotation within the company for
existing employees

5 Discussion

Adopting an ecosystems approach by shifting focus from the internals of the
organization towards its external environment increases the value of core offerings to
existing customers, increases attractiveness for new customers, decreases costs by
sharing maintenance costs, and accelerates innovation through co-creation of value [3,
6, 9]. While this is a general trend in the software industry [18], and associated with a
number of opportunities [6], it comes with a set of challenges that need to be
mitigated in order to fully capitalize on the potential inherent in the ecosystem.

Our case company experiences a complicated business ecosystem of stakeholders
that influence their business outcomes. As recognized in previous research [3, 4], the

24 H.H. Olsson and J. Bosch

business ecosystem is becoming increasingly important to companies due to a variety
of factors including the outsourcing of parts of the development, the transition from
products to systems, solutions and services, and the increasingly open nature of
innovation where networks of companies and customers co-create value. Especially,
the transition towards systems, solutions and services causes a significant shift in how
companies interact with other stakeholders in the ecosystem. An increasing emphasis
is put on strategically align with, amplify, and accelerate in synergy with other
stakeholders in the ecosystem.

In our on-going study, we work closely with a company within the embedded
systems domain that is adopting an ecosystem-driven approach to software
development. In doing this, the company is shifting attention from an intra-
organizational focus to an inter-organizational perspective where value creation is
moving out from the organizational boundaries to include external stakeholders and
customers [6].

Our study identifies a number of challenges that the company faces when adopting
an ecosystem-driven approach to software development. As the major challenge, our
interviewees identifies the difficulty to identify rewarding business models that add
revenue to the company, at the same time as it allows for external stakeholders to be
value co-creators. Although previous research on software ecosystems has primarily
reported on new business opportunities [6], our study reveals a number of concerns
associated with monetization on business offerings. One of the concerns that our
interviewees express is how to minimize opportunities for their competitors, while at
the same time maximize the capacity of the ecosystem. To do this, mitigation
strategies that drive revenue at the same time as they allow ecosystem collaboration
need to be implemented. As the most rewarding and viable strategy, our interviewees
identify the need to form strategic partnerships with key stakeholders in the
ecosystem.

A second challenge experienced in our case company is the intention to forward
integrate in the value chain and move closer to the end-customers. While this opens
up for shorter feedback loops and an increased understanding for customer needs [19,
20], it might upset other stakeholders who already have that close relationship to end-
customers. As highlighted in our study, becoming the preferred component supplier
and use offered solutions and services to drive revenue can help mitigate this
challenge. While challenging to implement, this strategy allows companies to
establish relationships with stakeholders with whom they have previously not
interacted. To do this, an understanding for different stakeholders’ drivers and
motivators is critical to not upset existing relationships.

Finally, our study identifies the challenge with transitioning from a transactional
business model towards a relationship-based business model where companies
provide customers with systems, solutions and services instead of box products. This
is a major transformation, and it implies new relationships and dependencies to other
stakeholders in the ecosystem. The interviewees express concerns for not having all
the necessary skills for achieving this. To mitigate this challenge there is the need to
instill the skills and attitudes needed for creative enterprise and foster open innovation
characterized by a culture of healthy risk-taking and collaborative activity. To

 Ecosystem-Driven Software Development 25

mitigate this challenge, qualified training for existing employees is critical and
rotation of employees can be one way to realize this.

While our study reflects the experiences from a single company, we believe that
the challenges and the mitigation strategies we identify are relevant to other
companies in the software development domain when adopting an ecosystem-driven
approach to development. Based on our case study findings, we see that if
successfully engaging the ecosystem stakeholders in the product development
process, companies can empower innovation, foster creative enterprises, unleash open
markets characterized by healthy risk-taking and finally, facilitate efficient creation,
circulation and diffusion of knowledge.

6 Conclusions

In this paper, we present findings from an on-going case study conducted in a
company within the embedded systems domain. Based on a group interview and
workshop meetings with key stakeholders, we: (1) identify emerging challenges that
companies face when adopting an ecosystem-driven approach to development, and (2)
identify mitigation strategies to manage these challenges. The challenges and the
mitigation strategies reflect concerns critical for successful R&D management when
adopting an ecosystem-driven approach to software development.

Concluding, in being a fairly recent development within the software engineering
domain, the concept of software ecosystems reflects a shift in focus from the internals
of an organization towards its external environment. So far, this shift has received
limited attention even though its adoption is now accelerating by increasingly many
companies. With this research, we identify challenges and mitigation strategies that
we believe will be of relevance for a wide range of companies adopting an ecosystem-
driven approach to software development.

Acknowledgements. This study was funded by Malmö University as part of a
research collaboration between Malmö University and the Software Center at
Chalmers University of Technology and University of Gothenburg, Sweden. We
would like to thank the company involved in the study for the time and engagement
allocated by all interviewees.

References

1. Bengtsson, M., Kock, S.: Coopetition in Business Networks – to Cooperate and Compete
Simultaneously. Industrial Marketing Management 29, 411–426 (2000)

2. Dagnino, G.B., Padula, G.: Coopetition strategy: towards a new kind of interfirm dynamics
for value creation. In: EURAM 2nd Annual Conference, Stockholm School of
Entrepreneurship, Sweden, May 8-10 (2002)

3. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press, Cambridge (2003)

26 H.H. Olsson and J. Bosch

4. Bosch, J., Bosch-Sijtsema, P.: From Integration to Composition: On the impact of software
product lines, global development and ecosystems. Journal of Systems and Software 83(1),
67–76 (2010)

5. Hanssen, G.K.: A Longitudinal Case Study of an Emerging Software Ecosystem:
Implications for practice and theory. Journal of Systems and Software 85(7), 1455–1466
(2012)

6. Jansen, S., Finkelstein, A., Brinkkemper, S.: Sense of Community: A research agenda for
software ecosystems. In: Proceedings of the 31st International Conference on Software
Engineering, Companion Volume, pp. 187–190. IEEE (2009)

7. Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T.: From Proprietary to Open Source
– Growing an Open Source Ecosystem. Journal of Systems and Software 85(7), 1467–
1478 (2012)

8. Asaro, V.F.: Universal Co-opetition: Nature’s Fusion of Cooperation and Competition
(2011) ISBN 978-1-936332-08-3

9. Bosch, J.: From Software Product Lines to Software Ecosystems. In: Proceedings of the
13th International Software Product Line Conference (SPLC), San Fransisco, CA, USA,
August 24-28 (2009)

10. Moore, J.F.: The Death of Competition: Leadership & Strategy in the Age of Business
Ecosystems. Harper Business, New York (1996) ISBN 0-88730-850-3

11. Bosch, J.: Software Ecosystems: Taking software development beyond the boundaries of
the organization. Journal of Systems and Software 85(7), 1453–1454 (2012)

12. Walsham, G.: Interpretive case studies in IS research: Nature and method. European
Journal of Information Systems 4, 74–81 (1995)

13. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14 (2009)

14. Walsham, G.: Doing Interpretive Research. European Journal of Information Systems (15),
320–330 (2006)

15. Corbin, J., Strauss, A.: Basics of Qualitative Research: Grounded Theory Procedures and
Techniques. Sage, California (1990)

16. Kaplan, B., Duchon, D.: Combining qualitative and quantitative methods in IS research: A
case study. MIS Quarterly 12(4), 571–587 (1988)

17. Goetz, J., LeCompte, D.: Ethnography and Qualitative Design in Educational Research.
Academic Press, Orlando (1984)

18. Qualman, E.: Socialnomics: How Social Media Transforms the Way We Live and Do
Business. John Wiley & Sons (2009)

19. Holmström Olsson, H., Bosch, J.: Post-Deployment Data Collection in Software-Intensive
Embedded Products. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150,
pp. 79–89. Springer, Heidelberg (2013)

20. Holmström Olsson, H., Bosch, J.: Towards Data-Driven Product Development: A Multiple
Case Study on Post-Deployment Data Usage in Software-Intensive Embedded Systems. In:
Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 152–164. Springer, Heidelberg (2013)

Why Early-Stage Software Startups Fail:

A Behavioral Framework

Carmine Giardino, Xiaofeng Wang, and Pekka Abrahamsson

Free University of Bolzano, piazza Domenicani 3 39100 Bolzano, Italia
computer.science@unibz.it

http://unibz.it

Abstract. Software startups are newly created companies with little
operating history and oriented towards producing cutting-edge prod-
ucts. As their time and resources are extremely scarce, and one failed
project can put them out of business, startups need effective practices
to face with those unique challenges. However, only few scientific studies
attempt to address characteristics of failure, especially during the early-
stage. With this study we aim to raise our understanding of the failure of
early-stage software startup companies. This state-of-practice investiga-
tion was performed using a literature review followed by a multiple-case
study approach. The results present how inconsistency between manage-
rial strategies and execution can lead to failure by means of a behavioral
framework. Despite strategies reveal the first need to understand the
problem/solution fit, actual executions prioritize the development of the
product to launch on the market as quickly as possible to verify prod-
uct/market fit, neglecting the necessary learning process.

Keywords: Software startups, customer development, lean startup.

1 Introduction

Software startups launch worldwide every day as a result of an increase of new
markets, accessible technologies, and venture capital [1]. With the term software
startups we refer to those temporary organizations focused on the creation of
high-tech and innovative products1, with little or no operating history, aiming
to grow by aggressively scaling their business in highly scalable markets [2].

New ventures such as Facebook, Linkedin, Spotify, Pinterest, Instagram,
Groupon and Dropbox, to name a few, are examples of startups that evolved
into successful businesses. Despite many success stories, many software startups
fail before they have fulfilled their commercial potential [3].

Even though startups share some characteristics with similar contexts (e.g.
small and web companies), the combination of different factors makes the specific
development context quite singular [2,4].

However, failures of startups received little attention [5]. Despite the quick
proliferation of startups’ communities, they have been able to absorb little more

1 With the term “product”, we refer to both software products and software services.

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 27–41, 2014.
c© Springer International Publishing Switzerland 2014

http://unibz.it

28 C. Giardino, X. Wang, and P. Abrahamsson

than the basic patterns of how to build a startup [4]. Moreover, more than 90%
of startups fail, due primarily to self-destruction rather than competition [6].

This study aims to understand the software startups’ dimensions, which im-
pact failed software startups. The failure has been determined from the point
of view of their chief executive officers (CEOs), who have broad perspectives on
their startup organization [7].

This study was elaborated based on a multiple-case design, implemented with
in-depth narratives of the two project cases, covering a wide spectrum of themes
and iteratively adjusting the direction of the research according to the emerging
evidence.

The results show that the two startups didn’t follow consistent strategies to
understand the problem they were trying to solve, consequently diluting their fo-
cus on running in the wrong direction. Despite conventional dimensions emerged
to be important to improve, such as Market, Team, Product, Business, strate-
gies and executions of their development were not consistent to the state of their
problem/solution fit, presented by means of a behavioral framework. The behav-
ioral framework provides a potential reason for the failure of software startups
as the result of the analysis of the extrapolated data.

The rest of this paper is composed as follows: in section 2, background and
the related work are presented according to the relevant disciplines. Section 3
presents the empirical research design which is followed by the presentation of
the case studies results in section 4. The conclusions are identified and discussed
in section 5. The paper is summarized with section 6 addressing the limitations
and identifying future research needs.

2 Background and Related Work

In this section knowledge on the definition of software startups and how they
differ from established companies is presented according to existing literature.
Subsection 2.1 examines characteristics of startup companies. Subsection 2.2
describes how the state-of-the-art presents constraints, which impact the com-
pany’s survival. Subsection 2.3 presents dimensions to consider when building a
startup company.

2.1 Singularity of Software Startups

Startup companies exhibit many characteristics which reflect both engineering
and business concerns. Constraints of those characteristics differ from those of
established companies [5].

Established companies present advantages with respect to starutps, such as
fewer internal communication and coordination problems, a foundation of es-
tablished products, partners, and customers with a greater shared history and
vision [4]. Sutton [4] provides a characterization of software startups, defined by
the challenges they face with:

Why Early-Stage Software Startups Fail 29

– little or no operating history: startups have little accumulated experience in
development processes and organization management.

– limited resources: startups typically focus on getting the product out, pro-
moting the product and building up strategic alliances.

– multiple influences: pressure from investors, customers, partners and com-
petitors impact the decision-making in a company. Although individually im-
portant, overall they might not converge to support a clear decision-making.

– dynamic technologies and markets: the newness of software companies often
requires them to develop or operate with disruptive technologies2 to enter
into a high-potential target market.

2.2 Failure Assessment

Modern entrepreneurship, born more than thirty years ago [9], has been boosted
by the advent of consumer Internet markets in the middle of the nineties and
culminated with the notorious dot-com bubble burst of 2000 [10]. Today, with
the omnipresence of the Internet and mobile devices, we are witnessing to an
impressive proliferation of software ventures- metaphorically referred to as the
startup bubble. Easy access to potential markets and low cost of service distribu-
tion are appealing conditions for modern entrepreneurs [11]. Inspired by success
stories, a large number of software businesses are created everyday. However, the
great majority of these companies fail within two years from their creation [3].

Despite the believe that the success rate of startups has the potential to
dramatically increase economic growth on global scale [6], very few and contro-
versial findings about their failures have been found by the researchers in the last
years [5].

A prominent contributor as researcher and practitioner of the startup com-
munity is Steve Blank. In his research [2] he describes how very few startups
fail for lack of technology, rather they almost always fail for lack of customers.
For a company trying to enter a very innovative market without proof of func-
tionality in the real world there are more chances of failure. Customer feedback
is assumed to reduce the perceived risk in a software startup. Especially in the
marketing of complex and software-intensive products, experimental knowledge
is crucial. However the use of customer feedback by software startup companies
is distinctly under-researched [11]. Startup companies have reported that they
use the first customer feedback to develop the product further, find arguments
for sales and marketing purposes, learn project skills, and study the business
logic in their industry [12,13]. The focus of success moves to the abilities of find-
ing the first customers and expanding the business abroad, after saturating the
limited size of local markets.

In the course of attracting and keeping customers, Blank suggests a process
to place aside to product development, which aims to discover and validate

2 A new technology that unexpectedly displaces an established technology. It does not
rely on incremental improvements to an already established technology, but rather
tackles radical technical change and innovation [8].

30 C. Giardino, X. Wang, and P. Abrahamsson

the right market for an idea. The first part of the discovery consists of finding
the right problem/solution fit. The aim is to test the riskiest hypotheses
of the problem taken in consideration by implementing a first solution. The
second step is to build the right product features that solve real customers’
needs, also known as the product/market fit. If the product/market fit is
not achieved, then a problem/solution fit must be reiterated, operation known
as pivoting. Ultimately, in order to grow, companies have to test their business
models, investing capital and executing tactics for acquiring and converting more
customers of their potential market.

2.3 Dimensions for the Evaluation of Software Startups

Subsection 2.2 examined the customer development methodology to describe the
objectives to scale a business concept. When resources are scarce, survival and
success depend most heavily on the executives and managers, who are respon-
sible for shaping, directing, and implementing company strategies. The impor-
tance of people in these roles derives from the need to keep the company focused
and moving ahead [4]. However the customer development methodology doesn’t
define the focus in which “ahead” lies. Despite the direction might shift contin-
ually due to the dynamic and unpredictable context in which startups operate
[5], some dimensions at all stages of the life cycle remain crucial.

Draw upon the study of MacMillan et al. [14], applied in startup contexts, four
holistic dimensions are taken in consideration. The team as the core element.
Software project managers have long recognized the importance of good people
for successful development [5]. New software companies are often established to
develop a technologically innovative product [4]. Yet, the business and the
way it evolves can set the company growth and its place in the market [15].
The uncertainty of markets inevitably brings financial risks, which on the other
hand are fundamental to set-up any company. Ultimately knowing the market
is essential to evaluate the needs of the final customers [2].

3 Research Approach

The goal of this study aims to understand the software startups’ dimensions
which affect failure in a company. It is achieved through investigating how project
goals are defined and decision-making is executed in the period of time that goes
from idea conception to the validation of a product on the market. The following
section presents the research design and rationale for methodology selection.
Subsection 3.1 presents the context of the studied software startups and the
short description of their business ideas.

Following a systematicmapping study (SMS) [16], we conducted an exploratory
multiple-case study [17]. We executed two semi-structured interviews (with the
CEOs of two failed startup companies) integrated with narrative descriptions of
their failures. Moreover data were triangulated with external documentation, col-
lected and elaborated by the founding teams. From all the data, we extracted and
analyzed a model explaining the failure phenomenon of these two startups.

Why Early-Stage Software Startups Fail 31

A first preliminary SMS in the software engineering (SE) databases revealed
a quite wide gap in studies addressing failure in software startups, but at the
same time it showed us how broad the domain is. A definition which confirms
the suitability of this methodology is provided by Kitchenham et al. in [18]:
SMSs ‘’are designed to provide a wide overview of a research area, to establish
if research evidence exists on a topic and provide an indication of the quantity
of the evidence [...]”.

Next a multiple-case study approach was chosen in view of its ability to be
flexible in deepening the understanding of a specific problem, covering a wide
spectrum of topics and analyzing recurring patterns among them. Going from
the beginning extensively into a specific problem in software startups context
would not be worth trying because we didn’t find a sufficient number of studies
that constituted a solid body of knowledge, confirmed by [5]. On the other hand,
trying to select a broad research topic would carry the risk of spending a lot of
time in achieving a better understating of the problem without being able to
provide any significant results. A multiple-case design allows behavior analysis
over control analysis, with the benefit of understanding the phenomena in an
unmodified setting [17]. It also allows to analyze patterns across many cases
and to understand how they are affected by local conditions to develop more
sophisticated descriptions and powerful explanations [19].

Moreover, as we wanted the ability to transfer our ideas to startup practi-
tioners, we applied a comparative analysis of the state-of-the-art and the case
study findings following evidence-based software engineering principles [20,21]
and providing empirical evidences supporting startups’ decisions. The sampling
of the two startups has been selected according to the features identified in sub-
section 2.1. Yet they are two failed evidences, as required by our research goal,
as perceived from the two CEOs from their idea conception to the first open
beta release.

We captured the most relevant aspects of the companies activities, letting
emerge patterns from the data and adjusting the framework as we proceeded.
The findings are derived primarily from the observations and perceptions of
the two CEOs. The reason for selecting CEOs as respondents is that they have
experienced all the decision-making process of the companies. Furthermore, they
participated in the creation of the companies since their inception, having strong
insights into the working activities they conducted and financed. However, the
findings are finally compared to the existing literature on software startups’
failure to improve generalizability.

In this paper we address the achievements of four dimensions defined by
MacMillan et al. [14] (i.e. product, team, business, market).

The whole procedure was executed by the first author. Subsequently reviewed
by the second and third authors. When necessary all the authors performed an
in-depth review of the design of the study and discussed the findings to improve
their validity.

32 C. Giardino, X. Wang, and P. Abrahamsson

3.1 Background to the Cases

The first startup (called Milkplease3) aims to deliver grocery shoppings from
local supermarkets to the door-step of final consumers through the collabora-
tion of neighbors. It provides a web application allowing people to know that a
neighbor needed to do his shopping.

Milkplease was founded by an engineer and a computer scientist by using their
private savings. Running the business for one year, they increased the team
size in the last months with three more people, specialized in marketing and
service design. The business model expected profits by applying a service cost,
in the form of percentage over the total shopping amount for each accomplished
delivery. Initially the startup targeted full-time working employees for making
orders, and students for making deliveries in a small district of an European city.

The second startup (called Picteye4) aims to create an on-line service to sell
pictures of public and private events. They provided a web market-place where
people could sell and buy pictures. They started with providing pictures of one
big event in Italy. Then, they moved to use the application for other big events
around Europe.

The overall team grew from 3 software engineers (founders) to 6, covering
business and marketing positions. Picteye has been running for two years, try-
ing to launch the product several times without any positive response from the
market. The business model expected profits by selling pictures (digitally deliv-
ered to private individuals). The startup targeted photographers for uploading
pictures, and people participating to events for making orders.

4 Results

Byanalyzing the interview transcripts andnarrativedescriptionswith themultiple-
case study process, we extracted the information to describe the thematic areas of
the startups and construct the final framework, presented in subsection 4.1. The
thematic areas are divided according to MacMillan et al. dimensions.

This section contains quotes from the CEOs, referred with the capital “C”.
The trailing number indicates the software startup (e.g. “C1”).

The product dimension characterizes the software development strategies in
the two case studies. Since the two startups wanted to launch the product on
the market as quickly as possible, they built an initial prototype and iteratively
refined it over time, similarly to the concept of “evolutionary prototyping” [22].
However no initial hypotheses were defined from the business perspectives, and
consequently no minimal viable product (MVP), as meant by Ries [23], was
achieved.

“We were so excited about the technology that we put it upfront. We wanted
the product to be ready for being used by many customers. The day of the
launch arrived, but no one made a transaction. We still don’t know why”. [C1]

3 Milkplease website is available at www.milkplease.it
4 Picteye website is available at www.picteye.com

www.milkplease.it
www.picteye.com

Why Early-Stage Software Startups Fail 33

“I don’t know how and why people buy photographs on-line. My startup has not
answered to this question either. We were in doing mode. Ultimately 1 photo
has been sold, and this was after presenting the platform in a conference, when
someone in the audience saw himself in the picture gallery and decided to give
the system a try”. [C2]

Building a product without pursuing the problem/solution fit hasn’t provided
any learning process during the first period of the startup creation. In this re-
gards, the learning based approach has been neglected by the two CEOs to
benefit their attitude to acquire more and more customers. Yet, testing the ini-
tial hypotheses means have better understanding of the product risk, building
the right solution for a problem worth solving.

The team dimension represents the characteristics of the people involved
in building the company. The founding teams of the two startups were initially
formed by full-stack engineers, able to tackle different problems at different levels
of the technology stack, and covering multi-roles since they all participated in
the business and development processes. However entrepreneurial characteristics
were missing, such as motivation and ability to evaluate and react to risks.

“We started the project with a clear vision of what we wanted to achieve.
However, we soon shifted the vision towards money concerns, refining our busi-
ness model without having familiarity with the market”. [C1] “During the first
event week, we were presenting the project for the first time and part of the
founding team bailed out. The motivation was missing”. [C2]

Motivation has been felt as crucial to pursue the success of the first product
release. Indeed, everyone should have been involved to understand customers’
expectations and allow the entrepreneurs to evaluate and react to risks perceived
during this period according to the collected feedback.

The market dimension represents the strategies for customers’ acquisition.
The customers of the two startups were initially acquired to pursue the prod-
uct/market fit by using extensive press coverage.

“We participated to different startups’ contests, where we got quickly hype.
In the beginning we were sponsored by press, indeed many potential customers
started visiting our web-page. We wanted all of them starting using the product
from day one”. [C1] “I organized an event, sending an email to all the people I
could. I said few motivational words about the product. However, only few people
went to the event, and shadows started growing around the project”. [C2]

Customer acquisition started to be the first focus, even though the prob-
lem/solution fit was not discovered yet. With the benefit of hindsights, the CEOs
argued that having small amount of participants in the beginning of the process
would have allowed the startup to build an effective path to customers who care
about the promoted solution, and ultimately found a market that would have
supported a viable business.

The business dimension focuses on strategies to make profits out of the
product. From the business perspective the two startups started to focus on
maximizing the profit aspect too early, over-planning the model and prematurely
adapting the market according to the business, and not vice-versa.

34 C. Giardino, X. Wang, and P. Abrahamsson

“Money became a first concern. As soon as we realized the product, we wanted
to cover all the expenses, and maximize profits”. [C1] “After the event, we started
waiting the money flow in the form of completed order forms. We had everything
ready for the great success”. [C2]

The two cases reveal how the several dimensions were executed without regular
customers’ feedback loop, without adapting the business and the product to a
changing market. To understand how the CEOs did not execute the strategies
to capture the problem/solution fit, we make use of a behavioral framework (see
figure 1).

4.1 The Behavioral Framework

Through analyzing the results, the two startups moved through similar thresh-
olds and milestones of development, which we segmented into stages. From the
narratives we wanted to preserve the temporal precision of the events moving
along the prominent objectives. We took advantage of hindsights to see what the
strategies would have been during the first period of time and what was actually
executed.

The final framework (see figure 1) contains the evolution of four dimensions
to build the startup, according to their exploration and validation stages. Ex-
ploration stage describes the activities focused on solving a meaningful prob-
lem, finding a viable solution. The validation stage allows to understand if the
product is of interest to the potential market and if customers are willing to
buy it.

The actual stage describes what they should have focused on, according to
their initial strategies. The behavioral stage describes the execution of different
dimensions, inconsistent to what they had initially planned. The time-line sug-
gests how startups would have worked through the different dimensions (further
analyzed in section 5).

From the product perspective a first solution should contain the minimal
functional features to address the riskiest hypotheses of the business idea. Within
an evolutionary approach, user experience should be improved to let customers
smoothly use the product. Eventually new functionalities can be added to scale
in the major market.

“We wanted to test the product on the market as soon as possible. However
we had no clear hypotheses to test. We wanted to be ready for the public launch,
even though we didn’t evaluate known risks.” [C1] “We thought and hoped that
the market launch date was coming shortly to finally see the results. We knew
all our thoughts were just speculations. However, I had not been thinking about
lean startup method, we were entusiastic about the technology”. [C2]

From the team perspective, up to when the problem and solution don’t fit, the
team should have entrepreneurial characteristics to be able to share the vision
and evaluate the risks of the market. Only then team should start covering
missing roles, such as marketing and business specialized positions.

Why Early-Stage Software Startups Fail 35

Fig. 1. Behavioral framework

“The vision was not clear as soon as we were ready to test the product.
Seemingly the time spent on the product changed our expectations. The team
size grew with marketing specialists and service designers”. [C1] “No one was
fully committed to the project. The team’s motivation went down soon. However
we started to grow with more specialists”. [C2]

From the business perspective at the beginning the two startups should have
planned how to converge traffic to satisfy and retain a small group of users.
However they focused on getting the business model refined.

“The business model has been polished to maximize profits even before the
product was ready. We invested our own money, and wanted them back as soon
as possible. When we realized there was no market for what we realized, it
was surprisingly too late to change the product again” [C1] “The company was
running and it was time to get money. We asked for 20k euro to further develop
the idea. We lost every month 100 euro, affordable for the first months. Soon
this was not true anymore” [C2]

At the beginning the two startups tried to be profitable, rather than moving
along the problem/solution fit and starting covering the need of a funnel strat-
egy5. The first objective of getting profits has never been reached. Ultimately
no more resources were available for possible pivots. Polishing the product and
business model has consumed more resources than moving through a build-
measure-learn cycle [23].

The difficulty of covering the negative cash flow, before the product or service
brings revenue from real customers, has become critical over time. Up to the first

5 A strategy that illustrates the customer journey towards the purchase of a product
or service, improving the awareness of the existence of a product, activating interest
and desire to choose the product [2].

36 C. Giardino, X. Wang, and P. Abrahamsson

launch no feedback has been given by potential customers, without effectively
capturing their needs.

“We ran the system within a group of potential users to get opinions. They
helped us only with the UX”. [C1] “An amateur photographer would have given
us excellent feedback. He did a brief experiment, and sent me an email where he
killed the system. I thought he was not the type of customer using the system.
I continued waiting for the big launch.” [C2]

5 Discussion

This section compares the overall findings of this study to existing literature,
in order to emphasize crucial factors of failure in early-stage software startups.
Subsection 5.1 provides insights on the lack of problem/solution fit, whilst sub-
section 5.2 explores the revealed weak learning process. Ultimately subsection
5.3 gives an understanding of how the framework can be adopted by practitioners
and researchers.

The two described startups didn’t consistently follow the defined stages. Their
behavioral stage differed from their actual stage working on some operations
prematurely.

As shown in the results instead of targeting the problem/solution fit, they were
pursuing the product/market fit, from the product, team, market and business
perspectives. Aiming at the product/market fit, startups focus on validating a
product instead of discovering and testing a problem space. Moreover, where
startups should be testing demand for a functional product, they focused on
streamlining the product and making their customer acquisition process more
and more efficient.

5.1 Lack of Problem/Solution Fit

Trying to validate a product for a problem you haven’t encountered yet is a
waste. Instead, being able to demonstrate problem/solution fit through discov-
ering what are the needs of your first customers is much more viable than an
untested story [24].

The two startups were improving the products’ user experience without having
tested the MVP first. Since 1994, Carmel [25] reports the need of flexible and
rapid development solutions to shorten time-to-market to test assumptions. Eric
Ries [23] shows an evolutionary approach to focus on implementing a limited
number of suitable functionalities (MVP). The MVP does not require to comply
with heavy quality constraints, enabling the team to quickly implement suitable
functionalities to test business assumptions, ready to be validated by final users.
The evolutionary approach enhances the effectiveness of the product, and enables
the company’s capabilities to adjust the trajectory of product development [24].

The two case companies showed initial evidences of a lack of systematic feed-
back from customers to improve their market understanding. However, startups

Why Early-Stage Software Startups Fail 37

face uncertain conditions, which should lead to a fast learning from trial and er-
ror, with a strong customer relationship. Avoiding wasting time in building un-
needed functionalities helps also in preventing exhaustion of resources [26,27,4].

As team dimension is concerned, in order to have the focus and the abil-
ity to evaluate risks, Carmel suggests that entrepreneurs need to look for a
well formed, skilled core development team, rather than just a set of product
ideas and features. Moreover the team must be empowered with full-stack and
self-organization settings, paired with the characteristics of real entrepreneurs.
Studies suggest that entrepreneurs possess ‘special’ personality characteristics
[28,9]. One of the key determinants of success in startup companies is the pas-
sionate behavior of the founders. People who lack passion often use the first
barrier they encounter as an excuse for failure. People who have high passion
will do whatever it takes to overcome those barriers. “What we can achieve in
life depends on a number of things: how hard we work, how smart we work, how
much leverage we have on the work we do, and how much courage we have in
pursuing our goals. How hard we work is tied to how passionate we are” [29].

In addition to the missing personal motivation, the two startups were not
familiar with the targeted markets. Despite a market can be uncertain, and not
clear in all its aspects, a good entrepreneur can anticipate and is proactive to
unforeseen events [30,31]. Instead of starting gradually with a funnel strategy
of how to know the market dynamics and get the first paying customer, the
startups wrongly focused on perfecting the business model.

5.2 Neglected Learning Process

As the firms mature and the awareness of the competitive environment grows,
there is an increasing reluctance to share ideas, problems or solutions in the
wider sense [32]. Indeed, over time learning progress slowed down and the two
startups were only concerning how to gather more and more customers. However,
improving customer acquisition before problem/solution fit has been premature,
because users were not hooked to the product. Involving the customer to activate
the learning progress has also been discussed by Yogendra [33] as an important
factor to encourage an early alignment of business concerns to technology strate-
gies.

The two startups progressed through their life-cycle inconsistently (see figure
1), addressing specific challenges in the wrong time, such as the need to acquire
more and more customers with a growing team, maximizing profits without
learning the market dynamics. These strategies prompted further challenges in
trying to strike the need of investments, indeed wasting time in further structure
and formalization of the business model.

Ultimately, a lost of confidence to achieve independence after using up per-
sonal savings, heavily impacted the survival of the companies, as experienced
also by McAdam et al. [32]. Learning mechanisms (e.g. learning about one’s
strengths, weaknesses, skills attitudes etc.) have been widely researched by Cope
[34], who reveals a deeper conceptualization of the process of learning from
venture failures.

38 C. Giardino, X. Wang, and P. Abrahamsson

5.3 Implications of the Behavioral Framework

Existing frameworks have recognized the need of aligning business intentions to
a set of development activities to achieve a certain goal (e.g. GQM Strategies
[35], Balanced Scorecard [36]). However those approaches have been conceived
for more established companies, taking in consideration traditional development
approaches oriented towards process improvement initiatives.

The described behavioral framework, constructed by means of studies on
startup cases, can be used as a tool by practitioners to analyze how consistently
they are distributing their focus on the Macmillan et al. dimensions along with
the exploration and validation stages. For example, a configuration might ap-
pear as figure 2, where the marked strategies (the market and team dimensions)
represent a premature scaling towards the validation stage.

As remarked by Blank [2], the product/market fit has the objective of val-
idating people’s interest in a proposed product. If it doesn’t occur, “pivoting”
needs to be applied through changing the product or tackling a problem from a
different angle. He continues reporting that if the validation phase is successful,
the startup company can start increasing profits and improving their customer
acquisition process (also known as scaling phase). However knowing the mis-
match of possible dimensions, according to a targeted phase, can prevent the
waste of resources and improve the decision process.

In real settings, this framework would allow CEOs to focus and understand
how decision-making strategies are aligned to the activities within a software
startup company in the early-stage of its development. Moreover, venture capi-
talists might better understand the stage of development of a startup company
and filter those who can simultaneously sustain a consistent focus on different
dimensions.

Fig. 2. Behavioral framework: the dimensional mismatch

Why Early-Stage Software Startups Fail 39

6 Conclusions and Recommendation for Future Research

Software startups are able to produce cutting-edge software products with a wide
impact on the market, significantly contributing to the global economy. Software
development, especially in the early-stages, is at the core of the company’s daily
activities. Despite their severely high failure-rate, the quick proliferation of soft-
ware startups is not supported by a scientific body of knowledge [5]. This paper
provides an initial explanation of failure by means of a multiple-case studies
based on two software startups, focusing on early-stage activities, from the mar-
ket, product, team and business perspectives.

The behavioral framework is derived from the hindsight knowledge collected
from the CEOs of the two failed startups, with the aim of explaining how incon-
sistent decision-making strategies could lead to failure.

One important validity threat to this study is the small number of cases.
However, as described by Klein et al. [37], there is a basis for abstraction and
generalization in interpretive field studies through the use of ideas and concepts
if rigorously collected and experienced by researchers. As suggested by [38], to
validate the explanatory capability and correctness of the model we compared
the findings with the state-of-the-art (see section 5). To validate interview data
we examined also supporting evidences to verify their expressed opinions, such as
emails, presentations and documentation. The two studied startups might also
be biased by contextual factors, such as type of product, competitive landscape
etc. To mitigate this threat we constructed the framework using Macmillan et al.
dimensions, widely used in previous software engineering studies [30,24], enabling
a broader reasoning related to the factors that hinder the success of software
startups.

The overall results of our study reveal inconsistency between the strategy of
understanding and testing the problem/solution fit and the behavioral execution
of pursuing the product/market fit. When resources are scarce, survival and suc-
cess depend most heavily on the executives and managers, who are responsible
for shaping, directing, and implementing company strategies. Early recognition
and management of critical issues can increase the chances of success for a soft-
ware startup. The two startups failed to understand the problem and provide
the right solution, showing increasing reluctance in learning from the potential
customers.

In this paper we integrated a number of novel challenges discovered according
the Macmillan et al. dimensions [14] for both practitioners and researchers, while
presenting a first set of concepts, terms and activities which set startup strate-
gies for the rapidly increasing startup phenomenon. By means of the behavioral
framework, we provided a possible reason for the failure of software startups.
Consequently, there is a great deal of scope here for further research. For ex-
ample, further research is required to investigate the following two outstanding
questions; Firstly, how to prevent mismatch between business intentions and
development execution? Secondly, how existing learning processes can improve
business and development alignment?

40 C. Giardino, X. Wang, and P. Abrahamsson

References

1. Smagalla, D.: The truth about software startups. MIT Sloan Manage. Rev.
(USA) 45(2), 7 (2004)

2. Blank, S.: The four steps to the epiphany, 1st edn. CafePress (February 2005)
3. Crowne, M.: Why software product startups fail and what to do about it. In:

Proceedings International Engineering Management Conference (IEMC), pp. 338–
343 (2002)

4. Sutton, S.M.: The role of process in software start-up. IEEE Software 17(4), 33–39
(2000)

5. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: A systematic mapping study. In-
formation and Software Technology (forthcoming)

6. Marmer, M., Herrmann, B.L., Dogrultan, E., Berman, R., Eesley, C., Blank, S.:
The startup ecosystem report 2012. Technical report, Startup Genome (2012)

7. Coleman, G., O’Connor, R.: Investigating software process in practice: A grounded
theory perspective. Journal of Systems and Software 81(5), 772–784 (2008)

8. Christensen, C.M.: The Innovator’s Dilemma. Harvard Business School Press
(1997)

9. Storey, D.: Entrepreneurship and the New Firm. Croom Helm (1982)
10. Perkins, A.B., Perkins, M.C.: The Internet Bubble: Inside the Overvalued World

of High-Tech Stocks – And What You Need to Know to Avoid the Coming Catas-
trophe. HarperInformation (1999)

11. Marmer, M., Herrmann, B.L., Dogrultan, E., Berman, R., Eesley, C., Blank,
S.: Startup Genome Report Extra: Premature Scaling. Technical report, Startup
Genome (2011)

12. Ruokolainen, J., Igel, B.: The factors of making the first successful customer reference
to leverage the business of start-up software company - multiple case study in thai
software industry. Technovation 24(9), 673–681 (2004); Cited By (since 1996): 4

13. Ruokolainen, J.: Gear-up your software start-up company by the first reference
customer - nomothetic research study in the thai software industry. Technova-
tion 25(2), 135–144 (2005)

14. Macmillan, I.C., Zemann, L., Subbanarasimha, P.: Criteria distinguishing success-
ful from unsuccessful ventures in the venture screening process. Journal of Business
Venturing 2(2), 123–137 (1987)

15. Yu, Y.W., Chang, Y.S., Chen, Y.F., Chu, L.S.: Entrepreneurial success for high-
tech start-ups - case study of taiwan high-tech companies, Palermo, Italy, pp.
933–937 (2012)

16. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic Mapping Studies
in Software Engineering. In: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE), pp. 1–10 (2007)

17. Yin, R.K.: Case study research: design and methods. Sage Publications (1994)
18. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Re-

views in Software Engineering. Technical Report EBSE 2007-001, Keele University
and Durham University Joint Report (2007)

19. Miles, M., Huberman, A.: Qualitative Data Analysis: An Expanded Sourcebook,
2nd edn. Sage, Thousand Oaks (1994)

20. Kitchenham, B., Dyba, T., Jorgensen, M.: Evidence-based software engineering. In:
Proceedings of the 26th International Conference on Software Engineering, ICSE
2004, pp. 273–281 (May 2004)

Why Early-Stage Software Startups Fail 41

21. Dyba, T., Kitchenham, B., Jorgensen, M.: Evidence-based software engineering for
practitioners. IEEE Software 22(1), 58–65 (2005)

22. Davis, A.: Operational prototyping: a new development approach. IEEE Soft-
ware 9(5), 70–78 (1992)

23. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation
to Create Radically Successful Businesses. Crown Business (2011)

24. Hui, A.: Lean change: Enabling agile transformation through lean startup, kotter
and kanban: An experience report, Los Alamitos, CA, USA, pp. 169–174 (2013)

25. Carmel, E.: Time-to-completion in software package startups. In: Proceedings of
the System Sciences, pp. 498–507 (1994)

26. Midler, C., Silberzahn, P.: Managing robust development process for high-tech
startups through multi-project learning: The case of two European start-ups. In-
ternational Journal of Project Management 26(5), 479–486 (2008)

27. Hilmola, O.P., Helo, P., Ojala, L.: The value of product development lead time in
software startup. System Dynamics Review 19(1), 75–82 (2003)

28. Park, J.S.: Opportunity recognition and product innovation in entrepreneurial hi-
tech start-ups: A new perspective and supporting case study. Technovation 25(7),
739–752 (2005)

29. Preston, J.T.: Building success into a high-tech start-up. Industrial Physicist 9(3),
16–18 (2003)

30. Kakati, M.: Success criteria in high-tech new ventures. Technovation 23(5), 447–457
(2003)

31. Hunt, F., Probert, D., Wong, J., Phaal, R.: Valuation of technology: Exploring a
practical hybrid model, pp. 47–53 (2003); Cash flow analysis; Product life cycles

32. McAdam, M., McAdam, R.: High tech start-ups in university science park incuba-
tors: The relationship between the start-up’s lifecycle progression and use of the
incubator’s resources. Technovation 28(5), 277–290 (2008)

33. Yogendra, S.: Aligning business and technology strategies: a comparison of estab-
lished and start-up business contexts. In: Proceedings of the Internal Engineering
Management Conference (IEMC), pp. 2–7 (2002)

34. Cope, J.: Entrepreneurial learning from failure: An interpretative phenomenological
analysis. Journal of Business Venturing 26(6), 604–623 (2011)

35. Basili, V.R., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D.,
Seaman, C., Trendowicz, A.: Linking software development and business strategy
through measurement. arXiv preprint arXiv:1311.6224 (2013)

36. Kaplan, R.S., Norton, D.R.: The balanced scorecard: Measures that drive perfor-
mance. (cover story). Harvard Business Review 83(7/8), 172–180 (2005)

37. Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating inter-
pretive field studies in information systems. MIS Quarterly, 67–93 (1999)

38. Corbin, J., Strauss, A.: Grounded theory research: Procedures, canons, and evalu-
ative criteria. Qualitative Sociology 13(1), 3–21 (1990)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 42–57, 2014.
© Springer International Publishing Switzerland 2014

A Comparative Perspective between Investors and
Businesses Regarding Success Factors of E-Ventures

at an Early-Stage

Tim Taraba1, Martin Mikusz1,2, and Georg Herzwurm1

1 Department VIII, Chair of Information Systems II, Prof. Dr. Georg Herzwurm, Keplerstraße
17, 70174 Stuttgart, Germany

2 FOM University of Applied Sciences, Rotebühlstr. 121, 70178 Stuttgart, Germany
{taraba,mikusz,herzwurm}@wius.bwi.uni-stuttgart.de

Abstract. Start-ups in the software-intensive field of e-business are key for
modern economies. However, those so-called e-ventures tend to face certain
problems in terms of financing: Many promising e-ventures seem to fail due to
missing seed capital or too few investors. The reasons for this might partially be
explained by goal conflicts, different expectations–especially concerning
growth of enterprise value and opportunities–, differences in valuation of risks,
planning, time horizon and other trade-offs between potential investors and the
company’s founders. For this reason we examined academic literature to collect
data as a basis for two analogously conducted Delphi studies: one for investors
and one for e-ventures. Out of 48 most widely researched success factors
concerning investors (of technology start-ups) and 24 concerning e-ventures we
could derive implications to eight different subtopics for the above-mentioned
trade-offs. Our article concludes by naming its major limitations as well as
future research directions for the purpose of advancing research in this field.

Keywords: Electronic-Entrepreneurship, IT-Entrepreneurship, Electronic-Ventures,
IT-Ventures, Delphi Study, Software Business, Software Startups, Software
Companies, Future Software Business, Success Factors.

1 Introduction

Business foundations stimulate the economic dynamics a working national economy.
Start-ups in the software-intensive field of e-business; including e-commerce, mobile
business, mobile game and entertainment software, hereafter called e-ventures, are
crucial in this environment. Facing the increasing penetration of the internet (internet
of things and services), many new business models arise. E-business and its sub-
sectors hereby belong to the most dynamic and innovative economy sectors.
Compared to the overall economy and the remaining high-technology sector, it can be
stated that a consequently and significant higher founding dynamic exists in the
above-said economic field. However, many of these newly founded e-ventures fail
right at their beginning, during their so-called early-stages.

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 43

According to a study of the Centre for European Economic Research [1], thin
capitalization at the beginning of business activity is a major reason for the failure of
those ICT-start-ups. Approximately two-thirds of all failed ICT-start-ups attribute
their failure to missing seed capital or no, resp. too few investors [2]. We assume that
a noteworthy part of these failures is neither based on lacking sustainability of
business models nor on crude business plans. Rather, our assumption, particularly
regarding e-ventures, has been as follows: the reasons why potentially successful
business ideas of e-ventures have not been funded are e.g. goal conflicts, different
expectations, especially concerning growth of enterprise value and opportunities,
differences in valuation of risks, planning and time horizon as well as other possible
tensions between investors and the company founders during the early-stages of e-
business venturing.

These reasons form the following problem statement: founders of e-ventures
operationalize the term of success unlike investors and in line with this act on
different assumptions of critical success factors at planning their business resp.
evaluating a business plan. One thinks here of some today´s big players in e-business
like eBay, Google or PayPal. From where we stand now, they all have to be
considered as successful (or former) e-ventures, which have had the same single
problem to deal with: rejected financing by investors during their early stages.

Previous research efforts have been primarily investigating either success factors of
start-ups (e-ventures, ICT-start-ups or start-ups in general) [2] or decision processes
and rating criteria of investors [4, 5, 6, 7, 8, 9, 10, 11]. We tried to integrate the
findings from both perspectives up to now. We have therefore jointly conducted two
Delphi studies, both based on results of empirical secondary research. In this context,
this type of study can be explained as a special form of a repeated, structured and
written survey, which uses experts as respondents. It is, in general, an adequate
method for forecasting and evaluating situations which are characterized by
incomplete and uncertain knowledge [12]. Our first Delphi study, from a founder’s
point of view, has identified critical success factors, which e-ventures seem to take as
a starting point for their future business planning during their early-stages. Our second
study on the other hand, from an investor’s perspective, has pursued the similar goal
whereby the rating criteria of investors implicitly represent their assumptions
concerning critical success factors of e-ventures during their early-stage in nearby
future.

This paper therefore focuses on contrasting the results obtained from both studies.
It offers valuables information to the high failure rates of e-ventures’ funding efforts
during the early-stages and implies possible fields of action to increase their chances
in terms of successful funding.

The paper is structured as follows: first, the methodology and data collection are
explained. Then the descriptive results of the research are shown, including the results
for both our studies as well as related implications concerning several subtopics. Our
article concludes with explanation of its most important limitations and possible
future areas of research.

44 T. Taraba, M. Mikusz, and G. Herzwurm

2 Methodology and Data Collection

2.1 Delphi Method

The Delphi method is a systematic survey method, with which experts on specific
issues are interviewed in two or more rounds [12]. The panel receives aggregated and
anonymous evaluation feedback in form of univariate statistics (mean, standard
deviation, quantiles, interquartile range) after each round [12]. In light of these
information, thinking processes are to be triggered and, thus, the participants are
encouraged to reconsider their earlier answers [13]. Key characteristic of the method
is therefore to focus and build a consensus among all participants by supporting group
communication. This is accomplished indirectly by the above-said anonymous
feedback, which thereby leads to an increased consensus among the participants and
which, at the same time, avoids undesirable opinion leadership effects [12, 14].

We chose the Delphi method especially with regard to counteracting the lack of
predictive power of research on past-oriented success factors. Hence, we linked
retrospective knowledge from research in the field with prospective information,
obtained by the Delphi studies. In our view, the determinants of success for
organizations necessarily have to be based on prospective input, i.e. input which does
not rely exclusively on retrospective statements, in order to gain deeper insight into
the highly dynamic environment of e-ventures during their early-stages.

The common approach of a Delphi study can be divided into the following four
steps [12, 14, 15]:

1. Operationalization of the question. Based on the underlying question, items
must be established, which are then submitted to the panel to be evaluated.
These generated items can either be pre-defined or collected through a first
qualitative survey round.

2. Elaboration of a standardized questionnaire and survey. The established items
are processed to be quantitatively evaluated by the expert panel. This is done
with the help of a fully or partially standardized questionnaire.

3. Provision of feedback on the previous round. Standards on how this feedback
can be given hitherto hardly existent. In short, most of the time descriptive
statistics are used here, above all robust measures of dispersion and location.
The aim is to illustrate the given diversity of opinions in a simply and readily
understandable way.

4. Repetition of the survey. Reflection as well as reconsideration of earlier
answers given by the experts–based on the feedback.
If necessary, this step is repeated multiple times.

2.2 Design of the Conducted Studies

Due to the broad research basis for success factors of start-ups as well as on investor´s
rating criteria, we have pre-defined items in both our studies, instead of collecting
them through e.g. a first qualitative survey. Accordingly, we have elaborated our
standardized questionnaires based on empirical secondary research.

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 45

The questionnaires were developed using an HTML-based survey software. Hence,
the received it via e-mail and answered it online.

Both studies were conducted in two rounds. According to appropriate literature, a
satisfying result is achievable within a maximum of only three rounds whereas the
most striking changes usually arise between the first two rounds of a Delphi study
[12, 15]. As for our study, the conducted consensus analysis gave no evidence
leading to the necessity of a third round. For the purpose of examining the general
process of building a consensus among the experts we have calculated the coefficient
of variation for each item of both rounds and studies. Our results indicate that we
achieved satisfying results for both studies in regards to the improvement of
judgment, resp. reaching consensus.

The same questions were asked in both rounds. To do so we placed aggregated,
anonymous feedback on each item of the first round directly in each of the second
round’s questionnaires. Concerning this matter, we decided to use box-whisker-plots,
which included mean, quantiles and interquartile range for each item. Box-whisker-
plots outline various robust measures of location and dispersion in an understandable
and convenient way in just one graphic. To avoid misinterpretations, we also added
information to the questionnaire which illustrated the used form of box-whistler-plots
and explained, how they were to be interpreted in order to reassess every item.

In order to ensure the absence of certain kinds of errors, regarding question content
and formatting concerns which are often associated with survey research, we have
pretested both questionnaires for both rounds in pre-field and field. Resulting
improvements mainly applied to correct presentation and comprehensibility of the
box-and-whisker plots in all major internet browsers (Google Chrome, MS Internet
Explorer, Apple Safari and Mozilla Firefox). Multiple adjustments to the CSS-Style
sheets of the online questionnaire had therefore to be made.

The total duration of our two survey periods were nine weeks. This applies to both
rounds. The studies took place between March 2013 and May 2013.

2.3 Delphi Study of the Investor´s Perspective

To identify the main rating criteria in regards of potential investors’ decision-making-
processes, we conducted a comprehensive review of available secondary literature.
Premier research databases including EBSCO, Science Direct, Google Scholar and
ACM were searched using a preset of defined keywords. To ensure high quality of
used literature, we only took international peer-reviewed journal publications into
account and examined the suitability and content validity of each study. Only
empirical studies that included the evaluation process of ICT-start-ups during their
early-stages from an investor’s point of view were used. In addition, crucial citations,
referenced within these set of publications, were examined and–if applicable–
included. The studies mostly covered a certain groups of investors (venture capital
firms, business angels, incubators, et cetera). To serve as a basis for the work at hand,
these criteria were cataloged. This process ultimately lead to an intersection of all
investor groups, hence, equally relevant for all types.

46 T. Taraba, M. Mikusz, and G. Herzwurm

In the end, 47 criteria from 13 studies remained to be operationalized [see Table 1].
In the first instance we attempted to draw on items that had already been used in one
of the above-mentioned surveys. If, however, this was not possible because or
especially since the former questionnaires have not been published in detail, new
items were formulated by us. Since the length of our questionnaires was a major
constraint, we operationalized each criterion by not more than two items. Finally, 58
items related to the rating criteria and 5 required items regarding meta-information
about the participating investors were included in the questionnaire.

These 58 former mentioned items were enquired in 5 equally formatted item
groups (13 on founder´s, 17 on product/service and 12 on market characteristics, and
8 per financial and investment perspective). The guiding question remained the same:
“What influence are the following statements going to have on investment decisions
you have to asses in the coming three years?” A standardized unipolar 6-points-scale
was applied for judging the influence. This so called “forced choice” method was
used to avoid neutral answers. It was, however, possible to select an option which said
“I don’t know” to prevent a bias resulting out of forced positive/negative estimations.

2.4 Delphi Study of the Founder´s Perspective

The current state of research in the addressed field allowed us to abstain from
conducting our own comprehensive reviews of secondary literature. Instead, we used
a meta-analysis as a foundation published by Song et al. in 2008. Using Pearson
correlations as effect size statistics, Song et al. analyzed the findings of 31 selected
primary statistical analyses from research of success factors concerning new
technology ventures (including e-ventures) and, in doing so, identified the 24 most
widely researched. Further performed analysis showed that, among these, 8 factors
were homogeneous significant and 11 remained heterogeneous significant. For the
heterogeneous success factors, an additional moderator analysis was conducted [3].

Detached from the significances, homogeneities and further implications which
derived from Song et al., we took the initial identified 24 success factors as a basic
starting point for our own operationalization. We did this to satisfy the explorative
orientation of our study and–out of the educated guess–that success factors of e-
ventures, as partial quantity of young technology ventures, could perhaps underlie
deviant causalities. Where possible, we used the same items which as in the empirical
studies examined by Song et al.

Beside two exceptions, we operationalized the success factors by use of two items
per factor. All of our 45 items were prompted in 6 equally formatted item groups (6 per
market and product, 8 per strategy, enterprise and resources, 9 regarding management).
The items resp. success factors had to be evaluated in terms of effectiveness as well as
controllability for the single e-venture. To avoid misinterpretations, a short explanation
of both expressions were provided: effectiveness describes how strong a factor
influences the success of an e-venture regarding the next 3 years. Controllability
expresses to what extend an e-venture is able to change, secure or induce this factor to
its own use. For judging effectiveness and controllability a standardized unipolar 6-
points-scale was applied (see chapter 2.3).

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 47

Besides of the above factors, the participants were questioned a variety of
questions concerning meta-information regarding person, role, enterprise and–to
ensure comparability of the empiric data–manner of success measurement in the
actual company (e.g. revenue, profit). Eventually, the participants had the opportunity
to bring in further items resp. success factors which went beyond the given ones.
They were also able to judge effectiveness and controllability of these new factors.
However, no significant outcome resulted from this and hence, to build upon the
meta-analysis of Song et al. turned out to be an expedient approach.

3 Descriptive Statistics

3.1 Delphi Study of the Investor´s Perspective

Our target population has consisted of investment managers of venture capital firms,
incubators and business angels. The panel had to assess start-ups, more specifically e-
ventures, during their early stage phase. Turning to the response rate, a total of 209
potential respondents clicked on the hyperlink, which lead to the first round of our
survey. Out of these 209 respondents we could attract 102 to see the second side of
the questionnaire and a total of 66 completed it entirely. The second survey round had
a total of 66 respondents of which 63 saw the second page. All in all we could achieve
51 full questionnaire replies for the second round.

All of our interviewed participants have been dealing with e-ventures; two-thirds
have placed more than 50% of their investments in e-ventures. In average, the
participants have had 8.5 years of work experience in the field of new venture
financing; 82% have had assessed more than 100 business plans. Taking everything
into consideration, the size and quality of the panel can be safely regarded as adequate
for conducting a Delphi survey. Furthermore, the calculated coefficient of variation
indicated, that the achieved consensus generated through the Delphi process had
improved for all items, except one–which was market growth. It is therefore
important to bear in mind the possible bias of this particular item.

The following Table 1 shows the basic results of our assessment.

Table 1. Factors considered to affect investor’s future decision-making process

Factor Code Explanation I.a

customer value I_1 p/s offers a noticeable additional benefit 5,87

reliability I_2 honest and earnest behavior 5,68

industry exp. I_3
knowledge regarding the branches/industries the business

idea addresses
5,30

market volume I_4 sales targets can be reached in the targeted market 5,30

available market I_5 demand for p/s is existent 5,28

degree of innovation I_6 p/s is an essential improvement of an existing solution 5,25

financing phase I_7
start-up finds itself in a phase that is usually supported by

you / your institution
5,23

know-how I_8 commercial and technical knowledge existent 5,19

48 T. Taraba, M. Mikusz, and G. Herzwurm

Table 1. (continued.)

exp. of the team I_9 complementary knowledge among team members 5,19

market growth I_10 target market shows a high level of growth 5,19

growth potential I_11
target market is currently a niche market, but shows growth

potential
5,04

real. forecasts I_12 generally, realistic forecasts are made 5,02

prototype I_13 a prototype of the product is existent 4,98

capital demand I_14 capital demand to reach the break-even point 4,96

market entry barriers I_15 possible existence of market entry barriers 4,83

market develop.
I_16 high amount of early-adopters in targeted market segment 3,96

I_17 realistic penetration strategy for the market 5,64

previous results I_18 fast realization of the business idea up to now 4,81

copyrights I_19 start-up owns copyright on p/s 4,81

product type I_20 type of product (hardware, software, service) 4,68

beta-tests I_21 beta-tests show huge interest 4,64

imitability

I_22 p/s can potentially be protected by a copyright 4,36

I_23
p/s can only be copied by investing high amounts of time

and money
4,85

commitment
I_24 quit old job to fully focus on the business idea 4,13

I_25 willingness to invest one’s own capital 5,02

lump sums on

progress
I_26 capital payment can be based on progress in the project 4,64

expected ROI I_27
projected ROI equals those of other start-ups supported by

me or my institution
4,40

competition intensity

I_28
target market is a new market segment without direct

competitors
4,66

I_29
target market is very fragmented with a high number of

potential competitors
4,06

I_30 few but dominant competitors are active in the target market 4,30

distributorship I_31 possibility to enforce distribution partnerships 4,34

develop. progress I_32 p/s will reach marketability within the next 6-12 months 4,94

 I_33 p/s is in an early stage of development 3,64

invest. period I_34 estimated investment period 4,28

prof. experience I_35 have several years of professional experience 4,23

exit-options I_36 business plan includes exit-opportunity 4,26

 I_37 type of planned exit 4,08

market character I_38 target market is a niche market 4,02

 I_39 target market is a mass market 4,15

unique selling point
I_40 p/s is an innovation 5,09

I_41 p/s is a copy of a functional idea (e.g. from the USA) 2,94

executive ability I_42
already assumed management responsibility in other

projects
4,00

develop. risk
I_43 is bases on the development knowledge of a single person 3,53

I_44 p/s uses new, rarely used technologies 3,96

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 49

Table 1. (continued.)

active investors I_45 co-investors are active partners 3,70

travel time I_46
travel time between you/your institution and the potential

investment
3,66

profitability I_47
break-even point is reachable without further financing

rounds
3,64

other investors I_48 there are already other investors involved in the start-up 3,53

portfolio-fit I_49 start-up in own portfolio works on a similar business idea 3,53

past achieve. I_50 have participated in prior venture creation 3,51

recommendation

\references

I_51 recommendations of a different investor 3,70

I_52 recommendations of a different entrepreneur 3,04

exp. as a team I_53 team-members already worked together in the past 3,21

supply-chain I_54 complex supply chain (for hardware products) 3,04

inactive invest. I_55 co-investors are inactive partners 2,81

cash-flow I_56 up to now no profit was generated 2,28

situation at financial

markets
I_57 tense situation on the international financial markets 1,96

crowdfunding I_58 first round of funding via crowdfunding successful 1,58
a influence

3.2 Delphi Study of the Founder´s Perspective

Our panel on the entrepreneurial side of view has consisted of both, founders and
managerial directors of e-ventures during their early-stage. A total of 337 respondents
clicked on the hyperlink which lead to the questionnaire of round one. 157 respondents
viewed the welcome page (first page) and 53 completely answered all questions. On the
whole we could collect 53 complete questionnaires in round one. As to the second
round we could manage all 53 respondents to click on the hyperlink leading to
questionnaire number two. Finally, a total of 33 evaluable questionnaires from members
of the target group (which was ensured with the help of corresponding requested meta-
information) were submitted to us after the end of the second round of the survey.
Despite of the slightly lower participation in comparison with the investor´s perspective,
the size of the panel and its quality can still be safely regarded as adequate. In this
respect it is noted that experiments verified: differences in results of a 16-participant
panel are less than 10% in comparison to a 32-participant panel [21].

The majority of participating e-ventures have been companies (mostly Ltd.) at the
beginning of product production or market launch. All of our interviewed e-ventures
found themselves in the so-called early-stages. The company size varied between two
groups, one had mostly below 50 employees and one between 50 and 250. The
companies’ average age varied between 1-2, resp. 3-4 years. 10 of 33 participating e-
ventures have been offering software; 26 (software-intensive) services and 5
hardware. Thus, multiple belongings to the last category were possible. As to the
generated consensus among our participants, the calculated coefficient of variation

50 T. Taraba, M. Mikusz, and G. Herzwurm

indicated improvement for 40 out of 45 items in terms of the effectiveness.
Concerning the Controllability, even 44 of 45 items showed improvement.

Table 2 summarises our basic findings.

Table 2. Factors considered to affect e-ventures future business success

Factor Code Explanation E.a C.b

marketing intensity
E_1 unique product image 5,03 4,97
E_2 unique firm image 4,94 5,15

marketing experience
E_3 marketing experience of the management 4,73 4,76
E_4 marketing know-how of the management 4,88 4,94

industry experience
E_5 branch experience of the management 4,69 4,52
E_6 market knowledge of the management 4,82 4,76

product innovation
E_7 focusing on R&D 3,12 4,61
E_8 offered product varieties/differentiations 3,94 5,15

market scope
E_9 heterogeneous customers/customer segments 3,82 3,79
E_10 broad product portfolio 3,70 5,45

R&D alliances
E_11 horizontal R&D cooperation 3,37 4,07
E_12 strategic alliances 4,61 4,47

prior start-up experience
E_13 entrepreneurial experience of the management 4,00 4,45
E_14 management experience in similar positions 4,00 3,82

environmental
heterogeneity

E_15 broad operating domain 3,68 3,87
E_16 branch-specific business processes 3,87 4,65

financial resources
E_17 high capital base 4,36 3,79
E_18 high equity ratio 3,88 4,03

internationalization
E_19 international experience of the management 3,66 3,86
E_20 foreign business transactions 3,69 4,66

market growth rate
E_21 increasing total market volume 5,33 3,39
E_22 increasing demand 4,76 2,24

R&D experience
E_23 R&D experience of the management 3,68 4,00
E_24 R&D know how of the management 3,65 4,29

nongovernment.
financial support

E_25 investor financing 3,94 3,73
E_26 other private funds 3,73 3,76

supply chain integration
E_27 product development with suppliers 3,21 3,75
E_28 intensive communication with suppliers 3,53 4,38

firm type
E_29 managerial independence 4,58 4,48
E_30 support from possible parent company 3,03 2,53

firm age E_31 long company existence 3,24 2,42

firm size
E_32 amount of permanent employees 3,33 4,16
E_33 amount of free collaborators (freelancer) 2,79 4,19

low cost strategy
E_34 low sales prices 3,22 4,06
E_35 low purchase prices 3,70 2,70

university partnerships E_36 university research cooperation 2,91 3,88

environmental dynamism
E_37 constant consumer preferences 4,03 2,48
E_38 fast technological change 3,91 2,85

competition intensity
E_39 absence of substitute products 4,19 1,88
E_40 low intensity of competition 4,61 2,06

size of founding team E_41 amount of foundation members 2,52 3,25

R&D investments
E_42 increased budget for patent application 1,20 2,66
E_43 recruitment of R&D-staff 2,52 3,24

patent protection
E_44 ownership of important patent rights 1,87 2,73
E_45 increasing patent application 1,47 3,14

 a effectiveness, b controllability

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 51

4 Analysis and Implications

Taking the diverged results of both our Delphi studies into account, a variety of
implications arise, which are to be discussed in what follows. By examining our
findings, we suggest to separate the following eight subtopics: Experience and know-
how, financial situation, copyrights and imitability, demand, market size and market
volume, supply situation and competitive environment, innovation, value added and
image, agency and portfolio aspects, strategic alliances and partnerships.

4.1 Experience and Know-How

Taking into account our results concerning the entrepreneurial team’s experience and
know-how, they point towards evidence that entrepreneurs themselves tend to
overestimate entrepreneurial experience of their management team (E_13, E_14) in
comparison to the estimations we received by asking potential investors about the
importance of having participated in prior venture creation (I_50). Investors therefore
seem to consider the said factor to be less–but still–crucial. If it comes to managerial
experience, our results implicate that both parties regard it as an important factor
(E_14, I_42). Especially knowledge in conjunction with the target market as well as
the industry appears to be essential for both investors and entrepreneur (E_5, E_6,
I_3). There is also indication that entrepreneurs emphasize individual competencies
such as R&D experience of the management (E_23), R&D know-how of the
management (E_24), international experience of the management (E_19), marketing
experience of the management (E_3) and marketing know-how of the management
(E_4) whereas investors potentially tend to focus on technical expertise and
commercial knowledge of the approached e-venture (I_8, I_35). It can be seen from
the above data that particularly marketing seems to be of importance for the e-
venture’s future success. Another important finding was that existence of
complementary knowledge amongst team members may be suggested as a major
determinant regarding the potential investor’s decision-making processes (I_9). In
summary our results suggest that entrepreneurs emphasize marketing know-how and
experience together with industry and market knowledge. Neither international
experience nor entrepreneurial and managerial skills or experience seem to be crucial.
Likewise our study suggests that R&D experience and know-how are rather
unimportant for e-venture’s future success. In contrast potential investors seem to
consider complementary competences of the e-venture’s team as vital. Our results
also indicate that they focus on commercial skills and overall expertise in almost the
same manner as e-ventures but set no great story by know-how and experience in
prior entrepreneurial activities.

4.2 Financial Situation

As can be seen from our results, especially successful financing through
crowdfunding has to be considered as a relatively irrelevant factor for investors
(I_58). In addition the results, as shown in Table 1, indicate that participation of other

52 T. Taraba, M. Mikusz, and G. Herzwurm

investors whether and in what form can be suggested as relatively insignificant as
well (I_45, I_55). Especially if further investors belong to the category of so called
silent partners, they seem to not play a big role (I_55). An explanation might be that
their existence possibly has no effect regarding the number of direct stakeholders of
the particular e-venture. Existence of active partners on the other hand can be
suggested as a more relevant decision criterion since they happen to erode e.g. the
former single investor’s opportunistic control (I_45). With attention to the
entrepreneurs it can be suggested that financing via investors is a rather crucial
success factor (E_25). Our results also indicate that private funding is believed by
entrepreneurs to be another major pillar (E26). It seems possible that these results are
due to easy acquisition of private funds in comparison to commercial investments.
Private funds moreover maintain entrepreneurial freedom and are therefore to be
welcomed. There are several possible explanations for this. One might be that private
funding is not as opposed to the typical interest in profits which commercial investors
tend to drive at. In summary the answers given by entrepreneurs indicate that–as we
expected–the financial situation must be considered a fairly important success factors
which also seems to be pretty influenceable for the particular e-venture (E_25, E_26).

4.3 Copyrights and Imitability

It is apparent from both our tables that copyrights and general imitability perceived to
be of little relevance for e-ventures in terms of future business success whereas a
great number of potential investors we interviewed regard them as pretty important
(I_19, I_22, I_23, E_42, E_44, E_45). It can also be suggested that entrepreneurs
seem to be capable to influence those factors to a certain extent (E_42, E_44, E_45).
Investors on the other hand appear to attach great importance to ownership of
copyrights as well as the future patentability of potential products and/or processes
(I_19, I_22). This rather contradictory result may be due to the ventures limited
resources in the sense of capital and time. This leads to the assumption that copyrights
and imitability are perhaps not mandatory in comparison to more important factors
such as e.g. marketing. It may also be the case that investors on the other hand
consider e.g. copyrights as discrete values of a company which–in case of a
discontinuation of business or insolvency–remain existent and therefore leave the
opportunity to be converted into cash. There are, however, several other possible
explanations which this study has been unable to demonstrate.

4.4 Demand, Market Size and Market Volume

The demand for products and services seem to be quite important for e-ventures as
Table 2 shows (E_21, E_22). As assumed, especially the demand for products on
offer (E_22) and the general market volume (E_21) appear to be crucial. Interestingly,
most of the potential investors we surveyed also considered market development to be
a relevant factor beside of the above mentioned (I_4, I_14, I_16, I_17, I_21). They, in
this regard, appear to put attention to e.g. presence of a realistic market penetration
strategy (I_14, I_17). It can therefore be assumed that e-ventures, since their business

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 53

plan during the early-stages is already set up, tend to focus on achieving their market
objective whereas investors on the other hand seem to first evaluate the business
concept of the e-venture, including the latter determinants such as market entry
barriers.

4.5 Supply Situation and Competitive Environment

Our results as regards supply situation and competitive environment (I_15, I_28,
I_29, I_30, E_39, E_40) imply that they are both of slightly limited relevance in
comparison to the factors mentioned in chapter 4.4. Thus, they seem to be still of
great importance for both–inventors and e-ventures. There is evidence that
entrepreneurs consider competitive intensity to be very important (E_40). Investors,
in contrast, rather seem to focus on market entry barriers (I_15). This is in itself
somewhat incomprehensible due to the fact that detailed information about the
supply- and competitive situation is required to give meaning to two of three aspects
we examined in the previous subchapter, namely: market volume and market
penetration strategy. Our results possibly result due to a different level of abstraction
which both categories–investors versus entrepreneurs–of studies we examined faced.
They therefore have to be interpreted with caution as further studies will need to be
undertaken. In the final analysis the same explanation as for subchapter 4.4 may be
applied to explain these findings. This means that an existent product may lead to a
certain market which then eventually results in confronting a given competitive
environment. Taken together, it hence seems that factors such as market barriers or
existence of competitors are already determined for e-ventures during the early-stage.
An implication of this is the possibility that those factors are less important since
ambitions of influencing them may not be rewarded. Investors on the other hand seem
to find themselves in a position where the general decision of whether or not to invest
is the one to be made, which is why they perhaps appear to face an extended scope
and therefore tend to also concentrate on actual market characteristics.

4.6 Innovation, Value Added and Image

It is apparent from Table 1 that investors seem to assume a demand for the product to
be especially driven through the level of innovation (I_6, I_40) and the value added
for customers (I_1). Thus, both criteria can be considered to constitute two major
success factors concerning the investor’s decision making process. From the data we
can also see that it seems to be relevant whether the offered product is a material
good, a service or a software (I_20) as well as if e.g. a prototype exists (I_13). It is–on
the other hand–apparently not very important for investors whether there e-venture
which is potentially to be supported builds on new and/or rarely used technologies
(I_44), is bases on the development knowledge of a single person (I_43) or is a copy
of a functional idea, e.g. from the USA (I_41). Entrepreneurs in contrast seem to
singly and solely emphasize the image; to be precise: product and firm image (E_1,
E_2). Aside of that they also appear to regard the offering of product variations and –
differentiation to be crucial for success and easy to influence (E_8). This discrepancy

54 T. Taraba, M. Mikusz, and G. Herzwurm

is interesting to note and may be explained by the assumption that e-ventures are
prone to achieve the best possible improvement of a given product, e.g. via intense
customer interaction since their initial product/service is already designated. As a
result many choices a potential investors may has, are inapplicable for the e-venture
by itself. In summary it can be stated that investors appear to consider soberly the
customer’s benefit compared to other existing solutions which are already available at
the market. Entrepreneurs, as mentioned before, seem to mainly focus on product and
firm image.

4.7 Agency and Portfolio Aspects

As Table 1 shows, there is evidence that potential investors consider multiple factors
as relatively crucial which can be grouped under the category of so-called agency
aspects (I_2, I_12, I_18, I_24, I_25, I_26, I_36, I_46, I_47, I_51, I_52). Those
factors, such as recommendations of a different investor or entrepreneur as well as the
willingness to invest one’s own capital–concerning the particular e-venture which is
to be financed–, seem to be important since they may provide indication as to the
actual motivation and impetus of the respective entrepreneur. The current study found
that entrepreneurs, on the other hand, appear to have no direct equivalent to the above
factors. The reason for this is not clear but it may have something to do with the
axiomatic information asymmetry arising from the principal-agent-relationship which
the investor (principal) and the entrepreneur (agent) are subject to. Hence, the agency
aspects are important for the former because it may help him to explore the
entrepreneur’s real intent and future behavior. It may be that e.g. recommendations of
a different investor/entrepreneur and honest or earnest behavior are especially relevant
prior to the formation of a contract. As said, this may also be due to the fact that some
of these factors grant indication towards the entrepreneur’s real objectives (I_24,
I_25). If, besides of that, capital payment are based on progress in the project this may
also lead to goal congruence via harmonizing the incentives of both parties (I_26). E-
Ventures on the other hand seem to be able to use so-called signaling to convince the
potential investors. In this context they could e.g. attach information about exit-
options (I_36, I_37), realistic forecasts (I_12) or evidence on rapid progress (I_18) to
their written business plan.

If it comes to portfolio aspects, our results unsurprisingly suggest that, again, they
are quite relevant for investors (I_7, I_27, I_37, I_49) but not as much for
entrepreneurs, as no counterparts could be identified by our research. These findings
may be explained by the fact, that most capital-seeking e-ventures cannot chose
between a varieties of possible investors, but rather count themselves lucky when
finding just one to support them. It may also be the case that ventures–in comparison
to investors–are generally better informed about (expected) actions of other party.
This could make further examination superfluous.

4.8 Strategic Alliances and Partnerships

From the data in Table 1 and 2, it is apparent that the existence of strategic alliances
and partnerships is rather important for both the entrepreneurs and the investors (I_31,

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 55

E_12). There was, however, no equivalent on the same level of abstraction for
investors, even though the possibility of distribution partnerships can be named a
decision criterion (I_31). An implication of this is the possibility that e-ventures
during the early-stages are able to underpin information-based products or services by
establishing strategic alliances and partnerships. Investors in contrast possibly
consider sales targets as more crucial. There are, however, other possible explanations
this study cannot provide. It also remains questionable whether or not the existence of
the above-named alliances and partnerships have to be seen as crucially important for
investors.

5 Limitations

Most studies concerning research on the factors of success are generally to be
questioned in opinion of some authors such as e.g. March and Sutton [16]. We,
however, feel that most of this critique is inapplicable for both of our studies. We
chose the Delphi method particularly with regard to counteracting the lack of
predictive power of past-oriented success factors research. As explained, we linked
retrospective knowledge from success factor research with prospective information,
obtained by our Delphi studies. Furthermore, we did not propose any normative
statements regarding corporate success and reasons leading to it, but we do aim
towards an exploration of the contradictive assumptions which founders on the one
hand and investors on the other, underlie. It must be stated, that the Delphi procedure
itself is primarily criticized because of reasons carried out by H. Sackmann [17, 18].
Although fundamental doubts are–according to today's state-of-the-art scientific
research [12, 19, 20]–widely eliminated, this methodological critique must also be
applied to our work. It regards e.g. the general effectiveness of the given feedback.
Also, operative limitations must be taken into account. For instance, we assume that
neither the list of underlying success factors nor that of rating criteria is complete.
Another problem might arise due to the fact that the quality of this work is in some
parts dependent on the accuracy of the used secondary literature, whereby we best
possibly checked their quality and therefore assume it as sufficient. Beyond that, the
gained data can by no means be seen as representative and should rather be consulted
as first reference points for further, more extensive studies which approach a superior
research panel.

6 Conclusions and Future Research Directions

Taken together, this study has gone some way towards enhancing the understanding
of the relationship between e-ventures and potential investors in regards to future
success factors. Our Delphi study, concerning the founder’s point of view, has
identified critical success factors, which e-ventures are going to take as a starting
point for their business planning for the coming three years. Our second study, from
the investor’s perspective, has pursued the similar goal, whereby the rating criteria of
investors implicitly represent their assumptions about critical success factors of

56 T. Taraba, M. Mikusz, and G. Herzwurm

e-ventures. Thus, this paper focused on contrasting the results obtained from both
studies resp. point of views, it remains to be emphasized that the link between classic,
past-oriented success factor research and forecasts gained by the Delphi process
provide a new contribution to this particular field of research. Through comparing
both points of view–e-ventures versus investors–it can therefore be suggested that our
findings possibly serve as a base to understand future decision-making processes to be
made by both the parties we examined. It is, however, up to future research to take up
this first exploration of the topic. With respect to the above-mentioned limitations, it
is apparent that a number of possible follow-up studies, which use the same
mythological setup, are necessary to e.g. verify deducible hypothesizes and/or causal
relations.

References

1. Falk, U., Heger, D., Metzger, G., Höwer, D.: ZEW: Ursachen für das Scheitern junger
Unternehmen in den ersten fünf Jahren ihres Bestehens, Study for The Centre for European
Economic Research, Mannheim (2010)

2. BITKOM Bundesverband Informationswirtschaft, Telekommunikation und neue Medien
e.V.: Die Finanzierungssituation von ITK-Start-ups - Hauptergebnisse einer empirischen
Analyse des BITKOM, http://www.bitkom.org/files/documents/
Finanzierungssituation_ITK-Start-ups(1).pdf

3. Song, M., Podoynitsyna, K., Van Der Bij, H., Halman, J.I.: Success Factors in New
Ventures – A Meta-analysis. Journal of Product Innovation Management 25, 7–27 (2008)

4. Macmillan, I.C., Siegel, R., Narasimha, P.N.S.: Criteria used by Venture Capitalists to
evaluate new Venture Proposals. Journal of Business Venturing 1, 119–128 (1985)

5. Siskos, J., Zopounidis, C.: The Evaluation Criteria of the Venture Capital Investment
Activity: An interactive Assessment. European Journal of Operational Research 31, 304–
313 (1987)

6. Hofer, C.W., Hall, J.: Venture Capitalists’ Decision Criteria in New Venture Evaluation.
Journal of Business Venturing 8, 25–42 (1993)

7. Kakati, M.: Success Criteria in high-tech New Ventures. Technovation 23, 447–457 (2003)
8. Kaplan, S.N., Strömberg, P.: Characteristics, Contracts and Actions: Evidence from

Venture Capitalist Analyses. Journal of Finance 59, 2177–2210 (2004)
9. Baum, R.J., Khanin, D., Mahto, R.V., Heller, C.: Venture Capitalists’ Investment Criteria:

40 Years of Research. Small Business Institute Research Review 35, 187–192 (2008)
10. Franke, N., Henkel, J., Gruber, M., Harhoff, D.: Venture Capitalists’ Evaluations of Start-

Up Teams: Trade-Offs, Knock-Out Criteria, and the Impact of VC Experience.
Entrepreneurship Theory and Practice 32, 459–483 (2008)

11. Petty, J.S., Gruber, M.: “In Pursuit of the real Deal” - A longitudinal Study of VC Decision
Making. Journal of Business Venturing 26, 172–188 (2011)

12. Häder, M.: Delphi-Befragungen – Ein Arbeitsbuch, 2nd edn., Wiesbaden (2009)
13. Becker, D.: Analyse der Delphi-Methode und Ansätze zur ihrer optimalen Gestaltung,

Zürich (1974)
14. Linstone, H.A., Turoff, M.: The Delphi Method – Techniques and Applications, London

(1975)
15. Woudenberg, F.: An Evaluation of Delphi. Technological Forecasting and Social

Change 40, 131–150 (1991)

 A Comparative Perspective between Investors and Businesses Regarding Success Factors 57

16. March, J.G., Sutton, R.I.: Organizational Performance as a Dependent. Organization
Science 8(6), 698–706 (1996)

17. Sackman, H.: Delphi Assessment – Expert Opinion, Forecasting, and Group Process, Santa
Monica (1974)

18. Sackman, H.: A Delphi Critique – Expert Opinion, Forecasting, and Group Process,
Massachusetts (1975)

19. Häder, M., Häder, S.: Neuere Entwicklungen bei der Delphi-Methode – Literaturbericht II.
In: ZUMA-Arbeitsberichte, Mannheim (1998)

20. Kuhn, J.: Kommerzielle Nutzung mobiler Anwendungen – Ergebnisse der Delphi-Studie
“Mobile Business”, Regensburg (2004)

21. Duffield, C.: The Delphi Technique – A Comparison of Results Obtained Using two
Expert Panels. International Journal of Nursing Studies 30(3), 227–237 (1993)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 58–71, 2014.
© Springer International Publishing Switzerland 2014

From Agile Software Development to Mercury Business

Janne Järvinen1, Tua Huomo2, Tommi Mikkonen3, and Pasi Tyrväinen4

1 F-Secure, Helsinki, Finland
janne.jarvinen@f-secure.com

2 VTT, Oulu, Finland
tua.huomo@vtt.fi

3 Tampere University of Technology, Tampere, Finland
tommi.mikkonen@tut.fi

4 University of Jyväskylä, Jyväskylä, Finland
pasi.tyrvainen@jyu.fi

Abstract. The rapid downfall of the Nokia software ecosystem has radically
altered the landscape of software industry in Finland in recent years. There has
been a shift from largely corporate driven way of working, which is often
dominant in large companies, to more agile practices, and in general software
organizations are seeking new, leaner ways of composing, delivering, and using
software also inside already established companies. To accelerate this
transformation in large scale, a collaborative research program has been
created, called Need for Speed (N4S). In this paper, we give an insight to the
joint goals and concrete actions of the program and discuss the motivations of
individual companies that are participating in the program. As one concrete
goal of the project, we introduce the concept of Mercury business, where the
principles of the Lean startup framework are applied in a more conventional
industrial setting.

Keywords: Real-time value delivery, deep customer insight, lean startup,
elastic enterprise, mercury business.

1 Introduction

The rapid downfall of the Nokia software ecosystem has radically altered the
landscape of software industry in Finland in recent years. Instead of a single
ecosystem that has been aiming at the creation of software – including hardware
elements, low-level software, operating systems, middleware, and applications – for
mobile phones, where major up-front R&D investment has been the norm, smaller
companies as well as startups are now becoming major actors. Many of the companies
are only working with one layer of the software stack, and for those that work with
end-user applications, it is has become crucial to deliver new features to end users
whenever they are ready, not when the whole software stack requires updating. This
change has meant that new ways of composing, delivering, and using software are
emerging, following the spirit of e.g. the Lean Startup framework [11].

 From Agile Software Development to Mercury Business 59

While newly founded companies may find it easy to start operating in accordance
to the Lean Startup ideals, already established companies, especially those that have
been formerly a part of the Nokia ecosystem, have been operating with a different
mindset. They have been largely focusing on creating software products, which have
been delivered in a somewhat traditional fashion, and this is also reflected in their
processes and organization, which complicates entering new markets and
experimenting with new products.

To create the foundation for the future success of the Finnish software intensive
businesses in the new digital economy, largely fueled by the Web and pervasive
connectivity in almost all places, a collaborative, industry driven research program
has been created, called Need for Speed (N4S) [8]. The project is planned for years
2014-2017, and its budget exceeds 80M€, resulting in an annual budget around 20M€.

The program is executed jointly by the industry and academia, and it presently is the
biggest national investment in software-related research.

In this paper, we give an insight to the joint goals and concrete actions of the
program and discuss the motivations of individual companies that are participating in
the program. Moreover, we will also introduce research actions that will be executed
during the first year of the program. As an additional contribution of the paper, we
address a concrete business goal of the project, so-called Mercury business, where the
principles of the Lean startup framework are applied in a more conventional industrial
setting, and compare our goals with those of the Lean Startup approach. Moreover,
topics such as internal startups and elastic enterprises are also closely related to our
approach, and they will be briefly addressed as well.

The rest of this paper is structured as follows. In Section 2, we address agile and
lean software development, which reflects the general state-of-the-practice in Finnish
– and to a great extent also Global [10] – companies, although there are small
deviations [5]. In addition, we provide some background information regarding new
software and business approaches that are applicable in the N4S setting. In Section 3,
we introduce the goals of N4S, and discuss each research goal separately. Moreover,
we also show the big picture of these goals to demonstrate the changes we are aiming
at. In Section 4, we provide an insight to the initial goals of the companies that are
participating in the program, and cluster them in accordance to the different research
themes of the program. In Section 5 we give an extended discussion on our
observations so far in the creation of the consortium for the program, as well as point
out certain important details. In Section 6, we draw some final conclusions.

2 Background

In the following, we first discuss contemporary software development approaches that
are commonly applied in Finnish software companies. Then, we address disruptive
technologies that challenge the old ways of working in the field of software. Finally,
we briefly introduce the Lean startup approach, which has been an inspiration during
the planning of the N4S program.

60 J. Järvinen et al.

2.1 2.1 Agile and Lean Software Development

Software and software intensive industry have undergone major advances over the
last decades. The transition from slow projects lasting years to the rapid cycles of
continuous development and deployment have been dramatic (Fig. 1).

Fig. 1. Agile and lean software development

Iterative and incremental development. Ever since (and probably even before) the
introduction of commonly misunderstood Waterfall process [12], iterative and
incremental development has been used by software developers to manage risks and
uncertainties in software development. By developing software in a piecemeal
fashion, where frequent checkpoints can be used to detect anomalies and
misinterpretations, the development effort can be more easily managed than by using
a big-bang development approach. Consequently, while the rational design process
can be used to explain how the development advances [9], in reality it has been
customary to conduct at least experiments before advancing too far in the
development.

Agile development. In many ways culminating in the Agile Manifesto
(http://agilemanifesto.org/), agile software development approaches [3] consist of a
wide number of practices where delivering value to a customer is the dominant factor
in software development, over following a plan, which had been the prevailing
concept early on in many software projects. Various agile methodologies exist,
including Extreme Programming [2], Scrum [13], Kanban [1], and Lean software
development, which more or less share the underlying mindset but implement the
actual actions differently.

 From Agile Software Development to Mercury Business 61

Continuous integration. When numerous developers work on the same project,
they commonly make changes in the same software components in their own
workspaces. When the changes contradict each other, a conflict arises, which need to
be resolved by the developers. The key issue of continuous integration is to minimize
such conflicts by merging developer workspaces with a shared mainline [6].
Whenever a change to the mainline is made, the whole system is compiled and an
automated test run is made to ensure that the mainline remains healthy. It is important
to notice that continuous integration is a development related issue, and therefore it
mainly concerns R&D of software organizations.

Continuous deployment. While continuous integration is about creating the ability
to build a system automatically when even a smallest change has been made,
continuous deployment is about creating the ability to deliver the smallest added
value to the customers. Obviously, to minimize risks this requires automating all the
processes that must be executed to deliver the software to customers, and therefore
implementing continuous deployment concerns the whole company.

To summarize, the evolution of the software development approaches has led
towards approaches where the step between the development and deployment is being
reduced. Hence, an approach referred to DevOps emerges, where development is
treated similarly to operations, and no distinction between the two is made. To be
more precise, DevOps stresses communication, collaboration and integration between
software developers and information technology (IT) professionals who are
responsible for the operation of the information systems [4]. The promise is that the
tighter cooperation results in rapid development and utilization of the software
products and services. To reach this target it is common that continuous deployment
and/or continuous delivery [7] are used. Moreover, in order to gain benefits from the
capability to release rapidly requires that also business goals are defined in a clear and
achievable fashion.

2.2 The New Operating Environment

The Internet has rapidly become far more pervasive than it was only a few years ago.
At present its transformational effects are spreading into several sectors of the
economy and society via new innovations, services, and the emergence and quick
success of new companies.

The complexity and competition around the new Internet infrastructure, services
and business environment will increase dramatically which will fundamentally change
the way software will be developed, deployed and used to reach business goals. The
Internet partly already is and will increasingly be the first truly global platform for the
digital economy. It will enable significant new business, economic and social
opportunities. Consequently, we are facing a fundamental systemic transformations
towards a world where digital resources are constantly available on-line, and available
for all to use.

These systemic transformations will take many forms. Increasingly, products and
services are not developed by a single company but rather by a network of
collaborating companies. New, still partially emerging ecosystems and new

62 J. Järvinen et al.

competitors will alter industry structures, the public sector, supply chains and many
other aspects of today’s businesses. Similarly, computing and networking
infrastructures, approaches, and processes have changed dramatically over the last
years – faster and faster networks, cloud and web technologies providing vast
computing capabilities, open source software available free of charge online, Internet
of Things (IoT), and open data approaches – and they are all reshaping the digital
economy in unforeseen ways and scale.

These new opportunities are increasing ability to gather feedback regarding the use
of products, customer satisfaction, and various other aspects that we have commonly
overlooked. Such methods are already commonly used in today’s software systems to
e.g. report bugs – something that is fundamentally associated with software
development. However, in the future, there will be similar facilities for other use to
help understanding how customers are using products and to create models regarding
why. The central concept in the new internet economy is the idea of a minimum
viable product or service, which aims at defining the smallest possible
implementation that brings added value to customers. Upon delivering the product or
service, the focus shifts to creating incremental improvements, so that development
cycles can be shortened, progress can be evaluated, and customer feedback and
insight can be used to measure the value of the improvement and fed back to
development in real-time. Today, game and web service companies are already
leading the way towards deep customer understanding to improve gaming experience
or to help in e.g. selecting suitable advertisements to show, but we expect that many
other fields of computing will be quick to follow. When combined with the ability to
rapidly scale operations, the concept resembles that of elastic enterprises [14], which
we will address later on in the paper.

2.3 The Lean Startup

In the Lean Startup framework [11], so-called Minimum Viable Product (MVP) is a
key concept. With MVP the developing organization can find the critical and most
valuable features with the customers by experimenting with new iterations in the
market.

The core of the Lean Startup approach is to execute a build-measure-learn cycle
iteratively. These activities are linked to artifacts, ideas, product, and data. In each
iteration, ideas are transformed to products by building them, then, as a product is
used, usage patterns are measured, and finally measurement data is used to learn new
ideas. The goal of these iterations is to learn what features customers are ready to pay
for, and which are not interesting for them.

Customer development is an essential activity in the Lean Startup approach, and it
defines how the Lean Startup approach is applied as the company starts to grow.
There are four phases that follow each other, 1) customer discovery, 2) customer
validation, 3) customer creation, and 4) company building. The goal of customer
discovery is to test both problem and product hypothesis, which the customers would
like to be solved. Once the hypotheses have been approved, in customer validation
phase, the goal is to create a sales roadmap, with a sales cycle that is feasible. It is

 From Agile Software Development to Mercury Business 63

possible to iterate between these two phases; agile tactics, such as short releases,
simple designs and refactoring commonly play a role in these steps. When the product
is good enough, the remaining two phases are executed in more traditional fashion,
where business plans based on the product are created and usual market creation
activities are executed.

While the lean startup approach defines no particular process or tools that are to be
used in software development, in general agile development approaches are assumed
to minimize the time from a concept to a prototype that can be experimented with. As
for the analysis, basic statistical methods and measures related to business goals are
used to study whether the desired results are achieved with the existing
implementation. Moreover, so called A/B testing, where different versions are tested
in parallel, and the version that is best received by customers will be selected for
future use and development, is often applied in this context.

3 Towards Mercury Business

The N4S program has been built around three main themes. These are 1) paradigm
change from product business to delivering value at real-time; 2) deep customer
insight to improve the hit-rate of businesses; and 3) Mercury business which
explicitly aims at finding the new money instead of focusing only on the traditional
customers. All these goals build on established practices presented in Fig. 1 earlier,
but this time the focus has been shifted from software development view to the
business impact created with software.

In the following, these three goals, which are also illustrated in Fig. 2, will be
addressed separately in different subsections. However it is important to notice that all
of them jointly enable the new breed of software business we refer to Mercury
business as described in [8].

3.1 Real-Time Value Delivery

The key aspect of the N4S program is to catalyze a paradigm change from the traditional
product-based software business to service-based business where value can be delivered
at near real time. Achieving this goal requires careful reconsideration of the mode of
operation as well as seamless integration of businesses and research and development –
the former provides motivation for the latter, whereas the latter enables new forms of
business. Obviously, also technical infrastructure and required capabilities must be
established to support the transformation. In addition, special attention is required to
maintain the present level of quality, or, better yet, improve the quality experienced by
customers by focusing on fewer features but delivering them more rapidly.

To reach the above goals, an architecture that supports the incremental
development of systems is needed, where features can be added and removed easily.
Moreover, this architecture must be complemented by a continuous integration system
that can build and test new versions, implying that automatic and incremental
generation of test cases and interpretation of test results are a necessity. Finally,
deployment of the software must also be automated, with mechanisms to minimize or
eliminate downtime and inconveniences for the users.

64 J. Järvinen et al.

Fig. 2. Real-time value delivery, deep customer insight, and mercury business

3.2 Deep Customer Insight

The goal of deep customer insight is to invent value-creating solutions, and act as a
source of inspiration for new products, features, or services that create customer
value, which typically stems from the customer contexts and not from the
engineering domain. The goal is to quickly gain and assess information regarding the
true customer value of potential services, product features, and other possible aspects
of user interaction with a service or a product. As a prerequisite, understanding of
customer contexts and development opportunities as well as an insight on the ways
how customers live and work are needed. The deep understanding of the customers,
usage of products and rapid feedback are gathered continuously from the live use of
the products, and any possible weak signals.

Conducting live experiments enable studying how the users actually interact
with a service or a product. However, successful collection of usage data requires
understanding regarding what data to collect. Data that is readily available and
simple to collect does not necessarily lend itself to meaningful interpretation in
terms of what can be related to the user value of the features or true needs of the user.
Therefore, before running the experiments, these experiments should have a defined
scope and purpose. One can start the experimentation from simple features and
interactions, but the ultimate goal of the program is also to enable experimenting and
testing ideas and concepts early in the development – not only after the product or
service or hardware for the product exists.

To achieve the above goals, there is a thriving demand for automatic and efficient
feedback systems, analytics and visualization. The potential of efficient feedback

 From Agile Software Development to Mercury Business 65

systems and analytics of different flavors is huge, as companies realize the importance
of understanding their customers' cultural differences and behavior in different
situations.

3.3 Mercury Business

By Mercury business, we refer to companies and societies being able to behave like
“mercury” finding new grooves where to flow to grow new business. The goal is to
enable companies to actively seek new ways to execute their existing businesses, and,
perhaps even more importantly, also experiment the options to transform themselves
to completely new business areas. The two above goals, real-time value delivery and
deep customer insight, are important prerequisites for Mercury business, but there are
also other factors that must be considered. For instance, it is obvious that company
culture, structure, and leadership must be altered – from individuals and going all the
way to organizational structures – to empower everyone to seek new opportunities.
Indeed, one important factor is extreme organizational flexibility, where all kinds of
changes are made culturally as easy as possible. The ways of working may also
change dynamically regardless of the existing organizational structures. These
changes are possible e.g. in the Finnish individualistic culture, where extremely
dynamical changes in the ways of working are possible.

Finally, while the Mercury business model may change existing products and
portfolios, we believe that its ability to totally convert the company into a new
business domain is more important. This is what we believe will be an important
characteristic for the next-generation software business even in the global scale.

Lean Startup vs. Mercury Business. As already mentioned, Mercury business is
closely related to the Lean startup framework, and in many ways the Lean startup has
been an inspiration for Mercury business. However, while Lean startup is about the
creation of a new company and the definition of its products, Mercury business aims
at transforming and extending already existing businesses, which requires a different
approach. The main differences between the Lean startup and Mercury business are
listed in Table 1.

4 Thematic Analysis of N4S Cases

From program management perspective the work in the N4S program has been
divided to 1-4 cases per participating firm. Each of the cases has a case owner from
the firm, a research coordinator from a research institution and one or several firms
and research institutions working on the tasks related to the case. The cases are
expected to impact the participating firm performance in line with the targets of the
program.

66 J. Järvinen et al.

Table 1. Lean startup vs. Mercury business

Lean startup Mercury business

No rigid organization; emerging company that is
seeking for a form.

Already existing organization that seeks new
markets and opportunities; internal startups can be
used to separate new effort from already existing
business.

Experiment potential products that could be
scalable to different markets.

Experiment scaling of existing products (or
product derivatives) to new markets, experiment
scaling of features in existing products.

Rapid pivoting where old products can be
abandoned for better ones.

Whole experiment is about experimenting new
opportunities; existing products and markets not
risked.

Usually only one product at a time is being
considered.

Numerous parallel experiments are possible.

No existing infrastructure for supporting
experimenting; built as a part of the product and
the experiment.

Established infrastructure for experimenting must
be in place.

Build-measure-learn. Measure-learn-build.

For the purposes of analyzing the 49 cases defined in the beginning of the program

for the 26 firms, the program preparation team analyzed the case descriptions
provided by the participating firms, extracted key concepts from them and annotated
them with on an average three labels. For focused cases one label described well the
connection of the case to the targets of the program while some broad cases needed up
to six theme labels. Total 23 labels were used the most common ones being as
follows. In Mercury Business area: Mercury business model trials (10), Partnering
approaches (6), Skills and capabilities (6), and New market opportunity / domain
detection (6). In Deep Customer Insight area: Fast feedback / voice of customer (15),
Telemetrics – data analysis (10), Customer and business landscape analysis (8),
Multidimensional segmentation (6), and Experimentation culture (6). In Real-Time
Value Delivery / Continuous Deployment area: Real-time value delivery tooling (21
cases), real-time value delivery (21), and Variability and reuse management (10).

The target of thematic analysis is to identify, which business cases can be clustered
together based on shared themes. For this purpose the annotations the 49 business
cases were compared by two means. First, the business cases sharing two or more
themes were connected together and the resulting graph created with GVisualize is
presented in Figure 3. Secondly, the thematic labeling of each case was treated as a
vector in a 23 dimensional space. Figure 4 represents connections between cases,
whose vector multiplication exceed a threshold value of 0,30.

From the first graph we can identify four clusters of cases:
• Real-time value delivery and real-time value delivery tooling. This is the

largest cluster and includes the cases, where the main emphasis is
enabling and automating the continuous deployment and value delivery.
This represents the first step in building the capabilities of the firm in the
program themes.

 From Agile Software Development to Mercury Business 67

• Fast customer feedback and data analysis. The cases in this cluster are
making use of the data collected from the customer for the second step
of the program, i.e. for gaining deep customer insight.

• Customer and business landscape analysis. These cases operate in
between the deep customer analysis and mercury business targets of the
program. They connect the landscape analysis either with the fast
feedback or with mercury business model trials.

• Mercury business models and variability / reuse management. These
cases combine creation of mercury business models to the context of
product variability and target in creating new business from this
combination.

Fig. 3. Cases for year 2014 clustered based on sharing two or more common themes

In addition to the four clusters in Figure 3, there are some cases connected with
either the real-time value delivery or tooling and customer feedback (see cases 30, 33,
35 and 38) while they do not form a thematically uniform cluster to the extent the four
clusters presented here.

68 J. Järvinen et al.

Figure 4 shows three major clusters, which are formed around three key labels,
Real-time value delivery tooling, Fast feedback / Voice of Customer and Mercury
business trials. These themes were among the most used thematic labels and also parts
of the connected themes in Fig 3.

Due to use of the vector multiplication and a high threshold value (0,30) the cases
having only one theme label tend to form the core of the clusters. Instead, cases with
several thematic labels tend not to match with several labels of another case. And vice
versa, cases 15, 22 and 39 in the middle of the clusters in Fig 4 are not connected in
Fig 3 as they have only one thematic label.

Fig. 4. Cases for year 2014 clustered based on vector multiplication value exceeding 0,30

From the perspective of this paper the empirical part brought up the key themes
within the three main themes. Quantitatively we also noticed that majority of the
cases start with the first main theme with real-time value delivery, followed by cases
focusing on using fast customer feedback and data analysis as the means to gain deep
customer insight. In area of mercury business the mercury business model trials were

 From Agile Software Development to Mercury Business 69

connected with customer/business landscape analysis or variability/reuse
management. In addition, the main theme on Mercury business included several cases
focusing on partnering approaches, skills and capabilities, and new market
opportunity / domain detection.

5 Discussion

The increasing interest in seeking new markets to face increasing competition requires
lean approach to numerous operations. Contemporary software development
ideologies – such as Scrum, Kanban, Lean production, and DevOps mentioned above,
are building on the possibility to perform small changes that are delivered to the
customers as soon as they are completed. While this delivery does not need to take
place immediately as the new features are completed, the option to do so is of pivotal
importance in Mercury business, as the decision regarding the deployment can be
made based on markets rather than technical competences and capabilities – in other
words the technical capabilities are extended to business operations. Similarly to
software development, the ability to execute new business does not necessarily mean
that actions should be taken immediately, but for obvious reasons, such as advertising
campaigns, the exact time to go live may be a subject to a strategic, company level
decision.

The execution of Mercury business builds on some of the characteristics of the
elastic enterprise [14], where five key dynamic properties have been identified that
help in scaling businesses in aggressive fashion. These are business platforms,
business ecosystems, universal connectors, cloud infrastructure, and sapient
leadership. In Mercury business, each business attempt still builds on these properties,
but the attempts should be framed as a live experiment. In particular, there must
explicit goals that determine whether or not it makes sense to continue the attempt to
create new business through scaling the existing business and technical infrastructure.

 To summarize, the most important differences between Mercury business and
Lean startup arise from the fact that in an already established company, there
commonly are assets that the company seeks to benefit from also in the future.
Identifying the way and the domain in which the assets become valuable are the key
issue of Mercury business. By contrast, in the Lean startup approach, the key question
is what assets to build. Another difference is that while a company with existing
business can extend its resources to various parallel experiments, in the creation of a
startup the focus is commonly placed on the most important aspect. Our claim is that
the cost of these experiments will be significantly reduced with the help of highly
automated infrastructure providing capability of real-time value delivery with deep
customer insight. What is common in both approaches are the elements regarding
scalability of assets, be it those that a new company will build or those that already
exist. We believe that scaling is the fundamental key characteristic of all successful
Internet era businesses.

70 J. Järvinen et al.

6 Conclusions

The newly emerged Internet based business operating environment is paving the way
towards a new world of business. These days, everyday artifacts and services such
as documents, photos, music, videos and newspapers are widely available on the
Web. Online banking and stock trading have become commonplace. Various
documents that used to be difficult to access, such as municipal zoning documents,
government budget documents or tax records, are now readily available on the Web.

To deal with this change, many companies are at the brink of a major shift on how
they define their next-generation competitive strategy, new leadership approach and
operating processes that would form a strong basis for changing economic conditions.
The key question is how the companies could adapt to radically new business
conditions and opportunities in real-time or even proactively.

The quantum leap in software development speed by incrementally building and
deploying software with real-time customer feedback will facilitate the speed and
flexibility needed in the Internet-time business competencies. Perhaps paradoxically,
software development, which has sometimes been criticized for slowing down the
business, has become a source for rapid innovations. Harnessing this ability to serve
strategic business intents requires drastically new approaches. The transformation and
radical rethinking which takes companies into totally new markets and enables them
to benefit from the most viable business opportunities, are built on the concepts such
as new strategic thinking and leadership, rapid development cycles, validated
learning, scientific, but cheap live experimentation, and iterative releases with
minimum viable products and services.

References

1. Anderson, D.: Kanban – Successful Evolutionary Change for your Technology Business.
Blue Hole Press (April 2010)

2. Beck, K.: Extreme Programming Explained, 2nd edn. Addison-Wesley Professional (1999)
3. Cockburn, A.: Agile Software Development, 1st edn., 256 pages. Addison-Wesley

Professional (December 2001)
4. Debois, P.: Devops: A software revolution in the making. Cutter IT Journal 24(8) (2011)
5. Eloranta, V.-P., Mikkonen, T., Koskimies, K., Vuorinen, J.: Scrum Anti-Patterns: An

Empirical Study. In: Proceedings of 20th Asia-Pacific Software Engineering Conference
(APSEC 2013), Bangkok, Thailand, pp. 503–510 (2013) ISBN 978-0-4799-2144-7

6. Fowler, M.: Continuous Integration (2006), http://martinfowler.com/
articles/continuousIntegration.html

7. Humble, J., Farley, D.: Continuous delivery: reliable software releases through build, test,
and deployment automation. Pearson Education (July 27, 2010)

8. Huomo, T., Järvinen, J., Kettunen, P., Kuvaja, P., Koivisto, A., Lassenius, C., Lehtovuori,
P., Lilja, S., Miettinen, S., Mikkonen, T., Münch, J., Männistö, T., Oivo, M., Partanen, J.,
Porres, I., Still, J., Tyrväinen, P.: Strategic Research Agenda for Need for Speed. ICT
SHOK DIGILE (April 22, 2013), http://www.digile.fi/Services/
researchprograms/futureprograms (last referenced January 2014)

 From Agile Software Development to Mercury Business 71

9. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it. IEEE
Trans. Softw. Eng. 12(2), 251–257 (1986)

10. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile
practices on communication in software development. Journal of Empirical Software
Engineering 13(3), 303–337 (2008)

11. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Publishing Group (2011)

12. Royce, W.: Managing the Development of Large Software Systems. In: Proceedings of
IEEE WESCON, vol. 26, pp. 1–9 (August 1970)

13. Schwaber, K.: Scrum Development Process, In Business object design and
implementation. In: OOPSLA 1995 Workshop Proceedings, p. 118. The University of
Michigan (1995)

14. Vitalari, N., Shaughnessy, H.: The Elastic Enterprise: The New Manifesto for Business
Revolution. Telemachus Press (2012)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 72–87, 2014.
© Springer International Publishing Switzerland 2014

The Role of Business Model and Its Elements
in Computer Game Start-ups

Erno Vanhala and Jussi Kasurinen

Software Engineering and Information Management
Lappeenranta University of Technology.

P.O. Box 20 FI-53851 Lappeenranta
{erno.vanhala,jussi.kasurinen}@lut.fi

Abstract. In this multiple case study we interviewed six Finnish computer
game start-ups to find out what elements are included in their business models.
We identified the key elements and used the analytical hierarchy process to
rank the elements. We found out that computer game start-ups see their
business model as a synonym to a revenue model and/or a business plan. In an
in-depth analysis we identified nine key elements (human capital, marketing,
key partners, financing, customer relationship, key activities, innovation
process, key resources and customer segment) that have operative importance
for these companies. These elements are the building blocks of a business
model in the computer game start-up domain. The findings provide improved
knowledge on how the business models of game start-ups could be constructed.

Keywords: business model, computer games, start-ups, multiple case study,
analytical hierarchy process.

1 Introduction

Business models are useful in modern business environments as they allow
organizations to understand where their value comes from and how the company in
general operates. However, in our earlier study [1] we found out that very little
research has been conducted on the role of business models in software companies
that could explain their special features and compare their business models to those of
other fields, such as mechanical or food industry. Some studies have defined the
concept of a business model [2], [3] and some have made observations on software
business [4], [5], but there seems to be a lack of research that observes the business
model from the software company's point of view instead of categorizing software
companies based on their business models. Recognizing this we dived into the
business of six computer game start-ups and studied their business models.

These companies build technological solutions, products, not to solve problems,
but to give value to customers in other ways, mostly by providing entertainment and
experiences. Revenue is not generated directly by the technological solution nor by
the experiences offered, but by the business model generating revenue from

 The Role of Business Model and Its Elements in Computer Game Start-ups 73

technology and experiences [6]. As the business varies, it is also probable that the
business model must contain variation in parts, relationships and their weighting.

The overall definition of a business model can be described for example by how it
captures the way a company functions and creates value and delivers value to the
customer and how it converts the customers' responses into profit [7]–[10]. We have
already noted [1] that the definition is ambiguous, and different researchers still see
the concept of the business model in a different way.

In this study we aim to answer three questions, which have been touched by the
literature but not yet adequately answered [1]. The first question “How do computer
game start-ups define the business model?” digs into the issue of the concept of
business model being young, and thus, as the definition of the term is still somewhat
unclear [1], [11], the companies may understand it in various ways. With the second
question “What are the elements of the business models of computer game start-
ups?” we aim to identify the pertinent parts that the managers consider as the
elements of their business model. The final question is “How are the elements of
computer game business models prioritized?” On the basis of interviews, we
prioritize the elements.

2 Related Research

There has been a lot of discussion of what a business model is, what parts are
included and what are not. A common definition is still to be found [11]. Researchers
have positioned the concept of business model between business strategy and business
processes [2], and it is argued that the business model fills the gap between the two.
On one hand, business strategy is a more abstract way to position an organization in
the business, and on the other hand, business processes work within the operational
level with more detailed ways of doing business. This segmentation is also supported
for example in [3], [12], [13]. A business model is more concrete than just the
decision to use segmentation, differentiation or cost leadership as parts of the business
strategy proposed by [14], yet it is not as concrete as the concept of a business
process, which includes detailed processes like management and operational
processes. The business model is not a process, but merely description of the steps
and key items [11], [15].

Several studies which define business models identify elements that are
characteristics to this concept [3], [4], [11], [16]. The variety of elements is great, but
the most commonly used ones include for example value production, customers and
the revenue model. The variety of included elements has changed during the years,
and for example in 2000 it was mentioned in [17] that a business model and a revenue
model are complementary but distinct concepts. In more recent studies, the definition
has lived on and the revenue model has been included as one element of the business
model concept [11]. As the business model concept is closely related to the concepts
of revenue logic and revenue model, Sainio and Marjakoski [13] argue that the
revenue logic is a part of the business model, and the business model describes who
pays and what he gets in return. They position the revenue logic at the strategic level

74 E. Vanhala and J. Kasurinen

and use the concept of the business model when describing the steering done at the
operational level. Some studies use the term component [3], [11], [18] while some
talk about elements [4], [16]. They all still talk about the same thing: parts that form
the business model.

 The business model concept has been studied in several business areas - like
health-care [19], airline business [3] and software business [4]. Software business
differs from the other business domains in many ways, as it builds intangible products
and services that a user cannot experience directly but through user interfaces [20]. In
our literature study [1] we concluded that there were several articles available
describing particular areas of the software business, for example, revenue and pricing
issues, how the software-as-a-service paradigm is changing the business, what open
source and mixed source mean to the business model and what are the difficulties
when a software company is expanding to overseas. However, it seemed that no
studies existed describing how software companies understand the business model
concept, its elements and its use in daily operations.

3 Research Process

In this study we follow the multiple case study research method [21], [22] and the
framework developed in [21]. The case study has six steps: defining the strategy,
reviewing the literature, developing the case study protocol, conducting a pilot case
study, conducting a multiple case study, and developing a conceptual model. Our
research strategy is determined by the 3 research questions presented above.
Reviewing the literature was already done in our previous study [1]. The development
of the case study protocol included the decision to use interviews as the data gathering
method and the design of an interview guide. We conducted a pilot case study and
determined that the protocol was sound. The analysis produced a conceptual model,
which is presented in Section 4. To guarantee the validity of the results, we followed
principles derived from [21]–[23]. This included for example choosing the data
collection procedures (we used interviews), data analysis methods (we used coding)
and avoiding being biased (we had more than one researcher present at most of the
interviews and conducting the analysis of the collected data).

In the analysis we used the analytic hierarchy process method (AHP), which is
widely used in decision making [24]. AHP has been used in various areas, such as
selection, evaluation, benefit-cost, priority, development, resource allocation, decision
making, forecasting, medicine, and quality function deployment. Alidi [25] used AHP
to measure the initial viability of potential industrial projects. Babic and Plaxibat [26]
used AHP to rank companies according to their business efficiency, and Sarker et al.
[27] used AHP to find out the relative importance of various types of agility in
information system development. The characteristics of AHP include suitability to
problems with multiple criteria and attributes [28]. Hafeez et al. [29] determined the
key capabilities of companies using AHP with both quantitative and qualitative data.
In this study we use AHP in a similar way – as a tool to prioritize results based on
qualitative data.

 The Role of Business Model and Its Elements in Computer Game Start-ups 75

3.1 Data Gathering and Analyzing

We collected and analyzed data from six Finnish computer game start-ups. A majority
of them developed mobile games, but there were also experiences in developing
PC/Mac, browser and serious games. The study uses data from three interview
rounds. The interview rounds one and two provided us with 931 minutes of interview
data for background material, and the third round with 507 minutes of data especially
aimed for this study. The first round of interviews included team leaders or project
managers, the second round upper management or the owner, and the third one
interviews with upper management. In most of the interviews, only one company
representative was present, but in two occasions there were more than one person
from a company. In total nine persons were interviewed. Information of the
companies is presented in Table 1.

The actual interview questions were peer-reviewed within the research group
before the interviews were conducted. The questions were open-ended, which enabled
also free-form discussions during the interviews. The interviews were sound-recorded
and transcribed. The focus of the interviews in the first round was to understand the
operational level of software development. The second round focused on marketing,
innovating and financing, and the third round focused completely on business issues
like customers, revenue models, value propositions, and cost structures.

In this study we have built the interview questions over the ideas of the business
model canvas (BMC) developed by Osterwalder et al. [30]. This means that the nine
elements (key partner, key activities, key resources, value propositions, customer

Table 1. Describtion of the organizations.

 Case A Case B Case C Case D Case E Case F

Size of the
organization

4 persons 4 persons 8 persons 3 full time,
1 part time

4 persons 3 persons

Relatedness
to games

Makes
games

Makes
games

Makes
games

Makes
games

Makes
serious
games

Makes
games

Number of
released
games

1st one
being
developed
at the
moment

First two
being
developed
at the
moment

2 1 2 projects
being
developed
at the
moment

1st one
being
developed
at the
moment

Years in
business

Less than 1 Less than 1 Less than 3 Less than 2 Less than 2 Less than 1

Platform /
Customer
segment

Smartphon
es

Smartphon
es, tablets,
browser
games

Smartphon
es, tablets,
desktop
computers

Browser
games,
smartphone
s

Browser
games,
smartphone
s

Smartphon
es

76 E. Vanhala and J. Kasurinen

relationships, customer segments, channels, revenue streams, and cost structure) of
BMC were used as the “seed categories” for the interview questions. These categories
were modified during the question set-up to be more suitable for the software
business, and also new categories appeared. For example, the weight of the channel
category of BMC was decreased and the roles of customers and partners increased, as
we saw them more important for computer game start-ups. Our final interview themes

included six topic groups for the questions: customer; key partners and resources;
business model and value proposition; cost structure, modeling and marketing;
organization and industry; and reasons why the company was started. These six main
topic groups were covered in the questionnaire with 3 to 7 question items in each
group. The final questionnaire form is available online at
http://www2.it.lut.fi/projects/SOCES/library.

4 Elements of the Business Model

The topic groups were based loosely on the business model canvas [31]. However, the
results indicate that the case organizations emphasize different topics from the ones
highlighted in the business model canvas. Some elements match, but some are less
important than described in [30].

It was asked from the organization how they have modeled their business, to get a
rough idea on what they thought about the topic. Case E (interviewed as 1st in the 3rd
round) answered that “Always when things change and such. To be an entrepreneur it
is always like going from one crisis to another, but we analyze and go through it.”
When asking what tools they used for modeling we got the answers spreadsheet and
3rd party analyzers. After other interviews we understood that the spreadsheet was
used to calculate different revenue model possibilities, as Case F put it: “If we put the
price like this, and selling is like that, we see how much operating loss we get”. 3rd
party analyzers meant that some public funding partner had required a business plan
to be supplied with the application letter. So, for these organizations the term business
model was used to mean a revenue model and/or a business plan. As the concept of
business model in software business is yet to be defined unambiguously [1], we saw
that these kinds of interpretations are likely to pop up. This meant that we needed to
analyze carefully whether the interviewed case organization talked about the same
issues with the same terms than we did. In this study we research business models, not
just revenue models or business plans. Although the organizations saw the business
model as a narrower issue, we understood their sentiments on a broader scale than just
a revenue model.

Another issue to note is the term customer. Traditionally companies have been
doing business with customers who give them income. With the free-to-play revenue
model, games have players who do not give any (direct) revenue to the company. In
the free-to-play model the game is distributed free of charge to anyone with a
compatible game system. The revenue is gathered through, for example, traditional

 The Role of Business Model and Its Elements in Computer Game Start-ups 77

online advertising, cross-game advertising, and especially in-app-purchasing, which
means that the players can for example use the normal weapons provided with the
game or spend money to purchase better weapons or unlock advanced features. This
creates the dilemma of who is the customer: all players or only those players who give
income? When discussing this with the game companies they saw all the players as
their customers – whether they pay or not. Case E saw health-care organizations as
well as end-users as their customers. If they put their application to app stores,
customers are also gained from there. Because of this, we define the term customer to
include all the gamers, not just the ones who pay.

Let us consider two elements of the business model canvas [31]: value proposition
and channels. In the computer game context all game companies described the value
they offer to players as an entertaining experience. The overall goal of many
conventional utility-producing software systems is to save time or enhance the
efficiency of the user, whereas the game business has the opposite goal. The manager
of Case D summarized this phenomenon: “[traditional software] tries to minimize the
time a user needs to spend. With games we try to maximize the time spent, and still
keep it entertaining.” This is one of the areas that separate the game business from the
conventional software business. The whole value proposition is turned upside-down,
and to find similar value propositions, the music, movie and television industry are
closer to the game industry than the conventional software business.

In this study we do not concentrate on the value proposition as it was so obvious
for the companies – with the slight exception of the serious game maker Case E,
which builds entertainment experience but also aims at health-care savings through
rehabilitative games. This study concentrates on the business model elements that
enable the entertaining experience, as described below with each individual element.

Another different element is the channel used to deliver the product to the
customer. The brick and mortar business needs a physical channel to push products to
customers, whereas the software industry is moving towards a completely digital
distribution of software. For example, mobile games and other apps are purchased and
installed via platform-specific digital stores such as Apple’s App Store (smartphones)
or Valve’s Steam (PC workstations). This reduces the time game developers need to
use for planning and designing the delivery channel for their products.

4.1 Description of Individual Elements

We used the ATLAS.ti software to code the interviews and the identified nine
business model elements that rose from the data. These elements are the parts that
enable business for the case organizations and thus impact the producing of the
entertaining experience of the game for the customer. Descriptions of the identified
elements are presented in Table 2.

78 E. Vanhala and J. Kasurinen

Table 2. Descriptions of the indentified elements

Element Description
Customer
relationshi
p

The customer relationship element includes all the communication and data
collection that takes place with the customer. There are two ways to collect
feedback. Firstly communication, where the company discusses with its
customers in Facebook, blogs, forums or any other media that allow
communication. Secondly, companies collect indirect feedback through their
games; what parts of the game are used most, what are not used. All the
efforts aim to improve the product and the experience for the customer. The
customer relationship element is also used to improve revenue generation
methods.

Customer
segment

The customer segment denotes how the organization invests to find the best
possible way to reach the customers and what kind of persons there are in the
target group. In the area of computer games, and especially in mobile games,
this means mostly selecting the platform that provides the highest profit for
the money spent on development. It also includes research on customer
behavior and market segments.

Financing Financing is a key area in business, and it means getting external funding
(e.g. venture capital or loan from a bank) and direct revenue from the product
to run the business. As the cases were start-ups, they mentioned both external
funding and building a revenue model to generate revenue from the games.
Some companies also mentioned an aim to build a brand from their game
characters to start getting revenue from merchandising.

Human
capital

Human capital means the people working directly in the company. People can
work full-time or part-time. All the companies pointed out how important
their workers were. Many mentioned how the company was especially
formed around their key persons.

Innovation
process

In a previous article [32] we examined how these companies innovated and
were creative; meaning what methods they utilized to produce creative parts,
like new game concepts and characters. We learned that they saw innovation
as an important element in the game business, but the methods they utilized
were mostly ad-hoc brainstorming, and no structured methods were used.

Key
activities

Key activities mean operations that are required to produce a product. A game
company has several key activities. In addition to developing and
programming, also graphical designing, 3D modeling and usability testing
were mentioned. In some cases also music and sounds were key activities
when they were done in-house, but some outsourced it as they did not have
resources to do them by themselves.

Key
partners

Key partners include the parties that help the organization to, for example,
produce and publish the product. This means, for example, outsourced arts,
music and sounds. Some cases also listed the publisher as their key partner,
but not all as some had the aim to publish games by themselves.

Key
resources

Key resources mean the assets the organization sees important and could not
manage without. The most important resource was the human capital, but also
other things were mentioned. As the organizations mature, they gather
intellectual property (e.g. brand, game characters). Even the development
tools were seen as key resources, as the companies had invested in them.
Hardware was not considered as a key resource.

Marketing Marketing means all the actions an organization does to get more visibility for
their products. The case organizations valued marketing, and in this study
marketing includes how companies aim to advertise themselves and their
games, what kind of research is done on the topic and with what kind of
budget the marketing could be done.

 The Role of Business Model and Its Elements in Computer Game Start-ups 79

4.2 Ranking of Elements

We used the Analytic Hierarchy Process (AHP) to rank the found elements on the
basis of their importance. The AHP consists of several steps. The main idea is to
compare alternatives based on a set of criteria to reach out a goal set beforehand [24],
[28]. The goal can be for example choosing the best candidate to vote in presidential
elections. After the goal has been set, there are probably alternatives already
available, as there is usually more than one candidate for the presidency. Then the
decision about the criteria, such as age, opinion about climate change and gun laws is
made.

After the initial requirements have been set, a comparison is done. In this study the
comparisons were done by the authors of this article based on the gathered data.
Comparisons mean that every alternative is compared to each other according to
every criterion. This means that there will be N*(N-1)/2 comparisons done with every
criterion, where N means the number of alternatives. In our case this means 9*(9-
1)/2=36 comparisons per criterion. The comparison is done with numbers 1, 3, 5, 7
and 9. 1 means equal importance and 9 absolute importance, 3 (moderate), 5 (strong),
7 (very strong) being between these opposites. It is also possible to use numbers 2, 4,
6 and 8 if the jump between, for example, 3 and 5 is seen too large. Invert values are
used to show the importance on the opposite side.

Based on these comparisons NxN – 9x9 in our case – matrixes are produced and
their eigenvector is calculated (Tables 3 and 4). On the basis of these eigenvectors and
the weights of criteria, the final value can be calculated by multiplying these two.
These values are used when the actual decision making (e.g. prioritizing) is done. The
weight of a criterion can be calculated through the same process as the eigenvectors
for the criteria. We have used equal weight for each criterion.

Table 3. Matrix produced from Case A data.

 IP F CR CS M KP KA KR HC

Innovation process (IP) 1 1/3 1/3 3 1/5 1/3 3 1/5 1/7

Financing (F) 3 1 3 3 1/5 1 3 1/3 1/5

Customer relationship (CR) 3 1/3 1 3 1/5 1 3 1/3 1/5

Customer segment (CS) 1/3 1/3 1/3 1 1/7 1/5 1/3 1/7 1/7

Marketing (M) 5 5 5 7 1 3 5 3 1/5

Key partners (KP) 3 1 1 5 1/3 1 3 1/3 1/5

Key activities (KA) 1/3 1/3 1/3 3 1/5 1/3 1 1/5 1/5

Key resources (KR) 5 3 3 7 1/3 3 5 1 1/5

Human capital (HC) 7 5 5 7 5 5 5 5 1

80 E. Vanhala and J. Kasurinen

Table 3 is a 9x9 matrix which shows how Case A sees Financing as moderately
more important (3) than the Innovation process and strongly less important (1/5) than
Marketing.

After a matrix has been formulated, it is then squared several times to get more
accurate results. In our case, after four multiplications we got three static decimals to
eigenvectors, which are presented in Table 4.

Table 4. Eigenvector calculated from the matrix presented in Table 3.

Innovation process 0.038

Financing 0.075

Customer relationship 0.058

Customer segment 0.020

Marketing 0.205

Key partners 0.070

Key activities 0.031

Key resources 0.137

Human capital 0.365

These values are now the weights of different elements for Case A. The same

calculation was done to every case and the total values were calculated by multiplying
the eigenvalue matrix with vector [1/6 1/6 1/6 1/6 1/6 1/6]T.

AHP does not limit the number of alternatives or the criteria. The criteria can also
be divided into sub-criteria if needed. With a consistency ratio and a consistency
index it is also possible to check whether the judgment is valid [27], [28]. The process
of calculating consistency is described thoroughly in [33].

All the case organizations saw themselves as start-ups, but with some elements
they had different weights based on their experiences in the field. The overall ranking
and importance is shown in Table 5. Each weight reflects the importance of the
specific element, and the weights are relative to each other.

Table 5. The ranking of business model elements based on the analytical hierarchy process.
The three most important elements are highlighted with inverted colors and the least important
in gray.

Rank Element Weights

Case A Case B Case C Case D Case E Case F Total

1 Human capital 0.365 0.318 0.267 0.265 0.350 0.317 0.314

2 Marketing 0.205 0.085 0.035 0.114 0.202 0.209 0.142

3 Financing 0.075 0.203 0.135 0.135 0.056 0.107 0.118

 The Role of Business Model and Its Elements in Computer Game Start-ups 81

Table 5. (continued.)

4 Key partners 0.070 0.157 0.185 0.089 0.112 0.068 0.113

5 Customer
relationship

0.058 0.050 0.099 0.235 0.122 0.091 0.109

6 Key resources 0.137 0.039 0.086 0.027 0.024 0.038 0.059

7 Key activities 0.031 0.075 0.095 0.042 0.035 0.062 0.057

8 Innovation process 0.038 0.056 0.055 0.054 0.030 0.086 0.053

9 Customer segment 0.020 0.017 0.042 0.040 0.069 0.022 0.035

Based on the empirical data, the most important element was human capital. The

companies argued that “people are the only thing that matters”, (CEO, Case A) and
“people are the only resource a game company can have”, (CEO, Case C). No other
element was seen as important, and this is natural as it is a question of intangible
products and start-up companies.

There was some variation between the case organizations as regards marketing. For
example, most of the organizations saw marketing as an important element that they
had no experience and skill of. “We have been going with the idea that we are
unknown – invisible – and we don't have marketing know-how. The first games are
exported to different countries via a publisher, who then gives us the coverage”,
(CEO, Case D). However, the oldest organization, Case C, described it as an element
that was no longer important. “In the beginning we had lot of marketing and we had
our own marketing manager... But now we have noted that in the end marketing plays
quite a small role... maybe even more important [than cross-promotion] is the word-
of-mouth.”, (CEO, Case C). Mobile game marketing was seen a bit as a black hole as
there was no guaranteed way to get a game to become the editor’s choice or to any
similar promotion position. This led Case C to scale down the marketing efforts. They
also trusted their publisher and had already gained success with games, which is
something that the other case organizations were still aiming at.

Financing was another element that the companies saw differently. Case B had the
most unique way of funding. Where the other organizations had been using personal
savings, getting grants and financial support, Case B had chosen to take a loan from a
bank: “To our joint stock company we are applying for a loan... approximately two
times 30k euros... so that we can pay a salary to ourselves from the beginning”,
(CEO, Case B). None of the other organizations mentioned anything about loans, but
trusted that they would be able to survive with support money to gain revenue from
their games. Free-to-play was the dominating revenue model. Only Case E, which
made serious games, mentioned that they were going to license their products to
health-care organizations. The rest utilized free-to-play at least to some extent. Some
used the best of both models, as Case C described “Both games started as pay-to-play
[later free-to-play] and they also had the in-app-purchasing option straight from the
beginning”, (CEO, Case C).

82 E. Vanhala and J. Kasurinen

Key partners were also seen important, as for instance only three of the case
companies mentioned that they could actually do the whole game with their own
resources, and one of the organizations, Case E, mentioned that “we would outsource
if we had the money”. Most of the companies outsourced at least music and sound.
The publisher was also seen as a key partner, but some companies were considering
not using a publisher in their future projects. Yet, key partners were not thought as
important as the core employees of the companies. The main sentiment in the
companies was that they would try to improve their own output, and beyond that,
outsource the rest of the work. “Voice-overs have been purchased from the US”,
(CEO, Case C). “We have an art studio [partner] in Bulgaria... ...from them we get
high level graphical assets”, (CEO, Case D).

Also customer relationship divided opinions. For example, Case B, which had not
yet released anything, had not thought about getting customer feedback and steering
their game development towards the gamers' ideas: “We do not see it as a problem
[understanding customers]... when we get something out, we need to take opinions
and getting feedback from blogs and forums”, (CEO, Case B). Case D saw customer
relationships as more important and said that they were going to answer the gamers'
questions and had already implemented some of the ideas which they had got from
the gamers. “When our users give comments, feedback or questions, we answer every
one of them”, (CEO, Case D). Case E, which worked with serious gaming, told that
for them customer relationships were important, as they needed to be in close
connection with medical staff and be able to discuss with doctors and other health-
care people to be able to push their games to health-care use. “We keep close contact
with health-care divisions. We have been discussing and negotiating with all the
responsible directors and have had meetings with physiotherapists... [through these
discussions] we get those pilot patients”, (CEO, Case E).

With the exception of Cases D and E, all the other had decided to use third-party
tools to build their games. Most commonly this meant full game engines, such as
Unity 3D. Their idea was to be able to build games in rapid progression, spending
months rather than years in development. “The first version was a plain C++
OpenGL. After that we tried the C++ and Marmalade combo. It made possible for us
to have multiplatform software, it abstracted all the interfaces. It was awkward, too.
So, after one year of thinking we have now done with Unity in two months more than
all the previous work combined”, (Developer, Case A). Case D had a slightly
different approach as they build browser-based games that communicate with a back-
end solution, which was seen as one of their key resources. “We have now developed
it for more than a year, so it [backend solution] is our key resource”, (CEO, Case D).

All the case organizations mentioned the same kind of key activities, including
developing a game, drawing graphics, testing the game, promoting the company, and
getting grants. User testing was mentioned in many cases as the most important
testing activity. As the games needed to provide good experience, the testing feedback
from users was considered very important, and was mentioned several times. “The
first step is to press the play button in Unity... ...but a developer can be blind to his
work, so the next step is to compile it to a test device and give it to someone who has
no money involved in it”, (CEO, Case A).

 The Role of Business Model and Its Elements in Computer Game Start-ups 83

The innovation process is discussed in detail in [32]. Generally innovation and
creativity are needed when building a game that gives a customer an experience. The
case organizations had their own ways of supporting creativity. They used for
example idea pitching and brainstorming where all the members of the company had
the possibility to tell about their ideas, and subsequently, if the idea was considered
feasible, a prototype could be built.

The customer segment was seen very straightforward for the case organizations, as
the application store of the target platform (for example Apple's App Store) was the
most important release channel, with the exception of Case D and Case E. Case D
used HTML5-based technologies and had built their own back-end solution to support
their browser-based games and a broader customer segment. Case E developed
health-care related games which limited their customer segment, but they had also
thoughts of selling their serious games in app stores. “In the mobile world the basic
app could be offered for free, but not our advanced thing. Not a chance, since it has
all the hardware and other things”, (CEO, Case E). Case E also saw the customer
segment as more important than the other companies, as it needed to work with
different health-care organizations to find customers.

4.3 Summary of the Findings

In the beginning we set three research questions: “How do computer game start-ups
define the business model?”, “What are the elements of the business models of
computer game start-ups?” and “How are the elements of computer game business
models prioritized?” We found answers to all these questions.

For the first question we found out that the game companies described the business
model slightly differently than what they actually applied in their daily operations.
They described marketing and financing as the key parts of their business, but in the
analysis the human capital emerged as the most important element – yet it was not
identified through talking about business, but instead through key resources. We
interpreted that the companies used the term business model when talking about their
revenue model. As the academic literature includes for example the technical platform
or channel [4] as elements of the business model, it seems that there is a distinction
between the academic and practical definition of the term.

The importance of human capital was significant. As this study has focused on
start-ups, it is clear that a company is focused heavily on the persons who founded it.
Several company leaders said that people were the only thing that really mattered, and
for example specific development tools, which may have cost thousands of euros,
were not seen as important, although they would ease the development and fasten the
release of the game.

Today's computer games, especially for mobile platforms, are more and more
delivered through digital stores. We did not find any evidence that the companies had
difficulties in delivering their games. App Store and similar digital software markets
ease the delivery process significantly compared to the situation where software is
delivered with physical packages. The problem was not in delivering the game but in
reaching the awareness of gamers.

84 E. Vanhala and J. Kasurinen

For the second research question we identified 9 elements. Human capital, key
marketing, key partners, financing, customer relationship, key activities, innovation
process, key resources and customer segment were seen as elements that enable
business leading to the entertaining experience of a computer game.

As an answer for the third research question we prioritized the elements with the
analytical hierarchy process and found out that the start-ups considered human capital
as the most important element of their business model. Marketing and key partners
were also considered important.

5 Discussion

This article concerned the application of business models in game industry startup-
companies. In the literature we find numerous articles describing the elements of the
business model; for example [3] gives an extensive list of these articles. The elements
of the business model were gathered from several different industries, and a few
studies [4], [16] which described the business model elements used in the software
industry were found. Yet, we did not find all of these elements in our studied
organizations. We identified nine elements from game companies, which were similar
to the identified elements mentioned in previous studies, but even then they were not
a complete match. This supports our view that we cannot describe the business model
concept by its elements without taking the business domain into account. Our opinion
is that we can discuss business models in two ways: A) by using the more abstract
concept positioned between the concepts of business strategy and business processes,
as presented in [2], [3], or B) by defining the elements that are used in that specific
business model. The latter can be very specific, as even not all software business
models include the same elements. According to our view, for example the conceptual
framework presented in [2] is too abstract to be utilized by start-ups. In this study we
concentrated only on computer game start-ups and thus the findings can be applied in
the computer game industry and to some extent in other software business, as the
computer game industry has similarities with the traditional software industry. It
seems that it is not possible to define the concept of business model comprehensively
with the elements discovered in previous studies, or at least different elements have
very different weights in different business areas. For example, in this study we found
out that the distribution channel is not important for computer game companies. The
channel is something that does not have to be concentrated on at the moment when
Apple's App Store and Google's Play store dominate the mobile markets. On the other
hand, human capital and key partners were seen as important elements, but for
example Schief and Buxmann [4] do not mention these in their framework.

Besides the theoretical findings presented in this article, the aim was also to help
computer game start-ups. This article provides knowledge on what are seen as
important elements in the starting computer game business. This may give new ideas
to other start-ups, who might not have noted all the issues presented in this article.

We studied six computer game start-ups in Finland. This means that the sample
size was small and homogeneous. However, all the companies were aiming at the

 The Role of Business Model and Its Elements in Computer Game Start-ups 85

international markets with their products, the companies covered different release
platforms and genres, and were developing games as their main source of income, so
the companies did have variance and were representative organizations of the games
industry. We had four different interviewers to avoid interviewer bias, two people
conducting the data analysis to avoid observational bias, and the article was discussed
extensively with three people familiar with the data to avoid personal bias. Although
the findings were consistent throughout the study, further research is required for a
better validation of our findings. In addition, the results of qualitative studies should
be considered as suggestions or practice-based recommendations outside their original
scope and environment.

6 Conclusion

In this study we observed six computer game organizations and how they had built
business around their software products – games. All organizations were start-ups and
they were still small in size and had limited experience in the field of software
business. We performed a multiple case study to find out what the organizations were
doing in practice. We used the analytical hierarchy process to prioritize the key
business model elements found in the data.

We discovered nine elements that are crucial when starting a computer game
business: human capital, marketing, key partners, financing, customer relationship,
key activities, innovation process, key resources and customer segment. We found out
that the case start-ups weighted the human capital as the most important element in
their business. Their understanding of the concept of a business model was greatly
focused on the revenue model and was not in line with the academic version of the
concept. The organizations also considered for example the distribution process as
straightforward and did not see it as an important part of their business, as described
in previous studies. Our assessment on this observation is that this feature is a unique
part of the mobile game business, and is different from the traditional brick and
mortar industries, even from most areas of the software industry.

This led us to the more theoretical finding that the business model as a concept is
not completely defined with elements that are transferable between different areas of
industry. For each industry, business models are comparable only in specific cases,
like mobile games, where all the organizations utilize similar elements.

Our future research will focus on the validation of the weights of the computer
game business model elements with a larger number of organizations and studying the
key elements more thoroughly.

Acknowledgement. This study was partially funded by the European Union Regional
Development Grant number A32139 “Game Cluster” administered by the Council of
Päijät-Häme, Finland, and the organizations funding the related research project.

86 E. Vanhala and J. Kasurinen

References

[1] Vanhala, E., Smolander, K.: Business Model - What is It For A Software Company? -
Systematic Mapping Study. In: Proceedings of the IADIS International Conference e-
Commerce 2013, Prague, Czech Republic (2013)

[2] Al-Debei, M.M., Avison, D.: Developing a unified framework of the business model
concept. Eur. J. Inf. Syst. 19(3), 359–376 (2010)

[3] Morris, M., Schindehutte, M., Allen, J.: The entrepreneur’s business model: toward a
unified perspective. J. Bus. Res. 58(6), 726–735 (2005)

[4] Schief, M., Buxmann, P.: ‘Business Models in the Software Industry. presented at the
2012 45th Hawaii International Conference on System Sciences, Hawaii, USA, pp. 3328–
3337 (2012)

[5] Valtakoski, A., Rönkkö, M.: Diversity of business models in software industry. In:
Tyrväinen, P., Jansen, S., Cusumano, M.A. (eds.) ICSOB 2010. LNBIP, vol. 51, pp. 1–
12. Springer, Heidelberg (2010)

[6] Yuan, Y., Zhang, J.J.: Towards an appropriate business model for m-commerce. Int. J.
Mob. Commun. 1(1), 35–56 (2003)

[7] Casadesus-Masanell, R., Ricart, J.E.: From Strategy to Business Models and onto Tactics.
Long Range Plann. 43(2-3), 195–215 (2010)

[8] Osterwalder, A., Pigneur, Y.: An e-Business Model Ontology for Modeling e-Business.
EconWPA, Industrial Organization 0202004 (February 2002)

[9] Teece, D.J.: Business Models, Business Strategy and Innovation. Long Range
Plann. 43(2-3), 172–194 (2010)

[10] Wirtz, B.W., Schilke, O., Ullrich, S.: Strategic Development of Business Models:
Implications of the Web 2.0 for Creating Value on the Internet. Long Range Plann. 43(2-
3), 272–290 (2010)

[11] Zott, C., Amit, R., Massa, L.: The Business Model: Recent Developments and Future
Research. J. Manag. 37(4), 1019–1042 (2011)

[12] Magretta, J.: Why business models matter. Harward Bus. Rev. 80(5), 86–92 (2002)
[13] Sainio, L.-M., Marjakoski, E.: The logic of revenue logic? Strategic and operational

levels of pricing in the context of software business. Technovation 29(5), 368–378 (2009)
[14] Porter, M.E.: Competitive strategy: techniques for analyzing industries and competitors:

with a new introduction, 1st free Press edn. Free Press, New York (1998)
[15] Amit, R., Zott, C.: Value creation in E-business. Strateg. Manag. J. 22(6-7), 493–520

(2001)
[16] Weiner, N., Weisbecker, A.: A Business Model Framework for the Design and

Evaluation of Business Models in the Internet of Services. In: Proceedings of the 2011
Annual SRII Global Conference, pp. 21–33 (2011)

[17] Amit, R., Zott, C.: Value Drivers of e-Commerce Business Models (2000)
[18] Hedman, J., Kalling, T.: The business model concept: theoretical underpinnings and

empirical illustrations. Eur. J. Inf. Syst. 12(1), 49–59 (2003)
[19] Hwang, J., Christensen, C.M.: Disruptive Innovation In Health Care Delivery: A

Framework For Business-Model Innovation. Health Aff (Millwood) 27(5), 1329–1335
(2008)

[20] Chesbrough, H., Spohrer, J.: A research manifesto for services science. Commun.
ACM 49(7), 35 (2006)

[21] Gable, G.G.: Integrating case study and survey research methods: an example in
information systems. Eur. J. Inf. Syst. 3, 112–126 (1994)

[22] Meyer, C.B.: A Case in Case Study Methodology. Field Methods 13(4), 329–352 (2001)

 The Role of Business Model and Its Elements in Computer Game Start-ups 87

[23] Klein, H.K., Myers, M.D.: A Set of Principles for Conducting and Evaluating Interpretive
Field Studies in Information Systems. MIS Q. 23(1), 67 (1999)

[24] Vaidya, O.S., Kumar, S.: Analytic hierarchy process: An overview of applications. Eur. J.
Oper. Res. 169(1), 1–29 (2006)

[25] Alidi, A.S.: Use of the analytic hierarchy process to measure the initial viability of
industrial projects. Int. J. Proj. Manag. 14(4), 205–208 (1996)

[26] Babic, Z., Plazibat, N.: Ranking of enterprises based on multicriterial analysis. Int. J.
Prod. Econ. 56-57, 29–35 (1998)

[27] Sarker, S., Munson, C.L., Sarker, S., Chakraborty, S.: Assessing the relative contribution
of the facets of agility to distributed systems development success: an Analytic Hierarchy
Process approach. Eur. J. Inf. Syst. 18(4), 285–299 (2009)

[28] Chen, M.K., Wang, S.-C.: The critical factors of success for information service industry
in developing international market: Using analytic hierarchy process (AHP) approach.
Expert Syst. Appl. 37(1), 694–704 (2010)

[29] Hafeez, K., Zhang, Y., Malak, N.: Determining key capabilities of a firm using analytic
hierarchy process. Int. J. Prod. Econ. 76(1), 39–51 (2002)

[30] Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying Business Models: Origins, Present,
and Future of the Concept. Commun. Assoc. Inf. Syst. 15, 1–25 (2005)

[31] Osterwalder, A.: Business model generation: a handbook for visionaries, game changers,
and challengers. Wiley, Hoboken (2010)

[32] Vanhala, E., Kasurinen, J., Smolander, K.: Design and Innovation in Game Development;
Observations in 7 Small Organizations. presented at the ICSEA, Venice, Italy (2013)

[33] Alonso, J.A., Lamata, M.T.: Consistency In The Analytic Hierarchy Process: A New
Approach. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 14(04), 445–459 (2006)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 88–99, 2014.
© Springer International Publishing Switzerland 2014

Following the Money: Revenue Stream Constituents
in Case of Within-firm Variation

Matti Saarikallio and Pasi Tyrväinen

matti@saarikallio.net, pasi.tyrvainen@jyu.fi

Abstract. The idea of this paper stems from the perception that the concept of
revenue stream requires clarification and further division to be applicable to
businesses with high internal variation in their methods of capturing revenue.
Current study sets out to investigate the concept of revenue stream through an
overview of previous literature and a case study to demonstrate how revenue
streams of a b2b (business-to-business) software service firm can be analyzed
by elaborating the concept further. The aim is to answer the following research
questions: 1) What are the relevant constituents of the revenue stream concept
within a b2b software services firm? 2) How revenue stream as part of the
business model can be analyzed within a firm? This exploratory study
contributes to the business model literature by investigating the concept of
revenue stream and revenue stream type as managerial tools to better
understand the business under investigation. The study further attempts to
contribute to the decomposition of the revenue stream concept by exploring its
constituents in the context of b2b software business. It is suggested that revenue
streams in this context should be approached based on sub-component level
analysis where the reason and source dimensions create a matrix of analysis
cells from which revenue stream types emerge based on similarities in the
method of the revenue streams. Based on previous literature and empirical
study, it is further suggested that the revenue stream has three main constituents
or sub-components: 1) the source of revenue, 2) the reason for revenue and 3)
the method of revenue.

Keywords: Business model, revenue stream type, software service company,
b2b, source of revenue, reason for revenue, method of revenue.

1 Introduction and Background

1.1 Business Model Research

Through experience, business practitioners have mental models about their business,
but such mental model can only be communicated and modified once it has been
made explicit as a business model [1]. Research about business models has been
around for a long time in the domain of software firms. Still, research knowledge
about business model is disjointed and unclear [2]. While there is not yet a common
understanding, ontologically business model has been suggested to reside in the
middle ground between business strategy and business processes [3].

 Following the Money: Revenue Stream Constituents 89

There are various ways to conduct research relating to business models. Research sub-
domains can be divided into definitions, components, taxonomies, representations,
change methodologies, and evaluation models [4]. The goal of component research is to
further decompose the business model concept into its fundamental constructs [4].

The business model concept and its sub-components are used often as a tool to plan
and define the business model of new startups. For example Mahadevan [5] uses the
term revenue stream to mean the plan for revenue generation. However, business model
can also be used to analyze an existing established firm to gain understanding about the
de facto business model in place. Such an approach has been taken for example by
Rajala, Rossi & Tuunainen [6] in their software business evaluation framework. The
idea for the current paper stems from the challenges in analyzing an existing firm’s
business model’s revenue streams when the firm under investigation has multiple
customers and offerings with high variability in revenue stream configurations.

1.2 Revenue Stream

Most business model conceptualizations include a financial aspect relating to the
money that flows into the company. Business model literature is filled with various
terms used for these aspect such as: revenue stream, revenue, sources of revenue,
revenues, revenue model, revenue mix, revenue side of the business, revenue source,
revenue logic, revenue earning logic, revenue mechanism, income model and earnings
logic[5][7][8][30][9][10][6][18][11][23][12][13][14][15]. Table 1 summarizes the
terms and what they are suggested to mean in the context of business model. The
same unclarity that exists for the business model appears to be present for the revenue
related sub-components as well. There seems to be a common theme, but not a clear
agreement on the terminology.

Zott and Amit [16] have suggested that revenue model complements a business
model design in similar way as pricing strategy complements product design. This can
be a useful analogy but in the same way as business model is quite an abstract concept
when compared to product design, revenue model is very much as abstract compared
to pricing strategy. Revenue stream on the other hand seems to have potential to be
defined as a more tangible and measurable object of study as it can be reduced to the
concrete idea of money flowing into the company. For this reason of seeking
conceptual clarity, this paper focuses on the revenue stream as the main concept of
business model and also adopts the approach used in the business model canvas
concept suggested by Osterwalder and Pigneur [17].

Table 1. There is a multitude of partially overlapping revenue related business model concepts

Author Business model component Description
Mahadevan (2000) Revenue stream The plan for revenue generation
Weill, Vitale (2001) Sources of revenue Description of source of revenue and how realistic they are.
Alt, Zimmermann (2001) Revenues The "bottom line" of a business model.
Stähler (2002) Revenue model From what sources in what ways is the revenue generated.
Stähler (2002) Revenu mix The sum of all the sources of revenue the firm has.
Magretta (2002) Revenue side of the business How is money made in this business.
Afuah, Tucci (2003) Revenue source Where is the income coming from, who pays when and for what value and also what are the margins and their drivers for each market.
Rajala et al. (2003) Revenue logic The way the software business generates its revenue and profit.
Osterwalder (2004) Revenue model The way company makes money through a variety of revenue flows.
Gordijn et al. (2005) Revenue earning logic Generating profitable and sustainable revenue streams.
Chesbrough (2007) Revenue mechanism How will the firm be paid for the offering.
Rédis (2009) Income model Sources of income generated by the company.
Nenonen, Storbacka (2010) Earnings logic How the firm yields a profit from its operations.
Schief, Buxmann (2012) Revenue Group revenue deals with the pricing model and financial flows.
Ojala, Tyrväinen (2012) Revenue model How a firm collects revenue through options that a firm may offer to customers.

90 M. Saarikallio and P. Tyrväinen

1.3 Aims of the Paper

Thus, the current study aims to contribute to the research domain of business model
components by investigating a sub-component referred to as revenue stream. For
example Osterwalder [18] sees the revenue streams as one of the key parts of the
business model. He uses the broader term revenue model to mean a collection of
revenue streams within a company.

Osterwalder and Pigneur [17] have claimed that a business model can have two
different types of revenue streams, namely transaction revenues and recurring
revenues. While this is true in simple business models it is highly unlikely that such a
simplification is enough to fully explain the revenue stream sub-component of the
business model in the more complicated case.

Shafer, Smith, Linder [19] cite a study by Linder and Cantrell [20] which states
that 62 % of executives had a difficult time describing how money is made in their
company. This could indicate the complexity of the typical revenue models or that
there is a lack of proper conceptualization. Either way this supports the relevance of
the current paper’s interest area.

This paper aims to clarify the revenue stream component by evaluating the revenue
model of a case company which has multiple and variable revenue stream
configurations and suggest an answer to the question: 1) what are the relevant
constituents of the revenue stream concept within a b2b software services company.
Further the study attempts to answer the question: 2) how revenue stream as part of
the business model can be analyzed within a firm.

Fig. 1. Suggested decomposition of revenue stream

 Following the Money: Revenue Stream Constituents 91

1.4 Revenue Stream Framework

Framework to analyze the case study data is suggested based on existing literature. It
includes three key parts that must be addressed to explain a revenue stream. These
constituents are the source of the revenue stream, the reason for the revenue stream
and the concrete description of the method of capturing the revenue which is called
here the method of revenue. This framework builds upon Rajala, Rossi, Tuunainen
and Vihinen [21] who suggest that approaches for capturing revenue can have
differences in methods of pricing, sources of revenue and the products and services
being sold. Similarly in context of business model innovation, revenue model
innovations include as key parts offering reconfiguration and pricing models [22].
Chesbrough [23] uses the term revenue mechanism which is by definition comparable
to method of revenue. Figure 1 illustrates the suggested model.

2 Methodology

2.1 Exploratory Case Study

Yin [24] suggests using a case study design when trying to answer how or why
questions and attempting to cover contextual conditions relevant to the phenomenon.
In the current study attempt is made to understand how revenue stream as part of the
business model can be analyzed in the context of a specific b2b software service firm.

When seeking to clarify the concept of revenue stream and related sub-
components, it was necessary to analyze the patterns underlying them and it was
required to gain an in-depth understanding. Qualitative research approach was chosen
to improve understanding of the investigated phenomenon [25]. The chosen research
strategy was a single case study in a company that is considered a representative
example, because it had enough complexity and variation in forms of multiple
revenue stream combinations. Because a case study research strategy focuses on
understanding the dynamics present in a single setting [26], it was a good approach in
exploring the business model sub-component and how it can be analyzed in a real-life
setting in a within-firm context. Thus, research strategy was that of a single case
study. Eisenhardt [26] has suggested that instead of selecting cases at random,
extreme examples are appropriate when seeking to extend theory, which is the goal in
the exploratory research that this paper undertakes. Because a lot of the existing
literature considers cases where there is one revenue model per business model, an
extreme example deviating from the norm would be a case with multiple co-existing
revenue models and high within-firm variation in the revenue streams. The selected
case meets these criteria.

2.2 Case Firm

The chosen case firm operates in the telecom operator software market. This market
had only 196 companies offering software product or service offerings in 2006 with a
volume just under $30 billion [27]. Using the terminology from Luoma, Frank &

92 M. Saarikallio and P. Tyrväinen

Pulkkinen [27] the firm can be classified as a generic telco vendor. It can be predicted
that this kind of firm would have a lot of variation in the revenue streams, because of
the breadth of operations.

The analyzed case firm serves telecom operator customers by offering BSS
(business support system) solutions. The solutions typically contain a service contract
which is one side of the business and making continuous customer specific
modifications is an additional way to generate revenue. New customers are a rare
occasion and typically some sort of penetration pricing is used for initial deliveries.
This is possible due to heavy vendor lock-in that is gained once the delivery is
completed. The investigated firm has out of 150 people about 80 working in the
investigated business unit. It was established in 1995 and has international customers.
Relevant customer count is around ten, but three customers produce majority of the
revenue. The firm is organized into customer serving teams with minor common
functions. R&D, and marketing and sales departments are manned in ad-hoc manner
and no organization exists for these functions. This has given rise to a very variable
culture across customer serving teams and most interestingly to this paper it has given
rise to a multitude of methods for revenue capture. The complexity of the case makes
it a useful context to investigate revenue stream variation.

2.3 Data Collection

The main portion of the data was gathered using semi-structured interviews. Twelve
people in corporate and business unit management and account management positions
were interviewed to find out the current revenue streams of different customer
accounts and the various offerings and revenue capture methods for each. The
interviews lasted from one to three hours each and some were conducted in two
separate sessions, because of scheduling challenges. In addition to revenue model
specific questions, the understanding of the case was further widened by questions
relating to general business model utilizing the business model canvas framework
[17]. All interviews were recorded and transcribed. The interviews were scheduled
close to each other during a period of one month. Close scheduling was done in order
to avoid participants from influencing each others’ answers. Some details were
clarified by additional short discussions to avoid false interpretations.

In addition to the interviews, access was gained to written materials, mainly
contracts and offers made by the case firm. This helped to solidify the actuality of
contractual relations with case firm’s customers in situations where the informants
were unable to remember the details in full.

Data was analyzed using qualitative content analysis method with three analytical
procedures of summary, explication and structuring as suggested by Kohlbacher [28].
The transcribed interview data was processed by summarizing the key themes to
capture the main ideas from the informants. These themes were then used as a basis
for further explication of the data. Dimensions of structuring became apparent from
the data and the results are presented within those dimensions.

 Following the Money: Revenue Stream Constituents 93

3 Results

3.1 Source

The collected data indicated that one explanation for the large revenue stream
variation was the source of revenue, namely the customer or customer segment. As
one informant put it: "Typically if they have an organization change then the desired
invoicing [method] changes." Thus, a big factor affecting the revenue stream is the
customer and their needs. This can be partially due to unbalanced negotiation power
between the parties. The dynamic nature of the customer means that the revenue
stream is also dynamic in nature. When the source of the stream is dynamic it is
reflected in the revenue stream. Within the case firm five different sources of revenue
were detected. Four of them were different medium to large companies. The fifth
source was a group of small companies. The group was analyzed together as one
revenue source, because there were no differences from revenue stream point of view.

All the revenue streams in the current case were negotiated separately on a
customer by customer basis as a whole and in some customer accounts different
parties were involved in negotiating the managed services and the software
development agreements. Actually having to negotiate the pricing in each revenue
stream added to the complexity of the sales process. The lack of a price list was
mostly due to lack of product management efforts in general. The extent of customer
specific negotiations suggests that the customer will have a great impact on the
revenue stream making it a differentiating dimension. The customer negotiation
intervals also have an effect on the predictability of revenue.

3.2 Reason

While source of revenue was a significant explanatory factor for the variation there
were also differences in revenue streams originating from one source and it could be
seen that the variation was dependent on the reason for revenue. Reason for revenue
can be considered to be the offering item which is the product or service and has in
most cases a contractual basis. In the current case 9 different reasons were identified
from the interviews. They were: billing manager service, customer care system, order
entry system, billing system, keeping the systems running, enterprise resource
planning system, system development, consulting/analysis. Additionally the firm
offers fixed price delivery projects for new customers before the relationship
progresses into so-called operative mode. However, no such delivery was ongoing
during the interviews and therefore this aspect was excluded from the study. Focus is
on the current customer relationships.

Revenue streams based on different offerings varied in terms of packaging level.
The revenue streams whose reason for revenue was system licensing or maintenance
service offerings were sold as a complete package. On the other hand those streams
whose reason for revenue was system development and customization activities
contained various configurations based on customer specific needs.

As mentioned earlier, the source of revenue dimension had a somewhat dynamic
nature meaning that the needs change over time. Similarly there was dynamism in the

94 M. Saarikallio and P. Tyrväinen

reason dimension. It was clear that the offerings were not static. There was also a
preference towards generating one type of revenue over the other. An informant
commented that they try to push more towards the model where the development is
less and maintenance is more: "It’s changing towards the direction where maintenance
portion is growing; it also has the best upside, because tools are automated." This
indicates that the reason for revenue -dimension is also dynamic in nature.

3.3 Method

The method of revenue dimension for each stream had differences across streams but
similarities as well. Therefore the analysis within this dimension is more involved. In
table two the method is described for each revenue stream that is considered unique.
In the current case, each revenue source can be considered to originate unique streams
compared to other sources, but multiple reasons can exist for the same stream and
those reasons can have the same method, so they are combined here into cells
depicted in table two.

3.4 Analysis Matrix

It proved useful to present the data in a matrix of reason vs. source where for each cell
of the matrix the method of revenue stream was considered. If the reasons were
contributing to the same revenue stream they were combined together. This way 11
revenue streams (separate money flows) were identified.

Further looking at these 11 revenue streams and their differences, they could be
grouped into four revenue stream types that were considered as unique in the sense
that they had a lot of similarities in the method dimension. The four different revenue
stream types were given designations A, B, C and D (see table 2).

Table 2. Revenue stream types were grouped based on similar structure of revenue
Reason for

revenue

Billing

manager

service

Customer

care

system

Order entry

system Billing system

Keeping the

systems

running ERP system System development

Consulting/A

nalysis

Source of
revenue 1 not offered

2 not offered

Revenue stream 7: Development fee 8

times per year. Based on hours but

adjusted up or down based on the

benefit that the customer would

perceive they get,

breakdown to analysis,

development, etc.

Revenue

stream 8:

Analysis

invoiced full-

time and

separately.

3 not offered not offered not offered not offered

4 not offered not offered not offered not offered

Revenue stream 10: Development fee

monthly afterwards based on worked

hours. not offered

5 not offered not offered not offered not offered

Revenue stream 11: Development fee

monthly afterward based on worked

hours. not offered

Revenue stream 9: Variable development fee invoiced

monthly based on worked hours.

Revenue stream 4:

Maintenance fee invoiced

quarterly in advance. Fixed

amount.

Revenue stream 5: Maintenance

fee invoiced quarterly. Fixed

amount.

Revenue stream 1: Monthly service fee based on amount of

subscriptions..

Revenue stream 6: Projects fee 8 times per year. Every

half year a plan for 6 months of work, and after that

invoice the extras. Analysis phase invoiced

when leading to development. Unused reserved

capacity partially invoiced.

Revenue stream 2: Monthly maintenance fee based on amount of

customers with active subscriptions..

Revenue stream 3: Fixed

usage/license fee invoiced

monthly.

Stream type A

Stream type B

Stream type C

Stream type D

 Following the Money: Revenue Stream Constituents 95

3.5 Revenue Stream Types

Stream type A consists of similarly structured revenue streams one and two. For both
of them the method of payment is a fixed fee and a per unit price. For the stream 1 the
unit is per active subscription and for stream 2 the unit is per end-customer
(customer’s customer) who has an active subscription handled by the system. In the
interviews it was suggested that due to foreseeable changes in the industry the
preferred model from vendor perspective was seen to be per service per customer
which would better reflect the cost structure and allow the provider to benefit from
the new services they might need to support by the system. In general the benefit of
the invoicing tied to the growth of subscriptions was seen in having a shared goal of
helping the customer grow, because it means more money for the vendor as well.
Informant number five commented that "this is the best model I know".

Revenue stream type B included streams where the name people used for the
model was different but the formula was the same, so it can be considered one stream
type. The terms were either usage fee, license fee or maintenance fee, but they were
all basically a fixed amount invoiced at a regular interval, either monthly or by
quarterly, in advance or afterwards. Stream types A and B are basically the same in
terms of offering: system usage right, and maintenance service. The terminology is
interestingly causing problems. Informant six noted: "Because we charge license fee
we have a lot of problems, because they see that they should get monthly
development for free." Many people also felt that the future model should be more
geared towards per unit based invoicing, because it offers a possibility to move
toward value based invoicing away from cost based invoicing. Still, for new
customers the downside is increased risks as informant 11 put it: "There is a
challenge, because there are not that many of those and for us the cost of hardware
doesn’t go down. [In case of] minimum monthly payment, the volume can be too low,
too much risk." This is one of the reasons why revenue stream type B exists alongside
A. It was a safe choice at the initial selling stage.

Revenue stream type C is an interesting one, because it includes a guaranteed
minimum purchase. Thus it could be called assured purchase volume and per unit
invoicing. The way this is done in practice is that there is a planning session every
half a year for the upcoming work which is partially guaranteed work. Informant 1:
"Current agreement offers us safety, that we have half a year work at a time. We can
invoice 80 percent even if they would order nothing". Otherwise work is invoiced on
a per unit price rate where the unit is the amount of worked hours.

Revenue stream type D is a plain per unit invoicing. Compared to stream type C
the vendor takes the bigger risk. Pure per unit invoicing was considered easier to sell.
The benefits of having an assured purchase volume were seen mainly due to the low
transferability of excess capacity between the teams producing the offerings that
generate the revenue streams. In the current case this low transferability problem is
interestingly solved not by developing the organization but rather creating a revenue
stream method that allows it.

96 M. Saarikallio and P. Tyrväinen

Table 3. Contributions of revenue reasons to total revenue from each source

Reason for
revenue

Billing
manager
service

Customer
care
system

Order
entry
system

Billing
system

Keeping
the
systems
running

ERP
system

System
develop
ment

Consultin
g/Analysi
s

Source of
revenue 1

not
offered

2
not

offered 45 % 10 %

3 not offered not offerednot offered
not

offered
4 not offered not offerednot offerednot offered 83 % not offered

5 not offered not offerednot offered
not
offered 5 % not offered95 %

70 % 30 %

45 %

50 % 50 %
17 %

3.6 Revenue Contributions

There was variation between the percentage contributions of revenue reasons to total
revenue from each source. Table 3 summarizes these percentages and shows the
differences between how much each revenue reason group contributes to the total
income when comparing revenue sources to each other. The variation could be due to
the lifecycle of the revenue source and one could guess that a new customer would
require more development related activities whereas older customers would only need
the service contract. There is initial support for such a conclusion, but the interviews
indicated that other reasons like who made the original contract had more effect. Still,
the interviews indicated that there was a goal to move away from stream types C and
D towards stream types A and B. This was related to the fact that development work
is dependent on doing more work: "In the development side the upside will not be
very high. It always includes a lot of work." There was an element of unpredictability
about future revenue. The fact that the buyer can decide upon buying something or
not was seen bad and offering as a packaged service was preferred: "Rather
predictability is better, so service fee [is preferred]." It could be said that revenue
contributions overall are more likely to move towards the service oriented stream
types A and B over time.

In sum, the undertaken analysis approach helped clarify the revenue stream
variation within the case firm and gave support for the decision makers' business
model understanding. During the interviews one of the informants had commented:
"It's hard to tell which revenue stream contributes what. Because it seems the money
goes into one bucket." Introducing the revenue stream type analysis can be the first
step to alleviate the situation and help the firm in strategic decision making.

 Following the Money: Revenue Stream Constituents 97

4 Discussion

The goal of this paper was to conduct exploratory research and answer the question
about the constituents of revenue stream. The study suggests that a revenue stream
has three main sub-components which are the source of revenue stream, the reason for
the revenue stream and the method of revenue stream.

Table 4. Sub-components of revenue stream

Component Definition Examples
Source The originating source of revenue flow from whom does the money come from. Specific customer, customer segment, consumer segment.
Reason The reason(s) why someone is paying the money. Offering item, service or product, contractual relationship.
Method The method of how the payment occurs and how it is structured. Paid every month based on amount of worked hours with a minimum invoicing.

The second question to answer was how the revenue stream can be analyzed within
a firm. It has been stated in previous literature that a business can produce one or
more revenue streams from each source customer segment [17]. In this paper it has
become evident that in a complex b2b setting, one revenue stream can be caused by
several reasons of revenue each having different methods of revenue. In addition
varying revenue streams can originate from similar sources. In the current b2b case
the complexity was such that it was confusing to try to explain it without a clear
structure or fit it into a too abstract model. It is suggested that revenue streams should
be analyzed so that the method of getting paid is considered for each cell of a two
dimensional matrix having two axis: source of the revenue stream and reason for the
revenue stream. Only after this kind of analysis can the similarities in method of
capturing revenue between the streams warrant a recombination into revenue stream
types with similar attributes. Osterwalder [18] uses term stream type very broadly to
mean type of economic activity used to generate income. Stream type is also often
reduced to just listing examples such as: selling, lending, licensing, transaction cut
and advertising [29]. This paper suggests, however, that this simplification is not
necessary or even applicable in the current case and a revenue stream type within a
firm should be defined based on a comparison of methods of revenue viewed through
a source by reason matrix. Thus, it is suggested that a revenue stream type describes
the method of revenue for streams originating from a similar revenue source for a
similar reason for revenue. Further a full explanation of a revenue model means
describing all the revenue stream types used.

Based on the empirical analysis the following hypothesis is suggested for future
testing: When analyzing the revenue streams of a business model, it is necessary to
analyze them separately based on source (from whom does the revenue originate from?)
and reason (on what offering is the invoicing based on?) dimensions. Further it is
suggested that analyzing the method of revenue within these “source-reason” cells
allows the detection of unique revenue stream types which define the nature of the
business model in regards of revenue. This kind of matrix cell representation is
suggested to describe the firm’s revenue mix much better than for example the revenue
mix concept of Stähler [30] which is defined as the sum of all sources of revenue the
firm has. It is suggested that revenue mix concept should rather be a description of
revenue stream types in all three mentioned dimensions not just the one.

98 M. Saarikallio and P. Tyrväinen

Because of the demonstrated incoherence of revenue aspects relating to business
model in the existing literature, a decomposition of the revenue stream concept was
attempted. This paper provides support to the usefulness of the concept revenue
stream and suggests its applicability also to the analysis of b2b software service
businesses. Because only one specific context of b2b software service business was
considered, further study should be made in other contexts to compare the findings
and investigate the suggested decomposition to enable more general theoretical
propositions. Here the context was b2b, because of the case selection, but it might be
possible to expand the findings towards b2c in the future.

This paper contributed to the business model research by defining three
constituents of a revenue stream and introducing the concept of revenue stream type
as a combination of revenue streams with similar method of revenue. For
management practitioners a tool was presented for analyzing revenue aspects of the
business model. The presented decomposition could be used when investigating for
example the profitability of different revenue streams to gain a more fine grained
analysis. Managers can use this systematic approach to better understand the business
and describe and visualize the revenue streams involved.

The suggestion for future business model research is to promote the money flow
i.e. revenue stream as the central concept around which an analysis of a business
model should be built upon, because a business by definition has to generate revenue
in order to be viable on the long term. Therefore, following the money is a good idea.

References

1. Petrovic, O., Kittl, C., Teksten, R.: Developing business models for ebusiness. Available at
SSRN 1658505 (2001)

2. Al-Debei, M.M., Avison, M.: Developing a unified framework of the business model
concept. European Journal of Information Systems 19(3), 359–376 (2010)

3. Osterwalder, A., Pigneur, Y.: An e-business model ontology for modeling e-business. In:
15th Bled Electronic Commerce Conference, Bled, pp. 17–19 (2002)

4. Pateli, A., Giaglis, G.: A framework for understanding and analysing e-business models.
In: Bled Electronic Commerce Conference, Bled (2003)

5. Mahadevan, B.: Business models for Internet-based e-commerce. California Management
Review 42(4), 55–69 (2000)

6. Rajala, R., Rossi, M., Tuunainen, V.K.: A framework for analyzing software business
models. In: ECIS, pp. 1614–1627 (2003)

7. Weill, P., Vitale, M.R.: Place to space: Migrating to eBusiness Models. Harvard Business
Press (2001)

8. Alt, R., Zimmermann, H.D.: Preface: introduction to special section–business models.
Electronic Markets 11(1), 3–9 (2001)

9. Magretta, J.: Why Business Models Matter. Harvard Business Review 80(5), 86–92 (2002)
10. Afuah, A., Tucci, C.L.: Internet Business Models and Strategies: Text and Cases.

McGraw-Hill, Boston (2001)
11. Gordjin, J.: Comparing two business model ontologies for designing e-business models

and value constellations. Technical report, 18th Bled eConference eIntegration in action
(2005)

 Following the Money: Revenue Stream Constituents 99

12. Rédis, J.: The impact of business model characteristics on IT firms’ performance.
International Journal of Business 14(4), 291–307 (2009)

13. Nenonen, S., Storbacka, K.: Business model design: conceptualizing networked value co-
creation. International Journal of Quality and Service Sciences 2(1), 43–59 (2010)

14. Schief, M., Buxmann, P.: Business models in the software industry. In: 2012 45th Hawaii
International Conference on System Science (HICSS), pp. 3328–3337. IEEE (2012)

15. Ojala, A., Tyrväinen, P.: Revenue models in cloud computing. In: Prakash, E. (ed.)
Proceedings of 5th Computer Games, Multimedia & Allied Technology Conference
(CGAT 2012), pp. 114–119. GSTF, Singapore (2012)

16. Zott, C., Amit, R.H.: Designing your future business model: an activity system
perspective. Social Science Research Network Working Paper Series (2009)

17. Osterwalder, A., Pigneur, Y.: Business model generation–a handbook for visionaries, game
changers, and challengers. Wiley, New York (2010)

18. Osterwalder, A.: The business model ontology: A proposition in a design science
approach. Institut d’Informatique et Organisation. Lausanne, Switzerland, University of
Lausanne, Ecole des Hautes Etudes Commerciales HEC, 173 (2004)

19. Shafer, S.M., Smith, H.J., Linder, J.C.: The power of business models. Business
Horizons 48(3), 199–207 (2005)

20. Linder, J., Cantrell, S.: Carved in water: Changing business models fluidly. Accenture
Institute for strategic change (2000)

21. Rajala, R., Rossi, M., Tuunainen, V.K., Vihinen, J.: Revenue Logics of Mobile
Entertainment Software-Observations from Companies Producing Mobile Games.
JTAER 2(2), 34–47 (2007)

22. Giesen, E., Berman, S.J., Bell, R., Blitz, A.: Three ways to successfully innovate your
business model. Strategy & Leadership 35(6), 27–33 (2007)

23. Chesbrough, H.: Business model innovation: it’s not just about technology anymore.
 Strategy & Leadership 35(6), 12–17 (2007)

24. Yin, R.K.: Case study research: Design and methods, vol. 5. Sage (2003)
25. Yin, R.K.: Case study research: Design and methods, 2nd edn. Applied social research

method series, vol. 5. Sage Publications (1994)
26. Eisenhardt, K.M.: Building theories from case study research. Academy of Management

Review 14(4), 532–550 (1989)
27. Luoma, E., Frank, L., Pulkkinen, M.: Overview of telecom operator software market. In:

Vertical Software Industry Evolution, pp. 35–42. Physica-Verlag HD (2009)
28. Kohlbacher, F.: The use of qualitative content analysis in case study research. In: Forum

Qualitative Sozialforschung/Forum: Qualitative Social Research, vol. 7(1) (2006)
29. Scheithauer, G., Wirtz, G.: Business modeling for service descriptions: a meta model and a

UML profile. In: Proceedings of the Seventh Asia-Pacific Conference on Conceptual
Modelling, vol. 110, pp. 79–88. Australian Computer Society, Inc. (2010)

30. Stähler, P.: Business models as a unit of analysis for strategizing (2002),
http://www.scribd.com/doc/34770740/
Business-Models-as-a-unit-of-Analysis-for-Strategizing
(referenced on January 7, 2013)

Defining the Process of Acquiring Product

Software Firms

Jasper Schenkhuizen, Robert van Langerak,
Slinger Jansen, and Karl Michael Popp

Utrecht University, Utrecht, The Netherlands
(jasper.schenkhuizen,rvlangerak,slingerroijackers,karlpopp)@gmail.com

Abstract. Product software companies increasingly seek expansion by
means of acquiring software products. For product software firms, the
process of an acquisition is complex and challenging because acquisitions
require complex processes, business risk, and life-changing decisions. The
determinants that influence such acquisition decisions are rarely investi-
gated. Prior research has focused on software acquisitions, but has not
focused on software acquisition determinants during an acquisition pro-
cess. In this study, the product software acquisition process has been
defined and the determinants have been identified. Experts evaluated
and assessed the acquisition determinants and the acquisition process, in
order to find a critical determinant for each respective phase. Finally, a
model is presented in which the most critical determinants are presented
in the different phases of the acquisition process. The results provide
an exploratory set of guidelines that help managers at product software
companies through the complex processes of acquisitions in the product
software industry.

Keywords: product software industry, software acquisitions, software
acquisition determinants, portfolio extension, product software acquisi-
tion process.

1 Introduction

Mergers and acquisitions characterize the software industry. It is an industry
that is consolidating continuously. Advantages of economies of scale, combinato-
rial sales, and strategic alignment of niche players in ecosystems of large software
companies are some of the drivers of this consolidation. In this context the term
acquisition refers to the situation where a company buys another company or a
set of software product assets of a company, not the purchase of software prod-
ucts from software suppliers for operational use. Sometimes a company is built
around one software product. During the acquisition of such a software product
this leads to the takeover of the entire company. In general this paper focuses
on the acquisition of a software product as an asset. Acquisitions are complex
processes [7,12,19], where attention should be paid to different aspects. In the
product software industry, attention should be paid to product software related

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 100–114, 2014.
c© Springer International Publishing Switzerland 2014

Defining the Process of Acquiring Product Software Firms 101

aspects besides financial, economical, political and legal issues. Software acquisi-
tion determinants are factors that are used by decision makers to decide whether
an acquisition will proceed. These factors are rarely researched, although they
are the determining factors for the process of software acquisition and for the
success of such a project. On average, in the worldwide economy, about 20% of
the mergers and acquisitions succeed [6], however, to our best knowledge, the
ratio for the software industry is not yet documented. There is little scientific
literature available about the process of acquisitions in the product software in-
dustry, which is remarkable because the industry is flourishing and the number
of mergers and acquisitions is increasing: in 2012, the number of announced soft-
ware M&A deals worldwide was approximately 1900, while in 2009 the amount
was 1500 [22].

This study attempts to fill the gap in the body of knowledge concerning both
the process of acquisitions in the product software industry, and the software
aspects that are related to an acquisition. There are few studies focusing on
acquiring software products from software vendors and on software quality as-
sessment, but not specifically on product software acquisitions. The immature
research that is done regarding product software acquisitions can therefore be
identified as a gap in the body of knowledge, which this study starts to fill by
defining the product software acquisition process, and identifying the most crit-
ical product software acquisition determinants that influence decisions during
the complex process of software acquisitions. The results of this study can be
used to help improve the understanding of acquisitions in the product software
business.

This paper is structured as follows: we continue the discussion of related litera-
ture in Section 2 and highlight how and why the product software industry differs
from other industries. In Section 3 the research method is described, including
a detailed discussion of the interview process with eight European and Ameri-
can acquisition experts. In Section 4 the product software acquisition process is
defined, based upon interviews and literature. The product software acquisition
process can be considered as one of the key contributions of this paper. Sec-
tion 5 highlights the product software acquisition determinants and the weights
that they were assigned by the experts in the different phases of the acquisition
process. We continue Section 6 with a discussion of the results and identify the
weaknesses of the research. Finally, in Section 7 we conclude that the process and
weighted determinants contribute to the body of knowledge on product software
acquisition and expect that acquirers of software companies are helped by the
insights provided in this paper.

2 Related Literature

The collection of scientific work on mergers and acquisitions is diverse, but the
specific focus on software acquisitions - or mergers has not yet received a lot of
attention. Best practices and standards from the ISO/IEC and the IEEE discuss
software acquisition: the ISO/IEC 25040 [10] standard provides approaches for

102 J. Schenkhuizen et al.

measurement and evaluation of software product quality. It is appropriate for
acquirers, but does not give a clear overview of the process and the determi-
nants. Another standard, developed in 1993, is the Recommended Practice for
Software Acquisition, IEEE Standard 1062 [8]. It presents a set of recommended
practices which can be applied on different types of software. The focus is on
the software itself, not on the process and its associated determinants. An up-
dated version of the IEEE Standard 1062 [8] is the IEEE Project P1062 [9]. It
is a project containing best practices that help and support organizations to
make a selection, evaluation and eventually help accepting supplier software for
operational use. Furthermore, Nelson, Richmond and Seidman [14] developed a
decision framework for a two-dimensional problem that they call the software
acquisition problem. Although these related sources might be useful during the
acquisition of a product software firm or software assets of a firm, they are too
specifically focused on the acquisition of software packages from vendors for op-
erational use, instead of actually acquiring specific software assets. Related work
that lies more in line with this study is coming from The Software Improvement
Group (SIG) [20], which conducted research on due diligence in the software
industry. Nonetheless, the SIG does not cover the acquisition process. Related
work that does relates to multiple aspects of this study is work of Popp [17].
Popp identified a software acquisition process, which is used to develop the ac-
quisition process for this paper. Work of Popp [17] was found very useful and
discusses software due diligence very extensively.

The product software industry differs from other traditional industries in
various ways, which results in fairly complex acquisitions in the product soft-
ware industry. Related work from Popp [17] shows that software ecosystems are
self-organizing, something that makes predictions about the software industry
complicated [17]. Software companies are often part of one or more software
ecosystems, resulting in difficult predictions about the acquisition environment.
Furthermore, when a software product is finished, the development of hundred
or thousand of the same products costs almost the same, in other words ”the
cost of duplicating a software product is nearly zero” [21]. There is no other busi-
ness that has a gross profit margin of 99 percent. Traditional manufacturing
firms, where products are tangible, duplicating products is costly. The low cost
of duplicating a software product results in a difficult determination of a soft-
ware firms value, therefore making software acquisitions complex. Furthermore,
according to Beizer [1] software is complex, hard to build and has no physical
barriers. He notes that software strategies are often based upon assumptions that
software will behave sensibly. Since the behavior of software is not comparable
with physical objects, software is different from physical objects, and therefore
the product software industry differs from other regular industries. Moreover,
Popp [18] notes that the product software business has a high importance of
workforce quality due to low automation in production. It originates from a
statement that Nowak and Grantham [15] make: The knowledge encapsulated in
software will increasingly define the economic value of the intellectual capital it
represents. Software is built from human capital, which requires knowledge and

Defining the Process of Acquiring Product Software Firms 103

communication, thus there is less need of natural resources and physical labor.
This makes the production process in the software industry difficult to automate
and results in a high importance of workforce quality, therefore differentiating
itself from several other industries. Furthermore, in most cases the vendor of
product software retains ownership of the software product when the product is
sold [25], opposed to for example manufacturing industries. Also, software often
consists of multiple modules, developed by multiple firms, resulting in ownership
issues. A consequence is a strong role of intellectual property rights in the prod-
uct software business [18]. In addition, the diverse range of business, revenue
and delivery models raise challenges in the area of finance and taxation.

All the above mentioned differentiators result in the need for a restructured
view on acquisitions in the software industry, since these differentiators com-
bined give a good view on how the product software industry differs from other
industries and how some aspects make the industry quite complex.

3 Method

The empirical part of this study aimed at prioritizing critical determinants in the
different phases of the product software acquisition process, which is described
in Section 4. In order to do so, the 6-phase design science method has been used
[3]. This method consists of a 6-phase process, in which a test artifact is created,
evaluated and eventually finalized into a model. A prerequisite for collecting data
for this study was a clear definition of the product software acquisition process
and an initial list of critical determinants. A literature study was conducted to
define the steps and activities of the product software acquisition process. The
initial list of critical determinants has been based upon literature as well as
on preliminary expert interviews. These critical determinants are particularly
related to software acquisitions with portfolio extension associated incentives.
Acquisitions with market consolidation related incentives probably have other
determinants, and are outside the scope of this study. To evaluate the correctness,
accuracy, and validity of the determinants and the process, an expert evaluation
in the form of semi-structured interviews was performed. The main part of the
study consisted of a cross-evaluation of the model by eight experts.

3.1 Experts

In total, eight experts have contributed to this study by participating in semi-
structured interviews. We defined an expert as someone who had been involved
in several software acquisitions, in which the expert fulfilled an advisory or de-
cisive role. These experts have been carefully selected based upon experiential
and educational relevance: they were working or had worked at different sizes
of software business related companies and institutions, and most of them have
been graduated in the field of finance, economics or a technology related study.
All together, the experts had been involved in more than 250 software related
acquisitions, and in total have more than 50 years of experience in the field

104 J. Schenkhuizen et al.

of mergers and acquisitions. More information about each expert has been pre-
sented in Table 1. The experts fulfilled several roles during these acquisitions,
from Lead Advisor (LA) to Leading Due Diligence (LDD), and from Lead Di-
rector (LD) to activities regarding Post Merger Integration (PMI). They were
involved in deals with for example Sybase, Hybris, Technidata, Twinfield, Addi-
son, FRS Global, Google, Microsoft, Intel, Symnatec. The name on the bottom
row is confidential and therefore a generic descriptive term (Leading Electronical
Equipment Provider) expressed in italics is used. Other confidential information
is indicated with a hyphen (-).

Table 1. The current function and company of the involved experts in this study

Company Current function Role during M&A’s # of acquisitions

SAP Senior Director M&A LDD & PMI 25

SoftwareAG Director M&A LA -

ISVWorld Founder & CEO LA 80

Accountview CEO LDD 6

Corum Group President LA 100+

Atego Group President Strategy LD 30

Arma Partners Associate LDD 8

LEEP Senior advisor M&A LA & PMI 5

3.2 Materials

In the phase prior to the data collection, Microsoft Excel has been used to share
the initial list of determinants with the experts. The interviews used for data
collection have been recorded with a smartphone audio recorder and a program
called Skype Call Recorder, which has the capability to record both the video
and audio of a Skype call. During the interviews, the model was presented to the
expert in a spreadsheet of the on-line collaboration service from Google, called
Google Drive. This particular software offered the possibility for us to work in
the same document as the expert simultaneously. Seven of the interviews have
been performed via Skype, and one interview has been performed via a landline
telephone.

3.3 Protocol

The evaluation of the correctness of the initial list of determinants was performed
by two experts, who received the Excel-spreadsheet via email. When the experts
finished their evaluation of the process and the list of determinants, they returned

Defining the Process of Acquiring Product Software Firms 105

the Excel-file via e-mail. During a Skype-conversation, the comments were dis-
cussed and processed. Based on these preliminary results a selection was made of
20 determinants which were used in data-collection-phase. The data-collection-
phase of the study involved the participation of eight experts in interviews that
lasted for 50 minutes on average, with the shortest interview being around 30
minutes and the longest interviews about 90 minutes. The interviews consisted
of three parts: firstly, the expert received an introduction about the study and
the purpose of the interview. Then some questions were asked to create a con-
text of the experts experience and education. Thirdly, participants received an
on-line spreadsheet, in which the test model was depicted and described. Before
starting the actual data collection, the on-line spreadsheet was exemplified to the
expert. The participant was asked if he was missing any relevant determinants
and understood the present determinants. In addition, the expert was asked
if he understood and agreed upon the defined acquisition process depicted in
the spreadsheet. Eight experts were requested to rate the determinants for each
phase of the acquisition process, from 0 to 10, whereby 0 would refer to not taken
in consideration and 10 would refer to highly critical. The experts were asked to
think aloud while filling in the spreadsheet, and to argument and motivate their
choices. The conversations have been recorded and anonymously transcribed for
later analysis. When experts were missing certain determinants in their opin-
ion, there was the possibility to add them and rank them accordingly. If such a
change was made to the test model, afterwards the determinant was taken into
consideration and possibly added to the test model. This has led to an incremen-
tal and iterative growth of the model. When a determinant was added after an
expert had participated in the study, the expert was requested to evaluate and
rate the new determinants in the same on-line spreadsheet. This was done to
assure that all experts reviewed all determinants, thereby cross-evaluating the
model. The readability of the model was improved by splitting the determinants
in two groups: software product properties and business environment properties.

4 Product Software Acquisitions

An incentive for acquisitions is growth [4], because at the end of the day a
company only wants to increase its value [2,13]. Synergistic benefits are incentives
as well [4,13,2,24]. Other incentives are diversification of a companys products
[4] and expanding the product portfolio [17]. An incentive that belongs to a more
long-term strategy is to seek for early winners. Potential successful companies
that deliver products with possibly high values are called early winners [11].
When an acquirer recognizes potential growth, long before others do, the acquirer
can make an acquisition at a relatively reasonable price and gain advantage
of the acquisition later [4,24,11]. Another incentive is to buy a company for
gaining knowhow advantages and skills. This includes acquiring technologies
faster and at lower cost than they can be built by the acquirer itself. It results
in low development costs, the risk of building a bad solution will be avoided and
the knowhow of the R&D department is improved. In addition, there will be a

106 J. Schenkhuizen et al.

faster innovation of products by continuously buying new emerging ideas [4,11].
One or more of these incentives will eventually lead a company to identifying
possible acquisition targets, which is the first phase of the acquisition process.
This process will be discussed in the next paragraph. As Gomes et al. [5] describe,
there is no clear defined consensus of the phases of a merger & acquisition process.
This is the result of the possibility to perform different aspects of an acquisition
simultaneously [5].

Because phases can overlap, Gomes et al. [5] eventually try to sketch three
separated phases: pre-merger, ownership transfer, and post-merger. In order to
define a new software acquisition process, several kinds of acquisition processes
that are described in literature [16,23,17] have been combined to create an prod-
uct software acquisition process that we think gives the best representation of
an actual acquisition. The process is presented in Figure 1.

Fig. 1. The product software acquisition process, consisting of five phases, identified
from literature and expert evaluation

Phase 1 of the acquisition consists of identifying possible targets, compiling a
target list and making a selection. An analysis of alternatives should be made by
the acquirer. When a selection has been made, the acquirer should approach the
possible target and start initial meetings. During phase 2, the various objects of
the purchase will be defined based upon several initial meetings that have taken
place. The acquirer has to make a target analysis and do a target valuation,
activities that can be performed simultaneously. If the negotiations between the
firms are progressing well and the acquirer is satisfied with the result of the
target analysis during phase 2, a letter of intent has to be sent to the target.
In this letter the objects of the acquisition are further described, including all
the contingencies associated with those items [16]. In this letter of intent the
two firms agree on a non-disclosure agreement and confirm that they proceed to
the following phase of the acquisition process. In phase 3 due diligence activities
will take place. Popp [17] notes that the goal of due diligence activities is the
ability for the acquirer to make an informed decision about whether to continue.

Defining the Process of Acquiring Product Software Firms 107

Besides normal due diligence, the Software Improvement Group [20] states that
software due diligence provides insight into the costs and risks that impact the fu-
ture of the software investment, and therefore it indicates important issues when
doing software specific due diligence. These issues can be found in documents
of the Software Improvement Group [20] and need to be considered when going
through the due diligence phase. Furthermore, Popp [17] states that intellectual
property due diligence is an important part of software due diligence and needs
to be done to safeguard the existing business of the target, future business and
to safeguard that the target really owns their software products. Paulson [16] and
Popp [17] both state that constructing an integration plan during due diligence
is crucial for the success of an acquisition in the software business. When the
due diligence process is finished the acquirer must decide to continue or stop the
acquisition process. This is an important go/no go decision, as a negative out-
come ends the whole acquisition. By signing the definitive agreement in phase 4,
the deal will be closed [16,17]. This agreement contains several terms and con-
ditions that the buyer and seller will eventually have to agree on. Subsequently,
the acquisition price must be defined [16,23]. Both parties need to agree on the
integration plan and execute closing activities. The closing conditions must be
met before the deal can be closed. When both parties agree on the agreement
and the deal is closed, the post acquisition stage is entered. During the post
acquisition stage phase 5 - the integration plan is further executed to make ef-
fective use of the acquired technology. Depending on the incentive of the acquirer
the acquired company is now adapted and aligned to the needs of the acquiring
company. This is done by combining or adapting different software structures,
solving managerial and cultural issues, directing the orientation and interaction
of new employees, implementing procedures and techniques, and arranging any
remaining legal problems [23]. Paulson [16] mentions that underestimating the
pitfalls in this stage can lead to making serious mistakes.

Acquisition Determinants. The main deliverable of this study is a model
that describes the most critical determinants of a software product during the
different phases of an acquisition process. As there currently is no definition
of product software acquisition determinants, we defined product software ac-
quisition determinants as: Software product and software business environment
related characteristics that exert influence on the decisions that are being made
regarding the takeover of product software assets or firms. Risk factors of an
acquisition might incorrectly be considered as product software acquisition de-
terminants, but are not incorporated in this definition. Risks are not a driving
factor in acquisitions; rather the outlook to get rid of some risks might be in
some case. The initial list of critical determinants has been based upon a liter-
ature study as well as on expert knowledge, as described in the method part of
this paper. The final list of determinants is constructed as follows:

– Product Technology: Describes the technology that is used in a software
product, including platforms, standards and operating systems.

108 J. Schenkhuizen et al.

– Source Code Quality: The quality of the source code, which substantially
determines the performance of a software product.

– Total R&D Investment: Refers to the relative ratio between research and
development investments and the products current value.

– Business Model: Describes the strategies and models with which a com-
pany attempts to create value.

– License Model: The methods and strategies that a company uses for li-
censing.

– Profit Margin: Describe the ratio of profitability, which gives insight in
which of the revenues turn into profits.

– Payment Model: A companys payment model determines when and what
customers pay for the service or product.

– Key Cost Drivers: The cost drivers that use most of the companys re-
sources. They give insight in the financial situation of a company or a prod-
uct.

– Asking Price: The initial negotiation price the target firm asks is the asking
price.

– Percentage of Recurring Revenue: Refers to the revenue that is recur-
ring in a financial year, compared to the total revenue. Recurring revenue
often is steady revenue.

– Revenue Synergies: Revenue synergies describe the increase of revenue of
a company as a result of combining two or more businesses.

– Cost Synergies: Describe the extent to which a company can eliminate
costs throughout the organization as a result of combining two or more
businesses.

– Market Share: Describes the percentage of an industrys total sales that
is collected by a software firm in a certain time frame. Software firms can
achieve a high market share, without actually provide a large part of the
users in the industry with their software. If the total of an industrys sales
was very low, a high market share does not imply a large user base.

– Product’s Potential Customers: Describes the potential customer group
of the product that is to be acquired. The potential customers can deliver
critical information about the potential results of the product.

– Installed Base: Refers to the share of customers within a certain industry
that are currently owning or actively running the product. A high market
share does not imply a large installed base.

– Intellectual Property Rights: Intellectual property rights allow creators
to protect their ideas and creations.

– Cost of Mandatory Future Upgrades: Refers to the projected expenses
of future maintenance.

– Portfolio Fit: Describes whether the software product that is to be acquired
fits in the current portfolio, to a technological and strategic extent.

– Available Alternatives: Refers to the existence of alternatives for a par-
ticular target product.

– Key Employee Retention: Key employees have extensive knowledge of
the software and this knowledge about the product makes them valuable

Defining the Process of Acquiring Product Software Firms 109

for the acquirer. Retention of employees makes updating and managing the
product more efficient.

– Company Culture: Describes the conflicting company cultures. Race, hi-
erarchy, beliefs and design culture are examples of conflict topics.

– Employee Integration: Describes the difficulty and possibility of the inte-
gration of employees into the acquiring company.

– Cooperation Partners: Describes the extent to which the target has out-
sourced the development activities and other processes.

– Support Model: Contains the existing collection of support activities the
target company currently delivers, to keep the product running as advertised.

– Services: Describes the activities of the target company that are performed
on top of support activities. Supplementary courses and training programmes
are examples of services.

To avoid ambiguity regarding the meaning of a determinant, each factor has
been described in the abovementioned list. Each determinant individually ex-
erts influence on the decision-making during an acquisition, and therefore each
determinant should be analyzed, guided by the description in the list above.

5 Results

In Table 2 the results of the interviews have been combined. The table shows all
determinants, including the following determinants that have been added during
the data collection: percentage of recurring revenue, revenue synergies, cost syn-
ergies, company culture and employee integration. As mentioned in the method
section, all determinants have been cross-evaluated by all experts to ensure the
validity of the results. The determinants have been weighted by importance from
0 to 10. Each weight in Table 2 is the average weight of all weights that have
been given for that determinant in the associated phase. As stated, the numbers
in the cells are based upon the average of the ratings that the experts gave to
each determinant, for each phase.

In the first phase Business Model was rated an 8,63, thereby being the highest
weighted determinant in its phase. Asking Price received an average weight of
8,13 in the second phase. Intellectual Property Rights was rated a 9,00 in the
third phase, and the fourth phase had a relative high weight for Key Employee
Retention with 7,38. An average weight of 8,88 was given to Revenue Synergies
and Employee Integration in the fifth phase. Table 3 presents the answer to
the incentive of this study, by indicating the most critical software acquisition
determinants of each phase of the acquisition process.

Business Model was perceived as most critical determinant of phase 1, as
many experts noted that it is counterproductive to transform an on-premise
based business model to a SaaS business or the other way around. Therefore,
this determinant might have a large influence on the process of selection in the
first phase. The high weight of Portfolio Fit in the first phase suggests that it
is a critical determinant during the selection of potential targets. Experts noted

110 J. Schenkhuizen et al.

Table 2. The weights of product software acquisition determinants in each phase, given
by eight experts

Phase 1 2 3 4 5

Software product properties

Product Technology 6.75 7.00 7.38 2.63 5.63
Source Code Quality 1.63 2.50 8.25 4.00 4.88
Total R&D Investment 4.38 5.13 5.63 2.63 3.13
Business Model 8.63 6.38 6.25 1.75 5.88
License Model 3.00 3.75 3.88 1.63 3.88
Profit Margin 4.88 4.13 6.25 2.75 4.63
Payment Model 1.63 3.25 3.25 1.25 4.13
Key Cost Drivers 1.88 3.50 6.88 2.13 5.63
Asking Price 4.75 8.13 3.88 5.38 1.38
Percentage of Recurring Revenue 6.25 6.50 7.13 4.00 5.13
Revenue Synergies 3.63 6.63 6.25 4.63 8.88
Cost Synergies 2.25 4.00 5.13 4.50 7.38
Market Share 6.75 5.38 3.63 2.50 4.00
Product’s Potential Customers 7.38 5.13 5.75 2.50 5.13
Installed Base 7.13 5.13 6.25 3.75 4.88
Intellectual Property Rights 6.25 5.75 9.00 7.25 4.88
Cost of Mandatory Future Upgrades 2.13 3.75 6.25 2.50 5.00

Business environment properties

Portfolio Fit 7.50 7.50 4.25 3.00 5.88
Available Alternatives 7.38 4.13 2.50 3.25 0.13
Key Employee Retention 1.50 3.25 6.38 7.38 8.13
Company Culture 3.00 5.00 6.50 3.75 7.75
Employee Integration 0.75 2.63 4.63 2.88 8.88
Cooperation Partners 2.50 4.50 5.38 3.25 5.38
Support Model 2.38 3.63 3.50 1.75 5.63
Services 3.88 2.88 4.50 1.63 4.75

that firms that want to acquire search for companies that have products that
match the product portfolio, and often base decisions upon this determinant.
Products Potential Customers also received a high weight during the first phase,
which suggests the potential customers of a target company or product are of
importance when selecting a target. Due to the fact that the acquirer can sell
already existing products to a network of potential customers, distribution syn-
ergies are achieved. Surprisingly, the determinant with the highest weight in the
phase of initial meetings was Asking Price, what might seem early on in the
process. Experts clarified the high weight of the determinant: if the target firm
has an initial asking price that is too high in the eyes of the acquirer, then the
process will probably stop after one meeting. We find a lower weight of Asking
Price in the due diligence phase, but an increased weight in the closing phase.
Negotiations about the price might push the weight of this determinant up in
the closing phase. Product Technology also received a high weight in the second
phase. If an acquirer has built every product on Java, and the target company

Defining the Process of Acquiring Product Software Firms 111

Table 3. The most critical software acquisition determinants

#1 #2 #3

Phase 1 Business Model (8.63) Portfolio Fit (7.50) Product’s Potential
Customers (7.38) &
Available Alternatives
(7.38)

Phase 2 Asking Price (8.13) Portfolio Fit (7.50) Product Technology
(7.00)

Phase 3 Intellectual Property
Rights (9.00)

Source Code Quality
(8.25)

Product Technology
(7.38)

Phase 4 Key Employee
Retention (7.38)

Intellectual Property
Right (7.25)

Asking Price (5.38)

Phase 5 Revenue Synergies
(8.88) & Employee
Integration (8.88)

Key Employee
Retention (8.13)

Company Culture
(7.75)

has built everything on .NET, then that could cause severe integration problems
and costs. Experts referred to this problem as oil and water, not only being a
product challenge in terms of integrating things but also a cultural challenge to
the extent that attitudes towards standards and platforms may differ between
employees of both companies. The due diligence phase did not yield surprising
results, as highest-weight determinants are related to software quality and intel-
lectual property. One expert surprisingly mentioned that Source Code Quality
was not critical since the cost of deeply investigating the source code would not
outweigh the added weight of the acquisition. Opposed to this expert, the other
experts mentioned that software due diligence is a critical activity of the acquisi-
tion process, in which the source code quality deserves a main focus. The findings
for the fourth phase support the related work from Nowak and Grantham [15]
who state that software is build from knowledge, which requires human capital
and communication. They argue that human capital is valuable in software. The
determinant Key Employee Retention received a high rating in the fourth phase
of the acquisition process, most likely since employees know all the ins and outs
of a product or company, making them valuable assets of a company and there-
fore need to be retained as long as possible, according to the experts. Retention
of key employees is done in the closing phase, since contracts are signed in this
phase. As expected, Asking Price and Intellectual Property Rights are in the
top three of critical determinants for this phase. The last phase contains two
determinants with the highest identical weight: Employee Integration and Rev-
enue Synergies. Experts mentioned integrating the retained employees is even
more important than only retaining them, since retained employees that are not
being integrated well, will leave the company sooner. According to the experts,
Company Culture plays a significant role when trying to integrate employees
into the acquirers firm, and therefore received a high weight in the integration
phase.

112 J. Schenkhuizen et al.

6 Discussion

Firstly, the possibility exists that economical changes in this industry can cause
the acquisition process to change, and technological changes can cause a shift in
perceived importance of certain software acquisition determinants. This might
lead to different results when conducting the same study again. These influenc-
ing factors are circumstances beyond our control. Secondly, the use of different
experts plays an important role to improve the reliability of this study and at-
tempting to avoid skewed results. Further, in order to preserve validity, each
determinant was clearly defined in a note that was attached to each item in the
list. Biases might have been avoided using experts from different industries, with
different backgrounds and educations. However, experts in the domain of acqui-
sitions in the product software industry are scarce and a larger sample group
might have yielded enough data to perform statistical analysis/quantitative re-
search. A limitation might have been caused by possible pressure that the expert
perceived during the interviews. The interviewers could have influenced the at-
titude and the behavior of experts, as experts could have had the idea that they
had to conform to certain expectations. In the attempt to eliminate this limita-
tion, the interviewees were told the data was completely anonymous, in order
not to build the pressure. In addition, experts were told to think aloud while
evaluating the model, and were not guided by the interviewers when filling in
the weights. Despite these efforts to overcome this limitation, it is not entirely
negligible, as human beings cannot be entirely objective. Due to the scarceness
of experts on this topic in the Netherlands, experts from Germany, England and
America participated in this study. Some of the experts had English as a first
language, while some of the experts had English as second language. These dif-
ferences in languages might result in limitations regarding the interpretation of
the English and German language.

7 Conclusion

As stated in the introduction of this paper, mergers and acquisitions are very
complex activities, where attention should be paid to a variety of different as-
pects of a company. The findings of this study suggest that software acquisition
determinants play a key role during acquisitions in the product software industry.
This paper presents the product software acquisition process and the determi-
nants that play a role in the different phases of software acquisition. We expect
that acquirers of software companies are helped by the insights provided in this
paper, and that the results provide an exploratory set of guidelines that help
managers at product software companies through the complex processes of ac-
quisitions in the product software industry. The product software acquisition
process and the accompanying determinants are an interesting topic of study,
which offers a variety of research challenges. Interesting results could probably
be discovered in a study that examines the relation between the size of the com-
pany where an expert works, and the rating that is given to each determinant. In

Defining the Process of Acquiring Product Software Firms 113

addition, a study that explores statistical correlations or dependencies between
determinants might as well be very valuable. It might also be interesting to per-
form a study on what the results would be if this research focused on market
consolidation based acquisitions, as well as what the differences between both
types of acquisitions would be.

References

1. Beizer, B.: Software is different. Annals of Software Engineering 10(1-4), 293–310
(2000) [1022-7091]

2. Ceausescu, A.: Merger and Acquisition-A Strategic Option for Companies. Annals
of the University of Petrosani, Economics 8(1), 59–64 (2008)

3. Ellis, T.J., Levy, Y.: A guide for novice researchers: Design and development re-
search methods. In: Proceedings of Informing Science & IT Education Conference,
InSITE (2010)

4. Gaughan, P.: Mergers, Acquisitions and corporate restructurings. Wiley & Sons,
Inc., Hoboken (2007)

5. Gomes, E., Angwin, D.N., Weber, Y., Tarba, S.Y.: Critical Success Factors through
the Mergers and Acquisitions Process: Revealing Pre-and Post-M&A Connections
for Improved Performance. Thunderbird International Business Review, 55(1), 13-
35 (2013)

6. Grubb, T.M., Lamb, R.B.: Capitalize on merger chaos: six ways to profit from your
competitors’ consolidation and your own. New York Press, 9-10, 12-14 (2000)

7. Hayward, M.L.A.: When Do Firms Learn from Their Acquisition Experience? Ev-
idence from 1990-1995. Strategic Management Journal 23(1), 21–39 (2002)

8. IEEE Standards Association.: IEEE Standard 1062. Recommended Practice for
Software Acquisition (1993)

9. IEEE Standards Association.: IEEE Project P1062. Recommended Practice for
Software Acquisition. (2003)

10. International Organization for Standardization.: ISO/IEC 25040. Systems and soft-
ware engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) - Evaluation Process (2011)

11. Koller, T., Goedhart, M., Wessels, D.: The Five Types of Successful Acquisitions.
In: McKinsey On Finance, Perspectives on Corporate Finance and Strategy. McKin-
sey&Company, number 36 (2010); excerpted from: Koller, T., Goedhart, M., Wes-
sels, D.: Valuation: Measuring and Managing the Value of Companies, 5th edn.
John Wiley & Sons, Hoboken (August 2010)

12. Larsson, R., Finkelstein, S.: Integrating Strategic, Organizational, and Human Re-
source Perspectives on Mergers and Acquisitions: A Case Survey of Synergy Real-
ization. Organization Science10(1), pp. 1–26 (1999)

13. Nakamura, H.R.: Motives, partner selection and productivity effects of M&As: the
pattern of Japanese mergers and acquisitions. Doctoral dissertation, Stockholm
School of Economics (2005)

14. Nelson, P., Richmond, W., & Seidmann, A.: Two dimensions of software acquisition.
Communications of the ACM 39(7), 29–35(1996)

15. Nowak, M.J., Grantham, C.E.: The virtual incubator: managing human capital in
the software industry. Research Policy 29(2), 125–134 (2000)

16. Paulson, E., & Huber, C.: The technology M&A guidebook. 1st edn. Wiley (2001)

114 J. Schenkhuizen et al.

17. Popp, K.M.: Mergers and Acquisitions in the Software Business. Books On Demand,
Norderstedt (2013)

18. Mergers and acquisitions in the software industry,
http://drkarlpopp.com/MergersandAcquisitionsinthesoftwareindustry.html

19. Shanley, M.T., Correa, M.E.: Agreement between Top Management Teams and
Expectations for Post Acquisition Performance. Strategic Management Journal
13(4), 245–266 (1992)

20. Software Improvement Group,
http://www.sig.eu/en/Services/Software_Due_Diligence

21. Suarez, F.F., Cusumano, M.A., Kahl, S.J.: Services and the business models of
product firms: An empirical analysis of the software industry. Management Science
59(2), 420–435 (2013)

22. Thomson Financial, Institute of Mergers, Acquisitions and Alliances (IMAA),
http://www.imaa-institute.org/statistics-mergers-acquisitions.html

23. Very, P., Schweiger, D.M.: The acquisition process as a learning process: Evidence
from a study of critical problems and solutions in domestic and cross-border deals.
Journal of World Business, 36(1), 11–31 (2001)

24. Vos, E., Kelleher, B.: Mergers and takeovers: a memetic approach. Journal of
Memetics Evolutionary models of information Transmission 5(2) (2001)

25. Xu, L., Brinkkemper, S.: Concepts of product software. European Journal of Infor-
mation Systems16(5), 531–541 (2007)

http://drkarlpopp.com/MergersandAcquisitionsinthesoftwareindustry.html
http://www.sig.eu/en/Services/Software_Due_Diligence
http://www.imaa-institute.org/statistics-mergers-acquisitions.html

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 115–131, 2014.
© Springer International Publishing Switzerland 2014

Productization of an IT Service Firm

Kadri Guvendiren, Sjaak Brinkkemper, and Slinger Jansen

Dept. of, Information and Computing Sciences,
Utrecht University, Princetonplein 5, 3508 TB Utrecht, The Netherlands
{K.Guvendiren,S.Brinkkemper,Slinger.Jansen}@uu.nl

Abstract. Two types of businesses dominate the landscape of the IT industry:
service businesses that develop tailor-made software based on customer specific
needs on the one hand, and software businesses that develop standard software
products based on market needs on the other hand. The so-called productization
process enables software companies to perform a business transformation from
customer specific service-driven to a product business. This research aims to
evaluate to what extent the proposed productization process is applicable in a
service-oriented company using seven theory-testing case studies within the
context of one IT service firm. The results indicate that the productization
process cannot be applied to its full extent, since most of the product-driven
processes are not mature, which is largely caused by a lack of knowledge about
the productization process in service firms.

Keywords: Productization, Software product management, product software,
business transformation, custom versus standard software development.

1 Introduction

Software Product Management (SPM) is defined as the discipline and business
process, which governs a product from its inception to the market or customer
delivery and service in order to generate the biggest possible value to the business [5].
The product manager executes this important task. Bekkers, Weerd, Spruit and
Brinkkemper [3] developed a competence model for SPM, which includes the
relevant focus areas such as Portfolio management, Product planning, Release
planning and Requirements management. These focus areas aid product managers in
managing or improving their SPM practices in the organization. Based on the focus
areas in the SPM, Van de Weerd, Bekkers, and Brinkkemper [18] developed a
maturity matrix, which will guide further development of methodical support in SPM.
The matrix is used to assess an organization’s current software product management
capabilities and offer local, incremental improvements to the product managers.

We distinguish two types of software: Customized and Standard software.
Customized software is software that is tailored to the needs of one specific customer
with the purpose to satisfy that customer, whereas standard software is software that
is designed based on the needs of a specific market. Some software producing
organizations follow the customer-oriented approach in their strategy while others

116 K. Guvendiren, S. Br

choose to follow a mark
advantages and disadvanta
develop standard software P
organizations that develop c

Artz et al. [1] found th
customer specific software
selling standard product so
offerings are seen as the ho
their research, we term the
software products the Pr
introduced by Artz et al., co

The productization proc
company, in the case wher
evaluated the process, using
that has gone through all st
validation is necessary to p
paper is a follow-up of the
process in an IT service-o
their maturity from a mark
question:

To what extent is the prod
transforming from develop
product software for a mark

In the following section,
productization approach of
of Artz's approach and fill
firms. In Section 4 we discu
insight into the challenges o
5 we attempt to answe
productization approach of
fully applicable to an IT se
that IT service firms nee
property, for capturing valu
customer solutions for a ma

rinkkemper, and S. Jansen

ket-oriented approach. Both approaches have their o
ages [15]. We term software producing organizations t
Product Software Companies, whereas software produc
custom solutions are termed IT Service Firms.

hat several software producing organizations that deve
e have identified a need to transform to developing
ftware, analogous to mechanical engineering, where se
oly grail of scaling up mechanical engineering services
e transformation process from custom software project
roductization Process. The productization process,
onsists of six stages as shown in figure 1.

Fig. 1. Productization process

cess assists organizations in becoming a product softw
re they are not born as product firms [25]. Artz et al
g methods such as expert reviews and a case study at a f
tages except 6b. The authors recognize that more thorou
prove the applicability of the productization process. T
research of Artz et al. [1]. We aim to further validate

oriented company, where seven products are assessed
et-driven perspective. This leads to the following resea

ductization process applicable in an IT service firm w
ping customer specific software solutions to stand
ket?

we first describe the approach taken to validating
Artz et al. [1]. We continue in Section 3 with a discuss

led in some of the details that are specific to IT serv
uss a case study of one of the products and provide detai
of productization in an IT services firm. Finally, in Sect

er the main research question, by showing that
f Artz is indeed valid, but needed further detailing to
ervices firm context. Perhaps most important is the find
ed to redesign their strategies for harboring intellect
ue in their software assets, and for productizing excell
arket.

own
that
cing

elop
and

erial
s. In
s to

as

ware
[1]

firm
ugh

This
the

d on
arch

when
dard

the
sion
vice
iled
tion
the

o be
ding
tual
lent

 Productization of an IT Service Firm 117

2 Research Approach

In this research, we aim to evaluate and validate the productization process in an IT
service firm. The advantage of taking the context of one IT service firm is that
different projects in different phases can be studied. As the object of study is the
project/product that is undergoing the productization process, we conducted theory-
testing case studies within one context. The IT service firm is a large international
service firm that, for reasons of confidentiality, is kept anonymous.

Seven projects were selected in the Netherlands. The projects were identified by
senior management as being on the road of productization. These projects had
typically been part of a development project for one customer, but with time similar
requests came from customers and assets could be reused. The seven identified
projects varied in age, number of customers, end-users, and team sizes. The main
sources of data for the case studies were interviews and document study.

Semi-structured Interviewing: Semi-structured interviews are conducted as the
second step of the research, with the aim of assessing the productization process of
seven cases in the context of one IT service firm. In semi-structured interviewing, “a
guide is used with questions and topics that must be covered. The interviewer has
some discretion about the order in which the questions are asked, but the questions are
standardized, and probes are provided to ensure that the researcher covers the correct
material” [7]. The first step is the assessment of the maturity of the aforementioned
Artz productization approach. This approach will be projected on seven case studies
in one service company, with the aim of establishing the applicability of the
productization process. The approach consists of following two steps:

1. Determine initial position: The productization assessment uses the SPM maturity

matrix for determining the (present) SPM processes [18], the situational factors
[2], and the applicable selected stages on the productization process for the to be
analyzed products.

2. Gap analysis: A gap analysis identifies the distance from the initial position until
being fully software product management oriented. Situational factors [2] are
again used to determine the maturity levels for the product management
processes.

Once maturity levels are known for each productized project, we determine which
processes need to be implemented or improved. Based on the gap analysis, specific
recommendations are identified to the IT service firm. In addition, we calculate the
average percentage of each product management area based on the maturity matrix
results obtained from all the business cases and compared the situational factors
results of the cases with each other and finally, we reflected the productization profile
of each business case to identify the weak and strong areas of the service business on
their product management practices.

118 K. Guvendiren, S. Brinkkemper, and S. Jansen

Literature Background. There are in the literature several scientific research studies
available focusing on product software [21] such as product development [11, 8],
management of software products [19, 5], requirements management [13, 4], release
planning [14, 20], product line engineering [10, 12], product delivery [9], platform
management [24], and so on. Despite the fact that there is an extensive research on the
development of software as a product, some information concerning the development
of product software is lacking [17]. Xu and Brinkkemper [21] state that by
generalizing the experiences from product development, a body of knowledge needs
to be established with theories, methods and tools. In this sense, from the product
development perspective, this research takes the statement of Xu and Brinkkemper as
a basis and aims to make a contribution to the literature by increasing the knowledge
on the transformation process of software companies from developing customer-
specific software to standard product software since this process is not widely studied.
In addition, this research is a validation of productization process and it also improves
and validates the defined set of dimensions by Artz et al. [1] for each stage in the
productization process, which can be then used for the assessment of an
organization’s initial position based on the development of software as a product.
Finally this research project creates many opportunities for further research on the
transformation process from customer-specific development to standard product
software development.

Research Validity. Yin [26] states that four types of validity are important in the
exploratory case studies. First, Construct validity concerns the validity of the research
method. Multiple data triangulation techniques may be applied in the sense that
different stakeholders from different points of view will be interviewed to verify data.
In the semi-structured interviews for maturity and productization process assessment,
we made sure that the relevant concepts are correctly made operational (i.e., explained
to the interviewee using a list of definitions) and measured. For the determination of
maturity level of each product, where we asked standard questions, we applied for
example the viewpoints of software developer, project manager and sales manager in
order to get a better representative result. In addition, we also performed explorative
interviews with the interviewees in advance with the aim to enlarge the reliability and
to smoothen the proceeding of the interviews. The interviewees were read a standard
text before the interviews as to make sure each of the interviewees was equally
informed of the goals of the interview. Interviews were recorded and transcribed
within 24 hours.

Internal validity is the extent to which a study’s results are interpreted accurately. We
tried to evaluate whether productization process was applicable in a service-oriented
company. For internal validity of the research, we used a case study report template,
inspired by the work of Jansen et al. [22]. Furthermore, we derived data from the
cases using the SPM maturity matrix, thereby creating uniformity in the data.

 Productization of an IT Service Firm 119

Thirdly, External validity refers to how the data can be applied beyond the
circumstances of the case to more general situations. We identified cases that differ
from each other based on their situational factors with the aim to prove the
applicability of the process. In addition, the selected interviewees differed a lot based
on their experience and domain expertise.

Fig. 2. Conceptual illustration of the productization process

Finally reliability indicates that the results of the study can be replicated. Since this
research evaluates and validates the productization process, we performed the
productization approach that is presented by Artz et al. [1] for the assessment product.
Hereby all the procedures and steps have also been recorded. The business cases
consisted of interview notes, documentation on maturity assessment and
productization dimensions. We performed also maturity assessment for each product
by making use of fixed standard questions from van de Weerd et al. [18]. The
reliability is hereby guaranteed. When another interviewer performs the application of
the model, the same results will be produced.

3 Productization

Productization means standardization of the elements in the offering. It includes
several technological elements from the very early stages of designing a product (i.e.
managing the requirements, selection of technological platforms, design of product
architecture etc.) to the commercial elements of selling and distributing the product
(i.e. delivery channels, positioning of the product/company and after-sales activities)
[8]. According to Simula et al. [16], the term productization is mainly used in the
context of software industries with the purpose to transform intangible services into
more product-like, defined set of deliverables. A conceptual illustration of
productization is shown as follows in Figure 2.

120 K. Guvendiren, S. Brinkkemper, and S. Jansen

Artz et al. [1] identified six stages for the productization process, which describe the
situation from customer specific development perspective to product software
business perspective. The stages are described as follows:

 Stage 1 - Independent projects: This stage describes the situation of a service

organization, which provides specific solutions per customer on project basis.
According to Artz et al. [1], these projects are executed independently from each
other and differ in budget, technology and functionality. They share barely any
standard functions or features.

 Stage 2 - Reuse across projects: At this stage, reusability of existing
components, functionalities and features is the main focus across projects. Artz et
al. [1] state that reusing existing components from finished projects provides
companies the advantage to increase the overall quality and reliability of software
since they already have been tested within previous projects. At this stage,
custom implemented features are still larger than standard features.

 Stage 3 - Product recognition: this stage describes the situation, where a
company identifies the similarities of customers’ wishes, which lead to the
identification of a product scope. At this stage, the standardized part of the
projects is larger than the customized parts because of the reused functionalities,
components and features. This stage concerns also the decision moment to
develop the identified product further on and to become market-driven business.

 Stage 4 - Product basis: Artz et al. [1] describe this phase: “A set of features
that form a common structure, from which a stream of derivative products can be
efficiently customized, developed and produced”. A company starts at this stage
to gather market requirements to determine the content of future releases. This
means that a company needs to develop a long-term plan for the product.

 Stage 5 - Standardized Product platform: At this stage, the company changes
toward market orientation and brings the emerging product to the market.
Comparing to stage 4, the set of features, components and functionalities are
increased through the product platform. The definition of this stage is as follows:
“increasing the set of features that form a common structure and introduce
releases, from which still a stream of derivative products can be efficiently
customized, developed and produced”.

 Stage 6a - Customizable product: This stage describes the situation, where
companies offer their product software as customizable product for specific
customers. The level of variability determines the applicability of the product in
the market [23].

 Stage 6b - Standard product: This stage describes the situation, where
companies offer their product software as a one-size-fits-all solution.

The Artz productization process is clearly defined, but too high level to apply to a
detailed case, such as at an IT service firm. We therefore, in the next section, explore
those dimensions that are specific to IT service firms that plan to productize.

3.1 Dimensions of Prod

Using literature, we have
standard product software
approaches from a strategic
differ most. The process ar
sales, company and develop

Fig.

Based on the dimension
productization process and
be relevant for the transform
for the transformation are p

4 Evaluation Resu

As mentioned earlier, the
structured interviewing, w
interviewees from different
select the products from the
validity of the productizati
company and the analyzed
markets the products are int

Productization of an IT Service Firm

ductization

characterized the custom software service business
business. Since both types of businesses follow differ
c point of view, we have identified the process areas t
reas have been categorized in the societal, marketing
pment perspective (see fig. 2).

3. Productization dimensions identified

ns, we improved the descriptions on the dimensions in
 added three more dimensions (marked in gray) that m
mation process (see appendix A). The selected dimensi

presented in table 1.

ults

method that we have used for the evaluation is se
where we conducted seven case studies assisted by
t domain and expertise in the service business. We tried
e different markets with the aim to take care of the inter
ion process. Since the information related to the serv
products had to remain confidential, we only provide

tended for.

121

and
rent
that
and

the
may
ions

emi-
the

d to
rnal
vice
the

122 K. Guvendiren, S. Brinkkemper, and S. Jansen

Table 1. Relevant dimensions for transformation

Dimensions Customized software Standard software

Software Customized software project Standard software product

Business focus
Meeting the customer needs
within budget and time,
contractual fulfillment

Gaining market share

Requirements
gathering

Gathered from one customer Gathered from whole market

Requirements
selection

Select requirements per
project (More or less fixed list
of requirements)

Optical selected subset of
requirements

Marketing goals
Interaction, relationship and
networks

Product, price, place and promotion
(4P’s), branding and differentiation

Software
development
philosophy

Waterfall SCRUM agile development

Lifecycle
One release, then maintenance Several releases based on market

requirements

Development
teams

Project focused, people are
assigned to multiple projects

Product-focused, self-managed,
Involved in the entire development
cycle

Stakeholder
involvement

High external, barely internal High internal, low external

Table 2. The assessed products in the context of the IT service firm

Potential products Market sector
Product A Telecom market
Product B Telecom, Transport and Utility
Product C Local government
Product D Utility firms
Product E Oil Companies

Product F Local government
Product G Local government

For reasons of brevity, we present one of the seven cases where we applied the
productization approach. The other case studies can be found in a technical report [6].

4.1 Case Study

This business case is related to a customized product, which has been developed for
the customers in the telecom market. The development has been done based on a
European procurement and exists already twelve years on the market. Currently the

 Productization of an IT Service Firm 123

team focuses on developing this product as standard product from a software product
management perspective. The aim is to become market-driven in the sense that the
product can be released to different market segments.

Based on the productization approach, we followed the guidelines from Artz et al.
[5] to identify the initial position and the best suitable position of the product in the
process. The assessment has been performed together with the delivery manager,
project manager and project director. The interviewees have been provided the
productization process with the corresponding dimensions described in each stage and
they were requested to fill in the applicable stages for the product.

Table 3. Demographics of interviewees

Inter-
viewee

Years of
experience

Current profile

1 23 Delivery manager projects: responsible for projects to deliver
on time and within budget that meets client expectations.

2 17 Product manager; responsible for managing the products that
fit the market needs, identify the needs and communicates to
internal and external stakeholders.

3 12 Experienced project manager, service manager, and test
manager in national and international environments, mainly
in Telecom or Telecom related markets.

4 14,5 Program manager, project manager, responsible for devising,
organizing and implementing projects that are complex in
nature.

5 25 Delivery manager central government, infrastructure and
environment.

6 12 Project manager with substantial experience in managing
diverse ICT projects such as Data migration, infrastructural
software development and COTS implementations.

7 20 Software Architect/Product manager
8 7 Software Architect
9 8 Sales & Solution manager for several clients within utility

and Telecoms sector
10 5 Project manager at Technical Software Engineering

Based on the average score, we concluded that the initial position is at stage one.

This has to do with the fact that there is still project-focus in the overall management
of the product and the product is managed on a maintenance basis. The most
important dimensions such as business focus, market goals and requirements
gathering are not performed from a market approach but from specific customer
needs. Another dimension ‘stakeholder involvement’ in the development indicates
also this customer focus, where external stakeholder involvement is indicated ‘high’.

For the gap analysis, we took into account the maturity assessment results and
situational factors of the product to determine the best suitable position in the process
by taking the determined initial position as basis. We also identified the current
implemented and missing processes from the software product management
perspective. The results indicate that the most of the problem areas of the product

124 K. Guvendiren, S. Br

concern portfolio managem
missing capabilities that
corresponding product.

We had already conclud
follows a customer specifi
processes implemented from
the product should be stage
customized to the specific c

Tabl

Capability
Organize the requirements ba

Automate of requirements sinc
registered in a central databas

Obtain formal approval for hi
(Company board involvement)

Develop a short-term roadmap

Identify themes to structure re

Analyze the product for differe

Follow the society and techno

Identify the market trends

Analyze the product lifecycle

Innovate the product portfolio

rinkkemper, and S. Jansen

ment and product planning. Specifically, table 4 shows
need to be implemented in the short term for

ded that the initial position is at stage 1 since the te
fic approach for managing the product and there are
m a market-driven perspective. The most suitable stage
e 6a since there will be always components that need to
customer’s situation.

Fig. 4. Initial position

le 4. Missing Capabilities Business case

Business function
sed on shared aspects Requirements management
ce the requirements are already
se

Requirement management

igher quality of releases
)

Release planning

p Product planning
eleases and roadmaps Product planning

ent markets Product planning
logical trends in coming years Product planning

Portfolio management
Portfolio management

o(s) Portfolio management

the
the

eam
 no

e for
o be

t

 Productization of an IT Service Firm 125

4.2 SPM Maturity Assessments

In this section, we will present the results that we have made based on the overall
SPM maturity results per analyzed product. The idea behind this calculation is to
show how many capabilities have been implemented per product and what the overall
percentage is of an implemented capability based on the analyzed projects/products.
Based on the results, we categorized the products into advanced products and
emerging products. Only two of the seven products were mature in their SPM
processes and followed a market-oriented approach for the development. The other
five were still immature to become fully market-oriented products despite the fact that
they implemented some SPM processes quite well. An elaborated analysis on SPM
calculations can be found in the technical report [6]. The calculated capabilities per
SPM focus area are shown in table 5.

Table 5. SPM Maturity calculations

Focus area Advanced (2) Emerging (5) Total (%)
Portfolio management 21,9 14,2 36,1
Product planning 19,3 15,3 34,6
Release planning 24,7 45,6 70,3
Requirements management 22 41,7 63,7

Most of the missing capabilities are in the area of product planning and portfolio

management. The emerging products were quite mature in their internal development
from the requirement and release management perspective but they do not consider the
external factors from the roadmap and portfolio management since they simply miss the
knowledge and experience in this area. The assessments gave us insight in the essential
differences between the advanced and emerging products, which are shown in table 6.

Table 6. Differences based on SPM processes

Advanced Emerging
Market orientation mindset Service business mindset

Active market analysis No or limited market analysis
Investment and support in the product No awareness of product(s) in the organization

Considering ecosystems (partner
involvement, make/buy decisions)

Limited partnering (based on components), high
customer involvement in the product

Product lifecycle is present No product lifecycle (contractual agreements)
Roadmap is present Roadmap not possible (dependent on the

investment from the company board)

Core assets are important and
systematically identified and stored in a

central location

Components are saved for reuse at the other
customers

Requirements captured from all the
internal, external stakeholders and the

whole market

Only customer requirements count

126 K. Guvendiren, S. Brinkkemper, and S. Jansen

4.3 Multi-dimensional Productization Profile

During the interviews, the interviewees have indicated the applicable stages for the
corresponding products based on the relevant dimensions from the transformation
perspective. In this section, we will present the (multi-dimensional) productization
profile of one product based on the selected dimensions. We call this ‘multi-
dimensional’ since the applicable stages are selected on both extremes (for both
service and product business) in the productization process at the same time. This can
be confusing since the expectation is that the selected stages would be in one certain
area.

For one specific product, we asked three interviewees (project manager, project
director and delivery manager) to fill in the applicable stages, which are relevant in
the productization process. The results are shown as follows:

Based on the selected stages, we can state that the product is still operating at the
service business side but at the same time, there are two applicable stages selected
from the product business side. One concerns the product being a (standard)
customizable product and the other one concerns ‘focusing on selecting requirements
for the product (roadmap based) and subset of customer requirements’. All the other
selected stages are in the area of the service business.

Table 7. Multi-dimensional productization profile

Service Hybrid Product
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6A Stage 6B

To be able to underpin the underlying reasons for the selected stages on both

service and product business side, we need to look at the specific situation of this.
This product has been firstly developed based on the legislation (European
procurement). It exists already 12 years and has been implemented at different
telecom operators in a customized way. After having found unstructured areas
regarding the management of the product for each specific customer, the team has
brought major product revisions with the aim to bring more structure into it. The core
platform has been hereby standardized for all the customers. In this sense, the
interviewees have indicated that the product is standard with customizable layer. The
customizable layer is the area that is integrated with the specific systems at the
customers’ side through certain interfaces. Standardization indicates that the team
intends to make the product standard based on the market needs. In future terms, they
are also conscious of the fact that the product can provide solutions to another type of
markets however they are still at the initial stage of productization process.

 Productization of an IT Service Firm 127

When we look at the requirements selection, there are two stages selected for both
service and product business side. One stage is related to selecting requirements from
the customers (more or less fixed list) and another stage is about selecting
requirements from all the customers (roadmap-based). This indicates that the team
still follows the customer specific approach and manages the product based on the
customer requirements but at the same time, they try to create the basis for market-
driven development by selecting those requirements from the customers, which are
relevant for the product. These requirements concern more the requirements from the
customers and not the market(s).

5 Discussion and Further Research

During the interviews, there have been some discussion points on the productization
process. One of the discussed points was related to the determination of the initial
position of the products since some of the stakeholders pointed out that the stages
have not been described in a S.M.A.R.T. (specific, measurable, achievable, realistic
and time-bound) way. This made it difficult for experts to choose a certain applicable
stage for the products. We would suggest performing more research on the description
of the stages in the S.M.A.R.T. way by taking into account different service and
product businesses to compare those companies with each other and gain insight in
each stage of the productization process. Another point that is discussed is whether
the required steps for each stage in the process included all the aspects that a service
company needs to consider to become market-driven.

The productization approach that is developed by Artz et al. [1] is hard to apply in
practice. This lies in the fact that the approach has been developed two years ago
based on the relevant research subjects of that period of time (e.g. the gap analysis for
determining the best suitable stage based on the research of Weerd et al. [17]). During
this research, we could apply the approach based on the specific situation of the
analyzed products by considering the situational factors, maturity assessments and the
selected stages in the productization process, however more case studies can be
performed to validate the approach by taking into account more additional steps that
should be considered while productizing.

Finally, we identify a challenge in IT service firms: their traditional business model
of selling projects and people by the hour makes it hard for them to invest in longer-
running market-driven products. Typically, good ideas will be quelled before they get
to a stage where they can be productized. We strongly recommend IT service firms to
reconsider this strategy and to start creating intellectual property in the organization,
for instance by collecting valuable marketable assets such as software products.
Intellectual property increases the value of the company and selling licenses and
subscriptions creates stability in a dynamic cash flow situation that IT service firms
typically have. It is the responsibility of middle and upper management of such
organizations to identify and invest in good ideas, marketable products, and online
software services for a market.

128 K. Guvendiren, S. Brinkkemper, and S. Jansen

6 Conclusion

This research concerned the validation of productization process at an IT service
business. The validation has been performed twofold. The first validation was based
on the assessment of products in the productization process, which had the potentials
to be developed from the market-driven perspective. Regarding the assessment we
took into account the situational factors and the maturity level of each product based
on the product management areas: portfolio management, product planning, release
planning and requirements management. We performed the second validation by
considering the input of the interviewees on the productization process. Consequently,
based on the results captured through the assessment and interviews held, we were
able to answer our main research question.

We answered this question by assessing the productization process on seven
specific products at an IT service business. From the productization perspective, we
performed the steps such as analysis of situational factors, application of
productization approach and analysis of productization profile of each analyzed
product. In addition, we calculated the average percentage of the implemented
capabilities per SPM focus area based on the maturity assessment results of all the
products with the aim to gain insight in the strong and weak points of each product
management area.

The overall results indicate that the (assessed) service business is not mature in
developing products from a market-driven perspective. This is understandable since
the core business is delivering services and meeting the customers’ needs however the
company is aware of the fact that based on their project portfolio, there are certain
projects that have the potential to be developed as standard product software for
certain markets. There are efforts made to gain insight in market-driven product
development. Based on our analysis, we could see that the case organization scored
high for the requirements and release management despite the fact that the focus
hereby is still on the specific customer needs. Product planning and portfolio
management areas are the weak areas that need to be improved. On the way to
become market-driven, productization process is found applicable to use as a guide
since the company aims to set up a structured product management process in place. It
is essential to state that all the stages in the process have been recognized by most of
the stakeholders however it is also indicated that the process steps through the stages
still need to be developed on a S.M.A.R.T. way so that concrete measurements can be
made to determine the initial and best suitable position of a product on the way to
become market-driven.

Based on the current stage of productization at the case organization, we cannot
expect the company to apply the process to its full extent since the basis needs to be
set up for a product development approach. We recommend the company to put more
focus on the stages three (product recognition) and four (product basis), where
standardization is performed with a structured requirement and release management
from a market-driven approach. In this sense, the overall customer focus needs to be
decreased and the internal stakeholders need to be more involved in the product
development.

 Productization of an IT Service Firm 129

Acknowledgement. We wish to thank the management of the IT service firm for
supporting our research and the interviewees for their time and reflections.

References

1. Artz, P., van de Weerd, I., Brinkkemper, S., Fieggen, J.: Productization: transforming from
developing customer-specific software to product software. In: Int’l Conf. on Software
Business, pp. 90–102 (2010)

2. Bekkers, W., Weerd, I.V., Brinkkemper, S., Mahieu, A.: The Influence of Situational
Factors in Software Product Management: An Empirical Study. In: Proceedings of the Int’l
Workshop on Soft. Product Management, pp. 41–48 (2008)

3. Bekkers, W., van de Weerd, I., Spruit, M., Brinkkemper, S.: A Framework for Process
Improvement in Software Product Management. In: Riel, A., O’Connor, R., Tichkiewitch,
S., Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 1–12. Springer, Heidelberg
(2010)

4. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Nattoch Dag, J.: An industrial
survey of requirements interdependencies in software product release planning. In:
Proceedings. Fifth IEEE International Symposium, Requirements Engineering 2001, pp.
84–91 (2001)

5. Ebert, C.: Software Product Management. Crosstalk 22(1), 15–19 (2009)
6. Guvendiren, K., Brinkkemper, S., Jansen, S., Bleijinga, E.: Productization: Transforming

from developing from customer specific software to standard product software, Utrecht
University (2012)

7. Harrel, C., Bradley, A.: Data collection methods: Semi structured interviews and focus
groups. National Defense Research Insitute. RAND Corporation, Santa Monica (2009)

8. Hietala, K., Kontio, J., Jokinen, J., Pyysiainen, J.: Challenges of software product
companies: Results of a national survey in Finland. In: Proc. of the Int’l Symposium on
Software Metrics, pp. 232–243 (2004)

9. Jansen, S., Ballintijn, G., Brinkkemper, S., van Nieuwland, A.: Integrated development and
maintenance for the release, delivery, deployment, and customization of product software:
A case study in mass-market ERP software. Journal of Software Maintenance and
Evolution, 133–151 (2006)

10. Kang, K., Jaejoon, L., Donohoe, P.: Feature-oriented product line engineering. IEEE
Software 19(4), 58–65 (2002)

11. MacCormack, A.: Product Development Practices that work: How Internet Companies
Build Software. MIT Sloan Management Review 42, 75–84 (2001)

12. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

13. Regnell, B., Host, M., Nattoch Dag, J., Beremark, P., Hjelm, T.: An industrial case study
on Distributed Prioritization in Market-Driven Requirements Engineering for Packaged
Software. Requirements Engineering 6, 51–62 (2001)

14. Ruhe, G., Saliu, M.: The art and science of software release planning. IEEE Soft. 22, 47–
53 (2005)

15. Sawyer, S.: Packaged software: Implications of the differences from custom approaches to
software development. European Journal of Information Systems 9(1), 47–58 (2000)

16. Simula, H., Lehtimäki, T., Salo, J.: Re-thinking the product – from innovative technology
to productized offering. In: Proc. of the 19th Int’l Society for Professional Innovation
Management Conf., June 15-18, pp. 1–13 (2008)

130 K. Guvendiren, S. Brinkkemper, and S. Jansen

17. Van de Weerd, I.: Advancing in Software Product Management: An Incremental Method
Engineering Approach. Utrecht University, Utrecht (2009)

18. Van de Weerd, I., Bekkers, W., Brinkkemper, S.: Developing a maturity matrix for
Software Product Management. In: Tyrväinen, P., Jansen, S., Cusumano, M.A. (eds.)
ICSOB 2010. LNBIP, vol. 51, pp. 76–89. Springer, Heidelberg (2010)

19. Van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a Reference Framework for Software Product Management. In: Int’l Requirements Eng.
Conf (RE 2006), pp. 319–322 (2006)

20. Van den Akker, M., Van Diepen, G., Versendaal, J.: Flexible Release Planning Using
Integer Linear Programming. In: Proceedings of the 11th Int’l Workshop on Req. Eng. for
Soft. Quality, pp. 13–14 (2005)

21. Xu, L., Brinkkemper, S.: Concepts of Product Software. European Journal of Information
Systems (EJIS) (16), 531–541 (2007)

22. Jansen, S., Brinkkemper, S.: Applied Multi-Case Research in a Mixed-Method Research
Project: Customer Configuration Updating Improvement. In: Steel, A.C., Hakim, L.A.
(eds.) nformation Systems Research Methods, Epistemology and Applications (2008)

23. Kabbedijk, J., Jansen, S.: Variability in multi-tenant environments: Architectural design
patterns from industry. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P.,
Simitsis, A., Van Mingroot, H. (eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 151–160.
Springer, Heidelberg (2011)

24. Jansen, S., Peeters, S., Brinkkemper, S.: Software Ecosystems: From Software Product
Management to Software Platform Management. In: From Start-ups to SaaS
Conglomerate: Life Cycles of Software Products Workshop (IW-LCSP 2013), p. 5 (2013)

25. Van Cann, R., Jansen, S., Brinkkemper, S.: Software Business Start-up Memories: Key
Decisions in Success Stories. Palgrave Macmillan (2012)

 Productization of an IT Service Firm 131

A
pp

en
di

x
A

 –
 D

im
en

si
on

s

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 132–147, 2014.
© Springer International Publishing Switzerland 2014

Software Development as a Decision-Oriented Process

Jarkko Hyysalo1, Markus Kelanti1, Jari Lehto2, Pasi Kuvaja1, and Markku Oivo1

1 University of Oulu, Department of Information Processing Science, M-Group,
P.O. Box 3000 FIN-90014 Oulu, Finland

{Jarkko.Hyysalo,Markus.Kelanti,Pasi.Kuvaja,Markku.Oivo}@oulu.fi
2 Nokia Solutions and Networks Oy, P.O. Box 1, FI-02022 NSN

Jari.Lehto@nsn.com

Abstract. Developing software systems is a challenging business with short
development cycles, changing needs, and unstable processes. Processes must
deliver products that meet the customer needs and provide value for the
stakeholders. There is no one way of achieving the development goals; instead,
alternative routes should be possible within the boundaries of acceptable
performance. Software development is therefore a set of problem-solving and
decision-making activities. The problem is how to support the decision-oriented
process, and how to provide justification, rationale, and how to provide the
information that decision makers need. Case studies in the automation and
telecom industries revealed that understanding the development process as a
decision-oriented process, and controlling and coordinating the work through
decision points offer an approach that addresses several challenges. The
findings of this study offer new insights for scholars and practitioners.

Keywords: Decision-making, information flow, software development process.

1 Introduction

Software systems are becoming more complex, and consequently, developing
software systems is becoming increasingly challenging. Product development is a
complicated process with tight time-to-market requirements, and changes in markets
and technologies require flexibility in manufacturing strategies [1]. Developers face
several challenges, such as making complex decisions, solving problems, handling
vast amounts of information, creating shared understanding, and sharing information
and knowledge [2]. Products are also typically developed in collaboration between
different stakeholders [3], [4], [5], as different skills are required. Each stakeholder
contributes to the common goal, so the stakeholders must understand what is expected
from them. Interchange of data between customers, suppliers, and authorities is
needed [1]. Properly defined goals and criteria help create a shared understanding of
the work to be done and coordinate the goals and work efforts. Then, developers need
to solve the “problem” of how to reach the goals. Clear goals and accurate decision
criteria also help match the work to the needs.

 Software Development as a Decision-Oriented Process 133

The software development process could be modeled as a set of problem-solving
activities [6]. For example, Aurum and Wohlin [7] emphasized that problem solving
is, in essence, decision-making. Thus, software development is a decision-oriented
process [8]. Decision-oriented process modeling has been suggested as a step toward
human-centered process management [9]. Addressing the decision-oriented nature of
software development, and providing the necessary support for collaborative
development require recognizing the importance of decision-making, synchronization,
and coordination. These factors should be integrated into development processes and
practices. In this article, we study how to approach decision-oriented development:
how the decision-oriented aspects and the process can be organized, and what kind of
elements it should contain. We formulate the research problem as follows: How does
decision-making control and guide the software development process?

We address this question through case studies that examine the issues and solutions
that push toward decision-oriented work. The cases form the basis for solving the
research problem. In our study, we found that decision points (DPs) are one way of
addressing the research problem, as they not only define what should be achieved, but
also express why it is needed, providing the rationale (argument) and reason (purpose)
for the work. DPs also coordinate and synchronize the work.

Two cases within two large companies in the automation and telecom industries
were set up. Forty-six experts and managers were interviewed, covering the
development process from several perspectives and phases. We identified common
trends in the processes. The results showed that decision-making plays an important
role. We found a method for addressing the decision-oriented nature of software
development and structuring the problem-solving activities. We suggest that a
decision-oriented process provides the decision criteria and degrees of freedom
required for innovative problem solving.

This paper presents a method for providing the support needed for development
activities. We do not focus on decision-making activities, models, and theories per se,
but instead show how decision-making is an integral part of the development process
and how decision-making and decision criteria justify, guide, and control developers’
daily tasks. The remainder of the paper is structured as follows: In Section 2, we
examine related work; in Section 3, we present the research process; in Section 4, we
present the empirical study with its findings; in Section 5, we discuss the elements of
decision-oriented development process; and in Section 6, we conclude the study and
discuss the implications.

2 Related Work

Processes are meant to ensure that activities in an organization are performed
consistently and reliably [10]. The four primary components are objectives, tasks,
performers, and constraints [11]. However, it is not easy to plan the work in detail
beforehand, as development in the turbulent world today is characterized by constant
changes in goals, work, resources, environment, etc. Trivial cases and simple
problems can be solved with the top-down approach, while non-trivial problems are
characterized by deviations from the predefined top-down approach [12], [13].

134 J. Hyysalo et al.

Design problems often result from ill-defined goals and evaluation criteria, which
may cause new or changing requirements and deviations from goals and predefined
process schemas [12]. Furthermore, the exact order in which activities are executed is
not necessarily important, as interaction with the environment, the activities, and
underlying business logic sets the order, instead of predefined, static process schema
[14]. As long as the appropriate design is discovered, the process should be
opportunistic; then, the design process can be top-down [12], [13].

Since processes are complicated and not all circumstances can be predicted,
uncertainty and changes prevail in software development [12], [15]. Changes and
unexpected events require creativity and human problem-solving skills to overcome
and solve them [16]. The use of opportunistic design behaviors has been proposed
[12], where processes are modeled at a high level, and knowledge-intensive tasks are
represented as black boxes [17]. In sum, no one method should lock developers into a
strict order of activities that hinders opportunistic insights; there should still be
adequate support for developers’ activities [12].

In addition, collaborative development necessitates a shared understanding of what
needs to be done to reach the desired objectives. Reaching the desired objective is a
problem-solving activity that requires decision-making. Iivari et al. [18] discussed the
three decision elements in which 1) a goal or target provides feed-forward
information that indicates the desired state of the system or a subsystem and
performance expectations, 2) state information indicates the current state of the
system or subsystem, and 3) information is the result of data interpretation, where
data as a decision element are related to a specific context.

However, Zhuge [19] proposed that problem-solving processes should be managed
at two levels: 1) the work level, which includes planning tasks, scheduling resources,
and managing the workflow management, and 2) the cognitive level, which includes
learning problem-solving knowledge, skills, rules, methodologies, etc. In practice,
decision-making is complex, owing to the limited capacity to understand everything,
the limited time in which to make decisions, the limitations of the schemas, and the
multitude of attributes to compare (e.g., strategy choices) [20], [21], [22]. Thus,
decision-making is an integral part of the development work; problem solving must
be structured and decision-making supported.

Much of the problem-solving effort is actually in structuring the problem [23]. To
summarize, humans intuitively understand a good design emerging from a well-
defined problem [24]. A problem is well defined if “the initial state, the goal, and a set
of possible operations are available to reach the goal from the initial state” [24]. In
addition, the problem type should be identified, as it is then easier to find a solution
[25]. The problem solver must understand the reasoning behind the problem, and the
concepts and relationships of the problem elements [26].

Software development is a decision-oriented process, and there are several ways to
approach decision-oriented development, such as decision-making processes [27],
optimization [28], selection in product design [29], negotiation networks [30], and
collaborative design decision-making [31]. Many articles are very theoretical
discussing mathematical models on decision-making and decision-making theories,
and the findings are hard to apply in practice in the software development process.

 Software Development as a Decision-Oriented Process 135

Software development decisions can also be approached from other directions, such
as knowledge management [8] or management decision gates [32]. However,
regardless of the development approach, the decision-making and decision criteria
must be integrated into the development process [2]. Integrating them into the
development process with support for decision-making would address the decision
orientation, guide the developers’ daily activities, and create a structure for the
process and problem solving. This way, the decisions and decision criteria justify the
work and define the goals for developers, while the dependencies between the goals
define the dependencies of the activities. Understanding the development process in
this way is what we consider is missing in the literature.

3 Research Process

The research consisted of studying the software development processes of two case
companies acting in different domains. Company A is one of the largest information
and communication technology providers in the world in its field. Company B is an
organization that develops process automation systems for industrial users. The
companies are distributed across the globe and collaborate with numerous different
stakeholders and organizations. The case companies use traditional and agile
development methods, depending on the product. In the companies’ documented
processes, there are defined checkpoints where certain maturity criteria must be met
in order to let a particular working item continue to the next phase; however, these
checkpoints are loosely followed, depending on the project manager. Activities are
further split into tasks, which are planned according to the intended output. After a
task has been implemented, an activity continues with the next task until all of the
work has been conducted for a certain checkpoint. After the results are accepted, the
work continues.

The research process follows the guidelines presented by Runeson and Höst [33],
as shown in Fig. 1.

Fig. 1. Research process [33].

In the design phase, the cases were defined, the objectives and research problem
and the theoretical background were determined, and the research methods and
sources were chosen. The preparation phase included developing the questionnaire,
deciding whom to interview, and agreeing on the procedures. In addition, the
questionnaire template was piloted and reviewed by each company representative.
During the collection phase, data were gathered from qualitative interviews, archive
material, and the literature. Each interview was transcribed, summarized, and sent to
the interviewee to check and correct. Nvivo 10 was used to store the interview data
and to help facilitate the analysis process. The interview data was first coded based on
the interview questions, and then analyzed and coded according to themes emerging
from the interviews. Each company was first examined independently, and the data

136 J. Hyysalo et al.

was then cross analyzed over the different cases and domains, and compared to the
existing literature. Workshops were arranged at the companies to discuss the findings
and results. Feedback from the workshops was incorporated in the final analysis.

The study consisted of 35 interviews at Company A and 11 at Company B. The
companies participated in the AMALTHEA project, the focus of which was to build
an open-source tool platform that forms a tool chain to help develop multi-core
embedded systems in automotive, industrial automation, and telecommunication
domains. The cases were chosen as they could all provide potential data related to the
research question, as proposed by Yin [34]. Experts and managers from different
levels of the organizations from multiple sites and countries were interviewed. We
chose a semi-structured thematic interview approach. Different questionnaires were
targeted toward each company and different development phases, with relevant
questions concerning the interviewees’ work. The interviews were qualitative,
allowing the interviewees to explain and clarify their views as freely as possible. As a
result, the interviews represent the development processes in the case companies.

4 Findings and Analysis

This section presents the findings and analysis that promote the decision-oriented
approach and address the research problem. The findings are organized under three
themes that emerged from the interview analyses: information flow, development
process, and decision-making. The findings promote the importance of accurate
information, decision-making, synchronization, coordination, and understanding of
the needs and objectives of the work. In the following three sub-sections, we discuss
the findings derived from the case companies, and we analyze and compare them to
the literature.

Table 1 summarizes the findings and analyses. Some of the items may seem self-
evident; nevertheless, as the companies are struggling with those issues, we feel the need
to mention these points. Our analysis suggests that a decision-oriented approach is needed.

Table 1. Drivers for decision-oriented software development process.

Topic Drivers for decision-oriented process Related work
Information
flow

Provide clear goals and objectives
Provide up-to-date information about process and tasks
Provide sufficient information for decision-making

[35], [36], [37]
[6], [38]

Development
process

Provide an awareness of the development process
Recognize the context of activities and tasks
The development process must be flexible
The process must support and guide the work
Regular checkpoints to obtain feedback and status, and to
synchronize the work

[38], [39], [40]
[41], [42]
[12], [13], [14]

[3], [43]

Decision-
making

Provide decision-making awareness
Provide acceptance criteria
The process should have regular reviews
Clearly define DPs to control the work

[7], [44]

[45]

 Software Development as a Decision-Oriented Process 137

4.1 Information Flow

Based on the interview results, the goals and objectives should be communicated
early and during a single task or assignment during a development process. Customers
(both internal and external) expect the results of the process or sub-processes to match
the agreed terms. In addition, the rationale for why a certain piece of work should be
done or information should be provided helps to justify the resources spent for doing
a certain activity and to focus on and prioritize resources. Therefore, clear goals and
objectives should be provided since they help the collaborative work and improve
efficiency by reducing redundant work [35]. The organization’s strategies, goals, and
motives should be included in the work [36]. In addition, sufficient knowledge and
understanding of others’ problems aids effective communication between the
stakeholders [37].

Interviewees mentioned that there is no overall view of the work status. Managers,
developers, and customers need up-to-date information on the process and tasks
i.e., the progress, estimates of delivery dates, resources, costs, etc. This is not only a
tool-related issue; the process must also help gather the data easily. However, current
processes do not provide all of the necessary data. For example, in Company B, data
are provided at the end of each development phase. However, since the phases may be
very long, the status during those phases is not available. The implementation phase,
in particular, may be long.

The literature also advises that the state of the project activities and tasks must be
available and understood to react to changes and to build a shared understanding [38].
The state of the tasks can be followed through the decision-making process. When a
problem is solved, the task moves forward, while unsolved problems remain on the
agenda [6].

Interviewees had a clear need for appropriate information on which to base their
decisions. Currently, the information was insufficient or stored in a way that was not
accessible or useful. For example, requirements were not sufficiently detailed for
decision-making, and rationale, processing, and acceptance criteria were not
adequately defined, which made decision-making problematic. Interviewees proposed
that sufficient information for decision-making must be provided.

4.2 Development Process

The interviewees suggested that problems emerge in the case companies because of a
lack of understanding about what others’ activities required and a lack of feedback.
Different actors have a different perspective on the product accompanied by varying
understandings of a product’s lifecycle. In addition, a generalized view of projects
and project portfolios seemed difficult. Even if the processes are defined and
documented, the general feeling among the interviewees is that the process does not
match the official guidelines, owing to different activities or practices at the team,
product, or even organizational level.

An awareness of the development process and activities is important since
processes and phases must be visible to provide information about the context and

138 J. Hyysalo et al.

dependencies between tasks and work items. Understanding the relationships helps
people understand the entire development process. Being aware of the context of the
work and others’ actions helps developers structure their own interactions and
cooperative processes, and provides a context for one’s own activities [38], [39], [40].

In some cases, the interviewees saw a lack of cooperation between different
development phases and processes. In a common case, most of the effort goes to
producing immediate results at the expense of the final outcome—the sellable
product. Interviewees suggested that understanding the entire process and enhancing
cooperation would improve the work results.

Interviewees stressed that it is essential to recognize the context of the activities
and tasks. One must know all about a requirement, including its context and
environment, and the motives and needs behind the requirement to wholly understand
what is needed to address that particular need. Interviewees mentioned that it is hard
to see the motives for things that do not directly provide profit for the company, such
as savings or improvement of the company’s image. In addition, the literature sees
context specification as an important part of defining goals and preventing drawing
wrong conclusions [41]. In addition, Molina and Olsina [42] suggested that context
information is important for measuring and evaluating activities.

Not all development projects are similar, and adaptability is required. According to
interviewees, the development process must be flexible: “It is important that the
processes enable all the stakeholders a flexible way to do different things in different
ways (Interviewee, Company B).” In addition, defining a process too strictly hinders
innovation. The development process requires a lot of creative work. For example,
one of the interviewees said that developers have to do a lot of thinking, and they
must be able to model large entities in their minds. In addition, there must be room for
adjustments to account for unexpected situations. These findings are supported by the
literature [12], [13], [14].

However, since the interviewees hoped for flexibility, guidance must direct the
work toward a focused, common goal. Interviewees suggested that the process must
support and guide the work and include checks to ensure that the overall goals are
being implemented. If the guidance is strong enough, the developers can work toward
their goals quite freely and perform activities simultaneously. Interviewees also
expressed that receiving constant feedback on one’s activities is necessary. After
further analysis of the interviewees’ main problems within the process, it became
clear that guidance helps developers to provide information in the correct context.
Whether involved in decision-making, analysis, or practical work to create a product,
the common theme was that developers had to confirm or ask for further clarification
about the information they received. In most cases, the information was out of
context, written at too technical or abstract a level, or lacked the necessary
information for what the task developer was doing. Providing guidance on what
information is needed in the tasks would therefore be useful.

There must also be regular checkpoints to synchronize the work, identify the
status of the work, and obtain feedback. When the work is divided into loosely
coupled activities and tasks, and the order of operations is not strictly defined, the
activities must be coordinated to produce a coherent piece of work. Checkpoints

 Software Development as a Decision-Oriented Process 139

ensure whether the development work is on the correct path. A suitable interval for
checkpoints should be found to provide a balance between control and freedom.
Interviewees liked the idea adopted from Scrum to have checkpoints every three
weeks. Checkpoints are also proposed in the literature, e.g., in the stage-gate process
[3] or for processing product data [43].

4.3 Decision-Making

In general, interviewees knew there was an established general framework for the
entire development process divided by milestones or checkpoints. These milestones or
checkpoints served as DPs where information was collected and decisions were made
to determine whether a customer request should be further analyzed or whether a
business plan for a certain feature is feasible and should be made. However, the actual
criteria for the decision or the decision-making process in DPs were seen more as an
ad hoc review meeting in which the items are discussed and decided based on
discussions, and no documented processes are used. Some interviewees expressed the
need for more rigorous decision-making with defined decision criteria. The main
rationale behind this request was the need to communicate the results to other
stakeholders. However, interviewees pointed out the need for awareness in these
decision-making points.

The literature also promotes decision-making awareness and clearly defined
acceptance criteria, stating that the decision-making process and forums should be
transparent, which would raise developers’ awareness of the persons working on a
particular decision. Keeping track of decisions, rationale, and decisions’ effects on
software products is also advised [7], [44].

Review practices in the case companies were included in a normal process; only
the format and frequency differed depending on the development domain, method,
and developer’s experience. Interviewees in the case companies use these reviews to
obtain others’ opinions and evaluate whether they missed something or something has
changed in the product, technology, business perspectives, or company’s strategy. In
addition, the review meetings were also used to inspect existing work and make a
decision (to continue, do additional analysis, terminate, etc.). In general, there were at
least two types of DPs: process-level decisions on features and products and
development-level decisions on aspects in features and products. Interviewees were
quite familiar with Scrum and appreciated regular review meetings in short intervals
at the team level. Managers appreciated process-level DPs, while development-level
DPs were needed to stay up-to-date with development effort.

Based on the findings, the process should include regular reviews. Regular
reviews guarantee that the results and progress are checked, and stakeholders
understand the current situation. DPs are natural places to hold the review process.
Review processes are nothing new in software development, and various methods are
available [45], further emphasizing this finding.

Clearly defined DPs to control the work as well as defining the
interdependencies of DPs were requested. DPs are natural points for checking
progress and results, and to integrate the work. For each DP, there should be a defined

140 J. Hyysalo et al.

input and output, accompanied by information about tasks, resources, objectives,
decision criteria, and the context. In this way, the process follows a goal-oriented
approach, the measurement and evaluation are done in DPs, and activities within DPs
focus on satisfying the specified needs. The results of each activity and task are
presented for decision makers as proposals to be evaluated against the decision
criteria. Criteria and objectives are presented through the DPs, and the work is divided
into suitable pieces of work.

5 Toward Decision-Oriented Work

In this section, we discuss the decision-oriented nature of software development,
based on the findings and analyses of the previous section. By using DPs and decision
criteria, the development process can be better controlled, synchronized, and justified.

In the decision-oriented approach, the process is described using process elements
that are the highest-level concept in this framework. They are designed to have clearly
defined input(s) and output(s). Input is any information the process element receives,
which works as a starting point for the activities inside a process element. Output is
the defined information content provided by the process element. By default, the
process element does not tell how information is processed or how work is done
inside the element itself. The purpose of the process element is to describe an upper-
level activity that can produce a meaningful piece of information. Each process
element has a purpose, and it is important to provide a valid argument and reasoning
why the work is needed for that particular element.

Fig. 2. An example of process showing the context of the process elements, activities, and tasks

Fig. 2 presents an example of a process. Process elements are divided into
activities and then further divided into tasks that progress toward completing the
work. Each element, activity, and task belongs to a certain context. In addition, the
entire process is in a context influenced by the organization, environment,
stakeholders, etc. The following elements form the decision-oriented approach:

Process elements have a purpose that fulfills the goals and objectives of the
processes. The activities and their order within process elements can be selected and
changed according to needs at hand; thus, the process approach can be top-down or
bottom-up. Work done and resulting work items are available for others to continue

 Software Development as a Decision-Oriented Process 141

the work. The network of dependencies tells what results and work items are needed
as an input for the task at hand.

DPs are used to coordinate and synchronize the work. A DP defines the
information content the process element produces as an output for other process
element(s). The DP includes a list of decision criteria that must be fulfilled before the
information content produced in the process element can be sent to other process
elements. The DP justifies the work to be done and describes the actual information
content and the information needed to make a decision.

Activity produces the information needed to meet the decision criteria. Activity is
an abstract entity that contains only the tasks necessary to provide the information. An
activity is composed of tasks (pieces of information that are needed in a DP according
to the decision criteria) and dependencies.

Task is an operation that cannot be divided into smaller pieces of work. A task
belongs to an activity and describes a concrete task that must be done. A task is
composed of the information field in decision criterion it aims to provide, as well as
the information about the tool used to complete this task.

Process elements are related to the entire process, and activities and tasks relate to
the process elements. Each process, element, activity, and task has a goal and a
purpose. During each phase, work is done to fulfill the decision criteria set for each
DP. Justification for the work is described in the DPs, and the decision criteria define
when the purpose is achieved. Furthermore, DPs are natural places for synchronizing
sequential and often concurrent activities.

The process, methods, and practices as well as the workflow used to implement
and enact them should support freedom in the order of activities and in the
implementation of practices and strategies. This creates a flexible and adaptable
workflow and enables developers to implement their activities and tasks as they see
fit. The development activities are guided by objectives, work requirements,
constraints, and resources, which are in practice addressed through DPs. It is not
necessary to define complete and detailed relations of tasks consisting of each
alternative order of tasks; only the mandatory input/output sequential orders are
defined. The activities are drawn as black boxes as much as possible to allow the
developers enough freedom to choose their work style, leaving room for innovation
and intuition, and for supporting opportunistic design processes.

The aim is to have a simple, generic framework that is situation-independent; see
Fig. 3. Situations are reacted to via decision criteria. Acceptance criteria are
transformed into decision criteria, which guide and drive the task planning along with
goals. The decision criteria of each DP are converted into guidelines for the designers
and reviewers. Decision proposals are prepared after activities consisting of tasks are
completed, and decision proposals are sent for approval. The approval decision is the
final activity in a DP, determining the output of an element. When an item is
approved, it is ready for the next phase. At the approval, the results are compared
against the process and product criteria. Each decision criterion should be fulfilled
before the output is sent to other process elements. In addition to product-related
criteria, process-related criteria provide principles, guidelines, and directives that set
criteria or constraints for implementation. Process criteria execute more long-term
effect controls and controls that are in effect over the product lines, possibly through
the entire organization.

142 J. Hyysalo et al.

n+1

Fig. 3. Decision criteria guiding the work

Decision criteria belong to a DP describing information that must be known in a
DP before a decision can be made. The information content is created in an activity.
The intention is that all decisions are made according to the defined criteria of a DP.
Relevant stakeholders, who are also responsible for keeping the criteria up to date, set
the decision criteria. The stakeholders can change, update, and remove criteria but
they cannot remove parts of the process, for example. The work results will always
address the needs when the criteria guiding the development are up to date.

It may also become necessary to check if the activities and tasks are relevant for the
entity under analysis. If it is noticed that something does not belong to a certain context,
it must be considered whether the activity or task should be removed completely or
whether it would be more suitable in another element or context. The need for new
activities and tasks should also be considered; thus, a review process should be set up.

Fig. 4 shows an example of a process diagram. Directional arrows link the process
elements and define the information flows between the process elements. A process
element can have multiple incoming or outgoing arrows. Arrows define the direction
of the information flows between process elements, and each arrow that leaves from a
process element has to have a DP where it originates. Activity describes work that is
necessary for creating the required information for a certain decision criterion.

Fig. 4. Process elements and their relations

Fig. 5 illustrates how activities, DPs, and tasks are related in a process element.
The left arrow describes the input that comes in to a process element. This process
element has three activities, and their decision criteria are defined in a related DP. All
information for activities A, B, and C must be produced to make a decision and
submit the results to other process elements. The purpose of the links between
activities and DPs is to show the relation between these items. For example, activity
A in Fig. 5 depends on incoming information as well as information from activities B

 Software Development as a Decision-Oriented Process 143

and C. The figure does not state which activity comes first; it only describes how the
activities depend on each other and where the information comes from to form the set
of activities. In this example, the information for the three tasks for activity C is
defined in the decision criteria for that activity.

Fig. 5. An example of activities and tasks within a process element

6 Conclusions

This paper shows how software development can be understood as a decision-oriented
process. We presented the drivers for a decision-oriented process, organized under
three themes of information flow, development process, and decision-making. The
findings and analyses address the research problem, and provide the basis for further
discussion on the decision-oriented nature of software development. The literature has
pointed out that this area of research is important and has not yet been properly
addressed; to our knowledge, no decision-oriented process is available in the literature
in the way we present it. Our case studies show the benefits of understanding the
development process in a decision-oriented way. The decision-oriented approach
informs users how a development process works at different abstraction levels and
describes how the information flows, what kind of information is needed and why,
and how the information is processed at different levels.

The main idea is that DPs and decision criteria define why the work is done, and
guide and control the work. No specific order for the activities is enforced, and
activities and tasks can be changed according to the requirements. Although the goals
and purposes define what needs to be done, clearly defined acceptance criteria are
needed from the process and product points of view to guide the decision-making
activities. Product-related acceptance criteria are derived from the requirements
describing the minimum effort needed to implement a requested artifact.
Alternatively, process-related criteria are a set of predefined rules defining the
fulfillment criteria for tasks from the development process point of view, e.g., relating
to input required for subsequent tasks. Defining the process in this way provides the
following benefits:

• The process is described at the general level, where the process elements are
linked as a directed network. By using DPs to determine all outputs and the
content of each element, the process is guided by the DPs, and the output is
always defined by the decision criteria.

144 J. Hyysalo et al.

• As the process element output is defined by decision criteria, the criteria can
be utilized to generate reports from any process point at any given point of
time. I.e. comparing the current status of tasks to the decision criteria. In
addition, as information flows through the process, a report can be produced
for any single data item, dependency relation, history data, and so on.

• A progress report for a single item in the process can be easily generated
because of the dependency on the DPs decision criteria that informs the
current state of progress to reach that DP.

• Since DPs determine what activities and tasks are necessary, any unnecessary
work can be eliminated from the process, as it is not required to satisfy the
information need in a DP. If additional work is needed, the model forces the
users to re-evaluate the process and add or remove parts.

• The process is easily interpreted, and it enables a quick understanding of how
the process works, how information flows, and the purpose of each process
element, activity, and task.

• It also determines what kind of tool support is needed for process elements,
activities, and single tasks, as requirements are set at the individual developer
level and at the process level by describing the necessary work that must be
done and how the data are used and transferred inside the process.

The results should interest academics and practitioners; they indicate that the
decision-oriented approach is useful for supporting collaborative software
development. The study provides valuable insights for academics, as it seems that the
decision-oriented development process is not used in industry in a similar way and
context as in this study; reports of such attempts could not be found in the literature.
The study also lays the groundwork for further scholarly inquiry, including validating
the findings in phases other than requirements development and other domains. It is
also our intention to try the approach in other domains.

For practitioners, the decision-oriented approach provides a better understanding of
the context of the work by defining the real needs of stakeholders, processes,
activities, and tasks. It will lead to better product quality and shorter development
times, primarily because the results of work activities and tasks will fulfill their
purpose better and provide less waste. Taking a decision-oriented approach to
software development, developers are able to address the dynamic development
environment of today’s software business, and tackle the inevitable changes. Different
abstraction levels are all acknowledged, and goals and high-level objectives are
presented, with justification and rationale for the decision-making.

Acknowledgments. This research is supported by the European ITEA2 program with
national funding from Tekes (the Finnish Funding Agency for Technology and
Innovation). The authors would like also to thank AMALTHEA project partners.

 Software Development as a Decision-Oriented Process 145

References

1. Helo, P.: Managing Agility and Productivity in the Electronics Industry. Ind. Manage.
Data Syst. 104, 567–577 (2004)

2. Hyysalo, J., Lehto, J., Aaramaa, S., Kelanti, M.: Supporting Cognitive Work in Software
Development Workflows. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T.
(eds.) PROFES 2013. LNCS, vol. 7983, pp. 20–34. Springer, Heidelberg (2013)

3. Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: Benchmarking Best NPD Practices-III. Res.
-Tech. Manage. 47, 43–55 (2004)

4. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic
Approach, 3rd edn. Springer, London (2007)

5. Zeidler, C., Kittl, C., Petrovic, O.: An Integrated Product Development Process for Mobile
Software. Int. J. Mob. Commun. 6, 345–356 (2008)

6. Wild, C., Maly, K., Zhang, C., Roberts, C.C., Rosca, D., Taylor, T.: Software Engineering
Life Cycle Support - Decision-Based Systems Development. In: IEEE Region 10’s Ninth
Annual International Conference TENCON 1994, pp. 781–784. IEEE Press (1994)

7. Aurum, A., Wohlin, C.: The Fundamental Nature of Requirements Engineering Activities
as a Decision-Making Process. Inform. Software Tech. 45, 945–954 (2003)

8. Rus, I., Lindvall, M.: Knowledge Management in Software Engineering. IEEE Soft. 2, 26–
38 (2002)

9. Pohl, K., Dömges, R., Jarke, M.: Decision-Oriented Process Modelling. In: Software
Process Workshop 1994, pp. 124–128. IEEE Press, Airlie (1994)

10. Mangan, P., Sadiq, S.: On Building Workflow Models for Flexible Processes. In: ADC
2002: Proceedings of the 13th Australasian Database Conference, pp. 103–109. Australian
Computer Society, Darlinghurst (2002)

11. Sadiq, W., Orlowska, M.E.: On Capturing Process Requirements of Workflow-Based
Business Information Systems. In: BIS 1999, pp. 281–294. Springer, London (1999)

12. Guindon, R.: Designing the Design Process: Exploiting Opportunistic Thoughts. Human-
Compu. 5, 304–344 (1990)

13. Buckingham Shum, S.: Negotiating the Construction of Organizational Memories. In:
Borghoff, U., Parechi, R. (eds.) Information Technology for Knowledge Management, pp.
55–78. Springer, Berlin (1998)

14. Wang, M., Wang, H.: From Process Logic to Business Logic—A Cognitive Approach to
Business Process Management. Inform. Manage. 43, 179–193 (2006)

15. Kwan, M.M., Balasubramanian, P.R.: Dynamic Workflow Management: A Framework for
Modeling Workflows. In: Proceedings of HICSS-30, pp. 367–376. IEEE Computer
Society Press, Wailea (1997)

16. van Merriënboer, J.J.G.: Training Complex Cognitive Skills. Educational Technology
Publications, Englewood Cliffs (1997)

17. Abecker, A., Dioudis, S., van Elst, L., Houy, C., Legal, M., Mentzas, G., Müller, S.,
Papavassiliou, G.: Enabling Workflow-Embedded OM Access with the DECOR Toolkit.
In: Dieng-Kuntz, R., Matta, N. (eds.) Knowledge Management and Organizational
Memories, pp. 63–74. Kluwer Academic Publishers, New York (2002)

18. Iivari, J., Hirschheim, R., Klein, H.K.: A Paradigmatic Analysis Contrasting Information
Systems Development Approaches and Methodologies. Inform. Syst. Res. 9, 164–193
(1998)

19. Zhuge, H.: Workflow- and Agent-Based Cognitive Flow Management for Distributed
Team Cooperation. Inform. Manage. 40, 419–429 (2003)

146 J. Hyysalo et al.

20. Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs
(1972)

21. Hogarth, R.: Judgement and Choice, 2nd edn. Wiley, New York (1987)
22. Lehto, J., Marttiin, P.: Decision-Based Requirements Engineering Process. In: Workshop

on Collaborative Embedded Systems Development, 6th International Conference on
Product Focused Software Process Improvement, Profes. Springer, Heidelberg (2005)

23. Simon, H.A.: The Structure of Ill-Structured Problems. Artif. Intell. 4, 181–201 (1973)
24. Robillard, P.: The Role of Knowledge in Software Development. Commun. ACM 42, 87–

92 (1999)
25. Jonassen, D.H.: Toward a Design Theory of Problem Solving. ETR&D-Educ. Tech. Res.

48, 63–85 (2000)
26. Gourgey, A.F.: Metacognition and Basic Skills Instruction. Instr. Sci. 26, 81–96 (1998)
27. Olewnik, A., Lewis, K.: A Decision Support Framework for Flexible System Design. J.

Eng. Design 17, 75–97 (2006)
28. Hazelrigg, G.A.: A Framework for Decision-based Engineering Design. J. Mech.

Design 120, 653 (1998)
29. Besharati, B., Azarm, S., Kannan, P.K.: A Decision Support System for Product Design

Selection: A Generalized Purchase Modeling Approach. Decis. Support Syst. 42, 333–350
(2006)

30. Jin, Y., Lu, S.Y.: Agent-Based Negotiation for Collaborative Design Decision Making.
CIRP Annals-Manuf. Techn. 53, 121–124 (2004)

31. Marston, M., Allen, J.K., Mistree, F.: The Decision Support Problem Technique:
Integrating Descriptive and Normative Approaches in Decision-Based Design. Eng. Val.
Cost Anal. 3, 107–129 (2000)

32. Cooper, R.G.: Winning at New Products. Kogan Page, London (1988)
33. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research in

Software Engineering. Empir. Softw. Eng. 14, 131–164 (2009)
34. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Inc., Thousand

Oaks (2009)
35. Kelanti, M., Hyysalo, J., Kuvaja, P., Oivo, M., Välimäki, A.: A Case Study of

Requirements Management: Toward Transparency in Requirements Management Tools.
In: Proceedings of the Eighth International Conference on Software Engineering Advances
(ICSEA 2013), pp. 597–604. IARIA XPS Press (2013)

36. Berggren, E., Bernshteyn, R.: Organizational Transparency Drives Company Performance.
J. Manage. Dev. 26, 411–417 (2007)

37. Simon, H.A.: Bounded Rationality and Organizational Learning. Organ. Sci. 2, 125–134
(1991)

38. Omoronyia, I., Ferguson, J., Roper, M., Wood, M.: A Review of Awareness in Distributed
Collaborative Software Engineering. Softw. Pract. Exper. 40, 1107–1133 (2010)

39. Dourish, P., Bellotti, V.: Awareness and Coordination in a Shared Workspace. In:
Proceedings of the ACM Conference on Computer-Supported Cooperative Work, pp. 107–
114. ACM, New York (1992)

40. Robertson, T.: Cooperative Work and Lived Cognition: A Taxonomy of Embodied
Interaction. In: Fifth European Conference on Computer-Supported Cooperative Work
ECSCW 1997, pp. 205–220. Springer, Netherlands (1997)

41. Basili, V., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Münch, J., Rombach, D.,
Trendowicz, A.: Bridging the Gap between Business Strategy and Software Development.
In: Proc. International Conference on Information Systems, Montreal, Canada, pp. 1–16
(2007)

 Software Development as a Decision-Oriented Process 147

42. Molina, H., Olsina, L.: Towards the Support of Contextual Information to a Measurement
and Evaluation Framework. In: 6th International Conference on the Quality of Information
and Communications Technology, QUATIC 2007, pp. 154–166. IEEE, Washington, DC
(2007)

43. Wasmer, A., Staub, G., Vroom, R.W.: An Industry Approach to Shared, Cross-
Organisational Engineering Change Handling—The Road Towards Standards for Product
Data Processing. Comput. Aided Design 43, 533–545 (2011)

44. Ruhe, G.: Software Engineering Decision Support – A New Paradigm for Learning
Software Organizations. In: Henninger, S., Maurer, F. (eds.) LSO 2003. LNCS, vol. 2640,
pp. 104–113. Springer, Heidelberg (2003)

45. Knight, J.C., Myers, E.: An Improved Inspection Technique. Commun. ACM 36, 51–61
(1993)

Automated User Interaction Analysis

for Workflow-Based Web Portals

Emil Backlund1, Mikael Bolle2, Matthias Tichy3,
Helena Holmström Olsson4, and Jan Bosch3

1 ATEA and Chalmers University of Technology
emil.backlund@atea.com

2 Chalmers University of Technology, Sweden
mikael@bolle.se

3 Chalmers and University of Gothenburg, Sweden
matthias.tichy@cse.gu.se,jan.bosch@chalmers.se

4 Malmö University, Sweden
helena.holmstrom.olsson@mah.se

Abstract. Success in the software market requires constant improve-
ment of the software. These improvements however have to directly align
with the needs of the users of the software. A recent trend in software
engineering is to collect post-deployment data about how users use a
software system. We report in this paper about a case study with an in-
dustrial partner in which (1) we identified which data has to be collected
for a web-based portal system, (2) implemented the data collection, and
(3) performed an experiment comparing the collected data with answers
of the test subjects in a survey.

Keywords: user interaction, post-deployment data collection, Build-
Measure-Learn, data-driven software engineering.

1 Introduction

Customer satisfaction is key for a software product to be successful. To achieve
this, software development companies need to know what their customers value
and how they interact with the product [1,2]. Without this knowledge, require-
ments prioritization becomes a challenging process in that product management
has no accurate understanding of customer needs. In many companies, the feed-
back loop is slow and there are no efficient mechanisms that allow for continuous
collection and analysis of customer data. If using “Lean Startup” terminology,
there is no “Build-Measure-Learn” (BML) loop in place for continous validation
of customer value [3]. In this loop, customer data serves as input for product man-
agement as well as for the entire development organization [3], and the feedback
loop from customers is fast. Without the opportunity to continuously validate
what customers value, there is the risk of lack of alignment between product and
customer needs, as well as the risk of investing in R&D efforts without having an
accurate way of continuously validating whether these efforts correspond to cus-
tomer needs. What companies need are mechanisms that allow for continuous

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 148–162, 2014.
c© Springer International Publishing Switzerland 2014

Automated User Interaction Analysis for Workflow-Based Web Portals 149

learning about customers, about product usage and about what functionality
adds value to customers.

Today, this knowledge is typically gained by interacting with customers us-
ing techniques such as use cases, scenarios, prototypes, interviews. Also, alpha-
and beta testing, observations, and customer surveys are efficient mechanisms
for continuously validating that the software functionality that is developed is
of value to the customers. During the early 2000’s, agile software development
methods gained traction in most software development companies as a way to
increase customer and end-user interaction [4]. With an emphasis on close cus-
tomer collaboration and small development teams, agile methods have proven
successful for shortening feedback loops and reducing time-consuming coordina-
tion processes for a wide range of companies [5]. However, and experienced as
problematic, most agile techniques for customer and end-user involvement as-
sume face-to face interaction between developers and customers, something that
is difficult to achieve in an increasingly global and distributed development en-
vironment. In most large-scale software development companies there is limited,
or no, direct contact with customers or end-users, and it might require costly
and complex procedures to gather and extract in-depth knowledge about how a
specific product, or a specific feature, is used. Moreover, asking customers what
they want is problematic. As recognized in research within human-computer in-
teraction decades ago [6,7], the expected use of a system does not necessarily
correspond to the actual use of that system. Often, there is a gap between what
people say and what they do [8], which makes asking customers what they want
a difficult task.

More recently, and due to the increase in connectivity and the on-line nature
of products and systems, data can be collected as soon as customers use these.
In Web 2.0 systems, and in on-line Software-as-a-Service (SaaS) technologies,
automatic collection of customer data is the main source of input for learning
about customers [9]. The cost of collecting data is low [10], and customer value
can be validated on a continuous basis. Already, there is research indicating
that automated data collection is conducive to an increased understanding of
customer behavior and preferences [1,2].

However, while automated collection of customer data allows for an increased
understanding of customer behavior – what is it we learn? Does what we learn
about a product by automatically collecting data correlate with the actual cus-
tomer perceptions of that product? And what is it that we learn from automat-
ically collected data that we do not learn by asking customers?

In this paper, we explore how to automate the collection of customer data,
and how analysis of this data helps companies increase their understanding of
customers. In particular, we are interested in comparing different data sources,
i.e., what companies learn from different data sources such as (1) asking cus-
tomers how they perceive a system, and (2) automatically collecting data about
how customers use a system. In our study, we investigate how automatically
collected data compares with results gained in a customer survey, i.e., how data
collected by automatically measuring product usage compares with test results

150 E. Backlund et al.

when asking customers how they perceive the product. Our research questions
are the following:

1. RQ1: What knowledge about how customers interact with a system is in-
teresting for developers, testers, project managers of a web-based portal
software?

2. RQ2: How well do automated data collection and analysis methods compare
with actual user perceptions?

The case for our research is a software solution, called Accelerator, developed
by ATEA Global Services that automates the tasks of a Service Desk. The soft-
ware enables employees to perform IT related tasks like ordering software and
hardware. Each task resembles a workflow which is divided into a sequence of
steps which need to be performed to finish the task. The goal of ATEA Global
Services is to automate as many of these tasks as possible. To achieve this, ac-
cessibility and understanding of end-user needs is essential. Therefore, ATEA
Global Services wants to understand how these users interact with their soft-
ware. The product that ATEA Global Services provides consists of thousands
of lines of code, which makes it difficult and time consuming for the developers
to implement a monitoring solution. On the other hand, a survey can also be
difficult as they do not have direct contact with their end-users.

The contribution of this paper twofold. First, we present a list of knowledge
needs about how user interact with a workflow based web system. Second, we
developed an automated data collection method and compared the results in a
user experiment with the users feedback in an online survey. As a result, we got
a weak correlation between the answers of the users in the web survey and the
results of the automated data collection.

In the next section, we discuss in more detail the needs for a valid automated
user behavior analysis as part of the Build-Measure-Learn loop to enable com-
panies consistently evaluate and improve their systems. Section 3 describes our
research method to answer the presented research questions. The answer to re-
search question 1 were identified by a workshop with developers, testers, and
project managers at ATEA Global Services. The workshop and its results are
described in Section 4. Section 5 presents the automated approach to collect
user interactions to satisfy the knowledge needs identified before. In Section 6,
we present the experiment to answer research question 2 how well the automated
approach compares with an online survey with users. After a discussion of related
work in Section 7, we conclude and give an outlook on future work.

2 Background

To increase customer satisfaction and to add customer value is key to any soft-
ware development company in order to stay competitive [11]. Typically, ideas
for improvement and innovation of features are collected and prioritized during
the early phases of road mapping and requirements engineering, and as part of
a planned product release cycle [12]. The selection of what ideas to include is

Automated User Interaction Analysis for Workflow-Based Web Portals 151

done by product management and forms the basis for enormous R&D invest-
ments. What has shown problematic is how to continuously confirm the correct-
ness of the decisions taken during the requirements prioritization process. Often,
product management has no accurate way to continuously validate whether the
features they prioritize are those that add value to customers [1,2]. As a result, re-
quirements prioritization becomes a challenging process in which companies run
the risk of having opinions inform decision-making rather than data reflecting
actual customer usage. Moreover, and as recognized in human-computer inter-
action (HCI) research decades ago, asking customers what they want is difficult
since what customers say does not necessarily reflect what they do [6]. In using
well-established manageral behavioral terminology, espoused behavior is often
different from the theory-in-use [8], meaning that there is a difference between
what people say and what they do. To address this challenge, and to learn from
customer usage rather than from their opinions, companies need to find mech-
nisms that allow them to continuously collect customer data. Also, they need to
find ways in which to analyze and understand this data in order to understand
what they learn from different data sources.

Below, we outline the Build-Measure-Learn (BML) loop which is a central con-
cept within the lean startup community [3]. The concept is relevant in that it
emphazises the importance of customer feedback, as well as the continuous need
for this. Furthermore, we introduce the concept of data-driven software engineer-
ing. In relation to our research, both these are good examples of practices where
continuous collection of customer data steer adjustments and decision-making.
Also, these practices reflect the sincere interest in the software engineering field
to find mechanisms that help validation of success in terms of customer value.

2.1 The Build-Measure-Learn Loop

As a central concept within the lean startup community, there is the “Build-
Measure-Learn” (BML) loop, which is described as the concept of validated
learning [3]. In this loop, ideas are quickly turned into testable products, data is
gathered by measuring how the product is actually used by a selected group of
customers, and ideas for product improvement and innovation are based on what
is learned by analyzing the data collected from customers. In this way, focus is
always on developing and delivering customer value, and the model advocates an
approach in which continuous customer validation is critical. The concept was
developed by Ries [3] after noticing that the solution focused thinking that char-
acterizes the agile development approaches often leads to a situation in which
many software companies fail. What he found was that instead of continuously
evaluating what customers value, most companies spend time and money devel-
oping products without knowing whether customers will be interested or not.
While projects are delivered on time and on budget, there is the risk that no-
body wants the product. In the BML loop, the main intention is to emphasize
the importance of continuous validation with customers in order to understand
the problem during product development and improvement.

152 E. Backlund et al.

Besides the BML loop, another central concept within the lean startup com-
munity is the “pivot”, a term used when a company changes direction based on
what they learn from customers, i.e., from customer data. Ries [3] claims that
having “pivoted” is the most frequently occurring commonality among successful
startups, and that successful companies seldom end up doing what they initially
set out to do. Rather, they change direction based on efficient collection and
analysis of customer data and what they learn from customers.

2.2 Data-Driven Software Engineering

Data-driven software engineering is a practice in which continuous collection
of data is used to understand the successful development of software systems
[13]. During the development cycle, different metrics related to product quality
are collected, and the goal is to use such metrics to make estimates of post-
release failures early in the software development cycle, as well as during the
implementation and testing phases. Such estimates can help focus testing, code
and design reviews and affordably guide corrective actions and decision-making
activities.

One area in which data-driven software engineering has been successfully ap-
plied is the area of Test-Driven Development (TDD). Test-driven development
[14] is an “opportunistic” software development practice that has recently re-
emerged as a critical enabling practice of agile software development methodolo-
gies after having been used sporadically for decades [14,15]. With this practice,
a software engineer cycles minute-by-minute between writing failing unit tests
and writing implementation code to pass those tests. By using the data-driven
software engineering approach, previous studies have investigated whether test-
driven development actually work, and if so, if there is supporting data for de-
velopment teams to make informed decisions during product development [14].

In summary, and in relation to this research, the BML loop and the concept
of data-driven software engineering are both good examples of practices where
continuous collection of customer data work as a basis for product development
and improvement. These practices reflect the interest in the software engineering
field to find mechanisms that help automatic collection of metrics, and as a result,
continuous validation of customer value.

However, while there are numerous mechanisms for automatic collection of
customer data, we are interested in exploring how well this data also compares
with the perception held by customers. In our study, we investigate if there is
a link between raw data and the assessment made by customers when asking
them how they perceive a system. In the following sections, we outline our re-
search method and the results from our case study including the results from
a comparison between automated data collection results and customer survey
results.

Automated User Interaction Analysis for Workflow-Based Web Portals 153

3 Method

In the following, we describe our research methodology as sequence of six steps
as shown in Figure 1: (1) The understanding of the case and its challenges, (2)
conducting a workshop to understand what should be analyzed captured as ques-
tions about user interactions, (3) breaking down the outcome from the workshop
into a set of questions answering research question RQ1, (4) implementing an
automated data collection for the system, (5) performing user tests including a
web survey to generate data, and (6) analyzing the results from step four and
five to answer research question RQ2. The fourth and fifth step ran in parallel
because of their mutual dependency. Each step is discussed further beneath.

Case
Overview

Usage Data
Collection

Knowledge
Needs

User Survey

Question
Breakdown

Evaluation

Fig. 1. Research method

To understand the case a brief introduction of the system was held by ATEA
Global Services. Also, access to the system and the source code was provided
for in depth analysis. Beside this, there were both formal and informal meet-
ings conducted with different employees within the organization. Based on this
information insight and general understanding of the case was gained.

Then, a workshop was conducted with employees of different positions at
ATEA Global Services. The main goal of the workshop was to gain more insight
of their perception of the system as well as identifying needs for knowledge
about user interactions. The needs were formulated as questions about how users
interact with the system.

Since the list of questions where not detailed enough for an automated data
collection, they were broken down into more detail and made unambiguous,
see Section 4.2. At this stage, it was also determined which questions could be
answered by the automated data collection respectively by conducting a web
survey.

To answer research question RQ2, we let test subjects perform a set of tasks
and then let the them answer questions in a web survey, this is annotated in
Figure 1 as User Survey. The tasks performed were related to a set of questions
extracted from the workshop. The survey, see Section 6, was designed by exam-
ining the extracted questions from the workshop and their breakdown. Only a
subset of the questions could be evaluated since some questions required that

154 E. Backlund et al.

the data collection has been actively used for some time. With the questions for
the survey selected, tasks were designed that would be sufficient to answer those
questions by the automated data collection. When the tasks had been designed
the testing was executed by inviting users with similar profile as possible end-
users. They were given an introduction of the case product, before performing
the tasks, and afterward they were given access to a web survey. By having this
approach it was possible to simulate a real world scenario. As previously men-
tioned, data collection of usage data was implemented and tested in parallel to
the User Testing, see Section 5.

To asses the validity of the approach a comparison between results from data
collection of data from tasks and result from the web survey was done, see
Section 6. By doing this it was possible to evaluate how well an automated data
collection method compares with a web survey, which is conducted to understand
user interaction. This is final step in our method. Due to space restrictions, we
cannot present the full results and refer the interested reader to [16].

4 Identification of Knowledge Needs

To identify the company employees’ point of view on their need of customer
understanding a workshop was conducted. Invited to the workshop were parts
of the support team, test team, development team, and the product owner.
This set up of participants was selected to get a wide range of ideas and to
enhance discussion, as people from different teams are very likely to have different
standpoints.

The goal of the workshop was to gain more insight of participants perception
of the system and their ideas on knowledge needs about user interaction with
the system that could be used as a foundation for defining the questions that
should be answered by the automated data collection.

The workshop had seven participants from the company. It started with a
brief introduction to the idea of this study and the goal and structure of the
workshop, this lasted for about ten minutes.

The participant were then presented with questions, one at a time, which
all were first described for about two minutes so that everyone understood the
question. After a question was introduced each participant wrote down his or
her ideas to the question on sticky-notes, which were collected and put on a
whiteboard. The time limit, which participants had while writing down their
ideas, was strictly five minutes. The reason of not letting them work in groups,
at this point, was to avoid them from influencing each other and decreasing
productivity.

The notes that were similar to each other were then grouped, and simultane-
ously there was an open discussion about each group of notes. The reason for
this structure during the workshop was to first let people think alone and then
to have an open discussion to reason about their answers and see if more could
be extracted, each open discussion had a time limit of ten minutes. By grouping
the questions it was easier to have a structured discussion and see which points
seemed to be common perceptions between participants.

Automated User Interaction Analysis for Workflow-Based Web Portals 155

In total, for all questions, 74 sticky-notes were written. The complete workflow
of the workshop session can be seen in Figure 2. The questions for the workshop
were designed in such a way that they together would give a deeper knowledge
of what was known, what was not known, and what was interesting to know.
This knowledge could then be used to define a number of questions that should
be answered by the survey and the data collection.

Presentation of
workshop objectives

Presentation of
question

Individual writing of
thoughts

Grouping on
whiteboard

Open Discussion

Wrap up / conclusion

Fig. 2. Workflow of the workshop process

In the following, we review two questions of the workshop and the results.
The third question dealt with porting the software to a different platform which
is out of scope for this paper.

Which Parts of the Software Need Improved User Experience? The
purpose of this question was to understand what the employees at ATEA Global
Service saw as points of improvement in regards to the user experience. By
questioning them it would be possible to predict the outcome of the gathered
data and understand if they are able to predict the need of their end user.
This question was the foundation for defining which parts of the software were
important to monitor and analyze. The sticky-notes were gathered and grouped
into five different categories as shown in Table 1. The diversity of participants
was very important for the discussion of each category and it resulted in a clear
view of possible parts to monitor and analyze.

What Would You Like to Know About the Users’ Interaction with
Accelerator? By asking this question, it was possible to find points where the
employees of ATEA Global Services felt uncertain in regards to how the software
is used. The idea was also to understand if parts of the software had been de-
veloped and maintained without clear and motivated reasons. The question was
defined as guiding purpose to which data that should be gathered and extracted
for analysis. The categories shown in Table 2 have been identified.

From the open discussion, it was clear that participants where uncertain of
how the product was being used. Which seems to come from a lack of collab-
oration with the actual end users at the customer companies. It was also clear

156 E. Backlund et al.

Table 1. Question categories on required improved user experience

What happens? The transparency of the software towards the end-user. Example of
sticky-notes: “Orders: What happens with the order when you com-
plete your order.”

Grouping The possibility to group and simplify some procedures. Example of
sticky-notes: “The need to go to different parts of the system to order
different types of products.”

Admin The parts that are related to the Admin interface and advanced con-
figuration.

Menu The ideas discussing the navigation. Example of sticky-notes: “Menu
system, there is a limited space”

Customization The reasoning about a more personalized interface. Example of sticky-
notes: “An Accelerator for different users’ roles.”

Table 2. Question categories on knowledge required about user interaction

Misunderstandings See where end user have issues to use the product. Example of
sticky-notes: “What makes a user confused, regards to how the
software works”

Statistics Information based on descriptive statistics. Example of sticky-
notes: “Least used part of the software”

Time Information based on time, when and how end user use the soft-
ware. Example of sticky-notes: “How long time does it take a user
to complete different tasks”

Frequency How often and how is the software used. Example of sticky-notes:
“How big is the user group of daily users”

that the participants found this question interesting and wanted to know more
about their end users, as there were so many different ideas. The result from this
questions was in the following used to define what data to gather.

4.1 Identified Data Analysis Needs

There were some obvious outcomes from the workshop, first of all there is a
need for increased communication within the organization. It was also clear that
many felt uncertain about their end users usage of the software. This emphasizes
the need of more statistical data of the software use or increased communication
with end users.

By gathering and analyzing the information from all Workshop Questions the
following eleven questions were extracted and defined to possibly be answered
by the survey and the automatic data collection:

1) What is the frequency of use for functionality: By answering this question
usage and possibly user interface design decisions can be made better. It defines
which parts should be prioritized when evolving the product.

Automated User Interaction Analysis for Workflow-Based Web Portals 157

2) Frequency of use for different roles: The reason for understanding frequency
of use for different role is so that the user interface could be tailored for some
roles which use the system a lot.

3) Are there any functions that are not used: The question aims at reducing
complexity by removing not used functionality.

4) How is the internal search of the website utilized: Since many parts of the
software are based on search it is interesting to know if the search functionality is
used once within a session or several times. If search mostly occurs once it might
be possible to suggest a simplified design. Furthermore, the system supports a
test based search and a tree based search.

5) How long time does it take a user to complete a task: If a part of the
software is complex, it most probably will take longer time to complete task. By
understanding complex parts, it would be possible to pinpoint where to focus on
improvement or parts that should be revised.

6) How does software use differ between regular and non-regular users: Based
on this question, strategic decision can be made from the data. For example,
which type of user should be prioritized.

7) Which task is the most difficult to complete: By understanding what sce-
nario and part of navigation that are difficult for the end-user, it is possible to
see where it is most vital to simplify the user interface.

8) Are there any trends, between different versions: Changes over time are
important feedback for continues development and enables an evaluation of pre-
vious decisions as suggested in the BLM loop.

9) Are there parts of the software with a high bounce rate: By finding parts
of the software with a high bounce rate it is possible to revise them. A bounce
is when a user navigates to a certain part and then navigates to another one in
just a matter of second. This indicates that the former was not what the user
was looking for. A high bounce rate can be a sign of design or content issues.

10) How often and where do drop offs occur: A drop off occurs when a user
works on a task and then aborts. By finding drop-offs, it could be possible to
pinpoint parts that have a complexity that is too high or where there are too
many steps and options for the end-user to complete.

11) What time of the day are tasks carried out: By understanding when the
task is started and what is carried out, it might be possible to motivate what
parts should be extracted to a handheld device as these may be used more often
in the mornings, evenings or during lunch.

4.2 Question Refinement

In the following, we describe how the questions defined in Section 4.1 are rede-
fined in a more detailed manner and broken down into a tree structure. Moreover,
the questions are analyzed to identify which could be answered by automated
data collection and respectively a web survey.

Each question has been broken down further and annotated by notes which
indicate whether an answer to a question is feasible by using the automated
data collection or by using a survey. Typically, the workshop questions deal with

158 E. Backlund et al.

user impressions and are therefore not feasible to answer by an automated data
collection approach but with an online survey whereas the broken down questions
are on a level which can be answered by automated data collection but maybe
not with a survey. We use «Survey» for questions answerable by a survey and
those answerable by automated data collection with «DataCollection». We focus
in the following on the workshop question 7) Which task is the most difficult to
complete and refer to [16] for the full description of all breakdown questions.

Breakdown Question 7 is the same as question 7 from the workshop as pre-
sented in section 4.1. For other workshop questions this might be different. The
purpose of this structure is that a survey could answer Breakdown Question 7
directly by asking the participants how difficult each task is. However, to design
a survey question for the two refined questions, 7.1 and 7.2, would be to complex.
These two questions try to identify which task are difficult to complete by ana-
lyzing the longest time it takes a user to complete a step during the completion
of a workflow, represented as question 7.1, and by looking at the task which has
the highest value of completion time per steps, represented in question 7.2. Both
can be answered automatically from the collected data.

7. Which task is the
most difficult to

complete?
<<Survey>>

7.1. What is the longest
time between steps in a

task for a session?
<<DataCollection>>

7.2 Which task has the
highest value of

completion time / steps?
<<DataCollection>>

Fig. 3. Breakdown Question 7

As an outcome of this activity the initial 11 questions have been refined into
36 refined questions and for each question, it was defined whether they can be
answered by an automated data collection or a web survey.

5 Automated Data Collection

The user interaction is collected as a set of traces, where a trace is a record of a
single user interaction with the system.

The process of developing the data collection included three steps: First, de-
termining what data needs to be collected. Second, selecting an appropriate
technology for implementing usage tracing. Finally, executing the implementa-
tion of usage tracing with the selected technology to capture the user interaction
and to answer the questions presented in Section 4.2. Each stored user interac-
tion trace includes which part of the system is used, who is the user, what is
the user’s action (e.g., a button click), the roles of the user, and time related
information like timestamp and execution time.

Automated User Interaction Analysis for Workflow-Based Web Portals 159

As the user interactions are handled by a wide variety of source files, the addi-
tion of data collection would require many manual changes. However, as tracing
is a true cross cutting feature and the source code closely followed guidelines
about naming of methods, aspect oriented programming [17] was used to intro-
duce the usage tracing code into the system. We used 11 point cuts to cover
the complete usage tracing by introducing the code into all methods which dealt
with user interactions in the system like all onClick-methods, which are called
every time a user clicks on an user interface element. We were able to exploit
company specific source code naming conventions.

The usage of aspect oriented programming enabled a fast development of
the data collection code. Furthermore, it supports the automatic evolution of
the usage tracing in case new functionality is added which follows the same
guidelines as the existing code.

6 Preliminary Evaluation

This section describes a preliminary evaluation that the solution in section 5
produces knowledge that conforms to the users perception expressed in a web
survey. The evaluation was performed by letting 15 test subjects take part in a
user testing workshop. In the workshop, each user was asked to perform the set
of tasks shown in Table 3.

Table 3. Tasks executed by the test subjects in a random order

1. Request Hardware User ought to complete a request for a computer.
2. Change Password User ought to successfully change the password.
3. Request Software User ought to complete a request for a software product.
4. Request Access User should request membership to a user group.
5. Approve Order User should approve a request, while using a manager account.
6. Cancel Order User should cancel a request.

These six tasks cover the essentials of the case product and what users most
often use the product for according to ATEA Global Services. Since requests of
different kinds are the idea of the case product three tasks were used to cover
this. Requests need approval in some cases and due to this the Approve Order
and Cancel Order were selected. However, due to issues with the automated data
collection, these two tasks could not be measured and thus are excluded from the
following description. To also cover some of the manage user part of the product
one task was designed for changing password.

As mentioned in Section 3 the tasks were designed to reflect a real world
scenario. With this in mind the task were formulated in such way that they rep-
resent a possible scenario that end-users could encounter. To counter undesired
variations related to learning- and boredom-effect the ordering of tasks for each
test subject was made so that no subjects performed the tasks in the same order.

After completion of the tasks, the users were sent an e-mail with a link to
a web survey. After the data collection had been run on the user testing data

160 E. Backlund et al.

and the data from the web survey had been collected, the results were compared.
Four Breakdown Questions were selected, number 1 (Time for a user to complete
a task), 3 (Product bounce rate), 5 (Utilization of internal search) and 7 (Most
difficult task to complete). We will report about the last one and refer to [16] for
the others. The web survey question related to this Breakdown Question was:
“Rate how difficult each task was to complete on a scale from 1 (easy) to 4 (very
difficult).”

The most difficult task was Change Password which was rated 2 on average.
Then came Request Access with 1.72 followed by Order Hardware and Order
Software with 1.52 and 1.3.

The corresponding measurements are the average completion time per step for
each task. The highest average completion time per step by far was 47.4 seconds
for the Change Password task. Then came Order Hardware (14.9 seconds) and
Order Software (9.0 seconds). Finally, Request Access had an average completion
time per step of 8.3 seconds. These three tasks have a similar small average
completion time per step in comparison with Manage Account.

When we compare the average completion time per step with the survey re-
sults, we see both the measurement as well as the survey indicate that Change
Password is the most difficult task. This was also seen during the experiment as
the test subjects struggled choosing a password which conforms to the password
rules which were enforced but not explained by the system. Request Access was
rated higher in the survey than indicated in the measurements. The ranking be-
tween Order Hardware and Order Software was the same in measurements and
the survey. Kendall’s tau is 0.333 indicating a weak positive correlation. We refer
to [16] for more details about the other parts of the evaluation including results
of statistical tests.

The measurements for the three other tasks than Change Password are very
similar. Thus, small changes in the measurements may lead to different ranks
and also the users might not be able to judge the small differences. So, we plan
to do follow-up evaluations with more subjects.

7 Related Work

Automated user interaction analysis is well known in the web development with
Google Analytics as one of the major platforms. As an example, Hasan et al. re-
port about using Google Analytics for e-commerce systems [18]. Google analytics
and similar systems, however, have the problems that the data collection and
analysis is done on systems not owned by the company which raises privacy is-
sues. Furthermore, the data collection is constrained by the supported features.

Van der Shuur and Jansen [19] have presented a solution for improving soft-
ware quality by automatically gathering and reporting how a software service
is being used. The data gathering was implemented in the service layer using
aspect-oriented programing as in our approach. Furthermore, the reporting was
built using a set of metrics that were concerned with quality attributes like avail-
ability, accuracy, reliability and usability. They concluded that their solution was

Automated User Interaction Analysis for Workflow-Based Web Portals 161

expected to contribute to an increase in software quality and that future work
was needed on how to use data mining techniques for reporting on software
utilization.

For usage tracing aspect-oriented programming stands out as having been
tested for its suitability when implementing automated data collection for usabil-
ity evaluation and usage tracing. Tart and Moldovan showed that it could be used
for automated usability evaluation [20] and equal results where gained by Tao
who used the same framework [21]. Tarby et al. compared aspect-oriented pro-
gramming with Agent-Based Software Architecture concluding that they could
be used as complement. The recommendation was to use aspect-oriented pro-
gramming for defining traces while the agents would be used to “produce traces
whose visualization will be made in real time” [22]. A trace is referred to as a
record of an action performed by a user.

However, these papers lack a comparison against other data collection tech-
niques compared to this paper.

8 Conclusion and Future Work

The presented work is concerned with enabling software companies to measure
and subsequently learn how their customers use their software as a precondition
for improving the software in such a way that it benefits the customer. We used a
web-based portal software developed by ATEA Global Services as an industrial
case.

The different aspects, which the company were interested to know about how
user interact with the software, were identified in a workshop with different roles.
An automated data collection system for the identified aspects was built and in
a follow-up experiment the results of the automated data collection system was
compared to answers of the test subject in a survey. We refer to [16] for the
complete results and further details of our research study.

Future works include a follow-up experiment with a higher number of test
subjects as well as monitoring the system and its measurements over several
versions to identify whether the added automated data collection capabilities
enable the company to continually improve the software.

References

1. Holmström Olsson, H., Bosch, J.: Towards data-driven product development: A
multiple case study on post-deployment data usage in software-intensive embedded
systems. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol,
K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 152–164. Springer, Heidelberg (2013)

2. Holmström Olsson, H., Bosch, J.: Post-deployment data collection in software-
intensive embedded products. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013.
LNBIP, vol. 150, pp. 79–89. Springer, Heidelberg (2013)

3. Ries, E.: The Lean Startup: How Constant Innovation Creates Radically Successful
Businesses. Penguin Group, London (2011)

162 E. Backlund et al.

4. Highsmith, J., Cockburn, A.: Agile software development: The business of innova-
tion. IEEE Computer 34(9), 120–122 (2001)

5. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on
agile methods: A comparative analysis. In: Clarke, L.A., Dillon, L., Tichy, W.F.
(eds.) ICSE, pp. 244–254. IEEE Computer Society (2003)

6. Morris, M., Dillon, A.: How user perceptions influence software use. IEEE Soft-
ware14(4), 58–65 (1997)

7. Soloway, E., Guzdial, M., Hay, K.E.: Learner-centered design: the challenge for hci
in the 21st century. Interactions 1(2), 36–48 (1994)

8. Argyris, C., Schön, D.: Organisational learning: A theory of action perspective.
Addison Wesley (1978)

9. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experi-
ments on the web: survey and practice guide. Data Mining and Knowledge Discov-
ery 18(1), 140–181 (2009)

10. Bosch, J.: Building products as innovation experiment systems. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39.
Springer, Heidelberg (2012)

11. Dzamashvili-Fogelström, N., Gorschek, T., Svahnberg, M., Olsson, P.: The impact
of agile principles on market-driven software product development. Journal of Soft-
ware Maintenance 22(1), 53–80 (2010)

12. Sommerville, I.: Software Engineering, 6th edn. Pearson Education, Essex (2001)
13. Bird, C., Murphy, B., Nagappan, N., Zimmermann, T.: Empirical software engi-

neering at microsoft research. In: Hinds, P.J., Tang, J.C., Wang, J., Bardram, J.E.,
Ducheneaut, N. (eds.) CSCW, pp. 143–150. ACM (2011)

14. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional
(2002)

15. Cockburn, A.: Agile Software Development. Addison-Wesley Professional (2001)
16. Backlund, E., Bolle, M.: Automated usage tracing and analysis: a comparison with

web survey. Master’s thesis, Chalmers University of Technology, Gothenburg, Swe-
den (2013)

17. Kiczales, G., Lamping, J., Mendhekar, A.: Aspect-oriented programming. In: Akşit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer,
Heidelberg (1997)

18. Hasan, L., Morris, A., Probets, S.G.: Using google analytics to evaluate the usability
of e-commerce sites. In: Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 697–706.
Springer, Heidelberg (2009)

19. van der Schuur, H., Jansen, S., Brinkkemper, S.: Becoming responsive to service
usage and performance changes by applying service feedback metrics to software
maintenance. In: Proc. of the 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering - Workshops, pp. 53–62. IEEE (September 2008)

20. Tarta, A., Moldovan, G.: Automatic usability evaluation using aop. In: 2006 IEEE
International Conference on Automation, Quality and Testing, Robotics, vol. 2,
pp. 84–89. IEEE (2006)

21. Tao, Y.: Capturing user interface events with aspects. In: Jacko, J.A. (ed.) HCI
2007. LNCS, vol. 4553, pp. 1170–1179. Springer, Heidelberg (2007)

22. Tarby, J., Ezzedine, H., Kolski, C.: Trace-Based Usability Evaluation Using Aspect-
Oriented Programming and Agent-Based Software Architecture. In: Human-
Centered Software Engineering, pp. 257–276 (2009)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 163–178, 2014.
© Springer International Publishing Switzerland 2014

Orchestrate Your Platform:
Architectural Challenges for Different

Types of Ecosystems for Mobile Devices

Herman Hartmann1 and Jan Bosch2

1 University of Groningen, Groningen, The Netherlands
j.h.hartmann@rug.nl

2 Chalmers University of Technology, Gothenburg, Sweden
jan@janbosch.com

Abstract. The introduction of smartphones and tablets has led to a fast growing
industry in which most firms have started an ecosystem-centric approach. In
this paper three types of ecosystems are identified: Vertically integrated hard-
ware/software platforms, closed source software platforms and open source
software platforms. These ecosystems differ in the scope of the platform, i.e.
covering both hardware and software, and the technology design, i.e. whether
the software can be altered by the complementors. In this paper the challenges
for each type of ecosystems are identified from an architectural point of view.
Platform leaders can use our analysis to orchestrate their platform by proactive-
ly addressing the challenges that we identify and properly evolving the scope
and technology design of their platforms.

Keywords: Platform leadership, mobile ecosystems, consumer electronics,
software architectures, embedded systems.

1 Introduction

The last decade has seen a revolution in the consumer electronics industry in the wake
of the introduction of smartphones and tablets. This industry consists of hardware and
software vendors, handset makers and application developers [1]. Furthermore,
smartphones have caused a renewed interest in tablets that are often replacing
personal computers as the consumers preferred computing platform.

Initially this industry was dominated by a handful of firms that developed the
hardware and software and created the handsets, e.g. Nokia, Siemens, Motorola and
RIM. In a later stadium newcomers, such as Apple, entered the market because
hardware platforms became commodities. Existing software companies entered the
market, e.g. Microsoft and Google, and created a software platform that acts as a
spanning layer between the applications and the hardware platform [2].

Due to the increasing development effort, many firms have adopted an ecosystem
centric approach [3]. In this paper we identify the three types of ecosystems that
have emerged. These ecosystems differ in the scope of the platform and whether the

164 H. Hartmann and J. Bosch

complementors can alter and contribute to the platform. We analyze these types with
the framework of Gawer and Cusumano [4] by using a number of factors that influ-
ence the optimal scope and technology design. These factors cover general competi-
tive criteria, design challenges that originate from the nature of embedded consumer
electronic devices and factors that originate from the use of ecosystems. For each type
of ecosystem we identify which factors are challenging, from an architectural point of
view, and describe how the actors mitigate these challenges.

The key contributions of this paper are:
• Three types of ecosystems are identified and the factors that determine the op-

timal scope and technology design of the platform.
• Each type of ecosystem is evaluated and the factors are identified which are

challenging for each type of ecosystem, from an architectural point of view.
• Case studies are presented that show how the actors address these challenges.
• An analysis of the market share is presented with future scenarios.
Platform leaders can use our analysis to orchestrate their platform by proactively

addressing the challenges that we identify and properly evolving the scope and tech-
nology design of their platforms. The research in this paper is both descriptive, since
it provides a classification of the existing situation, and explanatory because it de-
scribes the conditions under which the different types of ecosystem prosper.

The remainder of this paper is structured as follows: Section 2 provides back-
ground and Section 3 describes the type of ecosystems. Section 4 presents the factors
and the evaluation for each type of ecosystem. In section 5 cases studies are pre-
sented, while section 6 gives a historical perspective and presents future scenarios.
This paper ends with a comparison with related art in Section 7 and by our conclu-
sions and recommendations for further research in section 8.

2 Background

Smartphones and tablets have characteristics of embedded devices as well as general
purpose computing devices [1]. As an embedded device they are aimed to perform
dedicated functions, such as making telephone calls, recording videos and playing
music, which have real-time performance requirements. As a mobile device they have
constrained computing resources and should use as little energy as possible because
they operate on batteries and have few options for heat dissipation. These devices also
have characteristics of general purpose computing devices because mobile phones and
tablets are meant for a variety of tasks such as Internet browsing, reading and writing
documents, accessing social media and playing games.

As an example look at Flash, an Internet browser plugin for watching videos. Ap-
ple has not allowed the use of Flash on their devices because it causes a significant
shortened battery life [5], but has promoted the use of the H.264 video encoding stan-
dard for which their device is optimized. This example shows the conflicting require-
ments between a dedicated embedded device and a general purpose device.

 Orchestrate Your Platform: Architectural Challenges 165

The speed of innovation occurred at a high pace and the commercial lifetime of a
product is often less than two years and therefore do not require backwards compati-
bility. A firm that is lagging behind may lose a market share rapidly.

2.1 System Architecture

In figure 1 a high level architecture of smartphones and tablets is presented, showing
some of the actors. The architecture consists of a hardware platform an OS-kernel and
middleware that offers a framework for application developers [6].

Hardware

OS-Kernel

“Middleware” / Application
Framework

App. App. App. App.

e.g. Apple, RIM

e.g. Facebook, Angry Birds

e.g. Windows 8

e.g. Android, Meego

e.g. ARM, NXP

e.g. linux

e.g. Samsung, HTC,
Apple, RIM

Handset
makers

Fig. 1. System architecture of mobile phones and tablets with some actors

The hardware layer consists of System on Chips (SoCs) with peripheral Integrated
Circuits (ICs). A SoC contains several dedicated building blocks on a single IC such
as audio decoding, memory and a configured CPU. A dedicated SoC, which is com-
mon for embedded systems, is better able to meet the performance requirements at
lower power consumption than using a general purpose CPU and separate ICs, as in
the PC industry. The design of the software and the SoC are tightly coupled, e.g. for
controlling the power consumption of separate hardware building blocks.

3 Growing Software Size: Move towards Ecosystems

In an earlier paper we analyzed the transition in the mobile phone industry from 1990
until 2010 [1]. Initially the mobile phones were developed by a small group of
vertically integrated companies that developed the hardware, firmware and
applications as well as created the handsets, e.g. Nokia, Siemens, Ericsson and
Motorola.

Smartphones introduced the need for dedicated application processors, operating
systems and software applications. The development investments, both for hardware
and software, became significantly higher and therefore the companies needed to fo-
cus their activities. The mobile phone companies made their software platforms avail-
able to external parties. In this way these organizations transitioned from software
product line engineering in an intra-organizational context to software ecosystems [3].

Separate hardware platform suppliers were created as spin-offs of the vertically in-
tegrated companies, such as Qualcomm [7] and Freescale. Some of these suppliers fo-
cused on a hardware platform only while others also integrated software platforms on

166 H. Hartmann and J. Bosch

these platforms. When hardware platforms and other components become commodi-
ties it was possible for newcomers to enter the market without large investments. Ex-
amples of these newcomers are TCL, HTC and Apple.

Several software platforms entered the market and firms were aiming to create a
common software platform in an attempt to replicate the Wintel model and create an
ecosystem [8]. Similarly as the case with Microsoft Windows, a firm controlling the
spanning layer can earn most of the revenues since it controls the interface towards
the hardware as well as towards the applications [10, 2]. The number of competing
mobile platforms that entered the market was huge, e.g. WebOS, Android, LiMo,
Symbian, Windows Mobile, MeeGo etc. Until 2009 most of these attempts didn’t gain
industry wide adoption and therefore the industry was highly fragmented.

Starting in 2010 many of the vertically integrated firms lost market share and An-
droid, an open source software platform, gained a share rapidly. Furthermore the do-
minant player in the PC market, Microsoft, increased their efforts to gain a dominant
position. As a result in 2013 there is a fierce battle between different ecosystems.

3.1 Classification of Ecosystems with Their Complementors

This paper focusses on the ecosystems that are centered around the software platforms
and the vertically integrated firms. For a comparison of these ecosystems we use a
classification that is based on two properties: (1) is the software proprietary or open
source, and (2) are the hardware and handset included, see figure 2.

Hardware and
handset included

Software
Platform only

Proprietary closed Source Open Source

(1) Apple, RIM
Nokia (< 2013)

(2) Windows
WebOS (2010-2012)

(3) Android,
Tizen, Firefox OS

(4) Not present in the
market

Fig. 2. Classification of ecosystem types

This classification results in four possible ecosystems:
1: Vertically integrated proprietary hardware/software platform. This platform
consists of the hardware, proprietary closed source software and includes the handset.
The complementors are the App developers. Examples of platforms and their leaders
are Apple with the IPhone, Rim with Blackberry and Nokia with Asha.
2: Proprietary, closed source software platform. This platform consists of a
proprietary closed source software platform. The complementors are the suppliers of
hardware platforms, system integrators, handset makers and app developers.
Examples of such platforms are Windows Phone and WebOS (2010-2012).
3: Open source software platform. This platform consists of an open source software
platform. The open source software platform is based on the concept that multiple
parties can contribute to share development effort and since the source is open, the
handset makers can change, add or remove functionality. The complementors are the

 Orchestrate Your Platform: Architectural Challenges 167

suppliers of hardware platforms, system integrators, handset makers and app developers.
Examples are Android, Tizen and Firefox OS.
4: Open source software and hardware platform. This platform would consist on
an open source software platform including the hardware and handset. The users of
such a platform, or better handset, would be able to change the code of the software
platform and add their own functionality. We have excluded this type from this paper
as this type, to our knowledge, is not available in the market.

Note that in the past some handset makers used an open source platform of which
they acted as the orchestrator or platform leader, e.g. Nokia that used Symbian when
it was open source and Motorola of Google that used Android. In this situation the
handset makers are in-house complementors of the open source software platform and
therefore the combination is not a separate type of ecosystem.

4 Defining the Platform Scope

Gawer and Cusumano designed a framework for a company to become a platform
leader. A platform leader is driving the innovation in the industry, ensures the
integrity of the overall system and creates opportunities for firms that create
complementary products [4]. This framework includes (1) how a company defines the
scope of the platform, i.e. what part of the product is developed in-house and what it
leaves for complementary firms, (2) the technology design, i.e. to what degree the
platform should be open to the complementors [12]. The scope and technology design
highly determine the success of a platform. It should support the capabilities of the
platform leader, allow for complementors to contribute and be able to respond to a
changing environment. Therefore the scope and design of a platform evolve over time
[4].

4.1 Factors that Influence the Optimal Scope of the Platform

For evaluating the scope and technology design, we use the following factors, each of
which will be elaborated in more detail in the remainder of this section:

Cost, Quality, Flexibility, Innovation and Variability: These factors originate
from the analyses of Bolwijn and Kumpe [13], who identified the main competitive
forces that determine the success of a consumer electronics firms. In a later analysis
Sheate [14] identified variability as an additional criterion, related to flexibility, since
individual users increasingly have specific demands.

Efficient use of system resources and Hard real time requirements: These fac-
tors originate from the nature of embedded systems and consumer products [15].

Stability of the interface and Effort for system integration: These factors are
specific for ecosystems since complementors have to rely on a stable and, ideally,
backwards compatible interface [2], and for the set-makers the integration of the
hardware and software is a substantial proportion of the development effort.

Other factors that determine the success of an ecosystem, such as business models
and actions [16, 12] are not covered since this paper focusses on architectural aspects.

168 H. Hartmann and J. Bosch

4.2 Evaluation of the Factors

In this section we analyze each type of eco-system using the factors from the previous
section. Here we will “score” each factor on whether it is particular challenging or
easier to address. Here + means: easier to address, 0 means: neutral, and - means:
particularly challenging. The “scores” do not represent absolute values, but are solely
used to express the differences between the types of ecosystems. This analysis is
based on the experience of the authors, the information in literature and the case
studies that are presented in section 5.

A: Costs. The larger the scope of the platform, the more development and main-
tenance effort is required by the platform owner. When multiple parties are involved
these costs can be shared between the participants [17]. Because hardware and soft-
ware development is costly, this is the main reason why ecosystems became widely
adopted. Firms that aim for low costs specialize on a few products so that tasks be-
come routine [13]. Consequently products that are developed in consort by specia-
lized firms, especially when interfaces are pre-defined, can be made at lower costs.

For the vertically integrated type this factor is particularly challenging since they
develop the entire platform including both hardware and software and can only amort-
ize their investments over their own handsets (hence score = -). The open source plat-
form can more easily address this, especially when the complementors contribute to
the platform and often individual developers develop code in their free time [12]
(hence score = +). For the proprietary software platform we evaluate this as neutral
(score = 0): Although this platform owner has to develop the platform on its own, the
costs can be amortized over multiple products from different handset makers.

B: Control over Quality. The overall product quality depends on the combination
of software from the different contributors and failures often occur because of com-
ponent interaction, unclearly documented Application Programming Interfaces (API)
or unknown use of the system [18, 19]. A firm that controls a wide scope of the archi-
tecture can guarantee the product quality more easily. In the situation where multiple
firms are involved, and especially when the interfaces are not clearly defined, the
quality can easily break down and externally developed code could access data in the
system, causing malfunctioning or security problems. Furthermore, applications de-
veloped by complementors may not follow the UI standards, as set by the platform
owner, thereby causing a reduced user experience [20].

The quality can be controlled easier by the vertically integrated platform type as
they have full control over the end-product. Furthermore these firms are able to test
the externally developed applications on their handsets (hence score = +). For the
proprietary platforms we evaluate this as neutral (score = 0): although they have no
control over the hardware, they can control the API and, because of its closed nature,
can easier avoid that code with defects is added to the platform. For the open source
platform we also regard this as neutral (score = 0). Because of its open nature, faulty
code can be added or code can be changed incorrectly by the complementors and ap-
plications may compromise the security. An advantage however, is that the software
is tested by a variety of firms and open source developers.

 Orchestrate Your Platform: Architectural Challenges 169

C: Flexibility and Variability: Customers increasingly want the software and the
handset that serves their specific needs. For instance users have different requirements
for the product, e.g. the size of the screen, a keyboard or prefer a low cost device.
Specialized firms can often add this variability to the platform more easily [21], e.g.
because they have the required knowledge, can reuse existing hardware and software
components and they can have a more intimate contact to the end-users [3].

Flexibility and variability is easier to achieve through the open source platform
type, since complementors can add or remove functionality without the need to in-
volve the platform owner (hence score = +). For the proprietary platform type we eva-
luate this as neutral (score = 0): The handset makers can create differentiating prod-
ucts with different hardware configuration; however this is limited to that which is
supported by the software platform. As a comparison look at the PC industry where
the different OEM suppliers of a Windows based PC can only compete on price,
service and hardware quality, since the functionality is large determined by the pro-
prietary software platform. For the vertically integrated platform owner it is far more
difficult to cover a wide range of products. In order for a firm to be flexible and
respond quickly, it needs to focus on a number of core activities [13] and the devel-
opment of all the required hardware and software components would simply be too
costly. We therefore evaluate that this as challenging for this type (score = -).

D: Freedom to innovate: The optimal definition of the boundaries depends on
where the major innovation steps in the architecture take place. When innovation
takes place across the boundaries of the platform the integrity of the platform is com-
promised and the complementors need to be involved thus slowing down the speed of
innovation [2]. Therefore, a wide scope allows for larger innovation steps more easily.

The introduction of multi touch screens is such an example. Due to this innovation
specialized hardware was needed; the interface towards the user has changed and a
new API towards the application developers was required. Such a large innovation
step couldn’t be done through small changes to an existing platform.

Large innovation steps are easier to establish by the vertically integrated platform
type (score = +) because these firms control the entire architecture and complemen-
tors do not need to be involved. In the proprietary platform type the innovation is re-
stricted because hardware is not part of the scope and the platform supplier has to in-
volve hardware suppliers and handset makers for major steps (hence score = -). For
the open source platform the hardware is also not part of the scope, however, the
complementors may change the code and thus has the possibility for innovations, in-
dependently from the platform owner, for which the architecture does not have to be
changed. Therefore we evaluate this as neutral (score = 0).

E: Efficient use of system resources and hard real time requirements: Due to
the need for optimal resource utilization and low power consumption a direct control
of the hardware is required. Furthermore, embedded devices have hard real time re-
quirements, e.g. for audio playback and telephone conversations. An embedded
device usually contains a System on Chip (SoC) and each component is controlled
separately. For instance, for audio playback a separate building block of the SoC is
used which can operate with low power consumption and is only active when needed.
Furthermore, by controlling each part of the IC separately it can be avoided that

170 H. Hartmann and J. Bosch

processes interrupt each other. Therefore the design the hardware and software are
developed in parallel and require close co-operation [6].

As a comparison, look at the Wintel framework; the dominant ecosystem of Win-
dows and Intel in the PC industry [11]. This is a modular architecture with stable in-
terfaces between the hardware and the software layer. Both Microsoft and Intel can
independently innovate on their part of the architecture. Such a modular interface is
possible because most demands of the end user can easily be met by existing hard-
ware. For mobile phones such a modular interface is not yet possible since there are
still large innovation steps that involve changes to hardware and software together
and a modular architecture would lead to less efficient resource utilization [22].

Since the vertically integrated platform type has both control of the hardware and
software this can controlled more easily (score = +). In the open source type the com-
plementors can also change the code to accommodate the hardware and vice-versa
and therefore this can also be controlled (hence score = +). For a proprietary platform
type this is particularly challenging since changes to hardware may require changes to
the proprietary platform and vice versa (hence score = -).

F: Stability of the Interface: The success of a platform relies on attracting 3rd
party application developers [20]. It is important for a platform to maintain a (suffi-
ciently) stable API, thus avoiding that interoperability problems exist where applica-
tions do not work on the variety of devices based on different versions of a platform.
This fragmentation is seen as the major challenge by the application developers [23].

Vertically integrated platforms can more easily avoid fragmentation since they
have full control over the API (hence score = +). This also holds for the closed source
proprietary platform, similarly as the case in the PC industry, which has proven to be
the major advantages and success of this type of platform [21] (hence score = +).
For an open source platform this is challenging since fragmentation can easily occur
because handset makers can change the API or the hardware (hence score = -).

G: Effort for system integration: The time needed to integrate the hardware and
software components is taking an increasing amount of time [24]. This is especially
the case when components from different parties are used, e.g. with different technol-
ogies, non-matching interfaces or heterogeneous architectures [15]. When a modular
architecture exists with stable interfaces, the integration time would be substantially
less. Furthermore, when multiple parties are involved, the time for interaction, defini-
tion of requirements etc., is forming a substantial part of the development effort.

For the vertically integrated platform type the integration is easier to manage since
no complementors are involved and the integration is done with in-house develop-
ment for which the interfaces can be defined (hence score = +). For the proprietary
platform type this is particularly challenging since this may require that code has to be
altered or glue components have to be developed [25] (hence score = -). In the open
source platform type the handset makers or the system integrators can perform the
hardware/software integration without (intensive) support of the platform supplier.
Therefore we evaluate this as neutral (score = 0).

 Orchestrate Your Platform: Architectural Challenges 171

4.3 Overview of Ecosystems and Their Challenges

The overview in Table 1 shows that for the vertically integrated platform type most
factors are easier to address. However, variability is more difficult to achieve and that
it has to bear all the development costs.

Table 1. Overview of types of ecosystems and their challenges

Type /
Challenge

A:
Costs

B:
Quali-
ty

C:
Varia-
bility

D:
Inno-
vation

E:
System
resources

F:
Interface
Stability

G:
Integra-
tion ef-
fort

1:Vertically In-
tegrated

- + - + + + +

2:Proprietary
Software

0 0 0 - - + -

3:Open Source
Software

+ 0 + 0 + - 0

In this overview: + means: easier to address, 0 means: neutral,
- means: particularly challenging

In the open source software type the complementors can contribute to the platform

thus offering better possibilities for flexibility and variability. Furthermore, this type
gives the handset makers and system integrators the possibility to tailor the software
for specific hardware thus being able to optimize on the system resources. However,
fragmentation of the platform can occur more easily.

In the proprietary software platform it is particularly challenging to create innova-
tive products and products with optimal system resources. The latter is a major chal-
lenge since a smartphone is an embedded device and a consumer electronics product.

5 Case Studies

This section contains case studies that cover the three types of ecosystems and show
how each company addresses the challenges that are described in the previous section.
These case studies are based on publicly available information.

5.1 Vertically Integrated Hardware/Software Platforms

Nokia was a vertically integrated firm with the largest market share until 2008. The
products were renowned for its quality and long battery lifetime. Nokia offered a
large variety of feature and smartphones.

To share the development effort with other handset makers, Nokia’s adopted and
supported the Symbian platform. The Symbian platform was initially a closed-source
collaborative platform of a small group of players and later turned into an open source
platform. However, in this ecosystem there was not a strong platform owner, but a di-
vided leadership [8]. This led to a fragmented platform with different branches and

172 H. Hartmann and J. Bosch

poorly documented APIs and therefore many 3rd party developers abandoned the
platform [9]. Although Nokia, being a vertically integrated player, had the possibili-
ties to innovate, they insufficiently took advantage of this because the Symbian plat-
form required too much development effort and many contributors of the platform
later opted for Android [8].

The market share of Nokia dropped rapidly since 2008. In 2010 an alliance was
created with Microsoft, but no large market share was regained.

RIM entered the market in 1999 with the BlackBerry, one of the first smartphones.
Being vertically integrated they could create a differentiating and innovative product,
by combing functionality, implemented both though hardware and software, from a
PDA, pager and mobile phone. This product was attracted by the professional market
because of its functionality and services.

In the years that followed this differentiating functionality became part of products
of the competitors: the touch screens took over the QWERTY keyboards and What-
sApp created an alternative for RIMs messaging service. RIM continued to offer a
wide variety of handsets for which the development costs could not be amortized with
a small market share which has reduced gradually over the last few years.

Apple entered the market in 2007 when hardware components in the mobile do-
main become commodities, e.g. the first two types of the IPhone used a SoC that was
developed by Samsung. The product immediately attracted many customers. Since
Apple was already leading in MP3 players and had an online store they could offer
the users functionality that went beyond the smartphones that were available.

A strong focus is on better performance and power consumption; especially the lat-
ter was a major concern for the earlier handsets. Since they had little experience with
developing SoCs and, rather than using a complementor, acquired SoC design firms
[26] and other hardware design firms that develop new technologies [27].

Apple uses the advantages of being a vertically integrated player, by focusing on
usability and quality, which was considered better than that of the competitors, espe-
cially in the early years, thus creating a loyal group of buyers [28]. Furthermore Ap-
ple has a strict control over the applications that are offered through their app store by
validating each application, prior to making them available in the app store.

Apple avoids development costs and fragmentation by offering only a small
amount of variants, by using the same platform for the IPhone, IPod Touch and the
IPad, and by restricting the backwards compatibility to two generations of products.
Because Apple only develops a small range of variants, their market share is under
pressure as many consumers that are attracted to a product with different features,
such as a large screen, or a lower cost handset. However, Apple’s does not aim for a
large market share, but rather focuses on a small set of products for which they can
obtain high profit margins [30].

5.2 Proprietary, Closed Source Software Platforms

Microsoft became active in hand held devices in the early 2000s through pocket-PCs
and PDA’s . At that time there were no other firms that offered a software platform
for 3rd parties so the handset makers were willing to pay the license fees.

With each new version of a platform additional hardware is supported, e.g. differ-
ent screen resolutions and new application processors. Here we see a contrast with the

 Orchestrate Your Platform: Architectural Challenges 173

open source approaches where most additions are done by the complementors. To re-
duce the integration effort Microsoft started a close cooperation with a small number
of hardware platform suppliers and integrators. In 2009 Microsoft closely cooperated
with HTC and 80% of the Windows Mobile phones were based on a platform of HTC
[30]. In 2010 a close alliance was formed with Nokia to create the hardware platform
and handsets. This combination allows for a close co-operation between the hard- and
software development that, as shown in the previous section, is required for embed-
ded products and for the speed of innovation. In 2013 Windows acquired Nokia.

Microsoft has created one platform for tablets and PCs and many components are
shared with smartphones so that applications can be ported to smartphones as well.
Given their dominant position in the PC industry this gives a competitive advantage,
but at the same time causes risks because the speed on innovation for smartphones
and tablets occurs at a much higher pace then for PCs, for which a stable API is pre-
ferred rather than a high degree of innovation.

5.3 Open Source Software Platforms

Google with Android provides a spanning layer that consists of an open source
application framework and base applications and uses the open source Linux
operating system kernel. In this way Google entered the market with little investments
but, since it offers a spanning layer, could become a platform leader. In Android some
proprietary Apps are included, such as searching and YouTube, to ensure revenues.

Linux is a real time operating system that is widely used in embedded systems. It
offers the developers the possibility to optimize on system resources [31] and sup-
ports hard real time requirements [12]. The handset makers were quickly interested in
the platform since it offered an alternative for a proprietary platform for which license
fees had to be paid [32] and the functionality that Google offered, e.g. Google Maps,
attracted many users. Because of the separation of the middleware layer the OS Ker-
nel, the handset makers can make changes to the source code, e.g. to support different
screen size, cameras and other ICs. Consequently a large variety of handsets could be
developed, resulting in a wide range with different functionality and price settings.

Although Android is an open source system, the main contributions to the source
code are done by Google. This gives Google more freedom to innovate because they
do not aim for wide consensus. New versions of the platform are offered frequently
without focusing on backwards compatibility.

To increase the innovation, Google has created an alliance with Samsung [33].
Samsung develops a wide range of consumer products and develops and manufactures
its own hardware. Samsung was able to control the hardware architecture and create
innovative products for different market segments. Therefore the speed of innovation
and quality of many Android products was possible because an existing large, verti-
cally integrated consumer electronics firm acted as complementor.

In 2011 Google acquired Motorola [34], which was operated by Google as an in-
dependent company, to have a complementor that can bring Google’s innovation to
the market. However in 2014, when already having a large market share was ob-
tained, Motorola was sold again [35]. Only for first-of-a-kind products, such as
Google Glass, both the hardware and software are developed by Google.

174 H. Hartmann and J. Bosch

Fragmentation of the Android platform is seen as a major concern by the develop-
ers [23]. As an example, look at the game “Angry Birds” that was initially introduced
for the iPhone and following its success developed for other platforms. When devel-
oping a version for Android the developers ran into performance problems of differ-
ent devices. As a result the game was not available on a large group of devices, i.e.
devices with different hardware or based on different versions [36]. Google is taking
measures to avoid fragmentation by defining a set of baseline compatibility standards.
To have a better control over the quality, in recent versions Android also incorporates
stricter security control [37] and provides a compatibility test suite [38]. Furthermore
Google is making agreements with handset makers to use the standard UI and set of
Googles Apps, which are more consistent of that of the complementors, by adding
tighter conditions for the use of the App store by the handsets [39,35].

Meamo/Tizen, Firefox OS, Ubuntu OS, Sailfish OS Over the last few years sev-
eral other attempts have been made to create an open source platform ecosystem to
replicate the success of Android, all of which are based on Linux. An example is Ti-
zen which was born out of MeeGo, which was itself was combination of Moblin and
Maemo. None of these initiatives created an attractive alternative because there was
no firm taking a role as orchestrator. Firefox OS, also based on Linux, aims for a bet-
ter support of the increasing amount of HTML5 websites through a more direct con-
trol of the hardware [40]. However, Firefox OS also offers an API for native Apps
since HTML5 doesn’t support the required functionality, especially for games.

In 2013 Samsung abandoned Bada, their proprietary operating system, to contri-
bute to Tizen [41]. When Samsung would replace Android by Tizen for all their prod-
ucts, this could shift the balance for this type of ecosystem.

5.4 Summary of the Case Studies and the Mitigation Strategies

The table below shows how the key players, i.e. the platform leader with the largest
market share of each ecosystem type, mitigate the challenges as described in Table 1.

Table 2. Mitigation actions on the main challenges

Ecosystem type and
main challenges

Mitigation actions of the key player

(1) Vertically Integrated:
Costs & Variability

Apple limits the variability and development costs
by focusing on a particular market segments and it
only supports the latest versions of the handsets.

(2) Proprietary Software:
Innovation, System resources
& Integration effort

Microsoft closely cooperates with a small group of
HW platform suppliers and recently acquired No-
kia, a previously vertically integrated firm.

(3) Open Source Software:
Interface stability &
Fragmentation

A compatibility test suite is offered with baseline
compatibility standards.
Agreements are made with the handset makers to
use standard Google Apps and User Interface.

 Orchestrate Your Platform: Architectural Challenges 175

6 Historical Perspective and Scenarios for the Future

The table below shows the market share of the three types of platforms. This shows
that the vertically integrated platforms initially had the largest market share, but in
later years the open source platform.

Table 3. Market share of different ecosystem types for smartphones

 2007 2008 2009 2010 2011 2012 2013
Vertically integrated hard-
ware/software platforms

87 % 88 % 87 % 73 % 51 % 31 % 18 %

Proprietary, Closed Source
Software Platforms

13 % 12 % 9 % 4 % 2 % 3 % 3 %

Open source software plat-
form

0 % 0 % 4 % 23 % 47 % 66 % 79 %

Total sales in millions of units 122 139 172 298 471 675 967

(Note: This overview is for smartphones only, since for tablets insufficient data was available. This

overview is compiled from reports from Gartner [42]).

This change in market share can be explained because in the early years the verti-

cally integrated firms were able to innovate faster and the end-users were willing to
pay for new functionality. When the innovation slowed down, the open source soft-
ware platforms gained market share because handsets were offered with more varia-
bility and with a lower price.

When the degree of innovation further slows down, the computing requirements
may meet the user’s demands, allowing for a modular architecture to be created that
provides a clear separation between the software and hardware layer [43]. The advan-
tage of such a modular architecture is that integration will become easier which will
especially benefit the proprietary software platform types. Therefore this type of eco-
system might gain market share, as was the case with the PC industry in the 80s [11].
An important uncertainty is whether tablets will replace PCs in a business environ-
ment. When this happens, the main supplier, i.e. Microsoft, has a strategic advantage
since they are dominant in the PC market.

When PCs and tablets remain consumer devices and the speed of innovation does
not allow for a more modular architecture, the types of ecosystems that are now do-
minant are likely to keep their dominant position.

7 Comparison with Related Art

In our previous work [1] we analyzed the transition of mobile devices from 1990 until
2010 and described a model for different industry structures. The current paper ana-
lyses the situation of today. Some of the forces that have caused the transition are
used in the current paper as factors to compare the three types of ecosystems.

176 H. Hartmann and J. Bosch

Another previous work of the co-author [20] describes architectural challenges.
Some of these challenges have been used in the current paper. However in that work
the challenges have not been identified for mobile devices or embedded systems.

The work of Gawer and Cusumano [4, 12] discusses the scope and technology de-
sign of a platform but does not discuss architectural implications nor does this work
identify or compare different types of ecosystems for mobile devices.

Other related work identified different types of ecosystems [3, 16], but this work
did not compare ecosystems in a particular domain nor did it identify factors that de-
termine the challenges from architectural perspective.

Several predictions on market shares have been done by industry analysts, e.g. by
the Gartner group [42], but none of these used architectural aspects as a basis.

8 Conclusions and Further Research

In this paper we identified three different types of ecosystems for smartphones and
tablets and identified the factors that determine the optimal scope and technology de-
sign. Based on this analysis we described the challenges for each type of ecosystem
from an architectural point of view.

The case studies demonstrated how different firms act on the factors identified in
this paper: Apple takes over existing hardware design firms and focusses on a limited
variety of products. Microsoft, who did not have a hardware department nor created
an end product, took over an existing hardware firm to be able to act as a vertically
integrated HW/SW ecosystem type. Google, who is faced with a high degree of frag-
mentation, is offering a compatibility test suite and makes agreements with the hand-
set makers to use standard Google Apps and User interface.

Our analysis shows that when the speed of innovation slowed down, most of the
vertically integrated firms were not able to amortize the development investments and
an open source platform obtained the largest market share, which, in comparison with
the closed proprietary platform, allows more flexibility and variability and efficient
use of the system resources. In this paper we predicted that when the market requires
a more stable interface, e.g. when smartphones and tablets need to support business
applications, the proprietary platforms can obtain a larger market share.

We think that the types of platforms that are identified in this paper and the factors
that determine the scope, is applicable to the wider domain of consumer electronics
and embedded systems, but further research is necessary.

The analysis in this paper is based on information in literature and the experience
of the authors. Further research, e.g. with multiple experts, may give a more precise
comparison and may reveal more relevant factors.

The results of this paper can be used by the platform owners to reconsider the
scope of the platform, e.g. by expanding the scope to areas where more control over
the quality is preferred, or to publish part of the platform as open source so that hand-
set makers can add variability more easily. On this topic further research is needed.

 Orchestrate Your Platform: Architectural Challenges 177

The analysis used in this paper can provide to the academic community a lens to
evaluate the strategies in the market of mobile devices from an ecosystem and archi-
tectural perspective.

References

1. Hartmann, H., Trew, T., Bosch, J.: The changing industry structure of software develop-
ment for consumer electronics and its consequences for software architectures. The Journal
of Systems & Software 85, 178–192 (2012)

2. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem. MIT Press (2004)
3. Bosch, J.: From Software Product Lines to Software Ecosystems. In: SPLC. Sheridan

(2009)
4. Gawer, A., Cusumano, M.: Platform leadership. Harvard Business School (2002)
5. Jobs, S.: Thought on Flash (April 2010), http://www.apple.com/hotnews/

thoughts-on-flash/ (accessed November 24, 2011)
6. Halasz, M.: Menu expands at the OS diner. Timesys Corporation (February 14, 2011)
7. http://www.qualcomm.com/solutions/operating-systems

(accessed January 2014)
8. West, J., Wood, D.: Tradeoffs of Open Innovation Platform Leadership: The Rise and Fall

of Symbian Ltd., Social Science and Technology Seminar Series (2010-2011)
9. Gilson, D.: The History of Symbian’s Secret Fragmentation (March 12, 2012),

http://www.allaboutsymbian.com/
10. Baldwin, C.Y., Clark, K.B.: Managing in the Age of Modularity. Harvard Business

Review, 81–93 (September/October 1997)
11. Grove, A.S.: Only the Paranoid Survive: How to exploit the crisis points that challenge

every company and career. Currency Doubleday (October 1996)
12. Gawer, A., Cusumano, M.: How companies become platform leaders. MIT Sloan Man-

agement Review (2008)
13. Bolwijn, P.T., Kumpe, T.: Manufacturing in the 1990s—Productivity, flexibility and

innovation. Long Range Planning 23(4), 44–57 (1990) ISSN 0024-6301
14. Sheate, W.R.: Tools, Techniques and Approaches for Sustainability. World Scientific

Publishing Company (September 30, 2010)
15. Henzinger, T., Sifakis, J.: The embedded systems design challenge. In: Proceedings of the

14th International Symposium on Formal Methods, FM (August 2006)
16. Popp, K., Meyer, R.: Profit from Software Ecosystems. Books on Demand (2010)
17. van Genuchten, M.: The Impact of Software Growth on the Electronics Industry. IEEE

Computer (2007)
18. Trew, T., Soepenberg, G.: Identifying Technical Risks in Third-Party Software for Em-

bedded Products. In: Fifth International IEEE Conference on Commercial-off-the-Shelf
(COTS)-Based Software Systems (2006)

19. Oberhauser, R., Schmidt, R.: Improving the Integration of the Software Supply Chain via
the Semantic Web. In: International Conference on Software Engineering Advances (2007)

20. Bosch, J.: Architecture in the age of compositionality. In: Babar, M.A., Gorton, I. (eds.)
ECSA 2010. LNCS, vol. 6285, pp. 1–4. Springer, Heidelberg (2010)

21. Moore, J.F.: Businesses ecosystems and the view from the firm. The Antitrust Bulletin
(March 2006); American Antitrust Institute

22. Christensen, C., Verlinden, M., Westerman, G.: Disruption, disintegration and the dissipa-
tion of differentiability. Industrial and Corporate Change 11, 955–993 (2002)

178 H. Hartmann and J. Bosch

23. Gadhavi, B., Shah, K.: Analysis of the emerging android market, San Jose State (2010)
24. Underseth, M.: Verifying Embedded Software Supply Chains. EETimes (April 2007)
25. Hartmann, H., Keren, M., Matsinger, A., Rubin, J., Trew, T., Yatzkar-Haham, T.: Using

MDA for integration of heterogeneous components in software supply chains. Science of
Computer Programming 78(12), 2313–2330 (2013)

26. http://www.eetimes.com/document.asp?doc_id=1168401
(retrieved December 24, 2013)

27. http://www.reuters.com/article/2013/11/25/us-primesense-
offer-apple-dUSBRE9AO04C20131125 (accessed January 2014)

28. Jones, C.: Apple Vs. Samsung: Who Could Win The Smartphone War? Forbes (August 20,
2013)

29. Grobart, S.: Apple Chiefs Discuss Strategy, Market Share and the New iPhones (Septem-
ber 19, 2013), http://www.businessweek.com

30. Tricia Duryee: We Learned Just How Great Of A Partner HTC Is To Microsoft. (February
17, 2009), http://paidcontent.org/ (accessed January 2014)

31. Weinburg, W.: Time and Space: Optimizing Boot Up and Footprint in Linux –Based CE
Devices. Open Source Development Lab (2006)

32. Hansel, S.: Microsoft, Google and the Bear. New York Times (October 26, 2009)
33. http://www.samsung.com/us/news/3475 (accessed January 2014)
34. http://www.google.com/press/motorola/ (accessed January 2014)
35. http://www.uswitch.com/mobiles/news/2014/01/

samsung_and_google_thrash_out_deal_over_android_bloatware/
(accessed January 2014)

36. http://www.techhive.com/article/211152/
angry_birds_devs_angry_at_android_fragmentation.html
(accessed January 2014)

37. Sierraware: “Android: Is It Secure Enough?”,
http://www.sierraware.com/
SE_Android_Security_Integrity_Management.pdf

38. Android compatibility test suite, http://source.android.com/
compatibility/cts-intro.html (accessed January 2014)

39. Gannes, L., Fried, I.: After Google Pressure, Samsung Will Dial Back Android Tweaks,
Homegrown Apps. (January 29, 2014), http://recode.net/2014/01/29

40. http://www.mozilla.org/en-US/firefox/os/
41. Byford, S.: Samsung finally folding Bada OS into Tizen (February 25, 2013),

http://www.theverge.com/
42. Gartner reports on smartphone market shares 2007 – 2013), e.g.,

http://www.gartner.com/newsroom/id/2623415 (accessed January 2014)
43. Christensen, C., Anthony, S., Roth, E.: Seeing what’s next. Harvard Business School

(2004)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 179–193, 2014.
© Springer International Publishing Switzerland 2014

ESAO: A Holistic Ecosystem-Driven Analysis Model

Jan Bosch1and Petra Bosch-Sijtsema2

1 Chalmers University of Technology, Department of Computer Science and Engineering,
Software Engineering, Gothenburg, Sweden

2 Chalmers University of Technology, Department of Civil and Environmental Engineering,
Construction Management, Gothenburg, Sweden

{Jan@JanBosch.com,Petra.Bosch}@chalmers.se

Abstract. The growing importance of software ecosystems and open innovation
requires that companies become more intentional about aligning their internal
strategy, architecture and organizing efforts with the ecosystem that the
company is part of. Few models exist that facilitate analysis and improvement
of this alignment. In this paper, we present the ESAO model and describe its six
main components. Organizations and researchers can use the model to analyze
the alignment between the different parts of their business, technologies and
ways of working, internally and in the ecosystem. The model is illustrated and
validated through the use of three case studies.

Keywords: Ecosystem, Strategy, Architecture, Organizing, Model.

1 Introduction

Recently, more and more research discusses the relevance of ecosystems for
companies as well as market segments. This research lifts up the business aspects of
ecosystems, the innovation element as well as the more technical component of
ecosystems. An ecosystem is defined as an economic community supported by a
foundation of interacting organizations and individuals, which can also be perceived
as the organisms of the business world [1]. The terminology of business ecosystem
defines ecosystems as consisting of three characteristics [1, 2, 3]: (a) a symbiosis
relationship in which the survival of all members implies the survival of the
ecosystem. (b) Co-evolution in which partners co-evolve capabilities around new
innovations and finally (c) ecosystems are often based on a particular platform, which
is defined as tools, services or technologies used in the ecosystem that enhance
performance of its members [4, 5, 6]. Especially in the software industry the term
software ecosystem has gained enormous popularity and can be defined as: a software
ecosystem consists of a software platform, a set of internal and external developers
and a community of domain experts in service to a community of users that compose
relevant solution elements to satisfy their needs [7, 8].

Current ecosystem research primarily looks at the ecosystem – but does not link
this back towards the internal organization or to the implications of the internal
organization, software platform or architecture and the ways of organizing and

180 J. Bosch and P. Bosch-Sijtsema

working. This is a challenge for many organizations for several reasons. First, the way
the organization works internally and the way the company engages with its
ecosystem need to be closely aligned with each other, as a strong co-dependency
exists between the two. Second, as companies increasingly seek to focus their internal
efforts on what truly differentiates them and try to outsource as much as possible of
the non-differentiating activities, the reliance on the ecosystem is increasing
significantly. Finally, as customers are transitioning from buying products to
acquiring services, the burden of integrating different products into a dedicated
solution for customers is falling to ecosystem players that need intimate interactions
with other players in the ecosystem. However, few, if any, holistic models exist that
support organizations to gain a better insight for aligning the complex internal and
ecosystem dimensions of R&D.

In this article we propose a model that encompasses elements of both the
ecosystem as well as the internal organization. The model provides three perspectives,
i.e. strategy, architecture and organizing, and two dimensions, i.e. internal and
ecosystem. This provides an approach where the alignment between the perspectives
and between the internal and ecosystem dimensions can be analyzed and improved.

The remainder of this paper is organized as follows. Below we first describe the
problem statement. In section 3, we introduce the ESAO model and describe its six
main components. Section 4 is concerned with validating the ESAO model with three
case study examples where we illustrate the alignment, or lack thereof, between the
six components of the ESAO model. Finally, we conclude the paper and discuss the
core contribution and its implications.

2 Problem Statement

With the growing proliferation of open innovation and software ecosystems, it
becomes more and more important that software research takes a more holistic picture
instead of describing individual elements. The vast majority of research studies one
dimension of a software intensive organization. These different dimensions are, for
example, the software ecosystem, the architecture, as well as the organizational
aspects of software intensive organizations. The software ecosystem literature
primarily studies the ecosystem and discusses different roles in the ecosystem as well
as a strong focus on the keystone player in a particular ecosystem [8]. In the software
architecture literature there is a strong focus on the design and evolution of the
architecture as well as on the technology choices required to support software
architecture [9]. In the agile community there is a lot of focus on how to organize
agile teams as well as processes and ways of working [10, 11, 12]. However, virtually
all research takes a narrow and deep approach, focusing on a specific aspect. In our
review of the literature, we found very few models that provide a holistic and
complete overview of all these different dimensions and their interdependency.

One often applied model that provides a holistic perspective of the end-to-end
dimensions of business, technology and organization is the BAPO model [9, 13]. The
BAPO model defines for four independent software development concerns: (1)

 ESAO: A Holistic Ecosystem-Driven Analysis Model 181

Business, concerned with how to make a profit, (2) Architecture, concerned with the
structure of and technologies required to build and evolve the software system, (3)
Process, defining the roles, responsibilities and relationships within software
development as well as the tooling and ways of working and, finally, (4)
Organization, defining the actual mapping of roles and responsibilities to
organizational structures [13]. The model is frequently applied for analysis and
assessment in both academia and industry. In the figure below, the BAPO model, as
well as the intended dependencies in the model, are shown.

Fig. 1. The BAPO concerns (source: [13]).

One of the authors of this paper was involved in the development of the original
BAPO model. However, in ten years of evolving an understanding of the problem, we
can identify a number of challenges with the original BAPO model. These challenges
are the following:

• BAPO is a model that only incorporates the internal organization, but does
not take into account the external environment like the ecosystem. From
software ecosystem literature we know that the ecosystem has a major
impact on an organization [7] and therefore it is important that an ecosystem
dimension is part of such a model.

• The BAPO model was originally developed in the context of software
product line research and in its detailed definition assumes domain software
and product software. This limits the applicability of the model in practice as
not all companies are using software product lines. Although not impossible,
the model is less applicable to companies that are less reuse-centric.

• BAPO strongly enforces a BAPO sequence. In practice, however,
this represents too much of a simplification of the reality in the organizations
that we engage with. Even though idealistically speaking the sequence of the
B (business) should drive the A (architecture), A should drive the P
(processes) and P should drive the O (organization structure), in practice one
never starts from a green field situation. Consequently, one has to allow for
bi-directional dependencies and the focus should be on achieving alignment
between the four dimensions.

182 J. Bosch and P. Bosch-Sijtsema

Having analyzed these challenges, we came to the conclusion that there is a need for a
new improved model that allows organizations to accomplish the following:

• Serve as a holistic analysis framework
• Serve as a benchmark for effective software product engineering
• Support the assessments of software product engineering for capability
• Evaluate software production units, divisions, or companies
• Support the improvement of software product engineering, which involves

producing assessments and improvements plans

The list above is a quite extensive list of requirements on any model. In this paper,
however, we focus specifically on the analysis model, i.e. the first item, and its
facilitation of alignment between the different aspects of a software-intensive systems
organization.

3 The ESAO Model

Based on the discussion above, we propose an extension and evolution of the BAPO
model, i.e., the ESAO model. The model is based on our experience from working
with dozens of companies around R&D management topics. As we have outlined in
the earlier parts of the paper, we have increasingly identified challenges with the tools
that we had available to help companies and in response, we have developed a new
model. The ESAO (Ecosystem, Strategy, Architecture and Organizing) model
consists of six interdependent and interconnected dimensions that are important to
take into account for software development. The six dimensions of the ‘ESAO’ model
concern both an internal company and an external company perspective.

In the remainder of this section, we first describe the internal perspective and
subsequently we discuss the ecosystem perspective.

3.1 Internal Perspective (SAO)

The internal perspective consists of three main dimensions, i.e. strategy, architecture
and organizing. Below, each of these dimensions is defined in more detail.

1. Internal Company Strategy: The strategy of the company lays down the
basis for the future path of the firm concerning the business. In particular, the
strategy is concerned with how the company generates revenue now and in
the future. The company strategy is relevant for the internal prioritizations
and decisions made within an organization, and is closely related to the
software development strategy and architecture. The internal business model
development is part of the internal strategy. The business model defines how
the firm creates and delivers value to customers and then converts payments
received to profits [14]. The internal company strategy can be related to the
Business concern of the BAPO model.

 ESAO: A Holistic Ecosystem-Driven Analysis Model 183

2. Internal Architecture: The architecture comprises the technical structure
means to build the software-intensive system as well as the technology
choices. The company strategy defines which aspects of the business will
develop going forward and need to be prioritized and which can be
deprioritized. This is important input for the architecture decisions as it
allows effective management of future evolution cost. The internal
architecture dimension can be related to the Architecture dimension of the
BAPO model.

3. Internal Organizing: The ways of organizing work, way of working, roles,
responsibilities, processes and tools within software development are
important and closely related to the architecture and strategy of the firm. In
an earlier publication one of the co-authors developed the concept of
‘Stairway to Heaven’, to describe how development typically evolves over
time [16]. This element is related to the Process and partly Organization part
of the BAPO model. The ESAO model combines the P and O parts of the
BAPO model as, in practice, the adoption of agile approaches assumes
empowered, cross-functional teams and the locus of power is much more
with the teams than with the traditional reporting hierarchies. As a
consequence, the precise organization structure is less important than earlier
and the focus has shifted to organizing the work.

3.2 External Ecosystem Perspective (ESAO)

In the ESAO model, we use the same three dimensions discussed above for the
external ecosystem. However, depending on the role of the organization in the
ecosystem, the company has more or less power in its ecosystem. When discussing
the ecosystem as an important dimension in relation to the internal strategy, software
architecture and way of organizing, it becomes relevant to understand that firms can
obtain different roles within an ecosystem. These roles are often discussed and
defined in literature and are also lifted up in the next section concerning validation of
the model with help of three case studies. The main roles often studied in ecosystems
are the following:

• Central firm or also called the keystone or platform firm who is the dominant
player and orchestrator in the ecosystem [2, 3, 4, 5, 6, 8].

• Complementors and component players who provide a product or service that
complements the platform or product of an ecosystem and enhances the value of
the platform [5, 8].

• Integrators who brings together the parts provided by different ecosystem players
into an integrated solution for the end-user. Depending on the ecosystem, this
role can be played by the keystone player, the end-user or a separate organization
[5, 8].

• A final role important in the software ecosystem is the end-user [8].

The role that the organization plays in its ecosystem determines the amount of
freedom that it has in terms of defining its strategy, architecture and organizing

184 J. Bosch and P. Bosch-Sijtsema

dimensions. However, even complementors should not view themselves as powerless.
Instead, every player has a set of strategic options available to optimize their position
and future outcomes:

1. Ecosystem Strategy: The external strategy of a company is related to the
business and software ecosystem of the firm and the strategic options that it
has available in its current role in the ecosystem. As a keystone player
strategic decisions are concerned with providing a viable business model for
complementors while maximizing its own revenue. In addition, whether the
complementors should be encouraged to compete or if the focus should be on
collaboration (cf. [15]). For complementors, the goal often is to maximize its
own stake in the ecosystem. One strategy is to seek to form a niche market in
the ecosystem, to become the keystone partner in that niche and to expand
from that position of strength. For integrators, the relationship to the end-
user and maximizing its own visibility while diminishing the role of other
ecosystem players is often a viable strategy to increase its relevance.
Depending on the strategic choices made by the company, there are
significant implications on the system and software development of the firm.

2. Ecosystem Architecture: The ecosystem architecture defines the interface
between the internal architecture and the solutions that are provided by
ecosystem partners in terms of the following:

a. The interface between my firms suppliers and my firm
b. The interface between firms that build software on top of my

product or platform. These roles are also discussed as
complementor roles [5, 8] and they can deliver, add, or develop
components and complements to a product or platform as a
complement to your firm’s platform or product.

c. The interface between my firm and firms that operate in the same
ecosystem role as my firm, but that provide other types of
functionality.

d. Finally, depending on the player providing the integration of
ecosystem solutions, the interface between my firms and
integrators.

In addition to the focus on interfaces, the focus is also on the architecture
strategy. As we discussed in [17], there is a constant commoditization
process ongoing that requires that ecosystem players pro-actively innovate
around new functionality and release commoditizing functionality to other
players or the open-source community.

3. Ecosystem Organizing: Deals with how firms work with their customers,
suppliers, and ecosystem partners in terms of processes, tools used, ways of
working, and ways of organizing the collaboration. For instance, in some of
the companies that we work with, the company has internally adopted agile
ways for working and continuous integration. However, the suppliers of the
company still use traditional waterfall or iterative development causing the
supplied parts of the system developed by the company to be updated very

infrequently. This
processes.

In the figure below, we p

illustrate two important a
between the internal and
organization perspectives b
stresses high responsivene
traditional, iterative develo
months.

Second, equally importa
should be in line with ea
ecosystem architecture and
internal organizing. For ins
agile methods internally a
inefficiencies caused by lac

A change in one of the
Although no organization w
the ESAO model, our ex
continuously seek alignm
dimensions. That allows mi
as little as possible.

Fig. 2. The ESA

The ESAO model does
achieving and maintaining
could be related to the rese
a holistic approach in which
However, the system that
boundaries set for a system
analysis of both the externa

ESAO: A Holistic Ecosystem-Driven Analysis Model

causes significant disruptions in the internal developm

present the ESAO model graphically (figure 1). We aim
aspects. First, in order to optimize synergy, alignme
the ecosystem dimension, the strategy, architecture
become important. For instance, a business strategy t
ess to customer requests does not combine well wit
opment approach with new releases of software every

nt, the internal and external perspective on each dimens
ach other, i.e. ecosystem strategy and internal strate

d internal architecture as well as ecosystem organizing
stance, the aforementioned example of the company us
and waterfall methods with its suppliers illustrates

ck of alignment.
e dimensions has consequences for the other dimensio
will every be completely aligned in all six dimensions

xperience has shown that there is significant benefit
ment when implementing changes in one of the
isalignment to be short-lived and affecting the organizat

AO model with internal and ecosystem dimensions.

s not insist on a particular order, but instead focuses
alignment between the different dimensions. The mo

arch methodology of systems thinking which encompas
h often an external and internal focus is taken into accou
t is studied can vary depending on the definition

m. The ESAO model provides a framework that supports
al and internal firm.

185

ment

m to
ents
and
that
th a

six

sion
egy,
and
sing
the

ons.
s of
t to
six

tion

 on
odel
sses
unt.
and
the

186 J. Bosch and P. Bosch-Sijtsema

4 Validation

We validate the use of the ESAO model with the help of three individual cases. In all
three cases either the ecosystem changed or the position of the firms in their
ecosystem changed and this had implications for the internal as well as ecosystem
strategy, architecture as well as way of organizing in the different firms. With help of
the cases we show that being able to analyze, assess, and react to the external
dimension, i.e., the ecosystem dimension is important for firm’s strategy, internal
development and way of working. Below we use the ESAO model as an analysis
framework for three different cases in which we introduce the case, discuss the
change trigger and analyze the case according to the ESAO dimensions. Due to
limitations in space of this paper, we can only describe the findings and analysis
rather briefly. The examples described below are extracted from longer-term data
collection through interviews, workshops and discussions between researchers and
managers and R&D engineers. For case study Alpha we held 13 interviews in the
firm, and had numerous workshops with complementors and end-users (total of 21
people). In case Beta we primarily held 4 group interviews and workshops with 5-10
people (total of 20 people) and in case Zeta we held 14 group interviews with 5-10
people (total of 50 people). Three case studies cannot give sufficient generalization
for the model, but give an insight in how the model can be applied to analyze the
complexity of software development R&D. In the anonymous cases we discuss below
we show that a change in one of the six factors has implications for the other ESAO
factors. The interviews were held retrospectively in order to capture the full
implications of these external and internal changes. The companies were therefore
selected based upon the fact that strategic changes were implemented in their firm.

4.1 Case Alpha: Ecosystem Changes

Introduction to Case Alpha. Company Alpha is a Fortune 1000 company
developing software products and services operating, primarily, on personal
computers. The company’s products address both consumer and business markets and
the company releases several products per year, including new releases of existing
products and completely new products. The products developed by the company
range in the multi- to tens of millions lines of code and tend to contain very complex
components that implement national and international regulations. The case concerns
one of the products of the company that has a user base of millions. For this product,
the company is the keystone or dominant player in their ecosystem.

Change Trigger. The case study is dealing internally with a changing ecosystem. The
company had treated its entire customer base as a relatively homogeneous population;
however, based on market research and customer feedback it became increasingly
clear that many customer segments existed with unique and specific needs. On the
other hand with a customer base numbering in millions, there was a growing base of
developers of both within case Alpha as well as outside of the firm (i.e.
complementors), that in various non-endorsed ways sought to extend the functionality

 ESAO: A Holistic Ecosystem-Driven Analysis Model 187

in the base product with features for individual customers or narrow customer
segments. From the interviews it was stated that the company could never serve all
these segments in a cost effective manner.

ESAO Analysis
Ecosystem Strategy: the case company has a keystone role within their ecosystem
concerning this particular product. For many years the company either ignored or
actively discouraged third party developers to extend its product. A number of years
ago with the advent of the iPhone apps the company decided to adopt an alternative
ecosystem strategy. It decided to copy the Apple app store model and collect 30% of
the sales generated by 3rd party developers.

Ecosystem Architecture: the change in ecosystem strategy caused the architects to
introduce an ecosystem API to the product. However, as the product managed quite
sensitive data for its users, the company introduced a multi-layered API were certified
apps would get more access, and non-certified apps only received read-only access.

Ecosystem Organizing: the company decided to pro-actively engage with its
developer community through the organization of developer conferences, regular
newsletters and other forms of communication. In addition, the company created a
certification mechanism that allowed 3rd party developers to certify their application.
Finally, the company introduced a market place inside its product that managed
payments (inside apps) as well as entitlement for 3rd party developers.

Internal Strategy: the predominant change in business strategy for the company
concerned the best ways of serving customer segments. Before the adoption of the
ecosystem strategy, the ongoing debate within product management, concerned the
introduction of customer segment specific functionality, versus the increased
complexity of the product for customers in different segments. After the adoption of
the ecosystem strategy, interviewees mentioned that the discussion changed and
focused on the boundary between functionality that should be in generic products
within the platform and functionality that should be left to the developer community.

Internal Architecture: the impact on the product architecture is two-fold.

(1) The ecosystem API was introduced which required a careful analysis of
which parts of the product internals were to be exposed and which would
remain hidden.

(2) As the company adopted a certification mechanism, the ecosystem API, as
well as the rest of the product, had to support the differentiation between
certified and non-certified apps.

Internal Organizing: the primary change in the internal organization was the
development of a unit responsible for 3rd party developers. This unit was both
responsible for certification of apps, as well as for maximizing adoption of the
product platform by 3rd party developers. Internally, this unit became the champion

188 J. Bosch and P. Bosch-Sijtsema

for 3rd party developers. Additionally the implementation of certification and API also
implied new ways of working within the firm.

Reflection: In this case it was clear that the change trigger initiated from the
ecosystem organizing level, in which the firm noticed changes in the way of
interacting and collaborating with customers and developers. As is clear from this
case, when a product reaches a customer base number in the hundreds of thousands
and millions, there will be significant pressure by both customers and 3rd party
developers, to ‘open up the product’ for customer and customer segment specific
extensions. The patterns that we described in this case, is, we believe, quite generic
for companies in this situation.

4.2 Case Beta: Pushed Back in Value Chain

Introduction to Case Beta. The case company Beta is a large global company in the
embedded system domain. The unit that we studied works with OEM customers
(Original Equipment Manufacturers) to provide one of the major sub-systems in their
product. The company worked with the OEM’s in the form of a solution provider, and
delivered a dedicated subsystem implementation in response to the requirements from
the OEM. The revenue of the company was generated by subsystem unit sales, where
a subsystem unit consists of mechanical, hardware and software unit parts. Although
the company provides software development services for its OEM customers, this was
a negligible part of their business and received very little attention from general
management.

Change Trigger. Until recently, the case study company Beta provided the complete
solution to its OEM customers. Interviewees mentioned that some years ago, a shift
started to occur in the unit’s ecosystem. First, OEMs were starting to demand that
software provided by the OEMs would be needed to be integrated in the overall
solution, frequently replacing functionality developed by the case study company
Beta. Second, OEM customers began to demand that the case study company
provided arbitrary compositions of hardware, software and mechanics provided by
competitors, the OEM and the case study company. For instance, in some cases, the
case study company was requested to provide its software on hardware developed by
competitors. In another case, the competitor software needed to be deployed on
hardware developed by the case study company. The most complicated situations,
however, were where OEM software, competitor software and software developed by
the case study company needed to be integrated. The architectural boundaries in the
three software subsystems did not align with each other, requiring deep integration
and rework of already developed components to accomplish functional integration
while achieving the necessary quality attributes.

During this shift the company’s role in their ecosystem shifted from a turnkey
solution provider to either a component provider or an integrator that worked under
the close supervision of the OEM.

 ESAO: A Holistic Ecosystem-Driven Analysis Model 189

ESAO Analysis
Ecosystem Strategy: the role of the case company shifted from a turnkey solution
provider to a component and integrator role. The case had to respond to what was
happening in their ecosystem. The company explicitly designed the industry specific
standardized architecture to coincide as much as possible with the sub system
interfaces already existing in their platform architecture. This strategy would decrease
the integration cost of customer and competitor subsystems that needed to be
integrated into the company’s products.

Ecosystem Architecture: the change in ecosystem strategy was driven by significantly
increased integration costs, which severely impacted the profitability of the business.
Due to this strategic change, the ecosystem architecture evolved into a much more
modular architecture that allowed for replacement of subsystems of components
provided by other parties.

Ecosystem Organizing: The case company used the existing standardization body to
drive their standardization efforts. The case had to respond to the changes in their
ecosystem by changing their role in the ecosystem. Their initial role was being a full
solution provider but now the case study has shifted towards an integrator role and
complementor role in their ecosystem.

Internal Strategy: the company went from an almost exclusively unit-based business
model, towards a business model in which it split its units into three:

(1) To a hardware-mechanical sales unit model that was based on the traditional
sales unit model,

(2) A software license sales and
(3) Consulting service business where the organization would build and

integrate software for any hardware mechanics configuration that the
customer desired.

Internal Architecture: The internal architecture changed towards increased
modularity. The original architecture was a highly integrated architecture towards
optimizing hardware optimizing efficiency. This architecture was evolved into one
into where modularity and decoupling between subsystems was prioritized at the
expense of resource efficiency.

Internal Organizing: the changing business model and the increased architecture
modularity caused the following changes in the organization:

(1) For each type of business model a separate organizational unit was created.
Especially in software this lead to a stronger separation between product
platform development and customer projects.

(2) In order to increase responsiveness to customers the interviewees mentioned
that they had adopted agile work practices and are currently implementing
continuous integration practices.

190 J. Bosch and P. Bosch-Sijtsema

Reflection: In this case the changes in the ecosystem architecture with demands for
integration triggered the other dimensions. As is clear from the description of the six
dimensions of the ESAO model, there were several bi-directional interdependencies
in case Beta, such as between the ecosystem and internal counterparts, as well as
between the three aspects. For instance, although the organization identified that a
shift in the ecosystem was taken place, no action was initiated until the integration
costs for customer projects became unacceptably high. In order words, the Internal
Organization initiated the change in all other dimensions, showing clearly that there is
no sequential change process like BAPO, but a continuous alignment of the different
dimensions.

4.3 Case Zeta: Strategic forward Integration

Introduction to Case Zeta. The case study company Zeta is a global company in the
embedded systems industry. The industry in which case Zeta operates is highly
fragmented with no company having more than 5% market share. The company has
thousands of competitors, but it has been able to differentiate itself using product
quality and reliability as key competencies. The products of the company have
traditionally consisted of a major mechanical component and a minor hardware and
software component. However, over the last decade, the R&D investment has shifted
in a quite significant fashion towards software development. The company operates in
a complicated technology ecosystem, consisting of wholesalers, retailers, installers,
specification engineers, maintenance and end-customers.

Change Trigger. Over the last decade, many new competitors, especially in Asia
(India and China), have appeared on the market, causing significant change in the
ecosystem. Until recently, the original differentiator and niche of the company, i.e.,
quality and reliability, were sufficient to justify its market share and pricing power.
During recent years, the quality of competitor products has reached a level that this
differentiation strategy was no longer viable. After analyzing its strategic options, the
company decided to forward integrate into its ecosystem and to start offering systems
and solutions for which it originally only provided some of the components. The
company started to change towards a turnkey provider with complex solutions in the
HVAC industry (Heat, Ventilation and Air Conditioning). The reason for this is that
the margins on systems and solutions were an order of magnitude higher than the
margins of its traditional products.

ESAO Analysis
Ecosystem Strategy: as the company decided to forward integrate in its ecosystem, the
company changed its role in the ecosystem from a component role towards a solution
provider role. One of the main challenges of this change was to avoid upsetting its
existing customer base. To accomplish this the company focused its new offerings
initially on geographies were its primary customers have little or no market presence.

 ESAO: A Holistic Ecosystem-Driven Analysis Model 191

Ecosystem Architecture: the company originally provided its products as closed
systems with minimal ability for system integrators and solution providers to access
the product. Its ecosystem architecture strategy concentrated on two factors:

(1) The adoption of industry standards to simplify the integration of its products
as well as products from other manufacturers into systems and solutions.

(2) It provided an ecosystem API that allowed third-party developers as well as
its internal systems and solutions groups to extend basic product
functionality with systems and solutions specific functionality.

Ecosystem Organizing: the company was looking to simplify the integration of
products from other manufacturers into its own systems and solutions and had little
incentives to market the capabilities to other players in its ecosystem. Consequently, it
intentionally limited communication and interaction with others in the ecosystem.

Internal Strategy: although its product margins were under pressure, the company still
was able to sell its products at a reasonable margin. Consequently, it adopted a dual
business strategy.

(1) One the one hand it sought to maximize the scale in its produce
manufacturing and sales, seeking to drive down costs by maximizing scale.

(2) On the other hand, it pro-actively build a number of system and solution
business that, though high margin, were only able to provide limited unit sale
levels.

Internal Architecture: the product architecture was optimized for minimizing
hardware resource cost but allowed for extension with ‘apps’ through its ecosystem
API. The tension in the organization was between minimizing hardware resource cost
as desired by the product sales organization, and providing excess hardware resources
in order to allow for system and solution specific apps to be installed on the device.

Internal Organizing: although the organization considered to create separate R&D
departments for products and systems and solutions R&D, it instead developed a
governance mechanism that allowed one R&D department to satisfy the hardware and
software needs of the product systems and solutions business units. The governance
mechanism consisted of a board representing all relevant stakeholders that met
frequently, and prioritized the needs of products, systems and solutions.

Reflection: Based on the complex ecosystem strategy of the firm, and their role in the
ecosystem, the company pro-actively decided to change its business strategy rather
than being forced by other players in the ecosystem. However, again, this change had
affect on all dimensions of the ESAO model. As we sought to highlight in this case,
the importance is the alignment between the six dimensions, not which dimension
initiates the change.

192 J. Bosch and P. Bosch-Sijtsema

5 Conclusion

Software ecosystems and open innovation are increasingly important for companies
as well as market segments. Current ecosystem research primarily looks at the
ecosystem – but does not link this back towards the internal organization or to the
implications of the internal organization, software platform or architecture and
the ways of working. This is a challenge for many organizations for several reasons.
First, the way the organization works internally and the way the company engages
with its ecosystem need to be closely aligned with each other, as a strong co-
dependency exists between the two. Second, as companies increasingly seek to focus
their internal efforts on what truly differentiates them and try to outsource as much as
possible of the non-differentiating activities, the reliance on the ecosystem is
increasing significantly. Finally, as customers are transitioning from buying products
to acquiring services, the burden of integrating different products into a dedicated
solution for customers is falling to ecosystem players that need intimate interactions
with other players in the ecosystem. However, few, if any, holistic models exist that
support organizations to better align their internal and ecosystem dimensions.

In this paper we introduced the EASO model that encompasses elements of both
the ecosystem as well as the internal organization. The model provides three
perspectives, i.e. strategy, architecture and organizing, and two dimensions, i.e.
internal and ecosystem. This provides an approach where the alignment between the
perspectives and between the internal and ecosystem dimensions can be analyzed and
improved. The development of a new analysis and assessment model including not
only the internal organization, but also an external ecosystem dimension is an
important improvement of earlier models that primarily focused on either the internal
company, e.g. the BAPO model [13], or that only focus on one of the dimensions like
the ecosystem, the architecture, or way of organizing.

Through our case examples we show that the new ESAO model is able to
incorporate the external and internal strategy, architecture and ways of organizing.
Furthermore, the model is applicable not only for product-line companies, but also for
other companies that work with software intensive and embedded systems. Finally,
the ESAO model is not a sequential model, in which one dimension if followed by
another dimension. Instead, the ESAO model focuses on analyzing and achieving
alignment between all the different dimensions. The different dimensions of ESAO
impact each other and need to be aligned for software intensive organizations in order
to be able to develop their organization within their particular ecosystem as well as to
react to changes occurring in their ecosystem.

From the case examples it also became clear that firms with different roles in their
ecosystem choose different strategies to either maintain their role or re-act to changes
in the ecosystem and ecosystem roles. However, the different roles played by firms
might have an impact on the alignment of the ESAO components. It might be that
different ecosystem roles imply a trade off or prioritization of the other ESAO
elements since these different ecosystem roles might have different implications for
the architecture, strategy and way of organizing within a firm. Future work would

 ESAO: A Holistic Ecosystem-Driven Analysis Model 193

need to study the implications of working in multiple ecosystems with different roles
for the internal and external dimensions.

The proposed model of ESAO offers an analysis and assessment framework, as
well as a framework supporting change and development within software intensive
organizations. In this paper, the focus is on the analysis, but in future work, we intend
to expand on the other uses for the model as well.

References

1. Moore, J.F.: Predators and prey: a new ecology of competition. Harvard Business
Rev. 71(3), 75–86 (1993)

2. Moore, J.F.: Business ecosystems and the view from the firm. The Antitrust Bulletin 51(1),
31–75 (2006)

3. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Business Rev. 82(9), 69–78 (2004)
4. Gawer, A., Cusumano, M.: Platform leadership. Harvard Business School Press, Harvard

(2002)
5. Gawer, A., Henderson, R.: Platform owner entry and innovation in complementary

markets: evidence from Intel. J. of Eco. and Management Strategy 16(1), 1–34 (2007)
6. Li, Y.-R.: The technological roadmap of Cisco’s business ecosystem. Technovation 29,

379–386 (2009)
7. Bosch, J., Bosch-Sijtsema, P.M.: From integration to composition: On the impact of

software product lines, global development and ecosystems. J. of Systems and
Software 83, 67–76 (2010)

8. Manikas, K., Hansen, K.M.: Software Ecosystems –A Systematic Literature Review. J. of
Systems and Software 86(5), 1294–1306 (2013)

9. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A general
model of software architecture design derived from five industrial approaches. J. of
Systems and Software 80(1), 106–126 (2007)

10. Bosch, J., Bosch-Sijtsema, P.: Coordination between global agile teams: From process to
architecture. In: Šmite, D., Brede Moe, N., Ågerfalk, P. (eds.) Agility Across Time and
Space. Implementing Agile Methods in Global Software Projects, pp. 217–233. Springer,
Berlin (2010)

11. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley,
Boston (2004)

12. Schwaber, K.: Agile Software Development with Scrum. Prentice Hall (2001)
13. van der Linden, F.J., Dannenberg, R.B., Kamsties, E., Känsälä, K., Obbink, H.: Software

product family evaluation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 110–
129. Springer, Heidelberg (2004)

14. Teece, D.J.: Business models, business strategy and innovation. Long Range Planning 43,
172–194 (2010)

15. Boudreau, K.J., Lakhani, K.R.: How to manage outside innovation. MIT Sloan
Management Rev. 50(4), 69–76 (2009)

16. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”–A Multiple-
Case Study Exploring Barriers in the Transition from Agile Development towards
Continuous Deployment of Software. In: 38th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 392–399. IEEE Press (2012)

17. Bosch, J.: Achieving Simplicity with the Three Layer Product Model. IEEE Comp. 46(11),
34–39 (2013)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 194–211, 2014.
© Springer International Publishing Switzerland 2014

KPIs for Software Ecosystems:
A Systematic Mapping Study

Farnaz Fotrousi1 , Samuel A. Fricker1, Markus Fiedler1, and Franck Le-Gall2

1 Blekinge Institute of Technology, Karlskrona, Sweden
{farnaz.fotrousi,samuel.fricker,markus.fiedler}@bth.se

2 Easy Global Market, Sophia-Antipolis, France
franck.le-gall@eglobalmark.com

Abstract. To create value with a software ecosystem (SECO), a platform owner
has to ensure that the SECO is healthy and sustainable. Key Performance
Indicators (KPI) are used to assess whether and how well such objectives are
met and what the platform owner can do to improve. This paper gives an
overview of existing research on KPI-based SECO assessment using a
systematic mapping of research publications. The study identified 34 relevant
publications for which KPI research and KPI practice were extracted and
mapped. It describes the strengths and gaps of the research published so far, and
describes what KPI are measured, analyzed, and used for decision-making from
the researcher’s point of view. For the researcher, the maps thus capture state-
of-knowledge and can be used to plan further research. For practitioners, the
generated map points to studies that describe how to use KPI for managing of a
SECO.

Keywords: software ecosystem, digital ecosystem, performance indicator, KPI,
success factor, systematic mapping.

1 Introduction

A software ecosystem (SECO) is about “the interaction of a set of actors functioning
as a unit and interacting with a shared market for software and services, together with
the relationship among them” [1]. We include here any ecosystem that is based on or
enabled by software, including pure software, software-intensive systems, mobile
applications, cloud, telecommunications, and digital software ecosystems. The
inclusion of telecommunications, for example, is important as many modern software
services can only be realized with appropriate ICT infrastructure. Companies adopt a
SECO strategy to expand their organizational boundaries, to share their platforms and
resources with third parties, and to define new business models [2, 3].

A SECO is frequently supported by a technological platform or market that enables
the SECO actors in exchanging information, resources, and artifacts. Ownership of
such a platform gives strategic advantages over the other SECO actors. It allows
satisfying ever-increasing customer demands with limited own resources. It also

 KPIs for Software Ecosystems: A Systematic Mapping Study 195

allows improving one’s own knowledge about the marketplace. Such knowledge is
necessary for innovation, evolution of a product or service offering, and identification
of revenue opportunities [4, 5].

SECO platform ownership also brings responsibilities. These include the definition
of SECO performance objectives and management of the SECO to achieve these
objectives. A SECO is expected to be healthy [6] and sustainable [7]. It is healthy
when it is productive for surrounding actors, robust, and niche-creating [8]. It is
sustainable when it maintains its structure and functioning in a resilient manner [6].
Health and sustainability are closely linked performance objectives [9] that are often
found in complex systems [10].

Managing a SECO involves definition of how actors, software, and business
models play together to achieve the SECO objectives [11] in business, technical, and
social dimensional perspectives [12]. The platform owner uses performance indicators
for benchmarking and monitoring the resulting ecosystem behavior. Key performance
indicators (KPI) are those among the many possible indicators that are important,
easily measurable quantitatively or with an approximation of qualitative phenomena
[13]. The KPI serve as early warnings about potentially missed SECO objectives [14]
and to detect patterns that are useful for predicting health and sustainability of the
SECO [15]. Any deviation from success baselines are recorded and acted upon to
ensure that the main ecosystem’s objectives are met.

The here presented study gives an overview of literature on KPI for software
ecosystems. A systematic mapping methodology was followed to identify and classify
publications based on the reported research and based on KPI use. The dimensions
used for classifying research were the type of ecosystem that was studied and the type
of result that was delivered by the research. The dimensions used for classifying KPI
use were the researched KPI types, the SECO objectives these KPI were used for.

The knowledge gap for collecting evidences about KPI studies motivated to
systematically evaluate distribution of studies and provide guidance for future
improvement. For practitioners, the generated map describes how to use KPI in the
management of a SECO. It enables the platform owner in understanding the indicators
that are important to assess for given SECO objectives. For researchers, the generated
map describes state of research and helps finding research gaps for understanding the
definition and use of SECO KPI.

The remainder of the paper is structured as follows. Section 2 presents the research
objectives and defines research questions, search strategy, study selection, and study
quality assessment. Sections 3 and 4 present the results by giving an overview of
SECO KPI research, respectively SECO KPI practice. Section 5 discusses the results.
Section 6 summarizes and concludes.

2 Research Methodology

The goal of this study is to provide an overview of the research performed to
investigate the use of KPI for managing software ecosystems. The systematic
mapping approach [16] allows to map the frequencies of publications over categories

196 F. Fotrousi et al.

to see the current state of research. It also exposes patterns or trends of what kind of
research is done, respectively has been ignored so far. Mapping the research results,
in addition to the type of research, reveals researchers’ current understanding of KPI-
related practice.

2.1 Research Questions

To provide an overview on publications relevant to KPI use for SECO, two sets of
research questions are defined in Table 1. With the first set of questions we mapped
foci and gaps of research about SECO KPI. With the second set we mapped the state
of practice that was reported by the research.

Table 1. Research Questions

SECO KPI Research Rationale

RQ1: What kinds of
ecosystems were studied?

The answer to this question shows the intensity of SECO KPI
research across application domains and types of ecosystems.
Skewedness, e.g. due to a focus on just a few types of
application domains and ecosystems, indicates gaps where
additional research is needed.

RQ2: What types of
research were performed?

The answer to this question shows the maturity of SECO KPI
research. The more disproportioned conceptual solutions and
empirical validation research are, the more there is a need for
research that compensates.

Ecosystem KPI Practice Rationale

RQ3: What objectives
were KPI used for?

The answer to this question shows the purposes of SECO KPI.
It allows understanding when a SECO is considered to be
successful and when not. Correlation with the answer to RQ4
allows understanding how the satisfaction of these SECO
objectives is measured.

RQ4: What ecosystem
entities and attributes did
the KPI correspond to?

The answer to this question gives an overview of relevant KPI
that are used to assess achievement of SECO objectives. The
KPI show how SECO objectives are operationalized and
quantified. Skewedness, a focus on just one or a few KPI, may
indicate the degree of universality the KPI have for SECO
management.

2.2 Systematic Mapping Approach

To answer RQ1, RQ3, we followed the systematic mapping guidelines proposed by
Petersen [16]. We (i) conducted database search with a search string that matched our
research scope, (ii) performed screening to select the relevant papers, (iii) built a
classification scheme based on keywording the papers’ titles, abstracts, and keywords,
and (iv) used this classification scheme to map the papers. To answer RQ2, we

 KPIs for Software Ecosystems: A Systematic Mapping Study 197

modified the mapping process by using the pre-existing classification schemes
already used in [16, 17]. For RQ4, we built the classification scheme by extracting
keywords from the main body of the papers and aligning the emerging scheme with
the relevant software industry standard. The research steps are explained below.

(i) Database Search. The study defined the following search strategy.
Search String. To get an unbiased overview of KPI use in SECO, the search string

was created with keywords that capture population only. The first aspect used to
define the population was the ecosystems that can be found in a software context:
software, digital, mobile, service, cloud, telecommunication, and ICT ecosystems. We
also included papers that focused on software supply by adding software supply to the
search string. The second aspect used to define the population was the application or
use of KPI. We used the terms indicators, metrics, measurements, success factors, key
characteristics, and quality attributes as synonyms for KPI. To avoid bias about RQ3,
we did neither constrain for what purpose information was gathered and used. To
build a broad overview of the research area and avoid bias, no keywords were defined
in relation to intervention (e.g. monitoring), outcomes (e.g. improvements to a
SECO), or study designs (e.g. case studies).

The search string was built by concatenating the two population aspects with the
AND operator. The search string was formulated as follows: software OR (software-
intensive) OR digital OR mobile OR service OR cloud OR communic* OR telecom*
OR ict) PRE/0 (ecosystem* OR "supply network*") AND (measur* OR kpi* OR
metric* OR analytic* OR indicator* OR "success factor*" OR "quality attribute*"
OR "key characteristic*".

Search Strategy. The papers were identified using the important research databases
in software engineering and computer science including Scopus, Inspec, and
Compendex, which support IEEEXplore and ACM Digital Library as well. The
search string was applied to title, author’s keywords and abstract of these papers. The
search did not restrict the date of the publication.

Validation. We validated the set of identified papers by checking it against the
papers used in the SECO literature reviews performed by [2, 5]. Each paper used by
these studies that was relevant for our study had been found by following the above-
outlined database search.

(ii) Screening of Papers. The inputs for this step were the set of papers identified
with step (i). The first and second authors screened these papers independently We
screened these papers to exclude studies that do not relate to the use of KPI for any
ecosystem-related purpose and to ensure broad-enough coverage of the population.
We describe here a complete set of inclusion and exclusion criteria.

Inclusion. We included peer-reviewed journal, conference, or workshop papers that
were accessible with full text. The included papers describe the use of KPI in an
ecosystem context or the effects of such KPI on properties of the ecosystem. Due to
the importance of networking infrastructure and digital information exchange for a
well-functioning software ecosystem we included telecommunication and information
technology papers in addition to pure SECO papers.

198 F. Fotrousi et al.

Exclusion. We excluded papers that focused on the use of KPI for managing a
member of the ecosystem only. For example, papers about the use of indicators for
managing a single company that participates in the ecosystem, or a product or process
of that company, were excluded because of their too narrow focus. We excluded
papers that focused on other ecosystems rather than a software ecosystem. For
example papers focus on biology, environmental, climate, and chemical aspects were
excluded. When the definition of software ecosystem did not fulfill in the papers, they
were excluded. As an example, the paper that considered Bugzilla and email system
as software ecosystems was excluded, since such systems do not address the shared
market concept of a SECO definition. Papers that study qualitative indicators using
qualitative approaches such as a structured interview were excluded. Also, we
excluded papers that focused on ecosystem design in place of ecosystem
management. For example, papers about the design of interoperability protocols or of
products or services offered to an ecosystem were excluded. The papers that do not
Finally, to avoid inclusion of papers that only speculated about KPI use or effects, we
excluded papers that did not report any empirically-grounded proof-of-concept.

(iii) Building the Classification Scheme. To answer the research questions RQ1,
RQ3, and RQ4 we employed keywording [16] as a technique to build the
classification scheme in a bottom-up manner. Extracted Keywords were grouped
under higher categories to make categories more informative and to reduce number of
similar categories. We built the ecosystem classification scheme by extracting the
types and application domains of the studied ecosystems. We built the classification
scheme for KPI practice by extracting KPI assessment objectives, entities and
attributes used for measuring the KPI.

The keywords were extracted from the papers’ titles, keywords, and abstracts.
When the quality of an abstract was too poor, we used the main body of the paper to
identify the keywords. Similarly, as most of the papers did not included sufficient
information about entities and attributes measured with KPI inside the abstract, we
used the main body of the papers for keyword identification. The keywords obtained
from extraction were then combined and clustered to build the categories used for
mapping the papers. The clustering of measurement attributes was aligned with the
categories described in ISO/IEC FDIS 25010 as far as applicable.

To answer RQ2, we used a pre-defined classification scheme [17] that was used by
earlier systematic mapping studies [16]. It classifies research types into validation
research, evaluation research, solution proposals, philosophical papers, opinion
papers, and experience papers.

 (iv) Systematic Mapping of the Papers. When the classification scheme was in
place, the selected papers were sorted into the classification scheme. The
classifications were then calculated the frequencies of publications for each category.

To answer RQ1 and RQ2 we reported the frequencies of the selected papers for the
categories in the dimensions of ecosystems types and application domains,
respectively in the dimensions of research type and research contributes type. We
used x-y scatterplots with bubbles in category intersections to visualize the kinds of
ecosystems that were studied. The size of a bubble is depicted proportional to the
number of papers that are in the pair of categories that correspond to the bubble

 KPIs for Software Ecosystems: A Systematic Mapping Study 199

coordinates. The visualized frequencies make it possible to see which categories have
been emphasized in past research and which categories received little or no attention.

To answer RQ3, we first described the categories identified when building the
classification scheme and how these categories were expressed in the selected papers.
This description resulted in a dictionary for interpreting the scatterplots used for
describing how SECO KPI are used in relation to these objectives. We again used x-y
scatterplots for showing the frequency of pairs of categories. These pairs allowed us
to describe the attributes measured for each type of ecosystem entity, the
measurements used in relation to the SECO objectives, and how KPI are obtained for
various kinds of entities found in a SECO.

2.3 Threats to Validity

This section analyzes the threats to validity for the taxonomies of construct,
reliability, internal and external validity.

Construct validity reflects whether the papers included in the study reflect the
SECO KPI phenomenon that was intended to be researched. The search string was
constructed in an inclusive manner so that it captured the wide variety of software-
related ecosystems and the many different names given to key performance
indicators. The common databases, used for software and management-related
literature research, were used to find papers. Only after this inclusive process, manual
screening was performed to exclude papers not related to the research objectives. The
list of included papers was then validated against two systematic studies on software
ecosystem [2, 5] and found that the review covers all relevant papers.

Reliability validity refers to the repeatability of the study for other researchers. The
study applied a defined search string, used deterministic databases, and followed a
step-by-step procedure that can be easily replicated. The stated inclusion and
exclusion criteria were systematically applied. Reliability of the classification was
achieved by seeking consensus among multiple researchers.

Internal validity treats refers to problems in the analysis of the data. These threats
are small, since only descriptive statistics were used.

External validity concerns the ability to generalize from this study. Generalization
is not an aim of a systematic mapping study as only one state of research is analyzed
and the relevant body of research completely covered. In particular, the study results
about the use of SECO KPI, reflects the practices studied in SECO KPI research and
not SECO KPI practice performed in general.

3 Results: Ecosystem KPI Research

The database search resulted in a total of 262 papers, including 46 duplicates. After
screening and exclusion, 34 papers remained and were included in the study. These
selected papers were published from 2004 onwards. This section gives an overview of
the research described in the selected papers. Appendix A lists the selected papers.

200 F. Fotrousi et al.

3.1 Kinds of Ecosystems

To answer RQ1, Figure 1 gives an overview over the ecosystems that our study found
KPI research for. The number embedded in a bubble indicates how many papers were
devoted to a given combination of ecosystem type and application domain (multiple
classifications possible). Empty cells indicate that no corresponding study was found.
The number on the category label indicates the total number of papers in that
category.

Most of the papers used the term software ecosystem to characterize the studied
ecosystems. Special kinds of ecosystems were cloud, service, mobile apps, and open
source software ecosystems. Less frequent were digital ecosystems with 44% of
the papers. They refer to the use of IT to enable collaboration and knowledge
exchange [18].

The papers addressed a variety of application domains. Most common were
telecommunications, business management and software development. None of the
remaining application domains was addressed by more than one or two papers. Thus
research is rather scattered, and the specifics of the various application domains only
little understood.

Fig. 1. Kinds of ecosystems that were studied with KPI research. The label “software
ecosystem” refers to those that are not considered a digital ecosystem (see main text).

3.2 Types of Research

To answer RQ2, Figure 2 presents a map of the kind of research performed on KPI
in software-related ecosystems. Papers with multiple research types and contributions
were classified for each combination of research type and contribution they
presented.

 KPIs for Software Ecosystems: A Systematic Mapping Study 201

Fig. 2. Map of research on SECO KPI and type of contributions

Experience report papers describe experiences in working with SECO KPI and
usually describe unsolved problems. Opinion papers discuss opinions of the papers’
authors. Conceptual proposal papers sketch new conceptual perspectives related to
SECO KPI. This category renamed philosophical papers category (described in iii of
section 2.2) to fit the SECO KPI study. Solution proposal papers propose new
techniques or improve existing techniques using a small example or a good
argumentation. Validation papers investigate novel solutions that had not been
implemented in practice (e.g. experiment, lab working). Evaluation papers report on
empirical or formal studies performed to implement a solution or evaluate the
implementation.

Metric papers describe KPI for SECO. Model papers describe relationships
between KPI. Method papers describe approaches for working with SECO KPI.
Finally, tool papers describe support for work with SECO KPI.

Most research was found in the categories of validation and evaluation. Research
contributed with metrics, models, or methods. For example, R17 proposes a model
that explains how health can be measured with relevant indicators (conceptual
proposal, model) and validates that model with a questionnaire (validation, model).
R14 proposes a method for assessing services based on Quality of Service indicators
(solution, method). R19 evaluates factors that affect successful selling in e-markets
(metric, evaluation). No paper was an experience report or an opinion paper. No paper
contributed with any tool.

4 Results: Researched KPI Practice

The papers included in this study describe the use of KPI by a platform owner for
achieving objectives with the ecosystem that was enabled by the ecosystem platform.
This section gives an overview of these objectives and the KPI that were used.

202 F. Fotrousi et al.

4.1 Ecosystem Objectives Supported by KPI

KPI were used to enable or achieve a variety of objectives. Platform owners aimed, at
improving business, at improving the interconnectedness between actors, at growing
the ecosystem, at improving quality of ecosystem, product, or services performed
within the ecosystem, and at enabling sustainability of the ecosystem (answer RQ3):

Business improvement. Research has been performed on how to improve business
at the ecosystem level. The studied business improvements concerned the
perspectives of ecosystem activity and of commercial success. Ecosystem activity
related to the level of activity of participating actors, encouragement to participate in
the ecosystem, and the transaction volume. Commercial success related to sales
success, innovativeness and competitiveness of the participating actors, and the cost
of the network that enables the ecosystem. The activity and commercial perspectives
were mixed in the papers, thus could not be separated in the analysis of the literature.

Interconnectedness improvement. Research has been performed on how to improve
interaction in an ecosystem, for example to reduce cost, improve predictability of
services that are provided in the ecosystem, and manage trust. Interaction
improvement was studied between individual actors and between whole networks
contained in the ecosystem. The research differed in terms of lifecycle stage of an
interaction and covered supplier availability, discovery, ranking and selection, the
resulting connectivity, interaction evaluation, and the impact of the interaction on the
actors that participated in it. Interaction improvement was not always an end in itself,
but was considered essential for generating business activity and sustainability of the
ecosystem.

Growth and stability. Research has been performed on how to manage growth and
stability of the ecosystem. Growth and stability were seen as two factors that need to
be managed jointly. During growth flexibility and controllability need to be
maintained. During stability, a continuous co-revolution must happen. Growth and
stability again are not ends in themselves, but thus contribute to sustainability and
survival of the ecosystem.

Quality improvement. Research has been performed on how to manage quality of
ecosystems. In particular, performance, usability, security, data reliability,
extendibility, transparence, trustworthiness, and quality-in-use were investigated.
Quality management was sometimes presented as an ends in itself, for example by
allowing comparison among multiple ecosystems, enabling diagnosis, improving
decision-making, and achieving long-term usage of services. At the same time,
however, quality management was considered to be a means to encourage adoption
and growth, improve business performance, and achieve sustainability.

Enable sustainability. Research has been performed on how to sustain an
ecosystem. Two angles were taken: self-organization and resource consumption. Self-
organization was approached through continuous rejuvenation of the ecosystem.
Resource consumption was studied in relation of electrical energy. Throughout all
papers found in this category, sustainability was considered to be desirable ends for
software ecosystems.

 KPIs for Software Ecosystems: A Systematic Mapping Study 203

4.2 KPI: Measured Entities

The included papers describe measurements applied to the ecosystem as a whole as to
the parts the ecosystem consists of: actor, artifact, service, relationship, transaction
and network.

Actors. Actors were measured and characterized as follows. They were human or
artificial. Examples of human or legal actors were sellers and developers that provide
products to buyers or groups of organizations and firms. Examples of artificial actors
were nodes in a telecommunication network. An actor engages in transactions in an
ecosystem and builds relationships to other actors or artifacts. The transactions the
seller engages in generate profit and revenue for the cost the seller is willing to take.
Effective actors have knowledge about other actors or the network and has good
interestingness and reputation for other actors. Actors are also considered to be
sources and sinks of data and have differing ranges for data transmission.
Performance of individuals and groups in terms of fulfilled tasks and decisions as well
as performance of firms and organizations in terms of profits are measured.

Artifacts. Artifacts such as software, codes, plugins, books, music, or data were
measured and characterized as follows. Artifacts had a location in the ecosystem.
They evolve, may have reputation and popularity, and exposed their consumers to
vulnerability.

Services. Services were measured and characterized as follows. Services consume
energy and other resources. Services have quality attributes such as quality of service,
security, compliance, and reputation. Metadata and service level agreements are used
to specify the services. The services are not fixed but evolve: services emerge,
change, and get extinct. A special service was provided by the platform that laid the
fundament for the ecosystem. It was characterized in terms of attributes like stability,
documentation, portability, and openness.

Relationship. Relationships were measured and characterized as follows. Actors
enter relationships with other actors, artifacts, or services. A relationship connects two
or more such entities. Examples of relationships were business connections and
telecommunication communication links. A relationship may be transparent and
express a trust value of the connected entities. A relationship is the basis for
transactions, thus is used for advertising and building alliances. The transaction,
however, is constrained by cost and quality of the relationship.

Transactions. Transactions were measured and characterized as follows. Examples
of transactions are sales of services to customers, server requests, and commits of
code files made by developers. They are initiated with an offer that is measured in
terms of attributes like price and quantity. Transactions also have a price and quantity.
Other attributes include time to negotiate the transaction, time to complete, energy
consumption, transmission rate, and buyer satisfaction.

Network. Networks were considered as sets of entities and relationships that were
part of a whole ecosystem. Examples were local or application-specific networks.
Networks were characterized as follows. Networks were vulnerable to security threats
such as data availability, integrity, authentication, and authorization. Networks
differed in the node density, degree of collaboration, provisioning cost, and hit rate
for artifacts.

204 F. Fotrousi et al.

Ecosystem. Full ecosystems were characterized as follows. They have quality
attributes like size, performance, security and energy consumption that can also
characterize networks contained in an ecosystem. In addition, ecosystems exhibited
lifelines, diversity, stability, transparency, healthiness, and sustainability.

This section and next section collaboratively provide answer for RQ4. The map in
the left part of Figure 3 shows the entities that were studied in relation to the
ecosystem objectives. Most research studied the measurement of the overall
ecosystem to enable quality or business improvement. For example, R17 describes
how performance of the ecosystem affected user satisfaction, and R13 shows how
analytics applied to the ecosystem can be used to improve business. Considerable
research was also devoted to improving the interconnectedness of the ecosystem,
where attributes of the products and services played an important role and also to the
role of platform measurements to grow the ecosystem and improve quality. For
example, R6 described how to use a service similarity measurement was used to
improve ecosystem connectivity. R2 described how growth, diversity, and entropy
measurements of a SOA platform were used to increase growth. R4 described how
communication quality measurements were used to improve the quality of a
telecommunication ecosystem.

The map also shows areas where no research was published. For example no
research studied the role of network measurements for objectives other than
sustainability and quality improvement.

Fig. 3. Map of measured entities and measurement attributes in relation to ecosystem objectives

4.3 KPI: Measurement Attributes

To make the state and evolution of the ecosystem and of its elements visible, a broad
variety of attributes were measured.

The following attributes categories emerged when clustering the attributes
described in the included papers. Figure 4 shows how classes of quality attributes
were merged toward new categories. The size category includes attributes to measure
size and growth. Diversity includes attributes to measure heterogeneity and openness
for such heterogeneity. Financial includes attributes to measure economic aspects

 KPIs for Software Ecosystems: A Systematic Mapping Study 205

such as investment, cost, and price. Satisfaction includes attributes to measure
satisfaction and the related concepts of suitability, interestingness, learnability,
usability, accessibility, acceptability, trust, and reputation. Performance includes
attributes to measure performance, including resource utilization, efficiency,
accuracy, and effectiveness. Freedom from risk includes attributes to measure the
ability to avoid or mitigate risks and includes the related concerns of security,
reliability, maturity, availability, and other related guarantees. Compatibility includes
attributes to measure the degree to which an entity can perform well in a given
context, interoperate or exchange information with other entities, and be ported from
one context to another one. Maintainability includes attributes to measure flexibility,
respectively the ability to be changed.

The right part of Figure 3 gives an overview of the attributes referred to by KPI.
Most research studied measurements of satisfaction, typically to improve business or
interconnectedness. An example of such research is R13 that describes the use of
seller reputation to improve business. To support quality improvement, all
measurement attributes that relate to quality were included in at least one research
paper, except for maintainability and size. Similarly, size measurements did not play
any role other than for growth and stability.

The left part of Figure 5 shows how the ecosystem elements were measured.
Satisfaction was a common attribute that was measured for any entity except for rules.
This shows that a same attribute can be measured or analyzed for different ecosystem
entities. Also it is revealed that similar measurement attributes might be collaborating
to measure different ecosystem elements. As an example CCCI (correlation,
commitment, clarity and importance) measurable attributes were used to measure trust
as well as reliability.

• Diversity

• Heterogeneity

• Openness

• Satisfaction

• Satisfaction

• Suitability

• Interestingness

• Learnability

• Usability

• Accessibility

• Acceptability

• Trust

• Reputation.

• Performance

• Performance

• Resource

utilization

• Efficiency

• Accuracy

• Effectiveness

• Financial

• Investment

• Cost

• Price

• Size

• Size

• Growth

• Freedom from risk

• Risk mitigation

• Security

• Reliability

• Maturity

• Availability

• Guarantees.

• Compatibility

• Interoperability

• Exchangeability

• Maintainability

• Flexibility

• Changeability

Fig. 4. Merging classifications of measurement attributes

206 F. Fotrousi et al.

The overall ecosystem was the most comprehensively measured or analyzed entity,
with a special focus on satisfaction, freedom from risks and performance. Some
examples of such satisfaction measurements are provided by R13 that measured usage
and acceptability of an ecosystem. The platform followed with the second-largest
variety of measurements. R2, for example, measured entropy and diversity to
characterize platform complexity. Only narrow sets of measurement attributes were
applied to the business partner, interactions, and business.

Fig. 5. Map of measurement attributes in relation to the measured entities

5 Discussion

The study provides a classification of KPI relevant papers in understanding
researches, relationship with the practice, and assessment of research outcomes. This
classification contributes to taxonomy, which can help for closer examination of the
ecosystem or platform owner objectives, making them more recognizable in designing
KPI. New KPI can be extracted for an ecosystem using this taxonomy, and existing
KPIs can be extended or restructured applying the generic structure of the taxonomy.

The literature map indicates that KPI for software-based ecosystems is a thin area
with work at all maturity levels. Journal, conference, and workshop papers exist.
However, the number of publications is not sufficient, and many application domains
for ecosystems addressed with just one or two papers. Although formulation of KPI
might be domain dependent and similarity of objectives is not the only factor to select

 KPIs for Software Ecosystems: A Systematic Mapping Study 207

a KPI, however due to insufficient study it is difficult to state whether characteristics
of a domain, for example regulation of healthcare, affects the KPI of the ecosystem
that targets that domain.

The included research on ecosystem KPI mostly addresses ecosystem
measurements or measurements of satisfaction, performance and freedom from risks.
Measurements other than satisfaction that are applied on elements contained in the
ecosystem are comparatively little researched. A broader understanding of KPI would
increase a platform owner’s flexibility in measuring, analyzing, and using KPI for
decision-support. The understanding of a greater variety of KPI would also contribute
to increased transparency of status, evolution, and other aspects of the ecosystem.

6 Conclusion

The here presented study gives an overview of literature on the use of KPI for
software-based ecosystems. A systematic mapping methodology was followed and
applied to 34 included studies published from 2004 onwards.

To respond to RQ1 and RQ2, research was broad but thin. Two major kinds of
ecosystems were researched: software ecosystems and digital ecosystems. Many
application domains were addressed, but most of them with one or two papers only.
The published research was mature with journal, conference, and workshop papers
that covered metrics, models, and methods. In response to RQ3 and RQ4, KPI
research was skewed. Most research studied ecosystem KPI for improving the
interconnectedness between individual actors and subsystems of the ecosystem.
Overall, most KPI were about satisfaction, performance and freedom from risks
measures.

The results of the mapping study indicate that more research is needed to better
understanding of KPI for software-based ecosystems. In particular, a deeper
understanding of how the application domain affects an ecosystem’s KPI is needed.
Also, an important research opportunity is the identification, analysis, and evaluation
of KPI. Such research could make the work with KPI more flexible, because a greater
variety of KPI would be known and available for the practitioner to use.

References

1. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research agenda for
software ecosystems. In: International Conference on Software Engineering. ICSE-
Companion 2009, Vancouver, British Columbia, Canada (2009)

2. Manikas, K., Hansen, K.M.: Software ecosystems–a systematic literature review. Journal
of Systems and Software 86, 71–80 (2012)

3. Weiblen, T., Giessmann, A., Bonakdar, A., Eisert, U.: Leveraging the software ecosystem:
Towards a business model framework for marketplaces. In: 3rd International Conference
on Data Communication Networking, DCNET 2012, 7th International Conference on e-
Business, ICE-B 2012 and 3rd International Conference on Optical Communication
Systems, OPTICS 2012, Rome, Italy (2012)

208 F. Fotrousi et al.

4. Bosch, J.: From software product lines to software ecosystems. In: 13th International
Software Product Line Conference, Carnegie Mellon University (2009)

5. Barbosa, O., Alves, C.: A systematic mapping study on software ecosystems. In: 2nd
ICSOB, Brussels, Belgium (2011)

6. Costanza, R., Mageau, M.: What is a healthy ecosystem? Aquatic Ecology 33, 105–115
(1999)

7. Chapin Iii, F.S., Torn, M.S., Tateno, M.: Principles of ecosystem sustainability. American
Naturalist, 1016–1037 (1996)

8. Iansiti, M., Richards, G.L.: Information Technology Ecosystem: Structure, Health, and
Performance. The Antitrust Bull. 51, 77–110 (2006)

9. Rapport, D.J., Costanza, R., McMichael, A.J.: Assessing ecosystem health. Trends in
Ecology & Evolution 13, 397–402 (1998)

10. Costanza, R.: Toward an operational definition of ecosystem health. Ecosystem health:
New goals for environmental management, pp. 239–256. Island Press (1992)

11. Manikas, K., Hansen, K.M.: Reviewing the Health of Software Ecosystems–A Conceptual
Framework Proposal. In: International Workshop on Software Ecosystems 2013-IWSECO
2013, Potsdam, Germany (2013)

12. Santos, R., Werner, C., Barbosa, O., Alves, C.: Software ecosystems: trends and impacts
on software engineering. In: 26th Brazilian Symposium on Software Engineering (SBES),
Piscataway, NJ, USA (2012)

13. Parmenter, D.: Key performance indicators (KPI): developing, implementing, and using
winning KPIs. John Wiley & Sons (2010)

14. GAO: Performance Measurement and Evaluation: Definitions and Relationships. US
Government Accountability Office (2011)

15. Cokins, G.: Performance management: Integrating strategy execution, methodologies, risk,
and analytics. John Wiley & Sons (2009)

16. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software
engineering. In: 12th International Conference on Evaluation and Assessment in Software
Engineering, Bari, Italy (2008)

17. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requirements
Engineering 11, 102–107 (2006)

18. Boley, H., Chang, E.: Digital ecosystems: Principles and semantics. In: Inaugural IEEE-
IES Digital EcoSystems and Technologies Conference, Cairns, Australia (2007)

 KPIs for Software Ecosystems: A Systematic Mapping Study 209

7 Appendix I: The Selected Studies

ID References

R1
Sabry, N., Krause, P.: A digital ecosystem view on cloud computing. 6th IEEE
International Conference on Digital Ecosystems Technologies (DEST). Piscataway,
NJ, USA (2012)

R2

Fiegler, A., Dumke, R.R.: Growth-and Entropy-Based SOA Measurement: Vision
and Approach in a Large Scale Environment. Software Measurement,Joint
Conference of the 21st Int'l Workshop on and 6th Int'l Conference on Software
Process and Product Measurement (IWSM-MENSURA). Los Alamitos, CA, USA
(2011)

R3

Pranata, I., Skinner, G., Athauda, R.: TIDE: Measuring and evaluating
trustworthiness and credibility of enterprises in digital ecosystem. International
Conference on Management of Emergent Digital EcoSystems. San-Francisco, USA
(2011)

R4
Yang, Y., Xu, Y., Li, X., Chen, C.: A loss inference algorithm for wireless sensor
networks to improve data reliability of digital ecosystems. Industrial Electronics,
IEEE Transactions on 58, 2126-2137 (2011)

R5
Savola, R.M., Sihvonen, M.: Metrics driven security management framework for e-
health digital ecosystem focusing on chronic diseases. International Conference on
Management of Emergent Digital EcoSystems. Addis Ababa, Ethiopia (2012)

R6

Dong, H., Hussain, F.K., Chang, E.: A service concept recommendation system for
enhancing the dependability of semantic service matchmakers in the service
ecosystem environment. Journal of Network and Computer Applications 34, 619-
631 (2011)

R7

Barolli, L., Yang, T., Mino, G., Durresi, A., Xhafa, F.: A simulation system for
WSNs as a Digital Eco-System approach considering goodput metric. 4th IEEE
International Conference on Digital Ecosystems and Technologies (DEST). Dubai,
United Arab Emirates (2010)

R8

Nankani, E., Simoff, S., Denize, S., Young, L.: Enterprise university as a digital
ecosystem: Visual analysis of academic collaboration. 3rd IEEE International
Conference on Digital Ecosystems and Technologies, DEST'09. Istanbul, Turkey
(2009)

R9
Fabregues, A., Madrenas-Ciurana, J., Sierra, C., Debenham, J.: Supplier
performance in a digital ecosystem. 3rd IEEE International Conference on Digital
Ecosystems and Technologies, DEST'09. Istanbul, Turkey (2009)

R10
van den Berk, I., Jansen, S., Luinenburg, L.: Software ecosystems: a software
ecosystem strategy assessment model. Fourth European Conference on Software
Architecture. ACM, Copenhagen, Denmark (2010)

R11
Taghizadeh, M., Plummer, A., Aqel, A., Biswas, S.: Towards optimal cooperative
caching in social wireless networks. Global Telecommunications Conference
(GLOBECOM). IEEE, Miami, Florida, USA (2010)

R12
Dong, H., Hussain, F.K., Chang, E.: Semantic service retrieval and QoS measurement
in the digital ecosystem environment. International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS). Krakow, Poland (2010)

210 F. Fotrousi et al.

ID References

R13
Tian, C.H., Cao, R.Z., Zhang, H., Li, F., Ding, W., Ray, B.: Service analytics
framework for web-delivered services. International Journal of Services Operations
and Informatics. 4, 317--332 (2009)

R14
Chen, W., Chang, E.: A method for service quality assessment in a service
ecosystem. International Conference on Digital Ecosystems and Technologies
Inaugural IEEE. Piscataway, NJ, USA (2007)

R15

Koendjbiharie, S., Koppius, O., Vervest, P., van Heck, E.: Network transparency and
the performance of dynamic business networks. 4th IEEE International Conference
on Digital Ecosystems and Technologies (DEST). Dubai, United Arab Emirates
(2010)

R16
Jansen, S.: How quality attributes of software platform architectures influence
software ecosystems. International Workshop on Ecosystem Architectures. Saint
Petersburg, Russian Federation (2013)

R17
Salem, A.M.B.H., Ghadhab, B.B.: Performance Measurement practices in Software
Ecosystem. International Journal of Productivity and Performance Management. 62,
514 - 533 (2013)

R18

Goeminne, M., Mens, T.: A framework for analysing and visualising open source
software ecosystems. Joint ERCIM Workshop on Software Evolution (EVOL) and
International Workshop on Principles of Software Evolution (IWPSE). Antwerp,
Belgium (2010)

R19
Pereira, A., Duarte, D., Meira Jr, W., Góes, P.: Assessing success factors of selling
practices in electronic marketplaces. International Conference on Management of
Emergent Digital EcoSystems. Lyon, France (2009)

R20
Dong, H., Hussain, F.K., Chang, E.: A QoS-based service retrieval methodology for
digital ecosystems. International Journal of Web and Grid Services 5, 261-283
(2009)

R21
Fachrunnisa, O., Hussain, F.K.: A methodology for maintaining trust in industrial
digital ecosystems. IEEE Transactions on Industrial Electronics 60, 1042-1058
(2013)

R22
La, H.J., Kim, S.D.: A model of quality-in-use for service-based mobile ecosystem.
1st International Workshop on the Engineering of Mobile-Enabled Systems
(MOBS). IEEE, San Francisco, CA, USA (2013)

R23
Ion, M., Danzi, A., Koshutanski, H., Telesca, L.: A peer-to-peer multidimensional
trust model for digital ecosystems. 2nd IEEE International Conference on Digital
Ecosystems and Technologies (DEST). IEEE, Phitsanuloke, Thailand (2008)

R24

Enokido, T., Aikebaier, A., Takizawa, M.: An integrated power consumption model
for communication and transaction based applications. International Conference on
Advanced Information Networking and Applications (AINA). Biopolis, Singapore.
IEEE (2011)

R25
Wright, J.L., McQueen, M., Wellman, L.: Analyses of two end-user software
vulnerability exposure metrics (extended version). Information Security Technical
Report 17, 173-184 (2013)

R26
Böhmer, M., Ganev, L., Krüger, A.: Appfunnel: A framework for usage-centric
evaluation of recommender systems that suggest mobile applications. International
conference on Intelligent user interfaces. ACM, Santa Monica, CA, USA (2013)

 KPIs for Software Ecosystems: A Systematic Mapping Study 211

ID References

R27
Eklund, U., Bosch, J.: Architecture for embedded open software ecosystems. Journal
of Systems and Software - Article in Press (2014)

R28
Zhang, J., Liang, X.J.: Business ecosystem strategies of mobile network operators in
the 3G era: The case of China Mobile. Telecommunications Policy 35, 156-171
(2011)

R29
Walden, J., Doyle, M., Lenhof, R., Murray, J., Plunkett, A.: Impact of plugins on the
security of web applications. 6th International Workshop on Security Measurements
and Metrics. ACM, Bolzano-Bozen, Italy (2010)

R30
Straub, D., Rai, A., Klein, R.: Measuring firm performance at the network level: A
nomology of the business impact of digital supply networks. Journal of Management
Information Systems 21, 83-114 (2004)

R31
Vasilescu, B., Serebrenik, A., Goeminne, M., Mens, T.: On the variation and
specialisation of workload-A case study of the Gnome ecosystem community.
Empirical Software Engineering - Article in Press (2013)

R32
Luna, J., Ghani, H., Vateva, T., Suri, N.: Quantitative Assessment of Cloud Security
Level Agreements: A Case Study. 7th International Conference on Security and
Cryptography. SECRYPT. INSTICC Press, Setubal, Portugal (2012)

R33

van Angeren, J., Blijleven, V., Jansen, S.: Relationship intimacy in software
ecosystems: a survey of the dutch software industry. International Conference on
Management of Emergent Digital EcoSystems. ACM, San Francisco, CA, USA
(2011)

R34
Liu, Y., Fan, Y., Huang, K.: Service Ecosystem Evolution and Controlling: A
Research Framework for the Effects of Dynamic Services. International Conference
on Service Sciences (ICSS). IEEE, Shenzhen, China (2013)

Evaluating the Governance Model of

Hardware-Dependent Software Ecosystems –
A Case Study of the Axis Ecosystem

Krzysztof Wnuk1, Konstantinos Manikas2, Per Runeson1, Matilda Lantz1,
Oskar Weijden1, and Hussan Munir1

1 Department of Computer Science
Lund University, Sweden
http://serg.cs.lth.se

{Krzysztof.Wnuk,Per.Runeson,Hussan.Munir}@cs.lth.se,

{oskar.weijden,matilda.lantz.lth}@gmail.com
2 Department of Computer Science (DIKU)

University of Copenhagen, Denmark
http://di.ku.dk/

kmanikas@di.ku.dk

Abstract. Ecosystem governance becomes gradually more relevant for
a set of companies or actors characterized by symbiotic relations evolved
on the top of a technological platform, i.e. a software ecosystem. In this
study, we focus on the governance of a hardware-dependent software
ecosystem. More specifically, we evaluate the governance model applied
by Axis, a network video and surveillance camera producer, that is the
platform owner and orchestrator of the Application Development Partner
(ADP) software ecosystem. We conduct an exploratory case study col-
lecting data from observations and interviews and apply the governance
model for prevention and improvement of the software ecosystem health
proposed by Jansen and Cusumano. Our results reveal that although
the governance actions do not address the majority of their governance
model, the ADP ecosystem is considered a growing ecosystem provid-
ing opportunities for its actors. This can be explained by the fact that
Axis, as the orchestrator and the platform owner, does not address the
productivity and robustness of the ecosystem adequately, but has a net-
work of vendors and resellers to support it and some of the governance
activities (e.g. communication) are achieved by non-formal means. The
current governance model does not take into consideration.

Keywords: software ecosystems, governancemodel, hardware-dependent
ecosystem.

1 Introduction

Nowadays, the software development effort is rarely constrained to a single com-
pany investing into developers, technology, marketing and sales activities [1,2].
Forming alliances, participating and benefiting from the capabilities offered by

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 212–226, 2014.
c© Springer International Publishing Switzerland 2014

http://serg.cs.lth.se
http://di.ku.dk/

Governance Model for a Hardware-Dependent Software Ecosystem 213

a software ecosystem, or using open source software, are just a few examples of
the development strategies that gain importance in software business. These new
forms of collaboration via the “sense of community” [3] come at the expense of
decreased control and resulting increase of challenges associated with long term
planning. Further, the trade-off between being in control and opening up to
ecosystem participants range from technical interface issues to business strate-
gies [4]. Software companies that want to be successful in this context need to
learn to open up their platforms and interact with other actors on the ecosystem
level, while at the same time ensuring that the strategic goals are fulfilled. These
companies need to become orchestrators that mainly determine the growth of
their ecosystems [2] and govern them.

Several authors have studied software development governance [3,5,6] and pro-
posed different governance techniques, e.g. incremental commitment model [7],
decision right automation [8], and transaction cost model [9]. Governance in
agile software development was also extensively studied [9,10,11,12,13,14]. In
the field of software ecosystems, the governance of an ecosystem is argued to
have an impact on the overall health of the ecosystem [1,4,15], i.e. “the extent to
which an ecosystem as a whole is durably growing opportunities for its members
and those who depend on it” [16]. Jansen and Cusumano [1,2] have developed
a governance model aiming at preserving or improving the health of an ecosys-
tem. The model addresses governance strategies according to the three areas of
ecosystem health, inspired by Iansiti and Levien [16]: productivity, robustness
and niche creation. To the best of our knowledge, no study has reported the re-
sults from evaluating this governance model on a hardware-dependent software
ecosystem, where hardware plays a dominant role in the value creation process
and where the customers purchase hardware devices with software installed on
them. Software, in this case, is an enabler for functionality and the main driver
for extendability, but without underlying hardware it provides little value to the
customers.

In this paper, we assess the governance activities performed by Axis, a net-
work video and surveillance camera producer, the orchestrator and the platform
owner of the Application Development Partner (ADP) software ecosystem by
investigating the following research question:

What governance activities are performed by Axis as a platform orches-
trator?

We conducted an exploratory case study collecting data from a series of obser-
vations and interviews and applying the above mentioned model of Jansen and
Cusumano to assess the governance of Axis in the ADP ecosystem. Our results
show that although Axis meets only part of the model aspects, it is considered
from the surrounding actors as a valid ecosystem to participate. Finally, our
case study shows that some of the aspects in the model should be expanded to
include wider perspectives of governance.

The rest of this paper is structured as follows: Section 2 presents background
and related work. Section 3 presents the details about the case company and

214 K. Wnuk et al.

Section 4 describes the methodology. The results are presented and discussed in
Section 5 and the paper is concluded in Section 6.

2 Background and Related Work

Developing strategies for effective software ecosystems governance and orches-
tration was outlined on the agenda for software ecosystems research by Jansen
et al. [3]. Several authors have studied software development governance. Chu-
lani et al. [5] outlined definitions and suggested managing value, developing
flexibility and controlling risk and change as the main concerns of software de-
velopment governance, while Bannerman [6] studied software development gov-
ernance from meta-management perspective. Several approaches for software
development governance were suggested, e.g. based on incremental commit-
ment model [7], using decision rights automation [8], linking long-term busi-
ness with release planning [9], and using the transaction cost approach [17].
Quite a few articles explore software development governance in agile develop-
ment [9,10,11,12,13,14], yet they do not focus on large-scale hardware-dependent
contexts. Only one study explored a context of similar size compared to our
case company [11]. From the software ecosystem perspective, Baars and Jansen
proposed a framework for software ecosystem governance [15], Jansen et al. [4]
examined the ecosystem governance from the perspective of the openness of an
ecosystem and Jansen and Cusumano [1,2] build on the top of the two previous
studies above to create a governance model for the prevention and improvement
of software ecosystem health.

Software ecosystem health is closely related to ecosystem governance: the
proper governance decisions can increase the ecosystem health while, ecosystem
governance can be evaluated by the effect it has on the health of the ecosys-
tem. Related work contains a number of studies about the health of software
ecosystems [18,19,20,21].

3 Case Description

Axis is the market leader within network video and surveillance cameras [22].
The company is based in Lund, Sweden, but has offices in 41 countries, partners
in more than 179 countries and has 1400 employees [23]. Today Axis’ profits are
mainly related to sales of camera units, utilizing the two-tier business model with
indirect sales. Several different actors such as distributors, system integrators and
technology vendors are required to provide complete solutions to end customers.
As the amount of software in the video surveillance cameras continues to increase
and gains more importance, Axis sees the potential in exploring and developing
their hardware-dependent software ecosystem.

The Application Development Partner (ADP) is one of the three partner
programs at Axis, together with the Application Development Service (ADS)
and the Gold Application Development Partner (Gold ADP) programs. The
access to the program is rather easy but in order to advance on to higher levels

Governance Model for a Hardware-Dependent Software Ecosystem 215

Fig. 1. The software ecosystem surrounding the ACAP, also published in [27]

actively engaged with Axis, companies have to prove that their solutions generate
a certain amount of camera sales [22].

The ACAP (Axis Camera Application Platform) ecosystem is based on an
open application platform that enables development of third party applica-
tions to meet evolving end user needs [24]. Thus, the ecosystem resembles an
application-dependent ecosystem based on a successful platform i.e. the platform
offers customer value without third party applications [25,2]. Furthermore, the
ACAP ecosystem can be considered as screened but free [26]. Axis controls the
list of extensions available in the ACAP ecosystem but is not handling any sales,
neither offering any joint way of purchasing the ACAP applications. Customers
of the ACAP applications are redirected to the websites of the companies de-
veloping the ACAP applications in order to download or purchase them. This
flow of sales is included in red in Figure 1. Optionally, Axis can offer a licensing
system which could also be seen as a part of the extension market. As the main
source of revenue for Axis remains camera sales, we consider this ecosystem as
hardware-dependent.

Axis is the platform leader which has the biggest influence on the decision
about the ecosystem, see Figure 1. The main group of external actors constitute
the Video Management System (VMS) developers who develop external prod-
ucts, running on servers or similar, and most of them receive image output or

216 K. Wnuk et al.

control cameras. Both small local and large global system integrators and re-
sellers are among the actors and they could be classified as vendor since they
generate profit on selling products produced by the ecosystem. Distributors are
also among the actors of this ecosystem but they mostly incorporate software
into cameras before selling them [28]. End customers indirectly influence the
evolution of the ecosystem via their requirements and needs.

Why Axis? Axis was selected as a case company due to the following rea-
sons: (1) it is a large company that operates globally, (2) it develops embedded
systems and provides a case of a hardware-dependent software ecosystem, (3) it
does not have any direct sales of the products to the end customers, and (4) the
end customers do not get directly involved in the development or strategic deci-
sions about the ecosystem and (5) Axis was the market leader also without an
ecosystem, which differs from, for example, Android case where Google created
the Android ecosystem to enter and become a significant player in the mobile
phones market.

4 Research Methodology

As the case company is relatively new in software ecosystems, an exploratory
case study method was considered suitable [29]. The main focus of the case study
was to understand bridges and barriers in joining the ACAP ecosystem and to
investigate the governance model activities. The results regarding the identified
motivating and hindering factors are reported in a separate report [27] while this
paper focuses on the governance activities.

The study followed the case study process proposed by Runeson et al. [29].
During the pre-study phase, the company specific literature and related work
were studied. Next, ten exploratory interviews among practitioners knowledge-
able in the ACAP ecosystem were conducted. The following respondents were
interviewed during the pre-study: Global Partner Managers, Product Manager
Solutions & Integration Programs, Manager Partner Marketing, Global ADP
engineer, Director of System & Services, Senior Engineer for Video Hosting Sys-
tems, Business Development Managers, Product Manager API & Components
and ADP program manager.

In the next phase, we conducted eight interviews with external developers
developing the ACAP applications as well as formal and informal discussions
with the Axis employees. Four companies involved in the interviews have an
existing ACAP application while the two other companies are not participating
in the ACAP ecosystem. Among the participating companies that have ACAP
applications, two are quite small with up to 20 employees and two are signif-
icantly larger with over 100 employees. These companies offer video analytics
solutions based on the ACAP platform. The interviews were transcribed, coded
and analyzed by two authors, supervised by more senior authors. Similar state-
ments were put together and abstracted into meta-statements that formed the
results statements. The results regarding the ecosystem participation improved
the understanding of the governance activities, including some underlying rea-
sons for performing them. In addition to the above mentioned external partners,

Governance Model for a Hardware-Dependent Software Ecosystem 217

20 practitioners were involved in gathering the data about governance model in
both formal meetings and informal discussions. The information gathered during
these meetings was systematically stored and analyzed with the similar approach
than the interview data. Interesting facts were put together into meta-level facts
and compared with the descriptions of the governance activities. The resulting
mapping of the performed and not performed activities was presented to the
practitioners for validation. By identifying connections and correlations between
governance activities, the contextual factors and the identified bridges and bar-
riers to participate, we created an understanding of how governance affect the
participation in the ACAP ecosystem.

4.1 Validity Analysis

Construct validity refers to possible imperfect operational measures used as a
representation of the studied phenomena [29]. There is a risk that the inter-
view questions were not interpreted in the same way by the researchers and
the interviewees. To mitigate this threat, we piloted the interview questions
on three employees at Axis and two researchers in two iterations. During the
interview transcription, potential out of context quotations were discussed and
resolved. The list of evaluated governance activities is based on previous work [2]
and therefore their suitability as operational measures is confirmed. Finally, the
results of the study were presented and discussed with the participants at a
workshop.

Internal validity deals with potential confounding factors that may affect stud-
ied causal relations [29]. Due to exploratory nature of this study, causal relation-
ships were not considered as the main focus of the study. Therefore, although
members of a software ecosystem are often described as closely affecting each
other in complex networks [25], the impact of this threat on the validity of the
results is minimal.

Reliability refers to the potential biases in the collected data and the analysis
methods used by the researchers [29]. We used the governance activity model
published earlier, without changing any of the activities. Moreover, we created
the interview instrument guided by the existing model and made sure that all rel-
evant aspects were covered in all interviews. However, due to the semi-structured
nature of the performed interviews, there are some small differences between the
depth of the covered aspects among the interviewees.

External validity discusses the transferability of the findings outside the inves-
tigated case. Like for any single case study, threats to external validity remain
the main issue in our case. We attempted to mitigate these threats by providing
extensive characterization of the studied context [29], including the characteri-
zation of the studied ecosystem in order to ease later comparing. Moreover, the
studied governance activities are published [1,2] and by using them we allow
other cases to be directly comparable with our results. Finally, we would like to
stress the exploratory nature of this study.

218 K. Wnuk et al.

5 Governance Activities Performed by Axis

The evaluated governance model for ”ecosystem health preservation and im-
provement” [1,2] focuses on niche creation, robustness and productivity. The
model distinguishes between the software (service) platform and the standard
ecosystems, and focuses on the activities that the platform leader should perform
in order to improve her position in the software ecosystem. In our case, Axis is
the main owner of the software platform which means that the ecosystem is
privately owned.

The activities outlined by Jansen et al. [1,2] were compared to Axis’ current
activities and the results are presented in the subsections that follow. Each activ-
ity is marked as [YES], [NO] or [PARTIALLY] depending on to what degree
the activity is performed.

5.1 Activities Connected to Niche Creation

Expand applicability [YES] The purpose of the ACAP is to expand the appli-
cability of Axis’ cameras to increase sales. Axis is expanding the applicability of
the platform by providing access to new features and by releasing more powerful
cameras created for new environments. The expansion of applicability should
increase the variety of ecosystem participants. This, in turn, may contribute to
creating many diverse niches which could allow the ecosystem participants to
specialize in their areas, create new products that attract customers to the plat-
form that otherwise would not have been reached [1,2] and avoid head-on com-
petition [30]. However, as the participants are active within the same industry
and provide similar types of applications, the expansion possibilities are limited,
causing entry barriers for one of the two studied companies that currently do
not develop ACAP applications.

Make strategy explicit [NO] None of the interviewees received explicit infor-
mation about the ACAP strategy and only some respondents stated that they
implicitly received this information during discussions and collaboration with
employees at Axis. Axis has no explicit strategy for ACAP but has transparent
relationships with developers. The possible interpretation could be that transpar-
ent relationships are enough to ensure niche players about their future position
within the ecosystem [1] and create trust among participants towards the plat-
form leader’s intention and commitment. This approach seems to be efficient for
relatively small number of ecosystems players just like in our context.

We have not identified any trust issues among the ACAP developers partici-
pating in the study. One possible explanation could be that all these developers
had, prior to joining the ecosystem, a relationship with Axis and described it
as good and transparent, indicating increased trust. Also, several companies
received the information about Axis’ strategy implicitly through contact with
Axis personnel. Therefore, it seems that a healthy relationship and transparent
communication decreases the need for an explicitly communicated strategy.

Create API [YES] Axis has created a collection of API:s connected to the
ACAP that reduced compatibility issues, increased the degree of control [1] and

Governance Model for a Hardware-Dependent Software Ecosystem 219

increased the productivity of niche players [19]. Therefore, creating an API was
described as one of the benefits and reasons to develop toward the ACAP [27].
The need for an API was fostered by: (1) base technology: several product lines,
(2) actors: fragmented customers, and (3) competitors: not offering an internal
standard similar to the ACAP.

Co-development [NO] Axis does not perform any co-development, i.e. joint
development projects with other companies. The lack of co-development has not
had any identified effects on this ecosystem. This result could suggest that co-
development does not attract niche players in this kind of software ecosystem,
which contradicts with the previous studies [1,2]. Another possible interpreta-
tion could be that niche players have knowledge about both the domain and the
platform and thus do not need co-development. This contradicts with the view-
point of Hanssen [31]. Finally, the need for obtaining synergies that can drive
innovation, reduce costs and development time [32] may not be that strong in
our context.

Develop complementary platforms [NO] Axis has no plans to develop com-
plementary platform, thus we consider this activity as not being performed.

Develop new business models [NO] Axis focuses on camera sales and utilizes
the two-tier sales model. Axis has no requirements regarding the ACAP appli-
cation sales and distribution. They provide a free licensing system to the users
of the platform but at the same time is not involved in sales and distribution of
the ACAP applications. Axis offers a licensing for free business model connected
to the platform and is not facilitating any other business models. The possible
interpretation could be that licensing based business models are a good fit for
the environment of this ecosystem.

Axis is restricting third party developers from being a part of their chain
of distribution. This has a negative effect on enabling new niches and business
opportunities by introducing new business models to third parties, e.g. by intro-
ducing a marketplace which enables third party developers to reach customers
they would not have reached on their own [1,2]. Related work by Hagel et al. [30]
suggested that the platform leader’s responsibility is to provide focus through
identified business opportunities and forces connected to the ecosystem.

5.2 Activities Connected with Robustness

Create partnership model [YES] The ADP (Application Developer Partner) pro-
gram is an established partnership program offered to all companies interested
in developing software for Axis cameras and allows to set up rules for partners in
the ecosystem [1,4]. However, the program is explicitly focused on promoting de-
velopers of high volume and broad applications, rather than niche applications,
which most ACAP applications are. Thus, the availability of the program is not
considered as an incentive for the potential ACAP developers [27].

The requirements to reach the highest partner level are steep, hindering the
ACAP developers from advancing to this level due to their size and niched
applications. As a result, the support needed to explain the ACAP developers’
businesses is blocked (also due to lack of sales) by the inability to advance in the

220 K. Wnuk et al.

ADP program. Furthermore, Axis’ partner program does not allow independent
developers, decreasing the variety of the ecosystem.

Do marketing [YES]Axis’ main marketing activities are conducted in order to
increase cameras sales. Marketing activities towards potential ACAP developers
are sporadic and small compared to the marketing of cameras. As a result, the
awareness among customers and developers about the ecosystem is not fully
explored and may negatively impact the ecosystem participation [1,2].

The presence of end customer’s demand to develop ACAP applications sug-
gests that the customers are aware of the ACAP platform. Moreover, as the
majority of the ACAP developers already had a relationship with Axis before
developing the ACAP applications [27], the developers’ awareness and marketing
activities may have only limited effect on participation.

Grow profits [NO] Axis is focusing on camera sales and is not interested
in increasing the profits by providing ACAP applications. However, one of the
requirements to join the gold application partner level is to prove that the appli-
cations generate a certain amount of camera sales. Thus, the potential additional
revenue streams for ACAP applications are considered insignificant.

Partner development programs [YES] These programs could help Axis to
strengthen the potentially less productive weak actors that could decrease the
health and stability of the ecosystem. Axis’ learning center provides training,
seminars, classroom training, tools and quick reference help [33] and is accessible
for members in the ADP program.

The learning center is not designed as a program, but rather as a source of
information, support and training. Axis does not offer any financial support to
partners, but the main reason for a development program is to help strengthen
members of the ecosystem and that is fulfilled today. The technical expertise
delivered by Axis was found to ease the transition to the platform and to im-
prove the perceived quality of communication with developers, which was also
considered as one of the reasons to join this software ecosystem [27].

Form alliances [PARTIALLY] Axis has existing alliances with many rele-
vant companies within the industry through their partner programs, see
Section 3, but the focus of these relationships is not on the ACAP or its ap-
plications. Therefore, the opportunities of forming sub-groups of participants or
strategic incumbents in a market and in this way increasing the robustness of the
ecosystem [1,16] are not fully explored. The existing alliances within surveillance
industry could be utilized for strengthening the ACAP and its ecosystem.

Stabilize API:s [YES] Axis has stable API:s that remained unchanged after
integration of new features caused by the ACAP introduction. In this regard,
Axis complies with the advices published in related work to ensure backward
compatibility, simplify software configuration [34] and create consistency which
leads to increased trust in the platform [1,2]. Axis is aware that the API:s are
not optimal, but sees it as a higher priority to keep them stable rather than to
change them. This strategy pays off as stable API:s were considered as one of
the benefits and reasons to join the ecosystem [27].

Governance Model for a Hardware-Dependent Software Ecosystem 221

Raise entry barriers [NO] Entry barriers help to ensure that the right compa-
nies join the ecosystem and can be used as a mechanism to steer its growth [1]. If
entry barriers are too low, the stability of the ecosystem might decrease because
of uncontrolled growth and loss of quality (in developers or the components they
develop) and thereby the increases risk of an unhealthy ecosystem [19]. There-
fore, high entry barriers are a recommended way to increase the quality of an
ecosystem [1,2] by fees, certification programs for the applications and more rig-
orous screening of customers [35]. However if the barriers become too high they
might exclude too many developers and hinder innovation [19].

Axis does not impose high entry barriers to join their application development
program: members only have to be a registered company. However, this blocks
access for independent developers, for example students. The company does not
take any fees or commissions associated with published applications. However,
our results suggest that the barriers could be considered as high (not deliberately
set by Axis) because of the following reasons: the dependence of external software
and other actors, the fragmented customer base of Axis end customers, and the
lack of an accessible way to reach the market.

The domain dependence together with the relatively low number of third party
developers in the studied ecosystem imply that Axis should facilitate participa-
tion and lower entry barriers for newcomers in opposite to what is suggested by
Jansen et al. [1,2]. This confirms previous research which indicated that high
entry barriers might exclude too many developers [19].

Make partners explicit [YES] Axis publishes a list of ACAP developing com-
panies on their company website and thus making the partners explicit [36].

Propagate operation knowledge [NO] Axis does not have a systematic way
to collect end user experiences, knowledge of in-the-field-performance or feed-
back [37] related to ACAP and is hence not able to communicate these to other
members of the ecosystem. Therefore, we assessed this activity as not being
performed. No negative effects of not propagating operational knowledge were
found. One possible explanation may be that Axis’ two-tier business model re-
duces direct contact with end customers and the ability to collect such data.
Therefore, this task might not be suitable for the platform leader in this ecosys-
tem and may not lead to significant performance improvements [37].

5.3 Activities Supporting Productivity

Organize developer days [NO] Before launching ACAP, Axis has hosted a train-
ing session for developers in Lund. However, the current arrangements of train-
ings at Axis do not include the ACAP developers, unless they offer an additional
product and hence are qualified. Therefore, the potential benefits, e.g. increased
interaction [19], a higher degree of connectedness [19], robustness [19,16], more
internal connections, raised awareness of the platform [1] and increased prob-
ability of survival [16] are not fully explored. We discovered that this activity
directly effects the participation in this ecosystem [27]. Enabling new players to
easily connect and creating external standards to increase compatibility could
in this case be also helpful.

222 K. Wnuk et al.

Collaborative marketing [PARTIALLY] Axis does not systematically per-
form collaborative marketing efforts [38] with third party developers. On a case
by case basis, some forms of collaborative marketing are performed at exhibi-
tions and fairs. Thus, the potential benefits derived from fusions of the products
or resource pooling are not fully explored [38].

Create sales partner program and create new sales channels [NO] Axis has a
channel partner program including companies distributing and selling network
video products and solutions. This does not apply to distribution of software or
more specifically ACAP applications. Axis does not have any outspoken strategy
for how ACAP applications should appear on the market. Thus, the possible
increase of sales margins of ACAP software could not be evaluated. One of
the possible reasons is that many ACAP developers are relatively small players
in the surveillance industry and thus less interesting for Axis. It seems like the
opportunity of creating more value by connecting niche players to customers and
enabling more revenue for the ecosystem participants [1,2] (both niche players
and the platform leaders) is not fully explored in our case [19].

However, Axis has historically seized opportunities to cooperate with exist-
ing customers and provided information and sales support, although, this was
done sporadically and through personal connections. As a result, new developers
without industry experience or a relationship with Axis would find it difficult to
identify which relationships are needed to access the end customers [39]. Creat-
ing more established relationship with Axis could reduce the perceived risk [39]
and open access to important information and support.

5.4 Remarks from the Evaluation

Some interesting and important remarks can be made after our evaluation of
the governance model proposed by Jansen and Cusumano [1,2]. Several activ-
ities were confirmed as important and necessary, among them the needs to:
expand applicability beyond the current domain, create and keep stable API:s,
form partnerships, create partner development programs focused on niche play-
ers, support developers by organizing developer days, do marketing and extent
current business models with niche players in mind.

At the same time, only 66% of the niche creation activities, 44% of the robust-
ness activities and 25% of the productivity activities are fully performed by Axis.
Regarding making the strategy explicit, our results suggest that healthy relation-
ship and transparent communication could be a good surrogate for explicit strat-
egy for a relatively small number of ecosystem players. The lack of co-development
and complementary platforms have not had any identified effects on this ecosys-
tem.This result could suggest that: (1) co-development does not attract niche play-
ers in this kind of software ecosystem or (2) niche players have knowledge about
both the domain and the platform and thus do not need co-development, which
contradicts with the viewpoint of Hanssen et al. [31]. The lack of new business
model development suggests that licensing based business models are suitable for
this ecosystem. Due to focus on camera sales and relatively low potential of the

Governance Model for a Hardware-Dependent Software Ecosystem 223

ACAP applications revenue stream, Axis seems not to be interested in growing
profits from the ACAP ecosystem.

Our results confirm that keeping high entry barriers helps to ensure the quality
of the ecosystem but also limits the participation of independent developers
and students not employed by companies involved in an ecosystem. Similarly,
although Axis does not propagate knowledge about the ACAP ecosystem, we did
not found this having any negative effects. This might be either because of the
specific nature of the ecosystem or because there were other unofficial channels
for propagating knowledge. Finally, the possibilities of creating more value and
revenue via partner programs by connecting niche players to customers [1,2] are
not explored by Axis.

To summarize, out of 19 activities in three areas Axis fully performs 8 activi-
ties, these are marked as “Yes” and two partly, these are marked as “Partially”.
Nine activities, marked as “No” in all three areas are not performed. This could
be an early indication of signs of low health in the ecosystem. However, the
ecosystem is slowly growing in actor size and potential and increasing the value
for the connected actors. According to the governance framework, the ecosys-
tem has low or no governance activities supporting productivity, with only one
activity partially supported. However the Axis ecosystem is differentiated from
most of the ecosystems studied in related work [1,2] by the fact that the plat-
form orchestrator (i.e. Axis) was the market leader before the ecosystem was
created and is not the one supporting the business and revenue models for the
actors. Cameras with or without developed software are packed and distributed
by a set of distributors, resellers and system integrators, that are external to
Axis. Therefore although Axis, as platform owner and orchestrator, does not
undertake governance activities to ensure productivity, this task is covered by
the network of distributors, resellers and system integrators. An expansion of
the model, thus, would be to include activities of vendors and resellers into the
productivity section, support unofficial or non-formal channels for knowledge
dissemination and explore the role of licensing business models in ecosystems
governance. Finally, a necessary addition to the current model could be to con-
sider some activities as satisfy explained which legitimates their absence due to
specific company or business context conditions.

6 Conclusions

In this study, we focus on the governance of a hardware-dependent software
ecosystem. More specifically, we evaluate the governance model applied by Axis,
a network video and surveillance camera producer that is the platform owner and
orchestrator of the Application Development Partner (ADP) software ecosystem.
We conducted an exploratory case study collecting data from observations and
interviews and applied the governancemodel for the prevention and improvement
of the software ecosystem health proposed by Jansen and Cusumano [1,2].

Only 66% of niche creation activities, 44% of robustness activities and 25%
of productivity activities are fully performed by Axis. Our results reveal that

224 K. Wnuk et al.

although the governance actions do not address the majority of the applied
framework, the ADP ecosystem is considered a growing ecosystem providing op-
portunities for its actors. This is explained by the fact that Axis, as the orches-
trator and the platform owner, does not address productivity and robustness of
the ecosystem, but has a network of vendors and resellers to support it and sev-
eral of the governance activities (e.g. communication) are achieved by non-formal
means. The current governance model does not take this into consideration.

In future work, we plan to investigate another hardware-dependent software
ecosystem to enable meta-analysis and comparison. Moreover, we plan to in-
vestigate the impact of the business model utilized by Axis on the governance
activities and further explore how Axis can integrate the potential additional
revenue stream into this business model.

Acknowledgements. Thiswork is foundedby theSYNERGIESproject, Swedish
National Science Foundation, grant 621-2012-5354.We thank Axis and their part-
ners for their openness during the study.

References

1. Jansen, S., Cusumano, M., Brinkkemper, S.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing
(2013) (Incorporated)

2. Jansen, S., Cusumano, M.: Defining software ecosystems: A survey of software
platforms and business network governance. In: The 4th International Workshop
on Software Ecosystems (2012)

3. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software En-
gineering - Companion, ICSE-Companion 2009, pp. 187–190 (2009)

4. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85(7), 1495–1510 (2012)

5. Chulani, S., Williams, C., Yaeli, A.: Software development governance and its con-
cerns. In: Proc. of the 1st International Workshop on Software Development Gov-
ernance, pp. 3–6. ACM, New York (2008)

6. Bannerman, P.L.: Software development governance: A meta-management perspec-
tive. In: Proc. of the 2009 ICSE Workshop on Software Development Governance.
SDG 2009, pp. 3–8. IEEE Computer Society, Washington, DC (2009)

7. Boehm, B.: A process framework for system and software development governance.
In: Proc. of the 1st International Workshop on Software Development Governance.
SDG 2008, p. 1. ACM, New York (2008)

8. Kofman, A., Yaeli, A., Klinger, T., Tarr, P.: Roles, rights, and responsibilities:
Better governance through decision rights automation. In: Proc. of the 2009 ICSE
Workshop on Software Development Governance. SDG 2009, pp. 9–14. IEEE Com-
puter Society, Washington, DC (2009)

9. Vähäniitty, J., Rautiainen, K.T.: Towards a conceptual framework and tool sup-
port for linking long-term product and business planning with agile software de-
velopment. In: Proc. of the 1st International Workshop on Software Development
Governance. SDG 2008, pp. 25–28. ACM, New York (2008)

Governance Model for a Hardware-Dependent Software Ecosystem 225

10. Raatikainen, M., Rautiainen, K., Myllärniemi, V., Männistö, T.: Integrating prod-
uct family modeling with development management in agile methods. In: Proc. of
the 1st International Workshop on Software Development Governance. SDG 2008,
pp. 17–20. ACM, New York (2008)

11. Lehto, I., Rautiainen, K.: Software development governance challenges of a middle-
sized company in agile transition. In: Proc. of the 2009 ICSE Workshop on Software
Development Governance. SDG 2009, pp. 36–39. IEEE Computer Society, Wash-
ington, DC (2009)

12. Cheng, T.-H., Jansen, S., Remmers, M.: Controlling and monitoring agile software
development in three dutch product software companies. In: Proc. of the 2009
ICSEWorkshop on Software Development Governance. SDG 2009, pp. 29–35. IEEE
Computer Society, Washington, DC (2009)

13. Ambler, S.W.: Scaling agile software development through lean governance. In:
Proc. of the 2009 ICSE Workshop on Software Development Governance. SDG
2009, pp. 1–2. IEEE Computer Society, Washington, DC (2009)

14. Qumer, A.: Defining an integrated agile governance for large agile software devel-
opment environments. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.)
XP 2007. LNCS, vol. 4536, pp. 157–160. Springer, Heidelberg (2007)

15. Baars, A., Jansen, S.: A framework for software ecosystem governance. In:
Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114,
pp. 168–180. Springer, Heidelberg (2012)

16. Iansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of
Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Harvard
Business School Publishing India Pvt. Limited (2004)

17. Erbas, C., Erbas, B.C.: Software development under bounded rationality and op-
portunism. In: ICSE Workshop on Software Development Governance, pp. 15–20
(2009)

18. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems – a
conceptual framework. In: 5th International Workshop on Software Ecosystems
(IWSECO), pp. 33–44 (2013)

19. van den Berk, I., Jansen, S., Luinenburg, L.: Software ecosystems: a software ecosys-
tem strategy assessment model. In: Proc. of the Fourth European Conference on
Software Architecture: Companion, ECSA 2010, pp. 127–134. ACM Press, New
York (2010)

20. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as a
survival strategy: A tale of two software ecosystems. In: Proc. of the First Workshop
on Software Ecosystems, IWSECO 2009, pp. 34–48 (2009)

21. van Angeren, J., Blijleven, V., Jansen, S.: Relationship intimacy in software ecosys-
tems: a survey of the dutch software industry. In: Proc. of the International Confer-
ence on Management of Emergent Digital EcoSystems. MEDES 2011, pp. 68–75.
ACM, New York (2011)

22. Axis Communications AB: About axis communications,
http://www.axis.com/corporate/about/index.htm (last visited April 2014)

23. Axis Communications AB: Annual report 2013, http://www.axis.com/files/

reports/2012annual eng.pdf (last visited April 2014)

24. Axis Communications AB: Participation in ACAP,
http://www.axis.com/corporate/press/

industry news/article.php?article=090921 applicationplatform.htm

(last visited April 2014)

http://www.axis.com/corporate/about/index.htm
http://www.axis.com/files/annual_reports/2012annual_eng.pdf
http://www.axis.com/files/annual_reports/2012annual_eng.pdf
http://www.axis.com/corporate/press/industry_news/article.php?article=090921_applicationplatform.htm
http://www.axis.com/corporate/press/industry_news/article.php?article=090921_applicationplatform.htm

226 K. Wnuk et al.

25. Bosch, J.: From software product lines to software ecosystems. In: Proc. of the
13th International Software Product Line Conference. SPLC 2009, Pittsburgh, PA,
USA, Carnegie Mellon University, pp. 111–119 (2009)

26. Axis Communications AB: Applications ready to meet your needs,
http://www.axis.com/products/video/compatible_applications/index.php

(last visited April 2014)
27. Wnuk, K., Runeson, P., Lantz, M., Weijden, O.: Bridges and barriers

to hardware-centric software ecosystem participation a case study. Tech-
nical report, Lund University, Department of Computer Science (2014),
http://serg.cs.lth.se/index.php?id=89149

28. Manikas, K., Hansen, K.M.: Software ecosystems – a systematic literature review.
Journal of Systems and Software 86(5), 1294–1306 (2013)

29. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering – Guidelines and Examples. Wiley (2012)

30. Hagel, J., Brown, J.S., Davison, L.: Shaping strategy in a world of constant dis-
ruption. Harvard Business Review (10) (2008)

31. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem: Im-
plications for practice and theory. Journal of System and Software 85(7), 1455–1466
(2012)

32. Chesbrough, H.W.: Open Innovation: The new imperative for creating and profiting
from technology. Harvard Business School Press, Boston (2003)

33. Axis Communications AB: Axis’ learning center, http://www.axis.com/academy/
(last visited April 2014)

34. Viljainen, M., Kauppinen, M.: Software ecosystems: A set of management practices
for platform integrators in the telecom industry. In: Regnell, B., van de Weerd, I.,
De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp. 32–43. Springer, Heidelberg
(2011)

35. Rao, A.R., Ruekert, R.W.: Brand alliances as signals of product quality. MIT Sloan
Management Review (1994)

36. Axis Communications AB: The list of the compatible applications,
http://www.axis.com/products/video/compatible_applications/index.php

(last visited April 2014)
37. Schuur, H.v.d., Jansen, S., Brinkkemper, S.: The power of propagation: on the

role of software operation knowledge within software ecosystems. In: Grosky, W.I.,
Badr, Y., Chbeir, R. (eds.) MEDES, pp. 76–84. ACM (2011)

38. Bucklin, L.P., Sengupta, S.: Organizing successful co-marketing alliances. Journal
of Marketing 57(2), 32–46 (1993)

39. Das, T.K., Teng, B.-S.: Trust, control, and risk in strategic alliances: An integrated
framework. Organization Studies 22(2), 251–283 (2001)

http://www.axis.com/products/video/compatible_applications/index.php
http://serg.cs.lth.se/index.php?id=89149
http://www.axis.com/academy/
http://www.axis.com/products/video/compatible_applications/index.php

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 227–242, 2014.
© Springer International Publishing Switzerland 2014

App Store Models for Enterprise Software:
A Comparative Case Study of Public versus Internal

Enterprise App Stores

Stefan Wenzel

Otto-Friedrich-Universität Bamberg, An der Weberei 5, 96047 Bamberg, Germany

SAP AG, Dietmar-Hopp-Alle 16, 69190 Walldorf, Germany
stefan.wenzel@sap.com

Abstract. Mobile app stores have changed the way how consumers discover
and buy private software. Employees and end users in companies expect a
similar experience and flexibility from their corporate IT. Enterprise software
vendors (ESVs) therefore create new modular applications and establish their
own versions of app stores for companies. Two models have appeared on the
market: the public and the internal enterprise app store (EAS). Public EASs are
managed and operated by large ESVs serving them as sales and distribution
channels for their software and the software built by their ecosystem. Internal
EASs are managed and operated by corporate IT departments to distribute
applications to company-internal users. We conduct a comparative case study of
one public and one internal EAS and derive recommendations for corporate use
to better meet the expectations of today’s business stakeholders.

Keywords: App Store, Enterprise Application Software, Business Applications,
App’ification, Enterprise App Store, IT Governance, IT Consumerization.

1 Introduction

Enterprise application software, such as Enterprise Resource Planning (ERP) or
Customer Relationship Management (CRM), is traditionally sold via a highly
consultative, personnel-intensive process [1]. A customer’s software acquisition
process is usually governed by a central IT department [2]. Buying cycles of several
months up to years are still widely common [3, 4] and significant resources are tied
up on the sales and buying side. This is a costly process for both the enterprise
software vendor (ESV) and the customer.

Moreover, from an innovation perspective ESVs struggle with early market
adoption of newly introduced software products. It is widely accepted in innovation
management literature that a new product or invention only classifies as an innovation
if it is adopted by a customer [5]. The innovativeness of a software company should
therefore not only be measured in terms of “time-to-market”, but also in terms of
“time from availability to adoption”. This laborious go-to-market model also has
consequences for the software buying company’s internal innovation process:

228 S. Wenzel

business units often cannot justify the business case for single requirements and IT
departments are overextended with consolidating the different needs in the
organization or are tied up with operating complex IT landscapes, resulting in
innovation bottlenecks [6, 7].

The relationship between business users and IT departments is further complicated
by a trend referred to as “consumerization of IT” [8]. Consumer technologies such as
smartphones and app stores are pervasive in many people’s lives. Hence, business
users are nowadays much more knowledgeable and sensitive towards technology in
general, but also towards corporate IT and information systems (IS) [9]. Business
users ask for IT solutions, with consumer-grade usability, supporting ad-hoc use cases
and request a stronger involvement in the software selection process or want to
directly select the software they use themselves. Since IT departments, and available
enterprise software and the related go-to-market process, cannot comply with these
requirements, the role of the CIO or the IT department is questioned [10, 11]. Another
consequence is the rise of “shadow IT” [12, 13]: business users circumvent corporate
IT rules and use their private devices and applications without permission in their
day-to-day work.

ESVs seem to have recognized the described multifaceted dilemma: they are
building new, modular (“app-like”) applications with consumer-oriented user
interfaces [14] and pursue new go-to-market and software distribution models by
introducing their own version of app stores1 for companies, trying to reproduce the
success of app stores in the consumer market. These B2B online sales channels not
only shift the software acquisition and distribution process from the “offline” to the
“online” world, but also promise a change in the enterprise software adoption
paradigm: they favor a business-driven bottom-up approach over the traditional IT-
driven top-down approach [9]. These EASs are referred to as “public EASs” and are
usually managed by a software provider.

With mobile apps entering the enterprise and the need for mobile application
management (MAM), another form of EAS has emerged: the internal EAS2. In
contrast to the public EAS, the internal EAS is managed by the individual software
customer company.

By introducing EASs, researchers expect to effectively counter the problems
arising with IT consumerization and shadow IT by satisfying the needs of the business
users, while gaining back control of the IT used in the company [13]. Software
vendors hope to benefit from the app store model with a reduction in cost of sales,
increased reach to business users and an acceleration of adoption rates of new
products [15]. However, software customers seem to be reluctant and adoption rates
of EASs are still low [16, 17]. One reason might be the uncertainty of how to best use
these new models in the corporate context, i.e., how to integrate enterprise app stores
into “sourcing, delivery and support” of corporate IT services [2].

1 Examples are: SAP Store [19], Salesforce.com AppExchange [43], Microsoft Pinpoint [44],

Amazon AWS Marketplace [45], Google Apps Marketplace [46].
2

 Examples are: SAP Enterprise Store [20], Symantec App Center [47], App47 [48],
Salesforce.com Private AppExchange [49], OpenPeak Openshop [50]

 App Store Models for Enterprise Software 229

Therefore, the research objective of this study is to investigate the two prevailing
models of EASs: the public and the internal EAS. The individual use cases are
evaluated from a software customer’s perspective, the differences of each model are
highlighted and the respective consequences are discussed. Furthermore, we propose
to combine the two models to leverage the advantages of both EASs.

To pursue the research objectives an explorative, qualitative research strategy has
been chosen, using an idiographic and comparative case study design [18]. SAP
serves as organizational case study context, since it provides a public EAS, the SAP
Store [19], and an internal EAS, the SAP Enterprise Store [20]. The article targets IS
researchers interested in the under-investigated topic of EASs and their implications
towards corporate IT processes as well as companies evaluating the use of EASs or
those looking for new ways to provide corporate IT to business units and users.

The article is structured as follows. After a comprehensive literature review on
related fields of research, the research methodology is presented. Chapter 3 presents
the two cases: the public SAP Store and the internal SAP Enterprise Store. Thereafter
the individual findings are compared and discussed. Based on the outcome of the case
study a framework is derived how to combine the two models. The work concludes
with a discussion on limitations of the study, a summary of the findings and a market
and research outlook.

2 Related Work

In this section contributions from multiple streams of research are presented which
help to explain the novel socio-technological context of EASs or to assess it. The
works are at the crossroads of IS research and Industrial Marketing.

IT Consumerization. As described previously, IT consumerization refers to the trend
that IT innovations are adopted first by consumers and are subsequently diffused into
enterprise segments [9]. The widespread use of consumer technologies lets business
users rate corporate IT and IS with the eyes of a consumer: simple and visually
appealing user interfaces, instant or ad-hoc use, and self-determined selection of
software are exemplary expectations of business users towards corporate IT. These
expectations are often not addressed with today’s corporate IS and governance models
[9]. Therefore the diffusion of consumer technology into companies is often driven by
individual employees and not controlled or permitted by the IT department
(“infiltration”) [8]. To provide evidence of this phenomenon, Harris et al. (2012)
present a survey among 4017 employees: 52% responded that they would at least
sometimes use their personal consumer devices for work-related activities, 36% stated
that they would not worry about IT policies in place and just use the technology they
need to perform their work, and 45% agreed with the statement that private devices
and software applications are more useful than the ones provided by corporate IT
[21]. Furthermore, Harris et al. (2012) identify three major benefits of IT
consumerization for companies: increased innovativeness, productivity, and employee
satisfaction. If IT consumerization is not managed actively in the company it leads to
shadow IT [13] and its risks typical IT targets such as data security, reliability, and

230 S. Wenzel

integrity [21]. Therefore, it is proposed to actively manage IT consumerization or to
introduce new governance models such as “Bring your own device” (BYOD, [8]).
Beimborn and Palitza (2013) mention EASs as a promising option to manage
consumerization and counteract shadow IT [13].

IT Governance. Meyer et al. (2003) define IT governance as “a set of principles,
practices, and measures to ensure corporate targets are met with the used IT, while
resources are used responsibly and risks are adequately monitored” (translated from
original German version, [2]). From a process perspective they mention sourcing,
delivery, support, monitoring, and control as key activities of IT governance [2].

Weill (2004) defines IT governance “[…] as specifying the framework for decision
rights and accountabilities to encourage desirable behavior in the use of IT” [22]. He
further shows the different fields of IT decision needs and presents different IT
governance archetypes. The five most important IT decision needs are in the areas of
IT principles, IT architecture, IT infrastructure strategies, business application needs,
and IT investment. The IT governance archetypes are defined by “who makes each
type of decision, who has input to a decision, and how these people are held
accountable for their role”. According to Weill, the different decision roles can be
assigned to C-level executives, corporate IT, and business units or process owners
[22]. EASs overlap with the competencies defined by both definitions of IT
governance (e.g., sourcing of IT, distribution of IT, IT investment), so it will be
important to discuss the consequences of EAS use on IT governance, and to propose
potential strategies, i.e., to define the role of business and IT.

Organizational Buying Behavior and Enterprise Software Acquisitions. From an
Industrial Marketing point of view, software procurement is an instance of
organizational buying and an EAS can be defined as “a set of organizational and
technological means constituting a centralized infrastructure serving a (individual or
organizational) software consumer throughout the buying process” [23]. Robinson et
al. (1967) developed a framework to identify organizational buying situations and
introduced three “buying classes”: new task, modified rebuy, and straight rebuy [24].
According to Webster and Wind (1972), the buying process is carried out by a buying
center – the set of all the individuals from the buying organization taking on a role in
the decision process (typical roles are: influencer, decider, user) [25] and involve
different organizational units, such as the IT department, business units, the
purchasing department, or workers council. The vendor in turn compiles a “selling
center” [26] to approach the different interests of the customer stakeholders.

Based on the early works in organizational buying behavior, researchers have
investigated factors of influence in the organizational buying process: for example,
Sheth (1973, 1996) distinguished individual, environmental, and group-organizational
aspects [27, 28]. Few authors have researched organizational buying in the context of
software purchases. Based on Webster and Wind (1972), Halingten and Verville
(2002; 2003) studied the purchase of ERP systems and classified influencing factors
grouped into environmental, organizational, interpersonal, and individual factors. In
addition, they analyzed the acquisition process and defined the phases planning,
information search, selection, evaluation, choice and negotiation [4, 29].

 App Store Models for Enterprise Software 231

Technology Adoption and Acceptance. An enterprise app store itself can be seen as
an IT innovation. Hence, technology adoption and acceptance is an important field of
research to investigate the use of EASs by companies and end users. The Technology-
–Organization–Environment framework (TOE) states that innovation adoption
decisions by organizations are influenced by the technological, organizational, and
environmental context [30]. The theory most widely used in IS research to study
adoption decisions by individuals is the Technology Acceptance Model (TAM) [31].
It proposes mainly two independent variables influencing the individual’s intention to
use a specific technology: perceived usefulness and perceived ease of use.

Software Platforms and Ecosystems. Multiple publications in software platform and
ecosystem research mention that an “online marketplace” is at the heart of software
platform offerings (e.g., Platform-as-a-Service, PaaS) [32–34]. PaaS as an
independent market offering constitutes hardware, software, and service components
in order to enable independent software vendors (ISVs) to develop and to provide
software solutions to customers [32]. The marketplace or the “platform store” is
mainly evaluated in its role of an intermediary (i.e., cybermediary) to market the
software products developed by ISVs on top of the software platform to customers
[34]. Giessmann et al. define such a marketplace as follows: “The PaaS provider
maintains a marketplace where customers can buy software components. The
marketplace can offer provisions for software requests […]” [33]. The PaaS provider
is therefore offering both the software platform to develop software components and
the online marketplace to market and distribute them. Moreover, the PaaS provider
often offers its own software components via the marketplace [32].

The understanding of a PaaS marketplace is largely equivalent to that of a public
EAS. However, it is not necessarily required for the public EAS provider to also offer
a software development platform to ISVs.

Enterprise App Stores. The EAS model as such has been the subject of only a few
scholars so far, though business and technology analysts (e.g., Gartner, IDC) regularly
rank it among the top strategic IT trends [35–37].

Novelli and Wenzel (2013) have qualitatively researched the app store model for
enterprise software (i.e., public EAS) and identified drivers and barriers with regards
to the organizational adoption of an EAS for different types of enterprise software
(core solutions, on-top solutions, usage enhancements, IT services) [17]. Moreover,
they have coined the term “app’ification” in the context of enterprise software
referring to “app’ified” software if an application is suited for online sales and
distribution due to its characteristics such as focused scope, trial available, starter
package, or instant deployment. Furthermore, they provided recommendations on
how to best integrate EASs with traditional, “offline”, direct sales channels [23].

Beimborn and Palitza (2013) have investigated the benefits of internal EASs [13]:
they define an internal EAS as a software system to provide functions of MAM.
MAM complements Mobile Device Management (MDM) in corporations by
managing the lifecycle of mobile apps, including development, procurement,
distribution, configuration, update, and removal. They have identified benefits of
using an internal EAS in the areas of IT compliance, app lifecycle management, and

232 S. Wenzel

total cost of ownership (TCO). Internal EASs as described in their study are
originating from the mobile app segment; however, they are not restricted to this
domain and can be applied to other types of software applications as well.

Neither of the works elicited the different use cases and capabilities of public and
internal EASs in detail, nor did they contrast the two models.

3 Methodology and Research Process

In this study we have opted for an explorative, qualitative research strategy and have
chosen an ideographic and comparative case study design [18, 38]. Exploratory
research is preferred in novel contexts where only limited empirical data is available
or the structures and themes of the studied phenomenon are still unclear. A case study
design is used to investigate the unique characteristics of one or multiple cases (i.e.,
ideographic) in contrast to cross-sectional designs, where the focus lies on
nomothetic, generic findings. Comparative designs embody the logic of comparison:
they intend to better explain a phenomenon when two or more cases are selected and
contrasted or put in relation [18]. EASs are a novel socio-technological context and
come in two distinct models. By intensively studying internal and public EASs, we try
to reveal the most important features, processes, and consequences for software
customers. Further, the study design allows us to compare the two models and to
derive additional knowledge which would not have been possible in two unrelated
studies of the two EAS models. As organizational case study context SAP has been
chosen. SAP fulfilled multiple criteria at the same time: SAP is one of the largest
vendors of enterprise software; it operates a public EAS, the SAP Store [19], and
offers an internal EAS [20]; it provides software platforms and related PaaS offerings
to enable ISVs to develop and market their own applications [39]; and has a
comprehensive MDM and MAM portfolio to manage enterprise mobility within
companies [40]. Fig. 1 illustrates the sequential research process of this study.

1) Review of
literature

3) Review of
public

documents

4) Evaluation of
systems using test
and demo accounts

5) Conducting
expert

interviews

6) Creation of
case protocols

7) Comparison
of cases

8) Development
of theory

2) Selection
of cases

Fig. 1. Simplified, sequential research process

After a literature review and case selection, publicly available material was
reviewed (online documentation: the SAP Store Support Guide [41] and the SAP
Enterprise Store help documentation [20]). Subsequently, we have been provided with
a test account to the SAP Store [19] and a demo system of the SAP Enterprise Store to
analyze the functionality of the respective systems. Lastly, two experts from the
product management of the SAP Store and the SAP Enterprise Store were
interviewed. During the interviews we mainly tried to confirm assumptions and
discuss open questions which could not fully answered by the public material and or

 App Store Models for Enterprise Software 233

test systems. The interviews lasted 45 minutes each and notes were taken during the
interviews. All findings (public material, test systems, interviews) were recorded and
integrated in case study protocols. They formed the basis for the comparison of the
two cases and were used to derive implications.

The public and internal EAS where studied along various categories: First, their
respective value system according to Porter (1985) [42] is analyzed to identify all
relevant stakeholders their roles and relationships. Second, the catalogs are reviewed,
i.e., which applications are supported by the respective EAS. Last, a detailed
functional analysis is conducted. Though, we tried to keep the categories in the
functional analysis equal, they partially differ. This is due to the fact, that the internal
and public EAS essentially are two different models and support partially different
processes. To compare public and internal EAS, we used the IT governance process
[2] to structure the comparison and assess the individual impact.

4 Presentation of Cases

In this section the two cases SAP Store and SAP Enterprise Store are presented (cf.
Fig. 2). First, the value system is reviewed. Second, the supported applications
(Catalog Management) are analyzed and third, a functional analysis is performed.

Fig. 2. Screenshot SAP Store (left) and SAP Enterprise Store (right, demo system)

4.1 Case: SAP Store

Value System. There are three main roles (cf. Fig. 3) in the value system of the SAP
Store. The software customer uses the SAP Store as an online, self-service
environment to conduct software acquisitions. ISVs provide the applications on the
SAP Store and use it as a global, online sales and distribution channel.

The ISVs are members of the SAP Application Developer Partner program [39].
SAP is operating the SAP Store and fulfills the tasks of an intermediary and broker
(e.g., providing app store infrastructure, catalog maintenance, certification and quality
assurance, delivery). SAP collects a revenue share from the ISVs and thus participates
in each sales transaction. Further, SAP provides its own solutions via the SAP Store
as well and uses it as an online sales channel.

234 S. Wenzel

Catalog Management / Offering. At the time this study was conducted (August to
November 2013), the SAP Store offered approximately 1200 solutions. This number
differs slightly depending on the selected country. About half of the solutions are
provided by SAP and the other half are provided by around 400 SAP partners. The
solutions span all industries, business areas, deployment models (on-premise, cloud,
mobile devices, desktop), and range from simple to highly complex applications.

Platform
Provider

ISV

ISV

Public EAS
(Public catalog of software

applications)

Platform Provider

Supply DemandIntermediation

SW
Customer

SW
Customer

SW
Customer

Fig. 3. Simplified value system of the SAP Store

Functional Analysis. The SAP Store supports the entire buying process from
information search, evaluation, negotiating and buying, and delivery (derived from
Verville and Halingten). Below, the functionality will be evaluated for each process
step separately complemented with non-process-related functional categories.

Information Search. The SAP Store catalog is organized by multiple categories:
industry, line of business, or categories for special topics, such as “Analytics” or
“Cloud Solutions”. In addition to browsing, filtering, and searching the catalog, there
is a recommender providing personalized recommendations to the user. Three main
screens support the phase of identifying a solution and gathering information. The
SAP Store homepage highlights selected solutions and gives personal
recommendations to the user. The catalog view is a typical list view: it shows search
results and provides filters. Key information such as short descriptions or price are
visible in this view and the key transactions can be accessed (e.g., add to cart). The
solution view provides detailed information on a solution, e.g., functional, technical,
and pricing details, introduction videos, customer success stories, and screenshots.

Evaluation. The SAP Store provides several dedicated features to evaluate solutions
in more detail. Most solutions come with a trial version or demo mode. Simple
solutions (e.g., which can be installed on the desktop) or which are operated in the
cloud often have trials with most functionality enabled and integrated sample data.
These trials are often limited to a certain period (e.g., 30 days). Other solutions come
in a free version and a paid version. The free version can be downloaded and used
without time limitations and can serve for evaluation or simple use cases.

Mobile enterprise apps can be downloaded for free (only the backend components
need to be purchased) and include a demo mode to try the app. System landscape
requirements can be evaluated with the so-called “compatibility check”. This feature

 App Store Models for Enterprise Software 235

analyzes the customer’s system landscape and assesses prerequisites of the selected
solution. The compatibility check informs the user if additional components need to
be acquired and installed first. The SAP Store provides a selection of social features
which may also be used to better evaluate a solution. Users can write reviews for
purchased solutions and provide ratings which are visible to other customers. Further,
users can recommend a solution to colleagues by using established social networks
such as LinkedIn or simply e-mail.

Negotiation and Purchase. If the user decides to purchase a solution, he can add it to
the shopping cart. The shopping cart shows detailed price information (e.g., fixed and
recurring fees) and the quantity of items can be changed in this screen. As payment
option, the user can choose between invoice and credit card. The SAP Store also
recognizes corporate customer or volume discounts. Once the user proceeds, the
review screen is shown: in this screen the terms and conditions of the selected
solutions need to be reviewed and agreed to. Before submitting the order, the user can
also enter an internal “Purchase Order ID” for correct booking of the order with his
company’s purchasing system.

Delivery. The delivery of the solution depends on the deployment model. On-premise
server solutions, mobile apps, or desktop solutions are delivered via direct file
downloads (download link is sent via e-mail to the buyer); cloud solutions are simply
activated and the buyer receives a link with login instructions. The invoice is sent to
the buyer in a separate e-mail.

Users and Permissions. There are multiple predefined user roles in the SAP Store
with different permissions. A “Guest User” is an unregistered user on the SAP Store.
He can freely browse the entire catalog and can even download free applications or
demos. A “SAP Store User” is a registered user associated with a company. A SAP
Store User can fully browse the catalog, use social features (review solutions,
recommend solutions to colleagues), and buy a few selected solutions using his credit
card (mainly personal solutions). The “SAP Store Buyer” has the additional
permission to purchase all solutions available on the SAP Store on behalf of his
associated company (invoice or credit card). Lastly, the SAP Store Super User can
invite users to the SAP Store and pre-register them with his company. Further, he can
assign and revoke SAP Store roles to the individual users.

Administration and Support. The “SAP Store Account” section allows users to
access user management, review the details of past SAP Store orders, and view and
accept quotes. A dedicated support page helps users with questions. Further, SAP
provides phone numbers, an e-mail address, and a live chat if users have questions
with regards to the SAP Store or a desired solution.

Complex Buying Scenarios. The SAP Store is a self-service buying and e-commerce
platform. However there are dedicated features to use the SAP Store in combination
with a traditional offline, direct sales channel, e.g., a SAP sales representative. Most
solutions on the SAP Store also provide a “Contact Me” button to ask for the
involvement of a salesperson or to provide a “request a quote” transaction. A

236 S. Wenzel

salesperson then creates this quote offline and loads it back up to the SAP Store.
There, customer users can review and accept (or decline) the quote.

4.2 Case: SAP Enterprise Store

Value System. The SAP Enterprise Store is an internal EAS. It is available for
purchase as a single product or can be acquired as part of the SAP Mobile Secure
suite (SAP, 2013). The Value System can be described using four roles. The SAP
Enterprise Store is hosted by SAP and provided to the customer as a cloud solution.
The customer’s IT department is managing the behavior and fully determines which
applications or digital content is available. Employees can discover applications and
content, and can download, activate, or consume them. Furthermore, the SAP
Enterprise Store can be used to position selected content not only to company-internal
consumers, but also to its ecosystem, such as suppliers, partners, subsidiaries, or end
customers. This way it can be used to enhance the reach of corporate IT beyond the
borders of the company (cf. Fig. 4). The SAP Enterprise Store can be integrated with
the SAP Store to pre-fill the catalog with selected solutions from the public EAS.
Further, it integrates with SAP Afaria, an MDM solution. In this case the SAP
Enterprise Store replaces the App Catalog as part of Afaria, which is a rudimentary
version of an internal EAS.

Catalog Management / Offering. The catalog is fully managed by the customer’s IT
department and can be used to host different kinds of digital content: mobile apps,
desktop apps, web apps, or e-learnings. The applications and content provided target
individuals, i.e., end users. Hence, the SAP Enterprise Store is not meant to distribute
an entire server application, but it would in this case provide the user-related
interface, which could be an app or even only a link and license activation.

Subsi
diary

Subsi
diary

Subsi
diary

Custo
mer

Custo
mer

Custo
mer

Suppl
ier

Suppl
ier

Suppl
ier

Internal EAS
(Internal SW Catalog)

Company

Employees / Business Users

Legend

Traditional reach and
area of control of
corporate IT

Extended reach and
control of corporate IT

Corporate IT

Eco-
system

Fig. 4. Simplified Value System of the SAP Enterprise Store

The SAP Enterprise Store can host solutions which are available in the SAP Store,
applications developed in-house, or any third-party application. The categories to
browse the catalog can also be freely configured by the administrator.

 App Store Models for Enterprise Software 237

Functional Analysis. The functional analysis is presented along slightly different
categories than the SAP Store as the focus lies on the adoption of single applications
by individual users and the management of these applications by an IT department.

Information Search. The SAP Enterprise Store is similarly organized as the SAP
Store and has a comparable look and feel. It can be accessed via the browser or apps
available for mobile devices. On the homepage the user can enter the catalog by
categories (defined by the company), search for applications, or select
recommendations. In the list view, the user can filter the results using multiple criteria
(e.g., device, line of business). In comparison to the SAP Store the list view shows
more details with regards to device compatibility (e.g., phone, tablet). The solution
view displays details of the solution (screenshots, videos, functionality, and technical
details). In contrast to the SAP Store, there are no dedicated pricing or commercial
details but more details on device compatibility. The available user reviews can
further be filtered with regards to a device-specific version. The download or
deployment of an app can be triggered in the list view and the solution view.

Evaluation, Negotiation, and Purchase. To evaluate a solution, the user can view
screenshots, videos, or ratings and reviews. Dedicated features to access trials or
demos are not available. Once a user decides to use a solution he can download it or
trigger the delivery. A shopping cart or dedicated buying process is not supported.

Delivery. The delivery depends on the deployment model of the app and on which
device the SAP Enterprise Store is accessed. For mobile apps the installation of an
app is directly triggered if the catalog is accessed from the mobile device itself.
Where a mobile app is chosen from the desktop version of the catalog, an e-mail
including the installation link is sent to the user’s e-mail address. For desktop apps or
other digital content (e.g., e-learnings) a file download is triggered. For web apps
login credentials and activation links are sent to the user’s e-mail address. The SAP
Enterprise Store can also be integrated with SAP Afaria, the MDM solution of SAP.
In this case, a selected app is handed over to the MDM system for device deployment.

Company-Internal IT Innovation Process and Social Features. The SAP
Enterprise Store cannot only be used to distribute productive applications but also
allows in-house developers to upload their own apps, even if these apps are still in
development. This is supported by a dedicated process and status management: if an
in-house developer uploads an application he can mark it as “In Development”,
“Beta”, or “Productive”. Before the app is published, the administrator needs to
review and approve it first. Eligible users can then review and try these non-
productive apps and provide feedback via the social features of the SAP Enterprise
Store. In general there are features to review and rate applications and this way give
feedback to the IT department.

Users and Permissions. The SAP Enterprise Store integrates with corporate identity
systems and recognizes users in the intranet. Out of the box there are only two roles: a
standard user who can fully browse and download apps and the administrator role.
The administrator can manage the catalog, view usage statistics, adjust the visual
appearance, create catalog categories, assign users to roles, or even restrict certain

238 S. Wenzel

catalog content to a group of users or roles. The standard roles can be enhanced with
additional roles such as developers (eligible to upload apps), beta users (employees
who have access to non-productive apps), or dedicated roles for suppliers or customer
companies who only have access to a sub-set of applications.

Administration. The administration of the SAP Enterprise Store is grouped into two
categories: Setup and Statistics. Setup includes general settings, visual style settings
(e.g., apply corporate branding), catalog categories, app management (publish, edit,
retire, approve/decline new apps), and user and role management. The Statistics view
shows detailed usage information of the SAP Enterprise Store such as number of
downloads or uploads and can also be used for license management.

5 Comparison of the Public versus Internal EAS

In this section we will discuss how the two presented EAS models help to resolve the
initially stated dilemma: how to involve business units and users in the IT governance
and how to establish a bottom-up IT adoption process to satisfy the needs of today’s
tech-affine employees, and at the same time how to keep control of IT processes to

Table 1. Comparison of key capabilities of the public versus internal EAS model with focus on
business involvement and IT control along the IT governance process (cf. [2])

IT Gov.
Process

SAP Store (public EAS) SAP Enterprise Store (internal
EAS)

IT
Sourcing  Business can identify, gather

information about, and try new
business applications

 IT defines buyers and proactively
invites business reps to participate
during external sourcing

 IT can enable selected business
reps to make purchases

 Early involvement of business
users in in-house development
projects (internal sourcing)

IT
Delivery

 Instant delivery of software can
accelerate delivery process

 Business users select and consume
apps in a self-service mode using
a consumer-friendly app catalog

 Provide apps to ecosystem
 Secure and instant delivery to user

devices
IT Support  Internal EAS can be used to

distribute updates of applications
 Distribution of e-learnings

Monitoring  IT can monitor all purchases on the
EAS via a central order view

 Monitoring of app usage,
downloads, reviews, ratings

 License monitoring
IT Control  Define buyer roles

 Prevent business users from buying
non-authorized app-lications

 Define target groups for
applications (who can access
which apps)

 Fully define catalog content and
visual styling of EAS

 App Store Models for Enterprise Software 239

meet corporate IT targets. In general, it must be said that neither EAS model
predefines who in the organization takes over which decision role in the areas of IT
governance (cf. Weill, [22]). Companies still need to define themselves how EASs are
implemented and used in the organization, i.e., who takes over which part in decision
processes. Table 1 presents the capabilities of the two EAS models with regards to
business involvement and IT control in the main tasks of IT governance (cf. [2]).

In summary, the studied public EAS focuses on external sourcing, i.e., acquisition,
of new enterprise software. It can be used to tightly involve business users during the
identification and evaluation of applications. Dedicated capabilities are provided to
enable organizational buying (e.g., buyer roles, corporate discount, quotations,
compatibility check). Still, the provided features allow IT departments to control
which applications are purchased and buying permissions can be managed actively.
The self-service paradigm of the public EAS has the potential to increase efficiency
during external sourcing activities and thus shorten buying cycles, and ultimately
accelerate the introduction of new enterprise software applications.

The internal EAS model focuses on the distribution of personal applications to
employees and the ecosystem. Thereby, it encourages an employee- or rather user-
driven pull model in favor of a push model. IT departments can fully control the
available content in the EAS catalog. The breadth of supported types of content (web,
mobile and desktop apps, and other digital content) allows the internal EAS to be the
single source for employees’ app needs. The roles concept can further be used to
target specific user groups: to pre-filter the available applications and even to position
selected applications to the ecosystem. Another noteworthy capability is to actively
support the internal innovation process, for example by publishing beta apps to a
selected group of users to receive early feedback. Lastly, the monitoring capabilities
of the internal EAS inform the IT department about which applications are used and
which not and help to establish a more accurate and compliant license management.

Whether the EAS models will be accepted by business users can be analyzed in
terms of “perceived usefulness and ease of use” (cf. [31]) . Perceived usefulness will
be rated first and foremost by the applications provided by the EAS. Whereas the
public EAS catalog is controlled by an external provider, the internal EAS catalog is
filled by the IT department. In both cases it is important to offer a broad assortment of
attractive applications. The second determinant “perceived ease of use” will be rated
according to how convenient software acquisition or adoption processes can be
conducted using an EAS. Both studied EASs are using a design very similar to
consumer app stores or well-known e-commerce sites. Hence, it is safe to state that
most users will be familiar with the interaction patterns of the researched EASs.

Combination of Public and Internal Enterprise App Stores. Our case study has
shown that both models support the involvement of business users during software
selection and adoption, though they focus on different parts of the overarching
process. Fig. 5 shows a potential combined use of public and internal EASs for a
given company along the software adoption process.

240 S. Wenzel

Info
Search

Evaluate
/ Trial

Purchase
Download
/ Activate

Configure
Publish App

Internally
Download
/ Activate

Update
Apps

Monitoring
Retire
Apps

Public EAS Internal EAS

External Sourcing Distribution

Fig. 5. Combined use of public and internal EASs

The public EAS can be used for external sourcing of new enterprise software and
for actively involving selected business representatives during the acquisition process.
After configuration of the acquired software for corporate use and defining the target
user groups, the internal EAS provides employees with a consumer-like experience to
discover and consume (i.e., download/activate) corporate applications. Further, the
internal EAS helps IT departments to manage and monitor applications along their
firm-internal lifecycle.

6 Limitations and Conclusion

In this study we used an explorative, qualitative research strategy and a case study
design. Generalizability of qualitative research in general, but especially of case
studies, is low [18]. Further, we did not involve experts from customer companies as
we could not recruit adequate candidates at the time of this study (the SAP Enterprise
Store was released in late summer 2013). Future studies (qualitative or quantitative)
may research EAS models in the actual customer context and analyze other EASs
available on the market.

We studied public and internal EAS models by researching two cases, the SAP
Store and SAP Enterprise Store. The capabilities of each EAS were analyzed in detail
and scenarios for practical use were discussed. Special focus was placed on how the
two EAS models help to involve business users during key IT governance processes,
especially sourcing and delivery of IT, while keeping control of IT. Moreover, we
proposed a combined use of public and internal EASs and outlined options how these
can be used in organizations. In this context we encourage future research to further
study combinations of public and internal EAS especially in the context of real-world
scenarios. As a concluding remark, we believe EASs will spur the digitization of the
software acquisition and distribution process and will enable faster adoptions of IT
innovations and a stronger involvement of business stakeholders.

References

1. Wenzel, S., Novelli, F., Burkard, C.: Evaluating the App-Store Model for Enterprise
Application Software and Related Services. In: Wirtschaftsinformatik Proceedings 2013
(2013)

2. Meyer, M., Zarnekow, R., Kolbe, L.M.: IT-Governance - Begriff, Status quo und
Bedeutung. Bus. Inf. Syst. Eng. 45, 445–448 (2003)

 App Store Models for Enterprise Software 241

3. Liao, X., Li, Y., Lu, B.: A model for selecting an ERP system based on linguistic
information processing. Inf. Syst. 32, 1005–1017 (2007)

4. Halingten, A., Verville, J.C.: A qualitative study of the influencing factors on the decision
process for acquiring ERP software. Qual. Mark. Res. An Int. J. 5, 188–198 (2002)

5. Edison, H., Bin Ali, N., Torkar, R.: Towards innovation measurement in the software
industry. J. Syst. Softw. 86, 1390–1407 (2013)

6. Lamendola, M.: Justifying Software Purchases,
http://ecmweb.com/content/justifying-software-purchases

7. Gunasekaran, A., Love, P.E.D., Rahimi, F., Miele, R.: A model for investment justification
in information technology projects. Int. J. Inf. Manage. 21, 349–364 (2001)

8. Weiß, F., Leimeister, J.M.: Consumerization - IT Innovations from the Consumer Market
as a Challenge for Corporate IT. Bus. Inf. Syst. Eng. 4, 363–366 (2012)

9. Niehaves, B., Köffer, S., Ortbach, K.: The Effect of Private IT Use on Work Performance-
Towards an IT Consumerization Theory. In: Wirtschaftinformatik Proc. 2013, pp. 39–53
(2013)

10. Carr, N.: IT doesn’t matter. Harv. Bus. Rev. (2003)
11. Vizard, M.: CIOs Struggle With Relevance of Role to Business,

http://www.cioinsight.com/it-management/
cios-struggle-with-relevance-of-role-to-business

12. Jones, D., Behrens, S., Jamieson, K., Tansley, E.: The Rise and Fall of a Shadow System:
Lessons for Enterprise System Implementation. In: ACIS 2004 Proceedings (2004)

13. Beimborn, D., Palitza, M.: Enterprise App Stores for Mobile Applications - Development
of a Benefits Framework. AMCIS 2013 Proceedings (2013)

14. SAP: Simple UI for SAP Applications: SAP Fiori Improves User Experience,
http://en.sap.info/sap-fiori-improves-user-experience/98278

15. Wenzel, S., Faisst, W., Burkard, C., Buxmann, P.: New Sales and Buying Models in the
Internet. In: MKWI 2012, pp. 639–651 (2012)

16. Böckle, R.: B2B App Stores - Anbieter im Vergleich. Computerwoche 49, 14–21 (2013)
17. Novelli, F., Wenzel, S.: Adoption of an Online Sales Channel and “Appification” in the

Enterprise Application Software Market. In: ECIS 2013 Proceedings (2013)
18. Bryman, A., Bell, E.: Business Research Methods. Oxford University Press, USA (2011)
19. SAP: SAP Store: http://www.sapstore.com
20. SAP: SAP Help - SAP Enterprise Store, http://help.sap.com/ses
21. Harris, J., Ives, B., Junglas, I.: IT consumerization: when gadgets turn into enterprise IT

tools. MIS Q. Exec. 11, 99–112 (2012)
22. Weill, P.: Don’t just lead, govern: How top-performing firms govern IT. MIS Q. Exec. 3,

1–17 (2004)
23. Novelli, F., Wenzel, S.: Online and Offline Sales Channels for Enterprise Software:

Cannibalization or Complementarity? In: ICIS 2013 Proceedings (2013)
24. Robinson, P.J., Faris, C.W., Wind, Y.: Industrial Buying and Creative Marketing (1967)
25. Webster, F.E., Wind, Y.: A General Model for Understanding Organizational Buying

Behavior. J. Mark. 36, 12–19 (1972)
26. Puri, S.J.: Industrial Vendors’ Selling Center: Implications for Sales Management. J. Bus.

Ind. Mark. 7, 59–69 (1992)
27. Sheth, J.N.: A Model of Industrial Buyer Behavior. J. Mark. 37, 50–56 (1973)
28. Sheth, J.N.: Organizational buying behavior: past performance and future expectations. J.

Bus. Ind. Mark. 11, 7–24 (1996)
29. Verville, J., Halingten, A.: A six-stage model of the buying process for ERP software. Ind.

Mark. Manag. 32, 585–594 (2003)

242 S. Wenzel

30. Tornatzky, L.G., Fleischer, M., Chakrabarti, A.K.: The processes of technological
innovation (1990)

31. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology. MIS Q. 13, 319–340 (1989)

32. Beimborn, D., Miletzki, T., Wenzel, S.: Platform as a Service (PaaS). Bus. Inf. Syst.
Eng. 3, 381–384 (2011)

33. Giessmann, A., Stanoevska, K.: Platform as a Service–A Conjoint Study on Consumers’
Preferences, pp. 1–20 (2012)

34. Scholten, S.: Platform-based innovation management: a framework to manage open
innovation in two-sided platform businesses. Universität Stuttgart, Stuttgart (2011)

35. Pettey, C.: Gartner Identifies the Top 10 Strategic Technology Trends for 2013 (2013),
http://www.gartner.com/newsroom/id/2209615

36. Pettey, C.: Gartner Identifies the Top 10 Strategic Technologies for 2012 (2012),
http://www.gartner.com/newsroom/id/1826214

37. Drake, S.D.: Mobile Enterprise App Stores: Open for Business. IDC (2012)
38. Darke, P., Shanks, G., Broadbent, M.: Successfully completing case study research:

combining rigour, relevance and pragmatism. Inf. Syst. J. 8, 273–289 (1998)
39. SAP: SAP Application Development Partner Center, http://www.sapadpc.com
40. SAP: SAP.COM - Secure Apps, http://www.sap.com/pc/tech/mobile/

software/solutions/device-management/secure-apps.html
41. SAP: SAP Store Support, https://store.sap.com/sap/cp/ui/resources/

store/html/CustomerSupport.html
42. Porter, M.E.: Competitive Advantage: Creating and Sustaining Superior Performance. The

Free Press, New York (1985)
43. Salesforce.com: AppExchange, https://appexchange.salesforce.com/
44. Microsoft: Microsoft Pinpoint, http://pinpoint.microsoft.com/
45. Amazon.com: Amazon AWS Marketplace,

https://aws.amazon.com/marketplace
46. Google: Google Apps Marketplace,

https://www.google.com/enterprise/marketplace/
47. Symantec: Symantec App Center,

http://www.symantec.com/mobility/products
48. App47.com: App47, http://www.app47.com/
49. Salesforce.com: Private AppExchange,

https://appexchange.salesforce.com/
listingDetail?listingId=a0N3000000B4VlZEAV

50. OpenPeak: OpenShop, http://www.openpeak.com/OpenShop.html

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 243–257, 2014.
© Springer International Publishing Switzerland 2014

Impact of Cloud Computing Technologies on Pricing
Models of Software Firms – Insights from Finland

Gabriella Laatikainen and Eetu Luoma

Department of Computer Science and Information Systems,
University of Jyväskylä,

Jyväskylä, Finland
{gabriella.laatikainen,eetu.luoma}@jyu.fi

Abstract. In this paper we study the changes in the pricing models of software
firms that use cloud computing technologies as part of their products and
services. This paper presents findings from 324 responses to a questionnaire
survey on how pricing model elements of software firms have changed as a
result of adopting hardware virtualization, multi-tenancy, online delivery and
configurability. The findings suggest that Software-as-a-Service firms – making
use of the cloud computing technologies – are generally simplifying their
pricing model, increasing the use of usage-based pricing, reducing the
customers’ influence and unifying their pricing across customers. These
changes occur together with standardization of their products or services. The
findings provide a view to the transformation of the software industry,
characterized by both technological and business model redesigns.

Keywords: cloud, SaaS, pricing, software firms, business models.

1 Introduction

Software-as-a-Service (SaaS) is both a delivery and a business model for software
firms defined by technological and business characteristics. Recent literature
describes SaaS as the delivery of multi-tenant, virtual, web-based and configurable
application that is accessible through browser [1]–[4]. Applying these technological
characteristics to its application enables a software firm to offer a cloud computing
service with the essential cloud characteristics to its customers. Viewing SaaS from
the business perspective, the model is understood as offered through a different
revenue logic compared to the traditional licensed software, such as subscription-
based and/or usage based pricing [2], [5]–[7].

Introducing cloud technologies therefore implies changes not only to software
architecture but also to business model design. Among the business model elements, a
well-designed revenue logic is a key condition for commercial success. Pricing
models influence not only the demand, but have an effect also on the way how users
use the product or service, and have a long-term influence on customer relationships
[8]. The revenue logic can also differentiate a product from the competitors and this
way increase the company's revenues [9]. However, even though pricing is a powerful

244 G. Laatikainen and E. Luoma

strategic tool in manager's hands, it also causes challenges to software firms that
develop SaaS to the market. Information is often difficult to price and the currently
observed constantly changing labyrinth around software pricing makes pricing even
more complex [3], [10]–[13].

With the emergence of cloud technologies, the software market evolves rapidly
and the firms’ needs for strategic changes increase. Different studies in current
literature focus on software firms’ revenue logic and their products and services.
However, despite of its importance, there is a shortage of empirical evidence on
how the software firms changed their pricing models due to adopting cloud
computing technologies. This study fills the gap by analyzing 324 Finnish software
firms to find out (1) what are the changes in pricing model that are caused by cloud
computing technologies, such as virtualization, multi-tenancy, online delivery and
configurability; and (2) whether changes in pricing model elements are caused
directly by cloud computing technologies or through changes in the firms’ products or
services offered to their customers.

The contribution of this paper is two-fold. First, researchers gain a better
understanding on how the cloud technologies transform the software industry and
how firms change their value proposition and pricing model after adopting cloud
technologies. Secondly, the managerial implications provide insights into how
particular cloud technologies affect different aspects of pricing.

The structure of this article is as follows. In the next section, we give an overview
on recent work related to value proposition and revenue logic as key business model
elements in the context of cloud technologies and describe the hypotheses of this
research. In Section 3, we describe the research methodology used in this article. In
Section 4 we present the findings of our analysis. We conclude our paper with
discussion and summary in sections 5 and 6, respectively.

2 Theoretical Background

2.1 Business Models

Business model is a conceptual model of a business: a description of how a company
organizes itself, operates and creates value [10], [14]–[17]. The static view on
business models sees them as a blueprint for the coherence between core business
model components [18]. Besides others, the core business parameters include value
proposition incorporating the product/service portfolio [14], [15], [18], [19] and
revenue logic referring to the structure of income [14], [15], [19].

On the other hand, the dynamic view uses the business model concept as a tool to
address change and innovation in the firm or in the model itself [18]. Changes in the
model itself can be related to the different phases of the lifecycle of business models,
such as creation, extension, revision and termination [20]. The reason for these
changes might be a response to external and/or internal influences. In the literature,
the advances in contemporary technology are argued to be a key external factor that
leads to changes in business strategies and processes [17], [19], [21]–[24]. Moreover,
Chesbrough and Rosenbloom [19] argue that the financial performance of a given

 Impact of Cloud Computing Technologies on Pricing Models 245

firm is associated with developments in firm’s environment, but only through changes
in the firm’s business model. Besides the external influences, the need for business
model changes might also come internally. Business models are designed,
implemented and changed by employees of the company who make decisions based
on their perception of the firm’s environment [18]–[20]. As a consequence, the
elements of business models are interrelated and changes in one of the components
might cause changes also in others [18].

There is currently little in the literature that empirically examines just how exactly
software providers do convert to supplying SaaS. A couple of exceptions to this are
the studies by Stuckenberg et al. [6], Ojala and Tyrväinen [25] and Novelli [26].
While their findings are based on rare cases, they both seem indicate a trend towards
offering more standardized products and services, increasing customer-facing
activities and changes in revenue logic towards subscription-based pricing.

2.2 Value Proposition and Cloud Technologies

As a core item of business model, value proposition communicates the value that the
companies’ product/service portfolio creates for the target customers using
technology [19]. In software industry, the product/service portfolio incorporates the
set of functionalities of the software, the needed infrastructure and the deployment,
delivery and maintenance of the software [27], [28]. Specifically, software firms that
develop SaaS to the market companies employ cloud technologies in their value
proposition, such as hardware virtualization, multi-tenancy, and web service [1].
Besides, a cloud mature application should also be configurable [2]. These four
technologies give the software firms the means to introduce SaaS service to the
market, a service which has the essential cloud computing characteristics of on-
demand self-service (through configurability), network access (web service), resource
pooling (virtualization and multitenancy) and elasticity (virtualization), as they’re
described in the reference definition of cloud services [29].

Hardware virtualization offers an abstract computing platform to the users instead
of the physical characteristics, such as raw computing, storage, network resources [1].
Virtualization also enables encapsulation for the applications, so that they can be
installed, configured and maintained [30].

In a multitenant architecture, a single instance of common code and data is shared
between multiple tenants [31]. Besides the requirements of shared hardware
resources, shared application and shared database instance, Bezemer et al. [32]
requires also high degree of configurability in look-and-feel and workflow from
multitenant software. Some researchers consider also multi-instancy as a form of
multi-tenancy [33], where a vendor hosts separate instances for each customer within
shared hardware [33], [34].

Web service represents communication over the HTTP protocol, where the
customers use a browser to use the application [1]. SaaS is therefore also a delivery
model, software that is available through the network.

Configurable software offers the possibility for users to modify the application’s
appearance and behavior through metadata services to meet their needs. These

246 G. Laatikainen and E. Luoma

configuration changes might refer to user interface and branding (graphics, colors,
fonts, logos, etc.), workflow and business processes, extensions to the data model and
access control [2].

2.3 Revenue Logic and Software Pricing Models

The revenue logic describes the structure of revenues, how the company makes
money by serving its customers [14], [18]. In software industry, the most common
revenue streams are: i) monthly or annual subscription fees, ii) advertising based
revenue, iii) transaction based revenue (customers are charged based on the number of
transactions they perform), iv) premium based revenue (revenue is generated from
charging for premium versions besides the free versions), v) revenue from
implementation and maintenance services and vi) software licensing [28], [35]–[37].

Software pricing in these above introduced revenue models may base on different
aspects. The software pricing model parameters of Lehmann and Buxmann [38] and
the SBIFT model of Iveroth et al. [39] are taken into account in the classification of
cloud pricing models that describes these models along 7 dimensions [40]:

1. Scope represents the granularity of the offer, whether it is priced as a
package or different prices are given for different functionalities.

2. Base represents the information base the price is set on. The price might be
decided based on cost considerations, the competitors’ prices, based on
performance or customer value.

3. Influence represents the ability of buyers and sellers to influence the price,
and it contains the options Pricelist, Negotiation, Result-based price, Pay-
what-you-want, Auction and Exogenous pricing.

4. Formula represents the connection between price and volume, and it
contains different variations of fix and variable price components.

5. Temporal rights represent the length of service’s usage period, and it can be
Perpetual, Subscription-based or Pay-per-use.

6. Degree of discrimination represents the level of price variety depending on
the buyer. The software may be offered to the customers with a different
price in different regions or with a price dependent on the time of buying.
The price can depend on the acquired volume, software’s quality, or it might
be even customer-specific.

7. Dynamic pricing strategy represents the strategy of dynamic price change
over time. Penetration, skimming or hybrid pricing strategies belong to this
dimension.

It can be noted, that these 7 dimensions of cloud pricing framework are different
by nature: the dimensions Base and Dynamic pricing strategy represents long-term,
strategic decisions made usually by the upper management; while the other five
dimensions describe the elements of pricing models that can be modified more easily.

We chose to use this framework as a starting point for the present study, since it
provides the most state-of-the-art and the most integrative work in the current pricing
literature in cloud context. The framework adopts general pricing model elements to

 Impact of Cloud Computing Technologies on Pricing Models 247

software business and cloud context, allowing researchers and practitioners to study
different pricing model aspects in a systematic, holistic way.

SaaS business model has an altered licensing scheme compared to the traditional
software business, where acquiring a perpetual use license represents the common
method of transaction [5]. Instead, in SaaS the customer organization and the software
firm agree on a subscription and the software firm develops, deploys and operates the
software application in its datacenter of choice. This can been interpreted as
separating the ownership of software from its use [41], [42], hence software is
provided and consumed as a service rather than as a product. Contemporary SaaS
pricing models have been studied notably by Lehmann and Buxmann [38], [43].
However, their studies focus on the current pricing models of SaaS vendors, rather
than how pricing models have changed together with changes in technologies and
value propositions.

2.4 Research Gap and Hypothesis Development for the Current Study

In our review of the extant literature, we searched for prior work related to cloud
technologies, SaaS and pricing models but also the business model concept with a
special focus on changes in business models that occurred as a response to
technological changes. We found that different aspects of cloud computing have been
received moderate attention from the researchers; however, despite of its importance,
prior literature lacks empirical studies on how software firms changed their pricing
models due to adopting cloud computing technologies. In current study therefore we
focus on the role of cloud computing technologies in the pricing models of software
firms.

In software business, as a result of technological changes and competitive forces,
there is a gradual shift in business models towards increasing service revenues [28].
With the emergence of cloud computing, software firms not only implement
technological changes by introducing multi-tenancy, hardware virtualization,
configurability and internet-based delivery, but these technological characteristics
imply also changes to the revenue logic. SaaS software is often offered through the
subscription model billed monthly or even in shorter periods [38]. SaaS vendors may
often provide their prices through pricelists on their websites [43], indicating more
transparent and unified pricing across customers, where the influence of the
customers on prices decreases [40]. A cloud solution is a result of co-operation of
different value chain partners, where the SaaS provider might pass the usage-based
pricing metrics derived from the PaaS provider to the end customers. Both customers
and providers might prefer simple pricing models where different functionalities are
bundled into one package with one price. [38], [40], [43]

Based on the claimed characteristics of software firms, we assess pricing model
changes caused by introducing cloud computing technologies through changes in the
pricing model elements and we hypothesize that:

H1. Adopting cloud computing technologies, i.e. introducing hardware
virtualization, multi-tenancy, internet-based usage of the software and configuration
through internet is associated with change towards 1) simpler pricing 2) less

248 G. Laatikainen and E. Luoma

negotiation 3) usage-based pricing 4) shorter contracts and 5) more unified pricing
across customers.

SaaS software is argued to be more standardized than the traditional software: only
a limited set of functionalities is provided to a larger market segment instead of
customer-specific solutions [4]. Changes in value proposition imply changes also in
other business model elements, such as the pricing model [10], [46]. Therefore, we
assess whether pricing model changes are caused by changes in value proposition and
we hypothesize that:

H2. Standardizing the value proposition, implementing a limited set of new
functionalities is associated with change towards 1) simpler pricing 2) less
negotiation 3) usage-based pricing 4) shorter contracts and 5) more unified pricing
across customers.

3 Research Method

3.1 Data Collection

The goal of our empirical study was to capture changes in software firms’ pricing
models due to adoption of cloud technologies. The data used in this study was
collected as part of the annual Finnish software industry survey whose primary aim is
to gather the information about the current state of software industry. The definition
of software firm followed the tradition of the Software Industry Survey1, focusing on
all Finnish companies whose main activity is to provide software as products or
services to the customers. The details of the survey can be found online, so in this
study we describe the sample and the data collection procedure only shortly.

The survey follows a modified version of the tailored design [44] and collects data
using letters and web-based form with email invitations. The mailing list of the survey
contained key informants of 4878 software firms. The data collection started in April
and ended in June 2013. The respondents were contacted five times and the data
gathering resulted in receiving 379 complete and 121 partial responses.

After collecting the data, we used a filter to select the companies appropriate for
the goal of this study. As our focus was on firms providing Software-as-a-Service,
which originate from either software product firms or software services firms, we
excluded producers of embedded software and software resellers from the analysis.
Further, since the objective of this study was to examine the factors causing changes
in the firms’ pricing models, we excluded software firms younger than two years from
the analysis. In total, 324 usable responses from software companies matched our
inclusion criteria and were used for the analysis.

3.2 Concepts and Their Operationalization

We conceptualized the pricing model of software firms through its dimensions in the
cloud pricing framework [40]. The pricing model incorporates the granularity of the
offer, the customers’ negotiation level, the pricing formula consisting of fix and

1 See http://softwareindustrysurvey.org for details about the survey.

 Impact of Cloud Computing Technologies on Pricing Models 249

variable price components, the temporal rights and price discrimination [38]–[40].
Cloud technology includes hardware virtualization, multi-tenancy, web-based
software and configurability [1], [2]. Value proposition was conceptualized through
the firms’ product/service portfolio that is offered to the customers [19], [45].

Since the primary goal of the survey was different from the aims of this study, we
had to choose between investigating specific changes in the pricing models with
single-item measures or studying only one pricing aspect in detail. The aspects of
SaaS pricing are diverse, therefore we could not follow the suggestion of the
configuration approach [46] to measure one aspect and infer changes to the whole
pricing model. Thus, we used single-item measurements for measuring and
interpreting various pricing model changes.

The dependent variables of this study measure changes in software firm’s pricing
model during the last three years. We designed the variables based on the
characteristics of assumed SaaS pricing models: capturing change toward having
simpler pricing model (labelled “Scope”), toward less negotiation (“Influence”),
toward usage-based pricing (“Formula”), toward committing to shorter contracts than
before (“Temporal rights”) and toward more unified pricing across the customers
(“Discrimination”). We excluded the dimensions “Base” and “Dynamic pricing
strategy” from our research setting due to their long-term, strategic nature and rather
concentrated on different operative aspects on pricing models.

Measuring change in the value proposition was based on the assumption that SaaS
firms standardize their products and services and implement fewer new functionalities
to their products/services than before. The five dependent variables and the
independent variable “Standardization” and “Fewer functionalities” were measured
with the question “How well these statements describe the change of your company’s
business model during the last three years?”, where response options were anchored
ranging from “1=strongly disagree” to “5=strongly agree”.

The independent variables measuring technology adoption are dummy (binary)
variables that describe whether or not the companies use hardware virtualization
(labelled “Virtualization”) multi-tenancy (labelled “Multi-tenancy”), web-based
software (labeled “Online delivery”) and configurability (labelled “Configurability”)
in their products and services. These were measured by the question “Which cloud
computing features were used in your company’s products or services in 2012?”, and
had the options “Hardware virtualization”, “Multi-tenancy”, “Internet-based usage of
product or service” and “Configuration through internet (Customer self-service)”.

The control variables are the size and age of the company (“ln(Size)” and
“ln(Age)”, respectively). The proxy for the size of the company is the firm’s revenue
in 2012 and the company’s age is determined based on the age of the firm in 2012.
Using these control variables is justified. A larger company may have better resources
to initiate and execute changes compared to smaller firms with limited resources. On
the other hand, the more mature companies are likely to suffer from inertial forces
within the organization that obstructs changes [47].

3.3 Data Analysis

In this study we used non-parametric correlations and multivariate ordinal regression
analyses to investigate the hypotheses. In particular, non-parametric correlations are

250 G. Laatikainen and E. Luoma

used to reveal associations between cloud technologies, changes in value proposition
and elements of pricing models. The ordinal regression analyses were employed to
assess the pricing model changes attributable to adoption of cloud technologies and
changes in value proposition. Ordinal regressions treat each ordinal value as an
independent variable; thus it is possible to examine parameter estimates for a certain
range of values within an independent variable [48].

Before running the data analyses, exploratory tests were carried out to choose the
most appropriate statistical methods. Specifically, after realizing that the dependent
variables were negatively skewed, we run the Shapiro-Wilk's test of normality and the
test was significant. Thus, the sample did not come from normally distributed
population; therefore we chose to use non-parametric statistics. We also investigated the
potential presence of outliers. After exploring the data, we detected four influential
responses visually using box plots and removed them from the analysis. Next, we
applied Harman's single-factor test to check the common method variance problem, that
is typical in case of survey research [49]. The unrotated factor solution did not reveal a
single factor, which would account for the majority of the variance in the model,
suggesting that the method variance would not be a problem in the data. Different
concerns are related to the ordinal regression analyses, such as the multicollinearity of
the independent variables, the choice of link function, and the proportional odds
assumption. From the correlation statistics presented in the Table 1, we did not detect
high correlations between the independent variables; thus, multicollinearity would not
impede the results. Our choice of link function was driven by the distribution of the
ordinal outcome as suggested by the literature [50], and we employed Cauchit for the

Table 1. Non-parametric correlations between the variables

Spearman rho 1 2 3 4 5 6 7 8 9 10 11 12 13

1 Scope Coefficient 1.000

Significance

2 Influence Coefficient .222 1.000

Significance .001 .

3 Formula Coefficient .218 .106 1.000

Significance .001 .104 .

4 Temporal rights Coefficient .044 .045 .140 1.000

Significance .501 .488 .032 .

5 Discrimination Coefficient .489 .256 .185 .030 1.000

Significance .000 .000 .005 .644 .

6 Virtualization Coefficient .089 .042 .174 -.007 .141 1.000

Significance .170 .519 .007 .911 .029 .

7 Multi-tenancy Coefficient .171 .197 .230 -.093 .159 1.000

Significance .008 .002 .000 .150 .014 .

8 Online delivery Coefficient .131 .040 .182 -.025 .130 1.000

Significance .043 .534 .005 .697 .045 .

9 Configurability Coefficient .234 .146 .180 .020 .125 1.000

Significance .000 .024 .005 .762 .053 .

10 Standardization Coefficient .189 .144 .276 -.020 .261 .230 .200 .106 .070 1.000

Significance .003 .026 .000 .764 .000 .000 .002 .100 .278 .

11 Fewer Coefficient .080 .165 .135 .186 .141 -.060 -.008 -.068 .031 .143 1.000

functionalities Significance .222 .012 .040 .004 .032 .354 .901 .297 .634 .028 .

12 ln(Age) Coefficient -.056 -.076 .047 .063 .025 -.064 -.045 -.059 -.107 .010 .050 1.000

Significance .387 .242 .475 .334 .697 .309 .469 .343 .085 .876 .444 .

13 ln(Size) Coefficient -.127 -.033 .005 .043 .017 .154 .169 .040 .049 .114 -.102 .159 1.000

Significance .056 .621 .941 .519 .802 .016 .008 .539 .443 .086 .124 .009 .

 Impact of Cloud Computing Technologies on Pricing Models 251

model “DV=Scope” (outcome with many extreme values), Probit for the model
“DV=Influence” (the underlying latent trait of the ordinal outcome is normally
distributed) and Logit for the models “DV=Formula” and “DV=Discrimination” (evenly
distributed categories). Finally, to test the proportional odds assumption the authors ran
tests of parallel lines in SPSS. With all the models, the Chi-Square statistics were
insignificant, indicating that the assumption was not violated.

4 Results

The variables and their non-parametric correlations are visible in Table 1. The results
show that some variables capturing the changes in software firms’ pricing models are
positively correlated with the adoption of cloud technologies. Specifically, the change
towards having simpler pricing model (Scope) is associated with multi-tenancy,
online delivery, configurability; change towards less negotiation (Influence) is
positively correlated with multi-tenancy and configurability; change towards usage-
based pricing (Formula) is associated with virtualization, multi-tenancy, online
delivery and configurability; and change towards more unified pricing across the
customers (Discrimination) is associated with virtualization, multi-tenancy and online
delivery. However, change towards shorter subscription periods (Temporal rights) is
not correlated with the use of the technologies; thus, we exclude the ordinal
regression model explaining this change by introducing cloud technologies from this
study.

Change in value proposition toward more standardized product/service or towards
fewer functionalities is associated with change in different pricing model elements.
Table 1 also shows correlations between dependent variables.

Table 2. Ordinal regression models with parameter estimates

Results from the ordinal regressions of the four models are shown in Table 2,

which reports the regression parameter estimates for the levels of dependent variables
(“DV”), for the independent variables and controls. The table also reports two pseudo
r-squares of Nagelkerke – for the full model and for controls only – which assess the

Estimate StdErr Sig. Estimate StdErr Sig. Estimate StdErr Sig. Estimate StdErr Sig.
DV ordinal level =1 -40.651 31.242 .193 -1.477 .527 .005 -.339 .919 .712 -.958 .990 .333
DV ordinal level =2 -.996 .945 .292 .073 .510 .887 .924 .895 .302 1.154 .913 .206
DV ordinal level =3 .749 .947 .429 1.060 .513 .039 2.684 .910 .003 2.760 .926 .003
DV ordinal level =4 4.911 1.306 .000 2.580 .544 .000 5.419 .965 .000 6.186 1.015 .000
virtualization -.132 .285 .644 -.029 .164 .861 .218 .293 .456 .133 .294 .650
multi-tenancy .943 .318 .003 .368 .171 .031 .557 .308 .071 .294 .309 .342
online delivery .069 .304 .821 -.034 .182 .850 .425 .320 .184 .196 .323 .544
configurability 1.043 .311 .001 .155 .166 .351 .351 .297 .236 .226 .301 .453
standardization .329 .140 .019 .101 .079 .199 .518 .140 .000 .394 .141 .005
fewer functionalities .041 .143 .776 .252 .083 .002 .214 .145 .139 .264 .151 .080
ln(Age) -.065 .186 .725 -.199 .104 .056 .180 .183 .325 .118 .187 .527
ln(Size) -.081 .057 .153 -.009 .028 .753 -.037 .050 .457 .027 .051 .588
Pseudo R2 (Nagelkerke) .160 .115 .172 .098
Pseudo R2 (controls only) .003 .016 .004 .004
Model fitting information 536.509 35.630 .000 548.369 24.924 .002 543.388 38.424 .000 509.455 20.534 .008

DV=Scope DV=Influence DV=Formula DV=Discrimination

252 G. Laatikainen and E. Luoma

overall goodness of fit of the ordinal regression models. While the values give some
indication of the strength of the associations between the dependent and the predictor
variables, the authors note that these r-squares should not be interpreted similarly to
the OLS regressions. However, comparing the r-squares between a model including
only controls and the full model, the higher r-square on each full model indicates
better prediction on the outcome. Lastly, the tables include model fitting information
for the final models; −2 log-likelihood, Chi-square and significance. The values are
statistically acceptable for all models. This means that the models yield predictions
more fitting than the marginal probabilities for the dependent variable categories.

Focusing on the ordinal regression parameter estimates for this study, the
adoption of multi-tenancy is significant in predicting the change towards having
simpler pricing model (in model “DV=Scope”, Est.=943, Sig.=.003), towards less
negotiation (“DV=Influence”, Est. =.368, Sig. =.031) and to some extent notable in
predicting the change towards usage-based pricing (“DV=Formula, Est. =.557, Sig.
=.071). Besides, software firms with highly configurable applications are more likely
to change their pricing model towards having simpler pricing model (“DV=Scope,
Est. =1.043, Sig. =.001). The change towards simpler pricing model is also predicted
by the standardization of the products and services (“DV=Scope”, Est. =.329 Sig.
=.019). Besides, change in value proposition towards more standardized
product/service is a better predictor of changes towards usage-based pricing
(“DV=Formula”, Est. = .518, Sig.=.000) and toward more unified pricing across the
customers (DV=”Discrimination”, Est.= .394, Sig.= .005) than the cloud technologies.
Furthermore, change towards fewer new functionalities is the best predictor for
change towards less negotiation (DV=”Influence”, Est.=.252, Sig.=.002).

5 Discussion

The current study supports most of our hypotheses deriving from the literature
regarding the pricing model changes due to adoption of cloud computing
technologies. The use of virtualization, multi-tenancy, online delivery and
configurability are associated with the increased use of usage-based pricing. Besides,
the use of multi-tenancy and configurability is associated with less negotiation with
the customers. This can be explained by the fact that multi-tenancy constraints the
customers’ options for customization [51] that results in the customers’ lower
influence on both the product/service and its pricing. In addition to the above
mentioned associations, the use of multi-tenancy, online delivery and configurability
is significantly correlated with change towards simpler pricing with less pricing
components. Also, the use of hardware virtualization, multi-tenancy and online
delivery correlates with change towards more unified pricing across customers.

Based on the results, multi-tenancy is the most influential factor among cloud
computing technologies that affects 4 out of 5 pricing model dimensions. Since
multi-tenancy is the indicator of a cloud-mature, standardized application, it is not
surprising that the use of it implies fundamental changes in the pricing as well. Prior
research accentuates the role of multi-tenancy in the success of SaaS vendors [33].

 Impact of Cloud Computing Technologies on Pricing Models 253

However, based on this finding we claim that besides implementing multi-tenancy,
changes most likely occur also in business model elements, such as the revenue logic,
and these changes contribute together to the success. On the other hand, keeping our
research method in mind, we cannot rule out the possibility that online delivery,
configurability and virtualization might be introduced earlier than 3 years, leaving
some dimensions of pricing models untouched during these last years.

It has to be noted that based on the empirical findings, the use of cloud computing
technologies does not imply change towards shorter subscription contracts. Even
though the use of these technologies enables shorter subscription contracts with the
customers, the results show that the aim of software companies is to develop longer
customer relationships. A possible explanation for this could be the possibly heavy
competition in the market and the firms’ high initial investments whose return need to
be secured.

In the current study, besides technological characteristics and changes in pricing
model elements, our model incorporated also changes towards more standardized
products/services and fewer functionalities. The results show that change in value
proposition explains most of the changes in different pricing model elements. This
underscores the interrelation of different business model elements suggested by the
literature (e.g. [10], [47]); namely, decisions to individual business model elements
may affect several aspects of the firm.

Firms that standardize their products and services change also their pricing model;
thus, revenue logic is highly important in a firm’s strategy that needs attention from
the managers. Besides standardizing the software, unifying the pricing across
customers and using more volume dependent pricing components is justified.
Standardized, less customer-specific software can be sold for the same price for
different customers since the minimal customization work offsets the differences in
the development costs. Standard software may generate more revenues with
employing usage-based pricing in case there are big differences in the users’ demand.
With incorporating usage-dependent pricing components into the revenue logic, the
infrastructure costs are passed directly from the provider to the customers. This way
the company is able to catch also the long-tail of the market.

The analysis shows also that companies that implement fewer new functionalities
give less negotiation power to their customers. Concentrating on the core
functionalities leaves no or minimal room for user-specific customization work, thus,
it makes negotiation unnecessary. Hence, SaaS firms offering standard software with
a limited set of core functionalities usually employ pricelists in their pricing to attract
customers.

The strength of associations between variables in this study indicates that
implementing technological and business models changes is complex. The software
firm’s managers’ cognitive processes may play an important role in adjusting
different business model elements, in some cases even greater than the technological
opportunities. We consider also the possibility that the software firm had already
executed the changes before, thus, there had not been changes in the last three-year
period.

254 G. Laatikainen and E. Luoma

During the study, we paid special attention to the common possible bias in survey
research, such as measurement errors, problems related to sampling, coverage, and
non-response [44]. To reduce the risk of measurement error we attained guidance on
the survey questions from both researchers and practitioners in the field. Whenever
available, we applied scales that have been tested in previous studies. One of the
concerns with the measurements is the use of single-item measures, which are argued
to insufficiently capture the conceptual domain. However, this claim has been
challenged by DeVellis [52] by arguing that each item of a scale is precisely as good
measure as any other of the scale items and that the items’ relationship and errors to
the variable are presumed identical. Understanding of this perplexity guided the
authors not to make claims about the changes in pricing model dimensions (e.g. scope
of the pricing model), but rather about the parameters (e.g. the number of pricing
model components).

The software industry survey practically covers and contacts all the Finnish
software companies; therefore we consider coverage and sampling errors irrelevant.
The overall sampling rate for the software industry survey nonetheless is roughly 10
percent, which suggests a potential risk of non-response bias. However, the effective
sample contained software firms of all types, ages and sizes, and the concern is
principally if there are theoretically relevant differences between respondents and
non-respondents. In this case, the effective sample contained sufficient variety in
dependent variables to support the analysis of the hypotheses.

6 Conclusions

Using cloud computing technologies in software applications implies changes also to
the business aspects of software firms; among which pricing is extremely important in
achieving success in the competitive SaaS market. The current study fills a research
gap in the current literature by focusing on the impact of deploying cloud computing
technologies on different pricing model elements. In this paper the results of the
research are presented related to the impact of hardware virtualization, multi-tenancy,
online delivery and configurability on different dimensions of pricing models, such as
the scope of it, the influence of the customers on pricing, the use of usage-based
pricing, the temporal rights and price discrimination across customers.

After analyzing an effective sample of 324 software firms, we conclude that the
use of cloud computing technologies implies changes in different dimensions of the
pricing models. The results show that multi-tenancy is the most influential factor,
affecting 4 out of 5 dimensions, while hardware virtualization, online delivery and
configurability are associated with changes in some of the aspects of the pricing
model. Software firms that use cloud computing technologies in their products and
services seem to make their pricing model simpler, use usage-based pricing, reduce
the customers’ influence and unify their pricing across customers. They do not,
however, shorten the length of the contracts with their customers. The current study
also revealed that changes in pricing models happens together with changes in the
value proposition; this underlines the interrelation of different business model
elements suggested also by the literature (e.g. [10], [47]).

 Impact of Cloud Computing Technologies on Pricing Models 255

This study is the first to examine the changes in pricing models of SaaS firms
empirically and therefore the authors suggest these findings to serve as a starting point
for future studies. The practical implication of this study is an increased
understanding about how the SaaS vendors are changing their business models and
consequently how the market of software products and services is evolving as a result
of recent technological advances. As the market is transforming to embrace the
promises of cloud computing technologies, studies on business models offer
predictions about what are the viable configurations of business models and how
deployment of technologies changes the configurations. Since the survey is limited to
Finland, the study does not necessarily provide a representative illustration on SaaS
firms in a global context; therefore similar studies in other countries are welcome to
complement the results.

References

1. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing—The
business perspective. Decision Support Systems 51(1), 176–189 (2011)

2. Chong, F., Carraro, G.: Architecture strategies for catching the long tail. MSDN Library,
Microsoft Corporation, pp. 9–10 (2006)

3. Weinhardt, C., Anandasivam, D.-I.-W.A., Blau, B., Borissov, D.-I.N., Meinl, D.-M.T.,
Michalk, D.-I.-W.W., Stößer, J.: Cloud computing–a classification, business models, and
research directions. Business & Information Systems Engineering 1(5), 391–399 (2009)

4. Benlian, A., Hess, T.: Opportunities and risks of software-as-a-service: Findings from a
survey of IT executives. Decision Support Systems 52(1), 232–246 (2011)

5. Choudhary, V.: Comparison of software quality under perpetual licensing and software as
a service. Journal of Management Information Systems 24(2), 141–165 (2007)

6. Stuckenberg, S., Fielt, E., Loser, T.: The impact of software-as-a-service on business
models of leading software vendors: experiences from three exploratory case studies. In:
Proceedings of the 15th Pacific Asia Conference on Information Systems, PACIS 2011
(2011)

7. Tyrväinen, P., Selin, J.: How to sell saaS: A model for main factors of marketing and
selling software-as-a-service. In: Regnell, B., van de Weerd, I., De Troyer, O. (eds.)
ICSOB 2011. LNBIP, vol. 80, pp. 2–16. Springer, Heidelberg (2011)

8. Gourville, J., Soman, D.: Pricing and the Psychology of Consumption. Harvard Business
Review 80(9), 90–96 (2002)

9. Piercy, N.F., Cravens, D.W., Lane, N.: Thinking strategically about pricing decisions.
Journal of Business Strategy 31(5), 38–48 (2010)

10. Teece, D.J.: Business models, business strategy and innovation. Long Range
Planning 43(2), 172–194 (2010)

11. Anandasivam, A., Premm, M.: Bid price control and dynamic pricing in clouds. In: ECIS
2009 Proceedings (2009)

12. Schramm, T., Wright, J., Seng, D., Jones, D.: Six questions every supply chain executive
should ask about cloud computing. Accenture Institute for High Performance (2010)

13. Cusumano, M.A.: The changing labyrinth of software pricing. Communications of the
ACM 50(7), 19–22 (2007)

14. Magretta, J.: Why business models matter. Harvard Business Review 80(5), 86–92 (2002)

256 G. Laatikainen and E. Luoma

15. Osterwalder, A., Pigneur, Y., Tucci, C.L.: Clarifying business models: Origins, present,
and future of the concept. Communications of the Association for Information
Systems 16(1), 1–25 (2005)

16. Baden-Fuller, C., Morgan, M.S.: Business models as models. Long Range Planning 43(2),
156–171 (2010)

17. Casadesus-Masanell, R., Ricart, J.E.: From strategy to business models and onto tactics.
Long Range Planning 43(2), 195–215 (2010)

18. Demil, B., Lecocq, X.: Business model evolution: in search of dynamic consistency. Long
Range Planning 43(2), 227–246 (2010)

19. Chesbrough, H., Rosenbloom, R.S.: The role of the business model in capturing value
from innovation: evidence from Xerox Corporation’s technology spin-off companies.
Industrial and Corporate Change 11(3), 529–555 (2002)

20. Cavalcante, S., Kesting, P., Ulhøi, J.: Business model dynamics and innovation (Re)
establishing the missing linkages. Management Decision 49(8), 1327–1342 (2011)

21. Bharadwaj, A., El Sawy, O.A., Pavlou, P.A., Venkatraman, N.: Digital Business Strategy:
Toward a Next Generation of Insights. MIS Quarterly 37(2), 471–482 (2013)

22. Kamoun, F.: Rethinking the business model with RFID. Communications of the
Association for Information Systems 22(1), 35 (2008)

23. Timmers, P.: Business models for electronic markets. Electronic Markets 8(2), 3–8 (1998)
24. Wirtz, B.W., Schilke, O., Ullrich, S.: Strategic development of business models:

implications of the Web 2.0 for creating value on the internet. Long Range Planning 43(2),
272–290 (2010)

25. Ojala, A., Tyrväinen, P.: Developing Cloud Business Models: A Case Study on Cloud
Gaming. IEEE Software 28(4), 42–47 (2011)

26. Novelli, F.: A mixed-methods research approach to investigate the transition from on-
premise to on-demand software delivery. In: Vanmechelen, K., Altmann, J., Rana, O.F.
(eds.) GECON 2012. LNCS, vol. 7714, pp. 212–222. Springer, Heidelberg (2012)

27. Campbell-Kelly, M.: Historical reflections: The rise, fall, and resurrection of software as a
service. Communications of the ACM 52(5), 28–30 (2009)

28. Cusumano, M.A.: The changing software business: Moving from products to services.
Computer 41(1), 20–27 (2008)

29. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Gaithersburg, MD:
National Institute of Standards and Technology (2011)

30. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10 (2008)

31. Bezemer, C.-P., Zaidman, A.: Multi-tenant SaaS applications: maintenance dream or
nightmare? In: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evolution (IWPSE), pp. 88–92
(2010)

32. Bezemer, C.-P., Zaidman, A., Platzbeecker, B., Hurkmans, T., Hart, A.: Enabling multi-
tenancy: An industrial experience report. In: 2010 IEEE International Conference on
Software Maintenance (ICSM), pp. 1–8 (2010)

33. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-
tenancy application development and management. In: Proceedings of CEC/EEE 2007, pp.
551–558 (2007)

34. Ju, J., Wang, Y., Fu, J., Wu, J., Lin, Z.: Research on key technology in SaaS. In:
International Conference on Intelligent Computing and Cognitive Informatics (ICICCI),
pp. 384–387 (2010)

 Impact of Cloud Computing Technologies on Pricing Models 257

35. D’souza, A., Kabbedijk, J., Seo, D., Jansen, S., Brinkkemper, S.: Software-As-A-Service:
Implications For Business And Technology in Product Software Companies. In: PACIS
2012 Proceedings (2012)

36. Ojala, A.: Software renting in the era of cloud computing. In: IEEE 5th International
Conference on Cloud Computing, pp. 662–669 (2012)

37. Ojala, A.: Revenue models in SaaS. IT Professional 15(3), 54–59 (2012)
38. Lehmann, S., Buxmann, P.: Pricing Strategies of Software Vendors. Business &

Information Systems Engineering 1(6), 452–462 (2009)
39. Iveroth, E., Westelius, A., Petri, C.-J., Olve, N.-G., Cöster, M., Nilsson, F.: How to

differentiate by price: Proposal for a five-dimensional model. European Management
Journal 31(2), 109–123 (2013)

40. Laatikainen, G., Ojala, A., Mazhelis, O.: Cloud Services Pricing Models. In: Herzwurm,
G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150, pp. 117–129. Springer, Heidelberg
(2013)

41. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer 36(10),
38–44 (2003)

42. Laplante, P.A., Zhang, J., Voas, J.: What’s in a name? Distinguishing between SaaS and
SOA. IT Professional 10(3), 46–50 (2008)

43. Lehmann, S., Draisbach, T., Buxmann, P., Dörsam, P.: Pricing of Software as a Service –
An Empirical Study in View of the Economics of Information Theory. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 1–14. Springer,
Heidelberg (2012)

44. Dillman, D.A.: Mail and internet surveys: The tailored design method. Wiley, New York
(2000)

45. Zott, C., Amit, R., Massa, L.: The Business Model: Recent Developments and Future
Research. Journal of Management 38(1), 375–414 (2011)

46. Miller, D.: Configurations of strategy and structure: Towards a synthesis. Strategic
Management Journal 7(3), 233–249 (1986)

47. Hacklin, F., Wallnöfer, M.: The business model in the practice of strategic decision
making: insights from a case study. Management Decision 50(2), 166–188 (2012)

48. McCullagh, P.: Regression models for ordinal data. Journal of the royal statistical society.
Series B (Methodological), 109–142 (1980)

49. Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., Podsakoff, N.P.: Common method biases in
behavioral research: a critical review of the literature and recommended remedies. Journal
of Applied Psychology 88(5), 879 (2003)

50. Norusis, M.: SPSS 16.0 guide to data analysis. Prentice Hall Press (2008)
51. Xin, M., Levina, N.: Software-as-a-service model: Elaborating client-side adoption factors.

In: Proceedings of the 29th International Conference on Information Systems (2008)
52. DeVellis, R.F.: Scale development: Theory and applications. Sage (2011)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 258–272, 2014.
© Springer International Publishing Switzerland 2014

What Influences Platform Provider’s Degree
of Openness? – Measuring and Analyzing the Degree

of Platform Openness

Anisa Stefi, Matthias Berger, and Thomas Hess

Ludwig-Maximilians-Universität München, Institute for Information Systems and New Media,
Ludwigstrasse 28, 80539 Munich, Germany

{stefi,matthias.berger,thess}@bwl.lmu.de

Abstract. Software platform providers are increasingly opening up their
platforms to take advantage of external resources and innovations. This
research, based on existing theories, empirically analyzes the drivers of
platform providers’ decision to open up their platforms. Based on resource-
based view and control mechanism, we developed a set of hypotheses which
explain the degree of platform openness adopted by the platform providers. We
performed qualitative interviews and quantitatively validated the results. Thus,
we developed an online survey targeting software platform providers. The
results show that absorptive capabilities of platform providers play an important
role in the degree of platform openness. We also found that the implementation
of informal control modes influence the decision to use a higher degree of
platform openness.

Keywords: Software Platform, Degree of Openness, Resource-based View,
Agency Theory.

1 Introduction

In recent years, we have witnessed the success of software platforms opening up and
taking advantage of external resources, expanding their provided functionalities
through apps or plug-ins. The main technology, the software platform, is defined as
“the extensible codebase of a software-based system that provides core functionality
shared by the modules that interoperate with it and the interfaces through which they
interoperate” [1 p.1]. One of the best known examples - mobile apps - generate
revenues that were estimated to be around $26 billion in 2013 [2]. An example in the
area of enterprise software is Salesforce, which first allowed companies to build
applications utilizing features offered in its Customer Relationship Management
product through AppExchange, then further extended this by providing
SalesForce.com, which offers a service platform on which other companies can build
their own applications based on Salesforce software [3]. Opening up an existing
platform, can provide benefits due to the additional functionalities offered by external
modules, which address a great number of user needs. However, it can also increase

 What Influences Platform Provider’s Degree of Openness? 259

competition and lower switching costs making it difficult for the platform provider to
generate revenues [4]. Therefore, the decision to open up an internal software
platform and identifying the right degree of openness is of strategic importance for a
software platform provider, since it affects the business model of the whole company.
The concept of platform openness has been the focus of several studies in the
information system (IS) research [4, 5]. A purely open platform is defined as one
where there is no restriction to its participation in its “use, development and
commercialization” [6 p.1851]. The opposite of open is a closed system defined as
“wholly owned, proprietary, vertically integrated, and controlled by a single party” [6
p.1851]. Some studies consider software openness as a dichotomous response, being
either closed or open [7], but research has recognized that there are various degrees of
being open, thus acknowledging the degree of openness as more adequate
measurement [6, 8].

In this study, we view the degree of openness as a continuum ranging between
open and closed software. Whereas research has focused on how the perceived degree
of openness affects external developers [9] or innovation [6], little is known about the
drivers that influence software platform providers to adopt a certain degree of
openness [1]. This is also shown by the lack of measurements to analyze the degree of
openness of software platforms. Therefore, we argue that the strategic decision to
provide a certain degree of openness to attract external developers needs to be
carefully analyzed. Grounded on existing theories, this research analyzes the factors
that affect the degree of openness. We aim at contributing to this research gap by
addressing the following question:

What factors influence the degree of software platform openness from a platform
provider’s perspective?

In order to address this question, we adopt concepts considering both dynamic
innovation capabilities of the providers as well as their concerns regarding the loss of
control. We further provide a set of hypotheses which we test empirically.

The remainder of the paper is structured as follows. In the next section we will
present the theoretical background. In section three, the hypotheses and the research
model will be derived. The design of the empirical study follows in the fourth section.
The fifth section will present the data analyses, which are further discussed in the
sixth section. We conclude the paper by addressing the limitations and future work.

2 Theoretical Background

2.1 Platform Openness

Internal software platforms are one of the most successful forms of intra-
organizational software reuse [10]. The relationship between software platform
providers and the external developers or companies contributing with external
components, plug-ins or extensions, creates an ecosystem around this platform [11].
The author in [12] argues that companies should carefully consider opening up their
platform in order to create an ecosystem that could increase the value of the core
offering, attract new users, share the innovation cost and integrate the functionalities

260 A. Stefi, M. Berger, and T. Hess

created by other partners. They further state that platform leaders need to determine
the boundaries of the platform, especially the degree to which the product is made in-
house and properly organize internal teams to prevent conflicts with external
developers [12]. Platform openness is also analyzed by [13], who examined three
practical case studies with mixed, proprietary and open strategies. The author argues
that the use of a completely proprietary approach is only suitable and feasible for very
few market leaders, whereas most companies tend to open up their platforms for
common innovation despite losing differentiation opportunities [13]. According to the
authors in [6], granting access to external developers leads to a trade-off situation in
which control over the platform is lost, but the acceleration of the technology’s
diffusion process increases [6]. In their strategic analysis of platform openness, [4]
point out that the overall strategy reflects which actors are restricted and which
platform parts are opened or not [4]. By focusing on the perspective of
complementary developers, [9] quantitatively found out that developers’ perceived
platform openness influences the satisfaction of the external developer with the
platform. From a provider perspective, [14] qualitatively analyzes factors that
influence the platform providers to adopt an open strategy. Although the concept of
platforms openness has been widely discussed in the literature, more empirical
research is needed to better understand the degree of openness (DOO) from the
platform provider perspective, where a measurement for the DOO is still missing.

2.2 Resource-Based View and Agency Theory

Due to the study’s explorative character, we focus on two theoretical approaches in
order to explain the degree of platform openness, resource-based view (RBV) and
agency theory because they concern the use of firm resources and the collaboration
with external parties.

RBV theory define firm resources as all assets, such as organizational processes,
knowledge or information that serve as enablers of effective and efficient strategies
[15]. The combination of resources in form of input flows creates firm-specific
capabilities. Those consist of high-level routines which provide a company’s
management with different decision options for deploying the capabilities [16]. The
focus on a firm’s own capabilities can explain the transfer of partial software
development actions to external developers. Hence, the lack of required competences
can be compensated through the acquisition of external resources [17]. This
argumentation is also used in open innovation theory which deals with the company’s
strategy to connect in-house resources and external ideas for market
commercialization through flexible boundaries [18]. Both absorptive capabilities and
innovative capacities are required to successfully acquire, transform and integrate
external knowledge into internal resources [19, 20]. For example, open source as
external knowledge source, is adequate if the commonly shared technological
innovations can be integrated to produce complex software systems [21]. Platform
providers implement the open innovation concept by opening the internal software
product line to entwine in-house research and development with the ideas of outside
developers [22]. Functioning as an enabler for cooperation, a software platform makes
this joint innovation creation possible. The opening decision reflects the strategic

 What Influences Platform Provider’s Degree of Openness? 261

importance of external resources for creating value for the end-user, which would not
be possible acting independently from other participants [23]. Thus, the decision to
open the platform should empower the provider to utilize the cooperation to generate
new ideas and to incorporate them in the platform [10].

The new relationships that emerge by opening an internal platform also entail
certain risks. Agency theory explains relationships, in which tasks are assigned from
principals to agents (e.g. outsourcing projects) [24, 25]. Due to information
asymmetries and individual profit maximization, in such contractual relations, main
challenges arise if both parties have divergent goals or if the principal lacks the
possibility to monitor the agent’s actions and efforts [25]. As a consequence, it is
essential for the principal to choose adequate control mechanisms to reduce
information asymmetry, as it allows coordinating the behavior and verifying agents’
actions [26, 27]. In general, two basic control strategies are at the principal’s disposal.
The first type is constituted by formal control modes: outcome control assesses to
which extent determined goals are met and process control includes the specification
of actions to guide the outsourced projects [28, 29]. The second control strategy refers
to the informal control modes, clan control and self-control, both relying on the
controllee’s engagement to behave in the controller’s interest because of either
common values in the first case or internal norms and motivation in the latter one [29,
30]. These control mechanisms in principal-agent like relationships is relevant when
software development activities are overtaken by parties other than the focal
developer coordinating the development process. For example, in open source
projects, a comprehensive and careful mix of formal, clan and self-control seems to be
crucial when coordinating external developers [31]. In the context of software
platforms although there are no contract relationship, the provider can adopt similar
control modes so that complementary developers can add value to the platform based
on joint objectives [32].

3 Research Model and Hypotheses

The decision to open up the platform is a strategic decision that requires the firm to
identify which resources could be better addressed by external providers such as the
open source community. Platform providers can thus concentrate on their core
competencies and leverage specialized software parts of complementary actors [33].
Additionally, platform providers will want to integrate the innovative ideas coming
from external parties. Therefore the dynamic capabilities of the platform provider
such as absorptive and innovative capacity would influence the DOO.

As previously mentioned the decision to open up a platform also involves some
risks and brings up new relationships which require the use of different control modes
by platform providers. In analogy to the principal-agent relationship, the platform
provider monitors the platform-related development actions also acting as a controller
of the complement developers (controllees) [34]. Therefore, availability of formal
control modes (process control), and informal control (clan control and self-control)
would influence the DOO adopted from the platform provider [1]. Based on the
above, we formulate the following hypotheses.

262 A. Stefi, M. Berger, and T. Hess

Absorptive Capacity
One of the reasons identified in the literature that motivates firms to open an internal
platform is to exploit external knowledge [10, 14]. In order to be able to take
advantage of the external resources, the firm needs to have the capability to
assimilate, absorb and use the externally created resources [20]. Firm’s ability to
recognize and assimilate external information and to apply it to commercial ends is
referred to as absorptive capacity [35]. Therefore, a platform provider which has a
high absorptive capacity will be more willing to open up its platform and integrate
external functionalities in the core platform. Hence, we posit the following:

H 1: The higher the level of platform providers’ absorptive capabilities is, the higher
the degree of openness of the platform will be.

Innovative Capability
A benefit of opening up an existing platform is the ability to profit from the provision
of complementary assets [13]. This possibility enables providers to explore new
innovative ideas that could not be implemented otherwise. Innovative capabilities
enable companies to create and commercialize innovative products or processes [36].
Thus, they include two different dimensions: either they concern the ability to develop
new ideas or the capacity to transform ideas into marketable goods [19, 37]. Hence,
radical innovative capabilities are needed to come up with completely new products
whereas incremental innovative capabilities help to strengthen the market potential of
already existing ideas [38]. The stronger the innovative capabilities of the firm
through internal development, the less likely the firm is to open up its platform to gain
access to external innovative ideas as it can develop such ideas in-house. Based on the
above, we formulate the following hypothesis.

H2: The higher the level of platform providers’ innovative capabilities is, the lower
the degree of openness of the platform will be.

Modularity
According to the authors in [39], “a complex system is said to exhibit modularity in
design if its parts can be designed independently but will work together to support the
whole” [39 p.1117]. Similarly, Tiwana [34] refers to modularity as “the degree of
intentional decoupling among constituent subsystems” [34 p.771]. In the context of
open source, modularity was one of the main product characteristics that contributed
to foster the participation of distributed developers [40]. Therefore, as it exhibits an
“embedded coordination mechanism” [34 p.6], modularity reduces the need for
managerial supervision and therefore presents an effective substitute for process
control [34, 41]. Platform providers rely on such a process control mode to coordinate
and accomplish the transfer of standards, specifications and guidelines to external
component developers [32]. Thus, a higher level of modularity offers a higher level of
process control to software providers, which allows them to better control the
development of their platform. Considering the above argumentation, we can state the
following hypothesis.

H3: The higher the level of platform modularity is, the higher the degree of openness
of the platform will be.

 What Influences Platform Provider’s Degree of Openness? 263

Clan Control
Clan control is one of the informal control modes that is normally implemented by
narrowing the gap between the controller’s and controllee’s preferences based on
shared values or goals [30]. In software development, this informal mode uses
common norms and interests and mutual monitoring to align the effort and action put
into the development of a project [31]. Consequently, clan control empowers users to
exchange tacit knowledge with other participants because this implicit know-how
often is internalized in the shared values and norms [32]. Therefore, with an
increasing extent of clan control, platform providers are able to adopt a higher DOO
since it offers further options to control the development of the software platform.

H4: The higher the level of clan control encouraged by the platform provider is, the
higher the degree of openness of the platform will be.

Self-control
The second informal control mode, the self-control, is implemented when the
controllee is motivated to act in the controller’s interest, because of internal motives,
by determining own objectives in line with the overall platform’s goals [30].
Especially in open software development, self-motivation is important in order to
come up with innovative ideas [31]. Self-control reduces the need of central control
through a reciprocal adaption and adjustment between platform shaper and external
actors [42]. The behavior of all participants is based on the commitment to follow the
common business vision [cf. 43]. Therefore, self-control positively influences the
DOO adopted by the provider since it decreases the necessity of strict monitoring by
aligning all the participant’s goals. Thus, the following can be posited.

H5: The higher the level of self-control modes encouraged by the software provider is,
the higher the degree of openness of the platform will be.

Degree of Openness
The DOO describes how open a platform is for the integration of externally developed
resources. As recommended in [8], it consists of five dimensions: Availability,
Accessibility, Transparency, Reciprocity and Licensing. Availability describes the
feasibility of opening up the platform. Accessibility reflects the extent to which the
technology of the platform enables complementary players to contribute with their
own components. Transparency describes how functions and processes of the
platform are transparent for the users. Reciprocity describes the reciprocal interactions
between platform and complement developers with the aim of a bi-directional
information exchange. Licensing refers to the use or redistribution of software rights.

Research Model
Our hypotheses are summarized in the following research model.

264 A. Stefi, M. Berger, and T. Hess

Fig. 1. Research Model

4 Research Design

We conducted expert interviews to ensure the comprehensiveness of the research
model and further validated the hypotheses quantitatively through an online survey.

4.1 Qualitative Pre-study

To ensure content and substantive validity we conducted six expert interviews. The
interview partners were selected by first searching a firm database for firms that have
a platform and by identifying a contact person through professional social networks
(e.g. LinkedIn). The participants had at least 5 years of professional experience in
software development and a current position of at least team leader. They were in
some way involved with software platforms and their companies covered different
types of more open/closed software systems and therefore they could provide insights
on different open strategies. Interview questions considered the relevance of research
question, the feasibility of the model as well as the measurement of the related
constructs [44]. The questions addressed the interviewees’ opinions regarding the
perception of openness of their product lines, its critical drivers as well as what
dimensions are necessary to measure the DOO. In the end, the research model and the
scale items of the operationalized DOO measure were shown to the experts for
evaluation, checking for completeness and reliability.

We performed a content analysis of the interviews which is conducted by first
assessing how statements match the deductively derived categories in the model.
Secondly, the inductively recognized categories are classified on a higher abstraction
level [cf. 45]. From the interviews, three central patterns appear across all results.
Firstly, all interview partners regard the decision to open up a software platform as
highly strategic, as it facilitates the access to new market segments and provides
flexible reactions to consumers’ needs. Secondly, innovation seeking is pointed out as
a crucial motivation factor for integrating external knowledge. Regarding the control
modes, their meaning as critical drivers is stressed at some extent. Thus, several
interviewees see modularity as an effective instrument to implement process control
and also describe some forms of clan control between platform providers and
complement developers. Finally, the key attributes of DOO were found relevant for

Degree of Platform
Openness

Innovative Capability

Modularity

Clan Control

Absorptive Capacity H1 (+)

Self Control

H2 (-)

H3 (+)

H4 (+)

H5 (+)

 What Influences Platform Provider’s Degree of Openness? 265

measuring the degree of platform openness and were slightly adapted based on the
interviews. An expert from a free open source project stated that all items would
suggest openness for his project, which is a good indication for the content validity.

4.2 Model Operationalization

The dependent variable, the DOO is measured on the basis of its five attribute
dimensions (see Section 3). To provide a percentage degree of the DOO measure,
every item of this construct is categorized as an “open” aspect, coded with 1, or as a
“closed” aspect, coded with 0, following the recommendation in [8]. These openness
points are then accumulated and divided by the total number of all items. Unless
otherwise specified, all indicator statements of DOO are evaluated on a seven-point
Likert scale with anchors ranging from “completely correct” to “not a bit correct”.
The participants could also select “no statement possible”. The items of the five
dimensions were adapted to the platform provider context from existing studies. The
missing dimensions were developed based on existing literature and the qualitative
interviews (see Table 1). Availability provides items that describe the availability of
resources (e.g. code, data or APIs) and if technical barriers prevent the delivery of
these resources [6, 46]. In analogy to [9], Accessibility indicators regard the easiness
of learning technological standards, technical interoperability and developers’
freedom to select standards or interfaces [9]. Based on the qualitative interviews,
accessibility is viewed as granting access to outsiders and considers the relevance of
programming languages and of platform integrated data processing. Transparency
involves the disclosure of technical platform features and related organizational and
managerial processes. In analogy to [9], respective indicators embed the completeness
of documentation, the implementation of communication channels and supportive
knowledge sharing. Reciprocity facilitates knowledge contribution and sharing, which
is motivated by mutual benefits from a bi-directional information and experience
exchange [8, 46]. Finally, Licensing explains different variations in software openness
due to the number of outsiders who are granted access under certain conditions [6].
This construct is measured on “Yes” or “No” scale and has a major importance with
six possible openness points. Thereby, it should be noted that licensing was
mentioned by all experts’ interviews. The items of the independent constructs are
adapted from existing studies (see Table 2).

4.3 Study Design and Sample

The data was collected through an online survey. The pre-testing phase led to changes
in wording and the order of questions. Additionally, respondents were required to
state the actual openness status, i.e. if their software platform is implemented as OSS
or provides an API for integration. In the end of the survey demographics and control
variables such as expertise and the management position in the firm were asked.
Respondents were prompted to answer the questions based one specific software
project they were working on or that is representative for their organization [47]. An
intensive search through firm databases generated a set of 526 software companies

266 A. Stefi, M. Berger, and T. Hess

that stated having an already implemented platform. Therefore, 252 personalized
invitations were sent via e-mail to software managers or heads of development. The
remaining 274 companies were contacted with an invitation to their general mail
addresses, containing a request to pass the mail on to the head of development.

Table 1. Operationalization of the Degree of Openness

Scales Source Adapted from
Availability [6, 46] Our company makes resources available to 3-rd party developers.

No technical barriers hinder the delivery of
resources/components/tools to 3rd-party developers

Accessibility [9] Our platform was designed in such a way that enables external
developers to easily learn its technical standards.
Technically, we configured the platform to allow interoperability
with other systems or platforms.
The external developers’ freedom to choose standards, interfaces,
programming languages is not restricted by the functional range of
our platform.
The programming language used is highly specific for our platform.
The data generated with our platform is compatible with other
platforms.

Transparency [9],
[48]

The provided technical documentation of the platform is
comprehensible, useful, and complete.
The platform promotes features to encourage communication and
exchange with our company.
We share our experience and knowledge with other organizations
from the platform network.
Procedures and processes to integrate 3rd-party components are
highly formalized.
Third-party developers are informed about decision-making
processes regarding our platform.

Reciprocity [49] We expect developers to contribute value to our platform, so it's fair
to help them with our knowledge.
We should feel an obligation to contribute with our knowledge
because we use the knowledge from the platform and external
developers.
If we receive useful knowledge from the 3-rd parties, we should
provide useful knowledge to others in return
Our organization wants to help every partner, if their external
software components are useful.

License [6],
[50]

We follow a policy of not licensing 3rd-party developers.
We permit only a restricted number of licenses and restrict these to
development of products for market niches.
We permit only a restricted number of licenses, yet, without
restrictions to particular market segments.
We allow all reliable 3rd-party developers to integrate components.
Generally, the licensing of 3-rd parties produces technical
restrictions.
Generally, the licensing of 3-rd parties produces commercial
restrictions.

 What Influences Platform Provider’s Degree of Openness? 267

Table 2. Operationalization of the Independent Constructs

Scales Items Adapted from Scale

Absorptive Capacity (ACAP) 3 [51, 52] 7-Point Likert
Innovative Capability (ICAP) 6 [38] 7-Point Likert
Modularity (MOD) 4 [34] 7-Point Likert
Clan Control (CCON) 4 [53, 54] 7-Point Likert
Self-Control (SCON) 4 [47, 53] 7-Point Likert

A total of 47 completed responses were collected, yielding a response rate of

8.94%. Survey participants were between 31 and 62 years old and 75% of them had at
least 11 years of experience in the software industry. Most of the interviewers had a
college or university degree (75.6%) and 14.7% had a doctorate degree. The data
included respondents from the top management (26.67%), the middle management
(40%) and the lower management (22.22%). The number of employees in an
organization varied, with organizations with less than 50 employees (50%), between
50-100 (4.44%) and more than 100 employees (35.56%). On average, an organization
was working on 6.79 development projects. The relatively small number of
respondents is acceptable, for the explorative purpose of this study, since according to
[55], a number of respondents higher than twice the number of variables is sufficient
for regression applicability.

5 Data Analysis

5.1 Instrument Validation

In analogy to [9], the DOO of a platform is interpreted as the sum of the single
attributes. Before we can calculate the DOO scale, we first need to validate and verify
the measurement of its dimensions: Accessibility, Transparency and Reciprocity, to
assess if the indicators fit these latent constructs within the overall scale [55]. For
Availability and Licensing this procedure is not necessary because they do not imply
the application of latent construct, but can directly indicate openness in their
respective items. Since values for the Kaiser-Myer-Olkin (KMO) criterion and the
variable-specific of measures of sampling adequacy (MSA) criterion do not
contradict, factor analysis is applicable for the three former dimensions. Factor
loadings of the respective items exhibit values between 0.635 and 0.856 and
communalities values are above the threshold of 0.50 [cf. 55]. According to [55], all
measures exhibit good item reliability and items seem to accurately quantify specific
DOO dimensions. The analysis of explained total variance and factor loadings leads
to a slight re-arrangement of items within the dimensions. Yet, this has no influence
on the DOO measure because statements about the openness points do not depend on
the allocation of the items. Furthermore, the psychometric properties measures of the
average variance extracted (AVE) and composite reliability verify the validity of
individual indicators, convergent validity of extracted factors and discriminant
validity, since values lie above 0.50 and 0.70 respectively [55].

To calculate the DOO, the indicators of all five attribute dimensions that designate
an open facet are coded as 1. This includes the Likert scale answer categories 5 to 7

268 A. Stefi, M. Berger, and T. Hess

and in the case of licensing, the “yes” or “no” category that reflects an open state. The
DOO is calculated as described in Section 4.2. The DOO ranges from 5.0% to 100.0%
with a mean value of 53.0%. Median (0.55) and skewness (0.95) together with the
results of Kolmogorov-Smirnov test (KS-Z = 0.496; p-value = 0.966) allow to assume
a normal distribution and item-to-total correlations for the respective items, internal
homogeneity and overall item reliability can be confirmed. Content validity is
assessed as constructs have been applied in other studies (see Table 2). To evaluate
the reliability of the independent variables’ constructs, internal consistency measures
are calculated. Cronbach’s alphas are above the critical value of 0.70 for all five
independent constructs and high enough item-to-total correlations for the respective
items, internal homogeneity and overall item reliability can be confirmed. Thus, the
variables are adequate for further analyses. We calculate a combined score of the
independent constructs by calculating the average of their Likert scale values. This
score represent their corresponding variable and can be used in a multiple regression
model or correlation analysis.

5.2 Analysis of the Research Model

We examine the relationships between the factors described above and the DOO by
performing a multiple regression analysis. The required regression assumptions of
linearity, homoscedasticity and normal distribution are met since values for the
tolerance statistic, the variance inflation factors as well as the range and plotting of
residuals confirm the applicability of regression analysis [55]. The linear regression
analysis shows that the five independent variables explain 53.0% (R²-value) of the
variance in the dependent variable. According to [55], the significance of the
estimated model is acceptable (F-value = 9.252; p-value = 0.000). The results show
that Clan control exhibits the strongest, highly significant influence on DOO (ß =
0,064, t-value= 3.131). Absorptive capability also affects the dependent variable
positively with 0.034 as coefficient value, significant on the 5%-level (t-value=
2.191). Finally, a weakly significant, positive relation is observed for Self-control (ß =
0.036; t-value = 1.715). Due to their lack of significance, the other two variables,
Modularity and Innovative capability, do not show a linear influence on the DOO.
However, the coefficients have the algebraic signs suggested in the hypothesis. Thus,
from the suggested research model, confirms H1, H4 and slightly support H5.

Fig. 2. Regression Analysis

Degree of Platform
Openness
R2 = 0.53

Innovative Capability

Modularity

Clan Control

Absorptive Capacity 0,034**

Self Control

-0,009

0,018

0,064***

0,036*

 What Influences Platform Provider’s Degree of Openness? 269

6 Discussion

The study provides to two main contributions, the results of the regression model and
appropriateness of the DOO measure used in this study. The results of the regression
analysis further highlight that the platform provider’s ability to absorb external
knowledge has a positive and significant impact on the openness level of the software
platform. Accordingly, the existence of strong absorptive capabilities could lead to a
high DOO. This finding corresponds well with overall goals of software platform
providers. If platform providers are unable or unwilling to develop specific
functionalities, externally programmed software parts and components can be used to
extend the utility and the functional range of the platform [10]. Furthermore, it is
essential for the evolution of the software platform to continuously embed new
functionalities into its core functions. Thus, platform providers should establish good
connections to the other actors, which can support in innovation searching and
seeking [22, 43]. Different than expected, no significant relationship is identified
between innovative capabilities and the DOO. Although the suggested influence
direction is met in the regression, the second hypothesis has to be rejected. A possible
explanation could be that innovative capabilities are not only concerned with the
ability to come up with new software parts or processes for the enhancements of the
platform but also to bring ideas into marketable products [37]. This second aspect
could positively contribute to the DOO as providers can benefit from external ideas.
Modularity as substitute for process control had no significant linear influence on
DOO. A possible explanation is that for the mere integration of functionalities, the
availability of interfaces is sufficient. In contrast, the utilization of informal control
modes can have a major positive impact on the DOO. Thus, a higher extent of clan
control or self-control causes a higher DOO for the platform. Thus, due to the
different significance levels, hypothesis four can be strongly confirmed and
hypothesis five weakly confirmed suggesting that both control modes are critical
drivers. The realization of clan control and self-control entails that responsibilities for
the orchestration of software development are shared between the platform and the
complementary developers [42].

The validation of the DOO scale highlights its usefulness and applicability to
quantify a certain level of software platform openness. The scale also reflected the
desired continuum [5, 8], a distribution over almost the complete range of possible
values between a purely closed and purely open state. Thus, existing open systems
still have some constraints in their use. The surveyed data shows that reciprocal
licenses which pose special obligations on combinations of software components to
allow reuse and sharing [50], is often observed in OSS projects. Documentation is
another aspect, that as mentioned by one expert interview, badly documented OSS
cannot be denoted as completely open. For platform providers, these findings mean
that they have a variety of opportunities and decisions regarding their platform
governance. They are able to choose a certain openness level by deciding on how
transparent or how accessible their software platform should be. Estimating the
degree of openness with the six dimensions in this paper could highlight possible
strategies for improving and implementing the right DOO.

270 A. Stefi, M. Berger, and T. Hess

7 Limitation and Future Work

This study, explorative in nature, provides a deeper understanding of some of the
factors that might influence software platform providers to choose a certain DOO for
their platform. As every explorative study, this work has some limitations. The first
limitation is the small sample size which does not allow us to distinguish with respect
to different software types. Second, since we use cross-sectional data, we can only
show associations, not causality. Accordingly, future research should increase the
sample size and explore other factors that might influence this decision. Therefore, we
would suggest extending this framework with other theories that could contribute to
gaining further insight into the DOO from a provider perspective and considering the
different software types.

References

1. Tiwana, A., Konsynski, B., Bush, A.A.: Research Commentary—Platform Evolution:
Coevolution of Platform Architecture, Governance, and Environmental Dynamics.
Information Systems Research 21, 675–687 (2010)

2. Gartner, http://www.gartner.com/newsroom/id/2592315
3. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Communications

of the ACM 53, 27–29 (2010)
4. Eisenmann, T.R., Parker, G., Van Alstyne, M.: Opening platforms: how, when and why?

In: Gawer, A. (ed.) Platforms, Markets and Innovation, pp. 131–162. Edward Elgar
Publishing, Cheltenham (2009)

5. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software platforms.
In: Proceedings of the ECSA 2010, pp. 85–92. ACM (2010)

6. Boudreau, K.: Open Platform Strategies and Innovation: Granting Access vs. Devolving
Control. Management Science 56, 1849–1872 (2010)

7. Aberdour, M.: Achieving Quality in Open-Source Software. IEEE Software 24, 58–64
(2007)

8. Molder, J.T., van Lier, B., Jansen, S.: Clopenness of Systems: The Interwoven Nature of
Ecosystems. In: Proceedings of the IWSECO 2011, pp. 52–64 (2011)

9. Hilkert, D., Benlian, A., Sarstedt, M., Hess, T.: Perceived Software Platform Openness:
The Scale and its Impact on Developer Satisfaction. In: Proceedings of the ICIS 2011
(2011)

10. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the 13th
International Software Product Line Conference, pp. 111–119 (2009)

11. Jansen, S., Cusumano, M.: Defining Software Ecosystems: A Survey of Software
Platforms and Business Network Governance. In: Proceedings of the IWSECO 2012, pp.
40–58 (2012)

12. Cusumano, M.A., Gawer, A.: The elements of platform leadership. MIT Sloan
Management Review 43, 51–58 (2002)

13. West, J.: How open is open enough?: Melding proprietary and open source platform
strategies. Research Policy 32, 1259–1285 (2003)

14. Wijnen-Meijer, M., Batenburg, R.: To Open Source or not to Open Source: That’s the
Strategic Question. Results from a Survey Among Eight Leading Software Providers. In:
Proceedings of the ECIS 2007 (2007)

 What Influences Platform Provider’s Degree of Openness? 271

15. Barney, J.: Firm Resources and Sustained Competitive Advantage. Journal of
Management 17, 99–120 (1991)

16. Winter, S.G.: The Satisficing Principle in Capability Learning. Strategic Management
Journal 21, 981–996 (2000)

17. Cheon, M.J., Grover, V., Teng, J.T.C.: Theoretical perspectives on the outsourcing of
information systems. Journal of Information Technology 10, 209–219 (1995)

18. Chesbrough, H.W.: The Era of Open Innovation. MIT Sloan Management Review 44, 35–
41 (2003)

19. Lichtenthaler, U., Lichtenthaler, E.: A Capability-Based Framework for Open Innovation:
Complementing Absorptive Capacity. Journal of Management Studies 46, 1315–1338
(2009)

20. Zahra, S.A., George, G.: Absorptive Capacity: A Review, Reconceptualization, and
Extension. Academy of Management Review 27, 185–203 (2002)

21. West, J., Gallagher, S.: Patterns of open innovation in open source software. In:
Chesbrough, H.W., Vanhaverbeke, W., West, J. (eds.) Open Innovation: Researching a
New Paradigm, pp. 82–106. Oxford University Press, Oxford (2006)

22. Hanssen, G.K.: Opening up software product line engineering. In: Proceedings of the ICSE
Workshop 2010, pp. 1–7. ACM (2010)

23. Ireland, R.D., Hitt, M.A., Vaidyanath, D.: Alliance Management as a Source of
Competitive Advantage. Journal of Management 28, 413–446 (2002)

24. Buxmann, P., Diefenbach, H., Hess, T.: The Software Industry: Economic Principles,
Strategies, Perspectives. Springer, Heidelberg (2012)

25. Eisenhardt, K.M.: Agency Theory: An Assessment and Review. Academy of Management
Review 14, 57–74 (1989)

26. Aubert, B.A., Patry, M., Rivard, S.: A framework for information technology outsourcing
risk management. SIGMIS Database 36, 9–28 (2005)

27. Bakos, J.Y., Kemerer, C.F.: Recent applications of economic theory in information
Technology research. Decision Support Systems 8, 365–386 (1992)

28. Eisenhardt, K.M.: Control: Organizational and Economic Approaches. Management
Science 31, 134–149 (1985)

29. Kirsch, L.J.: The Management of Complex Tasks in Organizations: Controlling the
Systems Development Process. Organization Science 7, 1–21 (1996)

30. Choudhury, V., Sabherwal, R.: Portfolios of Control in Outsourced Software Development
Projects. Information Systems Research 14, 291–314 (2003)

31. Xu, B., Xu, Y., Lin, Z.: Control in Open Source Software Development. In: Proceedings of
AMCIS 2005, pp. 955–959 (2005)

32. Maurer, C., Tiwana, A.: Control in App Platforms: The Integration-Differentiation
Paradox. In: ICIS Proceedings, Research in Progress (2013)

33. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Business Review 82, 68–81 (2004)
34. Tiwana, A.: Does technological modularity substitute for control? A study of alliance

performance in software outsourcing. Strategic Management Journal 29, 769–780 (2008)
35. Cohen, W.M., Levinthal, D.A.: Absorptive Capacity: A New Perspective on Learning and

Innovation. Administrative Science Quarterly 35, 128–152 (1990)
36. Hagedoorn, J., Duysters, G.: External Sources of Innovative Capabilities: The Preferences

for Strategic Alliances or Mergers and Acquisitions. Journal of Management Studies 39,
167–188 (2002)

37. Wang, C.L., Ahmed, P.K.: Dynamic capabilities: A review and research agenda.
International Journal of Management Reviews 9, 31–51 (2007)

272 A. Stefi, M. Berger, and T. Hess

38. Subramaniam, M., Youndt, M.A.: The Influence of Intellectual Capital on the Types of
Innovative Capabilities. Academy of Management Journal 48, 450–463 (2005)

39. Baldwin, C.Y., Clark, K.B.: The architecture of participation: Does code architecture
mitigate free riding in the open source development model? Management Science 52,
1116–1127 (2006)

40. Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly 30, 587–598
(2006)

41. Sanchez, R.: Strategic flexibility in product competition. Strategic Management
Journal 16, 135–159 (1995)

42. Hanssen, G.K.: A longitudinal case study of an emerging software ecosystem: Implications
for practice and theory. Journal of Systems and Software 85, 1455–1466 (2012)

43. Campbell, P.R.J., Ahmed, F.: A three-dimensional view of software ecosystems. In:
Proceedings of the ECSA 2010, pp. 81–84. ACM (2010)

44. Rossiter, J.R.: The C-OAR-SE procedure for scale development in marketing.
International Journal of Research in Marketing 19, 305–335 (2002)

45. Mayring, P.: Qualitative Inhaltsanalyse. Forum Qualitative Sozialforschung/Forum:
Qualitative Social Research 1 (2000)

46. Maxwell, E.: Open standards, open source, and open innovation: Harnessing the benefits
of openness. Innovations: Technology, Governance, Globalization 1, 119–176 (2006)

47. Basnet, P., Lane, M.: Informal Control in Open Source Project: An Empirical Assessment.
In: Proceedings of the ACIS 2005 (2005)

48. West, J., O’Mahony, S.: The Role of Participation Architecture in Growing Sponsored
Open Source Communities. Industry and Innovation 15, 145–168 (2008)

49. Cho, H., Chen, M., Chung, S.: Testing an integrative theoretical model of knowledge-
sharing behavior in the context of Wikipedia. Journal of the American Society for
Information Science and Technology 61, 1198–1212 (2010)

50. Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: The Role of Software Licenses in Open
Architecture Ecosystems. In: Proceedings of the IWSECO 2009, pp. 4–18 (2009)

51. Alam, I.: Service innovation strategy and process: a cross-national comparative analysis.
International Marketing Review 22, 234–254 (2006)

52. Jensen, C., Scacchi, W.: Collaboration, Leadership, Control, and Conflict Negotiation and
the Netbeans.org Open Source Software Development Community. In: Proceedings of the
HICSS 2005, pp. 1–10 (2005)

53. Kirsch, L.J., Sambamurthy, V., Ko, D.-G., Purvis, R.L.: Controlling Information Systems
Development Projects: The View from the Client. Management Science 48, 484–498
(2002)

54. Rijsdijk, S.A., van den Ende, J.: Control Combinations in New Product Development
Projects. Journal of Product Innovation Management 28, 868–880 (2011)

55. Backhaus, K., Erichson, B., Plinke, W., Weiber, R.: Multivariate Analysemethoden: Eine
Anwendungsorientierte Einführung. Springer, Berlin (2008)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 273–288, 2014.
© Springer International Publishing Switzerland 2014

Analytical Open Innovation for Value-Optimized
Service Portfolio Planning

Maleknaz Nayebi and Guenther Ruhe

University of Calgary
Software Engineering Decision Support Laboratory,

University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
{mnayebi,ruhe}@ucalgary.ca

Abstract. Service portfolio planning is the process of designing collections of
services and deciding on their provision. The problem is highly information and
decision centric. In this paper, we present a solution approach called Analytical
Open Innovation (AOI). Open innovation facilitates comprehensive
crowdsourcing and social media information analysis. In our proposed approach
(AOI), open innovation is utilized for the elicitation of service needs, the
definition of quality provision levels for each of the services, and detection of
service dependencies and cost and value synergies. As the result of a rigorous
optimization process, diversified and resource-optimized service portfolios are
created. As a proof of concept, the proposed approach is illustrated via a case
study project using Over the Top TV (OTT) services to be offered at different
levels of quality over four quarters of a year.

Keywords: Service portfolio planning, Open Innovation, Crowdsourcing,
Morphological Analysis, Optimization, Case study.

1 Introduction

Services are “economic activities offered by one party to another, most commonly
employing time-based performances to bring about desired results in recipients
themselves, or in objects or other assets for which purchasers have responsibility” [1].
As studied in service science, management and engineering, composition of services
has a broad range of applications ranging from telecommunication to health care and
financial services. While services are applicable for a wide range of domains, we
consider their application in IT services.

Designing service portfolios is a highly decision-centric and information-intensive
process mentioned to address when? What and How good?. Service portfolio
planning is increasingly under pressure to adapt to the radically changing business
conditions. As a consequence, the related decision processes also need to be adapted.
The reactive mode of operation needs to be replaced by real-time or even pro-active
decisions. The information these decisions are relying upon needs to be highly up-to-
date and comprehensive.

274 M. Nayebi and G. Ruhe

The paradigm shift from reactive to real-time and even pro-active decision-making
is of key importance for the development of services that are designed to meet market
needs. Incrementally building and deploying services that rely on deep customer
insight and real-time feedback is expected to create services with a higher customer
hit rate that can be developed more rapidly [2].

Rometty stated in [3] that “responding to change for gaining competitive
advantage in the era of smart decisions will be based not on gut instinct, but on
predictive analytics”. The paradigm of “Open Innovation” emphasizes on the range
of opportunities that are available to get access to distributed knowledge and
information. Open innovation includes methods such as crowdsourcing that has
been successfully used to develop new products. It has been proven as a beneficial
approach for companies and users [4] as it integrates internal and external ideas
and paths to market at the same level of importance [5]. It also makes use of
distributed talent, knowledge and ideas in innovation processes [6]. We are
proposing Analytical Open Innovations (AOI) to emphasize the role and importance
of analytical methods in conjunction with the data and information retrieved from
open innovation.

Service portfolio design consists of several decision points. The poor systematic
process and deficits in the amount and quality of data needed to make decisions,
limits the design of service portfolios. Difficulty in finding and formulating the
objectives and constraints gives the design of portfolios a wicked flavor. We claim
that AOI is an approach to at least reduce these difficulties by not limiting knowledge
elicitation and information retrieval to internal sources only. We will study Advanced
Service Portfolio Planning (ASPP) as the process that relies on both internal and
external information sources for (i) elicitation of service needs, (ii) defining services
and their different quality levels, (iii) detection of service dependencies as well as cost
and value synergies, and (iv) selection of services and their quality level to be offered
in consideration of their release time

The main contribution of this paper is proposing a systematic method called AOI
which supports the different steps of the advance service portfolio planning (ASPP)
process. The approach is defined and justified. While AOI is an extendible platform,
in this paper we focus on crowdsourcing, morphological analysis, and optimization of
service portfolios. For illustrative purposes and as a proof-of-concept, we present the
proposed approach by a case study on Over the Top TV (OTT) services. These OTT
services, are supposed to be offered at different levels of quality over a period of four
quarters of a year.

The rest of the paper is organized as follows. In the next section, we will discuss
background methodology in terms of quality driven service planning, open
innovation, wicked service decision making and related information needs. In
Section 3, we describe casual and formal modeling of the problem domain. The
solution approach is described in Section 4 and a case study will be described in
Section 5. Finally, we will provide a summary of our findings and an outlook to
future research.

 Analytical Open Innovation for Value-Optimized Service Portfolio Planning 275

2 Background and Related Work

2.1 Quality Driven Portfolio Planning

Since the services to be offered are still intangible, determining the demand for them
is difficult where in turn this makes the service production and consumption complex.
This process needs to be attuned to the needs of consumers to meet their demands
successfully. A key part of this process is responding to existing and emerging
consumer trends even if they are conflicting.

A poor set of quality attribute requirements causes failure in many software
projects which reveals the importance of finding the right balance between the
qualities offered in a set [7]. Finding the right portfolio of service qualities leads
producers into more successful software products and services. Agreement of
stakeholder and producer among quality requirements in domain of software projects
is used as the response to contract-oriented specification compliance and service-
oriented customer satisfaction [8]. Quality Attribute Risk and Conflict Consultant
(QARCC) with the focus on quality attribute tradeoffs is proposed in [9] as a
groupware support system based on negotiated win conditions in software domain.

Karlsson & Ryan in [10] interpret quality and its potential to achieve better
customer satisfaction of the overall portfolio. By this, quality, cost and value are the
dimensions which are used to prioritize functional requirements [11], and in the same
manner, services.

QUPER [11] is designed to model the good enough quality in the markets
considering the competitors. This provides the reason for offering a particular level of
quality and facilitates decision making for release plans. Although quality
requirements are of major importance in market-driven release planning [11] but
several challenges in defining requirements, lowers the quality of these plans [12].

2.2 Information Needs for Release and Service Decisions

Different types of uncertainty make release decisions hard. The individual and
collective value of services is hard to predict as the value depends on the number of
factors which themselves are dynamically changing (e.g., competition, market trends,
user acceptance). One way to mitigate these risks is to perform a retrospective
analysis on existing services and based on semantic similarity, the result of analysis
can be utilized to predict the value of the future services.

Historical attempts for creating products and services for answering the market’s
needs changed user’s role and market focus. This attempt further continued by
innovating products and services for having more market share and transformed into
innovating with customers to create real time value in decision making process inside
organizations. Aligned with this trend, open innovation helps product managers to
achieve customer insight by using web 2.0 functionality. As software projects grow
and become more complex and having more stakeholder across geographical and
organizational boundaries, project managers increasingly rely on open discussion
forums to elicit requirements [13] this approach leads us to use open innovation as the
rich source for providing data for the project.

276 M. Nayebi and G. Ruhe

The concept of a wicked planning problem was introduced by Rittel and Webber
[14]. Planning and design problems are considered to belong into this category.
Wickedness, among others, refers to the difficulty to explicitly formulate the problem.
To mitigate the challenge of wickedness, casual modeling is used to formalize
judgmental process [15]. Release planning is considered as a semi-wicked problem
and tackled with several approaches. Ngo-The and Ruhe in [16] applied an
evolutionary modelling and problem solving approach for mitigating wickedness [16].
A dialogue and explanation based approach was designed in [17]. Closest to this
research, a stakeholder-centric approach was proposed in [18] by Heikkilae et al
which is emphasizing on the need to broaden the scope of information input at the
different stages of the whole planning process [18]. The former approach would be
called closed innovation with respect to what we are proposing in this paper. Besides
that, we are considering service portfolios, by focusing on the validity of the solutions
and by performing morphological analysis (see Section 3.1) upfront. Furthermore, we
are able to utilize value and effort synergies as part of the final optimization process.

2.3 Open Innovation

Close provider and consumer relation in service firms puts a high premium on overall
visibility and accountability [19]. Open innovation as a cheap and low risk problem
solving approach relies on knowledge exchange with outside of company as a
competitive advantage. Different forms of open innovation; crowd source, open
source and outsource [6] facilitate the provider and consumer interactions. Chanal
[20] defines open innovation as a paradigm which assumes that firms can and should
use both external and internal ideas and paths to market.

Open sourcing is generally enabled by a web-based innovation platform [6] and
will result in a product that is increasingly better, developed collectively and
democratically [21]. Crowdsourcing as a type of open innovation is often enabled by
the web [6] which is a creative mode of user interactivity [21]. Crowed wisdom in all
of these approaches aggregates a collection of complementary data and information.
Crowdsourcing is identified with other web 2.0 technologies [22]. A large chunk of
the Web is about data and services. Consequently, we expect crowdsourcing to build
structured databases and structured services (web services with formalized input and
output receive increasing attention these days.) [23]. The idea of using large pool of
problem solvers has been discussed in different contexts [6]. Further, instead of
simply collaborating with a selected set of known external parties, firms are
innovating by using ‘‘crowdsourcing’’ [24]

Currently, several open innovation platforms and services are available in different
scopes [25] [26] but none of them are specialized in the domain of software
service/product lifecycle.

 Analytical Open Innovation for Value-Optimized Service Portfolio Planning 277

3 Modeling and Problem Statement

Wicked and semi-wicked problems could be mapped into non-quantified variables
and ranges of conditions. Similarly ranges of conditions can be synthesized into well-
defined configurations, which represent the “solution spaces” [15]. Casual modeling
is a non-quantifiable model, which is an alternative to formal methods. Casual
modelling can formulize judgmental process. Solutions coming out of casual
modeling could be employed as alternatives by various formal approaches.

Casual Modeling is employed in the initial, problem formulation phase of the
modelling process and prior to formal models. Morphological analysis (MA) as an
instance of casual modeling [27] is the study of form or structure by identifying the
multiple dimensions comprising any system, and can support multi-criteria decision
analysis.

3.1 Morphological Analysis

MA is a method for identifying, structuring and investigating the total set of possible
relationships or “configurations” contained in a given multidimensional problem
complex. MA allows small groups of subject specialists to define, link and internally
evaluate the parameters of complex problem spaces as well as creating a solution
space and a flexible inference model [15] [28]. MA has been applied successfully in
strategic planning and decision support in various domains [27]. MA provides an "if-
then" laboratory within which drivers, and certain conditions can be assumed and
range of associated solutions found in order to test various inputs against possible
outputs [29]. The results of a morphological model can provide input for the
development of other models.

Generally, MA is intended to broaden the space of alternatives by systematic
search for combination of different dimensions of a wicked or semi-wicked problem
and narrow them down through the results. The result of MA is called a
morphological field. Morphological field describes the total problem complex.

MA as a fundamental scientific method of alternating between an analysis and a
synthesis phase, consisting of the following steps [29]:
Analysis phase

1. Extracting dimensions, parameters or variables, which define the essential
nature of the problem complex or scenario.

2. Define a range of relevant, discrete values or conditions, for each variable.
Synthesize phase

3. Assess the internal consistency of all pairs of variable conditions
4. Synthesize an internally consistent outcome space.
5. Iterate the process if necessary.

In what follows, we provide the key concept and notation from MA which is
needed to understand the rest of the paper.

Definition 1. A morphological field is a field of constructed dimensions or parameters
which are the basis for a morphological model.

278 M. Nayebi and G. Ruhe

Definition 2. Cross Consistency Assessment (CCA) pertains to the process by which
the parameter values (or parameter conditions) in the morphological field are
compared with one another. This process reduces the total problem space to a smaller
(internally consistent) solution space.

Definition 3. A morphological model is a morphological field with its parameters
assessed and linked through a CCA [15].

Definition 4. A configuration is one parameter value or condition, displayed from
each of the parameters in a morphological model.

In the context of this paper, MA will be used to elicit services based on preferences
of potential customers. Fig 1-(a) shows the morphological box which forms by mining
the collected data from crowd. Each column represents one service and cells of each
column present values or conditions of that service.

Example: In Fig 1; the values are service quality levels and S1 will have service levels
{V11, V12, V13} = {Basic Service S1, Advance Service S2, Premium Service S3}.

Fig. 1. (a) Morphological box of a solution space (b) Internal cross consistency assessment
matrix

For diving deeper into the problem and examining internal relationship between
field parameters [15], Cross Consistency Assessment (CCA) analysis is performed.
This analysis acts as “garbage detector” and takes contradictory value pairs out of the
solution space. Three types of contradiction can be detected:
 - Logical contradictories (based on the nature of involved concepts),
 - Empirical constraints (highly improbable base on empirical grounds) and
 - Normative constraints.

Fig 1-(b) shows the CCA matrix which could be formed separately for each
criteria, feature and plan evaluation context. As the result of CCA, some contradictory
configurations are eliminated.

Fig. 2. Three-dimensional solution space with surviving configurations shown in violet (dark)

 Analytical Open Innovation for Value-Optimized Service Portfolio Planning 279

3.2 Problem Statement

Service release planning is targeting the delivery of optimized portfolios of the
services which are most valuable to subscribers. While the problem is semi-wicked in
its nature, we are providing a formal model and a subsequent analytical approach,
which serves as the backbone for generating optimized portfolios. As any model, it is
impossible to accommodate all details. However, adapting the principles of both open
and closed innovation is intended to increase the validity of the model and the data
used in it.

One key assumption of the model is that there is an existing set of potential
services offered. Each of them consumes a certain amount of (fixed) upfront cost.
Each service is assumed to have different levels of quality and functionality. For
simplicity reasons, we call them Basic (B), Advanced (A) and Premium (P). The
definition of the respective content is service and context specific. The whole
approach presented later on, is applicable to more general cases as well (other types of
classification).

S(n,l) ∈ SERVICE presents a service in which n is the service number and l is the
quality level. These services are planned in K release(s) where k = 1…n and Release
weight ∈ {0,1,…9}.

A release plan is characterized as below:

x(n,l)=:ቄ݇ ݂݅ ܵሺ݊, ݈ሻ ݅݁ݏ݅ݓ ݎ݄݁ݐ݋ 0݇ ݁ݏ݈ܽ݁ݎ ݐܽ ݀݁ݎ݂݂݁݋ ݏ

Technological constraints, value synergy and cost synergy are modeled as forms of
service dependencies. First, the set CSD of coupling dependencies are presented by
set of coupled services based on the definition:

x (n1,l1) = x (n2,l2) for all pairs of
coupled services (S (n1,l1) , S(n2,l2))∈ CSD

Similarly, the set PSD of precedence dependencies is defined by:

x (n1,l1) • x (n x (n2,l2) for all pairs of
precedence services (S(n1,l1) , S(n2,l2)) ∈ PSD

Third, NAND dependency is defined. As described in Section 3.1, certain services
and their related instances are not compatible with each other and do not make sense
to be offered in conjunction. Detection of these incompatibilities is a complex
problem itself, and we have used MA/CCA analysis to find them. NAND indicates
that:

x (n1,l1) NAND x (n2,l2) if and only if services (S(n1,l1) , S(n2,l2))
cannot be offered both

Each service to be provided causes certain amount of (fixed) cost. Our advanced
service portfolio planning problem ASPP, assumes capacities (budgets) for the
different time periods (e.g., quarters of a year) for planning. The budget related to
release k is formulated as budget(k).

280 M. Nayebi and G. Ruhe

෍ ,ሺ݊ݐݏ݋ܿ_ݏ ݈ሻ. ,ሺ݊ݔ ݈ሻ ൑ ሺ݇ሻ௡,௟: ௫ሺ௡,௟ሻୀ௞ ݐ݁݃݀ݑܾ

Offering a service at the basic and advanced level is requesting less cost than the
sum of the individual services. We call this cost synergies, which is formalized as:

If S(n1,l1) and S(n2,l2)∈ SCS then S(n1,l1) becomes p% less expensive if offered
not earlier than S(n2,l2)

Similarly, from a value perspective, the combination of certain services will
increase the attractiveness to the user that is indicated with the relation to customer’s
ideas as below:

s_value (n , l) =
∑ ௉௥௜௢ሺ௡,௟,௦ሻ.௜௠௣௢௧௔௡௖௘ሺ௦ሻ∑ ௜௠௣௢௥௧௔௡௖௘ሺ௦ሻೞసభ…ೞ

In this case, the combination of different services is creating higher value than the
individual service values. We call these the set of value synergies (SVS):

If ItemSet = {S(n1,l1), … ,S(ny,ly)} ⊆ SVS then:
Sum value of ItemSet is increased by Factor% if none of these items is postponed.

Similarly, the combination of different services is creating less cost than the
individual service values. We call these the set of cost synergies (SCS):

If ItemSet = {S(n1,l1), … ,S(ny,ly)} ⊆ SCS then:

Sum cost of ItemSet is decreased by Factor% if none of these items is postponed.

Our overall problem called ASPP looks for service portfolios to be implemented
and offered that are most attractive to users. This requires a proper understanding of
user’s needs. In addition, knowledge about the attractiveness of the service level in
relation to the subscription fee requested form the provider is needed. We apply
crowdsourcing (open innovation) for service needs elicitation and (closed innovation)
stakeholder evaluation of proposed services in terms of their utility (willingness to
pay for them at the level defined).

Problem ASSP: For a set of candidate services SERVICE, which includes different
types of services and different types of quality and functionality at which they are
offered, find a service portfolio servp* which is of maximum overall utility from the
perspective of all the stakeholder inputs received as:

Utility = ∑ ,ሺ݊݁ݑ݈ܽݒ_ݏ ݈ሻ. ,ሺ݊ݔሺ ݐ݄݃݅݁ݓ ݈ሻሻ௡,௟:௫ሺ௡,௟ሻஷ଴
Utility •MaxMax

The final portfolio servp* is expected to fulfill all the cost constraints and it does
not contain any incompatible pairs of services delivered. Likely, it will utilize cost
and value synergies between subsets of individual services.

4 Service Portfolio Planning Approach AOI

The overall AOI architecture (as illustrated in Fig 3) is designed with the aim of
involving users in the process of innovation and in the development of products along

 Analytical Open Innovation for Value-Optimized Service Portfolio Planning 281

with stakeholders as the traditional source of service decisions, and then tailoring
customer needs towards the organizational constraints.

The proposed AOI approach consists of three main platforms:

1- ReleasePlanner™: This pivotal platform provides a proven [30,18,31]
functionality to facilitate voting and prioritization as well as generating
optimized plans. The “Presentation & collaboration” component represents
process outcomes to the organization and stakeholders and is responsible to
initiate the work of other platforms. The “Optimization component” is
responsible for the computation of optimized and diversified alternative release
plans based on specialized integer programming and the special structure of
the problem. The “Analysis & decision component” defines alternative features
and plans with their resource consumption and degree of stakeholder
excitement.

2- Open Innovation Platform: With the aim of user involvement,
crowdsourcing is used. The crowdsourcing platform provides the crowd for
answering questions and for facilitating control and verifying their works and
task distribution. By now, Amazon Mechanical Turk [32] service, as a micro-
task market, is employed. In addition, this platform, in collaboration with Very
Best Choice™, maintains contact with the crowd. This software is used to
manage collaboration between systems and to control the representation of
feedback and to provide in house collaboration with the crowd. VBC light is a
lightweight decision support system designed to facilitate proper priority
decisions [33]. Moreover, text mining platform is used along with other
platforms to enable automatic understanding of the crowd’s response to
generate meaningful data.

3- Data Analytics Platform: This platform consists of modules which are
adapted with three technology pillars employed in a successful analytics platform
[34], and is aligned with MA. MA is used to interpret quality in conjunction with
its potential to achieve better customer satisfaction in the overall portfolio.
During data extraction and creation, several separate silos of data are delivered as
input to the data analytics platform. By utilizing MA approach in the data
analytics platform, this data is meaningfully interpreted and classified. The large-
scale computing module is evaluating large data sets of generated data as well as
detecting inconsistent pairs. The analysis component is providing the results of
analysis on solution space. This component consists of SSS (performs structuring
of the solution space), CCA (performs cross consistent assessment), and PSS
(performs structuring of problem space) modules. Along with these two
components, a visualization component is needed to present the results and
facilitate obtaining insights.

282 M. Nayebi and G. Ru

5 Illustrative Case

As a proof-of-concept and
case study project on Ov
Therein, AOI is used for se
value elicitation (stakehol
innovation). The OTT proj
to pay which is the concre
Section 3.2. In order to ext
tasks such as:

- What are the features y
- Which level of quality (

were submitted to Ama
their related quality levels w
4.). AOI organizes the resul

Fig. 4.

In order to detect inco
quality levels, Fig 4. Was fu
Fig 5.

uhe

Fig. 3. Proposed AOI architecture

e Study: Planning for OTT Services

d in order to illustrate our proposed solution approach
ver the Top TV (OTT) services [35] [36] is present
ervice elicitation (using open innovation), service qual
der centric/close innovation) and plan evaluation (cl
ject encompasses one planning criteria called willingn
ete instance of the more general utility function used
tract features and desirable levels of functionality, seve

you are looking for in an OTT service?
(degree of functionalities) do you expect in OTT services

azon Mechanical Turk® (www.mturk.com). Services
were extracted by applying text-mining techniques (see
lts in a morphological box as discussed in Section 3.1.

Morphological box of case study services

onsistencies as well as extracting dependencies betw
urther analyzed and results are shown in the CCA matrix

h, a
ted.
lity-
lose
ness
d in
eral

s?

and
Fig

ween
x in

 Analytical Open Innovation for Value-Optimized Service Portfolio Planning 283

Fig. 5. CCA analysis of services

The inconsistency between premium quality levels of social network service and
basic quality level of parental control service is shown in Fig 5. Such inconsistencies
are taken as input for the subsequent portfolio optimization process [37].

Example: x (Social Network Access, Premium) NAND x (Parental Control, Basic)
means that x (Social Network Access, Premium) = 0 ∥ x (Parental Control, Basic) =0

In addition to inconsistency analysis, cost and value synergy relationships between
services offered in conjunction are also taken as input for portfolio optimization.

Example: S(Multi-Screen ,Premium) service becomes 30% less expensive if offered
no earlier than S(Multi-Screen, Basic)

Example: The sum value of {S(Online Video Gaming, Premium) , S(Social Network ,
Premium) , S(Parental Control, Premium)} is increased by 25% if these items are all
offered in the same release

284 M. Nayebi and G. Ruhe

Fig. 6. Portfolios generated incorporating all types of dependencies and synergies

Having stakeholders’ priorities (taken from the range of {1...9}) on the service
levels related to the willingness to pay, ReleasePlanner™ optimizes results and
generates diversified portfolio plans. As it is shown in Fig 6 services are assigned to
release numbers 1... 4. Services which are tagged with release number 5 are
postponed.

Fig. 7. (a) Level of optimality of extracted service portfolios with synergies (b) Level of
optimality of extracted service portfolios without synergies

Considering cost and value synergies, changes the sequence of services in each
release. The cost and value synergies for a set of candidate services, not only changes

ID Features
Alternative

1
Alternative

2
Alternative

3
Alternative

4
Alternative

5
1 Online video games Basic 5 5 5 5 5
2 Online video games Advanced 5 5 5 5 5
3 Online video games Premium 5 5 5 5 5
4 Social Network Access Basic 2 2 2 2 2
5 Social Network Access Advanced 2 2 1 5 2
6 Social Network Access Premium 3 3 3 3 3
7 Parental Control Basic 5 4 4 4 4
8 Parental Control Advanced 5 5 5 4 4
9 Parental Control Premium 2 5 2 2 2
10 File Sharing Basic 4 4 4 4 4
11 File Sharing Advanced 2 2 2 2 5
12 File Sharing Premium 5 5 5 5 5
13 Internet and Data Basic 4 4 4 4 4
14 Internet and Data Advanced 4 4 4 4 4
15 Internet and Data Premium 3 3 3 3 3
16 VoIP Basic 1 2 1 2 1
17 VoIP Advanced 2 2 2 2 2
18 VoIP Premium 3 3 3 3 5
19 Video on Demand (VOD) Basic 5 4 4 5 5

20 Video on Demand (VOD) Advanced 3 3 3 3 3

21 Video on Demand (VOD) Premium 1 1 1 1 1

22 Content search Basic 1 1 1 1 1
23 Content search Advanced 1 1 2 1 1
24 Content search Premium 2 2 2 1 2
25 Time Shift Basic 5 5 5 5 5
26 Time Shift Advanced 1 1 5 2 1
27 Time Shift Premium 4 4 4 3 3
28 Multi-Screen Basic 5 5 5 5 2
29 Multi-Screen Advanced 1 1 1 1 1
30 Multi-Screen Premium 1 1 1 1 1

 Analytical Open Innovation for Value-Optimized Service Portfolio Planning 285

offered service portfolios but also makes tangible improvement in portfolio value as it
is presented in terms of stakeholders’ feature points in Fig 7. Higher stakeholder
feature points, in companion with better degree of optimality are interpreted as higher
customer satisfaction.

The final portfolio servp* fulfills all the given dependencies and cost constraints
and it does not contain any incompatible pairs of services delivered. The process
followed in this case study is presented in Fig 8, which is utilizing the AOI
architecture given in Fig 3.

Fig. 8. Process performed for the case study

The four dimensions of the ASPP problem are covered in the AOI process as
below:

(i) Elicitation of service needs: Steps 1 to 7 in Fig 8 are designed to elicit services.
In order to extract customer’s preferences, the AOI is using the crowdsourcing
approach and the open innovation platform is designed to facilitate this
procedure. With the aim of utilizing user involvement, a task is registered to the
crowd. Amazon Mechanical Turk serves as a micro-task market and is used to
establish the collaboration with crowd. In order to manage collaboration between
systems and provide in house collaboration with crowd, the Very Best Choice™
system is used. VBC light is a lightweight decision support system designed to
facilitate proper priority decision making.

(ii) Defining services and their different levels of quality at which they should be
offered: Steps 8 and 9 in Fig 8 are designed to extract services and their related
quality levels. Extracting services and shaping the morphological box is an
attempt to structure the release planning problem space. A Well-defined set of
stakeholders evaluate the individual service offerings and ReleasePlanner™
facilitates voting and prioritization.

286 M. Nayebi and G. Ruhe

(iii) Detection of service dependencies as well as cost and value synergies: Steps 10
in the process (Fig 8.) are designed to detect service dependencies as well as
extract cost and value synergies. Assessing internal consistency with the use of
CCA analysis is performed by the analysis & decision component in order to
detect inconsistent pairs. The results of this analysis on the solution space are
visualized and prepared to be presented to the stakeholders.

(iv) Selection of services to be offered: Steps 11 to 15 of the process (Fig 8.) are
designed to extract portfolios and present the results to stakeholders. The data
and information received from the analytical platform will be interpreted and
categorized and then sent back to ReleasePlanner™ for performing the
optimization. This system is responsible for computation of optimized and
diversified alternative release plans. Optimization algorithms are based on
specialized integer programming exploiting the special structure of the problem.
Therein, the results are utilized from [37]. This allows accommodating more
complex constraints rather than just coupling and precedence. The additional
computational complexity of this more general class of planning problems is
addressed by a two-staged solution procedure combining the subsequent usage of
specialized integer programming and constraint programming.

6 Conclusion and Future Research

Advanced service portfolio planning is a cognitively and computationally complex
problem. We have proposed a new approach for better understanding, formulating and
algorithmically solving the problem, which so far has often been addressed in an ad
hoc fashion. However, with the increasing demand for continuous value delivery, a
more systematic method is needed, one with the capability to offer optimized service
portfolios in close to real-time.

The Analytical Open Innovation (AOI) approach described in this paper is
designed to address this need. AOI combines existing methods and techniques such as
crowdsourcing, morphological analysis, data mining and optimization in a new way to
solve this semi-wicked problem. Enlarging and improving the domain of input for
data and information used in planning, we have a better chance to address the right
problem. From applying advanced optimization techniques, we are able to include all
types of dependencies between services, as well as cost and value synergies. As a
result of the process, a set of diversified service portfolio alternatives is offered.
Synergies result of whole portfolio costing less than when services offered
individually. In the same way considering value synergies will result in higher
portfolio values.

There is sufficient room for future research in this area. A more comprehensive
empirical analysis is needed to demonstrate the usefulness of this approach in the
domain of software. Morphological analysis can be utilized more broadly for
investigating decision making criteria, services and their relation, as well as
evaluation of the entire plan. At the final stage of the process, open innovation should
allow continuous evaluation by further qualifying the decision-making via scenario-

 Analytical Open Innovation for Value-Optimized Service Portfolio Planning 287

playing and other forms of varying other project parameters. Finally, the scalability of
the entire approach needs to be investigated to assess its effectiveness and efficiency.

Acknowledgement. This research was partially supported by the Natural Sciences
and Engineering Research Council of Canada, NSERC Discovery Grant 250343-12.

References

1. Lovelock, C., Wirtz, J.: Services Marketing: People, Technology, Strategy. Prentice Hall,
Upper Saddle River (2007)

2. Strategic Research Agenda Need for Speed (2013),
http://www.digile.fi/Services/researchprograms/
futureprograms

3. Rometty, V.M.: A Conversation with Ginni Rometty (2013),
http://www.cfr.org/technology-and-science/
conversation-ginni-rometty/p30181

4. Enkel, E., Gassmann, O., Chesbrough, H.: Open R&D and open innovation: exploring the
phenomenon. R and D Management 39(4), 311–316 (2009)

5. Chesbrough, H.: Open Innovation: The New Imperative for Creating and Profiting from
Technology. Harvard Business Press, Boston (2003)

6. Marjanovic, S.F., Joanna, C.: Crowdsourcing based business models: In search of evidence
for innovation 2.0. Science and Public Policy 39(3), 318–332 (2012)

7. Boehm, B., In, H.: Identifiing Quality-Requirement Conflicts. Software IEEE 13(2), 25–35
(1996)

8. In, H., Boehm, B., Rodgers, T., Deutsch, M.: Applying WinWin to Quality Requirements:
A Case Study. In: 23rd International Conference on Software Engineering, Toronto,
Canada, pp. 555–564 (2001)

9. Boehm, B., In, H.: Aids for Identifying Conflicts Among Quality Requirements. IEEE
Software 13(2), 25–35 (1996)

10. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE
Software 14(5), 67–74 (1997)

11. Svensson, R.B., Olsson, T., Regnell, B.: Introducing Support for Release Planning of
Quality Requirements – An Industrial Evaluation of the QUPER Model. Paper presented at
the 2nd International Workshop on Software Product Management, ISWPM 2008,
Barcelona, Spain (2008)

12. Karlsson, L., Dahlstedt, Å.G., Regnell, B., Nattoch Dag, J., Persson, A.: Requirements
engineering challenges in market-driven software development – An interview study with
practitioners. Information and Software Technology 49(6), 588–604 (2009)

13. Cleland-Huang, J., Dumitru, H., Duan, C., Castro-Herrera, C.: Automated Support for
Managing Feature Requests in Open Forums. C. ACM 52(10), 68–74 (2009)

14. Rittel, H.W., Webber, M.M.: Planning Problems Are Wicked Problems. Developments in
Design Methodology, 155–169 (1973)

15. Ritchey, T.: Wicked Problems–Social Messes: Decision Support Modelling with
Morphological Analysis. Risk, Governance and Society, vol. 17. Springer, Heidelberg
(2011)

16. Ngo-The, A., Ruhe, G.: A systematic approach for solving the wicked problem of software
release planning. Soft Computing 12(1), 95–108 (2008)

288 M. Nayebi and G. Ruhe

17. Du, G., Richter, M.M., Ruhe, G.: An explanation oriented dialogue approach for solving
wicked planning problems. In: AAAI Fall Symposium (2005)

18. Heikkilae, V., Jadallah, A., Rautiainen, K., Ruhe, G.: Rigorous support for flexible
planning of product releases - A stakeholder-centric approach and its initial evaluation. In:
HICSS, Hawaii (2010)

19. Carman, J.M., Langeard, E.: Growth Strategies for Service Firms. Strategic Management
Journal 1(1), 7–22 (1980)

20. Chanal, V.C., Marie-Laurence: How to invent a new business model based on
crowdsourcing the crowdspirit. In: Conférence de l’Association Internationale de
Management Stratégique, pp. 1–27 (2008)

21. Brabham, D.C.: Crowdsourcing as a model for problem solving: An introduction and
cases. Convergence 14(1), 75–90 (2008)

22. Estelle´s Arolas, E.: Towards an integrated crowdsourcing definition. Journal of
Information Science 38(2), 189–200 (2012)

23. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the World-Wide
Web. Communications of the ACM 54(4), 86–96 (2011)

24. Majchrzak, A., Malhotra, A.: Towards an information systems perspective and research
agenda on crowdsourcing for innovation. Journal of Strategic Information Systems 20(4),
257–268 (2013)

25. Gregory, D.S., Onook, O., Rajiv, K.: Rules of Crowdsourcing: Models, Issues, and
Systems of Control. Information Systems Management 30(1), 2–20 (2013)

26. Ridder, P.D.: Open Innovation & Crowdsourcing Examples (2013),
http://www.boardofinnovation.com/
list-open-innovation-crowdsourcing-examples/

27. Ritchey, T.: Wicked Problems–Social Messes: Decision Support Modelling with
Morphological Analysis. Risk, Governance and Society, vol. 17. Springer, Heidelberg
(2011)

28. Ritchey, T.: Problem structuring using computer-aided morphological analysis. Journal of
the Operational Research Society 57(7), 792–801 (2006)

29. Ritchey, T., Stenström, M., Eriksson, H.: Using Morphological Analysis for evaluating
Preparedness for Accidents Involving Hazardous Materials. In: Proceedings of the 4th
LACDE Conference, Shanghai (2002)

30. Ruhe, G.: Product Release Planning: Methods, Tools and Applications. CRC Press (2010)
31. ReleasePlanner®, Expert Decisions Inc., http://www.releaseplanner.com
32. MTurk(2013), https://www.mturk.com/mturk/
33. Very Best Choice light, Expert Decisions Inc.,

http://edi.lite.verybestchoice.com:3000/
34. Zhang, D., Han, S., Dang, Y., Lou, J., Zhang, H., Xie, T.: Software Analytics in Practice.

IEEE Software 30(5) (2012)
35. De Boever, J., De Grooff, D.: Peer-to-Peer Content Distribution and Over-The-Top TV:

An Analysis of Value Networks. In: Handbook of Peer-to-Peer Networking, pp. 961–983.
Springer, USA (2010)

36. Montpetit, M.-J., Klym, N., Mirlacher, T.: The future of IPTV (connected, mobile,
personal and social). Multimedia Tools and Applications 53(3), 519–532 (2011)

37. Przepiora, M., Karimpour, R., Ruhe, G.: A hybrid release planning method and its
empirical justification. In: Proceedings ESEM 2012, pp. 115–118 (2012)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 289–294, 2014.
© Springer International Publishing Switzerland 2014

Observed Effects of Free Software on Software
Development and Requirements Management

David Callele1 and Krzysztof Wnuk2

1 Experience First Design Inc.
Saskatoon, Canada

dcallele@experiencefirstdesign.com
2 Software Engineering Lund University, Sweden

Krzysztof.Wnuk@cs.lth.se

Abstract. [Context & motivation] Free software is often declared to be a posi-
tive movement that makes technology accessible to those who might not other-
wise have access.

[Problem] While the positive effects, to one degree or another, have often
been discussed there has been relatively little discussion of the possibly nega-
tive effects of the free software movements. In general, these approaches have
led to ever-increasing concentration of economic power in a smaller number of
entities, the reduction of margins to the point where there is little economic in-
centive to investment and a general casino-like approach to software develop-
ment: build it, then build a customer base and then try to find a way to monetize
the customer base rather than the product.

[Contribution] The resulting conditioning of the customer base has led to a
significant reduction in the availability of venture capital for software products
and a corresponding increase in the availability of venture capital for software
as a means to make the customer the product through data analytic approaches.
This short paper discusses these observed effects of free software on the soft-
ware economy and possible effects on requirements engineering practice.

Keywords: free software, requirements management, negative effects, software
product management.

1 Free Software

Since the early experiments at Berkeley and MIT [4] in the 1960s and the first public
release of the Linux kernel source in 1991 [1], free1 and open source software have
deeply penetrated and shaped the software industry [4]. The scale of these sociologi-
cal movements has far exceeded the founding expectations. Today, many large pro-
prietary software products have a free and open source counterpart, some of which
have been shown to deliver equal or greater customer experience than the original [2].

1
 This work uses free in the context of “without fee or consideration”. This work does not ad-
dress free in the context of “free as in freedom” as is often used by organizations like the Free
Software Foundation, http://www.fsf.org/ .

290 D. Callele and K. Wnuk

The Internet has reshaped many industries by enabling direct-to-consumer com-
munication and distribution. We posit that the continued practice of making software
and software-based services available for free could have Internet-like effects upon
the practice of requirements engineering, the software industry as a whole and upon
the consumers of the software themselves.

In this paper, we present and discuss our observations of the effects of free soft-
ware on investments in software development and the potential ramifications for re-
quirements engineering.

2 Related Work

For the purposes of this section, we shall assume that the participants being discussed
are rational in the economic and financial sense. In other words, some form of cost-
benefit analysis is performed and the necessary investment in developing software
delivers a return that is acceptable to the investor. The Return On Investment (ROI) is
not necessarily monetary; for example, making a donation to an open source effort is
not necessarily economically rational, at least from the perspective of some observers.
But, for the individual making the donation of their time and effort there exists some
form of return on that investment that makes the investment worthwhile to them.

Lerner and Tirole investigated the open source movement from an economist’s
perspective [3, 4] and found many aspects that were “economically puzzling”. They
were able to identify that contributor ROI is dominated by career-based motivations
and ego gratification, observing that open source projects may be more ‘cool’ to con-
tributors than their routine development tasks. On the other hand, Scacchi [5] focused
on understanding how the development of requirements for open source software
differs from the development of requirements for commercial software, stressing that
open source software initiatives do not adopt modern software and requirements engi-
neering practices with the absence of formal requirements elicitation, analysis and
specification activities. Lerner and Tirole [3] confirmed these observations, noting
that expected project and product management practices were less stringent in non-
commercial projects.

3 Cost of Production and Reproduction

Determining the ROI for free software requires an understanding of the cost of pro-
duction and reproduction of software. We model the reproduction cost of software at
zero since the incremental energy cost of transmitting a copy is very small. Typical
production cost calculations are dominated by the developer time invested in the
project. However, these are not the only costs that should be considered and we look
more closely at two factors that are not often taken into consideration by software
developers2.

2 The work of economists Lerner and Tirole [3, 4] does investigate some aspects of this issue.

 Free Software on Software Development and Requirements Management 291

Lost Opportunity Cost (LOC) is often ignored in cost analyses for software devel-
opment. Lerner and Tirole mentions that when a programmer puts time in an open
source project is usually unable to engage in another programming activity [3]. In the
context of a single developer, what else could that developer have been doing with the
time that they spent working on the software? Let us assume that the developer is
employed by a third-party that develops commercial software (software that must be
paid for by the user). Outside of the normal work week, the developer could choose to
develop software that will be freely distributed when completed. Or, the developer
could choose to work extra hours for their employer and the employer’s product could
enter the market more quickly. Which effort should the developer support? Developer
time is typically a zero-sum game and the decision to work on one project means
another project does not get those resources.

Lost opportunity cost models for open-source projects can be even more complex.
Open source projects that are commercially focused must resolve issues of shared
intellectual property, especially when the open source license requires the sharing of
all modifications. Deriving a custom branch from the main open source branch to
deliver significant proprietary innovations with substantial customer value can lead to
unexpected maintenance and bug fixing efforts – responsibility for keeping the now
proprietary codebase current with the open source code base is no longer a shared
effort. Only a proper analysis can determine whether the adoption of the open source
code base is financially justified for a given project.

Some models also consider LOC at the society level. For example, the developer
could have been working on software for their employer rather than on free software.
Given that the employer is a for-profit entity, this activity is expected to lead to great-
er economic activity and a probable increase in the corresponding tax base. Does the
same effort devoted to free software lead to the corresponding increase in the tax
base? Perhaps it leads to a reduction in costs, thereby increasing margins and deliver-
ing the same net economic benefits? Does the society-level analysis outweigh the
personal analysis?

Life Cycle Cost Analysis is another analysis that is often ignored in software cost
analyses. Even if the reproduction cost for a software product is zero, the replacement
costs for installing a new version of the same product can be very high – particularly
when data must be migrated and users must be retrained.

These few examples illustrate that free software is not free, there are non-trivial in-
vestments required to conceive, design and implement the software. These resources
must come from somewhere and these resources are, of necessity, not applied to al-
ternative projects. Determining the appropriate model for calculating the cost base is
subject to interpretation and the resulting values can vary widely.

4 Dumping, the WTO, and Free Software

The cost of software production is important in the context of international trade, partic-
ularly as economies attempt to diversify into the so-called knowledge economy. Interna-
tional trade is generally governed by the rules of the World Trade Organization (WTO).
In the realm of tangible goods, those goods that consume incremental materials in the

292 D. Callele and K. Wnuk

production or reproduction of that good, international trade is governed in part by
dumping rules. Simplistically, dumping is considered a form of predatory pricing that
occurs when a supplier in one country charges consumers in another country a price that
is either below the price charged in their home country or below the cost of production.
Accusations of predatory pricing have been made against dominant software industry
players such as Microsoft3 and Google4. While regulatory powers such as antitrust have
been brought to bear upon specific instances, we are unaware of any large-scale consid-
eration being given to whether dumping constraints should also apply to intangible
goods such as software. In other words, is there a basis for making the argument that the
practice of giving away software for free constitutes dumping?

We look at the mobile telephone industry to see an example of the possible com-
mercial effect of a free and open-source solution, a commercial effect that dumping
regulations are intended to preclude in the realm of tangible goods. The introduction
of the iPhone transformed the consumer mobile device marketplace, exerting great
competitive pressure on traditional handset manufacturers. It also exerted great pres-
sure upon Google because Apple maintained control over consumer data generated by
these devices. In response to this threat to its data acquisition business, Google deli-
vered the Android operating system as a free alternative to Apples proprietary operat-
ing system. Google’s decision to protect their data acquisition market through the
release of a free handset operating system eliminated the significant barrier to market
entry associated with handset operating system development and rendered the mas-
sive operating system investments by handset manufacturers such as Nokia and Sony-
Ericsson essentially valueless. Now almost anyone could become a handset provider –
all they had to do was build the hardware, the operating system comes for free. This
forced handset providers to search for differentiations in hardware and form factor.

For software to be subject to dumping rule analysis, appropriate pricing models
would be required. As we saw in the prior section, simple models (e.g. reproduction
cost is zero) are unrealistic but determining the appropriate level of complexity could
require significant negotiation (e.g. an analysis that looked only at the cost of labor
would place all developed nations at a significant disadvantage in the sector).

If free software was subject to dumping rules, how would this affect the practice of
requirements engineering? Would any additional factors need to be considered or
would RE practitioners argue that this was outside of the scope of their responsibility?
Would this not be a regulatory compliance requirement just like safety or taxation?

5 Observations on the Effects of Free

The various app marketplaces for mobile devices contain millions of apps. As the
number of available apps has increased, getting the consumers attention has become
increasingly difficult. Many developers now give away their apps for free in the hope

3 http://www.theguardian.com/technology/blog/2006/
 jun/21/microsoftaccus
4 https://fsfe.org/activities/policy/eu/
 20130729.EC.Fairsearch.letter.en.html

 Free Software on Software Development and Requirements Management 293

that they can obtain users, trusting that they will be able to derive revenue from the
users once they become tied to using their apps. However, consumers have rapidly
become acclimated to the concept of apps being free and there is now significant re-
luctance to pay for apps when they might soon become available for free – either from
the original developer or from someone cloning the concept.

The ability for a second or third party to simply clone the functionality of a soft-
ware application without consequence is a significant competitive market risk for the
innovating developer. Investing in new product development usually requires signifi-
cant resources and if someone else can just copy or clone the innovation then why
invest in that development in the first place? This is a very real threat to ongoing in-
novation in our industry and has led to a significant reduction in the placement of
investment funds in the sector except when the project can demonstrate a significant
barrier to competitive market.

Significant investment is currently being placed in projects where the software fa-
cilitates the collection of unique data about the users of the software. This unique data
has value to third parties such as marketers and entrepreneurs are monetizing this data
to ensure their revenue stream in the presence of customer expectations for free soft-
ware. Essentially, the developer becomes a developer of software that converts data
about the user of the software product into the item of value rather than brings value
to the customer as features or quality attributes.

In the Angel investment group of which the first author is a member, in the last
three years less than 6% of all investment pitches in this sector received investment.
In every case where an investment was placed, the investment hinged upon the extent
to which the users were monitored and data about them gathered. Anecdotally, this
result is typical across North America.

The availability of free software has, therefore, had at least two impacts on the
practice of software development. It has led to a chilling effect on investment unless
there is some way to reduce the threat of a competitive clone of the product. And, in
response, the industry has shifted to monetizing user data instead of monetizing the
product itself. This makes the software business much more dependent on legislation
bodies that may allow or prohibit collecting, monitoring and monetizing user data.

As a result, it may be necessary that the practice of RE expand its scope. Tradition-
al RE that focusses on features is still mandatory for without the right set of features
there will be no users. However, RE practices may now need to include RE for user
data acquisition to support monetization efforts or there will be little or no revenue to
sustain operations. Further, we may even see RE efforts that focus on mechanisms for
convincing the user to give up their privacy in exchange for the service.

Requirements engineering for data acquisition can be very technically and legally
complex. Effective and minimally intrusive data acquisition mechanisms require sig-
nificant design of experiment and data science expertise and RE efforts may require
the addition of subject matter experts in these fields. Ensuring compliance with priva-
cy legislation in all operating jurisdictions for a product or service is another signifi-
cant effort. Work on privacy and RE is in its nascent stages and interested readers
should investigate the RELAW series of workshops for further information. While
there have been mentions of privacy regulation compliance in published work, we are

294 D. Callele and K. Wnuk

unaware of any work that focuses on how the general practice of RE may need to
change to accommodate these needs.

6 Conclusions

Despite widespread adoption of free and open source software, studies that explore
the negative effect of this phenomenon on the software business economy are rarely
reported in the technical literature. In this paper, we present a number of observations
on the consequences of free software. We identify that software is generally exempted
from international trade restrictions on predatory pricing (although some antitrust and
monopoly actions have been taken against the largest industry members). The advent
of a marketplace that expects software to be free has had a chilling effect on invest-
ment unless there is a substantial barrier to competitive market entry. Data collection
about the users of the software has become the barrier to competitive market entry,
turning the users into the main source of the revenue stream.

We are unaware of any easy answers to the observed dilemmas. Perhaps we could
mandate that customers have the right to opt out of this data collection by paying a
fee. What would the value of an organization like Facebook or Google be if they had
direct paying customers? What would happen if we applied dumping guidelines to
software pricing? Would this approach result in a more equitable and privacy-
preserving marketplace or would this have a significant negative effect on innovation?

In future work, we would like to further study these issues by empirically evaluat-
ing the assumptions, hypotheses and personal experiences brought forward in this
paper. Once these observations are better grounded, we can return our attention to
their effects on the practice of RE and potentially develop new practitioner guidance.

Acknowledgements. This work is founded by the SYNERGIES project, SNS Foun-
dation, grant 621-2012-5354.

References

1. The description of the Linux kernel project is available at,
http://en.wikipedia.org/wiki/Linux_kernel

2. Stamelos, I., Angelis, L., Oikonomou, A., Georgios, A., Bleris, L.: Code quality analysis in
open source software development. Inf. Sys. Journal 34, 43–60 (2002)

3. Lerner, J., Tirole, J.: Some Simple Economics of Open Source. Journal of Ind. Econ. L,
197–232 (2002)

4. Lerner, J., Tirole, J.: The Economics of Technology Sharing: Open Source and Beyond.
Journal of Economic Perspectives 19, 99–120 (2005)

5. Scacchi, W.: Understanding the requirements for developing open source system. IEE
Proc.-Soft. 149 (2002)

The Preliminary Results from the Software

Product Management State-of-Practice Survey

Andrey Maglyas1 and Samuel A. Fricker2

1 Software Engineering and Information Management,
Lappeenranta University of Technology, Finland

andrey.maglyas@lut.fi
2 Software Engineering Research Laboratory,
Blekinge Institute of Technology, Sweden

samuel.fricker@bth.se

Abstract. Software product management (SPM) as a discipline in-
cludes many practices like product and release planning, market analysis,
roadmapping, and product lifecycle management. Product management
frameworks prescribe these practices but companies seldom adopt all
of them. We conducted a state-of-practice survey with the aim to in-
vestigate how companies adopt SPM practices and how this practical
experience fits together with the framework suggested by International
Software Product Management Association (ISPMA). The results of this
study showed that ISPMA SPM Framework describes core product man-
agement practices well but the impact of product management practices
to the final product success remains ambiguous.

Keywords: software product management, state of practice, survey.

1 Introduction

Software product management (SPM) unites business and technical perspectives
in the development of software products. SPM defined as business management
at the product, product line, or product portfolio level [1] in a software organiza-
tion [2] represents a model for strategizing, conceiving, developing, introducing,
managing, and marketing new products to the market.

There are several frameworks developed to address the specific features of
managing software products [2,3,4,5]. They describe the structure and content
of software product management as lists of practices that should be adopted by
companies. These lists include from 16 to 38 practices. Companies rarely adopt
all product management practices and focus on subsets of them that bring most
benefits to the business [6]. In contrast, the existing frameworks provide little
guidance on how to adopt them iteratively rather than instantly [6]. Understand-
ing and inclusion of these priorities observed in practice to frameworks would
be an important step for further development of SPM education, research, and
practice. The ISPMA SPM Framework v.1.1 [2] was chosen as a reference model
for this study because it represents a consensus between industry and research
that integrates previously known reference models.

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 295–300, 2014.
c© Springer International Publishing Switzerland 2014

296 A. Maglyas and S.A. Fricker

2 Background

There have been some attempts to highlight the most important practices in
product management for achieving product success. For example, Kittlaus and
Clough divide SPM practices into core and supporting practices at product and
corporate levels [3]. Core practices are major functions in which a software prod-
uct manager is involved while supporting practices are orchestrated by product
managers but not directly managed. Using the same definition of core and sup-
porting SPM practices, Maglyas et al. identified six core practices and concluded
that it is reasonable to expect an expertise in these practices from every product
managers while other skills may depend on the domain and type of product [7].

The results of these empirical works are not conclusive, however. Core product
management practices and responsibilities of product managers vary from one
study to another depending on the framework with which the assessment is done.
Such heterogeneity is not a new problem, though, and has been addressed with
industry standards that offer consolidation.

In order to consolidate the existing knowledge and experience in the field of
software product management, the International Software Product Management
Association (ISPMA) created its SPM framework [2,8].

3 Research Methodology

This study investigated product management practices with the ISPMA refer-
ence model. It aimed at understanding how SPM practices described by ISPMA
fit together with SPM practices used in real life and thereby give decision-support
for the adoption of SPM practices. Two research questions were defined as fol-
lows:

– RQ1: Does the ISPMA framework reflect software product management prac-
tice?

– RQ2: Does practice differ between junior and senior product managers?

A survey followed by a focus group discussion with software product management
experts was selected as the main research tool.

ISPMA SPM framework v.1.1 consists of 38 practices involved into devel-
opment and release of a product to the market. These practices were grouped
into several questions according to the framework structure. Each question was
related to one column of the framework and was formulated as follows:

Which of the following practices are/were performed with you feeling respon-
sible for?

The first option for answers was exclusive (not leading any XXX practice,
where XXX is the name for a group of practices in the framework). The survey
was conducted using a web-service called FluidSurveys1. Invitations to partici-
pate in the survey were distributed using the snowballing technique [9].

1 http://fluidsurveys.com

http://fluidsurveys.com

The Preliminary Results from the SPM State-of-Practice Survey 297

The survey was conducted for a period of six months started in October,
2012 and finished in March, 2013. Then, the gathered results were discussed
with experienced product management professionals from industry and academia
at the ISPMA member assembly meeting in April 7, 2013. In this meeting,
additional input on how the results fit with practice was collected in the form of
meeting notes.

4 Results

The survey was answered by 100 respondents. 48 responses were incomplete, five
responses were test fillings, and one response was excluded from the analysis as
an outlier due to its ridiculous answers. The demographic information about the
respondents and companies they work for is presented in Figure 1.

Fig. 1. Demographics of the collected data

In the survey, we asked respondents to mark product management practices
that they are responsible for. In general, SPM follows some key practices but
there is variation between other practices. In more than 75% of the cases, prod-
uct managers were responsible for five SPM practices: positioning and product
definition, business case and costing, roadmapping, release planning, product
requirements engineering. In this regard, these practices represent core product
management practices observed in practice. In addition, all these practices are
included to the SPM framework as core practices as well.

Another set of five SPM practices (innovation management, product anal-
ysis, product lifecycle management, project requirements engineering, product
launches) was observed as related to product management by more than 50%
but less than 75% of the respondents. Two of these practices (product analysis

298 A. Maglyas and S.A. Fricker

and product lifecycle management) considered as core SPM practices by ISPMA
framework but in practice only some product managers take responsibilities of
these practices.

In our analysis we also compared how the work of SPMs differs from the work
of senior SPMs. The sample included 23 product managers and 11 senior/head
product managers. The results of two-tailed difference of proportion test are
presented in Figure 2. We used Holms step-down method [10] for limiting the
alpha error that accumulates over the repeated application of individual sta-
tistical tests. Here an alpha error is an apparent difference, which in reality is
not a difference but just represents the luck of the investigators. This approach
ensures that the total error is below the initially predetermined threshold.

Fig. 2. Differences between software product managers and senior software product
managers (two-tailed difference of proportions test, p<0.05*, p<0.1)

Our results revealed that non-senior SPMs tend to interface more with de-
velopment and operations than senior SPMs. Senior SPMs tend to be involved
in corporate strategy more than SPMs. In particular, the senior SPMs have
more often an active role in the definition of corporate strategy and portfolio
management. To support these decisions, they are more frequently involved in
market and customer analysis than SPMs. Regardless of their seniority, product
managers are heavily involved into product strategy and product planning while
their involvement in marketing, sales & distribution, and service & support is
limited. Only a few product managers marked these practices as being under
their control.

The Preliminary Results from the SPM State-of-Practice Survey 299

5 Discussion

Maglyas et al. investigated core product management practices in another sur-
vey conducted worldwide and concluded that core product management prac-
tices are product analysis, roadmapping, strategic management, vision, product
lifecycle management, and internal and external collaboration [7]. Product anal-
ysis, roadmapping, and product lifecycle management practices were identified
as core practices in this survey as well. Strategic management is included in the
ISPMA framework as a set of practices consisting of other practices and there-
fore cannot be directly compared. The core practice vision is included into the
ISPMA framework as business case and costing. The results showed that 78%
of respondents were responsible for this core practices and therefore the results
fit well with the ISPMA framework and Maglyas core SPM practices. Internal
and external collaboration is not included as a separate practice in the SPM
framework but it is embedded to the framework structure through practices in
which a product manager participates or orchestrates.

Overall, the ISPMA framework structure has several misalignments with prac-
tical experience of product managers in the software industry. Some core prac-
tices like pricing, legal and IPR management that were not often implemented by
product managers as their main responsibilities represent variations in the adop-
tion of SPM. A framework like the ISPMA SPM framework should make such
differences between recommendation and practice explicit by providing ratio-
nales for the recommended infrequent practices and suggesting criteria regarding
their adoption.

The analysis of responsibilities of senior software product managers and soft-
ware product managers revealed that senior product managers tend to be respon-
sible for the practices related to strategic management like corporate strategy,
portfolio management, and market analysis while non-senior product managers
tend to be responsible for orchestration functions like engineering management,
opportunity management, and technical support.

As a unified group product managers can be seen middle managers who act
as linking pins connecting the top management with the lower-level managers
[11]. As an individual in this mediating position between strategic and opera-
tional levels, the product manager tends to move to senior product management
position.

The main limitation of this study was the size of sample that was a result
of low response rate. Increasing the sample size would help to get more sta-
tistically significant results. However, these preliminary results provide us with
some insights on how product management practices are adopted in organiza-
tions and therefore can be used for generating hypotheses for new surveys with
more focused questions on particular SPM practices.

The use of snowballing with a particular focus on the ISPMA network led to
a non-random sample but we accepted the non-random sampling as a trade-off.

300 A. Maglyas and S.A. Fricker

6 Conclusions

The survey results provide a general overview of how SPM is adopted in practice
and how the adoption of SPM fits together with the theoretical ISPMA SPM
framework that represents a consensus between industry and academia. However,
due to the limited number of responses, we could not identify success-correlating
practices.

The empirical validation of core product management practices described in
the ISPMA SPM Framework showed that product managers are responsible for
most of the suggested practices in their daily work. Leaving out the variations
between different companies, the SPM Framework provides a good reference
point to what product managers should be responsible for. These results are
also aligned with previously identified six core product management practices
[7].

Overall, the survey gives us insights to the state-of-practice in the field of soft-
ware product management and contributes to the product management body of
knowledge. The presented results are a basis to adapt the theoretical frameworks
to real-world practice.

References

1. Haines, S.: The Product Manager’s Desk Reference. McGraw-Hill (2008)
2. Fricker, S.A.: Software product management. In: Maedche, A., Botzenhardt, A.,

Neer, L. (eds.) Software for People. Management for Professionals, pp. 53–81.
Springer, Heidelberg (2012)

3. Kittlaus, H.B., Clough, P.: Software Product Management and Pricing. Key Suc-
cess Factors for Software Organizations. Springer (2009)

4. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.:
Towards a reference framework for software product management, pp. 319–322
(2006)

5. Ebert, C.: Software product management. Crosstalk 22(1), 15–19 (2009)
6. Maglyas, A., Nikula, U., Smolander, K.: Comparison of software product manage-

ment practices in SMEs and large enterprises, pp. 15–26 (2012)
7. Maglyas, A., Nikula, U., Smolander, K.: What do practitioners mean when they

talk about product management? 261–266 (2012)
8. ISPMA: International software product management association (ISPMA) (2012)
9. Groves, R.M.: Survey methodology. Wiley-Interscience, Hoboken (2004)

10. Gordon, A.Y.: A new optimality property of the holm step-down procedure. Sta-
tistical Methodology 8(2), 129–135 (2011)

11. Floyd, S.W., Wooldridge, B.: Dinosaurs or dynamos? recognizing middle manage-
ment’s strategic role. Academy of Management Executive 8(4), 47–57 (1994)

C. Lassenius and K. Smolander (Eds.): ICSOB 2014, LNBIP 182, pp. 301–306, 2014.
© Springer International Publishing Switzerland 2014

Alignment Issues in Chains of Scrum Teams

Jan Vlietland1 and Hans van Vliet2

1 Search4Solutions B.V., Professional Services, Utrecht, The Netherlands
j.vlietland@Search4Solutions.nl

2 Faculty of Sciences, Division of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

J.C.van.Vliet@vu.nl

Abstract. IT functionality in companies is often delivered by a chain of
interdependent software applications. To handle changing business demands in
such chains, organizations increasingly employ agile methods such as Scrum.
Usually, each Scrum team deals with a single application in the chain,
necessitating alignment activities between the Scrum teams that jointly deliver
IT functionality. We empirically investigate the alignment issues that occur
in such chains of Scrum teams, and identify several that impact time to market.
We base our observations on qualitative data from two case study
environments.

Keywords: Agile, Scrum, chain of Scrum teams, priority alignment, feature
time to market.

1 Introduction

Most application service providers (ASP) of large companies operating in the
information intensive industries experience rapid changing business demands. To
handle such changing demands, ASPs increasingly adopt Agile methods, such as
Scrum. Scrum intends to mitigate delivery risk by the use of swift feedback [1].

Functionality in ASP environments however is delivered by a portfolio of
interdependent applications, not by one single application. As a consequence, Scrum
teams that deliver the applications likely need to align their activities. Each
application in the portfolio supports a business function in the front to back business
process. Together, the front to back business process delivers features, i.e. intentional
distinguishing functional characteristics of the application landscape that can be used
by a business user. When a feature needs to be added or changed, multiple
interdependent applications need to be changed simultaneously.

Scrum teams can be mapped in different ways onto the application landscape.
Some prefer to have one Scrum team for the whole front to back chain. However, the
amount of involved IT staff then easily exceeds the generally agreed upon maximum
size of a Scrum team. Also, changes require highly specialized skills that cannot be
easily shared, and so dedicated Scrum teams exist for (business) applications. Given
the interdependencies in the application chain, multiple Scrum teams then need to
jointly deliver new or changed features. Such joint delivery implies that Scrum teams

302 J. Vlietland and H. van Vliet

need to cooperate. Yet, due to the nature of Scrum teams, such cooperation might not
happen naturally. A Scrum team is accountable for its own application, not for the
chain of interdependent applications, likely resulting in a bounded Scrum team focus
rather than a delivery focus of features.

The usage of Scrum in large organizations is relatively new and academic literature
in this area is scant, while there is a considerable need for answers in this area [2, 3].
In this study we empirically investigated and found four issues that exist in chains of
codependent Scrum teams: (1) misalignment of backlog priorities, (2) alignment
issues between teams, (3) unpredictability of committed deliveries and (4) lack of
coordination in the chain.

2 Related Work

We look at the topic from two perspectives. From an Agile perspective we explain the
social nature of a constellation of Scrum team, focusing on the intra- and inter-team
communication issues that are relevant in our setting. As a chain of Scrum teams has
similarities with supply chains we also look from a Supply Chain perspective.

Scrum teams likely has a natural intra-team focus rather than inter-team focus, as
the team focuses their software development effort on a single prioritized backlog [4].
The intra-team focus is enforced by the closeness of staff within a team and their
similarities (e.g. shared goal, IT application, backlog). Leffingwell [5], author of the
SAFe model, argues that the product backlog should be aligned by collaborating
product owners. Operational alignment between codependent Scrum teams during the
software development cycle is achieved by Scrum of Scrum meetings [6].

Supply Chain Management (SCM), our second angle, is the management of
interconnected network of businesses involved in the provision of product and service
packages [7], which is related to a chain of Scrum teams. Workflow in supply chains
is managed by means of collaboration rather than centralization. Chain oriented
structures rely on collaboration, co-ordination and communication, abbreviated as
‘Three-C’ [8]. Also other SCM research confirms the importance of Three-C in well
performing supply chains [9-11]. Given the interdependencies in the application
chain, we expect that Three-C practices are also needed between codependent Scrum
teams.

3 Case Study Results

We performed qualitative [12] research at multinational service providers to gain an
in-depth understanding of the issues in interdependent Scrum team chains [13].

We performed two case studies at large multi-national organizations, one at the
telecommunication company (9 interviews in two overlapping chains) and one at a
retail bank (6 interviews in one chain). Each of the companies has a centralized IT
organization with 250-1500 IT development employees who offer application services
to front-office, operations and finance business functions.

 Alignment Issues in Chains of Scrum Teams 303

We transcribed the interviews and coded them. Table 1 shows the number of codes
in each main code category. The numbers indicate the grounding of the code category.

Table 1. Code grounding in each code category

Concept Case 1 Case 2 Total
Alignment 82 15 97
Coordination 84 9 93
Prioritization 56 23 79
Predictability 30 6 36

Total 252 53 305

Alignment issues between Scrum teams is considered the main issue (97x

grounded). We found evidence of misaligned definitions of done, sprint cycle
differences (start, duration, finish), disconnected test environments and misaligned
test scenarios between teams.

We identify lack of coordination as the second main issue in chains of Scrum
teams (93x grounded). In particular test coordination is considered difficult,
notwithstanding that we found coordination issues throughout the full sprint lifecycle.

Mismatched prioritization between teams are considered the third main issue (79x
grounded). Priority setting mismatches are mainly caused by goal differences at
strategic level that are cascaded to the applicable product backlogs.

The fourth issue is unpredictability during the development lifecycle in the
codependent Scrum teams (36x grounded). In case one of the teams is unable to
deliver its functionality that is required for a feature, the delivery of that feature is
delayed. Such unpredictability risk increases with the number of codependent teams.
For instance if each team delivers the necessary functionality in 9 out of 10 cases and
10 codependent teams exist, the overall predictability is (0.9)10 being less than 35%.

Table 2 shows for each of the four main issue categories the percentage of quotes
in each case study. The table shows that case study 2 mainly exhibits prioritization
and alignment issues, while case study 1 mainly exhibits alignment and coordination
issues.

Table 2. Cross-case analysis of the four main issues

Concept Case 1 Case 2 Total
Alignment 33% 28% 30%
Coordination 33% 17% 25%
Prioritization 22% 43% 33%
Predictability 12% 11% 12%

Total 100% 100% 100%

3.1 Case Study 1: Retail Banking Front to Back Application Chain

The retail bank has a centralized IT organization with 150 Scrum teams that deliver
web application services to the various business lines that deliver the services to the
banking customer. The web applications are developed by front-end Scrum teams that

304 J. Vlietland and H. van Vliet

are clustered around different channels (e.g. internet, call center). The web
applications interact with back-office applications that are clustered around financial
products. The back-office applications are mainly commercial of the shelf (COTS)
packages. These packages are configured in Scrum teams. The back-office packages
interact with finance applications that are developed by waterfall organized IT teams.
Next to the regular Scrum-roles the organization has an integrator role for the
coordination of new front to back feature development.

Priority mismatches result in Front-end teams developing stories for features that
cannot be delivered, because Finance teams develop high-priority non-related stories
(e.g. for compliance regulation).

“The managing directors in our board have different priority settings. The
managing director would like to improve his business process, while the manager of
the Internet Channel needs to resolve a number of compliance issues and the manager
of Marketing and Sales want to develop software for new product offering. They all
think that their objective will be achieved, however without making an explicit choice
in priority setting”, IT development manager

Priority mismatches have several negative consequences. Longer time to market of
feature delivery is one. Another consequence is concurrent integrators fighting for the
highest priority in the chain, while the product owner naturally follows priority based
on the strategic objectives of the managing director.

”If the product owner does not want to cooperate in delivering interdependent
functionality I do not have any influencing authority”, Integrator

Alignment issues exist in particular during front to back feature testing. Testing is a
complex, labor intensive and highly interdependent exercise. During testing teams
need to jointly prepare and execute front to back feature testing, requiring the
alignment of the interdependent activities, definitions and terminology.

“A lot of work needs to be redone to synchronize test data to ensure that the
correct test data is available in the test environment that needs to be used in the
internet channel”, Integrator

These interdependencies require extensive coordination between teams, which is
performed by an integrator role, in case more than 3-4 teams are involved.

“With more than 3 to 4 codependent teams a cross-team coordination mechanism
is needed between these teams. Until 3-4 teams, coordination is done by product
owners.”, IT manager

3.2 Case Study 2: Telecommunication Front to Back Application Chain

The telecom company has a centralized IT organization having 34 Scrum teams. The
IT organization has a cluster of front-end Scrum teams which develop applications
that interact with Scrum teams of Operation that interact with Scrum teams for Billing
and Finance. The involved applications are interdependent, implying that a feature
can only be delivered by the constellation of front to back applications. We
interviewed Product Owners, Scrum Masters, IT development managers and project
managers. Interviewees in this case also refer to priority conflicts between
interdependent teams:

 Alignment Issues in Chains of Scrum Teams 305

“We are executing 15 programs concurrently…. Each program has its executive at
business side which has its own profit & loss. So, who is more important when each
executive want to have their features first”, IT manager

For high priority features the needed stories in the interdependent teams are placed
as highest priority items on the team backlogs. However each involved executive
influences the priority setting of a subset of product owners in the chain, resulting in
priority mismatches over the front to back chain. Such conflicts results in impeded
delivery of the front to back features.

“In team A an end to end feature has highest priority, at team B however a
dependent story has low priority due to interdependent stories that need to be
delivered first”, IT development manager

Interviewees state that priority conflicts are expected to be resolved since front to
back priority setting has been predefined by a roadmap manager for 2014.

“From now on we have a roadmap manager at strategic level which has defined
the top 10 strategic programs which will be executed in 2014”, IT development
manager

Even though at the strategic level clear priorities have been set, alignment issues
between teams occur, such as difficulties to align the definition of done and testing
activities:

“Yes we have a definition of done, but try to align that over the full chain with
clear requirements and acceptance criteria”, Product owner

The development process in each of the teams has a certain unpredictability which
is leveraged by the chain setting. In case one team cannot deliver, the deployed
feature is delayed:

“Misalignment in timing between teams happens regularly. Recently I had a
feature which was on the list of each involved team. However one of the teams that
had delays earlier now experienced test defects, while having a due deadline of the
code freeze. At the end of the sprint nothing was delivered”, project manager

4 Conclusion

Applying Scrum in an interdependent application chain seems not an easy task. We
found four main types of issues in chains of codependent Scrum teams: (1) issues in
the alignment between teams, (2) mismatching backlog priorities, (3) lack of
coordination in the chain and (4) unpredictability of committed deliveries.

The first type concerns alignment issues between teams, mainly related to a
different way of working. A lot of these issues express themselves during end to end
testing, yet a lot of issues find their origin earlier in the development lifecycle.

The second type concerns backlog priority conflicts at the strategic level which
cascade to the operational level. As teams have an intra-team focus, each team
develops the application in accordance with its backlog. However, given the
application interdependencies, features are only ready to be delivered if all required
teams deliver the necessary application changes.

306 J. Vlietland and H. van Vliet

The third type - coordination - indicates boundary spanning activities over the front
to back chain. Such boundary spanning supports information and knowledge sharing
between the involved teams.

The fourth type concerns unpredictability during the lifecycle process. Feature
delivery, involving multiple teams, can only take place in case all interdependent
application changes are delivered. If delivery in one of the teams is impeded (e.g.
caused by misinterpretation or unexpected work) the feature is not delivered in that
sprint, delaying time to market.

The results indicate that Scrum applied in application chains can result in increased
delivery risk, despite the Scrum goal of decreasing delivery risk.

References

1. Agarwal, M., Majumdar, R.: Tracking Scrum projects Tools, Metrics and Myths About
Agile 2(3) (2012)

2. Freudenberg, S., Sharp, H.: The top 10 burning research questions from practitioners.
IEEE Software 27(5), 8–9 (2010)

3. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software development.
ACM SIGSOFT Software Engineering Notes 38(5), 38–39 (2013)

4. Rising, L., Janoff, N.S.: The Scrum software development process for small teams. IEEE
Software 17(4), 26–32 (2000)

5. Leffingwell, D.: Scaling software agility: best practices for large enterprises. Addison-
Wesley Professional (2007)

6. Sutherland, J.: Future of scrum: Parallel pipelining of sprints in complex projects. In: Agile
Conference, 2005. Proceedings. IEEE (2005)

7. Harland, C.: Supply chain management, purchasing and supply management, logistics,
vertical integration, materials management and supply chain dynamics. Blackwell
Encyclopedic dictionary of operations management, p. 15. Blackwell, UK (1996)

8. Lejeune, M.A., Yakova, N.: On characterizing the 4 C’s in supply chain management.
Journal of Operations Management 23(1), 81–100 (2005)

9. van der Vaart, T., van Donk, D.P.: A critical review of survey-based research in supply
chain integration. International Journal of Production Economics 111(1), 42–55 (2008)

10. Cao, M., Zhang, Q.: Supply chain collaboration: Impact on collaborative advantage and
firm performance. Journal of Operations Management 29(3), 163–180 (2011)

11. Wadhwa, S., et al.: Effects of information transparency and cooperation on supply chain
performance: a simulation study. International Journal of Production Research 48(1), 145–
166 (2010)

12. Saunders, M., Lewis, P., Thornhill, A.: Research methods for business students. Prentice
Hall (2009)

13. Dul, J., Hak, T.: Case study methodology in business research. Routledge (2012)

Author Index

Abrahamsson, Pekka 27

Backlund, Emil 148
Berger, Matthias 258
Bolle, Mikael 148
Bosch, Jan 16, 148, 163, 179
Bosch-Sijtsema, Petra 179
Brinkkemper, Sjaak 1, 115

Callele, David 289

Fiedler, Markus 194
Fotrousi, Farnaz 194
Fricker, Samuel A. 194, 295

Giardino, Carmine 27
Guvendiren, Kadri 115

Hartmann, Herman 163
Herzwurm, Georg 42
Hess, Thomas 258
Holmström Olsson, Helena 16, 148
Huomo, Tua 58
Hyysalo, Jarkko 132

Jansen, Slinger 1, 100, 115
Järvinen, Janne 58

Kasurinen, Jussi 72
Kelanti, Markus 132
Kuvaja, Pasi 132

Laatikainen, Gabriella 243
Lantz, Matilda 212
Le-Gall, Franck 194

Lehto, Jari 132
Luoma, Eetu 243

Maglyas, Andrey 295
Manikas, Konstantinos 212
Mikkonen, Tommi 58
Mikusz, Martin 42
Munir, Hussan 212

Nayebi, Maleknaz 273

Oivo, Markku 132

Popp, Karl Michael 100

Ruhe, Guenther 273
Runeson, Per 212

Saarikallio, Matti 88
Schenkhuizen, Jasper 100
Stefi, Anisa 258

Taraba, Tim 42
Tichy, Matthias 148
Tyrväinen, Pasi 58, 88

van Angeren, Joey 1
Vanhala, Erno 72
van Langerak, Robert 100
van Vliet, Hans 301
Vlietland, Jan 301

Wang, Xiaofeng 27
Weijden, Oskar 212
Wenzel, Stefan 227
Wnuk, Krzysztof 212, 289

	Preface
	Organization
	Innovation Initiatives of Large Software
Companies

	1 Problem and Research Questions
	2 Related Work
	3 Methods
	4 Preliminary Results and Next Steps
	5 Next Steps

	References

	Early-Stage Software Startups: Linking Business
Strategies to Software Development

	1 Problem and Research Question
	2 Related Work
	3 Methods
	4 Preliminary Results
	5 Next Steps

	References

	Table of Contents
	Strategic Aspects
	Exploring the Relationship between Partnership
Model Participation and Interfirm Network
Structure: An Analysis of the Office365
Ecosystem

	1 Introduction
	2 Background
	3 Research Approach
	4 Descriptives of the Office365 Ecosystem
	4.1 Complementors
	4.2 Ecosystem

	5 Analysis
	5.1 Productivity and Embeddedness
	5.2 Partnership Model Participation

	6 Discussion
	7 Conclusion
	References

	Ecosystem-Driven Software Development: A Case Study on the Emerging Challenges in Inter-organizational R&D
	1 Introduction
	2 Software Ecosystems
	3 Research Site and Method
	3.1 Research Site
	3.2 Research Method

	4 Findings
	4.1 Challenges
	4.2 Mitigation Strategies

	5 Discussion
	6 Conclusions
	References

	Why Early-Stage Software Startups Fail:
A Behavioral Framework

	1 Introduction
	2 Background and Related Work
	2.1 Singularity of Software Startups
	2.2 Failure Assessment
	2.3 Dimensions for the Evaluation of Software Startups

	3 Research Approach
	3.1 Background to the Cases

	4 Results
	4.1 The Behavioral Framework

	5 Discussion
	5.1 Lack of Problem/Solution Fit
	5.2 Neglected Learning Process
	5.3 Implications of the Behavioral Framework

	6 Conclusions and Recommendation for Future Research
	References

	Startups and Software Business
	A Comparative Perspective between Investors and Businesses Regarding Success Factors of E-Ventures at an Early-Stage
	1 Introduction
	2 Methodology and Data Collection
	2.1 Delphi Method
	2.2 Design of the Conducted Studies
	2.3 Delphi Study of the Investor´s Perspective
	2.4 Delphi Study of the Founder´s Perspective

	3 Descriptive Statistics
	3.1 Delphi Study of the Investor´s Perspective
	3.2 Delphi Study of the Founder´s Perspective

	4 Analysis and Implications
	4.1 Experience and Know-How
	4.2 Financial Situation
	4.3 Copyrights and Imitability
	4.4 Demand, Market Size and Market Volume
	4.5 Supply Situation and Competitive Environment
	4.6 Innovation, Value Added and Image
	4.7 Agency and Portfolio Aspects
	4.8 Strategic Alliances and Partnerships

	5 Limitations
	6 Conclusions and Future Research Directions
	References

	From Agile Software Development to Mercury Business
	1 Introduction
	2 Background
	2.1 Agile and Lean Software Development

	2.2 The New Operating Environment
	2.3 The Lean Startup

	3 Towards Mercury Business
	3.1 Real-Time Value Delivery
	3.2 Deep Customer Insight
	3.3 Mercury Business

	4 Thematic Analysis of N4S Cases
	5 Discussion
	6 Conclusions
	References

	The Role of Business Model and Its Elements in Computer Game Start-ups
	1 Introduction
	2 Related Research
	3 Research Process
	3.1 Data Gathering and Analyzing

	4 Elements of the Business Model
	4.1 Description of Individual Elements
	4.2 Ranking of Elements
	4.3 Summary of the Findings

	5 Discussion
	6 Conclusion
	References

	Products and Service Business
	Following the Money: Revenue Stream Constituents in Case of Within-firm Variation
	1 Introduction and Background
	1.1 Business Model Research
	1.2 Revenue Stream
	1.3 Aims of the Paper
	1.4 Revenue Stream Framework

	2 Methodology
	2.1 Exploratory Case Study
	2.2 Case Firm
	2.3 Data Collection

	3 Results
	3.1 Source
	3.2 Reason
	3.3 Method
	3.4 Analysis Matrix
	3.5 Revenue Stream Types
	3.6 Revenue Contributions

	4 Discussion
	References

	Defining the Process of Acquiring Product
Software Firms

	1 Introduction
	2 Related Literature
	3 Method
	3.1 Experts
	3.2 Materials
	3.3 Protocol

	4 Product Software Acquisitions
	5 Results
	6 Discussion
	7 Conclusion
	References

	Productization of an IT Service Firm
	1 Introduction
	2 Research Approach
	3 Productization
	3.1 Dimensions of Productization

	4 Evaluation Resu ults
	4.1 Case Study
	4.2 SPM Maturity Assessments
	4.3 Multi-dimensional Productization Profile

	5 Discussion and Further Research
	6 Conclusion
	References

	Software Development
	Software Development as a Decision-Oriented Process
	1 Introduction
	2 Related Work
	3 Research Process
	4 Findings and Analysis
	4.1 Information Flow
	4.2 Development Process
	4.3 Decision-Making

	5 Toward Decision-Oriented Work
	6 Conclusions
	References

	Automated User Interaction Analysis
for Workflow-Based Web Portals

	1 Introduction
	2 Background
	2.1 The Build-Measure-Learn Loop
	2.2 Data-Driven Software Engineering

	3 Method
	4 Identification of Knowledge Needs
	4.1 Identified Data Analysis Needs
	4.2 Question Refinement

	5 Automated Data Collection
	6 Preliminary Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Orchestrate Your Platform: Architectural Challenges for Different Types of Ecosystems for Mobile Devices
	1 Introduction
	2 Background
	2.1 System Architecture

	3 Growing Software Size: Move towards Ecosystems
	3.1 Classification of Ecosystems with Their Complementors

	4 Defining the Platform Scope
	4.1 Factors that Influence the Optimal Scope of the Platform
	4.2 Evaluation of the Factors
	4.3 Overview of Ecosystems and Their Challenges

	5 Case Studies
	5.1 Vertically Integrated Hardware/Software Platforms
	5.2 Proprietary, Closed Source Software Platforms
	5.3 Open Source Software Platforms
	Google
	5.4 Summary of the Case Studies and the Mitigation Strategies

	6 Historical Perspective and Scenarios for the Future
	7 Comparison with Related Art
	8 Conclusions and Further Research
	References

	Ecosystems
	ESAO: A Holistic Ecosystem-Driven Analysis Model
	1 Introduction
	2 Problem Statement
	3 The ESAO Model
	3.1 Internal Perspective (SAO)
	3.2 External Ecosystem Perspective (ESAO)

	4 Validation
	4.1 Case Alpha: Ecosystem Changes
	4.2 Case Beta: Pushed Back in Value Chain
	4.3 Case Zeta: Strategic forward Integration

	5 Conclusion
	References

	KPIs for Software Ecosystems: A Systematic Mapping Study
	1 Introduction
	2 Research Methodology
	2.1 Research Questions
	2.2 Systematic Mapping Approach
	2.3 Threats to Validity

	3 Results: Ecosystem KPI Research
	3.1 Kinds of Ecosystems
	3.2 Types of Research

	4 Results: Researched KPI Practice
	4.1 Ecosystem Objectives Supported by KPI
	4.2 KPI: Measured Entities
	4.3 KPI: Measurement Attributes

	5 Discussion
	6 Conclusion
	References
	7 Appendix I: The Selected Studies

	Evaluating the Governance Model of
Hardware-Dependent Software Ecosystems –
A Case Study of the Axis Ecosystem

	1 Introduction
	2 Background and Related Work
	3 Case Description

	4 Research Methodology
	4.1 Validity Analysis

	5 Governance Activities Performed by Axis
	5.1 Activities Connected to Niche Creation
	5.2 Activities Connected with Robustness
	5.3 Activities Supporting Productivity
	5.4 Remarks from the Evaluation

	6 Conclusions
	References

	Platforms and Enterprises
	App Store Models for Enterprise Software: A Comparative Case Study of Public versus Internal Enterprise App Stores
	1 Introduction
	2 Related Work
	3 Methodology and Research Process
	4 Presentation of Cases
	4.1 Case: SAP Store
	4.2 Case: SAP Enterprise Store

	5 Comparison of the Public versus Internal EAS
	6 Limitations and Conclusion
	References

	Impact of Cloud Computing Technologies on Pricing Models of Software Firms – Insights from Finland
	1 Introduction
	2 Theoretical Background
	2.1 Business Models
	2.2 Value Proposition and Cloud Technologies
	2.3 Revenue Logic and Software Pricing Models
	2.4 Research Gap and Hypothesis Development for the Current Study

	3 Research Method
	3.1 Data Collection
	3.2 Concepts and Their Operationalization
	3.3 Data Analysis

	4 Results
	5 Discussion
	6 Conclusions
	References

	What Influences Platform Provider’s Degree of Openness? – Measuring and Analyzing the Degree of Platform Openness
	1 Introduction
	2 Theoretical Background
	2.1 Platform Openness
	2.2 Resource-Based View and Agency Theory

	3 Research Model and Hypotheses
	4 Research Design
	4.1 Qualitative Pre-study
	4.2 Model Operationalization
	4.3 Study Design and Sample

	5 Data Analysis
	5.1 Instrument Validation
	5.2 Analysis of the Research Model

	6 Discussion
	7 Limitation and Future Work
	References

	Industry Session
	Analytical Open Innovation for Value-Optimized
Service Portfolio Planning

	1 Introduction
	2 Background and Related Work
	2.1 Quality Driven Portfolio Planning
	2.2 Information Needs for Release and Service Decisions
	2.3 Open Innovation

	3 Modeling and Problem Statement
	3.1 Morphological Analysis
	3.2 Problem Statement

	4 Service Portfolio Planning Approach AOI
	5 Illustrative e Case Study: Planning for OTT Services
	6 Conclusion and Future Research
	References

	Observed Effects of Free Software on Software Development and Requirements Management
	1 Free Software
	2 Related Work
	3 Cost of Production and Reproduction
	4 Dumping, the WTO, and Free Software
	5 Observations on the Effects of Free
	6 Conclusions
	References

	Short Papers
	The Preliminary Results from the Software
Product Management State-of-Practice Survey

	1 Introduction
	2 Background
	3 Research Methodology
	4 Results
	5 Discussion
	6 Conclusions
	References

	Alignment Issues in Chains of Scrum Teams
	1 Introduction
	2 Related Work
	3 Case Study Results
	3.1 Case Study 1: Retail Banking Front to Back Application Chain
	3.2 Case Study 2: Telecommunication Front to Back Application Chain

	4 Conclusion
	References

	Author Index

