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Abstract. Decision-making could be defined as the process to choose a suitable 
decision among a set of possible alternatives in a given activity. It is a relevant 
subject in numerous disciplines such as engineering, psychology, risk analysis, 
operations research, etc. However, most real-life problems are unstructured in 
nature, often involving vagueness and uncertainty features. It makes difficult to 
apply exact models, being necessary to adopt approximate algorithms based on 
Artificial Intelligence and Soft Computing techniques. In this paper we present 
a novel decision-making model called Rough Cognitive Networks. It combines 
the capability of Rough Sets Theory for handling inconsistent patterns, with the 
modeling and simulation features of Fuzzy Cognitive Maps. Towards the end, 
we obtain an accurate hybrid model that allows to solve non-trivial continuous, 
discrete, or mixed-variable decision-making problems.  
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1 Introduction 

In recent years decision-making problems have become an active research area due to 
their impacts in solving real-world problems. Concisely speaking, decision-making 
process could be defined as the task of determining and selecting the most adequate 
action that allows solving a specific problem. This task is supported by the knowledge 
concerning the problem domain allowing justifying the selected decision. However, 
the knowledge obtained from experts regularly shows inconsistent patterns that could 
affect the inference results (e.g. different perception for the same observation). 

The Rough Set Theory (RST) is a well-defined technique for handling uncertainty 
arising from inconsistency [1]. This theory adopts two approximations to describe a 
set, which are entirely based on the collected data [2] and does not require any further 
knowledge. Let us assume a decision system ܵ ൌ ሺܷ, ܣ ׫ ሼ݀ሽሻ, where ܷ is a non-empty 
finite set of objects (the universe of discourse), ܣ is a non-empty finite set of 
attributes, whereas ݀ ב ܺ is the decision class. Any subset ܣ ك ܷ can be approximated 
by using two exact sets ܺכܤ ൌ ሼݔ א ܷ ׷ ሾݔሿ஻ ك ܺሽ and ܺכܤ ൌ ሼݔ א ܷ ׷ ሾݔሿ஻ ת ܺ ്  ሽ׎
called lower and upper approximation respectively.  In this formulation ሾݔሿ஻ denotes 
the set of inseparable objects associated to the instance ݔ (equivalence class) using an 
indiscernibility relation defined by a subset of attributes ܤ ك  The reader may notice .ܣ
that this indiscernibility relation is reflexive, transitive and symmetric. 
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The objects in ܺכܤ are categorically members of ܺ, whereas the objects in ܺכܤ are 
possibly members of the set ܺ. Notice that this model does not consider any tolerance 
of errors [3]: if two inseparable objects belong to different classes then the decision 
system will be inconsistent. The lower and upper approximations divide the universe 
into three pair-wise disjoint regions: the lower approximation as the positive region, 
the complement of the upper approximation as the negative region, and the difference 
between the upper and lower approximations as the boundary region [4]. Being more 
precise, objects belonging to the positive region ܱܲܵሺܺሻ ൌ  are certainly contained ܺכܤ
in ܺ, objects that belong to the negative region ܰܩܧሺܺሻ ൌ ܷ െ  are not confidently ܺכܤ
contained in the set ܺ, whereas the boundary region ܦܰܤሺܺሻ ൌ ܺכܤ െ  represents ܺכܤ
uncertainty about the membership of related objects to the set ܺ.  

Such knowledge comprises an opposite knowledge when facing decision-making 
problems. For example, in reference [5] the author introduces the three-way decisions 
model. Rules constructed from the three regions are associated to different actions and 
decisions (see following equations). A positive rule makes a decision of acceptance, a 
negative rule makes a decision of rejection, and a boundary rule makes a decision of 
abstaining [4]. Observe that the model interpretation is not so critical in the classical 
rough set model since it does not involve any uncertainty. In an attempt to overcome 
this drawback, Wong and Ziarko [6] considered a probabilistic relationship between 
equivalence classes and ܺ leading to the probabilistic three-way decisions. An object 
in the probabilistic positive region does not certainly belong to the decision class, but 
with a high probability. It is important in the probabilistic model, where acceptance 
and rejection are made with certain levels of tolerance for errors. 

ሿሻݔሺሾݏ݁ܦ • ՜ ሿݔሺ݀ሻ௉ , for ሾݏ݁ܦ  ك ܱܲܵሺ݀ሻ 

ሿሻݔሺሾݏ݁ܦ • ՜ ሿݔሺ݀ሻ஻ , for ሾݏ݁ܦ  ك  ሺ݀ሻܦܰܤ

ሿሻݔሺሾݏ݁ܦ • ՜ ሿݔሺ݀ሻே , for ሾݏ݁ܦ  ك  ሺ݀ሻܩܧܰ

The probabilistic three-way decisions showed to be superior with respect to the 
original algorithm [7], however, such models are mainly oriented to discrete decision-
making problems. In this paper we present a novel hybrid model that combines three-
way decisions rules, with the simulation aptitude of Fuzzy Cognitive Maps [8] using a 
sigmoid threshold function. This hybrid model not just allows to solve mixed-attribute 
or continuous problems, but also provides accurate inferences. The main idea consists 
in replacing the equivalence classes by similarity classes to define positive, negative, 
and boundaries regions. After that, we build a Sigmoid Fuzzy Cognitive Maps (which 
are a kind of recurrent neural network for modeling and simulation) using computed 
regions and the domain knowledge. Finally, a recurrent inference process is triggered 
allowing to the map to converge to a desired decision. 

The rest of the paper is organized as follows: in following Section 2 the theoretical 
background of FCM is described. Here we point out some aspects concerning the map 
inference process using continuous threshold functions. In Section 3 we introduce the 
proposed hybrid model consisting in three main steps: (i) the computation of positive, 
negative and boundary regions, (ii) the construction of the map topology, and (iii) the 
map exploitation using the similarity class of the target instance. Section 4 provides 
numerical simulations illustrating the behavior of our algorithm. Finally, conclusions 
and further research aspects are discussed in Section 5. 
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2 Fuzzy Cognitive Maps 

Fuzzy Cognitive Maps (FCM) are a suitable knowledge-based tool for modeling and 
simulation [9]. From a connectionist perspective, FCM are recurrent networks with 
learning capabilities, consisting of nodes and weighted arcs. Nodes are equivalent to 
neurons in connectionist models and represent variables, entities or objects; whereas 
weights associated to connections denote the causality among such nodes. Each link 
takes values in the range ሾെ1,1ሿ, denoting the causality degree between two concepts 
as a result of the quantification of a fuzzy linguistic variable, which is often assigned 
by experts during the modeling phase [10]. The activation value of neurons is also 
fuzzy in nature and regularly takes values in the range ሾ0,1ሿ. Therefore, the higher the 
activation value of a neuron, the stronger its influence over the investigated system, 
offering to decision-makers an overall picture of the systems behavior. 

Without loss of generality, a FCM can be defined using a 4-tuple ሺܥ, ܹ, ,ܣ ݂ሻ 
where ܥ ൌ ሼܥଵ, ,ଶܥ ,ଷܥ … , :ܹ ,neurons ܯ ெሽ is a set ofܥ ሺܥ௜, ௟ሻܥ ՜ ௜௟ݓ  is a function 
which associates a causal value ݓ௜௟ א ሾെ1,1ሿ to each pair of nodes ሺܥ௜,  ௟ሻ, denotingܥ
the weight of the directed edge from ܥ௜ to ܥ௟. The weigh matrix ெܹൈெ gathers the 
system causality which is often determined by experts, although may be computed 
using a learning algorithm. Similarly, ܣ: ሺܥ௜ሻ ՜  ௜ is a function that associates theܣ
activation degree ܣ௜ א Թ to each concept ܥ௜ at the moment ݐ ሺݐ ൌ 1,2, … , ܶሻ. Finally, 
a transformation function ݂: Թ ՜ ሾ0,1ሿ is used to keep the neuron’s activation value 
in the interval ሾ0,1ሿ. Following Equation (1) portrays the inference mechanism using 
the vector ܣ଴ as the initial configuration. This inference stage is iteratively repeated 
until a hidden pattern or a maximum number of iterations ܶ is reached. 
௜௧ାଵܣ  ൌ  ݂ ൭߶ଵ ෍ ௝௜ெݓ

௝ୀଵ ௝௧ܣ ൅ ߶ଶݓ௜௜ܣ௜௧൱ , ݅ ് ݆  (1) 

 
In the above equation ߶ଵ represents the influence from the interconnected concepts 

in the configuration of the new activation value, whereas ߶ଶ regulates the contribution 
of the neuron memory over its own state. In all experiments conducted in this paper 
we use ߶ଵ ൌ 0.95 and ߶ଶ ൌ 1 െ ߶ଵ since the new evidence is often desirable.  

The most used threshold functions are: the bivalent function, the trivalent function, 
and the sigmoid variants. It should be stated that authors will be focused on Sigmoid 
FCM, instead of discrete ones. It is motivated by the benchmarking analysis discussed 
in reference [11] where results revealed that the sigmoid function outperformed the 
other functions by the same decision model. Therefore, the proper selection of this 
threshold function may be crucial for the system behavior. From [12] some important 
observations were concluded and summarized as follows: 

• Binary and trivalent FCM cannot represent the degree of an increase or a 
decrease of a concept. Such discrete maps always converge to a fixed-point 
attractor or limit cycle since FCM are deterministic models.   

• Sigmoid FCM, by allowing neuron’s activation level, can also represent the 
neuron’s activation degree. They are suitable for qualitative and quantitative 
tasks, however, may additionally show chaotic behaviors.  
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3 Rough Cognitive Networks 

In this section we introduce a hybrid model for addressing decision-making problems 
called Rough Cognitive Networks (RCN). It combines the ability of RST for handling 
uncertainty and the simulation strength of FCM. The aim of this model is the mapping 
of an input vector to a feasible decision, using the knowledge obtained from historical 
data. Let us consider a set of decisions ܦ ൌ ሼ݀ଵ, … , ݀௞, … , ݀௡ሽ for some decision task, a 
decision system ܵܦ ൌ ሺܷ, ,ܣ ሼ݀ሽሻ where problem attributes are mainly continuous, and 
an unlabeled problem instance ௜ܱ . Next steps describe how to design a RCN which is 
capable of computing the most fitting decision for the new instance ௜ܱ  by ranking the 
activation value of decision concepts (i.e. map neurons). 

3.1 Determining Positive, Negative and Boundary Regions 

The first step of our proposal is oriented to determine positive, negative and boundary 
regions. It should be stated that we need to use weaker inseparability relations among 
objects in the universe ܷ, since we assume decision-making problems with continuous 
or mixed variables. It could be achieved by extending the concept of inseparability, so 
that they are grouped together in the same class of not identical objects, according to a 
similarity relationship ܴ. Hence, by replacing the equivalence relation with a weaker 
binary relation, an extension of the classical RST approach is achieved [2]. 

Equations (2) and (3) summarize how to compute lower and upper approximations 
respectively by using this scheme, where ܴᇱሺݔሻ denotes the similarity class associated 
to the object ݔ (that is, the set of objects which are similar to the instance ݔ according 
to some similarity relation ܴ). It suggests that an object can simultaneously belong to 
different similarity classes, so the covering induced by ܴᇱሺݔሻ over ܷ is not necessarily 
a partition [13]. Being more explicit, similarity relations do not provoke a partition of 
the universe ܷ, but rather generate classes of similarity. 

ܺכܤ  ൌ ሼݔ א ܷ ׷ ܴᇱሺݔሻ ك ܺሽ ܺכܤ            (2)  ൌ ራ ܴᇱሺݔሻ௫ א ௑  (3) 

While constructing an equivalence relation is trivial, constructing the apt similarity 
relation for a problem could be more complex. What is more, the global performance 
of our model will be reliant on the quality of such similarity relation, however, in the 
literature several methods for facing this challenge have been proposed. For example, 
Filiberto et al. [14] describe an optimization procedure for building accurate similarity 
relations using a population-based metaheuristic.  

Another aspect to be considered when designing a similarity relation is the opposite 
selection of the similarity (or distance) function. It is used for measuring the similarity 
(or difference) degree between two objects. In reference [15] the authors widely study 
the properties of several distance functions, where problem attributes are grouped into 
two large groups: continuous or discrete (both nominal and ordinal). This subject will 
be detailed in the Section 5, during numerical simulations.  
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3.2 Designing the Map Topology  

During this step, positive, negative and boundary regions are denoted as map neurons 
denoting input variables of the system. Following a similar reasoning, we use |ܦ| new 
concepts for measuring the activation degree of each decision. It should be mentioned 
that a boundaries region will be considered or not (this point will be clarified in next 
sub-sections). Afterwards, once concepts have been defined, we establish connections 
among all map neurons where causal values are computed as follows: 

• ܴଵ: ௜௟ݓ ݄݊݁ݐ ௞݀ ݏ݅ ௟ܥ ݀݊ܽ ௞ܲ ݏ݅ ௜ܥ݂݅ ൌ 1.0 
• ܴଶ: ௜௟ݓ ݄݊݁ݐ ௩ஷ௞݀ ݏ݅ ௟ܥ ݀݊ܽ ௞ܲ ݏ݅ ௜ܥ݂݅ ൌ െ1.0 
• ܴଷ: ௜௟ݓ ݄݊݁ݐ ௩ܲஷ௞ ݏ݅ ௟ܥ ݀݊ܽ ௞ܲ ݏ݅ ௜ܥ݂݅ ൌ െ1.0 
• ܴସ: ௜௟ݓ ݄݊݁ݐ ௞݀ ݏ݅ ௟ܥ ݀݊ܽ ௞ܰ ݏ݅ ௜ܥ݂݅ ൌ െ1.0 

In rules detailed above ܥ௜ and ܥ௟ denote two neurons, ௞ܲ and ௞ܰ are the positive and 
negative region related to the ݇th decision respectively, whereas ݓ௜௟ denote the causal 
weight between the cause ܥ௜ and the effect ܥ௟. If the positive region ௞ܲ is activated, 
then the FCM stimulates the ݇th decision node since we confidently know that objects 
belonging to the positive region will be categorically members of ܺ௞. On the contrary, 
if the negative region ௞ܰ  is activated, then the map will inhibit the corresponding 
decision, but we cannot conclude about other decisions.  

Boundary regions usually report uncertain information about the acceptance of the 
investigated decision, however, an unlabeled object ௜ܱ א  ሺܺ௞ሻ could be correctlyܦܰܤ
associated to decision ݀௞. Being more specific, let us suppose a problem having three 
decisions where ௜ܱ א ሺܦܰܤ ଵܺሻ, ௜ܱ א ሺܺଶሻ and ௜ܱܦܰܤ ב  ሺܺଷሻ. It means that theܦܰܤ
instance could be labeled as ݀ଵ or ݀ଶ as well, but it provides no evidence supporting 
decision class ݀ଷ. Encouraged by this remark we include another rule where further 
knowledge about boundary regions is considered. 

• ܴହ: ሺܺ௞ሻܦܰܤ௩ ܽ݊݀ ሺ݀ ݏ݅ ௟ܥ ݀݊ܽ ௞ܤ ݏ݅ ௜ܥ݂݅ ת ሺܺ௩ሻܦܰܤ ് ௜௟ݓ ݄݊݁ݐ ሻ׎ ൌ 0.5 

Observe that rules ܴଵ െ ܴସ are independent of the upper and lower approximations, 
while the rule ܴହ requires information about boundary regions. Hence, the final map 
could have at most 4|ܦ| neurons and 3|ܦ|ሺ1 ൅  ሻ causal links since the number of|ܦ|
boundary concepts will depend on the upper and lower approximations. 

3.3 Inferring the Most Fitting Decision 

The final phase of this hybrid model is related to the FCM exploitation, so we need to 
compute the activation value of input concepts (neurons that denote positive, negative 
and boundary regions). Being more explicit, the excitation vector will be calculated 
using objects belonging to the similarity class ܴᇱሺܱ௜ ሻ and their relation to each region. 
For example, let us suppose that |ܱܲܵሺ ଵܺሻ| ൌ 20, |ܴᇱሺܱ௜ሻ| ൌ 10, whereas the number of 
similar objects that belong to the positive region is given by the following expression: |ܴᇱሺܱ௜ሻ ת ܱܲܵሺܺ௞ሻ| ൌ 7. Then the activation degree of the positive neuron associated 
to the first decision will be 7 20⁄ ൌ 0.35. Following three rules generalize this scheme 
for all map concepts (regions), thus complementing the proposal. 
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• ܴ଺: ௜଴ܣ ݄݊݁ݐ ௞ܲ ݏ݅ ௜ܥ݂݅ ൌ |௒||௉ைௌሺ௑ೖሻ| ܻ ݁ݎ݄݁ݓ  ൌ ܴᇱሺܱ௜ሻ ת ܱܲܵሺܺ௞ሻ  
• ܴ଻: ௜଴ܣ ݄݊݁ݐ ௞ܰ ݏ݅ ௜ܥ݂݅ ൌ |௒||ோீሺ௑ೖሻ| ܻ ݁ݎ݄݁ݓ ൌ ܴᇱሺܱ௜ሻ ת   ሺܺ௞ሻܩܧܰ
• ଼ܴ: ௜଴ܣ ݄݊݁ݐ ௞ܤ ݏ݅ ௜ܥ݂݅ ൌ |௒||஻ே஽ሺ௑ೖሻ| ܻ ݁ݎ݄݁ݓ  ൌ ܴᇱሺܱ௜ሻ ת   ሺܺ௞ሻܦܰܤ

 
Figure 1 illustrates the FCM resulting from a decision-making problem having two 

decisions, assuming inconsistencies on the information system. Notice that each input 
neuron has a self-reinforcement connection with causal weight ݓ௜௜ ൌ 1 which partially 
preserves the initial knowledge during the simulation (exploitation) stage. 

The main reason for adopting FCM as inference mechanism is that they can handle 
incomplete or conflicting information. Besides, decision-making problems are usually 
characterized by various concepts or facts interrelated in complex ways, so the system 
feedback plays a prominent role by efficiently propagating causal influences in non-
trivial pathways. Formulating a precise mathematical model for such systems may be 
difficult or even impossible due to lack of numerical data, its unstructured nature, and 
dependence on imprecise verbal expressions. Observe that the performance of FCM is 
dependent on the initial weight setting and architecture [16], but our model provides a 
general framework for facing problems having different features. 

 

Fig. 1. Resultant FCM model for decision-making problems for two decisions 

It should be stated that our algorithm only requires the estimation of a similarity 
threshold, which is used for building lower and upper approximations. It means that 
we need to build precise similarity relations to ensure high-quality results. Being more 
explicit, if this similarity value is excessively small then positive regions will be small 
as well, leading to poor excitation of related neurons. It could be essential to select the 
most fitting decision when a new scenario is observed: the more active the positive 
region, the more desirable the decision (although the algorithm will compute the final 
decision taking into account all the evidence). If the similarity threshold is too large 
then boundary regions will be also large, increasing the global uncertainty during the 
model inference phase, decreasing the overall algorithm performance. 
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4 Numerical Simulations 

In the present section we study the behavior of the proposed RCN approach by using 
both synthetic and real-life data. In all simulations we adopt a Sigmoid RCN resulting 
in a FCM having a sigmoid threshold function. The sigmoid function uses a constant 
parameter ߣ ൐ 0 to adjust its inclination. In this paper we use ߣ ൌ 1, because this value 
showed best results in previous studies [16]. During synthetic simulations a decision-
making problem having three outcomes ݀1, ݀ଶ or ݀ଷ is assumed. With this purpose in 
mind we evaluate the system response for the following scenarios: 
 

i. the set ܴᇱሺܱ௜ሻ activates a single positive region 
ii. the set ܴᇱሺܱ௜ሻ activates two positive regions 

iii. the set ܴᇱሺܱ௜ሻ activates boundary regions 
 

To reach the first case we use the excitation values ଵܲ ൌ 0.23 and ଶܰ ൌ ଷܰ ൌ 0.12 
leading to the output ሺ1,0,0ሻ which is the desired solution. It should be stated that we 
know the expert preference for each target object ௜ܱ  in advance, but it is only used for 
measuring the algorithm performance. The second scenario could be more challenging 
and clarifies the real contribution of our algorithm. For example, the excitation values ଵܲ ൌ 0.045, ଶܲ ൌ 0.044, ଵܰ ൌ 0.0136, ଶܰ ൌ 0.0138, ଷܰ ൌ ଵܤ ,0.4 ൌ ଶܤ ൌ 0.685 has 
the output vector ሺ1.0,0.68,0ሻ which is a right state. Observe that activation values of 
positive regions ଵܲ and ଶܲ are quite similar, however, the overall evidence against 
decision ݀ଶ suggests accepting ݀ଵ. It could be also possible that two dominant positive 
regions have the same activation value being difficult to take a decision. In such cases 
the map computes the decision by using negative and boundary regions. 

The last scenario takes place when multiple boundary regions are noted at the same 
time, but no positive region is activated (e.g. ଵܰ ൌ 0.4 and ܤଶ ൌ ଷܤ ൌ 0.6). This initial 
state leads to the output ሺ0,0.54,0.54ሻ where choices ݀ଶ and ݀ଷ are equally adequate, 
but it definitely suggest rejecting ݀ଵ. In such cases the decision-maker could adjust the 
similarity threshold with the goal of reducing the cardinality of boundary regions, and 
so reducing the overall uncertainty over the system. But if no change is observed then 
both decisions should be equally considered by experts. Following figure 2 illustrates 
the network behavior for all synthetic scenarios discussed above, where the activation 
degree of each decision neuron (over the time) is plotted. 

 

    

Fig. 2. Activation value of decision neurons for different scenarios. i) a single positive region is 
activated, (ii) two positive regions are activated, (iii) only boundaries regions are activated. 
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4.1 Decision-Making in Travel Behavior Problems 

The transport management appears in all modern societies due to the cost that implies 
and because of the importance for social and economic process in a country. In such 
situations users intuitively select the most convenient transport mode mainly based on 
their expertise about a wide range of context variables such as: temperature, saving 
money, bus frequency, precipitation, physical comfort, etc. 

Recently, M. León et al. [17] proposed a modeling based on Cognitive Mapping 
theory to characterize mental representations of users. Moreover, a learning algorithm 
based on Swarm Intelligence for tuning the system causality was developed, allowing 
the simulation of observed patterns. It facilitates the formulation of new strategies that 
efficiently manage existing resources according to the customer’s preferences. Being 
more explicitly, each variable is evaluated by experts and then the best transport mode 
is selected (i.e. bus, car or bike). In order to evaluate the prediction capability of our 
model, we compare the accuracy on predicting the most adequate choice against other 
well-known algorithms such as: Multilayer Perceptron (MLP), Decision Trees (DT), 
Bayesian Networks (BN), and a Fuzzy Cognitive Map (FCM). 

Before presenting experimental results a similarity relation to determine when two 
objects belong to the same similarity class is required. Following equation shows the 
symmetric relation ܴ used in this work, where ݔ and ݕ are two objects of the universe 
of discourse, ܣ is the set of attributes describing the task, ݉௜ and ܯ௜  are the lower and 
upper values for the ݅th variable respectively, whereas the factor 0 ൏ ߝ ൑ 1 represents 
the similarity threshold. Notice that, if ߝ ൌ 1 then the relation ܴ is reflexive, transitive 
and symmetric leading to the Pawlak’s model for discrete problems. It is also possible 
to incorporate a weight for each attribute denoting the relevance degree of each 
variable which provides accurate approximations. However, in all simulations 
performed next, we assume that attributes variables have the same importance. 

ܴ: ݕܴݔ ฻ ෍ |ܣ|1 ቆ1 െ ௜ݔ| െ ௜ܯ|௜ݕ െ ݉௜ቇ|஺|
௜ୀଵ ൒ ߝ  (4) 

Table 1 shows the averaged prediction accuracy of RCN against four models taken 
from references [18]. It involves the accuracy for both optimistic and pessimistic trials 
over 220 knowledge bases concerning travel behavior problems. Toward this goal two 
studies were designed. In the first study (E1) stored scenarios serve either for training 
and validation (empirical error). The optimistic test is necessary because it reflects the 
self-consistency of the method, a prediction algorithm certainly cannot be deemed as 
a good one if its self-consistency is poor. In the second study (E2) testing cases were 
used to obtain a pessimist estimation (real error) using a cross- validation process with 
10-folds. In such experiments “predicting the most important decision” means to find 
the transport mode having better expected utility, while “predicting the correct order 
in decisions” means to establish a proper ranking among decisions. 

In case of the RCN model the similarity threshold ߝ is fixed to 0.9. This process is 
performed by “trial and error” although we could use a learning method as was stated 
in the previous section. However, in the present paper the authors prefer to be focused 
on the methodology to deal with decision-making problems.  
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Table 1. Prediction accuracy achieved by selected algorithms for both studies 

 Predicting the most important decision Predicting the correct order in decisions 

Study MLP BN DT FCM RCN MLP BN DT FCM RCN 

E1 97.38 95.63 94.26 99.47 99.50 94.38 93.12 87.29 96.27 95.11 
E2 92.06 91.37 89.39 93.74 93.29 82.40 80.25 77.59 88.72 90.32 
Av 94.72 93.50 91.82 96.60 95.89 88.39 86.68 82.44 92.45 92.71 

 
From Table 1 we can conclude that the RCN model is an appropriate alternative for 

addressing decision-making tasks having continuous (or mixed) features. It showed 
good prediction ability, outperforming traditional approaches such as MLP, BN or DT 
which have proved to be very competent classifiers. What is more, for this study case, 
our network performs comparable regarding the FCM model. It should remarked that 
the FCM topology introduced in [17] is problem-dependent, designed for addressing 
decision-making problems concerning public transportation issues, hence it cannot be 
generalized to other application domains. On the contrary, the RCN topology does not 
require specific information about the decision problem. 

5 Conclusions 

Decision-making problems have become an interesting research direction mainly due 
to their complexity and practical applications. In such problems experts express their 
preferences about multiple feasible alternatives according to the problem attributes or 
descriptors; the decision-making method must to derive a solution. 

A relevant issue in decision-making tasks is related to the knowledge quality, since 
experts frequently have different perceptions for the same situation. To deal with this 
drawback some RST-based algorithms have been developed (e.g. three-way decision 
rules). This paper proposed a novel approach which combines the capability of Rough 
Sets for handling inconsistent patterns, with the simulation features of Sigmoid Fuzzy 
Cognitive Maps. It results in a new hybrid model, called Rough Cognitive Networks, 
which allows to solve difficult decision-making problems having discrete, continuous 
or mixed attributes. This model comprises three stages: (i) the estimation of positive, 
negative and boundary regions, (ii) the construction of the map topology, and (iii) the 
exploitation phase using the similarity class of the target instance. 

During numerical simulations we observed that RCN are capable of computing the 
expected decision in scenarios where positive or boundary regions have similar (even 
identical) activation value. The main reason behind this positive result arises from the 
map inference process, which iteratively accentuates a pattern. The sigmoid threshold 
function also plays an important role in the simulation phase because it quantifies the 
activation degree of decision neurons. Similarly, using all computed regions allows to 
select the appropriate output from decisions having similar activation.  

In a second study we compare the performance of our algorithm against traditional 
classifiers by using a real-life study case. From this study we noticed that RCM have 
high prediction capability, even without using specific knowledge about the decision 
problem. The future work will be focused on exploring the accuracy of such networks 
when facing more challenging classification problems. 
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