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Abstract. STRIM (Statistical Test Rule Induction Method) has been
proposed as a method to effectively induct if-then rules from the decision
table. The method was studied independently of the conventional rough
sets methods. This paper summarizes the basic notion of STRIM and the
conventional rule induction methods, considers the relationship between
STRIM and their conventional methods, especially VPRS (Variable Pre-
cision Rough Set), and shows that STRIM develops the notion of VPRS
into a statistical principle. In a simulation experiment, we also consider
the condition that STRIM inducts the true rules specified in advance.
This condition has not yet been studied, even in VPRS. Examination of
the condition is very important if STRIM is properly applied to a set of
real-world data set.

1 Introduction

Rough Sets theory as introduced by Pawlak [1] provides a database called the
decision table, with various methods of inducting if-then rules and determining
the structure of rating and/or knowledge in the database. Such rule induction
methods are needed for disease diagnosis systems, discrimination problems, de-
cision problems, and other aspects, and consequently many effective algorithms
for rule induction by rough sets have been reported to date [2–7]. However,
these methods and algorithms have paid little attention to mechanisms of gen-
erating the database, and have generally focused on logical analysis of the given
database.

In a previous studies [8, 9] we (1) devised a model of data generation for the
decision table with if-then rules specified in advance, and proposed a statistical
rule induction method and an algorithm named STRIM; (2) In a simulation
experiment based on the model of the data generation, STRIM was confirmed
to successfully induct the if-then true rules from different databases generated
from the same specified rules[8]; (3) found that, when conventional methods
[4, 6, 7] were used, significant rules could barely be inducted, and different rule
sets were inducted from different sample data sets with the same rules; i.e.
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Table 1. An example of a decision table

U C(1) C(2) C(3) C(4) C(5) C(6) D
1 5 6 3 2 4 2 3
2 2 5 6 1 2 4 6
3 1 1 6 2 2 6 1
4 4 1 6 6 4 6 6
5 4 4 5 5 4 1 4
· · · · · · · · · · · · · · · · · · · · · · · ·

N − 1 1 5 1 2 5 2 2
N 5 1 3 1 3 5 4

when using these methods, results were highly dependent on the sample set; (4)
considered the data size of the decision table needed to induct the true rules
with the probability of w [9], since conventional methods have not examined
this problem.

This paper briefly summarizes STRIM and the conventional methods and in-
vestigates the principle of STRIM in more depth by using an example simulation
experiment. Specifically, this paper summarizes STRIM as a two stage process.
The first stage finds rule candidates, and the second arranges these candidates.
We then consider the relationship between the principle of rule induction in the
first stage and that in the conventional method, especially in VPRS (Variable
Precision Rough Set) [5]. STRIM was developed independently from the conven-
tional rough set theory. Our considerations show that STRIM can develop the
notion of VPRS into a statistical principle, and the admissible classification error
in VPRS corresponds to the significance level of the statistical test by STRIM.
Consideration of the statistacl approach by Jaworski [10] is complex and difficult
to understand, since he studies the confident intervals of accuracy and coverage
of the rules inducted by VPRS.

We further examine the validity of the second process and the arrangement
by STRIM, based on a statistical model which clearly shows the standard of
the arrangement. In contrast, that achieved by VPRS is shown to be to not so
clear, and the analyst studying the matter is required to make a decision. Both
considerations in the two processes are also illustrated by the results of the sim-
ulation experiment, and seem to be useful for understanding and/or interpreting
the results when analyzing real-world data sets.

2 Data Generation Model and Decision Table

Rough Sets theory is used for inducting if-then rules hidden in the decision table
S. S is conventionally denoted S = (U,A = C ∪ {D}, V, ρ). Here, U = {u(i)|i =
1, ..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, .., |C|}
is a condition attribute set, C(j) is a member of C and a condition attribute,
and D is a decision attribute. V is a set of attribute values denoted by V =⋃

a∈A Va and is characterized by an information function ρ: U × A → V . Table
1 shows the example where |C| = 6, |Va=C(J)| = MC(j) = 6, |Va=D| = MD = 6,
ρ(x = u(1), a = C(1)) = 5, ρ(x = u(2), a = C(2)) = 5, and so on.
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Fig. 1. Relationship between the condition attributes’ value and the decision attribute’s
value

Table 2. Hypothesis with regard to the decision attribute value

Hypothesis 1 uC(i) coincides with R(k), and uD(i) is uniquely determined as D = d(k)
(uniquely determined data).

Hypothesis 2 uC(i) does not coincide with any R(d), and uD(i) can only be determined
randomly (indifferent data).

Hypothesis 3 uC(i) coincides with several R(d) (d = d1, d2, ...), and their outputs of uC(i)

conflict with each other. Accordingly, the output of uC(i) must be randomly
determined from the conflicted outputs (conflicted data).

STRIM considers the decision table to be a sample data set obtained from an
input-output system including a rule box (Fig. 1) and a hypothesis regarding
the decision attribute values (Table 2). A sample u(i) consists of its condition
attributes values of |C|-tuple uC(i) and its decision attribute uD(i). uC(i) is the
input into the rule box, and is transformed into the output uD(i) using the rules
contained in the rule box and the hypothesis. For example, specify the following
rules in the rule box as true rules to be inducted by STRIM introduced in 3:

R(d): if Rd then D = d, (d = 1, ...,MD = 6),

where Rd = (C(1) = d) ∧ (C(2) = d) ∨ (C(3) = d) ∧ (C(4) = d). Gener-
ate uC(i) = (vC(1)(i), vC(2)(i), ..., vC(|C|)(i)) of u(i) (i = 1, ..., |U | = N) by use
of random numbers with a uniform distribution, and then uD(i) is determined
using the rules specified in the rule box and the hypothesis. For example, Hy-
pothesis 1 is applied to u(3) and u(4), Hypothesis 2 is to u(1), u(2), u(N − 1),
u(N) and Hypothesis 3 is to u(5) in Table 1. In contrast, u(i) = (uC(i), uD(i))
is measured by an observer, as shown in Fig. 1. Existence of NoiseC and NoiseD
makes missing values in uC(i), and changes uD(i) to create another values of
uD(i), respectively. This model is closer to the real-world system. However, Ta-
ble 1 is an example generated by this specification without both noises, for a
plain explanation of the system. Inducting if-then rules from the decision ta-
ble then identifies the rules in the rule box, by use of the set of inputs-output
(uC(i), uD(i)) (i = 1, ..., |U | = N).

3 Summaries of Rule Induction Procedures by STRIM

STRIM inducts if-then rules from the decision table through two processes in
separate stages. The first stage process is that of statistically discriminating and
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Table 3. An example of a condition part and corresponding frequency of their decision
attribute values

trying
CP (k) C(1) C(2) C(3) C(4) C(5) C(6) f = (n1, n2, ..., n6) z

1 1 0 0 0 0 0 (469, 240, 275, 238, 224, 226) 12.52
2 2 0 0 0 0 0 (238, 454, 245, 244, 232, 219) 12.12
3 3 0 0 0 0 0 (236, 213, 477, 271, 232, 222) 13.36
4 0 0 0 0 0 6 (289, 277, 300, 255, 296, 296) 0.97
5 1 1 0 0 0 0 (235, 10, 12, 2, 7, 8) 30.77
6 1 2 0 0 0 0 ( 41, 47, 41, 41, 40, 49) 1.06
7 1 3 0 0 0 0 ( 46, 52, 57, 60, 51, 40) 1.46
8 1 0 0 0 0 6 ( 84, 36, 52, 38, 34, 39) 5.95
9 2 1 0 0 0 0 ( 46, 35, 42, 51, 37, 37) 1.73
10 2 2 0 0 0 0 ( 8, 227, 6, 11, 4, 6) 30.47
11 2 3 0 0 0 0 ( 49, 43, 44, 55, 49, 44) 1.30
12 0 0 0 0 6 6 ( 52, 50, 60, 46, 52, 43) 1.54
13 1 1 0 0 1 0 ( 38, 1, 3, 1, 0, 1) 12.61
14 1 1 0 0 2 0 ( 38, 3, 1, 0, 3, 3) 11.81
15 1 1 0 0 5 0 ( 49, 3, 2, 1, 1, 1) 14.22
16 1 1 0 0 6 0 ( 46, 0, 3, 0, 0, 1) 14.48
17 1 1 0 0 0 3 ( 45, 4, 3, 0, 3, 1) 12.97
18 2 2 0 5 0 0 ( 1, 45, 1, 3, 1, 0) 13.90
19 2 2 0 0 1 0 ( 0, 55, 0, 2, 0, 1) 16.15
20 2 2 0 0 2 0 ( 0, 38, 1, 1, 2, 2) 12.61
21 2 2 0 0 4 0 ( 4, 37, 1, 2, 0, 1) 12.00

separating the set of indifferent data from the set of uniquely determined or
conflicted data in the decision table (See Table 2). Specifically, assume CP (k) =∧

j ( C(jk) = vj ) (∈ VC(jk)) as the condition part of the if-then rule, and derive

the set U(CP (k)) = {u(i)|uC(i) satisfies CP (k), which is denoted by uC=CP (k)(i)
hereafter }. Also derive U(m) = {u(i)|uD=m(i)} (m = 1, ...,MD). Calculate the
distribution f = (n1, n2, ..., nMD ) of the decision attributes of U(CP (k)), where
nm = |U(CP (k))∩U(m)| (m = 1, ...,MD). If the assumed CP (k) does not satisfy
the condition U(Rd) ⊇ U(CP (k)) (sufficient condition of specified rule Rd) or
U(CP (k)) ⊇ U(Rd) (necessary condition), CP (k) only generates the indifferent
data set based on Hypothesis 2 in Table 2, and the distribution f does not
have partiality of decisions. Conversely, if CP (k) satisfies either condition, f has
partiality of the distribution, since uD(i) is determined by Hypothesis 1 or 3.
Accordingly, whether f has partiality or not determines whether the assumed
CP (k) is a neither necessary nor sufficient condition. Whether f has partiality
or not can be determined objectively by a statistical test of the following null
hypothesis H0 and its alternative hypothesis H1:

H0: f does not have partiality. H1: f has partiality.

In order to illustrate this concept, Table 3 shows the number of examples of
CP (k), (n1, n2, ..., nMD ) and an index of the partiality by z derived from Table 1
with N = 10000. For example, the first row means the following: 100000 denotes
CP (k = 1) = (C(1) = 1) (the rule length is RL = 1) and its corresponding f =
(496, 240, 275, 238, 224, 226) and z = 12.52, where,

z =
nd + 0.5− npd
(npd(1− pd))0.5

, (1)
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int main(void) {
int rule[|C|]={0,...,0}; //initialize trying rules
int tail=-1; //initial vale set
input data; // set decision table
rule_check(tail,rule); // 1)-5) strategies
make Pyramid(l) (l=1,2,...) so that every r(k) belongs to
one Pyramid at least; // strategy 6)
make rePyramid(l) (l=1,2,...); // strategy 7)
reduce rePyramid; // strategy 8)
} // end of main

int rule_check(int tail,int rule[|C|]) {
for (ci=tail+1; cj<|C|; ci++) {

for (cj=1; cj<=|C[ci]|; cj++) {
rule[ci]=cj; // a trying rule sets for test
count frequency of the trying rule; // count n1 n2
if (frequency>=N0) { //sufficient frequency ?

if (|z|>3.0) { //sufficient evidence ?
store necessary data such as rule, frequency of n1
and n2, and z

} // end of if |z|
rule_check(ci,rule);
} // end of if frequency

} // end of for cj
rule[ci]=0; // trying rules reset

} // end of for ci
} // end of rule_check

Fig. 2. An algorithm for STRIM (Statistical Test Rule Induction Method)

nd = max(n1, n2, ..., nMD = n6), (d ∈ {1, 2, ...,MD=6}), pd = P (D = d), n =
MD∑

m=1

nm. In principle, (n1, n2, ..., nMD ) under H0 obeys a multinomial distribu-

tion which is sufficiently approximated by the standard normal distribution by
use of nd under the condition[11]: pdn ≥ 5 and n(1− pd) ≥ 5. In the same way,
the fifth row 110000 denotes CP (k = 5) = (C(1) = 1 ∧ C(2) = 1) (RL = 2), the
13-th row 110010 denotes C(1) = 1 ∧ C(2) = 1 ∧ C(5) = 1 (RL = 3), and so
on. Here, if we specify a standard of the significance level such as z ≥ zα = 3.0
and reject H0, then the the assumed CP (k) becomes a candidate for the rules
in the rule box. For example, see CP (1) having z = 12.52 ≥ zα = 3.0 in Table
3 and confirm the partiality of f that n1 is much greater than nl (l = 2, ..., 6).

The second stage process is that of arranging the set of rule candidates derived
from the first process, and finally estimating the rules in the rule box, since
some candidates may satisfy the relationship: CP (ki) ⊇ CP (kj) ⊇ CP (kl) ...,
for example, in the case 100000 ⊃ 110000 ⊃ 110010 (see Table 3). The basic
notion is to represent the CP (k) of the maximum z, that is, the maximum
partiality. In the above example, STRIM selects the CP (k) of 110000, which by
chance coincides with the rule specified in advance. Figure 2 shows the STRIM
algorithm[8].

Table 4 shows the estimated results for Table 1 with N = 10000. STRIM
inducts all of twelve rules specified in advance, and also one extra rule. However,
there are clear differences between them in the indexes of accuracy and coverage.



Consideration on Rule Induction Procedures by STRIM 203

Table 4. Results of estimated rules for the decision table in Table 1 by STRIM

esti-
mated
rule
R(i) C(1) C(2) C(3) C(4) C(5) C(6) D f = (n1, ..., n6) p-value (z) accuracy coverage
1 5 5 0 0 0 0 5 (7,8,5,7,271,4) 0(34.15) 0.897 0.162
2 0 0 1 1 0 0 1 (243,6,5,6,4,3) 0(32.68) 0.910 0.148
3 4 4 0 0 0 0 4 (10,2,8,252,7,6) 0(32.58) 0.884 0.150
4 0 0 5 5 0 0 5 (5,5,6,11,249,7) 0(32.27) 0.880 0.149
5 6 6 0 0 0 0 6 (10,12,4,7,6,253) 0(32.16) 0.866 0.154
6 3 3 0 0 0 0 3 (6,3,254,13,8,12) 0(31.00) 0.858 0.150
7 0 0 2 2 0 0 2 (4,243,2,8,5,14) 0(31.90) 0.880 0.146
8 0 0 3 3 0 0 3 (11,8,243,5,7,7) 0(31.48) 0.865 0.143
9 0 0 6 6 0 0 6 (7,2,8,10,9,240) 0(31.41) 0.870 0.146
10 0 0 4 4 0 0 4 (8,12,13,245,7,7) 0(30.91) 0.839 0.146
11 1 1 0 0 0 0 1 (235,10,12,2,7,8) 0(30.77) 0.858 0.143
12 2 2 0 0 0 0 2 (8,227,6,11,4,6) 0(30.47) 0.866 0.136
13 0 0 0 0 1 1 2 (39,61,44,44,35,31) 6.26e-4(3.23) 0.240 0.037

4 Studies of the Conventional Methods and Their
Problems

The most basic strategy to induct the rules from a decision table is to use the
inclusion relationship between the set derived by the condition attributes and the
set by the decision attribute. Many methods of achieving this have been proposed
[4–7]. Figure 3, for example, shows the well-known LEM2 algorithm[4]. In this B
at LN (Line No.) = 0 is specified like B = U(d) = {u(i)|uD=d(i)} removing the
conflicted data set. LEM2 with lower approximation derives CP (k), satisfying
U(d) ⊇ U(CP (k)). In the figure, t corresponds to C(jk) = vC(jk), [t] to U(t) =
{u(i)|uC=t(i)}, T to CP (k), and the final result τ to

∨
k CP (k) is obtained by

repeating from LN = 3 to LN = 16 until the condition U(d) = U(
∨

k CP (k))
is satisfied.

However, as previously shown [8], LEM2 is likely to induct many sub-rules
of their true rules with longer rule length, since it executes the algorithm until
the condition U(d) = U(

∨
k CP (k)) is satisfied. In 1993 Ziarko [5] introduced

the variable precision rough set, which inducts CP (k) satisfying the following
conditions:

Cε(U(d)) = {u(i)|acc ≥ acc0,

acc = |U(d) ∩ U(CP (k)|/|U(CP (k)| = nd/n}, (2)

where acc is accuracy of the rule and acc0 is a constant depending on ε. Ziarko
further defined (2) in two cases as follows:

Cε(U(d)) = {u(i)|acc ≥ 1− ε}, (2a)

Cε(U(d)) = {u(i)|acc ≥ ε}, (2b)

where ε ∈ [0, 0.5) is an admissible classification error. Cε(U(d)) and Cε(U(d)) are
respectively called a ε-lower and ε-upper approximation of VPRS, and coincides
with the ordinary lower and upper approximation by ε = 0. Their difference
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Line Procedure LEM2
No.

0 (input: a set B
output: a single local covering τ of set B);

1 begin
2 G := B;

τ := φ;
3 while G �= φ
4 begin
5 T := φ;

T (G) := {t|[t] ∩ G �= φ};
6 while T = φ or not([T ] ⊆ B)
7 begin
8 select a pair t ∈ T (G)

such that |[t] ∩ G| is maximum;
if a tie occurs,
select a pair t ∈ T (G)
with the smallest cardinality of [t];
if another tie occurs,
select first pair;

9 T := T ∪ {t};
10 G := [t] ∩ G;
11 T (G) := {t|[t] ∩ G �= φ};
12 T (G) := T (G) − T;
13 end {while}
14 for each t ∈ T do

if [T − {t}] ⊆ B then T := T − {t};
15 τ := τ ∪ {T};

G := B − ∪T∈τ [T ];
16 end {while};
17 for each T ∈ τ do

if ∪S∈τ−{T}[S] = B then τ := τ − {T};
18 end {procedure}.

Fig. 3. An algorithm for LEM2

is in the range of their accuracy; that is the accuracy of Cε(U(d)) ∈ (0.5, 1.0]
and that of Cε(U(d)) ∈ (0.0, 0.5]. VPRS adopts the rules with the high index
of coverage defined by cov = |U(d) ∩ U(CP (k))| / |U(d)|; this can squeeze the
above sub-rules. VPRS has been widely used for solving real-world problems, and
a variety of modified VPRSs have been proposed [12–14]. However, the standard
of adopting rules is not so clear. For example, (acc, cov) of CP (k = 1), CP (k =
5) and CP (13) in Table 3 are (0.281, 0.285), (0.857, 0.143) and (0.864, 0.0231)
respectively. CP (k = 13) should be adopted as the most accurate, CP (k = 1) as
the widest coverage, and CP (k = 5) as the moderate index of both; this requires
a decision by the analyst studying the matter. This unclearness and lack of the
standard lead the making of an algorithm such as LEM2 to difficulty.

Jaworski [10] further pointed out the problem in VPRS that the standard of
adopting rules by using (acc, cov) is highly dependent on the decision table; that
is the sample set, as (acc, cov) will change in each sample set. He then extended
the decision table in the sample set to that in the population, and proposed a
type of confidence interval for each index. For example, for the index of accuracy,

P (acc|population) ≥ acc|sample −
√

ln(1− γn)

−2n
, (3)
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where, γn is a degree of confidence. In R(i = 1) of Table 4, acc|sample = 0.897,
n = 302 and let specify γn = 0.85, then P (acc|population) ≥ 0.897 − 0.037 =
0.860. This means that the accuracy in the population is greater than 0.860,
with the degree of confidence of 0.85. However, two-story uncertainty acc ∈
[0.0, 1.0][0.0,1.0] is very complicated, and hard to understand.

5 Studies of the Relationship between VPRS and STRIM

Let us consider a CP (k) satisfying (2a). The greater part of the decision attribute
value of the U(CP (k)) is now included in U(d), since the CP (k) satisfies (2a).
Accordingly, the distribution of the decision attribute value of the U(CP (k))
has partiality in D = d, which coincides with the basic concept of STRIM. As
shown in 3, STRIM statistically tests whether (n1, n2, ..., nMD ) is partial or not,
and gives the decision with a significance level zα. In (2) nd satisfies the event
nd ≥ n · acc0, and the probability of the event is evaluated thus:

P (nd ≥ n− n · ε) = P

(
nd + 0.5− npd
(npd(1− pd))0.5

≥ n+ 0.5− n · ε− npd
(npd(1 − pd))0.5

)

. (4)

Accordingly, zα =
n+ 0.5− n · ε− npd
(npd(1− pd))0.5

is obtained comparing (4) with (1) and

then the following relationship between acc0 and zα holds:

acc0 = 1− pd + 0.5/n− zα

(pd
n
(1− pd)

)0.5

(5)

In R(i = 1) in Table 4, substituting n = 302, pd = 1/6 for (5), acc0 = 0.229
∈ (0.0, 0.5] and then ε = 0.229. Let specify zα = 30.0 since z = 34.5 in R(i = 1),
then acc0 = 0.808 ∈ (0.5, 1.0] and ε = 1− acc0 = 0.192.

The covering index cov = nd/|U(d)| in VPRS is considered to reflect the
degree of support and/or sufficient evidence of the inducted rule. However, the
standard of the degree of support has not yet been clearly expressed. On the
other hand, STRIM requested the number of data as the evidence satisfying the
conditions [11]: pdn ≥ 5 and n(1 − pd) ≥ 5, which are needed for testing H0.
Accordingly, the covering index corresponds to the testing condition in STRIM
and the condition is clearly given by statistics, whether the covering index is
somewhat higher or lower (See Table 4).

As the relationships considered above between VPRS and STRIM, STRIM
can yield the validity of inducting rules; that is, the clear meaning and standard
of the index of accuracy and coverage for the inducted rules from statistical
viewpoints.

6 Studies of Arrangement of Rule Candidates

There may be rule candidates satisfying relationships CP (ki) ⊃ CP (kj) ⊃
CP (kl) ... after the first stage process. STRIM selects the candidate with the
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Fig. 4. Relationship between zF and zE

maximum partiality in the relationship. Let us consider whether STRIM is as-
sured of selecting the true rule in the rule box. Hereafter, CP (F ) denotes the
true rule in the rule box, and we assume that it satisfies the relationship CP (E)
⊃ CP (F ) ⊃ CP (G) and has the maximum nd at d = 1 like CP (E) = ”100000”,
CP (F ) = ”110000” and CP (G) = ”110010” in Table 3 and the distribution of

f = (nF
1 , n

F
2 , ..., n

F
MD

). Then: zF =
nF
1 + 0.5− nF p1

(nF p1(1 − p1))0.5
� nF (aF − p1)

σF
. Here, 0.5

<< nF p1, n
F
1 = aFnF (0 < aF ≤ 1), nF =

MD∑

j=1

nF
j and σF = (nF p1(1− p1))

0.5.

In the same way with regard to G, zG =
nG
1 + 0.5− nGp1

(nGp1(1− p1))0.5
� nG(aG − p1)

σG
.

Here U(F ) ⊃ U(G), aG � aF and nF > nG lead to nG = rnF (0 < r < 1)

Accordingly, zG � nG(aG − p1)

σG
=

r0.5nF (aF − p1)

σF
= r0.5zF , which means zG

< zF and STRIM selects not CP (G) but CP (F ). In the same way with re-

gard to E, zE =
nE
1 + 0.5− nEp1

(nEp1(1− p1))0.5
. Here, nE

1 = nF
1 + nEF

1 = aEnE + aEFnEF ,

nEF = |U(EF )| and U(EF ) = U(E)− U(F ). U(EF ) is an indifferent data set
(See Hypothesis 2). Taking their relationships into consideration, the following

equation holds: zE � nF (aF − p1)

σE
+

nEF (aEF − p1)

σE
=

σF

σE
zF +

σEF

σE
zEF =

sFEz
F + sEF

E zEF . Here nF < nE and nEF < nE lead to
σF

σE
= sFE < 1 and

σEF

σE

= sEF
E < 1. Figure 4 shows the relationship between zF and zE by use of the

following two lines: zE = sFEz
F + sEF

E zEF (I), zE = zF (II). The cross point

of the two lines is

(

zF0 =
sEF
E

1− sFE
zEF , zF0

)

. Accordingly, STRIM always selects

CP (F ) if the inequality zF ≥ zF0 holds. As conclusion in this section, STRIM
necessarily selects CP (F ) of the true rule only if zF ≥ zF0 holds. In Table 1, sFE =
(

1

MC

)0.5

, sEF
E =

(

1− 1

MC

)0.5

and MC = 6, and |zEF | < zα = 3.0 holds with

less than 1 [%] error. Accordingly, if zF ≥ zF0 =
sEF
E

1− sFE
� 5 holds, then STRIM
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selects not CP (E) but CP (F ). We can confirm the validity of the consideration
of this section in Table 3 and 4. Especially, note that R(i = 13) in Table 4 does
not satisfy the condition z ≥ 5.0, and doubt of the inducted result thus arises.

7 Conclusions

This paper summarized the basic concept of the rule induction method by
STRIM [8, 9], and the conventional methods, especially VPRS [5] and their
problems, using a simulation experiment. We illustrated the following features
and relationships between results from the STRIM model and those from con-
ventional methods, especially VPRS[5]:

1) VPRS uses the indexes of accuracy and coverage with an admissible error
when it selects the rule candidates. The accuracy can be recognized as the
index of the partiality of the distribution of the decision attribute values for
the trying rule, which coincides with the idea of STRIM. The corresponds
to the significance level by zα in STRIM. The coverage corresponds to the
applicable condition for a statistical test by STRIM. However, VPRS does
not have the objective standard of both indexes to select rule candidates,
since to date the conventional methods do not view the decision table as a
sample data set obtained from its population.

2) STRIM provides assurance for an analyst searching for the true rules under
the proper conditions studied in 6, as the results show whether those rules
inducted are true or not. In contrast, VPRS provides no such assurance,
since it is not a method based on a data generating model, as is STRIM.

Focus for future studies:

1) To consider relationship to Variable Consistency Rough Sets Approaches
(VC-IRSA and VC-DRSA) [15].

2) To see how good are rules found by STRIM in a accuracy cross-validation
experiment comparing them to the ones found by LEM2 [4] and/or other
classifiers.

3) To consider relationship to rule quality measures which seek to find a trade-
off between the rule precision (rule accuracy) and coverage [16].
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