
A Review of Static Analysis Approaches
for Programming Exercises

Michael Striewe and Michael Goedicke

University of Duisburg-Essen, Germany
{michael.striewe,michael.goedicke}uni-due.de

Abstract. Static source code analysis is a common feature in automated
grading and tutoring systems for programming exercises. Different ap-
proaches and tools are used in this area, each with individual benefits
and drawbacks, which have direct influence on the quality of assessment
feedback. In this paper, different principal approaches and different tools
for static analysis are presented, evaluated and compared regarding their
usefulness in learning scenarios. The goal is to draw a connection between
the technical outcomes of source code analysis and the didactical bene-
fits that can be gained from it for programming education and feedback
generation.

1 Introduction

Automated grading and assessment tools for programming exercises are in use
in many ways in higher education. Surveys from 2005 [3] and 2010 [16] list a
significant amount of different systems and numbers have grown since then. One
of the most common features of systems for automated grading of programming
exercises is static analysis of source code. The range includes checks for syntac-
tical correctness of source code up to checks for structural similarities between a
student’s solution and a sample solution [32]. Different approaches are used and
different tools and techniques are integrated into these systems. For each decision
for a tool or technique individual positive and negative effects on the quality of
feedback given by the system can be assumed. However, reviews and comparisons
of program analysis tools usually focus on bug finding quality in the context of
industrial applications by running some kinds of benchmark contests (e.g. [24])
or analyzing case studies (e.g. [1]). Thus it is the goal of this paper to compare
and evaluate different principal approaches to static code analysis specifically
in the context of automated grading and assessment. Special attention is paid
to the connections between technical outcomes of source code analysis and the
didactical benefits that can be gained from it for programming education and
feedback generation.

This paper focuses on techniques applicable in automated grading and as-
sessment systems that are running as a server application, allowing on-line sub-
mission of exercise solutions. We are not concerned with analysis and feedback
mechanisms integrated into special IDEs as learning environments. To ensure a

M. Kalz and E. Ras (Eds.): CAA 2014, CCIS 439, pp. 100–113, 2014.
c© Springer International Publishing Switzerland 2014



A Review of Static Analysis Approaches for Programming Exercises 101

reasonable limited scope, this paper also focuses on approaches and tools use-
ful in the context of object-oriented programming with Java. Results may be
partially valid for other object-oriented programming languages than Java. Sim-
ilarly, some results may be partially valid for static analysis for other program-
ming paradigms.

Static analysis capabilities of tools for automated grading and assessment
have also been reviewed in the context of structural similarity analysis [22]. This
type of analysis intends to give hints on the systematic extension of incomplete
solutions as also considered in this paper. Another large branch of static analysis
in learning scenarios is the use of metrics (e.g. [20]). Research and application
in this area is more focused on an overall quality measure for solutions than in
detailed feedback for single mistakes and will not be considered in this paper.

This contribution is organized as follows: Section 2 gives an overview on the
special requirements of static analysis of source code in the context of automated
grading and assessment. It also gives an overview on prominent systems for auto-
mated grading and tutoring. Section 3 discusses differences between approaches,
such as differences between analysis of source code and byte code. These compar-
isons are made as independently from actual tools as possible. Section 4 discusses
features of several tools which are known to be used in current automated grad-
ing and tutoring system. Section 5 concludes the paper.

2 Static Analysis in Automated Grading and Tutoring

The goal of automated grading and tutoring tools in learning scenarios is twofold:
First, automated tutoring is intended to enable students to develop correct so-
lutions for exercises without intensive assistance by a human teacher. Thus it
focuses on giving useful hints on incorrect and incomplete solutions that go be-
yond plain messages like “error in line X”. Second, automated grading is intended
to assist teachers in the tedious task of grading large numbers of assignments,
especially if formative assessments are conducted several times in a course. In
this scenario it focuses on giving adequate marks for solutions, which especially
includes distinctions between major and minor errors. The common ground for
both scenarios is to generate meaningful feedback automatically, based on a
thorough analysis of source code submitted by students.

int x,y,z = 0;
// << some code here >>
if (x + y < y + z);
{
x = y - z;

}

Listing 1.1. A piece of Java source code which is syntactically correct, but contains a
completely useless if-statement



102 M. Striewe and M. Goedicke

The most basic way of giving feedback to a solution of a programming exercise
are reports on syntactical errors as generated by a compiler. For many students,
writing syntactically correct code is the first obstacle in learning programming [9]
and thus compiler messages are the first automated feedback they see. As this type
of feedback can be generated locally on the student’s own computer it is of minor
importance for on-line submission systems.Anyway, compilermessagesas feedback
on programming errors are not specific to learning scenarios. Instead, more specific
requirements for automated feedback can be derived from learning scenarios:

– Static analysis can check for source code which is syntactically correct but
shows misunderstood concepts. A typical example for Java is shown in List-
ing 1.1. Even an experienced teacher may need some time to realize that this
if-statement is useless because of the extra semicolon at the end of its line.
Mistakes like this can be detected by static analysis and reported in con-
junction with a short explanation of the related concepts. The same applies
for violated coding conventions. Similar to compiler messages, detecting this
kind of mistakes is not necessarily specific to learning scenarios, as these mis-
takes can in general also be made by experienced programmers. However, we
can state as a requirement, that static analysis in learning scenarios needs to
check for more than syntactical errors. As a second requirement we can also
state that static analysis in learning scenarios must be able to give feedback
to parts of the program that have no relevant functionality.

– Static analysis can check for source code which is correct in general terms,
but not allowed in the context of a certain exercise or execution environment.
For example, an exercise may ask students to implement a linked list on their
own. Obviously, the use of java.util.LinkedList should not be allowed in
this case. In contrast to the requirement discussed above, this is no general
coding convention, but specific to a particular exercise. Other exercises may
allow to use this existing implementation. Thus static analysis in learning
scenarios needs to be easily configurable for each specific exercise.

– Similar to the requirement discussed above, there may be code structures
that are required in any correct solution of an exercise. For example, an
exercise may ask students to solve a problem by implementing a recursive
algorithm. In this case, any solution that does not involve recursion is wrong
in terms of the task description, even if the running program produces the
correct output. Hence static analysis in learning scenarios must be able to re-
port not only the presence of undesired code structures, but also the absence
of desired code structures.

– In tutoring scenarios students may expect to be not only informed about the
existence of a mistake, but to get hints on how to correct this mistake and
improve their solution. This is especially true for solutions that are correct
in syntax and functionality, but do not completely fulfill the requirements
for the given exercise. In these cases, students may expect to get a hint on
the next step to be taken. Thus the most sophisticated requirement for static
analysis is to give feedback on how to systematically extend an incomplete
piece of source code to reach a given goal.



A Review of Static Analysis Approaches for Programming Exercises 103

Note that there is at least one more requirement in automated grading and
assessment systems which involves source code analysis: Checks for plagiarism.
We leave this (and similar requirements) out of the scope of this paper, since the
required analysis is of different nature than the others discussed in this paper.
Checks for plagiarism in general include comparisons between many solutions
created by students instead of analysis of a single solution or a comparison
between one student’s solution and a sample solution. For a study on plagiarism
detection tools in automated grading systems refer e.g. to [13].

Not only requirements in the context of automated grading and tutoring can
be characterized, but also typical properties of solutions submitted by students.
In most cases, automated tools are used in the context of introductory courses,
where large numbers of solutions have to be graded. Exercises in these courses
are of moderate complexity, so solutions do not consist of more than a few Java
classes and a few methods in each of these classes. Enhanced concepts like Aspect
Oriented Programming or reflection are typically not among the topics of these
courses, so there is no need to care about these in static analysis. Solutions are
often created based on code templates or at least prescribed method signatures,
so assumptions about existing names for methods and perhaps variables can be
used as an entry point for static analysis. As already mentioned above, checking
the existence of such prescribed structures is an explicit requirement in grading
and tutoring.

Table 1. Static code analysis capabilities of some automated grading and tutoring
systems

Name Source Code Analysis Byte Code Analysis
ASB yes (CheckStyle) yes (FindBugs)
CourseMarker yes no
Duesie yes (PMD) no
EASy no yes (FindBugs)
ELP yes no
JACK yes no
Marmoset no yes (FindBugs)
Praktomat yes (CheckStyle) no
Web-CAT yes (CheckStyle/PMD) yes

From the literature the following automated grading and tutoring systems for
Java could be reported (in alphabetical order): ASAP [10], ASB [21], BOSS [17],
CourseMarker [14], Duesie [15], EASy [12], eduComponents [4], ELP [31], GATE
[28], JACK [29], Marmoset [27], Mooshak [19], Online Judge [6], Praktomat [33],
Web-CAT [26], xLx [25]. Table 1 gives a more detailed overview on those tools
that involve more static code analysis capabilities than plain compiler checks.
The use of other external tools than CheckStyle [7], FindBugs [11], and PMD
[23] could not be found in the literature. All three tools are open source and
non-commercial projects. CourseMarker and ELP employ software metrics for
static analysis. ELP uses a XML representation of the abstract syntax tree for



104 M. Striewe and M. Goedicke

this purpose and offers also comparison of syntax trees for students’ solutions
and sample solutions [32]. JACK uses a graph transformation engine [18] and the
graph query language GReQL [5] for analysis of abstract syntax graphs, which
are abstract syntax trees enriched by additional elements. We will elaborate more
on this later on.

All systems listed above understand static code analysis in automated grading
primarily as applying rule based checks. All tools named above do also handle
code analysis as rule based or query based inspection, respectively. Consequently,
Section 3 and Section 4 of this paper focus on rule based checks as well.

3 Comparing Approaches

This section compares technical approaches used in the tools and systems iden-
tified above. Comparison is focused on the general benefits and drawbacks of
a specific technique, ignoring limitations or extensions raising from a specific
implementation of that technique.

3.1 Source Code vs. Byte Code Analysis

As already suggested by the layout of Table 1 it is important to know whether
static code analysis is carried out on source code or byte code. For programming
languages other than Java, which are not considered in this paper, byte code may
be replaced by machine code. While source code is directly written by students,
byte code is generated from the source code by a compiler. Thus the first question
to answer is whether byte code can be generated in any case. Since we restricted
ourselves to on-line submission systems and assumed students to be able to
compile source code on their own, we can also assume that submitted solutions
do not contain compiler errors. Thus byte code of a complete solution can be
generated and byte code analysis tools have no disadvantage in comparison to
source code analysis tools regarding this aspect.

Regarding checking capabilities beyond syntactical checks both source code
and byte code analysis are able to report more than syntactical errors. For ex-
ample, inheritance structures, number of method parameters or types of fields
are visible both in source code and in byte code.

Regarding feedback on irrelevant code statements it is important to know that
a compiler may be able to remove unnecessary statements for code optimization.
While this is beneficial for several reasons in productive environments, it may be
a drawback in learning scenarios: Static analysis on byte code is not necessarily
able to report unnecessary statements, if these are removed by the compiler. If
the compiler gives a notice about removed statements, these messages can of
course be used as feedback messages to students. Source code analysis can give
feedback on unnecessary statements without general limitations.

Regarding configurability with respect to individual exercises it can be ob-
served that exercise specific hooks like names for classes, methods, or fields are
available both in source code and in byte code. Technically there is no major



A Review of Static Analysis Approaches for Programming Exercises 105

difference in analyzing e.g. the parse tree of source code or its related byte code.
So if a flexible and configurable way of defining checks exist, it can be used for
both formats.

Regarding feedback on missing statements the desired granularity has to be
taken into account. For example, any kind of loop statement is represented by
goto-statements in byte code. If a task description requires to use a loop, but
there is no goto-statement in the byte code, this can be reported as a mistake.
However, if the task description requires to use a specific type of loop, it cannot
reliably be derived from an existing goto-statement, whether this specific type
of loop has been used. Although all loop constructs in Java result in typical byte
code patterns, analysis of these patterns is not trivial in all cases. In source code
analysis, this problem does not exist, since every statement can be recognized
from the source code directly.

Regarding hints on systematic extension of incomplete solutions the same
concerns as above have to be applied. By comparison of a student’s solution and
a sample solution a missing loop can be determined both in source code or in
byte code. In this case the system can suggest to think about loops. However,
if both solutions contain a loop, only source code analysis is able to give more
specific hints on completing a certain type of loop, e.g. by detecting a missing
termination condition in a for-statement.

In summary, byte code analysis does not fulfill all requirements for learning
scenarios, while source code analysis seems to do so with respect to all aspects.

3.2 Trees vs. Graphs

As mentioned towards the end of Section 2, there are approaches using an ab-
stract syntax tree, while other approaches use an abstract syntax graph. An
abstract syntax graph is basically an abstract syntax tree, which is enriched by
additional arcs, e.g. for connecting method call nodes to the respective method
declaration or accesses to fields to the respective field declaration [30]. See Fig-
ure 1 for an illustrating example. Solid arcs belong to the abstract syntax tree,
while dashed arcs extend this tree to an abstract syntax graph. The information
used for insertion of this arcs is computed in a post-processing step after parsing
by resolving names and scopes. Hence it has to be noticed that the difference
between graphs and trees is mainly a difference of data formats. In fact, syntax
graphs are generated from syntax trees, so any information available in the graph
is also available in the tree. However, it can be considered to make a difference
whether this information is available explicitly or implicitly.

The capabilities of checking for more than syntactical errors are not affected by
the choice of data format. The same is true for capabilities in reporting missing
elements of a solution, because in both cases basically the same structures have
to be searched. Configurability with respect to individual exercises is also not
affected by the choice of data format.

Irrelevant pieces of code can possibly be found more easily in syntax graphs,
e.g. unused methods can be detected by searching method declaration nodes
without incoming arcs from respective method call nodes. Hints on systematic



106 M. Striewe and M. Goedicke

Fig. 1. Example showing an abstract syntax graph for a simple Java class with a
constructor and a method. The solid arcs form the underlying abstract syntax tree.

extension of incomplete solutions can have benefits from this fact, because this
way hints on missing connections between parts of a solution can easily be given.
So generating abstract syntax graphs from abstract syntax trees before starting
an analysis seems to be a valuable preprocessing step, which makes some opera-
tions easier. However, it does not add functional benefits in the learning scenario.
Another aspect is discussed in Section 4.2 later in this paper.

3.3 Single File vs. Multi File Analysis

From the tools discussed in this paper, CheckStyle limits itself to checking only
single source files, while all other tools allow to analyze multiple files. Since au-
tomated grading is often used in courses with several hundred students, analysis
time is a limited resource. Time can possibly be saved by performing analysis
in parallel, which is easier if only single files have to be handled. Thus it is
a reasonable question whether multi file analysis is necessary because of other
requirements of the learning scenario.

The goal of checking for more than syntactical errors is not affected by this
question, since other mistakes can also be found in single files. In fact, many
solutions of simple programming exercises do not consist of more than one source
file at all and static program analysis is not blocked this way.

Finding irrelevant code statements is much harder when single file analysis
is applied. For example a method may appear unused in a single file because



A Review of Static Analysis Approaches for Programming Exercises 107

it is not called by the class defined in this file, but at the same time it can be
called from another class defined in a separate file. To handle this issue, storing
results from each file analysis and reviewing this intermediate results would
be necessary. The same applies for the search for missing elements, if the task
description does not state a specific class where the element has to be located.
If no intermediate results are stored, some properties of a solution cannot be
assessed. Consequently, configurability for individual exercises can considered to
be decreased with single file analysis in this case.

Giving hints on systematic extensions of an incomplete solution based on the
comparison to a sample solution is not affected by single or multi file analysis.
The total number of features compared may be reduced because of the reasons
given above, but each feature found in a single file of the sample solution and
missing in the student’s solution can be used for directing feedback.

4 Comparing Tool Features

In addition to general benefits and drawbacks of analysis approaches, tool spe-
cific issues have to be taken into account when integrating static checks into
automated grading and tutoring systems. This integration covers both technical
and organizational aspects: Technically, solution data has to be passed from the
systems to analysis tools and analysis results have to be passed back to the sys-
tems. Regarding organization, tools have to be configured for individual exercises
and results have to be interpreted with respect to marking schemes. All these
aspects are investigated in this section based on the five tools named already
above (Section 2): CheckStyle, PMD, FindBugs, GReQL, and graph transfor-
mations. For the latter, graph transformation rules written in AGG [2] are taken
into account. Other tools for graph transformations exist, but to the best of
the authors knowledge they are not used for static code analysis in automated
grading and tutoring systems.

From these five tools, the first three are dedicated code analysis tools and do
thus provide features specific for this domain. GReQL and graph transformations
are general approaches for handling graphs, which can be used for checking
syntax graphs. However, they do not provide any features specific to static source
analysis natively and hence they require additional programming effort before
they can be used in automated grading and tutoring systems.

Quality of analysis results in terms of false positives or false negatives is not
considered in this paper, because they do not only depend on general capabilities
of tools and approaches, but on the quality of individual checking rules. Writ-
ing precise rules surely requires a good and powerful tool, but also experience
and domain knowledge. Thus it is beyond the scope of this paper dealing with
approaches and tools from a technical point of view.

4.1 Tool Integration

In general, two different ways exist to integrate an external tool into an existing
system: Integrating the external tool as a library and using its API or assuming



108 M. Striewe and M. Goedicke

Fig. 2. Analysis process in case of tool integration via an API

it as an existing separate installation and starting it from the command line as
a separate process. Further integration with respect to LMS is not considered
here, as this has to be done on the level of automated assessment tools as a
whole and not on the level of specific checking facilities.

CheckStyle, PMD, and FindBugs can be used via the command line as well
as via an API. GReQL as a query language can be executed via a library named
JGraLab, thus only API integration is possible. AGG does not offer possibilities
for being used via the command line, so it has to be integrated as library, too.
Figure 2 illustrates the general process of analysis in cases where the analysis
tool is connected via an API.

Regarding feedback quality for static analysis, these differences do not matter.
Once the integration is done, no further technical changes have to be applied
when the system is used. Since all tools offer API integration, no relevant lim-
itations regarding command line options or possible run time environments for
installation of these tools have to be obeyed.

Another aspect of integration is the aspect of semantics of checking rules
and results of checks. In CheckStyle, PMD and FindBugs it is clearly defined
how rules are applied and which results are returned when a rule matches or
is violated. Operations for executing specific checks and obtaining the results
are offered directly via the API or via command line options and result files
of a specified format, respectively. Different to that, the integration of GReQL
and AGG into automated grading and tutoring tools is completely left to the
developer. The APIs just offer general methods for executing queries or transfor-
mation rules, respectively. If a single check in terms of static program analysis is
broken down into several queries or transformation rules, the correct execution
of the checking process has to be handled by the developer of the tool integra-
tion. The same applies for the interpretation of analysis results. In particular,
GReQL and AGG can be integrated in the following way:

– AGG: In AGG, rules applied during analysis can be realized by graph trans-
formation rules which introduce additional nodes (e.g. error markers) into
the abstract syntax graph. Since these markers can be reused and removed
by other rules, this allows for chaining AGG rules to represent more complex
analysis rules. If all rules have been applied, the remaining error markers are
collected and a list of feedback can be assembled from the error messages
contained in each marker.



A Review of Static Analysis Approaches for Programming Exercises 109

– GReQL: In GReQL, queries on graph structures can be written (somewhat
similar to SQL) that report tuples of nodes that match the query. Hence
analysis rules can be expressed through a graph query and an expected
result, which may be an empty set if the query looks for undesired code
structures. If the actual result of the query does not match the expected
result, a feedback message is added to the list of feedback, which is returned
at the end of the process after all queries have been executed.

On the one hand, this requires much more effort in integration than with
dedicated analysis tools. On the other hand, this allows for more freedom in
defining complex input and interpreting results.

In summary, these results are not surprising. The more general a tool is, the
more effort is necessary to perform specialized tasks. However, since learning
scenarios may require very specialized and even exercise specific checks which
are not among the standard checks offered by dedicated program analysis tools,
the higher effort in tool integration can save effort in productive use.

4.2 Writing Checks and Feedback Rules

One of the requirements as listed in Section 2 is configurability for individual
exercises. Thus it is an important question how easy and flexible checking rules
can be written for specific tools. Since exercise specific feedback can only be
given if exercise specific checks are created, this is a core criterion. As discussed
at the beginning of this paper, this focus on feedback is a key difference between
industrial use of static analysis tools and use of these tools in e-assessment.

In CheckStyle and PMD, checking rules are implemented using the visitor
pattern which traverses the syntax tree. Both tools come with a large predefined
set of standard checks, which can be switched on and off as needed. Writing own
checks is possible by defining own operations for the visitor and integrating the
new implementation to the existing installation via a configuration file. As an
alternative, PMD also offers the possibility to define checks as XPath queries on
the syntax tree. These additional queries are also integrated by adding them to
the configuration. See Listing 1.2 for an example of an XPath query looking for
a broken if-statement as shown in Listing 1.1. FindBugs offers also a predefined
set of checks, but no simple facility to add own checks by implementing new
operations. Customizing FindBugs for individual exercises is thus not possible.

As more general approaches, GReQL and AGG offer native support for defin-
ing own rules and queries. In fact, GReQL as a query language does not offer
anything else than executing queries on graphs in a specified language and re-
porting results as tuples of nodes as described above. See Listing 1.3 for an
example for a GReQL query looking for a broken if-statement as shown in
Listing 1.1. The rule looks somewhat more complex than the one for PMD, but
this is no general observation. In fact, some of the rules built-in to PMD are
implemented directly in Java, because an XPath query for them would be too
complex [8]. GReQL allows to implement additional functions that can be used
in queries to realize complex checks, which allows to shorten queries as well.



110 M. Striewe and M. Goedicke

//IfStatement[@Else=’false’]/Statement[EmptyStatement]

Listing 1.2. XPath query for PMD searching for an if-statement that is broken
because of an extra semicolon following the condition

from x : V{IfStatement}
with not isEmpty(x -->{IfStatementThenStatement}&{EmptyStatement}) and

isEmpty(x -->{IfStatementElseStatement}&{Statement})
report x end

Listing 1.3. GReQL query searching for an if-statement that is broken because of an
extra semicolon following the condition. See listing 1.2 for the equivalent XPath query
for PMD.

AGG even offers a graphical interface for defining graph transformation rules,
so no explicit knowledge on graph traversals or query languages is needed. How-
ever, as a graph transformation engine, AGG is somewhat oversized for pure
matching of graph patterns. Writing code checks as graph transformation rules
is hardly intuitive and requires deep understanding of the way, the graph trans-
formation engine is integrated into the grading and tutoring system.

Tools which require to write and compile program code and to reconfigure an
existing installation for adding new checks can be considered not appropriate or
at least not convenient for learning scenarios with the need for exercise specific
checks. The same applies for tools which do not allow any easy extension at
all. Query languages like GReQL or XPath are much more appropriate in this
scenario, as long as the queries can be passed to the tool individually as needed.
Graphical editors may make writing rules easier, but currently no editors spe-
cialized on checking rules for static program analysis in learning scenarios exist.

It can be noticed that the differences between syntax trees and syntax graphs
as discussed in Section 3.2 are also important for the ease of writing checks. Find-
ing recursive methods can easily be expressed in a graph pattern by two nodes
for method declaration and method call, connected by a path from the decla-
ration to the call and an additional access arc from the call to the declaration.
Finding the same situation on a syntax tree would require at least string com-
parison for method names. In addition, finding indirect recursion where methodA
calls methodB and this calls methodA again requires additional effort for storing
and comparing partial results. In this case, preparing a syntax graph serves as
a preprocessing step which performs exactly this additional operations once, so
they need not be defined again for every check.

4.3 Weighting Checks

An important issue in automated grading is the design of a marking scheme.
Often it is desirable to distinguish between smaller and greater mistakes and to
give grades depending on which checking rules have been violated.



A Review of Static Analysis Approaches for Programming Exercises 111

CheckStyle, PMD and FindBugs allow weighting by using severity levels for
rules. This allows for simple marking schemes where solutions with mistakes of
low severity get better grades than solutions with mistakes of higher severity.
Constructing more fine grained marking schemes requires additional effort and
additional input, providing weights for each checking rule. The data formats used
to specify rules in the external tools are not capable of handling these additional
information directly.

Graph transformations and GReQL as general approaches for finding patterns
in graphs do not offer any native support for weights. As already discussed above,
a specific data format for defining rules has to be written anyway, so it is no
major additional effort to extend this data format to handle weights.

In summary, dedicated program analysis tools which use severity levels or simi-
lar facilities allow to construct simple marking schemes. More general approaches
require additional effort even for simple schemes. However, if fine grained schemes
with individual weights for every rule are desired, additional effort is necessary
in any case.

5 Conclusions

In this paper, several approaches and tools for static source code analysis in
automated grading and tutoring tools have been reviewed and compared. It can
be stated that it is necessary in learning scenarios to use tools that are able
to handle multiple source files. Preprocessing steps, which extend syntax trees
to syntax graphs with additional information turned out to be helpful for more
flexible and exercise specific configuration of checking tools. Consequently, some
of the tools discussed in this paper can be considered insufficient to use the full
power of static analysis for feedback generation in e-assessment systems.

Every approach investigated in this paper can be integrated into automated
grading and tutoring systems with no major technical obstacles, but additional
effort is needed to map fine grained marking schemes to checking rules. Addi-
tional effort is unavoidable if general approaches like GReQL or graph trans-
formations should be used, but these approaches do also offer more flexibility
towards the integration of customized and exercise specific checks. Consequently,
it can be considered acceptable to spent time on this integration work in order
to obtain better results and more detailed feedback opportunities.

From these results, a mixture of PMD, GReQL and AGG seems to be the
best goal for future development work: It should result in graphical editing of
checking rules for multiple source code files based on syntax graphs, focused on
static source code analysis and capable of handling fine grained marking schemes.
None of the tools discussed in this paper has already reached this level of quality.

References

1. Static Analysis Tool Exposition (SATE 2009) Workshop, Co-located with 11th
semiannual Software Assurance Forum, Arlington, VA (2009)

2. AGG website, http://tfs.cs.tu-berlin.de/agg/

http://tfs.cs.tu-berlin.de/agg/


112 M. Striewe and M. Goedicke

3. Ala-Mutka, K.M.: A Survey of Automated Assessment Approaches for Program-
ming Assignments. Computer Science Education 15(2), 83–102 (2005)

4. Amelung, M., Forbrig, P., Rösner, D.: Towards generic and flexible web services
for e-assessment. In: ITiCSE 2008: Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science Education, pp. 219–224. ACM,
New York (2008)

5. Bildhauer, D., Ebert, J.: Querying Software Abstraction Graphs. In: Working Ses-
sion on Query Technologies and Applications for Program Comprehension (QTAPC
2008), Collocated with ICPC 2008 (2008)

6. Cheang, B., Kurnia, A., Lim, A., Oon, W.-C.: On automated grading of program-
ming assignments in an academic institution. Comput. Educ. 41(2), 121–131 (2003)

7. CheckStyle Project, http://checkstyle.sourceforge.net
8. Copeland, T.: PMD applied. Centennial Books (2005)
9. Denny, P., Luxton-Reilly, A., Tempero, E.D., Hendrickx, J.: Understanding the

syntax barrier for novices. In: Rößling, G., Naps, T.L., Spannagel, C. (eds.) Pro-
ceedings of the 16th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2011, Darmstadt, Germany, June 27-29, pp.
208–212. ACM (2011)

10. Douce, C., Livingstone, D., Orwell, J., Grindle, S., Cobb, J.: A technical perspective
on ASAP - automated systems for assessment of programming. In: Proceedings of
the 9th CAA Conference, Loughborough University (2005)

11. FindBugs Project, http://findbugs.sourceforge.net/
12. Gruttmann, S.J.: Formatives E-Assessment in der Hochschullehre. MV-

Wissenschaft (2009)
13. Hage, J., Rademaker, P., van Vugt, N.: A comparison of plagiarism detection tools.

Technical report, Department of Information and Computing Sciences, Utrecht
University (2010)

14. Higgins, C., Hegazy, T., Symeonidis, P., Tsintsifas, A.: The CourseMarker CBA
System: Improvements over Ceilidh. Education and Information Technologies 8(3),
287–304 (2003)

15. Hoffmann, A., Quast, A., Wismüller, R.: Online-Übungssystem für die Program-
mierausbildung zur Einführung in die Informatik. In: Seehusen, S., Lucke, U., Fis-
cher, S. (eds.) DeLFI 2008, 6. e-Learning Fachtagung Informatik. LNI, vol. 132,
pp. 173–184. GI (2008)

16. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of recent systems
for automatic assessment of programming assignments. In: Proceedings of the 10th
Koli Calling International Conference on Computing Education Research, Koli
Calling 2010, pp. 86–93. ACM, New York (2010)

17. Joy, M., Griffiths, N., Boyatt, R.: The BOSS Online Submission and Assessment
System. Journal on Educational Resources in Computing (JERIC) 5(3) (2005)

18. Köllmann, C., Goedicke, M.: A Specification Language for Static Analysis of Stu-
dent Exercises. In: Proceedings of the International Conference on Automated Soft-
ware Engineering (2008)

19. Leal, J.P., Silva, F.: Mooshak: a Web-based multi-site programming contest system.
Software–Practice & Experience 33(6), 567–581 (2003)

20. Mengel, S.A., Yerramilli, V.: A case study of the static analysis of the quality of
novice student programs. In: The Proceedings of the Thirtieth SIGCSE Technical
Symposium on Computer Science Education, SIGCSE 1999, pp. 78–82. ACM, New
York (1999)

http://checkstyle.sourceforge.net
http://findbugs.sourceforge.net/


A Review of Static Analysis Approaches for Programming Exercises 113

21. Morth, T., Oechsle, R., Schloß, H., Schwinn, M.: Automatische Bewertung studen-
tischer Software. In: Workshop “Rechnerunterstütztes Selbststudium in der Infor-
mati”, Universität Siegen, 17 (September 2007)

22. Naude, K.A.: Assessing Program Code through Static Structural Similarity. Mas-
ter’s Thesis, Faculty of Science, Nelson Mandela Metropolitan University (2007)

23. PMD Project, http://pmd.sourceforge.net/
24. Rutar, N., Almazan, C.B., Foster, J.S.: A Comparison of Bug Finding Tools for

Java. In: Proceedings of the 15th International Symposium on Software Reliability
Engineering, pp. 245–256. IEEE Computer Society, Washington, DC (2004)

25. Schwieren, J., Vossen, G., Westerkamp, P.: Using Software Testing Techniques
for Efficient Handling of Programming Exercises in an e-Learning Platform. The
Electronic Journal of e-Learning 4(1), 87–94 (2006)

26. Shah, A.: Web-CAT: A Web-based Center for Automated Testing. Master’s thesis,
Virginia Polytechnic Institute and State University (2003)

27. Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J.K., Padua-Perez,
N.: Experiences with Marmoset: Designing and using an advanced submission and
testing system for programming courses. SIGCSE Bull. 38(3), 13–17 (2006)

28. Strickroth, S., Olivier, H., Pinkwart, N.: Das GATE-System: Qualitätssteigerung
durch Selbsttests für Studenten bei der Onlineabgabe von Übungsaufgaben? In:
DeLFI 2011 - Die 9. e-Learning Fachtagung Informatik der Gesellschaft für Infor-
matik e.V. LNI, vol. 188, pp. 115–126. GI (2011)

29. Striewe, M., Balz, M., Goedicke, M.: A Flexible and Modular Software Architec-
ture for Computer Aided Assessments and Automated Marking. In: Proceedings of
the First International Conference on Computer Supported Education (CSEDU),
Lisboa, Portugal, March 23-26, vol. 2, pp. 54–61. INSTICC (2009)

30. Striewe, M., Balz, M., Goedicke, M.: Enabling Graph Transformations on Program
Code. In: Proceedings of the 4th International Workshop on Graph Based Tools,
Enschede, The Netherlands (2010)

31. Truong, N., Bancroft, P., Roe, P.: A Web Based Environment for Learning to
Program. In: Proceedings of the 26th Annual Conference of ACSC, pp. 255–264
(2003)

32. Truong, N., Roe, P., Bancroft, P.: Static Analysis of Students’ Java Programs. In:
Lister, R., Young, A.L. (eds.) Sixth Australasian Computing Education Conference
(ACE 2004), Dunedin, New Zealand, pp. 317–325 (2004)

33. Zeller, A.: Making Students Read and Review Code. In: Proceedings of the 5th
ACM SIGCSE/SIGCUE Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2000), Helsinki, Finland, pp. 89–92 (2000)

http://pmd.sourceforge.net/

	A Review of Static Analysis Approaches for Programming Exercises
	1 Introduction
	2 Static Analysis in Automated Grading and Tutoring
	3 Comparing Approaches
	3.1 Source Code vs. Byte Code Analysis
	3.2 Trees vs. Graphs
	3.3 Single File vs. Multi File Analysis

	4 Comparing Tool Features
	4.1 Tool Integration
	4.2 Writing Checks and Feedback Rules
	4.3 Weighting Checks

	5 Conclusions
	References




