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    Chapter 2   
 Overview of the ADAMTS Superfamily 

             Suneel     S.     Apte     

2.1            What Are ADAMTS Proteases, and How Are They 
Related to Other Metalloproteases? 

 ADAMTS proteases were unknown until 1997, when Kuno et al. [ 1 ] identifi ed a 
novel metalloprotease with a catalytic domain containing a reprolysin (or snake 
venom-like) active-site sequence motif found in ADAM (a disintegrin and metallo-
protease) proteases [ 2 ]. Among the predicted features of this new protease that set it 
apart from the ADAMs were the presence of thrombospondin type 1 repeats (TSRs) 
and the absence of a membrane-spanning domain, which is present in all ADAMs. 
Subsequently, sequencing of the human and mouse genomes enabled discovery of 
additional mammalian gene products that shared the characteristics of ADAMTS1. 
These 19 gene products resembled each other more closely in domain composition 
and primary structure than they did other metalloproteases, leading to designation of 
a new protease family [ 3 ,  4 ]. The protease named as ADAMTS5 [ 4 ] was also subse-
quently named ADAMTS11 [ 5 ]; therefore, the designation ADAMTS11 is no longer 
used. ADAMTS proteases have two functional domains, namely, a protease domain 
and an adjoining domain comprised of multiple modules, including TSRs, which is 
termed the ancillary domain (Fig.  2.1 ) [ 6 ]. ADAMTS proteases belong to a super-
family of ADAMTS proteins, which also includes 7 ADAMTS-like (ADAMTSL) 
proteins in mammals [ 6 ]. ADAMTSLs lack a propeptide, catalytic module, and 
disintegrin-like module, i.e., they lack the regions comprising the protease domain 
of ADAMTS proteases (Fig.  2.1 ), and, therefore, are not proteases [ 7 ]. ADAMTSLs 
are encoded by a distinct set of genes and do not result from alternative splicing of, 
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or the use of, alternative promoters within ADAMTS genes. Notably, MMPs and 
ADAMs do not have such non-protease relatives.

   Identifi cation of ADAMTS orthologs in invertebrate genomes, such as those of 
the roundworm  C. elegans , fruit fl y  D. melanogaster , and sea squirt  Ciona intesti-
nalis , allowed determination of the evolutionary relationships within the family [ 8 ]. 
This phylogenetic analysis suggested that mammalian ADAMTS proteases arose 
from duplication and divergence of a small number of related proteases encoded 
by ancestral genomes [ 8 ]. As a consequence of gene duplication, most ADAMTS 
proteases (ADAMTS13 as exception) have one or more homologous proteases 
(Fig.  2.1 ), and thus the mammalian ADAMTS family is divided into several sub-
families [ 8 ,  9 ]. ADAMTS13 is likely to be a relatively recent, chordate innovation, 
possibly related to evolution of a closed circulation and the need for hemostasis, 
since none of the invertebrate ADAMTS proteins resemble its primary structure or 
contain CUB domains. Instead, the most ancient ADAMTS genealogical relation-
ship appears to be between a nematode protein GON-1,  Drosophila  ADAMTS-A, 
and two mammalian orthologs, ADAMTS9 and ADAMTS20 [ 10 ]. 
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  Fig. 2.1    Structure of ADAMTS proteases. The domain backbone shared by each ADAMTS pro-
tease is shown at the  top , and modules present in every ADAMTS are shown in the box on the  left . 
The modular organization of specialized ADAMTS clades is indicated on the  right , and the key to 
these modules is located at the  bottom  of the fi gure. The clades are named according to structural 
or functional characteristics that best defi ne them. Domain structures are based on reference 
sequences obtained from GenBank. CUB, complement C1r/C1s, Uegf, Bmp1 domain; PLAC, 
protease and lacunin domain. Reproduced from Apte, S.S., 2009. A disintegrin-like and metallo-
protease (reprolysin type) with thrombospondin type 1 motif (ADAMTS) superfamily: Functions 
and mechanisms. Journal of Biological Chemistry 284, 31493–31497       
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 Although ADAMTS genes are dispersed throughout the human and mouse 
genomes, three pairs of probable tandem duplications are known [ 11 ]. Two of the 
tightly linked pairs involve functionally related ADAMTS proteases, i.e., ADAMTS1/
ADAMTS5 and ADAMTS8/ADAMTS15 on human chromosomes 21 and 11, 
respectively; the corresponding mouse loci are linked on mouse  chromosomes 16 
and 9, respectively. The third genetic linkage involves ADAMTS13, whose locus is 
linked to that of ADAMTSL2, on human chromosome 9q34 and mouse chromo-
some 2. These two genes are 120 and 100 kb apart in the human and mouse genomes, 
respectively, with  CACFD1  intervening in the human genome, along with two addi-
tional intervening genes,  Slc2a6  and  Tmem8c  in mouse. There is no evidence for 
functional interaction between ADAMTSL2 and ADAMTS13, and on the basis of 
the degenerate synteny in the region, ADAMTS13 and ADAMTSL2 genes probably 
do not share regulatory regions. ADAMTSL2 is  implicated in an inherited connec-
tive tissue disorder named geleophysic dysplasia [ 12 ,  13 ], which has no clinical 
overlap with thrombocytopenic purpura. 

 Like ADAMs and MMPs, ADAMTS proteases are synthesized as zymogens, 
which undergo proteolytic excision of the N-terminal propeptide by proprotein con-
vertases such as furin. The similarity of the ADAMTS catalytic domain structure 
and mechanism to ADAMs and MMPs renders them accessible to the same endog-
enous inhibitors, namely, tissue inhibitor of metalloproteinases-3 (TIMP3) and 
α2-macroglobulin [ 14 – 16 ]. These similarities contrast with a number of marked dis-
tinctions between the structures and biological roles of ADAMTS proteases and 
ADAM. In contrast to ADAMs, which are all cell membrane-anchored, as are sev-
eral membrane-bound MMPs, all ADAMTS proteases are secreted. Several have 
been shown to bind close to the cell surface through interactions with pericellular 
matrix components such as proteoglycans [ 10 ,  17 – 19 ]. Thus, the majority of 
ADAMTS proteases may be operational cell surface proteases that could have a role 
in modifying pericellular matrix, modulating signaling molecules, or infl uencing 
cell adhesion and migration. ADAMTS1 was shown to shed syndecan-4 [ 20 ] and the 
epidermal growth factor (EGF) receptor ligands heparin-binding EGF and amphi-
regulin [ 21 ]. However, there is little evidence that ADAMTS proteases have a major 
role in ectodomain shedding, which remains the principal function of ADAMs, a 
contention supported by strong genetic and biochemical evidence [ 2 ]. Paradoxically, 
while the overall structure and active-site sequences of ADAMTS proteases are 
closer to ADAMs than MMPs, ADAMTS proteases share with MMPs, but not 
ADAMs, a propensity for cleavage of extracellular matrix/secreted  molecules. This 
property is attributable to the affi nity of the ancillary domain for extracellular matrix.  

2.2     Biosynthesis, Posttranslational Modifi cation, 
and Regulation of ADAMTS Activity 

 As secreted proteins, all ADAMTS proteases have a signal peptide, which directs 
them to the endoplasmic reticulum (ER), where their folding and posttranslational 
modifi cation are initiated. There, disulfi de bond formation occurs between pairs of 
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cysteine residues brought together by energetically stable states of the newly folded 
protein, a process that is assisted by chaperones [ 22 ]. The ADAMTS9 propeptide 
provides an intramolecular chaperone required for its secretion, whereas the 
ADAMTS13 propeptide is not similarly required [ 23 ,  24 ]. Most ADAMTS  proteases 
(ADAMTS4 being an exception) have consensus motifs for N-glycosylation, which 
occurs co-translationally and is likely to assist folding, thus constituting a potential 
quality control mechanism. For instance, ADAMTS9 and a nematode ADAMTS 
named  mig-17  are not secreted if they lack N-glycosylation [ 23 ,  25 ,  26 ]. 

 TSRs undergo two uncommon posttranslational modifi cations in the ER, namely, 
protein  O -fucosylation [ 27 ] and  C -mannosylation [ 28 ].  O- fucosylation leads to 
addition of either a mono- or disaccharide to TSRs. The initiating modifi cation is the 
addition of fucose to a TSR containing the consensus sequence C 1 XX( S/T )C 2 XXG 
by protein O-fucosyltransferase 2 (POFUT2) [ 27 ]. Such motifs are present in only 
49 proteins encoded by the human genome, of which half belong to the ADAMTS 
superfamily. This  O- linked fucose then acts as the recipient for a glucose residue, a 
step mediated by β3-glucosyltransferase (B3GLCT), leading to the formation of a 
glucoseβ1–3fucose disaccharide [ 29 ].  O- fucosylation appears to be a quality control 
step for secretion, since POFUT2 does not modify unfolded peptides containing the 
consensus sequence, and neither ADAMTS13 nor ADAMTSL2 are secreted in the 
absence of  O- fucosylation [ 30 ,  31 ]. POFUT2, acting via modifi cation of one or 
more crucial substrates, possibly ADAMTS proteins, is essential for survival, since 
 Pofut2 -defi cient embryos do not survive past early development [ 32 ]. A probable 
candidate for this severe phenotype is ADAMTS9, since  Adamts9 - defi cient  embryos 
do not survive past gastrulation [ 33 ]. Human  POFUT2  mutations have not been 
identifi ed, presumably because they would be lethal. However,  B3GLCT  mutations 
lead to a specifi c disorder named Peters plus syndrome,  comprising several ocular 
and non-ocular manifestations, but not a hemostatic abnormality [ 34 ]. From this, it 
can be surmised that B3GLCT is required for secretion and/or function of some, but 
not all, ADAMTS proteins and, specifi cally, not for ADAMTS13 activity. 

 Protein  C -mannosylation occurs on Trp (W 0 ) residues within W 0 XXW +3  or 
W 0 XXC +3  motifs, which lie just upstream of the  O- fucosylation consensus sequence 
in TSRs; this modifi cation has been shown to occur on ADAMTSL1 and is pre-
dicted in other superfamily members [ 35 ,  36 ]. Since  C -mannosylation occurs on 
unfolded peptides, it is unlikely to be a quality control mechanism or a prerequisite 
for folding, and its precise function in ADAMTS proteins is not known. In addition 
to these three forms of glycosylation, ADAMTS7 and ADAMTS12, which are 
orthologous proteins, undergo extensive O-glycosylation in regions having the 
sequence attributes of mucin domains, namely, an abundance of Pro, Ser, and Thr 
residues [ 19 ]. Furthermore, their mucin domains contain sequons for attachment of 
glycosaminoglycan (GAG) chains. Indeed, ADAMTS7 is modifi ed by attachment 
of the GAG chondroitin sulfate [ 19 ], which makes ADAMTS7 the only protease 
that is also a proteoglycan, and supports the likelihood of similar modifi cation 
occurring at sequons present in ADAMTS12 [ 19 ]. 

 Most ADAMTS propeptides are over 200 amino acids (aa) in length and contain 
three Cys residues, whereas the ADAMTS13 propeptide is only 40-residue long and 
contains two Cys residues [ 24 ]. ADAMTS propeptides are excised by proprotein 
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convertases, e.g., furin, in the trans-Golgi or extracellularly, i.e., at the cell surface 
or in extracellular matrix [ 10 ,  14 ,  18 ,  19 ,  37 – 41 ]. A typical furin processing site 
(Arg-Xaa-Arg/Lys-Arg) is present in all ADAMTS proteases but ADAMTS10 at 
the junction of the propeptide and catalytic module. ADAMTS10 has a suboptimal 
(Gly-Leu-Lys-Arg) site at the propeptide–catalytic module junction, but contains 
additional consensus sites within the propeptide [ 42 ]. Whereas propeptide excision 
was not required for activity of ADAMTS9 and ADAMTS13 [ 23 ,  24 ], it is essential 
for activity of ADAMTS1, ADAMTS4, ADAMTS5, and ADAMTS15 [ 38 – 40 ,  43 ]. 

 A structure of the ADAMTS13 catalytic domain is presently unavailable. 
However, three-dimensional structures of the catalytic and disintegrin-like modules 
of ADAMTS1, ADAMTS4, and ADAMTS5 were obtained by X-ray crystallogra-
phy and showed a very similar fold [ 44 – 46 ]. These structures demonstrated that the 
ADAMTS disintegrin-like module did not resemble snake venom disintegrins, but 
formed a unique conserved fold whose N-terminal half resembled ADAM cysteine- 
rich domains. These structures also showed that the disintegrin-like module was 
closely juxtaposed to the catalytic module and formed part of the interacting surface 
with inhibitors, i.e., it provided a functional extension of the catalytic domain. 
Indeed, exclusion of the disintegrin-like module from ADAMTS-like proteins [ 6 ] 
further suggests that the ADAMTS protease domain comprises both the catalytic 
domain and disintegrin-like modules. 

 ADAMTS protease domains without attached ancillary domains generally lack 
activity toward native substrates, since the ancillary domains constitute a major 
substrate-binding region, as shown by several studies employing recombinant 
ADAMTS proteases, including ADAMTS13 [ 17 ,  47 – 49 ]. A crystal structure 
obtained for the ADAMTS13 ancillary domain (excluding the C-terminal TSRs and 
CUB modules) [ 50 ] has been invaluable in understanding the three-dimensional 
topography and mechanisms of the ADAMTS family and is the only available ancil-
lary domain structure to date. Together with site-directed mutagenesis of the 
ADAMTS13 ancillary domain and localization of epitopes for ADAMTS13 autoan-
tibodies, the structure demonstrated the importance of exosites that mediate its 
activity against vWF [ 51 ,  52 ]. 

 There are several examples of posttranslational modifi cation of ADAMTS sub-
strates being crucial determinants of their proteolytic activity. For example, prote-
olysis of the proteoglycans aggrecan and versican by ADAMTS1, ADAMTS4, and 
ADAMTS5 requires the chondroitin sulfate side chains on these substrates, since 
the deglycosylated substrates are poorly cleaved [ 53 ,  54 ]. Indeed, recent work iden-
tifi ed two chondroitin sulfate attachment sites on versican V1 that lie in greatest 
proximity to the cleaved Glu 441 –Ala 442  bond as specifi c and essential determinants 
of ADAMTS1 and ADAMTS5 activity [ 53 ]. O-linked glycans of vWF have been 
shown to infl uence its proteolysis by ADAMTS13 [ 55 ]. ADAMTS2 activity against 
procollagen I requires that this substrate have a triple helical conformation [ 56 ]. 
In the case of ADAMTS13 processing of vWF, stretching of the A1–A3 domains 
fl anking the scissile bond is required, constituting an unusual, shear force-mediated 
“posttranslational” substrate modifi cation [ 57 ,  58 ]. This requirement may explain 
why partial vWF denaturation using urea is required for effi cient processing by 
ADAMTS13 in vitro. ADAMTS activity can also be regulated by cofactors or 
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inhibited by interactions with other molecules. For example, ADAMTS13 processing 
of vWF can be accelerated by factor VIII [ 52 ]. Fibulin-1 is a cofactor for ADAMTS1 
and ADAMTS5 [ 59 – 61 ], whereas fi bronectin inhibits ADAMTS4 [ 62 ]. The 
ADAMTS-like protein papilin was shown to be a noncompetitive inhibitor of 
ADAMTS2 [ 63 ].  

2.3     Biological and Disease Pathways Involving 
ADAMTS Proteases 

 This chapter highlights ADAMTS proteases that are unequivocally implicated in 
biological pathways through identifi cation of mutations in Mendelian disorders or 
via engineered animal mutations. 

 ADAMTS1 defi ciency in mice leads to considerable lethality at birth, together 
with a high frequency of genitourinary anomalies such as hydronephrosis [ 64 ,  65 ]. 
Surviving female  Adamts1  null mice are infertile because ADAMTS1 is required 
for versican proteolysis during maturation and rupture of the ovarian follicle [ 66 – 68 ]. 
ADAMTS1 is also required for versican proteolysis during myocardial compaction, 
a morphogenetic process in which cardiac myocytes are brought together during 
the embryonic period to form a functional myocardium [ 69 ]. The implication of 
ADAMTS2 in collagen maturation via a bovine genetic disorder named dermato-
sparaxis predated the association of ADAMTS13 with von Willebrand factor. 
Dermatosparaxis results from accumulation of unprocessed cutaneous procollagen 
having a “hieroglyphic” ultrastructural appearance, leading to extreme skin fragility 
that is the hallmark of this disorder [ 70 ]. The underlying mechanism was identifi ed 
as the lack of an enzymatic activity essential for the removal of the N-propeptide of 
procollagen I, the major collagen type in the dermis of the skin [ 71 ]. Later, a human 
connective tissue disorder, Ehlers–Danlos syndrome type VIIc (or dermatosparactic 
type), having similar skin fragility and collagen fi bril anomalies was identifi ed [ 72 ] 
(Table  2.1 ), and both the bovine and human conditions were attributed to ADAMTS2 
mutations in the respective species [ 73 ]. ADAMTS3, an ADAMTS2 ortholog, pro-
cesses procollagen II and procollagen III and is highly expressed in cartilage, where 
collagen II is a major component [ 74 ,  75 ]. In addition, this enzyme was recently 
shown to proteolytically activate the pro-angiogenic and pro-lymphangiogenic fac-
tor VEGF-C. Proteolysis of VEGF-C is enhanced by the binding of ADAMTS3 to a 
cofactor, collagen- and calcium-binding epidermal growth factor domain 1 (CCBE1) 
[ 76 ]. The cleavage site in VEGF-C is similar to that in procollagens, and CCBE1 
has a C-terminal domain with collagenous repeats, which may provide the basis for 
its interaction with ADAMTS3.

   ADAMTS4 and ADAMTS5 (termed aggrecanase-1 and aggrecanase-2, respec-
tively) are implicated in proteolytic destruction and loss of aggrecan from 
joint cartilage in osteoarthritis [ 77 ]. Aggrecan is a heavily modifi ed chondroitin 
sulfate proteoglycan that interacts with hyaluronan in cartilage extracellular matrix. 
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The large aggregates thus formed are highly hydrated and endow cartilage with its 
shock-absorbing properties. Proteolysis of aggrecan is thought to be a major initiat-
ing mechanism of arthritis, since it exposes other cartilage components such as 
collagen II to subsequent destruction by MMPs and other proteases. Aggrecanases 
are considered to be a major drug target in arthritis, and many small-molecule 
active-site inhibitors and function-blocking antibodies have been generated and 
investigated preclinically [ 77 ,  78 ]. ADAMTS5 is strongly expressed in cardiac out-
fl ow tract endocardial cushions, where it is required for versican proteolysis during 
the sculpting of cushions to form thin valve leafl ets, and is implicated in TGFβ 
signaling [ 79 ,  80 ].  Adamts5 -defi cient mice had reduced sculpting of pulmonic 
valves during embryogenesis and myxomatous mitral valves in adult hearts [ 79 ]. 

 ADAMTS9 is crucial for early mouse development, since embryos lacking this 
protease do not survive past gastrulation [ 81 ]. This highly conserved protease has 
signifi cant roles in mammalian development gleaned from analysis of single and 
combinatorial mouse mutants. For example, ADAMTS9 haploinsuffi ciency leads to 
cardiac and aortic defects and to a highly penetrant ocular anterior segment dysgen-
esis [ 82 ,  83 ]. In combination with the  Adamts 20 bt  homozygous mutant,  Adamts9  
haploinsuffi ciency leads to death at birth from cleft palate [ 33 ].  ADAMTS10  muta-
tions lead to Weill–Marchesani syndrome, with short stature, brachydactyly and 
ectopia lentis (dislocation of the lens) being the major clinical features (Table  2.1 ) 
[ 84 ]. Since WMS is also caused by fi brillin-1 mutations [ 85 ], a functional relation-
ship between ADAMTS10 and fi brillin-1 has emerged and is validated by studies 
showing that ADAMTS10 binds fi brillin-1 and enhances microfi bril biogenesis [ 42 ]. 
ADAMTS10 cleaves fi brillin-1 poorly [ 42 ], and ectopia lentis in WMS suggests 
that ADAMTS10 is primarily required for the formation of the zonule, a microfi bril-
comprised structure that suspends the lens in the optic path. A WMS- like phenotype 
in humans, and ectopia lentis in dogs, results from  ADAMTS17  mutations [ 86 ,  87 ], 
suggesting it may function similarly to ADAMTS10 (Table  2.1 ). 

      Table 2.1    Human Mendelian disorders resulting from ADAMTS mutations   

 Mendelian disorder 
 MIM 
number 

 Gene name and 
chromosomal locus 

 Mode of 
inheritance 

 Ehlers–Danlos syndrome (EDS), 
dermatosparaxis type or (VIIC) 

 225410  ADAMTS2, 5q35.3 [ 73 ]  Autosomal 
recessive 

 Weill–Marchesani syndrome 
1/Weill–Marchesani syndrome, 
autosomal recessive/mesodermal 
dysmorphodystrophy, congenital 

 277600  ADAMTS10/19p13.2 [ 84 ]  Autosomal 
recessive 

 Thrombotic thrombocytopenic 
purpura, congenital/Upshaw–
Schulman syndrome 

 274150  ADAMTS13, 9q34.2 [ 109 ]  Autosomal 
recessive 

 Weill–Marchesani-like syndrome  613195  ADAMTS17, 15q26.3 [ 87 ]  Autosomal 
recessive 

 Microcornea, myopic chorioretinal 
atrophy, and telecanthus (MMCAT) 

 615458  ADAMTS18, 16q23.1 [ 91 ]  Autosomal 
recessive 
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 Recently, rats with a targeted mutation of  Adamts16  identifi ed its potential role 
in regulation of blood pressure and male fertility [ 88 ,  89 ], and other works have 
suggested a connection between  Adamts16  and renal development [ 90 ]. The related 
protease ADAMTS18 is implicated in a syndrome comprising microcornea, myopic 
chorioretinal atrophy, and telecanthus (Table  2.1 ) [ 91 ,  92 ]. The  Adamts 20 bt  mutant 
has a white spotting phenotype, with the spotting confi ned to the mid-torso, and 
results from failure of neural crest-derived melanoblasts to properly colonize hair 
follicles in that region (hair follicles, but not the intervening skin, are the exclusive 
domain of melanoblasts in mice) [ 93 ,  94 ]. ADAMTS20 is not required for neural 
crest cell migration, but for the proliferation and survival of neural crest cells once 
they reach the hair follicles [ 94 ]. 

 As further evidence of cooperativity of ADAMTS proteases, mice with com-
bined  Adamts5  and  Adamts20  defi ciency have soft tissue syndactyly, which results 
from failure of interdigital web regression in the embryo [ 59 ]. Interdigital webs are 
present not only in aquatic birds and bats but also during embryogenesis in humans, 
mice, and other mammals, where they participate in the development of digits. They 
regress by rapid sculpting after digit formation is complete, i.e., by massive apopto-
sis coupled with matrix proteolysis. ADAMTS proteolysis of versican in the inter-
digit matrix is required for apoptosis of interdigit mesenchyme, suggesting that 
these ADAMTS proteases couple matrix proteolysis to cell death during web 
regression [ 59 ]. A similar role for  Adamts9  in web regression was elucidated fi rst in 
combination with  Adamts5  or  Adamts20  and, more recently, by its limb-specifi c 
conditional inactivation [ 59 ,  81 ]. 

 An interesting contrast between ADAMTS13 and other family members relates 
to substrate specifi city. The biology of thrombotic thrombocytopenic purpura 
 suggests an exclusive protease–substrate relationship between ADAMTS13 and von 
Willebrand factor, whereas other ADAMTS proteases appear not to be as exqui-
sitely specifi c. For example, numerous substrates have been identifi ed for the proto-
typic ADAMTS protease, ADAMTS1, including chondroitin sulfate proteoglycans 
such as aggrecan and versican, collagen I, nidogen-1 and nidogen-2, the matri-
cellular proteins thrombospondin-1 and thrombospondin-2, and the cell-anchored 
EGFR ligands HB-EGF and amphiregulin [ 20 ,  21 ,  95 – 99 ]. Of these, however, a 
signifi cant biological impact has hitherto been established mostly for proteolysis of 
versican [ 67 – 69 ], which is also targeted by ADAMTS4, ADAMTS5, ADAMTS9, 
ADAMTS15, and ADAMTS20 [ 10 ,  39 ,  43 ,  94 ,  99 ,  100 ]. 

 Genome-wide association studies and transcriptome analysis have identifi ed 
associations of ADAMTS loci with several common disorders [ 101 – 105 ], but these 
associations remain suggestive until functionally validated. This is because the sin-
gle nucleotide polymorphisms used in GWAS map only to the vicinity of the gene 
locus, i.e., with few exceptions, they are not within the exons of the gene, and do not 
introduce amino acid changes in the proteins. Furthermore, proximity of the SNP to 
the intergenic or intronic regions of an ADAMTS gene locus does not imply that it 
is necessarily in a regulatory region of that gene, since the SNP may actually affect 
regulation of another locus in the general region or, sometimes, even further away if 
it lies within an enhancer. Thus, SNPs do not immediately implicate the ADAMTS 
protease in that disease unless additional conditions are met, for which there are 
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currently few examples. One SNP for which this burden of proof has been partially 
met is ADAMTS7, which was associated with coronary artery disease [ 106 ]. One of 
the SNPs led to a Ser 214 Pro substitution in the propeptide. Biochemical analysis fol-
lowing expression of the Ser and Pro variants suggested that the Pro variant quanti-
tatively impaired ADAMTS7 propeptide excision by furin [ 107 ], which is thought 
to be a prerequisite for proteolytic activity. Thus, the Pro variant potentially has 
lower activity, and individuals with the Pro/Pro ADAMTS7 protein are predicted to 
have reduced protease activity compared to those with Ser/Ser variants [ 107 ].  

2.4     Summary and Conclusions 

 This chapter provides the reader with a concise background on the general molecular 
aspects of ADAMTS proteases and demonstrates their considerable diversity of 
structure and function. It is clear that ADAMTS13 is something of an outlier among 
the 19-member ADAMTS family. ADAMTS13 structural biology, enzyme–substrate 
interactions, posttranslational modifi cation, biochemical assays, and roles in genetic 
and acquired disease are better understood than any other ADAMTS protease. It is 
the only family member presently for which enzymatic replacement via production 
of recombinant enzyme is sought [ 108 ], whereas a specifi c blockade is sought for 
ADAMTS4 and ADAMTS5 in osteoarthritis. Although ADAMTS13 has been argu-
ably more extensively studied for longer than most other family members, there 
is much about it remaining to be investigated. For instance, little is known about 
its transcriptional regulation, intermolecular interactions, and turnover. Continuing 
research on ADAMTS13, with the state of the art represented in this volume, as well 
as other ADAMTS proteases, will continue to elucidate the shared principles and 
individual distinctions of this remarkable protease family.     
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