
Chapter 1
3D Depth Cameras in Vision:
Benefits and Limitations of the Hardware

With an Emphasis on the First- and
Second-Generation Kinect Models

Achuta Kadambi, Ayush Bhandari and Ramesh Raskar

Abstract The second-generation Microsoft Kinect uses time-of-flight technology,
while the first-generation Kinect uses structured light technology. This raises the
question whether one of these technologies is “better” than the other. In this chapter,
readers will find an overview of 3D camera technology and the artifacts that occur
in depth maps.

1.1 Introduction

The physical world is three-dimensional. It is surprising then that conventional
cameras perceive the world in two dimensions, while even primitive animals per-
ceive the world in its richer three-dimensional form. Today, using technology such
as Microsoft Kinect, it is possible to collect 3D data with the ease and cost of point-
and-shoot photography.

In today’s consumer landscape, there are two primary 3D camera technologies:
structured light and time of flight. A structured light camera projects an active
pattern and obtains depth by analyzing the deformation of the pattern. The first-
generation Kinect (2010) is a structured light camera. In contrast, a time-of-flight
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camera measures the time that light has been in flight to estimate distance. The
second-generation Kinect (2013) is a time-of-flight camera. Microsoft’s strategy
for moving to time of flight for their second Kinect raises the question whether one
of these technologies is “better” than the other.

By the end of this chapter, we expect that the reader will have a better
understanding of the benefits and limitations of different 3D camera technologies.
More importantly, readers will learn the underlying cause behind depth artifacts and
the accepted strategies to fix them.

1.2 3D Data Storage

1.2.1 3D Point Clouds

A point cloud is set of data points defined in a coordinate system. Using M to refer
to the number of points and N for the dimensionality of the space, the point cloud is
written as follows:

P = {p1, . . . , pM } pT ∈ RN . (1.1)

A common technique to store point clouds in memory is to form an by array denoted
as P where each row vector in corresponds to a point. We require two conditions to
define an N-dimensional point cloud:

1. pT
i ∈ RN i = 1, . . . , M.

2. The object of interest is in the convex hull of the points.

The first condition is satisfied with any camera that acquires depth. The second
condition is more restrictive and is discussed in detail in the 3D scanning section
(Sect. 1.9). In this chapter, we are particularly interested in 3D point clouds, i.e., the
set of points defined by real-world coordinates X, Y, and Z.

Often we are provided additional information for each point in the cloud. Suppose
we are provided a K-tuple of “information” for each point in the cloud. This is
described as the following set:

F = { f1, . . . , fM } f T ∈ RK . (1.2)

which is stored in memory as an M by K array. Taken together, the feature array F
and the corresponding point cloud array P represent the space of data we consider
in this chapter. As a concrete example, if we are provided the 3-tuple of the color
reflectance at each point in R3, we have color and depth. This is known as RGB-D
acquisition. For simplicity, we refer to the point set as the “depth data” and the
feature set as the “RGB data.”
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1.2.1.1 A Note on Organized Point Clouds

Point clouds from depth cameras, such as Microsoft Kinect, can be further classified
into organized point clouds. In such point clouds, it is possible to index the spatial
X and Y coordinates in a logical manner, e.g., by rows and columns. In contrast,
unorganized point clouds have no structure in the spatial coordinates. Organized
point clouds are amuchmore powerful data format that greatly facilitates registration
and other types of vision algorithms.

1.2.2 Registering Color and Depth Data

We must have correspondence between the depth and color data. This would be
a simple task if the depth and color maps were acquired with the same camera.
In practice, when the cameras are separate, the additional step of registration must
be performed on the depth and color maps. Depth registration error is a practical
phenomenon that can occur spatially, when shadows or occlusions are present, or
temporally, when camera frame rates are not synchronized.

For many computer vision researchers, the registration error may not be signifi-
cant. However, this may not be true when specific correspondences between depth
and color edges are required. To ensure proper calibration between depth and color
calibration, note that classic checkerboard calibration [35] is imperfect for depth
maps (there are no edges). Zhang and Zhang propose a maximum-likelihood solu-
tion that is able to take into account uncertainty in depth values (Fig. 1.1).

1.2.2.1 Sparse Versus Dense Depth Maps

In many modalities, we obtain a point cloud that is sparse. In such a case, depth
values are provided for only a small subset of coordinates. This commonly occurs

Fig. 1.1 Registering RGB and depth images for commodity depth cameras using a checkerboard.
At left is the color image and at right is the depth image [34]
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in the case of stereo computer vision where it is challenging to find matches for all
points in typical scenes. It can also occur in other modalities to suppress noise, i.e.,
whenmany pointswith a low confidence are redacted. In contrast, adense point cloud
has depth for almost every real-world coordinate within the scope of the imaging
device. For many applications, it may be desirable to have a few high-confidence 3D
coordinates. As a case in point, many finger-tracking algorithms use a sparse depth
map to associate hand positions with gestures.

1.3 Universal Artifacts

In this section, we discuss some example artifacts that are present in the depth maps.
These artifacts are somewhat universal as they exist in many classes of consumer 3D
camera technology (e.g., structured light, time of flight, and stereo). In Sect. 1.3, we
discuss artifacts that are relevant to specific computer vision tasks.

1.3.1 Holes

Depth maps can be generated using various methods, including structured light,
stereo correspondence, and time of flight. Regardless of the technique, it is common
to find holes in the depth map, where depth data are missing. An example of this is
presented in Fig. 1.2. Observe that the ground truth depth map has no holes, but the
recovered depth (with a stereo camera) has many holes.

1.3.1.1 Fixing Holes in Depth Maps

Fixing holes is an important preprocessing step that, if performed correctly, can
improve the quality of the depth map. The typical recipe for hole filling is as follows:

Fig. 1.2 Left Ground truth depth map from the Tsukuba dataset. Right Measured depth image with
a stereo camera. The black values are “holes”
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Fig. 1.3 Bilateral filtering. At left, the input is noisy but has a clear edge discontinuity. At right is
the filtered output. Figure from [6]

Fill the holes by exploring correlations between neighboring depth pixels, subject to
the constraint that sharp depth edges are preserved.

A reasonable starting point might involve using a median filter with an adaptive
windowsize to correct for the holes.Unfortunately, thismethodviolates the constraint
of keeping the depth edges sharp. The accepted techniques can be broadly divided
into filtering methods or classification methods.

1.3.2 Filtering Methods

A popular hole-filling method is to use a modified bilateral filter. Readers may
be familiar with the bilateral filter from computer graphics [6]. The basic idea is to
smooth noise, while preserving sharp edge discontinuities (Fig. 1.3). A bilateral filter
can be transposed to operate on 3D point clouds and is often a standard processing
step in the API of camera manufacturers.

One extension is to combine a temporal approachwith bilateral filtering to achieve
the dual goal of preserving edge discontinuities and filling holes [4]. In particular, a
joint bilateral filter is used:

D p
f = H(Cmap,�

p)

k p

∑

q∈�p

D̂q f (p, q)h(
∥∥I p − I q

∥∥) (1.3)

where H(Cmap,�
p) is a function that evaluates the reliability of the depth values in

the neighborhood�p. This additional function allows the filter weights to be selected
by discriminating between pixels that belong to different objects. Figure 1.4 shows
the published results of the technique.

Another hole-filling technique combines belief propagation with the additional
step of cross-checking two input images to identify the confidence level of a pixel [1].
The depthmap is then smoothed by using color information and the confidence labels.
In the final step, the authors utilize an anisotropic diffusion technique for disparity
map refinement. A key point to note is that in anisotropic diffusion, depth edges
are not smoothed. This adaptive smoothing method is called directed anisotropic
diffusion. Figure 1.5 shows a few of the published results.



8 A. Kadambi et al.

Fig. 1.4 a A cluttered scene. b Holes in the depth map; observe the co-occurrence of shadows.
c Intermediate filtering. d Filled holes using neighborhood information. Figure from [4]

Fig. 1.5 Anisotropic filtering from [1]. The first row consists of reference images, the second row
the smoothed depths, and the last row the ground truth

1.3.3 Segmentation/Classification Methods

An alternate strategy to fill holes is to exploit classification information. If two pixels
belong to the same object, it is possible that the depth values can be robustly inter-
polated. As such, color-based segmentation and clustering is an extremely popular
hole-filling technique [19, 33]. In [18], a color-based clustering method is combined
with change detection to find coherent pixels (Fig. 1.6). The key addition is change
detection that allows static objects to be classified together. This result is shown in
Fig. 1.7.
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1.4 Causes for Holes

Why do holes occur in depth images? The most common reason for holes is occlu-
sions.Many 3D cameras require different views of an object to obtain depth.When an
occlusion occurs, the object is present in only one view and it is not possible to obtain
depth. In a more general sense, any time there is a matching ambiguity, holes can
be found. Such ambiguities occur in ill-posed matching problems, i.e., when point
correspondences cannot be found. Note that because time-of-flight sensors use a sin-
gle viewpoint to obtain depth, occlusions and matching ambiguities are non-factors.
Another source of error occurs at depth discontinuities where windowing effects
smear the foreground and background depths together. Windowing is a rather broad
term and encompasses both hardware-level windowing, e.g., by “flying pixels” in
time-of-flight range imaging, and software-level windowing, e.g., by patch-based
correspondence.

Fig. 1.6 Filling holes on the 2010 Kinect for Xbox 360. a Kinect depth map; observe the holes in
red. b A simple median filter. c Inpainting algorithms. d Strategy from [4]

Fig. 1.7 Intensity-based segmentation. Left Depth map with many holes. Right Processed depth
map with the spatiotemporal technique of [18]
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Fig. 1.8 a Photograph of a scene. b Depth map. c Depth edges

Fig. 1.9 Depth edges are view dependent. The surface point P corresponds to an edge in camera
A but not in camera B

1.4.1 Morphological Edge Erosion

Another important artifact in depth images is the lack of sharp edges. Depth dis-
continuities, also known as depth edges or occluding contours, correspond to sharp
changes in a depth map of the scene. An example of a depth map and its depth edges
is illustrated in Fig. 1.8. Depth edges, such as intensity edges, form the backbone
of several vision algorithms. Thus, it is very desirable to preserve sharp depth edges
that correctly map to the scene.

The first thing to note about depth edges is that they are view dependent. As
illustrated in Fig. 1.9, depending on the camera viewpoint, surface points may or
may not correspond to edges [3]. Parallax-based methods, such as structured light
and stereo, use different viewpoints and can therefore lead to smoothing of depth
edges. In particular, the tendency of parallax-based methods to use window-based
correspondence exacerbates the problem, and recovered edges are often smoothed
to an intolerable degree.
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Sharpening edges in stereo range images is not new task; we refer to the following
classic papers for extensive discussion on the topic: [7, 22, 25]. A reasonable solution
is to reduce the patch size (for correspondence) in a carefully chosen manner. For
instance, in [14] and [17], thewindow size is reduced based on the amount of disparity
variation. While the edges are indeed sharper, the technique is considered computa-
tionally expensive. Another alternative is to rectify the edges in post-processing of
the depth map. One option is to employ bilateral filtering in a similar fashion to the
hole-filling algorithms discussed in Sect. 1.3.1.1. For example, in [5], they combine
color data with joint bilateral filtering in the depth images to preserve edges. They
demonstrate results on the first-generation Kinect that uses structured light. The idea
is as follows: First, using the RGB image, pixels with the wrong depth values are
detected and removed with a region growing method. This creates holes, which are
now filled with a joint bilateral filter that is carefully chosen in context of the noise
properties of Kinect [5].

In short, the basic idea for any type of edge rectification for parallax-based 3D
cameras is very similar to the techniques used in hole-filling algorithms. Some key
priors include edge correspondence between the color and depth images [5] and
color- or motion-based segmentation [18, 33].

In time-of-flight cameras, the situation is a bit different. Since only one viewpoint
is used to obtain depth, the edges are oftenmuch sharper.Wemust remark that current
generations of ToF sensors have low spatial resolution and this can lead to optical
mixing of foreground and background objects [16]. Despite this, depth edges are
still better preserved in time-of-flight sensors and the depth edges do not need to be
post-processed to the degree of structured light systems. Of course, post-processing
can still be applied to improve the acquired depth map. For example, in [31], an
algorithm is proposed to find straight edges in the depth image. In [20], a denoising
algorithm that implements the total variation image prior is used. The total variation
prior minimizes the Manhattan (L1) norm of the gradient and has been shown to
promote piecewise smooth functions. The result from [20] is shown in Fig. 1.10.

Fig. 1.10 Enhancing edges in time-of-flight imaging. At left is the input and at right is the
anisotropic total variation method from [20]
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1.5 Ambient Lighting

Ambient lighting can be a problem for some 3D cameras that use active illumination,
such as stereoor structured light sensors.Creating cameras that canoperate in ambient
lighting fills a practical need. One such example occurs in outdoor robotics, where
3D cameras are trusted to work in sunlight.

Each 3D technology is affected by ambient lighting in different ways. Computer
stereovision does not rely upon active illumination and is therefore robust to ambient
lighting. In contrast, structured light relies upon a projected intensity pattern to obtain
depth. The pattern can become corrupted by ambient light and ambient shadows.
We may therefore state that structured light cameras are, in general, not robust to
ambient light. Infrared structured light systems, such as the first-generation Kinect,
use an optical filter to reject wavelengths that are not in the active illumination, but
this helps only marginally (sunlight contains a significant amount of near-infrared
light).

The new Kinect uses time of flight to obtain depth. This technique is resistant
to ambient light, allowing the new Kinect to be used outdoors. However, when
the scene is too bright, the imaging sensor saturates and all information is lost. In
outdoor experiments, the time-of-flight Kinect outperforms the old structured light
Kinect. For details on why the new Kinect is resistant to ambient light, please refer
to Sect. 1.11.

1.6 Motion

The 3D cameras that we consider are all designed to operate on dynamic scenes
where there is motion. That this capability exists is a testament to strong hard-
ware design and development: Many of the 3D sensors are inherently multishot
techniques. Concretely, this means that multiple photographs of the scene (these
are called subframes) are required to obtain a single depth frame. If there is sub-
stantial motion between the subframes, severe artifacts will be seen in the depth
frame.

What is the limit of consumer technology? Qualitatively, a speeding car at
60 mph cannot be captured with an active 3D depth camera (consumer grade), but a
person performing an exercise activity can be captured. A separate issue is in syn-
chronization of the optical and imaging elements. In the standard computer vision
practice, motion blur has not been, to the best of our knowledge a key issue. For
less common applications, such as using 3D time-of-flight sensors for heart motion
detection, it is necessary to preprocess the subframes using an algorithm like optical
flow [26]. A similar “flowlike” preprocessing step is also described in [11].
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Fig. 1.11 Left Example scene with multiple reflections. Photograph courtesy Ayush Bhandari.
Shot in a train station in Switzerland. Right Multiple interreflections smear together at a corner and
provide incorrect depth readings

1.6.1 Multiple Reflections

When multiple reflections return to the camera, it is challenging for 3D cameras
to obtain the correct depth. As an example scenario, consider a translucent object
like a glass cup which contributes reflections from the glass and the background
behind. As a real-world scene, consider Fig. 1.11, where the glass window of the
train exhibits multiple reflections. Another realistic scene occurs at a corner, where
multiple interreflections smear together (Fig. 1.11).

Handling multiple reflections is a very active problem in 3D camera design. How-
ever, the solutions are specific to the type of 3D technology. We discuss these prob-
lems in more detail in the specific sections on time of flight and structured light
(Sects. 2.4 and 2.5, respectively).

1.7 Depth Artifacts for Specific Vision Tasks

1.7.1 Scene Understanding

Scene understanding is a core problem of high-level computer vision. In recent years,
RGB-Ddata are beingwidely adapted for object recognition and scene-understanding
applications in computer vision, due to availability of affordable depth cameras such
as Microsoft Kinect. RGB-D systems provide both 3D information and an ambient
illumination-independent channel, increasing the accuracy and robustness of these
applications as compared to just RGB image data. However, these methods need to
deal with inaccuracies and noise introduced in depth capture process. In this section,
we summarize the commonly observed artifacts in depth maps. We focus on indoor
scenes, which feature predominantly in these research problems (Fig. 1.12).

http://dx.doi.org/10.1007/978-3-319-08651-4_2
http://dx.doi.org/10.1007/978-3-319-08651-4_2
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Fig. 1.12 Artifacts commonly occur in depth capture of natural scenes using commercial 3D
cameras. Left RGB image. Right Depth map captured by the first-generation Kinect of the same
scene. Pixels inwhite are holes in the depthmapwhich arise due to specularities occlusion or clutter.
Image courtesy [9]

The artifacts in depth maps that are introduced by the scene being observed are
mainly related to ambient illumination, reflectance properties of objects in the scene,
and their spatial configuration. Bright ambient illumination can affect the contrast
of infrared images in active light sensors, resulting in outliers or holes in the depth
map. A cluttered spatial configuration of objects can create occlusions and shadows,
which also produces holes in the depth image. Moreover, smooth and specular sur-
faces appear overexposed in the infrared image, generating holes in the depth map.
Currently, computer vision algorithms deal with holes in depth maps using simple
inpainting methods [9, 28] (PrimeSense). Applying some of the more sophisticated
filtering techniques may improve accuracy for scene-understanding tasks.1,2

1.7.2 3D Indoor Mapping

Obtaining a full 3D map of an indoor scene is a classic use case of 3D cameras. We
now describe in specific detail the artifacts that occur when obtaining a full 3D map
of an indoor environment.

1.8 The Drift Problem

The drift problem usually occurs when the depth camera is facing a scene with
poor geometric variation, such as a planar wall. These scenes lack constraints on
the degrees of freedom, and thus, estimating the camera pose is challenging. As a

1 This is an open question.
2 A related question: what impact will the new Kinect have on the accuracy of current scene-
understanding techniques?
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Fig. 1.13 Comparison between frame-to-frame alignment andKinect fusion [13]. a Frame to frame
tracking. b Partial loop. c Full loop. d M times duplicated loop

result, the camera trajectory undergoes an uncontrolled drift in front of the scene.
To overcome this issue, data from the color camera are necessary to constrain the
problem. Since the features extracted in the RGB image will provide a strong local-
ization cue, one can design a combined RGB-D camera system for localization and
mapping [10]. By fusing data from the RGB camera and contour information from
the depth camera, it is possible to mitigate the drift problem.

1.8.1 Accumulation Error

Due to memory constraints, most localization methods operate on a frame-to-frame
basis. This is a sort of Markovian property: To recover the camera parameters for
the current frame, we only consider shape alignment for the previous frame. Unfor-
tunately, errors accumulate during the alignment process which can increase into
significant artifacts over time. This is known as accumulation error, and the sever-
ity of artifacts is depicted in Fig. 1.13a. To resolve this problem, [24] and [13] propose
a global alignment framework to eliminate the accumulation error. Instead of align-
ing the current frame only to previous frame, Kinect Fusion will align to all the
frames which are already aligned. Here, the error introduced by each alignment step
is not added together. The improvement in indoor mapping and camera localization
is quite dramatic: Compare Fig. 1.13a with Fig. 1.13b–d.

1.8.1.1 Non-rigid Effects

A rigid alignment is onewhere a single transformation operates on each point. In con-
trast, in a non-rigid alignment, the transformation varies for different points. When
performing indoor mapping, a typical assumption is that the scene is static. When
this is not true a part of the scene is moving. Therefore, the transformation should be
different for the moving portions: This is an example of non-rigidity in the mapping
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Fig. 1.14 3D scanning pipeline using the first-generation Kinect. The end result is a high-quality
fabrication that can be 3D printed. Figure from [21]

process. In [32], a dynamic model of the scene is used as a template. By explicitly
factorizing motion using such models and priors, it is possible to mitigate non-rigid
artifacts.

1.9 3D Scanning for Fabrication

The previous section discussed indoor mapping of rooms. In this section, we
discuss a related problem: high-quality 3D scanning of an object using consumer
3D cameras. Three-dimensional cameras are often described as “2.5-dimensional”
cameras. Concretely, when using a Kinect to scan a human being, the camera is
unable to obtain point coordinates for the backside of the human. In practice, the
object of interest is rotated and the resulting point clouds are aligned.

The same artifacts that are present in Sect. 1.7.2 are also germane to 3D scanning.
In particular, in Fig. 1.14, a high-quality 3D scan of a person is obtained by using
a non-rigid alignment (this mitigates the motion of the person during and between
scans). An additional design constraint is in the quality. Since 3D scanning often
leads to 3D fabrication, high accuracy and detail are required. In [21], watertight
algorithms are used to close up holes.

1.9.1 Finger Tracking

Another common application is finger tracking. Not surprisingly, 3D imaging of
fingers is a challenging task due to the small scale of the scene (a finger is approx-
imately 1 cm thick). The list of artifacts is long. Motion artifacts persist, especially
when multipattern structured light techniques are used. Lack of clean depth edges
due to parallax effects is also prevalent. In addition, line-of-sight obstruction, holes,
and poor behavior in sunlight are further sources of artifacts.

With the advent of the new time-of-flight Kinect, several of these problems may
be fixed. For the computer vision practitioner, we suggest using a time-of-flight
3D camera for finger tracking as occlusions, ambient light, and motion artifacts are
mitigated (Fig. 1.15).
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Fig. 1.15 Time line of structured light (blue) and time-of-flight sensors (black)

1.10 Time-of-Flight Depth Sensors

Time-of-flight cameras are a recent development that offer an interesting alternative
to other ranging methods. As the name suggests, this optical instrument operates on
the time-of-flight principle, where the depth of the object corresponds to the time
that the light has been in flight. If the time delay is known, elementary kinematic
equations are used to obtain the distance to the object. Consumer quality time-of-
flight cameras are developed by a number of firms includingMESA imaging system,
SoftKinetic, PMDTechnologies, andMicrosoft, to name a few. One notable example
of a consumer-grade sensor based on time-of-flight principle is Microsoft Kinect for
Xbox One (2013).

In principle, we must mention that the time-of-flight principle is not a new tech-
nology. It has been used for decades in SONAR, spectrometry, spectroscopy and
velocimetry, to name a few. However, recent advances in hardware have facilitated
the inclusion of time-of-flight cameras into the consumer arena. To illustrate the
rigor placed on the hardware, consider the following: Light travels one foot in a
nanosecond. Thus, to obtain depth to centimeter accuracy, the hardware must be able
to detect electronic delays on the order of 100 picoseconds, with the additional con-
straint that this must be done for each pixel in the array. The data that are obtained
from time-of-flight cameras include an intensity image or amplitude image and an
image of the time delays, which we refer to as the depth image.

1.10.1 Second-Generation Kinect

Although there are many flavors of “time of flight,” we discuss only the operating
principle that forms the technological core of the Kinect One. The basic idea is
as follows. The Kinect contains a reference signal that modulates at a modulation
frequencyω (the typical range ofω is between 50 and 150MHz). The reference signal
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Fig. 1.16 Operating principle of the Kinect One. A phase difference between emitted and received
signals encodes the distance

also drives a synchronized solid-state light source to strobe at a sinusoidal pattern.
When the optical signal hits an object and returns to the camera, the waveform is
offset in phase from the reference signal (Fig. 1.16). The phase offset encodes the
depth of the object, and the intensity of the reflection encodes the albedo.

In particular, the light source emits a continuous-wave, periodic signal of form,
e(t) = 1 + s0 cos(ωt) Upon reflection from an object at some given distance, the
received signal assumes the form of

r (t) = ρ

(
1 + s0 cos

(
ω

(
t − 2d

c

)))
(1.4)

Each pixel in the time-of-flight camera samples the cross-correlation function
between the transmitted signal and the received signal:

Ce,r (τκ)︸ ︷︷ ︸
Cross-Correlation

= ρ

(
1 + s 2

0

2
cos (ωτ + φ)

)
, τκ = kπ

2ω
, k = 0, . . . , 3 (1.5)

where the phase of the fundamental frequency bin of the cross-correlation function
encodes the depth. In principle, note that the fundamental frequency bin includes
contributions only from optical sources that are modulated at frequency ω.

1.11 Benefits and Limitations of Time of Flight

A key advantage of time-of-flight cameras is that only a single viewpoint is used to
compute depth. This allows robustness to occlusions and shadows and preservation
of sharp depth edges. Recall that the existence of holes was largely due to occlusions,
and as such, the single viewpoint of a ToF depth sensor is a very significant benefit.
Another advantage is that ambient light is rejected (since it does not modulate at
frequency ω) (Fig. 1.17).
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Fig. 1.17 Structured light system. Instead of using two cameras, the vision system uses one pro-
jector and one camera

Currently, time-of-flight cameras suffer from a low spatial resolution due to the
extra processing that happens at the sensor level. Ambient light can still saturate
the sensor, in which case the depth values are meaningless. Like multipattern struc-
tured light systems, time-of-flight cameras also require multiple shots. Therefore,
the technique is susceptible to motion artifacts.

1.12 Structured Light Depth Sensors

Structured light-based depth estimation can be viewed as a specific case of stereo-
vision system where a projector replaces one of the two cameras (Fig. 1.2). In this
setting, structured light works by projecting a known pattern onto the subject of
interest and the distortion in the project pattern encodes the depth information of the
scene.

1.13 First-Generation Kinect (2010)

The first-generation Microsoft Kinect-based sensors use structured light for depth
estimation. The system involves a colored camera, an infrared camera, and an infrared
laser. The infrared laser emits a beam of light that in turn is split into multiple
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beams of light through the diffraction grating mechanism. This assembly mimics the
operation of a projector. The projected pattern is captured by the infrared camera and
is compared against the known reference code. The disparity between the projected
code and the observed code accounts for the depth information of the scene.

1.14 Structured Light Benefits and Limitations

A major advantage of structured light is that it can achieve very high spatial
resolution since it uses a conventional imaging device. Structured light systems do
not require any special treatment at the sensor level. These systems are simple enough
to construct at home using a projector and camera. One of the major advantages of
the structured light-based imaging systems is that it circumvents the correspondence
problem of stereovision-based systems. This is because any disparity in the setup
can be calibrated from the knowledge of distortions in the projected pattern.

For comparable accuracy to a ToF camera, sequential projection of coded or
phase-shifted patterns is often required to extract a single depth frame, which leads to
lower frame rate. This is a restriction in that the subject is required to be relatively still
during the projection phase. If the subject moves during the time when the pattern is
projected, then the measurements will be characterized by motion artifacts. Another
limitation is that the reflected pattern is sensitive to optical interference from the
environment. As a result, structured light-based methods tend to be more suited for
indoor applications where the environment is controlled. Because structured light
systems still rely on optical disparity, the technique is sensitive to occlusions and, by
extension, to holes.

1.15 Comparison of First- and Second-Generation Kinect Models

The first-generation Kinect is a structured light vision system, while the second-
generationKinect is a time-of-flight system. Figure 1.18 illustrates the time line of the
Kinect projects. Notable landmarks include the development of the first-generation
Kinect in 2010, the Kinect Fusion algorithm in 2013 (Sect. 1.7.2), and the second-
generation Kinect in 2013. In summer of 2014, an API for the second-generation
Kinect is scheduled for release.

1.15.1 Hardware Specifications

Figure 1.19 tabulates the hardware specifications of the Kinect models. Note that
despite the low spatial resolution that usually plagues ToF cameras, both sensors
have similar spatial resolutions. The second-generation Kinect has a larger field of
view, and therefore, it does not require a tilt motor. Beyond the inherent advantages
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Fig. 1.18 Time line of the Kinect projects. The structured light Kinect was released in 2010, while
the time-of-flight Kinect was released in 2013. Graphic courtesy John Elsbree

Fig. 1.19 Hardware specifications of the first- and second-generation Kinect models

of time-of-flight technology, the second-generation Kinect also boasts a higher depth
resolution, though this has not yet been verified.

1.16 3D Cameras of the Future

Kinect-style 3D cameras represent only a small part of 3D camera technology. In this
section, we cover some technologies that may be of interest for applications outside
the living room.
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Fig. 1.20 A modified time-of-flight camera is able to recover the depth of the translucent unicorn.
This is an example of emerging multidepth cameras. Figure from [16]

1.16.1 Multidepth 3D Cameras

Figure 1.11 provided brief insight into the problem of multiple reflections. Recently,
several papers extend the time-of-flight camera paradigm to handle multiple depths
that arise in a variety of scenarios. One such scenario is shown in Fig. 1.20, where
a modified time-of-flight camera is able to recover the range of a translucent horse
[16]. Other related papers include [2, 8, 23] and [29].

In Sect. 1.2.2, the registration of color and depth datawas discussed.An interesting
topic is whether it is possible to acquire both color images and depth maps with a
single camera. In [15], a real-time implementation was proposed that extends time-
of-flight technology to multiplex active light sources to provide color and range
simultaneously.

1.16.2 Photometric Approaches

In addition to the depth sensor based ongeometric approach, photometric cues play an
important role in estimating the 3D information. The intuition here is that the object
appearance viewed from a fixed position will be different, depending on the various
lighting conditions. For example, given a white sphere illuminated by a point source
which is far away, the surface points whose normal orientations have smaller angles
with the lighting direction look brighter and vice versa. The shape estimationmethods
relying on the photometric information mainly include two types: (1) shape-from-
shading [12], which uses only one image and can only recover the shape up to some
ambiguities, and (2) photometric stereo [30], which uses at least three images from
fixed viewpoint and different lighting directions to uniquely determine the shape.
Note that the direct output of photometric approaches is surface normal, which is the
derivative of surface. In order to reconstruct the 3D points or depth, integration has
to be applied on surface normal.

Compared to a geometric approach, the main advantage of the photometric
approach lies in its ability to recover delicate surface structures. Since the photo-
metric approach relies on the analysis of how light interacts with surface reflectance,
the quality of shape estimation depends heavily on the reflectance of target object.
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Fig. 1.21 The photometric stereo 3D camera—GelSight (Johnson 2011) and its reconstruction of
human skin

Acomprehensive evaluation on surface normal estimation accuracy versus real-world
reflectances can be found in [27].

If the surface reflectance can be carefully calibrated, the photometric-based 3D
camera can be applied to sense microscopic surface structure (Johnson 2011).
As shown in Fig. 1.21, the GelSight camera demonstrates a depth resolution of
2 microns, which is superior to geometric-based approaches (and of course Kinect-
style cameras).

1.17 Mobile 3D Cameras

As the cost and size ofmobile cameras and3Dsensors continue to decrease, consumer
electronic manufacturers are finding it increasingly more feasible to incorporate 3D
cameras into the next generation of mobile devices. In particular, industry trends
show an intensified focus on applications within the context of augmented reality,
image refocusing, and real-time key point tracking.

The LG Thrill was one of the first consumer mobile 3D devices (2010). This
Android-powered smartphone featured two 5-megapixel cameras that used the
stereoscopic effect to capturing 3D pictures and video. Even though the device was
equipped with a glasses-free 3D display to match, it ultimately failed to take hold in
the market because of its excessive weight and size and relatively poor photograph
quality. In 2012, Pelican Imaging released a small 3-mm-thick light field camera
array that can be embedded into mobile platforms. To calculate depth, Pelican uses
integrated parallax detection and super-resolution (Fig. 1.22).
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Fig. 1.22 Left Pelican’s mobile light field camera. Right Google’s Project Tango is an integrated
mobile phone and 3D camera that projects an active pattern

In early 2014, Google’s “Project Tango” smartphone, designed to calculate its
orientation and location in three-dimensional space, was announced. This device
is capable of collecting 3D data using structured IR and near-IR light. Along-
side the device are two dedicated computer vision processors and a wide-angle
motion-tracking camera that allow it to collect 250,000 3Dmeasurements per second
(Fig. 1.22). Most recently, HTC’s One M8, released in early 2014, uses high-
resolution stereoscopic cameras for refocus and background manipulation.

1.18 Conclusion

Three-dimensional cameras are primed to change computer vision in a meaningful
way. However, 3D data must be used with caution. Rather than simply plugging
in a depth map into an application, it is important to ensure that the depth map
is a meaningful 3D representation of the scene; this usually requires correction of
artifacts (the two main artifacts in depth maps are holes and edge erosion).

Let us return to the query that was posed in the initial stages of this chapter:
Is time of flight “better” than structured light? We can now provide the following
answer: It depends on the task. Concretely, Sect. 1.9.1 mentioned that finger tracking
with a structured light camera is prone to holes caused by line-of-sight obstruction.
Therefore, we can recommend using a comparable time-of-flight sensor for this
application.

A final question that is raised is whether the technology used to capture the 3D
data has any impact on the higher-level algorithms that are used. As a concrete
example, if a scene-understanding researcher is collecting a dataset, does she need
to discriminate between data that is collected with the first-generation Kinect or the
second-generation Kinect? Will she see a significant improvement in performance?
This is an open question.
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