
Advances in Computer Vision and Pattern Recognition

Computer Vision 
and Machine 
Learning with 
RGB-D Sensors

Ling Shao
Jungong Han
Pushmeet Kohli
Zhengyou Zhang Editors



Advances in Computer Vision and Pattern
Recognition



More information about this series at http://www.springer.com/series/4205

http://www.springer.com/series/4205


Ling Shao • Jungong Han •

Pushmeet Kohli • Zhengyou Zhang
Editors

Computer Vision
and Machine Learning
with RGB-D Sensors

123



Editors
Ling Shao
University of Sheffield
Sheffield
UK

Jungong Han
Civolution Technology
Eindhoven
The Netherlands

Pushmeet Kohli
Microsoft Research
Cambridge
UK

Zhengyou Zhang
Microsoft Research
Redmond, WA
USA

Founding editor
Sameer Singh
Rail Vision Europe Ltd.
Castle Donington, Leicestershire
UK

Series editor
Sing Bing Kang
Interactive Visual Media Group
Microsoft Research
Redmond, WA
USA

ISSN 2191-6586 ISSN 2191-6594 (electronic)
ISBN 978-3-319-08650-7 ISBN 978-3-319-08651-4 (eBook)
DOI 10.1007/978-3-319-08651-4

Library of Congress Control Number: 2014943409

Springer Cham Heidelberg New York Dordrecht London

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Depth cameras have been exploited in computer vision for several years, but the
high price and poor quality of such devices have limited their applicability. With
the invention of the low-cost depth sensors such as Kinect and Time-of-Flight
(TOF) cameras, high-resolution depth and visual (RGB) sensing have become
available for widespread use as an off-the-shelf technology. The complementary
nature of the synchronized depth and RGB information opens up new opportu-
nities to solve fundamental problems in computer vision, including human pose
estimation, activity recognition, object and people tracking, 3D mapping and
localization, etc. Furthermore, the robustness gained with depth cameras allow us
to take computer vision out of the lab and into real environments (e.g., people’s
homes).

While it is beneficial to use RGB-D sensors in many vision applications such as
object/scene recognition, human pose estimation, and gesture/activity recognition,
machine learning plays an important role in bridging the gap between feature
representations and decision making. For instance, the human pose recognition
algorithm associated with Kinect adapts a well-known learning technique into a
real-world task, where body parts are inferred using a randomized decision forest,
learned from over 1 million training examples. The success of this algorithm
bootstraps the investigation of applying intelligent machine learning techniques to
this new type of sensor representation. Many systems have already demonstrated
the possibility of making a better decision by learning useful information from a
large set of RGB-D data.

This book brings together high-quality and recent research advances on RGB-D
based computer vision. The targeted readers are researchers and practitioners
working in the areas of computer vision, human–computer interaction and
machine learning from both academia and industry. It can also be used as a
reference book for graduate students studying computer vision, pattern recognition
or multimedia.

We generally divide the chapters into four parts. In the first part, we have
included two survey chapters, which overview the prior arts in this filed. In the
second part, six chapters dedicate to the research of RGB-D based 3D

v



reconstruction, mapping, and synthesis. In the third part, there are two chapters
describing novel techniques that employ depth data for object detection, seg-
mentation, and tracking. The last part consists of four chapters, demonstrating
accurate interpretations of human actions with the aid of the depth information. In
the following we summarize all the chapters.

In Chap. 1, Kadambi et al. explain the theoretical difference between the first
generation Kinect and the recent delivered second generation Kinect from depth
creation perspective. This chapter also investigates the methods that can correct
artifacts on depth maps.

In Chap. 2, Berger summarizes the developments that include two or more
RGB-D sensors in one scene. The chapter focus on discussing effective means of
mitigating interference errors between multiple sensors in different applications. In
addition, the chapter lists the most prominent datasets, which are publicly
available.

In Chap. 3, Zhang et al. deal with the problem of calibrating the color and the
depth cameras. The algorithm is designed to enhance the traditional checkerboard
based calibration scheme because it does not work properly in the particular
application. The new algorithm proposes a maximum likelihood solution for the
joint depth and color calibration based on the assumption that points on the
checkerboard shall lie on a common plane.

In Chap. 4, Koschan and Abidi present a new method to reduce the noise on
depth map. Here, a joint bilateral filter is carried out in order to enhance depth
information with the aid of color information. The novelty lies in the fact that the
joint bilateral filter is applied to a common distance transform map, which rep-
resents the degree of pixel-modal similarity between a depth pixel and its corre-
sponding color pixel.

In Chap. 5, Liu et al. aim at capturing real performances of human actors, in
which the core problem is to reconstruct 3D human performance. To do so, the
algorithm automatically tracks the motion of the handheld cameras and aligns the
surface and skeleton of each tracked performer to the captured RGB-D data. In
order to solve more practical problems, like occlusions and human body orienta-
tion changes, the system synchronize the signals from three handheld Kinects.

In Chap. 6, Liu et al. introduce three interesting applications where analyzing
the depth signal plays important roles. In the first application, fusing depth and
RGB information helps to accurately reconstruct a real human and provide per-
sonalized avatars for users. In the second application, depth-based human skeleton
tracking is used to evaluate energy consumption of users during a game playing. In
the last application, authors show the possibility of obtaining more accurate human
action classification by interpreting the depth map.

In Chap. 7, Feinen and Grzegorzekpresent a novel approach that is able to
facilitate the RGB-D object retrieval application. The main idea is to match the
curves derived by object contours. However, the traditional 2D curve matching is
incapable of handling viewpoint changes. To overcome this problem, this chapter
comes up with new ideas that match 3D curve configurations.

vi Preface

http://dx.doi.org/10.1007/978-3-319-08651-4_1
http://dx.doi.org/10.1007/978-3-319-08651-4_2
http://dx.doi.org/10.1007/978-3-319-08651-4_3
http://dx.doi.org/10.1007/978-3-319-08651-4_4
http://dx.doi.org/10.1007/978-3-319-08651-4_5
http://dx.doi.org/10.1007/978-3-319-08651-4_6
http://dx.doi.org/10.1007/978-3-319-08651-4_7


In Chap. 8, Berger et al. deal with the application of reconstructing the gas flow
from three Kinect cameras. In this chapter, a new subpixel accurate flow detection
algorithm is proposed, facilitating the sparse image data such as the Kinect spot
pattern. Afterwards, they exploit the sparse spot detection algorithm to provide
masks for a GPU-based visual hull reconstruction.

In Chap. 9, Tian develops a RGB-D based computer vision system to assist
blind and visually impaired persons. The core technique contributed by the chapter
is a stairs and pedestrian crosswalks detection algorithm based on RGB-D images.
The system serves as a navigation aid that can help blind users to gain improved
perception and better understanding of the environment changes.

In Chap. 10, Han et al. utilize Kinect in a smart environment, where sensing the
location and identity of the users is essential. In this chapter, viewpoint invariant
features are extracted from the object shape and used for detecting human.
Moreover, human re-entry is identified by a boosting-based classification algo-
rithm, in which depth information helps to select suitable positive samples.

In Chap. 11, Dominio et al. discuss the effective features that characterize static
hand poses. Several depth-based descriptors have been presented and examined in
the chapter. The final conclusion is that some features, such as curvatures, dis-
tance, and correlation features, have better performances. The combination of
multiple features allows to obtain much better performance.

In Chap. 12, Liang and Yuan present a unified framework to enforce both the
temporal and spatial constraints for hand parsing. In this work, a superpixel
Markov Random Field is leveraged to efficiently remove the misclassified regions
produced by per-pixel classification. Finally, a rotation-invariant hand gesture
recognition algorithm is designed to recognize digit number gestures.

In Chap. 13, Krupka et al. describe a novel classifier architecture based on
discriminative ferns ensemble. This classifier architecture optimizes both classi-
fication speed and accuracy, given a large training set. To speed up the algorithm,
simple binary features and direct indexing are employed. In addition, a large
capacity model and careful discriminative optimization help to gain the algorithm
accuracy.

In Chap. 14, Yao et al. propose a new hand segmentation and gesture recog-
nition system. The contribution is a 3D contour model from the classified pixels.
Instead of matching between images, this 3D contour model can be coded into
strings. Therefore, the correspondence sample gesture can be found by a fast
nearest neighbor searching method.

Sheffield, UK Ling Shao
Eindhoven, The Netherlands Jungong Han
Cambridge, UK Pushmeet Kohli
Redmond, USA Zhengyou Zhang

Preface vii

http://dx.doi.org/10.1007/978-3-319-08651-4_8
http://dx.doi.org/10.1007/978-3-319-08651-4_9
http://dx.doi.org/10.1007/978-3-319-08651-4_10
http://dx.doi.org/10.1007/978-3-319-08651-4_11
http://dx.doi.org/10.1007/978-3-319-08651-4_12
http://dx.doi.org/10.1007/978-3-319-08651-4_13
http://dx.doi.org/10.1007/978-3-319-08651-4_14


Contents

Part I Surveys

1 3D Depth Cameras in Vision: Benefits and Limitations
of the Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Achuta Kadambi, Ayush Bhandari and Ramesh Raskar

2 A State of the Art Report on Multiple RGB-D Sensor
Research and on Publicly Available RGB-D Datasets. . . . . . . . . . 27
Kai Berger

Part II Reconstruction, Mapping and Synthesis

3 Calibration Between Depth and Color Sensors for Commodity
Depth Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Cha Zhang and Zhengyou Zhang

4 Depth Map Denoising via CDT-Based Joint Bilateral Filter . . . . . 65
Andreas Koschan and Mongi Abidi

5 Human Performance Capture Using Multiple Handheld
Kinects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Yebin Liu, Genzhi Ye, Yangang Wang, Qionghai Dai
and Christian Theobalt

6 Human-Centered 3D Home Applications via Low-Cost
RGBD Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Zhenbao Liu, Shuhui Bu and Junwei Han

ix

http://dx.doi.org/10.1007/978-3-319-08651-4_1
http://dx.doi.org/10.1007/978-3-319-08651-4_1
http://dx.doi.org/10.1007/978-3-319-08651-4_2
http://dx.doi.org/10.1007/978-3-319-08651-4_2
http://dx.doi.org/10.1007/978-3-319-08651-4_3
http://dx.doi.org/10.1007/978-3-319-08651-4_3
http://dx.doi.org/10.1007/978-3-319-08651-4_4
http://dx.doi.org/10.1007/978-3-319-08651-4_5
http://dx.doi.org/10.1007/978-3-319-08651-4_5
http://dx.doi.org/10.1007/978-3-319-08651-4_6
http://dx.doi.org/10.1007/978-3-319-08651-4_6


7 Matching of 3D Objects Based on 3D Curves . . . . . . . . . . . . . . . 137
Christian Feinen, Joanna Czajkowska, Marcin Grzegorzek
and Longin Jan Latecki

8 Using Sparse Optical Flow for Two-Phase Gas Flow
Capturing with Multiple Kinect . . . . . . . . . . . . . . . . . . . . . . . . . 157
Kai Berger, Marc Kastner, Yannic Schroeder and Stefan Guthe

Part III Detection, Segmentation and Tracking

9 RGB-D Sensor-Based Computer Vision Assistive Technology
for Visually Impaired Persons. . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Yingli Tian

10 RGB-D Human Identification and Tracking in a Smart
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Jungong Han and Junwei Han

Part IV Learning-Based Recognition

11 Feature Descriptors for Depth-Based Hand Gesture
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Fabio Dominio, Giulio Marin, Mauro Piazza and Pietro Zanuttigh

12 Hand Parsing and Gesture Recognition with a Commodity
Depth Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Hui Liang and Junsong Yuan

13 Learning Fast Hand Pose Recognition . . . . . . . . . . . . . . . . . . . . . 267
Eyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar-Hillel,
Daniel Freedman, Simon Stachniak and Cem Keskin

14 Real-Time Hand Gesture Recognition Using RGB-D Sensor. . . . . 289
Yuan Yao, Fan Zhang and Yun Fu

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

x Contents

http://dx.doi.org/10.1007/978-3-319-08651-4_7
http://dx.doi.org/10.1007/978-3-319-08651-4_8
http://dx.doi.org/10.1007/978-3-319-08651-4_8
http://dx.doi.org/10.1007/978-3-319-08651-4_9
http://dx.doi.org/10.1007/978-3-319-08651-4_9
http://dx.doi.org/10.1007/978-3-319-08651-4_10
http://dx.doi.org/10.1007/978-3-319-08651-4_10
http://dx.doi.org/10.1007/978-3-319-08651-4_11
http://dx.doi.org/10.1007/978-3-319-08651-4_11
http://dx.doi.org/10.1007/978-3-319-08651-4_12
http://dx.doi.org/10.1007/978-3-319-08651-4_12
http://dx.doi.org/10.1007/978-3-319-08651-4_13
http://dx.doi.org/10.1007/978-3-319-08651-4_14


Part I
Surveys



Chapter 1
3D Depth Cameras in Vision:
Benefits and Limitations of the Hardware

With an Emphasis on the First- and
Second-Generation Kinect Models

Achuta Kadambi, Ayush Bhandari and Ramesh Raskar

Abstract The second-generation Microsoft Kinect uses time-of-flight technology,
while the first-generation Kinect uses structured light technology. This raises the
question whether one of these technologies is “better” than the other. In this chapter,
readers will find an overview of 3D camera technology and the artifacts that occur
in depth maps.

1.1 Introduction

The physical world is three-dimensional. It is surprising then that conventional
cameras perceive the world in two dimensions, while even primitive animals per-
ceive the world in its richer three-dimensional form. Today, using technology such
as Microsoft Kinect, it is possible to collect 3D data with the ease and cost of point-
and-shoot photography.

In today’s consumer landscape, there are two primary 3D camera technologies:
structured light and time of flight. A structured light camera projects an active
pattern and obtains depth by analyzing the deformation of the pattern. The first-
generation Kinect (2010) is a structured light camera. In contrast, a time-of-flight

We thank the following people at the Massachusetts Institute of Technology for their contributions
to the chapter: Nikhil Naik, Boxin Shi, Ameya Joshi, Genzhi Ye, Amol Mahurkar, Julio Estrada,
Hisham Bedri, and Rohan Puri.

A. Kadambi (B) · A. Bhandari · R. Raskar
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: achoo@mit.edu

A. Bhandari
e-mail: ayush@mit.edu

R. Raskar
e-mail: raskar@mit.edu

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_1

3



4 A. Kadambi et al.

camera measures the time that light has been in flight to estimate distance. The
second-generation Kinect (2013) is a time-of-flight camera. Microsoft’s strategy
for moving to time of flight for their second Kinect raises the question whether one
of these technologies is “better” than the other.

By the end of this chapter, we expect that the reader will have a better
understanding of the benefits and limitations of different 3D camera technologies.
More importantly, readers will learn the underlying cause behind depth artifacts and
the accepted strategies to fix them.

1.2 3D Data Storage

1.2.1 3D Point Clouds

A point cloud is set of data points defined in a coordinate system. Using M to refer
to the number of points and N for the dimensionality of the space, the point cloud is
written as follows:

P = {p1, . . . , pM } pT ∈ RN . (1.1)

A common technique to store point clouds in memory is to form an by array denoted
as P where each row vector in corresponds to a point. We require two conditions to
define an N-dimensional point cloud:

1. pT
i ∈ RN i = 1, . . . , M.

2. The object of interest is in the convex hull of the points.

The first condition is satisfied with any camera that acquires depth. The second
condition is more restrictive and is discussed in detail in the 3D scanning section
(Sect. 1.9). In this chapter, we are particularly interested in 3D point clouds, i.e., the
set of points defined by real-world coordinates X, Y, and Z.

Often we are provided additional information for each point in the cloud. Suppose
we are provided a K-tuple of “information” for each point in the cloud. This is
described as the following set:

F = { f1, . . . , fM } f T ∈ RK . (1.2)

which is stored in memory as an M by K array. Taken together, the feature array F
and the corresponding point cloud array P represent the space of data we consider
in this chapter. As a concrete example, if we are provided the 3-tuple of the color
reflectance at each point in R3, we have color and depth. This is known as RGB-D
acquisition. For simplicity, we refer to the point set as the “depth data” and the
feature set as the “RGB data.”



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 5

1.2.1.1 A Note on Organized Point Clouds

Point clouds from depth cameras, such as Microsoft Kinect, can be further classified
into organized point clouds. In such point clouds, it is possible to index the spatial
X and Y coordinates in a logical manner, e.g., by rows and columns. In contrast,
unorganized point clouds have no structure in the spatial coordinates. Organized
point clouds are a much more powerful data format that greatly facilitates registration
and other types of vision algorithms.

1.2.2 Registering Color and Depth Data

We must have correspondence between the depth and color data. This would be
a simple task if the depth and color maps were acquired with the same camera.
In practice, when the cameras are separate, the additional step of registration must
be performed on the depth and color maps. Depth registration error is a practical
phenomenon that can occur spatially, when shadows or occlusions are present, or
temporally, when camera frame rates are not synchronized.

For many computer vision researchers, the registration error may not be signifi-
cant. However, this may not be true when specific correspondences between depth
and color edges are required. To ensure proper calibration between depth and color
calibration, note that classic checkerboard calibration [35] is imperfect for depth
maps (there are no edges). Zhang and Zhang propose a maximum-likelihood solu-
tion that is able to take into account uncertainty in depth values (Fig. 1.1).

1.2.2.1 Sparse Versus Dense Depth Maps

In many modalities, we obtain a point cloud that is sparse. In such a case, depth
values are provided for only a small subset of coordinates. This commonly occurs

Fig. 1.1 Registering RGB and depth images for commodity depth cameras using a checkerboard.
At left is the color image and at right is the depth image [34]



6 A. Kadambi et al.

in the case of stereo computer vision where it is challenging to find matches for all
points in typical scenes. It can also occur in other modalities to suppress noise, i.e.,
when many points with a low confidence are redacted. In contrast, a dense point cloud
has depth for almost every real-world coordinate within the scope of the imaging
device. For many applications, it may be desirable to have a few high-confidence 3D
coordinates. As a case in point, many finger-tracking algorithms use a sparse depth
map to associate hand positions with gestures.

1.3 Universal Artifacts

In this section, we discuss some example artifacts that are present in the depth maps.
These artifacts are somewhat universal as they exist in many classes of consumer 3D
camera technology (e.g., structured light, time of flight, and stereo). In Sect. 1.3, we
discuss artifacts that are relevant to specific computer vision tasks.

1.3.1 Holes

Depth maps can be generated using various methods, including structured light,
stereo correspondence, and time of flight. Regardless of the technique, it is common
to find holes in the depth map, where depth data are missing. An example of this is
presented in Fig. 1.2. Observe that the ground truth depth map has no holes, but the
recovered depth (with a stereo camera) has many holes.

1.3.1.1 Fixing Holes in Depth Maps

Fixing holes is an important preprocessing step that, if performed correctly, can
improve the quality of the depth map. The typical recipe for hole filling is as follows:

Fig. 1.2 Left Ground truth depth map from the Tsukuba dataset. Right Measured depth image with
a stereo camera. The black values are “holes”



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 7

Fig. 1.3 Bilateral filtering. At left, the input is noisy but has a clear edge discontinuity. At right is
the filtered output. Figure from [6]

Fill the holes by exploring correlations between neighboring depth pixels, subject to
the constraint that sharp depth edges are preserved.

A reasonable starting point might involve using a median filter with an adaptive
window size to correct for the holes. Unfortunately, this method violates the constraint
of keeping the depth edges sharp. The accepted techniques can be broadly divided
into filtering methods or classification methods.

1.3.2 Filtering Methods

A popular hole-filling method is to use a modified bilateral filter. Readers may
be familiar with the bilateral filter from computer graphics [6]. The basic idea is to
smooth noise, while preserving sharp edge discontinuities (Fig. 1.3). A bilateral filter
can be transposed to operate on 3D point clouds and is often a standard processing
step in the API of camera manufacturers.

One extension is to combine a temporal approach with bilateral filtering to achieve
the dual goal of preserving edge discontinuities and filling holes [4]. In particular, a
joint bilateral filter is used:

D p
f = H(Cmap,α

p)

k p

∑

q∈αp

D̂q f (p, q)h(
∥∥I p − I q

∥∥) (1.3)

where H(Cmap,α
p) is a function that evaluates the reliability of the depth values in

the neighborhood αp. This additional function allows the filter weights to be selected
by discriminating between pixels that belong to different objects. Figure 1.4 shows
the published results of the technique.

Another hole-filling technique combines belief propagation with the additional
step of cross-checking two input images to identify the confidence level of a pixel [1].
The depth map is then smoothed by using color information and the confidence labels.
In the final step, the authors utilize an anisotropic diffusion technique for disparity
map refinement. A key point to note is that in anisotropic diffusion, depth edges
are not smoothed. This adaptive smoothing method is called directed anisotropic
diffusion. Figure 1.5 shows a few of the published results.



8 A. Kadambi et al.

Fig. 1.4 a A cluttered scene. b Holes in the depth map; observe the co-occurrence of shadows.
c Intermediate filtering. d Filled holes using neighborhood information. Figure from [4]

Fig. 1.5 Anisotropic filtering from [1]. The first row consists of reference images, the second row
the smoothed depths, and the last row the ground truth

1.3.3 Segmentation/Classification Methods

An alternate strategy to fill holes is to exploit classification information. If two pixels
belong to the same object, it is possible that the depth values can be robustly inter-
polated. As such, color-based segmentation and clustering is an extremely popular
hole-filling technique [19, 33]. In [18], a color-based clustering method is combined
with change detection to find coherent pixels (Fig. 1.6). The key addition is change
detection that allows static objects to be classified together. This result is shown in
Fig. 1.7.



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 9

1.4 Causes for Holes

Why do holes occur in depth images? The most common reason for holes is occlu-
sions. Many 3D cameras require different views of an object to obtain depth. When an
occlusion occurs, the object is present in only one view and it is not possible to obtain
depth. In a more general sense, any time there is a matching ambiguity, holes can
be found. Such ambiguities occur in ill-posed matching problems, i.e., when point
correspondences cannot be found. Note that because time-of-flight sensors use a sin-
gle viewpoint to obtain depth, occlusions and matching ambiguities are non-factors.
Another source of error occurs at depth discontinuities where windowing effects
smear the foreground and background depths together. Windowing is a rather broad
term and encompasses both hardware-level windowing, e.g., by “flying pixels” in
time-of-flight range imaging, and software-level windowing, e.g., by patch-based
correspondence.

Fig. 1.6 Filling holes on the 2010 Kinect for Xbox 360. a Kinect depth map; observe the holes in
red. b A simple median filter. c Inpainting algorithms. d Strategy from [4]

Fig. 1.7 Intensity-based segmentation. Left Depth map with many holes. Right Processed depth
map with the spatiotemporal technique of [18]



10 A. Kadambi et al.

Fig. 1.8 a Photograph of a scene. b Depth map. c Depth edges

Fig. 1.9 Depth edges are view dependent. The surface point P corresponds to an edge in camera
A but not in camera B

1.4.1 Morphological Edge Erosion

Another important artifact in depth images is the lack of sharp edges. Depth dis-
continuities, also known as depth edges or occluding contours, correspond to sharp
changes in a depth map of the scene. An example of a depth map and its depth edges
is illustrated in Fig. 1.8. Depth edges, such as intensity edges, form the backbone
of several vision algorithms. Thus, it is very desirable to preserve sharp depth edges
that correctly map to the scene.

The first thing to note about depth edges is that they are view dependent. As
illustrated in Fig. 1.9, depending on the camera viewpoint, surface points may or
may not correspond to edges [3]. Parallax-based methods, such as structured light
and stereo, use different viewpoints and can therefore lead to smoothing of depth
edges. In particular, the tendency of parallax-based methods to use window-based
correspondence exacerbates the problem, and recovered edges are often smoothed
to an intolerable degree.



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 11

Sharpening edges in stereo range images is not new task; we refer to the following
classic papers for extensive discussion on the topic: [7, 22, 25]. A reasonable solution
is to reduce the patch size (for correspondence) in a carefully chosen manner. For
instance, in [14] and [17], the window size is reduced based on the amount of disparity
variation. While the edges are indeed sharper, the technique is considered computa-
tionally expensive. Another alternative is to rectify the edges in post-processing of
the depth map. One option is to employ bilateral filtering in a similar fashion to the
hole-filling algorithms discussed in Sect. 1.3.1.1. For example, in [5], they combine
color data with joint bilateral filtering in the depth images to preserve edges. They
demonstrate results on the first-generation Kinect that uses structured light. The idea
is as follows: First, using the RGB image, pixels with the wrong depth values are
detected and removed with a region growing method. This creates holes, which are
now filled with a joint bilateral filter that is carefully chosen in context of the noise
properties of Kinect [5].

In short, the basic idea for any type of edge rectification for parallax-based 3D
cameras is very similar to the techniques used in hole-filling algorithms. Some key
priors include edge correspondence between the color and depth images [5] and
color- or motion-based segmentation [18, 33].

In time-of-flight cameras, the situation is a bit different. Since only one viewpoint
is used to obtain depth, the edges are often much sharper. We must remark that current
generations of ToF sensors have low spatial resolution and this can lead to optical
mixing of foreground and background objects [16]. Despite this, depth edges are
still better preserved in time-of-flight sensors and the depth edges do not need to be
post-processed to the degree of structured light systems. Of course, post-processing
can still be applied to improve the acquired depth map. For example, in [31], an
algorithm is proposed to find straight edges in the depth image. In [20], a denoising
algorithm that implements the total variation image prior is used. The total variation
prior minimizes the Manhattan (L1) norm of the gradient and has been shown to
promote piecewise smooth functions. The result from [20] is shown in Fig. 1.10.

Fig. 1.10 Enhancing edges in time-of-flight imaging. At left is the input and at right is the
anisotropic total variation method from [20]



12 A. Kadambi et al.

1.5 Ambient Lighting

Ambient lighting can be a problem for some 3D cameras that use active illumination,
such as stereo or structured light sensors. Creating cameras that can operate in ambient
lighting fills a practical need. One such example occurs in outdoor robotics, where
3D cameras are trusted to work in sunlight.

Each 3D technology is affected by ambient lighting in different ways. Computer
stereovision does not rely upon active illumination and is therefore robust to ambient
lighting. In contrast, structured light relies upon a projected intensity pattern to obtain
depth. The pattern can become corrupted by ambient light and ambient shadows.
We may therefore state that structured light cameras are, in general, not robust to
ambient light. Infrared structured light systems, such as the first-generation Kinect,
use an optical filter to reject wavelengths that are not in the active illumination, but
this helps only marginally (sunlight contains a significant amount of near-infrared
light).

The new Kinect uses time of flight to obtain depth. This technique is resistant
to ambient light, allowing the new Kinect to be used outdoors. However, when
the scene is too bright, the imaging sensor saturates and all information is lost. In
outdoor experiments, the time-of-flight Kinect outperforms the old structured light
Kinect. For details on why the new Kinect is resistant to ambient light, please refer
to Sect. 1.11.

1.6 Motion

The 3D cameras that we consider are all designed to operate on dynamic scenes
where there is motion. That this capability exists is a testament to strong hard-
ware design and development: Many of the 3D sensors are inherently multishot
techniques. Concretely, this means that multiple photographs of the scene (these
are called subframes) are required to obtain a single depth frame. If there is sub-
stantial motion between the subframes, severe artifacts will be seen in the depth
frame.

What is the limit of consumer technology? Qualitatively, a speeding car at
60 mph cannot be captured with an active 3D depth camera (consumer grade), but a
person performing an exercise activity can be captured. A separate issue is in syn-
chronization of the optical and imaging elements. In the standard computer vision
practice, motion blur has not been, to the best of our knowledge a key issue. For
less common applications, such as using 3D time-of-flight sensors for heart motion
detection, it is necessary to preprocess the subframes using an algorithm like optical
flow [26]. A similar “flowlike” preprocessing step is also described in [11].



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 13

Fig. 1.11 Left Example scene with multiple reflections. Photograph courtesy Ayush Bhandari.
Shot in a train station in Switzerland. Right Multiple interreflections smear together at a corner and
provide incorrect depth readings

1.6.1 Multiple Reflections

When multiple reflections return to the camera, it is challenging for 3D cameras
to obtain the correct depth. As an example scenario, consider a translucent object
like a glass cup which contributes reflections from the glass and the background
behind. As a real-world scene, consider Fig. 1.11, where the glass window of the
train exhibits multiple reflections. Another realistic scene occurs at a corner, where
multiple interreflections smear together (Fig. 1.11).

Handling multiple reflections is a very active problem in 3D camera design. How-
ever, the solutions are specific to the type of 3D technology. We discuss these prob-
lems in more detail in the specific sections on time of flight and structured light
(Sects. 2.4 and 2.5, respectively).

1.7 Depth Artifacts for Specific Vision Tasks

1.7.1 Scene Understanding

Scene understanding is a core problem of high-level computer vision. In recent years,
RGB-D data are being widely adapted for object recognition and scene-understanding
applications in computer vision, due to availability of affordable depth cameras such
as Microsoft Kinect. RGB-D systems provide both 3D information and an ambient
illumination-independent channel, increasing the accuracy and robustness of these
applications as compared to just RGB image data. However, these methods need to
deal with inaccuracies and noise introduced in depth capture process. In this section,
we summarize the commonly observed artifacts in depth maps. We focus on indoor
scenes, which feature predominantly in these research problems (Fig. 1.12).

http://dx.doi.org/10.1007/978-3-319-08651-4_2
http://dx.doi.org/10.1007/978-3-319-08651-4_2


14 A. Kadambi et al.

Fig. 1.12 Artifacts commonly occur in depth capture of natural scenes using commercial 3D
cameras. Left RGB image. Right Depth map captured by the first-generation Kinect of the same
scene. Pixels in white are holes in the depth map which arise due to specularities occlusion or clutter.
Image courtesy [9]

The artifacts in depth maps that are introduced by the scene being observed are
mainly related to ambient illumination, reflectance properties of objects in the scene,
and their spatial configuration. Bright ambient illumination can affect the contrast
of infrared images in active light sensors, resulting in outliers or holes in the depth
map. A cluttered spatial configuration of objects can create occlusions and shadows,
which also produces holes in the depth image. Moreover, smooth and specular sur-
faces appear overexposed in the infrared image, generating holes in the depth map.
Currently, computer vision algorithms deal with holes in depth maps using simple
inpainting methods [9, 28] (PrimeSense). Applying some of the more sophisticated
filtering techniques may improve accuracy for scene-understanding tasks.1,2

1.7.2 3D Indoor Mapping

Obtaining a full 3D map of an indoor scene is a classic use case of 3D cameras. We
now describe in specific detail the artifacts that occur when obtaining a full 3D map
of an indoor environment.

1.8 The Drift Problem

The drift problem usually occurs when the depth camera is facing a scene with
poor geometric variation, such as a planar wall. These scenes lack constraints on
the degrees of freedom, and thus, estimating the camera pose is challenging. As a

1 This is an open question.
2 A related question: what impact will the new Kinect have on the accuracy of current scene-
understanding techniques?



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 15

Fig. 1.13 Comparison between frame-to-frame alignment and Kinect fusion [13]. a Frame to frame
tracking. b Partial loop. c Full loop. d M times duplicated loop

result, the camera trajectory undergoes an uncontrolled drift in front of the scene.
To overcome this issue, data from the color camera are necessary to constrain the
problem. Since the features extracted in the RGB image will provide a strong local-
ization cue, one can design a combined RGB-D camera system for localization and
mapping [10]. By fusing data from the RGB camera and contour information from
the depth camera, it is possible to mitigate the drift problem.

1.8.1 Accumulation Error

Due to memory constraints, most localization methods operate on a frame-to-frame
basis. This is a sort of Markovian property: To recover the camera parameters for
the current frame, we only consider shape alignment for the previous frame. Unfor-
tunately, errors accumulate during the alignment process which can increase into
significant artifacts over time. This is known as accumulation error, and the sever-
ity of artifacts is depicted in Fig. 1.13a. To resolve this problem, [24] and [13] propose
a global alignment framework to eliminate the accumulation error. Instead of align-
ing the current frame only to previous frame, Kinect Fusion will align to all the
frames which are already aligned. Here, the error introduced by each alignment step
is not added together. The improvement in indoor mapping and camera localization
is quite dramatic: Compare Fig. 1.13a with Fig. 1.13b–d.

1.8.1.1 Non-rigid Effects

A rigid alignment is one where a single transformation operates on each point. In con-
trast, in a non-rigid alignment, the transformation varies for different points. When
performing indoor mapping, a typical assumption is that the scene is static. When
this is not true a part of the scene is moving. Therefore, the transformation should be
different for the moving portions: This is an example of non-rigidity in the mapping



16 A. Kadambi et al.

Fig. 1.14 3D scanning pipeline using the first-generation Kinect. The end result is a high-quality
fabrication that can be 3D printed. Figure from [21]

process. In [32], a dynamic model of the scene is used as a template. By explicitly
factorizing motion using such models and priors, it is possible to mitigate non-rigid
artifacts.

1.9 3D Scanning for Fabrication

The previous section discussed indoor mapping of rooms. In this section, we
discuss a related problem: high-quality 3D scanning of an object using consumer
3D cameras. Three-dimensional cameras are often described as “2.5-dimensional”
cameras. Concretely, when using a Kinect to scan a human being, the camera is
unable to obtain point coordinates for the backside of the human. In practice, the
object of interest is rotated and the resulting point clouds are aligned.

The same artifacts that are present in Sect. 1.7.2 are also germane to 3D scanning.
In particular, in Fig. 1.14, a high-quality 3D scan of a person is obtained by using
a non-rigid alignment (this mitigates the motion of the person during and between
scans). An additional design constraint is in the quality. Since 3D scanning often
leads to 3D fabrication, high accuracy and detail are required. In [21], watertight
algorithms are used to close up holes.

1.9.1 Finger Tracking

Another common application is finger tracking. Not surprisingly, 3D imaging of
fingers is a challenging task due to the small scale of the scene (a finger is approx-
imately 1 cm thick). The list of artifacts is long. Motion artifacts persist, especially
when multipattern structured light techniques are used. Lack of clean depth edges
due to parallax effects is also prevalent. In addition, line-of-sight obstruction, holes,
and poor behavior in sunlight are further sources of artifacts.

With the advent of the new time-of-flight Kinect, several of these problems may
be fixed. For the computer vision practitioner, we suggest using a time-of-flight
3D camera for finger tracking as occlusions, ambient light, and motion artifacts are
mitigated (Fig. 1.15).



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 17

2000

pmd

2002

Canesta

2005

PrimeSense

2006 2007

Soft

2009

Microsoft
Kinect

2013

Microsoft 
Kinect
(ToF)

2014

Google
Tango

3DV/ZCam

Time of Flight
Structured Light

MESA
Imaging

technologies

kinetic

Fig. 1.15 Time line of structured light (blue) and time-of-flight sensors (black)

1.10 Time-of-Flight Depth Sensors

Time-of-flight cameras are a recent development that offer an interesting alternative
to other ranging methods. As the name suggests, this optical instrument operates on
the time-of-flight principle, where the depth of the object corresponds to the time
that the light has been in flight. If the time delay is known, elementary kinematic
equations are used to obtain the distance to the object. Consumer quality time-of-
flight cameras are developed by a number of firms including MESA imaging system,
SoftKinetic, PMD Technologies, and Microsoft, to name a few. One notable example
of a consumer-grade sensor based on time-of-flight principle is Microsoft Kinect for
Xbox One (2013).

In principle, we must mention that the time-of-flight principle is not a new tech-
nology. It has been used for decades in SONAR, spectrometry, spectroscopy and
velocimetry, to name a few. However, recent advances in hardware have facilitated
the inclusion of time-of-flight cameras into the consumer arena. To illustrate the
rigor placed on the hardware, consider the following: Light travels one foot in a
nanosecond. Thus, to obtain depth to centimeter accuracy, the hardware must be able
to detect electronic delays on the order of 100 picoseconds, with the additional con-
straint that this must be done for each pixel in the array. The data that are obtained
from time-of-flight cameras include an intensity image or amplitude image and an
image of the time delays, which we refer to as the depth image.

1.10.1 Second-Generation Kinect

Although there are many flavors of “time of flight,” we discuss only the operating
principle that forms the technological core of the Kinect One. The basic idea is
as follows. The Kinect contains a reference signal that modulates at a modulation
frequency ω (the typical range of ω is between 50 and 150 MHz). The reference signal



18 A. Kadambi et al.

Fig. 1.16 Operating principle of the Kinect One. A phase difference between emitted and received
signals encodes the distance

also drives a synchronized solid-state light source to strobe at a sinusoidal pattern.
When the optical signal hits an object and returns to the camera, the waveform is
offset in phase from the reference signal (Fig. 1.16). The phase offset encodes the
depth of the object, and the intensity of the reflection encodes the albedo.

In particular, the light source emits a continuous-wave, periodic signal of form,
e(t) = 1 + s0 cos(ωt) Upon reflection from an object at some given distance, the
received signal assumes the form of

r (t) = ρ

(
1 + s0 cos

(
ω

(
t − 2d

c

)))
(1.4)

Each pixel in the time-of-flight camera samples the cross-correlation function
between the transmitted signal and the received signal:

Ce,r (τκ)︸ ︷︷ ︸
Cross-Correlation

= ρ

(
1 + s 2

0

2
cos (ωτ + φ)

)
, τκ = kπ

2ω
, k = 0, . . . , 3 (1.5)

where the phase of the fundamental frequency bin of the cross-correlation function
encodes the depth. In principle, note that the fundamental frequency bin includes
contributions only from optical sources that are modulated at frequency ω.

1.11 Benefits and Limitations of Time of Flight

A key advantage of time-of-flight cameras is that only a single viewpoint is used to
compute depth. This allows robustness to occlusions and shadows and preservation
of sharp depth edges. Recall that the existence of holes was largely due to occlusions,
and as such, the single viewpoint of a ToF depth sensor is a very significant benefit.
Another advantage is that ambient light is rejected (since it does not modulate at
frequency ω) (Fig. 1.17).



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 19

Fig. 1.17 Structured light system. Instead of using two cameras, the vision system uses one pro-
jector and one camera

Currently, time-of-flight cameras suffer from a low spatial resolution due to the
extra processing that happens at the sensor level. Ambient light can still saturate
the sensor, in which case the depth values are meaningless. Like multipattern struc-
tured light systems, time-of-flight cameras also require multiple shots. Therefore,
the technique is susceptible to motion artifacts.

1.12 Structured Light Depth Sensors

Structured light-based depth estimation can be viewed as a specific case of stereo-
vision system where a projector replaces one of the two cameras (Fig. 1.2). In this
setting, structured light works by projecting a known pattern onto the subject of
interest and the distortion in the project pattern encodes the depth information of the
scene.

1.13 First-Generation Kinect (2010)

The first-generation Microsoft Kinect-based sensors use structured light for depth
estimation. The system involves a colored camera, an infrared camera, and an infrared
laser. The infrared laser emits a beam of light that in turn is split into multiple



20 A. Kadambi et al.

beams of light through the diffraction grating mechanism. This assembly mimics the
operation of a projector. The projected pattern is captured by the infrared camera and
is compared against the known reference code. The disparity between the projected
code and the observed code accounts for the depth information of the scene.

1.14 Structured Light Benefits and Limitations

A major advantage of structured light is that it can achieve very high spatial
resolution since it uses a conventional imaging device. Structured light systems do
not require any special treatment at the sensor level. These systems are simple enough
to construct at home using a projector and camera. One of the major advantages of
the structured light-based imaging systems is that it circumvents the correspondence
problem of stereovision-based systems. This is because any disparity in the setup
can be calibrated from the knowledge of distortions in the projected pattern.

For comparable accuracy to a ToF camera, sequential projection of coded or
phase-shifted patterns is often required to extract a single depth frame, which leads to
lower frame rate. This is a restriction in that the subject is required to be relatively still
during the projection phase. If the subject moves during the time when the pattern is
projected, then the measurements will be characterized by motion artifacts. Another
limitation is that the reflected pattern is sensitive to optical interference from the
environment. As a result, structured light-based methods tend to be more suited for
indoor applications where the environment is controlled. Because structured light
systems still rely on optical disparity, the technique is sensitive to occlusions and, by
extension, to holes.

1.15 Comparison of First- and Second-Generation Kinect Models

The first-generation Kinect is a structured light vision system, while the second-
generation Kinect is a time-of-flight system. Figure 1.18 illustrates the time line of the
Kinect projects. Notable landmarks include the development of the first-generation
Kinect in 2010, the Kinect Fusion algorithm in 2013 (Sect. 1.7.2), and the second-
generation Kinect in 2013. In summer of 2014, an API for the second-generation
Kinect is scheduled for release.

1.15.1 Hardware Specifications

Figure 1.19 tabulates the hardware specifications of the Kinect models. Note that
despite the low spatial resolution that usually plagues ToF cameras, both sensors
have similar spatial resolutions. The second-generation Kinect has a larger field of
view, and therefore, it does not require a tilt motor. Beyond the inherent advantages



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 21

Fig. 1.18 Time line of the Kinect projects. The structured light Kinect was released in 2010, while
the time-of-flight Kinect was released in 2013. Graphic courtesy John Elsbree

Fig. 1.19 Hardware specifications of the first- and second-generation Kinect models

of time-of-flight technology, the second-generation Kinect also boasts a higher depth
resolution, though this has not yet been verified.

1.16 3D Cameras of the Future

Kinect-style 3D cameras represent only a small part of 3D camera technology. In this
section, we cover some technologies that may be of interest for applications outside
the living room.



22 A. Kadambi et al.

Fig. 1.20 A modified time-of-flight camera is able to recover the depth of the translucent unicorn.
This is an example of emerging multidepth cameras. Figure from [16]

1.16.1 Multidepth 3D Cameras

Figure 1.11 provided brief insight into the problem of multiple reflections. Recently,
several papers extend the time-of-flight camera paradigm to handle multiple depths
that arise in a variety of scenarios. One such scenario is shown in Fig. 1.20, where
a modified time-of-flight camera is able to recover the range of a translucent horse
[16]. Other related papers include [2, 8, 23] and [29].

In Sect. 1.2.2, the registration of color and depth data was discussed. An interesting
topic is whether it is possible to acquire both color images and depth maps with a
single camera. In [15], a real-time implementation was proposed that extends time-
of-flight technology to multiplex active light sources to provide color and range
simultaneously.

1.16.2 Photometric Approaches

In addition to the depth sensor based on geometric approach, photometric cues play an
important role in estimating the 3D information. The intuition here is that the object
appearance viewed from a fixed position will be different, depending on the various
lighting conditions. For example, given a white sphere illuminated by a point source
which is far away, the surface points whose normal orientations have smaller angles
with the lighting direction look brighter and vice versa. The shape estimation methods
relying on the photometric information mainly include two types: (1) shape-from-
shading [12], which uses only one image and can only recover the shape up to some
ambiguities, and (2) photometric stereo [30], which uses at least three images from
fixed viewpoint and different lighting directions to uniquely determine the shape.
Note that the direct output of photometric approaches is surface normal, which is the
derivative of surface. In order to reconstruct the 3D points or depth, integration has
to be applied on surface normal.

Compared to a geometric approach, the main advantage of the photometric
approach lies in its ability to recover delicate surface structures. Since the photo-
metric approach relies on the analysis of how light interacts with surface reflectance,
the quality of shape estimation depends heavily on the reflectance of target object.



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 23

Fig. 1.21 The photometric stereo 3D camera—GelSight (Johnson 2011) and its reconstruction of
human skin

A comprehensive evaluation on surface normal estimation accuracy versus real-world
reflectances can be found in [27].

If the surface reflectance can be carefully calibrated, the photometric-based 3D
camera can be applied to sense microscopic surface structure (Johnson 2011).
As shown in Fig. 1.21, the GelSight camera demonstrates a depth resolution of
2 microns, which is superior to geometric-based approaches (and of course Kinect-
style cameras).

1.17 Mobile 3D Cameras

As the cost and size of mobile cameras and 3D sensors continue to decrease, consumer
electronic manufacturers are finding it increasingly more feasible to incorporate 3D
cameras into the next generation of mobile devices. In particular, industry trends
show an intensified focus on applications within the context of augmented reality,
image refocusing, and real-time key point tracking.

The LG Thrill was one of the first consumer mobile 3D devices (2010). This
Android-powered smartphone featured two 5-megapixel cameras that used the
stereoscopic effect to capturing 3D pictures and video. Even though the device was
equipped with a glasses-free 3D display to match, it ultimately failed to take hold in
the market because of its excessive weight and size and relatively poor photograph
quality. In 2012, Pelican Imaging released a small 3-mm-thick light field camera
array that can be embedded into mobile platforms. To calculate depth, Pelican uses
integrated parallax detection and super-resolution (Fig. 1.22).



24 A. Kadambi et al.

Fig. 1.22 Left Pelican’s mobile light field camera. Right Google’s Project Tango is an integrated
mobile phone and 3D camera that projects an active pattern

In early 2014, Google’s “Project Tango” smartphone, designed to calculate its
orientation and location in three-dimensional space, was announced. This device
is capable of collecting 3D data using structured IR and near-IR light. Along-
side the device are two dedicated computer vision processors and a wide-angle
motion-tracking camera that allow it to collect 250,000 3D measurements per second
(Fig. 1.22). Most recently, HTC’s One M8, released in early 2014, uses high-
resolution stereoscopic cameras for refocus and background manipulation.

1.18 Conclusion

Three-dimensional cameras are primed to change computer vision in a meaningful
way. However, 3D data must be used with caution. Rather than simply plugging
in a depth map into an application, it is important to ensure that the depth map
is a meaningful 3D representation of the scene; this usually requires correction of
artifacts (the two main artifacts in depth maps are holes and edge erosion).

Let us return to the query that was posed in the initial stages of this chapter:
Is time of flight “better” than structured light? We can now provide the following
answer: It depends on the task. Concretely, Sect. 1.9.1 mentioned that finger tracking
with a structured light camera is prone to holes caused by line-of-sight obstruction.
Therefore, we can recommend using a comparable time-of-flight sensor for this
application.

A final question that is raised is whether the technology used to capture the 3D
data has any impact on the higher-level algorithms that are used. As a concrete
example, if a scene-understanding researcher is collecting a dataset, does she need
to discriminate between data that is collected with the first-generation Kinect or the
second-generation Kinect? Will she see a significant improvement in performance?
This is an open question.



1 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware 25

References

1. Banno A, Ikeuchi K (2011) Disparity map refinement and 3d surface smoothing via directed
anisotropic diffusion. Comput Vis Image Underst 115(5):611–619

2. Bhandari A, Kadambi A, Whyte R, Barsi C, Feigin M, Dorrington A, Raskar R (2014) Resolving
multipath interference in time-of-flight imaging via modulation frequency diversity and sparse
regularization. Opt Lett 39(6):1705–1708

3. Birchfield S, Tomasi C (1999) Depth discontinuities by pixel-to-pixel stereo. Int J Comput Vis
35(3):269–293

4. Camplani M, Salgado L (2012) Efficient spatio-temporal hole filling strategy for kinect depth
maps. In: Proceedings of SPIE, vol 8920

5. Chen L, Lin H, Li S (2012) Depth image enhancement for kinect using region growing and
bilateral filter. In: 21st international conference on pattern recognition (ICPR), 2012, pp 3070–
3073. IEEE

6. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images.
In: ACM transactions on graphics (TOG), vol 21, pp 257–66. ACM

7. Grimson WEL (1985) Computational experiments with a feature based stereo algorithm. IEEE
Trans Pattern Anal Mach Intell 1:17–34

8. Heide F, Hullin MB, Gregson J, Heidrich W (2013) Low-budget transient imaging using pho-
tonic mixer devices. ACM Trans Graph (TOG) 32(4):45

9. Henry P, Krainin M, Herbst E, Ren X, Fox D (2014) RGB-D mapping: using depth cameras for
dense 3D modeling of indoor environments. In: Experimental robotics, pp 477–491. Springer,
Berlin

10. Henry P, Krainin M, Herbst E, Ren X, Fox D (2012) RGB-D mapping: using kinect-style depth
cameras for dense 3D modeling of indoor environments. Int J Robot Res 31(5):647–63

11. Hoegg T, Lefloch D, Kolb A (2013) Real-time motion artifact compensation for PMD-ToF
images. In: Time-of-flight and depth imaging. Sensors, algorithms, and applications, pp 273–
288. Springer, Berlin

12. Horn BKP (1970) Shape from shading: a method for obtaining the shape of a smooth opaque
object from one view

13. Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, et al (2011)
KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In:
Proceedings of the 24th annual ACM symposium on user interface software and technology,
pp 559–568. ACM

14. Jones DG, Malik J (1992) Computational framework for determining stereo correspondence
from a set of linear spatial filters. Image Vis Comput 10(10):699–708

15. Kadambi A, Bhandari A, Whyte R, Dorrington A, Raskar R (2014) Demultiplexing illumina-
tion via low cost sensing and nanosecond coding. In: 2014 IEEE international conference on
computational photography (ICCP). IEEE

16. Kadambi A, Whyte R, Bhandari A, Streeter L, Barsi C, Dorrington A, Raskar R (2013) Coded
time of flight cameras: sparse deconvolution to address multipath interference and recover time
profiles. ACM Trans Graph (TOG) 32(6):167

17. Kanade T, Okutomi M (1994) A stereo matching algorithm with an adaptive window: theory
and experiment. IEEE Trans Pattern Anal Mach Intell 16(9):920–932

18. Kauff P, Atzpadin N, Fehn C, Müller M, Schreer O, Smolic A, Tanger R (2007) Depth map
creation and image-based rendering for advanced 3DTV services providing interoperability
and scalability. Sig Process Image Commun 22(2):217–234

19. Klaus A, Sormann M, Karner K (2006) Segment-based stereo matching using belief propa-
gation and a self-adapting dissimilarity measure. In: 18th international conference on pattern
recognition, 2006. ICPR 2006, vol 3, pp 15–18. IEEE

20. Lenzen F, Schäfer H, Garbe C (2011) Denoising time-of-flight data with adaptive total variation.
In: Advances in visual computing, pp 337–346. Springer, Berlin

21. Li H, Vouga E, Gudym A, Luo L, Barron JT, Gusev G (2013) 3D self-portraits. ACM Trans
Graph (TOG) 32(6):187



26 A. Kadambi et al.

22. Marr D, Poggio T (1976) Cooperative computation of stereo disparity. Science 194(4262):283–
287

23. Naik N, Zhao S, Velten A, Raskar R, Bala K (2011) Single view reflectance capture using
multiplexed scattering and time-of-flight imaging. In: ACM Transactions on Graphics (TOG),
vol 30, p 171. ACM

24. Newcombe RA, Davison AJ, Izadi S, Kohli P, Hilliges O, Shotton J, Molyneaux D, Hodges
S, Kim D, Fitzgibbon A (2011) KinectFusion: real-time dense surface mapping and tracking.
In: 2011 10th IEEE international symposium on mixed and augmented reality (ISMAR), pp
127–136. IEEE

25. Ohta Y, Kanade T (1985) Stereo by intra-and inter-scanline search using dynamic programming.
IEEE Trans Pattern Anal Mach Intell 2:139–154

26. Penne J, Schaller C, Hornegger J, Kuwert T (2008) Robust real-time 3D respiratory motion
detection using time-of-flight cameras. Int J Comput Assist Radiol Surg 3(5):427–431

27. Shi B, Tan P, Matsushita Y, Ikeuchi K (2014) Bi-polynomial modeling of low-frequency
reflectances. IEEE Trans Pattern Anal Mach Intell 36(6):1078–1091

28. Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmentation and support inference
from RGBD images. In: Computer vision-ECCV 2012, pp 746–760. Springer, Berlin

29. Velten A, Wu D, Jarabo A, Masia B, Barsi C, Joshi C, Lawson E, Bawendi M, Gutierrez D,
Raskar R (2013) Femto-photography: capturing and visualizing the propagation of light. ACM
Trans Graph (TOG) 32(4):44

30. Woodham RJ (1980) Photometric method for determining surface orientation from multiple
images. Opt Eng 19(1):191139

31. Ye C, Hegde GPM (2009) Robust edge extraction for SwissRanger SR-3000 range images.
In: IEEE international conference on robotics and automation, 2009. ICRA’09, pp 2437–2442.
IEEE

32. Ye G, Liu Y, Hasler N, Ji X, Dai Q, Theobalt C (2012) Performance capture of interacting
characters with handheld kinects. In: Computer vision-ECCV 2012, pp 828–841. Springer,
Berlin

33. Yoon K-J, Kweon IS (2006) Adaptive support-weight approach for correspondence search.
IEEE Trans Pattern Anal Mach Intell 28(4):650–656

34. Zhang C, Zhang Z (2011) Calibration between depth and color sensors for commodity depth
cameras. In: 2011 IEEE international conference on multimedia and expo (ICME), pp 1–6.
IEEE

35. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal
Mach Intell 22(11):1330–1334



Chapter 2
A State of the Art Report on Multiple RGB-D
Sensor Research and on Publicly Available
RGB-D Datasets

Kai Berger

Abstract That the Microsoft Kinect, an RGB-D sensor, transformed the gaming and
end consumer sector has been anticipated by the developers. That it also impacted
in rigorous computer vision research has probably been a surprise to the whole
community. Shortly before the commercial deployment of its successor, Kinect One,
the research literature fills with resumees and state-of-the art papers to summarize
the development over the past 3 years. This chapter describes significant research
projects which have built on sensoring setups that include two or more RGB-D
sensors in one scene and on RGB-D datasets captured with them which were made
publicly available.

2.1 Introduction

With the release of the Microsoft Kinect in November 2010, Microsoft predicted
a significant change in the use of gaming devices in the end consumer market.
After a preview at the E3 game convention in the Windows Media Centre Envi-
ronment, the selling in North America started at November 4, 2010 and up to today
more than 24 million units have been sold. With the release of an open-source SDK
named libfreenect by Hèctor Martìn that enables streaming both the depth and the
RGB or the raw infrared images via USB the attention of young researchers to use
the Microsoft Kinect sensor for their imaging and reconstruction applications has
gained. It was possible to stream 1, 200 × 960 RGB and IR images at a frame rate of
30 Hz alongside computed depth estimates of the scene at a lower resolution. The IR
image featured the projected infrared pattern generated with an 830 nm laser diode,
which is distinctive and the same for each device. Shortly thereafter the proceedings

K. Berger (B)

INRIA Rennes, Bretagne Atlantique, Campus Universitaire de Beaulieu, 35042 Rennes Cedex,
France
e-mail: kai.berger@inria.fr

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_2

27



28 K. Berger

and journals in the community included papers describing a broad range of setups
addressing well-known problems in computer vision in which the Microsoft RGB-D
sensor was employed. The projects ranged from simultaneous localization and map-
ping (SLAM) over 3D reconstruction over realtime face and hand tracking to motion
capturing and gait analysis. Counter-intuitively researchers became soon interested
in addressing the question if it is possible to employ several Microsoft Kinects, i.e.
RGB-D sensors, in one setup—and if so, how to mitigate interference errors in order
to enhance the signal. This idea is mainly counter-intuitive due to the fact, the each
device projects the same pattern at the same wavelength into the scene. Thus, one
would expect that the confusion in processing the raw IR-data rises quickly with the
amount of sensors installed in a scene, Fig. 2.1. In the following sections I give an
overview over several research projects published in the proceedings and journals
of the computer vision community that successfully overcome this preconception
and highlight their challenges as well as the benefit of each multiple RGB-D sen-
sor setup. In the second half I list the most prominent datasets, that are publicly
available, which were generated with RGB-D sensor setups. A tabular overview
about addressed papers is found in Table 2.1. This overview over the state-of-the-art
differs from other Kinect-realted overview reports in that it does neither include an
in-depth evaluation of Time-Of-Flight sensors [20] nor a detailed introduction into
the functionality of the sensor algorithm itself [14] nor does it focus on work cap-
turing faces and gestures only [56]. Instead it provides an overview over multiple
Kinect setups (Sects. 2.2–2.6) and publicly available databases generated with one
or multiple Kinects (Sects. 2.7–2.11).

2.2 Multiple Kinect-Setups: Method of Comparison

As this chapter is a state-of-the art report it explicitly provides no new research con-
tribution. Instead it shall be read as an overview and introduction to the work that
has been conducted in the subfield of multiple Kinect research. I want to provide

Fig. 2.1 A simple scene (left) captured with the depth camera of one (middle) and multiple con-
currently projecting kinects (right). The interference of more than one Kinect pattern results in
degradations in the captured depth image (white pixels denote invalid depth values). This state
of the art report lists significant papers that implemented setups albeit interference issues or to
specifically address and overcome these issues. Reproduced from Schroeder et al. [44]



2 A State of the Art Report. . . 29

Ta
bl

e
2.

1
A

n
ov

er
vi

ew
ov

er
di

ff
er

en
tp

ub
lic

at
io

ns
in

cl
ud

in
g

m
ul

tip
le

R
G

B
-D

se
ns

or
s

A
ut

ho
rs

C
on

te
xt

N
um

be
ro

fR
G

B
-D

A
cc

ur
ac

y
C

al
ib

ra
te

d

se
ns

or
s

in
se

tu
p

A
st

er
ia

di
s

et
al

.[
4]

M
ot

io
n

es
tim

at
io

n
3

N
ot

sp
ec

ifi
ed

Y
es

B
er

ge
r

et
al

.[
8]

M
ot

io
n

es
tim

at
io

n
4

R
ep

ro
je

ct
io

n
er

ro
r

of
1.

7
px

Y
es

Fu
hr

m
an

n
et

al
.[

12
]

M
ot

io
n

es
tim

at
io

n
3

D
ev

ia
tio

n
of

2–
3

cm
Y

es

H
os

sn
y

et
al

.[
15

]
M

ot
io

n
es

tim
at

io
n

2
N

ot
sp

ec
ifi

ed
Y

es
(t

he
au

th
or

s
pr

o-
vi

de
a

ne
w

au
to

ca
li-

br
at

io
n

al
go

ri
th

m
)

Sa
nt

ha
na

m
et

al
.[

40
]

M
ot

io
n

es
tim

at
io

n
4

D
ev

ia
tio

n
of

3
m

m
Y

es

W
ils

on
[5

3]
M

ot
io

n
es

tim
at

io
n

3
N

ot
sp

ec
ifi

ed
Y

es

Y
e

et
al

.[
54

]
M

ot
io

n
es

tim
at

io
n

3
N

ot
sp

ec
ifi

ed
N

o

Z
ha

ng
et

al
.[

55
]

M
ot

io
n

es
tim

at
io

n
2

D
ev

ia
tio

n
of

20
cm

Y
es

A
le

xi
ad

is
et

al
.[

2]
M

es
h

re
co

ns
tr

uc
tio

n
4

R
ep

ro
je

ct
io

n
er

ro
r

of
0.

8
px

Y
es

B
er

ge
r

et
al

.[
7]

an
d

B
er

ge
r

et
al

.[
6]

M
es

h
re

co
ns

tr
uc

tio
n

3
N

ot
sp

ec
ifi

ed
Y

es

M
ac

kn
oj

ia
et

al
.[

28
]

M
es

h
re

co
ns

tr
uc

tio
n

5
D

ev
ia

tio
n

of
2.

5
cm

at
3

m
di

st
an

ce
Y

es

L
o

et
al

.[
24

]
M

es
h

re
co

ns
tr

uc
tio

n
2

N
ot

sp
ec

ifi
ed

Y
es

N
ak

am
ur

a
[3

2]
M

es
h

re
co

ns
tr

uc
tio

n
2

D
ev

ia
tio

n
of

3
%

at
90

◦
sp

ac
in

g
N

o

N
ak

az
aw

a
et

al
.[

33
]

M
es

h
re

co
ns

tr
uc

tio
n

4
N

ot
sp

ec
ifi

ed
Y

es

A
hm

ed
[1

]
M

es
h

re
co

ns
tr

uc
tio

n
6

N
ot

sp
ec

ifi
ed

Y
es

O
le

se
n

et
al

.[
36

]
M

es
h

re
co

ns
tr

uc
tio

n
3

60
%

in
lie

ra
t8

px
te

xl
et

sp
ac

in
g

Y
es

(c
on

tin
ue

d)



30 K. Berger

Ta
bl

e
2.

1
(c

on
tin

ue
d)

A
ut

ho
rs

C
on

te
xt

N
um

be
ro

fR
G

B
-D

se
ns

or
s

in
se

tu
p

A
cc

ur
ac

y
C

al
ib

ra
te

d

Pa
nc

ha
m

et
al

.[
38

]
M

es
h

re
co

ns
tr

uc
tio

n
2+

N
ot

sp
ec

ifi
ed

N
o

R
afi

ba
kh

sh
et

al
.[

39
]

M
es

h
re

co
ns

tr
uc

tio
n

2
D

ev
ia

tio
n

of
3.

49
cm

Y
es

Su
m

ar
et

al
.[

47
]

M
es

h
re

co
ns

tr
uc

tio
n

2
R

ep
ro

je
ct

io
n

er
ro

r
of

5
px

N
o

To
ng

et
al

.[
51

]
M

es
h

re
co

ns
tr

uc
tio

n
3

B
io

m
et

ri
ca

l
m

ea
su

re
de

vi
at

io
n

1.
6–

6.
2

cm
Y

es

W
an

g
et

al
.[

52
]

M
es

h
re

co
ns

tr
uc

tio
n

2
N

ot
sp

ec
ifi

ed
Y

es

C
ao

n
et

al
.[

10
]

R
ec

og
ni

tio
n

3
N

ot
sp

ec
ifi

ed
Y

es

Sa
tta

et
al

.[
42

]
R

ec
og

ni
tio

n
2

N
ot

sp
ec

ifi
ed

N
o

Sa
ty

av
ol

u
et

al
.[

43
]

R
ec

og
ni

tio
n

5
D

ev
ia

tio
n

of
3

cm
Y

es

Sa
pu

tr
a

et
al

.[
41

]
R

ec
og

ni
tio

n
2

D
ev

ia
tio

n
of

10
cm

Y
es

Su
sa

nt
o

et
al

.[
49

]
R

ec
og

ni
tio

n
5

D
ev

ia
tio

n
of

13
cm

Y
es

B
ut

le
r

et
al

.[
9]

In
te

rf
er

en
ce

2
an

d
3

D
ev

ia
tio

n
of

up
to

3
cm

Y
es

Fa
io

n
et

al
.[

11
]

In
te

rf
er

en
ce

4
D

ev
ia

tio
n

of
21

m
m

Y
es

K
ai

nz
et

al
.[

19
]

In
te

rf
er

en
ce

8
N

ot
sp

ec
ifi

ed
Y

es

M
ai

m
on

e
an

d
Fu

ch
s

[2
9]

In
te

rf
er

en
ce

6
D

ev
ia

tio
n

of
2

m
m

N
o

Sc
hr

oe
de

r
et

al
.[

44
]

an
d

B
er

ge
r

et
al

.[
8]

In
te

rf
er

en
ce

4
R

ep
ro

je
ct

io
n

er
ro

r
of

1.
7

px
Y

es

T
he

ta
bl

e
lis

ts
fo

r
ea

ch
pu

bl
ic

at
io

n
th

e
am

ou
nt

of
em

pl
oy

ed
se

ns
or

s,
th

e
co

nt
ex

t
po

f
ap

pl
ic

at
io

n,
th

e
ac

cu
ra

cy
an

d
w

he
th

er
th

e
se

ns
or

s
w

he
re

ca
lib

ra
te

d
to

a
co

m
m

on
w

or
ld

sp
ac

e.
N

ot
e,

th
at

th
e

sp
ec

ifi
ca

tio
n

of
ac

cu
ra

cy
va

ri
es

w
ith

th
e

co
nt

ex
to

f
ap

pl
ic

at
io

n
be

tw
ee

n
th

e
m

ea
n

de
vi

at
io

n
of

a
re

co
ns

tr
uc

te
d

3D
po

si
tio

n
fr

om
th

e
or

ig
in

al
po

si
tio

n
in

m
et

er
s

an
d

th
e

re
pr

oj
ec

tio
n

er
ro

r
in

pi
xe

ls
or

pe
rc

en
ta

ge
in

to
th

e
ca

m
er

a



2 A State of the Art Report. . . 31

a comparative table, Table 2.2 for the reader to have a quick overview of exam-
ined papers and their properties. The table is sorted alphabetically for each research
field, i.e. Multiple RGB-D sensor Setups for Motion Estimation, Sect. 2.3, Multiple
RGB-D sensor Setups for Reconstruction, Sect. 2.4, Multiple RGB-D sensor Setups
for Recognition and Tracking, Sect. 2.5, and Interference in Multiple RGB-D sensor
Setups, Sect. 2.6. I compared the amount of Kinects installed in each capturing envi-
ronment (third column), and stated where the sources were available the measured
accuracy of the capturings. As the statements were not unified, I have to provide them
in different units to adhere to the source text. A slightly more detailed description is
given at the table caption. Finally I state if the capturing setup was externally cali-
brated to a common worldspace, usually performed with a checkerboard or moving
a marker around the scene.

2.3 Multiple RGB-D Sensor Setups for Motion Estimation

Santhanam et al. [40] describe a system to track neck and head movements with four
calibrated Kinects. Three Kinects are tracking the patient’s anatomy contour in depth
and RGB streams while the fourth camera detects the face of the patient. The detected
face region is used to guide the contour detection in the other three views. The detected
contours are then finally merged to to a 3D estimate of the pose of the anatomy. The
authors claim a precision of 3 mm at the expected 30 Hz. Wilson and Benko [53] use
three PrimeSense depth cameras which stream at 320 × 240 px resolution and 30 Hz
for human interaction with an augmented reality table. They compare input depth
image streams against background depth images for each depth camera captured
when the room is empty to segment out the human user. While the authors do not
specify the accuracy, e.g. between the projected area and the captured area comprised
by a hand, they claim to robustly track all user actions in 10 cm volume above the
table. The depth cameras were placed next to each other and slanted such that each
camera captures a different angle in the room. However their viewing cones may have
overlapped. Fuhrmann et al. [12] have employed a stage setup with three Kinects for
musical performances. They calibrated the cameras, which were observing the same
3 × 3 × 3 m3 interaction volume from different angles, for each stage performance.
The tracking via OpenNI suffered only from latency between interframe capturing
times. The sensors were employed such that they did not interfere destructively.
Berger et al. [8] employ four Kinect sensors in a small 3×3×3 m3 room to mitigate
shortcomings in the motion capturing capabilities of a single Kinect, Fig. 2.2 (left).
To overcome depth map degradation through interfering patterns they introduced
external hardware shutters. The idea was further evaluated by Zhang et al. [55] who
basically performed the same capturing only with two Kinect cameras. Interference
issues were circumvented by placing them opposite each other and assuming that
the human actor acts as a separation surface between both projection cones. The
authors claim a tracking accuracy of 20 cm. Their processing algorithm limits the
original capturing framerate of 30–15 Hz. Asteriadis et al. [4] included a treadmill to



32 K. Berger

Ta
bl

e
2.

2
O

ve
rv

ie
w

ta
bl

e
fo

r
th

e
be

nc
hm

ar
k

da
ta

se
ts

th
at

ar
e

pu
bl

ic
ly

av
ai

la
bl

e

A
ut

ho
rs

In
te

nd
ed

ap
pl

ic
at

io
n

D
at

as
iz

e
A

cc
el

er
om

et
er

da
ta

A
nn

ot
at

ed
L

in
k

G
lo

ck
er

et
al

.[
13

]
SL

A
M

15
1

M
B

N
o

C
am

er
a

pa
th

ge
ne

r-
at

ed
w

ith
ki

ne
ct

fu
-

si
on

[1
7]

ht
tp

://
re

se
ar

ch
.m

ic
ro

so
ft

.c
om

/e
n-

us
/p

ro
je

ct
s/

7-
sc

en
es

/

L
ie

be
rk

ne
ch

te
ta

l.
[2

2]
SL

A
M

≈1
00

kB
N

o
N

o
ht

tp
://

w
w

w
.d

ro
pb

ox
.c

om
/

sh
/1

ky
hn

s6
s1

xp
bm

zw
/

R
Q

K
aY

qd
p7

B
/v

id
eo

s

St
ur

m
et

al
.[

46
]

SL
A

M
50

G
B

Y
es

G
ro

un
d

tr
ut

h
po

se
vi

a
ex

te
rn

al
m

ar
ke

rs
tr

ac
ke

d
w

ith
m

ot
io

n
ca

pt
ur

in
g

sy
st

em

ht
tp

://
cv

pr
.in

.tu
m

.d
e/

re
se

ar
ch

/
da

ta
se

ts
/r

gb
d-

da
ta

se
t

A
na

nd
et

al
.[

3]
O

bj
ec

tr
ec

og
ni

tio
n

≈7
.6

G
B

Y
es

A
nn

ot
at

ed
de

pt
h

im
ag

es
ht

tp
://

pr
.c

s.
co

rn
el

l.e
du

/
sc

en
eu

nd
er

st
an

di
ng

/d
at

a/
da

ta
.

ph
p

B
ar

bo
sa

et
al

.[
5]

O
bj

ec
tr

ec
og

ni
tio

n
45

6
M

B
N

o
Sk

el
et

on
an

d
m

es
he

s
ht

tp
://

w
w

w
.ii

t.i
t/

en
/d

at
as

et
s/

rg
bd

id
.h

tm
l

H
uy

nh
et

al
.[

16
]

O
bj

ec
tr

ec
og

ni
tio

n
N

o
in

fo
r-

m
at

io
n

N
o

Fa
ce

s
la

be
le

d
in

in
pu

td
at

a
ht

tp
://

rg
b-

d.
eu

re
co

m
.f

r/

Ja
no

ch
et

al
.[

18
]

O
bj

ec
tr

ec
og

ni
tio

n
79

3
M

B
N

o
O

bj
ec

ts
la

be
le

d
in

in
pu

td
at

a
ht

tp
://

w
w

w
.e

ec
s.

be
rk

el
ey

.e
du

/
~a

lli
e/

V
O

C
B

3D
O

.z
ip

L
ai

et
al

.[
21

]
O

bj
ec

tr
ec

og
ni

tio
n

84
G

B
N

o
O

bj
ec

ts
la

be
le

d
in

in
pu

td
at

a
ht

tp
://

w
w

w
.c

s.
w

as
hi

ng
to

n.
ed

u/
rg

bd
-d

at
as

et

L
iu

an
d

Sh
ao

[2
3]

O
bj

ec
tr

ec
og

ni
tio

n
≈1

G
B

N
o

H
an

d
ge

st
ur

es
la

be
le

d
in

in
pu

t
da

ta

ht
tp

://
ls

ha
o.

st
af

f.
sh

ef
.a

c.
uk

/d
at

a/
Sh

ef
fie

ld
K

in
ec

tG
es

tu
re

.h
tm

(c
on

tin
ue

d)

http://research.microsoft.com/en-us/projects/7-scenes/
http://research.microsoft.com/en-us/projects/7-scenes/
http://www.dropbox.com/sh/1kyhns6s1xpbmzw/RQKaYqdp7B/videos
http://www.dropbox.com/sh/1kyhns6s1xpbmzw/RQKaYqdp7B/videos
http://www.dropbox.com/sh/1kyhns6s1xpbmzw/RQKaYqdp7B/videos
http://cvpr.in.tum.de/research/datasets/rgbd-dataset
http://cvpr.in.tum.de/research/datasets/rgbd-dataset
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
http://pr.cs.cornell.edu/sceneunderstanding/data/data.php
http://www.iit.it/en/datasets/rgbdid.html
http://www.iit.it/en/datasets/rgbdid.html
http://rgb-d.eurecom.fr/
http://www.eecs.berkeley.edu/~allie/VOCB3DO.zip
http://www.eecs.berkeley.edu/~allie/VOCB3DO.zip
http://www.cs.washington.edu/rgbd-dataset
http://www.cs.washington.edu/rgbd-dataset
http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm
http://lshao.staff.shef.ac.uk/data/SheffieldKinectGesture.htm


2 A State of the Art Report. . . 33

Ta
bl

e
2.

2
(c

on
tin

ue
d)

A
ut

ho
rs

In
te

nd
ed

ap
pl

ic
at

io
n

D
at

as
iz

e
A

cc
el

er
om

et
er

da
ta

A
nn

ot
at

ed
L

in
k

L
ub

er
et

al
.[

25
]

O
bj

ec
tr

ec
og

ni
tio

n
2

G
B

N
o

Pe
de

st
ri

an
s

la
be

le
d

in
in

pu
td

at
a

ht
tp

://
w

w
w

.in
fo

rm
at

ik
.u

ni
-

fr
ei

bu
rg

.d
e/

~s
pi

ne
llo

/s
w

/r
gb

d_
pe

op
le

_u
ni

ha
ll.

ta
r.g

z

M
ac

ha
do

an
d

Fe
rr

ei
ra

[2
7]

O
bj

ec
tr

ec
og

ni
tio

n
24

.5
M

B
N

o
O

bj
ec

ts
la

be
le

d
ht

tp
://

dl
.d

ro
pb

ox
.c

om
/u

/4
15

16
63

/
O

R
/D

at
as

et
/t

es
t%

20
se

t.z
ip

N
eg

in
et

al
.[

35
]

O
bj

ec
tr

ec
og

ni
tio

n
14

2
G

B
N

o
M

ot
io

n
fil

es
co

nt
ai

n-
in

g
th

e
tr

ac
ke

d
jo

in
ts

ht
tp

://
vp

a.
sa

ba
nc

iu
ni

v.
ed

u/
da

ta
ba

se
s/

W
or

ko
ut

SU
-1

0/
M

in
im

al
D

at
as

et
.r

ar

Si
lb

er
m

an
et

al
.[

34
]

O
bj

ec
tr

ec
og

ni
tio

n
42

8
G

B
Y

es
L

ab
el

ed
de

pt
h

da
ta

se
t

ht
tp

://
cs

.n
yu

.e
du

/~
si

lb
er

m
an

/
da

ta
se

ts
/n

yu
_d

ep
th

_v
2.

ht
m

l

Su
ng

et
al

.[
48

]
O

bj
ec

tr
ec

og
ni

tio
n

≈1
3.

8
G

B
N

o
Sk

el
et

on
an

d
ac

tiv
-

ity
/r

ea
ch

ab
ili

ty
la

bl
es

ht
tp

://
pr

.c
s.

co
rn

el
l.e

du
/

hu
m

an
ac

tiv
iti

es
/d

at
a.

ph
p

Ic
om

pa
re

d
pr

op
er

tie
s

lik
e

da
ta

si
ze

(t
hi

rd
ro

w
),

th
e

av
ai

la
bi

lit
y

of
th

e
ac

ce
le

ro
m

et
ri

c
da

ta
(f

ou
rt

h
ro

w
)a

nd
th

e
am

ou
nt

of
an

no
ta

tio
n

fo
rg

ro
un

d
tr

ut
h

(fi
ft

h
ro

w
).

Fo
r

al
ld

at
as

et
s

I
lis

te
d

th
e

lin
k

un
de

r
w

hi
ch

th
ey

ar
e

pu
bl

ic
ly

av
ai

la
bl

e.
H

ow
ev

er
,s

om
e

da
ta

se
ts

m
ay

re
qu

ir
e

th
e

re
qu

es
tf

or
lo

gi
n

da
ta

http://www.informatik.uni-freiburg.de/~spinello/sw/rgbd_people_unihall.tar.gz
http://www.informatik.uni-freiburg.de/~spinello/sw/rgbd_people_unihall.tar.gz
http://www.informatik.uni-freiburg.de/~spinello/sw/rgbd_people_unihall.tar.gz
http://dl.dropbox.com/u/4151663/OR/Dataset/test%20set.zip
http://dl.dropbox.com/u/4151663/OR/Dataset/test%20set.zip
http://vpa.sabanciuniv.edu/databases/WorkoutSU-10/MinimalDataset.rar
http://vpa.sabanciuniv.edu/databases/WorkoutSU-10/MinimalDataset.rar
http://vpa.sabanciuniv.edu/databases/WorkoutSU-10/MinimalDataset.rar
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://pr.cs.cornell.edu/humanactivities/data.php
http://pr.cs.cornell.edu/humanactivities/data.php


34 K. Berger

simulate partially occluded motion for three calibrated Kinect sensors placed evenly
in a quarter arc around the treadmill. Using a Fuzzy Inference system they were able
to robustly map the human motion. Although they do neither state reprojection errors
nor deviations from a reconstructed mesh they provide figures that the human motion
could be fitted by a skeleton in up to 95 % of the recorded frames. An approach to
analyse facial motion with two Kinects is presented by Hossny et al. [15]. They also
provide a smart algorithm to automatically calibrate one Kinect to another based one
rotation to zero angular positions. The processing of the depth maps to the face is done
with geometric features that outperform conventional Haar features. They propose
to overcome interference difficulties with mutually rotated polarization filters but do
not state figures about the reprojection error. Very recently, Ye et al. [54] provided a
solution for capturing human motion with multiple moving Kinects. In their setup,
three Kinects were employed.

2.4 Multiple RGB-D Sensor Setups for Reconstruction

Alexiadis et al. [2] use four Kinect devices to reconstruct a single, full 3D textured
mesh of a human body from their depth data in realtime. The authors claim that
the re-projection error is less than 0.8 pixels. In a merging step redundant trian-
gles are clipped. Object boundary noise is removed with a distance-to-background
map. Rafibakhsh et al. [39] analyse construction site scenarios with two Kinects and
exhaustively search for optimal placement an angles, concluding that the two sen-
sors should not directly face each other. In their calibrated sensor setup they found
a scene accuracy of 3.49 cm. Sumar et al. [47] test the sensor interference for two
uncalibrated Kinect sensors in an indoor environment. They found, that in a marker
tracking task, where the markers are less than 3 m from the Kinect the error follows
a Gaussian distribution and does not deviate more than 5 pixels from the true cen-
tre of the marker. In ongoing work Pancham et al. [38] mount Kinects atop mobile
robots which move in an overcast outdoor environment in order to segment out mov-
ing objects from static scenery. In that context the Kinect is used for differentiation
between moving and stationary objects, and for map construction of the environ-
ment. They however do not state the accuracy of the reconstructed scene in relation
to the amount of Kinects employed. In a very interesting approach to enable HDR
scene capturing Lo et al. [24] place two Kinects atop each other and equip one with
a polarized neutral density filter. This results in accurate depth values for regions
that would have been overexposed in an unaltered Kinect capturing (The exposure
difference between both IR images is roughly 1 EV apart). They recognise the fact
that interference might occur but did not quantitatively evaluate that for their setup.
However, the reconstructed scenes bear more complete meshes under headlight than
with a single LDR capturing. Berger et al. [7] show in their paper the feasibility to use
three Kinects concurrently in a convergent setup for capturing non-opaque surfaces
like the interface between flowing propane gas in air. It is noteworthy that, although
the projectors are masked such that they project on mutually disjoint surface areas,



2 A State of the Art Report. . . 35

the projection patterns do not interfere destructively with each other while passing
through the gas volume. Their approach has been altered such that an evaluation
based only on the high resolution IR stream is possible as well [6]. Olesen et al. [36]
show a system that involves up to three calibrated Kinects for texlet reconstruction.
They evaluate different angular settings for the multiple sensors but interestingly
conclude that the orientation does not significantly improve the capturing quality. In
industrial applications Macknojia et al. [28] place three Kinects on a straight line
next to each other while a fourth and a fifth Kinect are placed to the left and right
respectively in a convergent manner to provide a calibrated capturing volume with
a side length of 7 m in total, Fig. 2.2 (middle). Small projecting volumes overlap
while objects like cars are captured. The authors state a depth error of about 2.5 cm
at 3 m distance. Wang et al. [52] present work where two calibrated Kinects’ depth
maps are fused to reconstruct arbitrary scene content. The cameras are spaced 30 cm
apart and the viewing axes converge towards the scene centre. Inaccuracies due to
interference are handled in software by applying a his work Ahmed [1] provides a
scene reconstruction mainly of human bodies captured from 6 calibrated Kinects.
He deliberately excludes interference analysis from the discussion but mentioned
temporal drift if software synchronization is omitted. Interference issues are also
neglected by Nakazawa et al. [33] who placed four calibrated Kinects at the four
corners of a capturing room, but rotated them by 90◦ such that they would capture
a greater vertical range and a smaller horizontal range each. They concentrate on
aligning depth data captured asynchronously by applying a temporal calibration by
providing depth data at certain time instants. Tong et al. [51] reconstruct the human
body from a setup consisting of three Kinects mounted on two poles at different
heights. The subject is placed on a spinning turntable in the center of the poles. The
deviation in different biometrical measures is stated to be in 1.6–6.2 cm. In their
work Nakamura [32] place two Kinects in different angles between 10◦ and 180◦
from each other around the scene. The Kinects are not calibrated to a common world
space but placed at a fixed distance to the scene centre. In an evaluation of the mean
reprojection error for the varying angles they find that a spacing of 180◦ between
each Kinect results in the smallest error while a a spacing of 120◦ results in the
largest error, Fig. 2.2 (right). The Kinects do not project into each others sensor due
to the scene content.

Fig. 2.2 Five typical capturing setups featuring multiple kinects. Multiple kinects are evenly placed
in a virtual circle around the scene centre (first), e.g. [7, 8, 19, 33, 36, 43, 52], multiple kinects are in
line to capture a volume with a large side length (second), e.g. [10, 24, 28, 29, 41], multiple kinects
juxtaposed and facing away from each other (third), e.g. [53], and two kinects face each other, but
are occluded by the scene content (fourth), e.g. [32]. Very recently work has been conducted with
multiple uncalibrated moving kinects (fifth), e.g. [38, 54]



36 K. Berger

2.5 Multiple RGB-D Sensor Setups for Recognition
and Tracking

Satta et al. [42] present research to recognize and track people in an indoor environ-
ment surveyed by two Kinects relying on a combination of RGB texture and depth
information. It has to be noted, though, that the Kinects were installed facing away
from each other. Hence, they did not directly project into each other’s viewing frustra.
Interference is not discussed further. Satyavolu et al. [43] describe an experimen-
tal setup that consists of 5 Kinects. One camera was used for tracking IR markers
attached to a box, 4 others (evenly distributed around the scene centre) simulated
interference/noise. The authors report that the Kinect deviated by 3 cm on an average
from the actual position. Caon et al. [10] present an approach for tracking gestures
based on three calibrated Kinects placed in a 45◦ angle. They varied different config-
urations between the three Kameras and although they did not state figures about the
depth or tracking accuracy they do list the amount of invalid depth pixels for each
configuration. Susanto et al. [49] present an approach to detect objects from their
shape and depth profile generated when captured from several calibrated Kinects
and state that there is no degrading interference noticeable due to the fact the the
Kinects are placed at wide angles from each other. Although the paper focus on the
success rate of the recognition they briefly state that the setup might show depth
discrepancies of up to 13 cm. The tracking of humans in a room has been shown by
Saputra et al. [41] who placed two calibrated Kinects at 5 m distance next to each
other. Although the projection cones do not interfere with each other, the authors
provide a detection error of human position of 10 cm.

2.6 Interference in Multiple RGB-D Sensor Setups

Following the work of Berger et al. [8], where external hardware shutters are used
for mitigating interference between concurrently projecting sensors as described in
detail by Schroeder et al. [44], Maimone and Fuchs [29] introduce motion platforms
that pitch each Kinect with the Kinect that the own structured light pattern remains
crisp in the IR stream while the other patterns appear blurred due to the angular
motion of the camera. The depth map is realigned with the recorded egomotion from
the inertial sensors included in the Kinect. It is noteworthy that they also managed
to deblur the RGB-image using the Lucy-Richardson method. In a more generic
approach Butler et al. [9] vibrate the camera arbitrarily. In a rather invasive approach
Faion et al. [11] manage to toggle the projector subsystem to perform measurements
similar to Schroeder et al. [44]. They use Bayesian state estimator to intelligently
schedule which sensor is to be selected for the next time frame. Their maximal
reconstruction error denotes 21 mm. Kainz et al. [19] describe an elaborate setup for
eight Kinects mounted on vibrating rods and one freely moving Kinect suitable for
various applications, such as motion capturing and reconstruction. All vibrating rods



2 A State of the Art Report. . . 37

Fig. 2.3 A collage of the variety of benchmark datasets that are currently publicly available. Top left
depth images with annotated motion (reproduced from [48]), top middle external tracking of kinect
pose with markers (reproduced from [46]), top right tight mesh and skeleton alongside RGB-data
(reproduced from Barbosa et al. [5]). Bottom left depth images with objects annotated (reproduced
from [21]), bottom middle depth data with annotated hand movements (reproduced from [23]),
bottom right face capturings in RGB-D stream anotated (reproduced from Huynh et al. [16])

were administered by a parallel circuit at slightly different frequencies. They do not
give a quantitative analysis of the reconstruction error but provide qualitative figures
of the reconstructed mesh (Fig. 2.3).

2.7 RGB-D Datasets: Method of Comparison

In this part of the chapter it is attempted to provide an overview over the diverse set of
benchmarks that are publicly available for comparison of RGB-D based algorithms
The findings are summarized in an overview table, Table 2.2 and compared for
main distinguishable criteria. The table is sorted alphabetically for each research
field, i.e. SLAM, Sect. 2.9 and Object Recognition, Sect. 2.10. I evaluated if the
accelerometer of the Kinect was used (third column), if the data were annotated
and which type of ground truth has been made available (fourth column). Finally
I provided the link to the datasets (fifth columns). I tested the accessability in the
middle of August. Some datasets may require login data, which however can be
acquired by contacting the corresponding authors (instructions were published on
the corresponding website in that case). In Sect. 2.11 I provide a critical view onto
the diversity of the publicly available datasets and phrase suggestions for extending
the state of the art in benchmarks. Statistics about the volume and impact of each
dataset is provided in Fig. 2.4.



38 K. Berger

Fig. 2.4 Left This semi-logarithmic bar chart depicts the size of each published dataset in terms
of absolute depth-images. The dataset presented by Silberman et al. [34] bears the most input
images. Right This chart depicts the impact of each published dataset in the community. It is sorted
alphabetically for each research field. The work by Lai et al. [21] has been considered most in the
community

2.8 Annotation for Ground Truth Retrieval

Most datasets exceed a feasible size to be handled by a single user for annotation.
Hence, with the increasing popoluratiy of internet freelance websites, most publica-
tions presented in this report have relied on Mechanical Turk, e.g. [18], for robust
annotation of the datasets. Some rely on additional sensors to provide the ground
truth, e.g. for the camera pose at a given frame [45, 46]. A sophisticated approach
transforms the labeling in another space: instead of letting the user annotate in image
space, the static scene captured with a moving Kinect is reconstructed in 3D and



2 A State of the Art Report. . . 39

annotated in a 3D graphics tool once, e.g. [21]. The annotated point clouds are then
simply reprojected into the input stream using the camera pose for the Kinect sensor
at each frame.

2.9 SLAM

Highly accurate depth data are necessary for 3D reconstruction and simultaneous
reconstruction and SLAM applications, although the requirements for mapping or
localization can differ within the applicational context. It can be seen, that accuracy
and the running time/framerates trade each other off. The Kinect is the first device that
provides fast data acquisition at acceptable accuracy. In their work Sturm et al. [45,
46] release a 50 GB dataset conisisting of 39 RGB-D sequences captured with the
Microsoft Kinect including the recorded accelerometer data with the intention to test
SLAM algorithms on the input data. The authors provide ground truth via external per
frame pose estimation of the Kinect within a global reference framework, which has
been computed from the capturing of markers that have been attached to the Kinect
beforehand. They used a MotionAnalysis capturing system at 100 Hz. Lieberknecht
et al. [22] create also a benchmark for localisation and provide video data, from which
the RGB and depth data can be extracted. However, they do not provide a dataset that
contains annotations or additional data, e.g. accelerometric data. Glocker et al. [13]
prvoide a dataset captured with a moving camera and use KinectFusion to generate
the 3D scene and the camera path as ground truth for the benchmark. They provide
seven different scenes including RGB, depth and pose data in a txt-file.

2.10 Object Recognition

Based on the Kinect’s realtime output of accurate depth maps, it became possible to
reconstruct 3D objects with the Kinect, e.g. by moving the sensor around the acquired
object. For example, Tam and his colleagues [50] register point clouds captured with
the Kinect to each other. Lai et al. [21] present an annotated dataset containing visual
and depth images of 300 physically distinct objects ranging from fruits to tools.
Their dataset was captured with the Primesense prototype and a Firewire RGB-
camera from Pointgrey. Their approach to labeling the objects in the input sequences
is somewhat innovative: they reconstruct the 3D scene from the moving RGB-D
sensor setup while keeping track of its position over time. The objects of interest
are then labeled once in the 3D scene by hand and then backprojected into the input
streams. Liu and Shao [23] present a dataset for gesture recognition where 2,160 hand
gesture sequences of 6 persons are captured with the Microsoft Kinect. The annotated
dataset differentiates 10 hand gestures: circle (clockwise), triangle (anti-clockwise),
up-down, right-left, wave, Z, cross, comehere, turnaround. As the Microsoft Kinect
remains fixed during acquisition there is no additional accelerometric data in the



40 K. Berger

dataset. Negin et al. [35] provide a dataset of human body movements represented by
3D positions of skeletal joints. As the Kinect sensor remained fixed, no accelerometric
data is available, but the authors provide the complete tracking results gained from
applying the Microsoft Kinect SDK to the RGB-D data as the ground truth for their
benchmark. In the dataset 15 people conduct 10 different exercises. Barbosa et al.
[5] capture 79 persons first for a distinctive signature, e.g. in a defined pose, and then
in regular motion, e.g. walking across a floor. They provide both skeleton fits and
.ply meshes alongside the RGB-D data. The goal of their dataset is to reindentify
different humans captured with the Kinect. The humans may change their movement
patterns or their clothes in between recordings. Machado and Ferreira [27] record
several objects and models with the Kinect camera and let them annotate by human
observers. The meshes are presented in various formats with the task to identify the
object from the recorded shape. Luber et al. [25] present a pedestrian dataset captured
with three Kinects which are placed such that their viewing cones do not interfere. The
dataset is annotated in that the position of each pedestrian is bounded by a rectangle in
the input views. Their dataset contains of walking and standing pedestrians seen from
different orientations and with different levels of occlusions. Silberman et al. [34]
present a dataset consisting of 1,449 labeled pairs of aligned RGB and depth images
captured in indoor environments, such as bathrooms, basements, bedrooms, kitchens
and playrooms. It includes the accelerometric data for each frame and also features
a toolbox implemented in matlab that includes useful functions for manipulating the
data and labels. Anand et al. [3] captured several indoor environments and labeled the
depth data. They also present in bag files the output of RGBDSLAM for each scene,
e.g. for each timestamp a transform-matrix for that frame that transforms the camera
from the first frame accordingly. Janoch et al. [18] show a large dataset annotated
with the help of Amazon’s Mechanical Turk consisting of indoor environment items
like chairs, monitors, cups, bottles, bowls, keyboards, mouses or phones. They do
not provide additional accelerometer data. Dataset consisting of faces of 52 people
(14 females, 38 males) captured with the Microsoft Kinect has been presented by
Huynh et al. [16]. The faces are captured in nine different conditions (neutral face,
smile, mouth open, face in left profile, face in right profile, partial occlusion of face
parts, changing lighting conditions). They do not include the accelerometric data.
Defined landmark points were manually identified in the input images. In their work
about motion recognition Sung et al. [48] provide depthmaps and skeletons for four
subjects (two male, two female, one left-handed) who were asked to perform different
high-level activities, like making cereal, arranging objects or having a meal. The
activities are label and subclassified for movements like reaching, opening, placing,
or scrubbing.

2.11 Shortcomings

The authors believe that, although there is already quite a remarkable amount of
publicly available datasets based on capturings conducted with the Kinect, certain
aspects in use of the sensor seem to be underrepresented. While already one paper is



2 A State of the Art Report. . . 41

published [30] that aims to extend the depth reconstruction capabilities from IR input
stream data, a coherent dataset containing the IR data and additional ground truth
depth information, e.g. from scene calibration or stereo, is missing. Also, arbitrary
mesh reconstruction is in the datasets currently considered as byproduct of SLAM
algorithms, Sect. 2.9, such that estimates with the accuracy of a few millimeters to a
centimeter seem sufficient. However, recently publications have emerged to employ
one or many Kinects for the accurate reconstruction of objects, e.g. based on depth,
a combination of depth and texture cues in the RGB stream [31] or from IR input
stream [37]. The reconstructed objects in these setups need explicitly not necessary
be purely opaque [7, 26]. A ground truth dataset with a high-resolution laser scan
alongside input frames from Kinect (depth, RGB and IR) with a pose reconstruction
of the sensor position would be highly desirable.

2.12 Conclusion

In this chapter I have shown that, counter-intuitively, it is possible to use several
Kinects in one capturing setup. Although each device projects the same pattern at
the same wavelength into the scene and consequently contributes to confusion in
processing the raw IR-data, several approaches, ranging from hardware fixes over
intelligent software algorithms for mitigation to placing the Kinects such that the
scene content acts as an occluding surface between each projection cone, have been
discussed. The applicational context varied between motion capturing, the original
purpose of the Kinect sensor, over scene reconstruction to tracking and recognition.
Furthermore, I have provided an overview over the publicly available datasets gen-
erated for benchmark with the Microsoft Kinect. Several approaches, ranging from a
steady single Kinect capturing setup over a moving Kinect in the scene to capturing
setups that include multiple Kinects, have been discussed. The applicational context
varied between SLAM, motion capturing and recognition. I have also phrased a crit-
ical view onto the diversity of current datasets with suggestions for extending the
state of the art in benchmarks. With the deployment of the new Kinect One in the
near future the authors assume that in the next years the amount of publicly avail-
able benchmark datasets will increase significantly. It has to be evaluated, though, if
setups with multiple sensors in one capturing scenario are possible, but the authors
predict that in the next years there will still be challenges for multiple RGB-D sensors
relying on the emission of light to be addressed by the community

References

1. Ahmed N (2012) A system for 360 acquisition and 3D animation reconstruction using multiple
RGB-D cameras

2. Alexiadis DS, Kordelas G, Apostolakis KC, Agapito JD, Vegas J, Izquierdo E, Daras P (2012)
Reconstruction for 3D immersive virtual environments. In: 13th international workshop on
image analysis for multimedia interactive services (WIAMIS). IEEE, pp 1–4



42 K. Berger

3. Anand A, Koppula HS, Joachims T, Saxena A (2013) Contextually guided semantic labeling
and search for three-dimensional point clouds. Int J Robot Res 32(1):19–34

4. Asteriadis S, Chatzitofis A, Zarpalas D, Alexiadis DS, Daras P (2013) Estimating human motion
from multiple kinect sensors. In: Proceedings of the 6th international conference on computer
vision/computer graphics collaboration techniques and applications. ACM, p 3

5. Barbosa IB, Cristani M, Del Bue A, Bazzani L, Murino V (2012) Re-identification with RGB-
D sensors. In: Computer vision-ECCV 2012. Workshops and demonstrations. Springer, pp
433–442

6. Berger K, Kastner M, Schroeder Y, Guthe S (2013) Using sparse optical flow for two-phase
gas flow capturing with multiple kinects. Robotics: science and systems 2013 workshop on
RGB-D: advanced reasoning with depth cameras, pp 1–8

7. Berger K, Ruhl K, Albers M, Schroder Y, Scholz A, Kokemuller J, Guthe S, Magnor M (2011)
The capturing of turbulent gas flows using multiple kinects. In: IEEE international conference
on computer vision workshops (ICCV workshops). IEEE, pp 1108–1113

8. Berger K, Ruhl K, Brümmer C, Schröder Y, Scholz A, Magnor M (2011) Markerless motion
capture using multiple color-depth sensors. In Proceedings of vision, modeling and visualiza-
tion (VMV), vol 2011, p 3

9. Butler DA, Izadi S, Hilliges O, Molyneaux D, Hodges S, Kim D (2012) Shake‘n’sense: reducing
interference for overlapping structured light depth cameras. In: Proceedings of the 2012 ACM
annual conference on human factors in computing systems. ACM, pp 1933–1936

10. Caon M, Yue Y, Tscherrig J, Mugellini E, Abou Khaled O (2011) Context-aware 3D gesture
interaction based on multiple kinects. In: AMBIENT 2011, the first international conference
on ambient computing, applications, services and technologies, pp 7–12

11. Faion F, Friedberger S, Zea A, Hanebeck UD (2012) Intelligent sensor-scheduling for multi-
kinect-tracking. In: IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE, pp 3993–3999

12. Fuhrmann AL, Kretz J, Burwik P (2013) Multi sensor tracking for live sound transformation
13. Glocker B, Izadi S, Shotton J, Criminisi A (2013) Real-time RGB-D camera relocalization. In:

International symposium on mixed and augmented reality. Springer
14. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor:

a review
15. Hossny M, Filippidis D, Abdelrahman W, Zhou H, Fielding M, Mullins J, Wei L, Creighton

D, Puri V, Nahavandi S (2012) Low cost multimodal facial recognition via kinect sensors.
In: Proceedings of the land warfare conference (LWC): potent land force for a joint maritime
strategy. Commonwealth of Australia, pp 77–86

16. Huynh T, Min R, Dugelay J-L (2013) An efficient LBP-based descriptor for facial depth
images applied to gender recognition using RGB-D face data. In: Computer vision-ACCV
2012 workshops. Springer, pp 133–145

17. Izadi S, Newcombe R, Kim D, Hilliges O, Molyneaux D, Hodges S, Kohli P, Shotton J,
Davison A, Fitzgibbon A (2011) Kinectfusion: real-time dynamic 3D surface reconstruction
and interaction. In: ACM SIGGRAPH 2011 talks. ACM, p 23

18. Janoch A, Karayev S, Jia Y, Barron JT, Fritz M, Saenko K, Darrell T (2013) A category-level
3D object dataset: putting the kinect to work. In: Consumer depth cameras for computer vision.
Springer, pp 141–165

19. Kainz B, Hauswiesner S, Reitmayr G, Steinberger M, Grasset R, Gruber L, Veas E, Kalkofen
D, Seichter H, Schmalstieg D (2012) Omnikinect: real-time dense volumetric data acquisition
and applications. In: Proceedings of the 18th ACM symposium on virtual reality software and
technology. ACM, pp 25–32

20. Khoshelham K (2011) Accuracy analysis of kinect depth data. In: ISPRS workshop laser
scanning, vol 38, p 1

21. Lai K, Bo L, Ren X, Fox D (2011) A large-scale hierarchical multi-view RGBD-D object
dataset. In: IEEE international conference on robotics and automation (ICRA). IEEE, pp 1817–
1824



2 A State of the Art Report. . . 43

22. Lieberknecht S, Huber A, Ilic S, Benhimane S (2011) RGB-D camera-based parallel tracking
and meshing. In: ISMAR

23. Liu L, Shao L (2013) Learning discriminative representations from RGB-D video data. In:
Proceedings of the international joint conference on artificial intelligence (IJCAI)

24. Lo R, Rampersad V, Huang J, Mann S (2013) Three dimensional high dynamic range veillance
for 3D range-sensing cameras

25. Luber M, Spinello L, Arras KO (2011) People tracking in RGBD-D data with on-line boosted
target models. In: IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE, pp 3844–3849

26. Lysenkov I, Eruhimov V, Bradski GR (2012) Recognition and pose estimation of rigid trans-
parent objects with a kinect sensor. In: Robotics: science and systems

27. Machado J, Ferreira A (2013) Retrieval of objects captured with low-cost depth-sensing cam-
eras. In: SHREC2013. Springer

28. Macknojia R, Chávez-Aragón A, Payeur P, Laganière R (2013) Calibration of a network of
kinect sensors for robotic inspection over a large workspace. In: Proceedings of the IEEE
workshop on robot vision (WoRV 2013)

29. Maimone A, Fuchs H (2012) Reducing interference between multiple structured light depth
sensors using motion. In: Virtual reality workshops (VR). IEEE, pp 51–54

30. Martinez M, Stiefelhagen R (2013) Kinect unleashed: getting control over high resolution depth
maps

31. Miao D, Fu J, Lu Y, Li S, Chen CW (2012) Texture-assisted kinect depth inpainting. In: IEEE
international symposium on circuits and systems (ISCAS). IEEE, pp 604–607

32. Nakamura DALR Multiple 3D data acquisition system setup based on structured ligth technique
for immersive videoconferencing applications

33. Nakazawa M, Mitsugami I, Makihara Y, Nakajima H, Habe H, Yamazoe H, Yagi Y (2012)
Dynamic scene reconstruction using asynchronous multiple kinects. In: 21st international con-
ference on pattern recognition (ICPR). IEEE, pp 469–472

34. Nathan Silberman PK, Hoiem D, Fergus R (2012) Indoor segmentation and support inference
from RGBD images. In: ECCV

35. Negin F, Özdemir F, Akgül CB, Yüksel KA, Erçil A (2013) A decision forest based feature
selection framework for action recognition from RGB-depth cameras. In: Image analysis and
recognition. Springer, pp 648–657

36. Olesen SM, Lyder S, Kraft D, Krüger N, Jessen JB (2012) Real-time extraction of surface
patches with associated uncertainties by means of kinect cameras. J Real-Time Image Process
1–14

37. Ou-Yang T-H, Tsai M-L, Yen C-T, Lin T-T (2011) An infrared range camera-based approach
for three-dimensional locomotion tracking and pose reconstruction in a rodent. J Neurosci
Methods 201(1):116–123

38. Pancham A, Tlale N, Bright G (2012) Mapping and tracking of moving objects in dynamic
environments

39. Rafibakhsh N, Gong J, Siddiqui MK, Gordon C, Lee HF (2012) Analysis of xbox kinect
sensor data for use on construction sites: depth accuracy and sensor interference assessment.
In: Constitution research congress, pp 848–857

40. Santhanam A, Low D, Kupelian P (2011) Th-c-brc-11: 3D tracking of interfraction and
intrafraction head and neck anatomy during radiotherapy using multiple kinect sensors. Med
Phys 38:3858

41. Saputra MRU, Putra GD, Santosa PI et al (2012) Indoor human tracking application using
multiple depth-cameras. In: International conference on advanced computer science and infor-
mation systems (ICACSIS). IEEE, pp 307–312

42. Satta R, Pala F, Fumera G, Roli F (2013) Real-time appearance-based person re-identification
over multiple kinect TM cameras

43. Satyavolu S, Bruder G, Willemsen P, Steinicke F (2012) Analysis of IR-based virtual reality
tracking using multiple kinects. In: Virtual reality workshops (VR). IEEE, pp 149–150



44 K. Berger

44. Schröder Y, Scholz A, Berger K, Ruhl K, Guthe S, Magnor M (2011) Multiple kinect studies.
Comput Graph

45. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A benchmark for the evaluation
of RGB-D slam systems. In: Proceedings of the IEEE international conference on intelligent
robot systems (IROS), pp 573–580

46. Sturm J, Magnenat S, Engelhard N, Pomerleau F, Colas F, Burgard W, Cremers D, Siegwart R
(2011) Towards a benchmark for RGB-D slam evaluation. In: Proceedings of the RGB-D work-
shop on advanced reasoning with depth cameras at robotics: science and systems conference
(RSS), vol 2. Los Angeles, USA, p 3

47. Sumar L, Bainbridge-Smith A (2014) Feasability of fast image processing using multiple kinect
cameras on a portable platform. Department of electrical and computer engineering, University.
Canterbury, New Zealand

48. Sung J, Ponce C, Selman B, Saxena A (2011) Human activity detection from RGBD images.
In: plan, activity, and intent recognition

49. Susanto W, Rohrbach M, Schiele B (2012) 3D object detection with multiple kinects. In:
Computer vision-ECCV 2012. Workshops and demonstrations. Springer, pp 93–102

50. Tam G, Cheng Z-Q, Lai Y-K, Langbein F, Liu Y, Marshall A, Martin R, Sun X-F, Rosin P
(2012) Registration of 3D point clouds and meshes: a survey from rigid to non-rigid

51. Tong J, Zhou J, Liu L, Pan Z, Yan H (2012) Scanning 3D full human bodies using kinects.
EEE Trans Visual Comput Graph 18(4):643–650

52. Wang J, Zhang C, Zhu W, Zhang Z, Xiong Z, Chou PA (2012) 3D scene reconstruction by
multiple structured-light based commodity depth cameras. In: IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE, pp 5429–5432

53. Wilson AD, Benko H (2010) Combining multiple depth cameras and projectors for interactions
on, above and between surfaces. In: Proceedings of the 23nd annual ACM symposium on user
interface software and technology. ACM, pp 273–282

54. Ye G, Liu Y, Deng Y, Hasler N, Ji X, Dai Q, Theobalt C (2013) Free-viewpoint video of human
actors using multiple handheld kinects. In: IEEE transactions on cybernetics

55. Zhang L, Sturm J, Cremers D, Lee D (2012) Real-time human motion tracking using multiple
depth cameras. In: IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE, pp 2389–2395

56. Zhang Z (2012) Microsoft kinect sensor and its effect. IEEE Multimedia 19(2):4–10



Part II
Reconstruction, Mapping and Synthesis



Chapter 3
Calibration Between Depth and Color Sensors
for Commodity Depth Cameras

Cha Zhang and Zhengyou Zhang

Abstract Commodity depth cameras have created many interesting new applications
in the research community recently. These applications often require the calibration
information between the color and the depth cameras. Traditional checkerboard-
based calibration schemes fail to work well for the depth camera, since its corner
features cannot be reliably detected in the depth image. In this chapter, we present
a maximum likelihood solution for the joint depth and color calibration based on
two principles. First, in the depth image, points on the checkerboard shall be copla-
nar, and the plane is known from color camera calibration. Second, additional point
correspondences between the depth and color images may be manually specified or
automatically established to help improve calibration accuracy. Uncertainty in depth
values has been taken into account systematically. The proposed algorithm is reliable
and accurate, as demonstrated by extensive experimental results on simulated and
real-world examples.

3.1 Introduction

Recently, there has been an increasing number of depth cameras available at com-
modity prices, such as those from 3DV systems1 and Microsoft Kinect.2 These
cameras can usually capture both color and depth images in real time. They have
created a lot of interesting new research applications, such as 3D shape scanning [1],
foreground/background segmentation [2], facial expression tracking [3], etc.

1 3DV Systems, http://www.3dvsystems.com/.
2 Microsoft, http://www.xbox.com/en-US/kinect/.

C. Zhang (B) · Z. Zhang
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
e-mail: chazhang@microsoft.com

Z. Zhang
e-mail: zhang@microsoft.com

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_3

47

http://www.3dvsystems.com/
http://www.xbox.com/en-US/kinect/


48 C. Zhang and Z. Zhang

For many applications that use the color and the depth images jointly, it is critical
to know the calibration parameters of the sensor pair. Such parameters include the
intrinsic parameters of the color camera, its radial distortion parameters, the rotation
and translation between the depth camera and the color camera, and parameters
that help determine the depth values (e.g., in meters) of pixels in the depth image.
Although color camera calibration has been thoroughly studied in the literature [4, 5],
the joint calibration of depth and color images presents a few new challenges:

• Feature points such as the corners of checkerboard patterns are often indistinguish-
able from other surface points in the depth image, as shown in Fig. 3.1.

• Although depth discontinuity can be easily observed in the depth image, the bound-
ary points are usually unreliable due to unknown depth reconstruction mechanisms
used inside the depth camera.

• One may use the infrared image cocentered with the depth image to perform
calibration. However, this may require external infrared illumination (e.g., the
Kinect camera). In addition, the depth mapping function Eq. (3.28) of the depth
image may not be calibrated with such a method.

• Most commodity depth cameras produce noisy depth images. Such noises need to
be accurately modeled in order to obtain satisfactory results.

In this chapter, we present a maximum likelihood solution for joint depth and
color calibration using commodity depth cameras. We use the popular checkerboard
pattern adopted in color camera calibration (Fig. 3.1); thus, no extra hardware is
needed. We utilize the fact that points on the checkerboard shall lie on a common
plane; thus, their distance to the plane shall be minimized. Point correspondences
between the depth and color images may be further added to help improve calibration
accuracy. A maximum likelihood framework is presented with careful modeling of
the sensor noise, particularly in the depth image. Extensive experimental results are
presented to validate the proposed calibration method.

Fig. 3.1 The calibration pattern used in this chapter. The color image is shown on the left, and
the depth image is shown on the right. The depth pixels inside the red rectangle shall lie on the
model plane surface, though point correspondence is difficult to obtain. A few manually specified
corresponding point pairs are also shown in the figure



3 Calibration Between Depth and Color Sensors 49

The rest of the chapter is organized as follows. Related works are presented in
Sect. 3.2. Notations used in this chapter are introduced in Sect. 3.3. The maximum
likelihood solution is described in Sect. 3.4. Experimental results and conclusions
are given in Sects. 3.5 and 3.6, respectively.

3.2 Related Works

Some of the earliest works on depth camera calibration are on time-of-flight (ToF)
cameras. For instance, in Kuhnert and Stommel [6] and [7], simple linear or basic
polynomial functions are used to determine the deviation between the measured
depth information and ground truth. Fuchs and Hirzinger [8] focused on ToF cam-
eras mounted on an external positioning system, and they modeled three types of
errors for ToF sensors, including distance-related error, amplitude-related error, and
a latency-related error and estimated them simultaneously. Lindner et al. [9] adopted
a combined calibration approach that incorporates several separate models into one
and realizes a reduction of complexity. Shim et al. [10] presented another ToF cam-
era calibration scheme under a multiview acquisition setup, which is composed of
ToF sensors and color cameras. Their approach employed optical features in estimat-
ing the pose of ToF sensors and color cameras and does not suffer from erroneous
estimation in intrinsic parameters for the ToF sensors.

It is not until the availability of the Microsoft Kinect sensor in November 2010 that
depth cameras become a commodity. Herrera et al. [11] and Zhang [12] independently
proposed to use a planar checkerboard pattern to help calibrating the relative rotation
and translation between the color and depth sensors in Kinect, in which this chapter
is mostly based on. Herrera et al. [13] later extended their work to include a disparity
distortion correction model that depends on the observed disparity, which could
further improve accuracy. Raposo et al. [14] later proposed a few modifications to
Herrera [13], improved stability, and decreased the number of input images and
run-time for calibration.

Other interesting works on Kinect calibration include Liu et al. [15] and [16]. In
Liu et al. [15] presented a method for Kinect calibration based on a one-dimensional
object, which can be extracted easily even in the depth image. In Mikhelson et al. [16]
still used a checkerboard, but relied more on the checkerboard boundary rather than
interior points for the calibration, which again is observable or computable from the
depth image.

3.3 Notations

Figure 3.2 illustrates the notations used during our calibration procedure. We assume
the color camera’s 3D coordinate system coincides with the world coordinate system.
In the homogeneous representation, a 3D point in the world coordinate system is



50 C. Zhang and Z. Zhang

Fig. 3.2 Illustration of the notations used in the paper

denoted by M = [X, Y, Z , 1]T, and its corresponding 2D projection in the color
image is m = [u, v, 1]T. We model the color camera by the usual pinhole model,
i.e.,

sm = A[I 0]M, (3.1)

where I is the identity matrix and 0 is the zero vector. s is a scale factor. In this
particular case, s = Z . A is the camera’s intrinsic matrix, given by Zhang [5]:

A =
⎡

⎣
α ω u0
0 ρ v0
0 0 1

⎤

⎦ , (3.2)

where α and ρ are the scale factors in the image coordinate system, (u0, v0) are the
coordinates of the principal point, and ω is the skewness of the two image axes.

The depth camera typically outputs an image with depth values, denoted by
x = [u, v, z]T, where (u, v) are the pixel coordinates and z is the depth value.
The mapping from x to the point in the depth camera’s 3D coordinate system
Md = [Xd , Y d , Zd , 1]T is usually known, denoted as Md = f(x). The rotation
and translation between the color and the depth cameras are denoted by R and t, i.e.,

M =
⎧

R t
0T 1

⎨
Md . (3.3)



3 Calibration Between Depth and Color Sensors 51

3.4 Joint Depth/Color Camera Calibration

3.4.1 Problem Statement

During calibration, we assume the user moves a planar calibration board in front of
the depth camera, similar to that in Zhang [5]. In total, there are n image pairs (color
and depth) captured by the depth camera. The positions of the calibration board
in the n images are different, as shown in Fig. 3.2. We set up local 3D coordinate
system (Xi , Yi , Zi ) for each position of the calibration model plane, such that the
Zi = 0 plane coincides with the model plane. In addition, we assume the model
plane has a set of m feature points. Usually, they are the corners of a checkerboard
pattern. We denote these feature points as P j , j = 1, . . . , m. Note the 3D coordinates
of these feature points in each model plane’s local coordinate system are identical.
Each feature point’s local 3D coordinate is associated with the world coordinate as

Mi j =
⎧

Ri ti

0T 1

⎨
P j . (3.4)

where Mi j is the j th feature point of the i th image in the world coordinate system and
Ri and ti are the rotation and translation from the i th model plane’s local coordinate
system to the world coordinate system. The feature points are observed in the color
image as mi j , which are associated with Mi j through Eq. (3.1).

Given the set of feature points P j and their projections mi j , our goal is to recover
the intrinsic matrix A, the model plane rotations and translations Ri , ti , and the
transform between the color and the depth cameras R and t. It is well-known that
given the set of color images, the intrinsic matrix A and the model plane positions
Ri , ti can be computed [5]. It is unclear, however, whether the depth images can be
used to reliably determine R and t automatically.

3.4.2 A Maximum Likelihood Solution

The calibration solution to the color image-only problem is well known [5]. Due to
the pinhole camera model, we have

si j mi j = A[Ri ti ]P j (3.5)

In practice, the feature points on the color images are usually extracted with automatic
algorithms and may have errors. Assume that mi j follows a Gaussian distribution
with the ground truth position as its mean, i.e.,

mi j ∈ N (m̄i j ,τi j ). (3.6)



52 C. Zhang and Z. Zhang

The log likelihood function can be written as

L1 = − 1

2nm

n⎩

i=1

m⎩

j=1

κT
i jτ

−1
i j κi j , (3.7)

where

κi j = mi j − 1

si j
A[Ri ti ]P j . (3.8)

We next study terms related to the depth images. There are a set of points in the
depth image that correspond to the model plane, as those inside the red quadrilateral
in Fig. 3.1. We randomly sample Ki points within the quadrilateral, denoted by
Md

iki
, i = 1, . . . , n; ki = 1, . . . , Ki . If the depth image is noise free, we shall have

[0 0 1 0]
⎧

Ri ti

0T 1

⎨−1 ⎧
R t
0T 1

⎨
Md

iki
= 0, (3.9)

which states that if we transform these points to the local coordinate system of each
model plane, the Zi coordinate shall be zero.

Since the depth images are usually noisy, we assume Md
iki

follows a Gaussian
distribution as

Md
iki

∈ N (M̄d
iki

,τd
iki

). (3.10)

The log likelihood function can thus be written as

L2 = − 1

2
∑n

i=1 Ki

n⎩

i=1

Ki⎩

ki =1

φ2
iki

π 2
iki

, (3.11)

where
φiki = aT

i Md
iki

(3.12)

where

ai =
⎧

RT 0
tT 1

⎨ ⎧
Ri 0

−tT
i Ri 1

⎨
⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ , (3.13)

and
π 2

iki
= aT

i τd
iki

ai . (3.14)

It is sometimes helpful to have a few corresponding point pairs in the color
images and the depth images, as shown in Fig. 3.1. We denote such point pairs
as (mi pi , Md

ipi
), i = 1, . . . , n; pi = 1, . . . , Pi . These point pairs shall satisfy



3 Calibration Between Depth and Color Sensors 53

sipi mi pi = A[R t]Md
ipi

. (3.15)

Whether the point correspondences are manually labeled or automatically estab-
lished, they may not be accurate. Assume

mi pi ∈ N (m̄i pi ,τi pi ); Md
ipi

∈ N (M̄d
ipi

,τd
ipi

), (3.16)

where τi pi models the inaccuracy of the point in the color image and τd
ipi

models
the uncertainty of the 3D point from the depth sensor. The log likelihood function
can be written as

L3 = − 1

2
∑n

i=1 Pi

n⎩

i=1

Pi⎩

pi =1

ξT
i pi

τ̃−1
i pi

ξi pi , (3.17)

where
ξi pi = mi pi − Bi pi M

d
ipi

, (3.18)

where

Bi pi = 1

sipi

A[R t], (3.19)

and
τ̃i pi = τi pi + Bi pi τ

d
ipi

BT
i pi

. (3.20)

Combining all the information together, we maximize the overall log likelihood
as

max
A,Ri ,ti ,R,t

ρ1L1 + ρ2 L2 + ρ3L3, (3.21)

whereρi , i = 1, 2, 3 are weighting parameters. The above objective function is a non-
linear least squares problem, which can be solved using the Levenberg–Marquardt
method [17].

3.4.3 The Depth Mapping Function

There may be a few other parameters that need to be estimated during calibration.
For instance, the color camera may exhibit significant lens distortions; thus, it is
necessary to estimate them based on the observed model planes. Another set of
unknown parameters may be in the depth mapping function f(·). In the following,
we present a model of the depth mapping function for the Kinect sensor.

The Kinect sensor uses structured light to perform depth reconstruction. The
principle is described in Fig. 3.3. Let the baseline between the IR projector and
the IR camera be b0, and the IR camera’s focal length be f0. Based on triangulation,



54 C. Zhang and Z. Zhang

Fig. 3.3 Depth computation
of Kinect camera

the object depth Z and the disparity between the IR projector and the IR camera δ

have the simple relationship:

b0

Z
= δ

f0
, or Z = b0 f0

δ
. (3.22)

All Kinect sensors go through in-factory calibration before they are shipped to
customers. The calibration procedure is simple: The Kinect sensor is mounted in
front of a flat white surface, which is at a distance Z0 =1,000 mm from the sensor.
The captured image from the IR camera is stored in the firmware as a reference
image I0. During operation, the IR camera captures a new image I and computes the
disparity between I and I0. Let the disparity be δ(u, v), where (u, v) is the image
coordinate in I ; the Kinect will then output depth as

Z(u, v) = b0 f0

ζ0 + δ(u, v)
, (3.23)

where ζ0 = b0 f0
Z0

. Note parameters b0, f0, and Z0 are all preset values during depth
reconstruction.

However, the in-factory calibration may not be very accurate. In addition, the
Kinect sensor may become uncalibrated during transportation for various reasons,
such as vibration, heat, etc. These factors cause the reported depth values from Kinect
inaccurate. We would like to use a calibration procedure to correct such factors, in
other words, to find a correct depth mapping function f(·). For this purpose, we make
the following two assumptions in this paper:



3 Calibration Between Depth and Color Sensors 55

• The preset values, b0, f0, and Z0, can be inaccurate.
• Between the IR projector and the IR camera, there could be small translation and

rotation that happen during the transportation. Note if translation happens, it is
equivalent to having an inaccurate b0; thus, the translation case can be absorbed
to the first case.

We approach the above modeling problem as follows. Assume, in the ideal case,
the in-factory calibration is accurate, and the calibration remains accurate throughout
transportation. In such a case, Eq. (3.23) would be the perfect solution to compute
Z(u, v). Let there be a flat wall in front of the Kinect at distance Z(u, v) = Z0; we
would have δ(u, v) = 0. However, if the Kinect sensor lost its perfect calibration,
even when we place a flat wall perfectly in front of the Kinect at distance Z0, it will
not report a constant Z(u, v). In other words, δ(u, v) is no longer zero everywhere.
Denote the current disparity values δ(u, v) = δ0(u, v). If δ0(u, v) is known, then the
corrected depth value of the scene shall be

Z̃(u, v) = b0 f0

d0 + δ0(u, v) + δ(u, v)
= b0 f0

δ0(u, v) + b0 f0
Z(u,v)

. (3.24)

Note in the above equation, Z(u, v) is the depth value reported by the Kinect sensor.
Let us further examine how to establish a model for δ0(u, v). Assume that the

preset values should indeed be b1, f1 and Z1, and there is a small rotation ∀θ

between the IR projector and the IR camera during transportation. Note since the
depth reconstruction is done by triangulation horizontally, only the yaw angle ∀θy

(rotation along the vertical axis) will cause systematic bias to δ0(u, v). It could be
computed that

δ0(u, v) ∩ b1 f1

Z1
− b0 f0

Z0
+ ∂u

∂θy
∀θy, (3.25)

where
∂u

∂θy
= f1∂ tan θy

∂θy
= (u − u0)

2 + f 2
1

f1
, (3.26)

where u0 is the camera principle point’s horizontal coordinate. Let ω = u−u0
f1

,
which is the normalized horizontal coordinate. Plug Eqs. (3.25)–(3.24), we have
a mathematical model for Kinect calibration as

Z̃(u, v) ∩ 1

η1 + 1+η2
Z(u,v)

+ η3ω2
(3.27)

Thus, during calibration, parameters η1, η2, η3 shall be estimated. Note if there is no
distortion, we shall have η1 = η2 = η3 = 0.



56 C. Zhang and Z. Zhang

And the depth mapping function for Kinect shall be

f(x) =
⎡

⎣

(
1

η1+ 1+η2
z +η3ω2

)
(Ad)−1[u, v, 1]T

1

⎤

⎦ , (3.28)

where Ad is the intrinsic matrix of the depth sensor. Usually, Ad is predetermined.
The other parameters η1, η2, and η3 can be estimated within the same maximum
likelihood framework.

3.4.4 Solutions for Initialization

Since the overall likelihood function in Eq. (3.21) is nonlinear, it is very important to
have good initialization for the unknown parameters. For the parameters related to
the color camera, i.e., A, Ri and ti , we may adopt the same initialization scheme as
in [5]. In the following, we discuss methods to provide the initial estimation of the
rotation R and translation t between the depth and color sensors. During the process,
we assume A, Ri , and ti of the color camera are known.

3.4.4.1 Initialization with Model Plane Matching

For most commodity depth cameras, the color camera and the depth camera are
positioned very closely. It is therefore simple to automatically identify a set of points
in each depth image that lies on the model plane. Let these points be Md

iki
, i =

1, . . . , n; ki = 1, . . . , Ki . For a given depth image i , if Ki ∅ 3, it is possible to fit a
plane to the points in that image. That is, given

Hi

⎧
nd

i
bd

i

⎨
=

⎡

⎢⎢⎢⎣

(Md
i1)

T

(Md
i2)

T

...

(Md
i Ki

)T

⎤

⎥⎥⎥⎦

⎧
nd

i
bd

i

⎨
= 0, (3.29)

where nd
i is the normal of the model plane in the depth sensor’s 3D coordinate

system, ∪nd
i ∪2 = 1, and bd

i is the bias from the origin. ∪nd
i ∪ and bd

i can be easily
found through least squares fitting.

In the color sensor’s coordinate system, the model plane can also be described by
plane equation

[0 0 1 0]
⎧

Ri ti

0T 1

⎨−1

M = 0. (3.30)



3 Calibration Between Depth and Color Sensors 57

Since Ri and ti are known, we represent the plane’s normal as ni , ∪ni∪2 = 1, and
bias from the origin bi .

We first solve the rotation matrix R. Denote

R =
⎡

⎢⎣
rT

1

rT
2

rT
3

⎤

⎥⎦ . (3.31)

We minimize the following objective function with constraint:

J (R) =
n⎩

i=1

∪ni − Rnd
i ∪ +

3⎩

j=1

λ j (rT
j r j − 1)

+ 2λ4rT
1 r2 + 2λ5rT

1 r3 + 2λ6rT
2 r3. (3.32)

This objective function can be solved in close form [18]. Let

C =
n⎩

i=1

nd
i nT

i . (3.33)

The singular value decomposition of C can be written as

C = UDVT, (3.34)

where U and V are orthonormal matrices and D is a diagonal matrix. The rotation
matrix is simply

R = VUT. (3.35)

The minimum number of images to determine the rotation matrix R is n = 2,
provided that the two model planes are not parallel to each other.

For translation, we have the following relationship:

(nd
i )Tt + bd

i = bi . (3.36)

Thus, three non-parallel model planes will determine a unique t. If n > 3, we may
solve t through least squares fitting.

3.4.4.2 Initialization with Point Pair Matching

Another scheme to estimate the initial rotation R and translation t is through the
knowledge of a set of point correspondences between the color images and the depth
images. Denote such point pairs as (mi pi , Md

ipi
), i = 1, . . . , n; pi = 1, . . . , Pi . We

have the relationship



58 C. Zhang and Z. Zhang

sipi mi pi = A[R t]Md
ipi

. (3.37)

Note the intrinsic matrix A is known. Such a problem has been studied extensively
in the literature [19, 20]. It has been shown that given three point pairs, there are
in general four solutions to the rotation and translation. When one has four or more
non-coplanar point pairs, the so-called POSIT algorithm [21] can be used to find the
initial value of R and t.

3.5 Experimental Results

The maximum likelihood solution in Eq. (3.21) can be used to calibrate all unknown
parameters for the depth and color sensors. Due to space limitations, in this paper, we
focus our attention on the parameters related to the depth sensor only, i.e., R, t, and
f(·) and assume A, Ri , ti are known (or obtained separately from, say, maximizing
Eq. (3.7) only [5]).

3.5.1 Simulated Results

The simulated depth/color camera has the following parameters. For the color camera,
α = 750, ρ = 745, ω = 0, u0 = 315, v0 = 245. The image resolution is 640 ×480.
The rotation and translation from the depth camera to the color camera is repre-
sented by vector [θx , θy, θz, tx , ty, tz]T = [0.05,−0.01, 0.02, 25, 2,−2]T, where
[θx , θy, θz]T in radians represents rotation, which can be converted to R through
the well-known Rodrigues’ rotation formula, and the last three elements represent
translation t = [tx , ty, tz]T in millimeters.

3.5.1.1 Performance w.r.t. the Noise Level

In this experiment, we examine the impact of the depth camera’s noise level on the
calibration accuracy. Three model planes are used in the experiment. The checker-
board pattern has 10 × 7 corners on a regular grid. The distance between neighbor-
ing corners is 37. The three model planes are located at

[
π
8 , 0, 0,−300, 25, 750

]T,
[
0, π

8 ,− π
18 ,−110,−100, 1150

]T, and
[− π

36 , 0, π
6 , 120,−200, 800

]T, respectively.
Only the plane fitting likelihood term Eq. (3.11) is maximized to determine R and t,
where Ki =1,000. The covariance of the depth noise is assumed to be independent of
the depth values (which is an acceptable assumption for ToF-based depth cameras).
At each noise level, 500 trials were run and the standard deviations (STDs) of the
errors are reported, as shown in Fig. 3.4. It can be seen that the STDs of the angular
errors and translation errors increase linearly with the noise level. The mean of the



3 Calibration Between Depth and Color Sensors 59

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

-3

Depth noise standard deviation (mm)

A
ng

ul
ar

 e
rr

or
 s

ta
nd

ar
d 

   
   

de
vi

at
io

n 
(r

ad
)

θx
θy
θz

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Depth noise standard deviation (mm)

T
ra

ns
la

tio
n 

er
ro

r 
st

an
da

rd
 

   
   

  d
ev

ia
tio

n 
(m

m
)

T
x

T
y

T
z

Fig. 3.4 Calibration accuracy versus depth camera noise level

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8
x 10

-4

Number of planes

A
ng

ul
ar

 e
rr

or
 s

ta
nd

ar
d 

   
   

de
vi

at
io

n 
(r

ad
)

θx

θy
θz

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of planes

T
ra

ns
la

tio
n 

er
ro

r 
st

an
da

rd
 

   
   

   
de

vi
at

io
n 

(m
m

)
Tx
Ty
Tz

Fig. 3.5 Calibration accuracy versus number of model planes

errors are generally very close to zero (not shown in Fig. 3.4), and the STDs are very
small, indicating satisfactory calibration accuracy and algorithm stability.

3.5.1.2 Performance w.r.t. the Number of Planes

In the second experiment, we examine whether increasing the number of model
planes could improve calibration accuracy. We tested between 3 and 15 planes, as
shown in Fig. 3.5. The first 3 planes are the same as those in Sect. 3.5.1.1. From
the fourth image on, we randomly generate a vector on the unit sphere and apply
a rotation with respect to the vector for an angle of π

6 . Again only the plane fitting
likelihood term Eq. (3.11) is maximized to determine R and t. The covariance of
the depth noise is set to 1 throughout the experiment. For a given number of planes,
we run 500 trials and report the STDs of the errors. From Fig. 3.5, it is obvious
that increasing the number of planes leads to smaller STDs of the errors and thus
better calibration accuracy. We recommend at least 8–10 planes to achieve sufficient
accuracy during calibration.



60 C. Zhang and Z. Zhang

3.5.1.3 Performance w.r.t. the Plane Orientations

Next, we study the impact of the model plane orientations. We again use three planes
for calibration. The planes are generated as follows. We first randomly choose three
vectors on the unit circle in the color camera’s imaging plane, and we make sure
the smallest angle between the three vectors is greater than π

9 . We then apply a
rotation with respect to the three vectors for a varying angle between 10∃ and 80∃ to
generate three model planes for calibration. A total of 500 trials were run for each
configuration in Fig. 3.6. It contains three groups of curves.

In the first group, only the plane fitting likelihood term Eq. (3.11) is maximized
to determine R and t. It can be seen that when the plane orientations are small, the
calibration errors are big. This is intuitive, since according to Sect. 3.4.4.1, parallel
planes would not be effective in determining the rotation/translation between the
depth and color sensors.

In the second group, we use the point pair likelihood term Eq. (3.17) to determine
R and t. For this purpose, we assume the four corners of each model plane are known
in both the color and the depth images; thus, we have a total of 12 point pairs. Noise
of covariance 0.252 is added to the position of the point pairs to mimic the real-world
scenario. It can be seen from Fig. 3.6 that with so few point pairs, the calibration error
STDs are generally bigger than those generated by planning fitting. An exception
is the cases of very small plane orientations, where the plane fitting only solution
performs very poorly.

In the third group, we determine R and t based on the combination of plane fitting
and point pair likelihood terms. We use ρ2 = 1 and ρ3 = 0.2. It can be seen that
for small plane orientations, combining the two likelihood terms results in better
performance than using only either. When the plane orientations are large, however,
the plane fitting likelihood term alone seems to perform better. In practice, we also
need to consider the calibration accuracy of the color camera parameters. It has been
shown in [5] that color camera calibration will perform poorly if the model planes are

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3
x 10

-3

Orientation of planes (degree)

A
ng

ul
ar

 e
rr

or
 s

ta
nd

ar
d 

   
   

de
vi

at
io

n 
(r

ad
)

θx (plane fitting only)

θy (plane fitting only)

θz (plane fitting only)

θx (point pairs only)

θy (point pairs only)

θz (point pairs only)

θx (both)

θy (both)

θz (both)

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

Orientation of planes (degree)

T
ra

ns
la

tio
n 

er
ro

r 
st

an
da

rd
 

   
   

de
vi

at
io

n 
(m

m
)

Tx (plane fitting only)

Ty (plane fitting only)

Tz (plane fitting only)

Tx (point pairs only)

Ty (point pairs only)

Tz (point pairs only)

Tx (both)

Ty (both)

Tz (both)

Fig. 3.6 Calibration accuracy versus plane orientations



3 Calibration Between Depth and Color Sensors 61

near perpendicular to the color image’s imaging plane. Therefore, we recommend to
use model planes oriented about 30∃–50∃ with respect to the color camera’s imaging
plane for better overall calibration quality.

3.5.1.4 Performance w.r.t. the Correct Noise Model

So far, we have assumed depth-independent noises in the depth image. This is accept-
able for ToF depth cameras such as the ZCam from 3DV systems. However, for
triangularization-based depth cameras such as the Kinect camera, the noise level is
a quadratic function of the depth [3]. Both types of noises can be accommodated
with our maximum likelihood solution in Sect. 3.4. On the other hand, applying the
correct noise model would generally improve calibration performance. Here, we use
the same setup as Sect. 3.5.1.1, except that the depth noise follows the formula in [3]:

π ∝ Z2, (3.38)

and we assume the noise level at Z =1,000 is known (adapting as the horizontal
axis of Fig. 3.7). We ran two sets of experiments. In the first set, we assume the
user is unaware of the sensor noise type and blindly assume that the noise is depth
independent. In the second set, the correct noise model is applied. It can be seen from
Fig. 3.7 that using the correct noise model results in better calibration performance.

3.5.2 Real-World Results

Finally, we test the proposed method on a real Kinect sensor. A set of 12 model
planes at different positions and orientations is captured. One of the image pairs has
been shown in Fig. 3.1. The color sensor’s intrinsic parameters are first estimated

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

-3

Depth noise standard deviation (mm)

A
ng

ul
ar

 e
rr

or
 s

ta
nd

ar
d 

   
  d

ev
ia

tio
n 

(r
ad

)

θx (z-invariant noise model)

θy (z-invariant noise model)

θz (z-invariant noise model)

θx (Kinect noise model)

θy (Kinect noise model)

θz (Kinect noise model)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Depth noise standard deviation (mm)

T
ra

ns
la

tio
n 

er
ro

r 
st

an
da

rd
 

   
   

  d
ev

ia
tio

n 
(m

m
)

Tx (z-invariant noise model)

Ty (z-invariant noise model)

Tz (z-invariant noise model)

Tx (Kinect noise model)

Ty (Kinect noise model)

Tz (Kinect noise model)

Fig. 3.7 Calibration accuracy versus correct noise model



62 C. Zhang and Z. Zhang

with [5] as α = 528.32, ρ = 527.03, ω = 0, u0 = 320.10, v0 = 257.57. We then
apply the proposed technique to calibrate R, t, and f(·), where f(·) contains unknown
parameters such as η1, η2, and η3. The depth camera’s intrinsic matrix Ad is preset
to αd = 575, ρd = 575, ω = 0, ud

0 = 320, vd
0 = 240.

The calibration results with plane fitting alone are [0.0063, 0.0029, 0.0066,
−15.2278, 20.089, 5.6089]T for rotation and translation, η1 = 0.000098, η2 =
−0.030588, and η3 = 0.000040 for the depth mapping model. To demonstrate the
calibration accuracy, we warp the color images based on the calibrated parameters
and overlay them onto the depth images to examine how well they align with each
other, as shown in Fig. 3.8a. It can be seen that the alignment is very accurate.

As shown in Sect. 3.5.1.3, adding additional point correspondences between the
color and the depth images may help improve calibration performance when the
model planes do not have sufficient variations in orientation. Another benefit of
adopting point correspondences is to expand the calibration effective zone. It is well
known that for calibration to work well, the checkerboard shall be placed across
the whole workspace. In Fig. 3.8a, we notice the chair region is not aligned well,

Fig. 3.8 Calibration results for a real scene. a Use plane fitting only. b Use both plane fitting and
point pairs



3 Calibration Between Depth and Color Sensors 63

since no checkerboard was placed there in the 12 images. We manually add 3–5
point correspondences for each image pair, some of them lying on the background of
the scene (see Fig. 3.1). After using both plane fitting and point correspondences to
calibrate, the results are [−0.0080, 0.0019, 0.0083,−15.7976, 10.3564, 12.2657]T

for rotation and translation, η1 = 0.000095, η2 = −0.031034, and η3 = 0.000038
for depth correction model. A warped result is shown in Fig. 3.8b. The improvement
in the chair area is very obvious.

3.6 Conclusions and Future Work

In this chapter, we presented a novel algorithm to calibrate color and depth sen-
sors jointly. The method is reliable and accurate, and it does not require additional
hardware other than the easily available checkerboard pattern. Future work includes
better modeling of the depth mapping function f(·) and better understanding of the
depth cameras’ noise models.

References

1. Cui Y, Schuon S, Chan D, Thrun S, Theobalt C (2010) 3D shape scanning with a time-of-flight
camera. In: CVPR

2. Crabb R, Tracey C, Puranik A, Davis J (2008) Real-time foreground segmentation via range
and color imaging. In: CVPR workshop on ToF-camera based computer vision

3. Cai Q, Gallup D, Zhang C, Zhang Z (2010) 3D deformable face tracking with a commodity
depth camera. In: ECCV

4. Tsai R (1987) A versatile camera calibration technique for high-accuracy 3D machine vision
metrology using off-the-shelf tv cameras and lens. IEEE J Robot Autom RA–3(4):323–344

5. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal
Mach Intell 22(11):1330–1334

6. Kuhnert KD, Stommel M (2006) Fusion of stereo-camera and pmd-camera data for real-
time suited precise 3D environment reconstruction. In: Intelligent robots and systems, 2006
IEEE/RSJ international conference on, IEEE, pp 4780–4785

7. Beder C, Koch R (2008) Calibration of focal length and 3d pose based on the reflectance and
depth image of a planar object. Int J Intell Syst Technol Appl 5(3):285–294

8. Fuchs S, Hirzinger G (2008) Extrinsic and depth calibration of tof-cameras. In: CVPR, IEEE,
pp 1–6

9. Lindner M, Schiller I, Kolb A, Koch R (2010) Time-of-flight sensor calibration for accurate
range sensing. Comput Vis Image Underst 114(12):1318–1328

10. Shim H, Adelsberger R, Kim JD, Rhee SM, Rhee T, Sim JY, Gross M, Kim C (2012) Time-of-
flight sensor and color camera calibration for multi-view acquisition. Vis Comput 28(12):1139–
1151

11. Herrera D, Kannala J, Heikkilä J (2011) Accurate and practical calibration of a depth and color
camera pair. In: Computer analysis of images and patterns, Springer, pp 437–445

12. Zhang C, Zhang Z (2011) Calibration between depth and color sensors for commodity depth
cameras. In: International workshop on hot topics in 3D, IEEE, pp 1–6

13. Herrera C, Kannala J, Heikkilä J et al (2012) Joint depth and color camera calibration with
distortion correction. Pattern Anal Mach Intell, IEEE Trans 34(10):2058–2064



64 C. Zhang and Z. Zhang

14. Raposo C, Barreto JP, Nunes U (2013) Fast and accurate calibration of a kinect sensor. In:
3DTV-conference, 2013 international conference on, IEEE, pp 342–349

15. Liu W, Fan Y, Zhong Z, Lei T (2012) A new method for calibrating depth and color camera
pair based on kinect. In: Audio, language and image processing (ICALIP), 2012 international
conference on, IEEE, pp 212–217

16. Mikhelson IV, Lee PG, Sahakian AV, Wu Y, Katsaggelos AK (2014) Automatic, fast, online
calibration between depth and color cameras. J Vis Commun Image Represent 25(1):218–226

17. More J (1978) The Levenberg-Marquardt algorithm: implementation and theory. Numerl Anal,
Lect Notes Math 630(1978):105–116

18. Arun K, Huang T, Blostein S (1987) Least-squares fitting of two 3-d point sets. IEEE Trans
PAMI 9(5):698–700

19. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun ACM 24(6):381–395

20. Yuan JS-C (1989) A general photogrammetric method for determining object position and
orientation. IEEE Trans Robot Autom 5(2):129–142

21. Dementhon D, Davis L (1995) Model-based object pose in 25 lines of code. Int J Comput Vis
15(1):123–141



Chapter 4
Depth Map Denoising via CDT-Based
Joint Bilateral Filter

Andreas Koschan and Mongi Abidi

Abstract Bi-modal image processing can be defined as a series of steps taken to
enhance a target image with a guidance image. This is done by using exploitable
information derived from acquiring two images of the same scene with different
image modalities. However, while the potential benefit of bi-modal image process-
ing may be significant, there is an inherent risk; if noise or defects in the guidance
image are allowed to transfer to the target image, the target image could become
corrupted rather than improved. In this chapter, we present a new method to enhance
a noisy depth map from its color information via the joint bilateral filter (JBF) based
on common distance transform (CDT). This method is composed of two main steps:
CDT map generation and CDT-based JBF. In the first step, a CDT map is gener-
ated that represents the degree of pixel-modal similarity between a depth pixel and
its corresponding color pixel. Then, based on the CDT map, JBF is carried out in
order to enhance depth information with the aid of color information. Experimental
results show that CDT-based JBF outperforms other conventional methods objec-
tively and subjectively in terms of noise reduction, as well as inherent visual artifacts
suppression.

4.1 Introduction

Following the significant advances in depth acquisition technologies over the last
few years, high-performance active range sensors [5, 7, 17] have been developed.
They capture per-pixel distance information of a real scene which is represented
in the form of a depth map. In many applications, the depth map is used with its
corresponding color image as a pair called video-plus-depth [10, 41]. The merit

A. Koschan (B) · M. Abidi
Imaging, Robotics, and Intelligent Systems Laboratory, Department of Electrical Engineering
and Computer Science, The University of Tennessee, Knoxville, TN, USA
e-mail: akoschan@utk.edu

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_4

65



66 A. Koschan and M. Abidi

of video-plus-depth is backward compatibility with current video transmission and
display devices [11]. The three-dimensional (3D) image representation is expected to
be applied to a variety of interactive applications related to 3DTV [19], entertainment
[31], and human-computer interaction [25] in the near future.

For practical applications of video-plus-depth, accurate depth data is often
required. However, the depth maps acquired by active range sensors are typically
degraded by severe noise during the acquisition process. The noise usually occurs as
a result of a non-linear response of physical sensors, mixed pixels in the region of
an object boundary, or a different reflectivity caused by object color variations [8].
Due to low-quality depth map generation, the practical use of active range sensors
is limited in applications involving foreground extraction [16] and motion tracking
[31]. Depth map denoising is essential to enabling a large variety of applications.

A bilateral filter (BF) [9, 35, 39] has been introduced for denoising a depth map
using a kernel regression function derived from differences in pixel positions and
depth values between a pixel of interest and its neighboring pixels. A joint bilateral
filter (JBF) [14, 24, 26] is used to improve the quality of a depth map by the additional
usage of the color information. The kernel of the JBF is derived from differences
of intensities in the color image. A deblurring method applying regularized locally-
adaptive kernel regression was introduced in [33], a dictionary-learning method using
wavelets for denoising was proposed in [38], and an overview of image denoising
algorithms can be found in [30]. In order to examine the effects of the data-adaptive
kernel regression filters for depth map enhancement, experiments were carried out
using a ground truth depth map and its corresponding color image monopoly provided
by the Middlebury stereo dataset [29].

Figure 4.1a shows the noisy depth map for the test image monopoly, where
Gaussian noise with a standard deviation of 20 is artificially added to the ground
truth depth image (Fig. 4.1c). Figure 4.1b shows its corresponding color image.
Figure 4.1d–f show the results of BF, JBF, and the proposed CDT-based JBF, respec-
tively. When we look at the close-ups of the rectangular regions in the third and
fifth row, it is observed that JBF preserves important depth discontinuity along the
edge between objects. However, homogenous and continuous depth information (in
the region around the letters ‘MONOPOLY’ on the playing panel) is changed to
discontinuous depth information during JBF. These distortions are called visual arti-
facts [14, 22, 27]. In case of BF, depth information is blurred at the object boundaries.
The aim of this work is to provide a practical solution for reducing the noise present
in a depth map. For this, we present here a method to denoise a depth map via com-
mon distance transform (CDT) based JBF. As shown in Fig. 4.1f, CDT-based JBF
preserves important depth discontinuity in a depth map while suppressing visual
artifacts.

The proposed method for depth data enhancement is composed of two main steps:
CDT map generation and CDT-based JBF. The first step is to obtain a CDT map
that represents the degree of pixel-modal similarity between a depth pixel and its
corresponding color pixel. Then, a per-pixel weighting function is calculated based
on a CDT map and is used to determine which depth map regions are processed by
color data. Finally, based on the weighting function, JBF is carried out for filtering



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 67

Fig. 4.1 Results of data-adaptive kernel regression filters for the test image monopoly; a input
noisy depth map, b input color image, c ground truth depth map of (a), d result of BF, e result of
JBF, and f result of the proposed CDT-based JBF



68 A. Koschan and M. Abidi

depth information with the aid of color data. The main contributions presented in this
chapter are two-fold: (a) developing an efficient method for depth map denoising via
JBF while minimizing visual artifactsand (b) presenting a CDT map that represents
the pixel-wise similarity of two different image modalities.

This chapter is organized as follows. Section 4.2 introduces the related work of
JBF. Then, Sect. 4.3 presents the proposed method in detail. Section 4.4 discusses the
experimental results followed by conclusions in Sect. 4.5.

4.2 Data-Adaptive Image Denoising Filter

Suppose that (in, jn) indicates the spatial coordinates of a pixel xn and z(xn) is
a regression function [36], a depth value dn at xn contaminated by a noise εn is
expressed by

dn = z(xn) + εn n = 1, . . . , W × W, xn = [in, jn]T (4.1)

where W × W is the size of the local analysis window. Assuming that a regression
function z(xn) is locally smooth to the 2nd order and a pixel x is close to xn , we can
represent z(xn) using the following Taylor series.

z(xn) = α0 + αT
1 (xn − x) + αT

2 vech{(xn − x)(xn − x)}T , (4.2)

where (·) is the distance between xn and x. vech{·} is defined as the lower triangular
portion of a symmetric matrix. α0, α1, and α2 are defined by

α0 = z(x), α1 = ∈z(x) =
⎡

∂z(x)

∂i

∂z(x)

∂ j

⎣T

, α2 = 1

2

⎡
∂2z(x)

∂i2

∂2z(x)

∂i j

∂2z(x)

∂ j2

⎣
.

(4.3)

Note that the parameter α0 is identical to z(x) which is the estimated depth value
at x. From Eq. (4.2), the optimization problem [2] to find the best depth value dnew

x
is expressed by

min
⎤

n∀W×W

[εn]2 = min
⎤

n∀W×W

[dn − z(xn)]2

∩ min
⎤

n∀W×W

[dn − α0

− αT
1 (xn − x) − αT

2 vech{(xn − x)(xn − x)T }]2 K H (xn − x)
(4.4)



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 69

where K is the weighting function and H is the smoothing parameter. For example, if
K is defined by a Gaussian function, H becomes its standard deviation. The minimum
of the above term can be calculated by setting its derivative to zero.

Then, dnew
x can be written as

α0 ∩ ẑ(x) = dnew
x =

⎦
n∀W×W K H (xn − x)dn⎦

n∀W×W K H (xn − x)
. (4.5)

When a Gaussian function is used for K, the above equation is similar to a Gaussian
low-pass filter [15]. It provides dnew

x by a weighted linear combination of the nearby
samples. A higher order estimator such as the steering kernel filter (SKF) [13, 33]
can be generally expressed in the weight-linear fashion as

dnew
x =

⎤

n∀W×W

Wn(K , H, N , xn − x)dn where
⎤

n∀W×W

Wn(·) = 1 (4.6)

and Wn is referred to as the equivalent kernel function.
A bilateral filter (BF) [9, 35, 39] uses photometric properties as well as spatial

properties of a depth map. By considering the photometric difference between the
depth value dx at a pixel position x of interest and its neighbors {dn} at xn , the BF is
represented by

dnew
x =

⎦
n∀W×W KS(xn − x)K P (dn − dx )dn⎦

n∀W×W KS(xn − x)K P (dn − dx )
, (4.7)

where S and P are the spatial and the photometric smoothing parameters, respectively.
Contrarily to the BF, the depth map is a target image and the color image becomes

a guidance image in the JBF [14, 24, 26]. The fidelity of the color image is generally
much better than the fidelity of the depth map because of the accuracy of the acqui-
sition sensor. Hence, JBF is a process to enhance a noisy depth map from a color
image. For the sake of simplicity we assume that the color image contains no noise
even though to some degree every color image pixel is affected by noise.

If the photometric term of Eq. (4.7) is replaced by the color data, the JBF can be
expressed by

dnew
x =

⎦
n∀W×W KS(xn − x)KC (cn − cx )dn⎦

n∀W×W KS(xn − x)KC (cn − cx )
, (4.8)

where C is the photometric smoothing parameter of the color image. In addition,
when photometric properties of a depth map and a color image are considered at the
same time, an adaptive JBF [6, 21] is formulated as follows:

dnew
x =

⎦
n∀W×W KS(xn − x)KC (cn − cx )K P (dn − dx )dn⎦

n∀W×W KS(xn − x)KC (cn − cx )K P (dn − dx )
. (4.9)



70 A. Koschan and M. Abidi

JBF has been widely used in various applications according to the structure of a
guidance image. Petschnigg et al. [26] developed JBF to compute the edge-stopping
function using the flash image and non-flash image. Kopf et al. [24] and Xiao et al.
[37] employed JBF to upsample a low-resolution to high-resolution image. Tan et al.
[34] and Yu et al. [42] also used JBF as a spatial filter to reduce noise on an image.
Due to its satisfactory performance, JBF has even been used in other fields, such as
compression [3] and matting [16].

In terms of depth map denoising using JBF, Riemens et al. [27] and Gangwal and
Djapic [14] presented a JBF to upsample a depth map with its color information.
Cho et al. [6] developed a method to remove optical noise on depth maps using
adaptive JBF. Jachalsky et al. [18] regarded a confidence map representing reliable
and occluded areas as a guidance image to refine a depth map. Kim et al. [20] used
adaptive sampling and Gaussian smoothing for depth map enhancement in a range
sensor system. Yang et al. [40] developed an iterative JBF method to increase spatial
resolution of a depth map captured by a range sensor.

4.3 CDT-Based Joint Bilateral Filter

In the following sections, we will first introduce the CDT. Then we will explain the
CDT map generation and define a JBF based on the CDT.

4.3.1 Common Distance Transforms

In order to prevent visual artifacts occurring from JBF, the depth map region affected
by color information needs to be located. For this, distance transform (DT) [1, 12,
28] is employed in order to generate a DT map that contains the values of DT of an
image. Since the DT map represents the distance between edges extracted from the
image and all pixel positions in it, it is possible to determine whether a pixel belongs
to a homogenous region or not.

Unlike the bilateral filter, the JBF utilizes depth data as well as color data. There-
fore, we need to extend the distance transform to a new distance transform that can
cover both data. For this, we present CDT to search out the similar DT value region
between two different images. The CDT map is generated by an interaction of the DT
maps of a depth map and a color image. As a consequence, a CDT map describes the
degree of pixel-modal similarity between a depth pixel and its corresponding color
pixel.

Figure 4.2 shows the overall framework of the proposed method which is imple-
mented as follows: (1) Two edge maps, a depth edge map and a color edge map, are
extracted from a depth map and a color image, (2) DT is performed on both edge
maps, (3) A CDT map is derived by comparing the DT values of two depth maps,
(4) A weighting function is derived by combining KS , KC , and K P based on the



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 71

Fig. 4.2 Overall framework of depth map denoising

CDT map, and (5) JBF based on the weighting function is carried out adaptively to
denoise a depth map.

4.3.2 CDT Map Generation

Prior to the distance transform, the Canny edge operator [4] is used to extract a color
edge map EC and a depth edge map ED . Note that we ignore isolated edges during
edge detection. For CDT map generation, we perform DT on EC and ED in order
to obtain two DT maps. Initially, edge pixels in EC and ED are set to zero, while
non-edge pixels are assigned infinity values, as shown in Fig. 4.3a. Then, based on
a–b distance transform (a–b DT), the DT value qk(i, j) at iteration k is computed by

qk(i, j) = min [qk−1(i − 1, j − 1) + b, qk−1(i − 1, j) + a, qk−1(i − 1, j + 1) + b,

qk−1(i, j − 1) + a, qk−1(i, j), qk−1(i, j + 1) + a,

qk−1(i + 1, j − 1) + b, qk−1(i + 1, j) + a, qk−1(i + 1, j + 1) + b]
(4.10)

where a and b control the strength of distance transform. b is empirically set to be
a + 1. Figure 4.3 illustrates a DT map generation procedure using 1–2 DT.

In Fig. 4.3c, the DT value of the top-left corner pixel is 4. In contrast, the bottom-
left pixel has a DT value of 1. This number indicates that the former may belong to
a homogenous area whereas the latter may belong to a textured area. Suppose that
there are the depth DT-value DTD

x at x in a depth DT map DTD and its corresponding
color DT-value DTC

x in a color DT map DTC . If DTD
x is equal to or similar with DTC

x ,
both pixels may simultaneously belong to homogenous or textured areas.



72 A. Koschan and M. Abidi

Fig. 4.3 DT map generation. a Initialization. b 1st iteration (k = 1). c 2nd iteration (k = 2)

edge pixel in a depth map edge pixel in a color image

(a) (b) (c) 

Fig. 4.4 CDT map generation procedure. a Depth DT map DTD . b Color DT map DTC . c CDT
map DTJ

In order to measure pixel-wise similarity between a depth pixel and a color pixel
based on a–b DT, a CDT value DTJ

x at x in the CDT map DTJ is calculated by

DTJ
x =

⎧
⎨

⎩

0 if DTD
x > T &DTC

x > T
DTD

x if
∣∣DTD

x − DTC
x

∣∣ ∅ 2a
255 otherwise

, (4.11)

where T is the homogenous region detection threshold and T > 2a. Figure 4.4
depicts a CDT map generation procedure with a = 1 and T = 4. If both DTD

x and
DTC

x are greater than 4, DTJ
x becomes zero.

If the absolute difference between DTD
x and DTC

x is smaller than 2, then DTD
x is

assigned to DTJ
x . Otherwise, DTJ

x is set to infinity (e.g., 255). As shown in Fig. 4.4c,
a CDT map represents the degree of pixel-wise similarity between a depth pixel and a
color pixel. If the CDT map value is zero or DTD

x , the degree of pixel-wise similarity



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 73

Fig. 4.5 Example of CDT map generation. a Noisy depth map. b Edge map ED . c DT map DTD .

d Color image. e Edge map EC . f DT map DTC . g CDT map D J

of both pixels is very high, i.e., the depth pixel is on a homogenous region in a depth
map and its corresponding color pixel may be also a homogenous region in a color
image, and vice versa. If the CDT value is infinity, the pixel modalities of both pixels
are not identical. Figure 4.5 shows an example of CDT map generation for the image
monopoly using 1–2 DT. DT values are multiplied by 10 for better visualization.

4.3.3 CDT-Based JBF

The CDT-based JBF enhances a noisy depth map with the aid of a color image
based on a CDT map. The filter uses color information adaptively according to depth
map regions. For example, in the CDT map of monopoly in Fig. 4.5g, the degree of
pixel-wise similarity of a depth pixel and its color pixel is very high if DTJ

x is close
to zero (dark blue color area). Therefore, the proposed filter directly uses the color
information to enhance the depth information. In contrast, when DTJ

x is 255 (red
color area), both pixels do not have a close bond with each other. In this case, the
proposed filter only uses depth information. In a third case (graduated blue color
area), the degree of pixel-wise similarity is moderate. Then, the amount of color
information to be used is determined by DTJ

x . Basically, the greater DTJ
x is, the

less the proposed filter uses color information. Formally, the CDT-based JBF is
represented by

dnew
x =

⎧
⎢⎢⎢⎢⎢⎨

⎢⎢⎢⎢⎢⎩

⎦
n∀W×W KS(xn − x)KC (wc

n · (cn − cx ))K P (w
d
n · (dn − dx ))dn

⎦
n∀W×W KS(xn − x)KC (wc

n · (cn − cx ))K P (w
d
n · (dn − dx ))

if DTJ
n < T

⎦
n∀W×W KS(xn − x)K P (dn − dx )dn⎦

n∀W×W KS(xn − x)K P (dn − dx )
otherwise

(4.12)



74 A. Koschan and M. Abidi

where wc
n and wd

n are scale factors for the photometric weighting functions KC and
K P . wc

n ∪ 1 and 0.5 ∅ wd
n ∅ 1. Exponential functions are used for the definitions

of KS , KC and K P :

KS(x) = e
− x2

S2 , KC (x) = e
− x2

C2 , K P (x) = e− x2

P2 , (4.13)

where S, C, and P are smoothing parameters of KS , KC , and K P , respectively. C
is empirically set equal to P. In depth map denoising, the shapes of the functions
for KC and K P should be much more precipitous than the one for KS to strongly
reflect the effect of photometric data [35]. In our experiments, we set the smoothing
parameters as S = 3.0, C = 0.1, and P = 0.1. wc

n is derived directly from DTJ
n in

the CDT map.

wc
n =

⎥
1

e
log β
T −a (DTJ

n −a)
if
if

DTJ
n ∅ a

DTJ
n < T

, (4.14)

where a controls the strength of DT, β indicates the maximum scale factor with
β > 1, and T is the threshold in Eq. (4.11).

If a < DTJ
n < T , then wc

n > 1. In this case, the degree of pixel-wise similarity
of a depth pixel and its color pixel is not very high (DTJ

n ∅ a and wc
n = 1). In Eq.

(4.12), wc
n is multiplied by (cn −cx ) for moving KC toward zero. Hence, the effect of

color data reduces during depth map filtering in comparison with the case of wc
n = 1.

In contrast, if 0.5 ∅ wd
n < 1, then K P moves toward one. Consequently, the effect

of depth data increases.
Figure 4.6 illustrates the comparison of GF, BF, JBF, and the proposed CDT-based

JBF. In a 5 × 5 depth map (Fig. 4.6b), the pixel of interest, whose depth value is 8,
is located at (3, 3). We assume that the gray pixels belong to an object and that three
noisy pixels are present in this depth map. Two noisy pixels at (2, 1) and (4, 1) have a
value of 8. Although their pixel values (8) are similar to other depth values, the pixels
are isolated and out of the object represented by depth values 8 or 9. In addition, the
other pixel located at (4, 4) is a noisy pixel because its depth value 6 is different from
the object depth values 8 or 9. In GF, KS (Fig. 4.6e) according to a weighting scale
(Fig. 4.6a) is only used as shown in Fig. 4.6i.

The depth pixel at (4, 4) will be ignored in BF since the shape of K P is so pre-
cipitous. Therefore, BF uses K P (Fig. 4.6f) for depth map denoising like in Fig. 4.6j.
In JBF, we use KC instead of K P as shown in Fig. 4.6k. In the proposed CDT-based
JBF, KC is changed to K ∃

C by multiplying it by wc
n that is computed based on a

CDT map in Fig. 4.6d. The result of the CDT-based JBF is shown in Fig. 4.6l. In this
comparison, it is noticeable that the CDT-based JBF only uses noiseless depth pixels
to estimate a new depth value at (3, 3), whereas the other filters use the noisy pixels
at (2, 2), (4, 1), and (4, 4). As a result, the new depth value at (3, 3) computed by
CDT-based JBF will be almost 9.



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 75

Fig. 4.6 Analysis of weighting functions. a Weighting scale. b Depth map. c Color image. d CDT
map. e KS . f K P . g KC . h K ∃

C scaled by wc
n . i GF. j BF (KS × K P ). k JBF (KS × KC ). l Proposed

(KS × K ∃
C × K P )

4.4 Experimental Results

In the following subsections, we first evaluate the performance of CDT-based JBF
using 9 ground truth data sets. The results obtained are compared to those obtained
with 5 competing methods with different noise levels. Comparisons of computational
times needed to obtain filter results are presented. Second, we present results obtained
when applying CDT-based JBF to a real data set acquired from a Kinect-type range
sensor. Finally, we analyze the effect of the parameters on the results obtained with
CDT-based JBF.

4.4.1 Performance Evaluation with Ground Truth Data Sets

For assessing the improvement of the depth accuracy via CDT-based JBF, we tested
the method on ground truth data from the Middlebury stereo dataset [29]. The 9
datasets shown in Fig. 4.7 are baby1, bowling, cloth, flowerpots, lampshade, midd1,



76 A. Koschan and M. Abidi

Fig. 4.7 Nine Synthetic test image sets and their CDT maps; the first row shows ground truth depth
maps, the second row shows input color images, the third row shows noisy input depth maps with
σ = 20, the fourth row shows the CDT maps of noisy input depth maps with σ = 20, the fifth row
shows noisy input depth maps with σ = 25, the last row shows the CDT maps of noisy input depth
maps with σ = 25: a baby1, b bowling, c cloth, d flowerpots, e lampshade, f midd1, g monopoly,
h rocks, i wood1

monopoly, rocks1, and wood1. Each test image was downsampled from its original
resolution of 437 × 370 pixels to 400 × 360 pixels for simplified implementation.

We added Gaussian noise (standard deviation σ = 20 or σ = 25) to the ground
truth data to create noisy depth maps. In this experiment, the values of some parame-
ters needed for depth map filtering are set as follows based on empirical evaluation:
β = 1.5, W = 7 or 11, S = 3, P = 0.1, C = 0.1, T = 10, and wd

n = 0.8. We
used 1–2 DT to obtain a CDT map. Figure 4.7 shows the ground truth depth map, the
input color image, the input noisy depth map, and their CDT maps for 9 test image
sets.

Peak signal to noise ratio (PSNR) measurement was used for an objective eval-
uation of depth quality improvements. The proposed method was compared with
the geometry-based Gaussian filter (GF) [20], BF [9], SKF [32], JBF [24, 26], and
adaptive JBF (A-JBF) [6, 21]. For GF, the parameter of the spatial weighting func-
tion S is 3. For BF, we set the parameters S = 3 and P = 0.1. For JBF and A-JBF,
S = 3, P = 0.1, and C = 0.1, which are the same as in the proposed method. The
comparative methods expect SKF to be iterated twice in order to obtain refined depth
maps. These methods usually have the best PSNR in the 2nd iteration whereas SKF
requires more than 7 iterations. We carried out SKF up to twelve iterations to get the
best PSNR. We used the 2nd order SKF [32] with global smoothing parameter 2.4,
elongation parameter 1, and the structure sensitive parameter 0.5.



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 77

Table 4.1 PSNR comparison (σ = 20, W = 7, unit dB)

Test data GF BF SKF JBF A-JBF CDT-based JBF

Baby1 32.76 35.86 35.73 34.51 35.91 36.34

Bowling 32.02 35.43 35.16 32.58 35.95 36.21

Cloth 34.04 37.73 37.63 36.03 36.31 37.69

Flowerpots 29.01 33.80 32.71 28.78 34.29 34.29

Lampshade 31.85 34.82 34.91 32.69 35.63 35.70

Midd1 31.50 34.56 33.59 31.66 34.63 35.01

Monopoly 32.19 35.53 34.83 33.43 35.58 36.28

Rocks1 31.03 34.70 33.62 31.23 34.81 35.06

Wood1 32.03 36.18 36.06 33.59 36.42 36.52

Average 31.83 35.41 34.92 32.72 33.51 35.90

Table 4.2 PSNR comparison (σ = 20, W = 11, unit dB)

Test data GF BF SKF JBF A-JBF CDT-based JBF

baby1 31.70 31.83 36.92 31.83 36.84 37.05

bowling 33.69 36.11 36.17 34.33 36.67 36.89

cloth 37.61 39.40 40.67 38.37 38.04 39.21

flowerpots 27.38 33.88 32.91 27.98 34.73 34.59

lampshade 31.50 34.91 35.63 31.95 35.16 36.14

midd1 31.41 34.88 34.18 31.08 35.23 35.32

monopoly 31.95 35.97 35.32 33.17 36.60 37.02

rocks1 30.22 34.88 34.16 30.57 35.36 35.57

wood1 32.24 36.91 37.20 33.14 36.27 37.35

Average 31.97 35.42 35.91 32.50 36.10 36.57

Tables 4.1, 4.2, 4.3, 4.4 show the PSNR comparison for nine test images. In
Tables 4.1 and 4.2, the average PSNRs of enhanced depth maps from noise addi-
tion with σ = 20 are 31.90 dB, 35.41, 35.41, 32.61, 34.80 and 36.23 for GF, BF,
SKF, JBF, A-JBF and the proposed method, respectively. This result indicates that
the proposed method outperforms other comparative methods by 4.78, 0.82, 0.82,
3.61, and 1.43 dB on average.

In the case of a noise addition of σ = 25, the averages of PSNRs are 30.98, 32.75,
31.77, 34.03, 32.67 and 33.46 dB for GF, BF, SKF, JBF, A-JBF and the proposed
method, respectively. The PSNR of the proposed method is higher than the ones for
GF, BF, JBF and A-JBF by 2.48, 0.71, 1.69, and 0.79 dB but lower than the ones
of SKF by 0.57 dB. The CDT-based JBF could not use color information efficiently
due to the failure of depth edge detection in a severe noise situation. The difference
of CDT maps in the fourth and sixth rows of Fig. 4.7 illustrates this situation. In
contrast, SKF was more robust to severe noise due to its higher order estimation.



78 A. Koschan and M. Abidi

Table 4.3 PSNR comparison (σ = 25, W = 7, unit dB)

Test data GF BF SKF JBF A-JBF CDT-based JBF

baby1 31.42 32.77 34.33 33.99 32.39 33.38

bowling 30.81 32.61 33.60 32.02 32.75 33.34

cloth 32.44 33.84 35.72 32.59 32.04 33.55

flowerpots 28.17 31.15 31.24 28.39 31.45 31.79

lampshade 30.64 31.96 33.41 32.23 32.34 32.91

midd1 30.39 31.97 32.46 31.18 31.65 32.39

monopoly 30.98 32.81 33.29 32.70 32.36 33.55

rocks1 29.97 31.84 32.45 30.83 31.55 32.35

wood1 30.78 32.78 34.48 33.08 32.90 33.41

Average 30.63 32.42 33.44 31.90 32.16 32.96

Table 4.4 PSNR comparison (σ = 25, W = 11, unit dB)

Test data GF BF SKF JBF A-JB F CDT-based JBF

baby1 33.13 33.54 35.90 34.16 33.45 34.49

bowling 31.14 33.40 34.79 31.45 33.91 34.34

cloth 36.03 35.10 38.76 33.13 33.41 35.16

flowerpots 27.02 31.70 31.57 27.68 32.16 32.39

lampshade 31.00 32.43 34.36 31.65 33.15 33.62

midd1 30.90 32.65 33.05 30.80 32.56 33.13

monopoly 31.27 32.62 33.91 32.62 33.38 34.65

rocks1 29.84 32.51 33.10 30.37 32.57 33.23

wood1 31.70 33.77 36.12 32.85 34.02 34.60

Average 31.34 33.08 34.62 31.64 33.18 33.96

In this experiment, altogether the PSNR gain of our method is approximately 3.63,
0.76, 2.65 and 1.11 dB more than GF, BF, JBF, and A-JBF and is similar with SKF.

Figures 4.8, 4.9 and 4.10 show the results of the comparative methods for the test
images bowling, midd1, and monopoly, respectively. Each enhanced depth map was
obtained from their noisy depth maps (Figs. 4.8b, 4.9b, 4.10b) artificially generated
from the ground truth depth maps (Figs. 4.8a, 4.9a, 4.10a) using GF (Figs. 4.8c, 4.9,
4.10c), BF (Figs. 4.8d, 4.9d, 4.10d), SKF (Figs. 4.8e, 4.9e, 4.10e), JBF (Figs. 4.8f,
4.9f, 4.10f), A-JBF (Figs. 4.8g, 4.9g, 4.10g), and CDT-based JBF (Figs. 4.8h, 4.9h,
4.10h).

When we compare the magnified rectangular regions on the left bowling pin
in Fig. 4.8, we can observe that the CDT-based JBF made the border; i.e. depth
discontinuous area, between the bowling pin and the bowling ball sharper than GF,
BF, and SKF. At the same time, CDT-based JBF led the depth homogenous area on
the bowling pin smoother than JBF and A-JBF while reducing visual artifacts. From



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 79

Fig. 4.8 Results for bowling (σ = 20, W = 11). a Ground truth. b Noisy depths image. c GF. d
BF. e SKF. f JBF. g A-JBF. h CDT-based JBF

the results of midd1 and monopoly in Figs. 4.9 and 4.10, we can observe the same
effect for the CDT-based JBF.

To compare the computational time for comparative methods, we calculated the
average processing time for the test data at W = 7, 9, 11 with 2 iterations. The
processing time of SKF was estimated when it had the best PSNR during 12-time
iterations. The test was done with an Intel(R) CoreTM 2 Duo CPU 3.00 GHz with
2.0 GB RAM. Table 4.5 shows computational times of the comparative methods.

The average computational time of GF, BF, JBF, A-JBF, SKF, and CDT-based
JBF was 0.1, 1.1, 5.3, 6.0, 123.3, and 7.6 s, respectively. The CDT-based JBF was
slower than GF, BF, JBF, and A-JBF by 7.5, 6.5, 2.3, and 1.6 s. The main reason
for this was the additional processing time, about 2 s, needed for DT and CDT map
generation. Meanwhile, CDT-based JBF was much faster than SKF as much as about
16 times.



80 A. Koschan and M. Abidi

Fig. 4.9 Results for midd1 (σ = 20, W = 11). a Ground truth. b Noisy depths image. c GF. d BF.
e SKF. f JBF. g A-JBF. h CDT-based JBF

4.4.2 Performance Evaluation for Real Data

As mentioned in the introduction of this chapter, the practical use of many active range
sensors is limited in computer vision applications involving foreground extraction
[16] and motion tracking [31] due to the low-quality depth map generation. In order
to evaluate the possibility of extending possible computer vision applications to 3D
object and scene modeling, we applied CDT-based JBF to a real data set, Actor,
acquired from a Kinect-type range sensor [25]. The Actor sequence is composed of
50 frames with 720 × 480 resolution. Figure 4.11 shows a color image, an original
depth map, and the enhanced depth maps of the 1st frame obtained by BF, A-JBF, and
the proposed method. The results of 3D scene reconstruction with its original and
enhanced depth maps are shown in Fig. 4.12. For this, a hierarchical decomposition
method for depth maps [23] was employed.

As shown in Fig. 4.12a, the quality of a 3D scene reconstructed by the original
depth map is not satisfactory due to the presence of noise. The low-quality 3D scene



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 81

Fig. 4.10 Result of monopoly (σ = 20, W = 11). a Ground truth. b Noisy depths image. c GF. d
BF. e SKF. f JBF. g A-JBF. h CDT-based JBF

Table 4.5 Comparison of computational times (1–2 DT, 9 test data)

Test data GF (s) BF (s) JBF (s) A-JBF (s) SKF (s) CDT-based JBF (s)

W = 7 0.1 0.6 3.3 3.7 109.7 5.2

W = 9 0.1 1.1 5.5 6.2 117.0 8.5

W = 11 0.1 1.6 7.2 8.2 143.3 9.3

Average 0.1 1.1 5.3 6.0 123.3 7.6

could be enhanced by depth map denoising. In this experiment, we set the parameters
as β = 2.0, W = 11, S = 3, P = 0.1, C = 0.1 and 1–2 DT. At the region of a
table, a woman, and a chair marked by circles in Figs. 4.11 and 4.12, we could notice
that the proposed method presented here preserved important depth discontinuity
better than BF. Furthermore, it suppressed the visual artifact occurring from A-JBF
efficiently. Figure 4.13 depicts the result of dynamic 3D scenes of the Actor sequence.



82 A. Koschan and M. Abidi

(a) (b) (c) (d) (e)

Fig. 4.11 Result for a selected frame of the Actor sequence. a Input color image. b Input depth
image. c BF. d A-JBF. e CDT-based JBF

As shown in Fig. 4.12a, the quality of a 3D scene reconstructed by the original
depth map is not satisfactory due to noise presence. The low-quality 3D scene could
be enhanced by depth map denoising. In this experiment, we set the parameters as
β = 2.0, W = 11, S = 3, P = 0.1, C = 0.1 and 1–2 DT. At the region of a table, a
woman, and a chair marked by circles in Figs. 4.11 and 4.12, we can notice that CDT-
based JBF preserved important depth discontinuity better than BF. Furthermore, it
suppressed the visual artifact occurring from A-JBF efficiently. Figure 4.13 depicts
the result of dynamic 3D scenes of Actor sequence. In this experiment, we could
notice that the proposed CDT-based JBF outperformed other conventional methods
objectively and subjectively in terms of the noise reduction as well as visual artifacts
suppression.

4.4.3 Parameter Analysis for CDT-Based JBF

In the following experiments, the parameters of CDT-based JBF were analyzed. β
in Eq. (4.14) was evaluated on various wd

n in Eq. (4.12). β is the parameter of wc
n in

Eq. (4.12) and plays an important role to scale the photometric weighting function
of color data, while wd

n defines the strength of photometric weighting function of
depth data. Table 4.6 shows the results.

When β = 1.0,we can study the effect ofwd
n by varyingwd

n from 0.5 to 1.0. In the
test with cloth, its PSNR is the largest at wd

n = 0.7 and 0.8. In the case of monopoly,



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 83

Fig. 4.12 Comparison with reconstructed 3D scenes. a Original data. b JF. c A-JBF. d CDT-based
JBF

its PSNR is the largest at wd
n = 1.0. If the CDT map of cloth (shown in the fourth

row in Fig. 4.7c) is carefully observed, ignoring the red color area, it has more of the
dark blue colored area than the graduated one. It means that the homogeneity of both
color and depth data on the area is identical. On the other hand, the rate of the dark
blue color area in the CDT map of monopoly in Fig. 4.11e is similar to the one of
graduated blue color area. It means that the homogeneity of both color and depth data



84 A. Koschan and M. Abidi

1st frame, 24th frame12th frame

32th frame 50th frame40th frame

Fig. 4.13 Dynamic 3D scene reconstruction

Table 4.6 Evaluation of β and wn
d (PSNR, unit dB)

wd
n bowling midd1

β = 1.0 β = 1.5 β = 2.0 β = 1.0 β = 1.5 β = 2.0

1.0 36.68 36.68 36.68 35.19 35.19 35.19

0.9 36.73 36.73 36.73 35.21 35.22 35.22

0.8 36.76 36.76 36.76 35.22 35.23 35.23

0.7 36.76 36.77 36.77 35.22 35.22 35.22

0.6 36.75 36.76 36.76 35.18 35.18 35.18

0.5 36.71 36.71 36.72 35.10 35.11 35.11

wd
n monopoly cloth

β = 1.0 β = 1.5 β = 2.0 β = 1.0 β = 1.5 β = 2.0

1.0 36.78 36.79 36.78 39.17 39.17 39.17

0.9 36.79 36.80 36.80 39.18 39.18 39.18

0.8 36.76 36.76 36.76 39.19 39.18 39.18

0.7 36.68 36.69 36.69 39.19 39.18 39.18

0.6 36.57 36.58 36.58 39.18 39.18 39.18

0.5 36.41 36.42 36.42 39.17 39.17 39.17

on the area is not identical but moderate. Therefore, the proposed filter enhanced the
depth map by increasing the effect of depth data while reducing the effect of color
data. The situation for the data sets bowling and midd1 is in between the cloth and
monopoly cases. As a consequence, their PSNRs converged at wd

n = 0.7 or 0.8 with
β = 1.5 or 2.0.



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 85

Fig. 4.14 Results of iteration variation

Fig. 4.15 Results of window size variation

In a second experiment, we studied the effect of the number of iterations and the
window size W. Figure 4.14 shows the filter results obtained at different iterations for
6 images. In respect of best PSNR, the CDT-based JBF converged at the 2nd iteration.
Figure 4.15 depicts the results with different window sizes. This graph indicates that



86 A. Koschan and M. Abidi

Table 4.7 Results of DT strength a and threshold T variation

T, a–b DT bowling (PSNR, unit dB)

a = 1, a = 3, a = 5, a = 7, a = 9, a = 11,

b = 2 b = 4 b = 6 b = 8 b = 10 b = 12

T = 4 × a 36.79 36.76 36.72 36.72 36.73 36.73

T = 6 × a 36.80 36.75 36.73 36.72 36.73 36.72

T = 8 × a 36.80 36.75 36.73 36.72 36.72 36.72

T = 10 × a 36.79 36.74 36.72 36.71 36.72 36.72

T = 12 × a 36.78 36.73 36.72 36.71 36.72 36.72

T, a − b DT monopoly (PSNR, unit dB)

a = 1, a = 3, a = 5, a = 7, a = 9, a = 11,

b = 2 b = 4 b = 6 b = 8 b = 10 b = 12

T = 4 × a 36.78 36.76 36.78 36.77 36.77 36.76

T = 6 × a 36.79 36.77 36.77 36.76 36.76 36.75

T = 8 × a 36.79 36.76 36.76 36.75 36.75 36.75

T = 10 × a 36.78 36.75 36.75 36.74 36.74 36.74

T = 12 × a 36.77 36.75 36.75 36.74 36.74 36.74

11 × 11 pixels is a proper selection of the window size. From evaluations of β,
wd

n and W, empirically-recommended parameters of CDT-based JBF are β = 0.8,
wd

n = 1.5, and W = 11 for depth map denoising.
In a third experiment, the quality of the filtered depth maps was examined via

varying T in Eq. (4.14). T is set in proportion to DT strength a. We tested the images
bowling and monopoly with σ = 20, W = 11, β = 0.8, and wd

n = 1.5. Table 4.7
shows the results of this experiment. CDT-based JBF had the best performance at
a = 1 and T = 6 × a. In addition, if T is fixed, then the quality of the filtered
depth maps is degraded slightly as a increases. If a is fixed, then the quality of depth
maps declines slightly as T increases. Here, the maximum difference of PSNRs in
Table 4.7 is only 0.09 dB (maximum PSNR: 36.80 dB, minimum PSNR: 36.71 dB).
This means that if T increases proportionally by a, then there is not much difference
in the depth value quality.

Finally, based on the results of Table 4.7, the computational time of the CDT-based
JBF was evaluated via varying a–b DT. Table 4.8 shows the results of computation
time variation according to a–b DT. From this result, the processing time is reduced
by 2.8 s on average when 11–12 DT is used instead of 1–2 DT. In this case, the depth
quality degradation was 0.07 dB on average.



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 87

Table 4.8 Computational time by a–b DT variation (T = 6 × a, W = 11)

a = 1, a = 3, a = 5, a = 7, a = 9, a = 11,

b = 2 (s) b = 4 (s) b = 6 (s) b = 8 (s) b = 10 (s) b = 12 (s)

baby1 8.1 7.9 6.8 6.3 6.0 5.9

bowling 11.0 9.3 8.4 7.7 7.4 7.1

cloth 5.3 5.1 5.0 4.9 4.9 4.9

flowerpots 10.8 10.7 9.7 8.6 8.0 7.7

lampshade 10.6 9.2 8.4 7.7 7.4 7.2

midd1 10.2 8.4 7.6 7.1 6.9 6.8

monopoly 9.8 9.3 7.8 7.0 6.5 6.4

rocks1 7.4 7.3 7.0 6.7 6.5 6.5

wood1 10.1 9.2 7.8 6.6 6.2 6.0

Average 9.3 8.5 7.6 7.0 6.6 6.5

4.5 Conclusion

We introduced a method to enhance depth information using color information via
CDT-based JBF. In this work, we selected depth map regions filtered by color infor-
mation based on a CDT map for visual artifacts suppression. Based on the nine test
depth maps, the PSNR gain of our method is approximately 3.63, 0.76, 2.65, and
1.11 dB more than GF, BF, JBF, and A-JBF and is similar to SKF. In comparison
of computational time for depth map filtering, the proposed method was faster than
SKF by as much as 16 times. In analysis of CDT-based JBF, we empirically rec-
ommended its parameters in terms of depth quality and real-time filter design. We
hope that the proposed idea can present new directions for further research related
to bi-modal image processing and will be used in its applications.

Acknowledgments This work was supported in part by the U.S. Air Force under Grant FA8650-
10-1-5902. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory or the U.S. Government. We are thankful to Dr.
Sung-Yeol Kim for the implementation and evaluation of various filters.

References

1. Borgefors G (1988) Hierarchical chamfer matching: a parametric edge matching algorithm.
IEEE Trans Pattern Anal Mach Intell 10(6):849–865

2. Bose K, Ahuja N (2006) Superresolution and noise filtering using moving least squares. IEEE
Trans Image Process 15(8):2239–2248

3. Brooks S, Saunders I, Dodgson NA (2007) Image compression using sparse colour sampling
combined with non-linear image processing. In: Proceedings of electronic imaging: human
vision and electronic imaging, vol XII



88 A. Koschan and M. Abidi

4. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach
Intell 8(6):679–698

5. Chiabrando F, Chiabrando R, Piatti D, Rinaudo F (2009) Sensors for 3D imaging: metric
evaluation and calibration of a CCD/CMOS time-of-flight camera. Sensors 9(12):10080–10096

6. Cho J, Kim S-Y, Ho YS, Lee KH (2008) Dynamic 3D human actor generation method using a
time-of-flight depth camera. IEEE Trans Consum Electron 54(4):1514–1521

7. Diebel J, Thrun S (2005) An application of Markov random fields to range sensing. In: Pro-
ceedings of advances in neural information processing systems, pp 291–298

8. Dorrington AA, Payne AD, Cree MJ (2010) An evaluation of time-of-flight cameras for close
range methodology applications. International archives of photogrammetry, remote sensing
and spatial information sciences, vol. XXXVIII, Part 5 Commission V Symposium

9. Elad M (2002) On the origin of the bilateral filter and ways to improve it. IEEE Trans Image
Process 11(10):1141–1150

10. Fehn C (2003) A 3D-TV system based on video plus depth information. In: Proceedings of
asilomar conference on signals, systems and computers, vol 2, pp 1529–1533

11. Fehn C, Barré R, Pastoor S (2006) Interactive 3-D TV- concepts and key technologies. Proc.
IEEE 94(3):524–538

12. Felzenszwalb PF, Huttenlocher DP (2004) Distance transforms of sampled functions. Cornell
computing and information science, TR2004-1963

13. Feng X, Milanfar P (2002) Multiscale principal components analysis for image local orientation
estimation. In: Proceedings of asilomar conference on signals, systems and computers, pp 478–
482

14. Gangwal OP, Djapic B (2010) Real-time implementation of depth map post-processing for 3D-
TV in dedicated hardware. In: Proceedings of international conference on consumer electronics

15. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Englewood Cliffs
16. Grabb R, Tracey C, Puranik A, Davis J (2008) Real-time foreground segmentation via range and

color imaging. In: Proceedings of IEEE computer vision and pattern recognition workshops,
pp 1–5

17. Iddan GJ, Yahav G (2001) 3D imaging in the studio and elsewhere. In: Proceedings of SPIE
videometrics and optical methods for 3D shape measurements, pp 48–55

18. Jachalsky J, Schlosser M, Gandolph D (2010) Reliability aware cross multilateral filtering for
robust disparity map refinement. In: Proceedings of 3DTV conference

19. Kauff P, Atzpadin N, Fehn C, Müller M, Schreer O, Smolic A, Tanger R (2007) Depth map
creation and image-based rendering for advanced 3D-TV services providing interoperability
and scalability. Signal Process. Image Commun. 22(2):217–234

20. Kim SM, Cha J, Ryu J, Lee KH (2006) Depth video enhancement for haptic interaction using
a smooth surface reconstruction. IEICE Trans Inf Syst E89-D(1):37–44

21. Kim S-Y, Cho J, Koschan A, Abidi M (2010) Spatial and temporal enhancement of depth images
captured by a time-of-flight depth sensor. In: Proceedings of IEEE international conference on
pattern recognition, pp 2358–2361

22. Kim S-Y, Cho W, Koschan A, Abidi M (2011) Depth map enhancement using adaptive steering
kernel regression based on distance transform. In: Proceedings of international symposium and
visual computing, vol 6938. Lecture notes in computer science, pp 291–300

23. Kim S-Y, Lee SB, Ho YS (2006) Three-dimensional natural video system based on layered
representation of depth maps. IEEE Trans Consum Electron 52(3):1035–1042

24. Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. ACM Trans
Comput Graph 26(3):1–6

25. Lee EK, Ho YS (2011) Generation of high-quality depth maps using hybrid camera system for
3-D video. J Vis Commun Image Represent 22:73–84

26. Petschnigg G, Agrawala M, Hoppe H, Szeliski R, Cohen M, Toyama K (2004) Digital photog-
raphy with flash and no-flash image pairs. ACM Trans Comput Graph 23(3):664–672

27. Riemens AK, Gangwal OP, Barenbrug B, Berretty RM (2009) Multi-step joint bilateral depth
upsampling. In Proceedings of electronic imaging: visual communications and image process-
ing



4 Depth Map Denoising via CDT-Based Joint Bilateral Filter 89

28. Rosenfeld A, Pfaltz J (1968) Distance functions in digital pictures. Pattern Recognit 1:33–61
29. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo corre-

spondence algorithms. Int J Comput Vision 47(1–3):7–42
30. Shao L, Yan R, Li X, Liu Y (2014) From heuristic optimization to dictionary learning: a review

and comprehensive comparison of image denoising algorithms. IEEE Trans Cybern. doi:10.
1109/TCYB.2013.2278548

31. Shotton J, Fitzgibbon A, Cook M, Blake A (2011) Real-time human pose recognition in parts
from single depth images. In: Proceedings of IEEE computer vision and pattern recognition,
pp 1297–1304

32. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruc-
tion. IEEE Trans Image Process 16(2):349–366

33. Takeda H, Farsiu S, Milanfar P (2008) Deblurring using regularized locally-adaptive kernel
regression. IEEE Trans Image Process 17(4):550–563

34. Tan H, Tian F, Qiu Y, Wang S, Zhang J (2010) Multihypothesis recursive video denoising based
on separation of motion state. IET Image Process 4(4):261–268

35. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of
IEEE international conference on computer vision, pp 839–846

36. Wand MP, Jones MC (1995) Kernel smoothing, ser. Monographs on statistics and applied
probability. Chapman and Hall, London

37. Xiao C, Nie Y, Hua W, Zheng W (2010) Fast multi-scale joint bilateral texture upsampling.
Visual Comput 26(3):263–275

38. Yan R, Shao L, Liu Y (2013) Nonlocal hierarchical dictionary learning using wavelets for
image denoising. IEEE Trans Image Process 22(12):4689–4698

39. Yang Q, Tan KH, Ahuja N (2009) Real-time O(1) bilateral filtering. In: Proceedings of IEEE
computer vision and pattern recognition, pp 557–564

40. Yang Q, Yang R, Davis J, Nistér D (2007) Spatial-depth super resolution for range images. In:
Proceedings of IEEE computer vision and pattern recognition, pp 1–8

41. Yoon SU, Ho YS (2007) Multiple color and depth video coding using a hierarchical represen-
tation. IEEE Trans. Circ. Syst. Video Technol. 17(11):1450–1460

42. Yu H, Zhao L, Wang H (2009) Image denoising using trivariate shrinkage filter in the wavelet
domain and joint bilateral filter in the spatial domain. IEEE Trans Image Process 18(10):2364–
2369

http://dx.doi.org/10.1109/TCYB.2013.2278548
http://dx.doi.org/10.1109/TCYB.2013.2278548


Chapter 5
Human Performance Capture Using Multiple
Handheld Kinects

Yebin Liu, Genzhi Ye, Yangang Wang, Qionghai Dai
and Christian Theobalt

Abstract Capturing real performances of human actors has been an important topic
in the fields of computer graphics and computer vision in the last few decades.
The reconstructed 3D performance can be used for character animation and free-
viewpoint video. While most of the available performance capture approaches rely
on a 3D video studio with tens of RGB cameras, this chapter presents a method
for marker-less performance capture of single or multiple human characters using
only three handheld Kinects. Compared with the RGB camera approaches, the pro-
posed method is more convenient with respect to data acquisition, allowing for much
fewer cameras and carry-on camera capture. The method introduced in this chapter
reconstructs human skeletal poses, deforming surface geometry and camera poses
for every time step of the depth video. It succeeds on general uncontrolled indoor
scenes with potentially dynamic background, and it succeeds even for reconstruction
of multiple closely interacting characters.

5.1 Introduction

In recent years, the field of marker-less motion estimation has seen great progress.
Two important lines of research have recently emerged in this domain. On the
one side, there are multi-view motion capture approaches that reconstruct skele-
ton motion and possibly simple body shape of people in skintight clothing from a
set of video recordings that were taken from around the scene, e.g., [1–6]. Human
performance capture approaches take one step further and not only reconstruct a
motion model (like a skeleton) but also detailed dynamic surface geometry as well
as detailed texture, e.g., [7–12]. However, these approaches are still limited to mostly
controlled studio settings and static frame-synchronized multi-video systems which
often feature 10 or more cameras.

Y. Liu (B) · G. Ye · Y. Wang · Q. Dai · C. Theobalt
Tsinghua University, Beijing, China
e-mail: liuyebin@tsinghua.edu.cn

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_5

91



92 Y. Liu et al.

On the other end of the spectrum are methods for marker-less motion capture
from a single camera view at interactive or near real-time frame rates. Estimation of
complex poses from a single video stream is still a very challenging task. The recent
advent of depth cameras, such as time-of-flight sensors [13] and the Microsoft Kinect,
has opened up new possibilities. These cameras measure 2.5D depth information at
real-time frame rates and, as for the Kinect, video as well. This makes them ideal
sensors for pose estimation, but they suffer from significant noise and have, at best,
moderate resolution. Therefore, (using a single depth camera) it has been difficult to
capture 3D models of a complexity and detail comparable to multi-view performance
capture results.

This chapter introduces a method to do full performance capture of moving
humans using just three handheld, thus potentially moving, Kinect cameras. It recon-
structs detailed time-varying surface geometry of humans in general apparel, as well
as the motion of the underlying skeleton without any markers in the scene. It can
handle fast and complex motion with many self-occlusions. By resorting to depth sen-
sors, it can be applied to more general uncontrolled indoor scenes and is not limited
to studios with controlled lighting and many stationary cameras. Also, it requires
only three handheld sensors to produce results that rival reconstructions obtained
with recent state-of-the-art multi-view performance capture methods [14, 15].

The key technology in this method is a tracking algorithm that tracks the motion
of the handheld cameras and aligns the RGB-D data and that simultaneously aligns
the surface and skeleton of each tracked performer to the captured RGB-D data. The
algorithm also needs to be robust against the sensor noise, as well as missing data
due to multi-Kinect interference and occlusions in the scene. It therefore introduces
an efficient geometric 3D point-to-vertex assignment strategy to match the Kinect
RGB-D data points to the geometric model of each performer. The assignment crite-
rion is stable under missing data due to interference and occlusions between persons.
Based on this criterion, a segmentation of the scene into performers, ground plane,
and background is implicitly achieved. As a second correspondence criterion, it
detects and tracks SIFT features in the background part of each video frame. Based
on these model-to-data assignment criteria, the pose parameters of the performers
and the poses and orientations of the Kinects are jointly estimated in a combined
optimization framework. Finally, the nonlinear objective function can be linearized
and effectively minimized through a quasi-Newton method.

The experimental section shows results on several challenging single- and multi-
person motions including dance and martial arts. Also, quantitative proof of the
accuracy of the reconstruction method is given by comparing it to an available video-
based performance capture approach [12].

The technique presented in this chapter is a revision of former published papers
[16, 17].1

1 [2014] IEEE. Reprinted, with permission, from [Genzhi Ye, Yebin Liu, Yue Deng, Nils Hasler,
Xiangyang Ji, Qionghai Dai, Christian Theobalt, Free-viewpoint Video of Human Actors using
Multiple Handheld Kinects, IEEE Trans. Cybernetics, 43(5), pp 1370–1382, 2013].



5 Human Performance Capture Using Multiple Handheld Kinects 93

5.2 Related Works

Most human performance capture approaches reconstruct human skeletal motion in
controlled studios with a large number of cameras [3, 18, 19]. They usually employ
a template skeleton with simple shape primitives [2, 5, 20] to fit the image data by
optimizing an energy function parameterized by the template skeleton. This energy
function usually exploits motion cues, such as silhouette, edge, and salient features.
Typically, they are solved by local [2] or global optimization [20, 21], or the combine
of the two [12].

Some advanced methods further reconstruct a detailed 3D deforming surface
[7, 12, 22] of people in more general clothing. All these methods take advantage
of a more elaborate shape and skeleton template, to improve the tracking accuracy
while enforcing some surface refinement [12] or shading refinement [23] for better
geometry reconstruction, or possibly reflectance reconstruction [24]. Recently, Wu
et al. [22] proposed the integration of shading cues and develop the local linear
optimization for more reliable skeletal pose tracking from indoor multi-view video.

The recent trend of marker-less motion capture aims to simplify the capture setup,
e.g., by reducing the number of cameras, capturing in outdoor scenes, or using hand-
held devices. Outdoor marker-less motion capture with handheld cameras is studied
in the pioneering work by Hasler et al. [25], but the accuracy of their method is
restricted by the limited silhouette cues. Under the assumption of fixed distant global
illumination, Wu et al. [26] employed a handheld stereo rig for performance capture
in front of a general background, which significantly broadens the operation range
of marker-less motion capture. But their local optimization and fixed global illumi-
nation model is only demonstrated for relatively restricted camera motion. However,
only a frontal view of depth information from a binocular camera cannot guarantee
a robust tracking under fast motion and serious occlusions. Wei et al. [27] further
studied motion tracking from a monocular video. This challenging problem requires
intensive manual interventions.

The prevalence of consumer depth cameras, such as the Microsoft Kinect camera,
opens up new opportunities to solve fundamental problems in computer vision [28]
and especially in human pose estimation [29, 30] and motion tracking [31]. Shotton
et al. [32] and Ganapathi et al. [33] developed real-time motion estimation systems
for indoor scenes captured recorded by a depth camera, which enables enormous
applications in human–computer interaction and gaming. Typically, to achieve real-
time performance, discriminative methods [34, 35] are applied to predict skeleton
pose directly from the depth map by a trained regression model. Some recent works
[31, 36, 37] further improved these discriminative methods with local optimization-
based motion tracking. However, pose tracking with a single depth camera is far
from robust and accurate and is challenged by motions with serious self-occlusions.



94 Y. Liu et al.

Fig. 5.1 Overview of the processing pipeline. a Overhead view of typical recording setup: three
camera operators (circled in red) film the moving people in the center (blue); b input to the
algorithm – RGB images and the depth images from three views; c Registered RGB-D point cloud
from all cameras; d segmented RGB-D point cloud–color labels correspond to background, ground
plane (green), and interacting humans (red, blue); e reconstructed surface models and skeletons

5.3 Data Capture and Scene Representation

For the data capture, one or more moving humans are recorded by C = 3 individuals
(camera operators) that stand around the scene. Each of the operators holds a Kinect
camera and points it toward the center of the recording volume. They are free to move
the cameras during recording. The performance capture method can handle a certain
amount of moving scene elements in the background. To improve the practicability of
the whole system, we rely on simple and convenient software synchronization since
hardware synchronization of multiple Kinects so far is not possible. Each Kinect
is connected to a notebook computer, and all recording notebooks are connected
through WiFi. One computer serves as a master that sends a start recording signal
to all other computers. The cameras are set to a frame rate of 30fps, and with the
software solution, the captured data of all cameras are frame-synchronized with at
most 10 ms temporal difference.

Each Kinect captures a 640×480 video frame and an aligned depth frame at every
time step t , Fig. 5.1b, which yields a combined RGB-D point cloud. The intrinsics
of both the depth and the video cameras are calibrated off-line using a checkerboard
[38]. Depth and color data are aligned with each other using the OpenNI API [39].



5 Human Performance Capture Using Multiple Handheld Kinects 95

For each RGB-D point p, we store a triplet of values p = {x p, n p, l p}. Here, x p

is the 3D position of the point, n p is the local 3D normal, and l p is a RGB color
triplet. The normal orientations are found by PCA-based plane fitting to local 3D
point neighborhoods. Note that the 3D point locations are given with respect to
each camera’s local coordinate system. For performance capture, the points from
all cameras are required to be aligned into a global system. Since the Kinects are
allowed to move in our setting, the extrinsic camera parameters Λt

c (position and
orientation) of each Kinect c at every time step of video t , i.e., the combined extrinsic
set Λt = {Λt

c}C
c=1, need to be solved for. Fig. 5.1c shows the merged point set at

time t after solving for the extrinsics using the method later described in this chapter.
Also, due to occlusions in the scene and interference between several Kinects, 3D
points corresponding to some Kinect camera pixels cannot reliably be reconstructed.
The joint camera tracking and performance capture method thus need to be robust
against such missing measurements.

For each of the k = 1, . . . , K performers in the scene, a template model is defined.
Similar to [12, 14], a template model comprises a surface mesh Mk with an embedded
kinematic bone skeleton (see Fig. 5.1e). A laser scanner is used to get a static surface
mesh of the person. Alternatively, image-based reconstruction methods could be
used or the mesh could be reconstructed from the aligned Kinect data [40–42]. The
surface models are remeshed to have around Nk = 5, 000 vertices. Each vertex is also
assigned a color that can change over time, as described in Sect. 5.4.3. Henceforth,
the 3D positions of vertices of mesh k with attached colors at time t are denoted
by the set V t

k = {vt
k,i }Nk

i=1. To stabilize simultaneous 3D human shape and Kinect
position tracking, the ground plane is also explicitly modeled as a planar mesh V t

0
with circular boundary. The ground plane model has a fixed radius of 3m, and during
initialization, it is centered below the combined center of gravity of the human models
(see Fig. 5.1d). In total, this yields a combined set of vertex positions V t = {{V t

k }K
k=0}

that need to be reconstructed at each time step. This excludes the ground plane vertices
as their position is fixed in world space. Its apparent motion is modeled by moving
the cameras.

A kinematic skeleton with n = 31∈ of freedom (DoFs) is manually placed into
each human mesh, and surface skinning weighs are computed using a similar process
as [12, 14]. Skeleton poses χ t=(ξ t ,Θ t ) = (θ0ξ̂ , θ1, ..., θn) are parameterized using
the twist and exponential maps parameterizations [2, 12]. θ0ξ̂ is the twist for the
global rigid body transform of the skeleton, and Θ t is the vector of the remaining
angles. Using linear blend skinning, the configuration of a vertex of human mesh Mk

in skeleton pose χ t
k is then determined by

vi
⎡
χ t

k

⎣ =
n⎤

m=1

⎦

⎧wm
i

⎨

j∀Parent (m)

exp
⎩
θ j ξ̂ j

)
⎢

⎥ vi . (5.1)

Here, wm
i is the skinning weight of vertex i with respect to the m-th DoF. Further

on, Parent (m) is the set of all the DoFs in the kinematic chain that influences



96 Y. Liu et al.

the m-th DoF, i.e., all the parents of m-th DoF. In addition to Λt = {Λt
c}C

c=1, the
performance capture approach thus needs to solve for the joint parameters of all
persons at each time step, Xt = {χ t

k}K
k=1.

5.4 Human Performance Capture

Performance capture from 3D point data is only feasible if the RGB-D data from
all Kinects are correctly registered. In the beginning, for each time step, the cor-
rect extrinsics Λt are unknown. A traditional approach to track camera extrinsics
is structure from motion (SfM) performed on the background of the sequence [25].
However, in our multiple Kinect recording setting, the moving subjects fill most of
the visible area in each video frame and thus, a different approach has to be used.
In such a setting, human pose capture and camera pose estimation are performed
simultaneously, leading to more robust results. In other words, the optimization tries
to mutually align all point clouds and fit the poses of the actors to the RGB-D data. At
the same time, feature correspondences in the background are exploited similarly to
SfM, since they provide additional evidence for correct reconstruction. Camera and
body poses are therefore simultaneously computed, and the solution is regularized
to additional feature correspondences found in the video frame.

In the first frame of multi-view RGB-D video, camera extrinsics are initialized
interactively and the template models are fitted to each person’s depth map. The
initialization pose in the data sequence is guaranteed to be close to the scanned pose.
Thereafter, the algorithm runs in a frame-by-frame manner applying the processing
pipeline from Fig. 5.1c–e to each time step. For a time step t , the steps are as follows:
The Kinect RGB-D point clouds are first aligned according to the extrinsics Λt−1

from the previous frame. Starting with the pose parameters Xt−1 and resulting mesh
configurations and vertex colors from the previous frame, a matching algorithm is
introduced to match the Kinect point data to the model vertices. During this match-
ing, the RGB-D data are also implicitly segmented into classes for ground plane,
background, and one class for each person, Sect. 5.4.1 (Fig. 5.1d). Thereafter, a sec-
ond set of 3D correspondences is found by matching points from the ground plane
and the background via SIFT features, Sect. 5.4.1.

Based on these correspondences, Sect. 5.4.2 simultaneously solves for Kinect and
skeleton poses for the current frame. Correspondence finding and reconstruction are
iterated several times, and the model poses and point cloud alignments are contin-
uously updated (Fig. 5.1c). Non-rigid deformations of the human surface, e.g., due
to cloth deformation, are not explained by skeleton-driven deformation alone. In a
final step, the meshes Mk are thus non-rigidly deformed into the aligned point clouds
via Laplacian deformation and the vertex colors of the mesh model(s) are updated
(Fig. 5.1e). The following section explains each step in the algorithm for a specific
time t , and it omits the index t for legibility.



5 Human Performance Capture Using Multiple Handheld Kinects 97

(a) (b)

Fig. 5.2 Comparison of forward matching and inverse matching when Kinect data occlusion hap-
pens. The red points are Kinect data, and the black lines are model surface. The blue arrows and
green arrows are matching. a forward matching. Green matching are error correspondences. b
inverse matching

5.4.1 Point Data Correspondence and Labeling

The reconstructed 3D human models should matched to the RGB-D point clouds.
Therefore, an error function that measures the alignment of the RGB-D point clouds
with the 3D human models is minimized for finding the correct camera and body
configurations, Sect. 5.4.2. To evaluate this error, for all scene model vertices V ,
plausible correspondences to the RGB-D points P need to be defined. With these
correspondences, the alignment error can be evaluated, as it was also used in video-
based performance capture to measure alignment in the image domain [12].

Due to mutual occlusions, the Kinect point cloud P will not always sample every
part of the body surfaces. Additionally, interference between several Kinects renders
some 3D points unreliable. That is, in this scenario, matching model vertices V to
Kinect point clouds P tends to be unstable. Also, the matching term should ensure
that each 3D human template is explained by the point data. Therefore, as shown
in Fig. 5.2, reverse matching is much more robust since all the foreground points
physically exist and, in theory, can all be explained by the model surface, although
there is noise and outliers in the captured data. Thus, the closest mesh vertices for
all RGB-D points are proposed as matches.

Here, we define the metric F for the searching of a model vertex v to a given 3D
point p. Such metric simultaneously measures the color distance and a geometric
distance as follows:



98 Y. Liu et al.

F (v, p) = Δ
⎡∥∥lv − l p

∥∥ , θl
⎣
Δ

⎡∥∥xv − x p
∥∥ , θx

⎣
max

⎡
nvn p, 0

⎣
(5.2)

where
Δ(x, θ) = max

⎩
1 − x

θ
, 0

)
(5.3)

Here, x p, l p, n p and xv, lv, nv denote the position, color, and normal of a Kinect
point and a mesh vertex, respectively. The first part in F is a color term enforces
color similarity between the mesh vertex and the corresponding Kinect point, with
the maximum color difference θl is experimentally set to 100. The second part in F
is a geometry term, and it only matches RGB-D points and vertices that are spatially
close and have similar normal orientation. The maximum distance a mesh vertex is
allowed to move θx is also experimentally set to 100 mm.

Based on F , we first select the points corresponding to the persons and the ground
plane as:

Zk
V =

{
(v, p) |v = argmax

v
F (v, p) , F (v, p) > 0, v ∀ Mk

}
(5.4)

and

ZG =
{
(v, p) |v = argmax

v
F (v, p) , F (v, p) > 0, v ∀ V0

}
. (5.5)

For each point p, the vertex v is first selected from V to maximize F . If the maximum
F > 0, according to the label of v, the correspondence (p, v) is classified into a person
correspondence set Zk

V of person k, or into the ground plane correspondence set ZG .
After the correspondences ZV = {Zk

V }K
k=1 and ZG are established, the RGB-D point

cloud is thus implicitly segmented into one class for each person, ground plane, and
background for all RGB-D points that were not assigned a corresponding point in V .

As stated in the beginning, the reconstruction error is also based on feature cor-
respondences in the scene background, similar to classical structure-from-motion
approaches. The method from Sect. 5.4.1 provides a classification of background
RGB-D points and thus corresponding RGB pixels in each Kinect video image.
SIFT features are detected on the background regions of the RGB images from
t − 1 and t and then converted into 3D correspondences ZS = {(p∩, p)} | p∩ ∀
Pt−1, p ∀ Pt , (p∩, p) matched via SIFT} through the available depth. As stated ear-
lier, background correspondences are not always fully reliable. Measurement accu-
racy decreases with increasing distance from the camera, and moving objects in the
background lead to erroneous correspondences. Thus, the error function additionally
measures point-to-model correspondences in the foreground. Fig. 5.3b shows that
alignment based on SIFT features in the background alone will not suffice.



5 Human Performance Capture Using Multiple Handheld Kinects 99

Fig. 5.3 Comparison of RGB-D point data fusion at frame t before and after joint skeleton and
Kinect optimization. a Fusion using extrinsics from the former time. b Fusion based on SIFT features
alone fails. c Fusion using extrinsics solved by the combined human and camera pose optimization
produces much better results

5.4.2 Joint Skeleton and Kinect Tracking

After the computing of correspondence sets ZV , ZG , and ZS , a geometric error
function can be defined and minimized in the space of skeleton pose X and camera
extrinsics Λ:

E (X, Λ) = arg min
X,Λ





⎤

(p,v)∀ZS

∅p (Λ) − v (X)∅2

∅ZV ∅ +
⎤

(p,v)∀ZG

∅p (Λ) − v∅2

∅ZG∅ +
⎤

(p,p∩)∀ZS

∥∥p (Λ) − p∩∥∥2

∅ZS∅

⎫
⎬

⎭

(5.6)

Here, ||Z || is the number of elements in set Z . This function is solved through lin-
earization within an iterative quasi-Newton minimization. Using Taylor expansion of
the exponential map, the transformation of Λ on point p leads to a linear formulation

p(Λ) = Rp + T = eθ ξ̂ p ∪
⎩

I + θ ξ̂
)

p (5.7)

For the body pose, we can perform the similar expansion. Specifically, Eq. (5.1) can
be linearized as

v (X) =
⎦

⎧I + θ0ξ̂0 +
n⎤

m=1

⎦

⎧
⎤

j∀Children(m)

w j

⎢

⎥ θm ξ̂m

⎢

⎥ v, (5.8)

where, Children(m) is the set of DoFs corresponding to the children DoFs of the
m-th DoF.

Robust correspondence finding and pose optimization are iterated for 20 times.
After each iteration, the normals of the fused point cloud points n p are updated.
Fig. 5.3 shows the comparison of the fused data before pose optimization (a) and
after pose optimization (c). Please note that even using state-of-the-art techniques,
direct fusion of the point data without the aid of a 3D model is extremely difficult and
error prone because of the small overlap region between the different Kinects [43].



100 Y. Liu et al.

5.4.3 Surface Geometry Optimization

After tracking and skinned deformation of the skeleton-driven model of each
character, mesh deformation is performed to refine the surface geometry of the per-
formers and capture non-rigid deformation effects, such as cloth motion. Similar to
[8], for each person k, surface deformation is formulated as:

arg min
v

{∅Lv − δ∅2
2 + ∅Cv − p∅2

2} (5.9)

Here, v denotes the vector of vertices on human body mesh Mk . L is the discrete
Laplace operator, and δ is the differential coordinates of the current mesh vertices.
The Laplace operator is defined as [44]

L =





di i = j
−1 (i, j) ∀ E
0 otherwise

(5.10)

and δ is usually defined as

δi = 1

di

⎤

j∀N (i)

⎡
vi − v j

⎣
. (5.11)

Here, (i, j) ∀ E means vertex vi and v j are on the same edge and di is the number of
neighbor vertices of vi . The definition of δ is upgraded to cotangent weights in this
work, please refer to [44] for detail. In (5.9), C is a diagonal matrix with nonzero
entries c j j = α (α=0.1) for vertices in correspondence set Zk

pv. p is the vector with

nonzero position entries for those p in Zk
V .

After non-rigid mesh deformation, the color of each vertex is updated according
to a linear interpolation between the previous color and the current color using

lv = t

t + 1
lv + 1

t + 1
lnn (5.12)

where lnn is the color of the nearest RGB-D neighbor point of v.

5.5 Experimental Results

This section verifies the performance capture system from both the perspectives
of qualitative analysis and quantitative evaluations. The data were recorded with
three moving Kinects at a resolution of 640 × 480 pixels and at a frame rate of
30fps. The sequence is consisted of a wide range of different motions, including



5 Human Performance Capture Using Multiple Handheld Kinects 101

Fig. 5.4 Performance capture results on a variety of sequences: one of the input image, layered
geometry, reconstructed geometry, and skeleton. Each row shows two results

dancing, fighting, and jumping, see Fig. 5.4, and accompanying video.2 The motions
were performed by five different persons wearing casual clothing. There are also
two evaluation sequences where the performer was simultaneously tracked by a
multi-view video system and also three evaluation sequences where one of the two
human actors is wearing a marker suit for simultaneous optical motion capture. The
configurations of the acquisition setups for all these sequences are shown in Table 5.1.

5.5.1 Qualitative Evaluation

Figure 5.4 shows several results produced by the system. The approach enables fully
automatic reconstruction of skeletal pose and shape of two persons, even if they are
as closely interacting as in martial arts fight, hug, or while dancing, see Fig. 5.4
and the accompanying video. Despite notable noise in the captured depth maps, the
method successfully captures pose and deforming surface geometry of persons in

2 The accompanying video is available at: www.media.au.tsinghua.edu.cn/kinectfvv.mp4.

www.media.au.tsinghua.edu.cn/kinectfvv.mp4


102 Y. Liu et al.

Table 5.1 Description of the capture sequences

Sequence Frame Number of Number of Number of Kinect Comparison

rate performers (K ) Kinects (C) frames status

Dancing walk 30 1 3 300 Moving No

Kungfu 30 1 3 300 Moving No

Couple dance 30 2 3 300 Moving No

Fight 30 2 3 300 Moving No

Hug 30 2 3 250 Moving No

Arm crossing 30 1 3 400 Static No

Rolling 15 1 3 200 Static Multi-view Video

Jump 15 1 3 200 Static Multi-view Video

Exercise1 30 1 3 450 Static Marker based

Exercise2 30 1 3 450 Moving Marker based

Exercise3 30 2 3 450 Moving Marker based

loose apparel. With a capturing frame rate of only 30fps, the introduced approach
can also handle very fast motions, see the jump and kicking motions in Fig. 5.4.

5.5.2 Comparison to Vision-Based Motion Capture

To compare against a vision-based motion capture system, two sequences are cap-
tured in a multi-view video studio with 10 calibrated cameras (15fps, 1024 × 768)
and a green screen in the background. The Kinect data were temporally aligned to the
multi-view video data at frame-level accuracy using event synchronization. Although
the synchronization of the video camera system and the Kinect system is not guar-
anteed at subframe accuracy, the evaluation of the difference between the two results
still presents a conservative performance evaluation of the proposed algorithm.

Since the multi-view video system runs at 15fps, a sequence “rolling” is cap-
tured with slow motion and a sequence “jump” with fast motion. The Kinect system
runs at 30fps, so the frames from the multiple Kinect system are subsampled by
factor two and compared to the performance captured with multi-view video-based
tracking (MVT) [12]. Figure 5.5 visually demonstrates the results of the two sys-
tems on the basis of four frames selected at regular equidistant intervals from the
“rolling” sequence. Since the MVT requires a green screen for clean background
subtraction and it, thus, does not work with extra camera operators in the scene
background, the three Kinects are fixed in the MVT studio during data capture. With
these fixed Kinects, the introduced algorithm can be validated by comparing the opti-
mized Kinect extrinsics in the later frames with those of the first frame. The average
distance from the Kinect center in the first frame to the Kinect center of other frames
(both “rolling” and “jump”) for each of the Kinects are 10.66 mm, 7.28 mm and



5 Human Performance Capture Using Multiple Handheld Kinects 103

Fig. 5.5 Comparison with multi-view video-based tracking (MVT) approach on the “rolling”
sequence. The top left are four input images of the multi-view video sequence. The top right
shows the close overlap of the two skeletons tracked with MVT (blue) and the multiple Kinect-
based approach (red). The bottom left is the reconstructed surface with the skeleton using MVT,
and the bottom right is the results from the multiple Kinect-based approach. Quantitative and visual
comparisons show that MVT-based and Kinect-based reconstructions are very similar

Fig. 5.6 Comparison with multi-view video-based tracking (MVT) approach on the “jump”
sequence. The left three and the right three are input image, result of MVT, and result of the
Kinect-based approach. On this fast motion, Kinect-based tracking succeeds, while MVT fails to
capture the arm motion

6.67 mm, respectively. For the slow motion sequence “rolling”, the result from the
multiple Kinect system closely matches the input images and the result of the MVT
system, see Fig. 5.5. In addition, the differences on the joint centers of these results
from the two systems are computed. The average distance between the corresponding
joint positions across all 200 frames of the sequence is 21.42 mm with a standard
deviation of 27.49 mm. This distance also includes the synchronization differences
between the two systems. For the fast motion sequences, the MVT even fails despite
a much higher number of cameras, while the Kinect-based tracking is able to track
the whole sequence, see Fig. 5.6.

5.5.3 Comparison to Marker-Based Motion Capture

Most of the commercial motion capture systems apply marker-based techniques
since they provide comparably robust and accurate performance. In this chapter, a
quantitative evaluation on the accuracy of simultaneous skeleton motion capture and



104 Y. Liu et al.

Fig. 5.7 The capturing environment with the OptiTrack motion capture system a and comparison
between this marker-based Mocap system and our algorithm b. Red dots represent the ground truth
marker position and the green dots are their corresponding vertice on the body model. The distance
between them is evaluated

geometry reconstruction with the proposed system against a marker-based system
is conducted. One sample image showing the capturing environment of the marker
system is provided in Fig. 5.7a. In our setting, OptiTrack marker-based motion cap-
ture system [45] is adopted for comparison. Besides three handheld Kinects in the
capture environment, 34 optical markers were attached to one of the persons, whose
motions were captured with the marker-based system. Since it is impossible to syn-
chronize the two systems, both of the two systems run at 30fps and the start frames
are manually aligned. The synchronization error is then within 1/30 s.

The error metric is defined as the average distance between the markers and their
corresponding vertices on the template model across all the frames of the sequence.
The corresponding vertices are found in the first frame when the markers and the
3D model template is well aligned. The error metric not only accounts for the per-
formance of skeleton tracking, but also the accuracy of the geometry reconstruction.
Figure 5.7b and the accompany video show the ground truth marker positions and
their corresponding vertices on the recovered models. Our experiments show that
the multiple Kinect-based system produces reasonable and similar tracking perfor-
mances as the marker system. In cases of occlusions between two persons, the track-
ing result is also robust and accurate. Quantitative evaluations are also performed,
as shown in Fig. 5.8. The average distance and the standard derivations of the dis-
tance between each marker and their corresponding vertices on the 3D model are
calculated. The results are shown in Fig. 5.8. The average error between the two
systems is about 38 mm. Considering that the two systems are not strictly synchro-
nized, this geometry accuracy is plausible. Compared with available single depth
camera-based motion capture systems such as Ganapathi et al. [33], which report
an average tracking error about 200 mm, the multiple Kinect-based system provides
much lower tracking errors. This improvement is achieved through the combination
of multiple depth cameras and the delicate algorithm design. From the quantitative
evaluation on “Exercise 1”(static cameras) and “Exercise 2”(handheld cameras), it



5 Human Performance Capture Using Multiple Handheld Kinects 105

Fig. 5.8 The quantitative comparison of the Kinect-based tracking accuracy with the marker-based
result (ground truth). The blue bars and pink bars show the accuracy and standard derivations (std)
with three Kinects and two Kinects, respectively

is also interesting to note that, compared with static capture, handheld capture does
not obviously damage system performance.

All the experiments discussed above are implemented with three Kinect cameras.
To verify the robustness of the multiple Kinect-based system, the number of cameras
is decreased to show how the final results are affected by the number of Kinects. The
accuracy achieved with two Kinects is shown with the pink bars in Fig. 5.8. This
shows that the accuracy obtained with two Kinects and three Kinects is very similar
for one body tracking (for “Exercise 1” and “Exercise 2”). However, the accuracy
decreases significantly by using two cameras for the “Exercise 3.” This is because
in “Exercise 3,” occlusion between the two persons is more serious. Using only two
cameras could not sufficiently capture the whole scenario and therefore results in a
relatively low tracking quality.

5.6 Discussion

Interference: Currently, multiple Kinects aiming at the same scene may introduce
interferences between each other and degrade the depth quality. In our case, the
Kinects are very sparse with any of the two Kinects covering a viewing angle of
about 120∈. Such a baseline with such a large angle causes only about 10 % of the
whole pixels surfers interference for a camera in the experiments, compared with the
case of single Kinect. Moreover, the Kinect will not return depth values for pixels
with interference, so interference will not produce erroneous 3D point data to degrade



106 Y. Liu et al.

the tracking accuracy. To adapt for more Kinects working together, multiple depth
sensors may share the same lighting source to infer depth information while reducing
interference.

Complexity: Computational complexity does not starkly depend on the number of
subjects in the scene. It takes about 10 s for single person tracking of a frame and 12 s
for the two persons tracking on a standard PC using unoptimized code. The system
uses local optimization, and the run time of the system mainly depends on the number
of captured points. The number of captured points decides the time complexity of
both correspondence establishment and the pose estimation. The correspondence
establishment takes more than half of the total time and could be optimized using
more efficient data structures, like octrees, to decrease the searching number of
matching vertices to speed up the search. Real-time tracking is possible with code
optimization and parallel computing.

Alternative Optimization Approach: Since the method introduced is based on
local optimization, the tracking may fail when serious occlusions happen or when the
motion is too fast. Alternatively, a global optimization approach [12] can be employed
based on the local optimization results, similar to the method proposed for multi-view
video-based tracking. Such global optimization is, for instance, based on analysis by
synthesis, that is, sampling on the skeleton and camera pose space and retrieving the
one that best matched to the input data in a particle swarm optimization (PSO) [46] or
interacting simulated annealing (ISA) [21] optimization. Theoretically, the tracking
results will be comparably more robust than local optimization approach; however,
the computation complexity is greatly increased and the temporal smoothness of the
tracking results will be degraded.

5.7 Conclusions

This chapter introduces a method for human performance capture using several hand-
held Kinects. The method adopts a local optimization approach to simultaneously
solve for the skeleton parameters and camera pose by driving them to fit to the
input point data from the Kinects. The tracking approach is based on iterating robust
matching of the tracked 3D models and the input Kinect data and a quasi-Newton
optimization on Kinect poses and skeleton poses. This joint optimization enables us to
reliably and accurately capture shape and pose of multiple performers. In summary,
the proposed technique removes the common constraint in traditional multi-view
motion capture systems that cameras have to be static and scenes need to be filmed
in controlled studio settings. Instead, the introduced system allows users to hold the
Kinects for motion capture and 3D reconstruction of performers. This enriches the
practical application, especially when considering the anticipated introduction of
depth cameras in consumer devices like tablets.



5 Human Performance Capture Using Multiple Handheld Kinects 107

References

1. Deutscher J, Blake A, Reid I (2000) Articulated body motion capture by annealed particle
filtering. In: IEEE conference on computer vision pattern recognition, pp 1144–1149

2. Bregler C, Malik J, Pullen K (2004) Twist based acquisition and tracking of animal and human
kinematics. IJCV 56:179–194

3. Sigal L, Black M (2006 ) Humaneva: synchronized video and motion capture dataset for
evaluation of articulated human motion. Technical Report CS-06-08, Brown University

4. Balan A, Sigal L, Black M, Davis J, Haussecker H (2007) Detailed human shape and pose from
images. In: IEEE conference on computer vision pattern recognition, pp 1–8

5. Stoll C, Hasler N, Gall J, Seidel HP, Theobalt C (2011) Fast articulated motion tracking using
a sums of gaussians body model. In: IEEE international conference on computer vision, pp
951–958

6. Poppe R (2007) Vision-based human motion analysis: an overview. CVIU 108:4–18
7. Vlasic D, Baran I, Matusik W, Popović J (2008) Articulated mesh animation from multi-view

silhouettes. ACM Trans Graph 27:1–9
8. De Aguiar E, Stoll C, Theobalt C, Ahmed N, Seidel H, Thrun S (2008) Performance capture

from sparse multi-view video. In: ACM Transactions on Graphics (TOG). vol 27, p 98
9. Ballan L, Cortelazzo G (2008) Marker-less motion capture of skinned models in a four camera

set-up using optical flow and silhouettes. In: 3DPVT, vol 37
10. Cagniart C, Boyer E, Ilic S (2010) Free-form mesh tracking: a patch-based approach. In: IEEE

conference on computer vision pattern recognition, pp 1339–1346
11. Starck J, Hilton A (2007) Surface capture for performance based animation. IEEE Comput

Graph Appl 27(3):21–31
12. Gall J, Stoll C, De Aguiar E, Theobalt C, Rosenhahn B, Seidel H (2009) Motion capture using

joint skeleton tracking and surface estimation. In: IEEE conference on computer vision pattern
recognition, pp 1746–1753

13. Kolb A, Barth E, Koch R, Larsen R (2010) Time-of-flight cameras in computer graphics.
Comput Graph Forum 29:141–159

14. Liu Y, Stoll C, Gall J, Seidel HP, Theobalt C (2011) Markerless motion capture of interacting
characters using multi-view image segmentation. In: IEEE conference on computer vision
pattern recognition, pp 1249–1256

15. Liu Y, Gall J, Stoll C, Dai Q, Seidel HP, Theobalt C (2013) Markerless motion capture of
multiple characters using multiview image segmentation. IEEE Trans Pattern Anal Mach Intell
35:2720–2735

16. Ye G, Liu Y, Hasler N, Ji X, Dai Q, Theobalt C (2012) Performance capture of interacting
characters with handheld kinects. In: IEEE conference on computer vision ECCV. Springer,
Berlin, pp 828–841

17. Ye G, Liu Y, Deng Y, Hasler N, Ji X, Dai Q, Theobalt C (2013) Free-viewpoint video of human
actors using multiple handheld kinects. IEEE T Cybern 43:1370–1382

18. Moeslund TB, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion
capture and analysis. Comput vis image underst 104:90–126

19. Poppe R (2007) Vision-based human motion analysis: an overview. Comput vis image underst
108:4–18

20. Deutscher J, Blake A, Reid I (200) Articulated body motion capture by annealed particle
filtering. In: Proceedings of the IEEE Conference on computer vision and pattern recognition,
Vol 2, pp 126–133

21. Gall J, Rosenhahn B, Brox T, Seidel HP (2010) Optimization and filtering for human motion
capture. Int j comput vis 87:75–92

22. Wu C, Varanasi K, Theobalt C (2012) Full body performance capture under uncontrolled and
varying illumination: a shading-based approach. Springer, New York, pp 757–770

23. Wu C, Varanasi K, Liu Y, Seidel HP, Theobalt C (2011) Shading-based dynamic shape refine-
ment from multi-view video under general illumination. In: IEEE international conference on
computer vision (ICCV), pp 1108–1115



108 Y. Liu et al.

24. Li G, Wu C, Stoll C, Liu Y, Varanasi K, Dai Q, Theobalt C (2013) Capturing relightable human
performances under general uncontrolled illumination. Comput Graph Forum 32:275–284

25. Hasler N, Rosenhahn B, Thormählen T, Wand M, Gall J, Seidel HP (2009) Markerless motion
capture with unsynchronized moving cameras. In: IEEE international conference on computer
vision pattern recognition, pp 224–231

26. Wu C, Stoll C, Valgaerts L, Theobalt C (2013) On-set performance capture of multiple actors
with a stereo camera. ACM Trans Graph (TOG) 32:161

27. Wei X, Chai J (2010) Videomocap: modeling physically realistic human motion from monoc-
ular video sequences. ACM Trans Graph (TOG) 29:42

28. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor:
a review. IEEE T Cybernet 43:1318–1334

29. Shum HPH, Ho ESL, Jiang Y, Takagi S (2013) Real-time posture reconstruction for microsoft
kinect. IEEE T Cybernet 43:1357–1369

30. Ni B, Pei Y, Moulin P, Yan S (2013) Multilevel depth and image fusion for human activity
detection. IEEE T Cybernet 43:1383–1394

31. Baak A, Müller M, Bharaj G, Seidel HP, Theobalt C (2013) A data-driven approach for real-time
full body pose reconstruction from a depth camera. In: Consumer depth cameras for computer
vision. Springer, New York, pp 71–98

32. Shotton J, Fitzgibbon AW, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011)
Real-time human pose recognition in parts from single depth images. In: IEEE international
conference on computer vision pattern recognition, pp 1297–1304

33. Ganapathi V, Plagemann C, Koller D, Thrun S (2010) Real time motion capture using a single
time-of-flight camera. In: IEEE international conference on computer vision pattern recogni-
tion, pp 755–762

34. Agarwal A, Triggs B (2004) 3d human pose from silhouettes by relevance vector regression.
In: Proceedings of the IEEE computer society conference on computer vision and Pattern
Recognition, vol 2, p 882

35. Ye M, Wang X, Yang R, Ren L, Pollefeys M (2011) Accurate 3d pose estimation from a single
depth image. In: IEEE international conference on computer vision, pp 731–738

36. Taylor J, Shotton J, Sharp T, Fitzgibbon A (2012) The vitruvian manifold: inferring dense
correspondences for one-shot human pose estimation. In: IEEE conference on computer vision
and pattern recognition (CVPR), pp 103–110

37. Wei X, Zhang P, Chai J (2012) Accurate realtime full-body motion capture using a single depth
camera. ACM Trans Graph (TOG) 31:188

38. Bouguet JY (2004) Camera calibration toolbox for matlab
39. OpenNI: (http://www.openni.org/)
40. Barmpoutis A (2013) Tensor body: real-time reconstruction of the human body and avatar

synthesis from rgb-d. IEEE T Cybernet 43:1347–1356
41. Tong J, Zhou J, Liu L, Pan Z, Yan H (2012) Scanning 3d full human bodies using kinects. IEEE

Trans Vis Comput Graph 18:643–650
42. Li H, Vouga E, Gudym A, Luo L, Barron JT, Gusev G (2013) 3d self-portraits. ACM Trans

Graph 32:187
43. Aiger D, Mitra NJ, Cohen-Or D (2008) 4-points congruent sets for robust surface registration.

ACM Trans Graph 27(85):1–10
44. Sorkine O (2006) Differential representations for mesh processing. Comput Graph Forum

25:789–807
45. OptiTrack: (http://www.naturalpoint.com/optitrack/)
46. Oikonomidis I, Kyriazis N, Argyros AA (2011) Efficient model-based 3d tracking of hand

articulations using kinect. In: IEEE international conference on BMVC, pp 1–11

http://www.openni.org/
http://www.naturalpoint.com/optitrack/


Chapter 6
Human-Centered 3D Home Applications
via Low-Cost RGBD Cameras

Zhenbao Liu, Shuhui Bu and Junwei Han

Abstract In this chapter, we will introduce three human-centered home 3D
applications realized by virtue of low-cost RGBD cameras. The first application is
personalized avatar for user via multiple Kinects, which can reconstruct a real human
and provide personalized avatars for everyday users and enhance interactive experi-
ence in game and virtual reality environments. The second application automatically
evaluates energy consumption of users in gaming scenarios by a model with tracked
skeleton, which may help users to know their exercise effects and even diet or reduce
their weights. The final application presents a real-time system that automatically
classifies the human action acquired by consumer-priced RGBD sensor.

6.1 Personalized Avatar for User via Multiple Kinects

In traditional human-centered games and virtual reality applications, skeleton of
human is commonly captured via consumer-priced cameras or professional motion
capture devices to animate an avatar to follow his movements. In this section, we

Z. Liu and S. Bu were supported by NSFC (61003137, 61202185), Fundamental Research
Funds for the Central Universities(310201401JCQ01012, 310201401JCQ01009), Shaanxi
NSF(2012JQ8037), and Open Fund from State Key Lab of CAD&CG of Zhejiang University. J.
Han was supported by the NSFC under Grant 61005018 and 91120005, NPU-FFR-JC20120237
and Program for New Century Excellent Talents in University under grant NCET-10-0079.

Z. Liu · S. Bu (B) · J. Han
Northwestern Polytechnical University, Xi’an, China
e-mail: bushuhui@nwpu.edu.cn

Z. Liu
e-mail: liuzhenbao@nwpu.edu.cn

J. Han
e-mail: jhan@nwpu.edu.cn

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_6

109



110 Z. Liu et al.

propose a novel application that automatically reconstructs a real 3D moving human
captured from multiple Kinect RGBD cameras in the form of polygonal mesh, which
may help users to really enter a virtual environment or even collaborative immer-
sive environments. Compared to 3D point cloud, 3D polygonal mesh is commonly
adopted to represent objects or characters in games and virtual reality applications.
The vivid 3D human mesh can enormously promote the immersion when he interacts
with a computer. The proposed method includes three key steps to dynamically realize
3D human reconstruction from noisy RGB image and depth data captured in a distant
distance. We first recover 3D scene represented in point cloud from scanned RGBD
data. We then filter noisy and unorganized point cloud and obtain a relatively clean
3D human point cloud. A complete 3D human mesh is reconstructed from the fil-
tered point cloud using Delaunay triangulation and Poisson surface reconstruction.
A group of experiments demonstrates the reconstructed 3D human meshes, and these
dynamic meshes with different poses are placed in a virtual environment. It could
be used to provide personalized avatars for everyday users and enhance interactive
experience in game and virtual reality environments.

6.1.1 Introduction

Real 3D scene and human reconstruction from a professional 3D scanner have been
well studied in multimedia, virtual reality, and computer graphics [1]. It has gener-
ated satisfactory results adaptable to industrial inverse engineering and production
design based on virtual reality. However, the technique cannot be directly applied
in home-centered amusements because of high price, large volume, difficult opera-
tion, and computational burden. In recent years, portable RGBD cameras with low
cost and easy operation, for example, Kinect [2], is highly appealing and becom-
ing more widespread. Han et al. [3] investigate recent Kinect-based computer vision
algorithms and applications and classify these algorithms according to the type of vi-
sion problems. These topics include preprocessing, object tracking and recognition,
human activity analysis, hand gesture analysis, and indoor 3D mapping. However,
the type of cameras generates low-quality color and depth images, which becomes
a main constraint on providing fully immersive and virtual applications. Many re-
searchers have payed close attention to recent developments on high-quality scene
and human generation.

There have been several pioneering works focusing on interesting 3D virtual ap-
plications of RGBD sensors. Alexiadis et al. [4] build a real-time automatic system of
dance performance evaluation via Kinect RGBD sensor and provide visual feedback
to beginners in a 3D virtual scene. Bleiweiss et al. [5] propose a solution to animating
in-game avatars using real-time motion capture data and blend actual movements of
players with pre-defined animation sequences. Pedersoli et al. [6] provide a frame-
work for Kinect enabling more natural and intuitive hand gesture communication
between human and computer devices. Tong et al. [7] present a novel scanning



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 111

system for capturing different parts of a human body at a close distance, and then
reconstructing 3D full human body.

Ye et al. [8] propose an algorithm for creating free-viewpoint video of interacting
humans using three handheld Kinect cameras. They reconstruct deforming surface
geometry and temporal varying texture of humans through estimation of human
poses and camera poses for every time step of the RGBD video. Barmpoutis [9]
reconstruct 3D model of the human body from a sequence of RGB-D frames by
means of parameterization of cylindrical-type objects using Cartesian tensor and
b-spline bases along the radial and longitudinal dimension. The reconstruction is
performed in real time, while the human subject moves arbitrarily in front of the
camera. The tensor body is fitted to the input data using segmentation of different
body regions, robust filtering, and energy-based optimization.

Differently from the above applications, we attempt to solve the problem of dy-
namic 3D human reconstruction from data acquired by means of multiple RGBD
sensors located in a distant distance. This is a similar scene setting as home game.
Nevertheless, several major difficulties must be faced, which include (1) RGB im-
age and depth data simultaneously sampled from the same RGBD sensor in a low
resolution is difficult to be calibrated and coupled to 3D textured point cloud without
distortion and (2) the coupled point cloud is too sparse and noisy to reconstruct a
detailed and smooth mesh. In order to overcome these problems, we first propose
several 3D human filters to extract relatively pure point cloud of human from a whole
3D scene. An initial triangulation with holes and burrs is then reconstructed based
on the point cloud. We finally fill all the holes and smooth the surface via poisson
surface reconstruction. The reconstructed 3D human is dynamically placed into a
virtual environment and able to follow the movements of users. See Fig. 6.1 for an
illustration.

The section is organized as follows. The colored point cloud of scene is first gen-
erated in Sect. 6.1.2. Section 6.1.3 illustrates how we filter the noisy and unorganized
3D scene point cloud to get a relatively clean human point cloud. We introduce two
steps to convert the point cloud to 3D mesh in Sect. 6.1.4. Section 6.1.5 demonstrates
personalized avatar of user in a virtual scene.

6.1.2 Point Cloud Generation

We adopt the dataset captured by five Microsoft Kinects and their registration para-
meters, which are provided by 3DLife/Huawei Grand Challenge of ACM Multimedia
2013 [10]. The dataset contains five groups of Kinect data recording the same scene.
The five Kinect sensors are, respectively, placed in different positions and different
directions. Each Kinect outputs a sequence of depth and color images, which are
encoded with video format. Each one of the five captured videos only records a part
view of the whole 3D scene due to the limited visual angle of Kinect camera. The
raw depth map and its corresponding color map of each view are separately extracted
by means of OpenNI develop toolkit. Both depth and color images have the same



112 Z. Liu et al.

Fig. 6.1 Overview of the steps in our personalized avatar implementation. a RGB and depth images
from (1) to (5) captured from five Kinects. b Five respective RGB-D calibrated images. c Registered
point cloud of scene. d Filtered 3D human point cloud. e Delaunay triangulation. f Poisson mesh
reconstruction. g Movement of personalized avatar in a virtual scene

Fig. 6.2 Registered whole scene in the form of 3D point cloud. We first calibrate the depth and
color map using a recent algorithm [11] for each Kinect data and map the color map to the depth map
using camera parameters to get five colored point clouds. The five point clouds are then registered
into one whole 3D scene

resolution with 480 × 640 pixels. Because depth and color images come from dif-
ferent cameras on the same Kinect and are not completely overlapped, we adopt a
recent algorithm [11] to calibrate them in advance. The calibration model does not
use depth discontinuities in the depth image and accordingly is flexible and robust to
noise. We use the calibrated camera parameters to recover the five 3D partial views,
and then register the five 3D partial views into one whole 3D point cloud scene. The
reconstructed whole 3D scene in the form of point cloud is shown in Fig. 6.2.



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 113

6.1.3 3D Human Filters

Although the color and depth images have been calibrated and registered into 3D
point cloud without distortion, it can be seen that the point cloud is still very noisy
and mixed with a lot of isolated points and wrongly colored points. This leads to
the difficulty in reconstructing the point cloud to a clean polygonal mesh. Moreover,
many details representing realistic effects of a user, for example, face and clothes,
should be recovered in a high-quality way.

In order to attain the above objective, we first have to extract a whole human from
the 3D scene point cloud. Because many noisy points and background points have
been mixed into the point cloud of human in the step of scene generation, we consider
how to remove these redundant points and extract a relatively clean point cloud of
human from the whole 3D scene. We propose three simple and efficient filters to
finish the task, which are band-pass filter F(b), background color filter F(c), and
distance filter F(d).

We first use a band-pass filter F(b) to get a coarse human point cloud. It is
expressed as the following form.

F(b) ∈ pi =
{

pi , x ∀ [x0, x1], y ∀ [y0, y1], z ∀ [z0, z1]
0, otherwise

(6.1)

where {[x0, x1], [y0, y1], [z0, z1]} denotes a bounding box of the human point cloud.
pi is a point in the point cloud. F(b) ∈ pi means applying the filter to the point pi .

Here, the bounding box is built by virtue of a recent high-level skeleton tracking
algorithm [15]. The algorithm designs an intermediate body parts representation
that maps the difficult pose estimation problem into a simpler per-pixel classification
problem. Its classifier is trained by efficient randomized decision forests, considering
a large number of characters from short to tall and thin to fat, many poses, models
with different hair styles and clothing. Once we get the positions of the skeleton joints
tracked, the bounding box of the whole skeleton is simply computed by utilizing the
maximum and minimum values of all the joint coordinates. We empirically enlarge
the bounding box of skeleton by 10 filter F(b). The filter passes a coarse human point
cloud as shown in Fig. 6.3a and reject outside points. We see the point cloud is still
disturbed by background noises. In order to keep a better point cloud for next mesh
reconstruction, we refine the boundary of coarse human point cloud. A background
color filter F(c) is considered to get rid of the noisy background color points on the
boundary. Finally, we use another distance filter F(d) to delete the isolated points
which may cause wrong faces in mesh reconstruction.

F(d) ∈ pi =
{

pi , d(pi ) < d0

0, otherwise
(6.2)



114 Z. Liu et al.

Fig. 6.3 a Coarse human point cloud. b Final human point cloud. We first use a band-pass filter
to get the coarse human point cloud (a). By applying other two filters, background color filter and
distance filter, the final point cloud (b) is obtained

d(pi ) is the distance between pi and its nearest point, and we practically set the
constant threshold value d0 to 10. After passing these three filters, a relatively fine
scattered point cloud is generated for next mesh reconstruction, as shown in Fig. 6.3b.

6.1.4 Human Mesh Reconstruction

The human point cloud with color generated above has three defective problems,
which may cause incorrect mesh reconstruction. We first solve the organization prob-
lem of these unordered 3D points and adopt polygonal form to topologically connect
these points. The second problem to be addressed is that there are many holes in
the point cloud because of low image resolution of Kinect, placement of Kinect in
a distant distance, and missed points while scanning human in different directions.
Another problem we find is that the point cloud is not smooth and contains a lot of
burrs on the boundary.

Therefore, we attempt to introduce a two-stage solution to these low-quality prob-
lems. In the first stage of mesh reconstruction, we preliminarily triangulate the unor-
ganized point cloud and make these massive points connect with spatial neighbors.
We solve the problem of holes and burrs in the second stage, and it can be cast as an
issue of Poisson surface reconstruction. Because global Poisson equation considers
all the points simultaneously, it is considered highly robust to small data noises.

During the first stage, we topologically connect and triangulate the unorganized
point cloud by means of Delaunay triangulation [12] to get a coarse human mesh from



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 115

(a) (b)

Fig. 6.4 a Local amplification in Delaunay triangulation. b Local amplification in Poisson surface
reconstruction. It can be seen the surface is smoothed after introducing Poisson reconstruction

the scattered point cloud. In order to obtain an adaptive human mesh, it is feasible
to adjust the density of triangles according to the amount of points in different parts
of human. However, we find that Delaunay triangulation is susceptible to under-
sampling and outliers. For example, there are some holes and burrs in the triangulated
human mesh shown in Fig. 6.4a.

In order to overcome the problem, in the second step, we adopt the Poisson
mesh reconstruction [13] to refine the initial mesh, fill the holes on the surface, and
remesh it. The surface reconstruction is seen as the solution to a Poisson equation of
isosurface as follows.

αω = ∩ · V, (6.3)

where ω is an indicator function and ρ denotes its Laplace operator. The divergence
∩ of a vector field V equals Laplacian of the scalar function. The above Poisson
equation is actually equivalent to expected approximation and reconstruction:

ω = argmin ∅∩ω − V∅ , (6.4)

which means the gradient of the implicit function ω of an input point cloud {pi } fits
the vector field based on these points and their normal vectors {vi }. The form of the
vector field is discretized in a subdivision octree as follows.



116 Z. Liu et al.

V =
∑

pi

∑

j∀n(pi )

τi j b j (pi )vi , (6.5)

where n(pi ) denotes the set of the eight closest octree nodes of each point pi and j
is the node index. τi j is the interpolation weight. b j (pi ) is a transformed function
on each octree node n j . It is worth noting that it is similar as wavelet built on the 3D
regular grid. More specifically, each transformed function is obtained by translating
and scaling a fixed basis function

b j (pi ) = b

(
pi − c(n j )

w(n j )

)
1

w(n j )3 , (6.6)

where b(pi ) denotes the fixed basis. c(n j ) is the center of the node n j and w(n j )

is its width. The basis function has a uniform form, that is, the convolution with a
box filter f (x) (or f (y), f (z)) t times separately on each dimensional coordinate
{x, y, z}. The convolution can be expressed as

b(x, y, z) = ( f (x) ∈ f (x))t ( f (y) ∈ f (y))t ( f (z) ∈ f (z))t , (6.7)

where each box filter, for example, f (x), has the following form

f (x) =
{

1, |x | < 0.5
0, otherwise

(6.8)

The approximation problem in Eq. 6.4 can be converted by projecting it onto the
space spanned by bases b j , j ∀ [1, |T |]. |T | is the number of octree nodes. The
solution to ω is equivalent to minimizing

∑
j

∥∥〈
αω − ∩ · V, b j

〉∥∥2

= ∑
j

∥∥〈
αω, b j

〉 − 〈∩ · V, b j
〉∥∥2

,
(6.9)

which can be written in a matrix form, and the Laplace matrix L with |T | × |T |
elements is defined so that Lω returns the dot product of the Laplacian with each base
b j . Each element of the sparse and symmetric matrix has the following expression

L jk =
〈
κ2b j

κx2 , bk

〉
+

〈
κ2b j

κy2 , bk

〉
+

〈
κ2b j

κz2 , bk

〉
. (6.10)

Then, the Poisson equation reduces to a well-conditioned sparse linear system

Lω = v, (6.11)

where v is a |T |-dimensional vector whose element is



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 117

Fig. 6.5 a Delaunay triangulation. b Poisson surface reconstruction. Delaunay mesh is an initial
result only by triangulating the human point cloud. It can be seen that the mesh contains a lot of
holes and burrs. Poisson surface is then approximated from the Delaunay triangles as a way to refine
the initial mesh. These holes and burrs are filled and smoothed, respectively, in the remeshing result

v j = 〈∩ · V, b j
〉
. (6.12)

The above linear system is solved using a conjugate gradient solver. After obtain-
ing the indicator function ω, Marching Cubes [14] based on octree representations
are adopted to extract the iso-surface and build a 3D human mesh. The solution
can create a smooth surface that robustly approximate noisy points, as illustrated in
Fig. 6.4b. The reconstruction comparison between the initial Delaunay triangulation
and Poisson surface reconstruction is shown in Fig. 6.5. In the parameter settings,
the maximum depth of octree is empirically set to be eight for achieving balance
between reconstruction quality and run time.

Since Poisson surface reconstruction does not allow the color information attached
to the point cloud, which is very important for recovering a realistic human, we regain
the texture of the reconstructed mesh by searching the correspondence between
points before reconstruction and vertices on the reconstructed surface. An efficient
kd-tree algorithm is designed to realize this task. Finally, we obtain a relatively
smooth textured mesh without holes, as illustrated in Fig. 6.5b. See Fig. 6.6 for more
reconstruction results.

6.1.5 Experimental Results

We implemented the proposed dynamic personalized avatar algorithm from noisy
RGBD data based on C++, OpenNI [17], and OpenCV [16]. OpenNI packages are
first employed to obtain the raw depth and color maps from the provided dataset. By
slightly modifying the code provided by OpenNI develop toolkit, we compute the



118 Z. Liu et al.

Fig. 6.6 The reconstruction examples of three users with different poses

RGB value of each pixel in the color map and the distance of each pixel in depth map
to Kinect. Because there exist offsets between color values and depth values, we align
the depth and color maps with the aid of a recent calibration method [11]. And then,
five camera images are registered to be a large 3D scene in the form of point cloud in
OpenCV. 3D human filters are introduced to obtain a relatively clean 3D human point
cloud, and we reconstruct its 3D mesh via Delaunay triangulation and Poisson surface
reconstruction. The averaged time for reconstruction of human is 0.47 seconds on a
modern computer with i7 CPU with 16G memory, and the implementation can be
seen as a near real-time solution to personalized avatar for user via multiple Kinects. It
should be noted that in practical applications, the reconstruction of realistic 3D human
mesh can be performed only once, for example, in the stage of system initialization.



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 119

Fig. 6.7 a Recon-
structed boxing action.
b Reconstructed waving
action. The reconstructed
realistic 3D human is placed
in a virtual scene and follows
user movements

The movement of skeleton can be mapped onto the preliminary 3D human in real
time.

In order to further demonstrate the realistic effect of personalized avatar, we
dynamically reconstruct a 3D human mesh for each frame in these videos and vi-
sualize the sequential results in a gaming development software, Unity [18]. We
reconstructed a sequence of moving 3D human meshes with different postures to
test our method, as shown in Fig. 6.7. These 3D human meshes are dynamically
imported into a virtual scene built in Unity and compose a realistic and meaningful
action which approximates the actual human movements in the scene of game or
virtual reality. It will enhance the interactive experience of users in practical appli-
cations.



120 Z. Liu et al.

6.1.6 Conclusion

In this section, we discussed the novel proposal about personalized avatar for user via
multiple Kinects. The core of the implementation process lies in how to reconstruct
a realistic human from noisy RGB data. The process is composed of three key steps,
that is, point cloud generation, 3D human filters, and human mesh reconstruction.
This novel application could help a user to see himself in a virtual scene using
low-cost RGB-D cameras. This will increase the interactive experience with the
computer in a virtual world. In the future, we will concentrate on continuing to
improve the quality of reconstructed human mesh from sparse RGB-D data in a noisy
environment. Neighbor frames will be considered as complementary information and
several reconstructed human in a non-rigid form will be registered to a more complete
3D mesh. We also try to realize its practical applications such as virtual fitting room
for validating its performance further.

6.2 Evaluating User’s Energy Consumption Using
Kinect-Based Skeleton Tracking

In this section, we propose a refreshing application that automatically evaluates
player’s energy consumption in gaming scenarios by a model with tracked skeleton,
which may help users to know their exercise effects and even diet or reduce their
weights. We develop a program to compute the energy consumption in real time by
analyzing data captured from Microsoft Kinect and also give a cue in the dynamic
interaction. We model 3D human skeleton by joining different body parts with 15
nodes and decompose player action into rigid body motions of these parts. Amount
of energy consumed in the action is calculated as the sum of powers required to
overcome gravity of each part. Experimental results show that instantaneous and
total energy consumption of different dancers can be stably calculated. The hardware
system is based on low-price Kinect and easily accepted by users. The proposed
application also provides a quantitative approach which help users to control their
dining and exercise intensity.

6.2.1 Introduction

Home-oriented virtual reality technologies become increasingly important in real-
time realistic interaction games. They bring players rich experience by placing play-
ers in virtual environments. As a new kind of devices based on infrared structured
light, depth sensors with low price such as Microsoft Kinect [2] have attracted much
attention among not only game users but also researchers and developers. It is pos-
sible to use depth sensors like Microsoft Kinect to capture human motion in an easy
and robust way. This will help many interactive games to animate an avatar and
promote user experience in games.



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 121

Some researchers have begun to use depth sensor data to construct 3D virtual
applications. Tong et al. [7] present a novel scanning system for accurately capturing
3D full human body model by using multiple Kinects, which could be used to provide
personalized avatars for everyday users. Bleiweiss et al. [5] blend player’s actual
movements tracked using a depth sensor with pre-defined animation sequences. They
aim at visually enhancing the player’s motion to display exaggerated and supernatural
motions. Suma et al. [20] provide us a middleware to facilitate integration of full-body
control with virtual reality applications and video games using OpenNI-compliant
depth sensors. Alexiadis et al. [4] propose an interesting application and evaluate
dance performances of students against a gold-standard performance and provide
visual feedback to the student dancer in a 3D virtual environment.

Different from above applications, we propose a novel system that automatically
evaluates player’s energy consumption in gaming scenarios, which may help users
to know their exercise effects and even diet or reduce their weights. We attempt to
solve the problem of real-time computation of energy consumption while dancing
and also give a numerical feedback in the interaction environment. We model 3D
human skeleton by connecting different body parts using 15 joints and decompose
player’s action into rigid body motions of these parts. Amount of energy consumed
in the action is calculated as the sum of powers required to overcome gravitational
potential energy. The dancing action is seen as the process of burning calories or fat.
We stably obtain quantitative energy consumption of each dancer and convert it to
the value of burned fat. Players could interactively know the exercise effects during
dance.

The section is organized as follows. Section 6.2.2 describes how to track the skele-
ton of Kinect captured data. We provide a energy consumption model by introducing
power of rigid motion in Sect. 6.2.3. We demonstrate the capability of stably com-
puting energy consumption of users by a group of experiments in Sect. 6.2.4 and
allow players to interactively know their exercise effects.

6.2.2 Kinect Skeleton Tracking

We use the provided dancer dataset captured using a Microsoft Kinect in 3DLife/
Huawei Challenge of ACM Multimedia. We take 10 dancers’ videos from the set
of dance videos. Each video is composed of a sequence of depth images, which are
encoded with video format. By means of the high-level skeleton tracking method
[15], we remove the background and extract the skeleton from the captured images.
This tracking method generates the positions of 17 joints, which include head, neck,
torso, left and right collars, light and right shoulders, left and right elbows, left and
right wrists, left and right hips, left and right knees, and left and right foot. Different
from using extra user calibration [4], we infer information about the user’s height and
body characteristics. It helps us to accurately obtain the changed skeletons in each
frame, as shown in Fig. 6.8. We also omit the joints of left and right foot because we
consider their weights can be incorporated into shank.



122 Z. Liu et al.

Fig. 6.8 We obtain a depth image of the environment from infrared light sensors, segment, and
extract the articulated skeleton from the background. The human body is connected via 15 joints,
and the mass is placed on 10 parts (head, torso, left and right forearms, left and right upper arms,
left and right thighs, left and right shanks). Compared with original skeleton generated by [15], we
omit two joints of feet because we consider their weights can be incorporated into shank. The dance
actions captured include walk, hand gesture, jump, rock, and rotation. These actions are represented
by a series of equivalent rigid body motions in our method. Therefore, each dance’s action can be
converted to the movements of body parts, resulting in energy requirements

Table 6.1 We record every
part’s percentage of the body
weight according to the
knowledge of human factors
engineering. For example, the
torso has 58 % body weight

Body part Weight proportion (%)

Head 23.1

Forearm 1.8

Upper arm 3.5

Thigh 9.4

Shank 4.2

Torso 58

We define a typical human model with 175 cm height and 65 kg weight by a
normal relation W = H − 110 between height H and weight W . According to
human factors engineering, every body part has a percentage of the body weight as
listed in the Table 6.1. For example, the torso is 58 weight. In our work, human body
contains 10 main mass parts, head, torso, left and right forearms, left and right upper
arms, left and right thighs, left and right shanks. They are connected as shown in
Fig. 6.8. The weight of neck is incorporated into head, and the weight of left and
right foot is incorporated into shank. In the next step, we will use this proportion to
compute the power required to move each part.



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 123

6.2.3 Energy Consumption Model

Here, we focus on describing the energy consumption model adopted in the applica-
tion. We use this model to provide dancers with their energy consumption values in
each frame and added up each frame’s energy consumption to obtain the total con-
sumption. According to the human model previously generated, each dancing action
is composed of the motions of all the body parts. Every body part is considered as
a rigid part, and these rigid parts are connected by 15 nodes. Energy consumption
of each motion is approximately equivalent to the required power to overcome grav-
itational potential energy of moving parts. The power is obtained by tracking the
position change of each body part, and the powers of all the parts are summed up.
Certainly, we view each body part as a rigid body with uniform mass distribution.

In order to acquire the kinetic energy of each moving part, its motion is firstly
decomposed into two directional movements in vertical plane and horizontal plane.
In the model, the vertical coordinate axis is defined as y axis, horizontal coordinate
axis is defined as x axis, and z axis points outside the display. We have known that the
body is composed of k mass parts {m1, ..., mi , ..., mk}. Here, k is set to 10 because
the human body contains 10 main mass parts mentioned in the previous section.
Assume each part has two end joints l, r . The height change of this part between the
frame t + 1 and the frame t is defined as ρh(t). The power Ev of moving part mi in
the vertical plane is given by

Ev(i) = mi gαh(t) = mi g
αyl(t) − αyr (t)

2
. (6.13)

where αyl(t) and αyr (t) are y coordinate variations of the end node l, r between
time t + 1 and t . Because gravity does not work during fall from the viewpoint of
energy consumption, we only take into account the gravitational potential energy
while rising. That is, the following condition should be satisfied

αh(t) > 0. (6.14)

We deduce the required power Eh during movement in the horizontal plane and
represent it via the kinetic energy in the horizontal plane

Eh(i) = Ex (i) + Ez(i) = 1

2
mi (vx (i)

2 + vz(i)
2). (6.15)

where i means the i th mass part. Ex (i) is the kinetic energy along x-axis, and Ez(i)
is the kinetic energy along z-axis. vx (i) is the moving speed of the mass part in the
x direction, and vz(i) is the speed in the z direction. Here, the speed in x direction is
obtained by differentiating its position as follows

vx (i) = αxl(t) − αxr (t)

αt
. (6.16)



124 Z. Liu et al.

where αxl(t) and αxr (t) are x coordinate variations of the end nodes l and r between
time t + 1 and t . Similar as the speed calculation in the x direction, the speed in z
direction can be obtained by

vz(i) = αzl(t) − αzr (t)

αt
. (6.17)

where αzl(t) and αzr (t) are z coordinate variations of the end nodes l and r between
time t + 1 and t .

Finally, the total power E(i) of the i th part between two frames is computed
as the summation of powers Ev(i) and Eh(i) in the two planes. We consider that
intervals between two frames are uniform, and hence, we see movement of rigid part
as uniform linear motion. The total energy consumption E of the body at time t is
the energy summation of all the parts.

6.2.4 Experimental Results

We implemented the application based on C++, and the skeleton movements are
visualized and confirmed in OpenGL. We programmed the computation process of
energy consumption using C++ and visualize the interaction in a gaming development
software, Unity [18].

We totally experimented ten dancers’ depth images and extracted their skeletons.
Every skeleton is used to drive a 3D human, and the joints connect corresponding
body parts. The instantaneous and total energy consumption are calculated in real
time. We obtained energy consumption in each frame and illustrate the relationship
between energy consumption and time. The cumulative energy consumption curves
of the first five dancers are drawn in the Fig. 6.9a. Another five dancers’ curves are
shown in the Fig. 6.9b. Curves with larger slope show that these dancers consume
more energy at this frame because their dances need more motions of body parts. In
order to interactively visualize the result, we also map the dancer’ motions onto a
photo-realistic avatar and place the avatar into Unity development environment [18].
And then, the system provides a vivid description of energy consumption, that is, we
suggest a conversion of dancers’ energy consumption to fat consumption per minute
(FCPM). It is known that 1 g fat contains the energy of 37.67 kilojoule. Player’s
motion interactively gives the dynamic value of fat consumption per minute, for
example, 0.427 g, as illustrated in Fig. 6.10.

6.2.5 Conclusion

In this section, we discussed our proposal about a real-time evaluation system
of energy consumption while playing an interactive game or dancing. This novel



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 125

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

3000

3500

4000
Habib
Anne
Bertrand
Gabi
Gael

Time [frame]

E
ne

rg
y 

[j
ou

le
]

(a)

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

Thomas
Helene
Jacky
Jean
Roland

Time [frame]

(b)

E
ne

rg
y 

[j
ou

le
]

Fig. 6.9 We calculate the cumulative energy consumption curves for all 10 dancers. a The cumu-
lative energy consumption curves of first five dancers during the whole dancing process. b The
cumulative energy consumption curves of another five dancers. The unit of the horizontal axis
is frame (30 frames per second), and the unit of vertical axis is joule. Because the ten dancers’
dancing time is different, the horizontal axis of each curve has different length from others. Curves
with larger slope show that these dancers consume more energy because their dances need more
movements of human body

application could help players to understand their energy status in real time and
reduce their weights and plan healthy diet. We tested ten dancers’ motions and gen-
erated their energy consumption curves stably. The energy consumption is converted
into the value of burned fat so that players could interactively know the exercise
effects during dance. In the future, we consider introducing a 3D human model con-
struction method by extending the process of 3D freeform model design proposed
by Igarashi et al. [22]. The extracted skeleton from depth sensors is dilated into a 3D
human model with accurate body proportion, which will be directly placed in the



126 Z. Liu et al.

Fig. 6.10 Visualization result in one frame. In each captured image, the power of movements per
minute is converted to fat consumption per minute. And fat consumption per minute (FCPM) is
displayed in the left top corner. The unit of FCPM is gram. Players could interactively know the
exercise effect in burning fat in real time

interactive environment to promote user experience. High-quality 3D human model
construction with multiple Kinects will be also considered in our future research
because the error between real players and a mean human model used in our system
is possible to be avoided.

6.3 Efficient Recognition of 3D Human Actions
Captured from Kinect

With the development of computer, people want to use computer in a lively and intu-
itive manner. In order to improve user experience with computers, we require some
methods to make computer recognize action automatically. In order to interact with
computer by action command, we propose a new real-time system that automati-
cally classifies the human action acquired by consumer-priced RGBD sensor. The
main contributions include two effective features extracted from RGBD low-quality
videos, average geometric feature and moving body part feature, which represent ac-
tion in certain degree. Classification experiments show that using these two features,
the accuracy of action recognition is acceptable. Users are capable of interacting
with computers through human action under Kinect environment.

6.3.1 Introduction

With the development of 3D capturer such as the Microsoft Kinect, users hope
to intuitively interact with computers, instead of traditional mouse and keyboard.
Compared with the depth of the traditional camera and motion capture system, more



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 127

game players and researchers use the Kinect because of its low price. It is possible
to use depth sensors like the Kinect to capture human motion in an easy and robust
way. This will help many interactive games to animate an avatar and promote user
experiences in games.

Existing approaches to human action and gesture recognition can be coarsely
grouped into two classes. The first uses 2D image sequences, e.g., Schudlt et al. [27]
use bag-of-words representations of the videos that discard much of the spatial struc-
ture of the data, which have proved effective in the classification of simple human
actions, e.g., walking, running, and boxing. The second approach uses 3D information
provides many benefits over the pure image based methods. Using the data of indus-
trial motion capture, Mller et al. [25] transform motions into time-varying geometric
feature relationships to achieve low dimensionality and robustness in the matching
process. Their approach is scalable and efficient for noise-free motion capture data.
Because of high cost of industrial motion capture system, it seems impossible to
be widely used. An alternative way is Kinect, which also provides relatively robust
motion capture at a low cost. Using the motion capture of Kinect, Raptis et al. [26]
propose a complete system which uses a novel angular skeleton representation, a
cascaded correlation-based max-likelihood multivariate classifier, and a space–time
contract–expand distance metric to process robust action recognition.

A lot of somatic games such as XBOX 360 Kinect sports change the way of game,
but these somatic games always focus on motion track rather than motion recognition.
Our aim is to expand substantially the interaction with computer, by using simple
actions to control the computer. To achieve this objective, we propose a novel system
that automatically identifies actions captured by Kinect, which may help users to
interact with computer more intuitively and easily. We model 3D human skeleton
[15] by connecting different body parts using 15 joints and extract the feature from
it. Then, we train a k-nearest neighbors (k-NN) classifier which is used to recognize
the action automatically.

Feature is a key to recognize action. Geometric feature [24] is used first to
convert the spatial information to boolean values. By analyzing geometric feature,
we discover two new features: average geometric feature and moving body parts
feature, which have a good representative of action.

The remainder of this section is organized as follows. We describe the proposed
features of RGBD data in Sect. 6.3.2. In Sect. 6.3.3, we describe how to use the
feature to build a classifier. In Section 6.3.4, we use 83 motion clips in 10 classes to
test our method.

6.3.2 Action Feature

The first step of our method is to extract the skeleton from the captured images.
We first extract the skeleton from the captured images. Then, its geometric feature
will be computed. Based on the geometric feature, we introduce average geometric
feature and moving body part feature.



128 Z. Liu et al.

Fig. 6.11 We compute a depth image of the environment from infrared light sensors, segment, and
extract the articulated skeleton from the background. The human body is connected via 15 joints.
Each image from left to right represents RGB image, depth image, and skeleton. The upper row is
a single frame of waving hand, and the bottom row is a frame of knocking the door

Kinect Skeleton Tracking. We follow Shotton’s [15] method to extract the skele-
ton from the captured images. Through the depth sensor, we get depth image which
is used to process skeleton tracking. We obtain the skeleton with 15 nodes, which
include head, neck, torso, light and right shoulders, left and right elbows, left and
right wrists, left and right hips, left and right knees, and left and right foot, as shown
in Fig. 6.11.

Average Geometric Feature. In order to analyze the motion with fixed standard,
we follow the idea of Mller et al. [24] to describe geometric relations between some
nodes of a pose. For example, consider a fixed pose, which we test whether the right
foot lies in front of (feature value is zero) or behind (feature value is one) the plane
spanned by the center of the torso, the left hip joint, and the right hip joint. Another
way to calculate geometric feature is measuring the distance of nodes. For example,
the distance of both hands is below (feature value is one) or above a certain distance
threshold. Threshold is set by hand or position of skeleton nodes. A motion clip with
K frames yields a feature matrix G with the size of K×D. Gi = 0 or 1, D is the
dimension of feature. In our work, D is set to 13. See details in Table 6.2.

The geometric feature used above only contains the information of single frame.
For example, the single-frame skeleton in Fig. 6.12, it may be punching, clapping, or



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 129

Table 6.2 The geometric feature used in our work

Body part Threshold Geometric feature

Arm part [0∪ 150∪] Left arms bent

Arm part [0∪ 150∪] Right arms bent

Arm part 0.150 m Left hand approaching left hip

Arm part 0.150 m Right hand approaching right hip

Arm part 0.200 m Left hand approaching head

Arm part 0.200 m Right hand approaching head

Arm part head height Left hand raised

Arm part head height Right hand raised

Arm part 0.150 m Hand approaching

Mid part [15∪ 180∪] Back bent

Leg part Right knee height Left foot raised

Leg part Left knee height Right foot raised

Leg part 0.525 m Foot approaching each other in horizontal plane

We calculate 13-dimensional geometric feature of arm, middle, and leg body parts. The middle
column is threshold value. The right column shows the meaning of geometric feature

Fig. 6.12 The upper row shows single frame of punching action; however, it may be a clapping
action or one of other actions. The lower row represents single frame of punching and kicking
action, and its left leg rises compared to punching action



130 Z. Liu et al.

other actions. It shows that the single frame may be classified incorrectly. Because
continuous action can provide much more information, we want to find feature which
can distinguish between actions better. The average value of geometric feature can
summarize the change rule; therefore, it is a representative feature for action recog-
nition. For example, the waving hand action’s arm is always bending, so the average
value of geometric feature correspondence to this arm is close to 1; in contrast, the
same average feature of the knocking action is about 0.7 because the arm sometimes
unbend in this action. We can infer that the average value of geometric feature is a
simple but robust feature. After extracting the geometric feature of a motion clip, we
calculate the average value AG of every dimension, the element value of AG ranges
from zero to one. So a motion clip has an average geometric feature vector which
size is D.

Moving Body Part Feature. Each class of action has specific moving parts of
body that means each class of action has typical numbers which accounts the number
of nonzero geometric features. Actions with different moving body part should not
belong to the same class. For example, if legs in one motion clip keep static, while
legs in another motion clip have obvious changes, these two motion clips should not
belong to the same class, as shown in Fig. 6.12. Our geometric feature is calculated
due to the moving degree of body parts, each class may have a special number of
moving body parts. Based on this observation, we calculate the number of moving
arm parts, central body part, leg parts of every motion clip according to geometric
feature, respectively. Each motion clip has the moving body part feature M with
the size of 3, as shown in Fig. 6.13. We can conclude that the number of moving
body parts in most action classes is constant. A few action classes may have some
fluctuation, e.g., in the jumping jacks, and the number of moving arm parts varies.
This is caused by the all-body movement. And we can also discover that only in
specific action classes, certain body parts have movements. Such as middle body
parts, only punch and kick, and weight lift, have changes.

6.3.3 Action Recognition

In this section, we will first train a k-NN classifier by using the features proposed in
the above section. Then, we use the trained classifier to realize action recognition.
We adopt a k-NN classifier, and the classifier is trained from a set of hand-labeled
motion clips. These motion clips contain complete action and incomplete action. The
difference between complete action and incomplete action is the length of action. For
example, the average number of punching frames is about 50. Hence, a motion clip
of punching lasts for 40 frames and can be defined as complete action. However, if a
clip has only 20 frames, we classify the clip into incomplete action. Both complete
and incomplete action clips will be used for training. Then, the average geometric
feature combines with moving body part feature, and accordingly we get a feature
vector S with the size of 16. Each feature S of motion clip is regarded as the input



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 131

Fig. 6.13 The upper table shows the number of moving parts of arms. The middle table shows the
number of moving parts of middle body. The bottom of table illustrates the number of moving parts
of legs

of classifier. The classifier parameters are fixed via training and will be employed to
recognize novel actions on line.



132 Z. Liu et al.

Once the classifier is trained, labeling motion clip is an automatic process. In
order to get a label of motion clip, we extract the features as the same as the training
process. Then through examining the labels on each of the closest samples, the label
of testing motion clip can be determined. In order to examine our feature further,
a SVM classifier is also trained to perform classification. k-NN classifier can be
compared with SVM.

6.3.4 Experimental Results

We programmed the algorithm of action recognition using C++. We used the pro-
vided dataset captured using a Kinect by 3DLife/Huawei Grand Challenge [10]. Our
classifier was trained on 85 motion clips which contain 10 classes. And the testing
data are composed of 83 motion clips. Both training data and testing data contain
different frames which represent the completeness of the action. The number of
nearest neighbors is set to 4 in our work. The average time of extracting feature and
recognition by using the motion clip with average 30 frames is shown in Table 6.3.
The classification performance is computed in four cases: (1) motion clips with high
completeness; (2) motion clips with low completeness; (3) using only the average
geometric feature AG; (4) using both the average geometric feature AG and moving
body part feature M . The results are summarized in Tables 6.4 and 6.5. We also used
SVM classifier to test our two features. The test data contains both incomplete action
and complete action. The result is shown in Table 6.6, and the classification accuracy
of SVM is clearly lower than that of k-NN.

We can find that (1) by using moving body part feature, the classification accuracy
increases by about 10 %. Moving body part feature is validated useful to discriminate
the motion which average geometric feature is similar to another. In Fig. 6.12, without
moving body part feature, the action of punching and kicking is always recognized
as punching, because of the short length of kick action. The average value of leg
geometric feature is also small. However, with feature of the body parts, we solved
this problem when counting the number of moving parts of the body can discriminate
two actions. (2) We compared classification accuracy between motion clips with
low completeness and high completeness, the motion clip with high completeness
achieved higher accuracy. The incomplete motion clip is similar to single-frame
action, which contains ambiguous information resulting in incorrect classification.
The result also accords with the rule that the longer action is more possible to be
identified, which is similar as the viewpoint of human. (3) Recognition of jumping

Table 6.3 Average time of feature extraction and action recognition

Process Average time

Feature extraction 0.076 s

Recognition 0.850 s



6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 133

Table 6.4 The classification accuracy of incomplete motion clip

Action AG + M (%) AG (%)

Hand waving 60 40

Knocking door 75 75

Clapping 75 75

Punching 75 75

Push away 25 25

Jumping jacks 100 100

Lunges 100 100

Punching and kicking 66.7 0

Weight lifting 100 100

Tennis forehead 50 75

Average 72.57 64.86

The middle column is the classification accuracy using both average geometric feature AG and
moving body part feature M , and the right is the accuracy using only average geometric feature

Table 6.5 The classification accuracy of complete motion clip

Action AG + M (%) AG (%)

Hand waving 80 80

Knocking door 25 25

Clapping 75 75

Punching 75 60

Push away 80 40

Jumping jacks 100 100

Lunges 100 100

Punching and kicking 100 50

weight lifting 100 80

Tennis forehead 75 50

Average 80.43 67.35

Table 6.6 The classification accuracy of action

AG + M (%) AG (%)

Average accuracy 59.01 38.89

jacks, lunges, and weight lifting obtains very high accuracy. The reason is that both
average geometric feature and moving body part feature in these three actions are very
different, which leads to higher discrimination. (4) Our method did not perform well
in the action of knocking the door illustrated in Fig. 6.11. This action is commonly
misclassified as waving hand because their geometric features are close. (5) The time
of recognition is fast, and it is possible to implement the real-time applications.



134 Z. Liu et al.

6.3.5 Conclusion

In this section, we proposed a real-time human action recognition system used for
Kinect applications. Two new features, average geometric feature and body part fea-
ture, were introduced to represent different actions. These features were classified
with k-NN classifier to achieve high classification accuracy. However, our method
does not perform well in ambiguous action classes. In the future, we plan to extract
more robust and discriminative features to improve the accuracy, and structural clas-
sifier such as latent structural SVM will also be investigated to enhance classification
performance.

References

1. Berger M, Levine JA, Nonato LG, Taubin G, Silva CT (2013) A benchmark for surface recon-
struction. ACM Trans Graph 32(2):20

2. Microsoft Kinect (2010) http://www.xbox.com/kinect
3. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with Microsoft Kinect

sensor: a review. IEEE Trans Cybern 43(5)
4. Alexiadis D, Daras P, Kelly P, O’Connor NE, Boubekeur T, Moussa MB (2011) Evaluating a

dancer’s performance using Kinect-based skeleton tracking. In: Proceedings of ACM multi-
media

5. Bleiweiss A, Eshar D, Kutliroff G, Lerner A, Oshrat Y, Yanai Y (2010) Enhanced interac-
tive gaming by blending full-body tracking and gesture animation. In: Proceedings of ACM
SIGGRAPH Asia sketches

6. Pedersoli F, Adami N, Benini S, Leonardi R (2012) XKin-: eXtendable hand pose and gesture
recognition library for Kinect. In: Proceedings of ACM multimedia

7. Tong J, Zhou J, Liu L, Pan Z, Yan H (2012) Scanning 3D full human bodies using Kinects.
IEEE Trans Vis Comput Graph 18(4):643–650

8. Ye G, Liu Y, Deng Y, Hasler N, Ji X, Dai Q, Theobalt C (2013) Free-viewpoint video of human
actors using multiple handheld Kinects. IEEE Trans Cybern 43(5)

9. Barmpoutis A (2013) Tensor body: real-time reconstruction of the human body and avatar
synthesis from RGB-D. IEEE Trans Cybern 43(5):1347–1356

10. ACM Multimedia 2013 Huawei/3DLife Grand Challenge. http://mmv.eecs.qmul.ac.uk/
mmgc2013/

11. Daniel HC, Juho K, Janne H (2012) Joint depth and color camera calibration with distortion
correction. IEEE Trans Pattern Anal Mach Intell 34(10):2058–2064

12. Cignoni P, Montani C, Scopigno R (1998) DeWall: a fast divide and conquer Delaunay trian-
gulation algorithm in Ed. Comput Aided Des 30(5):333–341

13. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Proceedings of
eurographics symposium on geometry processing

14. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface reconstruction
algorithm. In: Proceedings of ACM SIGGRAPH

15. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011)
Real-Time human pose recognition in parts from single depth images. In: Proceedings of IEEE
conference on computer vision and pattern recognition

16. OpenCV. http://www.opencv.org
17. http://www.openni.org
18. Unity. http://www.unity3d.com

http://www.xbox.com/kinect
http://mmv.eecs.qmul.ac.uk/mmgc2013/
http://mmv.eecs.qmul.ac.uk/mmgc2013/
http://www.opencv.org
http://www.openni.org
http://www.unity3d.com


6 Human-Centered 3D Home Applications via Low-Cost RGBD Cameras 135

19. 3DLife/Huawei ACM MM grand challenge. http://perso.telecom-paristech.fr/essid/3dlife-gc-
12/

20. Suma EA, Lange B, Rizzo A, Krum DM, Bolas M (2011) FAAST: the flexible action and
articulated skeleton toolkit. In: Proceedings of IEEE virtual reality conference

21. OpenGL. http://www.opengl.org
22. Igarashi T, Matsuoka S, Tanaka H (2007) Teddy: a sketching interface for 3D freeform design.

In: Proceedings of ACM SIGGRAPH courses
23. 3DLife/Huawei ACM MM Grand Challenge. http://mmv.eecs.qmul.ac.uk/mmgc2013/
24. Mller M, Rder T, Clausen M (2005) Efficient content-based retrieval of motion capture data.

ACM Trans Graph 24(3):677–685
25. Mller M, Rder T (2006) Motion templates for automatic classification and retrieval of motion

capture data. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer
animation, pp 137–146

26. Raptis M, Kirovski D, Hoppe H (2011) Real-time classification of dance gestures from skele-
ton animation. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer
animation, pp 147–156

27. Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In:
Proceedings of international conference on pattern recognition, pp 32–36

http://perso.telecom-paristech.fr/essid/3dlife-gc-12/
http://perso.telecom-paristech.fr/essid/3dlife-gc-12/
http://www.opengl.org
http://mmv.eecs.qmul.ac.uk/mmgc2013/


Chapter 7
Matching of 3D Objects Based on 3D Curves

Christian Feinen, Joanna Czajkowska, Marcin Grzegorzek
and Longin Jan Latecki

Abstract In this chapter, we introduce a novel approach to 3D object retrieval capa-
ble to match query objects generated by a user with those captured by a depth device
(RGB-D). Our processing pipeline consists of several steps. In the preprocessing
step, we first detect edges in the depth image and merge them to 2D object curves
which allows a back-projection to 3D space. Then, we estimate a local coordinate
system for these 3D curves. In the next step, distinctive feature points are localised
and shortest paths between these points are determined. Subsequently, the shortest
paths are represented by robust descriptors invariant to rotation, scaling, and transla-
tion. Finally, all the information collected to describe the object is used for matching.
The matching process is transformed to the problem of Maximum Weight Subgraph
search. Excellent retrieval results achieved in a comprehensive setup of challenging
experiments show the benefits of our method comparing to the state-of-the-art.

7.1 Introduction

3D objects captured by 2D imaging systems are usually classified by texture, 2D
shape, or colour features. Often, the object has to be segmented from the background
first, which is a highly challenging task in complex scenes. The features extracted in
the next step have to posses discriminative power with regard to certain properties.
Although many state-of-the-art methods for 3D object recognition using 2D visual

C. Feinen · J. Czajkowska · M. Grzegorzek (B)

Pattern Recognition Group, University of Siegen, 57076 Siegen, Germany
e-mail: marcin.grzegorzek@uni-siegen.de
http://www.pr.informatik.uni-siegen.de

L.J. Latecki
Department of Computer and Information Sciences, Temple University,
Philadelphia, PA 19122, USA
e-mail: latecki@temple.edu

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_7

137



138 C. Feinen et al.

Fig. 7.1 Objects used during our evaluation. The columns are showing from left to right: the chair,
the stand and the table. The upper row shows the query object, generated by a user, while the lower
one illustrates the corresponding target. a–c Query. d–f Target

sensors report on excellent classification rates [12, 19, 27], they often suffer from
changing light conditions, cluttered backgrounds, occlusions, etc. Moreover, due to
new and more complex requirements most of the methods are not applicable to 3D.
For instance, while the ordering of points is trivial in 2D, it is tough in 3D.

In our work, a single 2.5D image is taken by a depth device (Kinect) and used
for representing an arbitrary scene including all of its 3D objects. We focus on using
3D curves derived by 2D contours as a feature distinguishing objects. While native
contour description techniques have been comprehensively investigated in the 2D
space, their extensions to 3D still need to be conceptualised. The advantages of the
contour descriptors are, e.g., the low computational requirements as well as their
invariance to colour and texture changes. Their disadvantage lies in their sensitivity
with regard to changing viewpoints. To overcome this problem, 3D curves are used
instead of the 2D contours themselves.

In this chapter we introduce a novel technique for 3D object retrieval based on
3D curve configurations. The method matches a highly abstracted 3D query object
generated by a user (Fig. 7.1a–c) with those captured by a depth device (Fig. 7.1d–f).
This results in great advantages. First, it works stable and leads to a good accuracy
even under significant view point changes as proved in Sect. 7.9. Second, the user-
generated query model can be easily replaced by any other model without generating
a new and large training set in order to adapt the method to a new object class.
However, since our approach highly relies on the feature points which are distinctive
for each object class, the used fixed and single view approach limits us in the range
of objects. Nevertheless, the method can be easily extended to multiple views in



7 Matching of 3D Objects Based on 3D Curves 139

combination with techniques from the field of 3D reconstruction. This enables us to
merge the 3D curves of all views and would result in one fully reconstructed 3D
curve model. Moreover, it can be assumed that the data provides a high accuracy as
well as more reliable lines compared to the current ones. Besides this, articulated
objects can not be handled in its natural way, but, theoretically, one could provide a
specified query object for a certain articulation as input for a successful matching.

The chapter is structured as follows. We start with a comprehensive state-of-
the-art summary in Sect. 7.2. Then, in Sect. 7.3, a brief method overview shortly
explaining all steps of the processing pipeline and their dependencies between each
other is given. Sections 7.4–7.8 describe the proposed matching method in detail.
A thorough quantitative evaluation of our methodology is documented in Sect. 7.9.
Finally, our work is concluded in Sect. 7.10.

7.2 Related Work

Researchers early realised that accuracy and robustness of the object segmentation,
detection, and recognition can be remarkably increased, if 2D data is enriched with
2.5D or 3D information. Supported by the recent development of range-measurement
devices, many approaches that, similar to us, exploit depth for 3D object recognition
purposes have been published.

[Topics affected by that new technology include, e.g.,] preprocessing, object tracking and
recognition, human activity analysis, hand gesture analysis, and 3D indoor mapping [13].

The work of Han et al. [13] provides a very detailed and complete overview about
most recent projects initiated or enhanced by employing a Kinect device.

Contour-Based Methods: The most related work was published by Ma et al. [22].
In our approach, we employ the same 3D line segment data structure to represent
3D objects. However, instead of using a correspondence graph of all pairs of 3D line
segments, we first detect feature points and subsequently use them for computing the
Maximum Weight Subgraph. The work by Nguyen et al. [24] introduced an algorithm
that combines 2D images and 3D point clouds. In our approach, 2D lines are first
extracted from a 2D image and then back-projected to get a set of 3D points for
each line. Based on these point sets, 3D lines are estimated. Another relevant method
has been proposed by Stiene et al. [29]. The authors use range data for reliable
silhouette extraction that represents an object for recognition. Payet and Todorovic
[25] address view-invariant object detection and pose estimation from a single image
by using contours as basis features. In this approach, a few view-dependent shape
templates are jointly used for detecting object occurrences and estimating their 3D
poses. However, their work requires training examples of arbitrary views of an object
to learn a sparse object model.

Approaches Operating on Point Clouds: Drost et al. [8] propose a novel method
that creates a global model description based on oriented point pair features to detect



140 C. Feinen et al.

rigid 3D objects in 3D point clouds. By employing a fast voting scheme this model
can be matched locally. In [26] the authors describe an algorithm to recognise object
categories in point clouds. Here, 3D SURF local descriptors are computed on partial
3D shapes extracted from point clouds. Subsequently, these descriptors are used to
generate a vocabulary of 3D visual words.

Kernel-Based Algorithms: Bo et al. [4] introduce a kernel-based object recognition
approach. Here, a set of kernel features, e.g., size, shape and depth edges (extracted
from the point cloud and the depth image) are proposed. In [3] the same authors
developed hierarchical kernel descriptors that recursively apply kernel descriptors in
order to form image-level features. Another kernel-based object recognition approach
operating on range images was introduced by Li and Guskov [20]. They employ local
shape descriptors computed on surface patches defined by detected salient features.
The similarities between input 3D images are estimated by matching their descriptors
with a pyramid kernel function.

Surface-Based Approaches: A plethora of approaches exploit surface properties
for object recognition. Spin images, introduced by Johnson and Hebert [15], are one
of the most popular features in this area. Further relevant examples are the work on
surface patch representation proposed by Chen and Bhanu [7] or the scale-invariant
local 3D shape descriptors [2, 23], where the local surface patches of the model are
represented by tensors. Global and local surface features have been comprehensively
investigated in the past (overview in [6]). In [30] histograms of oriented normal
vectors (HONV) are presented as features for local geometric properties based on
2.5D data. Here the azimuthal and zenith angle is computed for each normal vector
and voted into a 2D histogram. Through concatenation of this histogram, the HOVN
feature is generated. This representation is strongly related to our work, refer Sect. 7.7.

RGB-D-Based Approaches: In Lai et al. [16] present a large RGB-D dataset where
the instances of each object class are captured from multiple views (51 classes and
300 objects). Moreover, they propose a comprehensive evaluation based on state-of-
the-art methods where they use the RGB as well as the 2.5D image for the purpose of
feature extraction. Later, the same authors also provided a sparse distance learning
approach and proposed a distance function allowing data adaption by assigning
weights to each feature and each view [17]. In [28] an adaptive fusion scheme for
RBG-D data is introduced, realised by a two-tier mixture of local experts architecture.
Here two different gating functions weight the confidence of each detector and adjust
the relative importance of each sensory cue with respect to the other one, respectively.

Unsupervised Dictionary-Based Approach: According to the authors in [5] all so-
called “hand-designed representations” are insufficient for robust object recognition
purposes. Thus, they propose an unsupervised feature learning approach using a
hierarchical matching pursuit (HMP) . In more detail, dictionaries are first learnt for
different data channels based on pixel patches (first layer). Afterwards, the second
layer of the proposed HMP employs the first layer to represent observations as sparse,
linear combination of these codewords.



7 Matching of 3D Objects Based on 3D Curves 141

Path Similarity Skeleton Graph Matching: A highly related 2D skeleton match-
ing approach was proposed by Bai and Latecki [1]. They match skeletons based on
dissimilarities between the shortest paths connecting their endpoints. For this, each
shortest path is sampled by a fixed number of points. Each such point is represented
by a radius of a maximum disc that was determined for it during the skeletonization
process. In this way, every shortest path is represented by a vector of radii. Sub-
sequently, matching costs for all pairs of skeleton endpoints are calculated. This is
done by an approach called Optimal Subsequence Bijection (OSB). Afterwards, all
output values of the OSB are rearranged and given as input to the Hungarian algo-
rithm, where the matching problem is reduced to a classical assignment problem of
a bipartite graph.

7.3 Method Overview

The whole processing pipeline of our approach consists of multiple steps as depicted
in Fig. 7.2. The input to our approach is a depth image preprocessed by the meth-
ods proposed in [31] and [22]. In more detail, the ground plane is detected and the
camera is moved to the scene’s top pointing to the ground. In this view, the scene is
clustered into objects based on the distance information stored in the 2.5D image.
Afterwards, the Canny edge detector is run on the depth image itself, the edge frag-
ments are combined to object contours and these, in turn, are back-projected into
3D by incorporating both, the depth and the cluster data. After this preprocessing
step, we start to approximate a local coordinate system (LCS) for each scene object
(Sect. 7.4). This is critical for all subsequent tasks and has to be as accurate as pos-
sible. For this, a PCA is performed on the pixel coordinates of each cluster. The
principal components lead to a first initial alignment of the x and the y axis, where
the z axis is assumed to be perpendicular to them. To stabilise the whole procedure,
the orientations of x and y are refined by involving the z coordinate of all 3D curves.
In the third step (Sect. 7.5), representative feature points are computed. This is done
iteratively by combining already localised features with unknown object points. By
taking this set as well as the LCS, the point combinations are analysed in terms
of triangular and rectangular constraints. After retrieving all feature points, shortest
paths between them are computed. Caused by the symmetry of our objects and by
measurement inaccuracies, some of these paths are ambiguous. Hence, in Sect. 7.6,

Fig. 7.2 Processing pipeline of the proposed approach



142 C. Feinen et al.

we propose a modification of the well-known Dijkstra algorithm to tackle this prob-
lem. In the fourth step a shortest path descriptor is generated based on relative angles
(Sect. 7.7). Induced by that structure, our method becomes invariant to rotation,
scaling and translation. Finally, in Sect. 7.8, we use all information collected before
and perform the matching. For this, the process is transformed into a more generic
and more challenging problem, namely the search of Maximum Weight Subgraphs
(MWS)—known to be NP-hard. By incorporating mutual exclusions the dimension-
ality of the search space can be reduced. In addition to that, the algorithm is more
flexible and more accurate. At the end, the actual matching process is performed
with an abstracted and user generated query model (Fig. 7.6) matched to the ones
captured by the depth device.

7.4 Object Local Coordinate System

The estimation of the object’s LCS is necessary, because a LCS increases the infor-
mation content of a 3D curve set drastically. However, this task is not trivial and,
thus, two assumptions must be incorporated. First, the object is symmetric in terms
that its geometry can be approximated with cuboids. Second, the object is assumed
to be in its dedicated pose—one axis is fixed. Although the latter assumption reduces
our problem to 2D space, we also incorporate the 3D part later. The LCS estimation
directly follows the output of the approach described in [31]. This method results
in clustered regions derived from the scene’s top view (as shown in Fig. 7.3). Each
cluster represents one object inside the scene. By taking all pixel coordinates cov-
ered by the cluster region, we determine the two principal components (k1, k2).
These eigenvectors provide us with a rough approximation of the coordinate system.
In order to achieve a more robust and accurate result, we additionally introduce a LCS
refinement step. In contrast to the previous step, it operates on the set of 3D curves.
In more detail, operating from the centre of gravity (COG), we sample the neigh-
bourhood of k1 by rotating it with following angles α ∈ {ω/4, . . . , 0, . . . ,−ω/4}.
For each rotated version k(α )

1 , the start and the endpoints of all 3D curves, indicated
by ρ, are separated along this axis in two disjoint point sets A(α ) and B(α ):

Fig. 7.3 Left currently observed scene. Centre detected ground plane. Right top view on the scene
achieved by camera translation pointing to the ground



7 Matching of 3D Objects Based on 3D Curves 143

−10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

...

1

1

2

2

3

3

4

4

5

5

6

6

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

Fig. 7.4 LCS refinement. Left one possible rotation α of k1 and COG shown in green and red. By
projecting the points on k(α )

1 , a natural point order is retrieved. Right plot of point-to-axis distances
in relation to the order obtained previously

∀α A(α ) ∩ B(α ) = ∅ and A(α ) ∪ B(α ) = ρ. (7.1)

Afterwards, the points of A(α ) and B(α ) are projected on k(α )
1 , respectively. These

values lead to a natural order of all points in each subset according to their projection
value (see Fig. 7.4). Moreover, the point-to-axis distances can be easily retrieved.
Finally, a distance measurement approach [e.g., Dynamic Time Warping (DTW) or
Earth Mover’s Distance (EMD)] is used to calculate how symmetric A(α ) and B(α )

are to each other. The advantage of using the EMD is the consideration of the z
coordinate of each 3D curve. This means, in addition to the ground distance matrix,
we also pass the z coordinate of each point, interpreted as weight, to the method. The
final k(α )

1 is the one that separates A(α ) and B(α ) with the lowest distance and provides
the best orientation of the x axis for our LCS. The whole procedure completes by
changing the positive orientation of the x axis pointing to object area with the higher
point density (e.g. in case of a chair, to its back).

7.5 Object Feature Points

Our proposed matching procedure utilises the concept of shortest paths introduced
in [1]. Consequently, object features are necessary, because they act like the skeleton
end nodes described in the original method. The computation of features, without
using any a priori knowledge, is a challenging task. In order to simplify it, we assume
that the objects are symmetric and are approximable by cube-similar geometries. Our
algorithm starts by localising a set of initial feature points, valid for all object classes.
To determine this set, we select the farthest neighbour for each point in ρ leading to
τ = {x̂1, . . . , x̂n, . . . , x̂N }:



144 C. Feinen et al.

Fig. 7.5 Proposed feature detection pipeline. Top left initial feature points shown in green; virtual
ones in cyan and their closest object correspondences in red + imaginary diagonal in orange. Top
right False positive removal by enforcing (7.3) at each feature point location (red). Bottom left
Valid feature points after false positive removal (pink) as well as corner point candidates (blue)
after rectangular fitting. Bottom right 2D cluster scheme for mid-level features according to their
position inside the LCS

τ = {x̂ | x̂ ∈ ρ, ∃x ∈ ρ : x̂ ∝= x ∧ ∀x̆ ∈ ρ\{x, x̂} → |x − x̂| > |x − x̆|}.
(7.2)

where N � |ρ|. This leads to the start and endpoint of the imaginary diagonals
inside the object (Fig. 7.5, drawn in orange). To tackle the emergence of phantom
features caused by outliers, we additionally enforce



7 Matching of 3D Objects Based on 3D Curves 145

τ′ = {x̂k | ∃ x̂ j , x̂h : f (x̂k, x̂ j , x̂h) = 1 ∧ k ∝= j ∝= h} where

f (xl , xm, xn) =
⎡

1, if
⎣⎣ω

2 − arccos(〈xm − xl , xn − xl〉)| < T
0, else

. (7.3)

Afterwards, a non-maximum suppression (NMS) is conducted, which is explained
later in this section. For now, it is assumed that |τ′| ≥ 2 in order to start a dimension
analysis. During this step, all feature point pairs, whose coordinates differ signifi-
cantly in two dimensions while they remain very similar in one, are detected:

(p1 − q1)(p2 − q2)(p3 − q3) ≈ 0 ∧ |(p1 − q1)(p2 − q2) + (p1 − q1)(p3 − q3)

+ (p2 − q2)(p3 − q3)| � 0. (7.4)

where p = (p1, p2, p3)
T and q = (q1, q2, q3)

T. It has to be noted that this procedure
can only be realised thanks to the LCSE in Sect. 7.4. Then, new feature points get
detected by swapping one of the coordinates analysed as dissimilar. This results in
two virtual points p∇ = (q1, p2, p3)

T and q∇ = (p1, q2, q3)
T which are employed to

find their closest object correspondences. To remove false positives appearing during
that step (Fig. 7.5), all points have to fulfil again our constraint defined in (7.3). The
valid ones (τ′′ = {xk | ∃ x j , xh ∈ τ′ : f (xk, x j , xh) = 1 ∧ k ∝= j ∝= h}) are
added to the feature set: τ = τ′ ∪ τ′′. This procedure is repeated until no further
candidates have been found and completes with a further NMS. The results as well
as the virtual points are shown in Fig. 7.5.

By introducing a further extension to our method, namely a rectangular fitting
technique, we now try to detect the seat corner points, being important, e.g., in case
of a chair. The fitting procedure expects four input arguments which encompass two
features x̂m, x̂n ∈ τ as well as two object points xk, xl ∈ ρ (m ∝= n ∝= k ∝= l). The
points xk, xl are stored in τ, if this combination forms a rectangular structure. The
outcome is shown in Fig. 7.5. This leads to an over-representation of each corner
and is handled by the proposed two step NMS clustering approach. First, the features
have to be clustered along the z axis. Second, each of the sets determined in the first
step is clustered in 2D according to the quadrants of the LCS. The z clustering is
realised by determining the maximum and minimum z axis value (zmax, zmin) of all
feature points, which is sufficient for stands and tables. However, in case of chairs a
third level is necessary: zmid = (zmax − zmin)/2. Section 7.8 describes an automatic
way to estimate the best number of z levels. Then, each feature x̂ must be assigned
to one z level:

g(q) =
⎤
⎦

⎧

zmax, if |p3 − zmax| < |p3 − zmid|
zmid, if |p3 − zmid| < |p3 − zmax| ∧ |p3 − zmid| < |p3 − zmin|
zmin, if |p3 − zmin| < |p3 − zmid|

.

(7.5)
where q = (q1, q2, q3)

T. The resulting z clusters are processed subsequently in
the 2D space, where each cluster point can easily be assigned to its corresponding



146 C. Feinen et al.

quadrant of the LCS (Fig. 7.5):

h(q ′) =

⎤
⎨⎨⎦

⎨⎨⎧

1, if 0 ≤ κ (q ′
2, q ′

1) < ω
2

2, if ω
2 ≤ κ (q ′

2, q ′
1) < ω

3, if 0 > κ (q ′
2, q ′

1) > −ω
2

4, if −ω
2 ≥ κ (q ′

2, q ′
1) ≥ −ω

. (7.6)

where κ (y, x) = 2 arctan(y/(
⎩

x2 + y2 +x), q = (q1, q2, q3)
T and q ′ = (q ′

1, q ′
2)

T.
Finally, we check whether one of the clusters already accommodate a feature point. If
it is the case, all cluster points are skipped. If not, the point with the highest distance
to the centre of gravity is selected.

In order to perform the shortest path analysis, feature connections need to be
established. Therefore, we search for 3D curves, which can be interpreted as possible
links between two points. Thus, all 3D curves have to be taken into account for each
feature point pair, with the aim to find at least one segment satisfying the following
constraints. Firstly, the length of the curve has to be greater than the average of all
line lengths. Secondly, the ratio of lengths between the 3D curve and the virtual link
has to be greater than T (R). Thirdly, the distance of the curve’s orientation to the
one of the virtual segment has to be below T (W ). Fourthly, the closest distance from
the currently observed feature point to either start or endpoint of the curve (used for
verifying the virtual link), has to be below T (C). If all these constraints are fulfilled,
the observed feature pair is marked as connected. Even if the result is suffering from
a small amount of wrong connections, it does not decrease the robustness of our
methodology due to our modified shortest path algorithm.

7.6 Modified Dijkstra Algorithm

As shown in Sect. 7.9, the proposed feature localisation method leads to good results.
However, even if we assume that both objects belong to the same class, it can happen
that paths are not similar or ambiguous, although all features are found and con-
nections are established correctly. For example, in case of the user-generated chair
model, there are at least two paths from the lower left front leg to the upper right back
with identical lengths. If there is no appropriate criterion, the algorithm has to choose
non-deterministically one of these paths. Other kinds of path irritations are caused
by inaccuracies occurring during the depth acquisition, the line approximation or the
curve back-projection. Consequently, there is a high risk to retrieve another result
as the actual shortest path. Thus, the dissimilarity would increase drastically and
the whole matching algorithm would fail. To tackle this problem, we propose two
additional mechanisms to improve the result of the Dijkstra algorithm. Firstly, all
shortest paths of the query object are monitored. This is done by a simple description
in terms of left/right, up/down and front/back derived from object’s LCS with the
objective to depict the paths taken during the computation. These path descriptors



7 Matching of 3D Objects Based on 3D Curves 147

are given then as input to the shortest path computation of the target object. However,
if connections are missing, it is not possible to follow the instructions of the path
descriptor anymore. For these situations, we formulated a second rule: The algorithm
is allowed to establish one missing feature connection based on the information given
by the query path descriptor. If this new connection does not support the further path
computation, the algorithm terminates.

7.7 Shortest Path Representation

The shortest path representation is a crucial factor regarding the actual matching
process (Sect. 7.8). It constitutes the only way to compute the cost values that are
required to match feature pairs. For this, a feature vector is introduced consisting of
K ′ tuples rm = ((φ, π)m,1, . . . , (φ, π)m,K ′)T, where φ and π denote angles and m
is the corresponding path. By employing these two angles, we are able to uniquely
describe a 3D point. Therefore, we firstly compute the angle φ between the point
vector and z-axis of our LCS. Secondly, the point is projected onto the x, y-plane,
where we calculate π as shown in Fig. 7.6. In order to describe the whole path m
based on this angle constellation, it is sampled by K ′ equidistantly distributed points
(see Fig. 7.6). Afterwards, each sample point is linked with the feature point from
which the path is emanating with the result of K ′ sample vectors, which get finally
described by φ and π. Attributable to the use of relative angles based on the object’s
LCS, our path descriptor is invariant to rotation, translation and scaling (RTS). The
actual dissimilarity between the paths is calculated based on their representation
vectors. Therefore, the vector rm is separated into two sub-vectors r(φ)

m and r(π)
m . The

sub-vectors, in turn, are given as input to a distance measurement approach, e.g.,
DTW or EMD.

0 1020 30
0102030

0

10

20

30

40

50

60

70

7

−20−10 0 10 20 30 40 50

160
180
200

−10

0

10

20

30

40

50

60

70

80
46

75

21

x

y

z

α

β

Fig. 7.6 Demonstration of our path representation. The red circles indicate the position of the
sample points, the lines drawn in cyan are the sample vectors (|gi |) between the currently observed
feature and each sample point on the path used for the descriptor



148 C. Feinen et al.

7.8 Feature Point Matching

This section describes our 3D object matching procedure, which delivers the required
similarity values for retrieval. These values, in turn, are based on cost values that
have been needed for the matching of feature point pairs. The proposed matching
principle works in analogy to the Path Similarity Skeleton Graph Matching algorithm
proposed in [1], but we adapted it to depth sensory data and a completely different
object representation.

Our matching strategy also involves the OSB procedure proposed by Latecki
et al. [18]. OSB can be used for elastic matching of sequences of different lengths. It
is similar to the DTW and the Longest Common Subsequence (LCSS) algorithms,
but outperformed these methods during a comprehensive evaluation. Its key property
is its capability to exclude outliers from the matching. Moreover, it is suitable for
partial matching and it preserves the order of points during traversing the graph.

Ordering Feature Points: Attributed to the use of the OSB, our method requires
a deterministic and reproducible scheme regarding the order of feature points; a
problem that can easily be solved in 2D, but not in 3D. Simple solutions like distance-
to-ground or distance-to-camera have no meaning in our context. At least the latter
could be adapted by aligning the objects based on their LCS. However, in order to
guarantee a deterministic order, the following scheme is proposed and also employed
in Sect. 7.4 to determine the best number of z levels. First, the z coordinates pz of
all features are extracted pi=1,...,|τ| = (pi,x , pi,y, pi,z)

T and arranged in descending
order inside a vector s. By subtracting neighbouring elements in s, we retrieve a new
vector s′ = (s1 − s2, s2 − s3, . . . , s|τ|−1 − s|τ|)T, where the difference values are
analysed in terms of peak occurrences as shown in Fig. 7.7 (Please note, that objects

−20 0 20 40150

200
−10

0

10

20

30

40

50

60

70

80

−20−10 0 10 20 30 40 50160
180

200
−10

0

10

20

30

40

50

60

70

80

3 (7)
4 (8)

1

2
3

4

(5) 1
2 (6)

(9) 12 (7)

Fig. 7.7 Left chair object and its feature points (blue). The plot next to it visualises the values
stored in s∇; peaks can be detected by using the average (red dashed line) or the standard derivation
(blue line) of s∇. Right feature points (blue) clustered according to the peaks in s′. The points in
each cluster are ordered counter-clockwise in relation to the currently processed point (red), that is
projected (pink) into the remaining clusters



7 Matching of 3D Objects Based on 3D Curves 149

are assumed to be in their dedicated pose). For each peak a z value is computed based
on the two elements in s leading to this peak. Afterwards, these z values are used to
cluster the features along the z-axis (Sect. 7.4). Finally, the points inside each cluster
are ordered counter-clockwise in 2D. The technique completes with recombining
all clusters. Therefore, the currently processed feature point, accommodated in one
of the z clusters, is projected in the 2D space of the remaining ones, respectively
(Fig. 7.7). The closest point to this projection identifies the start for the counting
operation.

Maximum Weight Subgraphs (MWS): In order to compute the final feature match-
ing and the overall similarity, we use the algorithm proposed in [21] that computes
MWS considering mutual exclusion (mutex) constraints on weighted graphs. MWS
can be expressed as an integer quadratic problem:

max g(x) = xT Ax subject to x ∈ P, x ∈ {0, 1}n . (7.7)

where A is a symmetric n × n affinity matrix with ∀i, j = 1 . . . , n : Ai, j ≥ 0, and
P consists of constraints. Since the authors focus on quadratic equality constraints,
a slightly more general form of (7.7) has to be introduced, where M ∈ {0, 1}n×n

represents a symmetric mutex matrix:

max g(x) = xT Ax subject to xT M x = 0, x ∈ {0, 1}n . (7.8)

Using (7.8) a subset of vertices of graph G is selected, such that g is maximised
and the mutex constraints are satisfied. Mutex constraints are an important utility
regarding the degree of freedom of modelling. Moreover, they mark incompatible
vertices and thus, they are reducing the search space. However, the integer quadratic
program shown in (7.8) is NP-hard. To handle this problem, the authors relax the
integer constraints to continuous ones and also relax the mutex constraints by moving
them to the target function:

max f (x) = xTW x = xT Ax − xT M x subject to x ∈ {0, 1}n . (7.9)

where W = A − M . That guarantees us that all mutex constraints are satisfied for a
discrete solution.

In the following, we describe how to determine the affinity matrix, where the size
of A corresponds to the number of feature points that have been detected. For the
population of the diagonal entries of A, we use the output values obtained by the
OSB. Since A expects similarity data, the OSB cost values have to be converted. For
this, a Gaussian function is used with μ = 0.2 and ξ = 10. The weights of the edges
are encoded as off-diagonal elements in A. Therefore, the Euclidean distance d(i, j)
is used to generate a pairwise distance consistency:



150 C. Feinen et al.

A(u, v) = exp

(
(d(i, j) − d(i ′, j ′))2

2ξ 2

⎢
. (7.10)

where u = (i, i ′) and v = ( j, j ′) are the two assignments.

Qualitative Spatial Mutual Exclusion: As stated above, the mutex matrix is
employed to model relations which are preserved during the feature matching. In our
case, we enforce a one-to-one matching for the proposed 3D object retrieval setup.
Consequently, we obtain a logical defined matrix. In order to generate the mutex
configuration, we collaborate with geometrical relations like up/down, front/back
and left/right based on the object’s LCS. Thus, we always retrieve the same relations
for all the objects unconstrained by rotation, translation or scaling. If an assignment
pair does not fulfil these constrains, it has to be skipped in the MWS. However, a
threshold is introduced that removes all points whose distance is too close to each
other. This requirement prevents the inclusion of incorrect information caused by
measurement uncertainties.

7.9 Experiments

To be comparable to other methods, we evaluated our methodology on the same
chair database as used in [22] consisting of 213 objects. Regarding the set of stands
with 40 instances, we decided to extend it by further 67 objects. Additionally, we
introduced a third dataset consisting of tables that encompasses 70 objects. All objects
have been recorded with a RGB-D device (Kinect) from different viewpoints within
complex real-world scenes. Hence, some parts of the objects are occluded, missing
or distorted by outliers. Example images can be seen in Fig. 7.8. Our ground truth
data was generated manually and each entry corresponds to one scene object that is
described in terms of “chair”, “stand”, “table” and “undefined”. The similarity values
obtained with our method used for object retrieval and precision-recall graphs were
generated for quantitative evaluation. Furthermore, we also assessed the average
precision (AP) as introduced in [9]. All thresholds used in our experiments are based
on the mean and on the standard deviation derived by incorporating all 3D curves.

Fig. 7.8 Example images used for evaluation



7 Matching of 3D Objects Based on 3D Curves 151

Fig. 7.9 Overview about four different threshold combinations (horizontally plotted) regarding
their power in terms of detected features (vertically plotted). All of them perform as expected and
lead to good results, expect the configuration T1 = 0.3 and T2 = 0.1

During our experiments we used the DTW as well as the Earth Mover’s Distance to
calculate the distances between the paths (Sect. 7.7) and to estimate the object LCS
(Sect. 7.4).

Point Detection: To evaluate the robustness and accuracy of our feature detection
method, a feature ground truth has been created for the most challenging object type in

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

precision−recall graph

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

roc curve

Fig. 7.10 Recall-precision graph (left) and ROC Curve (right) for the chair database used in [22]



152 C. Feinen et al.

Table 7.1 The table shows the average precision of our method compared to other state-of-the-art
approaches

Method Average precision

Our method 0.760

Ma et al. [22] 0.714

Janoch et al. [14] 0.438

Felzenszwalb et al. [10] 0.419

Ferrari et al. [11] 0.351

The most interesting information is its comparison to Ma et al. since their approach is the most
related one to ours

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

precision−recall graph

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

roc curve

Fig. 7.11 Recall-precision graph (left) and ROC Curve (right) for the stand database, AP = 0.8484

our dataset, namely the chair. As presented in Fig. 7.9, we obtained excellent results,
especially, if one considers the quality of our data. The threshold T1 is responsible
for the triangular and T2 for the rectangular fitting. All configurations led to good
results, except T1 = 0.3 and T2 = 0.1, where the rectangular fitting threshold is too
restrictive.

Chair Database: First, we evaluated our approach on the chair database used in [22].
This database is a real challenge for our method, since many chairs are of poor
quality and accommodate heavy outliers. Moreover, the dataset includes objects
which principally cannot be recognised by our method, e.g., office chairs. However,
even in presence of these negative factors, we have been able to obtain very good
results as shown in Fig. 7.10. Moreover, the proposed method outperforms all of its
competitors. Table 7.1 shows the AP of our approach compared to several state-of-
the-art methods.

Stand Database: Fig. 7.11 shows the results of our stand database evaluation. Even in
this case, we obtained excellent results, although we expected more irritations caused
by our path descriptor. Nevertheless, despite the fact that we extended the database



7 Matching of 3D Objects Based on 3D Curves 153

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n
precision−recall graph

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

roc curve

Fig. 7.12 Recall-Precision Graph (left) and ROC Curve (right) for the table database, AP = 0.8840

with new objects, it only includes half of the amount of true positives compared to
the previous one.

Table Database: This evaluation was operating on our own database. It is the smallest
database in our evaluation. However, it has been chosen deliberately, since this object
class also provides a high risk of being ambiguous to the other ones. This makes it
even more attractable that we retrieve very promising results as shown in Fig. 7.12.
It seems, that the different object proportions can be represented adequately by our
path descriptor.

7.10 Conclusion

The main scientific contribution of the approach presented in this chapter is the
method for robust and generic 3D object recognition based on 3D curves. To underline
the generic aspect, a user-generated and, hence, strongly abstracted model is intro-
duced as a query object. Moreover, since this model is processed equally compared
to the target one, the query can be easily replaced by other objects. This flexibility
constitutes a great advantage in all areas where quick reaction is required. Further-
more, we propose an intelligent method to localise feature points by incorporating
a local coordinate system. Finally, we demonstrate how these steps are combined
to recognise 3D objects. The chapter concludes with a quantitative evaluation of
our system based on a highly challenging database consisting of chairs, stands and
tables captured in natural environments. Summarised, we achieved excellent results.
Moreover, we even outperformed popular state-of-the-art methods. However, we are
aware of the ambiguity potential of our RTS- invariant approach that could lead to
irritations in cases where a stand or tables could also be interpreted as a top occluded
chair.



154 C. Feinen et al.

To decrease this risk, we will investigate the possibility to encode also the
proportions of objects. Therefore, e.g., the Earth Mover’s Distance could be easily
reused. Besides of this, it turned out that the followed fixed-view approach disables
the selection of object classes. Thus, we will investigate new capabilities, i.e. 3D
reconstruction, for a wider object handling. Without any major changes, our method
is able to perform on 3D curve sets that have been generated by merging different
views. Additionally, the surface curvature will be also considered in the future to
increase substantially the power of discrimination.

Acknowledgments We would like to thank the German Research Foundation for financing the
research work of Christian Feinen and Joanna Czajkowska within the Research Training Group
1564 “Imaging New Modalities”: http://www.grk1564.uni-siegen.de/en.

References

1. Bai X, Latecki LJ (2008) Path similarity skeleton graph matching. IEEE PAMI 30(7):1282–
1292

2. Bariya P, Nishino K (2010) Scale-hierarchical 3D object recognition in cluttered scenes. In:
CVPR, p 1657–1664

3. Bo L, Lai K, Ren X, Fox D (2011) Object recognition with hierarchical Kernel descriptors. In:
CVPR, p 1729–1736

4. Bo L, Ren X., Fox D (2011) Depth kernel descriptors for object recognition. In: 2011 IEEE
international conference on robotics and automation (ICRA), IEEE, pp 821–826

5. Bo L, Ren X, Fox D (2012) Unsupervised feature learning for RGB-D based object recognition.
In: International symposium on experimental robotics (ISER), Springer, pp 387–402

6. Campbell RJ, Flynn PJ (2001) A survey of free-form object representation and recognition
techniques. Comput Vis Image Underst 81(2):166–210

7. Chen H, Bhanu B (2007) 3D free-form object recognition in range images using local surface
patches. Pattern Recogn Lett 28(10):1252–1262

8. Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, match locally: efficient and robust
3D object recognition. In: CVPR, p 998–1005

9. Everingham M, Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object
classes (VOC) challenge. Int J Comput Vis 88(2):303–338

10. Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with discrimi-
natively trained part-based models. IEEE Trans Pattern Anal Machine Intell 32(9):1627–1645

11. Ferrari V, Jurie F, Schmid C (2010) From images to shape models for object detection. Int J
Computer Vis 87(3):284–303

12. Grzegorzek M, Sav S, Izquierdo E, O’Connor NE (2010) Local wavelet features for statistical
object classification and localisation. IEEE Multimedia 17(1):56–66

13. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor:
a review. Cybern IEEE Trans 43(5):1318–1334

14. Janoch A, Karayev S, Jia Y, Barron J, Fritz M, Saenko K, Darrell T (2011) A categorylevel 3-d
object dataset: putting the kinect to work. In: Computer vision workshops (ICCVworkshops),
2011 IEEE International Conference on, pp 1168–1174

15. Johnson AE, Hebert MH (1999) Using spin images for efficient object recognition in cluttered
3D scenes. PAMI 21(5):433–449

16. Lai K, Bo L, Ren X, Fox D (2011) A large-scale hierarchical multi-view RGB-D object dataset.
In: 2011 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1817–
1824

http://www.grk1564.uni-siegen.de/en


7 Matching of 3D Objects Based on 3D Curves 155

17. Lai K, Bo L, Ren X, Fox D (2011) Sparse distance learning for object recognition combining
RGB and depth information. In: 2011 IEEE international conference on robotics and automation
(ICRA), pp 4007–4013

18. Latecki LJ, Wang Q, Koknar-Tezel S, Megalooikonomou V (2007) Optimal subsequence bijec-
tion. In: International conference on data mining (ICDM), pp 565–570

19. Li C, Shirahama K, Grzegorzek M, Ma F, Zhou B (2013) Classification of environmental
microorganisms in microscopic images using shape features and support vector machines.
In: IEEE international conference on image processing. IEEE computer society, Melbourne,
Australia, pp 2435–2439

20. Li X, Guskov I (2007) 3D object recognition from range images using pyramid matching. In:
ICCV, pp 1–6

21. Ma T, Latecki LJ (2012) Maximum weight cliques with mutex constraints for video object
segmentation. In: CVPR, pp 670–677

22. Ma T, Yi M, Latecki LJ (2013) View-invariant object detection by matching 3D contours. In:
Park JI, Kim J (eds) ACCV workshops, lecture notes in computer science, vol 7729, Springer,
Berlin, Heidelberg, pp 183–196

23. Mian A, Bennamoun M, Owens R (2006) Three-dimensional model-based object recognition
and segmentation in cluttered scenes. PAMI 28(10):1584–1601

24. Nguyen TB, Sukhan L (2009) Accurate 3D lines detection using stereo camera. In: International
symposium on assembly and manufacturing (ISAM), pp 304–309

25. Payet N, Todorovic S (2011) From contours to 3D object detection and pose estimation. In:
ICCV, pp. 983–990

26. Redondo-Cabrera C, Lopez-Sastre R, Acevedo-Rodriguez J, Maldonado-Bascon S (2012) Surf-
ing the point clouds: selective 3D spatial pyramids for category-level object recognition. In:
CVPR, pp 3458–3465

27. Reinhold M, Grzegorzek M, Denzler J, Niemann H (2005) Appearance-based recognition of
3-D objects by cluttered background and occlusions. Pattern Recogn 38(5):739–753

28. Spinello L, Arras KO (2012) Leveraging RGB-D data: adaptive fusion and domain adapta-
tion for object detection. In: 2012 IEEE International Conference on robotics and automation
(ICRA), pp 4469–4474

29. Stiene S, Lingemann K, Nuchter A, Hertzberg J (2006) Contour-based object detection in range
images. In: International symposium on 3D data processing, visualization, and transmission,
pp 168–175

30. Tang S, Wang X, Lv X, Han TX, Keller J, He Z, Skubic M, Lao S (2013) Histogram of oriented
normal vectors for object recognition with a depth sensor. In: Proceedings of the 11th Asian
conference on computer vision ACCV’12, volume part II, Springer-Verlag, Berlin, Heidelberg,
pp 525–538

31. Yi M, Yang Y, Qi W, Zhou Y, Li Y, Pizlo Z, Latecki LJ (2013) Navigation toward non-static
target object using footprint detection based tracking. In: Proceedings of the 11th ACCV,
Springer, pp 389–400



Chapter 8
Using Sparse Optical Flow for Two-Phase Gas
Flow Capturing with Multiple Kinect

Kai Berger, Marc Kastner, Yannic Schroeder and Stefan Guthe

Abstract The use of multiple Microsoft Kinect has become prominent in the last
2 years and enjoyed widespread acceptance. While several work has been published
to mitigate quality degradations in the precomputed depth image, this work focuses
on employing an optical flow suitable for dot patterns as employed in the Kinect to
retrieve subtle scene data alterations for reconstruction. The method is employed in
a multiple Kinect vision architecture to detect the interface of propane flow around
occluding objects in air.

8.1 Introduction

With the advent of the Microsoft Kinect not only the human–computer interaction
in the consumer market has been shifted to a new level, the interaction based on
motion capturing, but also computer-vision-based research has experienced a sparked
since the release. Ranging from advances in motion capturing and real-time self-
localization and mapping to robust face capturing, the bandwidth of the research
volume related to the Kinect is surprisingly broad. A nice overview about these
articles can be found, e.g., in the following state-of-the-art reports by Khoshelham
et al. [13], Han et al. [11], or Zhang et al. [22].

K. Berger (B)

OeRC, University of Oxford, Oxford, UK
e-mail: kai.berger@oerc.ox.ac.uk

M. Kastner · Y. Schroeder · S. Guthe
TU Braunschweig, Braunschweig, Germany
e-mail: marc.kastner@gmail.com

Y. Schroeder
e-mail: schroeder@cg.cs.tu-bs.de

S. Guthe
e-mail: guthe@cg.cs.tu-bs.de

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_8

157



158 K. Berger et al.

While most approaches have focused on preprocessed data of the sensor, i.e., a
considerably accurate depth estimate of the scene, only few have actually considered
the raw IR stream for their data processing. This article exploits the use of the IR
footage, containing gray-level information about the scene together with sparsely
distributed spots emitted from the IR laser component of the Kinect. While the
nondisclosed algorithm of the Kinect computes a dense depth image of the scene from
considerably shifted positions of the laser spots, the proposed algorithm will detect
subtle alterations introduced on the captured spots image, e.g., in the scenario of small
light path deviations introduced by a refractive medium. The resulting information
is equivalent to an optical flow image as it quantitatively denotes the alteration, i.e.,
pixel movement, introduced on each spot. It, however, differs from state-of-the-art
optical flow images as it considers only a sparse discrete set of spots, projected into
the scene from a IR laser component and captured with the Kinect’s IR camera,
which are represented by its barycentric position in the image and its distincitve
shape. Furthermore, the information about the projected pattern allows a computation
independent from the actual resolution of the underlying image stream, Sect. 8.4. We
will test the algorithm in a capturing setup consisting of multiple Microsoft Kinect.
The refractive index gradient in the scene is generated by letting propane flow through
the intersecting volume of their viewing cones, Fig. 8.1.

The remainder of the article is structured as follows: After a revision of the state
of the art in active-light-based computer vision research with a focus on optical flow
capturing, Sect. 8.2, we examine the characteristics of the spot pattern projected
by the Kinect and derive an abstract model in Sect. 8.3 that allows us to compute
an accurate estimate of the spot position on the image plane independent from the
actual resolution of the underlying image stream. Afterward, we introduce the sub-
pixel accurate optical flow computation for detecting subtle changes in the captured
IR stream, Sect. 8.4. Note that the proposed algorithms differ significantly from

Fig. 8.1 We examine small pixel deviations in the IR stream of the Microsoft Kinect as they are
introduced by an index gradient present in the scene. In our capturing setup, we place a propane
gas nozzle (left) in the center of three Kinect (middle) and place projection walls at a fixed distance
opposite to each Kinect. The index gradient causes light path deviations both between the projector
and the projection wall and between the projection wall and the camera (indicated by colored
cones). Note that the stickers on the Kinect are placed to act as external diaphragm. To reconstruct
the underlying gas flow using the proposed optical flow algorithm, we register each sensor to one
common world space (right) and reconstruct the visual from silhouettes enclosing the deflected
pixel regions in each sensor’s IR image



8 Using Sparse Optical Flow for Two-Phase Gas Flow. . . 159

state-of-the-art optical flow computation as it considers only sparse samples of the
input images. A global optimization-based approach is therefore not feasible.

The presented method is then applied in the scenario of capturing the interface of
two-phase gas flows, Fig. 8.1, Sects. 8.5, and 8.5.2. Finally, we discuss the results,
Sect. 8.6, and conclude, Sect. 8.7.

8.2 Related Work

A variety of approaches have been proposed to capture and visualize the dynamics of
gases and fluids, e.g., in wind tunnels. Mostly, two-phase flows are hard to discrimi-
nate by imaging tools, because their color appearance is quite similar. A straightfor-
ward approach is to enhance the contrast by inserting seeding particles into the flow.
Their buoyancy and density have to match the measured fluids. The particles are usu-
ally illuminated in a way that only a 2D intersection plane is imaged. The technique
is known as particle image velocimetry (PIV), an introduction can be found in the
monograph by [21]. Particle tracking velocimetry (PTV) introduced by Cowen and
Monismith [7] is similar to the PIV but incorporates tracking algorithms for particles
over several images. Other approaches are noninvasive. Wetzstein et al. [20] recently
proposed to use lenslets with attached color-field printouts to physically map light
path deviation to color when holding them behind a gas and imaging them. Atche-
son et al. [1] designed a high-frequency background pattern for background-oriented
schlieren (BOS) detection of gas flows. This approach was refined by Berger et al.
[3, 5] to enable the capturing of gas flows with occluding objects. They, however,
showed that purely image-based methods are limited, and occluders could not be
segmented out crisply. Therefore, Berger et al. [4] introduced the usage of Kinect
for capturing gas flows around occluders. They imaged gas-introduced differences
in the captured depth stream. When the scene was captured with multiple Kinect, a
reconstruction of the visual hull of the gas was possible, but it was limited to super-
pixel resolution. Their work is the closest to ours, as we consider the same capturing
scenario. We, however, advance it in the following way: We introduce a new sparse
spot-based optical flow to work directly on the IR input stream of the sensor and thus
are to work on subpixel accurate light path deviation data.

8.3 Spot Model Derivation

As the pattern projected by the Microsoft Kinect has a unique distinctive shape, it
allows for analyzing the geometric properties of the underlying pattern elements, the
spots. Each projected spot pattern is set up in the same way: In a 3 × 3 repeated
regular matrix, certain circularly shaped holes in a mask are filled with opaque mat-
ter, while others are left unfilled, so that light beams may pass through. This matrix
is applied to the optical element of the Kinect’s IR emitter such that a coded light
pattern emerges and projects into the scene. We analyze the IR pattern by letting



160 K. Berger et al.

the emitter projected orthogonally onto a wall at 3 m distance and capturing a sta-
tistically significant area of the wall with a digital single-lens reflex (dSLR) camera
at a resolution of 4,368 × 2,912 px at a distance of 2 m. This way, one imaged
projected spot would approximately comprise 128 × 128 px. After image rectifi-
cation, we calculate the mean intensity distribution over all captured spots and the
moments with the intention to fit a suitable continuous 2D distribution function that
characterizes the properties of all spots best. The function would then represent the
mean spot. This is reasoned by the fact that we want to perform the optical flow
computation on the image plane independent from the actual image resolution. Note
that this mean distribution would be used for fitting to each spot in each IR image in
order to locate the center position of each spot. The computed discrete distribution
resembles a 2D Gaussian profile. However, the distribution shows a skew behavior
and 8 small local peaks in the neighborhood of the mean. The latter is due to the
factory process of the matrix, and the holes filled with opaque matter may transmit a
small but measurable intensity of light. We opt for representing the continuous dis-
tribution by a weighted combination of continuous 2D skew Gaussian distributions.
Such multivariate distribution can be formalized as follows [10].

Consider a multivariate variableZ with each component being skew-normal with
skewness vector α, αi ∈ (−∞,∞), written as:

Z ∼ SNk (α,ω) (8.1)

with multivariate density function fk of dimensionality k

fk(z) = 2ρk (z;τ) ω
(
κTz

) (
z ∈ Rk

)
, (8.2)

where ρ denotes the N (0, 1) density function and ω denotes the N (0, 1) distribu-
tion · τ is defined as

τ = diag

((
1 − φ2

1

) 1
2
, . . . ,

(
1 − φ2

k

) 1
2
)

(8.3)

·
(
π + ααT

)
(8.4)

· diag

((
1 − φ2

1

) 1
2
, . . . ,

(
1 − φ2

k

) 1
2
)

(8.5)

with π the k × k correlation matrix and

φ = α
(
1 + α2

) 1
2

(8.6)

κT is defined as

κT =
αTπ−1diag

((
1 − φ2

1

) 1
2 , . . . ,

(
1 − φ2

k

) 1
2

)−1

(
1 + αTπ−1α

) 1
2

(8.7)



8 Using Sparse Optical Flow for Two-Phase Gas Flow. . . 161

We will focus on the bivariate case in order to model the intensity distribution on the
image plane. The density function can be expressed as

f2 (z1, z2) = 2ξ2 (z1, z2;ω) π (κ1z1 + κ2z2), (8.8)

with ω denoting the off-diagonal element of τ · κ1 and κ2 can be expressed as:

κ1 = φ1 − φ2ω
((

1 − ω2
) (

1 − ω2 − φ2
1 − φ2

2 + 2φ1φ2ω
)) 1

2

(8.9)

and

κ2 = φ2 − φ1ω
((

1 − ω2
) (

1 − ω2 − φ2
1 − φ2

2 + 2φ1φ2ω
)) 1

2

(8.10)

Note that ω satisfies

φ1φ2 −
((

1 − φ2
1

) (
1 − φ2

2

)) 1
2

< ω < φ1φ2 +
((

1 − φ2
1

) (
1 − φ2

2

)) 1
2

(8.11)

8.4 Proposed Flow Computation for Captured Spot
Pattern-Based Active Light Video Data

Based on the distribution that we derived in Sect. 8.3, we compute frame-to-frame
alterations to emitted spot pattern introduced by the scene content. Note that this
sparse flow computation has a focus on subtle movements that may be smaller than
one pixel of the captured image resolution and thus distinguishes from state-of the art
approaches that focus on the local disparity estimate in order to compute scene depth.
We approximate Eq. 8.8 with a 128 × 128 px kernel that we then use to characterize
the mean spot, Fig. 8.2. The 128 × 128 px kernel of a generic spot is built from the
dSLR closeup images from Sect. 8.3. This kernel is then used at each time a Kinect
IR stream is read out later. We filter the input images to determine the center position
for each spot by fitting the 128 × 128 px kernel to all intensity peaks present in the
input image. The sparse optical flow is then computed between the computed spot
center positions for two subsequent images in the IR stream in a least squares sense,
assuming that the pixel deviations introduced on the spot pattern are smaller than
the radial distance between two spots in the image. The local optimum is found by
applying a gradient descent approach

xn+1 = xn − δn∇F(xn), n ≥ 0, (8.12)

where xn spans the domain, in this case the position on the image plane, and F is
a bivariate function with defined and differentiable neighborhood. The gray-level



162 K. Berger et al.

40
8040

80

0

0.5

1

YX
0.5
1

0 50 100

0.4

0.6

0.8

1

x (px) at y=63

   
In

te
ns

ity
 

(n
or

m
al

iz
ed

) 95%
Meas.
Gauss

0 50 100

0.4

0.6

0.8

1

y (px) at x=63

   
 I

nt
en

si
ty

 (
no

rm
al

iz
ed

) 95%
Meas.
Gauss

Fig. 8.2 The intensity profile of a measured spot in the projected IR pattern differs considerably
from the profile of a standard Gaussian laser beam (left, black and red error bars and slices, middle
and right). In this plot, a 50 mW laser spot is assumed that is shone onto a planar surface from 3 m
distance and sampled with a 128×128 px grid. We thus discretize a skew Gaussian distribution to a
128 × 128 px kernel and fit it to the spots in the captured spot pattern to arrive at a discretized mean
intensity distribution. The discretized kernel is later used for our spot-based optical computation

image is denoted F , and the gradient can be provided as a 2D vector. To account for
the low sampling rate, the region of interest, usually a 5×5 px region, is upsampled.
We use a bilinear kernel for upsampling. The stepsize δ is set to a small value,
usually 0.5 px. The convergence criterion is an intensity difference of <0.01, and
the maximum number of iterations is set to 100. We assume small spot deviations in
the range of <1–3 pixel in x and y direction. Note, again, that the resulting optical
flow is sparse as well.

8.5 Application: Capturing of Two-Phase Gas Flows

In our setup, we place three Kinect in an half-arc around the gas flow with projection
walls placed opposite to each Kinect at ≈2 m distance. We may introduce occluders
into the flow. The Kinect are calibrated to a common world space and aligned to
frame accuracy. They are automatically focused on the scene center, i.e., the gas
valve, Fig. 8.3. We let the gas valve vent for several seconds and capture the gas flow
with the Kinect. The captured images of the IR stream, Fig. 8.4, are processed in the
following. The 128 × 128 px kernel for the sparse optical flow computation in the
IR pattern has been captured by a dSLR beforehand.

8.5.1 Projector Image Reprojection

We exploit both the sensor information of the infrared camera and the infrared emitter
for the reconstruction. This way we can also use the shadowgraph regions in the
IR image for optical flow calculation and consequently for a silhouette generation
that helps refining the final visual hull enclosing the gas flow. Usually, the detected
flow directions in the shadowgraph regions are inverted compared to the regions



8 Using Sparse Optical Flow for Two-Phase Gas Flow. . . 163

Fig. 8.3 In our setup, the camera is focused on the valve, i.e., its edge is smoothed over 5 pixels
(middle closeup, 3x enlarged) compared to 12 pixels for the projection board (rightcloseup, 3x
enlarged) and 9 pixels for the frontmost part of the metallic holder (left closeup, 3× enlarged)

Fig. 8.4 The input images of the capturing setup for two-phase gas flows (left three) and their
warped projector images (right three). The gas flows out of a valve (bottom) and is imaged from
three Kinect placed in an half-arc around it. An occluder is placed above the valve to introduce
turbulence to the gas flow. We examine both the deflections introduced on the way between projector
and wall (right three shadowgraphs, i.e., enclosed regions between the shadows of the gas valve
and the occluder) and on the way between wall and camera (left three)

that image light path deviations between the projection wall and the camera. The
projector image is generated by reprojecting the infrared camera image into the
projector image space. The calibration between projector and camera is done by
identifying the spot subpatterns of the pattern projected onto the planar projection
walls in the recorded image that form a rectangle in the projector space. Note that
the deviations from a perfectly planar surface are negligible for the projection walls
at the distance considered in our setup. Then, the corners are identified by using Fofi
et al. approach [9] in order to calculate the image homography between the camera
image and the projector image space. Effectively, thus, we can double the number of
viewpoints in order to get a better fit of the visual hull.



164 K. Berger et al.

8.5.2 GPU-Based Reconstruction

The reconstruction follows a GPU-based approach from Ladikos et al. [14], where
silhouettes of the detected gas flow are downsampled so that every voxel projects
into a single pixel. This way the projection of the voxel center point suffices for
the lookup in the silhouette images. Note that the silhouettes need not necessarily
be coherent regions of genus 0. In our case, we simply performed an opening on
the spot regions with sufficiently large optical flow to arrive at a binary mask that
we used as silhouette input for the hull generation. The downsampling is done by
Gaussian smoothing followed by a downscaling. The kernel is then executed for
every voxel by deriving the 3D position from its id and by projecting the voxel center
point into the image. Early rejection based on image occupancy is performed to ease
computational burden.

8.6 Discussion

8.6.1 Optical Flow Comparison

We compared the subpixel accurate sparse pattern-based distortion detection against
Horn-Schunck [12], Lucas-Kanade [15], Drulea-Nedevschi [8], Deqing Sun [18], and
Brox [6] with a synthetic spot image and the same image modulated by the Groove2
flowmap from the Middlebury database that have been altered with varying noise
and increasing amount of blurriness. We evaluated the average angular error (AAE)
compared to the ground truth and found that the proposed method shows a lower AAE
with increasing image degradation compared to the other flow algorithms, Fig. 8.5.
It can also be noticed that OF algorithms with an emphasis on global smoothness
underperform on the sparse dataset. Thus, the proposed algorithm is more robust
against the noise introduced by the capturing setup.

8.6.2 Comparison to Depth-Deviation-Based Approaches

Note that a direct ground truth comparison between our method and [4] on the
same gas flow is not possible because the USB communication protocol forces a
decision between accessing the depth stream or a high-resolution IR stream (a low-
resolution IR stream bears aliasing artifacts and is not feasible for evaluation with
our method). However, it is possible to use a block-matching based approach [17]
for synthesizing the depth map closest to a depth map that the Kinect would have
streamed for a given high-resolution IR image, Fig. 8.6. An exemplary comparison
between the proposed approach and the depth-based approach on a synthesized depth
map is visualized in Fig. 8.7: The middle and right plots show a visualization of the



8 Using Sparse Optical Flow for Two-Phase Gas Flow. . . 165

Fig. 8.5 Comparison of state-of-the-art optical flows to the proposed spot-based optical flow for
varying levels of noise (left) and blur (right) applied to a synthetic spot pattern. The ground truth
optical flow is generated with the groove2 dataset from the Middlebury database. The proposed
approach (red, large dots) outperforms the state-of-the-art approaches (Horn-Schunck (HS), Lucas-
Kanade (LK), Drulea-Nedevshi (DN), Deqing Sun (DS), and Brox) in the range relevant for Kinect
data stream processing (35–22 dB)

Fig. 8.6 We synthesized disparity values for the high-resolution IR image streams (left) using a
block-matching approach [17]. A trade-off for the block sizes can be seen: A block size of 19 × 19
(middle) results in a less blurry but more sparse result than that with a block size of 31 × 31 (right)
which is regarded as being closer to an expected disparity map from the Kinect

Fig. 8.7 In a direct comparison to the proposed method (quiver plot, left), it can be noticed that with
the depth-based approach, a visualization of the main gas flow stream is robustly possible, but the
signal discriminates only by five different values in both directions. Also, the signal-to-noise ratio
is reduced. With a block size of 19 × 19 (middle), more noise either by scene depth variation or by
sensor-/block-matching noise is visible than with a block size of 31×31 (right). Some small devia-
tions introduced by the gas above the bridge occluder are not mapped by the depth-based approach



166 K. Berger et al.

t = 04 t = 06 t = 11 t = 16 t = 21

t = 26 t = 31 t = 36 t = 38 t = 39

t = 04 t = 06 t = 11 t = 16 t = 21

t = 26 t = 31 t = 36 t = 38 t = 39

t = 04 t = 06 t = 11 t = 16 t = 21

t = 26 t = 31 t = 36 t = 38 t = 39

Fig. 8.8 A sequence of 39 frames captured with three Microsoft Kinect and processed with the
proposed algorithm for propane gas flowing around obstructing objects with different aerodynamic
properties. The voxel volumes have resolution 1283, each input image roughly consists of 2,000
spots in the region of interest. While the droplet occluder (first row) is smoothly surrounded by the
flow, the golf ball (second row) forces the gas to direct leftward. The bridge occluder completely
obstructs the gas flow, and its flow direction is inverted downward

difference image between a frame with and without flowing, as computed by Berger
et al. [4]. While the main gas stream is mapped as expected, parts above the occluder
and to both lower sides of the occluder seem to not have been captured by the
depth-based approach. Also, it is noticeable that the small range of five values in
both directions results in a lower signal-to-noise ratio. Some patches in the image,
introduced, e.g., by ambiguities in the block-matching approach result in high values



8 Using Sparse Optical Flow for Two-Phase Gas Flow. . . 167

in the difference image used for depth-based reconstruction. The proposed approach
results on average in 20 different values in u- and v-direction in the range [−0.9, 0.9]
pixels and discriminates between 1/100 of a pixel.

8.6.3 Gas Flow and Occluder Segmentation

The occluders have been segmented out by removing the overexposed regions in the
input image. The projected area of the gas flow could be determined accurately to
subpixel level in the input images for both the original IR camera image and the
warped projector image.

8.6.4 GPU-Based Reconstruction

The reconstruction is written in C for CUDA and performs in 52.76 ms at 643 voxel,
in 417.79 ms at 1283 voxel, and in 3,033.89 ms at 2563 voxel on an Intel Corei7-
3960X (Six Core Extreme, 15 MB Cache) Overclocked up to 4.0 Ghz with a 4 GB
GDDR5 NVIDIA GeForce GTX 690 graphics card. Significant gain in performance
can be achieved by using an octree-based approach. An exemplary visualization of
the reconstructed volumes is depicted in Fig. 8.8 for different occluders: We captured
a sequence of 39 frames with three Microsoft Kinect and processed it as proposed.
It can be seen that the droplet occluder (first row) smoothly introduces into the flow,
while the golf ball (second row) forces the gas to direct leftward. The bridge occluder
obstructs the gas flow and forces the flow to be inverted downward.

8.7 Conclusion

We presented a new method for subpixel accurate flow detection for sparse image
data such as the Microsoft Kinect spot pattern. We found that the discretized skew
Gaussian approach outperforms traditional and current optical flow approaches in
the context of the Kinect’s IR image stream. We tested the algorithm in a multiple
Kinect vision architecture to detect the interface of propane flow around occlud-
ing objects in air. In that use case scenario, we sought to reconstruct the geometric
extend of gas flows under the presence of occluders captured with three Kinect
placed in an half-arc around the flow with projection walls placed at a fixed dis-
tance opposite to each Kinect. We exploited the sparse spot detection algorithm to



168 K. Berger et al.

provide masks for a GPU-based visual hull reconstruction. By incorporating the
projector extrinsics, we doubled the reprojection information in order to increase
accuracy.

Acknowledgments Supplementary Videos are accessible under https://dl.dropbox.com/u/
21912442/supplementary.zip. The authors would like to thank Manuel Martinez from KIT, Karl-
sruhe, who helped with generating synthetic depth images from the spot pattern images.

References

1. Atcheson B, Ihrke I, Heidrich W, Tevs A, Bradley D, Magnor M, Seidel H (2008) Time-resolved
3D capture of non-stationary gas flows. In: ACM transactions on graphics (TOG), vol 27. ACM,
New York, p 132

2. Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika
83:715–726

3. Berger K, Ihrke I, Atcheson B, Heidrich W, Magnor M et al (2009) Tomographic 4D recon-
struction of gas flows in the presence of occluders. In: Vision, modeling, and visualization
workshop (VMV), pp 29–36

4. Berger K, Ruhl K, Albers M, Schroder Y, Scholz A, Guthe S, Magnor M (2011) The capturing
of turbulent gas flows using multiple kinects. In: Proceedings on CDC4CV, November 2011,
IEEE, ISBN: 978-1- 4673-0061-2

5. Berger K, Ruhl K. Schroeder Y, Bruemmer C, Scholz AL, Magnor M Markerless motion
capture using multiple color-depth sensors

6. Brox T, Bruhn A, Papenberg N. Weickert J In: High accuracy optical flow estimation based on
a theory for warping European conference on computer vision ECCV

7. Cowen E, Monismith S, Cowen E, Monismith S (1997) A hybrid digital particle tracking
velocimetry technique. Exp Fluids 22(3):199211

8. Drulea M, Nedevschi S (2011) Total variation regularization of local-global optical flow
(accepted to ITSC 2011)

9. Falcao G, Hurtos N, Massich J, Fofi D (2009) Projector-camera calibration toolbox. http://
code.google.com/p/procamcalib

10. Gupta A, Gonzlez-Faras G (2004) A multivariate skew normal distribution. J Multivar Anal
89(1):181–190

11. Han J, Shao L, Xu D, Shotton, J (2013) Enhanced computer vision with Microsoft Kinect
sensor:a review. IEEE Trans Cybern

12. Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203
13. Khoshelham K (2011) Accuracy analysis of kinect depth data. In: ISPRS workshop laser

scanning, vol 38(5). p W12
14. Ladikos A, Benhimane S, Navab N (2008) Efficient visual hull computation for real-time

3D reconstruction using CUDA. In: IEEE computer society conference on computer vision
and pattern recognition, Anchorage, Alaska (USA), June 2008. Workshop on visual computer
vision on GPUs (CVGPU)

15. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to
stereo vision. In: Proceedings of imaging understanding workshop, pp 121–130

16. Lulu Chen, Hong Wei, James Ferryman (2013) A survey of human motion analysis using depth
imagery. Pattern Recogn Lett 34(15):1995–2006. ISSN 0167–8655, http://dx.doi.org/10.1016/
j.patrec.2013.02.006

17. Martinez M, Stiefelhagen R (2013) Kinect unleashed: setting control over high resolution depth
maps

18. Sun D, Roth S, Lewis JP, Black M In: Learning optical flow European conference on computer
vision, ECCV

https://dl.dropbox.com/u/21912442/supplementary.zip
https://dl.dropbox.com/u/21912442/supplementary.zip
http://code.google.com/p/procamcalib
http://code.google.com/p/procamcalib
http://dx.doi.org/10.1016/j.patrec.2013.02.006
http://dx.doi.org/10.1016/j.patrec.2013.02.006


8 Using Sparse Optical Flow for Two-Phase Gas Flow. . . 169

19. Svoboda T, Martinec D, Pajdla T (2005) A convenient multicamera self-calibration for virtual
environments. Presence Teleoper Virtual Environ 14(4):407422

20. Wetzstein G, Raskar R, Heidrich W (2011) Hand-held schlieren photography with light field
probes. In: IEEE international conference on computational photography (ICCP), 2011

21. Willert C, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10(4):181193
22. Zhang Z (2012) Microsoft kinect sensor and its effect. MultiMedia IEEE 19(2):4–10



Part III
Detection, Segmentation and Tracking



Chapter 9
RGB-D Sensor-Based Computer
Vision Assistive Technology
for Visually Impaired Persons

Yingli Tian

Abstract A computer vision-based wayfinding and navigation aid can improve the
mobility of blind and visually impaired people to travel independently. In this chapter,
we focus on RGB-D sensor-based computer vision technologies in application to
assist blind and visually impaired persons. We first briefly review the existing com-
puter vision based assistive technology for the visually impaired. Then we provide a
detailed description of the recent RGB-D sensor based assistive technology to help
blind or visually impaired people. Next, we present the prototype system to detect
and recognize stairs and pedestrian crosswalks based on RGB-D images. Since both
stairs and pedestrian crosswalks are featured by a group of parallel lines, Hough
transform is applied to extract the concurrent parallel lines based on the RGB (Red,
Green, and Blue) channels. Then, the Depth channel is employed to recognize pedes-
trian crosswalks and stairs. The detected stairs are further identified as stairs going
up (upstairs) and stairs going down (downstairs). The distance between the camera
and stairs is also estimated for blind users. The detection and recognition results on
our collected datasets demonstrate the effectiveness and efficiency of our developed
prototype. We conclude the chapter by the discussion of the future directions.

9.1 Introduction

Of the 314 million visually impaired people worldwide, 45 million are blind [1].
In the USA, the 2008 National Health Interview Survey (NHIS) reported that an
estimated 25.2 million adult Americans (over 8 %) are blind or visually impaired
[2]. This number is increasing rapidly as the baby boomer generation ages. Recent
developments in computer vision, digital cameras, and portable computers make it

Y. Tian (B)

Department of Electrical Engineering, The City College of New York,
New York, NY 10031, USA
e-mail: ytian@ccny.cuny.edu

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_9

173



174 Y. Tian

feasible to assist these individuals by developing camera-based products that combine
computer vision technology with other existing commercial products such optical
character recognition (OCR), GPS systems.

Independent travel and active interactions with the dynamic surrounding envi-
ronment are well known to present significant challenges for individuals with severe
vision impairment, thereby reducing quality of life and compromising safety. In order
to improve the ability of people who are blind or have significant visual impairments
to access, understand, and explore surrounding environments, many assistant tech-
nologies and devices have been developed to accomplish specific navigation goals,
obstacle detection, or wayfinding tasks.

We note that electronic technology developed over the last 50 years has been an
enormous boon for visually impaired people, allowing access to text through video
magnification [3], reading machines [4], text-to-speech (TTS) and screen readers
[5], increasing quality of life for millions of individuals with vision loss by allowing
independent and private access to text. However, few of them use these for navigation
and travel. For navigation and travel, nearly all blind people use a cane at least
some of the time due to the effectiveness, convenience, and low cost, even if they
rely on another mobility aid. The user typically scans left and right along their
forward directional path, gathering information about obstacles from tactile and
sonic information. Additionally, it gives information about drop-offs, stairs, ground
textures, and type of flooring. It also serves as an identifier so that sighted people
may avoid collisions with the blind traveler. However, the long cane is not able to
detect obstacles higher off the ground. We think that the cane is most likely to remain
useful to blind users for the foreseeable future, together with other high-tech assistive
devices.

Many efforts have been made in development of electronic assistive devices to help
blind persons navigate, which can be found in recent surveys [6–9, 59, 61]. In addition
to develop effective, reliable, and robust technology, friendly human interface design
is even more important for successful assistive devices. There are two central and
persistent issues in the human interface design: (1) how easy a system can be operated
by the user, and (2) how the system can best present nonvisual information to the
user.

A computer vision-based assistive system can improve the mobility of blind and
visually impaired people to reduce risks and avoid dangers, enhance independent
living, and improve quality of life. Our research efforts are focused on developing
a computer vision-based navigation aid, because we believe this approach holds
the greatest long-term promise, given the continually rapid growth in capabili-
ties of computer and robotic technology fields of computer vision and robotics
[10, 11]. The need for robots to navigate in the environment, in particular, is fuel-
ing the development of computer vision techniques for object recognition and scene
analysis, along with localization and mapping. As imaging techniques advance, such
as RGB-D cameras of Microsoft Kinect [12] and ASUS Xtion Pro Live [13], it has
become practical to capture RGB sequences as well as depth maps in real time. Depth
maps are able to provide additional information of object shape and distance com-



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 175

pared to traditional RGB cameras. It has therefore motivated recent research work
to investigate computer vision-based assistive technology using RGB-D cameras.

In this chapter, we focus on RGB-D sensor-based computer vision technologies
in application to assist blind and visually impaired persons. We first briefly review
the existing computer vision-based assistive technology for the visually impaired.
Then, we provide a detailed description of the recent RGB-D sensor-based assistive
technology to help blind or visually impaired people. Next, we present the prototype
system we developed to detect and recognize stairs and pedestrian crosswalks based
on RGB-D images. We conclude the chapter by the discussion of the future directions.

9.2 Related Work of Computer Vision-Based Assistive
Technology for Visually Impaired

Many electronic mobility assistant systems are developed based on converting sonar
information into an audible signal for the visually impaired persons to interpret
[14–18]. However, they only provide limited information. Recently, researchers have
focused on interpreting the visual information into a high-level representation before
sending it to the visually impaired persons.

The “vOICe” system [19] is a commercially available vision-based travel aid that
displays imagery through sound using videos captured by a head-mounted camera to
help them build a mental image about the environment. However, the vOICe system
translates images into corresponding sounds through stereo headphones, which will
seriously block and distract the blind users’ hearing sense. In addition, a training and
education process is must conducted to understand the meanings of different tones
and pitches of sounds about the environment. For example, if a short beep indicates
a bright speck of light, three specks will produces three beeps. A vertical line is a
stack of specks, sounding all at the same time but all with different pitches since they
are at different heights. In real situation, an environment generally contains different
objects, the vOICe system will generate a complex and “noisy” sound map that will
be too complex for blind users to build the mental image.

Very recently, the US Food and Drug Administration approved for sale a new
device—the Argus II retinal prosthesis [20], from Second Sight Medical Products—
comprised of a small video camera mounted on the nose bridge of a pair of sunglasses,
a transmitter mounted near one temple of the sunglasses, a worn or carried video-
processing unit, and a 60-electrode array that is intended to replace the function of
degenerated photoreceptor cells in the retinas of those with the disease retinitis pig-
mentosa. Although it does not fully restore vision, the Argus II can improve ability to
perceive lights, images, and movement, using the video-processing unit to transform
images from the video camera into image data that are wirelessly transmitted to the
retinal electrode array. However, the temporal dynamics of electrical retinal stimu-
lation are likely very different from those of a normal retina, the image is extremely



176 Y. Tian

low resolution relative to normal vision, and most important, the user must aim the
head rather than the eye, to move an object into the field of view.

VizWiz [21] is a free iPhone app to provide answers to questions asked by blind
users about their surroundings through anonymous web workers and social network
members. Based on the statistic data about 50,000 questions, most questions were
answered in a minute or less. With VizWiz, a user takes a picture and records a
question on their mobile phone, then sends their question to anonymous workers,
object recognition software—IQ [22], Twitter, or an email contact. Once an answer
is received from any of those services, it is sent back to the users’ phone. The
advantage of VizWiz is the fusion of automatic image processing software with
human replies from other members in user’s social network. However, there are
several main limitations for blind navigation and wayfinding: (1) For blind users, it
is very hard to aim their iPhone to the targeted objects; (2) for the answers the user
received, there is not a way to validate whether the answer is accurate; (3) some
questions may not be answered; and (4) questions may take some time to answer.

A product in development called BrainPort (from Wicab Inc.) and recently
approved for sale in Europe [23] uses a camera mounted on a pair of sunglasses
as its input device. After image processing, images are displayed on the tongue
via a “lollipop”-like display as shown in Fig. 9.1. The “image” has been described
as “tasting” a bit like effervescent champagne bubble on the tongue. Studies have
demonstrated that blind and blindfolded sighted subjects can localize and identify
some objects [24, 25] and avoid obstacles while navigating [26] under favorable
conditions of contrast and lighting. Drawbacks of this system are that it requires
use of the mouth, which precludes concurrently engaging in other lingual activities
such as speaking and eating, and its spatial resolution is still far worse (by orders of
magnitude) than that of the visual system, posing limits to object recognition.

Coughlan and Shen [27] developed a method of finding crosswalks based on
figure-ground segmentation, which they built in a graphical model framework
for grouping geometric features into a coherent structure. As shown in Fig. 9.2,

Fig. 9.1 BrainPort vision substitution device [23]



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 177

Fig. 9.2 Crosswatch system for providing guidance to visually impaired pedestrians at traffic
intersections by panning a cell phone camera left and right; the system provides feedback to help
user align him/herself to crosswalk before entering it [28]

Ivanchenko et al. [28] further extended the algorithm to detect the location and ori-
entation of pedestrian crosswalks for a blind or visually impaired person using a cell
phone camera. The prototype of the system can run in real time on an off-the-shelf
Nokia N95 camera phone. The cell phone automatically took several images per
second, analyzed each image in a fraction of a second, and sounded an audio tone
when it detected a pedestrian crosswalk.

Advanyi et al. [29] employed the bionic eyeglasses to provide the blind or visu-
ally impaired individuals the navigation and orientation information based on an
enhanced color preprocessing through mean shift segmentation. Then, detection of
pedestrian crosswalks was carried out via a partially adaptive cellular nanoscale net-
works algorithm. Se [30] proposed a method to detect zebra crosswalks. They first
detected the crossing lines by looking for groups of concurrent lines. Edges were then
partitioned using intensity variation information. Se and Brady [31] also developed
a Gabor filter-based texture detection method to detect distant stair cases. When
the stairs are close enough, stair cases were then detected by looking for groups
of concurrent lines, where convex and concave edges were portioned using inten-
sity variation information. The pose of stairs was also estimated by a homograph
search model. Uddin et al. [32] proposed a bipolarity-based segmentation and pro-
jective invariant-based method to detect zebra crosswalks. They first segmented the
image on the basis of bipolarity and selected the candidates on the basis of area,
then extracted feature points on the candidate area based on the Fisher criterion. The
authors recognized zebra crosswalks based on the projective invariants.

Our own research group has developed a series of computer vision-based meth-
ods for blind people to recognize text and signage [33–36], recognize objects and
clothes patterns [37–39], independently access and navigate unfamiliar environments
[40–43], and under interface study [44]. Text and signage play important role in blind
navigation and wayfinding. Tian et al. [40] developed a proof-of-concept computer
vision-based wayfinding aid for blind people to independently access unfamiliar
indoor environments. In order to find different rooms (e.g., an office, a lab, or a bath-
room) and other building amenities (e.g., an exit or an elevator), the object detection



178 Y. Tian

is integrated with text recognition. A robust and efficient algorithm is developed to
detect doors, elevators, and cabinets based on their general geometric shape which
combines edges and corners. Then, the text information associated with the detected
objects is extracted and recognized. For text recognition, they first extracted text
regions from signs with multiple colors and possibly complex backgrounds and then
applied character localization and topological analysis to filter out background inter-
ference. The extracted text is recognized using off-the-shelf (OCR) software prod-
ucts. The object type, orientation, location, and text information are presented to the
blind traveler as speech. Some example results of door detection and text signage
recognition are demonstrated in Fig. 9.3. The first row of Fig. 9.3 shows the detected
door and signage regions. The second row displays the binarized signage. The last
row displays that recognized text from OCR as readable codes on the extracted and
binarized text regions.

Reading is obviously essential in today’s society. Printed text is everywhere in
the form of reports, receipts, bank statements, restaurant menus, classroom handouts,
product packages, instructions on medicine bottles, etc. And while optical aids, video
magnifiers and screen readers can help blind users and those with low vision to access
documents, there are few devices that can provide good access to common hand-held
objects such as product packages, and objects printed with text such as prescription
medication bottles. The ability of people who are blind or have significant visual
impairments to read printed labels and product packages will enhance independent
living, and foster economic and social self-sufficiency.

Our group proposed a camera-based assistive framework to help blind persons to
read text labels from hand-held objects in their daily life. As shown in Fig. 9.4, a blind
user wearing a camera captures the hand-held object from the cluttered background
or other neutral objects in the camera view by slightly shaking the object for 1 or
2 s. This process solves the aiming problem for blind users. The hand-held object is

Fig. 9.3 Top row Detected doors and regions containing text information. Middle row Extracted
and binarized text regions. Bottom row Text recognition results of OCR in text regions [40]



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 179

Camera captured images Detect  image region of hanad-
held object 

Extract text regions 

Recognize and output 
text to blind 

user in speech 
Unwarped whole label of the 

cylinder object 

(c)
(b)

(a)

Fig. 9.4 Flowchart of the framework to read labels from hand-held objects for blind users [36]

detected from the background or other surrounding objects in the camera view by
motion detection. Then, a mosaic model is applied to unwarp the text label on the
object surface and reconstruct the whole label for recognizing text information. This
model can handle cylinder objects in any orientations and scales. The text information
is then extracted from the unwarped and flatted labels. In the text localization method,
the basic processing cells are rectangle image patches with fixed ratio, where features
of text can be obtained from both stroke orientations and edge distributions [45–47].
The extracted text regions are then recognized by OCR software and communicate
with the blind user in speech.

9.3 RGB-D Sensor-Based Computer Vision Assistive
Technology for Visually Impaired

As the release of RGB-D sensors and corresponding development toolkits, the appli-
cations of RGB-D sensor-based computer vision technology have been extended far
beyond gaming and entertainment. More reviews of the applications for multimedia
and object recognition can be found in [62, 63]. In this section, we only focus on
the research related to RGB-D camera-based assistive technology to help visually
impaired people. Compared to the traditional RGB cameras or the stereo cameras,
RGB-D sensors have the following advantages: (a) RGB-D cameras contain both an
RGB channel and a 3D depth channel, which can provide more information of the
scene; (b) they work well in a low-light environment; (c) they are low cost; and (d)



180 Y. Tian

they are efficient for real-time processing. Currently, the RGB-D camera captures
both RGB images and depth maps at a resolution of 640×480 pixels with 30 frames
per second. The effective depth range of the Kinect RGB-D camera is from 0.8 to
4 m. Although the Kinect for Windows Hardware can be switched to near mode that
provides a range of 0.5–3 m, currently the near mode is not supported for an Xbox
Kinect for Windows SDK. The RGB-D camera field of view is about 60∈. Since
the RGB-D sensors use infrared, they cannot be used reliably for obstacle avoid-
ance of transparent objects such as glass doors. Also they will not work in outdoor
environments with direct sunlight.

Theoretically, the traditional RGB camera-based assistive technology for blind
persons can be implemented using RGB-D sensors. However, since the limited res-
olution (640 × 480 pixels) of the current RGB-D sensors, some technologies may
not work such as text detection and recognition especially for text with small size. In
this section, we briefly summarize RGB-D sensor-based technology for applications
to assist visually impaired people.

Khan et al. [48] developed a real-time human and obstacle detection system for
a blind or visually impaired user using a Xtion Pro Live RGB-D sensor. As shown
in Fig. 9.5, the prototype system includes a Xtion Pro live (Kinect) sensor, waist
assembly to mount the Kinect, a laptop for processing and transducing the data, a
backpack to hold the laptop, and a set of headphone for providing feedback to the
user. The system runs in two modes: (1) track and/or detect multiple humans and
moving objects and transduce the information to the user; and (2) avoid obstacles for
safe navigation for a blind or visually impaired user in an indoor environment. They
also presented a preliminary user study with some blindfolded users to measure the
efficiency and robustness of their algorithms.

Tang et al. [50] presented an RGB-D sensor-based computer vision device
to improve the performance of visual prostheses. First, a patch-based method is
employed to generate a dense depth map with region-based representations. The
patch-based method generates both a surface-based RGB and depth (RGB-D) seg-
mentation instead of just 3D point clouds; therefore, it carries more meaningful infor-
mation and it is easier to convey the information to the visually impaired. Then, they

Fig. 9.5 The Xtion Pro Live-Waist assemblies for detecting humans and obstacles [48]



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 181

Fig. 9.6 The RGB-D camera-based navigation aid for the visually impaired, which includes an
RGB-D camera and a tactile vest interface device [52]

applied a smart sampling method to transduce the important/highlighted information,
and/or remove background information, before presenting to visually impaired peo-
ple. They also reported some preliminary experiments with the BrainPort V100 [23]
to investigate the effectiveness of both recognition and navigation that blind people
can perform using such a low-resolution tactile device.

Lee and Medioni [52] developed a wearable RGB-D camera-based navigation aid
for the visually impaired to navigate low-textured environment as shown in Fig. 9.6.
To extract orientational information of the blind users, a visual odometer and feature-
based metric topological simultaneous localization and mapping (SLAM) are incor-
porated. A vest-type interface device with 4 tactile feedback effectors is used to
communicate with the user for the presence of obstacles and provide the blind user
with guidance along the generated safe path from the SLAM.

Park and Howard [58] presented some preliminary results of development of a
real-time haptic telepresence robotic system for the visually impaired to reach specific
objects using an RGB-D sensor. As shown in Fig. 9.7, Tamjidi et al. [59] developed a
smart cane prototype by adding a SwissRanger SR4000 3D camera [60] for camera’s
pose estimation and object/obstacle detection in an indoor environment. The SR4000
is an RGB-D sensor and provides intensity and range data of the scene. The SR4000
has a spatial resolution of 176 × 144 pixels and a field of view of 43.6 × 34.6∈.

In assistive system development, the user interface design plays a very important
role. Without a friendly user interface, it is impossible for blind users to use the
device even though the technology is perfect. How the system can best present spatial
information nonvisually to the user is one of the center issues together these comprise
the human interface for blind users. Ribeiro et al. [49] developed a new approach for
representing visual information with spatial audio to help a blind user building mental
maps from the acoustic signals and associating them with spatial data. As shown in
Fig. 9.8, the prototype device includes a Kinect RGB-D camera, an accelerometer,



182 Y. Tian

Fig. 9.7 The Smart Cane prototype with a SwissRanger SR4000 3D camera [59]

a gyroscope, and open-ear headphones. They applied computer vision methods for
plane decomposition, navigable floor mapping and object detection. Unlike previous
work to create acoustic scenes by transducing low-level (e.g., pixel-based) visual
information, their method only identifies high-level features of interest in an RGB-

Fig. 9.8 The prototype device of the auditory augmented reality proposed in [49]



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 183

D stream. Then, they rendered the location of an object by synthesizing a virtual
sound source at its corresponding real-world coordinates. By sonifying high-level
spatial features with 3D audio, users can use their inherent capacity for sound source
localization to identify the position of virtual objects.

9.4 RGB-D Image-Based Stair and Pedestrian
Crosswalk Detection

9.4.1 System Overview

In this section, we describe an RGB-D-based framework to detect staircases and
pedestrian crosswalks for blind persons by integrating an RGB-D camera, a micro-
phone, a portable computer, and a speaker connected by Bluetooth for audio descrip-
tion of objects identified. In our prototype system, a mini laptop is employed to
conduct image processing and data analysis. The RGB-D camera mounted on the
user’s belt is used to capture videos of the environment and connected to the mini
laptop via a USB connection. The user can control the system by speech input via
a microphone. Compared to existing work of staircase detection that only depends
on RGB videos or stereo cameras [53–55], our proposed method is more robust and
efficient to detect staircases and crosswalks.

As shown in Fig. 9.9, our whole framework consists of stair and crosswalk detec-
tion and recognition. First, a group of parallel lines are detected via Hough transform
and line fitting with geometric constraints from RGB information. In order to dis-
tinguish stairs and pedestrian crosswalks, we extract the feature of one-dimensional
depth information according to the direction of the longest detected line from the
depth image. Then, the feature of one-dimensional depth information is employed
as the input of a support vector machine (SVM)-based classifier [56] to recognize
stairs and pedestrian crosswalks. For stairs, a further detection of the upstairs and
downstairs is conducted. Furthermore, we estimate the distance between the camera
and stairs for the blind user.

9.4.2 Detecting Candidates of Pedestrian Crosswalks
and Stairs from RGB Images

There are various kinds of staircases and pedestrian crosswalks. In the application
of blind navigation and wayfinding, we focus on detecting stairs or pedestrian cross-
walks in a close distance for stair cases with uniform trend and steps, and pedestrian
crosswalks of the most regular zebra crosswalks with alternating white bands.

Stairs consist of a sequence of steps that can be regarded as a group of consecutive
curb edges, and pedestrian crosswalks can be characterized as an alternating pattern



184 Y. Tian

Fig. 9.9 Flowchart of our proposed algorithm for stair and pedestrian crosswalk detection and
recognition

of black and white stripes. To extract these features, we first obtain the edge map from
RGB image of the scene and then perform a Hough transform to extract the lines
in the extracted edge map image. These lines are parallel for stairs and pedestrian
crosswalks. Therefore, a group of concurrent parallel lines represent the structure
of stairs and pedestrian crosswalks. In order to eliminate the noise from unrelated
lines, we add constraints including the number of concurrent lines, line length, etc.
We apply Hough transform to detect straight lines based on the edge points by the
following steps:

Step1: Detect edge maps from the RGB image by edge detection.
Step2: Compute the Hough transform of the RGB image to obtain the direction of

the line.
Step3: Calculate the peaks in the Hough transform matrix.
Step4: Extract lines in the RGB image.
Step5: Detect a group of parallel lines based on constraints such as the length and

total number of detected lines of stairs and pedestrian crosswalks.

As shown in Fig. 9.10c, the detected parallel lines of stairs and pedestrian cross-
walks are marked as green, while yellow dots and red dots represent the staring points
and the ending points of the lines, respectively. However, these lines are often sepa-



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 185

Fig. 9.10 Example of upstairs (row 1), downstairs (row 2), and pedestrian crosswalks (row 3). a
Original image; b edge detection; c line detection; d concurrent parallel lines detection (yellow
dots represent the starting points, red dots represent the ending points of the lines, and green lines
represent the detected lines)

rated with small gaps caused by noises, so we group the line fragments as the same
line if the gap is less than a threshold. In general, stairs and pedestrian crosswalks
contain multiple parallel lines with a reasonable length. If the length of a line is less
than a threshold (set as 60 pixels in our system), then the line does not belong to the
line group. And if the number of parallel lines is less than 5 (more than two stair
steps), the scene image does not contain stairs and pedestrian crosswalks.

9.4.3 Recognizing Pedestrian Crosswalks and Stairs
from Depth Images

By detecting parallel lines under the constraints in a scene image captured by an
RGB-D camera, we can detect the candidates of stairs and pedestrian crosswalks.
From the depth images, we observe that upstairs have rising steps and downstairs
have descending steps, and pedestrian crosswalks are flat with smooth depth change
as shown in Fig. 9.11. Considering the safeness for the visually impaired people, it
is necessary to classify the different stairs and pedestrian crosswalks into the correct
categories.



186 Y. Tian

Fig. 9.11 Depth images of a crosswalks, b downstairs, and c upstairs

Fig. 9.12 a The orientation and position of the feature line to extract one-dimensional depth features
from the edge image. The blue square indicates the middle point of the longest line and the red
line shows the orientation, which is perpendicular to the detected parallel lines. b One-dimensional
depth feature for upstairs (green curve), downstairs (blue curve), and pedestrian crosswalks (red
curve). The red squares indicate the first turning points of the one-dimensional depth features of
upstairs and downstairs

In order to distinguish stairs and pedestrian crosswalks, we first calculate the orien-
tation and position of the feature line in the edge image to extract the one-dimensional
feature from depth information. As shown in Fig. 9.12a, the orientation of the feature
line is perpendicular to the parallel lines detected from RGB images. The position of
the feature line is determined by the middle point of the longest line of the parallel
lines. In Fig. 9.12a, the blue square indicates the middle point of the longest line
and the red line is the feature line that indicates the orientation to calculate the one-
dimensional depth feature. The typical one-dimensional depth feature for upstairs
(green curve), downstairs (blue curve), and pedestrian crosswalks (red curve) is
demonstrated in Fig. 9.12b.

The resolution of depth images captured by an RGB-D camera [12, 13] in Fig. 9.11
is 640 × 480 pixels. The effective depth range of the RGB-D camera is about
0.15–4.7 m. The intensity value range of the depth images is [0, 255]. Therefore, as
shown in Fig. 9.12b, the intensities of the one-dimensional depth feature for upstairs,
downstairs, and crosswalks are between 50 and 220 (the vertical axis) but are 0 if
the distance is out of the depth range of an RGB-D camera. Therefore, the one-
dimensional depth feature is a feature vector with 480 dimensions. We observe that
the curve for crosswalks is very flat while the curves of upstairs and downstairs are



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 187

with intensity changes of step shape, which can be used to distinguish stairs and
crosswalks. In order to classify upstairs, downstairs, and pedestrian crosswalks, we
employ a hierarchical SVM structure by using the extracted one-dimensional depth
feature vector as the input. The classification processing includes two steps: (1) one
classifier to identify pedestrian crosswalks from stairs. (2) For those detected stairs,
one more classifier to further identify upstairs and downstairs.

9.4.4 Estimating Distance Between Stairs and the Camera

When walking on stairs, we should adjust our walking speed and foot height as
the stairs have a steep rising or decreasing. For blind users, stairs, in particular
downstairs, may cause injury if they fall. Therefore, it is essential to provide the
distance information of the first step of the stairs to the blind or visually impaired
individuals (i.e., the camera position) to remind them when they should adjust their
walking speed and foot height. In our method, the distance information between
the first step of the stairs and the camera position is calculated by detecting the first
turning point from the one-dimensional depth feature as shown in Fig. 9.12b marked
as the red squares.

From the near distance to far distance (e.g., from left side to the right side) as the
blue line with arrow shown in Fig. 9.12b along the one-dimensional depth feature, a
point x satisfies the following two conditions is considered as a turning point:

∀ f (x) − f (x − 1)∀ > λ and ∀ f ∩(x) − f ∩(x − 1)∀ > ε

where f(x) is the intensity value of the depth information, λ and are the thresholds that
are determined by the RGB-D camera configuration. In our experiment, we observe
that the best results can be obtained with λ = 8 and ε = 50.

After we obtain the position of the turning point that indicates the first step of the
stairs, the distance information from the camera and the first step of the stairs can
be read from the original RGB-D depth data and provided to the blind traveler by
speech.

9.4.5 Experiment Results for Stair and Crosswalk Detection
and Recognition

Stair and Crosswalk Database: To evaluate the effectiveness and efficiency of the
proposed method, we have collected a database for stair and crosswalk detection and
recognition using an RGB-D camera [13]. The database is randomly divided into
two subsets: a testing dataset and a training dataset. The training dataset contains 30
images for each category (i.e., upstairs, downstairs, crosswalks, and negative images
that contain neither stairs nor pedestrian crosswalks) to train the SVM classifiers.
Then, the remaining images are used for testing which contains 106 stairs including



188 Y. Tian

Fig. 9.13 Examples of RGB (1st row) and depth images (2nd row) for a upstairs, b downstairs,
and c pedestrian crosswalks in our database

Fig. 9.14 Negative examples of a bookshelf that has similar parallel edge lines to stairs
and crosswalks. a Original RGB image, b edge image, c line detection, d concurrent parallel
lines detection (Yellow dots represent the starting points,red dots represent the ending points of the
lines, and green lines represent the detected lines.)

56 upstairs and 50 downstairs, 52 pedestrian crosswalks, and 70 negative images.
Here, positive image samples indicate images containing either stairs or pedestrian
crosswalks, and negative image samples indicate images containing neither stairs
nor pedestrian crosswalks. Some of the negative images contain objects structured
with a group of parallel lines such as bookshelves as shown in Fig. 9.14. The images
in the dataset include small changes of camera view angels [−30∈, 30∈]. Some of
the experiment examples used in our algorithm are shown in Fig. 9.13. The first row



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 189

Table 9.1 Detection accuracy of candidates of stairs and pedestrian crosswalks

Classes No. of samples Correctly detected Missed Detection accuracy (%)

Stairs 106 103 3 97.2

Crosswalks 52 41 11 78.9

Negative samples 70 70 0 100

Total 228 214 14 93.9

displays some RGB images of upstairs (Fig. 9.13a), downstairs (Fig. 9.13b), and
crosswalks (Fig. 9.13c) with different camera angles and the second row shows the
corresponding depth images.

Experiment Results We have evaluated the accuracy of the detection and the
classification of our proposed method. The proposed algorithm achieves an accuracy
of detection rate at 91.14 % among the positive image samples and 0 % false positive
rate as shown in Table 9.1. For the detection of candidates of stairs and crosswalks,
we correctly detect 103 stairs from 106 images, and 41 pedestrian crosswalks from
52 images of pedestrian crosswalks. Some of the negative samples are constructed
similar edges as stairs and pedestrian crosswalks as shown in Fig. 9.14. With the
current RGB-D camera configuration, in general, only one to two shelves can be
captured. The detected parallel lines do not meet the constraint conditions. Therefore,
the bookshelves are not detected as candidates of stairs and pedestrian crosswalks.

In order to classify stairs and pedestrian crosswalks, the detected candidates of
stairs and crosswalks are input into an SVM-based classifier. As shown in Table 9.2,
our method achieves a classification rate for the stairs and pedestrian crosswalks at
95.8 % which correctly classified 138 images from 144 detected candidates. A total
of 6 images of stairs are wrongly classified as pedestrian crosswalks. All the detected
pedestrian crosswalks are correctly classified.

For stairs, we further classify them as upstairs or downstairs by inputting the one-
dimensional depth feature into a different SVM classifier. We achieve an accuracy
rate of 90.2 %. More details of the classification of upstairs and downstairs are listed
in Table 9.3.

Our system is implemented by using MATLAB without optimization. The average
processing time for stair and crosswalk detection and recognition of each image is
about 0.2 s on a computer with 2.4 GHz processor. This can be easily sped up 10–100
times in C++ with optimization.

Limitations of the Proposed Method of Stair and Crosswalk Recognition In
database capture, we observe that it is hard to capture good quality depth images of
pedestrian crosswalks compared to capture images of stairs. The main reason is the
current RGB-D cameras cannot obtain good depth information for outdoor scenes if
the sunshine is too bright. Therefore, the field of view of the obtained depth maps
is restricted compared to the RGB images. Some of the images our method cannot
handle are shown in Fig. 9.15. For example, the depth information of some parts of
the images is missing. Furthermore, as shown in Fig. 9.15c, the zebra patterns of



190 Y. Tian

Table 9.2 Accuracy of classification between stairs and pedestrian crosswalks

Category Total Classified as stairs Classified as crosswalks

Stairs 103 97 6

Crosswalks 41 0 41

In a total of 144 detected candidates of stairs (103) and crosswalks (41), all 41 crosswalks and 97
stairs are correctly classified. Six stairs are wrongly classified as crosswalks

Table 9.3 Accuracy of classification between upstairs and downstairs

Category Total Classified as upstairs Classified as downstairs

Upstairs 53 48 5

Downstairs 50 5 45

In a total of 103 detected candidates of stairs (53 for upstairs and 50 for downstairs), 48 upstairs
and 45 downstairs are correctly classified. Five upstairs and five downstairs are wrongly classified

Fig. 9.15 Examples of our proposed method of stair and crosswalk detection fails. a Downstairs
with poor illumination. b Upstairs with less detected lines caused by noise. c Pedestrian crosswalks
with missing zebra patterns; and d Stairs with less steps

pedestrian crosswalks are not always visible caused by the long- time use. In this
case, it is hard to extract enough number of parallel lines to satisfy the candidate
detection constraints for stair and crosswalk detection. In our method, stairs with
less than 3 steps (only have 3 or 4 parallel lines) cannot be detected, as shown in
Fig. 9.15d.

9.5 Conclusions and Future Work

In this chapter, we have reviewed several computer vision-based assistive systems and
approaches for blind or visually impaired people, especially using RGB-D sensors.
There are mainly three main limitations for current RGB-D sensor-based computer
vision technology for the application of blind wayfinding and navigation: (1) It is
difficult to achieve 100 % accuracy to apply only computer vision-based technology
due to the complex environments and lighting changes. Based on the survey we
conducted with blind users, we find that most of blind users prefer higher detection
accuracy but are willing to accept more meaningful information especially for users
who recently lost their vision. (2) For the current available RGB-D sensors, the size



9 RGB-D Sensor-Based Computer Vision Assistive Technology... 191

is still too large; the resolution is not high enough; the depth range is too short. In
addition, they will not work in outdoor environments with direct sunlight. We believe
that these limitations will be partially solved with design of next generation of RGB-
D sensors. (3) It is hard to develop effective and efficient nonvisual display to blind
users due to the huge amount of information images contain. Therefore, the user
should be always included in the loop of the computer vision-based blind assistive
device.

Theoretically, higher detection accuracy is always better. However, in reality, it is
very hard to achieve 100 % detection accuracy in particular for computer vision-based
methods due to the complex situations and the lighting changes. For the application
to assist blind users, a high detection accuracy and a lower false-negative rate are
more desirable. Therefore, it is very important to design a user-friendly interface to
provide meaningful feedback to blind users with the detected important information.

We think that an assistive system is not intended to replace the white cane while
most blind users using. Instead, a navigation aid can help blind users to gain improved
perception and better understanding of the environment so that they can aware the
dynamic situation changes. Blind users are the final decision makers who make
travel decision and react to local events within the range of several meters. The
future research should be focused on enhancing the robustness and accuracy of the
computer vision technology as well as more user interface study for blind users.

Acknowledgments This work was supported in part by NSF Grant No. EFRI-1137172, IIP-
1343402, FHWA DTFH61-12-H-00002, and Microsoft Research.

References

1. 10 facts about blindness and visual impairment, World Health Organization (2009) Blind-
ness and visual impairment (2009) www.who.int/features/factfiles/blindness/blindness_facts/
en/index.html

2. Advance Data Reports from the National Health Interview Survey (2008) http://www.cdc.gov/
nchs/nhis/nhis_ad.htm

3. Genensky SM, Baran P, Moshin H, Steingold H (1968) A closed circuit TV system for the
visually handicapped

4. Kurzweil R (1976) The Kurzweil reading machine: a technical overview. Sci, Technol Handi-
capped, pp 3–11

5. Arditi A, Gillman A (1986) Computing for the blind user. Byte 11(3):199–211
6. Dakopoulos D, Bourbakis NG (2010) Wearable obstacle avoidance electronic travel aids for

blind: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 40:25–35
7. Giudice N, Legge GE (2008) Blind navigation and the role of technology. In: Helal A, Mokhtari

M, Abdulrazak B (eds) The engineering handbook of smart technology for aging, disability,
and independence. Wiley, Hoboken

8. Manduchi R, Coughlan J (2012) Computer vision without sight. Commun ACM 55(1):96–104
9. Roentgen UR, Gelderblom GJ, Soede M, de Witte LP (2008) Inventory of electronic mobility

aids for persons with visual impairments: a literature review. J Vis Impairment Blindness
102:702–724

10. Bonin-Font F, Ortiz A, Oliver G (2008) Visual navigation for mobile robots: a survey. J Intell
Robot Syst 53(3):263–296

www.who.int/features/factfiles/blindness/blindness_facts/en/index.html
www.who.int/features/factfiles/blindness/blindness_facts/en/index.html
http://www.cdc.gov/nchs/nhis/nhis_ad.htm
http://www.cdc.gov/nchs/nhis/nhis_ad.htm


192 Y. Tian

11. DeSouza GN, Kak AC (2002) Vision for mobile robot navigation: a survey. IEEE Trans Pattern
Anal Mach Intell 24(2):237–267

12. Microsoft (2010) http://www.xbox.com/en-US/kinect
13. PrimeSense http://www.primesense.com
14. Bousbia-Salah M, Redjati A, Fezari M, Bettayeb M (2007) An ultrasonic navigation system

for blind people. IEEE international conference on signal processing and communications
(ICSPC), pp 1003–1006

15. Kao G (1996) FM sonar modeling for navigation. Department of Engineering Science, Uni-
versity of Oxford, Technical Report

16. Kuc R (2002) A sonar aid to enhance spatial perception of the blind: engineering design and
evaluation. IEEE Trans Biomed Eng 49(10):1173–1180

17. Laurent B, Christian T (2007) A sonar system modeled after spatial hearing and echolocating
bats for blind mobility aid. Int J Phys Sci 2 (4):104–111

18. Morland C, Mountain D (2008) Design of a sonar system for visually impaired humans. The
14th international conference on auditory display, June 2008

19. Seeing with Sound—The vOICe:http://www.seeingwithdound.com
20. The Argus II retinal prosthesis system. Available: http://www2-sight.eu/en/product-en
21. VizWiz—Take a Picture, Speak a Question, and Get an Answer”. Available: http://www.vizwiz.

org/
22. Image Recognition APIs for photo albums and mobile commerce | IQ Engines. Available:

https://www.iqengines.com
23. BrainPort lets you see with your tongue, might actually make it to market. Avail-

able: http://www.engadget.com/2009/08/14/brainport-lets-you-see-with-your-tongue-might-
actually-make-it

24. Chebat DR, Rainville C, Kupers R, Ptito M (2007) Tactile—visual acuity of the tongue in early
blind individuals. Neuro Report 18(18):1901–1904

25. Williams MD, Ray CT, Griffith J, De l ’Aune W (2011) The use of a tactile-vision sensory
substitution system as an augmentative tool for individuals with visual impairments. J. Vis
Impairment Blindness, 105(1):45–50

26. Chebat DR, Schneider FC, Kupers R, Ptito M (2011) Navigation with a sensory substitution
device in congenitally blind individuals. Neuro Report 22(7):342–347

27. Coughlan J, Shen HA (2006) Fast algorithm for finding crosswalks using figure-ground seg-
mentation. The 2nd workshop on applications of computer vision, in conjunction with ECCV,
2006

28. Ivanchenko V, Coughlan J, Shen H (2008) Detecting and locating crosswalks using a camera
phone. Computers Helping People with Special Needs. (Lecture notes in computer science),
5105:1122–1128

29. Advanyi R, Varga B, Karacs K (2010) Advanced crosswalk detection for the bionic eyeglass.
In: Proceedings of the 12th international workshop on cellular nanoscale networks and their
applications (CNNA) 2010, pp 1–5

30. Se S (2000) Zebra-crossing Detection for the Partially Sighted. IEEE Conf Comput Vis Pattern
Recogn 2:211–217

31. Se S, Brady M (2000) Vision-based detection of stair-cases. In: Proceedings of fourth asian
conference on computer vision (ACCV) 2000, pp 535–540

32. Uddin M, Shioyama T (2005) Bipolarity and projective invariant-based Zebra-crossing detec-
tion for the visually impaired. 1st IEEE Workshop on computer vision applications for the
visually impaired, 2005

33. C Yi, Tian Y, (2011) Assistive text reading from complex background for blind persons. The
4th international workshop on camera-based document analysis and recognition (CBDAR),
2011

34. Wang S, Yi CY, Tian Y (2012) Signage detection and recognition for blind per-sons to access
unfamiliar environments. J Comput Vis Image Process 2(2)

35. Yi C, Tian Y, Arditi A, (2013) Portable camera-based assistive text and product label reading
from hand-held objects for blind persons. IEEE/ASME Trans Mechatron Accepted, 2013 http://
dx.doi.org/10.1109/TMECH.2013.2261083

http://www.xbox.com/en-US/kinect
http://www.primesense.com
http://www.seeingwithdound.com
http://www2-sight.eu/en/product-en
http://www.vizwiz.org/
http://www.vizwiz.org/
https://www.iqengines.com
http://www.engadget.com/2009/08/14/brainport-lets-you-see-with-your-tongue-might-actually-make-it
http://www.engadget.com/2009/08/14/brainport-lets-you-see-with-your-tongue-might-actually-make-it
http://dx.doi.org/10.1109/TMECH.2013.2261083
http://dx.doi.org/10.1109/TMECH.2013.2261083


9 RGB-D Sensor-Based Computer Vision Assistive Technology... 193

36. Ye Z, Yi C, Tian Y (2013) Reading labels of cylinder objects for blind persons, IEEE interna-
tional conference on multimedia & Expo (ICME), 2013

37. Yuan S, Tian Y, Arditi A (2011) Clothing matching for visually impaired persons. Technol
Disabil 23:75–85

38. Hasanuzzaman F, Yang X, Tian Y (2012) Robust and effective component-based banknote
recognition for the blind. IEEE Trans Syst Man Cybern Part C: Appl Rev, Jan 2012

39. Yang X, Yuan S, Tian Y, (2013) Assistive clothing pattern recognition for visually impaired
people. IEEE Trans Hum Mach Syst. Accepted, 2013

40. Tian Y, Yang X, Yi C, Arditi A (2102) Toward a computer vision-based wayfinding aid for
blind persons to access unfamiliar indoor environments. Mach Vis Appl, 2012

41. Pan H, Yi C, Tian Y (2103) A primary travelling assistant system of bus detection and recog-
nition for visually impaired people. IEEE Workshop on multimodal and alternative perception
for visually impaired people (MAP4VIP), in conjunction with ICME 2013

42. Joseph S, Zhang X, Dryanovski I, Xiao J, Yi C, Tian Y (2013) Semantic indoor navigation
with a blind-user oriented augmented reality. IEEE International conference on systems, man,
and cybernetics, 2013

43. Wang S, Pan H, Zhang C, Tian Y (2014) RGB-D image-based detection of stairs, pedestrian
crosswalks and traffic signs. J Vis Commun Image Represent (JVCIR), 25:263–272, http://dx.
doi.org/10.1016/j.jvcir.2013.11.005

44. Arditi A Tian Y (2013) User interface preferences in the design of a camera-based navigation
and wayfinding aid. J Vis Impairment Blindness, 107(2):118–129

45. Yi C, Tian Y (2011) Text string detection from natural scenes by structure-based partition and
grouping. IEEE Trans Image Process 20(9):2594

46. Yi C, Tian Y (2012) Localizing text in scene images by boundary clustering, stroke segmenta-
tion, and string fragment classification. IEEE Trans Image Process 21(9):4256–4268

47. Yi C, Tian Y (2013) Text extraction from scene images by character appearance and structure
modeling. Comput Vision Image Underst 117(2):182–194

48. Khan A, Moideen F, Khoo W, Zhu Z, Lopez J, KinDetect: kinect detecting objects. In: Pro-
ceedings of the 13th international conference on computers helping people with special needs,
7383, Miesenberger K, Karshmer A, Penaz P, Zagler W (2012) Springer, Berlin Heidelberg,
Linz, Austria, July 11–13, 2012, 588–595

49. Ribeiro F, Florêncio D, Chou PA, Zhang Z, (2012) Auditory augmented reality: object soni-
fication for the visually impaired. IEEE 14th international workshop on multimedia signal
processing (MMSP), 2012

50. Tang H, Vincent M, Ro T, Zhu Z (2013) From RGB-D to low resolution tactile: smark sam-
pling and early testing. IEEE workshop on multimodal and alternative perception for visually
impaired people (MAP4VIP), in conjunction with ICME 2013

51. Wang Z, Liu H, Wang X, Qian Y (2014) Segment and label indoor scene Based on RGB-D for
the visually impaired. MultiMedia modeling, Lecture Notes in Computer Science 8325:449–
460

52. Lee YH, Medioni G (2011) A RGB-D camera based navigation for the visually impaired.
RGB-D: advanced reasoning with depth camera work-shop, June 2011

53. Lee YH, Leung T, Médioni G (2012) Real-time staircase detection from a wearable stereo
system. ICPR, Japan

54. Lu X, Manduchi, R (2005) Detection and localization of curbs and stairways using stereo vision
ICRA, 2005

55. Wang S, Wang H (2009) 2D staircase detection using real adaboost. Information, communica-
tions and signal processing (ICICS), 2009

56. Chang C, Lin C (2001) LIBSVM: a Library for support vector machine, 2001. http://www.
csie.ntu.edu.tw/~cjlin/libsvm

57. Velazquez R (2010) Wearable assistive devices for the blind. Book chapter In Lay-Ekuakille
A Mukhopadhyay SC (Eds), Wearable and autonomous biomedical devices and systems for
smart environment: issues and characterization, LNEE 75, Springer, pp 331–349, 2010

http://dx.doi.org/10.1016/j.jvcir.2013.11.005
http://dx.doi.org/10.1016/j.jvcir.2013.11.005
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


194 Y. Tian

58. Park CH, Howard AM (2013) Real-time haptic rendering and haptic telepresence robotic system
for the visually impaired. World haptics conference (WHC), 2013

59. Tamjidi A, Ye C, Hong S (2013) 6-DOF pose estimation of a portable navigation aid for the
visually impaired. IEEE international symposium on robotic and sensors environments, 2013

60. SR4000 User Manual (http://www.mesa-imaging)
61. Marion AH, Michael AJ (Eds) (2008) Assistive technology for visually impaired and blind

people. Springer, London
62. Zhang Z (2012) Microsoft kinect sensor and its effect. IEEE MultiMedia 19(2):4–10
63. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor:

a review. IEEE Trans Cybern, Oct 2013

http://www.mesa-imaging


Chapter 10
RGB-D Human Identification and Tracking
in a Smart Environment

Jungong Han and Junwei Han

Abstract Elderly and disabled people can particularly benefit from smart environ-
ments with integrated sensors, as they offer basic assistive functionalities enabling
personal independence and increased safety. In a smart environment, the key issue
is to quickly sense the location and identity of its users. In this paper, we aim at
enhancing the robustness of human detection and identification algorithm in a home
environment based on the Kinect, which is a new and multimodal sensor. The con-
tribution of our work is that we employ different cameras for different algorithmic
modules, based on investigating the suitability of each camera in Kinect for a specific
processing task, resulting in an efficient and robust human detection, tracking and
re-identification system. The total system consists of three processing modules: (1)
object labeling and human detection based on depth data, (2) human reentry iden-
tification based on both RGB and depth information, and (3) human tracking based
on RGB data. Experimental results show that each algorithmic module works well,
and the complete system can accurately track up to three persons in a real situation.

10.1 Introduction

The concept of smart environments or ambient intelligence refers to physical spaces
equipped with sensors feeding into adaptive algorithms that enable the environment
to become sensitive and responsive to the presence of people. It is a vision on an
imminent future to be brought about by the confluence of consumer electronics,

The major work was done while Jungong Han was working in CWI.

J. Han (B)

Civolution Technology, Eindhoven, The Netherlands
e-mail: jungonghan77@gmail.com

J. Han
School of Automation, Northwestern Polytechnical University, Xi’an, China

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_10

195



196 J. Han and J. Han

distributed networking, and intelligent computing. In a smart environment, people
carry out their everyday activities in easy and comfortable way using information
and intelligence that is hidden in the network connecting devices and sensors. The
concept of smart environment has been verified and provided to consumers recently.
There are various example homes over the world with such embedded intelligent
networks, where societies experiment with such technologies. Elderly and disabled
people can particularly benefit from such environments, as they offer basic assistive
functionalities, enabling personal independence, and increased safety.

The core technology in a smart environment is to detect and track the people
and recognize their actions and intentions. The task is normally accomplished by
analyzing video signals captured by camera sensors. However, one fundamental
problem in this area is that human segmentation and tracking algorithms based on
RGB images cannot always provide reliable results. This holds particularly when
the environment is cluttered or people suddenly change the illumination conditions,
both of which occur frequently in a realistic setting.

This chapter intends to address this problem by selectively combining two types of
cameras. The feature of our work is that we complementarily use cameras for different
algorithmic purposes and exploit their different properties and specific advantages.
Basically, our goal is the implementation of a reliable system for person identification
and tracking based on a consumer sensor [10] that is well balanced between the
system robustness and efficiency. The system is supposed to be used in a smart
home environment because the number of people to be tracked is small. The work
introduced in this chapter is an improved version of our previous system [8] in the
sense that we redesign the algorithms for human detection and reentry identification.

10.2 Related Work

In our system, there are three key technical components: human detection, human
tracking, and human re-identification. For the sake of clarity, we will introduce exist-
ing works in each filed, respectively.

10.2.1 Human Detection

The research for human detection generally develops in two ways. At the early
stage, researchers exploit the shape matching to distinguish the human and other
objects [13]. The basic idea is to measure the distance between the shape of extracted
person and shapes stored in the dataset. The human shapes in the dataset normally
take different viewpoints (frontal or side view) and different scales of the human into
account. If one of the computed distances is smaller than a pre-defined threshold, the
detected object is assigned to be a person. Apart from the fact that it is difficult to
extract the human silhouette (shape) from the image, the matching is less robust but



10 RGB-D Human Identification and Tracking... 197

time consumed considering variations in both shape scales and viewpoints. Therefore,
such methods are merely used in the constrained situations, where the complete
human shape can be always available and the real-time processing is not needed.

Recently, researchers turn their eyes to more realistic situations, in which a com-
plete human silhouette cannot be extracted easily due to the cluttered background
and image noises. Local features, such as Harr wavelet feature, histograms of ori-
ented gradients (HOG), and edgelet features, are derived from the original image.
Various discriminative classification techniques including support vector machines
(SVMs) and boosted ensemble learning are employed to determine an optimal deci-
sion boundary between pattern classes in a feature space. The major drawback of
this type of methods is that the local feature is variant to the camera view change.

With the advent of affordable RGB-D sensors, depth image-based human detec-
tion has attracted attention in the computer vision community. In Xia [19], authors
propose a model-based approach, which detects human using a 2D head contour
model and a 3D head surface model. In the first step, the algorithm scans across the
whole image and gives the possible regions that may contain people. The candidate
region is further examined using a 3D head model, which exploits the relational depth
information. Afterward, it matches the 3D model against all the detected regions to
make the decision. This 3D head model is generated off-line based on many training
samples. The work reported in Salas [15] also tries to detect the head–shoulder shape
on a depth image. The innovation is a fast descriptor that calculates the histogram of
depth differences. Spinello et al. [17] propose a descriptor, called histogram of ori-
ented depths (HOD), which locally encodes the direction of depth changes and relies
on an depth-informed scale space search. Moreover, it also designs a probabilistic
scheme to combine HOG and HOD so as to obtain more robust detection. For more
detailed introduction, we refer to a survey paper [10].

10.2.2 Human Tracking

A lot of publications have been devoted to this area. One type of systems only uti-
lizes a depth camera to detect and track persons. The algorithm [3] starts with a
segmentation of the scene between background and foreground (moving) regions
using depth information. Tracking is developed based on considering both human
motion and depth changes. A better method is proposed by Hansen et al. [9], where
a background model is built by fusing information from intensity and depth images.
The EM (Expectation Maximization) algorithm is used for tracking moving clus-
tering of pixels significantly different for the background model. The work done in
Arif [1] focuses on improving the foreground detection using graph-cut technique.
In general, the tracking based on depth data will fail in the situation that persons have
similar depths when occlusion occurs. Another drawback is that it is not possible to
distinguish people using depth data only.



198 J. Han and J. Han

On the other hand, some systems fuse the depth information with the RGB
information of the image. In Crabb [4], authors fuse depth and color data to seg-
ment the foreground pixels in a video sequence. The basic idea is to generate a sort
of probability map for each pixel based on depth data, where larger probability means
this pixel is likely to be a foreground pixel. Pixels that cannot be definitively classi-
fied as foreground or background, typically about 1–2 % of the image, are checked
again on the color image considering the edge information. Though the algorithm
only conducts an object segmentation task, its execution time is already about 10
frames per second on a powerful PC. The work reported by Gould [6] fuses laser
range and color data to train a robot vision system. For each pixel in the robot’s field
of view, it has color/intensity, depth, and surface normal information, which help to
extract 3D features. This technique indeed improves the detection accuracy by 10 %,
but the speed of the algorithm is far from the real time (a few seconds per image). In
Sabeti [14], two separate particle filter trackers, one using color and the other using
depth data, are employed to track objects. The approach is not suitable for real time as
it involves heavy processing. Generally speaking, the performance of the algorithm
fusing color and depth is better than the algorithm using single-type information only.
However, the way of fusing data is too straightforward in the sense that data from
different channels are treated equally without considering the advantage of sensor.
Therefore, most algorithms cannot reach real-time requirement.

10.2.3 Human Re-identification

Basically, our human re-identification algorithm relies on the visual signature
extracted from the RGB image. Therefore, the literature study focuses on those
publications dedicated to RGB image human re-identification. Existing works have
exploited various features, such as color, texture, human shape, and position. Here,
we briefly introduce several representatives for each category.

Plain means, histograms, or the mixture of them on different color spaces (e.g.,
RGB, HSV) [12] are widely used in the descriptors. Regarding the texture fea-
tures, covariance matrices [2], feature-point-based local descriptors [7], and LBP fea-
tures [11] have been exploited. Popular shape-related features include width/height
ratio, body orientation, moment invariants, and contours. Human position in the
image is commonly adopted to match people in the setup with overlapping cam-
eras, given the camera transformation matrix. This information is pretty useful when
tracing a person across different cameras.

10.3 Algorithm Description

Our system is a typical indoor video surveillance system that detects humans, identi-
fies humans, and then tracks them. Compared to the system we described in Han [8],
the functional modules are more or less the same. However, the algorithms, such as



10 RGB-D Human Identification and Tracking... 199

human detection and re-identification, are significantly improved. In this chapter, we
focus on two enhanced algorithms: human detection and human reentry identifica-
tion. For the details of other modules, we refer to our previous publication [8].

10.3.1 Detecting Humans

The task of this module is to determine whether or not a newly detected object is a
human-like. If affirmative, we will extract human visual signature (based on features)
and compare it against a database of recorded visual signatures of previously observed
persons.

As we mentioned previously, segmentation algorithm based on the depth can
reliably provide the human silhouette in the realistic situations. Therefore, it enables
the possibility of using shape cues to deduce the exist of a human. However, it is
still difficult to extract the full-body human silhouette from the image due to the
occlusions either among individuals or objects in the scene. To be practical, we turn
to analyze the shape of the human upper body, which can always be available in our
application.

The next problem is to find viewpoint invariant visual features describing the
human shape, as it is realistic to assume a fixed angle between a human and the
camera in this scenario. In Fig. 10.1a, we show three typical views of human upper
body occurring frequently in the ordinary life. They are front/rear view and two
side views with different body orientations. Here, we try to investigate the common
features shared by the frontal view and two side views. It is noticed that there are
three interesting observations that help to describe the human upper-body shape,
each being briefly introduced below.

Fig. 10.1 Shape-based human detection. a Different views of the human body. b Feature extraction
from upper body of the human with varying postures



200 J. Han and J. Han

Fig. 10.2 Convex hull example. a Convexity defects of a contour. b The distance between the
farthest point to a convex hull and the human main axis

• Peak of the projected histogram. One can see a peak point if we project the human
upper-body silhouette to the x-axis. Meanwhile, this peak point is likely to be near
the intersection point of the upper-body orientation axis and the head contour,
regardless of different postures. This observation can be clearly confirmed by
Fig. 10.1b, where the red dash line indicates the x-coordinate of the peak point
and the white straight line implies the orientation axis of the human. It can be
seen that the distance between two intersection points (the red line with the human
contour and the white line with the human contour, respectively) is indeed not
large even though the human postures and camera view angles may vary.

• Convexity defects of the contour. A useful way of comprehending the shape of an
object is to compute a convex hull for the object and then compute its convexity
defects. In Fig. 10.2a, we use an intuitive example to show how the convexity
defects look like. Here, the black curve is supposed to be the contour of the extracted
object; the red line indicates the convex hull around the object; the blue areas refer
to the convexity defects in the object contours relative to the convex hull; and
the white lines with arrows imply the distance between the farthest point and the
convex hull.

• Symmetry of the defect points. The defect point here refers to the point having the
farthest distance to the convex hull. Normally, we can find one defect point for
each convexity defect. If we sort these points in terms of their distances to the
convex hull, the first two points should correspond to the two side points of human
neck, which is immune to the camera viewing point changes. Symmetry of these
two points means that the two points extracted from the human upper body should
be located at the different sides of the main axis, and the distances of two points
to the main axis should be more or less identical.

Based on the above observations, we are able to generate a feature vector with five
dimensions, which is denoted as vf = [np, dpm, nd, ld, ddm]. In this vector, the first
two parameters are related to the projected histogram of human upper-body shape,
e.g., np refers to the number of peak points extracted from the projected histogram,
and dpm represents the distance between the highest peak point and the intersection



10 RGB-D Human Identification and Tracking... 201

point of the contour and the body main axis. The other three parameters characterize
the convexity defects of the contour. More specifically, nd means the number of
defect points by computing the convex hull based on the contour. The parameter ld
is a binary digit: either 1 or 0. If the first two defect points are located in the different
sides of the main axis, ld equals to 1; otherwise, it is 0. Last, ddm measures the
distance different between these two defect points and the main axis. Generating this
feature vector for each input silhouette needs to know the main axis of the human
upper body as well as the convexity defects. We explain the related techniques in the
following sections.

10.3.1.1 Human Upper-Body Main Axis Estimation

Main axis of the human upper-body part implicitly reflects body’s tilted degree. Sup-
pose that the human pixel is located in the 2D space (x and y), from the mathematical
point of view, this main axis is the direction on which the pixel distribution has the
largest variance. Therefore, the well-known principal component analysis (PCA)
technique is adopted to compute the main axis in our algorithm. Suppose that the
location of a pixel belonging to a human silhouette can be represented as (x, y), the
covariance matrix Σ based on all human pixels is computed by:

Σ =
[

E((x − μx )(x − μx )) E((x − μx )(y − μy))

E((y − μy)(x − μx )) E((y − μy)(y − μy))

]
. (10.1)

Here, μx and μy denote the average value of pixels’ positions in x and y directions,
respectively. The orientation of the main axis can be obtained by a singular value
decomposition (SVD) of the covariance matrix Σ , decomposing Σ into the matrix
product Σ = U SV ∈. The angle of the main axis φ is calculated as:

φ = arctan

(
V (1, 1)

V (1, 2)

)
. (10.2)

In Fig. 10.1b, we show a few examples, where the human tilts the body. Seen from the
results (white line), our main axis detection technique can indeed follow the change
of the posture.

10.3.1.2 Contour Convexity Analysis

The central task of this algorithm is to compute the convexity defects, given the
human upper-body silhouette. In the first step, we find the contour of the human
silhouette described by a set of boundary points of human body. Here, a border
following algorithm [18] designed for digitized binary images is employed. Next,
we further reduce the number of unwanted convexity points by approximating the
contour with a polygon that has fewer vertices. The algorithm recursively connects a



202 J. Han and J. Han

Fig. 10.3 The steps to compute contour convexity

start point and an end point of a line segment by finding the vertex furthest away from
the line segment. Later on, we exploit Sklansky’s algorithm [16] to find the convex
hull of a 2D point set. The output of this step is a sequence containing the hull points.
In the last step, we intend to find convexity defects by drawing the convex hull around
the contour of the upper body enclosing all points of it. Regions where the contour
departs from the convex hull are convexity defects. A defect is characterized by start,
end, and depth points. The depth point is called here as the defect point, which has
the farthest distance to the convex hull. In Fig. 10.3, we demonstrate each step of
our convexity analysis algorithm including contour finding, polygon approximation,
convex hull, and defect point detection.

10.3.1.3 Boosted Ensemble Learning for Human Detection

Once we have obtained the visual features for describing the human shape, it is
required to deduce whether the input features are related to a human or not. A typical
solution is classification algorithms that allow for learning and making decision
based on the observations. In this paper, we adopt the popular Adaboosting-based
ensemble classifier due to its outstanding capability of handling inhomogeneous
multidimensional data.

The basic idea is to combine simple “rules” to form an ensemble so as to boost
the performance of the single ensemble. In other words, the single ensemble can be
considered as a weak classifier, which is based on a single feature and can provide
the results quickly. The final ensemble equals to a strong classifier that combines
many weak classifiers. This classification algorithm is suited to the applications that
use inhomogeneous features, because the weak classifier can be constructed based
on each individual feature without considering the distributions of other features.
Mathematically, given a high-dimensional dataset D = x1, x2, ..., xn and their cor-
responding labels L = l1, l2, ..., ln , an ensemble algorithm computes the following:
(1) a set of classifiers f1, f2, ..., fk , each of which maps data to a class label f j (x) = l
and (2) a combination of classifiers f ∀ which minimizes generalization error:

f ∀(x) =
k∑

t=1

αt ft (x), (10.3)



10 RGB-D Human Identification and Tracking... 203

where αt is the wight of the t th weak classifier. In our work, we construct a weak
classifier based on a single feature from vector vf and use Adaboosting framework to
compute optimal weight for each weak classifier. Finally, a trained classifier f ∀(x)

helps us to decide whether a detected object is a human or not.

10.3.2 Human Reentry Identification Based on Online Learning

As we mentioned previously, two key issues for an online human identification
algorithm are as follows: (1) efficient visual features that best discriminate the human
appearances and (2) training samples that help the classifier to learn the variation
of the human appearances at different positions. A common challenge for these two
issues is that we cannot assign the heavy load to the online learning and decision
part, because we need immediate result in our application. That is, neither feeding
a high-dimensional feature vector into the classifier nor training a classifier with a
lot of samples may not be allowed. To solve the first problem, we extract the region-
based features from the human appearance, instead of pixel-based visual features that
usually generate a high-dimensional feature vector. To deal with the second problem,
we take the advantage of the object depth information provided by the depth sensor.
The idea is to collect the representatives from the samples at different depth levels. It
leads to a better classifier that is able to handle the variation of human appearance at
different depth levels where the lighting casted into the human body may be slightly
changed.

10.3.2.1 Feature Extraction for Human Identification

In our system, we jointly employ two types of features to distinguish persons. One
is the human height, and the other one is the appearance information of the human.
Here, the human height actually means the length of the human in the image. It may
not be that useful in the RGB image-based algorithms, as this feature is varying
dependent on the distance between the human and the camera. However, it can be
useful when the depth information is available, because the relationship between the
distance to the camera and the object length is linear for small lookdown angles,
which is specified by:

l(d) = a1d + a2, (10.4)

where a1 and a2 are two parameters to drive this linear relation. In other words, if
a1 and a2 are known, we can always compute the human length, given the exact
depth of the human. The difference between the computed length and the length
measured from the image may help us to distinguish persons. For example, suppose
that person A’s parameters (a1 and a2) are available and are stored in a dataset. Now,
an unknown person B is entering into the scene and is detected by our algorithm.
Obviously, the length of the person B can be measured from the image, and the depth



204 J. Han and J. Han

(distance to the camera) of this person can be obtained from the depth sensor. Using
Eq. (10.4), we can estimate the length of the person at the given depth. Afterward,
we compare this estimated length with the real length measured from this image. If
this difference is too large, person B is definitely not the person A, because the true
height of a person is fixed.

Let us now discuss how we implement this idea in our system. Suppose that we
have obtained m positive samples and n negative samples for a person at different
depth levels in the scene, the a1 and a2 in Eq. (10.4) can thus be estimated in the least
squares sense based on m positive samples only. Once these two parameters have
been available, we can estimate the length for each sample (both positive and negative
samples) based on Eq. (10.4), given its depth information. The difference between
this estimated length and the length measured from the image is the first element of
our feature vector, which indicates the “height” of a given training sample. Ideally,
the value of this feature should be around 0 for all positive samples and should be
much larger than 0 for all negative samples. Hence, the first element in the feature
vector hd can be formulated as:

hdiff = |(limg − (a∈
1d + a∈

2)|, (10.5)

where limg refers to the length of the detected human in the image, and two parameters
a∈

1 and a∈
2 are obtained based on all positive samples. d is the depth of the detected

human, which can be directly acquired from the depth sensor.
The second type of our features is related to the appearance of a human. Unlike

exiting algorithms that utilize the histogram-based appearance model, we employ
here a sort of region-based appearance statistics due to two reasons. First, histogram-
based appearance model is normally deployed on the color space, so that it usually
has many dimensions. This will impose heavy computational load to our data learning
part, which is not preferred. Second, traditional histogram-based appearance model
does not take the spacial relation of the human body parts into account. For instance, a
person wearing a white shirt and a pair of black pants may have more or less the same
appearance model with another person, who wears a black shirt and a pair of white
pants. The basic idea of the region-based method is to model the human appearance
based on several spatially adjacent regions, where each region may correspond to
a human body part. The usage of the region-based method can definitely solve the
second problem mentioned above, because it takes the spatial relation of regions into
account. As for the first problem, this method can also partially solve it in the sense
that the statistics for a few regions will not result in a high-dimensional feature vector.
However, it comes with the pain, because normally, region segmentation algorithm
is computationally expensive. To reduce the harm, we carry out the segmentation
algorithm in the second thread paralleling to the main thread. By doing so, we can
ensure that the classifier executing on the main thread can always provide real-time
response.

Figure 10.4 depicts our algorithmic architecture. When a new person is entering
into the scene, the classifiers will be triggered and will decide whether this new
person can be linked to one of existing IDs or not. If he/she appeared before, we



10 RGB-D Human Identification and Tracking... 205

Fig. 10.4 Human reentry identification

assign the same ID to this new person, and his/her locations over the time will be
recorded by a tracking algorithm. If it is a new person, we assign a new ID to this
person. Meanwhile, the positive training samples as well as the negative ones are
collected based on the tracking results. Here, the negative samples are arranged in
an cross-validation manner, where the positive sample of person A can be used as
the negative sample of person B. Once we have obtained the sufficient number of
training samples, the extracted feature vectors for both positive samples and the
negative samples will be fed into the classifier for an online learning.

Prior to calculating statistics for regions, it is required to segment the human body
into several adjacent regions. Here, we exploit a graph-based image segmentation
algorithm proposed by Felzenszwalb et al. [5]. We further cluster the regions into
two groups: upper-limb part and lower-limb part. The criterion for partitioning is
mainly based on the ratio of the human body. More specifically, reusing the contour
convexity analysis explained previously can roughly locate the human neck. If the
neck positive is available, it is not difficult to compute the length of the human head
in the image. According to the human body ratio, it is possible to approximate the
bottom boundary of the upper-limb part, from which the lower-limb part starts. It is
noted that the upper-limb part we defined in the paper does not include the human
head region, because it is less discriminative than other regions when distinguishing
persons.



206 J. Han and J. Han

Once we have obtained these two region groups, we can compute a sort of
“entropy”, which is relevant to the number of the region and the size of the region
as well. Assume that we have a set of spatial regions {R1, R2, ..., Rm} within the
upper-limb part and the lower-limb part, the entropy H is defined as:

H = −
m∑

i=1

Pi log2 Pi , (10.6)

where Pi denotes the probability of the region Ri , and it is:

Pi = size(Ri )∑m
j=1 size(R j )

, (10.7)

where size (·) counts the number of pixels within the region.
Next, for each group (upper-limb and lower-limb), we select a dominant region

to be the representative of the group. This procedure can be formulated by:

R̂ = arg max
Ri

size(Ri ), Ri ∩ Φ. (10.8)

Here, Φ refers to a set of spatial regions within either upper-limb part or lower-limb
part. Suppose that R̂ud and R̂ld represent the dominant region of the upper-limb part
and the lower-limb part, respectively. We then compute the simple statistics, such as
μ and σ , for each of two regions. It is noticed that we calculate the statistics for each
color space separately. Therefore, there are 6 parameters for each dominant region.
If we use two dominant regions to describe the human appearance, we will have a
statistic vector with 12 elements.

In our system, we do not directly use this 12-elements vector to be the fea-
ture vector. Instead, we propose to use the maximal distance between regions
as the feature. More specifically, suppose that the statistics of R̂ud and R̂ld are
Su = [μur , μug, μub, σur , σug, σub] and Sl = [μlr , μlg, μlb, σlr , σlg, σlb], respec-
tively. We first compute the average statistics for these two dominant regions based
on all positive samples, which are denoted as S̄u = [μ̄ur , μ̄ug, μ̄ub, σ̄ur , σ̄ug, σ̄ub]
and S̄l = [μ̄lr , μ̄lg, μ̄lb, σ̄lr , σ̄lg, σ̄lb], respectively. The maximal distance is defined
as:

D = max(dist(Su, S̄u), dist(Sl , S̄l)), (10.9)

where dist (·, ·) measures the Euclidean distance between two vectors. The main
purpose is to reduce the dimension of the feature vector, so that the online learning and
inference running on the main thread will not have heavy computation. Eventually,
the feature vector for describing a person consists of three elements, which are hdiff,
H , and D.

Another important issue is the selection of the positive training samples. The real-
time response requested by our application does not allow to use a huge number of
training samples. In other words, we may have to choose a small number of samples



10 RGB-D Human Identification and Tracking... 207

that are able to reflect the variation of the feature. In our application, we noticed that
the variation is mainly the color variation of the human appearance. It can be observed
that the color of the human appearance may change at different locations, because
the lighting in the scene is not uniformly distributed. It is partially determined by the
distance to the lighting source and also to the camera position. To solve this problem,
we take the advantage of the available depth information again. The basic idea is to
choose the training samples in terms of the depth of the human in the scene. More
specifically, in our system, we divide the scene into several intervals in terms of the
depth (the distance to the camera). We try to choose the same number of samples
from each interval. By doing so, we can ensure that we collect the positive training
samples that better describe the color variation of the human appearance. This scheme
is better than existing solutions, such as randomly choosing samples or selecting
representatives using clustering algorithm. Many samples selected randomly may
come from the same local region if the person stands still for a long time, while the
clustering-based selection method may be computationally expensive. The selection
of the negative samples is relatively simple. That is, the positive samples of person
A can be used as the negative samples of person B.

Until this stage, we have obtained both positive and negative training samples and
have extracted feature vector for each sample; the next step is to train the classifier
and infer whether a new detected person appeared before or not. Similar to our
human detection algorithm, we use here the boosted ensemble learning method,
because the features in the feature vector are inhomogeneous in the sense that they
try to discriminate persons from different aspects, e.g., human height and human
appearance. We construct a weak classifier based on each feature in the feature
vector and use Adbossting algorithm to eventually form a strong classifier.

10.4 Experimental Results

Our system is implemented using C++ on a laptop PC platform (Dual core 2.53 GHz,
4 GB RAM). Our software is based on OpenNI library and OpenCV library, where
the former provides the functions to drive the Kinect sensor and implements the
object labeling module, while the second library provides basic computer vision
algorithms. We have tested the presented system in two difference situations. Each
individual algorithm has been evaluated using recorded video sequences while the
entire system is tested via a live demonstration in an office environment.

Our object labeling module has been evaluated and compared with a GMM-based
foreground pixel detection algorithm. To highlight the difference, we test algorithms
in three different situations. First, a person is moving in a room with uniform and
stable lighting conditions and his cloth is clearly different with the background. In
the second situation, the moving person wares the cloth, which is similar to the
background. In the last situation, a person suddenly turns off the light in the room.
Obviously, the last two situations are more challenging, but they occur regularly in
the realistic environments. Figure 10.5 gives comparison results (the ground truth



208 J. Han and J. Han

Fig. 10.5 Human
segmentation results

is generated manually) [8] for the first situation and the second situation as well.
The left bars represent the true positive of the detections, and the right bars indicate
the false positive of the detections. It can be noticed from the results that GMM
algorithm based on RGB images performs properly in the first situation. However,
the performance drops significantly when dealing with the second situation. For the
third situation, we do not provide quantitative comparison, because the performance
difference is extreme.

Our human detection module has been tested based on several video sequences
(>5k frames). The classifier is first trained based on 600 training samples, in which
the number of positive and negative samples is equal. The positive samples are
binary images obtained from the segmentation module. In Fig. 10.6, we showed
some examples for both positive and negative samples. Overall, we have obtained
97 % accuracy rate without generating any false positives. It is noticed that the
common failure happens when the player bends the body.

We have also evaluated the human tracking module based on 5 videos (in total
2,600 frames) involving 2 to 3 persons. We have compared it with the mean shift
tracker and also a particle filter tracker. The evaluation criterion is that the bounding



10 RGB-D Human Identification and Tracking... 209

Fig. 10.6 Training samples for human detection. Top the positive samples. Bottom the negative
samples

box should include at least 70 % human body. To test the robustness of our algorithm,
we change the illumination of the lighting during one video. The overall accuracy
of our tracker is 96.27 %, the accuracy of the particle filter tracker is 83.54 %, and
the accuracy of the mean shift tracker is 71.23 %. According to the results, mean
shift tracker does not handle occlusion properly, and particle tracker deteriorates on
the video where we change the illumination. In contrast to these two algorithms, our
tracker fails only once when two person pass by each other (occlusion) after changing
the lighting conditions. Our tracker actually works properly even after changing the
lighting. The failure reason is that we need to re-identify one person after he was
occluded, but the visual signature of this person was generated prior to changing the
lighting. This illumination change confuses our re-identification module. We believe
that we can solve this problem if we update visual signature of a person regularly.

Eventually, we have set up a demonstration at an office environment and have
invited 5 colleagues to test the system. Currently, the system is not possible to track
5 persons simultaneously in real time. Therefore, we limit the number of people
within the camera view to 3. The system was running for more than one hour and
we did not find any identification errors. In addition, the algorithm can handle one
or two persons case properly, but it cannot provide real-time detection when three
persons were entering the scene at the same time.



210 J. Han and J. Han

10.5 Conclusion

We have proposed a two-camera system based on the Kinect sensor, which enables
human detection, tracking, and re-identification. The system can be the fundamental
for a smart environment application. The results obtained by our system can be the
input to a human behavior recognition, generating intelligent decisions.

Acknowledgments The major work has been done while Jungong Han was employed by CWI,
the Netherlands. Therefore, we would like to thank Dr. Eric Pauwels for granting the opportunity
to work on this interesting topic.

References

1. Arif O, Daley W, Vela P, Teizer J, Stewart J (2010) Visual tracking and segmentation using
time-of-flight sensor. In: Proceedings of ICIP, pp 2241–2244

2. Bak S, Corvee E, Bremond F, Thonnat M (2010) Person re-identification using spatial covari-
ance regions of human body parts. In: Proceedings of IEEE conference on advanced video and
signal-based surveillance, pp 435–440

3. Bevilacqua A, Di L, Azzari S (2006) People tracking using a time-of-flight depth sensor. In:
Proceedings of IEEE international conference video and signal based surveillance, pp 89–93

4. Crabb R, Tracey C, Puranik A, Davis J (2008) Real-time foreground segmentation via range
and color imaging. In: Proceedings of CVPR workshop on TOF-CV

5. Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comp
Vis 59(2):167–181

6. Gould S, Baumstarck P, Quigley P, Ng M, Koller A (2008) Integrating visual and range data for
robotic object detection. In: Proceedings of ECCV workshop on multi-camera and multimodal
sensor fusion

7. Hamdoun O, Moutarde F, Stanciulescu B, Steux B (2008) Person re-identification in multicam-
era system by signature based on interest point descriptors collected on short video sequences.
In: Proceedings of international conference on distributed smart cameras, pp 16

8. Han J, Pauwels E, de Zeeuw P, de With P (2012) Employing a RGB-D sensor for real-time
tracking of humans across multiple re-entries in a smart environment. IEEE Trans Consum
Electron 58(2):255–263

9. Hansen D, Hansen M, Kirschmeyer M, Larsen R, Silvestre D (2008) Cluster tracking with
time-of-flight cameras. In: Proceedings of CVPR workshop on TOF-CV

10. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with Microsoft Kinect
sensor: a review. IEEE T Cybernetics 43(5):1318–1334

11. Hirzer M, Roth M, Kstinger M, Bischof H (2012) Relaxed pairwise learned metric for person
re-identification. In: Proceedings of ECCV, Springer, pp 780793.

12. Nakajima C, Pontil M, Heisele B, Poggio T (2003) Full-body person recognition system. Pattern
Recogn 36(9):1997–2006

13. Rodriguez M, Shah M (2007) Detecting and segmenting humans in crowded scenes. In: Pro-
ceedings of ACM multimedia, pp 353–356

14. Sabeti L, Parvizi E, Wu Q (2008) Visual tracking using color cameras and time-of-flight range
imaging sensors. J Multimedia 3(2):28–36. (ACM)

15. Salas J, Tomasi C (2011) People detection using color and depth images. Pattern Recogn,
Springer 6718:127–135

16. Sklansky J (1982) Finding the convex hull of a simple polygon. PRL 1:79–83
17. Spinello L, Arras KO (2011) People detection in RGB-D data. In: Proceedings of IROS



10 RGB-D Human Identification and Tracking... 211

18. Suzuki S, Abe K (1985) Topological structural analysis of digitized binary images by border
following. CVGIP 30(1):32–46

19. Xia L, Chen C, Aggarwal JK (2011) Human detection using depth information by Kinect. In:
Proceedings of computer vision and pattern recognition workshops (CVPRW), pp 15–22



Part IV
Learning-Based Recognition



Chapter 11
Feature Descriptors for Depth-Based
Hand Gesture Recognition

Fabio Dominio, Giulio Marin, Mauro Piazza and Pietro Zanuttigh

Abstract Depth data acquired by consumer depth cameras provide a very
informative description of the hand pose that can be exploited for accurate gesture
recognition. A typical hand gesture recognition pipeline requires to identify the hand,
extract some relevant features and exploit a suitable machine learning technique to
recognize the performed gesture. This chapter deals with the recognition of static
poses. It starts by describing how the hand can be extracted from the scene exploit-
ing depth and color data. Then several different features that can be extracted from
the depth data are presented. Finally, a multi-class support vector machines (SVM)
classifier is applied to the presented features in order to evaluate the performance of
the various descriptors.

11.1 Introduction

Hand gesture recognition is an intriguing problem for which many different approa
ches exist. Even if gloves and various wearable devices have been used in the past,
vision-based methods able to capture the hand gestures without requiring to wear
any physical device allow a more natural interaction with computers and many other
devices. This problem is currently raising a high interest due to the rapid growth of
application fields where it can be efficiently applied, as reported in recent surveys
(e.g., [6, 30]). However, hand gesture recognition from images or video data is a very
challenging task. The hand and fingers can assume a huge variety of poses and there
are often several inter-occlusions between the various fingers. Furthermore, the skin

F. Dominio (B) · G. Marin · M. Piazza · P. Zanuttigh
Department of Information Engineering, Via Gradenigo 6/B, 35131 Padova, Italy
e-mail: dominiof@dei.unipd.it

G. Marin
e-mail: maringiu@dei.unipd.it

M. Piazza
e-mail: mauropia@dei.unipd.it

P. Zanuttigh
e-mail: zanuttigh@dei.unipd.it

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_11

215



216 F. Dominio et al.

has a relatively uniform color that does not help feature extraction and recognition
schemes. For all these reasons, it is difficult to recognize complex gestures from the
2D representation given by a single image or from a video.

The introduction of Microsoft’s Kinect sensor has made the acquisition of 3D
information available to the mass marker, thus paving the way for new solutions for
many challenging computer vision problems, including object tracking and recog-
nition, human activity analysis, indoor 3D mapping, and also hand gesture recogni-
tion. A complete review of them is presented in [7]. In the computer gaming field,
Microsoft’s Kinect has already brought gesture interfaces to the mass market, but
many new application fields are being considered. These include human-computer
interaction, 3D navigation, robotics, gaming, sign-language recognition, vehicle con-
trol, and many others. Hand gestures can be used to replace the mouse in computer
interfaces and to allow a more natural interaction with mobile devices like smart-
phones and tablets, but also with newer wearable devices like the Google glasses
and other similar tools. Besides controlling standard 2D interfaces, a very interesting
field is the interaction with 3D virtual environments, that is much more natural if
gestures performed in the 3D space are used. Another key application is automatic
sign-language interpretation, that would allow hearing and speech impaired people
to interact with computers and other electronic devices. Finally, the healthcare field
is another field in which hand gesture recognition can be used for a more natural
control of diagnostic data and surgical devices.

Depth data intrinsically contains a very informative three-dimensional descrip-
tion of the hand pose, which can be exploited for gesture recognition. The simplest
approaches just use depth data to reliably extract the hand silhouette. This allows us
to directly apply many methods derived from color-based hand gesture recognition,
but only exploits a limited amount of the information contained in depth data. This
chapter shows how several features based on the three-dimensional data in the depth
map, representing the hand shape and the finger posture, can be extracted and used
to properly recognize complex gestures.

In order to show how depth data can be used in hand gesture recognition, it is
assumed that a generic hand gesture recognition scheme encompasses three main
steps:

• Hand extraction
• Feature extraction
• Gesture classification

The chapter follows this subdivision and the following sections describe the three
main steps. Section 11.3 explains how the hand can be recognized both from depth
and color data, by also considering its segmentation into arm, palm and fingers
regions. Then the extraction of feature descriptors is analyzed in detail in Sect. 11.4.
Several different possible descriptors are presented, including 3D distances from
the palm center or from the palm plane, descriptors based on the contour of the
hand (e.g., curvature features or approaches based on the perimeter length), convex
hull-based features, and other schemes. In order to compare the efficiency of the
various features, a classification scheme based on support vector machines (SVM) is



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 217

presented in Sect. 11.5 and the obtained accuracies from a real dataset are reported
in Sect. 11.6. Finally, Sect. 11.7 draws the conclusions.

11.2 Related Work

Hand gesture recognition has been the subject of a large amount of research activity.
Until a few years ago, computer vision approaches were only based on the images
or videos framing the hand. These methods typically exploit the shape of the hand
silhouette, color or motion information to extract relevant features to be used for the
gesture recognition. A complete overview of these approaches is out of the scope of
this chapter, which focuses on depth information. Complete reviews of this field can
be found in [30, 34].

The recent availability of consumer depth cameras based on structured light, like
the Kinect or the Asus Xtion, and of matricial Time-Of-Flight sensors, e.g., the
Creative SENZ3D or Mesa’s Swiss Ranger, has opened the way to a new family of
approaches exploiting depth information. Depth data offer an accurate description
of the hand pose and compared to images and videos there are several advantages.
They include the possibility of capturing the 3D orientation of the hand parts, the
availability of metric measures in the 3D space and much simpler options for the
hand segmentation.

The basic pipeline of most methods consists in the three steps indicated in
Sect. 11.1. Hand segmentation is typically solved by a simple thresholding of the
depth data [18, 25]. A common assumption used in this step is that the hand is the
closest object to the sensor. After extracting the samples corresponding to the hand
only, several different methods may be used for the following steps. A first family
of approaches is based on the hand silhouette extracted from the depth data: in [13]
silhouette and cell occupancy features are extracted from the depth map and used for
building a shape descriptor that is then fed into a classifier based on action graphs.
Histograms of the distance of the hand points from its center, extracted from the
silhouette, are used in [24, 25]. Other approaches in this family use features based
on the convex hull and on the fingertips positions computed from the silhouette, as in
[14, 33]. The convex hull is also exploited in the open source library XKin [21, 22].

Another possibility is computing descriptors based on the volume occupied by
the hand. In [27], 3D volumetric shape descriptors are extracted from the depth map
and fed into a SVM classifier. A similar approach is exploited by [32].

Color data can also be used together with the depth data, as in [23], that is based
on randomized decision forests (RDFs). RDFs are also used by Keskin et al. [10].

All these approaches are focused on the recognition of static poses, other methods,
instead, deal with dynamic gestures. For example, [2] exploits motion information,
and in particular the trajectory of the hand centroid in the 3D space, for recognizing
dynamic gestures. Depth and color information are used together in [3] to extract
the trajectory that is then fed to a dynamic time warping (DTW) algorithm. Finally,



218 F. Dominio et al.

Wan et al. [31] exploit both the convex hull on a single frame and the trajectory of
the gesture.

Among the various application of hand gesture recognition, sign-language recog-
nition is one of the most interesting. An approach for sign-language recognition with
the Kinect is proposed in [26].

A different but related problem is the extraction of the 3D hand pose, which can
then be exploited for gesture recognition. Approaches exploiting depth data for this
task are [1, 9, 20].

11.3 Hand Extraction

The first step of the considered gesture recognition pipeline, indicated in Sect. 11.1,
consists in segmenting the hand from the rest of the scene, since all the information of
the performed gesture is entirely contained in the hand region. The region of the arm
is usually discarded, as it does not contain any helpful information about a particular
gesture and its shape and size are affected by the presence of sleeves and bracelets.
Hand extraction is a crucial step because all the following processing is performed
on the segmented region only.

Different methods have been used over the years to tackle this problem, exploiting
different clues like appearance, shape, color, depth, context, and tracking. In order to
take advantage of both the color and the depth map from the sensor, a joint calibration
of color and depth camera [8] is required. Joint calibration, in fact, allows to associate
a color and a depth value to each point in the framed scene.

The most common methods based on appearance exploit cascade classifiers based
on Haar-like features [29]. However, differently from faces, which have fixed prop-
erties related to the position of the mouth, eyes and nose, hands have many degrees
of freedom, and so this technique does not produce satisfactory results.

A common scenario is to have users facing the camera with their hand held in
front of themselves. This allows to assume that the hand is the closest object to the
sensor. In this case, a simple threshold in depth range can be used to isolate the hand.
Additional geometric constraints in the hand aspect ratio and size may be used to
refine the segmentation, as in [15]. Other approaches exploiting only the depth map,
use clustering algorithms such as K-means, iterative seed fill or region growing to
separate the hand region from the rest of the scene. In [11], the depth range is fixed
and a flood fill algorithm is used to cluster contiguous points with the aim of separate
the hand from the body. In [14] instead, the K-means algorithm with two clusters is
used in a limited depth range to find the hands.

The assumption that the hand has to be the closest object in the scene can be relaxed
by predicting hand depth according to the position of other body parts, such as the
face. In addition, since the color image is available as well, skin color segmentation
can be used to enforce the hand detection. In [28], skin color segmentation based on
both a model trained offline and a further online histogram-based refinement are used
to get an initial guess for hand detection. Then, the user face is detected and all the



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 219

points not belonging to a predefined region in front of the face are rejected. Once the
hand is detected, the arm is removed by exploiting the depth and other geometrical
constraints.

Color data can be combined with the depth in order to improve the accuracy and
better segment the hand from the arm, as in [4]. Other approaches also exploit some
physical aids, e.g., in [25], after thresholding the depth map, a black bracelet on the
gesturing hand’s wrist is recognized in the color image for an accurate hand detection.

More reliable approaches exploit the temporal redundancy to better find and seg-
ment the hand, reducing false positive detection. For example, [13] first divide depth
map into a number of blobs using a connected-component labeling algorithm, then,
for the biggest blob that is assumed to include the body and the hand, compute
blob tracking, the blob with the highest track is associated to the hand. Additional
geometric constraints are used to identify and remove points of the wrist region.

Once the hand has been extracted, it is also necessary to estimate its position
and orientation to ensure that the recognition is rotational and scale invariant. Scale
invariance can be easily obtained since, if calibration data are available, depth provide
metric measures in the 3D space. The orientation can be computed by detecting the
principal direction, e.g., with principal component analysis (PCA) or by fitting a
plane on the hand point cloud.

An example of efficient hand segmentation scheme that exploits both color and
depth information is presented in [5] and is briefly recalled here. This approach also
allows to extract useful information for features extraction that will be exploited in
the next section. The acquired depth map D(u, v) is firstly thresholded on the basis
of color information. More specifically, the colors associated with the samples are
converted into the CIELAB color space and compared with a reference skin color that
has been previously acquired, e.g., from the face by using a standard face detector
[29]. After the skin color thresholding, the hand region has a higher chance to be the
nearest object to the camera.

Let Xi = Xu,v denote a generic 3D point acquired by the depth camera, that is,
the back-projection of the depth sample in position (u, v). A search for the sample
with the minimum depth value Dmin on the thresholded depth map, avoiding isolated
artifact, is performed and the corresponding point Xmin is chosen as the starting point
for the hand detection procedure. Points belonging to the hand samples set H are
the ones whose distance from Xmin does not exceed a predefined threshold Tmax:

H = {Xi | ||Xi − Xmin|| < Tmax} (11.1)

This algorithm allows to reliably segment the hand samples from the scene objects
and from the other body parts. An example of a thresholded depth map obtained with
this approach is shown in Fig. 11.1c.

In order to extract some of the feature sets described in Sect. 11.4, it is first neces-
sary to obtain some additional information such as the hand orientation, its centroid,
the palm, and fingers regions. A possible approach is to consider the binary mask of
the hand samples in the depth image and filter it with a Gaussian kernel obtaining a
result similar to the one in Fig. 11.1d. The resulting blurred image represents the hand



220 F. Dominio et al.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 11.1 Extraction of the hand and palm samples: a acquired color image; b acquired depth
map; c extracted hand samples (the closest sample is depicted in green); d output of the Gaussian
filter applied on the mask corresponding to H with the maximum in red; e Circle fitted on the
sample gesture; f palm (blue), finger (red) and wrist (green) regions subdivision; g reference system
(iαx , iαy , iαz )

samples density, where the luminance is directly proportional to the points density,
and the point with the maximum intensity (that is, the one representing the maximum
density) is chosen as initial value of the palm center. This value can then be refined
by fitting a circle or an ellipse [17] whose center and size are updated iteratively
by ensuring that most of the points belong to the hand samples. When the process
converges, the points of the hand within the fitted shape will give an estimate of the
palm region, while the 3D point corresponding to the center of the fitted shape will
be the centroid C of the hand. Note that the centroid plays an important role in the
features extraction, as most of them strongly depend from the centroid position. At
this point, the hand region H can be segmented into three regions:

• P containing points corresponding to the hand palm.
• W containing the points of H lying on the sub-space below P . Such samples

typically belong to the wrist and forearm and are not considered in most gesture
recognition schemes.

• F containing the points of H −P−W , which corresponds to the fingers region.

It is useful also to define the set He = P + F containing the points of the palm
and the fingers, and its projection B on the binary mask.

Once all the possible palm samples have been detected, a 3D plane α can be fitted
on them by using SVD and RANSAC to get its position in 3D space. PCA can be
applied, instead, to the 3D points in H in order to extract the main axis that roughly
corresponds to the direction ix of the vector going from the wrist to the fingertips.

In order to build a 3D coordinate system centered on the palm centroid projected
on α , i.e., Cα , the axis ix is projected on plane α obtaining iαx , then iαz is the normal
to plane α , and the remaining axis iαy is obtained by the cross-product of iαz and iαx
thus forming a right-handed reference system (iαx , iαy , iαz ), as depicted in Fig. 11.1g.

Finally, the information on the hand orientation and the palm radius can be
used to remove all the wrist samples. Let R be the estimated palm radius and



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 221

Xα
i = (xα

i , yα
i , zα

i ) the coordinates of an hand sample Xi with respect to the palm
3D coordinate system: it is possible to assume that Xα

i belongs to the wrist whenever
xα

i < −R (recall that the x axis points form the palm center to the fingertips as
shown in Fig.11.1g).

11.4 Extraction of the Relevant Features

The next step consists in extracting feature sets from the segmented hand data which
will be used for the classification of the performed gestures. Several different types
of features have been proposed in the literature, as shown in Sect. 11.2, based on both
color and depth data. This section focuses on the information that can be extracted
from depth data and presents a set of possible features to be used for reliable gesture
recognition. The considered features are:

• Distance features: describe the Euclidean 3D distances of the fingertips from the
estimated palm center.

• Elevation features: account for the Euclidean distances of the fingertips from a
plane fitted on the palm samples. Such distances may also be considered as the
elevations of the fingers with respect to the palm.

• Contour histogram similarity features: account for the similarity between the
contour points distances in the performed gesture and in the reference acquisitions
of the various gestures.

• Curvature features: describe the curvature of the contour of the palm and fingers
regions.

• Palm area features: describe the shape of the palm region and helps to state
whether each finger is raised or bent on the palm.

• Convex hull features: various feature can be extracted from the convex hull of
the hand shape in the depth map. They include the ratios between the area or the
perimeter of the hand shape to the one of its convex hull and the number of vertexes
in the convex hull.

• Connected-components features: they are based on the connected components
in the difference between the hand shape and its convex hull. The dimensions and
the number of the connected components can be used as features.

11.4.1 Distance Features

The computation of this feature set starts from the construction of an histogram
representing the distance of the edge samples in F from the hand centroid Cα. Here,
a brief description of the approach of [5] and [4], that in turn extends the scheme of
[25], is given.



222 F. Dominio et al.

Let R be the 3D radius of the circle back-projected to the plane α , if the more
accurate fitting model with the ellipse is employed, R represents the distance from
Cα to the edge of the ellipse and is not a constant value. For each 3D point Xi ∈ F ,
the normalized distance from the centroid dXi = ∀Xi − Cα∀ − R and the angle ωXi

between vector Xα
i −Cα and axis iαx on the palm plane α (where Xα

i is the projection
of Xi on α ) are computed. Then ω is quantized with a uniform quantization step
ρ into a discrete set of values ωq . Each ωq thus corresponds to an angular sector
I (ωq) = ωq − ρ

2 < ω ∩ ωq + ρ
2 , and the farthest point inside each sector I (ωq) is

selected thus producing a histogram L(ω):

L(ωq) = max
I (ωq )

dXi (11.2)

For each gesture in the dataset, a reference histogram Lr
g(ω) of the type shown in

Fig. 11.2 is built. A set of angular regions corresponding to the raised fingers intervals
in each gesture (shown in Fig. 11.2) is also defined and will be used for computing
the features.

The hand direction estimated by means of the PCA main axes is not very precise
and furthermore is affected by several issues, e.g., the number of raised fingers in
the performed gesture and the size of the retained wrist region after hand detection.
The generated distance histogram, therefore, may not be aligned with the gesture
templates, and a direct comparison of the histograms in this case is not possible.
In order to compare the performed gesture histogram with each gesture template,
they are firstly aligned by looking for the argument maximizing the cross-correlation
between the acquired histogram and the translated version of the reference histogram
of each gesture.1 The possibility of flipping the histogram to account for the fact

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ [°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

(a) (b)

Fig. 11.2 Histogram of the edge distances with the corresponding feature regions: a finger edges
F ; b associated histogram L(ω) with the regions corresponding to the different features f l

g, j (feature
points highlighted with red stars)

1 In Eqs. (11.3) and (11.4) L is considered as a periodic function with period 2α .



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 223

that the hand could have either the palm or the dorsum facing the camera is also
considered, by evaluating:

ρg = argmax
ρ

⎡
τ

⎡
L(ω), Lr

g(ω + ρ)
⎣⎣

ρrev
g = argmax

ρ

⎡
τ

⎡
L(−ω), Lr

g(ω + ρ)
⎣⎣

(11.3)

where symbol τ(a(·), b(·)) denotes the value of the cross-correlation between a(·)
and b(·). The translational shift ρ that gives the maximum of the correlation of either
L(ω) or L(−ω) in (11.3) is used to align the acquired histogram with the reference
histograms of each gesture. Let Lg(ω) denote the histogram aligned to the gesture
reference histogram Lr

g(ω). The translational shift to be applied to L(ω) will be
either ρg and ρrev

g depending on the one maximizing the correlation, i.e., Lg(ω) is
defined as:

Lg(ω) =
⎤

L(ω − ρg) if τ
⎡

L(ω), Lr
g(ω + ρg)

⎣
∅ τ

⎡
L(−ω), Lr

g(ω + ρrev
g )

⎣

L(−ω − ρrev
g ) otherwise

(11.4)

Note that there can be a different alignment ρg for each gesture, and that different
regions can be defined in each gesture reference histogram corresponding to the
various features of interest. This approach basically compensates for the limited
accuracy of the direction computed by the PCA.

The alignment procedure solves one of the main issues related to the direct appli-
cation of the approach of [25]. Figure 11.3 shows some examples of the computed
histograms for three different gestures. Note that the fingers raised in the various
gestures are clearly visible from the plots.

If the database has G different gestures to be recognized, the feature set contains
a value for each finger j ∈ {1, . . . , 5} in each gesture g ∈ {1, . . . , G}. The feature
value f l

g, j associated with finger j in gesture g corresponds to the maximum of the

aligned histogram within the angular region I (ωg, j ) = ωmin
g, j < ω < ωmax

g, j associated
with finger j in gesture g (see Fig. 11.2), i.e.,

f l
g, j =

max
I (ωg, j )

Lg(ω)

Lmax
(11.5)

All the features are normalized by the length Lmax of the middle finger in order to
scale them within range [0, 1] and to account for the fact that hands of different
people have different sizes. Note that there can be up to G × 5 features, though their
actual number is smaller since not all the fingers are raised in each gesture. The
distance features are collected into feature vector Fl .



224 F. Dominio et al.

Gesture Rep. 1 Rep. 2 Rep. 3

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]
N

or
m

al
iz

ed
 d

is
ta

nc
e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e

−180 −90 0 90 180
0

0.2

0.4

0.6

0.8

1

θ[°]

N
or

m
al

iz
ed

 d
is

ta
nc

e
Fig. 11.3 Examples of aligned distance histogram Lg(ω) for 3 sample frames corresponding to
different gestures

11.4.2 Elevation Features

The construction of the elevation features is analogous to the one employed for
the distance features of Sect. 11.4.1. The process starts by building an histogram
representing the distance of each sample in F from the palm plane α , namely, for
each sample Xi in F its distance from plane α is computed:

eXi = sgn
⎡
(Xi − Xα

i ) · iαy
⎣

|Xi − Xα
i | (11.6)

where Xα
i is the projection of Xi on α . The sign of eXi accounts for the fact that Xi

can belong to any of the two semi-spaces defined by α , that is, Xi can either be on
the front or behind α .

Now, as for the distance features, for each angular sector corresponding to a ωq ,
the point with greatest absolute distance from the plane is selected, thus producing
an histogram:

E(ωq) =

⎦
⎧⎧⎨

⎧⎧⎩

max
I (ωq )

eXi if

∣∣∣∣∣ max
I (ωq )

eXi

∣∣∣∣∣ >

∣∣∣∣∣ min
I (ωq )

eXi

∣∣∣∣∣
min
I (ωq )

eXi otherwise
(11.7)



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 225

Note that E(ωq) uses the same regions computed in Sect. 11.4.1. The histogram
E(ω) corresponding to the performed gesture is then aligned to the various reference
gestures in G using the alignment information already computed in Sect. 11.4.1. Let
Eg(ω) be the histogram E(ω) aligned with the template gesture g. The elevation
features are then computed according to:

f e
g, j =

⎦
⎧⎧⎧⎨

⎧⎧⎧⎩

1

Lmax
max

I (ωg, j )
Eg(ω) if

∣∣∣∣∣ max
I (ωg, j )

Eg(ω)

∣∣∣∣∣ >

∣∣∣∣∣ min
I (ωg, j )

Eg(ω)

∣∣∣∣∣
1

Lmax
min

I (ωg, j )
Eg(ω) otherwise

(11.8)

Note that the vector Fe of the elevation features has the same structure and number
of elements of the vector Fl of the distance features.

11.4.3 Contour Histogram Similarity Features

This feature set is based on the similarity between distance histograms of Sect. 11.4.1.
For each considered gesture, a reference acquisition is selected and the corresponding
distance histogram is computed with the approach of Eq. 11.2, thus obtaining a set
of reference histograms Lr

g(ω), where g is the considered gesture. The distance
histogram of the acquired gesture L(ωq) is also computed and the maximum of the
correlation between the current histogram L(ωq ) and a shifted version of the reference
histogram Lr

g(ω) is selected:

Rg = max
ρ

⎢
τ

⎡
L(ω), Lr

g(ω + ρ)
⎣

, τ
⎡

L(−ω), Lr
g(ω + ρ)

⎣⎥
(11.9)

where g = 1, . . . , G. Note, how the flipped histogram is also considered for the
reasons already outlined in Sect. 11.4.1. The computation is performed for each of
the candidate gesture, thus obtaining a set Fτ containing a different feature value f τ

g
for each of them. As expected, ideally the correlation with the correct gesture should
have a larger value than the other features.

An important aspect of this feature extraction method is the employed similar-
ity metric, which strongly affects the results. A reasonable high accuracy can be
obtained through the zero-mean normalized cross-correlation (ZNCC) between the
histograms, since this measure is less affected by the different sizes of different
hands. On the other side, this measure is sometimes not able to discriminate two his-
tograms with a similar outline corresponding to different fingers, e.g., an histogram
representing a gesture with a raised index only, may have an high correlation value
with an histogram representing a gesture with a raised little only. This ambiguity



226 F. Dominio et al.

can be often removed by using alternative similarity measurement values in place
of or together with the ZNCC. A good alternative is the sum of squared differences
(SSD) between the two histograms. The features obtained with this measure will be
denoted with FSSD.

11.4.4 Curvature Features

The third proposed descriptor is based on the curvature of the hand shape edges.
Since depth data coming from real-time depth cameras are usually rather noisy, a
reasonable assumption is to avoid differential operators for curvature description,
relying instead on integral invariants [12, 16].

The curvature feature extractor algorithm takes as input the hand edge points He

and the binary mask B(u, v). Let Hc = κHe be the boundary of He, namely the
subset of all the points Xi ∈ He belonging to the hand contour only. Consider a set of
S circular masks Ms(Xi ), s = 1, . . . , S with radius rs centered on each edge sample
Xi ∈ Hc (reasonable numbers are 25 masks with rs varying from 0.5 to 5 cm).

Let V (Xi , s) denote the curvature in Xi , expressed as the ratio of the number of
samples of He falling in the mask Ms(Xi ) over Ms(Xi ) size, namely:

V (Xi , s) =
∑

Xi ∈Ms (Xi )
B(Xi )

|Ms(Xi )| (11.10)

where |Ms(Xi )| denotes the cardinality of Ms(Xi ) and B(Xi ) = B(u j , v j ), with
(u j , v j ) be the 2D coordinates corresponding to Xi . Note that V (Xi , s) is computed
for each sample Xi ∈ Hc. The value s corresponds to the scale level at which feature
extraction is performed. Differently from [12] and other approaches, the radius rs is
defined in metrical units and is then converted to the corresponding pixel size on the
basis of the distance between the camera and the hand. In this way, the descriptor is
invariant with respect to the distance between the hand and the camera.

For faster processing, the circular masks can be replaced with simpler square
masks and then integral images can be used for fast computation of the samples
in the mask. This approach, even if not perfectly rotation invariant, proved to be
significantly faster and the performance loss is negligible.

The values of V (Xi , s) range from 0 (extremely convex shape) to 1 (extremely
concave shape), with V (Xi , s) = 0.5 corresponding to a straight edge. The [0, 1]
interval is quantized into N bins of equal size b1, . . . , bN . The set Vb,s of the finger
edge points Xi ∈ Hc with the corresponding value of V (Xi , s) falling to bin b for
the mask s is expressed as:

Vb,s =
{

Xi | (b − 1)

B
< V (Xi , s) ∩ b

B

}
(11.11)



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 227

Gesture Rep. 1 Rep. 2 Rep. 3

Curvature
S

ca
le

 le
ve

l
0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Curvature

S
ca

le
 le

ve
l

0 0.2 0.4 0.6 0.8

5

10

15

20

25

Fig. 11.4 Examples of curvature descriptors for three sample frames from different gestures

Fig. 11.5 Regions
corresponding to the vari-
ous area features shown over
a sample gesture

For each radius value s and for each bin b the chosen curvature feature, denoted by
f c
b,s , is the cardinality of the set V (Xi , s) normalized by the contour length |Hc|:

f c
b,s = |Vb,s |

|Hc| (11.12)

Note that, because of the normalization, the curvature feature f c
b,s only takes values

in [0, 1], which is the same interval shared by both the distances and elevations



228 F. Dominio et al.

feature. Finally, all the curvature features f c
b,s are collected within a feature vector

Fc with B × S entries, ordered by increasing values of indexes s = 1, 2, . . . , S and
b = 1, 2, . . . , N . By resizing Fc into a matrix with S rows and N columns, and by
considering each f c

b,s as the value of the pixel with coordinates (b, s) in a grayscale
image, it is possible to graphically visualize the overall curvature descriptor Fc as
exemplified in Fig. 11.4.

11.4.5 Palm Area Features

Palm area set of features describes the displacement of the samples in the palm region
P . Note that P corresponds to the palm area, but it may also include finger samples
if some fingers are folded over the palm. The idea is to subdivide the palm region
into six different areas, defined over the plane α , as shown in Fig. 11.5. The circle
or ellipse defining the palm area is divided into two parts: the lower half is used as
a reference for the palm position, and a 3D plane αp is firstly fitted to this region.
The upper half is divided into 5 regions A j , j = 1, . . . , 5 roughly corresponding to
the regions close to the different fingers as shown in Fig. 11.5, that is, each region
corresponds to the area that is affected by the position of a finger. Note how the feature
values account for the deformation the palm shape undergoes in the corresponding
area when the related finger is folded or is moved. In particular, it is worth noting that
the samples corresponding to the fingers folded over the palm are associated with
P and are not captured by distance or elevation features, but they are used for the
computation of palm area features. The areas positions on the plane strictly depend
on the parameters defining the palm area (i.e., the center Cα and the radius R of the
circle or the two axes of the ellipse), on the fingers width and on the direction iαx
corresponding to ω = 0. The alignment of the ω directions can be computed as in
Sect. 11.4.1, thus obtaining an alignment for each gesture template. The areas aligned
with the template of each gesture will be denoted with A

g
j , where g indicates the

corresponding gesture. In this way, the set of points Xi in P associated with each
of the regions A g

j is computed. Then, each area A
g
j is considered and the distance

between each sample Xi in A
g
j and αp is computed. The average of the distances of

the samples of the area Ag
j :

f a
g, j =

∑
Xi ∈A g

j
∀Xi − Xα

i ∀
|Ag

j |
(11.13)

is taken as the feature corresponding to the area Ag
j . All the area features are collected

within vector Fa , made by G × 5 area features, one for each finger in each possible
gesture. The entries of Fa are finally scaled in order to assume values within range
[0, 1], as the other feature vectors.



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 229

Fig. 11.6 Computation of the vertexes of the convex hull: a convex hull of B(u, v); b convex hull
after the removal of short edges; c convex hull after the removal of short edges and of wide angles

11.4.6 Convex Hull Features

The convex hull of the 2D hand shape in the depth map is another source of infor-
mation that can be exploited for the construction of descriptors of the hand pose
[21]. Given the set of points on the hand mask B, the corresponding convex hull is
computed. Due to the noise of the sensors, the set of vertexes may contains some
artifacts that should be removed before exploiting it for gesture recognition:

1. The hand shape can contain some small holes due to noise that must be removed.
2. There can be close vertexes due to the irregular shape of the acquired hand contour

(see Fig. 11.6a). The length of the convex hull edges is computed and in case
there were edges shorter than a predefined threshold they must be removed and
the corresponding vertexes collapsed into a single point (Fig. 11.6b).

3. Also the presence of angles close to 180∪ (i.e., two subsequent edges are almost
on the same line) is an hint of extra edges due to acquisition artifacts. In this case,
the vertex is removed as well and the two edges are combined into a single one,
as shown in Fig. 11.6c.

In this way, a simplified convex hull Chull(B) with vertexes Pchull can be built.

11.4.6.1 Convex Hull Vertexes

A first possible feature is the number of vertexes of the convex hull Fpch = |Pchull|.
This value is an hint of the hand pose and in particular of the number of raised fingers.
Note how, ideally, the desired convex hull presents a vertex for each fingertip and
a few other vertexes delimiting the palm area. These vertexes, together with the
distances histograms computed in Sect. 11.4.1, may also aid the fingertips position
estimation: assuming that, for each histogram value, the related 3D point is known,
since the histogram local maxima correspond to the hand shape boundary (which
contains the fingertips as well), by pairing the convex hull vertexes with them, it is



230 F. Dominio et al.

possible to detect which local maxima are likely to be associated with fingertips and
which ones, instead, are probably due to noise or associated with the palm edges.

11.4.6.2 Convex Hull Area Ratio

Another good feature is the ratio between the area of the hand shape and the area of
the convex hull enclosing it, that is:

Fch = |B|
area(Chull(B))

(11.14)

11.4.6.3 Convex Hull Perimeter Ratio

The ratio between the perimeter of the hand shape and the perimeter of the convex
hull:

FRp = perimeter(B)

perimeter(Chull(B))
(11.15)

is another useful clue. Gestures with bended fingers typically correspond to perimeter
ratios close to 1 while when several fingers are pointing out of the hand this ratio is
usually smaller. Figure 11.7 shows a couple of examples; note how in the first case,
the two perimeters are quite different, while in the single finger gesture of the second
row, the two perimeters are more similar.

11.4.7 Connected-Components Features

One of the other relevant clues that can be extracted from the comparison between
the convex hull and the hand shape is the shape of the regions within the convex
hull region but not belonging to the hand. These typically correspond to the empty
regions between the fingers and are a good indicator of the fingers arrangement. Let
S = Chull(B) − B be the difference between the convex hull and the hand shape.
An example of the region S is shown in Fig. 11.8a. The region S is typically made of
a set of connected components. The various connected components Si are extracted
and then the ones that are smaller than a threshold Tcc are discarded in order to
avoid considering small components due to noise (e.g., the region on the right in the
second row of Fig. 11.8). In this way the set S = {Si : Si > Tcc} is built as shown in
Fig. 11.8b.

A first feature that can be extracted from this process is the number of connected
components Ncc = |S | bigger than the threshold. Another feature set is, instead,
given by the ratio of the areas of the various connected components with the convex
hull area, that is:



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 231

Fig. 11.7 Perimeter of the
hand contour and of the
convex hull; a: convex hull
perimeter; b hand perimeter

Fig. 11.8 Area of the
connected components.
a Connected components in
set S; b connected components
in set S highlighted in green

f cc
i = area(Si |Si ∈ S )

area(Chull(B)))
(11.16)

where the areas are sorted according to the angle of their centroid with the axes
computed by the PCA (i.e., from the thumb to the little).



232 F. Dominio et al.

11.5 Gesture Classification with Support Vector Machines

The third and last step of the Sect. 11.1 pipeline consists in applying an appropri-
ate machine learning technique to classify the features extracted in Sect. 11.4, in
order to recognize the performed gestures. Approaches based on SVM, RDF, Neural
Networks and many others have been proposed in literature. Presenting the various
machine learning methods is beyond the scopes of this chapter that focuses on fea-
ture extraction, although the classification with SVM is here briefly recalled only for
clarity sake and used to compare the efficiency of the various features.

The feature extraction approaches of Sect. 11.4 provide different feature vectors
describing relevant properties of the hand samples. Let F denote a suitable feature
vector describing the performed gesture, e.g., F = Fl for distance features. The
gesture recognition problem consists in classifying the vectors F into G different
classes corresponding to the considered gestures. A multi-class SVM classifier based
on the one-against-one approach can be used, and corresponds to a set of G(G−1)/2
binary SVM classifiers used to test each class (i.e., gesture) against each other. Each
classification output is chosen as a vote for a certain gesture and the gesture with the
maximum number of votes is the result of the recognition process. Different kernels
can be used for the SVM, but the most common choice is the non-linear Gaussian
radial basis function (RBF) kernel. In order to set the classifier parameters, a training
set containing data from N users is assumed to be available. A naive grid search with
cross-validation approach is viable, although not efficient: the space of parameters
(C, φ ) of the RBF kernel is subdivided with a regular grid and for each couple of
parameters, the training set is divided into two parts, one containing N − 1 users for
training and the other with the remaining user for validation. The performances are
evaluated and the procedure is repeated by changing each time the user used for the
validation. The couple of parameters that give the best accuracy on average is finally
selected. The SVM can then be trained on all the N users of the training set with the
optimal parameters.

This approach can also be used to perform the recognition with multiple feature
descriptors together. The simplest solution is to concatenate into vector F the different
feature vectors of the descriptors that are going to be used. E.g., to combine distance,
elevation, and curvature descriptors a combined feature vector F = [Fl , Fe, Fc] can
be fed to the SVM classifier. More refined combination schemes can be exploited,
e.g., as in [19].

11.6 Experimental Results

This chapter analyzes the classification performances of the various feature descrip-
tor described in Sect. 11.4. The experiments were performed on a gesture dataset
acquired in the Multimedia Technology and Telecommunications Lab of the Uni-
versity of Padova. Such dataset is a subset of the American manual alphabet, and



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 233

G1 G3 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12

Fig. 11.9 Gestures from the American manual alphabet contained in the experimental dataset

contains ten repetitions of 12 different gestures performed by 14 different people.
A representative picture for each gesture is shown in Fig. 11.9 while the complete
dataset is made available at the url http://lttm.dei.unipd.it/paper_data/gesture, and
provides both the RGB image and the depth map for all the frames.

For each gesture, one of the repetitions in the training set was used for the computa-
tion of the reference histogram of Eq. (11.3), required for the extraction of distances,
elevations, correlations, and contour histogram similarity features.

The classification model was computed through the SVM implementation pro-
vided by the OpenCV library exploiting a variation, tailored for the particular data
nature, of the grid-search approach described in Sect. 11.5. Differently from the clas-
sic grid-search method, which performs random subsamplings of the feature vectors
for splitting the dataset in a train and a test set, or use a leave-one-out approach,
the method employed for the experiments relies on an extension of the leave-one-
out which may be named as leave-one person-out. Namely, all the feature vectors
referred to a specific person belong either to the test or the train set of the current
dataset split. Figure 11.10 exemplifies the leave-one person-out approach employed
for the experiments. The interested reader may find a more detailed discussion on
this classification method in [5].

Table 11.1 shows the results obtained from the considered dataset by just using
each single feature alone. Distance features (D) alone provide an accuracy of about
68 %. Note that distance descriptors are very good in capturing the fact that the vari-
ous fingers are folded over the palm or raised, an important element in the recognition
of many gestures. Elevation features (E) have lower performance as well (46.0 %);
this is due both to the fact that in most gestures in the dataset, the fingers lay very
close to the palm plane, and to the varying accuracy in the plane fitting described
in Sect. 11.3. Contour histogram similarity features (R) are slightly less performing,
since histogram correlations are just a starting point for the distance features extrac-
tion and, moreover, due to the zero-mean cross-correlation algorithm exploited, they
are not always able to discriminate gestures with the same number of fingers. Sum of
squared differences (SSD) provide, instead, poor performances (37.8 %). Such fea-

http://lttm.dei.unipd.it/paper_data/gesture


234 F. Dominio et al.

Person 1 Person 2 Person N 

Test Train 

Model 1

Person 1 Person 2 Person N 

Test Train 

Model 2

Train 

Person 1 Person 2 Person N 

TestTrain 

Model N

Person 3 

Person 3 

Person 3 Person N-1 

Person N-1 

Person N-1 

Fig. 11.10 Exemplification of leave-one person-out method

tures are anyway helpful when combined with other features as showed in Table 11.2.
The curvature-based classifier (C) allows to obtain the best performance (89.5 %),
thanks also to the characteristic concavities and convexities of each gesture pro-
file. It is important to note that curvatures do not rely on the computation of the
hand orientation or on the positions of the centroid and palm plane. For this reason,
curvature-based classifiers are more performing in complex configurations where the
estimation of the hand orientation is not always highly accurate. Area-based features
(A) allow to obtain, again, a relatively low accuracy (45.4 %), as they are affected
by problems similar to the elevations: the different quality in the plane fitting and
the fact that in most gestures many fingers lay on the palm plane. Convex hull area
(CA) and perimeter ratios (CP) are the least performing features, probably because
their vectors are, single scalar numbers, and hence not sufficient to separate a rel-
atively high number of classes. Finally, the convex hull connected-component area
(CC) features are ones of the most performing, although their number is sensibly low
respect to the curvatures (6 vs. 240 features).

A noteworthy characteristic of the described features is their complementarity,
that is, although many of them are not so performing alone, when joined together
they are able to increase the overall classification accuracy as one feature type is able
to capture properties not detectable by another feature type and vice versa. Table 11.2
shows some examples of the performances that can be obtained combining multiple
features. In particular, the distance only classifier is able to recognize some of the
gestures that curvatures only can not handle, and their joint usage raises slightly
the classification performance (91.4 %). The combination of correlation and sum of
squared differences features, instead, leads to a dramatic improvement in accuracy
(78.3 % vs. 60.4 and 37.8 %, respectively). Even by combining the convex hull area



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 235

Table 11.1 Performance of single features extracted from the considered dataset

Type of features Accuracy (%)

Distances (D) 68.4

Elevations (E) 46.0

Correlations (R) 60.4

Sum of squared distances (SSD) 37.8

Curvatures (C) 89.5

Areas (A) 45.4

Convex hull area ratio (CA) 29.6

Convex hull perimeter ratio (CP) 37.0

Convex hull connected-component area ratio (CC) 72.0

Table 11.2 Performance of
the features combination

Type of features Accuracy (%)

D + C 91.4

R + SSD 78.3

CA + CP 51.2

D + E + C 93.6

D + A + C 92.0

DA + CP + CC 73.2

D + E + A + C 93.5

R + SSD + CA + CP + CC 86.8

and perimeter ratios, it is possible a significant overall improvement (51.2 % vs. 29.6
and 37.0 % respectively).

The second part of Table 11.2 shows that by combining three feature types a
modest overall accuracy improvement can be obtained. This is due to the fact that
the accuracy values are already quite high, and not always the added feature carry
a sufficient amount of novel information to solve the most critical classification
ambiguities. The best accuracy has been obtained by combining four feature types,
i.e., distances, elevation, area-based and curvature features. Finally, it is important
to be aware that the addition of an increasing number of feature types may not lead
to an overall improvement in accuracy and, sometimes, may also lead to overfitting
with detrimental effects on the classifier performance.

11.7 Conclusions

In this chapter, effective solutions for the exploitation of depth data in static hand
gesture recognition have been presented. The hand recognition and extraction step, a
very challenging task with color information, can be effectively solved with simple



236 F. Dominio et al.

approaches if depth data is available. Furthermore, depth can be combined with the
color data for an even more reliable recognition. Several depth-based feature descrip-
tors have been presented. Depth-based descriptors are typically based on measures
in the 3D space and are more robust to issues like the position of the hand, its ori-
entation, lighting, and many others than color-based descriptors. Furthermore, they
are able to better capture the pose of the hand and of the various fingers, making the
gesture recognitiontask easier. A comparison of the performances of the various fea-
tures have been presented in Sect. 11.6. Some features, most notably the curvatures,
but also distance and correlation features, have better performances and allow alone
to obtain a reliable gesture recognition. However, notice how the different features
capture relevant complementary properties of the hand gestures. For this reason,
the combination of multiple features allows to obtain better performance than each
feature alone.

References

1. Ballan L, Taneja A, Gall J, Van Gool L, Pollefeys M (2012) Motion capture of hands in action
using discriminative salient points. In: Proceedings of the European conference on computer
vision (ECCV), Firenze, October 2012

2. Biswas K, Basu S (2011) Gesture recognition using microsoft kinect. In: 5th international
conference on automation, robotics and applications (ICARA), December 2011, pp 100–103

3. Doliotis P, Stefan A, McMurrough C, Eckhard D, Athitsos V (2011) Comparing gesture recog-
nition accuracy using color and depth information. In: Proceedings of the 4th international
conference on pervasive technologies related to assistive environments ( PETRA’11), pp 20:1–
20:7

4. Dominio F, Donadeo M, Marin G, Zanuttigh P, Cortelazzo GM (2013) Hand gesture recognition
with depth data. In: Proceedings of the 4th ACM/IEEE international workshop on analysis and
retrieval of tracked events and motion in imagery stream, ACM, pp 9–16

5. Dominio F, Donadeo M, Zanuttigh P (2013) Combining multiple depth-based descriptors for
hand gesture recognition. Pattern Recognition Lett

6. Garg P, Aggarwal N, Sofat S (2009) Vision based hand gesture recognition. World Acad Sci
Eng Technol 49(1):972–977

7. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor:
a review. IEEE Trans Cybern 43(5):1318–1334

8. Herrera Daniel, Kannala Juho, Heikkilä Janne (2012) Joint depth and color camera calibration
with distortion correction. IEEE Trans Pattern Anal Mach Intell 34(10):2058–2064

9. Keskin G, Kirac G, Kara YE, Akarun L (2011) Real time hand pose estimation using depth
sensors. In: ICCV Workshops, November 2011, pp 1228–1234

10. Keskin C, Furkan Kıraç, Kara YE, Akarun L (2012) Hand pose estimation and hand shape
classification using multi-layered randomized decision forests. In: Proceedings of the European
conference on computer vision (ECCV), pp 852–863

11. Eva K, Jochen P, Joachim H, Alexander B (2008) Gesture recognition with a time-of-flight
camera. Int J Intell Syst Technol Appl 5(3/4):334–343

12. Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez I, Soares JVB (2012)
Leafsnap: a computer vision system for automatic plant species identification. In Proceedings
of the European conference on computer vision (ECCV), October 2012

13. Kurakin A, Zhang Z, Liu Z (2012) A real-time system for dynamic hand gesture recognition
with a depth sensor. In: Proceedings of EUSIPCO



11 Feature Descriptors for Depth-Based Hand Gesture Recognition 237

14. Li Y (2012) Hand gesture recognition using kinect. In: IEEE 3rd international conference on
software engineering and service science (ICSESS), June 2012, pp 196–199

15. Liu X, Fujimura K (2004) Hand gesture recognition using depth data. In: Proceedings sixth
IEEE international conference on automatic face and gesture recognition, May 2004, pp 529–
534

16. Manay S, Cremers D, Hong B-w, Yezzi AJ, Soatto S (2006) Integral invariants for shape
matching. IEEE Trans Pattern Anal Mach Intell 28(10):1602–1618

17. Marin G, Fraccaro M, Donadeo M, Dominio F, Zanuttigh P (2013) Palm area detection for
reliable hand gesture recognition. In: Proceedings of MMSP

18. Mo Z, Neumann U (2006) Real-time hand pose recognition using low-resolution depth images.
In: Proceedings of IEEE computer society conference on computer vision and pattern recog-
nition, vol 2, pp 1499–1505

19. Nanni L, Lumini A, Dominio F, Donadeo M, Zanuttigh P (2014) Ensemble to improve gesture
recognition. Int J Autom Ident Technology (to appear)

20. Oikonomidis I, Kyriazis N, Argyros AA (2011) Efficient model-based 3d tracking of hand artic-
ulations using kinect. In: Proceedings of the 22nd British machine vision conference (BMVC
2011)

21. Pedersoli F, Adami N, Benini S, Leonardi R (2012) Xkin—extendable hand pose and gesture
recognition library for kinect. In: Proceedings of ACM conference on multimedia 2012—open
source competition, Nara, Japan, October 2012

22. Pedersoli F, Benini S, Adami N, Leonardi R (2014) Xkin: an open source framework for hand
pose and gesture recognition using kinect. Vis Comput 1–16

23. Pugeault N, Bowden R (2011) Spelling it out: real-time asl fingerspelling recognition. In:
Proceedings of the 1st IEEE workshop on consumer depth cameras for computer vision, pp
1114–1119

24. Ren Z, Meng J, Yuan J (2011) Depth camera based hand gesture recognition and its applications
in human–computer-interaction. In: Proceedings of International conference on information,
communications and signal processing (ICICS), December 2011, pp 1–5

25. Ren Z, Yuan J, Zhang Z (2011) Robust hand gesture recognition based on finger-earth mover’s
distance with a commodity depth camera. In Proceedings of the 19th ACM international con-
ference on multimedia, MM’11, ACM, NY, USA, 2011, pp 1093–1096

26. Sun C, Zhang T, Bao BK, Xu C, Mei T (2013) Discriminative exemplar coding for sign language
recognition with kinect. IEEE Trans Cybern 43(5):1418–1428

27. Suryanarayan P, Subramanian A, Mandalapu D (2010) Dynamic hand pose recognition using
depth data. In: Proceedings of international conference on pattern recognition (ICPR), August
2010, pp 3105–3108

28. Van den Bergh M, Van Gool L (2011) Combining rgb and tof cameras for real-time 3d hand
gesture interaction. In: IEEE Workshop on applications of computer vision (WACV), January
2011, pp 66–72

29. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features.
In: Proceedings of the IEEE computer society conference on computer vision and pattern
recognition, CVPR 2001, vol 1, IEEE, pp I–511

30. Wachs JP, Kölsch M, Stern H, Edan Y (2011) Vision-based hand-gesture applications. Commun
ACM 54(2):60–71

31. Wan T, Wang Y, Li J (2012) Hand gesture recognition system using depth data. In: Proceed-
ings of 2nd international conference on consumer electronics, communications and networks
(CECNet), April 2012, pp 1063–1066

32. Wang J, Liu Z, Chorowski J, Chen Z, Wu Y (2012) Robust 3d action recognition with random
occupancy patterns. In: Proceedings of the European conference on computer vision (ECCV)

33. Wen Y, Hu C, Yu G, Wang C (2012) A robust method of detecting hand gestures using depth
sensors. In: Proceedings of haptic audio visual environments and games (HAVE), 2012, pp
72–77

34. Zabulis X, Baltzakis H, Argyros A (2009) Vision-based hand gesture recognition for human
computer interaction. In: The universal access handbook, human factors and ergonomics, Chap.
34, Lawrence Erlbaum Associates Inc. (LEA), June 2009, pp 34.1–34.30



Chapter 12
Hand Parsing and Gesture Recognition
with a Commodity Depth Camera

Hui Liang and Junsong Yuan

Abstract Hand pose tracking and gesture recognition are useful techniques in
human–computer interaction (HCI) scenarios, while previous work in this field suf-
fers from the lack of discriminative features to differentiate and track hand parts.
In this chapter, we present a robust hand parsing scheme to obtain a high-level and
discriminative representation of the hand from raw depth image. A novel distance-
adaptive feature selection method is proposed to generate more discriminative depth-
context features for hand parsing. The random decision forest is adopted for per-pixel
labeling, and it is combined with the temporal prior to form an ensemble of classifiers
for enhanced performance. To enforce the spatial smoothness and remove the mis-
classified isolated regions, we further build a superpixel Markov random field, which
is capable to handle the per-pixel labeling error at variable scales. To demonstrate
the effectiveness of our proposed method, we have compared it to the benchmark
methods. The results show it produces 17.2 % higher accuracy on the synthesized
datasets for single-frame parsing. The tests on the real-world sequences show our
method is more robust against complex hand poses. In addition, we develop a hand
gesture recognition algorithm with the hand parsing results. The experiments show
our method achieves good performance compared to state-of-the-art methods.

12.1 Introduction

Vision-based hand pose estimation is an important research topic in human–computer
interaction (HCI) which has various applications, such as gesture recognition [35]
and animation synthesis. Compared to the intrusive counterparts such as the data

H. Liang (B) · J. Yuan
School of Electrical and Electronics Engineering, Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798, Singapore
e-mail: hliang1@e.ntu.edu.sg

J. Yuan
e-mail: jsyuan@ntu.edu.sg

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_12

239



240 H. Liang and J. Yuan

glove [8] and the optical marker-based methods [1], it can provide more natural
interaction experience for the HCI applications at a much lower cost. Though a lot
of work has been done in this field [4, 14, 21, 23, 26, 30, 34], robust hand pose
tracking and gesture recognition with visual inputs remains a challenging problem
and the performance achieved cannot compare to the alternative methods, such as
the data glove-based approaches [38].

The performance of vision-based hand pose tracking and gesture recognition
systems largely relies on the discriminative power of the input features. Previously,
the optical camera is the mainstream to capture the visual inputs [30, 34]. As the
hand is quite homogeneous in color, the commonly used features in the RGB images,
e.g., edge and silhouette, are sensitive to lighting condition variations and cluttered
background and lack the discriminative power for matching [4, 14, 23]. The depth
sensors can provide more discriminative features, and various methods have been
proposed, e.g., the fast point feature histograms [28], the geodesic distance map [3],
and the depth kernel descriptors [6]. Although these low-level features prove effective
in rigid object recognition, they are generally inefficient to describe the articulated
objects such as the hand. By contrast, the parsed hand parts are very attractive high-
level features for both hand pose tracking and gesture recognition tasks. Similar work
has been done in full-body tracking [31], and the idea was extended to hand parsing
[15, 16]. However, these hand parsing schemes most follow the idea of per-pixel
classification of the depth images, and their results are still quite noisy.

This chapter presents a unified framework to enforce both the temporal and spatial
constraints for hand parsing, in which we leverage a superpixel Markov random
field (MRF) to efficiently remove the misclassified regions produced by per-pixel
classification. The pipeline of the proposed hand parsing algorithm and its application
to hand gesture recognition is illustrated in Fig. 12.1. The random decision forest
(RDF) classifier is used for per-pixel classification based on a depth-context feature.
The temporal constraints are enforced by learning the 3D position distribution of the
hand parts from the previous frame and combining it with the RDF classifier to form

Fig. 12.1 The pipeline of the proposed hand parsing scheme and its application to hand gesture
recognition



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 241

an ensemble of classifiers. As to the spatial constraints, the neighborhood smoothness
of the pixel labels is enforced in the SMRF framework to suppress the per-pixel
classification error. Using the superpixel, the misclassified isolated regions can be
represented as an atomic element, and the computational complexity of MRF-based
smoothing can be largely reduced. Finally, based on the key points extracted from
the hand parsing results, we propose a rotation-invariant hand gesture recognition
algorithm to recognize digit number gestures.

12.2 Literature Review

The purpose of hand parsing is to refine the raw visual inputs to get a semantic
segmentation of the hand region, e.g., the joints, the fingers, and the palm. These
hand parts are important features for hand pose estimation and gesture recogni-
tion, as they are more efficient and accurate for matching and classification in such
tasks. Generally, the methods of hand parsing involve pixel-level hand part detection
[15, 36] and inference with the priors of hand part correlations [20, 25]. Although
there has been considerable work in the similar field of human body parsing
[24, 25], hand parsing has its own challenges. Different from the human body, there
are no clear visual boundaries between the hand parts in the color image, and the
hand motion is much more flexible. As a result, many part detectors adopted in body
parsing, e.g., the HOG templates [9], do not work well for the hand, and the color
markers are sometimes placed on the hand to alleviate this problem [36]. Besides, the
hand part correlations are also more difficult to model. In the following, we review
some of the recent marker-based and markerless methods for both hand and body
parsing.

Marker-based methods: The bare hand is homogeneous in color and lacks the
boundaries between its different parts. To this end, the color markers are often adopted
to parse the hand in RGB inputs, as shown in Fig. 12.2. In [40], twenty reflective
markers are placed on the hand joints, and their 3D positions are recovered by the
Vicon camera system. Although the identities of the markers are not recovered during
runtime, their positions provide strong constraints on the feasible hand pose and

Fig. 12.2 Marker-based methods. Left the reflective markers used in [40]. Middle the color markers
with different colors used in [32]. Right the color glove used in [36]



242 H. Liang and J. Yuan

thus largely improve the estimation accuracy. In [32], eighteen markers with four
different colors are placed on the hand joints to track the pitcher’s hand motion when
capturing the baseball. As the number of colors used to label the markers is limited for
robust extraction, the markers are distributed to maximize the distance of the markers
with the same colors. In this way, the different joints can be better recognized. In
[36], a color glove is used to segment each hand part. The glove consists of twenty
patches and is labeled with ten fully saturated colors so that the different patches
can be robustly segmented. A Hausdorff-like distance metric is used for template
matching, and the database is indexed by similarity-sensitive coding to accelerate
nearest neighbor search.

Markerless methods: The contour and silhouette are the commonly used features
for hand and body parsing in unmarked visual inputs, as they are relatively robust
to extract in the controlled environments. Especially, the stretching parts, e.g., the
fingers and the limbs, are quite distinct on the contour. Motivated by this observation,
some shape analysis techniques have been applied to hand parsing. In [27], the
individual fingers and palm are segmented using the convex shape decomposition
algorithm, which decomposes the hand contour into separated near-convex polygons.
However, this method can only handle the open hand, and the knowledge of the
articulated objects is not utilized. To this end, one of the most popular techniques
for articulated object parsing has been the deformable pictorial model (DPM) [12],
which arranges the different parts of the object in a deformable configuration. A
separate detector is trained for each part, and the correlations between the different
parts are modeled as a tree structure to allow efficient inference. In the original work
of [12], the part detector utilizes only the silhouette, and thus, its capability to handle
overlapping parts is quite limited. As the parsing accuracy of the DPM-based methods
largely relies on the performance of the part detector, various improvements have
been proposed. In [25], an iterative parsing scheme is proposed to parse the body
parts in unconstrained color images by finding the optimal body pose. The initial
pose is first determined using only the edge feature, and the obtained pose is then
used to compute the new appearance model to determine the new parse. This process
iterates, and the local features are gradually tuned to detect the individual parts.

The depth cameras are more powerful tools for body and hand parsing compared
to the RGB cameras. The occluding parts with similar colors can be separated with
their depths, and the pixels can be better described based on the depth value contrast.
In [39], a labeled contour model is proposed for gesture recognition. The depth
image is first classified into hand parts with the position feature, and the results are
then used to label the contour points to provide extra clue for matching. In [31], the
feature of the pixel in the input depth image is represented by a set of neighboring
point pairs, and the part label of the pixel is determined by classification based on
its feature values via a learned RDF classifier. In [15], the randomized decision trees
are used to classify each pixel of the input depth image to labeled parts based on
the depth feature in [31]. The mean shift algorithm is then used to estimate the joint
positions. In [16], the authors further extend the method in [15] with a multilayered
random forest framework. The input depth image of the hand is first classified into a
predefined gesture set and then parsed into hand parts with expert classifiers specially



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 243

trained for each gesture set. However, while they achieve good gesture recognition
performance, their method is not suitable for hand parsing in full degree of freedom
(DOF) hand motion scenarios, given the large variation of hand shape and viewpoint
change. In [19], the authors propose to use ICP to build the temporal correspondence
between the previous frame and the current frame for hand parsing and extract the
hand part edges as additional constraints to refine the parsing results. While this
method largely relies on the temporal reference for parsing, it is inherently sensitive
to tracking failure due to its assumption of small hand shape deformation between
successive frames.

Some of the methods in depth image-based parsing are proven effective in their
per-pixel classification performance, while the temporal and spatial constraints are
seldom enforced in a unified way to improve the results. This is important since
usually the training dataset cannot cover all the possible hand motion due to its high
articulation and large viewpoint changes. As a result, a large portion of the input
images can be misclassified based on only per-pixel parsing schemes. To address
this issue, the spatial and temporal constraints are enforced by a superpixel MRF in
[20] to further improve the per-pixel parsing results in depth images.

12.3 System Overview

The proposed superpixel MRF framework enforces both the temporal and spatial
correlations of the hand parts to parse the depth image of the bare hand into individual
parts. Its input is a sequence of depth images, and we assume that only one hand
is visible and the hand is the nearest object to the camera. The output of the hand
parsing scheme is the part label images, and key point sets corresponding to the
hand parts. These extracted key points are further used for hand gesture recognition.
The functions of the key modules are listed as follows:

Hand detection: to extract the hand region from the input depth image and seg-
ment it from the forearm.

Per-pixel classification: to assign an initial part label to each pixel by clas-
sification with the learned RDF classifier and the temporal position classifier. A
distance-adaptive feature selection scheme is combined with a depth-context feature
to describe each pixel for classification.

Superpixel partition: to partition the initial hand part segmentation into a set of
superpixels to reduce the computational complexity involved in MRF smoothing.

MRF inference: to reassign the hand part labels via superpixel-level inference.
The depth discontinuity, superpixel boundary shapes, and hand label co-occurrence
are all handled to construct the MRF graph for efficient inference.

Key point extraction: to infer the center of each labeled hand part based on their
distributions in 3D space.

Gesture recognition: to recognize static hand gestures from pre-defined sets.
Gesture recognition is performed by nearest neighbor search based on the distance
between the aligned point sets of the input and templates.



244 H. Liang and J. Yuan

Fig. 12.3 The 3D hand model consisting of the mesh and skeleton

12.4 Hand Modeling

In order to generate the training samples for hand part classification, we build a fully
deformable 3D model to simulate the real hand, which consists of a skeleton system
and a skin surface mesh. The skeleton has 27 DOF, including 6 DOFs of global
motion and 21 DOFs of local motion [10]. It is modeled as a kinematic chain of
20 joints connected by bones in a tree structure with the root at the wrist, as shown
in Fig. 12.3. A set of static and dynamic constraints [10, 22] are adopted to limit
the parameter space of the hand motion. The skeleton thus has an equivalent of 18
DOF. The skin mesh consists of about 5,000 vertices, which form approximately
7,000 triangles. Each vertex and triangle is assigned a label l ∈ L to indicate which
hand part they belong to. Give a hypothesized hand pose α, the joint positions of
the skeleton are first computed using forward kinematics, and the positions of the
vertices on the skin mesh are then updated using the skeleton subspace deformation
method [18]

We adopt the pinhole camera model [13] to project the hand model onto the
image plane to synthesize the depth and label images. This is done by calculating
the projection of all the triangles of the skin mesh, as shown in Fig. 12.3. The pixel
coordinate pi of a 3D point vi = [ai , bi , ci ]T is projected by:

pi = ωP (vi ) = F

ci
×

⎡
Dx ai

Dybi

⎣
+

⎡
ao

bo

⎣
, (12.1)

where F is the focal length; Dx and Dy are the coefficients to define the metric units
to pixels; ao and bo are the principal point of the image plane. These parameters
are intrinsic parameters of the camera and can be obtained by camera calibration
techniques. Based on the projection model, the three vertices of each triangle of the
hand mesh are projected onto the image plane to get (p1, p2, p3). The pixels with



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 245

the projected triangle in the label image are assigned the corresponding label of the
triangle (v1, v2, v3). The pixels within the projected triangle in the depth image are
filled by linear interpolation of the three vertices. Besides, since the skin mesh is
closed, multiple triangles on the mesh can be projected to the same pixel on the
depth and label images. In this case, the pixel will take values from the triangle that
gives the minimum depth value.

12.5 Hand Detection

The proposed hand detector works on the input depth images and simplifies the
problem with several assumptions. First, it assumes the hand is the nearest object to
the camera, the in-plane hand rotation is confined within (−90∀, 90∀), and the out-
of-plane rotation is confined within (−20∀, 20∀). Second, the maximum absolute
difference of depth values between the points within forearm region and hand region
is confined within a threshold ρ, i.e., ρ = 0.2 m. Third, based on the morphology of
the hand, we assume the palm forms a globally largest blob in the hand and forearm
region when the hand rotates within the specified range. The palm region can thus
be approximated with a circle C p = (pp, rp), where pp is the palm center and rp is
the radius.

Based on the above assumptions, the hand region is segmented through three
steps: foreground segmentation, palm localization, and hand segmentation. It starts
with threshold to the depth image to get the foreground. Here, the foreground consists
of the pixels that satisfy dz < d∩

z + ρ, where dz is the depth value of the pixel, and d∩
z

is the minimum depth value in the depth image. This ensures that both the hand and
forearm regions are extracted from the depth image. In the second step, the contour
of the foreground is approximated by a polygon, and C p then equals to the largest
inscribed circle of this polygon. To reduce the computational complexity of palm
localization, the center of C p can be tracked with a Kalman filter if the temporal
information is available. Finally, the hand and forearm regions are separated by
a tangent line of C p which is also perpendicular to the orientation vector of the
forearm. We define the orientation vector as the Eigenvector that corresponds to the
largest Eigenvalue of the covariance matrix of the contour pixel coordinates of the
foreground. An example is shown in Fig. 12.4 to illustrate these three stages during
hand detection.

12.6 Per-pixel Classification

The task of hand part classification is to assign a label l ∈ L to each pixel in the
depth image of the hand region. Figure 12.5a shows our hand label partition scheme
for classification, and the whole hand is divided into twelve non-overlapping parts.
These hand parts are not independent from each other. Rather, the relationship among



246 H. Liang and J. Yuan

Fig. 12.4 Illustration of hand detection. a The foreground region, b the palm circle, c the orientation
vector, and d the final segmentation results

Fig. 12.5 The hand partition scheme. a The label distributions for different hand parts. b The
tree-structured hierarchy of the positions of the labeled hand parts

their positions complies with a tree-structured hierarchy, as shown in Fig. 12.5b. To
perform per-pixel classification, a novel depth-context feature is proposed to describe
the local depth contrast for each pixel, based on which a trained RDF classifier is used
to assign the part labels. In case that the temporal reference is available, the position
distribution of each labeled part will also be learned and used in combination with
the RDF classifier to form an ensemble of classifiers for per-pixel classification.

12.6.1 Depth-Context Feature

We propose a depth-context feature to describe each pixel in the depth image, which
is both depth-invariant and efficient to train the classifier. This feature describes the
relative depths between a 3D point and its neighboring points in 3D space, as shown
in Fig. 12.6a. The red circle denotes the current point for classification, and the green
circles denote the context points to calculate the feature values. Each context point



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 247

Fig. 12.6 The distance-adaptive scheme for selecting depth image feature candidates, in which the
red circle indicates the current pixel, and the green circles indicate the candidate offset features a.
The sampling density function along each axis b

is represented as a 3D offset vd = [ad , bd , 0]T . The feature value is defined using
the depth difference between the current pixel and the projected pixel of the context
point, which is given by:

fF (p, vd) = dz(p) − dz[ωP (v + vd)], (12.2)

where p is the current pixel, v is the corresponding 3D point, and dz is the depth
value at the given pixel in the depth image. ωP (v + vd) represents the projected
pixel coordinates corresponding to the context point v + vd in 3D space. To handle
the background variation, all background pixels are assigned with a constant depth
value in [31]. However, this introduces inconsistency between the training and testing
stages, since the range of the feature values changes as the depth of the hand changes.
Instead of assuming constant background, we simply threshold the absolute value of
the depth difference by a constant ρd , which makes the range of the feature values
remains relatively stable.

Selection of the context point positions is not well addressed in previous researches
[15, 31], in which the context points are randomly generated within certain ranges.
However, the nearer points should be more important to describe the context than
faraway points, especially for the fingers, as we can see that most of the faraway points
lay either on the background or the palm part, both of which are quite homogeneous
regions. To this end, we propose a distance-adaptive sampling scheme to generate
the context points, as shown in Fig. 12.6a. The points nearer to the current pixel are
more densely sampled and vice versa. For simplicity, we focus the discussion on
one dimension as the sampling scheme is symmetric. The sampling density function
g(x) is adopted to determine the location of each context point. Let the feasible
range of the context points be [−h, h]. g(x) is a non-increasing function and satisfies



248 H. Liang and J. Yuan

Fig. 12.7 Comparison of the average per-class accuracy of the three depth features. a Results with
different values of M . b Results with different values of the maximum depth of RDF

⎤ h
0 g(x)dx = M . M is a parameter to determine the grid size. In our implementation,

we choose a linear function for g(x). The coordinate of the context point can be
obtained by solving the equation

⎤ xd
0 g(x)dx = i to get xd for i = 1, . . . , M .

To validate the effectiveness of the depth-context feature as well as the proposed
distance-adaptive sampling scheme, we compare the classification accuracy of three
candidates: (a) the depth feature in [31] combined with random sampling (DR); (b)
the depth-context feature with uniform sampling (DCU), e.g., g(x) is a constant
function; and (c) the depth-context feature with distance-adaptive sampling (DCA).
The synthesized dataset of about 22.5 k images is used for the experiments with its
details given in Sect. 12.9, and 80 % of the dataset is used for training and the rest for
testing. Figure 12.7a shows the per-class classification accuracy of the three methods
with respect to different number of M , in which the RDF consists of three trees with a
depth of 20. Our proposed DCA method outperforms DCU by 2.8 % higher accuracy
and outperforms DR by 12.2 %. Especially, the DCA method performs quite well
even with a very small value of M , i.e., M = 2. This proves the DCA’s capability
to capture the local context of the pixels in depth image. Figure 12.7b shows the
per-class classification accuracy with different depth of the RDF at fixed value of
M = 10. We can see that the DCA method again provides better classification results
for all choices of the tree depths.

12.6.2 RDF Classification

Based on the depth-context feature, we adopt the RDF classifier [7] to label the hand
parts by per-pixel classification. The training procedure of the RDF is essentially the
same as that in [31]. To generate the training samples, we randomly select ten pixels
for each hand part and the background from each training image, and each sample
consists of the label of the pixel and the corresponding depth-context feature value.



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 249

During the test stage, an input pixel (p, v) is first processed by each tree in the
RDF. For each tree, the posterior probability Pi (l|v) is obtained by starting at the
root and recursively assigned to the left or the right child based on the tree node
test result until it finally reaches a leaf node. The final posterior probability P(l|v)

is obtained by fusing the results of all the trees in the random forest, i.e., P(l|v) =
1
N

⎦N
i Pi (l|v), where N is the number of trees in the RDF. The label of the pixel can

be directly determined by MAP estimation: l∩ = arg maxl P(l|v). However, the final
label decision is not made here, and the posterior P(l|v) will be further processed
by the superpixel MRF framework to give the refined results.

12.6.3 Key Point Extraction

The key points are a simplified representation of the hand parsing results. Instead of
calculating the 3D centroid of each labeled hand part, we calculate the expectation
positions of each hand part based on the label distribution given by hand parsing.
Let the 3D point set on the input hand be H . Let the label distribution given by the
RDF classifier be P(l|v), v ∈ H . The 3D position distribution of a hand part l can
be calculated by:

P(v|l) = P(l|v)P(v)⎦
vi ∈H P(l|vi )P(vi )

= P(l|v)⎦
vi ∈H P(l|vi )

, (12.3)

where we assume uniform prior of the 3D positions of the depth points. Thus, the
expected position of the hand part l equals to vl

c = ⎦
vi ∈H vi P(vi |l). Note for the

two hand parts 1 and 2 that belong to the palm in Fig. 12.5a, the 3D points within them
and the corresponding label distribution are merged to get the palm position. Let the
resulting positions of each hand part be UI = {vl

c|l = 1, ..., L}. These points are
further arranged into a tree hierarchy based on their relationship in the hand skeleton,
as illustrated in Fig. 12.5b, where the root corresponds to the palm position.

12.6.4 Temporal Constraints

The temporal references are useful when parsing the hands in successive images.
Given that the hand parsing result in the previous frame is available, we propose to
use it as an auxiliary classifier for the RDF classifier for per-pixel classification in the
current frame. This classifier forms an ensemble of classifiers with the RDF classifier.
To this end, we first use the 3D Gaussian distribution to approximate the point
distribution within each hand part in the previous frame, i.e., PT (v|l) ∅ N (μl , Cl),
and the parameters μl and Cl are learned from the points that belong to each hand
part in the previous frame. The temporal classifier is thus given by:



250 H. Liang and J. Yuan

PT (l|v) ∪ PT (v|l)PT (l), (12.4)

where PT (l) is proportional to the number of points within each part. For clarity, we
denote the RDF classifier as PR(l|v). The previous per-pixel classification scheme
can thus be accomplished by the ensemble of PT and PR to incorporate the temporal
reference, that is:

P(l|v) = τPR(l|v) + (1 − τ)PT (l|v). (12.5)

Here,τ is the coefficient to control the relative weight of the temporal classifier and the
RDF classifier. As the variation of hand motion speed is large and the performance of
PT can degrade a lot with fast hand movement, we make PR outweigh the temporal
term PT so that their combination is robust to tracking failure, i.e., τ > 0.5. In
practice, we find a value of 0.5 usually works fine.

12.7 Superpixel MRF Hand Parsing

The hand parsing results produced by the per-pixel classification method in Sect. 12.6
are quite noisy since dependencies between neighboring pixels are not fully utilized.
Simply applying the pixel-level filtering techniques, e.g., the median filter, to the
labeling results will not work well since many misclassified pixels form small isolated
regions surrounded by other parts, as shown in Fig. 12.8. The MRFs [17] can be used
to refine the classification results, which can well model the constraints from the
neighboring states and the image observations [11]. However, the traditional pixel-
based MRF is time consuming for real-time HCI applications. Besides, the isolated
misclassified regions are more suitable to be represented as a whole rather than a set
of pixels for MRF inference. Therefore, we partition the hand region into superpixels
and combine them, and MRF inference to refine the parsed hand parts based on the
per-pixel parsing results.

The proposed superpixel MRF framework is built with both the posterior proba-
bility P(l|v) given by per-pixel classification and the depth image. The superpixels
are constructed with two criteria. First, the depth discontinuity must be conserved
when determining the borders of neighboring superpixels. Second, pixels within one
superpixel should have similar posterior probability. These principles are incorpo-
rated into the SLIC superpixel partition algorithm [29], and the resulting superpixel
partition is compact in terms of 3D space distribution and posterior probability. The
MRF graph is then constructed for the superpixels similar to [37].

Given the compact representation of the superpixels, they still behave differently
from the pixels. Some superpixels have quite irregular shapes in order to conserve the
depth discontinuity during superpixel partition. Also, the relative sizes of neighboring
superpixels are sometimes uneven, as shown in Fig. 12.8b. This suggests that some
superpixels can have larger influence on their neighbors than others. Therefore, in the
MRF framework, we model the interaction energies between superpixels based on
their common borders and relative sizes and label co-occurrence distribution when
determining the pairwise term. That is, if two neighboring superpixels have many



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 251

common borders, they are quite likely to have the same label. Also, a small superpixel
can be more easily smoothed by a big neighbor than opposite. We also take the idea
of label co-occurrence from [33] so that the unsmoothness between the neighbors
with low co-occurrence rate is high.

12.7.1 Superpixel Partition

Though the per-pixel classification result is somewhat noisy, the labeled parts are
mostly locally homogeneous. Besides, a large portion of the wrongly classified pixels
form isolated small regions. Therefore, the labeled image is suitable to be represented
by a set of super pixels for further processing, which can well model the misclassi-
fied regions as well as reduce the computational cost involved in the MRF energy
minimization process. To this end, we modify the simple linear iterative clustering
(SLIC) algorithm to get the superpixel partition [11]. The original SLIC method is
developed for color images, while we need to get the superpixel partition that con-
forms to both the hand part classification results and the depth discontinuity. To be
specific, the criteria for our superpixel partition scheme are as follows:

1. Depth continuity: The depth difference between neighboring pixels within the
superpixel is smaller than a threshold dT .

2. Similar posterior probability: The pixels within a superpixel should have similar
P(l|v).

According to these requirements, it is not reasonable to apply the SLIC method
directly to the posterior distribution P(l|v), as the Euclidean distance in P(l|v) does
not make much sense. Thus, we perform superpixel partition in the space of posterior
distributions and adopt the Kullback–Leibler divergence to measure the difference
between each pixel and the superpixel cluster center. Let the set of superpixel partition
be S = s1 ∃ s2 ∃ · · · ∃ sK . The posterior probability and depth of each superpixel
are taken as the average of all the pixels within the partition, that is:

dsk = 1

|sk |
⎧

v j ∈sk

c j (12.6)

P(l|sk) = 1

|sk |
⎧

v j ∈sk

P(l|v j ), (12.7)

where d(sk ) and P(l|sk) are the depth and posterior probability of the superpixel sk .
For superpixel clustering, we define the distance metric in the posterior probability
to measure the difference between the pixels and the superpixel cluster to be:

Dkl(sk, p j ) =
L⎧

l=1

P(l|sk) log
P(l|sk)

P(l|p j )
. (12.8)



252 H. Liang and J. Yuan

Besides, in order to preserve the depth discontinuity in the superpixel partition, the
pixel p j can be assigned to sk only if |c j − dsk | ∝ dT . In the implementation, we
set dT = 6 mm. Also, the superpixel should be compact in the 2D image coordinate
space, as in the original SLIC method. Therefore, we define the distance metric for
superpixel partition as:

D =
⎨
⎩



⎢
Dkl +

⎥
DS
MS

)2
m2 if |c j − dsk | ∝ dT

∧ otherwise
(12.9)

where MS is the regular grid step on the image plane to determine the superpixel
size; DS is the pixel distance between p j and the superpixel center; m controls the
relative importance of the two terms. Based on the distance metric D, the superpixel
partition is performed by the clustering scheme in the SLIC method. The posterior
probability of these superpixels forms the observation data for the following MRF
inference. Note that the sizes of the superpixels are generally quite close, except for
some noises, i.e., the wrongly labeled regions are usually small or have irregular
shapes, and they are more likely to be neutralized by their neighbors.

12.7.2 Superpixel MRF Inference

Given the set of superpixels S = {sk}, the goal for MRF inference is to assign
each superpixel a new label l ∈ L . Let the associated labels for the superpixels be
Y = {yk}. The task for MRF inference of the labels is to get the MAP solution of
Y ∩ = arg maxY P(Y |S), which is equivalent to the minimization of the following
energy function:

E = Ed + ES =
⎧

i∈S

αi (yi ) +
⎧

i∈S, j∈Ni

κi, j (yi , y j ). (12.10)

Here, Ed is the unary term to measure the discrepancy between the inferred label
and the per-pixel classification results, and we set αi (yi ) = − log P(yi |si ).

The pairwise term Es is used to measure the smoothness between neighboring
superpixels, and we utilize the idea of label co-occurrence [33] to define κi, j . The
label co-occurrence represents the conditional probability P(yi |y j ), which indicates
how likely a superpixel with state y j will have a neighbor with a state yi . Since
some hand parts are more likely to be adjacent than others, e.g., the chances that the
part 1 and 2 are adjacent are higher than the part 1 and 6, the label co-occurrence
can be useful during inference by punishing the unlikely adjacent states. However,
unlike [33] in which a superpixel in the color images is equally affected by all its
neighbors, we take the depth discontinuity and the irregular shapes of the superpixels
into consideration to model the pairwise interaction energy. First, to handle the depth



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 253

Fig. 12.8 Effectiveness of MRF inference based on superpixel partition and label co-occurrence.
a Per-pixel classification result. b Superpixel partition result. c SMRF inference result

discontinuity, we determine the adjacency of a pair of nodes (yi , y j ) based on the
following criteria: {

φi → φ j �= ∅
|dsi − ds j | ∝ dT

(12.11)

where φ is the set of border pixels of the superpixel. With these criteria, there is a
pairwise energy term between two nodes only if they are neighboring superpixels and
have similar depths. In addition, some superpixels can have quite irregular shapes,
which make them interact with their neighbors in an uneven way. Specifically, a
superpixel is more likely to take the same label with the neighbors that share more
borders than others, and small superpixels are more likely to take the same label with
its big neighbors than the opposite way. This is especially significant for the wrongly
labeled regions, which are usually isolated and small. For two adjacent nodes i and j ,
the uneven influences resulting from these factors should be reflected in the pairwise
energy term, in addition to their state differences (yi , y j ). Thus, we define a weight
coefficient πi, j for the pairwise term of adjacent nodes:

πi, j = |φi → φ j |
|φi | × |s j |

|si | . (12.12)

A big value of πi, j indicates the superpixel, and i is more likely to be affected by its
neighbor j .

Figure 12.8 shows an example to illustrate the effectiveness of modeling the
pairwise energy based on the superpixel partition results. Figure 12.8b shows the
superpixel partition of the per-pixel classification results in Fig. 12.8a. As the pixels
within each superpixel are assigned the same state, the small and scattered misclassi-
fied points are largely suppressed even without MRF inference. However, the larger
misclassified regions still cannot be removed, e.g., the regions labeled with 1 and 3



254 H. Liang and J. Yuan

Fig. 12.9 The co-occurrence probability distribution of the labels of the neighboring superpixels
for MS = 4

in the red rectangles. Region 1 is misclassified to No. 4 hand part and region 3 is mis-
classified to No. 5 hand part. According to the co-occurrence probability of different
hand parts in Fig. 12.9, both these misclassified regions result in a large pairwise
energy. First consider region 3. It is small in relative size compared to its surround-
ing superpixels, e.g., region 4, thus assigning it with the label of its neighbors will
produce a big energy decrease, which is favored during inference. For region 1, note
it is only adjacent to the superpixels on the middle finger since depth discontinuity
is handled to build the MRF framework, thus it will be influenced by only one mis-
classified superpixel and multiple correctly classified regions in the middle finger.
By comparison, its adjacent region 2, which is correctly classified, has much more
correctly classified neighbors. Again, region 1 is more inclined to be neutralized
by region 2. Figure 12.8c shows the results given by MRF inference, in which the
misclassified regions are successfully removed.

Combing the label co-occurrence, node adjacency and weight coefficient πi, j , the
pairwise potential function κi, j for two adjacent node i and j takes the following
form:

κi, j (yi , y j ) = −πi, j × [
1 − ξ(yi , y j )

] × log
[

P(yi |y j )+P(y j |yi )

2

]
(12.13)

where ξ is the Kronecker delta function to indicate a zero pairwise energy if the
nodes i and j have the same state. P(yi |y j ) is the conditional probability learned



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 255

Fig. 12.10 Comparison of classification accuracy between per-pixel classification and SMRF with
different superpixel sizes

from the training dataset by counting the co-occurrence of the labels of neighboring
superpixels. The co-occurrence distribution of the labels is shown in Fig. 12.9. Note
here all the P(yi |yi ) terms are set to zero as they have no effect on the inference
results. By incorporating the co-occurrence probability distribution in SMRF infer-
ence, we encode the prior to eliminate the unlikely neighboring labels to smooth the
results given by per-pixel classification. Based on the above formulation, we adopt
the iterated conditional modes (ICM) algorithm [5] to minimize the energy function
to get Y ∩, and the initial label for each superpixel is taken to be yk = arg maxl P(l|sk).
The ICM algorithm is a greedy search algorithm and is guaranteed to converge fast.

We have tested the performance of the proposed SMRF framework on the same
dataset as in Sect. 12.6, and the results are presented in Fig. 12.10 and Table 12.1. The
label “SMRF-#” represents our method running with different superpixel grid step
MS , i.e., we run the SMRF method with MS = # based on the per-pixel parsing results
with our DCA feature and a feature grid of M = 10. Compared to the benchmark
method [31], we achieved an overall 17.2 % higher accuracy for the twelve hand part
classification for MS = 4. Compared to the per-pixel classification results with our
DCA feature, the proposed SMRF framework achieves a 4.7 % higher accuracy with
an extra time cost of 216 ms per frame.

The results for the proposed SMRF method with different values of MS also
demonstrate that superpixel is a more appropriate representation to remove the mis-
classified regions than the pixel. Note that the method “SMRF-1” is equivalent to



256 H. Liang and J. Yuan

Table 12.1 Comparison of overall classification accuracy and extra time costs for SMRF inference
with different superpixel sizes

Method Accuracy (%) Time cost (ms)

Per-pixel DR [31] 72.0 –

Per-pixel DCA 84.5 –

SMRF-1 87.3 605.4

SMRF-4 89.2 215.9

SMRF-8 88.8 186.5

SMRF-12 87.0 167.0

Fig. 12.11 Illustration of SMRF performance with different superpixel sizes. Upper row the input
depth image (Left), the ground truth hand part labels (Middle) and per-pixel classification with DCA
(Right). Lower row SMRF results with MS = 1 (Left), SMRF with MS = 4 (Middle), and SMRF
with MS = 12 (Right)

per-pixel inference, and the corresponding results are not as good as the superpixel-
level counterparts, even at a higher time cost of 605 ms per frame. This is because
at the pixel level, a pixel within the isolated misclassified region will be influenced
by its surrounding pixels, among which there are always the misclassified pixels.
By comparison, at the superpixel level, a well-formed superpixel of the misclassi-
fied region is usually surrounded only by the superpixels with the correct labels and
thus is more likely to be assigned with the correct label of its neighbors. Besides,
according to the results in Table 12.1, the size of the superpixel cannot be too large,
as it produces over-smoothing effects. Figure 12.11 shows an example of applying
SMRF with different values of MS . Not the finger regions, we can see the isolated



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 257

Fig. 12.12 The hand shapes corresponding to the digit gestures

misclassified regions are not well suppressed with MS = 1, while the thumb and
index fingers are wrongly smoothed for MS = 12. The size MS = 4 produces the
result that best conforms to the ground truth.

12.8 Hand Gesture Recognition

The hand part classification result is utilized for static hand gesture recognition in
this section. In some previous researches, the labeled image is directly matched to
pre-defined labeled templates via distance transform to recognize the correspond-
ing hand posture [36]. However, this is unsuitable for our framework. The distance
transform-based matching is sensitive to both inaccurate hand segmentation and hand
rotation, which makes alignment between the input and templates difficult. Besides,
the 3D information of the labeled points is not utilized via 2D matching. Therefore,
we propose to perform hand gesture recognition based on matching between the
extracted 3D key points and the pre-defined templates. The gesture templates are
also defined in a tree hierarchy, with different key point positions corresponding to
different gestures.

There are totally ten gestures to be recognized. The corresponding hand shapes of
the gestures are illustrated in Fig. 12.12, which map to the digit numbers from zero
to ten. For the ten gestures, we define a set of key point templates {Ut |t = 1, . . . , 10}
for recognition. Given the key point set UI extracted from the input depth image
following the method in Sect. 12.6.3, the input gesture can be recognized by finding
the template that best fit UI . The problem can thus be formulated as:



258 H. Liang and J. Yuan

t∩ = arg min
t

DU (UI , Ut ). (12.14)

The key issue in this problem is how to measure the distance DU against the viewpoint
change of the input and the hand size variations. To this end, we propose to use 3D
point set matching to evaluate DU . These two sets are first aligned with the least-
squares fitting method in [2], and the distance metric between key point sets is thus
defined as:

DU (UI , Ut ) = ‖Ut − RU UI − TU ‖2 , (12.15)

where RU = V U T and Cov(UI , Ut ) = U
V T are the SVD decomposition of
Cov. TU is a translation vector to compensate the center difference. To remove the
influence of 3D translation, the root positions in the tree-structured hierarchy, i.e.,
Fig. 12.5b, of each pair of samples are fixed to the same point.

12.9 Experimental Results

In this section, we present the experimental results of the proposed hand parsing
scheme on single-frame datasets, continuous hand motion sequences, and real-world
hand motion sequences. For quantitative evaluations on the single-frame datasets and
continuous motion sequences, we synthesized the depth images with the hand model
in Sect. 12.4 based on the hand motion parameters captured by the CyberGlove II
[8]. For testing on the real-world sequences, we record the depth images captured
by a SoftKinetic DS325 camera. Besides, we also utilize the hand parsing results for
gesture recognition and compare its performance with state-of-the-art method.

The whole program was coded in C++ and tested on a PC with Intel i5 750
CPU and 4G RAM. The resolutions of the testing images in all the experiments are
320 × 240. The size controlling parameter of the feature grid is M = 10, the tree
depth of the RDF classifier is 20, the weighting parameter to fuse RDF and temporal
reference is τ = 0.5, and the superpixel grid size is MS = 4.

12.9.1 Quantitative Evaluation for Single Frames

In order to generate the training data to learn the RDF classifiers, we use the Cyber-
Glove II to capture the possible finger articulation parameters that people would
make in natural hand motion. To handle the viewpoint variation, the captured finger
articulation parameters are combined with 3D global hand rotation in certain ranges.
Here, we define the ranges to be (−20∀, 20∀) for global rotation around the X and
Y axes, i.e., the axes parallel to the image plane of the camera, and (−35∀, 35∀)
around the Z axis, i.e., the axis perpendicular to the image plane. A dataset of the
depth and label images is synthesized using the 3D hand model with the captured



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 259

Fig. 12.13 Examples of the hand configurations in the synthesized dataset

hand motion parameters, which consists of about 22.5 k templates. Some examples
of the templates in this dataset are shown in Fig. 12.13. To evaluate the classification
accuracy on the synthesized images, we use 80 % of the images in the dataset for
learning and the rest 20 % for testing.

The quantitative results on single frames have been presented in Sects. 12.6 and
12.7. The results in Sect. 12.6 show the superiority of the proposed DCA depth feature
over our DCU feature and the benchmark DR feature [31]. The results show a 12.2 %
increase of the classification accuracy compared to [31]. The results in Sect. 12.7
show the per-pixel classification results can be improved by incorporating spatial
constraints and label co-occurrence prior, which gives a further 4.7 % increase in the
classification accuracy.

12.9.2 Quantitative Evaluation for Continuous Sequences

To evaluate how the temporal reference can help to improve the hand parsing results,
we synthesized two continuous hand motion sequences, both of which are approx-
imately 500 frames long and contain complex combinations of global hand motion
and local finger articulations. The first sequence includes the continuous motion of
the hand when it is posing digit gestures, including the transition motion to change
from one gesture to another. The 3D hand rotation and transition are also included.
The second sequence contains different single/multiple finger motions combined
with 3D hand rotation. Especially, these two testing sequences contain some clips in



260 H. Liang and J. Yuan

Fig. 12.14 Comparison of the hand parsing results using per-pixel classification with DCA, single-
frame SMRF and SMRF with temporal reference on the first synthesized continuous hand motion
sequence

Fig. 12.15 Comparison of the hand parsing results using per-pixel classification with DCA, single-
frame SMRF and SMRF with temporal reference on the second synthesized continuous hand motion
sequence

which the hand motions are not covered by the training dataset in order to test the
robustness of the proposed parsing scheme.

The per-frame accuracy curves are shown in Figs. 12.14 and 12.15, in which we
compared three methods: per-pixel classification with the proposed DCA feature
and the proposed single-frame SMRF and the temporal SMRF. Note the average
accuracy is shown in log-scale for better illustration. The average accuracies on the
whole sequences are summarized in Table 12.2, in which the per-pixel classification
results with the DR feature [31] are also included. With the temporal reference, our
method achieves further 1.5 and 0.7 % increase for the two sequences in addition to
the 4.7 and 4.0 % improvement by the SMRF algorithm.

While the improvement given by the temporal reference seems not striking in
terms of the average accuracy, it is important to see that it largely increases the
overall robustness. Since some parts of the testing sequences are either not covered
by the training dataset or are going through complex hand motion and self-occlusion,
the performances by per-pixel classification with the pre-trained classifier and the
SMRF method that built upon it can suffer from drastic degradation, e.g., frames
between 150 and 200 in Seq. 1 and frames between 130 and 160 in Seq. 2. In



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 261

Table 12.2 Comparison of the classification results on the two synthesized hand motion sequences

Per-pixel Per-pixel Single-frame Temporal

DR [31] (%) DCA (%) SMRF (%) SMRF (%)

Seq. 1 77.2 82.4 87.1 89.6

Seq. 2 81.7 86.8 90.8 91.5

Fig. 12.16 Comparison of the hand parsing results using per-pixel classification with DCA and
the RDF classifier (middle row) and the proposed Temporal SMRF framework (lower row) on
real-world hand motion sequences

these parts, we see the system performance is dramatically improved by fusing the
temporal information, and thus, the resulting overall classification accuracy remains
much more stable than the single-frame-based counterparts.

12.9.3 Qualitative Evaluation

We further test the parsing performance of the SMRF framework on real-world input
sequences captured by a SoftKinetic depth camera, which is about 900 frames long,
and the result is illustrated in Fig. 12.16. The parsed hand parts are shown with



262 H. Liang and J. Yuan

different colors, which is consistent with the labeling scheme in Fig. 12.5a. The
results show the effectiveness of the SMRF method. From the figure, we can see that
the results of per-pixel parsing are very noisy. In addition, its performance for small
finger parts get even worse for the challenging cases such as tightening fingers or
when some fingers are occluded. By comparison, the SMRF method produces more
meaningful parsing in such cases.

12.9.4 Hand Gesture Recognition

We tested the recognition accuracy of the proposed approach on a hand gesture
dataset captured by a SoftKinetic camera, in which the hand can rotate within about
(−30∀, 30∀) around X, Y, Z axis freely. The fingers are also allowed to move in
small ranges. The whole test suite contains about 1,000 images, approximately 100
images for each class. Compared to the dataset used in [26], this dataset contains
more challenging cases, e.g., the test samples shown in Fig. 12.18. With this dataset,
we compare the recognition accuracy of the proposed method and the thresholding
decomposition FEMD method in [26]. To simplify the comparison, we ask the users
to wear a black belt at the wrist, which is needed for the method in [26]. However, it
is worth noting that our proposed method does not need the black belt for accurate
segmentation of the hand region, which makes it insensitive to illumination varia-
tions. The confusion matrix of the hand gesture recognition results for our method
is shown in Fig. 12.17. Our method achieves an average recognition accuracy of
95.4 %. By comparison, the average accuracy of the method in [26] on this dataset
is 84.2 %. Especially, our recognition method can handle quite challenging cases, in
which the hand contour alone is not discriminative enough to recognize the gesture.
Some examples of such gestures are shown in Fig. 12.18, in which the correct fin-
ger segments used for EMD-based matching in [26] are difficult to extract, and the

Fig. 12.17 The confusion matrices for digit number recognition with the proposed method (a) and
the thresholding decomposition FEMD method [26] (b)



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 263

Fig. 12.18 Examples of the gestures that are difficult to be correctly recognized with the hand
contour alone. These four gestures correspond to 2, 3, 5, and 8, respectively. The lower row shows
the corresponding depth image input for the proposed recognition method and the hand contour
input for [26]

corresponding results are 1, 2, 4, and 1. In such cases, the key points for our method
can still be detected by parsing the hand, and the correct gestures are recognized.

Acknowledgments This work is supported in part by the NTU IMI seed grant M4081078.B40.

References

1. Aristidou A, Lasenby J (2010) Motion capture with constrained inverse kinematics for real-time
hand tracking. In: ISCCSP, pp 1–5

2. Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3D point sets. IEEE Trans
PAMI

3. Baak A, Muller M, Bharaj G, Seidel HP, Theobalt C (2011) A data-driven approach for real-time
full body pose reconstruction from a depth camera. In: Proceedings of ICCV

4. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape
contexts. IEEE Trans PAMI

5. Besag J (1986) On the statistical analysis of dirty pictures. J Roy Stat Soc B 48(3):259–302
6. Bo L, Ren X, Fox D (2011) Depth kernel descriptors for object recognition. In: Proceedings

of IROS
7. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
8. CyberGlove. www.cyberglovesystems.com
9. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings

of CVPR
10. Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly X (2005) A review on vision-based full

DOF hand motion estimation. In: Proceedings of CVPR

www.cyberglovesystems.com


264 H. Liang and J. Yuan

11. Fauvel M, Chanussot J, Benediktsson JA (2010) SVM- and MRF-based method for accurate
classification of hyperspectral images. IEEE Geosci Remote Sens Lett 7(4):736–740

12. Felzenszwalb PF, Huttenlocher DP (2005) Pictorial structures for object recognition. Int J
Comput Vis 61(1):55–79

13. Heikkila J (1997) A four-step camera calibration procedure with implicit image correction. In:
Proceedings of CVPR, pp 1106–1112

14. Kerdvibulvech C, Saito H (2009) Model-based hand tracking by chamfer distance and adaptive
color learning using particle filter. EURASIP J Image Video Process

15. Keskin C, Kirac F, Kara YE, Akarun L (2011) Real-time hand pose estimation using depth
sensors. In: Proceedings of ICCV

16. Keskin C, Kirac F, Kara YE, Akarun L (2012) Hand pose estimation and hand shape classifi-
cation using multi-layered randomized decision forests. In: ECCV 2012

17. Kindermann R, Snell JL (1980) Markov random fields and their applications. The American
Mathematical Society

18. Lewis JP, Cordner M, Fong N (2000) Pose space deformation: a unified approach to shape
interpolation and skeleton-driven deformation. In: SIGGRAPH

19. Liang H, Yuan J, Thalmann D, Zhang Z (2013) Model-based hand pose estimation via spatial-
temporal hand parsing and 3D fingertip localization, in the visual. Comput J 29(6–8):837–848

20. Liang H, Yuan J, Thalmann D (2014) Parsing the hand in depth images. IEEE Trans Multimedia,
in Press

21. Li Z, Jarvis R (2009) Real time hand gesture recognition using a range camera. In: Proceedings
of ACRA, pp 529–534

22. Lin LJ, Ying W, Huang TS (2000) Modeling the constraints of human hand motion. In: Pro-
ceedings of the workshop on human motion, pp 121–126

23. Lu S, Metaxas D, Samaras D, Oliensis J (2003) Using multiple cues for hand tracking and
model refinement. In: Proceedings of CVPR, vol 2, pp 443–450

24. Pishchulin L, Andriluka M, Gehler P, Schiele B (2013) Strong appearance and expressive
spatial models for human pose estimation. In: Proceedings of ICCV

25. Ramanan D (2007) Learning to parse images of articulated bodies. In: Proceedings of NIPS
26. Ren Z, Yuan J, Meng J, Zhang Z (2013) Robust part-based hand gesture recognition using

kinect sensor. IEEE Trans Multimedia 15(5):1110–1120
27. Ren Z, Yuan J, Li C, Liu W (2011) Minimum near-convex decomposition for robust shape

representation. In: Proceedings of ICCV
28. Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3D registration.

In: ICRA, Kobe, Japan
29. Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-

of-the-art superpixel methods. IEEE Trans PAMI 34(11):2274–2282
30. Shen X, Hua G, Williams L, Wu Y (2011) Motion divergence fields for dynamic hand gesture

recognition. In: Proceedings of FGR
31. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M (2011) Real-time human pose recog-

nition in parts from single depth images. In: Proceedings of CVPR
32. Theobalt C, Albrecht I, Haber J, Magnor M, Seidel H (2004) Pitching a baseball—tracking

high-speed motion with multi-exposure images. In: SIGGRAPH
33. Tighe J, Lazebnik S (2010) SuperParsing: scalable nonparametric image parsing with super-

pixels. In: Proceedings of ECCV
34. Van den Bergh M, Koller-Meier E, Bosche F, Van Gool L (2009) Haarlet-based hand gesture

recognition for 3D interaction. In: Proceedings of WACV
35. Wachs JP, Kolsch M, Stern H, Edan Y (2011) Vision-based hand-gesture applications. Commun

ACM
36. Wang RY, Popovic J (2009) Real-time hand-tracking with a color glove. In: ACM transaction

on graphics
37. Wang X (2009) A new localized superpixel Markov random field for image segmentation. In:

Proceedings of ICME 2009



12 Hand Parsing and Gesture Recognition with a Commodity Depth Camera 265

38. Wang H, Leu MC, Oz C (2006) American sign language recognition using multi-dimensional
hidden Markov models. J Inf Sci Eng, vol 22, no. 5, pp 1109–1123

39. Yao Y, Fu Y (2012) Real-time hand pose estimation from RGB-D sensor. In: Proceedings of
ICME

40. Zhao W, Chai J, Xu Y (2012) Combining marker-based mocap and RGB-D camera for acquir-
ing high-fidelity hand motion data. In: Proceedings of the ACM SIGGRAPH/eurographics
symposium on computer animation



Chapter 13
Learning Fast Hand Pose Recognition

Eyal Krupka, Alon Vinnikov, Ben Klein, Aharon Bar-Hillel,
Daniel Freedman, Simon Stachniak and Cem Keskin

Abstract Practical real-time hand pose recognition requires a classifier of high
accuracy, running in a few millisecond speed. We present a novel classifier architec-
ture, the Discriminative Ferns Ensemble (DFE), for addressing this challenge. The
classifier architecture optimizes both classification speed and accuracy when a large
training set is available. Speed is obtained using simple binary features and direct
indexing into a set of tables, and accuracy by using a large capacity model and careful
discriminative optimization. The proposed framework is applied to the problem of
hand pose recognition in depth and infrared images, using a very large training set.
Both the accuracy and the classification time obtained are considerably superior to
relevant competing methods, allowing one to reach accuracy targets with runtime
orders of magnitude faster than the competition. We show empirically that using
DFE, we can significantly reduce classification time by increasing training sample
size for a fixed target accuracy. Finally, scalability to a large number of classes is
tested using a synthetically generated data set of 81 classes.

E. Krupka · A. Vinnikov · B. Klein · A. B. Hillel (B) · D. Freedman
Microsoft Research, Herzelia, Israel
e-mail: aharonb@microsoft.com

E. Krupka
e-mail: eyalk@microsoft.com

A. Vinnikov
e-mail: t-alvinn@microsoft.com

B. Klein
e-mail: t-benk@microsoft.com

D. Freedman
e-mail: danifree@microsoft.com

S. Stachniak
Microsoft Console dev R&D, Redmond, WA, USA
e-mail: szimons@microsoft.com

C. Keskin
Microsoft Research Cambridge, Cambridge, UK
e-mail: cemke@microsoft.com

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_13

267



268 E. Krupka et al.

13.1 Introduction

The trade-off of speed versus accuracy is an important topic, widely discussed in
the object detection and recognition literature [3, 7, 11, 19, 25]. In applications like
Natural User Interface (NUI), algorithms have to obtain high recognition accuracy
in real time, on low power platforms. Often accuracy must be obtained with only
a small fraction of the available CPU resources, reserving CPU cycles for other
operations. The trade-off is natural: high accuracy requires a rich representation,
with considerable computational cost at all levels of the system. At the lowest level,
this includes using dense sampling of complex local descriptors [21, 27]. Further on,
multiple spatial aggregation layers are employed [6, 18], with large dictionaries at
higher levels. At the highest level, the best accuracy is often obtained using non-linear
kernels [6, 18], requiring kernel computation with many support vectors.

In this section, we attack the problem of hand pose classification using infrared
(IR) and depth images from a time of flight depth camera, in the context of a NUI
application. There are dual demands for high accuracy and a very low computation
budget, the latter a fraction of a millisecond on a low-end CPU. For our problem,
standard techniques achieved reasonable enough accuracy for a moderate training set
size, but were unable to meet the classification time requirement. One can improve
speed by modifying the parameters of such techniques; for example, one may reduce
grid density or dictionary size. However, experiments show that this approach is
limited, when the target speed is obtained accuracy drops too much.

This calls for a wider consideration of recognition systems based on machine
learning. Beyond accuracy and speed, these systems have additional performance
characteristics: generalization ability (i.e., ability to learn from a relatively small
training set size), training time, and memory consumption. Suppose that it is possi-
ble to collect a very large training set, there is no significant limitation on training
time, and a moderate amount of memory is available at test time. The question then
becomes: for a fixed accuracy target, can we trade training set size for increased
speed at test time?

The algorithm proposed here pushes the speed–accuracy envelope at the expense
of larger training sets using three steps. First, simple non-invariant features are used,
with sharp non-linearity, as they are fast to compute. Using a large enough train-
ing set, we can hope that the task-relevant invariance will be learned instead of a
priori encoded. Second, and most important, an architecture with large capacity and
minimal computation is introduced, based on an ensemble of large tables encoding
the end results. Such table-based classifiers, termed ‘ferns’ [6, 19, 24], have high
capacity with a VC-dimension higher than 2K for a single 2K -entry table, and close
to M2K for a M-tables ensemble.1 Third, since the classifier form presents a hard
learning problem, with high capacity and minimal prior, we develop a discriminative
optimization framework for a fern ensemble, which is a departure from the generative
formulation used previously for ferns.

1 Assuming that the underlying space is of dimension higher than K and MK, respectively, which
are satisfied for the image sizes considered.



13 Learning Fast Hand Pose Recognition 269

Focusing on speed optimization, we use as features spatial aggregates of highly
simplistic features, i.e., pixel-pair comparisons; A set (ensemble) of lookup tables
(ferns) are then built based on sets of such bit features. Each fern is based on a set
of K simple binary features and a large table of 2K -entries. The binary features are
concatenated into an index, and the corresponding index entry in the table contains
a weight contribution, summed across the ferns to get the final classification. Each
table can be regarded as an efficient codeword dictionary: It maps a patch into one
of 2K words, yet at the cost of K operations. The resulting architecture is highly
non-linear, and a feed-forward push of an image through it only requires multiple bit
computations and table access operations.

Ferns are traditionally formulated generatively, i.e., conditional class probabil-
ities are stored at the table entries. In contrast, we suggest training the ensemble
discriminatively by minimizing the regularized hinge loss, i.e., the loss minimized
by Support Vector Machines (SVM). The minimization technique is related to ideas
from the Predictive Feature Selection (PFS) algorithm [2]. It is done agglomeratively
in a boosting-like framework, promoting complementariness between chosen ferns
and between bits in a single fern.

The main technical contribution of this section is in the introduction of a
Discriminative Ferns Ensemble (DFE) approach and empirically demonstrating its
ability to considerably shift the speed–accuracy curve. The method is applied to hand
pose recognition from IR and depth images, and compared to the best alternatives
for this task. In this comparison, the DFE achieves accuracy comparable or better
while being one to two orders of magnitude faster. In particular, it is significantly
more accurate than a classification based on deep random trees, which have been
used for similar tasks [17, 25] and considerably more accurate than a more standard
ensemble of random ferns [6, 24]. Several general object recognition methods were
also applied to the task, combining fast dense SIFT features, DAISY, random forest
dictionaries, and SVM [23, 29, 30]. The best results achieved were slightly less accu-
rate than DFE, but classification time was two orders of magnitude (i.e., 100 times)
slower. DFE is also shown to be efficient when the number of classes increases,
utilizing ferns sharing between classes and an error-correcting output code (ECOC)
classification methodology minimizing the number of classifiers trained.

A second contribution is that we empirically show significant improvements in
classification speed—for a given target accuracy—can be achieved by collecting
larger training sets. This is done by optimizing K (log of the table size) and M
(number of ferns) for a given training set size. In other words, if a DFE classifier is
accurate, but not fast enough, collecting larger training set can be used to accelerate
classification speed. Note that this trade-off is different from the well-known trade-off
between training set size and accuracy.

The approach presented was found practical and was used to train the hand pose
recognition in XBox-1, shipped in early 2014.

We discuss related work in Sect. 13.2 and present our approach in Sect. 13.3.
In Sect. 13.4, we summarize a set of experiments in which ingredients of the method
are tested and the approach is compared with competing techniques. We briefly
conclude in Sect. 13.5.



270 E. Krupka et al.

13.2 Relevant Work

With the emergence of cheap 3D sensors, and primarily the Kinect sensor, pose
estimation and recognition in IR+depth images have been the subjects of increasing
study in recent years [1, 5, 10, 15–17, 20, 25, 26]. In contrast to working with RGB
images, the depth information enables easier segmentation of body parts, simpler
reasoning about occlusion, and usage of simpler features enabling real-time applica-
tions. We focus here on techniques that have been applied to hand pose recognition
and estimation, as well as more general techniques that bear some similarity to the
proposed DFE method.

An important line of work that has influenced our technique uses random forests
as the main tool, with the notably successful application of this technique to body
pose estimation in the Xbox-360 [25]. In [16], a random forest is trained to classify
pixels according to hand part labels. The hand parts positions are then estimated
by finding the mode of the posterior part probability using mean shift. In [17], this
method is extended to a two-stage method. In a preprocessing stage, the pose space is
clustered into 50 clusters, corresponding to global hand shapes. A first random forest
is trained to classify pixels as belonging to images from one of the 50 clusters. In
the second layer, 50 different random forest ‘experts’ are trained, one for each of the
clusters. Part position estimation is performed by using the chosen expert from the
second layer, or by splitting decisions regarding pixels among their most plausible
‘experts.’ Good empirical results are reported for shape classification (using the first
stage) and for pixel part classification.

The pose estimators mentioned above were trained using large datasets
of synthetic data, but the random forest-based approach was extended to include
a mixture of labeled real data, unlabeled real data, and synthetic data in [26]. The
forests trained in this approach included mixed regression and classification trees,
and several criteria for node splitting were combined, including a criterion requiring
low variance and a criterion requiring that real labeled data and synthetic data with
the same label share the same node.

While the random forest approach usually relies on very simple features, another
line of work focuses on learning more complex features integrating RGB and depth
information. The methods suggested in [1, 5] learn hierarchical descriptors that
aggregate RGB and depth information across increasingly larger spatial area. Both
show significant improvements in general object recognition using descriptor level
fusion of RGB and depth. In [20], an approach is presented, which learns spatio-
temporal complex features for a difficult gesture recognition task. Increasingly com-
plex features are created by composition of basic operators like filtering, spatial
averaging, and non-linear operations. A genetic algorithm is used to choose the most
discriminative features for a linear SVM classifier.

A different traditionally popular approach poses hand pose recognition as a
retrieval problem [10, 13]. In [10], a large dataset of synthetic images with known
pose parameters was created. The hand is carefully segmented (Kinect depth images
are used) and compared to database images using several distance functions: Cham-
fer distance, L2 distance between the depth images, and a combination of the two.



13 Learning Fast Hand Pose Recognition 271

Empirical results show that the correct match is often ranked high in the list of
retrieved images.

As stated above, fast recognition methods are often based on trees or ferns
ensembles [6, 9, 12, 17, 24, 25]. Ferns are often regarded as a special case of
trees, in which the condition encoded at all the nodes with the same depth is iden-
tical. Boosting of decision trees is a highly popular technique for object detection
and classification in RGB [9, 12], but usually shallow trees of depth 1–3 are used,
which cannot capture fine-grained partitions. Ferns ensembles were suggested in
recent years for RGB image classification [6], keypoint recognition [24], and nearest
neighbor finding [19]. In these works, ferns in the ensemble are chosen independently
of each other, and bits in a single fern are chosen at random or using an information
gain criterion. At the leaves, conditional class posteriors are computed and averaged
across ferns [6], or regulated with a prior and multiplied [24].

Among the tree-based methods mentioned above, the works presented in [16,
17, 25] are most related to the DFE, as they also allow fast, real-time classification
using simple pixel comparison features and a tree ensemble architecture. However,
the DFE departs significantly from the random forest and random ferns tradition in
its resort to discriminative optimization. In a DFE, the fern ensemble is regarded as
providing the features for a large L2-SVM problem. Ferns and bits are not chosen
at random, nor using a general information criterion, but picked to minimize the
loss of this program. In particular, the gradient of the SVM program with respect
to adding new features is computed at each round and used to guide choice of the
bits in the new fern. Ferns (and bits) are hence grown to be complementary, as in a
gradient boosting process [22]. The weights of the fern’s table, corresponding to the
leaves of a tree, are not conditional probabilities, but rather SVM weights. Due to
this optimization, a DFE is more accurate, requires less memory, and less CPU time
than approaches presented in [16, 17, 25]. We discuss the differences in Sect. 13.3.2
and compare the methods empirically in Sect. 13.4.

13.3 The Discriminative Ferns Ensemble

We describe the Fern Ensemble classifier in Sect. 13.3.1 and analyze its running time
in Sect. 13.3.2. In Sect. 13.3.3, we present the training procedure we use.

13.3.1 The Discriminative Ferns Ensemble Classifier

The ferns ensemble classifier operates on an image patch, which we denote by I ,
consisting of P pixels. For a pixel p, we denote its neighborhood by N (p), and we
denote by IN (p) the subpatch which is comprised of the pixels in p’s neighborhood.
In what follows, we will consider IN (p) as a vector in R

|N (p)|. The ferns ensemble
consists of M individual ferns, and its pipeline includes three layers whose structure
we now describe.



272 E. Krupka et al.

Bit Vector Computation Let us focus on one particular fern m. For each pixel p, we
compute a local descriptor of its neighborhood subpatch IN (p) using computationally
light pairwise pixel comparisons of the form

Iq1

?
> Iq2 for q1, q2 ∈ N (p) (13.1)

Such a comparison provides a single-bit value of 0 or 1. For convenience of notation,
we may rewrite the bit obtained as α(ωT IN (p)), where ω is a |N (p)|-dimensional
sparse vector, with two nonzero values, one equaling 1, the other equaling −1; and
α is the Heaviside function. For each fern m and pixel p, there are K bits computed,
and we denote the kth bit as bm

p,k = α((ωm
k )T IN (p)). Collecting all the bits together,

the K -dimensional bit vector bm
p is:

bm
p = α

(
Bm IN (p)

) ∈ {0, 1}K (13.2)

where the matrix Bm has rows (ωm
1 )T , . . . , (ωm

K )T ; and now the Heaviside function
α is applied element-wise.

Histogram of Bit Vectors We are interested in some translation invariance, so we take
a spatial histogram over codewords. However, as in [24], the bit vectors themselves
are the codewords; there is no need for an intermediate clustering step. Denote the
histogram for the mth fern by Hm(b), where bit vector b ∈ {0, 1}K ; then

Hm(b) =
∑

p∈Am

ρ
(

bm
p − b

)
(13.3)

where ρ is a discrete delta function, and Am ∀ {1, .., P} is the spatial aggregation
region for fern m. Note that Hm is a sparse vector, with at most P nonzero entries.

Histograms concatenation The final decision is made by a linear classifier applied
to the concatenation of the M fern histograms.

f (I ) = W T H(I ) =
M∑

m=1

∑

b∈{0,1}K

wm
b Hm(b) (13.4)

where H(I ) = [H1(I ), . . . , H M (I )] ∈ N
M2K

and W = [W 1, . . . , W M ] ∈ R
M2K

is
a weight vector. Combining Steps 1–3 in the pipeline, we arrive at the discriminative
ferns ensemble classifier:

f (I ; τ) =
M∑

m=1

∑

b∈{0,1}K

wm
b

∑

p∈Am

ρ
(
α

(
Bm IN (p)

) − b
)

(13.5)

with the parameters τ = {W m, Bm, Am}M
m=1.



13 Learning Fast Hand Pose Recognition 273

Fig. 13.1 A DFE network. A single fern in a DFE can be viewed as a feed-forward network with
one highly non-linear layer and a second spatial summation layer. The DFE is a 3-layer network
linearly aggregating the output of M ferns. See text for details

The operation of a DFE is sketched as a three-layered network in Fig. 13.1.
Each fern can be conceived as a two-layer network. The first layer extracts a highly
non-linear patch descriptor around each pixel p in the aggregation area. The patch
descriptor is based on comparison of K pixel pairs, squashed into K bits, and con-
catenated into an single index. This index is then used to get a weight from the fern
table. The operation is repeated for all pixels in the fern spatial aggregation area
(the yellow rectangle in the second layer), and the contribution of all the pixels are
summed. At a third layer, the contributions of all the ferns are linearly added and
compared to a threshold to get the decision.

13.3.2 Classification Speed

Algorithm 1 describes the operation of a DFE classifier at test time. The pipeline is
extremely simple. For each fern and each pixel in the fern’s aggregation region,
we compute the bit vector, considered as a codeword index. The fern table is
then accessed with the computed index, and the obtained weight is added to the
classification score. The complexity is O

(
M AK

)
where A is the average number of

pixels per aggregation region: A = 1
M

∑
m |Am |.

It is interesting to compare the CPU time of a single fern to a single tree with
the depth K . From a pure computational complexity perspective, the number of
operations for both is K . Nevertheless, a closer look at their match to common
CPU architectures, including cache hierarchies and vector machines, reveals large
differences in expected run time. First, a tree needs to store the bit computation
parameters for 2K internal nodes. More importantly, during tree traversal, the working



274 E. Krupka et al.

Algorithm 1 Ferns Ensemble: Classification
Input: An image I of size Sx × Sy ,
classifier parameters (Bm , Am , W m)M

m=1, threshold t

Bm ∈ R
K×|Am |, Am ∀ {1, .., Sx } × {1, .., Sy}, W m ∈ R

2K

Output: A classifier decision in {0, 1}
Initialization: Score=0
For all ferns m = 1, .., M

For all pixels p ∈ Am

Compute a k-bit index = α(Bm IN (p))

Score=Score+W m [index]
Return (Score>t)

set is accessed K times in an unpredictable manner. A fern’s operation requires only
a single access to its large working set (W m), as the index computation is done using
a small amount of memory, O(K ) in size, which fits in the cache without a problem.

Second, the usage of fixed pixel pairs in a fern enables computation of the K-bit
index without indirection and with an unrolled loop. More importantly, ferns are
amenable to vectorization using single-instruction multiple data (SIMD) operations,
while trees are not. Applying a fern operation to several examples at the same time
(i.e., vectorizing the loop over p in Algorithm 1) is straightforward. Doing so for
a tree is likely to be extremely inefficient since each example requires a different
sequence of memory accesses, and gathering such scattered data cannot be done in
parallel in an SIMD framework. In Sect. 13.4.1.4, we further discuss the differences
of ferns and random forest, in terms of classification time and memory.

13.3.3 Discriminative Training

The DFE classifier f (I ; τ) is given in Eq. (13.5), and we would like to learn the
parameters τ = {W m, Bm, Am}M

m=1 from a labeled training set {(I i , yi )}N
i=1. Unlike

prior work on ferns, e.g., [24], we turn to a discriminative rather than a generative for-
mulation. In particular, we pose the problem as regularized hinge-loss minimization,
similar to standard SVM:

min
τ

1

2
∩W∩2 + C

N∑

i=1

[
1 − yi f

(
I i ; τ

)]

+ (13.6)

where [·]+ indicates the hinge loss, i.e., [z]+ = max{z, 0}. Rewriting Eq. (13.4) with
explicit parameter and image dependence one gets

f (I ; τ) =
∑

m,b

wm
b Hm (

b, I ; Bm, Am)
(13.7)



13 Learning Fast Hand Pose Recognition 275

We can see that f is linear in W , so optimizing (13.6) w.r.t W for fixed
{Bm, Am}M

m=1 is a standard SVM optimization. However, optimizing for the lat-
ter parameters is challenging, specifically since they are to be chosen from a large
discrete set of possibilities. Hence, we turn to an agglomerative approach in which
we greedily add ferns one at the time. As can be seen from Eq. (13.5), adding a
single fern amounts to an addition of 2K new features to the classifier. In order to do
that in an sensible manner, we extend known results for the case of a single feature
addition [2, 4].

Let f (I ) = ∑L−1
l=1 wl xl(I ) be a linear classifier optimized with SVM and

L( f, {Ii , yi }N
i=1) the hinge loss obtained for it (Eq. 13.6) over a training set. Assume

we add a single feature x L to this classifier f new(I ) = f old(I ) + wL x L(I ), with
small |wL | ∅ κ. Theorem 1 in [2] gives a linear approximation of the loss under these
conditions:

L
(

f new) = L
(

f old
)

− wL

N∑

i=1

φi yi x L
i + O

(
w2

L

)
(13.8)

where φi are the example weights obtained as a solution to the dual SVM problem.
The weights φi ∈ [0, C] are only nonzero for support vectors. For a candidate
feature xL , the approximated loss (13.8) is best reduced by choosing wL = κ ·
sign(

∑N
i=1 φi yi x L

i ), and the reduction obtained is R(xL)
π= | ∑N

i=1 φi yi x L
i |. The PFS

algorithm [2] is based on training SVM using a small number of features, followed
by computing the score R(x) for a large number of unseen features; this allows one to
add/replace existing features with promising feature candidates. Note that the score
R(x) of a feature column x can be seen as the correlation RZ (x) = x · Z , where
Z = (z1, . . . , zn) with zi = yiφi is the vector of signed example weights.

Here, we extend the aforementioned idea to a set of features, as introduced by a
single fern. Assume we have trained an SVM classifier over a fern ensemble f M−1(I )
with M − 1 ferns, and we now wish to extend to an additional fern. Assume further
that the new weight vector is small with ||wm ||∪ ∅ κ. Then, we have

f M (I ) = f M−1(I ) + κ
∑

b∈{0,1}K

wm
b Hm(b, I ) (13.9)

with |wm
b | ∅ 1 for all b. Treating the new fern contribution as a single feature, we

can apply the theorem stated above and get

L
(

f M (I )
)

∃ L
(

f M−1
)

− κ

N∑

i=1

φi yi

∑

b∈{0,1}K

wm
b Hm(b, Ii )

= L
(

f M−1
)

− κ
∑

b∈{0,1}K

wm
b

N∑

i=1

φi yi Hm(b, Ii ) (13.10)



276 E. Krupka et al.

Algorithm 2 Ferns Ensemble: Training

Input: A labeled Training set {Ii , yi }N
i=1

Parameters M, K , C, Nc, {Am}M
m=1

Output: A classifier (Bm , Am , W m)M
m=1, threshold t

Initialization: Z [i] = 1/|{Ii |yi = 1}| if yi = 1,
Z [i] = −1/|{Ii |yi = −1}| if yi = −1

For m = 1, .., M
For k = 1, .., K

For c = 1, ..Nc
Sample a candidate column ωm

k,c ∈ R|N (p)|
For i = 1, .., N

Compute Hm(b, Ii , c) = Hm(b, Ii ; Bm
c )

with Bm
c = [ωm

1 , .., ωm
k−1, ω

m
k,c]

For b ∈ {0, 1}K

Compute RZ (c) = ∑
b∈{0,1}K RZ (Hm(b; ωm

k,c))

Choose winning candidate c∝ = argmaxc R(c),
and set ωm

k = ωm
k,c∝

Train an SVM with m2K features W · [H1, .., Hm ] − t
Set Z [i] = yi φi for i = 1, .., N with φi SVM dual variables

Set {W m}M
m=1, t based on the last SVM training.

Return (Bm , Am , W m)M
m=1, threshold t .

where the approximation in the first equation is due to omission of O(κ2) terms.
If we wish to minimize the approximated loss, the optimal choice for wm

b is wm
b =

sign(
∑N

i=1 φi yi Hm
t (b, Ii )), in an analogous way to the single feature case. With

these wm
b , we get

L
(

f M (I )
)

∃ L
(

f M−1
)

− κ
∑

b∈{0,1}K

R
(
Hm(b)

)
(13.11)

This result is an intuitive extension of Theorem 1 in [2] for the case of multiple
feature addition.

Our algorithm for fern ensemble growing is based on iterating between SVM
training and building the next fern based on Eq. (13.11). This procedure is described
more precisely in Algorithm 2. At each fern addition step, we use an SVM classifier
trained on the previous ferns to get signed example weights, in a manner similar to
boosting. The ensemble score

∑
b∈{0,1}K RZ (Hm(b)) is used to grow the fern bit by

bit in a greedy fashion. At each bit addition stage, we randomly select Nc candidates
for the mask ωm

k , termed ωm
k,c; each candidate is chosen by randomly drawing the two

pixels needed for the comparison. The winning bit is chosen as the one producing the
highest ensemble score. We currently do not optimize the integration area variables
{Am}M

m=1, but we experiment with several choices in Sect. 13.4.
The algorithm is presented for a single binary problem, but is easily extended to

training of several classes with shared Am, Bm and separate W m . In the simplest
alternative independent SVMs are trained, one for each class of interest. During



13 Learning Fast Hand Pose Recognition 277

optimization, all the SVMs are trained at each fern addition, and R(c) scores of all
of them are summed to make the bit choice. Due to the sharing of the same fern-
based features, running time scales sublinearly in the number of classes. However,
memory and training time are linear in the number of classes. For a large number
of classes, error-correcting output codes [8] (ECOC) can be used to decrease the
number of SVM classifiers trained, and enable a logarithmic scaling of training time
and memory in the number of classes. In Sect. 13.4.2, we present experiments with
this approach, showing that it enables economic classifiers with enhanced accuracy.

13.4 Empirical Results

The method described in this paper was developed, tested, and compared to
alternatives on a very large data set for hand shape recognition. The task was dis-
crimination between 3 hand state classes, and the resulting classifier was shipped as
part of the Microsoft Xbox-1 console in early 2014. We describe these experiments
in Sect. 13.4.1. In Sect. 13.4.2, we describe experiments conducted on a synthetically
generated data set of 81 hand state classes. Scalability to a large number of classes
is obtained by fern sharing and utilizing an error-correcting output codes (ECOC)
approach.

13.4.1 Real Data Experiments

We describe the data set used in Sect. 13.4.1.1 and the method’s implementation
details in Sect. 13.4.1.2. The impact of the main ingredients and parameters of the
method is tested in Sect. 13.4.1.3. We compare the accuracy–speed trade-off enabled
by the proposed method and various competing techniques in Sect. 13.4.1.4. We
conclude by showing the trade-offs between accuracy, classification time, training
sample size, and memory in Sect. 13.4.1.5.

13.4.1.1 Data Set

The task we consider is to recognize three different hand shapes and to discriminate
between them and other undefined hand states. The recognition results are used as
part of a NUI interface. The shapes are termed ‘open,’ ‘closed,’ ‘lasso,’ and ‘other,’
as shown in Fig. 13.2. The class ’other’ includes a large variation in hand poses,
including hands holding objects. Hand detection is achieved by tracking the skeleton
in a sequence of depth+IR images, using methods based on [25].

The images used for recognition are cropped around the extracted hand position,
rotated, and scaled to two 36 × 36 images of the depth and IR channels. A simple
preprocessing rejects IR and depth pixels where the depth is clearly far beyond the



278 E. Krupka et al.

Fig. 13.2 Examples of hand images from our data set. The left columns contain examples of ‘open,’
‘closed,’ and ‘lasso,’ respectively. The two right columns contain examples of the complement class
‘other’

hand, thereby removing some of the background. The alignment and rotation of the
hand are based on estimated wrist position and is sometimes inaccurate, making the
recognition task harder.

A dataset of 519,000 images was collected and labeled from video sequences of
different people. Images have considerable variability in terms of viewpoints, hand
poses, distances, and imaging conditions. The images were taken at distances of up to
∧4 m from the camera, where the quality of image drops, and the depth measurement
of fingers may be missing. Data were divided into training and test sets with 420,000
and 99,000 images, respectively, such that persons from the training set do not appear
in test images and vice versa. The data were collected to give over-representation to
hard cases. Given the properties of data, the goal was to achieve 2–5 % false-negative
rate, at a false-positive rate of 2 %. Since the test data are hard, the error rate in real
usage scenarios is expected to be much lower.

13.4.1.2 Implementation Details

In our experiments, we tested the number of bits per fern K in the range of [3,
18] and the number of ferns M in [6, 768]. At each bit addition step Nc = 40, pixel
comparison features were randomly generated for evaluation. The spatial aggregation
area of the fern Am was randomly chosen to be one of the 4 standard quadrants of the
image patch, and the neighborhood N (p) is 17 × 17 pixels. We have experimented
with limiting the aggregation area Am further by imposing a virtual checkerboard



13 Learning Fast Hand Pose Recognition 279

on the quadrant pixels: for odd bit indices, features are only computed for ‘white’
pixels, and for even indices, features are computed only for ‘black’ ones. This policy
was found to be useful in terms of accuracy–speed trade-offs.

We have used the LibLinear package [14] for sparse SVM training of our models.
The classifier was implemented in C and running times are reported on Intel core
i7, 2.6 GHz CPU, using a single thread. Computation time is reported for a single
image in milliseconds, without usage of SIMD optimizations. Accuracy of a single
binary classifier, i.e., one hand pose versus all, is computed as the false-negative
error rate at the working point providing a false-positive (FP) rate of 2 %. Accuracy
figures reported here are averaged over the three classes. We selected this approach
rather than multi-class error rate, as in each specific NUI usage context, the three
classification scores are combined in a different way.

13.4.1.3 Parameters and Variations

Success and failure examples of the DFE classifier can be seen at Fig. 13.3.
We now concentrate on understanding the contribution to performance of algorithm
components.

Complexity of layers 1: At the first layer, we encode patches into codeword indices,
and its complexity is controlled by the number of bits K used for the encoding. In
Fig. 13.4 (Left), the classifier accuracy is plotted as a function of K for fixed M = 50.
Based on this graph, we select the value of K = 13 in our subsequent experiments,
as it is the minimal value which yet provide close to optimal accuracy.

Complexity of layers 2: At the second, spatial aggregation layer, complexity is
controlled by several algorithmic choices. First, we can use multiple aggregation
areas, or a single aggregation area containing the whole image for all ferns. Second,
we can use or avoid using the checkerboard technique for computational saving.
Results are reported in Fig. 13.5 (left). Baseline DFE uses M = 50 ferns with

Fig. 13.3 Successes and failures of the DFE classifier: Pairs of depth+IR images are presented,
where the top row shows the IR images and the bottom the depth images in every pair. The three
pairs on the left show successfully classified pairs for the three hand shape classes considered (open,
closed, lasso). The pairs on the right show misclassification errors (false negatives)



280 E. Krupka et al.

Fig. 13.4 DFE complexity parameters. Left False-negative rate of the DFE (at false-positive
rate = 0.02 as a function of K , the number of bits. Right False-negative rate as a function of M , the
number of ferns, for several training procedures. DFE is our baseline variation. For both SVM.Indep
and SVM.Rand, SVM is used as final classifier. For SVM.Indep, the bits are selected using R(c)
score, but without PFS weight update, i.e., using initial Z [i] for all ferns (see Algorithm 2). For
SVM.Rand, bits are randomly selected. NB.Boosted is Naive Bayes with fern boosting and entropy-
gain bit choice

Pipe variation % FN @ FP=2%

Baseline DFE 2.18
Single aggregation area 3.15
No checkerboard sampling 2.42
Naive Bayes + Boosting 3.87
Naive Bayes, MI bits 35.9
Naive Bayes, Rand bits 47.6
Only Depth 4.65
Only IR 5.23

Fig. 13.5 Comparison to alternatives. Left Error for several DFE and Ferns algorithm variations.
See text for explanation. Right Best results of false-negative rate under constraint of classification
CPU time for various methods and parameters for each method. For DFE, we modified values of
M, K . For random forest [17], the points shown are for one and two trees of depth 21. Fast SIFT
can achieve accuracy comparable to DFE, but at cost of more than ×100 classification time

quadrant ferns, checkerboard policy. The number of ferns used in the conditions
‘single area’ and ‘no checkerboard’ is reduced by a factor 4 and 2 to get classifiers
with approximately the same speed as the baseline. The results show the advantage
of baseline DFE over alternatives, hence led to its definition as ‘baseline.’

Complexity of layer 3, optimization policy: Figure 13.5 (left) shows the accuracy
for several ensemble training strategies. The simpler alternatives uses Naive Bayes,
where the leaf weights are based on class posterior probabilities [6, 24]. The ferns
are trained independently, with bits chosen at random (Naive Bayes, Rand bits) or
by maximization of information gain (Naive Bayes, MI). For these alternatives, the
false-negative rate is high. 2 Also, further increasing of the number ferns does not help

2 Note that FN is measured at false-positive rate of 2 %. Hence, FN near 50 % is far better than
random. At FP = 10 % the false-negative rates of Naive Bayes MI bits and Rand bits drops to 11
and 18 %, respectively.



13 Learning Fast Hand Pose Recognition 281

as much as in the DFE or boosting framework, as the ferns are learned independently.
Another alternative is training complementary ferns by boosting, with bits chosen to
maximize the information gain on the boosting-reweighted sample (Naive Bayes +
Boosting). This significantly improves accuracy relative to MI and random selection,
but is still less accurate than DFE. Figure 13.4 (right) shows the effect of number of
ferns, M , on the false-negative rate for selected methods.

From the above results, we can conclude that using discriminative (SVM)
approach for both the final classifier and selecting of the fern bits significantly
improves accuracy.

The table in Fig. 13.5 also shows that IR and depth are not redundant, and using
both of them significantly improves accuracy relative to using only one of them.

13.4.1.4 Speed–Accuracy Trade-Off Comparison

We have compared the fern ensemble method to several alternative architectures,
which also have an emphasis on a good speed-accuracy trade-off. The methods
compared are:

• Random forest applied to pixel comparisons as suggested by [17]
• A 3-stages pipeline: (a) Fast dense SIFT features computation using the VLFeat

library [28]. (b) Encoding into a bag of features using a random forest dictio-
nary [23]. (c) SVM classification with a linear approximation of the histogram
intersection kernel, according to [29]. We also tried the same pipeline, but replac-
ing the fast SIFT with dense Daisy features [30].

All the methods were implemented in C/C++, using the original author’s code when
possible. They were chosen for comparison as each of them was developed with the
aim of obtaining a good balance of speed and accuracy. Multiple working points
were tested for each of these methods, representing various optimization for speed
and accuracy. For the fast SIFT method, shifting between speed and accuracy was
done by changing the stride parameter, controlling the density of the SIFT greed.
For the Daisy, we also choose the Daisy complexity to optimize speed/accuracy, as
recommended in [30].

The CPU time (accuracy) of the best working points obtained by each of the
algorithms, including DFE, is plotted together in Fig. 13.6 (left). We see that random
forest can achieve similar classification time to that of DFE, but is significantly less
accurate (FN = 10.6 % vs. FN = 2 % for DFE, for the same CPU budget). Consistent
with [17], we found that the best accuracy is achieved by training on a small number
of deep trees, with little improvement when increasing the number of trees. This
leaves us with less flexibility on controlling the trade-off between accuracy and
classification time. There are several reasons why using 50 ferns DFE is about as
fast as using two trees. First, each fern operates on relatively small number of pixels
(50), which is only ∧4 % of the image. Second, calculating the ferns bits requires
less operations than forest with the same depth, as discussed in Sect. 13.3.2. Third,
the number of bit per fern is 13, while the depth of tree is 21. Also, the memory size



282 E. Krupka et al.

Fig. 13.6 Middle Accuracy obtained by DFE as a function of training sample size. X-axis is the
fraction of training set size relative to the full set (420,000 images). Right The classification CPU
time, as a function of training sample size. This is measured for several target false-negative rates
(for a fixed FP = 2 %)

of the forest is in order of 80 MB versus 2.5 MB of ferns. Since 80 MB cannot fit
into the cache, we pay with more cache misses.

The accuracy of with fast SIFT and Daisy alternatives can approach the accuracy
of the DFE. However, their classification time is two order of magnitudes longer.
By optimize them for speed, we significantly loose accuracy without getting to the
target classification time.

In the next section, we show that in addition to high accuracy and fast classification,
DFE approach enables significant flexibility for various trade-offs of speed, accuracy,
memory size and generalization from various sizes of training set.

13.4.1.5 Training Sample Size and Memory

As discussed before, the fern ensemble architecture trades speed and accuracy for
sample size and memory. For each training set size, constraints on memory, and
classification time, we optimize accuracy by tuning M and K . In this section, we
show that increasing the training set size enables us not only to improve accuracy,
but also to significantly reduce the classification time.

Figure 13.6 (middle) shows the effect of increasing the training set size on FN,
for fixed M and K . We modify the training set size we used from ∧0.2 % of the full
set (820 images) to the full training set (420,000 images). The subset of training set
is selected randomly. As expected, the false-negative rate reduces with increase of
training set size.

In our problem, however, even with a training set size of ∧30,000 samples (0.07
in X-axis of Fig. 13.6), the accuracy we got met minimum requirements for the prod-
uct. However, even after full code optimization, the classification time significantly
exceeded the target budget. The question is if we can reduce classification time by
increasing the training set size and modifying M and K .

Figure 13.6 (right) shows the classification time as a function of the of training
set size, relative to the full set, for various target false-negative rates. We can see
that for a fixed target accuracy, the classification time can be reduced by an order of



13 Learning Fast Hand Pose Recognition 283

Table 13.1 Accuracy obtained by DFE under memory limits

LUT entries Ferns # (M) Bits # (K ) % FN @ FP = 2 %

768 48 4 10.7

1536 96 4 7.78

3072 96 5 6.07

6144 192 5 5.42

12288 384 5 4.21

24576 384 6 2.97

49152 768 6 2.32

LUT entries is the total number of entries in all the lookup tables (ferns) together, which is 2K M . In
our implementation, each LUT entry requires 6 bytes—two bytes per class, representing the SVM
weights

magnitude, if we increase the training set size by an order of magnitude. In general,
as training set size increases, we slightly increase K and significantly reduce M to
achieve same target accuracy with lower classification time. This can be explained
by the effect of K on the capacity of each fern and hence should be adapted to the
training set size. On the other hands, the accuracy can be improved by increasing
M , but at a significant cost of classification time. These results are significant for
building practical systems. While it is well known that increasing training set size
enables improvement in accuracy, here, we show that it can also reduce classification
time significantly.

Finally, we show the trade-off between memory and accuracy. Table 13.1 presents
false-negative rate versus memory consumption for a fern ensemble. Memory con-
sumption can be reduced by lowering either M or K , and in the table, we chose
the optimal M, K parameters for each memory limit point. From the table, we can
see adding a memory constraint leads to significant reduction in the number of bits
per fern and increasing the number of ferns. The result is very different from the
case of optimizing for classification time, where optimal number of bits is high. This
is not surprising, as the memory size increases exponentially with number of bits,
but classification time increases only linearly. The result classification time is about
5–10 larger when we optimize for memory instead of for speed. Note, however, that
in our baseline implementation, with 50 ferns and 13 bits, the memory size is about
2.5 MB, which still fits into the cache.

13.4.2 Class Scalability Experiments

In this section, we show how a DFE can efficiently scale up to a large number of
classes, while maintaining its beneficial accuracy and speed characteristics. Experi-
ments are done using a synthetically generated dataset of 81 classes.



284 E. Krupka et al.

10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60
10 20 30 40 50 60

10

20

30

40

50

60

Fig. 13.7 Synthetic data for 81 classes. Hand state classes were generated by varying 4 indepen-
dent variables: hand bend angle, twist angle, side angle, and pose. Left Column The bend angle was
sampled uniformly in [−30, 90] degrees, with 0 corresponding to a vertical hand. The range was
split into 3 equal partitions to get the bend label of 1, 2 or 3, examples of which are given at rows
1, 2, 3, respectively. Second column The twist angle was sampled uniformly in [−60, 60] degrees.
Like the bend angle, it was quantized uniformly into 3 classes. Third column The side angle was
sampled uniformly in [−45, 45] degrees and quantized into 3 classes. Right Column 3 basic finger
poses were considered: flat (top), half open (middle), and open (bottom). Independent finger noise
was added to each finger’s open/close parameter. The class label was set as a Cartesian product of
the 4 base labels

13.4.2.1 Dataset and Parameters

We used POSER, a commercially available software package, for generating a dataset
of hand pose depth images. A dataset of 62,317 examples was generated and ran-
domly split into 37,390 training samples and 24,927 test samples. Data variance was
controlled by varying 4 independent parameters of hand generation: the 3 rotation
angles and the basic hand pose. Figure 13.7 shows examples from the dataset and
explains its 4 dimensions of variability, as well as the labels that were given to the
images. The 3 rotation angles (bend, twist and side) were uniformly sampled in
ranges covering the viewing sphere of a frontal hand. The pose was generated by
choosing a base pose from the set (flat hand, half-open hand, open hand) and adding
a small amount of noise to the bend parameter of each finger independently. Each
of the 4 dimensions was quantized into 3 different classes, and the final label is the
combination of the 4 single-dimension labels.

The data included only depth images, 8 bits per pixel, and no attempt was made to
synthesize IR images. In each image, the hand bounding box was found (the tightest



13 Learning Fast Hand Pose Recognition 285

box containing all nonzero pixels), and the hand box was rescaled to 64 × 64 pixels
images, which are the input of the DFE.

Preliminary experiments were done with 1/4 of the training set in order to choose
DFE parameters and configuration. According to these experiments, we chose the
pixel neighborhood N (p) to be a large 32 × 32 patch. The integration area Am was
set to the internal 32 × 32 square of the 64 × 64 image. Checkerboard sampling was
applied, but the use of quadrant ferns was not found to be superior; thus, we use
the same integration area for all the ferns. The optimal number of bits was found to
be 14.

13.4.2.2 Experiments

We have experimented with two variants of M-classification. The first is the basic
one-vs-all, in which 81 SVMs are trained, one per class. As mentioned in Sect. 13.3.3,
fern bits are chosen to optimize the sum of the gradient scores R(c) of all the classes.
A second alternative we tried was to solve for each of the label dimensions indepen-
dently, i.e., we built 4 classifiers predicting the pose, bend angle, twist angle, and
side angle of the hand. Each of these 4 classifiers, in turn, is composed of 3 one-vs-all
SVMs, trained to separate one cell of the partition from the other 2 cells. Overall, in
this approach, only 12 SVMs are trained, and the final label is determined based on
the product code of the predicted 4 aspect labels.

Figure 13.8 (right) shows the multi-class accuracy obtained by both methods as a
function of the number of ferns used. Both methods go beyond 80 %, which is quite
high considering the large number of classes and the lack of margin in the boundaries
between classes. Interestingly, the product code DFE, training only 12 classifiers,
achieves higher accuracy than the one-versus-all version when the number of ferns is
large (>10). Hence, in this domain, this version dominates the one-versus-all version
in all respects, as it also provides higher speed in test and training, and requires less
memory.

Method Accuracy (%) Speed (ms) Memory (MB)
DFE 12SVM, 100 Ferns 84.5 4.87 38.5
DFE 81SVM, 100 Ferns 81.7 14.54 260
Forest 4Trees, D=18 70.3 12.62 179
Forest 1Tree, D=18 70.0 4.06 44
DFE 12SVM, 10 Ferns 80.0 0.52 3.9

100 101 102
45

50

55

60

65

70

75

80

85

Number of ferns/trees

M
ul

ti 
cl

as
s 

A
cc

ur
ac

y

DFE 12C
DFE 81C
Forest D=14
Forest D=18

Fig. 13.8 Results for 81 classes. Left Multi-class accuracy, classifier speed, and model memory
foot print of several hand classifiers. Right Accuracy as a function of the number of ferns/trees for
DFE and Random forest classifiers



286 E. Krupka et al.

For comparison, we plot the accuracy obtained by a generatively trained forest,
using code from [17]. When trees of depth 14 are used (matching our 14-bit ferns),
performance is significantly inferior. The forest does better when its depth is not
limited, and in this case, its maximal depth, limited by the dataset size, is 18. Forests
of depth 18 are able to achieve 70 % accuracy, but their memory footprint is very
large and becomes prohibitive for more than a few trees. We have experimented
with up to 4 trees in this setting, and it seems that accuracy hardly improve with the
number of trees.

In Table 13.1 (left), we compare the results obtained by the two DFE versions to
the best results obtained by a classification forest [17] in terms of accuracy, speed,
and memory. It can be seen that DFEs provide superior performance in each of the
relevant measurements.

13.5 Conclusions and Further Work

We have seen that the discriminative fern ensemble framework enables significant
push of the accuracy–speed envelope for visual recognition in IR+depth images.
Thin, efficient architecture, and discriminative optimization were found important
for this purpose. The method was shown to be scalable in the number of classes,
thanks to feature sharing among classifiers and an ECOC methodology. In terms of
architecture, it would be interesting to extend the table-based approach to deeper
models with more table layers. Another interesting direction is to explore the trade-
off between classification time and training sample size for other algorithms and
analyze this trade-off theoretically.

References

1. Bar-Hillel A, Hanukaev D, Levi D (2011) Fusing visual and range imaging for object class
recognition. In: IEEE international conference on computer vision (ICCV) 2011

2. Bar-Hillel A, Levi D, Krupka E, Goldberg C (2010) Part-based feature synthesis for human
detection. In: Computer vision-ECCV 2010

3. Benenson R, Mathias M, Timofte R, Gool LJV (2012) Pedestrian detection at 100 frames per
second. In: IEEE conference on computer vision and pattern recognition (CVPR) 2012

4. Bi J, Zhang T, Bennett K (2004) Column-generation boosting methods for mixture of kernels.
In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD) 2004

5. Bo L, Lai K, Ren X, Fox D (2011) Object recognition with hierarchical kernel descriptors, In:
IEEE conference on computer vision and pattern recognition (CVPR) 2011

6. Bosch A, Zisserman A, Muñoz X (2007) Image classification using random forests and ferns.
In: IEEE international conference on computer vision (ICCV), pp 1–8

7. Dean T, Ruzon M, Segal M, Shlens J, Vijayanarasimhan S, Yagnik J (2013) Fast, accurate
detection of 100,000 object classes on a single machine. In: Proceedings of IEEE conference
on computer vision and pattern recognition, Washington, DC, USA, 2013



13 Learning Fast Hand Pose Recognition 287

8. Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output
codes. J Artif Intell Res 2(1):263–286

9. Dietterich TG, Fisher D (2000) An experimental comparison of three methods for constructing
ensembles of decision trees. Mach Learn, 139–157

10. Doliotis P, Athitsos V, Kosmopoulos DI, Perantonis SJ (2012) Hand shape and 3d pose esti-
mation using depth data from a single cluttered frame. In: ISVC 2012

11. Dollár P, Belongie S, Perona P (2010) The fastest pedestrian detector in the west. BMVC, UK
12. Dollár P, Tu Z, Perona P, Belongie S (2009) Integral channel features. BMVC, UK
13. Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly X (2007) Vision-based hand pose estima-

tion: a review. Comput Vis Image Underst 108(1–2):52–73
14. Fan R, Chang K, Hsieh C, Wang X, Lin C (2008) Liblinear: a library for large linear classifi-

cation. J Mach Learn Res 9:1871–1874
15. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor:

a review. In: IEEE transactions on cybernetics 2013
16. Keskin C, Kirac F, Kara Y, Akarun L (2011) Real-time hand pose estimation using depth

sensors. In: IEEE international conference on computer vision (ICCV) 2011
17. Keskin C, Kirac F, Kara YE, Akarun L (2012) Hand pose estimation and hand shape classifi-

cation using multi-layered randomized decision forests. In: Computer vision-ECCV 2012
18. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching

for recognizing natural scene categories. In: IEEE Computer Society conference on computer
vision and pattern recognition (CVPR) 2006

19. Levi D, Silberstein S, Bar-Hillel A (2013) Fast multiple-part based object detection using
kd-ferns. In: IEEE Computer Society conference on computer vision and pattern recognition
(CVPR)

20. Liu L, Shao L (2013) Learning discriminative representations from RGB-D video data. In:
Proceedings of the twenty-third international joint conference on artificial Intelligence (IJCAI)
2013

21. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis
60(2):91–110

22. Mason L, Baxter J, Bartlett P, Frean M (2000) Boosting algorithms as gradient descent. NIPS
23. Moosmann F, Triggs B, Jurie F (2007) Fast discriminative visual codebooks using randomized

clustering forests. Adv Neural Inf Process Syst
24. Ozuysal M, Calonder M, Lepetit V, Fua P (2010) Fast keypoint recognition using random ferns.

IEEE Trans Pattern Anal Mach Intell 32(3):448–461
25. Shotton J, Sharp T, Kipman A, Fitzgibbon AW, Finocchio M, Blake A, Cook M, Moore R

(2013) Real-time human pose recognition in parts from single depth images. Commun ACM
56(1):116–124

26. Tang D, Yu T, Kim T-K (2013) Real-time articulated hand pose estimation using semi-
supervised transductive regression forests. In: International conference on computer vision
(ICCV) 2013

27. Tola E, Lepetit V, Fua P (2008) A Fast Local Descriptor for Dense Matching. In: IEEE confer-
ence on computer vision and pattern recognition (CVPR) 2008

28. Vedaldi A, Fulkerson B (2008) VLFeat: an open and portable library of computer vision
algorithms. http://www.vlfeat.org/

29. Vedaldi A, Zisserman A (2011) Efficient additive kernels via explicit feature maps. Pattern
Anal Mach Intell 34(3)

30. Winder S, Hua G, Brown M (2009) Picking the best daisy. In: IEEE conference on computer
vision and pattern recognition (CVPR)

http://www.vlfeat.org/


Chapter 14
Real-Time Hand Gesture Recognition
Using RGB-D Sensor

Yuan Yao, Fan Zhang and Yun Fu

Abstract RGB-D sensor-based gesture recognition is one of the most effective
techniques for human–computer interaction (HCI). In this chapter, we propose a
new hand motion capture procedure for establishing the real gesture data set. A hand
partition scheme is designed for color-based semi-automatic labeling. This method
is integrated into a vision-based hand gesture recognition framework for developing
desktop applications. We use the Kinect sensor to achieve more reliable and accurate
tracking in the desktop environment. Moreover, a hand contour model is proposed
to simplify the gesture matching process, which can reduce the computational com-
plexity of gesture matching. This framework allows tracking hand gestures in 3D
space and matching gestures with simple contour model and thus supports complex
real-time interactions. The experimental evaluations and a real-world demo of hand
gesture interaction demonstrate the effectiveness of this framework.

Y. Yao (B)

School of Mechatronic Engineering and Automation, Shanghai University,
408a HD Building, 99 Shangda Road, Shanghai 200444, China
e-mail: yaoyuan@shu.edu.cn

F. Zhang
Department of Information Science and Electrical Engineering,
Institute of Electronic Circuits and Information Systems, Zhejiang University, Room 603,
Administration Building, 38 Zheda Road, Hangzhou 310027, Zhejiang, China
e-mail: fanzhang@zju.edu.cn

Y. Fu
Department of Electrical and Computer Engineering, College of Engineering, Northeastern
University, 403 Dana Research Center, 360 Huntington Avenue, Boston, MA 02115, USA
e-mail: yunfu@ece.neu.edu

Y. Fu
College of Computer and Information Science (Affiliated), Northeastern University, 403 Dana
Research Center, 360 Huntington Avenue, Boston, MA 02115, USA

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4_14

289



290 Y. Yao et al.

14.1 Introduction

Human–computer interaction (HCI) is an important driving force for computer vision
and pattern classification fields. With the development of mobile devices and sensors,
hand gestures have become a popular way to interact with tablet PC, smart phones,
and personal computers. This trend is not only occurring on the two-dimensional
screen, but also happens in the 3D world. However, color images cannot provide
enough information for tracking hands in three-dimensional space because much of
the spatial position information has to be inferred and this leads to multiple 2D–3D
mappings. New sensors, such as Kinect, Xtion, and Leap Motion, can provide the abil-
ity to monitor 3D motions, thus make it simple to build systems for human computer
interaction via 3D hand movements. This technological progress is very important
for applications in the domain of the arts [1], computer gaming [2], computer-aided
design [3], and remote control for robots [4]. Combining RGB and depth data will
reduce the complexity of target tracking in complicated environments. In addition,
the depth information can be utilized to avoid ambiguous mappings between images
and hand poses, and generate gestures with clear semantics. In the future, we can
expect more devices with built-in depth sensors.

Many hand gesture recognition methods are based on the body of work related to
body pose estimation [5]. The state of the art of body estimation techniques began to
make use of depth sensors to track human body parts [6, 7]. In recent research, simple
pixel features [8] and patches [9] were used as input. They use a random decision
forest to recognize different body parts and the orientations of a head, respectively.
These methods can be used directly in hand gesture recognition. However, classifiers
in these methods must be trained on a large dataset because the recognition process is
sensitive to appearance variations of the target shape and backgrounds. Such dataset
containing large variations is often hard to achieve.

For those applications using finger movements, accuracy is the primary consid-
eration. It requires the hand to move in a constrained desktop environment and be
close to the camera. In environments where the hand is close to the background,
segmenting that hand becomes difficult as the background features can be mistaken
for the hand and vice versa. In addition, the shape of the hand and the possible hand
motions are more complex than those found in the rest of the human body. These
problems make it difficult to apply the assumptions made by previous research on
body pose estimation.

There are two main challenges in developing hand gesture-based systems at
present. The first is how to locate the naked hand and reconstruct the hand pose
from raw data. There has been much investigation into hand tracking, hand pose
estimation, and gesture recognition. Erol et al. [5] summarized the difficulties faced
by these efforts. From the perspective of application development, we summarize
the hand tracking, hand pose estimation, and gesture recognition into a single chal-
lenge of reconstructing the hand pose from raw data. The second is how to repre-
sent the hand model, so that the hand gesture database can be efficiently acquired,
and corresponding indexing and searching strategies can be designed to satisfy the



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 291

real-time hand gesture recognition requirements. Hand models are important for
training and recognition accuracy. However, collecting the labeled data required for
training is difficult.

We propose a new framework to solve the aforementioned problems. Firstly, we
segment a hand into different parts and use a 3D contour model to represent the hand
pose configuration. Then, a feature fusion technique [10] is used to unify color and
depth information for accurate hand localization. We use a pixel classifier to recognize
the different parts of a hand. In order to reduce the workload of establishing real
training data, we develop a semi-automatic labeling procedure, which uses both RGB
data and depth data to label colored hand patches. Finally, we generate the 3D contour
model from the classified pixels. Instead of matching between images, the 3D contour
model can be coded into strings. Therefore, the correspondence sample gesture can
be found by the nearest neighbor method. Using this framework, we develop a hand
gesture-controlled desktop application. Experiments show that gesture matching can
speed up efficiently to satisfy real-time recognition requirements.

14.2 Related Work

Over the past decades, many hand gesture-based interaction prototyping systems
have been developed. Ali et al. [5] reviewed some of this work. From a technical point
of view, the methodologies of pose estimation used in these systems can be roughly
divided into model-based generative methods [11], regression-based methods [12],
classification-based methods, and examplar-based methods [13].

Most of these methods do not focus on detecting hands. Some of them directly
use marker-based motion capture devices, such as a glove fixed with LEDs [14],
gloves with colored patterns [15], and data glove [16] to capture the motion of
palms and fingers. The accuracy of these systems is determined by the hardware,
which is less susceptible to interference from the environment. The shortage is that
hardware configurations for these systems are often expensive, inconvenient, and
uncomfortable, which make them difficult to use outside the laboratory environment.

People are most likely to adapt to tools for HCI that are less cumbersome. There
has been a growing interest in the bare-hand-based gesture-controlled system. Dif-
ferent methods have been developed to build the interactive systems. The essential
techniques are varying in these works, but the processing steps are similar, which con-
sists of hand detection and pose estimation. Therefore, we organized them into two
main categories, hand tracking and hand pose estimation, and are mainly concerned
about the methods that use RGB-D sensors.

14.2.1 Hand Localization and Tracking

Segmenting a hand from a cluttered background and tracking it steadily and robustly
is a challenging task. The skin color [17] and background subtraction [18] techniques



292 Y. Yao et al.

are the preferred methods for detecting the image regions containing hands. These
types of methods, however, make a number of assumptions, e.g., hand is the only
active object in the camera scene; otherwise, complex classification methods must
be used. Low-level features-based classification methods [19], histogram [20, 21],
multi-scale model [22], and motion cues [23] are employed to overcome this problem.
Guo et al. [24] presented a method that combines the pixel-based hierarchical feature
for AdaBoosting, skin color detection, and codebook foreground detection model to
track the dynamic or static hand under changing backgrounds.

In order to improve the robustness and reduce the computation time, current
methods combine the ability of a depth camera with RGB information to extract hand
regions from multiple candidate regions based on volume bounding box [25], scale
[20], pixel probability [26], feature probability [10] and the distance to the camera.
Paul et al. [27] have given a comparison on depth image-based hand extraction and
RGB image-based hand extraction.

In some relatively early research works, depth data are usually used independently
to locate hands. David and Zahoor [28] detected local peaks from low-resolution
depth images, which are used as potential hand centers, and a palm radius is used
to segment the hand from wrist and arm. Paul et al. [29] used a minimum enclosing
ellipsoid to extract the major arm axis. In the perpendicular direction, the local
minimum of blob width can be used to segment the hand region from an arm. Depth-
based methods are fast. However, the segmentation accuracy is dependent on the
method of body pose estimation. Therefore, skin color map is computed to determine
which regions of the depth image should be selected [30]. In a recent review article,
Han et al. [31] gave a more detailed description on this topic, which covered the
depth data preprocessing, object tracking and recognition, human activity analysis,
and hand gesture analysis.

14.2.2 Hand Pose Estimation

In hand pose estimation, there are a number of methods developed to find a rela-
tionship between 2D hand shape and hand posture [32]. What we called the “hand
posture” is commonly defined by an articulated model along with joint angles and the
orientation of the palm. These parameters can be assigned different values based on
the hand shape extracted from image, and therefore, a large number of postures can
be generated. Some of them have predefined semantics, which can serve as gestures
and can be further used in human–computer interactive applications.

Model-based methods have also been popular because they can easily incorporate
constrains on hand shapes. However, they need complex trackers that are compu-
tationally expensive. Due to the fast movement of human hand, image database
an indexing technique [23] is employed, which makes it possible to recover hand
tracking from each frame. Wang and Popović [15] provided a real-time hand pose
estimation system based on this technique.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 293

To remove the ambiguity generated in the 2D projection of hand shapes, depth
sensors are used. Mo and Neumann [33] used 3D contours to identify fingers based
on a low-resolution depth image. Suryanarayan et al. [34] constructed a volume
descriptor in depth space and utilized it to recognize six gestures. Ren et al. [35] used
a finger-shape-based distance to distinguish different hand gestures. Liu and Shao
[36] proposed a adaptive learning methodology to generate discriminative spatio-
temporal features from RGB-D data, which can be used for high-level recognition
tasks. A dataset called Sheffield KInect Gesture (SKIG) is provided for hand gesture
recognition test.

To reconstruct a full degree of freedom hand model, the different parts of a hand
must be pre-labeled and recognized. One of the major approaches for dealing with
depth image-based body part recognition is to convert the pose estimation task into
a per-pixel classification problem [8]. A simple pixel feature can be used to decrease
the computational complexity. This technique can be directly used on hand parts
recognition if enough labeled training data are provided. Keskin et al. [37] divided
the hand into 21 different parts and used this method to train a per-pixel classifier for
segmenting each part. Then, a mean shift algorithm is used to estimate the position
of joints. Liang et al. [38] presented a novel framework which exploits both spatial
features and the temporal constraints to recover a hand model with 27 degrees of
freedom from RGB-D video sequences. So far, only small-scale experimental results
on hand pose estimation based on such methods are reported. Different properties of
hand poses, such as big deformation and fast motion, make it difficult to identify the
different parts of a hand from simple pixel features.

14.3 Framework Overview

As shown in Fig. 14.1, our framework consists of three stages: hand parts classi-
fication, hand gesture recognition, and application definition. Each stage contains
two different workflows. The upper workflow is used for acquiring training data

Classifier 
Training

Hand Parts 
Classification

Training Data
Generation

Color 
Classification

Gesture 
Database

Event
Hand 

Extraction
Contour 
Model

Descriptor 
Indexing

Gesture 
Recognition

Hand Parts 
Classification

Contour 
Learning

Definition

Matching

Gesture 
Sequences(Depth)

Depth

Gesture 
Sequences(RGB)

Application 
Definition

RGB

Fig. 14.1 Framework of our hand gesture recognition system



294 Y. Yao et al.

and to define gesture templates; the lower is employed to recognize hand gestures
in real-time applications. We decide to use a Kinect camera instead of a dedicated
camera as the input sensor for two reasons: (1) the Kinect sensor can provide both
RGB and depth information; (2) the accuracy of Kinect is very close to a laser-based
devices within a short range [39]. This makes Kinect a good choice for building
gesture-driven desktop applications, especially for Augmented Reality applications.
In addition, Kinect makes it easier to create a labeled training dataset using a semi-
automatic technique that combines the depth and RGB information. Once real hand
gestures are captured and labeled in the first stage, we can generate the corresponding
contour descriptors in the second stage and provide semantics for them in the third
stage. These definitions can then be used in the real applications.

14.3.1 Hand Parts Classification

In hand parts classification stage, we apply the per-pixel technique based on the
work by Shotton et al. [8]. To improve the framework’s usability in building real
HCI applications, we develop a new semi-automatic method for labeling depth pixels
containing hand into different classes. A glove with multiple colors is employed to
assist the labeling process. The labeling results are fairly noisy and require some
manual processing. The output of this procedure is a labeled training dataset. The
training set is fed into a classifier based on random decision forest [8]. For real
applications, we use a two-step segmentation process: the first step is to segment
the hand from the background, which is a binary classification problem; the second
is to segment the hand into individual parts based on the per-pixel classifier. Once
hands are extracted from a depth image, they are fed into the classifier that roughly
partitions them into different parts.

14.3.2 Gesture Recognition

In the second stage, we use an improved 3D contour model based on the model
proposed in [10]. The basic idea is that prior knowledge of hand structure can be
used to improve the accuracy of classification results. Thus, a contour model is used
to recognize both static and dynamic hand gestures.

This stage also contains two workflows. In the upper, training data are converted
into contour model-based descriptors and are incorporated into a gesture database.
The gesture templates in the database are indexed by a K-d tree structure to speed up
the gesture matching procedure. Once the detected hand is segmented into several
hand patches, we can generate a 3D hand contour model from it in the lower work
flow. This model contains not only gesture descriptors but also the 3D position of the
hand. In the demonstration application, we show how they are used for recognizing
dynamic gestures.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 295

14.3.3 Application Definition

In order to simplify the process of building real applications, we directly define
application-specific gestures in the gesture database. Once a similar hand contour
descriptor is matched in the database, an event is triggered to drive the system’s
response to that gesture.

14.4 Training Data Generation

Training data collection is always a nontrivial task. Inspired by the current research
of color-based motion tracking technique [15], we design two configurations of the
color glove. As shown in Fig. 14.2, the left pattern includes 9 patches, while the
right one includes 14 patches. Both patterns can be used. How to choice depends on
requirements of the application. In our previous work [40], the pattern of 14 patches
is used. We adopt the one with 9 patches to simplify the recognition in this chapter.

In order to collect the training data in a semi-automatic way, we need to combine
both RGB and depth information for labeling. The first task is to calibrate the RGB
and depth camera. There are many techniques that can be used to calibrate the two
cameras [41–43]. However, in our experiments, we directly obtain the pixels mapping
between RGB and depth cameras from the OpenNI Kinect SDK. The second task is
to locate the multi-color glove and recognize different color regions. We manually
initialize the hand location in the color image and then use mean shift for hand
tracking. After the location of the hand is estimated, the different parts of a hand are
identified. This is a challenging task because the measured color value can shift from
frame to frame due to illumination changes [44], which will result in very noisy
signals when depth pixel labeling is performed. In our work, a simple method is
employed. The different parts of a hand are initially labeled by using corresponding
color mask extracted from the color image. We trained a random forests classifier in
the HSV color space and use this classifier to refine the labeling. Finally, we manually
finish the labeling work.

Fig. 14.2 Color glove design



296 Y. Yao et al.

Fig. 14.3 Hand location and labeling

14.4.1 Hand Localization

Depth sensors make segmentation under constrained conditions simpler than ever.
However, segmenting the hand from a cluttered background is still a challenging
problem, because the shape of the hand is very flexible. In our sample collection stage,
both RGB and depth information are used for localization of the hand. Figure 14.3
shows the procedure of recognizing the hand.

First, we ask users manually select several parts within a hand region (top left
image in Fig. 14.3). This selection uses a fixed sequence, which usually includes three
color regions from the first image of a gesture sequence. Then, a mean shift method
is used to track multiple hand parts simultaneously for these gesture sequences.
Therefore, the location and direction of the hand can be confirmed during the tracking
process.

At the same time, the shapes of foreground targets are segmented from the depth
image. We make use of the relationship between RGB and depth image to find where
the hand is located. This process generates a hand mask. Each depth pixel in this
region can be assigned a RGB color, which will generate a coarsely labeled gesture
sequence on depth pixels.

14.4.2 Color Classification

Coarsely labeled results need to be further refined. As shown in the last row of
Fig. 14.3, we use a random forests classifier to generate labels depending on pixel
colors on the glove. Those colors are converted into HSV space. We trained a random
forests classifier based on the 9 groups of manually labeled samples. In the training
and classification process, only the component of hue is considered.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 297

(a) (b)

Fig. 14.4 a Average accuracy and average error vs Number of trees b Average accuracy and average
error vs Deep of trees

Figure 14.4 shows the performance of the random forests-based labeling. In the
experiments, 50 % manually labeled samples are used as training set, and the other
data are used to test. Figure 14.4a reports the trends of average recognition accu-
racy and average false identification rate with different number of decision trees.
Figure 14.4b gives the average recognition accuracy and average false identification
rate with different deep of the random forests trees.

The output of the color classification step is used as training data for generating 3D
hand contours for the gesture database. During the semi-automatic labeling process,
there are many incorrectly labeled pixels. After color classification, manually labeling
process is still employed to remove this noise. There are 2,400 labeled frames of hand
samples from 6 people in our training database. Five different types of hand gesture
sequences are included in the database. By using the classification results, the average
labeling time is decreased from 6 min to 30 s for each image in our experiments.

14.5 Hand Patches Segmentation

There are two problems that need to be solved in the hand pose estimating process:
hand extraction and hand parts classification. Without strong assumptions about the
range of activities, segmenting hands from a cluttered background is difficult, because
of the interference of different objects in the scene and other body parts, such as arms,
head, and shoulder. Segmenting a deformable and rotatable hand into different parts
is also a challenging task. We use a two-step segmentation process in our approach.
One is the full hand extraction step, and the other is hand parts segmentation. The
former step uses a classification and tracking procedure to distinguish hand objects
from other objects. The latter step is to segment hand into parts depending on the
feature extracted from depth image.



298 Y. Yao et al.

Fig. 14.5 Hands extraction

14.5.1 Hand Extraction

In order to discriminate hand-like objects from other foreground objects, a tracking
technique is used. The complete procedure is shown in Fig. 14.5.

For RGB images, the skin color pixels are extracted from RGB image by [45] to
generate the skin color mask (as shown in Fig. 14.5 upper middle).

For the depth image, we first assume that hands move within a certain distance
range to the camera (distance <1.6 m). Outside this range, part of the depth data is
often missing due to multiple reflections and scattering on the surface of the hand.
The assumption is also helpful in removing some of the noise. Then, a dynamic
threshold segmentation is used to extract multiple targets from the depth data (as
shown in Fig. 14.5 bottom middle). In this segmentation process, we convert the
depth image into a 8-bit gray image. A histogram with 256 bins is constructed on
this image, which is further smoothed by a Gaussian kernel. The local max and min
values in the histogram can be found by computing the gaussian derivatives for each
bin. Therefore, we can segment the depth image into multiple regions by the depth
clusters.

Both depth and RGB images are used to get the initial segmentation. The candidate
targets containing enough skin-colored pixels are kept as potential hand locations. In
experiments, this percentage is set to a constant value. We found that areas containing
70 % skin-colored pixels perform well during classification. A simple 2D shape
feature is used to classify targets into hands and other objects. After this process,
the selected targets are fed into a Kalman filter-based tracker to avoid any jitter,
noise, occlusions, and large deformations of the hand in the input video. We use a
standard Kalman filter described in [17] to track the trajectory of the palm center in
2D space. The segmentation and classification procedure are done for each frame.
Even if the hand is lost in a certain frame due to noise or temporary occlusion, it will
be recovered in the successive frames.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 299

Fig. 14.6 2D shape features defined on hand contour. The red points indicate the locations of
features

We use a 2D silhouette feature for determining if an object is a hand or not. This
feature uses local curvature on the contour to describe the geometry of the fingertips.
For each pixel on a contour, the feature is calculated by

acos((xA
i−1 − xA,H

i ) · (xA
i+1 − xA,H

i )) < T, (14.1)

where xA represents the coordinate of a depth pixel on a target contour A. A is
an approximated curve computed from the original hand contour extracted from a
depth image. x A,H

i is the coordinate of a depth pixel on A’s convex hull H . T is
an empirical threshold. As shown in Fig. 14.6a, the red points indicate where the
features are located. We found that T = 0.8 performs well in practice. It is not very
robust because the shape feature cannot always be detected from the contour in some
frames. In order to segment the hand from other extracted targets, we learn the prior
probability of the number of features from a group of training depth images.

Bayes rule is used to compute the posterior probability of an object being a hand.
The posterior is represented by P(h = 1|S ), which represents the likelihood of
observing a hand object when shape features S are given, we have

P(h = 1|S ) = P(S |h = 1)P(h = 1)

P(S )
, (14.2)

where P(h) is the prior probability that measures whether the target is a hand (h = 1)
or not (h = 0) without observing its color. We can estimate the probability den-
sity function of P(S |h = 1) and P(S |h = 0) from the training database. Here,
P(S ) = P(S |h = 1)P(h = 1) + P(S |h = 0)P(h = 0). Candidate regions are
chosen if their posterior probability is greater than a threshold.

14.5.2 Hand Parts Classification

Depending on a weak spatial prediction, the position feature defined in the depth
image [8] is simple and effective. However, it is not rotation invariant. The property
of rotation invariance is important for hand pose estimation, especially in the case,
the support of the body pose estimation is missing.



300 Y. Yao et al.

Fig. 14.7 Position feature is a geometrical feature defined on the depth image (left), which repre-
sents local details. The red arrow’s direction approximates the normal, and the size approximates
the mean curvature (middle). In the 2D depth image, this feature can be computed by a neighborhood
sampling descriptor (right)

In order to overcome this problem, we create a new feature, which is defined over
the 3D surface constructed by the depth pixels. The distribution of depth values in a
neighborhood of a pixel is considered to identify which part of the hand that pixel
belongs to. As shown in Fig. 14.7(left), the relationship of depth pixels in a neighbor
domain can be represented as a graph G = (X, E), with pixels X and topology E .
Where X = [x1, x2, . . . , xn], xi = {xiu, yiv, dI (xi )} is the depth pixels set. dI (xi ) is
the depth value of pixel xi . Inspired by [46], we define the position feature for each
pixel xi by

fi (I, x) =
∑

i, j∈E

ωi, j
(
x j − xi

)
, (14.3)

where
∑

i, j∈E ωi, j = 1.

A graphical description of this position feature is given by Fig. 14.7(middle).
The neighbor domain information is introduced by the topology. In Eq. (14.3), the
direction of fi (I, x) approximates the pixel’s normal, and the size of fi (I, x) repre-
sents the mean curvature. We only use the size; thus, the position feature is rotation
invariant. In order to improve the computational efficiency, we use the pixel’s normal
and the mean curvature to compute the feature. In the algorithm, the key parameter
is the feature scale parameter ri, j , which represents the distance between xi and xj
(Fig. 14.7 right). By using a constant ri, j , we can define the position feature on the
depth image as

δi = L (xi ) = dI (xi ) − 1

n

∑

j∈E

sI (x j ), (14.4)

where sI (x) is the depth value of pixel x, n is a predefined number of sampling
points, and

sI (x) =
{

dI (x) x ∈ hand
b x /∈ hand

. (14.5)



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 301

Fig. 14.8 Position feature in a rotated hand

Figure 14.8 shows that examples of the position features are computed on a series
of rotated hands. For illustration purposes, feature values are mapped into the RGB
color space. As can be seen in Fig. 14.6b, there is no clear boundary between the
palm center and hand edge. This means that the signal is weak. To overcome this
problem, we use a random decision forest to combine these features in all training
data. Since the contour of each hand is already detected, the position feature does
not depend on a specific background.

We use the 2D shape feature and the position feature to segment hand patches. The
geometry feature that was used in the original framework [10] is removed, because its
contribution for improving the accuracy is insignificant. Figure 14.8 shows the result
of classifying different parts of a hand using features of different scale extracted
from 1906 frames of test data. To improve the accuracy of classification and reduce
the false-positive rate, we refine the estimation results with a contour model in the
“gesture recognition” stage.

14.6 Gesture Recognition

For many applications, the goal of hand gesture recognition is not to recognize arbi-
trary 3D hand pose, but to recognize if a gesture is one of a fixed number of hand
poses. Therefore, in this work, we use a database indexing technique to implement
gesture recognition. A hand contour database is collected by using the training sam-
ples. In the following sections, we give the description of the contour model and the
similarity measures.

14.6.1 Contour Model

The final output of the estimation process is a labeled 3D contour. There are several
advantages of using labeled 3D contours as hand models. First, a contour is a simple
structure. It is easier to match two contours with different scales than matching



302 Y. Yao et al.

image patches or articulated models. Second, the representation of a contour only
needs a small size descriptor, so it is more appropriate for database indexing-based
gesture recognition techniques, in which a large number of samples are collected for
gesture matching. Third, it is convenient to convert contours to other models, such
as articulated model and 3D skin model.

Contour Descriptor. The hand contour model C is represented by a ordered
list of points on the contour c = {vc

1, vc
2, . . . vc

n} with its corresponding label vector
l = {l1, l2, . . . ln}. Where v is a vertex on contour c. The value of n is determined
by the distance of the hand to the camera and describes the size of a hand contour
and is decided by the distance of the hand to the camera. Label vector provides
the information about specific hand contour segments belonging to certain hand
parts. As a descriptor, both 3D coordinate sequence and labeling index sequence
cannot provide a rotation and scale invariance. We add another sequence, m =
{m1, m2, . . . mn}, for the contour representation. m is a normalized length sequence.

mi = Length({vc
j |l j })

Length(c)
, (14.6)

where j represents the continuous indexing. The descriptor of the i th hand contour
Ci is represented by the {li

1mi
1, li

2mi
2, . . . li

dmi
d}, where d is the dimension of the

descriptor. By selecting d, most significant mi , d can be set to a fixed dimension.

14.6.2 Contour Generation

Given a 3D contour c, a natural method for constructing l is to directly search the set
of labeled points and, for each point vi , find the class with the maximum probability.
We define the probability as

P(c|vc
i ) = 1

n
γi

∑

j∈N (i)

Pj (c|v j ), (14.7)

where N (i) represents a vertex set in the neighbor area of vc
i . Pj (c|v j ) can be deduced

from P(c|x). γi is a learning parameter defined as

γi = pi
c

M

∑

k∈ς

P(c|vc
k), (14.8)

which considers the continuity of the 3D contour. Here, ς is a contour segment
that consists of some subset of indices of vi and its neighbor domain. M represents
the size of ς . pi

c is a learning parameter, which defines a connectivity relationship
between different contour segments. By using this model, the gesture recognition



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 303

Fig. 14.9 Contour descriptor
alignment 4 2 1 3

1 2 3 4

1 3 2 4

process can be described as a sequence matching problem, which can also be used
to recover the 3D hand position.

14.6.3 Contour Matching

In order to measure the similarity of two contours, our task is to find a distance
function D(·) for fast matching. Once D(·) is determined, the descriptor can be
aligned according to Fig. 14.9. That means given a contour descriptor Ci , the query
result from a database should satisfy

Ci = arg min
i∈Ψ, j∈Ω

D(Ci , C j )w, (14.9)

where Ψ is the test set of contours, Ω represents the template database. w is a weight,
which is computed by

w =
∑

k={1,···d}
li
k xor l j

k . (14.10)

There are two possible cases where errors arise in generating of hand contours:
whole-to-whole matching and whole-to-part matching. We use Smith–Waterman
[47] algorithm to deal with both cases. In our application, we select the arm class as
the start of the descriptor, because in the data, the arms are typically longer than any
other hand parts and are always visible.

14.7 Validation

We evaluated our method on the dataset collected in Sect. 14.4. A total of 2564
frames was captured, each of which includes calibrated depth data, labeled hand parts
information, and a mask image of the hand region. All these data are compressed
and stored in a SQLite database. In the hand gesture recognition test, we compared
our method on a second RGB-D dataset provided in [35].



304 Y. Yao et al.

(a)

(b)

Fig. 14.10 a Prior distribution of shape features. b Feature scale and average per-classes accuracy

14.7.1 Hand Detection

In most indoor bare-hand interaction applications, hands and objects often appear
together. So we assume P(h = 1) = P(h = 0) = 0.5; thus, Eq. (14.2) can be
simplified to

P(h = 1|S ) = P(S |h = 1)

P(S |h = 1) + P(S |h = 0))
. (14.11)

The distribution of P(S |h = 1) is learned from 600 frames that are randomly cho-
sen from the training database, while other objects of size similar to the hand, such as
head, bottles, apples, keyboards, computer mice, and books in the database, are used
to estimate P(S |h = 0). These two distributions are given in Fig. 14.10a, where the
blue bars and red bars represent the statistic results on hand and other objects, respec-
tively. With depth information, shape features can be extracted quickly employing a
pre-defined threshold. The number of shape features is counted and used to compute
Eq. (14.2). This method is tested on the remaining 1,800 images containing a clut-
tered background. The hand detection procedure achieves 54.5 % accuracy. After
using the skin color segmentation described in section V, the accuracy increases
to 94.7 %. The classification results are heavily dependent on the environment. In
our application, the frame-loss rate is less than 1 % during the tracking procedure.
Multiple hands can be processed simultaneously with small amount of additional
calculation. The disadvantage is that it will not work in the following scenarios: (1)
the scene contains the body; (2) one hand is occluded by another hand; (3) a person
is wearing gloves. Body skeletal trackers can be used to solve these problems.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 305

14.7.2 Hand Parts Classification

In hand parts classification experiment, we select 600 frames from 6 subjects for
training and use the other frames for testing. The training samples and testing samples
are collected from multiple indoor environment and with different backgrounds and
camera view angles.

Figure 14.10b shows the relationship between position feature scale and per-part
recognition accuracy rate. The mean per-class accuracy is used as a baseline. Instead
of using a single shape feature, we use the pixel’s normal and the pixel’s mean
curvature defined in Sect. 14.5 as the position feature. Compared with the per-part
recognition accuracy rate in our previous work [10], the classification results show a
significant improvement. This curve will change slightly when different topologies
are selected for shape feature.

Table 14.1 shows the per-pixel classification results of detecting different hand
patches. The experiment is done on 1,800 frames, where “CMC” indicates the region
near the root of little finger, and “TM” indicates the region near the root of thumb.
The average accuracy of recognition is 58.48 %. However, the misclassification rate
is still high. Shotton et al. [8] showed that using more training samples will improve
the mean per-class accuracy. However, labeling real data and generating synthetic
training data are nontrivial. Combining more features into the position feature will
also improve the mean per-class accuracy [10] but too many features might result in
the over-fitting problem.

Figure 14.11 shows the per-class accuracy for pixels located on the hand contour
(Fig. 14.11 black) and the per-class accuracy by using the contour model (Fig. 14.11
red). Compared with the results provided by the pixel classification, there is a large
improvement in contour model-based classification. The average accuracy of hand
parts classification is improved from 58.48 % to 77.68 %. The error rate is still large,
but hand orientation can be estimated from the contour, which can also be used in
gesture matching.

Table 14.1 Per-pixel hand parts classification results

Category Sample quantity True positive (%) False positive (%)

Thumb 1,574,265 51.0 46.30

Index 1,335,410 33.5 3.10

Middle 1,540,891 74.3 80.60

Ring 1,383,038 66.3 57.40

Small 1,085,247 29.6 21.60

CMC 2,756,895 63.0 44.80

Palm 2,587,585 85.1 83.20

TM 1,602,793 29.8 3.94

ARM 9,866,422 93.7 7.96

Average accuracy 58.48 38.78



306 Y. Yao et al.

Fig. 14.11 Per-pixel classification accuracy and per-segment classification accuracy with contour
model

14.7.3 Gestures Recognition

Our method is tested on the database provided by the authors of [35] without chang-
ing any parameters and features. Because these samples do not provide the hand parts
segmentation, we capture the same gestures and manually labeled them for each sub-
ject. Then, the entire dataset of [35] is used for testing. Figure 14.12 shows the test
results in confusion matrix. Compared with the near-convex decomposition-based
Finger-Earth Mover’s Distance (FEMD) method, our method achieves a similar accu-
racy by using 40 training samples. Although the recognition rate of some categories
has not been significantly improved, the average true-positive rate is better.

We use a desktop computer with an AMD Phenom II X4, 3.0 GHz CPU with 3G
RAM to run the test. For each frame, the computation time includes approximately
10 ms for target segmentation, 22 ms for tracking, 17 ms for sampling and features
computation, 3 ms for classification, and 32 ms for contour matching. We use a small
gesture database that includes 320 hand contour descriptors to test the matching
of hand contours. Our C++ implementation processes each frame in 87 ms. GPU
acceleration is not used. It is capable to do a real-time gesture recognition on a
faster machine. A GPU version is needed when the application contains complex
interactions and scene rendering.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 307

1

2

3

4

5

6

7

8

9

1

1

2

0.98

0.01

0.01

3

0.02

0.92

0.01

0.01

4

0.01

0.95

0.01

0.02

0.01

5

0.03

0.97

6

0.02

0.98

7

0.95

0.03

8

0.03

0.01

0.01

0.93

9

0.01

0.01

0.98

10

10 0.02 0.96

0.01

0.01

0.02

0.02

0.03

0.01

1

2

3

4

5

6

7

8

9

1

1

2

0.98

0.01

0.01

3

0.02

0.92

0.01

0.01

4

0.01

0.95

0.01

0.02

0.01

5

0.03

0.97

6

0.02

0.98

7

0.94

0.03

0.01

8

0.03

0.01

0.01

0.93

9

0.01

0.01

0.98

10

10 0.02 0.96

0.01

0.01

0.02

0.02

0.03

0.01

(a) (b)

Fig. 14.12 Confusion matrix of gestures recognition results. The gesture categories is ordered by
the original database. a Near-convex decomposition + FEMD [35]. b Hand contour matching

14.8 System Application

In order to evaluate the feasibility and effectiveness of the proposed framework, we
perform two case studies.

14.8.1 Augmented Reality Molecular Assembler

The fist application is based on a HCI program named AR Chemical [48], which is
an application that utilizes a tangible user interface for organic chemistry education.
The interface uses an Augmented Reality (AR) mouse and AR makers to allow users
to compose and directly interact with 3D molecular models. All interactions are done
on a real desk. The operation includes moving, dragging, positioning, and assembling
virtual structures in a 3D space. Therefore, delicate and complex interactive behaviors
and hand position information are needed.

We simulate this system and provide three hand gestures to replace the original
operation that used with the AR paddle and computer mouse. First, we use keyboard
to select atom and then use raising thumbs to simulate the mouse button. The finger
pointing action is used for positioning objects.

Once a gesture is detected, we need to record the starting position of the hand and
rotate the indicator mark on the 3D molecule, which inserts the atom into the right
position pointed to by the finger. Finally, the waving hand with a different orientation
is used to assist this assembling process by rotating the assembled molecule on the
platform.

The dynamic gesture recognition is realized in the application layer. We set up
two gesture buffers in the application: one is for reserving sequential contour with
3D vertices to get hand position; the other is for holding hand contour descriptors to
match the hand pose. We define simple interaction action rules on the buffers. This
scheme is easy to extend.



308 Y. Yao et al.

Fig. 14.13 Waving gesture for rotation control

Fig. 14.14 Atom position selection and molecular assembling operation

Figure 14.13 shows the rotation operation. Figure 14.14 is sampled from a pro-
cedure of adding an atom into a molecule. This combination of four hand gestures
can drive the real-time visual interaction with complex visual feedback. Such type of
interactions can increase natural feeling of the operation. The Kinect-based system
is able to overcome the problem of illumination changing. We believe that other
applications, such as digital sculpture, painting and computer-aided design system
could benefit from this framework as well.

14.8.2 Xerrys Intelligent Rehabilitation System

By combining the body pose estimation, we applied our technology to a medical sys-
tem called Xerrys Intelligent Rehabilitation System for Hospitals, in short XIRSH.
XIRSH is a platform of new Kinect-based applications. The major objective of
XIRSH is to help patients conduct trainings and practices at the late stage of reha-
bilitation in hospitals. It can be considered as a comprehensive rehabilitation tool,
which provides new methods for occupational and physical therapy and combines the
motion control with cognitive and speech rehabilitation. A variant version of XIRSH
can be served as a home based application to further extend the tele-rehabilitation
process.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 309

Fig. 14.15 Upper limb training scenario. a A patient is captured by the Kinect sensor and given
the control. b A therapist walks in and helps the patient lift his upper limb. The therapist takes the
control of the training game. c The therapist waves one of his hands to the left. d The therapist
waves one of his hands to the right. e The therapist releases the control and the patient finishes the
motion

In XIRSH, the gesture control is widely used as an efficient and attracting inter-
action to motivate the patients. We illustrated two application-level scenarios where
the hand gesture recognition results can be directly utilized.

In the first scenario (Fig. 14.15), the patient is asked to lift his upper limb from
the body side to conduct the abduction for his shoulder joint. However, this motion
might be difficult for an individual patient who just passes level 4 (Brunstrom).
Therefore, a physical therapist has to stand by the patient and help the patient’s lifting.
Two skeletons will be tracked simultaneously through the depth view by the Kinect
sensor. The corresponding tracking ID for the patient is not fixed during this process,
which causes the incontinence at the application level. As the patient may have the
difficulties in motion, a wave hand gesture from the therapist is proposed. Once the
waving is detected, the system can identify the situation that there is a therapist who
is helping the patient. As a result, the control and focus of the application will be
released from the therapist back to the patient. All the corresponding data flows will
be correctly led to the patient himself.

In the second scenario (Fig. 14.16), a training is specially designed for exercising
the shoulder joint. The patient is immersed into a virtual reality and asked to move the
items, such as a clock and a football, into to the correct categories, such as sporting
items and living items. During this training, the items are generated at the upper
corners of the screen, and the containers are at the bottom corners. The practice is

Fig. 14.16 Hand training scenario. a A hand over to select the clock (Basic level). b A grab to pick
up the clock and a release to drop it to the living items category (Advanced level)



310 Y. Yao et al.

motivating the patient to do some diagonal motions. At the basic level, the patient
can move his hand to conduct the mouse cursor movement. A hand over the items for
seconds is considered as to select the item. A hand over the corresponding container
is to drop the item. The basic training aims to improve the stability and balance.
However, some patients with better conditions could be asked to conduct advanced
trainings. For example, the hand over gesture is replaced with the hand grab for the
picking and the hand release for the dropping. One advantage to motivate the patients
to do more practices with fingers and hands.

In both aforementioned scenarios, hand gestures are used to interact with the
software programs and provide the biometric feedback such as text prompts or
audio reminders. The feedback is very important because it can inform the patients,
whether their motions are correct or not. Our experimental results show that the tech-
nique proposed the previous section can efficiently recognize the different gestures
and send the feedback at a real-time level.

14.9 Summary

We have introduced a novel framework for recognizing hand gestures, which is
inspired by the current depth image-based body pose estimation technology. A semi-
automatic labeling strategy using a Kinect sensor is described. This procedure is
used to generate the samples used for both hand detection, and hand pose estimation.
The 3D hand contour with labeled information provides a simplified hand model to
facilitate building real-time bare-hand-controlled interface. Our framework can be
easily extended to incorporate different desktop applications. We also notice that 3D
gesture interaction is not user-friendly enough, because there are still many visual
and touch feedbacks needed to improve the realism.

The current work still has several limitations that we plan to focus on in the future
work:

(1) Segmenting hand from a long arm or a body is not well handled with the proposed
hand extraction and hand parts classification method. Therefore, the form of
camera setup is limited.

(2) The accuracy of the contour model is limited by the classification result of hand
parts.

(3) To some applications, the classifier needs to be re-trained due to the different
application configurations.

Another future research directions include designing new hand partition patterns
to improve the recognition accuracy. The contour matching algorithm can be further
revised and evaluated to improve the matching accuracy. Moreover, we also would
like to develop new hand gesture-controlled applications with the support of this
framework and implement a GPU version of the algorithm.



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 311

References

1. Riener A (2012) Gestural interaction in vehicular applications. Computer 45(4):42–47
2. Roccetti M, Marfia G, Semeraro A (2012) Playing into the wild: a gesture-based interface for

gaming in public spaces. J Vis Commun Image Representat 23(3):426–440
3. Fernandez-Pacheco DG, Albert F, Aleixos N, Conesa J (2012) A new paradigm based on agents

applied to free-hand sketch recognition. Exp Syst Appl 39(8):7181–7195
4. Luo C, Chen Y, Krishnan M, Paulik M (2012) The magic glove: a gesture-based remote con-

troller for intelligent mobile robots. In: SPIE on intelligent robots and computer vision: algo-
rithms and techniques, vol 8301, CA, USA, San Francisco

5. Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly X (2007) Vision-based hand pose estima-
tion: a review. CVIU 108(1–2):52–73

6. Zhu Y, Fujimura K (2007) Constrained optimization for human pose estimation from depth
sequences. In: Proceedings of the 8th Asian conference on computer vision—volume Part I,
November 2007, pp 408–418

7. Siddiqui M, Medioni G (2010) Human pose estimation from a single view point, real-time
range sensor. In: IEEE computer society conference on computer vision and pattern recognition
workshops (CVPRW), June 2010, pp. 1–8

8. Shotton J, Sharp T, Kipman A, Fitzgibbon A, Finocchio M, Blake A, Cook M, Moore R
(2013) Real-time human pose recognition in parts from single depth images. Commun. ACM
56(1):116–124

9. Fanelli G, Gall J, Van Gool L (2011) Real time head pose estimation with random regression
forests. In: Proceedings of computer vision and pattern recognition (CVPR), June 2011, pp.
617–624

10. Yao Y, Yao Y, Fu Y (2102) Real-time hand pose estimation from rgb-d sensor. In: IEEE
international conference on multimedia and expo (ICME), July 2012, pp 705–710

11. Oikonomidis I, Kyriazis N, Argyros A (2011) Efficient model-based 3d tracking of hand artic-
ulations using Kinect. In: BMVC 2011, August. 2011, pp 101.1–101.11

12. de Campos TE, Murray DW (2006) Regression-based hand pose estimation from multiple
cameras. In: IEEE computer society conference on computer vision and pattern recognition,
June 2006, pp 782–789

13. Xiaohui S, Gang H, Williams L, Ying W (2012) Dynamic hand gesture recognition: an
exemplar-based approach from motion divergence fields. Image Vis Comput 30(3):227–235

14. Jun P, Yeo-Lip Y (2006) Led-glove based interactions in multi-modal displays for telecon-
ferencing. In: Proceedings of international conference on artificial reality and telexistence,
December 2006, pp 395–399

15. Wang RY, Popović J (2009) Real-time hand-tracking with a color glove. ACM Trans Graph
28:63:1–63:8

16. Sturman DJ, Zeltzer D (1994) A survey of glove-based input. IEEE Comput Graph Appl
14:30–39

17. Mo Z, Lewis JP Neumann U (2005) Smartcanvas: a gesture-driven intelligent drawing desk
system. In: Proceedings of international conference on intelligent user interfaces, January 2005,
pp 239–243

18. Ogihara A, Matsumoto H, Shiozaki A (2007) Hand region extraction by background subtrac-
tion with renewable background for hand gesture recognition. In: international symposium on
intelligent signal processing and communications. Japan, Nov, Yonago, pp 227–230

19. Bilal S, Akmeliawati R, El Salami MJ, Shafie AA, and Bouhabba EM (2010) A hybrid method
using Haar-like and skin-color algorithm for hand posture detection, recognition and tracking.
In: IEEE international conference on mechatronics and automation, August 2010, pp 934–939

20. Chai X, Fang Y, Wang K (2009) Robust hand gesture analysis and application in gallery
browsing. In: Proceedings of IEEE ICME, June 2009, pp 938–941

21. Van den Bergh M, Van Gool L (2011) Combining RGB and tof cameras for real-time 3D hand
gesture interaction. In: Proceedings IEEE WACV, January 2011, pp 66–72



312 Y. Yao et al.

22. Li H, Greenspan M (2011) Model-based segmentation and recognition of dynamic gestures in
continuous video streams. Pattern Recogn 44(8):1614–1628

23. Alon J, Athitsos V, Yuan Q, Sclaroff S (2009) A unified framework for gesture recognition and
spatiotemporal gesture segmentation. IEEE Trans PAMI 31(9):1685–1699

24. Guo JM, Liu Y-F, Chang C-H, Nguyen H-S (2012) Improved hand tracking system. IEEE Trans
Circ Syst Video Technol. 22(5):693–701

25. Patlolla C, Mahotra S, Kehtarnavaz N (2012) Real-time hand-pair gesture recognition using
a stereo webcam. Proceedings IEEE international conference on emerging signal processing
applications, pp 135–138

26. Tang M (2011) Recognizing hand gestures with Microsoft’s kinect. Tech. Rep. 2011
27. Doliotis P, Stefan A, McMurrough C, Eckhard D, Athitsos V (2011) Comparing gesture recog-

nition accuracy using color and depth information. In: Proceedings of the 4th international
conference on PErvasive technologies related to assistive environments, vol 20 May 2011, pp
1–7

28. Minnen D, Zafrulla Z (2011) Towards robust cross-user hand tracking and shape recognition.
In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops),
November 2011, pp 1235–1241

29. Doliotis P, Athitsos V, Kosmopoulos DI, Perantonis SJ, (2012) Hand shape and 3D pose estima-
tion using depth data from a single cluttered frame. In: Proceedings of international symposium
on visual computing (ISVC), vol 7431. April 2012, pp 148–158

30. Oikonomidis I, Kyriazis N, Argyros AA (2012) Tracking the articulated motion of two strongly
interacting hands. In: Proceedings of the 2012 IEEE conference on computer vision and pattern
recognition (CVPR), June 2012, pp 1862–1869

31. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor:
a review. IEEE Trans Cybern (T-Cyb), 43(5):1318–1334

32. de La Gorce M, Fleet DJ, Paragios N (2011) Model-based 3d hand pose estimation from
monocular video. IEEE Trans PAMI 33:1793–1805

33. Mo Z, Neumann U (2006) Real-time hand pose recognition using low-resolution depth images.
In: Proceedings of IEEE CVPR, June 2006, pp 1499–1505

34. Suryanarayan P, Subramanian A, Mandalapu D (2010) Dynamic hand pose recognition using
depth data. In: Proceedings IAPR ICPR, December 2010, pp 3105–3108

35. Ren Z, Yuan J, Meng J, Zhang Z (2013) Robust part-based hand gesture recognition using
Kinect sensor. IEEE Trans Multimedia 15(5):1110–1120

36. Liu L, Shao L (2013) Learning discriminative representations from RGB-D video data. In: Pro-
ceedings of the twenty-third international joint conference on artificial intelligence (IJCAI’13)
August 2013, pp 1493–1500

37. Keskin C, Kirac F, Kara YE, Akarun L, (2011) Real time hand pose estimation using depth
sensors. In: IEEE workshop on consumer depth cameras for computer vision, November 2011,
pp 1228–1234

38. Liang H, Yuan J, Thalmann D, Zhang Z (2013) Model-based hand pose estimation via spatial-
temporal hand parsing and 3d fingertip localization. Vis Comput 29(6–8):837–848

39. Stoyanov T, Louloudi A, Andreasson H, Lilienthal AJ (2011) Comparative evaluation of range
sensor accuracy in indoor environments. In: Proceedings of the European conference on mobile
robots (ECMR), September 2011, pp 19–24

40. Yao Y, and Fu Y (2014) Contour model based hand-gesture recognition using Kinect sensor.
IEEE Trans Circ Syst Video Technol, pp 1–1

41. Kramer J, Burrus N, Echtler F, Daniel HC, Parker M (2012) Object modeling and detection.
In: Hacking the Kinect, Apress, Berkely

42. Canessa A, Chessa M, Gibaldi A, Sabatini SP, Solari F (2013) Calibrated depth and color
cameras for accurate 3d interaction in a stereoscopic augmented reality environment. J Vis
Commun Image Represent, 2013, article in Press

43. Herrera DC, Kannala J, Heikkila J (2012) Joint depth and color camera calibration with dis-
tortion correction. IEEE Trans Pattern Anal Machine Intell 34(10):2058–2064



14 Real-Time Hand Gesture Recognition Using RGB-D Sensor 313

44. Wang R, Paris S, Popović J, (2011) Practical color-based motion capture. In: Proceedings of
the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, August 2011,
pp 139–146

45. Chai D, Ngan KN (1998) Locating facial region of a head-and-shoulders color image. In:
Proceedings of the 3rd international conference on face and gesture recognition, April 1998,
pp 124–129

46. Nealen A, Igarashi T, Sorkine O, Alexa M (2006) Laplacian mesh optimization. In: Proceed-
ings of the 4th international conference on computer graphics and interactive techniques in
Australasia and Southeast Asia, November 2006, pp 381–389

47. Smiths TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol
Biol 147(1):195–197

48. Fjeld M, Fredriksson J, Ejdestig M, Duca F, Boschi K, Voegtli B, Juchli P (2007) Tangible
user interface for chemistry education. In: Conference on human factors in computing systems,
April 2007, pp 805–808



Index

A
Application, 109–111, 118–121, 123–125,

133, 134

B
Background-oriented Schlieren, 159
Blind, 173–181, 183, 187, 190, 191

C
3D cameras, 9, 11–14, 16, 21, 23, 24
Contour model, 291, 294, 301, 302, 305, 310

D
Data fusion, 99
Depth, 215–219, 221, 229, 233, 236
Depth camera calibration, 49
Depth camera distortion model, 19, 49, 111
Depth map enhancement, 66, 70
Depth sensors, 17, 19
Depth-context feature, 240, 243, 246, 248
Distance transform, 65, 66, 70, 71, 257

E
Energy consumption, 120, 121, 123–125

F
Fast classification, 282
Feature extraction, 216, 225, 226, 232
Flow capturing, 158

G
Gas capturing, 159

Gesture recognition, 215–218, 220, 221,
229, 232, 235, 236, 239–241, 243,
257, 258, 262

H
Hand gesture, 290–294, 301, 303, 308, 310
Hand parsing, 240–243, 249, 250, 258–260
Hand pose recognition, 269, 270
Human action, 126, 127, 134
Human performance capture, 91, 93, 106
Human reentry identification, 195, 199
Human–computer interaction, 290, 291, 307

I
Interference, 28, 31, 34–36, 92, 95, 97, 105

J
Joint bilateral filter, 7, 11, 66

K
Kinect, 27, 28, 31, 34–37, 39–41, 48, 49, 53–

56, 61, 92–99, 102–106, 216–218
Kinect datasets, 111, 121, 132

M
Markerless motion capture, 31, 93, 241, 242
Markov random field, 240, 241, 243, 250
Matching of 3D curves, 137
Matching of depth images, 140, 141
Multiple kinects, 94, 105
Multiple RGB-D sensor setups, 31

© Springer International Publishing Switzerland 2014
L. Shao et al. (eds.), Computer Vision and Machine Learning with RGB-D Sensors,
Advances in Computer Vision and Pattern Recognition,
DOI: 10.1007/978-3-319-08651-4

315



316 Index

O
3D object matching, 148
3D object retrieval, 138, 148, 150
Object category recognition, 268–270
Object feature points, 141, 143, 146, 148,

149, 153
Object recognition, 13, 37, 137, 139, 140,

174, 179

R
RGB-D camera, 110, 174, 175, 179–181,

183, 185–187, 189, 191
Random decision forest, 240, 248, 249
Real human reconstruction, 110
Real-time tracking, 205, 209
RGB-D, 92, 94, 96–100
RGB-D sensor, 291

S
Semi-automatic labeling, 291, 297, 310

Signal Processing, 28
Structured light, 3, 6, 10–13, 16, 19, 20, 24
Supervised learning, 268
SVM, 215–217, 232, 233

T
Time of flight, 3, 6, 9, 11–13, 16–18, 20, 22,

24

V
Visual signature, 198, 199, 209
Visually impaired, 173–175, 177, 179–181,

185, 187, 190

W
Wayfinding and navigation, 174, 177, 190,

191


	Preface
	Contents
	Part ISurveys
	1 3D Depth Cameras in Vision:  Benefits and Limitations of the Hardware
	1.1 Introduction
	1.2 3D Data Storage
	1.2.1 3D Point Clouds
	1.2.2 Registering Color and Depth Data

	1.3 Universal Artifacts
	1.3.1 Holes
	1.3.2 Filtering Methods
	1.3.3 Segmentation/Classification Methods

	1.4 Causes for Holes
	1.4.1 Morphological Edge Erosion

	1.5 Ambient Lighting 
	1.6 Motion
	1.6.1 Multiple Reflections

	1.7 Depth Artifacts for Specific Vision Tasks
	1.7.1 Scene Understanding
	1.7.2 3D Indoor Mapping

	1.8 The Drift Problem
	1.8.1 Accumulation Error

	1.9 3D Scanning for Fabrication
	1.9.1 Finger Tracking

	1.10 Time-of-Flight Depth Sensors
	1.10.1 Second-Generation Kinect

	1.11 Benefits and Limitations of Time of Flight
	1.12 Structured Light Depth Sensors
	1.13 First-Generation Kinect (2010)
	1.14 Structured Light Benefits and Limitations
	1.15 Comparison of First- and Second-Generation Kinect Models
	1.15.1 Hardware Specifications

	1.16 3D Cameras of the Future
	1.16.1 Multidepth 3D Cameras
	1.16.2 Photometric Approaches

	1.17 Mobile 3D Cameras
	1.18 Conclusion
	References

	2 A State of the Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets
	2.1 Introduction
	2.2 Multiple Kinect-Setups: Method of Comparison
	2.3 Multiple RGB-D Sensor Setups for Motion Estimation
	2.4 Multiple RGB-D Sensor Setups for Reconstruction
	2.5 Multiple RGB-D Sensor Setups for Recognition  and Tracking
	2.6 Interference in Multiple RGB-D Sensor Setups
	2.7 RGB-D Datasets: Method of Comparison
	2.8 Annotation for Ground Truth Retrieval
	2.9 SLAM
	2.10 Object Recognition
	2.11 Shortcomings
	2.12 Conclusion
	References

	Part IIReconstruction, Mapping and Synthesis
	3 Calibration Between Depth and Color Sensors for Commodity Depth Cameras
	3.1 Introduction
	3.2 Related Works
	3.3 Notations
	3.4 Joint Depth/Color Camera Calibration
	3.4.1 Problem Statement
	3.4.2 A Maximum Likelihood Solution
	3.4.3 The Depth Mapping Function
	3.4.4 Solutions for Initialization

	3.5 Experimental Results
	3.5.1 Simulated Results
	3.5.2 Real-World Results

	3.6 Conclusions and Future Work
	References

	4 Depth Map Denoising via CDT-Based  Joint Bilateral Filter
	4.1 Introduction
	4.2 Data-Adaptive Image Denoising Filter
	4.3 CDT-Based Joint Bilateral Filter
	4.3.1 Common Distance Transforms
	4.3.2 CDT Map Generation
	4.3.3 CDT-Based JBF

	4.4 Experimental Results
	4.4.1 Performance Evaluation with Ground Truth Data Sets
	4.4.2 Performance Evaluation for Real Data
	4.4.3 Parameter Analysis for CDT-Based JBF

	4.5 Conclusion
	References

	5 Human Performance Capture Using Multiple Handheld Kinects
	5.1 Introduction
	5.2 Related Works
	5.3 Data Capture and Scene Representation
	5.4 Human Performance Capture
	5.4.1 Point Data Correspondence and Labeling
	5.4.2 Joint Skeleton and Kinect Tracking
	5.4.3 Surface Geometry Optimization

	5.5 Experimental Results
	5.5.1 Qualitative Evaluation
	5.5.2 Comparison to Vision-Based Motion Capture
	5.5.3 Comparison to Marker-Based Motion Capture

	5.6 Discussion
	5.7 Conclusions
	References

	6 Human-Centered 3D Home Applications  via Low-Cost RGBD Cameras
	6.1 Personalized Avatar for User via Multiple Kinects
	6.1.1 Introduction
	6.1.2 Point Cloud Generation
	6.1.3 3D Human Filters
	6.1.4 Human Mesh Reconstruction
	6.1.5 Experimental Results
	6.1.6 Conclusion

	6.2 Evaluating User's Energy Consumption Using  Kinect-Based Skeleton Tracking
	6.2.1 Introduction
	6.2.2 Kinect Skeleton Tracking
	6.2.3 Energy Consumption Model
	6.2.4 Experimental Results
	6.2.5 Conclusion

	6.3 Efficient Recognition of 3D Human Actions  Captured from Kinect
	6.3.1 Introduction
	6.3.2 Action Feature
	6.3.3 Action Recognition
	6.3.4 Experimental Results
	6.3.5 Conclusion

	References

	7 Matching of 3D Objects Based on 3D Curves
	7.1 Introduction
	7.2 Related Work
	7.3 Method Overview
	7.4 Object Local Coordinate System
	7.5 Object Feature Points
	7.6 Modified Dijkstra Algorithm
	7.7 Shortest Path Representation
	7.8 Feature Point Matching
	7.9 Experiments
	7.10 Conclusion
	References

	8 Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinect
	8.1 Introduction
	8.2 Related Work
	8.3 Spot Model Derivation
	8.4 Proposed Flow Computation for Captured Spot Pattern-Based Active Light Video Data
	8.5 Application: Capturing of Two-Phase Gas Flows
	8.5.1 Projector Image Reprojection
	8.5.2 GPU-Based Reconstruction

	8.6 Discussion
	8.6.1 Optical Flow Comparison
	8.6.2 Comparison to Depth-Deviation-Based Approaches
	8.6.3 Gas Flow and Occluder Segmentation
	8.6.4 GPU-Based Reconstruction

	8.7 Conclusion
	References

	Part IIIDetection, Segmentation and Tracking
	9 RGB-D Sensor-Based Computer  Vision Assistive Technology  for Visually Impaired Persons
	9.1 Introduction
	9.2 Related Work of Computer Vision-Based Assistive Technology for Visually Impaired
	9.3 RGB-D Sensor-Based Computer Vision Assistive  Technology for Visually Impaired
	9.4 RGB-D Image-Based Stair and Pedestrian  Crosswalk Detection
	9.4.1 System Overview
	9.4.2 Detecting Candidates of Pedestrian Crosswalks  and Stairs from RGB Images
	9.4.3 Recognizing Pedestrian Crosswalks and Stairs  from Depth Images
	9.4.4 Estimating Distance Between Stairs and the Camera
	9.4.5 Experiment Results for Stair and Crosswalk Detection  and Recognition

	9.5 Conclusions and Future Work
	References

	10 RGB-D Human Identification and Tracking  in a Smart Environment
	10.1 Introduction
	10.2 Related Work
	10.2.1 Human Detection
	10.2.2 Human Tracking
	10.2.3 Human Re-identification

	10.3 Algorithm Description
	10.3.1 Detecting Humans
	10.3.2 Human Reentry Identification Based on Online Learning

	10.4 Experimental Results
	10.5 Conclusion
	References

	Part IVLearning-Based Recognition
	11 Feature Descriptors for Depth-Based  Hand Gesture Recognition
	11.1 Introduction
	11.2 Related Work
	11.3 Hand Extraction
	11.4 Extraction of the Relevant Features
	11.4.1 Distance Features
	11.4.2 Elevation Features
	11.4.3 Contour Histogram Similarity Features
	11.4.4 Curvature Features
	11.4.5 Palm Area Features
	11.4.6 Convex Hull Features
	11.4.7 Connected-Components Features

	11.5 Gesture Classification with Support Vector Machines
	11.6 Experimental Results
	11.7 Conclusions
	References

	12 Hand Parsing and Gesture Recognition  with a Commodity Depth Camera
	12.1 Introduction
	12.2 Literature Review
	12.3 System Overview
	12.4 Hand Modeling
	12.5 Hand Detection
	12.6 Per-pixel Classification
	12.6.1 Depth-Context Feature
	12.6.2 RDF Classification
	12.6.3 Key Point Extraction
	12.6.4 Temporal Constraints

	12.7 Superpixel MRF Hand Parsing
	12.7.1 Superpixel Partition
	12.7.2 Superpixel MRF Inference

	12.8 Hand Gesture Recognition
	12.9 Experimental Results
	12.9.1 Quantitative Evaluation for Single Frames
	12.9.2 Quantitative Evaluation for Continuous Sequences
	12.9.3 Qualitative Evaluation
	12.9.4 Hand Gesture Recognition

	References

	13 Learning Fast Hand Pose Recognition
	13.1 Introduction
	13.2 Relevant Work
	13.3 The Discriminative Ferns Ensemble
	13.3.1 The Discriminative Ferns Ensemble Classifier
	13.3.2 Classification Speed
	13.3.3 Discriminative Training

	13.4 Empirical Results
	13.4.1 Real Data Experiments
	13.4.2 Class Scalability Experiments

	13.5 Conclusions and Further Work
	References

	14 Real-Time Hand Gesture Recognition  Using RGB-D Sensor
	14.1 Introduction
	14.2 Related Work
	14.2.1 Hand Localization and Tracking
	14.2.2 Hand Pose Estimation

	14.3 Framework Overview
	14.3.1 Hand Parts Classification
	14.3.2 Gesture Recognition
	14.3.3 Application Definition

	14.4 Training Data Generation
	14.4.1 Hand Localization
	14.4.2 Color Classification

	14.5 Hand Patches Segmentation
	14.5.1 Hand Extraction
	14.5.2 Hand Parts Classification

	14.6 Gesture Recognition
	14.6.1 Contour Model
	14.6.2 Contour Generation
	14.6.3 Contour Matching

	14.7 Validation
	14.7.1 Hand Detection
	14.7.2 Hand Parts Classification
	14.7.3 Gestures Recognition

	14.8 System Application
	14.8.1 Augmented Reality Molecular Assembler
	14.8.2 Xerrys Intelligent Rehabilitation System

	14.9 Summary
	References

	Index



