
Chapter 14
Real-Time Hand Gesture Recognition
Using RGB-D Sensor

Yuan Yao, Fan Zhang and Yun Fu

Abstract RGB-D sensor-based gesture recognition is one of the most effective
techniques for human–computer interaction (HCI). In this chapter, we propose a
new hand motion capture procedure for establishing the real gesture data set. A hand
partition scheme is designed for color-based semi-automatic labeling. This method
is integrated into a vision-based hand gesture recognition framework for developing
desktop applications. We use the Kinect sensor to achieve more reliable and accurate
tracking in the desktop environment. Moreover, a hand contour model is proposed
to simplify the gesture matching process, which can reduce the computational com-
plexity of gesture matching. This framework allows tracking hand gestures in 3D
space and matching gestures with simple contour model and thus supports complex
real-time interactions. The experimental evaluations and a real-world demo of hand
gesture interaction demonstrate the effectiveness of this framework.
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14.1 Introduction

Human–computer interaction (HCI) is an important driving force for computer vision
and pattern classification fields. With the development of mobile devices and sensors,
hand gestures have become a popular way to interact with tablet PC, smart phones,
and personal computers. This trend is not only occurring on the two-dimensional
screen, but also happens in the 3D world. However, color images cannot provide
enough information for tracking hands in three-dimensional space because much of
the spatial position information has to be inferred and this leads to multiple 2D–3D
mappings. New sensors, such as Kinect, Xtion, and Leap Motion, can provide the abil-
ity to monitor 3D motions, thus make it simple to build systems for human computer
interaction via 3D hand movements. This technological progress is very important
for applications in the domain of the arts [1], computer gaming [2], computer-aided
design [3], and remote control for robots [4]. Combining RGB and depth data will
reduce the complexity of target tracking in complicated environments. In addition,
the depth information can be utilized to avoid ambiguous mappings between images
and hand poses, and generate gestures with clear semantics. In the future, we can
expect more devices with built-in depth sensors.

Many hand gesture recognition methods are based on the body of work related to
body pose estimation [5]. The state of the art of body estimation techniques began to
make use of depth sensors to track human body parts [6, 7]. In recent research, simple
pixel features [8] and patches [9] were used as input. They use a random decision
forest to recognize different body parts and the orientations of a head, respectively.
These methods can be used directly in hand gesture recognition. However, classifiers
in these methods must be trained on a large dataset because the recognition process is
sensitive to appearance variations of the target shape and backgrounds. Such dataset
containing large variations is often hard to achieve.

For those applications using finger movements, accuracy is the primary consid-
eration. It requires the hand to move in a constrained desktop environment and be
close to the camera. In environments where the hand is close to the background,
segmenting that hand becomes difficult as the background features can be mistaken
for the hand and vice versa. In addition, the shape of the hand and the possible hand
motions are more complex than those found in the rest of the human body. These
problems make it difficult to apply the assumptions made by previous research on
body pose estimation.

There are two main challenges in developing hand gesture-based systems at
present. The first is how to locate the naked hand and reconstruct the hand pose
from raw data. There has been much investigation into hand tracking, hand pose
estimation, and gesture recognition. Erol et al. [5] summarized the difficulties faced
by these efforts. From the perspective of application development, we summarize
the hand tracking, hand pose estimation, and gesture recognition into a single chal-
lenge of reconstructing the hand pose from raw data. The second is how to repre-
sent the hand model, so that the hand gesture database can be efficiently acquired,
and corresponding indexing and searching strategies can be designed to satisfy the
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real-time hand gesture recognition requirements. Hand models are important for
training and recognition accuracy. However, collecting the labeled data required for
training is difficult.

We propose a new framework to solve the aforementioned problems. Firstly, we
segment a hand into different parts and use a 3D contour model to represent the hand
pose configuration. Then, a feature fusion technique [10] is used to unify color and
depth information for accurate hand localization. We use a pixel classifier to recognize
the different parts of a hand. In order to reduce the workload of establishing real
training data, we develop a semi-automatic labeling procedure, which uses both RGB
data and depth data to label colored hand patches. Finally, we generate the 3D contour
model from the classified pixels. Instead of matching between images, the 3D contour
model can be coded into strings. Therefore, the correspondence sample gesture can
be found by the nearest neighbor method. Using this framework, we develop a hand
gesture-controlled desktop application. Experiments show that gesture matching can
speed up efficiently to satisfy real-time recognition requirements.

14.2 Related Work

Over the past decades, many hand gesture-based interaction prototyping systems
have been developed. Ali et al. [5] reviewed some of this work. From a technical point
of view, the methodologies of pose estimation used in these systems can be roughly
divided into model-based generative methods [11], regression-based methods [12],
classification-based methods, and examplar-based methods [13].

Most of these methods do not focus on detecting hands. Some of them directly
use marker-based motion capture devices, such as a glove fixed with LEDs [14],
gloves with colored patterns [15], and data glove [16] to capture the motion of
palms and fingers. The accuracy of these systems is determined by the hardware,
which is less susceptible to interference from the environment. The shortage is that
hardware configurations for these systems are often expensive, inconvenient, and
uncomfortable, which make them difficult to use outside the laboratory environment.

People are most likely to adapt to tools for HCI that are less cumbersome. There
has been a growing interest in the bare-hand-based gesture-controlled system. Dif-
ferent methods have been developed to build the interactive systems. The essential
techniques are varying in these works, but the processing steps are similar, which con-
sists of hand detection and pose estimation. Therefore, we organized them into two
main categories, hand tracking and hand pose estimation, and are mainly concerned
about the methods that use RGB-D sensors.

14.2.1 Hand Localization and Tracking

Segmenting a hand from a cluttered background and tracking it steadily and robustly
is a challenging task. The skin color [17] and background subtraction [18] techniques
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are the preferred methods for detecting the image regions containing hands. These
types of methods, however, make a number of assumptions, e.g., hand is the only
active object in the camera scene; otherwise, complex classification methods must
be used. Low-level features-based classification methods [19], histogram [20, 21],
multi-scale model [22], and motion cues [23] are employed to overcome this problem.
Guo et al. [24] presented a method that combines the pixel-based hierarchical feature
for AdaBoosting, skin color detection, and codebook foreground detection model to
track the dynamic or static hand under changing backgrounds.

In order to improve the robustness and reduce the computation time, current
methods combine the ability of a depth camera with RGB information to extract hand
regions from multiple candidate regions based on volume bounding box [25], scale
[20], pixel probability [26], feature probability [10] and the distance to the camera.
Paul et al. [27] have given a comparison on depth image-based hand extraction and
RGB image-based hand extraction.

In some relatively early research works, depth data are usually used independently
to locate hands. David and Zahoor [28] detected local peaks from low-resolution
depth images, which are used as potential hand centers, and a palm radius is used
to segment the hand from wrist and arm. Paul et al. [29] used a minimum enclosing
ellipsoid to extract the major arm axis. In the perpendicular direction, the local
minimum of blob width can be used to segment the hand region from an arm. Depth-
based methods are fast. However, the segmentation accuracy is dependent on the
method of body pose estimation. Therefore, skin color map is computed to determine
which regions of the depth image should be selected [30]. In a recent review article,
Han et al. [31] gave a more detailed description on this topic, which covered the
depth data preprocessing, object tracking and recognition, human activity analysis,
and hand gesture analysis.

14.2.2 Hand Pose Estimation

In hand pose estimation, there are a number of methods developed to find a rela-
tionship between 2D hand shape and hand posture [32]. What we called the “hand
posture” is commonly defined by an articulated model along with joint angles and the
orientation of the palm. These parameters can be assigned different values based on
the hand shape extracted from image, and therefore, a large number of postures can
be generated. Some of them have predefined semantics, which can serve as gestures
and can be further used in human–computer interactive applications.

Model-based methods have also been popular because they can easily incorporate
constrains on hand shapes. However, they need complex trackers that are compu-
tationally expensive. Due to the fast movement of human hand, image database
an indexing technique [23] is employed, which makes it possible to recover hand
tracking from each frame. Wang and Popović [15] provided a real-time hand pose
estimation system based on this technique.
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To remove the ambiguity generated in the 2D projection of hand shapes, depth
sensors are used. Mo and Neumann [33] used 3D contours to identify fingers based
on a low-resolution depth image. Suryanarayan et al. [34] constructed a volume
descriptor in depth space and utilized it to recognize six gestures. Ren et al. [35] used
a finger-shape-based distance to distinguish different hand gestures. Liu and Shao
[36] proposed a adaptive learning methodology to generate discriminative spatio-
temporal features from RGB-D data, which can be used for high-level recognition
tasks. A dataset called Sheffield KInect Gesture (SKIG) is provided for hand gesture
recognition test.

To reconstruct a full degree of freedom hand model, the different parts of a hand
must be pre-labeled and recognized. One of the major approaches for dealing with
depth image-based body part recognition is to convert the pose estimation task into
a per-pixel classification problem [8]. A simple pixel feature can be used to decrease
the computational complexity. This technique can be directly used on hand parts
recognition if enough labeled training data are provided. Keskin et al. [37] divided
the hand into 21 different parts and used this method to train a per-pixel classifier for
segmenting each part. Then, a mean shift algorithm is used to estimate the position
of joints. Liang et al. [38] presented a novel framework which exploits both spatial
features and the temporal constraints to recover a hand model with 27 degrees of
freedom from RGB-D video sequences. So far, only small-scale experimental results
on hand pose estimation based on such methods are reported. Different properties of
hand poses, such as big deformation and fast motion, make it difficult to identify the
different parts of a hand from simple pixel features.

14.3 Framework Overview

As shown in Fig. 14.1, our framework consists of three stages: hand parts classi-
fication, hand gesture recognition, and application definition. Each stage contains
two different workflows. The upper workflow is used for acquiring training data
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Fig. 14.1 Framework of our hand gesture recognition system
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and to define gesture templates; the lower is employed to recognize hand gestures
in real-time applications. We decide to use a Kinect camera instead of a dedicated
camera as the input sensor for two reasons: (1) the Kinect sensor can provide both
RGB and depth information; (2) the accuracy of Kinect is very close to a laser-based
devices within a short range [39]. This makes Kinect a good choice for building
gesture-driven desktop applications, especially for Augmented Reality applications.
In addition, Kinect makes it easier to create a labeled training dataset using a semi-
automatic technique that combines the depth and RGB information. Once real hand
gestures are captured and labeled in the first stage, we can generate the corresponding
contour descriptors in the second stage and provide semantics for them in the third
stage. These definitions can then be used in the real applications.

14.3.1 Hand Parts Classification

In hand parts classification stage, we apply the per-pixel technique based on the
work by Shotton et al. [8]. To improve the framework’s usability in building real
HCI applications, we develop a new semi-automatic method for labeling depth pixels
containing hand into different classes. A glove with multiple colors is employed to
assist the labeling process. The labeling results are fairly noisy and require some
manual processing. The output of this procedure is a labeled training dataset. The
training set is fed into a classifier based on random decision forest [8]. For real
applications, we use a two-step segmentation process: the first step is to segment
the hand from the background, which is a binary classification problem; the second
is to segment the hand into individual parts based on the per-pixel classifier. Once
hands are extracted from a depth image, they are fed into the classifier that roughly
partitions them into different parts.

14.3.2 Gesture Recognition

In the second stage, we use an improved 3D contour model based on the model
proposed in [10]. The basic idea is that prior knowledge of hand structure can be
used to improve the accuracy of classification results. Thus, a contour model is used
to recognize both static and dynamic hand gestures.

This stage also contains two workflows. In the upper, training data are converted
into contour model-based descriptors and are incorporated into a gesture database.
The gesture templates in the database are indexed by a K-d tree structure to speed up
the gesture matching procedure. Once the detected hand is segmented into several
hand patches, we can generate a 3D hand contour model from it in the lower work
flow. This model contains not only gesture descriptors but also the 3D position of the
hand. In the demonstration application, we show how they are used for recognizing
dynamic gestures.
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14.3.3 Application Definition

In order to simplify the process of building real applications, we directly define
application-specific gestures in the gesture database. Once a similar hand contour
descriptor is matched in the database, an event is triggered to drive the system’s
response to that gesture.

14.4 Training Data Generation

Training data collection is always a nontrivial task. Inspired by the current research
of color-based motion tracking technique [15], we design two configurations of the
color glove. As shown in Fig. 14.2, the left pattern includes 9 patches, while the
right one includes 14 patches. Both patterns can be used. How to choice depends on
requirements of the application. In our previous work [40], the pattern of 14 patches
is used. We adopt the one with 9 patches to simplify the recognition in this chapter.

In order to collect the training data in a semi-automatic way, we need to combine
both RGB and depth information for labeling. The first task is to calibrate the RGB
and depth camera. There are many techniques that can be used to calibrate the two
cameras [41–43]. However, in our experiments, we directly obtain the pixels mapping
between RGB and depth cameras from the OpenNI Kinect SDK. The second task is
to locate the multi-color glove and recognize different color regions. We manually
initialize the hand location in the color image and then use mean shift for hand
tracking. After the location of the hand is estimated, the different parts of a hand are
identified. This is a challenging task because the measured color value can shift from
frame to frame due to illumination changes [44], which will result in very noisy
signals when depth pixel labeling is performed. In our work, a simple method is
employed. The different parts of a hand are initially labeled by using corresponding
color mask extracted from the color image. We trained a random forests classifier in
the HSV color space and use this classifier to refine the labeling. Finally, we manually
finish the labeling work.

Fig. 14.2 Color glove design
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Fig. 14.3 Hand location and labeling

14.4.1 Hand Localization

Depth sensors make segmentation under constrained conditions simpler than ever.
However, segmenting the hand from a cluttered background is still a challenging
problem, because the shape of the hand is very flexible. In our sample collection stage,
both RGB and depth information are used for localization of the hand. Figure 14.3
shows the procedure of recognizing the hand.

First, we ask users manually select several parts within a hand region (top left
image in Fig. 14.3). This selection uses a fixed sequence, which usually includes three
color regions from the first image of a gesture sequence. Then, a mean shift method
is used to track multiple hand parts simultaneously for these gesture sequences.
Therefore, the location and direction of the hand can be confirmed during the tracking
process.

At the same time, the shapes of foreground targets are segmented from the depth
image. We make use of the relationship between RGB and depth image to find where
the hand is located. This process generates a hand mask. Each depth pixel in this
region can be assigned a RGB color, which will generate a coarsely labeled gesture
sequence on depth pixels.

14.4.2 Color Classification

Coarsely labeled results need to be further refined. As shown in the last row of
Fig. 14.3, we use a random forests classifier to generate labels depending on pixel
colors on the glove. Those colors are converted into HSV space. We trained a random
forests classifier based on the 9 groups of manually labeled samples. In the training
and classification process, only the component of hue is considered.
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(a) (b)

Fig. 14.4 a Average accuracy and average error vs Number of trees b Average accuracy and average
error vs Deep of trees

Figure 14.4 shows the performance of the random forests-based labeling. In the
experiments, 50 % manually labeled samples are used as training set, and the other
data are used to test. Figure 14.4a reports the trends of average recognition accu-
racy and average false identification rate with different number of decision trees.
Figure 14.4b gives the average recognition accuracy and average false identification
rate with different deep of the random forests trees.

The output of the color classification step is used as training data for generating 3D
hand contours for the gesture database. During the semi-automatic labeling process,
there are many incorrectly labeled pixels. After color classification, manually labeling
process is still employed to remove this noise. There are 2,400 labeled frames of hand
samples from 6 people in our training database. Five different types of hand gesture
sequences are included in the database. By using the classification results, the average
labeling time is decreased from 6 min to 30 s for each image in our experiments.

14.5 Hand Patches Segmentation

There are two problems that need to be solved in the hand pose estimating process:
hand extraction and hand parts classification. Without strong assumptions about the
range of activities, segmenting hands from a cluttered background is difficult, because
of the interference of different objects in the scene and other body parts, such as arms,
head, and shoulder. Segmenting a deformable and rotatable hand into different parts
is also a challenging task. We use a two-step segmentation process in our approach.
One is the full hand extraction step, and the other is hand parts segmentation. The
former step uses a classification and tracking procedure to distinguish hand objects
from other objects. The latter step is to segment hand into parts depending on the
feature extracted from depth image.
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Fig. 14.5 Hands extraction

14.5.1 Hand Extraction

In order to discriminate hand-like objects from other foreground objects, a tracking
technique is used. The complete procedure is shown in Fig. 14.5.

For RGB images, the skin color pixels are extracted from RGB image by [45] to
generate the skin color mask (as shown in Fig. 14.5 upper middle).

For the depth image, we first assume that hands move within a certain distance
range to the camera (distance <1.6 m). Outside this range, part of the depth data is
often missing due to multiple reflections and scattering on the surface of the hand.
The assumption is also helpful in removing some of the noise. Then, a dynamic
threshold segmentation is used to extract multiple targets from the depth data (as
shown in Fig. 14.5 bottom middle). In this segmentation process, we convert the
depth image into a 8-bit gray image. A histogram with 256 bins is constructed on
this image, which is further smoothed by a Gaussian kernel. The local max and min
values in the histogram can be found by computing the gaussian derivatives for each
bin. Therefore, we can segment the depth image into multiple regions by the depth
clusters.

Both depth and RGB images are used to get the initial segmentation. The candidate
targets containing enough skin-colored pixels are kept as potential hand locations. In
experiments, this percentage is set to a constant value. We found that areas containing
70 % skin-colored pixels perform well during classification. A simple 2D shape
feature is used to classify targets into hands and other objects. After this process,
the selected targets are fed into a Kalman filter-based tracker to avoid any jitter,
noise, occlusions, and large deformations of the hand in the input video. We use a
standard Kalman filter described in [17] to track the trajectory of the palm center in
2D space. The segmentation and classification procedure are done for each frame.
Even if the hand is lost in a certain frame due to noise or temporary occlusion, it will
be recovered in the successive frames.
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Fig. 14.6 2D shape features defined on hand contour. The red points indicate the locations of
features

We use a 2D silhouette feature for determining if an object is a hand or not. This
feature uses local curvature on the contour to describe the geometry of the fingertips.
For each pixel on a contour, the feature is calculated by

acos((xA
i−1 − xA,H

i ) · (xA
i+1 − xA,H

i )) < T, (14.1)

where xA represents the coordinate of a depth pixel on a target contour A. A is
an approximated curve computed from the original hand contour extracted from a
depth image. x A,H

i is the coordinate of a depth pixel on A’s convex hull H . T is
an empirical threshold. As shown in Fig. 14.6a, the red points indicate where the
features are located. We found that T = 0.8 performs well in practice. It is not very
robust because the shape feature cannot always be detected from the contour in some
frames. In order to segment the hand from other extracted targets, we learn the prior
probability of the number of features from a group of training depth images.

Bayes rule is used to compute the posterior probability of an object being a hand.
The posterior is represented by P(h = 1|S ), which represents the likelihood of
observing a hand object when shape features S are given, we have

P(h = 1|S ) = P(S |h = 1)P(h = 1)

P(S )
, (14.2)

where P(h) is the prior probability that measures whether the target is a hand (h = 1)
or not (h = 0) without observing its color. We can estimate the probability den-
sity function of P(S |h = 1) and P(S |h = 0) from the training database. Here,
P(S ) = P(S |h = 1)P(h = 1) + P(S |h = 0)P(h = 0). Candidate regions are
chosen if their posterior probability is greater than a threshold.

14.5.2 Hand Parts Classification

Depending on a weak spatial prediction, the position feature defined in the depth
image [8] is simple and effective. However, it is not rotation invariant. The property
of rotation invariance is important for hand pose estimation, especially in the case,
the support of the body pose estimation is missing.
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Fig. 14.7 Position feature is a geometrical feature defined on the depth image (left), which repre-
sents local details. The red arrow’s direction approximates the normal, and the size approximates
the mean curvature (middle). In the 2D depth image, this feature can be computed by a neighborhood
sampling descriptor (right)

In order to overcome this problem, we create a new feature, which is defined over
the 3D surface constructed by the depth pixels. The distribution of depth values in a
neighborhood of a pixel is considered to identify which part of the hand that pixel
belongs to. As shown in Fig. 14.7(left), the relationship of depth pixels in a neighbor
domain can be represented as a graph G = (X, E), with pixels X and topology E .
Where X = [x1, x2, . . . , xn], xi = {xiu, yiv, dI (xi )} is the depth pixels set. dI (xi ) is
the depth value of pixel xi . Inspired by [46], we define the position feature for each
pixel xi by

fi (I, x) =
∑

i, j∈E

ωi, j
(
x j − xi

)
, (14.3)

where
∑

i, j∈E ωi, j = 1.

A graphical description of this position feature is given by Fig. 14.7(middle).
The neighbor domain information is introduced by the topology. In Eq. (14.3), the
direction of fi (I, x) approximates the pixel’s normal, and the size of fi (I, x) repre-
sents the mean curvature. We only use the size; thus, the position feature is rotation
invariant. In order to improve the computational efficiency, we use the pixel’s normal
and the mean curvature to compute the feature. In the algorithm, the key parameter
is the feature scale parameter ri, j , which represents the distance between xi and xj
(Fig. 14.7 right). By using a constant ri, j , we can define the position feature on the
depth image as

δi = L (xi ) = dI (xi ) − 1

n

∑

j∈E

sI (x j ), (14.4)

where sI (x) is the depth value of pixel x, n is a predefined number of sampling
points, and

sI (x) =
{

dI (x) x ∈ hand
b x /∈ hand

. (14.5)
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Fig. 14.8 Position feature in a rotated hand

Figure 14.8 shows that examples of the position features are computed on a series
of rotated hands. For illustration purposes, feature values are mapped into the RGB
color space. As can be seen in Fig. 14.6b, there is no clear boundary between the
palm center and hand edge. This means that the signal is weak. To overcome this
problem, we use a random decision forest to combine these features in all training
data. Since the contour of each hand is already detected, the position feature does
not depend on a specific background.

We use the 2D shape feature and the position feature to segment hand patches. The
geometry feature that was used in the original framework [10] is removed, because its
contribution for improving the accuracy is insignificant. Figure 14.8 shows the result
of classifying different parts of a hand using features of different scale extracted
from 1906 frames of test data. To improve the accuracy of classification and reduce
the false-positive rate, we refine the estimation results with a contour model in the
“gesture recognition” stage.

14.6 Gesture Recognition

For many applications, the goal of hand gesture recognition is not to recognize arbi-
trary 3D hand pose, but to recognize if a gesture is one of a fixed number of hand
poses. Therefore, in this work, we use a database indexing technique to implement
gesture recognition. A hand contour database is collected by using the training sam-
ples. In the following sections, we give the description of the contour model and the
similarity measures.

14.6.1 Contour Model

The final output of the estimation process is a labeled 3D contour. There are several
advantages of using labeled 3D contours as hand models. First, a contour is a simple
structure. It is easier to match two contours with different scales than matching
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image patches or articulated models. Second, the representation of a contour only
needs a small size descriptor, so it is more appropriate for database indexing-based
gesture recognition techniques, in which a large number of samples are collected for
gesture matching. Third, it is convenient to convert contours to other models, such
as articulated model and 3D skin model.

Contour Descriptor. The hand contour model C is represented by a ordered
list of points on the contour c = {vc

1, vc
2, . . . vc

n} with its corresponding label vector
l = {l1, l2, . . . ln}. Where v is a vertex on contour c. The value of n is determined
by the distance of the hand to the camera and describes the size of a hand contour
and is decided by the distance of the hand to the camera. Label vector provides
the information about specific hand contour segments belonging to certain hand
parts. As a descriptor, both 3D coordinate sequence and labeling index sequence
cannot provide a rotation and scale invariance. We add another sequence, m =
{m1, m2, . . . mn}, for the contour representation. m is a normalized length sequence.

mi = Length({vc
j |l j })

Length(c)
, (14.6)

where j represents the continuous indexing. The descriptor of the i th hand contour
Ci is represented by the {li

1mi
1, li

2mi
2, . . . li

dmi
d}, where d is the dimension of the

descriptor. By selecting d, most significant mi , d can be set to a fixed dimension.

14.6.2 Contour Generation

Given a 3D contour c, a natural method for constructing l is to directly search the set
of labeled points and, for each point vi , find the class with the maximum probability.
We define the probability as

P(c|vc
i ) = 1

n
γi

∑

j∈N (i)

Pj (c|v j ), (14.7)

where N (i) represents a vertex set in the neighbor area of vc
i . Pj (c|v j ) can be deduced

from P(c|x). γi is a learning parameter defined as

γi = pi
c

M

∑

k∈ς

P(c|vc
k), (14.8)

which considers the continuity of the 3D contour. Here, ς is a contour segment
that consists of some subset of indices of vi and its neighbor domain. M represents
the size of ς . pi

c is a learning parameter, which defines a connectivity relationship
between different contour segments. By using this model, the gesture recognition
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Fig. 14.9 Contour descriptor
alignment 4 2 1 3

1 2 3 4

1 3 2 4

process can be described as a sequence matching problem, which can also be used
to recover the 3D hand position.

14.6.3 Contour Matching

In order to measure the similarity of two contours, our task is to find a distance
function D(·) for fast matching. Once D(·) is determined, the descriptor can be
aligned according to Fig. 14.9. That means given a contour descriptor Ci , the query
result from a database should satisfy

Ci = arg min
i∈Ψ, j∈Ω

D(Ci , C j )w, (14.9)

where Ψ is the test set of contours, Ω represents the template database. w is a weight,
which is computed by

w =
∑

k={1,···d}
li
k xor l j

k . (14.10)

There are two possible cases where errors arise in generating of hand contours:
whole-to-whole matching and whole-to-part matching. We use Smith–Waterman
[47] algorithm to deal with both cases. In our application, we select the arm class as
the start of the descriptor, because in the data, the arms are typically longer than any
other hand parts and are always visible.

14.7 Validation

We evaluated our method on the dataset collected in Sect. 14.4. A total of 2564
frames was captured, each of which includes calibrated depth data, labeled hand parts
information, and a mask image of the hand region. All these data are compressed
and stored in a SQLite database. In the hand gesture recognition test, we compared
our method on a second RGB-D dataset provided in [35].
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(a)

(b)

Fig. 14.10 a Prior distribution of shape features. b Feature scale and average per-classes accuracy

14.7.1 Hand Detection

In most indoor bare-hand interaction applications, hands and objects often appear
together. So we assume P(h = 1) = P(h = 0) = 0.5; thus, Eq. (14.2) can be
simplified to

P(h = 1|S ) = P(S |h = 1)

P(S |h = 1) + P(S |h = 0))
. (14.11)

The distribution of P(S |h = 1) is learned from 600 frames that are randomly cho-
sen from the training database, while other objects of size similar to the hand, such as
head, bottles, apples, keyboards, computer mice, and books in the database, are used
to estimate P(S |h = 0). These two distributions are given in Fig. 14.10a, where the
blue bars and red bars represent the statistic results on hand and other objects, respec-
tively. With depth information, shape features can be extracted quickly employing a
pre-defined threshold. The number of shape features is counted and used to compute
Eq. (14.2). This method is tested on the remaining 1,800 images containing a clut-
tered background. The hand detection procedure achieves 54.5 % accuracy. After
using the skin color segmentation described in section V, the accuracy increases
to 94.7 %. The classification results are heavily dependent on the environment. In
our application, the frame-loss rate is less than 1 % during the tracking procedure.
Multiple hands can be processed simultaneously with small amount of additional
calculation. The disadvantage is that it will not work in the following scenarios: (1)
the scene contains the body; (2) one hand is occluded by another hand; (3) a person
is wearing gloves. Body skeletal trackers can be used to solve these problems.
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14.7.2 Hand Parts Classification

In hand parts classification experiment, we select 600 frames from 6 subjects for
training and use the other frames for testing. The training samples and testing samples
are collected from multiple indoor environment and with different backgrounds and
camera view angles.

Figure 14.10b shows the relationship between position feature scale and per-part
recognition accuracy rate. The mean per-class accuracy is used as a baseline. Instead
of using a single shape feature, we use the pixel’s normal and the pixel’s mean
curvature defined in Sect. 14.5 as the position feature. Compared with the per-part
recognition accuracy rate in our previous work [10], the classification results show a
significant improvement. This curve will change slightly when different topologies
are selected for shape feature.

Table 14.1 shows the per-pixel classification results of detecting different hand
patches. The experiment is done on 1,800 frames, where “CMC” indicates the region
near the root of little finger, and “TM” indicates the region near the root of thumb.
The average accuracy of recognition is 58.48 %. However, the misclassification rate
is still high. Shotton et al. [8] showed that using more training samples will improve
the mean per-class accuracy. However, labeling real data and generating synthetic
training data are nontrivial. Combining more features into the position feature will
also improve the mean per-class accuracy [10] but too many features might result in
the over-fitting problem.

Figure 14.11 shows the per-class accuracy for pixels located on the hand contour
(Fig. 14.11 black) and the per-class accuracy by using the contour model (Fig. 14.11
red). Compared with the results provided by the pixel classification, there is a large
improvement in contour model-based classification. The average accuracy of hand
parts classification is improved from 58.48 % to 77.68 %. The error rate is still large,
but hand orientation can be estimated from the contour, which can also be used in
gesture matching.

Table 14.1 Per-pixel hand parts classification results

Category Sample quantity True positive (%) False positive (%)

Thumb 1,574,265 51.0 46.30

Index 1,335,410 33.5 3.10

Middle 1,540,891 74.3 80.60

Ring 1,383,038 66.3 57.40

Small 1,085,247 29.6 21.60

CMC 2,756,895 63.0 44.80

Palm 2,587,585 85.1 83.20

TM 1,602,793 29.8 3.94

ARM 9,866,422 93.7 7.96

Average accuracy 58.48 38.78
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Fig. 14.11 Per-pixel classification accuracy and per-segment classification accuracy with contour
model

14.7.3 Gestures Recognition

Our method is tested on the database provided by the authors of [35] without chang-
ing any parameters and features. Because these samples do not provide the hand parts
segmentation, we capture the same gestures and manually labeled them for each sub-
ject. Then, the entire dataset of [35] is used for testing. Figure 14.12 shows the test
results in confusion matrix. Compared with the near-convex decomposition-based
Finger-Earth Mover’s Distance (FEMD) method, our method achieves a similar accu-
racy by using 40 training samples. Although the recognition rate of some categories
has not been significantly improved, the average true-positive rate is better.

We use a desktop computer with an AMD Phenom II X4, 3.0 GHz CPU with 3G
RAM to run the test. For each frame, the computation time includes approximately
10 ms for target segmentation, 22 ms for tracking, 17 ms for sampling and features
computation, 3 ms for classification, and 32 ms for contour matching. We use a small
gesture database that includes 320 hand contour descriptors to test the matching
of hand contours. Our C++ implementation processes each frame in 87 ms. GPU
acceleration is not used. It is capable to do a real-time gesture recognition on a
faster machine. A GPU version is needed when the application contains complex
interactions and scene rendering.
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Fig. 14.12 Confusion matrix of gestures recognition results. The gesture categories is ordered by
the original database. a Near-convex decomposition + FEMD [35]. b Hand contour matching

14.8 System Application

In order to evaluate the feasibility and effectiveness of the proposed framework, we
perform two case studies.

14.8.1 Augmented Reality Molecular Assembler

The fist application is based on a HCI program named AR Chemical [48], which is
an application that utilizes a tangible user interface for organic chemistry education.
The interface uses an Augmented Reality (AR) mouse and AR makers to allow users
to compose and directly interact with 3D molecular models. All interactions are done
on a real desk. The operation includes moving, dragging, positioning, and assembling
virtual structures in a 3D space. Therefore, delicate and complex interactive behaviors
and hand position information are needed.

We simulate this system and provide three hand gestures to replace the original
operation that used with the AR paddle and computer mouse. First, we use keyboard
to select atom and then use raising thumbs to simulate the mouse button. The finger
pointing action is used for positioning objects.

Once a gesture is detected, we need to record the starting position of the hand and
rotate the indicator mark on the 3D molecule, which inserts the atom into the right
position pointed to by the finger. Finally, the waving hand with a different orientation
is used to assist this assembling process by rotating the assembled molecule on the
platform.

The dynamic gesture recognition is realized in the application layer. We set up
two gesture buffers in the application: one is for reserving sequential contour with
3D vertices to get hand position; the other is for holding hand contour descriptors to
match the hand pose. We define simple interaction action rules on the buffers. This
scheme is easy to extend.
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Fig. 14.13 Waving gesture for rotation control

Fig. 14.14 Atom position selection and molecular assembling operation

Figure 14.13 shows the rotation operation. Figure 14.14 is sampled from a pro-
cedure of adding an atom into a molecule. This combination of four hand gestures
can drive the real-time visual interaction with complex visual feedback. Such type of
interactions can increase natural feeling of the operation. The Kinect-based system
is able to overcome the problem of illumination changing. We believe that other
applications, such as digital sculpture, painting and computer-aided design system
could benefit from this framework as well.

14.8.2 Xerrys Intelligent Rehabilitation System

By combining the body pose estimation, we applied our technology to a medical sys-
tem called Xerrys Intelligent Rehabilitation System for Hospitals, in short XIRSH.
XIRSH is a platform of new Kinect-based applications. The major objective of
XIRSH is to help patients conduct trainings and practices at the late stage of reha-
bilitation in hospitals. It can be considered as a comprehensive rehabilitation tool,
which provides new methods for occupational and physical therapy and combines the
motion control with cognitive and speech rehabilitation. A variant version of XIRSH
can be served as a home based application to further extend the tele-rehabilitation
process.
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Fig. 14.15 Upper limb training scenario. a A patient is captured by the Kinect sensor and given
the control. b A therapist walks in and helps the patient lift his upper limb. The therapist takes the
control of the training game. c The therapist waves one of his hands to the left. d The therapist
waves one of his hands to the right. e The therapist releases the control and the patient finishes the
motion

In XIRSH, the gesture control is widely used as an efficient and attracting inter-
action to motivate the patients. We illustrated two application-level scenarios where
the hand gesture recognition results can be directly utilized.

In the first scenario (Fig. 14.15), the patient is asked to lift his upper limb from
the body side to conduct the abduction for his shoulder joint. However, this motion
might be difficult for an individual patient who just passes level 4 (Brunstrom).
Therefore, a physical therapist has to stand by the patient and help the patient’s lifting.
Two skeletons will be tracked simultaneously through the depth view by the Kinect
sensor. The corresponding tracking ID for the patient is not fixed during this process,
which causes the incontinence at the application level. As the patient may have the
difficulties in motion, a wave hand gesture from the therapist is proposed. Once the
waving is detected, the system can identify the situation that there is a therapist who
is helping the patient. As a result, the control and focus of the application will be
released from the therapist back to the patient. All the corresponding data flows will
be correctly led to the patient himself.

In the second scenario (Fig. 14.16), a training is specially designed for exercising
the shoulder joint. The patient is immersed into a virtual reality and asked to move the
items, such as a clock and a football, into to the correct categories, such as sporting
items and living items. During this training, the items are generated at the upper
corners of the screen, and the containers are at the bottom corners. The practice is

Fig. 14.16 Hand training scenario. a A hand over to select the clock (Basic level). b A grab to pick
up the clock and a release to drop it to the living items category (Advanced level)
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motivating the patient to do some diagonal motions. At the basic level, the patient
can move his hand to conduct the mouse cursor movement. A hand over the items for
seconds is considered as to select the item. A hand over the corresponding container
is to drop the item. The basic training aims to improve the stability and balance.
However, some patients with better conditions could be asked to conduct advanced
trainings. For example, the hand over gesture is replaced with the hand grab for the
picking and the hand release for the dropping. One advantage to motivate the patients
to do more practices with fingers and hands.

In both aforementioned scenarios, hand gestures are used to interact with the
software programs and provide the biometric feedback such as text prompts or
audio reminders. The feedback is very important because it can inform the patients,
whether their motions are correct or not. Our experimental results show that the tech-
nique proposed the previous section can efficiently recognize the different gestures
and send the feedback at a real-time level.

14.9 Summary

We have introduced a novel framework for recognizing hand gestures, which is
inspired by the current depth image-based body pose estimation technology. A semi-
automatic labeling strategy using a Kinect sensor is described. This procedure is
used to generate the samples used for both hand detection, and hand pose estimation.
The 3D hand contour with labeled information provides a simplified hand model to
facilitate building real-time bare-hand-controlled interface. Our framework can be
easily extended to incorporate different desktop applications. We also notice that 3D
gesture interaction is not user-friendly enough, because there are still many visual
and touch feedbacks needed to improve the realism.

The current work still has several limitations that we plan to focus on in the future
work:

(1) Segmenting hand from a long arm or a body is not well handled with the proposed
hand extraction and hand parts classification method. Therefore, the form of
camera setup is limited.

(2) The accuracy of the contour model is limited by the classification result of hand
parts.

(3) To some applications, the classifier needs to be re-trained due to the different
application configurations.

Another future research directions include designing new hand partition patterns
to improve the recognition accuracy. The contour matching algorithm can be further
revised and evaluated to improve the matching accuracy. Moreover, we also would
like to develop new hand gesture-controlled applications with the support of this
framework and implement a GPU version of the algorithm.
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