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Abstract. Before the advent of fuzzy and rough sets, some authors in
the 1960s studied three-valued logics and pairs of sets with a meaning
similar to those we can encounter nowadays in modern theories such as
rough sets, decision theory and granular computing. We revise these stud-
ies using the modern terminology and making reference to the present
literature. Finally, we put forward some future directions of investigation.

1 Introduction

An orthopair on a universe U is a pair of subsets A,B ⊆ U such that A∩B = ∅.
From a purely set-theoretical standpoint an orthopair is equivalent to a pair
of nested sets A ⊆ C once defined C := Bc (·c denoting the set complement
with respect to the universe U). Clearly, an orthopair partitions the universe
in three sets: A,B and (A ∪B)c. So, a bijection between orthopairs and three-
valued sets can be established. Given an orthopair (A,B), a three-valued set
f : U �→ {0, 12 , 1} can be defined as f(x) = 1 if x ∈ A, f(x) = 0 if x ∈ B and
f(x) = 1

2 otherwise1. Vice versa, from a three-valued set f , an orthopair can be
defined as the inverse of the previous mapping. It follows that we can equivalently
study orthopairs, nested pairs or three-valued sets and in the following we will
mix these three approaches keeping in mind their syntactical equivalence. Let
us also notice that this tri-partition directly points to three-way decision [33]
whose aim is to partition in three a universe and to the theory of opposition,
in particular to a hexagon of oppositions, that can be naturally defined from a
tri-partition [12,17].

Several interpretations can be attached to the two sets A,B, here is some
example:

– They can be a set of true and false propositional variables;
– They can be a set of examples and counterexamples;
– A can represent the elements surely belonging to a given concept and B

those surely not belonging;

1 This translation reflects somehow the semantics usually assigned to orthopairs. With-
out giving any semantics to the two sets A, B and to the three-valued sets, any
permutation in the assigned values defines a bijection.
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– A can represent the elements surely belonging to a given concept and B can
represent a region of uncertainty: the elements about which either we cannot
decide on their (Boolean) belongingness or that belong to a certain extent.

The last point emphasize a difference in the interpretation of the no-certainty
zone: unknown, an epistemic notion, and borderline, an ontic notion. This dif-
ference is reflected to a greater extent by the third truth value (12 ) meaning:
under the epistemic view it can stand for unknown, possible, inconsistent, etc.
and under the ontic one, it can be interpreted as borderline (or half-true), un-
defined (in the sense of Kleene [23], that is outside the definition domain of a
given function), irrelevant, etc. For reasoning purposes, it can be argued that
three-valued truth-functional logics are suited in the ontic case whereas in the
epistemic one non-truth functional, such as modal logic or possibility theory, are
better placed [15].

Orthopairs (and nested pairs) appear in different contexts such as rough sets
and ill-known sets, three-way decision, three-valued logic, shadowed sets, etc...
They have been studied from a logical-algebraic standpoint by several authors
and also in general contexts where the underlying structure is weaker than a
Boolean algebra (for an overview see [8] and further historical remarks can be
found in [28, Frame 10.11]). In Section 2, we will revise some of the operations
that can be defined on these structures. For a more complete study on operations
we refer to [8,24,11] for orthopairs, an overview on three values is given in [10]
and about the relationship between orthopairs and three-valued operations see
[13].

The aim of the paper is two-fold, as the title suggests. From one side, it
presents an overview of some papers published before the coming of fuzzy sets
and rough sets, which contain several ideas about concepts that will be developed
in the following years. Then, we show that some ideas contained in those papers
are still innovative and can give some insight to the paradigms connected with
orthopairs. In particular, we will take into account the works by Fadini [19,18],
Andreoli [1,2,3] and the work by Gentilhomme [21]. Only the last one is to some
extent known in the fuzzy logic community and cited by some authors2, the
first two are almost unknown. On the other hand, we remark that it is out of
the scope of the present work to survey all the operations existing in rough set
theory, for this aspect we refer the interested reader to [4,5,13].

2 Preliminary Notions

As said in the introduction, several interpretations to three-valued sets can be
given and this reflects also on the different operations that we are entitled to
introduce. The same situation applies to orthopairs and nested pairs. As we will
see in Section 4, according to which interpretation or representation we use,
different operations naturally arise.

2 The paper [21] has 95 citations on Google Scholar at 23 April 2014.
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Indeed, let us consider a concept A that we want to describe and a pair of
sets (A1, A2) that we use to effectively represent it. Usually, A1 represents the
elements that surely belong to A. This corresponds in rough set theory to the
lower approximation and so, from now on, we will denote it as Al. The second
set can have three (mutually definable) interpretations that we are going to use
through the paper:

– A2 contains the objects possibly belonging to A, that is, it correponds to the
upper approximation and we denote it as Au.

– A2 contains the objects surely not belonging to conceptA, that is, the exterior
region. Thus, we are going to denote it as Ae.

– A2 represents the objects on which we are undecided about their belonging-
ness to A, this is the boundary region and it will be named Abnd.

Needless to stress (Al, Au) is a nested pair, whereas (Al, Ae) and (Al, Abnd) are
orthopairs. We are not going to consider here the case where the first element A1

is different from Al, which will generate other orthopairs, such as (Au, Ae) and
(Ae, ABnd). From now on, A and B will stand for orthopairs (Al, Ae), (Bl, Be)
or nested pairs (Al, Au), (Bl, Bu).

We now introduce some operations and order relations that have been intro-
duced on ortho (nested) pairs. This is not an exhaustive list, but a presentation
of some operations already known in literature that are helpful for the following
discussion. Other operations can be found in [8,25,24,11,10,14].

Let us first consider unary operations, usually meant to model a negation.
We have on three values the involutive, the intuitionistic and the paraconsistent
negations which extend the Boolean negation and thus differ only on the negation
of the third-truth value, respectively defined as 1

2

′
= 1

2 , ∼ 1
2 = 0 and − 1

2 = 1.
Once translated to orthopairs and nested pairs these negations are defined as
follows:

(Al, Ae)
′ := (Ae, Al) (Al, Au)

′ := (Ac
u, A

c
l ) (1)

∼ (Al, Ae) := (Ae, A
c
e) ∼ (Al, Au) := (Ac

u, A
c
u) (2)

−(Al, Ae) := (Ac
l , Al) −(Al, Au) := (Ac

l , A
c
l ) (3)

As far as binary operations are concerned, we are mainly interested in conjunc-
tion and disjunction, as well as related order relations. So, the basic meet and
join on three-values are the min and max (Kleene conjunction and disjunction
[23]) corresponding to the usual ordering on numbers: 0 ≤ 1

2 ≤ 1. On orthopairs
A and B, this ordering is known as the truth ordering [6] and it reads Al ⊆ Bl

and Be ⊆ Ae or equivalently Au ⊆ Bu on nested pairs. The meet and join
operations are respectively defined on orthopairs as

(Al, Ae) � (Bl, Be) := (Al ∩Bl, Ae ∪Be) (4)

(Al, Ae) � (Bl, Be) := (Al ∪Bl, Ae ∩Be) (5)

The other usually considered order relation on orthopairs is the knowledge
ordering [6,32], also known as semantic precision [24]: A k B if Al ⊆ Bl and
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Ae ⊆ Be (equiv., Bu ⊆ Au). As its name reflects, this ordering means that A
is less informative than B. It is a just a partial order which corresponds on
three values to 1

2 ≤ {0, 1}. Thus, it does not generate a join operator but only
a meet one, that is the min with respect to this ordering, and it corresponds on
orthopairs to the optimistic combination operator [24].

However, by transforming this order relation into a total one, two different
orderings and two different conjunctions and disjunctions are generated. These
orderings read on orthopairs as:

(Al, Ae) e (Bl, Be) iff Ae ⊆ Be and Al ∪Ae ⊆ Bl ∪Be, (6)

(Al, Ae) l (Bl, Be) iff Al ⊆ Bl, and Al ∪ Ae ⊆ Bl ∪Be, (7)

So, in both cases A is less informative than B. Let us notice, indeed, that Al ∪
Ae = Ac

Bnd and so the second condition of both relations can be equivalently
stated asBbnd ⊆ ABnd. In the first caseA is at least as negative asB, whereas the
second ordering means that A is at least as positive as B. From an information
point of view these two orderings are, thus, less demanding than the information
ordering and we have that A k B iff A e B and A l B.

Other orders on three values are respectively 1
2 ≤e 1 ≤e 0 and 1

2 ≤l 0 ≤l 1
(we are using the symbol ≤ on numbers and  on pairs). The interpretation of
these orderings on three values is not interesting per se, but they generate two
important pairs of conjunction and disjunction:

– the Sobociński operations [31], corresponding to uninorms with neutral el-
ement 1

2 [22]. The conjunction corresponds to the max with respect to the
order ≤e and the disjunction is the max with respect to ≤l. They are used
in conditional events to fuse conditionals [16]. Their definition on orthopairs
is given in equations 8.

(Al, Ae) �S (Bl, Be) := (Al, Ae) �e (Bl, Be) = (Al\Be ∪Bl\Ae, Ae ∪Be)
(8a)

(Al, Ae) �S (Bl, Be) := (Al, Ae) �l (Bl, Be) = (Al ∪Bl, Ae\Bl ∪Be\Al)
(8b)

– the weak Kleene meet and join [23], respectively corresponding to the min
with respect to ≤l and ≤e. In this case, the third value is interpreted as
undefined. On orthopairs they generate the operations in equations 9.

(Al, Ae) �K (Bl, Be) := (Al, Ae) �e (Bl, Be) (9a)

:= ((Al ∩Bl) ∪ [(Al ∩Be) ∪ (Bl ∩ Ae)], Ae ∩Be))

(Al, Ae) �K (Bl, Be) := (Al, Ae) �l (Bl, Be) (9b)

:= (Al ∩Bl, (Ae ∩Be) ∪ [(Ae ∩Bl) ∪ (Be ∩ Al)])

Finally, we can introduce six different negations by using these two order-
ings similarly as was done in equations (1)–(3). Some of these negations will be
discussed in Section 4.2.
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3 Interpretation

We start now to analyze how the three authors under investigation approach
orthopairs. Here, we consider the interpretation attached to a pair of sets and
in the following section, we see which operations are defined on them.

Orthopairs are introduced by Fadini [18,19] under the name complex classes.
They are defined as pairs of the kind (Al, ABnd), so with the meaning lower-
boundary. Using Fadini’s terminology: Al is the extension of a class and ABnd

contains “all the elements whose belonging to the class has the third truth
value”3 [18]. The union Al ⊕ ABnd is the complex extension of a class, and
to distinguish between the two different parts of the extension a new unity i
is introduced as in complex numbers and a complex class C is thus denoted as
C = Al ∪ iABnd.

Fadini is aware that different meanings can be attached to the third truth
value and that operations have to be chosen accordingly to the interpretation.
He gives the interpretation of indeterminate whose meaning is “clearly differ-
ent from unknown”, and for which the tertium non datur principle should not
hold (contrary to the unknown case). The term “indeterminate” is taken from
Reichenbach [29], that is, from quantum mechanics. So, it seems that the third
value has an ontic nature and it is not a knowledge flaw. This point of view is
clarified by Fadini himself in his later book on fuzzy sets, where he says that
indeterminate stands for a third truth value which is neither true nor false and
it is different from unknown or unknowable [20]. Moreover, in this book he also
studies the case of unknown which represents “the indecision between true and
false and so it is not a real third truth value”. In order to manage this case he
refers to a doxastic logic [26].

Andreoli [2,3] studies the generalizations of Boolean algebras and Boolean
sets in two directions. The first one, is by extending the set of truth values
(the membership function in case of sets). So, in the case of three values, he
classifies objects as “interior”, “exterior”, “boundary” or also as “accepted”,
“rejected”, “undecided”. So, we can see that the former terminology coincide
with the standard rough-set theory one whereas the second interpretation echoes
the terminology of three-way decision theory [33]. The second direction is what
he calls “levels”, whose motivations arise from genetics. Indeed, he gives the
example of a gene with a dominant allele A and a recessive one a. Then, we
can have three different kinds of pair: AA, Aa ≡ aA and aa with the order
AA > Aa > aa or if we want to distinguish between Aa and aA with a Boolean
lattice structure (see Figure 1). We notice, however, that an operation of Boolean
operators in this context is not provided. Perhaps, we could hazard that the
min/max can give the combination with the minor/major number of recessive
alleles possible.

This idea of levels reminds the granular computing approach to represent
knowledge. This similarity is also supported by Andreoli’s idea that two oper-

3 All translations from Italian (and in case of Gentilhomme, from French) are under
our complete responsibility.
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AA

Aa aA

aa Level 1

Level 2

Level 3

Fig. 1. Three levels of a Boolean algebra

ations named “refinement” and “attenuation” can be introduced on levels [3].
The first operation introduces a new level, that is, we can move from two to
three by splitting one level into other two. The second operation acts in the
opposite direction by fusing together two different levels. These operations can
be encountered nowadays in granular computing acting on levels or on concepts,
for instance in [7] we defined a refinement operation and an elimination one on
an ontology’s concepts. He also gives some hints on the fact that these two op-
erations can be generalized to more generic structures, not only to three values.
We postpone the investigation of this idea to a future work. We also notice that
in [1] a general study on the algebraic structure of pairs from a Boolean algebra
is given. These pairs, however, are not necessarily disjoint and an interpretation
is not provided.

Finally, Gentilhomme pairs are in the form lower-upper (Al, Au) and they are
named fuzzy (“flou”) sets. The lower set is the “certainty zone”, the upper the
“maximal extension” and the boundary, the fuzzy zone. He also notices that a
flou set can be equivalently expressed as the orthopair lower-exterior.

The interpretation of the boundary (equivalently, the third value) has an
ontic nature (the value 1

2 is named “maybe”). Indeed, it refers to linguistic
problems where we are unable to correctly classify some linguistic object and this
“hesitation” is a “matter of the language” [21]. So, the problem is intrinsic to the
object under study, not to the observer. However, in some passages Gentilhomme
also comments on the causes of this “partial failure” in classifying objects with
certainty, opening the door to some problems also in the observers. Indeed, in
the list of causes given by Gentilhomme, we have:

– the fact that different agents have different opinions. This could lead to an
interpretation of the third truth value as inconsistent and thus to paracon-
sistent logic where two (or more) agents can be in accordance or not on the
Boolean truth value to assign.

– the fact that data cannot be analyzed in a certain way or that we cannot
apply some given criteria to the data.

Finally, we notice that he also uses the terminology of complex numbers when
generalizing to not nested pairs (A,B). Analogously to the numerical case, the
sense is that “all the symbols do not have an immediate interpretation [...] but
they obey to similar formal rules”. He also notices that such pairs can be de-
fined by a set “completely” fuzzy (∅, B) and a set “totally imaginary” (A, ∅) as
(A,B) = (A, ∅) � (∅, B).
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4 Operations

In this section, we look at the operations introduced by the three authors in
their works making reference, when possible, to those introduced in Section 2
and pointing out which operations are new and the relations with other theories.
Of course, these operations are defined in an abstract setting and they should be
adapted to the context where they are used. For instance, in rough set theory, not
all orthopairs are representable as rough sets, due to the partition generated by
the equivalence relation; this entails a non truth-functional behaviour of rough
sets [13].

4.1 Intersection, Union and Difference

Andreoli is interested in a general study on orthopairs (sometimes only pairs as
in [1]) and he considers as plausible all the binary operations that are associative,
commutative and idempotent. There are six operations of this kind and they are
pairwise linked by a de Morgan property (using the standard involutive negation
(1)). They are the Kleene min and max, Sobocinski conjunction and disjunction
(equations 8) and weak Kleene conjunction and disjunction (equations 9). He
also notices that they correspond to the min or max with respect to different
orderings on the three values. So, for instance Sobocinski conjunction is the max
with respect to the order ≤e (equiv., the min with respect to the opposite order
0 ≤ 1 ≤ 1

2 ).
On the other hand, both Fadini and Gentilhomme consider as intersection and

union the standard Kleene operations (min and max on three values). This is
coherent with respect to the ontic interpretation they have in mind as explained
in the previous sections.

Besides conjunction and disjunction, Gentilhomme also devotes some efforts
to define a difference between two nested pairs. He considers as the correct
definition of a difference the following one (·′ is the involutive negation on pairs
as defined in equation (1)):

A \B := A �B′ = (Al \Bu, Au \Bl) (10)

that corresponds to an “experimental reality” where the certainty zone is exactly
Al \ Bu. However, he also introduces two other differences: the greatest, that
consists in accepting the maximum of the risk, and the smallest, that is accepting
no risk. They are respectively defined as

A \g B := (Al \Bl, Au \Bl) (11)

A \l B := (Al \Bu, Au \Bu) (12)

It is interesting to notice that these difference operators can be obtained as
in equation (10) but using the intuitionistic and paraconsistent negations of
equations (2) and (3), that is, we have A \g B = A�−B and A \l B = A� ∼ B.

Of course, this reference to the risk occurring to using one operation instead
of another points to decision theory and so to the possibility to introduce these
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(and other) operations on three-way decision theory. This aspect deserves a
further investigation in the future.

All these differences are not equal to the difference on orthopairs defined in [25]
as (Al \Be, Ae \Bl). This last corresponds to making the orthopair “consistent”,
that is removing from the positive/negative part of A the negative/positive part
of B so as to avoid conflict between A and B. The corresponding operation on
nested pairs reads (Al ∩Bu, Au ∪Bc

u) whose interpretation is not so clear. Thus,
in the difference case, it is evident that even though mathematically equivalent,
nested and orthopairs give birth to different operations which make sense more
in one case than in the other.

4.2 Negations

All the three authors consider the involutive negation as one possibility. Gentil-
homme just considers this one, whereas Andreoli and Fadini give more solutions.

Indeed, in order to obtain a negation, Fadini considers what happens in
negating the Boolean part, the complex part or both. As a result, not all these
operations are an extension of the Boolean negation on two values. By the nega-
tion of the Boolean part we get the standard involutive negation. By negat-
ing the complex part, we obtain a swapping of 0 with 1

2 : on nested pairs,
(Al, Au)

∗ := (Al, Al ∪ Ae) and on orthopairs, (Al, Ae)
∗ := (Al, ABnd). That

is, in the case of orthopairs the negation consists in a switch of the interpre-
tation from necessity-impossibility to necessity-unknown. Let us notice that it
corresponds to an involutive negation based on the order ≤e (i.e., the “middle”
value is 1).

Finally, by negating both the Boolean and the complex part we get two nega-
tions: (Al, Au) := (Ac

l , U) and (Al, Au) := (ABnd, U). On three values, the first

negation is such that 1 = 1
2 , 0 = 1

2 = 1, which is the complete negation in-
troduced by Reichenbach and has its reasons4 in quantum mechanics [29]. We
remark that it can be obtained by a paraconsistent-like negation based on the
order ≤l. On the same ordering, the intuitionistic-like negation corresponds to

the second negation by Fadini, and it is defined as 1 = 0 = 1
2 ,

1
2 = 1. In both

cases, nothing is false, the difference lies in what is true: in the first case it cor-
responds to what was not true (that is, false or unknown), in the second to what
was not known (i.e., in the boundary).

Moreover, he also considers the possibility that a negation of a Boolean or
complex part is allowed to contain only elements outside the class itself instead
of all and only the elements. In this way, a further negation is introduced by
swapping the Boolean and complex part. In terms of nested pairs: (Al, Au)

◦ =
(Au\Al, Au) and of three-values 0o = 0, 1

2

o
= 1 and 1o = 1

2 . This corresponds
to an involutive negation based on the order ≤l (

1
2 ≤l 0 ≤l 1).

Andreoli, apart from the standard involutive negation, introduces on three
values an interesting approach, which is different from what we have seen until

4 Reichenbach justifies the name complete by the fact that a ∨ a is a tautology and
this form of excluded middle is required by quantum mechanics.
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now. In a certain sense, it can be seen as a Boolean negation on the set of truth
values. Indeed, if t ∈ {0, 12 , 1}, then the negation of {t} is {t}c. This is justified by
the interpretation of three values as chosen, rejected, undecided. So, for instance,
the negation of undecided is decided which can mean either chosen or refused.
With respect to decision theory he then suggests that one can arrive at a final
decision with a two steps “Boolean” procedure. That is, at a first step there is
the division of the world in decided and undecided and in the second step decided
is further classified as rejected or chosen. This is a sort of sequential reasoning
which however works in the opposite direction with respect to the three-way
sequential decision theory [34] (see Figure 2).

Decided
Choosen

Rejected
Undecided

Choosen

Rejected

Undecided
Choosen

Rejected

Undecided

Fig. 2. Sequential decision making (Andreoli left, Yao right)

Indeed, this last consists in developing at the second step what is left unde-
cided in the first one. In this way, through a sequence of three-way decision it
is possible to arrive at a Boolean decision, classifying all objects as accepted or
rejected. This strategy is pointed out (but not developed) by Gentilhomme with
respect to classification: “we classify what we are able to classify and we devote
a “cesspool” to the rebel elements” [21].
Going back to the negation, when applied to orthopairs we get that the negation
of (Al, Ae) is ((Al)

c, Ac
e) = ((Ac)u, Au) which is no more an orthopair and the

intersection of Ac
l and Au is the boundary ABnd. Pairs of this kind make sense

when we want to model conflicting information, such as in Belnap or paracon-
sistent logics, so that an object can be in both sets of the pair [11,14]. The role
of this negation in decision theory and conflicting information should be better
investigated.

Finally, let us notice that the fact that at a first step we do not take a definite
position but just exclude one possibility among three, that is we wonder if a
proposition is false (either true) or unknown has been also discussed in terms of
orthopairs arising from formal contexts in [27]. Similarly, in the translation from
three-valued to epistemic logics [9] we admit the possibility to represent that a
valuation of a formula is ≤ 1

2 (false or unknown) or ≥ 1
2 (unknown or true).

4.3 Inclusion

According to Fadini [19], the main property to define an inclusion is based on the
two parts (the Boolean and boundary ones) of his complex-class notion. Indeed,
the inclusion between two complex classes Al ⊕ iABnd and Bl ⊕ iBBnd holds if
it holds for the union of the two parts Al ∪ ABnd ⊆ Bl ∪BBnd. This, on nested
pairs, reduces to Au ⊆ Bu. Fadini outlined five ways to fulfill this condition,
namely
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(sub1) Al ⊆ Bl, Au ⊆ Bu it is named proper inclusion since it is the only one
to be an order relation. We can see that it is the standard inclusion
relation on nested pairs, corresponding to the standard order relation on
three-values;

(sub2) Au ⊆ Bl named total inclusion for the intuitive reason that the concept
A it totally contained in B, both in its certainty and possibility parts;

(sub3) Abnd ⊆ Bl, Al ⊆ Bbnd it is called improper or inverted inclusion;
(sub4) Au ⊆ BBnd, the total improper inclusion;
(sub5) Abnd and Al are both contained in Bu and they have a non-empty inter-

section with both Bl and Bbnd, this is the mixed inclusion.

As can be seen his notions of inclusion are greatly influenced by his interpretation
of the orthopair as lower-boundary. This view generates original (pseudo) order
relations that not always can find an easy interpretation outside this framework.

Gentilhomme presents six different inclusion relations, defined according to
different mutual behaviours of lower and upper sets. These six relations form
a lattice where the order relation is given by “implies”, that is an inclusion is
smaller than another if the second one implies the first5. Only three of these re-
lations are considered meaningful, named normal, since “it is best suited for cal-
culations”: Al ⊆ Bl and Au ⊆ Bu (again the standard inclusion on orthopairs);
strong and weak defined, respectively, as Au ⊆ Bl and Al ⊆ Bu, the justification
of the name being intuitive.

Finally, Andreoli does not study directly the inclusion relations on three val-
ues/orthopairs but just on four values in [2]. On three values, they are indirectly
considered when studying the join and meet operations (see section 4.1). As can
be seen no one considered the knowledge ordering but they have defined order
relations never encountered before.

With respect to the relationship with implications, the only reference is by
Fadini in [18]. He does not consider his inclusion operations to be the corre-
sponding of an inference but of a conditional if a, then b since they hold only
when a is true. Oddly, no further discussion on implication is present in other
Fadini’s works nor in Andreoli and Gentilhomme.

5 Conclusion

In the present paper, we reviewed some (old) works on orthopairs, related them
to modern theories such as rough sets, decision theory and granular computing.
We saw how different interpretations of an orthopair can influence the definition
of operations. Some new operations (with respect to what is usually considered
nowadays) have been found: the difference operations in Gentilhomme and the
negations in Fadini and Andreoli. In particular these operations are often given
an interpretation in decision theory. So, as a future work, it is worth considering
the possibility to study orthopair operations in three-way decision. More gen-
erally, the role of the negation in orthopairs and conflicting information needs

5 The relation of this lattice with implication lattices in rough sets [30] should be
studied in the future.
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a thorough understanding. Further, the role of levels in generalized structures
outlined by Andreoli could be of some interest in granular computing. Finally,
an algebraic study of these new operations deserves some attention and an ad
hoc study.
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