
Chapter 13
Learning Fast Hand Pose Recognition

Eyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar-Hillel,
Daniel Freedman, Simon Stachniak and Cem Keskin

Abstract Practical real-time hand pose recognition requires a classifier of high
accuracy, running in a few millisecond speed. We present a novel classifier architec-
ture, the Discriminative Ferns Ensemble (DFE), for addressing this challenge. The
classifier architecture optimizes both classification speed and accuracy when a large
training set is available. Speed is obtained using simple binary features and direct
indexing into a set of tables, and accuracy by using a large capacity model and careful
discriminative optimization. The proposed framework is applied to the problem of
hand pose recognition in depth and infrared images, using a very large training set.
Both the accuracy and the classification time obtained are considerably superior to
relevant competing methods, allowing one to reach accuracy targets with runtime
orders of magnitude faster than the competition. We show empirically that using
DFE, we can significantly reduce classification time by increasing training sample
size for a fixed target accuracy. Finally, scalability to a large number of classes is
tested using a synthetically generated data set of 81 classes.
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13.1 Introduction

The trade-off of speed versus accuracy is an important topic, widely discussed in
the object detection and recognition literature [3, 7, 11, 19, 25]. In applications like
Natural User Interface (NUI), algorithms have to obtain high recognition accuracy
in real time, on low power platforms. Often accuracy must be obtained with only
a small fraction of the available CPU resources, reserving CPU cycles for other
operations. The trade-off is natural: high accuracy requires a rich representation,
with considerable computational cost at all levels of the system. At the lowest level,
this includes using dense sampling of complex local descriptors [21, 27]. Further on,
multiple spatial aggregation layers are employed [6, 18], with large dictionaries at
higher levels. At the highest level, the best accuracy is often obtained using non-linear
kernels [6, 18], requiring kernel computation with many support vectors.

In this section, we attack the problem of hand pose classification using infrared
(IR) and depth images from a time of flight depth camera, in the context of a NUI
application. There are dual demands for high accuracy and a very low computation
budget, the latter a fraction of a millisecond on a low-end CPU. For our problem,
standard techniques achieved reasonable enough accuracy for a moderate training set
size, but were unable to meet the classification time requirement. One can improve
speed by modifying the parameters of such techniques; for example, one may reduce
grid density or dictionary size. However, experiments show that this approach is
limited, when the target speed is obtained accuracy drops too much.

This calls for a wider consideration of recognition systems based on machine
learning. Beyond accuracy and speed, these systems have additional performance
characteristics: generalization ability (i.e., ability to learn from a relatively small
training set size), training time, and memory consumption. Suppose that it is possi-
ble to collect a very large training set, there is no significant limitation on training
time, and a moderate amount of memory is available at test time. The question then
becomes: for a fixed accuracy target, can we trade training set size for increased
speed at test time?

The algorithm proposed here pushes the speed–accuracy envelope at the expense
of larger training sets using three steps. First, simple non-invariant features are used,
with sharp non-linearity, as they are fast to compute. Using a large enough train-
ing set, we can hope that the task-relevant invariance will be learned instead of a
priori encoded. Second, and most important, an architecture with large capacity and
minimal computation is introduced, based on an ensemble of large tables encoding
the end results. Such table-based classifiers, termed ‘ferns’ [6, 19, 24], have high
capacity with a VC-dimension higher than 2K for a single 2K -entry table, and close
to M2K for a M-tables ensemble.1 Third, since the classifier form presents a hard
learning problem, with high capacity and minimal prior, we develop a discriminative
optimization framework for a fern ensemble, which is a departure from the generative
formulation used previously for ferns.

1 Assuming that the underlying space is of dimension higher than K and MK, respectively, which
are satisfied for the image sizes considered.
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Focusing on speed optimization, we use as features spatial aggregates of highly
simplistic features, i.e., pixel-pair comparisons; A set (ensemble) of lookup tables
(ferns) are then built based on sets of such bit features. Each fern is based on a set
of K simple binary features and a large table of 2K -entries. The binary features are
concatenated into an index, and the corresponding index entry in the table contains
a weight contribution, summed across the ferns to get the final classification. Each
table can be regarded as an efficient codeword dictionary: It maps a patch into one
of 2K words, yet at the cost of K operations. The resulting architecture is highly
non-linear, and a feed-forward push of an image through it only requires multiple bit
computations and table access operations.

Ferns are traditionally formulated generatively, i.e., conditional class probabil-
ities are stored at the table entries. In contrast, we suggest training the ensemble
discriminatively by minimizing the regularized hinge loss, i.e., the loss minimized
by Support Vector Machines (SVM). The minimization technique is related to ideas
from the Predictive Feature Selection (PFS) algorithm [2]. It is done agglomeratively
in a boosting-like framework, promoting complementariness between chosen ferns
and between bits in a single fern.

The main technical contribution of this section is in the introduction of a
Discriminative Ferns Ensemble (DFE) approach and empirically demonstrating its
ability to considerably shift the speed–accuracy curve. Themethod is applied to hand
pose recognition from IR and depth images, and compared to the best alternatives
for this task. In this comparison, the DFE achieves accuracy comparable or better
while being one to two orders of magnitude faster. In particular, it is significantly
more accurate than a classification based on deep random trees, which have been
used for similar tasks [17, 25] and considerably more accurate than a more standard
ensemble of random ferns [6, 24]. Several general object recognition methods were
also applied to the task, combining fast dense SIFT features, DAISY, random forest
dictionaries, and SVM [23, 29, 30]. The best results achievedwere slightly less accu-
rate than DFE, but classification time was two orders of magnitude (i.e., 100 times)
slower. DFE is also shown to be efficient when the number of classes increases,
utilizing ferns sharing between classes and an error-correcting output code (ECOC)
classification methodology minimizing the number of classifiers trained.

A second contribution is that we empirically show significant improvements in
classification speed—for a given target accuracy—can be achieved by collecting
larger training sets. This is done by optimizing K (log of the table size) and M
(number of ferns) for a given training set size. In other words, if a DFE classifier is
accurate, but not fast enough, collecting larger training set can be used to accelerate
classification speed.Note that this trade-off is different from thewell-known trade-off
between training set size and accuracy.

The approach presented was found practical and was used to train the hand pose
recognition in XBox-1, shipped in early 2014.

We discuss related work in Sect. 13.2 and present our approach in Sect. 13.3.
In Sect. 13.4, we summarize a set of experiments in which ingredients of the method
are tested and the approach is compared with competing techniques. We briefly
conclude in Sect. 13.5.
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13.2 Relevant Work

With the emergence of cheap 3D sensors, and primarily the Kinect sensor, pose
estimation and recognition in IR+depth images have been the subjects of increasing
study in recent years [1, 5, 10, 15–17, 20, 25, 26]. In contrast to working with RGB
images, the depth information enables easier segmentation of body parts, simpler
reasoning about occlusion, and usage of simpler features enabling real-time applica-
tions. We focus here on techniques that have been applied to hand pose recognition
and estimation, as well as more general techniques that bear some similarity to the
proposed DFE method.

An important line of work that has influenced our technique uses random forests
as the main tool, with the notably successful application of this technique to body
pose estimation in the Xbox-360 [25]. In [16], a random forest is trained to classify
pixels according to hand part labels. The hand parts positions are then estimated
by finding the mode of the posterior part probability using mean shift. In [17], this
method is extended to a two-stage method. In a preprocessing stage, the pose space is
clustered into 50 clusters, corresponding to global hand shapes. A first random forest
is trained to classify pixels as belonging to images from one of the 50 clusters. In
the second layer, 50 different random forest ‘experts’ are trained, one for each of the
clusters. Part position estimation is performed by using the chosen expert from the
second layer, or by splitting decisions regarding pixels among their most plausible
‘experts.’ Good empirical results are reported for shape classification (using the first
stage) and for pixel part classification.

The pose estimators mentioned above were trained using large datasets
of synthetic data, but the random forest-based approach was extended to include
a mixture of labeled real data, unlabeled real data, and synthetic data in [26]. The
forests trained in this approach included mixed regression and classification trees,
and several criteria for node splitting were combined, including a criterion requiring
low variance and a criterion requiring that real labeled data and synthetic data with
the same label share the same node.

While the random forest approach usually relies on very simple features, another
line of work focuses on learning more complex features integrating RGB and depth
information. The methods suggested in [1, 5] learn hierarchical descriptors that
aggregate RGB and depth information across increasingly larger spatial area. Both
show significant improvements in general object recognition using descriptor level
fusion of RGB and depth. In [20], an approach is presented, which learns spatio-
temporal complex features for a difficult gesture recognition task. Increasingly com-
plex features are created by composition of basic operators like filtering, spatial
averaging, and non-linear operations. A genetic algorithm is used to choose the most
discriminative features for a linear SVM classifier.

A different traditionally popular approach poses hand pose recognition as a
retrieval problem [10, 13]. In [10], a large dataset of synthetic images with known
pose parameters was created. The hand is carefully segmented (Kinect depth images
are used) and compared to database images using several distance functions: Cham-
fer distance, L2 distance between the depth images, and a combination of the two.
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Empirical results show that the correct match is often ranked high in the list of
retrieved images.

As stated above, fast recognition methods are often based on trees or ferns
ensembles [6, 9, 12, 17, 24, 25]. Ferns are often regarded as a special case of
trees, in which the condition encoded at all the nodes with the same depth is iden-
tical. Boosting of decision trees is a highly popular technique for object detection
and classification in RGB [9, 12], but usually shallow trees of depth 1–3 are used,
which cannot capture fine-grained partitions. Ferns ensembles were suggested in
recent years for RGB image classification [6], keypoint recognition [24], and nearest
neighbor finding [19]. In theseworks, ferns in the ensemble are chosen independently
of each other, and bits in a single fern are chosen at random or using an information
gain criterion. At the leaves, conditional class posteriors are computed and averaged
across ferns [6], or regulated with a prior and multiplied [24].

Among the tree-based methods mentioned above, the works presented in [16,
17, 25] are most related to the DFE, as they also allow fast, real-time classification
using simple pixel comparison features and a tree ensemble architecture. However,
the DFE departs significantly from the random forest and random ferns tradition in
its resort to discriminative optimization. In a DFE, the fern ensemble is regarded as
providing the features for a large L2-SVM problem. Ferns and bits are not chosen
at random, nor using a general information criterion, but picked to minimize the
loss of this program. In particular, the gradient of the SVM program with respect
to adding new features is computed at each round and used to guide choice of the
bits in the new fern. Ferns (and bits) are hence grown to be complementary, as in a
gradient boosting process [22]. The weights of the fern’s table, corresponding to the
leaves of a tree, are not conditional probabilities, but rather SVM weights. Due to
this optimization, a DFE is more accurate, requires less memory, and less CPU time
than approaches presented in [16, 17, 25]. We discuss the differences in Sect. 13.3.2
and compare the methods empirically in Sect. 13.4.

13.3 The Discriminative Ferns Ensemble

We describe the Fern Ensemble classifier in Sect. 13.3.1 and analyze its running time
in Sect. 13.3.2. In Sect. 13.3.3, we present the training procedure we use.

13.3.1 The Discriminative Ferns Ensemble Classifier

The ferns ensemble classifier operates on an image patch, which we denote by I ,
consisting of P pixels. For a pixel p, we denote its neighborhood by N (p), and we
denote by IN (p) the subpatch which is comprised of the pixels in p’s neighborhood.
In what follows, we will consider IN (p) as a vector in R

|N (p)|. The ferns ensemble
consists of M individual ferns, and its pipeline includes three layers whose structure
we now describe.
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Bit Vector Computation Let us focus on one particular fern m. For each pixel p, we
compute a local descriptor of its neighborhood subpatch IN (p) using computationally
light pairwise pixel comparisons of the form

Iq1
?
> Iq2 for q1, q2 ∈ N (p) (13.1)

Such a comparison provides a single-bit value of 0 or 1. For convenience of notation,
we may rewrite the bit obtained as σ(βT IN (p)), where β is a |N (p)|-dimensional
sparse vector, with two nonzero values, one equaling 1, the other equaling −1; and
σ is the Heaviside function. For each fern m and pixel p, there are K bits computed,
and we denote the kth bit as bm

p,k = σ((βm
k )T IN (p)). Collecting all the bits together,

the K -dimensional bit vector bm
p is:

bm
p = σ

(
Bm IN (p)

) ∈ {0, 1}K (13.2)

where the matrix Bm has rows (βm
1 )T , . . . , (βm

K )T ; and now the Heaviside function
σ is applied element-wise.

Histogram of Bit VectorsWeare interested in some translation invariance, sowe take
a spatial histogram over codewords. However, as in [24], the bit vectors themselves
are the codewords; there is no need for an intermediate clustering step. Denote the
histogram for the mth fern by Hm(b), where bit vector b ∈ {0, 1}K ; then

Hm(b) =
∑

p∈Am

δ
(

bm
p − b

)
(13.3)

where δ is a discrete delta function, and Am ⊂ {1, .., P} is the spatial aggregation
region for fern m. Note that Hm is a sparse vector, with at most P nonzero entries.

Histograms concatenation The final decision is made by a linear classifier applied
to the concatenation of the M fern histograms.

f (I ) = W T H(I ) =
M∑

m=1

∑

b∈{0,1}K

wm
b Hm(b) (13.4)

where H(I ) = [H1(I ), . . . , H M (I )] ∈ N
M2K

and W = [W 1, . . . , W M ] ∈ R
M2K

is
a weight vector. Combining Steps 1–3 in the pipeline, we arrive at the discriminative
ferns ensemble classifier:

f (I ; ρ) =
M∑

m=1

∑

b∈{0,1}K

wm
b

∑

p∈Am

δ
(
σ

(
Bm IN (p)

) − b
)

(13.5)

with the parameters ρ = {W m, Bm, Am}M
m=1.
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Fig. 13.1 A DFE network. A single fern in a DFE can be viewed as a feed-forward network with
one highly non-linear layer and a second spatial summation layer. The DFE is a 3-layer network
linearly aggregating the output of M ferns. See text for details

The operation of a DFE is sketched as a three-layered network in Fig. 13.1.
Each fern can be conceived as a two-layer network. The first layer extracts a highly
non-linear patch descriptor around each pixel p in the aggregation area. The patch
descriptor is based on comparison of K pixel pairs, squashed into K bits, and con-
catenated into an single index. This index is then used to get a weight from the fern
table. The operation is repeated for all pixels in the fern spatial aggregation area
(the yellow rectangle in the second layer), and the contribution of all the pixels are
summed. At a third layer, the contributions of all the ferns are linearly added and
compared to a threshold to get the decision.

13.3.2 Classification Speed

Algorithm 1 describes the operation of a DFE classifier at test time. The pipeline is
extremely simple. For each fern and each pixel in the fern’s aggregation region,
we compute the bit vector, considered as a codeword index. The fern table is
then accessed with the computed index, and the obtained weight is added to the
classification score. The complexity is O

(
M AK

)
where A is the average number of

pixels per aggregation region: A = 1
M

∑
m |Am |.

It is interesting to compare the CPU time of a single fern to a single tree with
the depth K . From a pure computational complexity perspective, the number of
operations for both is K . Nevertheless, a closer look at their match to common
CPU architectures, including cache hierarchies and vector machines, reveals large
differences in expected run time. First, a tree needs to store the bit computation
parameters for 2K internal nodes.More importantly, during tree traversal, theworking
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Algorithm 1 Ferns Ensemble: Classification
Input: An image I of size Sx × Sy ,
classifier parameters (Bm , Am , W m)M

m=1, threshold t

Bm ∈ R
K×|Am |, Am ⊂ {1, .., Sx } × {1, .., Sy}, W m ∈ R

2K

Output: A classifier decision in {0, 1}
Initialization: Score=0
For all ferns m = 1, .., M

For all pixels p ∈ Am

Compute a k-bit index = σ(Bm IN (p))

Score=Score+W m [index]
Return (Score>t)

set is accessed K times in an unpredictable manner. A fern’s operation requires only
a single access to its large working set (W m), as the index computation is done using
a small amount of memory, O(K ) in size, which fits in the cache without a problem.

Second, the usage of fixed pixel pairs in a fern enables computation of the K-bit
index without indirection and with an unrolled loop. More importantly, ferns are
amenable to vectorization using single-instruction multiple data (SIMD) operations,
while trees are not. Applying a fern operation to several examples at the same time
(i.e., vectorizing the loop over p in Algorithm 1) is straightforward. Doing so for
a tree is likely to be extremely inefficient since each example requires a different
sequence of memory accesses, and gathering such scattered data cannot be done in
parallel in an SIMD framework. In Sect. 13.4.1.4, we further discuss the differences
of ferns and random forest, in terms of classification time and memory.

13.3.3 Discriminative Training

The DFE classifier f (I ; ρ) is given in Eq. (13.5), and we would like to learn the
parameters ρ = {W m, Bm, Am}M

m=1 from a labeled training set {(I i , yi )}N
i=1. Unlike

prior work on ferns, e.g., [24], we turn to a discriminative rather than a generative for-
mulation. In particular, we pose the problem as regularized hinge-loss minimization,
similar to standard SVM:

min
ρ

1

2
‖W‖2 + C

N∑

i=1

[
1 − yi f

(
I i ; ρ

)]

+ (13.6)

where [·]+ indicates the hinge loss, i.e., [z]+ = max{z, 0}. Rewriting Eq. (13.4) with
explicit parameter and image dependence one gets

f (I ; ρ) =
∑

m,b

wm
b Hm (

b, I ; Bm, Am)
(13.7)
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We can see that f is linear in W , so optimizing (13.6) w.r.t W for fixed
{Bm, Am}M

m=1 is a standard SVM optimization. However, optimizing for the lat-
ter parameters is challenging, specifically since they are to be chosen from a large
discrete set of possibilities. Hence, we turn to an agglomerative approach in which
we greedily add ferns one at the time. As can be seen from Eq. (13.5), adding a
single fern amounts to an addition of 2K new features to the classifier. In order to do
that in an sensible manner, we extend known results for the case of a single feature
addition [2, 4].

Let f (I ) = ∑L−1
l=1 wl xl(I ) be a linear classifier optimized with SVM and

L( f, {Ii , yi }N
i=1) the hinge loss obtained for it (Eq. 13.6) over a training set. Assume

we add a single feature x L to this classifier f new(I ) = f old(I ) + wL x L(I ), with
small |wL | ≤ ε. Theorem 1 in [2] gives a linear approximation of the loss under these
conditions:

L
(

f new
) = L

(
f old

)
− wL

N∑

i=1

αi yi x L
i + O

(
w2

L

)
(13.8)

where αi are the example weights obtained as a solution to the dual SVM problem.
The weights αi ∈ [0, C] are only nonzero for support vectors. For a candidate
feature xL , the approximated loss (13.8) is best reduced by choosing wL = ε ·
sign(

∑N
i=1 αi yi x L

i ), and the reduction obtained is R(xL)
�= | ∑N

i=1 αi yi x L
i |. The PFS

algorithm [2] is based on training SVM using a small number of features, followed
by computing the score R(x) for a large number of unseen features; this allows one to
add/replace existing features with promising feature candidates. Note that the score
R(x) of a feature column x can be seen as the correlation RZ (x) = x · Z , where
Z = (z1, . . . , zn) with zi = yiαi is the vector of signed example weights.

Here, we extend the aforementioned idea to a set of features, as introduced by a
single fern.Assumewehave trained anSVMclassifier over a fern ensemble f M−1(I )
with M − 1 ferns, and we now wish to extend to an additional fern. Assume further
that the new weight vector is small with ||wm ||∞ ≤ ε. Then, we have

f M (I ) = f M−1(I ) + ε
∑

b∈{0,1}K

wm
b Hm(b, I ) (13.9)

with |wm
b | ≤ 1 for all b. Treating the new fern contribution as a single feature, we

can apply the theorem stated above and get

L
(

f M (I )
)

≈ L
(

f M−1
)

− ε

N∑

i=1

αi yi

∑

b∈{0,1}K

wm
b Hm(b, Ii )

= L
(

f M−1
)

− ε
∑

b∈{0,1}K

wm
b

N∑

i=1

αi yi Hm(b, Ii ) (13.10)
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Algorithm 2 Ferns Ensemble: Training

Input: A labeled Training set {Ii , yi }N
i=1

Parameters M, K , C, Nc, {Am}M
m=1

Output: A classifier (Bm , Am , W m)M
m=1, threshold t

Initialization: Z [i] = 1/|{Ii |yi = 1}| if yi = 1,
Z [i] = −1/|{Ii |yi = −1}| if yi = −1

For m = 1, .., M
For k = 1, .., K

For c = 1, ..Nc
Sample a candidate column βm

k,c ∈ R|N (p)|
For i = 1, .., N

Compute Hm(b, Ii , c) = Hm(b, Ii ; Bm
c )

with Bm
c = [βm

1 , .., βm
k−1, β

m
k,c]

For b ∈ {0, 1}K

Compute RZ (c) = ∑
b∈{0,1}K RZ (Hm(b; βm

k,c))

Choose winning candidate c∗ = argmaxc R(c),
and set βm

k = βm
k,c∗

Train an SVM with m2K features W · [H1, .., Hm ] − t
Set Z [i] = yi αi for i = 1, .., N with αi SVM dual variables

Set {W m}M
m=1, t based on the last SVM training.

Return (Bm , Am , W m)M
m=1, threshold t .

where the approximation in the first equation is due to omission of O(ε2) terms.
If we wish to minimize the approximated loss, the optimal choice for wm

b is wm
b =

sign(
∑N

i=1 αi yi Hm
t (b, Ii )), in an analogous way to the single feature case. With

these wm
b , we get

L
(

f M (I )
)

≈ L
(

f M−1
)

− ε
∑

b∈{0,1}K

R
(
Hm(b)

)
(13.11)

This result is an intuitive extension of Theorem 1 in [2] for the case of multiple
feature addition.

Our algorithm for fern ensemble growing is based on iterating between SVM
training and building the next fern based on Eq. (13.11). This procedure is described
more precisely in Algorithm 2. At each fern addition step, we use an SVM classifier
trained on the previous ferns to get signed example weights, in a manner similar to
boosting. The ensemble score

∑
b∈{0,1}K RZ (Hm(b)) is used to grow the fern bit by

bit in a greedy fashion. At each bit addition stage, we randomly select Nc candidates
for the mask βm

k , termed βm
k,c; each candidate is chosen by randomly drawing the two

pixels needed for the comparison. The winning bit is chosen as the one producing the
highest ensemble score. We currently do not optimize the integration area variables
{Am}M

m=1, but we experiment with several choices in Sect. 13.4.
The algorithm is presented for a single binary problem, but is easily extended to

training of several classes with shared Am, Bm and separate W m . In the simplest
alternative independent SVMs are trained, one for each class of interest. During
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optimization, all the SVMs are trained at each fern addition, and R(c) scores of all
of them are summed to make the bit choice. Due to the sharing of the same fern-
based features, running time scales sublinearly in the number of classes. However,
memory and training time are linear in the number of classes. For a large number
of classes, error-correcting output codes [8] (ECOC) can be used to decrease the
number of SVM classifiers trained, and enable a logarithmic scaling of training time
and memory in the number of classes. In Sect. 13.4.2, we present experiments with
this approach, showing that it enables economic classifiers with enhanced accuracy.

13.4 Empirical Results

The method described in this paper was developed, tested, and compared to
alternatives on a very large data set for hand shape recognition. The task was dis-
crimination between 3 hand state classes, and the resulting classifier was shipped as
part of the Microsoft Xbox-1 console in early 2014. We describe these experiments
in Sect. 13.4.1. In Sect. 13.4.2, we describe experiments conducted on a synthetically
generated data set of 81 hand state classes. Scalability to a large number of classes
is obtained by fern sharing and utilizing an error-correcting output codes (ECOC)
approach.

13.4.1 Real Data Experiments

We describe the data set used in Sect. 13.4.1.1 and the method’s implementation
details in Sect. 13.4.1.2. The impact of the main ingredients and parameters of the
method is tested in Sect. 13.4.1.3. We compare the accuracy–speed trade-off enabled
by the proposed method and various competing techniques in Sect. 13.4.1.4. We
conclude by showing the trade-offs between accuracy, classification time, training
sample size, and memory in Sect. 13.4.1.5.

13.4.1.1 Data Set

The task we consider is to recognize three different hand shapes and to discriminate
between them and other undefined hand states. The recognition results are used as
part of a NUI interface. The shapes are termed ‘open,’ ‘closed,’ ‘lasso,’ and ‘other,’
as shown in Fig. 13.2. The class ’other’ includes a large variation in hand poses,
including hands holding objects. Hand detection is achieved by tracking the skeleton
in a sequence of depth+IR images, using methods based on [25].

The images used for recognition are cropped around the extracted hand position,
rotated, and scaled to two 36 × 36 images of the depth and IR channels. A simple
preprocessing rejects IR and depth pixels where the depth is clearly far beyond the
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Fig. 13.2 Examples of hand images from our data set. The left columns contain examples of ‘open,’
‘closed,’ and ‘lasso,’ respectively. The two right columns contain examples of the complement class
‘other’

hand, thereby removing some of the background. The alignment and rotation of the
hand are based on estimated wrist position and is sometimes inaccurate, making the
recognition task harder.

A dataset of 519,000 images was collected and labeled from video sequences of
different people. Images have considerable variability in terms of viewpoints, hand
poses, distances, and imaging conditions. The images were taken at distances of up to
∼4m from the camera, where the quality of image drops, and the depthmeasurement
of fingers may be missing. Data were divided into training and test sets with 420,000
and 99,000 images, respectively, such that persons from the training set do not appear
in test images and vice versa. The data were collected to give over-representation to
hard cases. Given the properties of data, the goal was to achieve 2–5% false-negative
rate, at a false-positive rate of 2 %. Since the test data are hard, the error rate in real
usage scenarios is expected to be much lower.

13.4.1.2 Implementation Details

In our experiments, we tested the number of bits per fern K in the range of [3,
18] and the number of ferns M in [6, 768]. At each bit addition step Nc = 40, pixel
comparison featureswere randomly generated for evaluation. The spatial aggregation
area of the fern Am was randomly chosen to be one of the 4 standard quadrants of the
image patch, and the neighborhood N (p) is 17 × 17 pixels. We have experimented
with limiting the aggregation area Am further by imposing a virtual checkerboard
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on the quadrant pixels: for odd bit indices, features are only computed for ‘white’
pixels, and for even indices, features are computed only for ‘black’ ones. This policy
was found to be useful in terms of accuracy–speed trade-offs.

We have used the LibLinear package [14] for sparse SVM training of our models.
The classifier was implemented in C and running times are reported on Intel core
i7, 2.6 GHz CPU, using a single thread. Computation time is reported for a single
image in milliseconds, without usage of SIMD optimizations. Accuracy of a single
binary classifier, i.e., one hand pose versus all, is computed as the false-negative
error rate at the working point providing a false-positive (FP) rate of 2%. Accuracy
figures reported here are averaged over the three classes. We selected this approach
rather than multi-class error rate, as in each specific NUI usage context, the three
classification scores are combined in a different way.

13.4.1.3 Parameters and Variations

Success and failure examples of the DFE classifier can be seen at Fig. 13.3.
We now concentrate on understanding the contribution to performance of algorithm
components.

Complexity of layers 1: At the first layer, we encode patches into codeword indices,
and its complexity is controlled by the number of bits K used for the encoding. In
Fig. 13.4 (Left), the classifier accuracy is plotted as a function of K for fixed M = 50.
Based on this graph, we select the value of K = 13 in our subsequent experiments,
as it is the minimal value which yet provide close to optimal accuracy.

Complexity of layers 2: At the second, spatial aggregation layer, complexity is
controlled by several algorithmic choices. First, we can use multiple aggregation
areas, or a single aggregation area containing the whole image for all ferns. Second,
we can use or avoid using the checkerboard technique for computational saving.
Results are reported in Fig. 13.5 (left). Baseline DFE uses M = 50 ferns with

Fig. 13.3 Successes and failures of the DFE classifier: Pairs of depth+IR images are presented,
where the top row shows the IR images and the bottom the depth images in every pair. The three
pairs on the left show successfully classified pairs for the three hand shape classes considered (open,
closed, lasso). The pairs on the right show misclassification errors (false negatives)
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Fig. 13.4 DFE complexity parameters. Left False-negative rate of the DFE (at false-positive
rate = 0.02 as a function of K , the number of bits. Right False-negative rate as a function of M , the
number of ferns, for several training procedures. DFE is our baseline variation. For both SVM.Indep
and SVM.Rand, SVM is used as final classifier. For SVM.Indep, the bits are selected using R(c)
score, but without PFS weight update, i.e., using initial Z [i] for all ferns (see Algorithm 2). For
SVM.Rand, bits are randomly selected. NB.Boosted is Naive Bayes with fern boosting and entropy-
gain bit choice

Pipe variation % FN @ FP=2%

Baseline DFE 2.18
Single aggregation area 3.15
No checkerboard sampling 2.42
Naive Bayes + Boosting 3.87
Naive Bayes, MI bits 35.9
Naive Bayes, Rand bits 47.6
Only Depth 4.65
Only IR 5.23

Fig. 13.5 Comparison to alternatives. Left Error for several DFE and Ferns algorithm variations.
See text for explanation. Right Best results of false-negative rate under constraint of classification
CPU time for various methods and parameters for each method. For DFE, we modified values of
M, K . For random forest [17], the points shown are for one and two trees of depth 21. Fast SIFT
can achieve accuracy comparable to DFE, but at cost of more than ×100 classification time

quadrant ferns, checkerboard policy. The number of ferns used in the conditions
‘single area’ and ‘no checkerboard’ is reduced by a factor 4 and 2 to get classifiers
with approximately the same speed as the baseline. The results show the advantage
of baseline DFE over alternatives, hence led to its definition as ‘baseline.’

Complexity of layer 3, optimization policy: Figure 13.5 (left) shows the accuracy
for several ensemble training strategies. The simpler alternatives uses Naive Bayes,
where the leaf weights are based on class posterior probabilities [6, 24]. The ferns
are trained independently, with bits chosen at random (Naive Bayes, Rand bits) or
by maximization of information gain (Naive Bayes, MI). For these alternatives, the
false-negative rate is high. 2 Also, further increasing of the number ferns does not help

2 Note that FN is measured at false-positive rate of 2 %. Hence, FN near 50 % is far better than
random. At FP = 10 % the false-negative rates of Naive Bayes MI bits and Rand bits drops to 11
and 18 %, respectively.
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as much as in the DFE or boosting framework, as the ferns are learned independently.
Another alternative is training complementary ferns by boosting, with bits chosen to
maximize the information gain on the boosting-reweighted sample (Naive Bayes +
Boosting). This significantly improves accuracy relative toMI and random selection,
but is still less accurate than DFE. Figure 13.4 (right) shows the effect of number of
ferns, M , on the false-negative rate for selected methods.

From the above results, we can conclude that using discriminative (SVM)
approach for both the final classifier and selecting of the fern bits significantly
improves accuracy.

The table in Fig. 13.5 also shows that IR and depth are not redundant, and using
both of them significantly improves accuracy relative to using only one of them.

13.4.1.4 Speed–Accuracy Trade-Off Comparison

We have compared the fern ensemble method to several alternative architectures,
which also have an emphasis on a good speed-accuracy trade-off. The methods
compared are:

• Random forest applied to pixel comparisons as suggested by [17]
• A 3-stages pipeline: (a) Fast dense SIFT features computation using the VLFeat
library [28]. (b) Encoding into a bag of features using a random forest dictio-
nary [23]. (c) SVM classification with a linear approximation of the histogram
intersection kernel, according to [29]. We also tried the same pipeline, but replac-
ing the fast SIFT with dense Daisy features [30].

All the methods were implemented in C/C++, using the original author’s code when
possible. They were chosen for comparison as each of them was developed with the
aim of obtaining a good balance of speed and accuracy. Multiple working points
were tested for each of these methods, representing various optimization for speed
and accuracy. For the fast SIFT method, shifting between speed and accuracy was
done by changing the stride parameter, controlling the density of the SIFT greed.
For the Daisy, we also choose the Daisy complexity to optimize speed/accuracy, as
recommended in [30].

The CPU time (accuracy) of the best working points obtained by each of the
algorithms, including DFE, is plotted together in Fig. 13.6 (left). We see that random
forest can achieve similar classification time to that of DFE, but is significantly less
accurate (FN= 10.6 % vs. FN= 2% for DFE, for the same CPU budget). Consistent
with [17], we found that the best accuracy is achieved by training on a small number
of deep trees, with little improvement when increasing the number of trees. This
leaves us with less flexibility on controlling the trade-off between accuracy and
classification time. There are several reasons why using 50 ferns DFE is about as
fast as using two trees. First, each fern operates on relatively small number of pixels
(50), which is only ∼4 % of the image. Second, calculating the ferns bits requires
less operations than forest with the same depth, as discussed in Sect. 13.3.2. Third,
the number of bit per fern is 13, while the depth of tree is 21. Also, the memory size
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Fig. 13.6 Middle Accuracy obtained by DFE as a function of training sample size. X-axis is the
fraction of training set size relative to the full set (420,000 images). Right The classification CPU
time, as a function of training sample size. This is measured for several target false-negative rates
(for a fixed FP = 2 %)

of the forest is in order of 80 MB versus 2.5 MB of ferns. Since 80 MB cannot fit
into the cache, we pay with more cache misses.

The accuracy of with fast SIFT and Daisy alternatives can approach the accuracy
of the DFE. However, their classification time is two order of magnitudes longer.
By optimize them for speed, we significantly loose accuracy without getting to the
target classification time.

In the next section,we show that in addition to high accuracy and fast classification,
DFE approach enables significant flexibility for various trade-offs of speed, accuracy,
memory size and generalization from various sizes of training set.

13.4.1.5 Training Sample Size and Memory

As discussed before, the fern ensemble architecture trades speed and accuracy for
sample size and memory. For each training set size, constraints on memory, and
classification time, we optimize accuracy by tuning M and K . In this section, we
show that increasing the training set size enables us not only to improve accuracy,
but also to significantly reduce the classification time.

Figure 13.6 (middle) shows the effect of increasing the training set size on FN,
for fixed M and K . We modify the training set size we used from ∼0.2 % of the full
set (820 images) to the full training set (420,000 images). The subset of training set
is selected randomly. As expected, the false-negative rate reduces with increase of
training set size.

In our problem, however, even with a training set size of ∼30,000 samples (0.07
in X-axis of Fig. 13.6), the accuracy we got met minimum requirements for the prod-
uct. However, even after full code optimization, the classification time significantly
exceeded the target budget. The question is if we can reduce classification time by
increasing the training set size and modifying M and K .

Figure 13.6 (right) shows the classification time as a function of the of training
set size, relative to the full set, for various target false-negative rates. We can see
that for a fixed target accuracy, the classification time can be reduced by an order of
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Table 13.1 Accuracy obtained by DFE under memory limits

LUT entries Ferns # (M) Bits # (K ) % FN @ FP = 2 %

768 48 4 10.7

1536 96 4 7.78

3072 96 5 6.07

6144 192 5 5.42

12288 384 5 4.21

24576 384 6 2.97

49152 768 6 2.32

LUT entries is the total number of entries in all the lookup tables (ferns) together, which is 2K M . In
our implementation, each LUT entry requires 6 bytes—two bytes per class, representing the SVM
weights

magnitude, if we increase the training set size by an order of magnitude. In general,
as training set size increases, we slightly increase K and significantly reduce M to
achieve same target accuracy with lower classification time. This can be explained
by the effect of K on the capacity of each fern and hence should be adapted to the
training set size. On the other hands, the accuracy can be improved by increasing
M , but at a significant cost of classification time. These results are significant for
building practical systems. While it is well known that increasing training set size
enables improvement in accuracy, here, we show that it can also reduce classification
time significantly.

Finally, we show the trade-off between memory and accuracy. Table 13.1 presents
false-negative rate versus memory consumption for a fern ensemble. Memory con-
sumption can be reduced by lowering either M or K , and in the table, we chose
the optimal M, K parameters for each memory limit point. From the table, we can
see adding a memory constraint leads to significant reduction in the number of bits
per fern and increasing the number of ferns. The result is very different from the
case of optimizing for classification time, where optimal number of bits is high. This
is not surprising, as the memory size increases exponentially with number of bits,
but classification time increases only linearly. The result classification time is about
5–10 larger when we optimize for memory instead of for speed. Note, however, that
in our baseline implementation, with 50 ferns and 13 bits, the memory size is about
2.5 MB, which still fits into the cache.

13.4.2 Class Scalability Experiments

In this section, we show how a DFE can efficiently scale up to a large number of
classes, while maintaining its beneficial accuracy and speed characteristics. Experi-
ments are done using a synthetically generated dataset of 81 classes.
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Fig. 13.7 Synthetic data for 81 classes. Hand state classes were generated by varying 4 indepen-
dent variables: hand bend angle, twist angle, side angle, and pose. Left Column The bend angle was
sampled uniformly in [−30, 90] degrees, with 0 corresponding to a vertical hand. The range was
split into 3 equal partitions to get the bend label of 1, 2 or 3, examples of which are given at rows
1, 2, 3, respectively. Second column The twist angle was sampled uniformly in [−60, 60] degrees.
Like the bend angle, it was quantized uniformly into 3 classes. Third column The side angle was
sampled uniformly in [−45, 45] degrees and quantized into 3 classes. Right Column 3 basic finger
poses were considered: flat (top), half open (middle), and open (bottom). Independent finger noise
was added to each finger’s open/close parameter. The class label was set as a Cartesian product of
the 4 base labels

13.4.2.1 Dataset and Parameters

WeusedPOSER, a commercially available software package, for generating a dataset
of hand pose depth images. A dataset of 62,317 examples was generated and ran-
domly split into 37,390 training samples and 24,927 test samples. Data variance was
controlled by varying 4 independent parameters of hand generation: the 3 rotation
angles and the basic hand pose. Figure 13.7 shows examples from the dataset and
explains its 4 dimensions of variability, as well as the labels that were given to the
images. The 3 rotation angles (bend, twist and side) were uniformly sampled in
ranges covering the viewing sphere of a frontal hand. The pose was generated by
choosing a base pose from the set (flat hand, half-open hand, open hand) and adding
a small amount of noise to the bend parameter of each finger independently. Each
of the 4 dimensions was quantized into 3 different classes, and the final label is the
combination of the 4 single-dimension labels.

The data included only depth images, 8 bits per pixel, and no attempt was made to
synthesize IR images. In each image, the hand bounding box was found (the tightest
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box containing all nonzero pixels), and the hand box was rescaled to 64× 64 pixels
images, which are the input of the DFE.

Preliminary experiments were done with 1/4 of the training set in order to choose
DFE parameters and configuration. According to these experiments, we chose the
pixel neighborhood N (p) to be a large 32 × 32 patch. The integration area Am was
set to the internal 32× 32 square of the 64× 64 image. Checkerboard sampling was
applied, but the use of quadrant ferns was not found to be superior; thus, we use
the same integration area for all the ferns. The optimal number of bits was found to
be 14.

13.4.2.2 Experiments

We have experimented with two variants of M-classification. The first is the basic
one-vs-all, inwhich 81 SVMs are trained, one per class. Asmentioned in Sect. 13.3.3,
fern bits are chosen to optimize the sum of the gradient scores R(c) of all the classes.
A second alternative we tried was to solve for each of the label dimensions indepen-
dently, i.e., we built 4 classifiers predicting the pose, bend angle, twist angle, and
side angle of the hand. Each of these 4 classifiers, in turn, is composed of 3 one-vs-all
SVMs, trained to separate one cell of the partition from the other 2 cells. Overall, in
this approach, only 12 SVMs are trained, and the final label is determined based on
the product code of the predicted 4 aspect labels.

Figure 13.8 (right) shows the multi-class accuracy obtained by both methods as a
function of the number of ferns used. Both methods go beyond 80%, which is quite
high considering the large number of classes and the lack of margin in the boundaries
between classes. Interestingly, the product code DFE, training only 12 classifiers,
achieves higher accuracy than the one-versus-all version when the number of ferns is
large (>10). Hence, in this domain, this version dominates the one-versus-all version
in all respects, as it also provides higher speed in test and training, and requires less
memory.

Method Accuracy (%) Speed (ms) Memory (MB)
DFE 12SVM, 100 Ferns 84.5 4.87 38.5
DFE 81SVM, 100 Ferns 81.7 14.54 260
Forest 4Trees, D=18 70.3 12.62 179
Forest 1Tree, D=18 70.0 4.06 44
DFE 12SVM, 10 Ferns 80.0 0.52 3.9
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Fig. 13.8 Results for 81 classes. Left Multi-class accuracy, classifier speed, and model memory
foot print of several hand classifiers. Right Accuracy as a function of the number of ferns/trees for
DFE and Random forest classifiers
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For comparison, we plot the accuracy obtained by a generatively trained forest,
using code from [17]. When trees of depth 14 are used (matching our 14-bit ferns),
performance is significantly inferior. The forest does better when its depth is not
limited, and in this case, its maximal depth, limited by the dataset size, is 18. Forests
of depth 18 are able to achieve 70% accuracy, but their memory footprint is very
large and becomes prohibitive for more than a few trees. We have experimented
with up to 4 trees in this setting, and it seems that accuracy hardly improve with the
number of trees.

In Table 13.1 (left), we compare the results obtained by the two DFE versions to
the best results obtained by a classification forest [17] in terms of accuracy, speed,
and memory. It can be seen that DFEs provide superior performance in each of the
relevant measurements.

13.5 Conclusions and Further Work

We have seen that the discriminative fern ensemble framework enables significant
push of the accuracy–speed envelope for visual recognition in IR+depth images.
Thin, efficient architecture, and discriminative optimization were found important
for this purpose. The method was shown to be scalable in the number of classes,
thanks to feature sharing among classifiers and an ECOC methodology. In terms of
architecture, it would be interesting to extend the table-based approach to deeper
models with more table layers. Another interesting direction is to explore the trade-
off between classification time and training sample size for other algorithms and
analyze this trade-off theoretically.
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