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Abstract. In most approaches to mining association rules, interesting-
ness relies on frequent items, i.e., rules are built using items that fre-
quently occur in the transactions. However, in many cases, data sets
contain unfrequent items that can reveal useful knowledge that most
standard algorithms fail to mine. For example, if items are products, it
might be that each of the products p1 and p2 does not sell very well
(i.e., none of them appears frequently in the transactions) but, that sell-
ing products p1 or p2 is frequent (i.e., transactions containing p1 or p2

are frequent). Then, assuming that p1 and p2 are similar enough with
respect to a given similarity measure, the set {p1, p2} can be considered
for mining relevant rules of the form {p1, p2} → {p3, p4} (assuming that
p3 and p4 are unfrequent similar products such that {p3, p4} is frequent),
meaning that most of customers buying p1 or p2, also buy p3 or p4. The
goal of our work is to mine association rules of the form D1 → D2 such
that (i) D1 and D2 are disjoint homogeneous frequent itemsets made
up with unfrequent items, and (ii) the support and the confidence of
the rule are respectively greater than or equal to given thresholds. The
main contributions of this paper towards this goal are to set the formal
definitions, properties and algorithms for mining such rules.

Keywords: Data mining · Association rules · Unfrequent items · Sim-
ilarity measures

1 Introduction

The extraction of association rules is a widely used technique in data mining
since it meets the needs of experts in several application fields. Thereby, several
studies have focused on frequent itemsets mining, i.e., rules are built using items
that frequently occur in the transactions. Nevertheless, the application of these
patterns is not so attractive in many applications, e.g., intrusion detection, fraud
detection, identification of extreme values in data bases, analysis of criminal data,
analysis of the genetic confusion from biological data, to cite a few [3,7,10,15].
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Indeed, in such situations, a frequent behaviour may not be of an added
value for the end user. However, unfrequent events may be more interesting
since they may indicate that an unexpected event or exception has occurred.
Thus, the analysis has to be carried out in order to study the possible causes
of this unusual deviation from normal behaviour. In this respect, unfrequent
(or rare) pattern mining is proved to be of real added value [10]. In fact, rare
patterns can identify unusual, unexpected and hidden events [2], since they have
a very low frequency in the database.

To illustrate such a statement and standing within the market basket analy-
sis, it is common that each of the products p1 and p2 does not sell well (i.e.,
taken alone, none of them appears frequently in the transactions) but, that
selling products p1 or p2 is frequent (i.e., transactions containing p1 or p2 are
frequent). Additionally, assuming that a similarity measure between products is
provided and that products p1 and p2 are similar enough, then the set {p1, p2}
can be considered for mining relevant rules of the form {p1, p2} → {p3, p4}
(assuming that p3 and p4 are also unfrequent similar products such that {p3, p4}
is frequent). Such a rule shows that most of customers buying p1 or p2, also buy
p3 or p4. In this rule, {p1, p2} and {p3, p4} are seen as two different homogeneous
frequent sets of products.

It is important to mention that, to the best of our knowledge, no previous
work has paid attention to mining association rules in which unfrequent items are
used to build up itemsets meant to be frequent. To address this issue, we measure
the frequency of itemsets according to their disjunctive support measure [8]. More
precisely, we call disjunctive support of an itemset I, or d-support of I for short,
the ratio of the number of transactions containing at least one element of I over
the total number of transactions. Then, I is said to be disjunctive-frequent (or
d-frequent, for short) if its d-support is greater than or equal to a fixed threshold.
It is important to note that, since any super set of a d-frequent itemset is d-
frequent as well, we restrict the set of mined d-frequent itemsets to be minimal
with respect to set inclusion.

Additionally, another worth of mention feature of our approach is our con-
sideration of “homogeneous itemsets”. To define this notion, we assume that a
similarity measure between items is given, and then, an itemset I is said to be
homogeneous whenever all possible pairs of items in I have a similarity degree
greater than or equal to a given threshold. Thus, the homogeneity can be seen
as a semantic interestingness criterion for selecting relevant itemsets, as done in
[12]. Indeed, since in our approach, itemsets are assessed through their disjunc-
tive support, an itemset {i1, i2} is seen as a generalization of i1 and i2, in the
sense that, based on the definition of the d-support, this set represents a frequent
category of items encompassing i1 and i2. Therefore, considering the homogene-
ity avoids the pitfall of considering heterogeneous itemsets, whose “disjunctive
semantics” would then be counter intuitive.

In this context, the association rules that we are interested in are of the form
D1 → D2 where D1 and D2 are disjoint homogeneous and d-frequent itemsets.
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Consequently, we redefine the classical support and confidence measures, respec-
tively called d-support and d-confidence, as follows:

– The d-support of a rule D1 → D2 is the number of transactions containing
at least one item in D1 and at least one item in D2 over the total number of
transactions.

– The d-confidence of a rule D1 → D2 is the ratio of the d-support of D1 → D2

over the d-support of D1.

However, compared to the standard approach to mining association rules,
new issues arise when considering d-support and d-confidence. In fact, it turns
out that having at hand the d-supports of D1 and D2 does not imply that the
exact retrieval of the d-support as well as the d-confidence of D1 → D2. Thus,
assessing the rules in our approach requires to access the data set. Furthermore,
owe to the fulfilment of the monotonicity property of the d-frequent itemsets, we
focus on minimal itemsets (with respect to set inclusion), in order to produce
only rules whose left- and right- hand sides are minimal (with respect to set
inclusion).

To sum up, the main contributions of the present paper are twofold: First,
we reconsider our previous work in [8] within the context of transactional data-
bases and we provide the necessary definitions and properties used to show the
soundness of mining homogeneous association rules built up with unfrequent
items, and using a level wise based exploration algorithm. Second, we provide
the associated algorithms for each of the following two steps:

1. Mine minimal and homogeneous d-frequent itemsets, referred to as MHDIs in
what follows.

2. Use the MHDIs to build up and assess association the rules of interest, which
are shown to be of the form D1 → D2 where D1 is an MHDI, D2 is a
homogeneous d-frequent itemset (not necessarily minimal) disjoint from D1,
and whose d-support and d-confidence are above the given thresholds.

The remainder of the paper is organized as follows: In Sect. 2, we give all
basic definitions and properties necessary to state and prove the correctness of
our algorithms given in Sect. 3. In Sect. 4, we review several approaches dealing
with mining techniques using unfrequent items and we compare these approaches
with our work. In Sect. 5, we briefly recall our contributions and we sketch several
issues for future work.

2 Formalism and Basic Properties

In this section we give the necessary definitions and properties on which our
algorithms rely. We define the notions of disjunctive support of an itemset and
of a rule, the disjunctive confidence of a rule, and what we call an homogeneous
itemset. These definitions are then used in some basic properties that are nec-
essary to show the correctness of the algorithms to be given in the next section.
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2.1 Support and Confidence

We assume a set I of items that occur in a transaction table Δ whose rows are
called transactions. A transaction is a pair (tid, I) where tid is a transaction
identifier and I a subset of I, also called an itemset. We borrow from [8] the
notion of disjunctive support of an itemset D, that we define as follows.

Definition 1. For every itemset D, the disjunctive support of D, or d-support
of D for short, denoted by d-sup(D), is the ratio

d-sup(D) =
|{(tid, I) ∈ Δ | I ∩ D �= ∅}|

|Δ| .

Given a support threshold σ, D is said to be disjunctive-frequent, or d-frequent
for short, if d-sup(D) ≥ σ.

We emphasize that Definition 1 implies that the notion of d-support differs from
that of support as defined in [1]. Indeed, given an itemset I, the support of I is
computed based on the number of transactions containing all items in I.

To illustrate our approach, we consider the following example that will be
used as a running example throughout the paper.

Example 1. Let I = {bergerac, cheverny, montlouis, milk, scallop, oyster,
salad} be a set of items where bergerac, cheverny and montlouis are names
of French wines. We assume the set of transactions Δ as shown in Table 1. To
simplify, for every j = 1, . . . , 7, the transaction with tid equal to j is denoted
by tj ; for example, t1 refers to the first transaction in Δ, that is (1, {bergerac,
milk, scallop}).

Table 1. The set of transactions Δ of the running example.

tid I

1 Bergerac, milk, scallop

2 Cheverny, milk, scallop

3 Scallop

4 Bergerac, milk, oyster

5 Montlouis, oysyer

6 Salad

7 Montlouis

Denoting by sup(D) the support of an itemset D as defined in [1], for D =
{cheverny,milk} and D′ = {oyster,milk}, we have:

– sup(D) = |{t2}|
7 = 1

7 = 14.3% and d-sup(D) = |{t1,t2,t4}|
7 = 3

7 = 42%
– sup(D′) = |{t4}|

7 = 1
7 = 14.3% and d-sup(D′) = |{t1,t2,t4,t5}|

7 = 4
7 = 57.1%
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For a threshold σ = 50%, D and D′ are not frequent, D is not d-frequent and
D′ is d-frequent. We also note that no item is frequent with respect to σ. �	
It is easy to see that the disjunctive support measure is monotonic with respect
to set inclusion, in other words the following proposition holds.

Proposition 1. For all itemsets D1 and D2, if D1 ⊆ D2 then d-sup(D1) ≤
d-sup(D2).

Proposition 1 implies that if D1 ⊆ D2 and if D2 is not d-frequent, then D1 can
not be d-frequent. Hence, (i) minimal d-frequent itemsets can be mined using a
level wise algorithm such as Apriori, and (ii) knowing the minimal d-frequent
itemsets allows for knowing all d-frequent itemsets (but not their d-supports).
We now define disjunctive support and confidence of association rules.

Definition 2. Let D1 and D2 be two itemsets. The disjunctive support, or d-
support for short , of D1 → D2, denoted by d-sup(D1 → D2), is the ratio

d-sup(D1 → D2) =
|{(tid, I) ∈ Δ | (I ∩ D1 �= ∅) ∧ (I ∩ D2 �= ∅)}|

|Δ| .

Given a support threshold σ, D1 → D2 is said to be disjunctive-frequent, or
d-frequent for short, if d-sup(D1 → D2) ≥ σ.

The disjunctive confidence, or d-confidence for short, of D1 → D2, denoted
by d-conf(D1 → D2), is the ratio

d-conf(D1 → D2) =
d-sup(D1 → D2)

d-sup(D1)
.

Example 2. In the context of Example 1, for D1 = {bergerac,montlouis} and
D2 = {scallop, oyster}, we have that:

– d-sup(D1) = |{t1,t4,t5,t7}|
7 = 57.1%, d-sup(D2) = |{t1,t2,t3,t4,t5}|

7 = 71.4%,
– d-sup(D1 → D2) = d-sup(D2 → D1) = |{t1,t4,t5}|

7 = 42.8%.

As a consequence, for a support threshold σ = 50%, the two rules D1 → D2 and
D2 → D1 are not frequent. On the other hand, we have d-conf(D1 → D2) =
42.8
57.1 = 75% and d-conf(D2 → D1) = 42.8

71.4 = 60%. �	
It is important to note from Definition 2 that the notions of d-support and

d-confidence of an association rule carry similar semantics as standard support
and confidence for association rules. Indeed:

– The d-support of D1 → D2 is the probability that a transaction contains at
least one item in D1 and at least one item in D2 (recalling that the standard
support of D1 → D2 can be seen as the probability that a transaction contains
all items in D1 and all items in D2).
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– The d-confidence of D1 → D2 is the conditional probability that a transaction
contains at least one item in D1 and at least one item in D2, knowing that
it contains at least one item in D1 (recalling that the standard confidence
of D1 → D2 can be seen as the conditional probability that a transaction
contains all items in D1 and all items in D2 knowing that it contains all items
in D1).

The following proposition states basic properties of d-support and
d-confidence.

Proposition 2. For all itemsets D1, D2 and D, we have:

1. d-sup(D1 → D2) ≤ d-sup(Dj) for j = 1, 2
2. d-sup(D1 → D2) ≤ d-sup((D1 ∪ D) → D2)
3. d-sup(D1 → D2) ≤ d-sup(D1 → (D2 ∪ D))
4. d-conf(D1 → D2) ≤ d-conf(D1 → (D2 ∪ D))
5. d-sup(D1 → D2) = d-sup(D1 → (D2 ∪ D)) ⇐⇒ d-conf(D1 → D2) =

d-conf(D1 → (D2 ∪ D))

2.2 Homogeneous Itemsets

As already mentioned, interestingness of itemsets is measured based not only
on their d-frequency, but also on their homogeneity. Homogeneity of itemsets
is defined using a similarity measure, that we denote by sim. We recall in this
respect that similarity measures have been considered in data mining since they
allow taking into account semantic aspects in the processing ([12,13,16]).

In this work, we consider the similarity measure defined in [16], called Total
Relatedness. Assuming a taxonomy over the items, this measure is composed of
two other partial similarity measures, called Highest-Level Relatedness and Node
Separation Relatedness, and defined as follows, where i and i′ are distinct items
in I:

– The Highest-Level Relatedness of i and i′, denoted by HR(i, i′), is the level
of the highest-level node of the path in the taxonomy connecting i and i′.

– The Node Separation Relatedness of i and i′ (i �= i′), denoted by NSR(i, i′),
is the number of nodes in the path connecting i and i′ in the taxonomy.

If k is the depth of the taxonomy, the Total Relatedness measure is defined by:

sim(i, i′) =
1 + HR(i, i′)
k ∗ NSR(i, i′)

.

Example 3. In the context of Example 1, a taxonomy over the items in I is
shown in Fig. 1. In this setting, we have:

– HR(bergerac,montlouis) = 1 and HR(milk, scallop) = 0,
– NSR(bergerac,montlouis) = 1 and NSR(milk, scallop) = 3.
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Fig. 1. Taxonomical organization of the items of Example 1

Therefore, according to the definition of sim given above, we have:
sim(bergerac,montlouis) = 2

2 = 1 and sim(milk, scallop) = 1
6 . �	

The notion of homogeneous itemset is defined as follows.

Definition 3. Let h be a value in the range of the similarity measure sim. An
itemset I is said to be homogeneous with respect to h if mini,i′∈I(sim(i, i′)) ≥ h.

Referring back to Example 3 and considering a similarity threshold h = 1,
{bergerac,montlouis} is homogeneous, whereas {milk, scallop} is not.

Since for all itemsets I1 and I2 such that I1 ⊆ I2, mini,i′∈I1(sim(i, i′)) ≥
mini,i′∈I2(sim(i, i′)) holds, it is easy to see that the following holds.

Proposition 3. For all itemsets I1 and I2 such that I1 ⊆ I2, if I2 is homoge-
neous then I1 is homogeneous as well.

In what follows, we call MHDI any minimal homogeneous d-frequent itemset,
and we consider the problem of mining all MHDIs from Δ. An important con-
sequence of Propositions 1 and 3 is that MHDIs can be mined using a level wise
algorithm such as Apriori [1].

As another remark concerning homogeneous itemsets, deciding whether an
itemset I is homogeneous or not clearly requires a number of tests in O(|I|2).
However, if I is known to be homogeneous, checking whether I∪{i} (where i is an
item not in I) is homogeneous only requires to check whether mini′∈I(sim(i, i′))
is greater than or equal to h. Therefore, in this case, checking whether I ∪ {i} is
homogeneous is in O(|I|).

The previous remark is of particular interest in the forthcoming Algorithm 2,
where we assume that, for every MHDI D, the set H(D) of all unfrequent items
i such that D ∪ {i} is homogeneous has been computed beforehand.

3 Algorithms

In this section, we present the two algorithms that implement our approach: the
first algorithm allows for the computation of all MHDIs whereas the second one
allows for the computation of all interesting rules. Before going into the details
of these algorithms, we note the following points regarding computations:
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1. To avoid computation redundancies when generating candidates, we assume
that a total ordering ≺I over I is given and that the items of all itemsets are
listed according to this ordering.

2. To check whether an itemset I is homogeneous, we assume that all similarity
degrees between unfrequent items have been computed and stored. Although
we do not provide details regarding this point, we shall see that it can be
achieved during the processing of the first algorithm given below.

3. As earlier mentioned, we assume that for every MHDI D, the set H(D) of all
unfrequent items i such that D ∪{i} is homogeneous has been computed and
stored.

3.1 MHDI Computation

As argued in the previous section, MHDIs are mined using a level wise algo-
rithm similar to Apriori [1]. This task is achieved by Algorithm 1 where the
set of candidates, denoted by hom cand, is generated by joining the elements
of unfreq homk1 , i.e., the non d-frequent homogeneous itemsets of size k − 1
and by pruning the obtained set of itemsets. We note that this assumes that the
items of itemsets are listed according to the ordering ≺I .

The main difference with the standard algorithm Apriori is that the homo-
geneity criterion has to be taken into account, which is achieved line 11. Indeed,
if all subsets of D1 ∪ D2 of cardinality k − 1 are homogeneous, then by Propo-
sition 3, so is {ik−1

1 , ik−1
2 }. Therefore, for all i1 and i2 in D1 ∪ D2, we have

sim(i1, i2) ≥ h, meaning that D1 ∪ D2 is homogeneous.
The correctness of Algorithm 1 can be shown as in [8], where this was done

in the context of relational disjunctive queries with no homogeneity criterion.
We simply note that, in our context, candidates are selected for the next step
if they are non d-frequent and homogeneous. Thus, every non selected itemset
is d-frequent or not homogeneous. Since the itemsets in hom cand are homoge-
neous, non selected itemsets for the next step are homogeneous and d-frequent.
Moreover, these itemsets are also minimal with respect to set inclusion since
their subsets have been previously considered as non d-frequent itemsets. Con-
sequently Algorithm 1 correctly computes all MHDIs.

We now argue that the complexity of Algorithm 1 is similar to that of the
standard Apriori algorithm [1]. To see this, we express the complexity of Algo-
rithm 1 in terms of the number of scans of the data set Δ, as for the standard
Apriori algorithm. In this case, since Algorithm 1 performs a scan of Δ at each
level of the lattice built up with all unfrequent items (see lines 16–19), we obtain
that the complexity of Algorithm 1 is linear in the number of unfrequent items
(in the same way as the complexity of the standard Apriori algorithm is shown
to be linear in the number of frequent items). Hence, similarly to the standard
Apriori algorithm, the complexity of Algorithm 1 is in O(|I|) (considering the
worst case when no item is frequent).

Regarding this complexity result, we emphasize that restricting the mined
itemsets to be homogeneous has no impact on the complexity of Algorithm 1.
We note in this respect that in Algorithm 1 some details have been omitted for
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Algorithm 1. Computation of MHDIs
Input: Database Δ, the d-support threshold σ, the similarity threshold h
Output: The set MHDI(Δ) of all MHDIs
1: // Scan Δ to compute the set of all unfrequent items
2: unfreq hom1 = {i ∈ I | d-sup(i) < σ}
3: MHDI(Δ) = ∅
4: k = 2
5: while unfreq homk−1 �= ∅ do
6: hom cand = ∅
7: // Candidate generation
8: for all D1 and D2 in unfreq homk−1 do
9: // D1 = {i11, . . . , i

k−1
1 }, D2 = {i12, . . . , i

k−1
2 }

10: if i11 = i12 and . . . and ik−2
1 = ik−2

2 and ik−1
1 ≺I ik−1

2 then
11: if all subsets of (D1 ∪ D2) of cardinality k − 1 are in unfreq homk−1 then
12: hom cand = hom cand ∪ {(D1 ∪ D2)}
13: for all D in hom cand do
14: d-sup(D) = 0
15: // Scan of Δ to compute the d-supports of all D in hom cand
16: for all (tid, I) in Δ do
17: for all D in hom cand do
18: if D ∩ I �= ∅ then
19: d-sup(D) = d-sup(D) + 1
20: unfreq homk = {D ∈ hom cand | d-sup(D) < σ}
21: MHDI(Δ) = MHDI(Δ) ∪ {D ∈ hom cand | d-sup(D) ≥ σ}
22: k = k + 1
23: return MHDI(Δ)

the sake of simplification. In particular, the test line 11 is not necessary when
k = 2 (because it is always satisfied in this case). However, for k = 2, when con-
sidering a candidate itemset D = {i11, i

1
2}, checking whether D is homogeneous

amounts to check whether sim(i11, i
1
2) ≥ h, which in turn, requires to compute

sim(i11, i
1
2). This computation does not impact the complexity result mentioned

above because similarity is computed based on the given ontology and similarity
measure, but not based on the data set Δ. We also mention that these similarity
results are assumed to be stored in a matrix so as to efficiently compute the sets
H(D) for every MHDI D, and other similarity measures needed when running
Algorithm 2 to be given next.

The following example illustrates how Algorithm 1 works in the context of
our running example.

Example 4. Referring to the data set Δ shown in Table 1, and considering the
support threshold σ = 50% and the similarity threshold h = 1, Algorithm 1
performs the following steps:

– First, the computation of unfreq hom1 line 2 returns I, because, as mentioned
in Example 1, no item in I is frequent.

– For k = 2, all possible pairs of items are considered in the loop lines 8–12,
and for all distinct i, i′ in I, sim(i, i′) is computed and stored. Moreover, the
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d-supports of the homogeneous pairs are computed through the scan lines
16–19: we obtain that the homogeneous d-frequent itemsets of cardinality 2
are {bergerac,montlouis} and {scallop, oyster}.
Therefore unfreq hom2 contains the two itemsets: {bergerac, cheverny} and
{cheverny,montlouis} (since the other unfrequent itemsets of cardinality 2
are not homogeneous).

– For k = 3, no candidates are generated line 10, and so the main iteration lines
5–22 stops when k is set to 4, line 22.

Hence, {bergerac,montlouis} and {scallop, oyster} are the two MHDIs returned
by Algorithm 1. �	

3.2 From MHDIs to Interesting Association Rules

The output of Algorithm 1 is used to build and assess candidate rules in order
to produce the final result. However, in our approach, and contrary to the stan-
dard case, the assessment of these candidate rules requires to scan the dataset.
This is so because, knowing the d-supports of D1 and D2 does not imply that
d-sup(D1 → D2) can be computed without scanning the data.

Moreover, according to Proposition 2(1), the d-support of a rule D1 → D2 is
less than the d-supports of D1 and D2. Hence, considering only rules D1 → D2

where D1 and D2 are MHDIs is likely to produce a very limited number of
rules. On the other hand, Proposition 2(1-2) states that the d-support of a
rule D1 → D2 increases when one of the itemsets D1 or D2 is enlarged. This
is why we look for association rules of the form D1 → D2 where D1 and D2

are homogeneous d-frequent itemsets, that might not be MHDIs. Moreover, we
naturally require that these sets be “as small as possible” because it is well
known that in practice, rules with too many members in their left- and/or right-
hand sides are difficult to understand by users.

We now emphasize that, by Proposition 2(2-4), enlarging the right hand side
of a rule increases the d-support and the d-confidence of the rule, whereas enlarg-
ing the left hand side increases the d-support, but not always the d-confidence.
In fact, we claim that enlarging the left hand sides of rules is not relevant in our
approach. To see this, denoting by T (D) be the set of transactions tid,I in Δ
such that (I ∩ D) �= ∅, we notice that a rule D1 → D2 whose confidence is 1,
that is for which d-sup(D1 → D2) = d-sup(D1), satisfies T (D1) ⊆ T (D2). Thus,
improving the d-confidence of a rule D1 → D2 whose d-confidence is not 1 tends
to make T (D1) a subset of T (D2). This can not be achieved by enlarging D1

because enlarging D1 entails that T (D1) is also enlarged.
Based on the previous remarks, the rules we are looking for are of the form

D1 → D2, such that, given thresholds σ, γ and h:

1. D1 is an MHDI and D2 is a homogeneous d-frequent itemset;
2. D1 and D2 are disjoint;
3. d-sup(D1 → D2) ≥ σ and d-conf(D1 → D2) ≥ γ;
4. for every rule D1 → D2 satisfying the three items above, and for every D ⊂

D2, the rule D1 → D does not satisfy all three items above.
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Algorithm 2. The computation of all interesting association rules
Input: Δ, the set MHDI(Δ) of all MHDIs, the d-support threshold σ, the d-

confidence threshold γ, the similarity threshold h
Output: The set Result of all interesting association rules

// Step 1 : level k = 0

1: C = ∅
2: for all (D1, D2) in MHDI(Δ) × MHDI(Δ) do
3: if D1 ∩ D2 = ∅ then
4: C = C ∪ {(D1, D2, ∅, d-sup(D1), 0, 0)}
5: Result = ∅
6: Scan Δ to compute S-new = d-sup(D1 → D2) of rules in C
7: for all c = (D1, D2, ∅, s, 0, S-new) in C do
8: if S-new ≥ σ and d-conf(D1 → D2) ≥ γ then
9: Result = Result ∪ {D1 → D2}

10: C = C \ {c}
11: else
12: if S-new = S-old then
13: C = C \ {c}
14: C-old = C

// Step 2: levels k with k > 0

15: while C-old �= ∅ do
16: C-new = ∅
17: for all c = (D1, D2, E, s, S-old, S-new) in C-old do
18: for all i in (H(D2) \ (D2 ∪ E ∪ D1)), and maxI(E) ≺I i do
19: if (D2 ∪ E ∪ {i}) is homogeneous then
20: c′ = (D1, D2, E ∪ {i}, s, S-new, 0)
21: C-new = C-new ∪ {c′}
22: Scan Δ to compute S-new = d-sup(D1 → D2 ∪ E ∪ {i}) of rules in C-new
23: for all c = (D1, D2, E ∪ {i}, s, S-old, S-new) in C-new do
24: if S-new ≥ σ and d-conf(D1 → D2 ∪ E ∪ {i}) ≥ γ then
25: Result = Result ∪ {D1 → D2 ∪ E ∪ {i}}
26: C-new = C-new \ {c}
27: else
28: if S-old = S-new then
29: C-new = C-new \ {c}
30: C-old = C-new
31: Delete from Result all rules D1 → D2∪E such that Result contains D1 → D′

2∪E′

with D′
2 ∪ E′ ⊂ D2 ∪ E

32: return Result

Calling these rules interesting association rules, we provide next an algorithm
for mining them. Before doing so, we give examples of interesting rules.

Example 5. In the context of our running example, we recall from Example 4
that we have MHDI(Δ) = {D1,D2} where D1 = {bergerac,montlouis} and
D2 = {scallop, oyster}. Thus, the only rules to be considered first are D1 → D2
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and D2 → D1. However, as seen in Example 2, none of these rules is d-frequent,
since their d-support has been shown to be less than 50%. Consequently, these
rules cannot be interesting.

As suggested just above, in order to get interesting rules we extend the right-
hand sides of D1 → D2 and D2 → D1, in order to satisfy the four previous
conditions for a confidence threshold γ = 75%.

– Regarding the rule D1 → D2, we have to extend D2 into a homogeneous d-
frequent itemset D′

2, which is not possible because for every item i in I but
not in D1 ∪ D2, (D2 ∪ {i}) is not homogeneous.

– Considering now D2 → D1, we notice that the item cheverny is the only item
in I such that D′

1 = (D1 ∪ {cheverny}) is homogeneous. Moreover:
• d-sup(D2 → D′

1) = |{t1,t2,t4,t5}|
7 = 57.1%, and

• d-conf(D2 → D′
1) = 57.1

71.4 = 80%.
Therefore D2 → D′

1 satisfies the first three conditions above, and as it can be
seen that this rule also satisfies the last condition, D2 → D′

1 is an interesting
association rule. �	

3.3 An Algorithm for Mining all Interesting Association Rules

Interesting association rules are mined according to Algorithm 2 in which a
6-tuple (D1,D2, E, s,S-old,S-new) represents the rule D1 → (D2 ∪ E) where:

– D1 and D2 are MHDIs, and E is an itemset containing unfrequent items,
– s is the d-support of D1 (s is known from the run of Algorithm 1),
– S-old = 0 if E = ∅, and otherwise, S-old is the d-support of a rule of the form

D1 → (D2 ∪ (E \ {i})) from the previous iteration,
– S-new is the d-support of D1 → (D2 ∪ E).

We now discuss the steps of Algorithm 2. In Step 1, we first filter out all
pairs of MHDIs (D1,D2) where D1 and D2 are not disjoint, and the 6-tuples
of all remaining potentially interesting rules D1 → D2 are put in the set of
candidates (line 4). The supports of these rules are then computed through a scan
of Δ (line 6). All candidates whose d-support and d-confidence are respectively
greater than or equal to their corresponding threshold are added to the result set
Result (line 9) and will not be considered in the next step, due to our minimal
requirement (line 10). For all other candidates, the test line 12 discards the rule
if its d-support is 0, since this means that no transaction d-supports the rule.

The iteration in Step 2 enlarges the right hand sides of the rules in a level
wise manner as follows: new candidates are generated by adding one item to the
set E thus producing the candidate rule D1 → (D2 ∪ E ∪ {i}) from the rule
D1 → (D2∪E). We note that in order to avoid computational redundancies, the
ordering ≺I is used (see line 18). We also emphasize here that we assume that
for every D in MHDI(Δ), the set H(D) has been already computed. Under
this hypothesis, line 18, the item i is chosen in H(D2), because otherwise, D2 ∪
E ∪ {i} cannot be homogeneous. However, it is still necessary to check whether
D2 ∪ E ∪ {i} is homogeneous, which is done line 19.
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Lines 18 to 30 show a processing similar to that of lines 3 to 14 of Step 1,
that is: new candidates are generated (lines 17–21) and Δ is scanned in order to
compute the current d-supports stored in S-new (line 22). Then, these new candi-
dates are processed according to the fact that they represent or not an interesting
rule (lines 23–29). We notice that candidates such that S-new = S-old (line 28)
are discarded because Proposition 2(5) shows that, in this case, adding i to the
right hand side does not change the d-support and the d-confidence. Therefore,
the rule D1 → (D2 ∪ E ∪ {i}) has not to be considered in the next iterations.
On the other hand, minimality of the right hand sides of rules is guaranteed line
31, where non minimal rules are discarded. As a consequence, it turns out that
Algorithm 2 computes the expected set of all interesting association rules.

We now turn to the study of the complexity of Algorithm 2, which we express
in terms of the number of scans of the data set, as done for Algorithm 1. As
previously mentioned, in Algorithm 2 candidate rules are generated in a level
wise manner by adding one item to the right hand sides of rules, and at each
level, the supports and confidences of these candidate rules are computed through
one scan of Δ. Therefore, the complexity of Algorithm 2 is the same as that of
Algorithm 1, that is in O(|I|). We also note that, since only items i in H(D2)
are considered to enlarge D2 ∪E, the test of homogeneity line 19, which uses the
similarity matrix constructed in Algorithm 1 (for k = 2 as previously explained),
is linear in the size of E. In other words, the complexity of this test is linear in
less than the size of I, even in the worst case.

4 Related Work

Whereas most approaches in data mining are interested in extracting frequent
patterns, mining unfrequent or rare patterns (association rules or itemsets) has
attracted research efforts these last years [10]. According to these work, rare
patterns do not often occur, and are relevant if their elements are strongly
correlated. Mining abnormal symptoms in medical applications is a standard
example of such patterns. However, it is important to note that, whatever the
data set in which these patterns are mined, considering these low-support and
high-confidence rules raises major difficulties when using standard association
rule mining approaches.

In order to address this issue, some approaches propose to consider the fre-
quency as a relative measure rather than an absolute one, since the items differ
from one to another by nature. For example, buying a luxe item is an action
much less frequent than buying milk, and so, the corresponding frequencies can-
not be interpreted in the same way. In [11], the MSapriori Algorithm has been
introduced to mine the absolute unfrequent items by assigning different mini-
mum support thresholds to different items. In [17,20], instead of using different
thresholds, a weighted support measurement is used to offer different viewpoints
to items. Hence users can assign weights according to their need and find valu-
able unfrequent patterns. One critical point when applying the previous methods
is to assign adequate minimum support thresholds and/or weights to different
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items. This task becomes even unfeasible when considering a large number of
items. This is why, the relative support measure was proposed in [24].

Although relevant patterns can be mined using these approaches, it turns
out that in most cases, very large numbers of candidate itemsets are generated,
as in the standard case when the thresholds are set to be very low. Several
propositions have been introduced to tackle this issue. The proposition in [18,19]
is to find rules directly form their confidence. Although, confidence does not have
a downward closure property, the authors use a confidence-based pruning in their
rule generation. In this approach, high-confidence and low-support association
rules of the form I → i, where I is an itemset and i is an item, are mined without
generating unnecessary low-support itemsets. Other work propose to mine highly
correlated patterns using appropriate measures, such as h-confidence [21,22] or
Bond [4,23]; relationships between these measures are studied in [14].

It is important to note that most approaches to mining rare association rules
concentrate on conjunctive patterns built up using unfrequent or frequent items.
One main risk when considering conjunctions of unfrequent items is that these
itemsets have a very low support, and thus, it is difficult to distinguished such
patterns from noisy data. This issue has been investigated in [9] through the
notion of exception rule.

As opposed to these approaches, our work is based on disjunction to build
frequent itemsets, and considers a similarity measure as an additional criterion.
We note that it has been shown in [4,23] that the disjunctive form of patterns
can be derived from the correlated patterns, using the technique in [5]. However,
since the correlated patterns are generated from frequent items, we can not use
these results in our approach, where we consider unfrequent items.

We notice that in [6], the authors consider a taxonomy to mine frequent
itemsets built up with items from the same level in the taxonomy. However, our
approach basically differs from this work because in [6], only frequent items are
considered (whereas we consider unfrequent items) and the support threshold is
changed according to the level in the taxonomy (whereas we do not change the
support threshold during the mining process).

Moreover, the frequent disjunctive itemsets that are mined in our work are
built up according to the given taxonomy, but may be different from the con-
cepts defined by this taxonomy. Indeed, in our approach, the taxonomy is used
to assess the homogeneity of disjunctive itemsets, according to a given similarity
threshold. As a consequence, it is possible that a given homogeneous frequent dis-
junctive itemset does not “match” existing concepts in the taxonomy, although
representing a relevant set of items. We argue that such itemsets can be used
to reorganize the ontology, according to the content of the data set and to the
similarity threshold chosen by the user (this issue will be investigated in our
future work). Hence, it should be clear that the way we use the taxonomy in our
approach is radically different from the one in [6].
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5 Concluding Remarks

In this paper, we have proposed an approach to mine association rule involv-
ing unfrequent items. Unfrequent items are grouped in itemsets to produce fre-
quent itemsets according to the disjunctive support measure. In order to produce
rules as “understandable” as possible, disjunctive frequent itemsets have been
restricted to be minimal with respect to set inclusion, and a homogeneity cri-
terion has been considered for itemsets. We have shown that in this setting,
disjunctive frequent itemsets can be mined using a standard level wise algo-
rithm. However, it has also been argued that computing interesting rules in this
approach requires further scans of the data set. These scans have been shown to
be processed in a level wise manner so as to produce all interesting rules.

We are currently implementing our algorithms to assess their efficiency and
their relevancy. To this end, we intend to consider synthetic and real data sets,
so as to provide experiments as complete as possible. Regarding further research
issues in the context of this work, we mention that considering homogeneous
itemsets allows for further investigation. Indeed, homogeneity allows to define
groups of unfrequent items, seen as concepts among which rules are to be mined.
It seems that the interesting rules considered in this paper are closely related to
these rules between concepts. We plan to investigate this issue in the future.
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