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Abstract. Different conceptual ways to analyse information are here
defined by means of the fundamental notion of a relation. This approach
makes it possible to compare different mathematical notions and tools
used in qualitative data analysis. Moreover, since relations are repre-
sentable by Boolean matrices, computing the conceptual-oriented oper-
ators is straightforward. Finally, the relational-based approach makes it
possible to conceptually analyse not only sets but relations themselves.

1 Relations, Concepts and Information

The world is made of relations. In a sense, every entity or thing is nothing else
but a sheaf of relations which occur with other sheaves of relations. Without
offending Immanuel Kant, from this point of view the concept of a ”monads”
seems to be an expedient to bypass some philosophical problem. On the contrary,
our point is inspired by another monumental assumption of Kant’s philosophy:
relations hold between entities, but entities themselves are phenomenological
relations. That is, they are relations between noumena (not observed entities or
events) and their manifestation through observed properties, which transforms
noumena into phenomena (observable entities or events). In this way we arrive
at the pair intension-extension which is at the very heart of conceptual data
analysis.

Relations connect entities with their properties, in what we call an obser-
vation system or property system P = 〈U,M,R〉, where U is the universe of
entities, M the set of properties, and R ⊆ U ×M is the ”manifestation” rela-
tion so that 〈g,m〉 ∈ R means that entity g fulfills property m. From now on,
instead of ”entity” we shall use the term ”object” in the sense of the German
term Gegenstand which means an object before interpretation. The symbol M is
after Merkmal, which means ”property” or ”characteristic feature”. Relations in
property systems induce derived relations between objects themselves or between
properties. Indeed, sometimes phenomena can be perceived by directly observ-
ing relations occurring within objects or within properties. What is important
is the coherence of the entire framework. Thus, relations assemble concepts, for
instance by associating together those properties which are observed of a given
set of objects. Vice-versa, relations assemble extensions of concepts by grouping
together the objects which fulfill a given set of properties. In the former case an
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intension is derived from an extension. In the latter an extension is derived from
an intension. Therefore, we shall call intensional the operators which transform
extensions into intensions, and, vice-versa, extensional if the construction oper-
ates in the opposite direction. The former kind of operators will be decorated
by an ”i” and the latter by an ”e”. Obviously, mutual constructions are in order
and we shall explore the properties of intensions of extensions and extensions of
intensions.

As much as Category Theory advocates that what is relevant are the mor-
phisms between elements, and not the elements standing alone, one can maintain
that in conceptual data analysis ontological commitments should be avoided be-
cause the fundamental ingredients of the analysis are relations.

However, some ontological feature comes into the picture if U or M are
equipped with some relational structure (for instance a preference relation).
Anyway, this structure is in principle given by some intensional or extensional
operator derivable from other property systems.

The paper will discuss some fundamental topics related to the pair intension-
extension as defined by relations:

– The logical schemata which define the basic extensional and intensional op-
erators and, thus, their meanings.

– How to use these operators in conceptual data analysis (in particular, in
approximation analysis).

– How to compute the operators.
– How to implement the above procedures by manipulating Boolean matrices.

The theses and/or the proofs of the proved results are new.

2 Relations, Closures, Interiors and Modalities

The first natural step is collecting together the properties fulfilled by a set of
objects, and the objects which fulfill a given set of properties:

Definition 1. Given a property system P = 〈U,M,R〉, A ⊆ U,B ⊆ M :

〈i〉(A) = {m : ∃g(〈g,m〉 ∈ R ∧ g ∈ A)} (1)

〈e〉(B) = {g : ∃m(〈g,m〉 ∈ R ∧m ∈ B)} (2)

We call these operators constructors. Some observations are in order:

Observation 1. In Relation Algebra these two constructors are well known and
are denoted by R(A) and, respectively, R�(B). The first is called the left Peirce
product of R and A, while the second is the right Peirce product of R and B, or
the left Peirce product of R� and B, where R� = {〈m, g〉 : 〈g,m〉 ∈ R} is the
inverse relation of R. Indeed 〈e〉 is the same as 〈i〉 applied to the inverse relation:
〈e〉(B) = {g : ∃m(〈m, g〉 ∈ R� ∧ m ∈ B)}. In this way the quantified variable
takes the first place in the ordered pair of the definition of 〈e〉, as it happens in
the definition of 〈i〉. The role of a quantified variable in a relation is a formality
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which will be useful to compare different definitions. For any singleton {x},
instead of R({x}) we shall write R(x).

Observation 2. The definition of the constructor 〈e〉 is the same as that of
the operator ♦ (possibility) in Modal Logic. In fact, a Kripke model is a triple
〈W,R, |=〉, where W is a set of possible worlds, R ⊆ W ×W is an accessibility
relation, and for any formula α, w |= ♦(α) if and only if there exists a possible
world w′ which is accessible to w and such that w′ |= α, that is, ∃w′(〈w,w′〉 ∈
R ∧w′ |= α). If in Definition 1 we set M = U and identify a subset A of U with
the domain of validity of a formula α (i. e. A = {g ∈ U : g |= α}), and if we
denote the modal operator by 〈R〉, we obtain 〈R〉(A) = 〈e〉(A) = R�(A) while
〈i〉(A) = 〈R�〉(A) = R(A). Indeed, with respect to our constructors, one has
the following modal reading: if g ∈ A then it is possible that g fulfills properties
in 〈i〉(A), because if m ∈ 〈i〉(A), then R�(m) has non void intersection with A.
Analogously, if b ∈ B then it is possible that m is fulfilled by entities in 〈e〉(B).

Observation 3. The logical structure of the definitions (1) and (2) is given by
the combination (∃,∧). This is the logical core of a number of mathematical
concepts. Apart from the above notion of ”possibility” in Modal Logic, notably
one finds it in the definition of a closure operator. Recalling that our framework
is the Boolean lattice ℘(U) or ℘(M), we remind the following definitions:

Definition 2. An operator φ on a lattice L is said to be a closure (resp. interior)
operator if for any x, y ∈ L it is (i) increasing: x ≤ φ(x) (resp. decreasing:
φ(x) ≤ x), (ii) monotone: x ≤ y implies φ(x) ≤ φ(y), and (iii) idempotent:
φ(φ(x)) = φ(x). Moreover, it is topological if it is (iv) additive: φ(x ∨ y) =
φ(x)∨φ(y) (resp. multiplicative: φ(x∧y) = φ(x)∧φ(y)) and (v) normal: φ(0) = 0
(resp, conormal: φ(1) = 1).

We call a property system such that U = M a square relational system, SRS.
Intuitively, in a SRS an object g ∈ U is closed to a subset A of U with respect
to R, if in A there exists a g′ such that 〈g, g′〉 ∈ R, so that g is linked to A in
this way. We then call R(g) the R-neighborhood of g and if g′ ∈ R(g) then g′ will
be called an R-neighbor of g. Thus g is closed to a set A if R(g) ∩ A �= ∅. The
closure of A is the operation of embedding all the entities which are closed to A.

Now, we illustrate how simple is the computation of a closure. Any finite
property system can be represented by a Boolean matrix such that the entry
(g,m) is 1 if 〈g,m〉 ∈ R, 0 otherwise. To compute 〈i〉({x1, x2, ..., xn}) one has just
to collect the elements of U that display 1 in the rows x1, x2, ..., xn. Vice-versa, to
compute 〈e〉({x1, x2, ..., xn}) one has to collect the elements of U that display 1 in
the columns x1, x2, ..., xn. We shall denote the Boolean matrix corresponding to
a relation R by R. If X ⊆ U , R(X) shall denote the Boolean array corresponding
to R(X) and R�(X) the array corresponding to R�(X). R � X is the matrix
representing the subrelation {〈x, y〉 : x ∈ X ∧ y ∈ R(x)} The example runs in a
SRS, but with generic property systems the story is the same

Example 1. U = {a, b, c, d}. Let us manipulate the subset {a, c}.
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R a b c d
a 1 0 0 1
b 0 1 1 1
c 0 1 0 0
d 0 1 0 1

R � {a, c} a b c d
a 1 0 0 1
b
c 0 1 0 0
d

R� � {a, c} a b c d
a 1 0
b 0 1
c 0 0
d 0 0

R(a, c) = [
a
1
b
1
c
0
d
1]

〈i〉({a, c}) = {a, b, d}

R�(a, c) = [
a
1
b
1
c
0
d
0]

〈e〉({a, c}) = {a, b}
Notice that R(X) =

∨
R(x)x∈X , where ∨ is the element-wise Boolean sum of

the arrays (for instance, R({a, c}) = R(a) ∨R(c) = [1 ∨ 0, 0 ∨ 1, 0 ∨ 0, 1 ∨ 0]).

Since {g : g ∈ R�(B)} = {g : R(g)∩B �= ∅}, 〈e〉 has a definition formally similar
to that of a closure and, also, of an upper approximation operator. In fact, if
R is an equivalence relation on U , 〈e〉(X) is the upper approximation (uR)(X)
of Pawlak’s Rough Set Theory. In turn, independently of the properties of R
the lower approximation is defined as (lR)(X) = {x : R(x) ⊆ X}. That is,
(lR)(X) = {x : ∀x′(〈x, x′〉 ∈ R =⇒ x′ ∈ X)}. Thus, we set in any property
system P = 〈U,M,R〉, A ⊆ U,B ⊆ M :

[i](A) = {m : ∀g(〈g,m〉 ∈ R =⇒ g ∈ A)} (3)

[e](B) = {g : ∀m(〈g,m〉 ∈ R =⇒ m ∈ B)} (4)

It is immediate to see that in a SRS, (lR)(X) = [e](X).

Observation 4. As we shall see, if a set X is represented by a particular kind
of relation (a right cylinder), then in Relation Algebra [i](X) coincides with the
right residual of R and X , while [e](X) is the right residual of R� and X .

Observation 5. Again, one verifies a correspondence with Modal Logic. Given
a Kripke model 〈W,R, |=〉 the forcing clause for a necessary formula �(α) is:

w |= �(α) iff ∀w′(〈w,w′〉 ∈ R =⇒ w′ |= α) (5)

Again, if A = {g : g |= α}, then [R](α) = [e](A). Indeed, the modal reading of
the above constructors is: in order to fulfill properties in [i](A) it is necessary
to be an object in A. Dually, in order to be fulfilled by objects in [e](B), it is
necessary to be a property of B.

Observation 6. The logical core of Definitions (3) and (4) is the combination
(∀,=⇒). We remind that the logical core of the possibility operators is (∃,∧). To
exploit these facts we need a strategic notion:

Definition 3. Let O and O’ be two preordered sets and σ : O �−→ O′ and
ι : O′ �−→ O be two maps such that for all p ∈ O and p′ ∈ O′

ι(p′) ≤ p iff p′ ≤′ σ(p) (6)

then σ is called the upper adjoint of ι and ι is called the lower adjoint of σ. This
fact is denoted by O′ �ι,σ O.

Now, in a Heyting algebra H, ∧ is lower adjoint to =⇒ in the sense that for all
elements x, y, z ∈ H, ∧x(y) ≤ z iff y ≤=⇒x (z), where ∧x(y) is a parameterized
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formulation of x∧y and =⇒x (z) of x =⇒ z. Moreover, ∃ and ∀ are, respectively,
lower and upper adjoints to the pre-image f−1 : ℘(Y ) �−→ ℘(X) of a function
f : X �→ Y : for all A ⊆ X,B ⊆ Y one has ∃f (A) ⊆ B iff A ⊆ f−1(B) and
B ⊆ ∀f (A) iff f−1(B) ⊆ A, where ∃f (A) = {b ∈ B : ∃a(f(a) = b ∧ a ∈ A} and
∀f (A) = {b ∈ B : ∀a(f(a) = b =⇒ a ∈ A}. Therefore, since i and e constructors
operate in opposite directions, it is not surprise if it can be proved that the
following adjointness properties hold in any property system P = 〈U,M,R〉, for
M = 〈℘(M),⊆〉 and U = 〈℘(U),⊆〉 (see [17]):

(a)M �〈e〉,[i] U (b)U �〈i〉,[e] M (7)

From this we immediately obtain that 〈·〉 constructors are additive (as like as any
lower adjoint), while [·] constructors are multiplicative (as any upper adjoint)1.
Moreover, 〈·〉(A∩B) ⊆ 〈·〉(A)∩〈·〉(B) and [·](A∪B) ⊇ [·](A)∪ [·](B). Again, this
is a consequence of adjointness, but can be easily verified using the distributive
properties of quantifiers2.

To compute the necessity constructors, the following result is exploited, which
can be proved by means of the equivalences ¬∃ ≡ ∀¬ and ¬(A∧¬B) ≡ A =⇒ B:

∀X ⊆ U, [·](X) = −〈·〉(−X) (8)

Let us continue the previous example and compute [·]({a, b}): −{a, b} = {c, d}.
R a b c d
a 1 0 0 1
b 0 1 1 1
c 0 1 0 0
d 0 1 0 1

R� � {c,d} a b c d
a 0 1
b 1 1
c 0 0
d 0 1

R � {c,d} a b c d
a
b
c 0 1 0 0
d 0 1 0 1

−R�(c,d) = [
a
0
b
0
c
1
d
0]

[e]({a, b}) = {c}

−R(c,d) = [
a
1
b
0
c
1
d
0]

[i]({a, b}) = {a, c}
−R is the element-wise Boolean complement of the matrix R.

3 Pretopologies, Topologies and Coincidence of Operators

It may sound surprising, but substantially the above procedures are all the ma-
chinery we need in order to compute the operators required by relation-based
conceptual data analysis. Notice that the procedures to compute 〈·〉 and [·] are
independent of the properties of the relation R. On the contrary, the proper-
ties of these constructors strictly depend on those of R. For a generic binary
relation R, 〈·〉 may fail to be increasing or idempotent: {a, c} � 〈i〉({a, c}) and
〈i〉(〈i〉({a, c})) �= 〈i〉({a, c}). Anyway, additivity gives monotonicity. In turn,
notwithstanding the formal analogy with the definition of an interior oper-
ator, [·] may be neither decreasing nor idempotent: [e]({a, b}) � {a, b} and

1 Often, a lower adjoint is called ”left adjoint” and an upper adjoint is called ”right
adjoint”. We avoid the terms ”right” and ”left” because they could make confusion
with the position of the arguments of the operations on binary relations.

2 For instance one has ∀xA(x) ∨ ∀xB(x) =⇒ ∀x(A(x) ∨ B(x)), but not the opposite.
This proves that ∀ cannot have an upper adjoint, otherwise it should be additive.
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[e]([e]({a, b})) �= [e]({a, b}), although multiplicativity guarantees monotonicity.
We shall see that given a generic R, 〈·〉 and [·] behave like pretopological closure
and, respectively, interior operators induced by neighborhood families which are
lattice filters (with respect to ⊆ and ∩). Actually, in real-world situations R is
derived from observations (for instance data collected by sensors) and one can-
not expect R to enjoy ”nice properties” necessarily. Unfortunately, in view of
the failure of the increasing property, 〈·〉 cannot in general be used to compute
any sort of upper approximation and [·] cannot provide any lower approximation
because of the failure of the decreasing property. Thus, we need more structured
operators. One approach is equipping R with particular properties. Modal Logic,
then, tells us the new behaviors of the possibility and necessity operators. But
one obtains very interesting operators if adjoint constructors are combined. Let
us then set, for all A ⊆ U,B ⊆ M :

(a) int(A) = 〈e〉([i](A)) (b) cl(A) = [e](〈i〉(A)). (9)

(c) C(B) = 〈i〉([e](B)) (d) A(B) = [i](〈e〉(B)). (10)

Notice that int and cl map ℘(U) on ℘(U), while A and C map ℘(M) on ℘(M).

Observation 7.(see [17]) Since these operators are combinations of adjoint func-
tors, they fulfill a number of properties: (i) int and C are interior operators; (ii)
cl and A are closure operators. This means that int(A) ⊆ A ⊆ cl(A), any A ⊆ U
and C(B) ⊆ B ⊆ A(B), any B ⊆ M . Thus, they are veritable approximations.
However, they are not topological: int and C are not multiplicative, because the
external constructor 〈·〉 is not, and cl and A are not additive, because the exter-
nal constructor [·] is not.
The interpretation of the above operators is intuitive in property systems. C(B)
displays those properties which are fulfilled by objects which fulfills at most
properties in B. That is, first we select from U the objects which fulfill at most
properties in B, then we check the properties from B which are effectively ful-
filled by the selected objects. Dually, A(B) displays all the properties which are
fulfilled only by the elements which fulfill some property in B. So to say, one
selects the objects which fulfill at least one property of B, and, after that, the
properties which are exclusively fulfilled by the selected objects. For the opposite
direction just substitute ”objects” for ”properties” and ”fulfill” for ”fulfilled”.

On the contrary, the interpretation for SRSs is not that clear. For instance, C(B)
displays all and only the elements which are R-related to some element whose R-
neighborhood is included inB. And so on.We donot go further into this interpreta-
tion, but just list in parallel the set-theoretic shapes of pair-wise related operators:

Modal constructors Pre-topological operator
[e](X) = {x : R(x) ⊆ X} C(X) =

⋃{R(x) : R(x) ⊆ X}
[i](X) = {x : R�(x) ⊆ X} int(X) =

⋃{R�(x) : R�(x) ⊆ X}
〈e〉(X) = {x : x ∈ R�(X)} A(X) = {x : R�(x) ⊆ R�(X)}
〈i〉(X) = {x : x ∈ R(X)} cl(X) = {x : R(x) ⊆ R(X)}
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In our Example 1, C({a, b}) = 〈i〉({c}) = {b} and A({a, d}) = [i]({a, b, d}) =
{a, c, d}. Notice that C and A are dual, that is, C(X) = −A(−X). This is due
to the fact that 〈i〉 and [i] are dual. Moreover, A(X) = {x : ∀y(x ∈ R(y) =⇒
R(y) ∩X �= ∅)} and cl(X) = {x : ∀y(x ∈ R�(y) =⇒ R�(y) ∩X �= ∅)}.
Now we want to understand when the operators on the right column are equiv-
alent to the corresponding constructors on the left column. We shall deal with
int and [i]. But first an interesting brief excursus is in order.

Excursus: coverings. Generalisations of Pawlak’s approximation operators
have been introduced that are based on coverings instead of partitions. The re-
lational machinery can simplify this approach. Given a set U , a covering is a
family C ⊆ ℘(U) such that

⋃
C = U . If one assigns all the elements of a com-

ponent K of C to a unique element m from a set M , through a relation R, one
obtains a property system 〈U,M,R〉 such that {R�(m) : m ∈ M} = C. It is
straightforward to prove that the operator C1(X) =

⋃{K ∈ C : K ⊆ X} intro-

duced in [24], coincides with int. Therefore, its dual operator C1 coincides with
cl and all the properties of C1 and C1 are provided for free by the adjunction
properties. For further considerations see the final remarks.

Let us came back to our goal. We start with noticing that in view of Observa-
tion 7, [i] must be an interior operator, in order to coincide with int. Moreover,
it must be topological because of multiplicativity (similarly, if 〈i〉 is a closure
operator, it is necessarily topological because of additivity). Indeed, we now
prove that [i] = int if and only if R is a preorder. It is well-known that in this
case Kripkean necessity modalities are topological interior operators. However,
if part of the result is well-known, the proof will be developed in a novel way
which provides relevant information about the operators.

The proof is made of two parts. In the first part we prove that R must be
a preorder to make int and [i] coincide. After that, we complete the proof in a
more specific manner: it will be proved that if R is a preorder, then C (thus [e])
is the interior operator of a particular topology induced by R.

Lemma 1. Let 〈U,U,R〉 be a SRS. Then ∀x ∈ U, x ∈ [i](R�(x)).

Proof. Trivially, x ∈ [i](R�(x)) iff R�(x) ⊆ R�(x).

Theorem 1. Let 〈U,U,R〉 be a SRS. Then for all A ⊆ U, int(A) = [i](A) if and
only if R is a preorder (i.e. R is reflexive and transitive).

Proof. A) If ∃A ⊆ U, int(A) �= [i](A) then R is not a preorder (either reflexivity
or transitivity fail). Proof. The antecedent holds in two cases: (i) ∃x ∈ [i](A), x /∈
int(A); (ii) ∃x ∈ int(A), x /∈ [i](A). In case (i) ∀y ∈ [i](A), x /∈ R�(y). In
particular, x /∈ R�(x), so that reflexivity fails. In case (ii) ∃y ∈ [i](A) such
that x ∈ R�(y). Therefore, since 〈x, y〉 ∈ R and y ∈ [i](A), x must belong to
A. Moreover, it must exists z /∈ A, 〈z, x〉 ∈ R, otherwise x ∈ [i](A). If R were
transitive, 〈z, y〉 ∈ R, so that y /∈ [i](A). Contradiction.
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B) If R is not a preorder, then ∃A ⊆ U, int(A) �= [i](A). Proof. (i) Take
A = R�(x). From Lemma 1, x ∈ [i](R�(x)). Suppose R is not reflexive with
〈x, x〉 /∈ R. Thus x /∈ R�(x). Hence, it cannot exists an y such that x ∈ R�(y)
and R�(y) ⊆ R�(x). So, x /∈ int(R�(x)). (ii) Suppose transitivity fails, with
〈x, y〉, 〈y, z〉 ∈ R, 〈x, z〉 /∈ R. From Lemma 1, z ∈ [i](R�(z)), but y /∈ [i](R�(z)),
because x ∈ R�(y) while x /∈ R�(z) so that R�(y) � R�(z). On the contrary,
y ∈ R�(z) and R�(z) ⊆ R�(z). Therefore, y ∈ int(R�(z)). We conclude that
int(R�(z)) �= [i](R�(z)).

Corollary 1. In a SRS 〈U,U,R〉, the following are equivalent: (i) R is a pre-
order, (ii) C = [e], (iii) int = [i], (iv) int, [i], [e] and C are topological interior
operators.

We recall that a topological interior operator I on a setX induces a specialisation
preorder defined as follows: ∀x, y ∈ X, x � y iff ∀A ⊆ X, x ∈ I(A) implies
y ∈ I(A). However, in what follows we extend this definition to any monadic
operator on sets. If R ⊆ X × X is a preorder, then the topology with bases
the family {R(x) : x ∈ X} is called the Alexandrov topology induced by R. The
specialisation preorder induced by such a topology coincides with R itself.

Lemma 2. If R ⊆ X × X is transitive, then ∀x, y ∈ X, 〈x, y〉 ∈ R implies
R(y) ⊆ R(x). If R is reflexive, then R(y) ⊆ R(x) implies 〈x, y〉 ∈ R.

Proof. Suppose 〈x, y〉 ∈ R and z ∈ R(y). Then 〈y, z〉 ∈ R and by transitivity
〈x, z〉 ∈ R so that z ∈ R(x). Thus, R(y) ⊆ R(x). Vice-versa, if R(y) ⊆ R(x) then
for all z, 〈y, z〉 ∈ R implies 〈x, z〉 ∈ R. In particular 〈y, y〉 ∈ R by reflexivity.
Hence 〈x, y〉 ∈ R.

Theorem 2. Let 〈U,U,R〉 be a SRS such that R is preorder. Then the spe-
cialization preorder induced by [i] coincides with R� and that induced by [e]
coincides with R.

Proof. If x � y then for all A ⊆ X, x ∈ [i](A) implies y ∈ [i](A). Therefore,
R�(x) ⊆ A implies R�(y) ⊆ A, all A. In particular, R�(x) ⊆ R�(x) implies
R�(y) ⊆ R�(x). But the antecedent is true, so the consequence must be true,
too, so that R�(y) ⊆ R�(x). Since R is reflexive, so is R� and from Lemma
2, 〈x, y〉 ∈ R�. The opposite implication is proved analogously by transitivity.
The thesis for [e] and R is a trivial consequence.

Corollary 2. Let C be a topological interior operator induced by a SRS 〈U,U,R〉.
Then C is the interior operator of the Alexandrov topology induced by R.

Proof. If C is a topological interior operator, then from Corollary 1, R is a
preorder and C = [e]. Therefore, from Theorem 2, the specialisation preorder
induced by C coincides with R which, in turn, coincides with the specialisation
preorder of the Alexandrov topology induced by R.

Obviously, if R is symmetric (as for equivalence relations, thus in Pawlak Rough
Set Theory), then R = R�, with all the simplifications due to this fact.
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4 Approximation by Means of Neighborhoods

Let us now see the relationships between the operators so far discussed and those
induced by neighborhoods. Consider a relational structure N = 〈U, ℘(U), R〉,
with R ⊆ U × ℘(U). We call it a relational neighborhood structure. If u′ ∈ N ∈
R(u), we say that u′ is a neighbor and N a neighborhood of u. We set Nu = R(u)
and call it the neighborhood family of u. The family N (U) = {Nu : u ∈ U} is
called a neighborhood system. Let us define on ℘(U):

(a) G(X) = {u : X ∈ Nu}; (b) (X) = −G(−X) = {u : −X /∈ Nu}.
Consider the following conditions on N (U), for any x ∈ U , A,N,N ′ ⊆ U :
1: U ∈ Nx; 0: ∅ /∈ Nx; Id: if x ∈ G(A) then G(A) ∈ Nx;
N1: x ∈ N , for all N ∈ Nx; N2: if N ∈ Nx and N ⊆ N ′, then N ′ ∈ Nx;
N3: if N,N ′ ∈ Nx, then N ∩ N ′ ∈ Nx. N4: ∃N,Nx =↑ N = {N ′ : N ⊆ N ′}.
They induce the following properties of the operators G and F (see [14] or [17]):

Condition Equivalent properties of G Equivalent properties of F
1 G(U) = U F (∅) = ∅
0 G(∅) = ∅ F (U) = U
Id G(X) ⊆ G(G(X)) F (F (X)) ⊆ F (X)
N1 G(X) ⊆ X X ⊆ F (X)

N2
X ⊆ Y ⇒ G(X) ⊆ G(Y )
G(X ∩ Y ) ⊆ G(X) ∩G(Y )

X ⊆ Y ⇒ F (X) ⊆ F (Y )
F (X ∪ Y ) ⊇ F (X) ∪ F (Y )

N3 G(X ∩ Y ) ⊇ G(X) ∩G(Y ) F (X ∪ Y ) ⊆ F (X) ∪ F (Y )

A neighborhood system can be defined by means of a property system P =
〈U,M,R〉, in different ways. For instance by setting, for all g ∈ U,Ng = {R�(m) :
m ∈ R(g)}. The properties of the operators G and F induced by such neigh-
borhood systems will be studied in another paper. Here we just notice that the
philosophy behind this choice is intuitive: we consider neighbors the elements
which fulfill the same property. Hence, the extension of a property is a neighbor-
hood, so that a neighborhood family Ng groups the neighborhoods determined
by the properties fulfilled by g. However, in application contexts in which SRSs
are involved, it is natural to consider R(x) as the basic neighborhood of x. In [14]
(see also [17]), families {Ri}i∈I of relations on the same domain are considered,
so that one gathers neighborhood families by setting Nx = {Ri(x)}i∈I .

If one deals with just one SRS, an obvious way to obtain a neighborhood
family is setting NR

x =↑ R(x) = {A : R(x) ⊆ A}. The family NF (R)(U) =
{NR

x : x ∈ U} will be called principal neighborhood system generated by R, by
analogy with ”principal filter”, or R-neighborhood system, briefly. We now prove
that the operator G induced by an R-neighborhood system coincides with the
operator [e] induced by R itself.

Theorem 3. Let P = 〈U,U,R〉 be a SRS and NF (R)(U) its R-neighborhood sys-
tem. Let G be the operator induced by NF (R)(U) and [e] the constructor defined
by P. Then for all A ⊆ U,G(A) = [e](A).
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Proof. By definition, in NF (R)(U) N4 holds. In any neighborhood system with
this property, if Nx =↑ Zx, then x ∈ G(A) iff Zx ⊆ A, because in this case A ∈
Nx, too. But in NF (R)(U), Zx = R(x). Hence, G(A) = {x : R(x) ⊆ A} = [e](A).

An alternative proof runs as follows if R is a preorder:

Lemma 3. Let P = 〈U,U,R〉 be a SRS such that R is a preorder, and let
NF (R)(U) be its R-neighborhood system. Let � be the specialisation preorder
induced by G. Then � coincides with R.

Proof. If x � y, then ∀A ⊆ U, x ∈ G(A) implies y ∈ G(A), so that A ∈ NR
x

implies A ∈ NR
y . In particular, R(x) ∈ NR

x . Hence, R(x) ∈ NR
y , so that R(y) ⊆

R(x), because NR
y =↑ R(y). Since R is a preorder, from Lemma 2 〈x, y〉 ∈ R.

We omit the obvious reverse implication.

Then from Lemma 3 and Theorem 2 one obtains Theorem 3. Notice, however,
that Theorem 3 holds independently of the properties of R. One can verify
that in Example 1, {a, b} belongs just to NR

c =↑ {b}. Hence, G({a, b}) =
{c} = [e]({a, b}). On the contrary, C({a, b}) = {b}. In fact, R is not a preorder
(〈c, b〉, 〈b, c〉 ∈ R but 〈c, c〉 /∈ R).

To understand the role of the properties of a neighborhood system, as to
idempotence we notice that Id does not hold in the R-neighborhood system of
Example 1: c ∈ G({a, b}) = {c}, but {c} /∈ NR

c =↑ {b}. As to deflation, notice
that N1 does not hold: {b} ∈ NR

c but c /∈ {b}.
Coming back to relational neighborhood systems one can notice that N =

〈U, ℘(U), R〉 is a property system. So it is possible to define int and cl. What are
the relations between the operator G defined on N qua relational neighborhood
structure, and the operators int and C defined on N qua property system?

Lemma 4. (see [17]) Let N = 〈U, ℘(U), R〉 be a relational neighborhood struc-
ture. For all X ⊆ U,G(X) = R�({X}).

Proof. G(X) = {x : X ∈ Nx}. But X ∈ Nx iff 〈x,X〉 ∈ R iff x ∈ R�({X}).
Hence, G(X) = {x : x ∈ R�({X})} = R�({X}).

Theorem 4. Let N = 〈U, ℘(U), R〉 induce a neighborhood system such that Id,
N1 and N2 hold. Then for any A ⊆ U, int(A) = G(A).

Proof. If x ∈ int(A), x ∈ 〈e〉({X : R�({X}) ⊆ A}). Thus x ∈ ⋃{R�({X}) :
R�({X}) ⊆ A} =

⋃{G(X) : G(X) ⊆ A}. Now we prove that
⋃{G(X) :

G(X) ⊆ A} = G(A), provided the three conditions of the hypothesis hold. Let
x ∈ ⋃{G(X) : G(X) ⊆ A}. Then x ∈ G(N) for some N ⊆ U . Since Id holds,
G(N) ∈ Nx. From N2, A ∈ Nx, too, so that x ∈ G(A). Vice-versa, suppose
x ∈ G(A). But G(A) ⊆ A, because N1 holds. We conclude that x ∈ ⋃{G(X) :
G(X) ⊆ A}.

Actually, this is a simplified proof of Lemma 15.14.4 of [17].
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5 The Full Relational Environment

We have mentioned that given a SRS 〈U,U,R〉 if a subsetX ⊆ U is represented as
a particular relation, then the entire computational machinery can be embedded
in the Algebra of Relations.

Definition 4. A full algebra of binary relations over a set U , is an algebra

fullREL(U) = (℘(U × U),∪,∩,−,1,⊗,� ,1′)

where (℘(U × U),∪,∩,−,1) is a Boolean algebra of sets, ⊗ is the relational
composition, � is the inverse and 1′ is the identity relation.

Clearly, all elements of ℘(U ×U) are binary relations. The unit 1′ is represented
by the identity matrix, where the element at row i - column j is 1 if and only if
i = j. Let R,S ∈ ℘(U × U), the composition is defined as follows:

R⊗ S = {〈x, y〉 ∈ U × U : ∃z(〈x, z〉 ∈ R and 〈z, y〉 ∈ S)}.
Composition is simply the Boolean multiplication of matrices. Thus to obtain
R ⊗ S we multiply pointwise row i with column j; if the pointwise Boolean
multiplication gives 1 for at least one point, then element at row i and column
j of R⊗ S is 1. It is 0 otherwise.

example 2. Let U = {a, b, c, d}.
R a b c d
a 1 1 1 1
b 0 1 1 0
c 0 0 1 0
d 0 0 0 1

S a b c d
a 1 1 1 0
b 0 0 0 1
c 0 1 0 0
d 1 0 0 1

R⊗ S a b c d
a 1 1 1 1
b 0 1 0 1
c 0 1 0 0
d 1 0 0 1

To compute, for instance, the element at row c column b of R⊗ S, first we take
row R(c), [0010], and column S�(b), [1010]. Then we apply component-wise
the logical multiplication to these two Boolean arrays obtaining [0010]. Finally
we apply the logical summation to the resulting array and obtain 1.

We have enough instruments to introduce two fundamental operations. We define
them on arbitrary binary relations. Assume R : W ×W ′ and S : U × U ′.

R −→ S = −(R� ⊗−S), right residuation of S with respect to R. (11)

S ←− R = −(−S ⊗R�), left residuation of S with respect to R. (12)

The operation (11) is defined only if |W | = |U |; (12) is defined only if |W ′| = |U ′|.
In particular, if R and S are binary relations on a set U , then (see [17]):

R −→ S = {〈a, b〉 ∈ U × U : ∀c ∈ U(〈c, a〉 ∈ R =⇒ 〈c, b〉 ∈ S)} (13)

S ←− R = {〈a, b〉 ∈ U × U : ∀c ∈ U(〈b, c〉 ∈ R =⇒ 〈a, c〉 ∈ S)} (14)

It can be shown that R −→ S, is the largest relation Z on U such that R⊗Z ⊆ S,
while S ←− R, is the largest relation Z such that Z ⊗R ⊆ S.
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In [11] (see also [17]), it is possible to see how useful these operations are to
compute and analyse, for instance, dependency relations between properties or
choices based upon a set of properties. In this paper we want just to show how
to use them to compute the operators [·], 〈·〉.

First, we remind that a set A ⊆ U may be represented by a right cylinder
Ac = A × U = {〈a, x〉 : a ∈ A, x ∈ U}. Its matrix Ac has dimensions |U | × |U |
and R(a) = [1, 1, ..., 1] only if a ∈ A, otherwise R(a) = [0, 0, ..., 0]. In this way
sets turn into elements of full algebras of binary relations.

Let us now reconsider definitions (1), (2), (3) and (4). Since −C and R ⊗ C
output right cylinders whenever C is a right cylinder, we can turn any element
x of the sets which appear in the definitions into a pair 〈x, z〉, where z is a
dummy variable representing any element of U . For instance, {m : ...}, turns
into {〈m, z〉...} and g ∈ X turns into 〈g, z〉 ∈ XC . In this way one obtains:

〈i〉(Xc) = {〈m, z〉 : ∃g(〈g,m〉 ∈ R ∧ 〈g, z〉 ∈ Xc)} = R� ⊗Xc (15)

〈e〉(Xc) = {〈g, z〉 : ∃m(〈g,m〉 ∈ R ∧ 〈m, z〉 ∈ Xc)} = R⊗Xc (16)

[i](Xc) = {〈m, z〉 : ∀g(〈g,m〉 ∈ R =⇒ 〈g, z〉 ∈ Xc)} = R −→ Xc (17)

[e](Xc) = {〈g, z〉 : ∀m(〈g,m〉 ∈ R =⇒ 〈m, z〉 ∈ Xc)} = R� −→ Xc (18)

After that, we can compute for instance [e]({a, b}) in Example 2 using (11):
[e]({a, b}c) = −((R�)� ⊗−{a,b}c) = −(R⊗−{a,b}c):
R a b c d
a 1 0 0 1
b 0 1 1 1
c 0 1 0 0
d 0 1 0 1

{a,b}c a b c d
a 1 1 1 1
b 1 1 1 1
c 0 0 0 0
d 0 0 0 0

−{a,b}c a b c d
a 0 0 0 0
b 0 0 0 0
c 1 1 1 1
d 1 1 1 1

R⊗−{a,b}c a b c d
a 1 1 1 1
b 1 1 1 1
c 0 0 0 0
d 1 1 1 1

−(R⊗−{a,b}c) a b c d
a 0 0 0 0
b 0 0 0 0
c 1 1 1 1
d 0 0 0 0

(−(R⊗−{a,b}c))�(U) = {c}
To obtain [e]({a, b}), one applies the right
Pierce product of the resulting relation to U
(or any subset of U).

Relations and manipulations of relations provide all the ingredients for quali-
tative data analysis: the operations to perform the analysis and the object to
be analysed. Central to this task are the implications (residuations) between
relations and the composition of relations, which make it possible to define the
basic analytic tools. Moreover, the objects to be analysed can be relations them-
selves. Indeed, right cylinders are just particular instances of relations. For some
additional considerations see the next section.

6 Final Remarks and Bibliographic Notes

The bibliography on Modal Logic, Intuitionistic Logic, Adjointness, Kripke mod-
els, and Topology is huge. Thus we prefer to address the reader to the compre-
hensive bibliography and historical notes that can be found in [17].
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The basic constructors have been introduced in different fields. We were in-
spired by the works on formal topology by G. Sambin (see for instance [20]).
Together with the sufficiency constructors they have been analysed in [6] and in
the context of property systems and neighborhood systems in ([13]). Moreover in
[5] two of them where used to define ”property oriented concepts”, while in [22]
the other two have been used to define ”object oriented concepts”. Eventually,
they were fully used in approximation theory in [16]. In the present paper, how-
ever, we have not considered the sufficiency constructors which are used in R.
Wille’s Formal Concept Analysis. They are obtained by swapping the positions
in the implicative parts of the [·] constructors. Since the [·] and 〈·〉 constructors
form a square of duality, application direction, isomorphisms and adjointness
(see for instance [17]), by adding the sufficiency operators one enters into the
cube of oppositions discussed in [3].

A survey on covering-based approximation operators is [23]. In [19] these op-
erators are studied from the point of view of duality and adjoint pairs. In [15]
twenty one covering-based approximation operators are interpreted exclusively
by means of the four basic constructors. In this way duality and adjointness
properties are immediate consequences of the properties of the constructors.
Moreover, in view of the clear logical and topological meaning of the four con-
structors, the meaning of these approximation operators is explained as well.

Finally, the operators introduced in Section 5 have been extended to deal
with conceptual patterns within multi-adjoint formal contexts in [4] (see also
[10] and [2]). This is a promising generalization which on one side is linked to
the problem of multi property systems (see [14] and [9] for a first look at the
topic), and on the other side to the problem of approximation of relations, which
was introduced in [21] and solved for the case of two relations in [12], together
with a comparison of rough sets and formal concepts developed within relation
algebra (see also [17], Chap. 15.18). Our approach, however, was inspired by the
notions of a weakest pre-specification and a weakest post-specification introduced
in [7], by Lambek Calculus and Non Commutative Linear Logic (see [1]).
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